Science.gov

Sample records for muscular del bagre

  1. Muscular dystrophy

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/001190.htm Muscular dystrophy To use the sharing features on this page, please enable JavaScript. Muscular dystrophy is a group of inherited disorders that cause ...

  2. Muscular Dystrophy

    MedlinePlus

    Muscular dystrophy (MD) is a group of more than 30 inherited diseases. They all cause muscle weakness and ... ability to walk. There is no cure for muscular dystrophy. Treatments can help with the symptoms and prevent ...

  3. Muscular Dystrophy

    MedlinePlus

    ... in Duchenne muscular dystrophy. Dev. Med. Child Neurol. Mar 1995;37(3):260-269. 4. Centers for ... DM1) . The International Myotonic Dystrophy Consortium (IDMC). Neurology. Mar 28 2000;54(6):1218-1221. 5. Harper ...

  4. Muscular Dystrophy

    MedlinePlus

    ... be affected. Limb-girdle muscular dystrophy (LGMD) affects boys and girls equally, weakening muscles in the shoulders and upper ... weakness and poor muscle tone. Occurring in both girls and boys, it can have different symptoms. It varies in ...

  5. Meaning of Muscular Dystrophy

    MedlinePlus

    ... Help White House Lunch Recipes The Meaning of Muscular Dystrophy KidsHealth > For Kids > The Meaning of Muscular Dystrophy ... you know someone who has MD. What Is Muscular Dystrophy? Muscular dystrophy (say: MUS-kyoo-lur DIS-troh- ...

  6. Muscular dystrophy - resources

    MedlinePlus

    Resources - muscular dystrophy ... The following organizations are good resources for information on muscular dystrophy : Muscular Dystrophy Association -- www.mdausa.org National Institute of Neurological Disorders and Stroke -- www.ninds.nih. ...

  7. Myotonic Muscular Dystrophy

    MedlinePlus

    ... a Difference How to Get Involved Donate Myotonic Muscular Dystrophy (MMD) Share print email share facebook twitter google plus linkedin Myotonic Muscular Dystrophy (MMD) What is myotonic muscular dystrophy (MMD)? Myotonic ...

  8. Flexibility and Muscular Strength.

    ERIC Educational Resources Information Center

    Liemohn, Wendell

    1988-01-01

    This definition of flexibility and muscular strength also explores their roles in overall physical fitness and focuses on how increased flexibility and muscular strength can help decrease or eliminate lower back pain. (CB)

  9. Carrier frequency of the c.525delT mutation in the SGCG gene and estimated prevalence of limb girdle muscular dystrophy type 2C among the Moroccan population.

    PubMed

    El Kerch, Fatiha; Ratbi, Ilham; Sbiti, Aziza; Laarabi, Fatima-Zohra; Barkat, Amina; Sefiani, Abdelaziz

    2014-04-01

    Autosomal recessive limb-girdle muscular dystrophies (AR-LGMDs) are characterized by clinical and genetic heterogeneity. LGMD type 2C, or γ-sarcoglycanopathy, is the most frequent in North African populations as a result of the founder c.525delT mutation in the SGCG gene. Its epidemiology is poorly known in Morocco, and its prevalence among the Moroccan population has never been evaluated. This study screened 26 patients with a LGMD2C and 45 patients with an AR-LGMD phenotype for the c.525delT mutation. DNA extracted from umbilical cord blood samples of 250 newborns was tested for the same mutation. Molecular epidemiologic methods were used to calculate the frequency of heterozygotes for this mutation in Moroccan newborns and to estimate the prevalence of LGMD2C in the Moroccan population. The carrier frequency was estimated to be 1/250, which would imply that the prevalence of LGMD2C would be approximately 1/20,492 considering the effect of consanguinity. The homozygous c.525delT mutation was found in 65% of all patients with AR-LGMDs. These findings suggest that AR-LGMDs are prevalent in the Moroccan population and LGMD2C is one of the most common forms. This information might be useful for the development of diagnostic strategies on a large scale for better management of patients with AR-LGMD and genetic counseling of families. PMID:24552312

  10. Facioscapulohumeral muscular dystrophy

    MedlinePlus

    ... of cases, the parents do not carry the gene. Facioscapulohumeral muscular dystrophy affects about 5 out of 100,000 people. ... Treatment There is no ... worse. Physical therapy may help maintain muscle strength. Other possible treatments ...

  11. Becker muscular dystrophy

    MedlinePlus

    ... and wheelchairs may improve movement and self-care. Genetic counseling may be recommended. Daughters of a man with ... Genetic counseling may be advised if there is a family history of Becker muscular dystrophy.

  12. Myotonic Dystrophy and Facioscapulohumeral Muscular Dystrophy Registry

    ClinicalTrials.gov

    2016-08-26

    Myotonic Dystrophy; Facioscapulohumeral Muscular Dystrophy; Muscular Dystrophy; Myotonic Dystrophy Type 1; Myotonic Dystrophy Type 2; Congenital Myotonic Dystrophy; PROMM (Proximal Myotonic Myopathy); Steinert's Disease; Myotonic Muscular Dystrophy

  13. Evaluation of Limb-Girdle Muscular Dystrophy

    ClinicalTrials.gov

    2014-03-06

    Becker Muscular Dystrophy; Limb-Girdle Muscular Dystrophy, Type 2A (Calpain-3 Deficiency); Limb-Girdle Muscular Dystrophy, Type 2B (Miyoshi Myopathy, Dysferlin Deficiency); Limb-Girdle Muscular Dystrophy, Type 2I (FKRP-deficiency)

  14. How Is Muscular Dystrophy Diagnosed?

    MedlinePlus

    ... Information Clinical Trials Resources and Publications How is muscular dystrophy diagnosed? Skip sharing on social media links Share this: Page Content The first step in diagnosing muscular dystrophy (MD) is a visit with a health care ...

  15. Duchenne muscular dystrophy.

    PubMed

    Yiu, Eppie M; Kornberg, Andrew J

    2015-08-01

    Duchenne muscular dystrophy, an X-linked disorder, has an incidence of one in 5000 boys and presents in early childhood with proximal muscle weakness. Untreated boys become wheelchair bound by the age of 12 years and die of cardiorespiratory complications in their late teens to early 20s. The use of corticosteroids, non-invasive respiratory support, and active surveillance and management of associated complications have improved ambulation, function, quality of life and life expectancy. The clinical features, investigations and management of Duchenne muscular dystrophy are reviewed, as well as the latest in some of the novel therapies. PMID:25752877

  16. Genetics Home Reference: tibial muscular dystrophy

    MedlinePlus

    ... Names for This Condition tardive tibial muscular dystrophy TMD Udd distal myopathy Udd-Markesbery muscular dystrophy Udd ... titin may cause more severe tibial muscular dystrophy (TMD). Neuromuscul Disord. 2008 Dec;18(12):922-8. ...

  17. Cardio-Muscular Conditioner

    NASA Technical Reports Server (NTRS)

    1993-01-01

    In the mid-sixties, Gary Graham, a Boeing designer, developed a cardiovascular conditioner for a planned Air Force orbiting laboratory. After the project was cancelled, Graham participated in space station conditioning studies for the Skylab program. Twenty years later, he used this expertise to develop the Shuttle 2000-1, a physical therapy and athletic development conditioner, available through Contemporary Designs. The machine is used by football teams, sports clinics and medical rehabilitation centers. Cardiovascular fitness and muscular strength development are promoted through both kinetic and plyometric exercises.

  18. Congenital muscular torticollis.

    PubMed

    Nilesh, Kumar; Mukherji, Srijon

    2013-07-01

    Congenital muscular torticollis (CMT) is a rare congenital musculoskeletal disorder characterized by unilateral shortening of the sternocleidomastoid muscle (SCM). It presents in newborn infants or young children with reported incidence ranging from 0.3% to 2%. Owing to effective shortening of SCM on the involved side there is ipsilateral head tilt and contralateral rotation of the face and chin. This article reports a case of CMT in a 3½-year-old male child successfully managed by surgical release of the involved SCM followed by physiotherapy. PMID:24205484

  19. Congenital muscular torticollis

    PubMed Central

    Nilesh, Kumar; Mukherji, Srijon

    2013-01-01

    Congenital muscular torticollis (CMT) is a rare congenital musculoskeletal disorder characterized by unilateral shortening of the sternocleidomastoid muscle (SCM). It presents in newborn infants or young children with reported incidence ranging from 0.3% to 2%. Owing to effective shortening of SCM on the involved side there is ipsilateral head tilt and contralateral rotation of the face and chin. This article reports a case of CMT in a 3½-year-old male child successfully managed by surgical release of the involved SCM followed by physiotherapy. PMID:24205484

  20. Wasting Mechanisms in Muscular Dystrophy

    PubMed Central

    Shin, Jonghyun; Tajrishi, Marjan M.; Ogura, Yuji; Kumar, Ashok

    2013-01-01

    Muscular dystrophy is a group of more than 30 different clinical genetic disorders that are characterized by progressive skeletal muscle wasting and degeneration. Primary deficiency of specific extracellular matrix, sarcoplasmic, cytoskeletal, or nuclear membrane protein results in several secondary changes such as sarcolemmal instability, calcium influx, fiber necrosis, oxidative stress, inflammatory response, breakdown of extracellular matrix, and eventually fibrosis which leads to loss of ambulance and cardiac and respiratory failure. A number of molecular processes have now been identified which hasten disease progression in human patients and animal models of muscular dystrophy. Accumulating evidence further suggests that aberrant activation of several signaling pathways aggravate pathological cascades in dystrophic muscle. Although replacement of defective gene with wild-type is paramount to cure, management of secondary pathological changes has enormous potential to improving the quality of life and extending lifespan of muscular dystrophy patients. In this article, we have reviewed major cellular and molecular mechanisms leading to muscle wasting in muscular dystrophy. PMID:23669245

  1. Alternative splicing and muscular dystrophy

    PubMed Central

    Pistoni, Mariaelena; Ghigna, Claudia; Gabellini, Davide

    2013-01-01

    Alternative splicing of pre-mRNAs is a major contributor to proteomic diversity and to the control of gene expression in higher eukaryotic cells. For this reasons, alternative splicing is tightly regulated in different tissues and developmental stages and its disruption can lead to a wide range of human disorders. The aim of this review is to focus on the relevance of alternative splicing for muscle function and muscle disease. We begin by giving a brief overview of alternative splicing, muscle-specific gene expression and muscular dystrophy. Next, to illustrate these concepts we focus on two muscular dystrophy, myotonic muscular dystrophy and facioscapulohumeral muscular dystrophy, both associated to disruption of splicing regulation in muscle. PMID:20603608

  2. Myoglobin in Primary Muscular Disease: I. Duchenne Muscular Dystrophy: and: II. Muscular Dystrophy of Distal Type

    PubMed Central

    Romero-Herrera, A. E.; Lehmann, H.; Tomlinson, B. E.; Walton, J. N.

    1973-01-01

    Skeletal myoglobin from two cases of muscular dystrophy, one of Duchenne muscular dystrophy, and one of muscular dystrophy of distal type, have been examined and no differences from normal human myoglobin were found. The opportunity has been taken to discuss the nature of minor fractions of myoglobin-like material which are found when human skeletal myoglobin is isolated. Those which have been observed in the present study have been artefacts and it was possible to demonstrate that they were due to deamidation of certain glutamine and asparagine residues. Images PMID:4590363

  3. Bed Rest Muscular Atrophy

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.

    2000-01-01

    A major debilitating response from prolonged bed rest (BR) is muscle atrophy, defined as a "decrease in size of a part of tissue after full development has been attained: a wasting away of tissue as from disuse, old age, injury or disease". Part of the complicated mechanism for the dizziness, increased body instability, and exaggerated gait in patients who arise immediately after BR may be a result of not only foot pain, but also of muscular atrophy and associated reduction in lower limb strength. Also, there seems to be a close association between muscle atrophy and bone atrophy. A discussion of many facets of the total BR homeostatic syndrome has been published. The old adage that use determines form which promotes function of bone (Wolff's law) also applies to those people exposed to prolonged BR (without exercise training) in whom muscle atrophy is a consistent finding. An extreme case involved a 16-year-old boy who was ordered to bed by his mother in 1932: after 50 years in bed he had "a lily-white frame with limbs as thin as the legs of a ladder-back chair". These findings emphasize the close relationship between muscle atrophy and bone atrophy. In addition to loss of muscle mass during deconditioning, there is a significant loss of muscle strength and a decrease in protein synthesis. Because the decreases in force (strength) are proportionately greater than those in fiber size or muscle cross-sectional area, other contributory factors must be involved; muscle fiber dehydration may be important.

  4. [Muscular isokinetic dynamometry].

    PubMed

    Svetlize, H D

    1991-01-01

    In the past, muscular strength has primarily been measured using isometric, isotonic or tensiometric techniques. The advent of isokinetic dynamometers has supplied an objective method of measuring peak torque throughout a full range of motion at a predetermined speed of contraction. An isokinetic contraction is a refinement of the controlled motion concept. The isokinetic contraction is dynamic, but the speed of the motion is held constant by a special device. In this way, resistance is in direct ratio to the varying force applied through the full course of a natural movement. The purpose of this study was to determine the peak torque of quadriceps (Q), and hamstrings (H), and their biomechanical angle of production, H to Q ratio and bilateral comparisons of these variables for the first time in a Southamerican population. Twenty healthy and voluntary males (age: 21.9 +/- 3.1 years, height 193.2 +/- 6.5 cm, weight: 84.2 +/- 5.2 kgs.), were tested on the Cybex II Dynamometer and Cybex Data Reduction Computer (CDRC). Quadriceps and hamstrings peak torque (pkTQ), in Newton-meters, were obtained at angular velocities of 60, 180 and 240 degrees. sec-1. Also, the angle of the range of motion at which peak torque occurred in both directions, H and Q peak torque to body weight ratios, H to Q ratio were measured. Finally, CDRC provided the bilateral comparison of the different variables expressed in percentages. All measurements were automatically corrected for the effect of gravity. The absolute maximal pkTQ of dominant (D), and non-dominant (ND), quadriceps at 60 degrees/sec was DQ 297 +/- 25 Nwm and nDQ 303 +/- 13 Nwm.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1921692

  5. Facioscapulohumeral muscular dystrophy.

    PubMed

    Sacconi, Sabrina; Salviati, Leonardo; Desnuelle, Claude

    2015-04-01

    Facioscapulohumeral muscular dystrophy (FSHD) is characterized by a typical and asymmetric pattern of muscle involvement and disease progression. Two forms of FSHD, FSHD1 and FSHD2, have been identified displaying identical clinical phenotype but different genetic and epigenetic basis. Autosomal dominant FSHD1 (95% of patients) is characterized by chromatin relaxation induced by pathogenic contraction of a macrosatellite repeat called D4Z4 located on the 4q subtelomere (FSHD1 patients harbor 1 to 10 D4Z4 repeated units). Chromatin relaxation is associated with inappropriate expression of DUX4, a retrogene, which in muscles induces apoptosis and inflammation. Consistent with this hypothesis, individuals carrying zero repeat on chromosome 4 do not develop FSHD1. Not all D4Z4 contracted alleles cause FSHD. Distal to the last D4Z4 unit, a polymorphic site with two allelic variants has been identified: 4qA and 4qB. 4qA is in cis with a functional polyadenylation consensus site. Only contractions on 4qA alleles are pathogenic because the DUX4 transcript is polyadenylated and translated into stable protein. FSHD2 is instead a digenic disease. Chromatin relaxation of the D4Z4 locus is caused by heterozygous mutations in the SMCHD1 gene encoding a protein essential for chromatin condensation. These patients also harbor at least one 4qA allele in order to express stable DUX4 transcripts. FSHD1 and FSHD2 may have an additive effect: patients harboring D4Z4 contraction and SMCHD1 mutations display a more severe clinical phenotype than with either defect alone. Knowledge of the complex genetic and epigenetic defects causing these diseases is essential in view of designing novel therapeutic strategies. This article is part of a Special Issue entitled: Neuromuscular Diseases: Pathology and Molecular Pathogenesis. PMID:24882751

  6. What Are the Treatments for Muscular Dystrophy?

    MedlinePlus

    ... Resources and Publications What are the treatments for muscular dystrophy? Skip sharing on social media links Share this: ... available to stop or reverse any form of muscular dystrophy (MD). Instead, certain therapies and medications aim to ...

  7. Spinal muscular atrophy

    PubMed Central

    2011-01-01

    Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disease characterized by degeneration of alpha motor neurons in the spinal cord, resulting in progressive proximal muscle weakness and paralysis. Estimated incidence is 1 in 6,000 to 1 in 10,000 live births and carrier frequency of 1/40-1/60. This disease is characterized by generalized muscle weakness and atrophy predominating in proximal limb muscles, and phenotype is classified into four grades of severity (SMA I, SMAII, SMAIII, SMA IV) based on age of onset and motor function achieved. This disease is caused by homozygous mutations of the survival motor neuron 1 (SMN1) gene, and the diagnostic test demonstrates in most patients the homozygous deletion of the SMN1 gene, generally showing the absence of SMN1 exon 7. The test achieves up to 95% sensitivity and nearly 100% specificity. Differential diagnosis should be considered with other neuromuscular disorders which are not associated with increased CK manifesting as infantile hypotonia or as limb girdle weakness starting later in life. Considering the high carrier frequency, carrier testing is requested by siblings of patients or of parents of SMA children and are aimed at gaining information that may help with reproductive planning. Individuals at risk should be tested first and, in case of testing positive, the partner should be then analyzed. It is recommended that in case of a request on carrier testing on siblings of an affected SMA infant, a detailed neurological examination should be done and consideration given doing the direct test to exclude SMA. Prenatal diagnosis should be offered to couples who have previously had a child affected with SMA (recurrence risk 25%). The role of follow-up coordination has to be managed by an expert in neuromuscular disorders and in SMA who is able to plan a multidisciplinary intervention that includes pulmonary, gastroenterology/nutrition, and orthopedic care. Prognosis depends on the phenotypic

  8. Evaluation of the chromium contamination at Ribeirão dos Bagres, Franca (SP), Brazil, by the ²¹⁰Pb method.

    PubMed

    Matamet, F R M; Bonotto, D M

    2013-12-01

    This paper presents a chronological study focusing the use of ²¹⁰Pb in four sediment cores collected at Ribeirão dos Bagres in the region of Franca, São Paulo State, Brazil. When evaluating the sedimentation rate by using the ²¹⁰Pb method, it was possible to monitor historical changes occurring in the concentrations of chromium present in the sediments. In order to do so, several specific parameters were determined in sediments, as chromium concentration, major oxides, organic matter, grain size, and chemical and physical-chemical parameters of waters. The sediments possessed a Cr concentration range of 0.83-26.25mg/kg that is below the world's average of shales. The sedimentation rates obtained from the ²¹⁰Pb analysis were between 0.07 and 0.77 g cm⁻²year⁻¹, while the linear sedimentation rate was from 0.6 to 3.2 cm/year. The adoption of the CIC (Constant Initial Concentration) ²¹⁰Pb model allowed characterize older sediments, aged 177 years, and younger sediments, aged 4 years. The organic matter in the sediments was more abundant in the first few centimeters of practically all profiles, and the analysis of oxides showed that silica is the major constituent of the sediments, in which there is predominance of sand and silt. In addition, the analysis of the physical and chemical parameters of waters indicated that they are suitable for navigation and natural harmony landscape. PMID:24184739

  9. Environmental changes and microbiological health risks. Satellite-derived turbidity: an indicator of "health hazard" for surface water in West Africa (Bagre lake, Burkina Faso).

    NASA Astrophysics Data System (ADS)

    Robert, E.; Grippa, M.; Kergoat, L.; Martinez, J.; Pinet, S.; Gal, L.; Soumaguel, N.

    2015-12-01

    A significant correlation exists between the concentration of parasites, bacteria and some water quality parameters including surface suspended solids (SSS) and turbidity. Suspended particles can carry viruses and pathogenic bacteria affecting human health and foster their development. High SSS, associated with high turbidity, can therefore be considered as a vector of microbiological contaminants, causing diarrheal diseases. Few studies have focused on the turbidity parameter in rural Africa, while many cases of intestinal parasitic infections are due to the consumption of unsafe water from ponds, lakes, and rivers. Monitoring turbidity may therefore contribute to health hazard monitoring. Turbidity refers to the optical properties of water and is known to impact water reflectance in the visible and near-infrared domain. Ideally, its spatial and temporal variability requires the use of high temporal resolution (MODIS) and spatial resolution (Landsat, SPOT, Sentinel-2). Here we investigate turbidity in West-Africa. Various algorithms and indices proposed in the literature for inland waters are applied to MODIS series and to Landsat 7 and 8 CDR images, and SPOT5 images. The data and algorithms are evaluated with field measurements: turbidity, SSS, and hyperspectral ground radiometry. We show that turbidity of the Bagre Lake displays a strong increase over 2000-2015, associated with the corresponding increase of the red and NIR reflectances, as well as a reduction of the seasonal variations. Water level derived from the Jason 2 altimeter does not explain such variations. The most probable hypothesis is a change in land use (increase in bare and degraded soils), that leads to an increase in the particles transported by surface runoff to the lake. Such an increase in turbidity reinforces the health risk. We will discuss the link between turbidity and health in view of data from health centers on diarrheal diseases as well as data on practices and uses of populations.

  10. A new variant of endemic pemphigus foliaceus in El-Bagre, Colombia: the Hardy-Weinberg-Castle law and linked short tandem repeats

    PubMed Central

    Abreu-Velez, Ana María; Robles, Edinson Villa; Howard, Michael S.

    2009-01-01

    Background: We reported a new variant of endemic pemphigus foliaceus in El Bagre, Colombia. Aims: Our study performed Complex Segregation Analysis (CSA) and short tandem repeats to discriminate between environmental and/or genetic factors in this disorder. Materials and Methods: The CSA analysis was carried out according to the unified model, implemented using the transmission probabilities implemented in the computer program POINTER, and evaluated by using a software package for population genetic data analysis (GDA), Arlequin. We performed pedigree analyses by using Cyrillic 2.1 software, with a total of 30 families with 50 probands (47 males and 3 females) tested. In parallel to the CSA, we tested for the presence of short tandem repeats from HLA class II, DQ alpha 1, involving the gene locus D6S291 by using the Hardy-Weinberg- Castle law. Results Our results indicate that the best model of inheritance in this disease is a mixed model, with multifactorial effects within a recessive genotype. Two types of possible segregation patterns were found; one with strong recessive penetrance in families whose phenotype is more Amerindian-like, and another of possible somatic mutations. Conclusion: The penetrance of 10% or less in female patients 60 years of age or older indicates that hormones could protect younger females. The greatest risk factor for men being affected by the disorder was the NN genotype. These findings are only possible due to somatic mutations, and/or strong environmental effects. We also found a protective role for two genetic loci (D6S1019 AND D6S439) in the control group. PMID:22666691

  11. Porcine models of muscular dystrophy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Duchenne muscular dystrophy is a progressive, fatal, X-linked disease caused by a failure to accumulate the cytoskeletal protein, dystrophin. This disease is modeled by a variety of animal models including several fish models, mice, rats, and dogs. While these models have contributed substantially t...

  12. Modifying muscular dystrophy through TGFβ

    PubMed Central

    Ceco, Ermelinda; McNally, Elizabeth M.

    2013-01-01

    Muscular dystrophy arises from ongoing muscle degeneration and insufficient regeneration. This imbalance leads to loss of muscle with replacement by scar or fibrosis resulting in muscle weakness and, eventually, loss of muscle function. Human muscular dystrophy is characterized by a wide range of disease severity, even when the same genetic mutation is present. This variability implies that other factors, both genetic and environmental, modify the disease outcome. There has been an ongoing effort to define the genetic and molecular bases that influence muscular dystrophy onset and progression. Modifier genes for muscle disease have been identified through candidate gene approaches as well as genomewide surveys. Multiple lines of experimental evidence have now converged on the TGFβ pathway as a modifier for muscular dystrophy. TGFβ signaling is upregulated in dystrophic muscle as a result of a destabilized plasma membrane and/or altered extracellular matrix. Given the important biological role of the TGFβ pathway, and its role beyond muscle homeostasis, we review modifier genes that alter the TGFβ pathway and approaches to modulate TGFβ activity to ameliorate muscle disease. PMID:23551962

  13. Wasting mechanisms in muscular dystrophy.

    PubMed

    Shin, Jonghyun; Tajrishi, Marjan M; Ogura, Yuji; Kumar, Ashok

    2013-10-01

    Muscular dystrophy is a group of more than 30 different clinical genetic disorders that are characterized by progressive skeletal muscle wasting and degeneration. Primary deficiency of specific extracellular matrix, sarcoplasmic, cytoskeletal, or nuclear membrane protein results in several secondary changes such as sarcolemmal instability, calcium influx, fiber necrosis, oxidative stress, inflammatory response, breakdown of extracellular matrix, and eventually fibrosis which leads to loss of ambulance and cardiac and respiratory failure. A number of molecular processes have now been identified which hasten disease progression in human patients and animal models of muscular dystrophy. Accumulating evidence further suggests that aberrant activation of several signaling pathways aggravate pathological cascades in dystrophic muscle. Although replacement of defective gene with wild-type is paramount to cure, management of secondary pathological changes has enormous potential to improving the quality of life and extending lifespan of muscular dystrophy patients. In this article, we have reviewed major cellular and molecular mechanisms leading to muscle wasting in muscular dystrophy. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting. PMID:23669245

  14. Chronic spinal muscular atrophy of facioscapulohumeral type.

    PubMed Central

    Furukawa, T; Toyokura, Y

    1976-01-01

    Chronic spinal muscular atrophy of FSH type affecting a mother and her son and daughter is reported. The relevant literature is reviewed and the relation between this conditon and Kugelberg-Welander (K-W) disease is discussed. Chronic spinal muscular atrophy of FSH type is considered to be a different entity from the eponymous K-W disease. Each type of muscular dystrophy, e.g. limb-girdle, FSH, distal, ocular, or oculopharyngeal type, has its counterpart of nuclear origin. A classification of the chronic spinal muscular atrophies is suggested following the classification of muscular dystrophy. Images PMID:957378

  15. Phase 3 Study of Ataluren in Patients With Nonsense Mutation Duchenne Muscular Dystrophy

    ClinicalTrials.gov

    2016-08-02

    Muscular Dystrophy, Duchenne; Muscular Dystrophies; Muscular Disorders, Atrophic; Muscular Diseases; Musculoskeletal Diseases; Neuromuscular Diseases; Nervous System Diseases; Genetic Diseases, X-Linked; Genetic Diseases, Inborn

  16. Functional changes in Becker muscular dystrophy: implications for clinical trials in dystrophinopathies.

    PubMed

    Bello, Luca; Campadello, Paola; Barp, Andrea; Fanin, Marina; Semplicini, Claudio; Sorarù, Gianni; Caumo, Luca; Calore, Chiara; Angelini, Corrado; Pegoraro, Elena

    2016-01-01

    We performed a 1-year longitudinal study of Six Minute Walk Test (6MWT), North Star Ambulatory Assessment (NSAA), and timed function tests in Becker muscular dystrophy (BMD). Skeletal muscle dystrophin was quantified by immunoblot. We grouped deletions ending on exon 45 ("del 45-x", n = 28) or 51 ("del x-51", n = 10); isolated exon 48 deletion ("del 48", n = 10); and other mutations (n = 21). Only patients in the "del 45-x" or "other" groups became non-ambulatory (n = 5, log-rank p = n.s.) or unable to run (n = 22, p < 0.001). All measures correlated positively with dystrophin quantity and negatively with age, and were significantly more impaired in the "del 45-x" and "other" groups. After one year, NSAA score decreased significantly (-0.9 ± 1.6, p < 0.001); in the "del 45-x" group, both NSAA (-1.3 ± 1.7, p = 0.001) and 6MWT (-12 ± 31 m, p = 0.059) decreased. We conclude that patients with "del x-51" or "del 48" mutations have mild or asymptomatic BMD, while "del 45-x" mutations cause comparatively severe weakness, and functional deterioration in 1 year. Furthermore, exon 51 skipping could be more effective than exon 45 skipping in Duchenne muscular dystrophy. PMID:27582364

  17. Age-Related Differences in Muscular Strength and Muscular Endurance among Female Masters Swimmers.

    ERIC Educational Resources Information Center

    Dummer, Gail M.; And Others

    1985-01-01

    This study investigated age-related differences in muscular strength and muscular endurance among 73 female masters swimmers aged 24 to 71 years. While an age-related decline in muscular strength was apparent, the results failed to reveal a similar trend for endurance, suggesting that swimming influences endurance more than strength among women.…

  18. Validity of Field Tests of Upper Body Muscular Strength.

    ERIC Educational Resources Information Center

    Pate, Russell, R; And Others

    1993-01-01

    Examined the validity of field tests of elementary students' upper body muscular strength and endurance. Field tests were found to be moderately valid measures of weight-relative muscular strength but not of absolute strength and muscular endurance. (SM)

  19. Genetics Home Reference: Emery-Dreifuss muscular dystrophy

    MedlinePlus

    ... Health Conditions Emery-Dreifuss muscular dystrophy Emery-Dreifuss muscular dystrophy Enable Javascript to view the expand/collapse boxes. ... PDF Open All Close All Description Emery-Dreifuss muscular dystrophy is a condition that chiefly affects muscles used ...

  20. Genetics Home Reference: Duchenne and Becker muscular dystrophy

    MedlinePlus

    ... Duchenne and Becker muscular dystrophy Duchenne and Becker muscular dystrophy Enable Javascript to view the expand/collapse boxes. Download PDF Open All Close All Description Muscular dystrophies are a group of genetic conditions characterized by ...

  1. Muscular Calf Injuries in Runners.

    PubMed

    Fields, Karl B; Rigby, Michael D

    2016-01-01

    Calf pain is a common complaint among runners of all ages but is most frequent in masters athletes. This article focuses on injuries to the triceps surae or true 'calf muscles.' The most common calf injury is a tear of the medial gastrocnemius muscle (Tennis Leg) but other structures including the lateral gastrocnemius, plantaris and soleus also may be the cause of muscular pain. This article looks at the presentation, evaluation, and treatment of these injuries. We also highlight some examples of musculoskeletal ultrasound which is a valuable tool for rapid diagnosis of the cause and extent of injury. PMID:27618240

  2. Arrhythmias in the muscular dystrophies.

    PubMed

    Rajdev, Archana; Groh, William J

    2015-06-01

    In patients with muscular dystrophies, cardiac involvement leading to cardiomyopathy and arrhythmias occurs with variable prevalence, mirroring the phenotypic variability seen among and within the various hereditary myopathies. Knowledge of the incidence of arrhythmias and predictors of sudden death in the various hereditary myopathies can help guide screening and appropriate management of these patients, thereby improving survival. The noncardiac manifestations can lead to delayed recognition of symptoms, affect the decision to implant a prophylactic device, and once a decision is made to proceed with device implant, increase peri-procedural respiratory and anesthesia-related complications. PMID:26002394

  3. Nutrition Considerations in Duchenne Muscular Dystrophy.

    PubMed

    Davis, Jillian; Samuels, Emily; Mullins, Lucille

    2015-08-01

    Duchenne muscular dystrophy (DMD) is a serious degenerative muscular disease affecting males. Diagnosis usually occurs in childhood and is confirmed through genetic testing and/or muscle biopsy. Accompanying the disease are several nutrition-related concerns: growth, body composition, energy and protein requirements, constipation, swallowing difficulties, bone health, and complementary medicine. This review article addresses the nutrition aspects of DMD. PMID:25977513

  4. The Muscular Dystrophies: From Genes to Therapies

    PubMed Central

    Porter, Neil C; Bloch, Robert J

    2015-01-01

    The genetic basis of many muscular disorders, including many of the more common muscular dystrophies, is now known. Clinically, the recent genetic advances have improved diagnostic capabilities, but they have not yet provided clues about treatment or management. Thanks to better management strategies and therapeutic interventions, however, many patients with a muscular dystrophy are more active and are living longer. Physical therapists, therefore, are more likely to see a patient with a muscular dystrophy, so understanding these muscle disorders and their management is essential. Physical therapy offers the most promise in caring for the majority of patients with these conditions, because it is unlikely that advances in gene therapy will significantly alter their clinical treatment in the near future. This perspective covers some of the basic molecular biological advances together with the clinical manifestations of the muscular dystrophies and the latest approaches to their management. PMID:16305275

  5. Animal Models of Muscular Dystrophy

    PubMed Central

    Ng, Rainer; Banks, Glen B.; Hall, John K.; Muir, Lindsey A.; Ramos, Julian N.; Wicki, Jacqueline; Odom, Guy L.; Konieczny, Patryk; Seto, Jane; Chamberlain, Joel R.; Chamberlain, Jeffrey S.

    2016-01-01

    The muscular dystrophies (MDs) represent a diverse collection of inherited human disorders, which affect to varying degrees skeletal, cardiac, and sometimes smooth muscle (Emery, 20021). To date, more than 50 different genes have been implicated as causing one or more types of MD (Bansal et al., 20032). In many cases, invaluable insights into disease mechanisms, structure and function of gene products, and approaches for therapeutic interventions have benefited from the study of animal models of the different MDs (Arnett et al., 20093). The large number of genes that are associated with MD and the tremendous number of animal models that have been developed preclude a complete discussion of each in the context of this review. However, we summarize here a number of the more commonly used models together with a mixture of different types of gene and MD, which serves to give a general overview of the value of animal models of MD for research and therapeutic development. PMID:22137430

  6. Arrhythmias in the Muscular Dystrophies

    PubMed Central

    Rajdev, Archana; Groh, William J.

    2015-01-01

    Synopsis In patients with muscular dystrophies, cardiac involvement leading to cardiomyopathy and arrhythmias occur with variable prevalence mirroring the phenotypic variability seen among and within the various hereditary myopathies. These patients are at risk for development for bradyarrhythmias and tachyarrhythmias including sudden cardiac death. Knowledge of the incidence of arrhythmias and predictors of sudden death in the various hereditary myopathies can help guide screening and appropriate management of these patients, thereby improving survival. The non-cardiac manifestations can lead to delayed recognition of symptoms (limited mobility and respiratory weakness masking cardiac manifestations), affect decision to implant prophylactic device (quantity vs. quality of life) and once a decision is made to proceed with device implant, increase peri-procedural respiratory and anesthesia-related complications. PMID:26002394

  7. Duchenne muscular dystrophy: current cell therapies

    PubMed Central

    Sienkiewicz, Dorota; Okurowska-Zawada, Bożena; Paszko-Patej, Grażyna; Kawnik, Katarzyna

    2015-01-01

    Duchenne muscular dystrophy is a genetically determined X-linked disease and the most common, progressive pediatric muscle disorder. For decades, research has been conducted to find an effective therapy. This review presents current therapeutic methods for Duchenne muscular dystrophy, based on scientific articles in English published mainly in the period 2000 to 2014. We used the PubMed database to identify and review the most important studies. An analysis of contemporary studies of stem cell therapy and the use of granulocyte colony-stimulating factor (G-CSF) in muscular dystrophy was performed. PMID:26136844

  8. Reality television and the muscular male ideal.

    PubMed

    Dallesasse, Starla L; Kluck, Annette S

    2013-06-01

    Although researchers have examined the negative effects of viewing reality television (RTV) on women's body image, this research has not been extended to men. Exploring the extent to which RTV depicts men who embody the muscular ideal may enhance our understanding of the potential influence of this media genre. We explored the extent to which RTV depicted men who embodied the muscular ideal using a quantitative content analysis. Based on binomial tests, the primary male cast members of programs airing on networks popular among young adult men during the Fall 2009 broadcast season were more muscular, with lower levels of body fat, than average U.S. men. The chest-to-waist and shoulder-to-waist ratios of these cast members did not differ as a function of program type (i.e., reality drama, endurance, and romance). Young men who view RTV programs included in the present study would be exposed to an unrepresentative muscular ideal. PMID:23523084

  9. Physical Therapy and Facioscapulohumeral Muscular Dystrophy (FSHD)

    MedlinePlus

    Physical Therapy & FSHD Facioscapulohumeral Muscular Dystrophy A Guide for Patients & Physical Therapists Authors: Wendy M. King, P.T., ... expertise and patient preferences. The goals of any physical therapy plan of care are to assist patients to:  ...

  10. Genetics Home Reference: Fukuyama congenital muscular dystrophy

    MedlinePlus

    ... and walking. Fukuyama congenital muscular dystrophy also impairs brain development. People with this condition have a brain abnormality ... cobblestones). These changes in the structure of the brain lead to significantly delayed development of speech and motor skills and moderate to ...

  11. Muscular Oxygen Uptake Kinetics in Aged Adults.

    PubMed

    Koschate, J; Drescher, U; Baum, K; Eichberg, S; Schiffer, T; Latsch, J; Brixius, K; Hoffmann, U

    2016-06-01

    Pulmonary oxygen uptake (V˙O2) kinetics and heart rate kinetics are influenced by age and fitness. Muscular V˙O2 kinetics can be estimated from heart rate and pulmonary V˙O2. In this study the applicability of a test using pseudo-random binary sequences in combination with a model to estimate muscular V˙O2 kinetics was tested. Muscular V˙O2 kinetics were expected to be faster than pulmonary V˙O2 kinetics, slowed in aged subjects and correlated with maximum V˙O2 and heart rate kinetics. 27 elderly subjects (73±3 years; 81.1±8.2 kg; 175±4.7 cm) participated. Cardiorespiratory kinetics were assessed using the maximum of cross-correlation functions, higher maxima implying faster kinetics. Muscular V˙O2 kinetics were faster than pulmonary V˙O2 kinetics (0.31±0.1 vs. 0.29±0.1 s; p=0.004). Heart rate kinetics were not correlated with muscular or pulmonary V˙O2 kinetics or maximum V˙O2. Muscular V˙O2 kinetics correlated with maximum V˙O2 (r=0.35; p=0.033). This suggests, that muscular V˙O2 kinetics are faster than estimates from pulmonary V˙O2 and related to maximum V˙O2 in aged subjects. In the future this experimental approach may help to characterize alterations in muscular V˙O2 under various conditions independent of motivation and maximal effort. PMID:27116341

  12. Treatment of facioscapulohumeral muscular dystrophy with Denosumab

    PubMed Central

    Lefkowitz, Stanley S.; Lefkowitz, Doris L.; Kethley, Jeremy

    2012-01-01

    Summary Background: Facioscapulohumeral muscular dystrophy (FSHD) is the 3rd most common form of muscular dystrophy. Effective treatments for any of the muscular dystrophies have yet to be realized. This report describes such a treatment. Case Report: A 66 year old female was diagnosed with osteoporosis. She had been diagnosed with FSHD muscular dystrophy a number of years previously by both genetic and clinical studies. Following a 2 year course with Forteo for osteoporosis, she was given an injection of Denosumab (Prolia) to maintain her bone density. By 24 hours, she exhibited increased strength and a dramatic reduction of her dystrophic symptoms e.g. she could walk unassisted in high heels. She was able to accomplish other things that had not been possible for a number of years. After approximately 5 weeks she gradually lost the newfound strength with a complete loss by about 6 weeks. A second injection of Denosumab resulted in the same effect, i.e. reversal of symptoms and increased functionality. A number of measurements and videos were taken to establish the beneficial effects of Prolia for future studies. This was repeated with a 3rd and 4th injection in order to establish the unequivocal beneficial effects on muscular dystrophy. Conclusions: Further studies will be required to establish Denosumab as a major “front line” treatment for this disease and possibly other muscular dystrophies. PMID:23569491

  13. [The heartache of muscular dystrophy].

    PubMed

    Hoogerwaard, E M; Ginjaar, H B; Wilde, A A; Leschot, N J; de Voogt, W G; de Visser, M

    2000-11-11

    Duchenne and Becker muscular dystrophy are caused by a mutation in the dystrophin gene, located on the short arm of the X chromosome. Three so called dystrophinopathy patients, a women aged 54 and two men aged 23 and 21 years, suffered from a severe dilated cardiomyopathy. Such a cardiomyopathy can develop in both carriers and patients. In addition, it is often more important for prognosis than muscle weakness. For these two reasons it is important to screen both groups for (early) cardiological abnormalities. If these are present, regular follow-up is necessary to start timely therapy. When cardiological investigations yield normal results, it is advised to screen carriers with a five-year interval. Dystrophinopathy patients should be checked every year, because the cardiomyopathy sometimes develops and deteriorates over a short period of time. Patients with dilated cardiomyopathy and with a positive family history for dilated cardiomyopathy, muscle weakness or high serum creatine kinase activity should be screened for a mutation in the dystrophin gene. PMID:11103252

  14. Functional changes in Becker muscular dystrophy: implications for clinical trials in dystrophinopathies

    PubMed Central

    Bello, Luca; Campadello, Paola; Barp, Andrea; Fanin, Marina; Semplicini, Claudio; Sorarù, Gianni; Caumo, Luca; Calore, Chiara; Angelini, Corrado; Pegoraro, Elena

    2016-01-01

    We performed a 1-year longitudinal study of Six Minute Walk Test (6MWT), North Star Ambulatory Assessment (NSAA), and timed function tests in Becker muscular dystrophy (BMD). Skeletal muscle dystrophin was quantified by immunoblot. We grouped deletions ending on exon 45 (“del 45-x”, n = 28) or 51 (“del x-51”, n = 10); isolated exon 48 deletion (“del 48”, n = 10); and other mutations (n = 21). Only patients in the “del 45-x” or “other” groups became non-ambulatory (n = 5, log-rank p = n.s.) or unable to run (n = 22, p < 0.001). All measures correlated positively with dystrophin quantity and negatively with age, and were significantly more impaired in the “del 45-x” and “other” groups. After one year, NSAA score decreased significantly (−0.9 ± 1.6, p < 0.001); in the “del 45-x” group, both NSAA (−1.3 ± 1.7, p = 0.001) and 6MWT (−12 ± 31 m, p = 0.059) decreased. We conclude that patients with “del x-51” or “del 48” mutations have mild or asymptomatic BMD, while “del 45-x” mutations cause comparatively severe weakness, and functional deterioration in 1 year. Furthermore, exon 51 skipping could be more effective than exon 45 skipping in Duchenne muscular dystrophy. PMID:27582364

  15. [Muscular Dystrophies Involving the Retinal Function].

    PubMed

    Jägle, H

    2016-03-01

    Muscular dystrophies are rare disorders, with an incidence of approx. 20 in 100 000. Some dystrophies also affect retinal or optic nerve function. In such cases, the ophthalmological findings may be critical for differential diagnosis or patient counseling. For example in Duchenne muscular dystrophy, where the alteration in retinal function seems to reflect cerebral involvement. Other important forms are mitochondrial and metabolic disorders, such as the Kearns-Sayre syndrome and the Refsum syndrome. Molecular genetic analysis has become a major tool for differential diagnosis, but may be complex and demanding. This article gives an overview of major muscular dystrophies involving retinal function and their genetic origin, in order to guide differential diagnosis. PMID:27011029

  16. Genetics Home Reference: spinal muscular atrophy with progressive myoclonic epilepsy

    MedlinePlus

    ... myoclonic epilepsy spinal muscular atrophy with progressive myoclonic epilepsy Enable Javascript to view the expand/collapse boxes. ... All Description Spinal muscular atrophy with progressive myoclonic epilepsy (SMA-PME) is a neurological condition that causes ...

  17. Other limb-girdle muscular dystrophies.

    PubMed

    Amato, Anthony A

    2011-01-01

    The secondary α-dystroglycanopathies usually present in infancy as congenital muscular dystrophies but may manifest later in childhood or adult life (limb-girdle muscular dystrophy (LGMD) 2I, LGMD2K, LGMD2M, LGMD2N, and LGMD2O). Patients with telethoninopathy (LGMD2B) may present with mainly proximal or distal lower extremity weakness, and notably the muscle biopsies may demonstrate rimmed vacuoles. LGMD2L is caused by newly described mutations in ANO5 and can sometimes present with distal weakness resembling Miyoshi myopathy. PMID:21496628

  18. Advances in gene therapy for muscular dystrophies

    PubMed Central

    Abdul-Razak, Hayder; Malerba, Alberto; Dickson, George

    2016-01-01

    Duchenne muscular dystrophy (DMD) is a recessive lethal inherited muscular dystrophy caused by mutations in the gene encoding dystrophin, a protein required for muscle fibre integrity. So far, many approaches have been tested from the traditional gene addition to newer advanced approaches based on manipulation of the cellular machinery either at the gene transcription, mRNA processing or translation levels. Unfortunately, despite all these efforts, no efficient treatments for DMD are currently available. In this review, we highlight the most advanced therapeutic strategies under investigation as potential DMD treatments. PMID:27594988

  19. Advances in gene therapy for muscular dystrophies.

    PubMed

    Abdul-Razak, Hayder; Malerba, Alberto; Dickson, George

    2016-01-01

    Duchenne muscular dystrophy (DMD) is a recessive lethal inherited muscular dystrophy caused by mutations in the gene encoding dystrophin, a protein required for muscle fibre integrity. So far, many approaches have been tested from the traditional gene addition to newer advanced approaches based on manipulation of the cellular machinery either at the gene transcription, mRNA processing or translation levels. Unfortunately, despite all these efforts, no efficient treatments for DMD are currently available. In this review, we highlight the most advanced therapeutic strategies under investigation as potential DMD treatments. PMID:27594988

  20. Cellular and molecular mechanisms underlying muscular dystrophy

    PubMed Central

    2013-01-01

    The muscular dystrophies are a group of heterogeneous genetic diseases characterized by progressive degeneration and weakness of skeletal muscle. Since the discovery of the first muscular dystrophy gene encoding dystrophin, a large number of genes have been identified that are involved in various muscle-wasting and neuromuscular disorders. Human genetic studies complemented by animal model systems have substantially contributed to our understanding of the molecular pathomechanisms underlying muscle degeneration. Moreover, these studies have revealed distinct molecular and cellular mechanisms that link genetic mutations to diverse muscle wasting phenotypes. PMID:23671309

  1. 9 CFR 311.35 - Muscular inflammation, degeneration, or infiltration.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Muscular inflammation, degeneration, or infiltration. 311.35 Section 311.35 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... PARTS § 311.35 Muscular inflammation, degeneration, or infiltration. (a) If muscular lesions are...

  2. 9 CFR 311.35 - Muscular inflammation, degeneration, or infiltration.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Muscular inflammation, degeneration, or infiltration. 311.35 Section 311.35 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... PARTS § 311.35 Muscular inflammation, degeneration, or infiltration. (a) If muscular lesions are...

  3. 9 CFR 311.35 - Muscular inflammation, degeneration, or infiltration.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Muscular inflammation, degeneration, or infiltration. 311.35 Section 311.35 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... PARTS § 311.35 Muscular inflammation, degeneration, or infiltration. (a) If muscular lesions are...

  4. 9 CFR 311.35 - Muscular inflammation, degeneration, or infiltration.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Muscular inflammation, degeneration, or infiltration. 311.35 Section 311.35 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... PARTS § 311.35 Muscular inflammation, degeneration, or infiltration. (a) If muscular lesions are...

  5. 9 CFR 311.35 - Muscular inflammation, degeneration, or infiltration.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Muscular inflammation, degeneration, or infiltration. 311.35 Section 311.35 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... PARTS § 311.35 Muscular inflammation, degeneration, or infiltration. (a) If muscular lesions are...

  6. Genetics Home Reference: facioscapulohumeral muscular dystrophy

    MedlinePlus

    ... Padberg GW, Lunt PW, van der Maarel SM. Best practice guidelines on genetic diagnostics of Facioscapulohumeral muscular dystrophy: ... Reviewed : August 2014 Published : August 30, 2016 The resources on this site should not be used as a ... of Health & Human Services National Institutes of Health National Library of ...

  7. Cardiomyopathy in becker muscular dystrophy: Overview.

    PubMed

    Ho, Rady; Nguyen, My-Le; Mather, Paul

    2016-06-26

    Becker muscular dystrophy (BMD) is an X-linked recessive disorder involving mutations of the dystrophin gene. Cardiac involvement in BMD has been described and cardiomyopathy represents the number one cause of death in these patients. In this paper, the pathophysiology, clinical evaluations and management of cardiomyopathy in patients with BMD will be discussed. PMID:27354892

  8. Prevalence of congenital muscular dystrophy in Italy

    PubMed Central

    Graziano, Alessandra; Bianco, Flaviana; D'Amico, Adele; Moroni, Isabella; Messina, Sonia; Bruno, Claudio; Pegoraro, Elena; Mora, Marina; Astrea, Guja; Magri, Francesca; Comi, Giacomo P.; Berardinelli, Angela; Moggio, Maurizio; Morandi, Lucia; Pini, Antonella; Petillo, Roberta; Tasca, Giorgio; Monforte, Mauro; Minetti, Carlo; Mongini, Tiziana; Ricci, Enzo; Gorni, Ksenija; Battini, Roberta; Villanova, Marcello; Politano, Luisa; Gualandi, Francesca; Ferlini, Alessandra; Muntoni, Francesco; Santorelli, Filippo Maria; Bertini, Enrico; Pane, Marika

    2015-01-01

    Objective: We provide a nationwide population study of patients with congenital muscular dystrophy in Italy. Methods: Cases were ascertained from the databases in all the tertiary referral centers for pediatric neuromuscular disorders and from all the genetic diagnostic centers in which diagnostic tests for these forms are performed. Results: The study includes 336 patients with a point prevalence of 0.563 per 100,000. Mutations were identified in 220 of the 336 (65.5%). The cohort was subdivided into diagnostic categories based on the most recent classifications on congenital muscular dystrophies. The most common forms were those with α-dystroglycan glycosylation deficiency (40.18%) followed by those with laminin α2 deficiency (24.11%) and collagen VI deficiency (20.24%). The forms of congenital muscular dystrophy related to mutations in SEPN1 and LMNA were less frequent (6.25% and 5.95%, respectively). Conclusions: Our study provides for the first time comprehensive epidemiologic information and point prevalence figures for each of the major diagnostic categories on a large cohort of congenital muscular dystrophies. The study also reflects the diagnostic progress in this field with an accurate classification of the cases according to the most recent gene discoveries. PMID:25653289

  9. Exon Snipping in Duchenne Muscular Dystrophy.

    PubMed

    Kemaladewi, Dwi U; Cohn, Ronald D

    2016-03-01

    Duchenne muscular dystrophy (DMD) is a life-limiting neuromuscular disorder caused by mutations in the DMD gene encoding dystrophin. We discuss very recent studies that used CRISPR/Cas9 technology to 'snip out' mutated exons in DMD, restoring the reading frame of the gene. We also present cautionary aspects of translating this exciting technology into clinical practice. PMID:26856237

  10. Zebrafish orthologs of human muscular dystrophy genes

    PubMed Central

    Steffen, Leta S; Guyon, Jeffrey R; Vogel, Emily D; Beltre, Rosanna; Pusack, Timothy J; Zhou, Yi; Zon, Leonard I; Kunkel, Louis M

    2007-01-01

    Background Human muscular dystrophies are a heterogeneous group of genetic disorders which cause decreased muscle strength and often result in premature death. There is no known cure for muscular dystrophy, nor have all causative genes been identified. Recent work in the small vertebrate zebrafish Danio rerio suggests that mutation or misregulation of zebrafish dystrophy orthologs can also cause muscular degeneration phenotypes in fish. To aid in the identification of new causative genes, this study identifies and maps zebrafish orthologs for all known human muscular dystrophy genes. Results Zebrafish sequence databases were queried for transcripts orthologous to human dystrophy-causing genes, identifying transcripts for 28 out of 29 genes of interest. In addition, the genomic locations of all 29 genes have been found, allowing rapid candidate gene discovery during genetic mapping of zebrafish dystrophy mutants. 19 genes show conservation of syntenic relationships with humans and at least two genes appear to be duplicated in zebrafish. Significant sequence coverage on one or more BAC clone(s) was also identified for 24 of the genes to provide better local sequence information and easy updating of genomic locations as the zebrafish genome assembly continues to evolve. Conclusion This resource supports zebrafish as a dystrophy model, suggesting maintenance of all known dystrophy-associated genes in the zebrafish genome. Coupled with the ability to conduct genetic screens and small molecule screens, zebrafish are thus an attractive model organism for isolating new dystrophy-causing genes/pathways and for use in high-throughput therapeutic discovery. PMID:17374169

  11. Visuospatial Attention Disturbance in Duchenne Muscular Dystrophy

    ERIC Educational Resources Information Center

    De Moura, Maria Clara Drummond Soares; do Valle, Luiz Eduardo Ribeiro; Resende, Maria Bernadete Dutra; Pinto, Katia Osternack

    2010-01-01

    Aim: The cognitive deficits present in the Duchenne muscular dystrophy (DMD) are not yet well characterized. Attention, considered to be the brain mechanism responsible for the selection of sensory stimuli, could be disturbed in DMD, contributing, at least partially, to the observed global cognitive deficit. The aim of this study was to…

  12. Cardiomyopathy in becker muscular dystrophy: Overview

    PubMed Central

    Ho, Rady; Nguyen, My-Le; Mather, Paul

    2016-01-01

    Becker muscular dystrophy (BMD) is an X-linked recessive disorder involving mutations of the dystrophin gene. Cardiac involvement in BMD has been described and cardiomyopathy represents the number one cause of death in these patients. In this paper, the pathophysiology, clinical evaluations and management of cardiomyopathy in patients with BMD will be discussed. PMID:27354892

  13. Developing therapies for spinal muscular atrophy.

    PubMed

    Wertz, Mary H; Sahin, Mustafa

    2016-02-01

    Spinal muscular atrophy is an autosomal-recessive pediatric neurodegenerative disease characterized by loss of spinal motor neurons. It is caused by mutation in the gene survival of motor neuron 1 (SMN1), leading to loss of function of the full-length SMN protein. SMN has a number of functions in neurons, including RNA splicing and snRNP biogenesis in the nucleus, and RNA trafficking in neurites. The expression level of full-length SMN protein from the SMN2 locus modifies disease severity. Increasing full-length SMN protein by a small amount can lead to significant improvements in the neurological phenotype. Currently available interventions for spinal muscular atrophy patients are physical therapy and orthopedic, nutritional, and pulmonary interventions; these are palliative or supportive measures and do not address the etiology of the disease. In the past decade, there has been a push for developing therapeutics to improve motor phenotypes and increase life span of spinal muscular atrophy patients. These therapies are aimed primarily at restoration of full-length SMN protein levels, but other neuroprotective treatments have been investigated as well. Here, we discuss recent advances in basic and clinical studies toward finding safe and effective treatments of spinal muscular atrophy using gene therapy, antisense oligonucleotides, and other small molecule modulators of SMN expression. PMID:26173388

  14. [Muscular strength in patients with fibromyalgia. A literature review].

    PubMed

    Dombernowsky, Tilde; Dreyer, Lene; Bartels, Else Marie; Danneskiold-Samsøe, Bente

    2008-01-21

    Do patients with fibromyalgia (FM) have reduced muscular strength? We examined 22 articles and conclude from the results of these that FM patients have reduced muscular strength in their hands and quadriceps. The material also suggests generalised reduced muscular strength. However, the studies have several methodological shortcomings and future studies should be carefully designed with respect to patients as well as the control group and should be larger. To avoid CNS influence from e.g. fatigue and pain, muscular electro-stimulation may be used to ensure that the actual maximal muscular strength is also measured. PMID:18282450

  15. Muscular dystrophies due to glycosylation defects.

    PubMed

    Muntoni, Francesco; Torelli, Silvia; Brockington, Martin

    2008-10-01

    In the last few years, muscular dystrophies due to reduced glycosylation of alpha-dystroglycan (ADG) have emerged as a common group of conditions, now referred to as dystroglycanopathies. Mutations in six genes (POMT1, POMT2, POMGnT1, Fukutin, FKRP and LARGE) have so far been identified in patients with a dystroglycanopathy. Allelic mutations in each of these genes can result in a wide spectrum of clinical conditions, ranging from severe congenital onset with associated structural brain malformations (Walker Warburg syndrome; muscle-eye-brain disease; Fukuyama muscular dystrophy; congenital muscular dystrophy type 1D) to a relatively milder congenital variant with no brain involvement (congenital muscular dystrophy type 1C), and to limb-girdle muscular dystrophy (LGMD) type 2 variants with onset in childhood or adult life (LGMD2I, LGMD2L, and LGMD2N). ADG is a peripheral membrane protein that undergoes multiple and complex glycosylation steps to regulate its ability to effectively interact with extracellular matrix proteins, such as laminin, agrin, and perlecan. Although the precise composition of the glycans present on ADG are not known, it has been demonstrated that the forced overexpression of LARGE, or its paralog LARGE2, is capable of increasing the glycosylation of ADG in normal cells. In addition, its overexpression is capable of restoring dystroglycan glycosylation and laminin binding properties in primary cell cultures of patients affected by different genetically defined dystroglycanopathy variants. These observations suggest that there could be a role for therapeutic strategies to overcome the glycosylation defect in these conditions via the overexpression of LARGE. PMID:19019316

  16. Zebrafish models for human FKRP muscular dystrophies.

    PubMed

    Kawahara, Genri; Guyon, Jeffrey R; Nakamura, Yukio; Kunkel, Louis M

    2010-02-15

    Various muscular dystrophies are associated with the defective glycosylation of alpha-dystroglycan and are known to result from mutations in genes encoding glycosyltransferases. Fukutin-related protein (FKRP) was identified as a homolog of fukutin, the defective protein in Fukuyama-type congenital muscular dystrophy (FCMD), that is thought to function as a glycosyltransferase. Mutations in FKRP have been linked to a variety of phenotypes including Walker-Warburg syndrome (WWS), limb girdle muscular dystrophy (LGMD) 2I and congenital muscular dystrophy 1C (MDC1C). Zebrafish are a useful animal model to reveal the mechanism of these diseases caused by mutations in FKRP gene. Downregulating FKRP expression in zebrafish by two different morpholinos resulted in embryos which had developmental defects similar to those observed in human muscular dystrophies associated with mutations in FKRP. The FKRP morphants showed phenotypes involving alterations in somitic structure and muscle fiber organization, as well as defects in developing eye morphology. Additionally, they were found to have a reduction in alpha-dystroglycan glycosylation and a shortened myofiber length. Moreover, co-injection of fish or human FKRP mRNA along with the morpholino restored normal development, alpha-dystroglycan glycosylation and laminin binding activity of alpha-dystroglycan in the morphants. Co-injection of the human FKRP mRNA containing causative mutations found in human patients of WWS, MDC1C and LGMD2I could not restore their phenotypes significantly. Interestingly, these morphant fish having human FKRP mutations showed a wide phenotypic range similar to that seen in humans. PMID:19955119

  17. Zebrafish models for human FKRP muscular dystrophies

    PubMed Central

    Kawahara, Genri; Guyon, Jeffrey R.; Nakamura, Yukio; Kunkel, Louis M.

    2010-01-01

    Various muscular dystrophies are associated with the defective glycosylation of α-dystroglycan and are known to result from mutations in genes encoding glycosyltransferases. Fukutin-related protein (FKRP) was identified as a homolog of fukutin, the defective protein in Fukuyama-type congenital muscular dystrophy (FCMD), that is thought to function as a glycosyltransferase. Mutations in FKRP have been linked to a variety of phenotypes including Walker–Warburg syndrome (WWS), limb girdle muscular dystrophy (LGMD) 2I and congenital muscular dystrophy 1C (MDC1C). Zebrafish are a useful animal model to reveal the mechanism of these diseases caused by mutations in FKRP gene. Downregulating FKRP expression in zebrafish by two different morpholinos resulted in embryos which had developmental defects similar to those observed in human muscular dystrophies associated with mutations in FKRP. The FKRP morphants showed phenotypes involving alterations in somitic structure and muscle fiber organization, as well as defects in developing eye morphology. Additionally, they were found to have a reduction in α-dystroglycan glycosylation and a shortened myofiber length. Moreover, co-injection of fish or human FKRP mRNA along with the morpholino restored normal development, α-dystroglycan glycosylation and laminin binding activity of α-dystroglycan in the morphants. Co-injection of the human FKRP mRNA containing causative mutations found in human patients of WWS, MDC1C and LGMD2I could not restore their phenotypes significantly. Interestingly, these morphant fish having human FKRP mutations showed a wide phenotypic range similar to that seen in humans. PMID:19955119

  18. Limb Girdle Muscular Dystrophy (LGMD): Case Report.

    PubMed

    Kanitkar, Shubhangi A; Kalyan, Meenakshi; Gaikwad, Anu N; Makadia, Ankit; Shah, Harshad

    2015-01-01

    We report a young male of autosomal recessive limb girdle muscular dystrophy (LGMD) with positive family history presented with gradual onset proximal muscle weakness in all four limbs since eight years and thinning of shoulders, arms and thighs. Neurological examination revealed atrophy of both shoulders with wasting of both deltoids thinning of thighs and pseudo hypertrophy of both calves, hypotonia in all four limbs. Gower's sign was positive. Winging of scapula was present. Power was 3/5 at both shoulders, 4/5 at both elbows, 5/5 at both wrists, 3/5 at both hip joints, 3/5 at both knees, 5/5 at both ankles. All deep tendon reflexes and superficial reflexes were present with plantars bilateral flexors. Electromyography (EMG) showed myopathic pattern. He had elevated creatinine phosphokinase levels and muscle biopsy findings consistent with muscular dystrophy. PMID:25738022

  19. Caveolae and caveolin-3 in muscular dystrophy.

    PubMed

    Galbiati, F; Razani, B; Lisanti, M P

    2001-10-01

    Caveolae are vesicular invaginations of the plasma membrane, and function as 'message centers' for regulating signal transduction events. Caveolin-3, a muscle-specific caveolin-related protein, is the principal structural protein of caveolar membrane domains in skeletal muscle and in the heart. Several mutations within the coding sequence of the human caveolin-3 gene (located at 3p25) have been identified. Mutations that lead to a loss of approximately 95% of caveolin-3 protein expression are responsible for a novel autosomal dominant form of limb-girdle muscular dystrophy (LGMD-1C) in humans. By contrast, upregulation of the caveolin-3 protein is associated with Duchenne muscular dystrophy (DMD). Thus, tight regulation of caveolin-3 appears essential for maintaining normal muscle health and homeostasis. PMID:11597517

  20. Limb Girdle Muscular Dystrophy (LGMD): Case Report

    PubMed Central

    Kalyan, Meenakshi; Gaikwad, Anu N.; Makadia, Ankit; Shah, Harshad

    2015-01-01

    We report a young male of autosomal recessive limb girdle muscular dystrophy (LGMD) with positive family history presented with gradual onset proximal muscle weakness in all four limbs since eight years and thinning of shoulders, arms and thighs. Neurological examination revealed atrophy of both shoulders with wasting of both deltoids thinning of thighs and pseudo hypertrophy of both calves, hypotonia in all four limbs. Gower’s sign was positive. Winging of scapula was present. Power was 3/5 at both shoulders, 4/5 at both elbows, 5/5 at both wrists, 3/5 at both hip joints, 3/5 at both knees, 5/5 at both ankles. All deep tendon reflexes and superficial reflexes were present with plantars bilateral flexors. Electromyography (EMG) showed myopathic pattern. He had elevated creatinine phosphokinase levels and muscle biopsy findings consistent with muscular dystrophy. PMID:25738022

  1. Presumed primary muscular lymphoma in a dog.

    PubMed

    Thuilliez, Céline; Watrelot-Virieux, Dorothée; Chanut, Franck; Fournel-Fleury, Corinne; Ponce, Frédérique; Marchal, Thierry

    2008-11-01

    A case of presumed primary muscular lymphoma in an 8-year-old, intact, male Newfoundland dog is reported. The dog was presented for evaluation of an infiltrating ventral cervical mass, respiratory distress, and anorexia of 1-month duration. Fine-needle aspiration of the mass revealed anaplastic large cell lymphoma. Despite chemotherapy, health status declined and the animal was euthanized a few weeks later. At necropsy, the mass infiltrated the cervical muscles and extended ventrally to the left forelimb and cranially to the tongue and laryngeal musculature. Other muscles were infiltrated by the same neoplasm (diaphragm and intercostal, abdominal, and gluteal muscles) indicating a probable multicentric origin. Histological examination confirmed the diagnosis of anaplastic large cell lymphoma, which showed a strong muscular tropism. Immunohistochemical staining revealed neoplastic cell reactivity for cluster of differentiation 3 (CD3) and Ki-67 antigens (70% and 90%, respectively). The neoplastic cells were negative for CD79a. The presumed histological diagnosis in this dog was primary muscular anaplastic large T-cell lymphoma. PMID:18987239

  2. Congenital muscular dystrophy: from muscle to brain.

    PubMed

    Falsaperla, Raffaele; Praticò, Andrea D; Ruggieri, Martino; Parano, Enrico; Rizzo, Renata; Corsello, Giovanni; Vitaliti, Giovanna; Pavone, Piero

    2016-01-01

    Congenital muscular dystrophies (CMDs) are a wide group of muscular disorders that manifest with very early onset of muscular weakness, sometime associated to severe brain involvement.The histologic pattern of muscle anomalies is typical of dystrophic lesions but quite variable depending on the different stages and on the severity of the disorder.Recent classification of CMDs have been reported most of which based on the combination of clinical, biochemical, molecular and genetic findings, but genotype/phenotype correlation are in constant progression due to more diffuse utilization of the molecular analysis.In this article, the Authors report on CMDs belonging to the group of dystroglycanopathies and in particular on the most severe forms represented by the Fukuyama CMD, Muscle-Eye-Brain disease and Walker Walburg syndrome.Clinical diagnosis of infantile hypotonia is particularly difficult considering the different etiologic factors causing the lesions, the difficulty in localizing the involved CNS area (central vs. peripheral) and the limited role of the diagnostic procedures at this early age.The diagnostic evaluation is not easy mainly in differentiating the various types of CMDs, and represents a challenge for the neonatologists and pediatricians. Suggestions are reported on the way to reach a correct diagnosis with the appropriate use of the diagnostic means. PMID:27576556

  3. A case of fascioscapulohumeral muscular dystrophy misdiagnosed as Becker's muscular dystrophy for 20 years.

    PubMed

    Ramos, Vesper Fe Marie Llaneza; Thaisetthawatkul, Pariwat

    2012-03-01

    A 60-year-old man diagnosed clinically with Becker's muscular dystrophy 20 years ago by another physician presented with gradually progressive proximal muscle weakness since teenage years. Family history revealed a strong paternal familial inheritance pattern of similar distribution of weakness-face, forearm flexion, knee extension and foot dorsiflexion. Work-ups revealed B12 deficiency and allele 1 deletion in fascioscapulohumeral muscular dystrophy (FSHD) DNA testing. FSHD is the third most common muscular dystrophy. Clinical diagnosis is made from the distinctive pattern of weakness, autosomal-dominant inheritance, and confirmed by genetic testing. This case strongly demonstrates the importance of a thorough and careful clinical evaluation even in a case with a long standing diagnosis. PMID:21795275

  4. Ways of increasing muscular activity by means of isometric muscular exertion

    NASA Technical Reports Server (NTRS)

    Kovalik, A. V.

    1980-01-01

    The effect of isometric muscular exertion on the human body was investigated by having subjects perform basic movements in a sitting position in the conventional manner with additional muscle tension at 50% maximum force and at maximum force. The pulse, arterial pressure, skin temperature, respiratory rate, minute respiratory volume and electrical activity of the muscles involved were all measured. Performance of the exercises with maximum muscular exertion for 20 sec and without movement resulted in the greatest shifts in these indices; in the conventional manner substantial changes did not occur; and with isometric muscular exertion with 50% maximum force with and without movement, optimal functional shifts resulted. The latter is recommended for use in industrial exercises for the prevention of hypodynamia. Ten exercises are suggested.

  5. Media's influence on the drive for muscularity in undergraduates.

    PubMed

    Cramblitt, Brooke; Pritchard, Mary

    2013-12-01

    Although research has found that body ideals presented by the media influence women's body dissatisfaction, less is known about media's influence on men's body satisfaction. An online survey examining media use, the drive for muscularity, and internalization of appearance and body shape ideals was given to a sample of 311 participants comprised of both men and women. Results indicated (a) the more time men and women reported watching television, the higher their reported drive for muscularity (b) total hours of viewing sports-related, image-focused, and entertainment television related to increased drive for muscularity in women (c) drive for muscularity in men related to watching image-focused television and reading men's health magazines, and (d) internalization of athletic attitudes towards appearance mediated the relationship between total television watched and drive for muscularity in both genders. Clinicians may wish to utilize these findings when treating men and women suffering from drive for muscularity and body dysmorphia. PMID:24183132

  6. Nose muscular dynamics: the tip trigonum.

    PubMed

    Figallo, E E; Acosta, J A

    2001-10-01

    In 1995, the senior author (E.E.F.) published an article in which he described the musculus digastricus septi nasi labialis. In the article presented here, work carried out by anatomists and other researchers who, over the last two centuries, studied nose muscular dynamics is described. The present study is based on Gray's Anatomy, which, in 1858, first described the nasal tip muscles, along with the other nasal muscles. Later works not only used different terminology for these muscles but also ignored some, creating tremendous confusion. The study presented here provides an update of the exact terms, location, insertions, and muscle functions of the muscles of the nose. Each nose muscle is described with regard to the two portions able to produce separate contractions. In this study, the term "dual function" is used and characterizes the nasal mimetic muscles that do not have well-defined fascia. Therefore, there is doubt about the existence of a real nasal superficial muscle aponeurotic system. The musculus myrtiformis seems to have a dual function, inserting in the canine fosse and in the periosteum of the central incisors, forming two portions-one to the septum and the other to the nostril-each of which has specific functions. This study has been based on research in physiognomy, the science of expression. With regard to the basis for nose expressions, common anatomical research is excluded because it provides a different view of the dynamics studied to date. The term trigonum musculare apicis nasi defines the interaction of the musculi compressor narium minor and dilator naris anterior, connecting with the columellar bundle of the musculus digastricus and levering the nasal spine. This muscular trigone creates circular concentric and eccentric movements of the nasal tip. PMID:11604607

  7. [Treatment progress of Duchenne Muscular Dystrophy (DMD)].

    PubMed

    Smogorzewska, Elzbieta Monika; Weinberg, Kenneth I

    2004-01-01

    Duchenne muscular dystrophy (DMD) is a common lethal disease for which no effective treatment is currently available. There exists a mouse model of the disease in which the usefulness of gene therapy was established. However, no progress towards human application was made due to the lack of a proper method for gene delivery. During the past several years, researchers acquired data which led them to believe that bone marrow stem cells are capable of generating not only blood cells, but also liver, heart, skin, muscle, and other tissue. Although the term "stem cell plasticity" became very popular, other studies have suggested that bone marrow might contain different types of stem cells that can produce non-hematopoietic cells. For example, mesenchymal stem cell (MSC) in bone marrow give rise to osteocytes, chondrocytes, adipocytes, and skeletal muscle. Recently, researchers have been able to show that transplanted bone marrow cells can contribute to muscle cells in a human patient who was diagnosed with two genetic diseases: severe combined immunodeficiency (SCID) and Duchenne muscular dystrophy. The odds of this happening is estimated at one in seven million. The results of studying this patient's medical history were reported by collaborating researchers at Children's Hospital, Los Angeles and Children's Hospital, Boston in an article titled "Long-term persistence of donor nuclei in a Duchenne muscular dystrophy (DMD) patient receiving bone marrow transplantation" published in the September 2002 issue of the Journal of Clinical Investigation. This patient was transplanted 15 years ago at Children's Hospital Los Angeles with paternal HLA-haploidentical T cell-depleted bone marrow. He engrafted and became a hematopoietic chimera having T and NK lymphocytes of donor origin. Studies performed on the muscle biopsy from the patient 13 years after transplantation demonstrated that the muscle showed evidence of donor derived nuclei. In addition, analysis of his bone marrow

  8. Exon skipping therapy for Duchenne muscular dystrophy.

    PubMed

    Kole, Ryszard; Krieg, Arthur M

    2015-06-29

    Duchenne muscular dystrophy (DMD) is caused mostly by internal deletions in the gene for dystrophin, a protein essential for maintaining muscle cell membrane integrity. These deletions abrogate the reading frame and the lack of dystrophin results in progressive muscle deterioration. DMD patients experience progressive loss of ambulation, followed by a need for assisted ventilation, and eventual death in mid-twenties. By the method of exon skipping in dystrophin pre-mRNA the reading frame is restored and the internally deleted but functional dystrophin is produced. Two oligonucleotide drugs that induce desired exon skipping are currently in advanced clinical trials. PMID:25980936

  9. Dysphagia in Duchenne Muscular Dystrophy Assessed by Validated Questionnaire

    ERIC Educational Resources Information Center

    Archer, Sally K.; Garrod, Rachel; Hart, Nicholas; Miller, Simon

    2013-01-01

    Background: Duchenne muscular dystrophy (DMD) leads to progressive muscular weakness and death, most typically from respiratory complications. Dysphagia is common in DMD; however, the most appropriate swallowing assessments have not been universally agreed and the symptoms of dysphagia remain under-reported. Aims: To investigate symptoms of…

  10. Upper Body Muscular Endurance Among Children 2-5 Years.

    ERIC Educational Resources Information Center

    Gabbard, Carl P.; And Others

    The upper body muscular endurance of males and females 2-5 years of age was assessed, and relationships relative to sex, age, endurance and selected anthropometric measures were investigated. None of the relationships were found to be of practical predicative value; while upper body muscular strength increased with age, no significant differences…

  11. Systemic vascular function is associated with muscular power in adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Age-associated loss of muscular strength and muscular power are critical determinants of loss of physical function and progression to disability in older adults. In this study, we examined the association of systemic vascular function and measures of muscle strength and power in older adults. Measu...

  12. Emerging Drugs for Duchenne Muscular Dystrophy

    PubMed Central

    Malik, Vinod; Rodino-Klapac, Louise; Mendell, Jerry R.

    2012-01-01

    Introduction Duchenne muscular dystrophy (DMD) is the most common, severe childhood form of muscular dystrophy. Treatment is limited to glucocorticoids that have the benefit of prolonging ambulation by approximately 2 years and preventing scoliosis. Finding a more satisfactory treatment should focus on maintaining long-term efficacy with a minimal side effect profile. Areas covered Authors discuss different therapeutic strategies that have been used in pre-clinical and clinical settings. Expert opinion Multiple treatment approaches have emerged. Most attractive are molecular-based therapies that can express the missing dystrophin protein (exon skipping or mutation suppression) or a surrogate gene product (utrophin). Other approaches include increasing the strength of muscles (myostatin inhibitors), reducing muscle fibrosis, and decreasing oxidative stress. Additional targets include inhibiting NF-κB to reduce inflammation, or promoting skeletal muscle blood flow and muscle contractility using phosphodiesterase inhibitors or nitric oxide (NO) donors. The potential for each of these treatment strategies to enter clinical trials is a central theme of discussion. The review emphasizes that the goal of treatment should be to find a product at least as good as glucocorticoids with a lower side effect profile or with a significant glucocorticoid sparing effect. PMID:22632414

  13. Cardiac findings in congenital muscular dystrophies.

    PubMed

    Finsterer, Josef; Ramaciotti, Claudio; Wang, Ching H; Wahbi, Karim; Rosenthal, David; Duboc, Denis; Melacini, Paola

    2010-09-01

    Cardiac involvement (CI) in congenital muscular dystrophies (CMDs) has been only rarely investigated so far. By means of a systematic literature search we reviewed the literature about CI in CMD and found that CI is apparently absent in Ullrich CMD or CMD with integrin deficiency and only mild in Bethlem CMD. CI in merosin deficiency includes dilated cardiomyopathy and systolic dysfunction. CI in dystroglycanopathies seems most prevalent among all CMDs and includes dilated cardiomyopathy, systolic dysfunction, and myocardial fibrosis in Fukuyama CMD. Among the nonspecified dystroglycanopathies, CI manifests as dilated cardiomyopathy, hypertrophic cardiomyopathy (CMP) or systolic dysfunction. With CMD type 1C, as well as with limb-girdle muscular dystrophy 2I, up to half of the patients develop dilated cardiomyopathy. In rigid-spine syndrome, predominantly the right heart is affected secondary to thoracic deformity. In patients who carry LMNA mutations, CI may manifest as dilated cardiomyopathy, hypertrophic cardiomyopathy, or fatal ventricular arrhythmias. Overall, CI in patients with CMD varies considerably between the different CMD types from absent or mild CI to severe cardiac disease, particularly in merosin deficiency, dystroglycanopathies, and laminopathies. Patients with CMD with CI require regular cardiologic surveillance so that severe, treatable cardiac disease is not overlooked. PMID:20679303

  14. Upper Girdle Imaging in Facioscapulohumeral Muscular Dystrophy

    PubMed Central

    Tasca, Giorgio; Monforte, Mauro; Iannaccone, Elisabetta; Laschena, Francesco; Ottaviani, Pierfrancesco; Leoncini, Emanuele; Boccia, Stefania; Galluzzi, Giuliana; Pelliccioni, Marco; Masciullo, Marcella; Frusciante, Roberto; Mercuri, Eugenio; Ricci, Enzo

    2014-01-01

    Background In Facioscapulohumeral muscular dystrophy (FSHD), the upper girdle is early involved and often difficult to assess only relying on physical examination. Our aim was to evaluate the pattern and degree of involvement of upper girdle muscles in FSHD compared with other muscle diseases with scapular girdle impairment. Methods We propose an MRI protocol evaluating neck and upper girdle muscles. One hundred-eight consecutive symptomatic FSHD patients and 45 patients affected by muscular dystrophies and myopathies with prominent upper girdle involvement underwent this protocol. Acquired scans were retrospectively analyzed. Results The trapezius (100% of the patients) and serratus anterior (85% of the patients) were the most and earliest affected muscles in FSHD, followed by the latissimus dorsi and pectoralis major, whilst spinati and subscapularis (involved in less than 4% of the patients) were consistently spared even in late disease stages. Asymmetry and hyperintensities on short-tau inversion recovery (STIR) sequences were common features, and STIR hyperintensities could also be found in muscles not showing signs of fatty replacement. The overall involvement appears to be disease-specific in FSHD as it significantly differed from that encountered in the other myopathies. Conclusions The detailed knowledge of single muscle involvement provides useful information for correctly evaluating patients' motor function and to set a baseline for natural history studies. Upper girdle imaging can also be used as an additional tool helpful in supporting the diagnosis of FSHD in unclear situations, and may contribute with hints on the currently largely unknown molecular pathogenesis of this disease. PMID:24932477

  15. Proximal spinal muscular atrophy: current orthopedic perspective

    PubMed Central

    Haaker, Gerrit; Fujak, Albert

    2013-01-01

    Spinal muscular atrophy (SMA) is a hereditary neuromuscular disease of lower motor neurons that is caused by a defective “survival motor neuron” (SMN) protein that is mainly associated with proximal progressive muscle weakness and atrophy. Although SMA involves a wide range of disease severity and a high mortality and morbidity rate, recent advances in multidisciplinary supportive care have enhanced quality of life and life expectancy. Active research for possible treatment options has become possible since the disease-causing gene defect was identified in 1995. Nevertheless, a causal therapy is not available at present, and therapeutic management of SMA remains challenging; the prolonged survival is increasing, especially orthopedic, respiratory and nutritive problems. This review focuses on orthopedic management of the disease, with discussion of key aspects that include scoliosis, muscular contractures, hip joint disorders, fractures, technical devices, and a comparative approach of conservative and surgical treatment. Also emphasized are associated complications including respiratory involvement, perioperative care and anesthesia, nutrition problems, and rehabilitation. The SMA disease course can be greatly improved with adequate therapy with established orthopedic procedures in a multidisciplinary therapeutic approach. PMID:24399883

  16. Developments in gene therapy for muscular dystrophy.

    PubMed

    Hartigan-O'Connor, D; Chamberlain, J S

    Gene therapy for muscular dystrophy (MD) presents significant challenges, including the large amount of muscle tissue in the body, the large size of many genes defective in different muscular dystrophies, and the possibility of a host immune response against the therapeutic gene. Overcoming these challenges requires the development and delivery of suitable gene transfer vectors. Encouraging progress has been made in modifying adenovirus (Ad) vectors to reduce immune response and increase capacity. Recently developed gutted Ad vectors can deliver full-length dystrophin cDNA expression vectors to muscle tissue. Using muscle-specific promoters to drive dystrophin expression, a strong immune response has not been observed in mdx mice. Adeno-associated virus (AAV) vectors can deliver small genes to muscle without provocation of a significant immune response, which should allow long-term expression of several MD genes. AAV vectors have also been used to deliver sarcoglycan genes to entire muscle groups. These advances and others reviewed here suggest that barriers to gene therapy for MD are surmountable. PMID:10679969

  17. Congenital muscular dystrophy with inflammation: Diagnostic considerations

    PubMed Central

    Konkay, Kaumudi; Kannan, Meena Angamuthu; Lingappa, Lokesh; Uppin, Megha S.; Challa, Sundaram

    2016-01-01

    Background and Purpose: Muscle biopsy features of congenital muscular dystrophies (CMD) vary from usual dystrophic picture to normal or nonspecific myopathic picture or prominent fibrosis or striking inflammatory infiltrate, which may lead to diagnostic errors. A series of patients of CMD with significant inflammatory infiltrates on muscle biopsy were correlated with laminin α2 deficiency on immunohistochemistry (IHC). Material and Methods: Cryostat sections of muscle biopsies from the patients diagnosed as CMD on clinical and muscle biopsy features from 1996 to 2014 were reviewed with hematoxylin and eosin(H&E), enzyme and immunohistochemistry (IHC) with laminin α2. Muscle biopsies with inflammatory infiltrate were correlated with laminin α2 deficiency. Results: There were 65 patients of CMD, with inflammation on muscle biopsy in 16. IHC with laminin α2 was available in nine patients, of which six showed complete absence along sarcolemma (five presented with floppy infant syndrome and one with delayed motor milestones) and three showed discontinuous, and less intense staining. Conclusions: CMD show variable degrees of inflammation on muscle biopsy. A diagnosis of laminin α2 deficient CMD should be considered in patients of muscular dystrophy with inflammation, in children with hypotonia/delayed motor milestones. PMID:27570388

  18. Journey into muscular dystrophies caused by abnormal glycosylation.

    PubMed

    Muntoni, Francesco

    2004-09-01

    An increasing number of genes encoding for putative or demonstrated glycosyltransferases are being associated with muscular dystrophies of variable severity, ranging from severe congenital onset and associated structural eye and brain changes, to relatively mild forms with onset into adulthood. Five of these genes (POMT1; POMGnT1; FXRP; Fukutin; LARGE) encode for proteins involved in the glycosylation of alpha-dystroglycan and, indeed, abnormal glycosylation of this molecule is a common finding in all the respective conditions (Walker Warburg syndrome; Muscle-Eye-Brain disease; congenital muscular dystrophy type 1C and Limb girdle muscular dystrophy type 21; Fukuyama muscular dystrophy; congenital muscular dystrophy type 1D). A 6th gene, GNE, responsible for the hereditary form of inclusion body myositis, encodes for a glycosyltransferase the substrate(s) of which is, however, still unclear. This article provides an overview of the clinical, biochemical and genetic features of this group of disorders. PMID:15605948

  19. Social dominance orientation predicts drive for muscularity among British men.

    PubMed

    Swami, Viren; Neofytou, Rudolfos-Valentino; Jablonska, Joanna; Thirlwell, Holly; Taylor, Donna; McCreary, Donald R

    2013-09-01

    The present study tested the hypothesis that men's drive for muscularity would be associated with their valuation of domination, power, status, and aggression over others. A community sample of 359 men from London, UK, completed measures of drive for muscularity, social dominance orientation, right-wing authoritarianism, trait aggression, and need for power, as well as their demographic details. Bivariate correlations showed that greater drive for muscularity was significantly correlated with most of the measures and their subscales. However, in a multiple regression analysis, the only significant predictor of drive for muscularity was support for group-based dominance hierarchies (Adj. R(2)=.17). These results suggest that men's drive for muscularity is associated with a socio-political ideology that favours social dominance. PMID:23954197

  20. Consensus statement on standard of care for congenital muscular dystrophies.

    PubMed

    Wang, Ching H; Bonnemann, Carsten G; Rutkowski, Anne; Sejersen, Thomas; Bellini, Jonathan; Battista, Vanessa; Florence, Julaine M; Schara, Ulrike; Schuler, Pamela M; Wahbi, Karim; Aloysius, Annie; Bash, Robert O; Béroud, Christophe; Bertini, Enrico; Bushby, Kate; Cohn, Ronald D; Connolly, Anne M; Deconinck, Nicolas; Desguerre, Isabelle; Eagle, Michelle; Estournet-Mathiaud, Brigitte; Ferreiro, Ana; Fujak, Albert; Goemans, Nathalie; Iannaccone, Susan T; Jouinot, Patricia; Main, Marion; Melacini, Paola; Mueller-Felber, Wolfgang; Muntoni, Francesco; Nelson, Leslie L; Rahbek, Jes; Quijano-Roy, Susana; Sewry, Caroline; Storhaug, Kari; Simonds, Anita; Tseng, Brian; Vajsar, Jiri; Vianello, Andrea; Zeller, Reinhard

    2010-12-01

    Congenital muscular dystrophies are a group of rare neuromuscular disorders with a wide spectrum of clinical phenotypes. Recent advances in understanding the molecular pathogenesis of congenital muscular dystrophy have enabled better diagnosis. However, medical care for patients with congenital muscular dystrophy remains very diverse. Advances in many areas of medical technology have not been adopted in clinical practice. The International Standard of Care Committee for Congenital Muscular Dystrophy was established to identify current care issues, review literature for evidence-based practice, and achieve consensus on care recommendations in 7 areas: diagnosis, neurology, pulmonology, orthopedics/rehabilitation, gastroenterology/ nutrition/speech/oral care, cardiology, and palliative care. To achieve consensus on the care recommendations, 2 separate online surveys were conducted to poll opinions from experts in the field and from congenital muscular dystrophy families. The final consensus was achieved in a 3-day workshop conducted in Brussels, Belgium, in November 2009. This consensus statement describes the care recommendations from this committee. PMID:21078917

  1. A heterozygous 21-bp deletion in CAPN3 causes dominantly inherited limb girdle muscular dystrophy.

    PubMed

    Vissing, John; Barresi, Rita; Witting, Nanna; Van Ghelue, Marijke; Gammelgaard, Lise; Bindoff, Laurence A; Straub, Volker; Lochmüller, Hanns; Hudson, Judith; Wahl, Christoph M; Arnardottir, Snjolaug; Dahlbom, Kathe; Jonsrud, Christoffer; Duno, Morten

    2016-08-01

    Limb girdle muscular dystrophy type 2A is the most common limb girdle muscular dystrophy form worldwide. Although strict recessive inheritance is assumed, patients carrying a single mutation in the calpain 3 gene (CAPN3) are reported. Such findings are commonly attributed to incomplete mutation screening. In this investigation, we report 37 individuals (age range: 21-85 years, 21 females and 16 males) from 10 families in whom only one mutation in CAPN3 could be identified; a 21-bp, in-frame deletion (c.643_663del21). This mutation co-segregated with evidence of muscle disease and autosomal dominant transmission in several generations. Evidence of muscle disease was indicated by muscle pain, muscle weakness and wasting, significant fat replacement of muscles on imaging, myopathic changes on muscle biopsy and loss of calpain 3 protein on western blotting. Thirty-one of 34 patients had elevated creatine kinase or myoglobin. Muscle weakness was generally milder than observed in limb girdle muscular dystrophy type 2A, but affected the same muscle groups (proximal leg, lumbar paraspinal and medial gastrocnemius muscles). In some cases, the weakness was severely disabling. The 21-bp deletion did not affect mRNA maturation. Calpain 3 expression in muscle, assessed by western blot, was below 15% of normal levels in the nine mutation carriers in whom this could be tested. Haplotype analysis in four families from three different countries suggests that the 21-bp deletion is a founder mutation. This study provides strong evidence that heterozygosity for the c.643_663del21 deletion in CAPN3 results in a dominantly inherited muscle disease. The normal expression of mutated mRNA and the severe loss of calpain 3 on western blotting, suggest a dominant negative effect with a loss-of-function mechanism affecting the calpain 3 homodimer. This renders patients deficient in calpain 3 as in limb girdle muscular dystrophy type 2A, albeit in a milder form in most cases. Based on findings

  2. [Statin intolerance and associated muscular dysfunctions].

    PubMed

    Boulanger-Piette, Antoine; Bergeron, Jean; Desgreniers, Joël; Côté-Levesque, Michèle; Brassard, Dominic; Joanisse, Denis R; Frenette, Jérôme

    2015-12-01

    Hypercholesterolemia is a major risk factor for cardiovascular diseases. The 2012-2013 survey of Canada's public health measures revealed that dyslipidemia was present in 38% of the respondents aged between 18 and 79 years. According to the American College of Cardiology, the American Heart Association, the Canadian Cardiovascular Society and the Canadian Working Group Consensus, statins remain the treatment of choice for dyslipidemia and the reduction of cardiovascular risk. However, concerns and questions persist regarding statins use and safety, potential and harmful muscular side-effects, interactions with exercise, and molecular mechanisms of myotoxicity. The goal of the present review is to provide a clear picture of the clinical situation and to investigate possible mechanisms of statin-induced myopathy. A better understanding of muscle pathology in statin users is absolutely essential to minimize their muscle symptoms and to provide a sound clinical basis for the management of cardiovascular risk. PMID:26672664

  3. [Vitamin D: skeletal and muscular effects].

    PubMed

    Thomas, Thierry; Briot, Karine

    2013-10-01

    Insufficient serum levels of 25-hydroxyvitamin D [25(OH)D] is a risk factor for osteoporosis. A new paradigm is emerging with the locally synthesized 1,25(OH)2D within osteoblasts and osteoclasts as the essential pathway for the effects of 25(OH)D in regulating bone remodeling via direct or indirect activation of the specific receptor VDR. Vitamin D has positive effects on fracture risk, muscular function and risk of falls; these effects are observed when serum levels of 25(OH)D are above 30 ng/ml (75 nmol/l). Vitamin D dosing interval may be relevant for reducing the risk of fracture, with evidence suggesting positive effects with short intervals of 3 months or less. It is recommended to maintain an optimal serum level of 25(OH)D when managing patients with osteoporosis or at risk of this bone disease. PMID:24054764

  4. Oculopharyngeal muscular dystrophy: a polyalanine myopathy.

    PubMed

    Brais, Bernard

    2009-01-01

    It has been 10 years since the identification of the first PABPN1 gene (GCN)(n)/polyalanine mutations responsible for oculopharyngeal muscular dystrophy (OPMD). These mutations have been found in most cases of OPMD diagnosed in more than 35 countries. Sequence analyses have shown that such mutations have occurred numerous times in human history. Although PABPN1 was found early on to be a component of the classic filamentous intranuclear inclusions (INIs), mRNA and other proteins also have been found to coaggregate in the INIs. It is still unclear if the INIs play a pathologic or a protective role. The generation of numerous cell and animal models of OPMD has led to greater insight into its complex molecular pathophysiology and identified the first candidate therapeutic molecules. This paper reviews basic and clinical research on OPMD, with special emphasis on recent developments in the understanding of its pathophysiology. PMID:19080757

  5. Congenital muscular torticollis and positional plagiocephaly.

    PubMed

    Kuo, Alice A; Tritasavit, Sophie; Graham, John M

    2014-02-01

    On the basis of observational studies, child health practitioners in primary care settings should consider the diagnosis of congenital muscular torticollis (CMT)in infants with risk factors from birth history for intrauterine malpositioning or constraint (C). On the basis of observational studies, CMT is often associated with other conditions, including positional plagiocephaly and gross motor delays from weakened truncal muscles and/or lack of head control in early infancy (C). On the basis of observational studies, child health practitioners should counsel parents that infants should be on their stomachs frequently whenever they are awake and under direct adult supervision to develop their prone motor skills (C). On the basis of consensus, early identification of CMT(with or without positional plagiocephaly) and prompt referral to a physical therapist experienced in the treatment of CMT should be considered to avoid more costly or invasive treatments, such as cranial orthoses or surgery (D). PMID:24488831

  6. Congenital Muscular Dystrophies: A Brief Review

    PubMed Central

    Bertini, Enrico; D'Amico, Adele; Gualandi, Francesca; Petrini, Stefania

    2011-01-01

    Congenital muscular dystrophies (CMDs) are clinically and genetically heterogeneous neuromuscular disorders with onset at birth or in infancy in which the muscle biopsy is compatible with a dystrophic myopathy. In the past 10 years, knowledge of neuromuscular disorders has dramatically increased, particularly with the exponential boost of disclosing the genetic background of CMDs. This review will highlight the clinical description of the most important forms of CMD, paying particular attention to the main keys for diagnostic approach. The diagnosis of CMDs requires the concurrence of expertise in multiple specialties (neurology, morphology, genetics, neuroradiology) available in a few centers worldwide that have achieved sufficient experience with the different CMD subtypes. Currently, molecular diagnosis is of paramount importance not only for phenotype-genotype correlations, genetic and prenatal counseling, and prognosis and aspects of management, but also concerning the imminent availability of clinical trials and treatments. PMID:22172424

  7. [Fukuyama congenital muscular dystrophy and related alpha-dystroglycanopathies].

    PubMed

    Murakami, Terumi; Nishino, Ichizo

    2008-10-01

    Alpha-dystroglycan (alpha-DG) is a glycoprotein that binds to laminin in the basal lamina and helps provide mechanical support. A group of muscular dystrophies are caused by glycosylation defects of alpha-DG and are hence collectively called alpha-dystroglycanopathy (alpha-DGP). Alpha-DGP is clinically characterized by a combination of muscular dystrophies, structural brain anomalies, and ocular involvement. So far, 6 causative genes have been identified: LARGE, POMGNT1, POMT1, POMT2, FKRP, and FKTN. Initially, alpha-DGP was classified under congenital muscular dystrophies; however, the clinical phenotype is now expanded to include a markedly wide spectrum ranging from the most severe, lethal congenital muscular dystrophy with severe brain deformity to the mildest limb girdle muscular dystrophy with minimal muscle weakness. This is exemplified by Fukuyama congenital muscular dystrophy (FCMD), which is the most prevalent alpha-DGP in Japan, and is caused by mutations in FKTN. FCMD is clinically characterized by a triad of mental retardation, brain deformities, and congenital muscular dystrophy, and a majority of FCMD patients have a homozygous 3-kb retrotransposal insertion in the 3'non-coding region. Typically, they are able to sit but never attain independent ambulation in their lives. Recently, a patient from Turkey harboring homozygous 1-bp insertion reportedly showed a severe brain deformity with hydrocephalus and died 10 days after birth. In contrast, the mildest FKTN phenotype, LGMD2L, was identified in 6 cases from 4 families in Japan. These patients harbored compound heterozygous mutation with 3-kb retrotransposal insertion in the 3'non-coding region and a novel missense mutation in the coding region. Clinically, these patients presented with minimal muscle weakness and dilated cardiomyopathy and had normal intelligence. These data clearly indicate that FKTN mutations can cause a broad spectrum of muscular dystrophies. Therefore, clinicians should always

  8. [MD-NET--muscular dystrophy network].

    PubMed

    Lochmüller, H; Straub, V

    2007-12-01

    Muscular dystrophies (MD) constitute a group of inherited disorders characterized by progressive weakness of skeletal and sometimes cardiac muscle. MD are rare disorders affecting approximately 26,000 to 40,000 people in Germany based on a pre valence of 1:2000 to 1:3000 (estimate of the Association Française contre les Myopathies, AFM) and a population of 80 million people residing in Germany. More than 30 forms of MD are recognized today caused by different genetic defects. Based on the symptoms of an individual patient the underlying genetic defect cannot be determined, since all MD have the following in common: Muscle fibers are destroyed and become replaced by fatty and fibrous tissue. Various forms of MD are caused by defects of proteins residing in the sarcolemma, the cell membrane of muscle fibers. Other forms are caused by defects of proteins that are associated to the nucleus, to the sarcomer or the cytoplasm. Moreover, there are numerous forms where the exact molecular defect is unknown to date. Even though the underlying defect is known for many MD, the pathogenic process that leads to the decay of musculature is poorly understood. At present, MD cannot be cured. MD are treated by physiotherapy, surgery and medication that may delay progression. Symptomatic therapy such as cardiac pace makers may be life-saving and improve quality of life in many patients. For optimizing research into the MD, a network, the muscular dystrophy network or MD-NET, was initiated and has been supported by the German ministry of education and research (BMBF) since 2003. PMID:18026885

  9. Porcine Models of Muscular Dystrophy1

    PubMed Central

    Selsby, Joshua T.; Ross, Jason W.; Nonneman, Dan; Hollinger, Katrin

    2015-01-01

    Duchenne muscular dystrophy is a progressive, fatal, X-linked disease caused by a failure to accumulate the cytoskeletal protein dystrophin. This disease has been studied using a variety of animal models including fish, mice, rats, and dogs. While these models have contributed substantially to our mechanistic understanding of the disease and disease progression, limitations inherent to each model have slowed the clinical advancement of therapies, which necessitates the development of novel large-animal models. Several porcine dystrophin-deficient models have been identified, although disease severity may be so severe as to limit their potential contributions to the field. We have recently identified and completed the initial characterization of a natural porcine model of dystrophin insufficiency. Muscles from these animals display characteristic focal necrosis concomitant with decreased abundance and localization of dystrophin-glycoprotein complex components. These pigs recapitulate many of the cardinal features of muscular dystrophy, have elevated serum creatine kinase activity, and preliminarily appear to display altered locomotion. They also suffer from sudden death preceded by EKG abnormalities. Pig dystrophinopathy models could allow refinement of dosing strategies in human-sized animals in preparation for clinical trials. From an animal handling perspective, these pigs can generally be treated normally, with the understanding that acute stress can lead to sudden death. In summary, the ability to create genetically modified pig models and the serendipitous discovery of genetic disease in the swine industry has resulted in the emergence of new animal tools to facilitate the critical objective of improving the quality and length of life for boys afflicted with such a devastating disease. PMID:25991703

  10. Benign muscular dystrophy: risk calculation in families with consanguinity.

    PubMed Central

    Wolff, G; Müller, C R; Grimm, T

    1989-01-01

    This report concerns two families in which the index patients are sporadic cases of a benign form of muscular dystrophy. In both families the sisters of the patients have married a close relative. The respective risks for a child of these consanguineous marriages being affected with either X linked Becker muscular dystrophy or autosomal recessive limb girdle muscular dystrophy is calculated using pedigree information, results of serum creatine kinase determinations, and also, in one family, results of DNA typing using RFLPs from the short arm of the X chromosome. PMID:2732990

  11. Birdshot chorioretinopathy in a male patient with facioscapulohumeral muscular dystrophy.

    PubMed

    Papavasileiou, Evangelia; Lobo, Ann-Marie

    2015-01-01

    We report a case of birdshot chorioretinopathy (BSCR) in a patient with facioscapulohumeral muscular dystrophy (FSHD). A 40-year-old male with history of facioscapulohumeral muscular dystrophy with significant facial diplegia and lagophthalmos presents for an evaluation of bilateral choroiditis with vasculitis and optic disc edema. Clinical examination included fundus and autofluorescence photographs, fluorescein angiography, and optical coherence tomography. To our knowledge, this patient represents the first reported case of birdshot chorioretinopathy with facioscapulohumeral muscular dystrophy. Patients with FSHD can present with ocular findings and should be screened with dilated fundus examinations for retinal vascular changes and posterior uveitis. PMID:25861398

  12. Mutations of CAPN3 in Korean Patients with Limb-Girdle Muscular Dystrophy

    PubMed Central

    Shin, Jin-Hong; Kim, Hyang-Suk; Lee, Chang-Hoon; Kim, Cheol-Min; Park, Kyu-Hyun

    2007-01-01

    The limb-girdle muscular dystrophy type 2A (LGMD2A) is a recessively inherited disease caused by a mutation of the calpain 3 gene (CAPN3), and is considered one of the most prevalent subtypes of limb-girdle muscular dystrophy (LGMD). In this study, we aimed to identify CAPN3 mutations and to characterize the phenotype of Korean patients with LGMD2A. Among 35 patients with LGMD, four patients, who showed calpain 3 deficiency on western blot analysis, were analyzed in this study. Total RNA extracted from frozen muscle tissue was amplified by reverse transcriptase polymerase chain reaction (RT-PCR) using six primer pairs covering all coding sequences of CAPN3, and direct sequencing was performed. Clinical and pathological features of the patients were also reviewed. We found four different mutations in five alleles from three patients. Of the pathogenic mutations identified, two were novel (c.2125T>C and c.2355-2357delTTC), and the others had been reported elsewhere (c.440G>C, c.1076C>T). All patients showed a high CK level with predominant proximal leg weakness, and the onset was in their childhood except for one patient. Among two novel CAPN3 mutations, one was a missense mutation (c.2125T>C [p.709Ser>Pro]), and the other was a small in-frame deletion causing omission of a single amino acid (c.2355-2357delTTC [p.786delPhe]). The clinical features of our patients were generally compatible with the characteristics of LGMD2A patients described in the previous studies. PMID:17596655

  13. Genetics Home Reference: limb-girdle muscular dystrophy

    MedlinePlus

    ... most common form of limb-girdle muscular dystrophy , accounting for about 30 percent of cases. Dysferlinopathy, also ... be inherited? More about Inheriting Genetic Conditions Diagnosis & Management These resources address the diagnosis or management of ...

  14. Efficacy of bipolar release in neglected congenital muscular torticollis patients.

    PubMed

    Seyhan, Nevra; Jasharllari, Lorenc; Keskin, Mustafa; Savacı, Nedim

    2012-06-01

    Surgical correction of the congenital muscular torticollis (CMT) is recommended for patients with unsuccessful conservative treatment. The aim of this study is to evaluate the efficacy of surgical release of congenital muscular torticollis in neglected cases. We retrospectively evaluated the data of our patients in terms of age, sex, clinical presentation, localization of the lesion, diagnostic tests, and additional abnormalities. The age at operation ranged from 6 to 23 years. Complete muscular release as determined by pre-operative and postoperative range of motion measurements was achieved in all of the patients by bipolar release. In this study, neck motion and head tilt showed marked improvement with surgical treatment in cases with CMT who were admitted to the hospital lately. Congenital muscular torticollis patients can benefit from surgical intervention above the age of 5. Bipolar release is an adequate and complication-free method. PMID:22045346

  15. Cardiac involvement in Duchenne and Becker muscular dystrophy

    PubMed Central

    Mavrogeni, Sophie; Markousis-Mavrogenis, George; Papavasiliou, Antigoni; Kolovou, Genovefa

    2015-01-01

    Duchenne and Becker muscular dystrophy (DMD/BMD) are X-linked muscular diseases responsible for over 80% of all muscular dystrophies. Cardiac disease is a common manifestation, not necessarily related to the degree of skeletal myopathy; it may be the predominant manifestation with or without any other evidence of muscular disease. Death is usually due to ventricular dysfunction, heart block or malignant arrhythmias. Not only DMD/BMD patients, but also female carriers may present cardiac involvement. Clinically overt heart failure in dystrophinopathies may be delayed or absent, due to relative physical inactivity. The commonest electrocardiographic findings include conduction defects, arrhythmias (supraventricular or ventricular), hypertrophy and evidence of myocardial necrosis. Echocardiography can assess a marked variability of left ventricular dysfunction, independently of age of onset or mutation groups. Cardiovascular magnetic resonance (CMR) has documented a pattern of epicardial fibrosis in both dystrophinopathies’ patients and carriers that can be observed even if overt muscular disease is absent. Recently, new CMR techniques, such as postcontrast myocardial T1 mapping, have been used in Duchenne muscular dystrophy to detect diffuse myocardial fibrosis. A combined approach using clinical assessment and CMR evaluation may motivate early cardioprotective treatment in both patients and asymptomatic carriers and delay the development of serious cardiac complications. PMID:26225202

  16. Cardiac function in muscular dystrophy associates with abdominal muscle pathology

    PubMed Central

    Gardner, Brandon B.; Swaggart, Kayleigh A.; Kim, Gene; Watson, Sydeaka; McNally, Elizabeth M.

    2015-01-01

    Background The muscular dystrophies target muscle groups differentially. In mouse models of muscular dystrophy, notably the mdx model of Duchenne Muscular Dystrophy, the diaphragm muscle shows marked fibrosis and at an earlier age than other muscle groups, more reflective of the histopathology seen in human muscular dystrophy. Methods Using a mouse model of limb girdle muscular dystrophy, the Sgcg mouse, we compared muscle pathology across different muscle groups and heart. A cohort of nearly 200 Sgcg mice were studied using multiple measures of pathology including echocardiography, Evans blue dye uptake and hydroxyproline content in multiple muscle groups. Spearman rank correlations were determined among echocardiographic and pathological parameters. Findings The abdominal muscles were found to have more fibrosis than other muscle groups, including the diaphragm muscle. The abdominal muscles also had more Evans blue dye uptake than other muscle groups. The amount of diaphragm fibrosis was found to correlate positively with fibrosis in the left ventricle, and abdominal muscle fibrosis correlated with impaired left ventricular function. Fibrosis in the abdominal muscles negatively correlated with fibrosis in the diaphragm and right ventricles. Together these data reflect the recruitment of abdominal muscles as respiratory muscles in muscular dystrophy, a finding consistent with data from human patients. PMID:26029630

  17. Limb-girdle muscular dystrophy type 2I is not rare in Taiwan.

    PubMed

    Liang, Wen-Chen; Hayashi, Yukiko K; Ogawa, Megumu; Wang, Chien-Hua; Huang, Wan-Ting; Nishino, Ichizo; Jong, Yuh-Jyh

    2013-08-01

    Alpha-dystroglycanopathy is caused by the glycosylation defects of α-dystroglycan (α-DG). The clinical spectrum ranges from severe congenital muscular dystrophy (CMD) to later-onset limb girdle muscular dystrophy (LGMD). Among all α-dystroglycanopathies, LGMD type 2I caused by FKRP mutations is most commonly seen in Europe but appears to be rare in Asia. We screened uncategorized 40 LGMD and 10 CMD patients by immunohistochemistry for α-DG and found 7 with reduced α-DG immunostaining. Immunoblotting with laminin overlay assay confirmed the impaired glycosylation of α-DG. Among them, five LGMD patients harbored FKRP mutations leading to the diagnosis of LGMD2I. One common mutation, c.948delC, was identified and cardiomyopathy was found to be very common in our cohort. Muscle images showed severe involvement of gluteal muscles and posterior compartment at both thigh and calf levels, which is helpful for the differential diagnosis. Due to the higher frequency of LGMD2I with cardiomyopathy in our series, the early introduction of mutation analysis of FKRP in undiagnosed Taiwanese LGMD patients is highly recommended. PMID:23800702

  18. Spinal Muscular Atrophy: Current Therapeutic Strategies

    NASA Astrophysics Data System (ADS)

    Kiselyov, Alex S.; Gurney, Mark E.

    Proximal spinal muscular atrophy (SMA) is an autosomal recessive disorder characterized by death of motor neurons in the spinal cord. SMA is caused by deletion and/or mutation of the survival motor neuron gene (SMN1) on chromosome 5q13. There are variable numbers of copies of a second, related gene named SMN2 located in the proximity to SMN1. Both genes encode the same protein (Smn). Loss of SMN1 and incorrect splicing of SMN2 affect cellular levels of Smn triggering death of motor neurons. The severity of SMA is directly related to the normal number of copies of SMN2 carried by the patient. A considerable effort has been dedicated to identifying modalities including both biological and small molecule agents that increase SMN2 promoter activity to upregulate gene transcription and produce increased quantities of full-length Smn protein. This review summarizes recent progress in the area and suggests potential target product profile for an SMA therapeutic.

  19. Prenatal prediction of spinal muscular atrophy.

    PubMed Central

    Daniels, R J; Suthers, G K; Morrison, K E; Thomas, N H; Francis, M J; Mathew, C G; Loughlin, S; Heiberg, A; Wood, D; Dubowitz, V

    1992-01-01

    Spinal muscular atrophy (SMA) is a common cause of inherited morbidity and mortality in childhood. The wide range of phenotypes in SMA, uncertainty regarding its mode of inheritance, and the suggestion of linkage heterogeneity have complicated the genetic counselling of parents of affected children. The locus responsible for autosomal recessive SMA has been mapped to 5q11.2-q13.3. The most likely order of loci is cen-D5S6-(SMA,D5S125)-(JK53CA1/2,D5S112)-D5S3 9-qter, with highly polymorphic loci being identified at JK53CA1/2 and D5S39. We describe linkage studies with another highly polymorphic locus, D5S127, that is closely linked to D5S39. This genetic map can be used as the basis for genetic counselling in families with autosomal recessive SMA. Appropriate allowance can be made for sporadic cases owing to non-inherited causes and for linkage heterogeneity or misdiagnoses. Images PMID:1348091

  20. Optimizing Bone Health in Duchenne Muscular Dystrophy

    PubMed Central

    Buckner, Jason L.; Bowden, Sasigarn A.; Mahan, John D.

    2015-01-01

    Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder characterized by progressive muscle weakness, with eventual loss of ambulation and premature death. The approved therapy with corticosteroids improves muscle strength, prolongs ambulation, and maintains pulmonary function. However, the osteoporotic impact of chronic corticosteroid use further impairs the underlying reduced bone mass seen in DMD, leading to increased fragility fractures of long bones and vertebrae. These serious sequelae adversely affect quality of life and can impact survival. The current clinical issues relating to bone health and bone health screening methods in DMD are presented in this review. Diagnostic studies, including biochemical markers of bone turnover and bone mineral density by dual energy X-ray absorptiometry (DXA), as well as spinal imaging using densitometric lateral spinal imaging, and treatment to optimize bone health in patients with DMD are discussed. Treatment with bisphosphonates offers a method to increase bone mass in these children; oral and intravenous bisphosphonates have been used successfully although treatment is typically reserved for children with fractures and/or bone pain with low bone mass by DXA. PMID:26124831

  1. Measuring quality of life in muscular dystrophy

    PubMed Central

    Abresch, Richard T.; Biesecker, Barbara; Conway, Kristin Caspers; Heatwole, Chad; Peay, Holly; Scal, Peter; Strober, Jonathan; Uzark, Karen; Wolff, Jodi; Margolis, Marjorie; Blackwell, Angela; Street, Natalie; Montesanti, Angela; Bolen, Julie

    2015-01-01

    Objectives: The objectives of this study were to develop a conceptual model of quality of life (QOL) in muscular dystrophies (MDs) and review existing QOL measures for use in the MD population. Methods: Our model for QOL among individuals with MD was developed based on a modified Delphi process, literature review, and input from patients and patient advocacy organizations. Scales that have been used to measure QOL among patients with MD were identified through a literature review and evaluated using the COSMIN (Consensus-Based Standards for the Selection of Health Measurement Instruments) checklist. Results: The Comprehensive Model of QOL in MD (CMQM) captures 3 broad domains of QOL (physical, psychological, and social), includes factors influencing self-reported QOL (disease-related factors, support/resources, and expectations/aspirations), and places these concepts within the context of the life course. The literature review identified 15 QOL scales (9 adult and 6 pediatric) that have been applied to patients with MD. Very few studies reported reliability data, and none included data on responsiveness of the measures to change in disease progression, a necessary psychometric property for measures included in treatment and intervention studies. No scales captured all QOL domains identified in the CMQM model. Conclusions: Additional scale development research is needed to enhance assessment of QOL for individuals with MD. Item banking and computerized adaptive assessment would be particularly beneficial by allowing the scale to be tailored to each individual, thereby minimizing respondent burden. PMID:25663223

  2. Molecular analysis of facioscapulohumeral muscular dystrophy (FSHD)

    SciTech Connect

    Upadhyaya, M.; Maynard, J.; Osborn, M.

    1994-09-01

    Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant disorder characterized by progressive muscle weakness. The disease locus maps to 4q35 and is associated with a de novo DNA rearrangement, detected by a probe p13E-11 (D4F104S1) which maps proximal to the disease locus. An informative distal flanking marker for this condition is still required. Using p13E-11, we have analyzed 35 FSHD families in which the disease is apparently associated with a new mutation. Twenty three of these cases were found to have a smaller rearranged DNA fragment which was not present in either of the parents. Pulsed-field gel analysis of 5 of these families also revealed evidence of DNA deletion. During the course of this study, we identified one case with a DNA rearrangement which was also present in the unaffected mother, but at very low intensity. This finding has been confirmed by pulsed-field gel analysis, and indicates that the mother is probably a gonosomal mosaic. In order to saturate the FSHD region with new DNA markers, a laser microdissection and microcloning technique was used to construct a genomic library from the distal end of chromosome 4. Of the 72 microclones analyzed, 42 mapped into the relevant 4q35 region. 4 sequences were conserved and may be considered potential candidate genes for FSHD. The microclones mapping to 4q35 are under study to identify additional polymorphic markers for the FSHD region.

  3. Gene Therapy for Duchenne muscular dystrophy

    PubMed Central

    Ramos, Julian; Chamberlain, Jeffrey S

    2015-01-01

    Introduction Duchenne muscular dystrophy (DMD) is a relatively common inherited disorder caused by defective expression of the protein dystrophin. The most direct approach to treating this disease would be to restore dystrophin production in muscle. Recent progress has greatly increased the prospects for successful gene therapy of DMD, and here we summarize the most promising developments. Areas Covered Gene transfer using vectors derived from adeno-associated virus (AAV) has emerged as a promising method to restore dystrophin production in muscles bodywide, and represents a treatment option applicable to all DMD patients. Using information gleaned from PubMed searches of the literature, attendance at scientific conferences and results from our own lab, we provide an overview of the potential for gene therapy of DMD using AAV vectors including a summary of promising developments and issues that need to be resolved prior to large-scale therapeutic implementation. Expert Opinion Of the many approaches being pursued to treat DMD and BMD, gene therapy based on AAV-mediated delivery of microdystrophin is the most direct and promising method to treat the cause of the disorder. The major challenges to this approach are ensuring that microdystrophin can be delivered safely and efficiently without eliciting an immune response. PMID:26594599

  4. Facioscapulohumeral muscular dystrophy: consequences of chromatin relaxation

    PubMed Central

    van der Maarel, Silvère M.; Miller, Daniel G.; Tawil, Rabi; Filippova, Galina N.; Tapscott, Stephen J.

    2013-01-01

    Purpose of review In recent years we have seen remarkable progress in our understanding of the disease mechanism underlying facioscapulohumeral muscular dystrophy (FSHD). The purpose of this review is to provide a comprehensive overview of our current understanding of the disease mechanism and to discuss the observations supporting the possibility of a developmental defect in this disorder. Recent findings In the majority of cases FSHD is caused by contraction of the D4Z4 repeat array (FSHD1). This results in local chromatin relaxation and stable expression of the DUX4 retrogene in skeletal muscle, but only when a polymorphic DUX4 polyadenylation signal is present. In some cases (FSHD2), D4Z4 chromatin relaxation and stable DUX4 expression occurs in the absence of D4Z4 array contraction. DUX4 is a germline transcription factor and its expression in skeletal muscle leads to activation of early stem cell and germline programs and transcriptional activation of retroelements. Summary Recent studies have provided a plausible disease mechanism for FSHD where FSHD results from inappropriate expression of the germline transcription factor DUX4. The genes regulated by DUX4 suggest several mechanisms of muscle damage, and provide potential biomarkers and therapeutic targets that should be investigated in future studies. PMID:22892954

  5. Molecular etiopathogenesis of limb girdle muscular and congenital muscular dystrophies: boundaries and contiguities.

    PubMed

    Guglieri, Michela; Magri, Francesca; Comi, Giacomo P

    2005-11-01

    The muscular dystrophies are a heterogeneous group of inherited disorders characterized by progressive muscle wasting and weakness. These disorders present a large clinical variability regarding age of onset, patterns of skeletal muscle involvement, heart damage, rate of progression and mode of inheritance. Difficulties in classification are often caused by the relatively common sporadic occurrence of autosomal recessive forms as well as by intrafamilial clinical variability. Furthermore recent discoveries, particularly regarding the proteins linking the sarcolemma to components of the extracellular matrix, have restricted the gap existing between limb girdle (LGMD) and congenital muscular dystrophies (CMD). Therefore a renewed definition of boundaries between these two groups is required. Molecular genetic studies have demonstrated different causative mutations in the genes encoding a disparate collection of proteins involved in all aspects of muscle cell biology. These novel skeletal muscle genes encode highly diverse proteins with different localization within or at the surface of the skeletal muscle fibre, such as the sarcolemmal muscle membrane (dystrophin, sarcoglycans, dysferlin, caveolin-3), the extracellular matrix (alpha2 laminin, collagen VI), the sarcomere (telethonin, myotilin, titin, nebulin and ZASP), the muscle cytosol (calpain-3, TRIM32), the nucleus (emerin, lamin A/C) and the glycosilation pathway enzymes (fukutin and fukutin related proteins). The accumulating knowledge about the role of these different proteins in muscle pathology has led to a profound change in the original phenotype-based classification and shed new light on the molecular pathogenesis of these disorders. PMID:16002060

  6. [Specific features of Becker Muscular Dystrophy patients and female carriers of Duchenne Muscular Dystrophy].

    PubMed

    Magot, A; Mercier, S; Péréon, Y

    2015-12-01

    Becker muscular dystrophy (BMD) was first described in 1955 and linked to the DMD gene in 1987. Compared to Duchenne muscular dystrophy (DMD), clinical onset of BMD usually occurs after the age of 12 and wheelchair is required after the age of 16. BMD is characterized by generalized weakness first affecting limb girdle muscles, hypertrophy of the calves and cardiomyopathy in males. Some patients have only mild symptoms such as cramps or elevated serum creatine kinases (SCK) throughout all their lives. SCK levels are usually elevated. Muscle biopsy (immunohistochemistry or immunoblotting) shows a dystrophic pattern with abnormal dystrophin staining. Diagnosis is confirmed by DMD gene sequencing. Deletions or duplications of one or several exons are identified in the majority of cases. A multidisciplinary approach is recommended for the care management of these patients with a particular attention to the cardiomyopathy, which is typically responsible for death but can be prevented by specific treatment. X-linked dilated cardiomyopathies linked to DMD gene are a phenotypic continuum of BMD. Some female carriers of DMD mutations exhibit clinical symptoms of variable severity, often milder and beginning later than in males. The cardiomyopathy is the most frequent feature that should be especially monitored in these patients. Genetic counselling should be systematically proposed. PMID:26773584

  7. Gastrointestinal manifestations in myotonic muscular dystrophy

    PubMed Central

    Bellini, Massimo; Biagi, Sonia; Stasi, Cristina; Costa, Francesco; Mumolo, Maria Gloria; Ricchiuti, Angelo; Marchi, Santino

    2006-01-01

    Myotonic dystrophy (MD) is characterized by myotonic phenomena and progressive muscular weakness. Involvement of the gastrointestinal tract is frequent and may occur at any level. The clinical manifestations have previously been attributed to motility disorders caused by smooth muscle damage, but histologic evidence of alterations has been scarce and conflicting. A neural factor has also been hypothesized. In the upper digestive tract, dysphagia, heartburn, regurgitation and dyspepsia are the most common complaints, while in the lower tract, abdominal pain, bloating and changes in bowel habits are often reported. Digestive symptoms may be the first sign of dystrophic disease and may precede the musculo-skeletal features. The impairment of gastrointestinal function may be sometimes so gradual that the patients adapt to it with little awareness of symptoms. In such cases routine endoscopic and ultrasonographic evaluations are not sufficient and targeted techniques (electrogastrography, manometry, electromyography, functional ultrasonography, scintigraphy, etc.) are needed. There is a low correlation between the degree of skeletal muscle involvement and the presence and severity of gastrointestinal disturbances whereas a positive correlation with the duration of the skeletal muscle disease has been reported. The drugs recommended for treating the gastrointestinal complaints such as prokinetic, anti-dyspeptic drugs and laxatives, are mainly aimed at correcting the motility disorders. Gastrointestinal involvement in MD remains a complex and intriguing condition since many important problems are still unsolved. Further studies concentrating on genetic aspects, early diagnostic techniques and the development of new therapeutic strategies are needed to improve our management of the gastrointestinal manifestations of MD. PMID:16609987

  8. Neuropsychological profile of duchenne muscular dystrophy.

    PubMed

    Perumal, Anna Roshini; Rajeswaran, Jamuna; Nalini, Atchayaram

    2015-01-01

    Duchenne muscular dystrophy (DMD) is an inherited myogenic disorder characterized by progressive muscle wasting. DMD is a fatal X-linked recessive disorder with an estimated prevalence of 1 in 3,500 male live births. This disease has long been associated with intellectual impairment. Research has shown that boys with DMD have variable intellectual performance, indicating the presence of specific cognitive deficits. The aim of the study was to use a battery of intelligence, learning, and memory tests to identify a neuropsychological profile in boys with DMD. A total of 22 boys diagnosed with DMD in the age range of 6 to 10 years old were evaluated using the Wechsler Intelligence Scale for Children-Third Edition, Rey's Auditory Verbal Learning Test, and the Memory for Designs Test. The data were interpreted using means, standard deviations, percentages, and percentiles. Normative data were also used for further interpretation. The results showed that boys with DMD had a significantly lower IQ (88.5). Verbal IQ (86.59) was found to be lower than Performance IQ (92.64). There was evidence of impaired performance on the Processing Speed, Freedom From Distractibility, and Verbal Comprehension Indexes. Specific deficits in information processing, complex attention, immediate verbal memory span, verbal working memory, verbal comprehension, vocabulary, visuoconstruction ability, and verbal learning and encoding were observed. However, perceptional organization, general fund of information, abstract reasoning, visual discrimination and acuity, visual learning and memory, and verbal memory were adequate. The neuropsychological findings support the hypothesis that these children have specific cognitive deficits as opposed to a global intellectual deficit. PMID:24279481

  9. Duchenne Muscular Dystrophy: From Diagnosis to Therapy.

    PubMed

    Falzarano, Maria Sofia; Scotton, Chiara; Passarelli, Chiara; Ferlini, Alessandra

    2015-01-01

    Duchenne muscular dystrophy (DMD) is an X-linked inherited neuromuscular disorder due to mutations in the dystrophin gene. It is characterized by progressive muscle weakness and wasting due to the absence of dystrophin protein that causes degeneration of skeletal and cardiac muscle. The molecular diagnostic of DMD involves a deletions/duplications analysis performed by quantitative technique such as microarray-based comparative genomic hybridization (array-CGH), Multiple Ligation Probe Assay MLPA. Since traditional methods for detection of point mutations and other sequence variants require high cost and are time consuming, especially for a large gene like dystrophin, the use of next-generation sequencing (NGS) has become a useful tool available for clinical diagnosis. The dystrophin gene is large and finely regulated in terms of tissue expression, and RNA processing and editing includes a variety of fine tuned processes. At present, there are no effective treatments and the steroids are the only fully approved drugs used in DMD therapy able to slow disease progression. In the last years, an increasing variety of strategies have been studied as a possible therapeutic approach aimed to restore dystrophin production and to preserve muscle mass, ameliorating the DMD phenotype. RNA is the most studied target for the development of clinical strategies and Antisense Oligonucleotides (AONs) are the most used molecules for RNA modulation. The identification of delivery system to enhance the efficacy and to reduce the toxicity of AON is the main purpose in this area and nanomaterials are a very promising model as DNA/RNA molecules vectors. Dystrophinopathies therefore represent a pivotal field of investigation, which has opened novel avenues in molecular biology, medical genetics and novel therapeutic options. PMID:26457695

  10. The burden of Duchenne muscular dystrophy

    PubMed Central

    Landfeldt, Erik; Lindgren, Peter; Bell, Christopher F.; Schmitt, Claude; Guglieri, Michela; Straub, Volker; Lochmüller, Hanns

    2014-01-01

    Objective: The objective of this study was to estimate the total cost of illness and economic burden of Duchenne muscular dystrophy (DMD). Methods: Patients with DMD from Germany, Italy, United Kingdom, and United States were identified through Translational Research in Europe–Assessment & Treatment of Neuromuscular Diseases registries and invited to complete a questionnaire online together with a caregiver. Data on health care use, quality of life, work status, informal care, and household expenses were collected to estimate costs of DMD from the perspective of society and caregiver households. Results: A total of 770 patients (173 German, 122 Italian, 191 from the United Kingdom, and 284 from the United States) completed the questionnaire. Mean per-patient annual direct cost of illness was estimated at between $23,920 and $54,270 (2012 international dollars), 7 to 16 times higher than the mean per-capita health expenditure in these countries. Indirect and informal care costs were substantial, each constituting between 18% and 43% of total costs. The total societal burden was estimated at between $80,120 and $120,910 per patient and annum, and increased markedly with disease progression. The corresponding household burden was estimated at between $58,440 and $71,900. Conclusions: We show that DMD is associated with a substantial economic burden. Our results underscore the many different costs accompanying a rare condition such as DMD and the considerable economic burden carried by affected families. Our description of the previously unknown economic context of a rare disease serves as important intelligence input to health policy evaluations of intervention programs and novel therapies, financial support schemes for patients and their families, and the design of future cost studies. PMID:24991029

  11. Intrathecal Injections in Children With Spinal Muscular Atrophy

    PubMed Central

    Swoboda, Kathryn J.; Sethna, Navil; Farrow-Gillespie, Alan; Khandji, Alexander; Xia, Shuting; Bishop, Kathie M.

    2016-01-01

    Nusinersen (ISIS-SMNRx or ISIS 396443) is an antisense oligonucleotide drug administered intrathecally to treat spinal muscular atrophy. We summarize lumbar puncture experience in children with spinal muscular atrophy during a phase 1 open-label study of nusinersen and its extension. During the studies, 73 lumbar punctures were performed in 28 patients 2 to 14 years of age with type 2/3 spinal muscular atrophy. No complications occurred in 50 (68%) lumbar punctures; in 23 (32%) procedures, adverse events were attributed to lumbar puncture. Most common adverse events were headache (n = 9), back pain (n = 9), and post–lumbar puncture syndrome (n = 8). In a subgroup analysis, adverse events were more frequent in older children, children with type 3 spinal muscular atrophy, and with a 21- or 22-gauge needle compared to a 24-gauge needle or smaller. Lumbar punctures were successfully performed in children with spinal muscular atrophy; lumbar puncture–related adverse event frequency was similar to that previously reported in children. PMID:26823478

  12. Neurocognitive Profiles in Duchenne Muscular Dystrophy and Gene Mutation Site

    PubMed Central

    D’Angelo, Maria Grazia; Lorusso, Maria Luisa; Civati, Federica; Comi, Giacomo Pietro; Magri, Francesca; Del Bo, Roberto; Guglieri, Michela; Molteni, Massimo; Turconi, Anna Carla; Bresolin, Nereo

    2011-01-01

    The presence of nonprogressive cognitive impairment is recognized as a common feature in a substantial proportion of patients with Duchenne muscular dystrophy. To investigate the possible role of mutations along the dystrophin gene affecting different brain dystrophin isoforms and specific cognitive profiles, 42 school-age children affected with Duchenne muscular dystrophy, subdivided according to sites of mutations along the dystrophin gene, underwent a battery of tests tapping a wide range of intellectual, linguistic, and neuropsychologic functions. Full-scale intelligence quotient was approximately 1 S.D. below the population average in the whole group of dystrophic children. Patients with Duchenne muscular dystrophy and mutations located in the distal portion of the dystrophin gene (involving the 140-kDa brain protein isoform, called Dp140) were generally more severely affected and expressed different patterns of strengths and impairments, compared with patients with Duchenne muscular dystrophy and mutations located in the proximal portion of the dystrophin gene (not involving Dp140). Patients with Duchenne muscular dystrophy and distal mutations demonstrated specific impairments in visuospatial functions and visual memory (which seemed intact in proximally mutated patients) and greater impairment in syntactic processing. PMID:22000308

  13. Muscular activity and its relationship to biomechanics and human performance

    NASA Technical Reports Server (NTRS)

    Ariel, Gideon

    1994-01-01

    The purpose of this manuscript is to address the issue of muscular activity, human motion, fitness, and exercise. Human activity is reviewed from the historical perspective as well as from the basics of muscular contraction, nervous system controls, mechanics, and biomechanical considerations. In addition, attention has been given to some of the principles involved in developing muscular adaptations through strength development. Brief descriptions and findings from a few studies are included. These experiments were conducted in order to investigate muscular adaptation to various exercise regimens. Different theories of strength development were studied and correlated to daily human movements. All measurement tools used represent state of the art exercise equipment and movement analysis. The information presented here is only a small attempt to understand the effects of exercise and conditioning on Earth with the objective of leading to greater knowledge concerning human responses during spaceflight. What makes life from nonliving objects is movement which is generated and controlled by biochemical substances. In mammals. the controlled activators are skeletal muscles and this muscular action is an integral process composed of mechanical, chemical, and neurological processes resulting in voluntary and involuntary motions. The scope of this discussion is limited to voluntary motion.

  14. Jagged 1 Rescues the Duchenne Muscular Dystrophy Phenotype.

    PubMed

    Vieira, Natassia M; Elvers, Ingegerd; Alexander, Matthew S; Moreira, Yuri B; Eran, Alal; Gomes, Juliana P; Marshall, Jamie L; Karlsson, Elinor K; Verjovski-Almeida, Sergio; Lindblad-Toh, Kerstin; Kunkel, Louis M; Zatz, Mayana

    2015-11-19

    Duchenne muscular dystrophy (DMD), caused by mutations at the dystrophin gene, is the most common form of muscular dystrophy. There is no cure for DMD and current therapeutic approaches to restore dystrophin expression are only partially effective. The absence of dystrophin in muscle results in dysregulation of signaling pathways, which could be targets for disease therapy and drug discovery. Previously, we identified two exceptional Golden Retriever muscular dystrophy (GRMD) dogs that are mildly affected, have functional muscle, and normal lifespan despite the complete absence of dystrophin. Now, our data on linkage, whole-genome sequencing, and transcriptome analyses of these dogs compared to severely affected GRMD and control animals reveals that increased expression of Jagged1 gene, a known regulator of the Notch signaling pathway, is a hallmark of the mild phenotype. Functional analyses demonstrate that Jagged1 overexpression ameliorates the dystrophic phenotype, suggesting that Jagged1 may represent a target for DMD therapy in a dystrophin-independent manner. PAPERCLIP. PMID:26582133

  15. Gene Therapy for Muscular Dystrophy: Moving the Field Forward

    PubMed Central

    Al-Zaidy, Samiah; Rodino-Klapac, Louise; Mendell, Jerry R

    2014-01-01

    Gene therapy for the muscular dystrophies has evolved as a promising treatment for this progressive group of disorders. While corticosteroids and/or supportive treatments remain standard of care for Duchenne muscular dystrophy (DMD), loss of ambulation, respiratory failure and compromised cardiac function is the inevitable outcome. Recent developments in genetically mediated therapies have allowed for personalized treatments that strategically target individual muscular dystrophy subtypes based on disease pathomechanism and phenotype. In this review, we highlight therapeutic progress with emphasis on evolving pre-clinical data and our own experience in completed clinical trials, and others currently underway. We also discuss the lessons we have learned along the way and the strategies developed to overcome limitations and obstacles in this field. PMID:25439576

  16. The effect of light color on muscular strength and power.

    PubMed

    Crane, Daniel K; Hensarling, Robert W; Jung, Alan P; Sands, Charles D; Petrella, John K

    2008-06-01

    The purpose of this study was to assess the effect of the color of light in a room on muscular strength and power. A convenience sample of 18 men (M age = 20.4 yr., SD = 1.2) performed a modified Wingate Anaerobic Cycle Test for muscular power and a hand grip strength test in each of the following conditions: red, blue, and white (neutral) ambient light. A repeated-measures multivariate analysis of variance indicated that average muscular power was significantly higher when performing the test in the room with red light compared to rooms lit with blue light or white light. The results also indicated that grip strength was significantly higher in the room lit with white light as compared to the room lit with blue light. PMID:18712217

  17. Recapitulation of developing artery muscularization in pulmonary hypertension.

    PubMed

    Sheikh, Abdul Q; Lighthouse, Janet K; Greif, Daniel M

    2014-03-13

    Excess smooth muscle accumulation is a key component of many vascular disorders, including atherosclerosis, restenosis, and pulmonary artery hypertension, but the underlying cell biological processes are not well defined. In pulmonary artery hypertension, reduced pulmonary artery compliance is a strong independent predictor of mortality, and pathological distal arteriole muscularization contributes to this reduced compliance. We recently demonstrated that embryonic pulmonary artery wall morphogenesis consists of discrete developmentally regulated steps. In contrast, poor understanding of distal arteriole muscularization in pulmonary artery hypertension severely limits existing therapies that aim to dilate the pulmonary vasculature but have modest clinical benefit and do not prevent hypermuscularization. Here, we show that most pathological distal arteriole smooth muscle cells, but not alveolar myofibroblasts, derive from pre-existing smooth muscle. Furthermore, the program of distal arteriole muscularization encompasses smooth muscle cell dedifferentiation, distal migration, proliferation, and then redifferentiation, thereby recapitulating many facets of arterial wall development. PMID:24582963

  18. [Muscular power of masticating muscles and mandibular osteoporosis].

    PubMed

    Morii, Hirotoshi; Takaishi, Yoshitomo

    2006-02-01

    Whereas the most powerful stimuli for bone formation is supposed to be a stretching of muscles, Frost HM classified the effect of muscle on bone mineral density (BMD) into various types: 1. age-related loss of bone mineral density (BMD) is partly due to loss of muscular wasting, 2. the increase of BMD in obesity is due to the increase in muscular power to support the increased body weight and 3. the decrease of BMD in chronic wasting disease is partly due to the decrease in muscular power. Likewise, the decrease in BMD in mandibular alveolar bones will be partly due to the decrease in the power of masticating muscles, if such exists. A case report of mitochondrial encephalo-myopathy associated with impaired function of cranial nerves involving trigeminus nerves and impaired function of masticating muscles and dysphagia. This patient showed decrease in alveolar BMD and atrophy of mandibular. PMID:16465028

  19. Experimental Treatment for Duchenne Muscular Dystrophy Gets Boost from Existing Medication

    MedlinePlus

    ... 2013 March 2013 (historical) Experimental Treatment for Duchenne Muscular Dystrophy Gets Boost from Existing Medication A readily available ... effects of a promising experimental treatment for Duchenne muscular dystrophy (DMD), according to research partially funded by the ...

  20. NIH study shows increased risk for two types of myotonic muscular dystrophy

    Cancer.gov

    Adults with a form of muscular dystrophy called myotonic muscular dystrophy (MMD) may be at increased risk of developing cancer, according to a study by investigators at the National Cancer Institute (NCI), part of the National Institutes of Health.

  1. "The sixth sense": towards a history of muscular sensation.

    PubMed

    Smith, Roger

    2011-01-01

    This paper outlines the history of knowledge about the muscular sense and provides a bibliographic resource for further research. A range of different topics, questions and approaches have interrelated throughout this history, and the discussion clarifies this rather than presenting detailed research in any one area. Part I relates the origin of belief in a muscular sense to empiricist accounts of the contribution of the senses to knowledge from Locke, via the iddologues and other authors, to the second half of the nineteenth century. Analysis paid much attention to touch, first in the context of the theory of vision and then in its own right, which led to naming a distinct muscular sense. From 1800 to the present, there was much debate, the main lines of which this paper introduces, about the nature and function of what turned out to be a complex sense. A number of influential psycho-physiologists, notably Alexander Bain and Herbert Spencer, thought this sense the most primitive and primary of all, the origin of knowledge of world, causation and self as an active subject. Part II relates accounts of the muscular sense to the development of nervous physiology and of psychology. In the decades before 1900, the developing separation of philosophy, psychology and physiology as specialised disciplines divided up questions which earlier writers had discussed under the umbrella heading of muscular sensation. The term'kinaesthesia' came in 1880 and 'proprio-ception' in 1906. There was, all the same, a lasting interest in the argument that touch and muscular sensation are intrinsic to the existence of embodied being in the way the other senses are not. In the wider culture--the arts, sport, the psychophysiology of labour and so on--there were many ways in which people expressed appreciation of the importance of what the anatomist Charles Bell had called 'the sixth sense'. PMID:22822610

  2. Energy Expenditure Ranges and Muscular Work Grades

    PubMed Central

    Brown, J. R.; Crowden, G. P.

    1963-01-01

    This paper is based on the findings of a field study which was planned to ascertain by metabolic measurement the rates of energy expenditure of men and women on productive effort at work in modern factories. The investigation which is described was carried out during a period of peace-time full employment, mainly in factories associated with the Slough Industrial Health Service in which a nutritional survey of the calorie intake of male operatives had been made by the Ministry of Health and the Medical Research Council in 1952. The rates of energy expenditure of 70 men and 54 women in 27 occupational groups were measured by indirect calorimetric methods. On the basis of the criteria for the classification of work according grades to its heaviness, adopted by the Factory Department of the Ministry of Labour, muscular work grades have been ascribed to the occupations studied. From the distribution of 390 metabolic measurements, ranges of energy expenditure have been computed for occupations classed as sedentary, light, moderate, heavy, or very heavy, Observation of recurrent phase variations in types of productive effort in the work-cycle indicated that wider work grades, such as light-to-moderate or moderate-to-heavy, are needed to cover the energy expenditure rates of men and women in many occupations. The data obtained in this study have enabled a table termed the “Slough Scales” to be compiled giving ranges of energy expenditure and pulmonary ventilation rates for the various work grades ascribed to occupations. The mean rates of energy expenditure of 257 workers (in industries in different parts of England and Scotland) which have been calculated from data published by other investigators have been found to fall within the ranges specified in these scales for the work grades of their occupations. It is felt, therefore, that the Slough Scales represent a reasonably true appraisal of the relation between the Ministry of Labour occupational work grades and the

  3. Immobility reduces muscle fiber necrosis in dystrophin deficient muscular dystrophy.

    PubMed

    Kimura, S; Ikezawa, M; Nomura, K; Ito, K; Ozasa, S; Ueno, H; Yoshioka, K; Yano, S; Yamashita, T; Matuskura, M; Miike, T

    2006-08-01

    Duchenne/Becker muscular dystrophy is a progressive muscle disease, which is caused by the abnormality of dystrophin. Spina bifida is characterized by paralysis of the feet, with most of the upper extremities not being affected. We report here on the first case of Becker muscular dystrophy coinciding with spina bifida. The muscle biopsy specimens of the patient showed dystrophic changes in upper extremities, but clearly less in lower extremities. The results show that the restriction of excessive exercise is important for dystrophin deficiency disease. PMID:16516424

  4. Determinants of the incidence of Duchenne muscular dystrophy

    PubMed Central

    2015-01-01

    Duchenne muscular dystrophy (DMD), an X-linked disorder, is the most common muscular dystrophy with an incidence in boys of about 200 per million births. It presents in early childhood leading to death in early teens. Its relatively high incidence and severity have stimulated many studies from epidemiological to curative. Recent advances in molecular biology have opened up the possibility of carrier identification and potential reduction of the incidence of cases. This paper gives a population genetics model which can be used to predict the reduction in incidence. PMID:26697447

  5. Respiratory management of spinal muscular atrophy type 2.

    PubMed

    Gormley, Maurade C

    2014-12-01

    Respiratory insufficiency is the primary cause of morbidity and mortality among patients with spinal muscular atrophy type 2. The primary complications include ineffective cough with decreased airway clearance, nocturnal hypoventilation, diminished lung and chest wall development, and increased risk for pulmonary infection. Respiratory devices including mechanical insufflator-exsufflator and bilevel positive airway pressure are the primary devices of respiratory maintenance and treatment and are associated with decreased morbidity and fewer hospital admissions. This article discusses the primary respiratory complications of spinal muscular atrophy type 2 and the role of respiratory interventions to promote growth and development, improve cough efficacy, reverse nocturnal hypoventilation, and prevent and treat pulmonary infection. PMID:25365058

  6. Report of limb girdle muscular dystrophy type 2a in 6 Iranian patients, one with a novel deletion in CAPN3 gene.

    PubMed

    Fadaee, Mahsa; Kariminejad, Ariana; Fattahi, Zohreh; Nafissi, Shahriar; Godarzi, Hamed Reza; Beheshtian, Maryam; Vazehan, Raheleh; Akbari, Mohammad Reza; Kahrizi, Kimia; Najmabadi, Hossein

    2016-01-01

    Calpain3 is a calcium-dependent intracellular protease involved in an autosomal recessive form of muscular dystrophy known as limb-girdle muscular dystrophy type 2A. Many pathogenic mutations have been identified in calpain3, encoded by the CAPN3 gene, which leads to weakness of the pelvic and shoulder girdle muscles. In the present study, whole exome sequencing was performed on six unrelated Iranian families who presented with progressive muscle weakness, with a strong suspicion of Calpainopathies. Genetic analysis of CAPN3 gene revealed five causative variants which had not been reported in the Iranian population before including a novel 6 bp deletion (c.795_800delCATTGA) and four previously reported mutations (c.1939G > T, c.2243G > A, c.2257delGinsAA, and c.2380 + 2T > G). Our findings indicate that exome sequencing can be a very effective and affordable method to diagnose heterogeneous muscular dystrophies, especially in consanguineous populations such as Iran. PMID:27020652

  7. An Exploration of the Drive for Muscularity in Adolescent Boys and Girls.

    ERIC Educational Resources Information Center

    McCreary, Donald R.; Sasse, Doris K.

    2000-01-01

    Investigated the drive for muscularity among high school adolescents using the Drive for Muscularity Scale. Results indicated that the scale was reliable. High-drive students were mainly boys trying to gain weight and muscle mass. Drive related to poor self-esteem and higher depression levels among boys, but not girls. Drive for muscularity was…

  8. Molecular genetics of facioscapulohumeral muscular dystrophy (FSHD).

    PubMed

    Fisher, J; Upadhyaya, M

    1997-01-01

    Facioscapulohumeral muscular dystrophy (FSHD; MIM 158900), is an autosomal dominant neuromuscular disorder. The disease is characterized by the weakness of the muscles of the face, upper-arm and shoulder girdle. The gene for FSHD has been mapped to 4q35 (FSHD1A) and is closely linked to D4F1O4S1, which detects two highly polymorphic loci (located at 4q35 and 10q26), with restriction enzyme EcoRI. The polymorphic EcoRI fragment detected with D4F1O4S1 is composed almost entirely of D4Z4 (3.3 kb) tandem repeats. In FSHD patients a deletion of the integral number of D4Z4 repeats generates a fragment which is usually smaller than 35 kb, whereas in normal controls, the size usually ranges from 50 to 300 kb. These 'small' EcoRI fragments segregate with FSHD in families but appear as de novo deletions in the majority of sporadic cases. Each 3.3 kb repeat contains two homeobox domains neither of which has yet been proven to encode a protein. D4Z4 is located adjacent to the 4q telomere and cross hybridizes to several different regions of the genome. Although D4Z4 probably does not encode a protein with any direct association to FSHD, a clear correlation has been shown between the deletion size at this locus and the age at onset of the disease in FSHD patients. In approximately 5-10% of FSHD families the disease locus is unlinked to 4q35 (locus designated FSHD1B), however, none of the non 4q35 loci for FSHD have yet been chromosomally located. Thus so far, only one gene, FRG1 (FSHD region gene 1) has been identified from the FSHD candidate region on 4q35. The apparent low level of expressed sequences from within this region, the integral deletions of D4Z4 repeats observed in FSHD patients and the close proximity of these repeats to the 4q telomere, all suggest that the disease may be the result of position effect variegation. To date, the molecular diagnosis of FSHD with D4F104S1 has been most secure in those families which are linked to other 4q35 markers. Recent studies

  9. Phonological Awareness Skills in Young Boys with Duchenne Muscular Dystrophy

    ERIC Educational Resources Information Center

    Waring, Phoebe; Woodyatt, Gail

    2011-01-01

    Substantial research has detailed the reading deficits experienced by children with Duchenne muscular dystrophy (DMD). Although phonological awareness (PA) is vital in reading development, little is known about PA in the DMD population. This pilot study describes the PA abilities of a group of five young children with DMD, comparing the results…

  10. Neural Issues in the Control of Muscular Strength

    ERIC Educational Resources Information Center

    Kamen, Gary

    2004-01-01

    During the earliest stages of resistance exercise training, initial muscular strength gains occur too rapidly to be explained solely by muscle-based mechanisms. However, increases in surface-based EMG amplitude as well as motor unit discharge rate provide some insight to the existence of neural mechanisms in the earliest phases of resistance…

  11. P21 Deficiency Delays Regeneration of Skeletal Muscular Tissue

    PubMed Central

    Chinzei, Nobuaki; Hayashi, Shinya; Ueha, Takeshi; Fujishiro, Takaaki; Kanzaki, Noriyuki; Hashimoto, Shingo; Sakata, Shuhei; Kihara, Shinsuke; Haneda, Masahiko; Sakai, Yoshitada; Kuroda, Ryosuke; Kurosaka, Masahiro

    2015-01-01

    The potential relationship between cell cycle checkpoint control and tissue regeneration has been indicated. Despite considerable research being focused on the relationship between p21 and myogenesis, p21 function in skeletal muscle regeneration remains unclear. To clarify this, muscle injury model was recreated by intramuscular injection of bupivacaine hydrochloride in the soleus of p21 knockout (KO) mice and wild type (WT) mice. The mice were sacrificed at 3, 14, and 28 days post-operation. The results of hematoxylin-eosin staining and immunofluorescence of muscle membrane indicated that muscle regeneration was delayed in p21 KO mice. Cyclin D1 mRNA expression and both Ki-67 and PCNA immunohistochemistry suggested that p21 deficiency increased cell cycle and muscle cell proliferation. F4/80 immunohistochemistry also suggested the increase of immune response in p21 KO mice. On the other hand, both the mRNA expression and western blot analysis of MyoD, myogenin, and Pax7 indicated that muscular differentiation was delayed in p21KO mice. Considering these results, we confirmed that muscle injury causes an increase in cell proliferation. However, muscle differentiation in p21 KO mice was inhibited due to the low expression of muscular synthesis genes, leading to a delay in the muscular regeneration. Thus, we conclude that p21 plays an important role in the in vivo healing process in muscular injury. PMID:25942471

  12. Muscle Weakness and Speech in Oculopharyngeal Muscular Dystrophy

    ERIC Educational Resources Information Center

    Neel, Amy T.; Palmer, Phyllis M.; Sprouls, Gwyneth; Morrison, Leslie

    2015-01-01

    Purpose: We documented speech and voice characteristics associated with oculopharyngeal muscular dystrophy (OPMD). Although it is a rare disease, OPMD offers the opportunity to study the impact of myopathic weakness on speech production in the absence of neurologic deficits in a relatively homogeneous group of speakers. Methods: Twelve individuals…

  13. Advances in genetic therapeutic strategies for Duchenne muscular dystrophy

    PubMed Central

    Guiraud, Simon; Chen, Huijia; Burns, David T.

    2015-01-01

    New Findings What is the topic of this review? This review highlights recent progress in genetically based therapies targeting the primary defect of Duchenne muscular dystrophy. What advances does it highlight? Over the last two decades, considerable progress has been made in understanding the mechanisms underlying Duchenne muscular dystrophy, leading to the development of genetic therapies. These include manipulation of the expression of the gene or related genes, the splicing of the gene and its translation, and replacement of the gene using viral approaches. Duchenne muscular dystrophy is a lethal X‐linked disorder caused by mutations in the dystrophin gene. In the absence of the dystrophin protein, the link between the cytoskeleton and extracellular matrix is destroyed, and this severely compromises the strength, flexibility and stability of muscle fibres. The devastating consequence is progressive muscle wasting and premature death in Duchenne muscular dystrophy patients. There is currently no cure, and despite exhaustive palliative care, patients are restricted to a wheelchair by the age of 12 years and usually succumb to cardiac or respiratory complications in their late 20s. This review provides an update on the current genetically based therapies and clinical trials that target or compensate for the primary defect of this disease. These include dystrophin gene‐replacement strategies, genetic modification techniques to restore dystrophin expression, and modulation of the dystrophin homologue, utrophin, as a surrogate to re‐establish muscle function. PMID:26140505

  14. Muscular, cardiorespiratory and thermal strain of mast and pole workers.

    PubMed

    Oksa, Juha; Hosio, Sanna; Mäkinen, Tero; Lindholm, Harri; Rintamäki, Hannu; Rissanen, Sirkka; Latvala, Jari; Vaara, Kimmo; Oksa, Panu

    2014-01-01

    This field study evaluated the level of muscular, cardiorespiratory and thermal strain of mast and pole workers. We measured the muscular strain using electromyography (EMG), expressed as a percentage in relation to maximal EMG activity (%MEMG). Oxygen consumption (VO2) was indirectly estimated from HR measured during work and expressed as a percentage of maximum VO2 (%VO2max). Skin and deep body temperatures were measured to quantify thermal strain. The highest average muscular strain was found in the wrist flexor (24 ± 1.5%MEMG) and extensor (21 ± 1.0%MEMG) muscles, exceeding the recommendation of 14%MEMG. Average cardiorespiratory strain was 48 ± 3%VO2max. Nearly half (40%) of the participants exceeded the recommended 50%VO2max level. The core body temperature varied between 36.8°C and 37.6°C and mean skin temperature between 28.6°C and 33.4°C indicating possible occasional superficial cooling. Both muscular and cardiorespiratory strain may pose a risk of local and systemic overloading and thus reduced work efficiency. Thermal strain remained at a tolerable level. PMID:24655301

  15. Dasatinib as a treatment for Duchenne muscular dystrophy

    PubMed Central

    Lipscomb, Leanne; Piggott, Robert W.; Emmerson, Tracy; Winder, Steve J.

    2016-01-01

    Identification of a systemically acting and universal small molecule therapy for Duchenne muscular dystrophy would be an enormous advance for this condition. Based on evidence gained from studies on mouse genetic models, we have identified tyrosine phosphorylation and degradation of β-dystroglycan as a key event in the aetiology of Duchenne muscular dystrophy. Thus, preventing tyrosine phosphorylation and degradation of β-dystroglycan presents itself as a potential therapeutic strategy. Using the dystrophic sapje zebrafish, we have investigated the use of tyrosine kinase and other inhibitors to treat the dystrophic symptoms in this model of Duchenne muscular dystrophy. Dasatinib, a potent and specific Src tyrosine kinase inhibitor, was found to decrease the levels of β-dystroglycan phosphorylation on tyrosine and to increase the relative levels of non-phosphorylated β-dystroglycan in sapje zebrafish. Furthermore, dasatinib treatment resulted in the improved physical appearance of the sapje zebrafish musculature and increased swimming ability as measured by both duration and distance of swimming of dasatinib-treated fish compared with control animals. These data suggest great promise for pharmacological agents that prevent the phosphorylation of β-dystroglycan on tyrosine and subsequent steps in the degradation pathway as therapeutic targets for the treatment of Duchenne muscular dystrophy. PMID:26604135

  16. Duchenne muscular dystrophy: CRISPR/Cas9 treatment.

    PubMed

    Mendell, Jerry R; Rodino-Klapac, Louise R

    2016-05-01

    A novel approach to gene correction by genome editing shows great promise as a treatment for Duchenne muscular dystrophy (DMD). CRISPR/Cas9 delivered by adeno-associated virus to a mouse model for DMD demonstrated improvement in function and histology. PMID:26926391

  17. Poor Facial Affect Recognition among Boys with Duchenne Muscular Dystrophy

    ERIC Educational Resources Information Center

    Hinton, V. J.; Fee, R. J.; De Vivo, D. C.; Goldstein, E.

    2007-01-01

    Children with Duchenne or Becker muscular dystrophy (MD) have delayed language and poor social skills and some meet criteria for Pervasive Developmental Disorder, yet they are identified by molecular, rather than behavioral, characteristics. To determine whether comprehension of facial affect is compromised in boys with MD, children were given a…

  18. Phosphorylation of intact erythrocytes in human muscular dystrophy

    SciTech Connect

    Johnson, R.M.; Nigro, M.

    1986-04-01

    The uptake of exogenous /sup 32/Pi into the membrane proteins of intact erythrocytes was measured in 8 patients with Duchenne muscular dystrophy. No abnormalities were noted after autoradiographic analysis. This contrasts with earlier results obtained when isolated membranes were phosphorylated with gamma-(/sup 32/P)ATP, and suggests a possible reinterpretation of those experiments.

  19. Occupational Potential in a Population with Duchenne Muscular Dystrophy.

    ERIC Educational Resources Information Center

    Schkade, Janette K.; And Others

    1987-01-01

    Twenty-five males with Duchenne muscular dystrophy were tested to assess their potential for occupational activity. Tests measured possible sensory deficits, strength, endurance, and fatigue in response to sustained fine motor activity. Results indicate that, within limitations, persons with this diagnosis can engage in activity leading to skill…

  20. The Child with Muscular Dystrophy in School. Revised.

    ERIC Educational Resources Information Center

    Schock, Nancy C.

    Practical information on children with muscular dystrophy is intended to help parents and teachers facilitate their inclusion in mainstreamed classrooms. Major topics addressed include the following: transportation arrangements; providing full information to the teacher regarding the child's specific abilities and physical limitations;…

  1. Swallow Characteristics in Patients with Oculopharyngeal Muscular Dystrophy

    ERIC Educational Resources Information Center

    Palmer, Phyllis M.; Neel, Amy T.; Sprouls, Gwyneth; Morrison, Leslie

    2010-01-01

    Purpose: This prospective investigation evaluates oral weakness and its impact on swallow function, weight, and quality of life in patients with oculopharyngeal muscular dystrophy (OPMD). Method: Intraoral pressure, swallow pressure, and endurance were measured using an Iowa Oral Performance Instrument in participants with OPMD and matched…

  2. The Assessment of Intelligence in Boys with Duchenne Muscular Dystrophy.

    ERIC Educational Resources Information Center

    Mearig, Judith S.

    1979-01-01

    Challenges assumptions and research procedures leading to the position that below-average intellectual potential is an integral part of Duchenne muscular dystrophy. A study of 58 boys (ages 5 to 18) from urban, suburban, and rural settings indicated IQ range of 59 to 131 and no evidence of significant verbal deficit (reported in earlier studies).…

  3. Instructions to Adopt an External Focus Enhance Muscular Endurance

    ERIC Educational Resources Information Center

    Marchant, David C.; Greig, Matt; Bullough, Jonathan; Hitchen, Daniel

    2011-01-01

    The influence of internal (movement focus) and external (outcome focus) attentional-focusing instructions on muscular endurance were investigated using three exercise protocols with experienced exercisers. Twenty-three participants completed a maximal repetition, assisted bench-press test on a Smith's machine. An external focus of attention…

  4. Glycosylation defects: a new mechanism for muscular dystrophy?

    PubMed

    Grewal, Prabhjit K; Hewitt, Jane E

    2003-10-15

    Recently, post-translational modification of proteins has been defined as a new area of focus for muscular dystrophy research by the identification of a group of disease genes that encode known or putative glycosylation enzymes. Walker-Warburg Syndrome (WWS) and muscle-eye-brain disease (MEB) are caused by mutations in two genes involved in O-mannosylation, POMT1 and POMGnT1, respectively. Fukuyama muscular dystrophy (FCMD) is due to mutations in fukutin, a putative phospholigand transferase. Congenital muscular dystrophy type 1C and limb girdle muscular dystrophy type 2I are allelic, both being due to mutations in the gene-encoding fukutin-related protein (FKRP). Finally, the causative gene in the myodystrophy (myd) mouse is a putative bifunctional glycosyltransferase (Large). WWS, MEB, FCMD and the myd mouse are also associated with neuronal migration abnormalities (often type II lissencephaly) and ocular or retinal defects. A deficiency in post-translational modification of alpha-dystroglycan is a common feature of all these muscular dystrophies and is thought to involve O-glycosylation pathways. This abnormally modified alpha-dystroglycan is deficient in binding to extracellular matrix ligands, including laminin and agrin. Selective deletion of dystroglycan in the central nervous system (CNS) produces brain abnormalities with striking similarities to WWS, MEB, FCMD and the myd mouse. Thus, impaired dystroglycan function is strongly implicated in these diseases. However, it is unlikely that these five glycosylation enzymes only have a role in glycosylation of alpha-dystroglycan and it is important that other protein targets are identified. PMID:12925572

  5. Evaluation of muscular lesions in connective tissue diseases: thallium 201 muscular scans

    SciTech Connect

    Guillet, G.; Guillet, J.; Sanciaume, C.; Maleville, J.; Geniaux, M.; Morin, P.

    1988-04-01

    We performed thallium 201 muscle scans to assess muscular involvement in 40 patients with different connective tissue diseases (7 with dermatomyositis, 7 with systemic lupus erythematosus, 12 with progressive systemic scleroderma, 2 with calcinosis, Raynaud's phenomenon, esophageal involvement, sclerodactyly, and telangiectasia (CREST) syndrome, 3 with monomelic scleroderma, 6 with morphea, and 3 with Raynaud's disease). Only 12 of these patients complained of fatigability and/or myalgia. Electromyography was performed and serum levels of muscle enzymes were measured in all patients. Comparison of thallium 201 exercise recording with the other tests revealed that scan sensitivity is greater than electromyographic and serum muscle enzymes levels. Thallium 201 scans showed abnormal findings in 32 patients and revealed subclinical lesions in 18 patients, while electromyography findings were abnormal in 25 of these 32 patients. Serum enzyme levels were raised in only 8 patients. Thallium 201 scanning proved to be a useful guide for modifying therapy when laboratory data were conflicting. It was useful to evaluate treatment efficacy. Because our data indicate a 100% positive predictive value, we believe that thallium 201 scanning should be advised for severe systemic connective tissue diseases with discordant test results.

  6. A Prospective Investigation of Interpersonal Influences on the Pursuit of Muscularity in Late Adolescent Boys and Girls

    PubMed Central

    Shomaker, Lauren B.; Furman, Wyndol

    2010-01-01

    This project examined whether interpersonal pressure to be muscular predicted late adolescents’ pursuit of muscularity. Participants were 199 adolescents (16–19 years), mothers (n=175), and friends (n=159), assessed at two annual times. Pressure to be muscular was assessed with adolescents’, mothers’, and friends’ reports of their relationships. Adolescents reported pressure from fathers and romantic partners, appearance satisfaction, disordered eating, and pursuit of muscularity. Adolescents,’ mothers’, and friends’ reports of pressure related to pursuit of muscularity at both times. Adolescents’ perceptions and mothers’ reports prospectively predicted pursuit of muscularity. Findings highlight the relevance of relationships to pursuit of muscularity in late adolescents. PMID:20348360

  7. Screening of Duchenne Muscular Dystrophy (DMD) Mutations and Investigating Its Mutational Mechanism in Chinese Patients

    PubMed Central

    Chen, Chen; Ma, Hongwei; Zhang, Feng; Chen, Lu; Xing, Xuesha; Wang, Shusen; Zhang, Xue; Luo, Yang

    2014-01-01

    Duchenne muscular dystrophy (DMD) is a common X-linked recessive disease of muscle degeneration and death. In order to provide accurate and reliable genetic counseling and prenatal diagnosis, we screened DMD mutations in a cohort of 119 Chinese patients using multiplex ligation-dependent probe amplification (MLPA) and denaturing high performance liquid chromatography (DHPLC) followed by Sanger sequencing. In these unrelated DMD patients, we identified 11 patients with DMD small mutations (9.2%) and 81 patients with DMD deletions/duplications (del/dup) (68.1%), of which 64 (79.0%) were deletions, 16 (19.8%) were duplications, and one (1.2%) was both deletion and duplication. Furthermore, we analyzed the frequency of DMD breakpoint in the 64 deletion cases by calculating exon-deletion events of certain exon interval that revealed a novel mutation hotspot boundary. To explore why DMD rearrangement breakpoints were predisposed to specific regions (hotspot), we precisely characterized junction sequences of breakpoints at the nucleotide level in 21 patients with exon deleted/duplicated in DMD with a high-resolution SNP microarray assay. There were no exactly recurrent breakpoints and there was also no significant difference between single-exon del/dup and multiple-exon del/dup cases. The data from the current study provided a comprehensive strategy to detect DMD mutations for clinical practice, and identified two deletion hotspots at exon 43–55 and exon 10–23 by calculating exon-deletion events of certain exon interval. Furthermore, this is the first study to characterize DMD breakpoint at the nucleotide level in a Chinese population. Our observations provide better understanding of the mechanism for DMD gene rearrangements. PMID:25244321

  8. Systemic Vascular Function Is Associated with Muscular Power in Older Adults

    PubMed Central

    Heffernan, Kevin S.; Chalé, Angela; Hau, Cynthia; Cloutier, Gregory J.; Phillips, Edward M.; Warner, Patrick; Nickerson, Heather; Reid, Kieran F.; Kuvin, Jeffrey T.; Fielding, Roger A.

    2012-01-01

    Age-associated loss of muscular strength and muscular power is a critical determinant of loss of physical function and progression to disability in older adults. In this study, we examined the association of systemic vascular function and measures of muscle strength and power in older adults. Measures of vascular endothelial function included brachial artery flow-mediated dilation (FMD) and the pulse wave amplitude reactive hyperemia index (PWA-RHI). Augmentation index (AIx) was taken as a measure of systemic vascular function related to arterial stiffness and wave reflection. Measures of muscular strength included one repetition maximum (1RM) for a bilateral leg press. Peak muscular power was measured during 5 repetitions performed as fast as possible for bilateral leg press at 40% 1RM. Muscular power was associated with brachial FMD (r = 0.43, P < 0.05), PWA-RHI (r = 0.42, P < 0.05), and AIx (r = −0.54, P < 0.05). Muscular strength was not associated with any measure of vascular function. In conclusion, systemic vascular function is associated with lower-limb muscular power but not muscular strength in older adults. Whether loss of muscular power with aging contributes to systemic vascular deconditioning or vascular dysfunction contributes to decrements in muscular power remains to be determined. PMID:22966457

  9. Satellite Cells in Muscular Dystrophy - Lost in Polarity.

    PubMed

    Chang, Natasha C; Chevalier, Fabien P; Rudnicki, Michael A

    2016-06-01

    Recent findings employing the mdx mouse model for Duchenne muscular dystrophy (DMD) have revealed that muscle satellite stem cells play a direct role in contributing to disease etiology and progression of DMD, the most common and severe form of muscular dystrophy. Lack of dystrophin expression in DMD has critical consequences in satellite cells including an inability to establish cell polarity, abrogation of asymmetric satellite stem-cell divisions, and failure to enter the myogenic program. Thus, muscle wasting in dystrophic mice is not only caused by myofiber fragility but is exacerbated by intrinsic satellite cell dysfunction leading to impaired regeneration. Despite intense research and clinical efforts, there is still no effective cure for DMD. In this review we highlight recent research advances in DMD and discuss the current state of treatment and, importantly, how we can incorporate satellite cell-targeted therapeutic strategies to correct satellite cell dysfunction in DMD. PMID:27161598

  10. Relation of gamma oscillations in scalp recordings to muscular activity.

    PubMed

    Pope, Kenneth J; Fitzgibbon, Sean P; Lewis, Trent W; Whitham, Emma M; Willoughby, John O

    2009-06-01

    We recorded scalp electrical activity before and after full neuro-muscular paralysis in 5 volunteers and determined differences due to elimination of muscular activity on several standard applications of EEG. Due to paralysis, there were reductions in 'noisiness' of the standard scalp recordings which were maximal over the peripheral scalp, not explained by abolition of movement artefact, and best accounted for by sustained EMG activity in resting individuals. There was a corresponding reduction in spectral power in the gamma range. In central leads, the extent of gamma frequency coherence during a non-time-locked mental task (1 s epochs) was reduced by paralysis, likely due to a reduction in gamma-frequency coherence in widely arising EMG signals. In a time-locked mental task (auditory oddball), evoked responses were qualitatively unaffected by paralysis but 3 of 4 induced gamma responses were obscured by EMG. PMID:19229605

  11. Gene Therapy for Muscular Dystrophies: Progress and Challenges

    PubMed Central

    Oh, Donghoon

    2010-01-01

    Muscular dystrophies are groups of inherited progressive diseases of the muscle caused by mutations of diverse genes related to normal muscle function. Although there is no current effective treatment for these devastating diseases, various molecular strategies have been developed to restore the expressions of the associated defective proteins. In preclinical animal models, both viral and nonviral vectors have been shown to deliver recombinant versions of defective genes. Antisense oligonucleotides have been shown to modify the splicing mechanism of mesenger ribonucleic acid to produce an internally deleted but partially functional dystrophin in an experimental model of Duchenne muscular dystrophy. In addition, chemicals can induce readthrough of the premature stop codon in nonsense mutations of the dystrophin gene. On the basis of these preclinical data, several experimental clinical trials are underway that aim to demonstrate efficacy in treating these devastating diseases. PMID:20944811

  12. The importance of genetic diagnosis for Duchenne muscular dystrophy

    PubMed Central

    Aartsma-Rus, Annemieke; Ginjaar, Ieke B; Bushby, Kate

    2016-01-01

    Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy are caused by mutations in the dystrophin-encoding DMD gene. Large deletions and duplications are most common, but small mutations have been found as well. Having a correct diagnosis is important for family planning and providing proper care to patients according to published guidelines. With mutation-specific therapies under development for DMD, a correct diagnosis is now also important for assessing whether patients are eligible for treatments. This review discusses different mutations causing DMD, diagnostic techniques available for making a genetic diagnosis for children suspected of DMD and the importance of having a specific genetic diagnosis in the context of emerging genetic therapies for DMD. PMID:26754139

  13. Eyeball pseudo-muscular actuators for an android face

    NASA Astrophysics Data System (ADS)

    Carpi, Federico; De Rossi, Danilo

    2005-05-01

    The human attention system is based on the capability of the eye of focusing and tracking. These actions are performed by the eyeball muscle system, as a consequence of visual stimuli. The F.A.C.E. (Facial Automaton for Conveying Emotions) project at our lab concerns the development of an android face endowed with dynamic expressiveness and artificial vision. Aimed at realising an artificial attention system for such an automaton, we present here a study for the development of pseudo-muscular polymer actuators for its eyeballs. The system is based on the mimicry of the muscular architecture of the human eye. In particular, linear actuators made of dielectric elastomers have been designed to replicate actions exerted by the main ocular muscles.

  14. [Electrical properties of limb muscular tissue in acute circulatory hypoxia].

    PubMed

    Kolchev, A I; Nasonkin, O S

    1994-01-01

    The study was undertaken to examine dispersion of the complex electric resistance and capacitive impedance of limb muscular tissue in the frequency range of 1 to 100 kHz in acute circulatory hypoxia caused by blood exfusion from the common carotid artery at 10-50% of the circulatory blood volume (CBV) at the same time local blood flow and oxygen tension in muscles were measured. Blood loss of 10-30% of CBV resulted in increased muscular tissue electric conductivity. Decompensated blood loss was characterized by a steady growth of complex electric resistance and capacitive impedance. There were the greatest changes in electric conductivity in the frequency range of 1-10 kHz. PMID:7824348

  15. Emery-Dreifuss muscular dystrophy: the most recognizable laminopathy.

    PubMed

    Madej-Pilarczyk, A; Kochański, A

    2016-01-01

    Emery-Dreifuss muscular dystrophy (EDMD), a rare inherited disease, is characterized clinically by humero-peroneal muscle atrophy and weakness, multijoint contractures, spine rigidity and cardiac insufficiency with conduction defects. There are at least six types of EDMD known so far, of which five have been associated with mutations in genes encoding nuclear proteins. The majority of the EDMD cases described so far are of the emerinopathy (EDMD1) kind, with a recessive X-linked mode of inheritance, or else laminopathy (EDMD2), with an autosomal dominant mode of inheritance. In the work described here, the authors have sought to describe the history by which EDMD came to be distinguished as a separate entity, as well as the clinical and genetic characteristics of the disease, the pathophysiology of lamin-related muscular diseases and, finally, therapeutic issues, prevention and ethical aspects. PMID:27179216

  16. The importance of genetic diagnosis for Duchenne muscular dystrophy.

    PubMed

    Aartsma-Rus, Annemieke; Ginjaar, Ieke B; Bushby, Kate

    2016-03-01

    Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy are caused by mutations in the dystrophin-encoding DMD gene. Large deletions and duplications are most common, but small mutations have been found as well. Having a correct diagnosis is important for family planning and providing proper care to patients according to published guidelines. With mutation-specific therapies under development for DMD, a correct diagnosis is now also important for assessing whether patients are eligible for treatments. This review discusses different mutations causing DMD, diagnostic techniques available for making a genetic diagnosis for children suspected of DMD and the importance of having a specific genetic diagnosis in the context of emerging genetic therapies for DMD. PMID:26754139

  17. Cell transplantation and gene therapy in muscular dystrophy.

    PubMed

    Morgan, J E; Partridge, T A

    1992-09-01

    Duchenne's muscular dystrophy (DMD), which affects 1/3500 live male births, involves a progressive degeneration of skeletal and cardiac muscle, leading to early death. The protein dystrophin is lacking in DMD and present, but defective, in the allelic, less severe, Becker muscular dystrophy and is also missing in the mdx mouse. Experiments on the mdx mouse have suggested two possible therapies for these myopathies. Implantation of normal muscle precursor cells (mpc) into mdx skeletal muscle leads to the conversion of dystrophin-negative fibres to -positive, with consequent improvement in muscle histology. Direct injection of dystrophin cDNA into skeletal or cardiac muscle also gives rise to dystrophin-positive fibres. Although both appear promising, there are a number of questions to be answered and refinements to be made before either technique could be considered possible as treatments for myopathies in man. PMID:1365921

  18. [DIAGNOSTIC VARIATIONS OF X-LINKED MUSCULAR DYSTROPHY WITH CONTRACTURES].

    PubMed

    Kvirkvelia, N; Shakarishvili, R; Gugutsidze, D; Khizanishvili, N

    2015-01-01

    Case report with review describes X-linked muscular dystrophy with contractures in 28 years old man and his cousin. The disease revealed itself in an early stage (age 5-10), the process was progressing with apparent tendons retraction and contraction, limited movement in the areas of the neck and back of spine, atrophy of shoulder and pelvic yard and back muscles. Intellect was intact. Cardyomyopathy was exhibited. CK was normal. EMG showed classic myopathic features. Muscle biopsy showed different caliber groups of muscle fibers, growth of endo-perimesial connective tissue. Clinical manifestations together with electrophysiological and histological data suggest consistency with Rotthauwe-Mortier-Bayer X-linked muscular dystrophy. PMID:26177134

  19. Fibrogenic Cell Plasticity Blunts Tissue Regeneration and Aggravates Muscular Dystrophy.

    PubMed

    Pessina, Patrizia; Kharraz, Yacine; Jardí, Mercè; Fukada, So-ichiro; Serrano, Antonio L; Perdiguero, Eusebio; Muñoz-Cánoves, Pura

    2015-06-01

    Preservation of cell identity is necessary for homeostasis of most adult tissues. This process is challenged every time a tissue undergoes regeneration after stress or injury. In the lethal Duchenne muscular dystrophy (DMD), skeletal muscle regenerative capacity declines gradually as fibrosis increases. Using genetically engineered tracing mice, we demonstrate that, in dystrophic muscle, specialized cells of muscular, endothelial, and hematopoietic origins gain plasticity toward a fibrogenic fate via a TGFβ-mediated pathway. This results in loss of cellular identity and normal function, with deleterious consequences for regeneration. Furthermore, this fibrogenic process involves acquisition of a mesenchymal progenitor multipotent status, illustrating a link between fibrogenesis and gain of progenitor cell functions. As this plasticity also was observed in DMD patients, we propose that mesenchymal transitions impair regeneration and worsen diseases with a fibrotic component. PMID:25981413

  20. Biomechanical analysis of the muscular power of martial arts athletes.

    PubMed

    Machado, S M; Osório, R A L; Silva, N S; Magini, M

    2010-06-01

    This study analyzes the performance of knee extension and flexion of Taekwondo and Kickboxing athletes. The power values were extracted through electromyography obtained by an isokinetic dynamometer at 60 degrees per second. These values are resulted from the square of the electromyography signal. The analysis of kick power was made using a modified wavelet algorithm considering values with 95% significance. Both groups presented equivalent power and torque capacity with different training times and experience, on the other hand, the wavelet analysis showed better results in muscular recruitment performance in athletes with more experience, in other words, power is not only performance but also power plus recruitment produces better results. This study uniquely showed that muscular enhancement capacity is not only related to the power capacity of contraction but also to motor coordination. PMID:20390460

  1. Bimaxillary Osteotomy for Jaw Deformity With Facioscapulohumeral Muscular Dystrophy.

    PubMed

    Kawasaki, Takako; Ohba, Seigo; Fujimura, Yuji; Asahina, Izumi

    2016-05-01

    Facioscapulohumeral muscular dystrophy (FSHD) is a subtype of muscular dystrophies which reduces the muscle strength, especially the regions of scapular, shoulder, and upper arms, progressively. According to progressive muscle weakness in FSHD, postoperative stability of patient with FSHD after orthognathic surgery is not reliably acquired same as healthy subjects. A 32-year-old woman with FSHD underwent orthodontic and orthognathic surgical treatment due to jaw deformity. She has been followed up more than 3 years after surgery and acquired skeletal stability. This patient is the first report that showed long-term skeletal stability after orthognathic surgery in patient with FSHD. This patient report suggests that it is possible to apply orthognathic surgical treatment to patients with FSHD. PMID:27054436

  2. [Clinicopathological study of a case of oculopharyngeal muscular dystrophy].

    PubMed

    Moreno Martínez, J M; Martín Araguz, A; García de la Rocha, M L; Masjuán Vallejo, J; Barón Rubio, M; Ginel Feito, M D

    1991-01-01

    One case of oculopharyngeal muscular dystrophy is reported, in a 75 year old white male with manifest family history of palpebral ptosis. He displayed bilateral ptosis and dysphagia. Diagnosis was carried out after clinical, electrical and bioptic procedures. Data obtained have been discussed with previous reports in the literature. It was necessary to perform a cricopharyngeal myotomy to overcome the malnutrition secondary to his swallowing problem. PMID:1804038

  3. Dominant spinal muscular atrophy with lower extremity predominance

    PubMed Central

    Harms, M.B.; Allred, P.; Gardner, R.; Fernandes Filho, J.A.; Florence, J.; Pestronk, A.; Al-Lozi, M.; Baloh, R.H.

    2010-01-01

    Objective: Spinal muscular atrophies (SMAs) are hereditary disorders characterized by weakness from degeneration of spinal motor neurons. Although most SMA cases with proximal weakness are recessively inherited, rare families with dominant inheritance have been reported. We aimed to clinically, pathologically, and genetically characterize a large North American family with an autosomal dominant proximal SMA. Methods: Affected family members underwent clinical and electrophysiologic evaluation. Twenty family members were genotyped on high-density genome-wide SNP arrays and linkage analysis was performed. Results: Ten affected individuals (ages 7–58 years) showed prominent quadriceps atrophy, moderate to severe weakness of quadriceps and hip abductors, and milder degrees of weakness in other leg muscles. Upper extremity strength and sensation was normal. Leg weakness was evident from early childhood and was static or very slowly progressive. Electrophysiology and muscle biopsies were consistent with chronic denervation. SNP-based linkage analysis showed a maximum 2-point lod score of 5.10 (θ = 0.00) at rs17679127 on 14q32. A disease-associated haplotype spanning from 114 cM to the 14q telomere was identified. A single recombination narrowed the minimal genomic interval to Chr14: 100,220,765–106,368,585. No segregating copy number variations were found within the disease interval. Conclusions: We describe a family with an early onset, autosomal dominant, proximal SMA with a distinctive phenotype: symptoms are limited to the legs and there is notable selectivity for the quadriceps. We demonstrate linkage to a 6.1-Mb interval on 14q32 and propose calling this disorder spinal muscular atrophy–lower extremity, dominant. GLOSSARY lod = logarithm of the odds; SMA = spinal muscular atrophy; SMA-LED = spinal muscular atrophy–lower extremity, dominant; SNP = single-nucleotide polymorphism. PMID:20697106

  4. Revised genetic classification of Limb Girdle Muscular Dystrophies.

    PubMed

    Magri, F; Brajkovic, S; Govoni, A; Brusa, R; Comi, G P

    2014-10-10

    Limb girdle muscular dystrophies (LGMD) are a heterogeneous group of inherited progressive muscle disorders affecting predominantly the shoulder and pelvic girdle muscles. They present both with autosomal dominant and autosomal recessive patterns of inheritance. Recent development, including results from Next Generation Sequencing technology, expanded the number of recognised forms. Therefore a revised genetic classification that takes into account the novel entities is needed, allowing clinicians and researchers to refer to a common nomenclature for diagnostic and research purposes. PMID:25323878

  5. Muscular Strength and Incident Hypertension in Normotensive and Prehypertensive Men

    PubMed Central

    Maslow, Andréa L.; Sui, Xuemei; Colabianchi, Natalie; Hussey, Jim; Blair, Steven N.

    2009-01-01

    The protective effects of cardiorespiratory fitness (CRF) on hypertension (HTN) are well known; however, the association between muscular strength and incidence of HTN has yet to be examined. Purpose This study evaluated the strength-HTN association with and without accounting for CRF. Methods Participants were 4147 men (20–82 years) in the Aerobics Center Longitudinal Study for whom an age-specific composite muscular strength score was computed from measures of a 1-repetition maximal leg and a 1-repetition maximal bench press. CRF was quantified by maximal treadmill exercise test time in minutes. Cox proportional hazards regression analysis was used to estimate hazard ratios (HRs) and 95% confidence intervals of incident HTN events according to exposure categories. Results During a mean follow-up of 19 years, there were 503 incident HTN cases. Multivariable-adjusted (excluding CRF) HRs of hypertension in normotensive men comparing middle and high strength thirds to the lowest third were not significant at 1.17 and 0.84, respectively. Multivariable-adjusted (excluding CRF) HRs of hypertension in baseline prehypertensive men comparing middle and high strength thirds to the lowest third were significant at 0.73 and 0.72 (p=.01 each), respectively. The association between muscular strength and incidence of HTN in baseline prehypertensive men was no longer significant after control for CRF (p=.26). Conclusions The study indicated that middle and high levels of muscular strength were associated with a reduced risk of HTN in prehypertensive men only. However, this relationship was no longer significant after controlling for CRF. PMID:19927030

  6. Cognitive and Neurobehavioral Profile in Boys With Duchenne Muscular Dystrophy.

    PubMed

    Banihani, Rudaina; Smile, Sharon; Yoon, Grace; Dupuis, Annie; Mosleh, Maureen; Snider, Andrea; McAdam, Laura

    2015-10-01

    Duchenne muscular dystrophy is a progressive neuromuscular condition that has a high rate of cognitive and learning disabilities as well as neurobehavioral disorders, some of which have been associated with disruption of dystrophin isoforms. Retrospective cohort of 59 boys investigated the cognitive and neurobehavioral profile of boys with Duchenne muscular dystrophy. Full-scale IQ of < 70 was seen in 27%; learning disability in 44%, intellectual disability in 19%; attention-deficit/hyperactivity disorder in 32%; autism spectrum disorders in 15%; and anxiety in 27%. Mutations affecting Dp260 isoform and 5'untranslated region of Dp140 were observed in 60% with learning disability, 50% intellectual disability, 77% with autism spectrum disorders, and 94% with anxiety. No statistically significant correlation was noted between comorbidities and dystrophin isoforms; however, there is a trend of cumulative loss of dystrophin isoforms with declining full-scale IQ. Enhanced psychology testing to include both cognitive and neurobehavioral disorders is recommended for all individuals with Duchenne muscular dystrophy. PMID:25660133

  7. Genetic Engineering of Dystroglycan in Animal Models of Muscular Dystrophy

    PubMed Central

    Sciandra, Francesca; Bigotti, Maria Giulia; Giardina, Bruno; Bozzi, Manuela; Brancaccio, Andrea

    2015-01-01

    In skeletal muscle, dystroglycan (DG) is the central component of the dystrophin-glycoprotein complex (DGC), a multimeric protein complex that ensures a strong mechanical link between the extracellular matrix and the cytoskeleton. Several muscular dystrophies arise from mutations hitting most of the components of the DGC. Mutations within the DG gene (DAG1) have been recently associated with two forms of muscular dystrophy, one displaying a milder and one a more severe phenotype. This review focuses specifically on the animal (murine and others) model systems that have been developed with the aim of directly engineering DAG1 in order to study the DG function in skeletal muscle as well as in other tissues. In the last years, conditional animal models overcoming the embryonic lethality of the DG knock-out in mouse have been generated and helped clarifying the crucial role of DG in skeletal muscle, while an increasing number of studies on knock-in mice are aimed at understanding the contribution of single amino acids to the stability of DG and to the possible development of muscular dystrophy. PMID:26380289

  8. The quality of life in boys with Duchenne muscular dystrophy.

    PubMed

    Zamani, Gholamreza; Heidari, Morteza; Azizi Malamiri, Reza; Ashrafi, Mahmoud Reza; Mohammadi, Mahmoud; Shervin Badv, Reza; Hosseini, Seyed Ahmad; Salehi, Soodeh; Shahrokhi, Amin; Qorbani, Mostafa; Fathi, Mohammad Reza

    2016-07-01

    We conducted a study to evaluate the quality of life in boys with Duchenne muscular dystrophy aged 8-18 years, compared with that in matched healthy controls. A total of 85 boys with Duchenne muscular dystrophy aged 8-18 years and 136 age, sex and living place matched healthy controls were included in this study. Patients and one of their parents separately completed the 27-item Persian version of KIDSCREEN questionnaire (child and adolescent version and parent version). From the children's perspective, the quality of life in patients was found to be lower in two subclasses: "physical activities and health" (p < 0.001) and "friends" (p = 0.005). Parental estimation of their sick child's quality of life was significantly lower than children's own assessment in two subclasses: "physical activities and health" (p < 0.001) and "general mood and feelings" (p < 0.001). Our results indicate that boys with Duchenne muscular dystrophy have quite a satisfactory quality of life. A happier and more hopeful life can be promoted through increasing social support and improving the parental knowledge regarding their child's more positive life perspective. PMID:27234309

  9. Differential isoform expression and selective muscle involvement in muscular dystrophies.

    PubMed

    Huovinen, Sanna; Penttilä, Sini; Somervuo, Panu; Keto, Joni; Auvinen, Petri; Vihola, Anna; Huovinen, Sami; Pelin, Katarina; Raheem, Olayinka; Salenius, Juha; Suominen, Tiina; Hackman, Peter; Udd, Bjarne

    2015-10-01

    Despite the expression of the mutated gene in all muscles, selective muscles are involved in genetic muscular dystrophies. Different muscular dystrophies show characteristic patterns of fatty degenerative changes by muscle imaging, even to the extent that the patterns have been used for diagnostic purposes. However, the underlying molecular mechanisms explaining the selective involvement of muscles are not known. To test the hypothesis that different muscles may express variable amounts of different isoforms of muscle genes, we applied a custom-designed exon microarray containing probes for 57 muscle-specific genes to assay the transcriptional profiles in sets of human adult lower limb skeletal muscles. Quantitative real-time PCR and whole transcriptome sequencing were used to further analyze the results. Our results demonstrate significant variations in isoform and gene expression levels in anatomically different muscles. Comparison of the known patterns of selective involvement of certain muscles in two autosomal dominant titinopathies and one autosomal dominant myosinopathy, with the isoform and gene expression results, shows a correlation between the specific muscles involved and significant differences in the level of expression of the affected gene and exons in these same muscles compared with some other selected muscles. Our results suggest that differential expression levels of muscle genes and isoforms are one determinant in the selectivity of muscle involvement in muscular dystrophies. PMID:26269091

  10. Gay male attraction toward muscular men: does mating context matter?

    PubMed

    Varangis, Eleanna; Lanzieri, Nicholas; Hildebrandt, Tom; Feldman, Matthew

    2012-03-01

    The purpose of this study was to examine gay men's perceived attractiveness of male figures based on short-term and long-term partner contexts. A sample of 190 gay adult men rated the attractiveness of line-drawings depicting male figures varying systematically in muscularity and body fat percentage in both short-term and long-term dating contexts. Mixed effects modeling was used to estimate the effects of figure (muscularity and body fat), dating context (short-term vs. long-term), and individual rater characteristics on attractiveness ratings. Results indicated that figure muscularity and body-fat had significant non-linear (i.e., quadratic) relationships with attractiveness ratings, and short-term dating context was associated with more discriminating ratings of attractiveness. Interactions between individual characteristics and figure characteristics indicated that the more available the individual and lower body fat, the more discriminating they were in ratings of attractiveness. The implications for future investigations considering both object and observer characteristics of attractiveness preferences are discussed. PMID:22342537

  11. Computational modeling of muscular thin films for cardiac repair

    NASA Astrophysics Data System (ADS)

    Böl, Markus; Reese, Stefanie; Parker, Kevin Kit; Kuhl, Ellen

    2009-03-01

    Motivated by recent success in growing biohybrid material from engineered tissues on synthetic polymer films, we derive a computational simulation tool for muscular thin films in cardiac repair. In this model, the polydimethylsiloxane base layer is simulated in terms of microscopically motivated tetrahedral elements. Their behavior is characterized through a volumetric contribution and a chain contribution that explicitly accounts for the polymeric microstructure of networks of long chain molecules. Neonatal rat ventricular cardiomyocytes cultured on these polymeric films are modeled with actively contracting truss elements located on top of the sheet. The force stretch response of these trusses is motivated by the cardiomyocyte force generated during active contraction as suggested by the filament sliding theory. In contrast to existing phenomenological models, all material parameters of this novel model have a clear biophyisical interpretation. The predictive features of the model will be demonstrated through the simulation of muscular thin films. First, the set of parameters will be fitted for one particular experiment documented in the literature. This parameter set is then used to validate the model for various different experiments. Last, we give an outlook of how the proposed simulation tool could be used to virtually predict the response of multi-layered muscular thin films. These three-dimensional constructs show a tremendous regenerative potential in repair of damaged cardiac tissue. The ability to understand, tune and optimize their structural response is thus of great interest in cardiovascular tissue engineering.

  12. Respiratory dysfunction in unsedated dogs with golden retriever muscular dystrophy.

    PubMed

    DeVanna, Justin C; Kornegay, Joe N; Bogan, Daniel J; Bogan, Janet R; Dow, Jennifer L; Hawkins, Eleanor C

    2014-01-01

    Golden retriever muscular dystrophy (GRMD) is a well-established model of Duchenne muscular dystrophy. The value of this model would be greatly enhanced with practical tools to monitor progression of respiratory dysfunction during treatment trials. Arterial blood gas analysis, tidal breathing spirometry, and respiratory inductance plethysmography (RIP) were performed to determine if quantifiable abnormalities could be identified in unsedated, untrained, GRMD dogs. Results from 11 dogs with a mild phenotype of GRMD and 11 age-matched carriers were compared. Arterial blood gas analysis was successfully performed in all dogs, spirometry in 21 of 22 (95%) dogs, and RIP in 18 of 20 (90%) dogs. Partial pressure of carbon dioxide and bicarbonate concentration were higher in GRMD dogs. Tidal breathing peak expiratory flows were markedly higher in GRMD dogs. Abnormal abdominal motion was present in 7 of 10 (70%) GRMD dogs. Each technique provided objective, quantifiable measures that will be useful for monitoring respiratory function in GRMD dogs during clinical trials while avoiding the influence of sedation on results. Increased expiratory flows and the pattern of abdominal breathing are novel findings, not reported in people with Duchenne muscular dystrophy, and might be a consequence of hyperinflation. PMID:24295812

  13. RESPIRATORY DYSFUNCTION IN UNSEDATED DOGS WITH GOLDEN RETRIEVER MUSCULAR DYSTROPHY

    PubMed Central

    DeVanna, Justin C.; Kornegay, Joe N.; Bogan, Daniel J.; Bogan, Janet R.; Dow, Jennifer L.; Hawkins, Eleanor C.

    2013-01-01

    Golden retriever muscular dystrophy (GRMD) is a well-established model of Duchenne muscular dystrophy. The value of this model would be greatly enhanced with practical tools to monitor progression of respiratory dysfunction during treatment trials. Arterial blood gas analysis, tidal breathing spirometry, and respiratory inductance plethysmography (RIP) were performed to determine if quantifiable abnormalities could be identified in unsedated, untrained, GRMD dogs. Results from 11 dogs with a mild phenotype of GRMD and 11 age-matched carriers were compared. Arterial blood gas analysis was successfully performed in all dogs, spirometry in 21 of 22 (95%) dogs, and RIP in 18 of 20 (90%) dogs. Partial pressure of carbon dioxide and bicarbonate concentration were higher in GRMD dogs. Tidal breathing peak expiratory flows were markedly higher in GRMD dogs. Abnormal abdominal motion was present in 7 of 10 (70%) GRMD dogs. Each technique provided objective, quantifiable measures that will be useful for monitoring respiratory function in GRMD dogs during clinical trials while avoiding the influence of sedation on results. Increased expiratory flows and the pattern of abdominal breathing are novel findings, not reported in people with Duchenne muscular dystrophy, and might be a consequence of hyperinflation. PMID:24295812

  14. Molecular Signatures of Membrane Protein Complexes Underlying Muscular Dystrophy.

    PubMed

    Turk, Rolf; Hsiao, Jordy J; Smits, Melinda M; Ng, Brandon H; Pospisil, Tyler C; Jones, Kayla S; Campbell, Kevin P; Wright, Michael E

    2016-06-01

    Mutations in genes encoding components of the sarcolemmal dystrophin-glycoprotein complex (DGC) are responsible for a large number of muscular dystrophies. As such, molecular dissection of the DGC is expected to both reveal pathological mechanisms, and provides a biological framework for validating new DGC components. Establishment of the molecular composition of plasma-membrane protein complexes has been hampered by a lack of suitable biochemical approaches. Here we present an analytical workflow based upon the principles of protein correlation profiling that has enabled us to model the molecular composition of the DGC in mouse skeletal muscle. We also report our analysis of protein complexes in mice harboring mutations in DGC components. Bioinformatic analyses suggested that cell-adhesion pathways were under the transcriptional control of NFκB in DGC mutant mice, which is a finding that is supported by previous studies that showed NFκB-regulated pathways underlie the pathophysiology of DGC-related muscular dystrophies. Moreover, the bioinformatic analyses suggested that inflammatory and compensatory mechanisms were activated in skeletal muscle of DGC mutant mice. Additionally, this proteomic study provides a molecular framework to refine our understanding of the DGC, identification of protein biomarkers of neuromuscular disease, and pharmacological interrogation of the DGC in adult skeletal muscle https://www.mda.org/disease/congenital-muscular-dystrophy/research. PMID:27099343

  15. Early Progressive Dilated Cardiomyopathy in a Family with Becker Muscular Dystrophy Related to a Novel Frameshift Mutation in the Dystrophin Gene Exon 27

    PubMed Central

    Tsuda, Takeshi; Fitzgerald, Kristi; Scavena, Mena; Gidding, Samuel; Cox, Mary O.; Marks, Harold; Flanigan, Kevin M.; Moore, Steven A.

    2014-01-01

    We report a family in which two male siblings with Becker muscular dystrophy (BMD) developed severe dilated cardiomyopathy (DCM) and progressive heart failure (HF) at age 11; one died at age 14 years while awaiting heart transplant and the other underwent left ventricular assist device (LVAD) implantation at the same age. Genetic analysis of one sibling showed a novel frameshift mutation in exon 27 of Duchenne muscular dystrophy (DMD) gene (c.3779_3785delCTTTGGAins GG), in which 7 base pairs are deleted and two are inserted. While this predicts an amino acid substitution and premature termination (p.Thr1260Argfs*8), muscle biopsy dystrophin immunostaining instead indicates that the mutation is more likely to alter splicing. Despite relatively preserved skeletal muscular performance, both siblings developed progressive heart failure secondary to early onset DCM. In addition, their 7 year old nephew with delayed gross motor development, mild proximal muscle weakness, and markedly elevated serum creatine kinase (CK) level (> 13,000 IU/L) at 16 months was recently demonstrated to have the familial DMD mutation. Here we report a novel genotype of BMD with early onset DCM and progressive lethal heart failure during early adolescence. PMID:25537791

  16. Drive for muscularity and disordered eating among French adolescent boys: a sociocultural model.

    PubMed

    Rodgers, Rachel F; Ganchou, Camille; Franko, Debra L; Chabrol, Henri

    2012-06-01

    The pursuit of muscularity is an important body image concern among boys which has been described within sociocultural models of risk for eating disorders. This study explored a sociocultural model of disordered eating in which drive for thinness and pursuit of muscularity were both pathways to disordered eating among French adolescent boys. A sample of 146 adolescents completed a questionnaire assessing drive for thinness, drive for muscularity, media-ideal internalization, appearance comparison, and sociocultural pressure. The model was a good fit to the data and both drive for thinness and the pursuit of muscularity were related to disordered eating. Furthermore, internalization and appearance comparison mediated the relationships between pressure to increase muscle and both drive for muscularity and drive for thinness. Longitudinal research could help clarify the role of the pursuit of muscularity in the development of disordered eating and extreme body shape changing behaviors. PMID:22494958

  17. Mechanisms of disease: congenital muscular dystrophies-glycosylation takes center stage.

    PubMed

    Martin, Paul T

    2006-04-01

    Recent studies have defined a group of muscular dystrophies, now termed the dystroglycanopathies, as novel disorders of glycosylation. These conditions include Walker-Warburg syndrome, muscle-eye-brain disease, Fukuyama-type congenital muscular dystrophy, congenital muscular dystrophy types 1C and 1D, and limb-girdle muscular dystrophy type 2I. Although clinical findings can be highly variable, dystroglycanopathies are all characterized by cortical malformations and ocular defects at the more severe end of the clinical spectrum, in addition to muscular dystrophy. All of these disorders are defined by the underglycosylation of alpha-dystroglycan. Defective glycosylation of dystroglycan severs the link between this important cell adhesion molecule and the extracellular matrix, thereby contributing to cellular pathology. Recent experiments indicate that glycosylation might not only define forms of muscular dystrophy but also provide an avenue to the development of therapies for these disorders. PMID:16932553

  18. Limb-girdle muscular dystrophy type 2a with mutation in CAPN3: the first report in Taiwan.

    PubMed

    Wang, Chien-Hua; Liang, Wen-Chen; Minami, Narihiro; Nishino, Ichizo; Jong, Yuh-Jyh

    2015-02-01

    The autosomal recessive limb-girdle muscular dystrophy type 2A (LGMD2A) is caused by mutations in the calpain 3 (CAPN3) gene, and it is characterized by selective atrophy and weakness of proximal limb and girdle muscles. We report a 33-year-old woman with initial presentations of exercise intolerance and running difficulty at age 15 years. At presentation, waddling gait, positive Gowers' sign, and marked muscle atrophy in pelvic and leg muscles were noted. Muscle computed tomography (CT) imaging demonstrated symmetric involvement of the posterior thigh muscles with relative sparing of vastus lateralis, sartorius, and gracilis. Muscle biopsy revealed a dystrophic change and many lobulated fibers on NADH-tetrazolium reductase staining. Genetic analysis of the CAPN3 gene identified a novel homozygous mutation of c2047_2050 del4, p.Lys683fs mutation, confirming the first LGMD2A patient in Taiwan. PMID:23597518

  19. A Laboratory Experiment on Muscular Metabolism and Fatigue Using the Isolated Frog Muscle Preparation.

    ERIC Educational Resources Information Center

    Ianuzzo, C. David; And Others

    1987-01-01

    Describes an experiment which demonstrates the association of particular metabolic biochemical changes and muscular fatigue. Highlights applications related to cellular energy metabolism, metabolic regulation, and muscle energetics. (ML)

  20. Exome sequencing identifies a novel SMCHD1 mutation in facioscapulohumeral muscular dystrophy 2

    PubMed Central

    Mitsuhashi, Satomi; Boyden, Steven E; Estrella, Elicia A; Jones, Takako I; Rahimov, Fedik; Yu, Timothy W; Darras, Basil T; Amato, Anthony A; Folkerth, Rebecca D; Jones, Peter L; Kunkel, Louis M; Kang, Peter B

    2013-01-01

    FSHD2 is a rare form of facioscapulohumeral muscular dystrophy (FSHD) characterized by the absence of a contraction in the D4Z4 macrosatellite repeat region on chromosome 4q35 that is the hallmark of FSHD1. However, hypomethylation of this region is common to both subtypes. Recently, mutations in SMCHD1 combined with a permissive 4q35 allele were reported to cause FSHD2. We identified a novel p.Lys275del SMCHD1 mutation in a family affected with FSHD2 using whole-exome sequencing and linkage analysis. This mutation alters a highly conserved amino acid in the ATPase domain of SMCHD1. Subject III-11 is a male who developed asymmetrical muscle weakness characteristic of FSHD at 13 years. Physical examination revealed marked bilateral atrophy at biceps brachii, bilateral scapular winging, some asymmetrical weakness at tibialis anterior and peroneal muscles, and mild lower facial weakness. Biopsy of biceps brachii in subject II-5, the father of III-11, demonstrated lobulated fibers and dystrophic changes. Endomysial and perivascular inflammation was found, which has been reported in FSHD1 but not FSHD2. Given the previous report of SMCHD1 mutations in FSHD2 and the clinical presentations consistent with the FSHD phenotype, we conclude that the SMCHD1 mutation is the likely cause of the disease in this family. PMID:24128691

  1. Tracking the Development of Muscular Myoglobin Stores in Mysticete Calves.

    PubMed

    Cartwright, Rachel; Newton, Cori; West, Kristi M; Rice, Jim; Niemeyer, Misty; Burek, Kathryn; Wilson, Andrew; Wall, Alison N; Remonida-Bennett, Jean; Tejeda, Areli; Messi, Sarah; Marcial-Hernandez, Lila

    2016-01-01

    For marine mammals, the ability to tolerate apnea and make extended dives is a defining adaptive trait, facilitating the exploitation of marine food resources. Elevated levels of myoglobin within the muscles are a consistent hallmark of this trait, allowing oxygen collected at the surface to be stored in the muscles and subsequently used to support extended dives. In mysticetes, the largest of marine predators, details on muscular myoglobin levels are limited. The developmental trajectory of muscular myoglobin stores has yet to be documented and any physiological links between early behavior and the development of muscular myoglobin stores remain unknown. In this study, we used muscle tissue samples from stranded mysticetes to investigate these issues. Samples from three different age cohorts and three species of mysticetes were included (total sample size = 18). Results indicate that in mysticete calves, muscle myoglobin stores comprise only a small percentage (17-23%) of conspecific adult myoglobin complements. Development of elevated myoglobin levels is protracted over the course of extended maturation in mysticetes. Additionally, comparisons of myoglobin levels between and within muscles, along with details of interspecific differences in rates of accumulation of myoglobin in very young mysticetes, suggest that levels of exercise may influence the rate of development of myoglobin stores in young mysticetes. This new information infers a close interplay between the physiology, ontogeny and early life history of young mysticetes and provides new insight into the pressures that may shape adaptive strategies in migratory mysticetes. Furthermore, the study highlights the vulnerability of specific age cohorts to impending changes in the availability of foraging habitat and marine resources. PMID:26788728

  2. New aspects on patients affected by dysferlin deficient muscular dystrophy

    PubMed Central

    Klinge, Lars; Aboumousa, Ahmed; Eagle, Michelle; Hudson, Judith; Sarkozy, Anna; Vita, Gianluca; Charlton, Richard; Roberts, Mark; Straub, Volker; Barresi, Rita; Lochmüller, Hanns

    2009-01-01

    Mutations in the dysferlin gene lead to limb girdle muscular dystrophy 2B, Miyoshi myopathy and distal anterior compartment myopathy. A cohort of 36 patients affected by dysferlinopathy is described, in the first UK study of clinical, genetic, pathological and biochemical data. The diagnosis was established by reduction of dysferlin in the muscle biopsy and subsequent mutational analysis of the dysferlin gene. Seventeen mutations were novel; the majority of mutations were small deletions/insertions, and no mutational hotspots were identified. Sixty-one per cent of patients (22 patients) initially presented with limb girdle muscular dystrophy 2B, 31% (11 patients) with a Miyoshi phenotype, one patient with proximodistal mode of onset, one patient with muscle stiffness after exercise and one patient as a symptomatic carrier. A wider range of age of onset was noted than previously reported, with 25% of patients having first symptoms before the age of 13 years. Independent of the initial mode of presentation, in our cohort of patients the gastrocnemius muscle was the most severely affected muscle leading to an inability to stand on tiptoes, and lower limbs were affected more severely than upper limbs. As previous anecdotal evidence on patients affected by dysferlinopathy suggests good muscle prowess before onset of symptoms, we also investigated pre-symptomatic fitness levels of the patients. Fifty-three per cent of the patients were very active and sporty before the onset of symptoms which makes the clinical course of dysferlinopathy unusual within the different forms of muscular dystrophy and provides a challenge to understanding the underlying pathomechanisms in this disease. PMID:19528035

  3. Muscle exercise in limb girdle muscular dystrophies: pitfall and advantages.

    PubMed

    Siciliano, Gabriele; Simoncini, Costanza; Giannotti, Stefano; Zampa, Virna; Angelini, Corrado; Ricci, Giulia

    2015-05-01

    Different genetic mutations underlying distinct pathogenic mechanisms have been identified as cause of muscle fibers degeneration and strength loss in limb girdle muscular dystrophies (LGMD). As a consequence, exercise tolerance is affected in patients with LGMD, either as a direct consequence of the loss of muscle fibers or secondary to the sedentary lifestyle due to the motor impairment. It has been debated for many years whether or not muscle exercise is beneficial or harmful for patients with myopathic disorders. In fact, muscular exercise would be considered in helping to hinder the loss of muscle tissue and strength. On the other hand, muscle structural defects in LGMD can result in instability of the sarcolemma, making it more likely to induce muscle damage as a consequence of intense muscle contraction, such as that performed during eccentric training. Several reports have suggested that supervised aerobic exercise training is safe and may be considered effective in improving oxidative capacity and muscle function in patients with LGMD, such as LGMD2I, LGMD2L, LGMD2A. More or less comfortable investigation methods applied to assess muscle function and structure can be useful to detect the beneficial effects of supervised training in LGMD. However, it is important to note that the available trials assessing muscle exercise in patients with LGMD have often involved a small number of patients, with a wide clinical heterogeneity and a different experimental design. Based on these considerations, resistance training can be considered part of the rehabilitation program for patients with a limb-girdle type of muscular dystrophy, but it should be strictly supervised to assess its effects and prevent possible development of muscle damage. PMID:26155063

  4. Muscular nitric oxide synthase (muNOS) and utrophin.

    PubMed

    Chaubourt, Emmanuel; Voisin, Vincent; Fossier, Philippe; Baux, Gérard; Israël, Maurice; De La Porte, Sabine

    2002-01-01

    Duchenne muscular dystrophy (DMD), the severe X-linked recessive disorder which results in progressive muscle degeneration, is due to a lack of dystrophin, a membrane cytoskeletal protein. Three types of treatment are envisaged: pharmacological (glucocorticoid), myoblast transplantation, and gene therapy. An alternative to the pharmacological approach is to compensate for dystrophin loss by the upregulation of another cytoskeletal protein, utrophin. Utrophin and dystrophin are part of a complex of proteins and glycoproteins, which links the basal lamina to the cytoskeleton, thus ensuring the stability of the muscle membrane. One protein of the complex, syntrophin, is associated with a muscular isoform of the neuronal nitric oxide synthase (nNOS). We have demonstrated an overexpression of utrophin, visualised by immunofluorescence and quantified by Western blotting, in normal myotubes and in mdx (the animal model of DMD) myotubes, as in normal (C57) and mdx mice, both treated with nitric oxide (NO) donor or L-arginine, the NOS substrate. There is evidence that utrophin may be capable of performing the same cellular functions as dystrophin and may functionally compensate for its lack. Thus, we propose to use NO donors, as palliative treatment of Duchenne and Becker muscular dystrophies, pending, or in combination with, gene and/or cellular therapy. Discussion has focussed on the various isoforms of NOS that could be implicated in the regeneration process. Dystrophic and healthy muscles respond to treatment, suggesting that although NOS is delocalised in the cytoplasm in the case of DMD, it conserves substantial activity. eNOS present in mitochondria and iNOS present in cytoplasm and the neuromuscular junction could also be activated. Lastly, production of NO by endothelial NOS of the capillaries would also be beneficial through increased supply of metabolites and oxygen to the muscles. PMID:11755782

  5. Tracking the Development of Muscular Myoglobin Stores in Mysticete Calves

    PubMed Central

    Cartwright, Rachel; Newton, Cori; West, Kristi M.; Rice, Jim; Niemeyer, Misty; Burek, Kathryn; Wilson, Andrew; Wall, Alison N.; Remonida-Bennett, Jean; Tejeda, Areli; Messi, Sarah; Marcial-Hernandez, Lila

    2016-01-01

    For marine mammals, the ability to tolerate apnea and make extended dives is a defining adaptive trait, facilitating the exploitation of marine food resources. Elevated levels of myoglobin within the muscles are a consistent hallmark of this trait, allowing oxygen collected at the surface to be stored in the muscles and subsequently used to support extended dives. In mysticetes, the largest of marine predators, details on muscular myoglobin levels are limited. The developmental trajectory of muscular myoglobin stores has yet to be documented and any physiological links between early behavior and the development of muscular myoglobin stores remain unknown. In this study, we used muscle tissue samples from stranded mysticetes to investigate these issues. Samples from three different age cohorts and three species of mysticetes were included (total sample size = 18). Results indicate that in mysticete calves, muscle myoglobin stores comprise only a small percentage (17–23%) of conspecific adult myoglobin complements. Development of elevated myoglobin levels is protracted over the course of extended maturation in mysticetes. Additionally, comparisons of myoglobin levels between and within muscles, along with details of interspecific differences in rates of accumulation of myoglobin in very young mysticetes, suggest that levels of exercise may influence the rate of development of myoglobin stores in young mysticetes. This new information infers a close interplay between the physiology, ontogeny and early life history of young mysticetes and provides new insight into the pressures that may shape adaptive strategies in migratory mysticetes. Furthermore, the study highlights the vulnerability of specific age cohorts to impending changes in the availability of foraging habitat and marine resources. PMID:26788728

  6. Management of Cardiac Involvement in NeuroMuscular Diseases: Review

    PubMed Central

    Bouhouch, Rachida; Elhouari, Tarik; Oukerraj, Latifa; Fellat, Ibtissam; Zarzur, Jamila; Bennani, Rajaa; Arharbi, Mhamed

    2008-01-01

    Neuromuscular Diseases are a heterogeneous molecular, clinical and prognosis group. Progress has been achieved in the understanding and classification of these diseases. Cardiac involvement in neuromuscular diseases namely conduction disorders, ventricular dilatation and dilated cardiomyopathy with its impact on prognosis, is often dissociated from the peripheral myopathy. Therefore, close surveillance is mandatory in the affected patients. In this context, preventive therapy (beta-blockers and angiotensin converting enzyme inhibitors) has been recently recommended in the most common Neuromuscular Diseases, Duchenne Muscular Dystrophy and Myotonic Dystrophy. PMID:19337361

  7. Histone deacetylase inhibitors as potential treatment for spinal muscular atrophy

    PubMed Central

    Mohseni, Jafar; Zabidi-Hussin, Z.A.M.H.; Sasongko, Teguh Haryo

    2013-01-01

    Histone acetylation plays an important role in regulation of transcription in eukaryotic cells by promoting a more relaxed chromatin structure necessary for transcriptional activation. Histone deacetylases (HDACs) remove acetyl groups and suppress gene expression. HDAC inhibitors (HDACIs) are a group of small molecules that promote gene transcription by chromatin remodeling and have been extensively studied as potential drugs for treating of spinal muscular atrophy. Various drugs in this class have been studied with regard to their efficacy in increasing the expression of survival of motor neuron (SMN) protein. In this review, we discuss the current literature on this topic and summarize the findings of the main studies in this field. PMID:24130434

  8. Fasciculations masquerading as minipolymyoclonus in bulbospinal muscular atrophy

    PubMed Central

    Bhat, Sushanth; Ma, Wei; Kozochonok, Elena; Chokroverty, Sudhansu

    2015-01-01

    Minipolymyoclonus has been described in both anterior horn cell disorders and central nervous system degenerative conditions. While its etiology remains unclear and speculative, a central generator has been previously proposed. We describe a case of bulbospinal muscular atrophy (Kennedy's disease), where minipolymyoclonus-like movements corresponded to fasciculations in neurophysiological studies. Our novel finding suggests that the etiologies of minipolymyoclonus in central and peripheral nervous system disorders are distinct, despite outward clinical similarity. The term “minipolyfasciculations” may be more reflective of the underlying process causing minipolymyoclonus-like movements in lower motor neuron disorders. PMID:26019432

  9. Cell and gene therapy in Duchenne muscular dystrophy.

    PubMed

    Morgan, J E

    1994-02-01

    Experiments in mice have supported the idea of treating Duchenne muscular dystrophy (DMD) by implanting normal muscle precursor cells into dystrophin-deficient muscles. However, similar experiments on DMD patients have had little success. Gene therapy for DMD, by introducing dystrophin constructs via retroviral or adenoviral vectors, has been shown to be possible in the mouse, but the efficiency and safety aspects of this technique will have to be carefully examined before similar experiments can be attempted in man. Direct injection of dystrophin cDNA constructs into mdx muscles has given rise to very low levels of dystrophin and this may be a possibility for the treatment of heart muscle. PMID:7514447

  10. Fasciculations masquerading as minipolymyoclonus in bulbospinal muscular atrophy.

    PubMed

    Bhat, Sushanth; Ma, Wei; Kozochonok, Elena; Chokroverty, Sudhansu

    2015-01-01

    Minipolymyoclonus has been described in both anterior horn cell disorders and central nervous system degenerative conditions. While its etiology remains unclear and speculative, a central generator has been previously proposed. We describe a case of bulbospinal muscular atrophy (Kennedy's disease), where minipolymyoclonus-like movements corresponded to fasciculations in neurophysiological studies. Our novel finding suggests that the etiologies of minipolymyoclonus in central and peripheral nervous system disorders are distinct, despite outward clinical similarity. The term "minipolyfasciculations" may be more reflective of the underlying process causing minipolymyoclonus-like movements in lower motor neuron disorders. PMID:26019432

  11. Antisense mediated exon skipping therapy for duchenne muscular dystrophy (DMD).

    PubMed

    Brolin, Camilla; Shiraishi, Takehiko

    2011-01-01

    Duchenne Muscular Dystrophy (DMD) is a lethal disease caused by mutations in the dystrophin gene (DMD) that result in the absence of essential muscle protein dystrophin. Among many different approaches for DMD treatment, exon skipping, mediated by antisense oligonucleotides, is one of the most promising methods for restoration of dystrophin expression. This approach has been tested extensively targeting different exons in numerous models both in vitro and in vivo. During the past 10 years, there has been a considerable progress by using DMD animal models involving three types of antisense oligonucleotides (2'-O-methyl phosphorothioate (2OME-PS), phosphorodiamidate morpholino oligomer (PMO)) and peptide nucleic acid (PNA). PMID:21686247

  12. Late onset GM2 gangliosidosis mimicking spinal muscular atrophy.

    PubMed

    Jamrozik, Z; Lugowska, A; Gołębiowski, M; Królicki, L; Mączewska, J; Kuźma-Kozakiewicz, M

    2013-09-25

    A case of late onset GM2 gangliosidodis with spinal muscular atrophy phenotype followed by cerebellar and extrapyramidal symptoms is presented. Genetic analysis revealed compound heterozygous mutation in exon 10 of the HEXA gene. Patient has normal intelligence and emotional reactivity. Neuroimaging tests of the brain showed only cerebellar atrophy consistent with MR spectroscopy (MRS) abnormalities. (18)F-fluorodeoxyglucose positron emission tomography (18)F-FDG PET/CT of the brain revealed glucose hypometabolism in cerebellum and in temporal and occipital lobes bilaterally. PMID:23820084

  13. Corticosteroid Treatment Impact on Spinal Deformity in Duchenne Muscular Dystrophy

    PubMed Central

    Sanzarello, Ilaria; Merlini, Luciano; Traina, Francesco; Rosa, Michele Attilio; Faldini, Cesare

    2014-01-01

    Duchenne muscular dystrophy is a progressive disease with loss of ambulation at around 9-10 years of age, followed, if untreated, by development of scoliosis, respiratory insufficiency, and death in the second decade of life. This review highlights the natural history of the disease, in particular, with regard to the development of the spinal deformity and how this complication has been modified by surgical interventions and overall by corticosteroid treatment. The beneficial effect of corticosteroids may have also an impact on the clinical trial design of the new emerging causative therapies.

  14. Investigation of Poor Academic Achievement in Children with Duchenne Muscular Dystrophy

    ERIC Educational Resources Information Center

    Hinton, V. J.; De Vivo, D. C.; Fee, R.; Goldstein, E.; Stern, Y.

    2004-01-01

    Duchenne Muscular Dystrophy (DMD) is a neurogenetic developmental disorder that presents with progressive muscular weakness. It is caused by a mutation in a gene that results in the absence of specific products that normally localize to muscle cells and the central nervous system (CNS). The majority of affected individuals have IQs within the…

  15. The Relationship between Selected Body Composition Variables and Muscular Endurance in Women

    ERIC Educational Resources Information Center

    Esco, Michael R.; Olson, Michele S.; Williford, Henry N.

    2010-01-01

    The primary purpose of this study was to determine if muscular endurance is affected by referenced waist circumference groupings, independent of body mass and subcutaneous abdominal fat, in women. This study also explored whether selected body composition measures were associated with muscular endurance. Eighty-four women were measured for height,…

  16. Tongue fasciculations in an infant with spinal muscular atrophy type 1

    PubMed Central

    Giannopoulou, Eleni Z; Martin, Thomas; Wirth, Brunhilde; Yilmaz, Umut; Gortner, Ludwig; Meyer, Sascha

    2015-01-01

    Key Clinical Message Muscular hypotonia in infants may be associated with several conditions, such as spinal muscular atrophy (SMA). We report on an infant with tongue fasciculations and a rare mutation of the SMN1 gene. The presence of tongue fasciculations in combination with a thorough history may be suggestive of SMA. PMID:26509018

  17. Effects of Three Resistance Training Programs on Muscular Strength and Absolute and Relative Endurance.

    ERIC Educational Resources Information Center

    Anderson, Tim; Kearney, Jay T.

    1982-01-01

    The effects of three resistance training programs on male college students' muscular strength and absolute and relative muscular endurance were investigated. Results show that human skeletal muscle makes both general and specific adaptations to a training stimulus, and that the balance of these adaptations is to some extent dependent upon the…

  18. Meeting the Assistive Technology Needs of Students with Duchenne Muscular Dystrophy

    ERIC Educational Resources Information Center

    Heller, Kathryn Wolff; Mezei, Peter J.; Avant, Mary Jane Thompson

    2009-01-01

    Students with Duchenne muscular dystrophy (DMD) have a degenerative disease that requires ongoing changes in assistive technology (AT). The AT team needs to be knowledgeable about the disease and its progression in order to meet these students' changing needs in a timely manner. The unique needs of students with Duchenne muscular dystrophy in…

  19. Some Dynamics of Personality Development in Boys Suffering from Muscular Dystrophy

    ERIC Educational Resources Information Center

    Mearig, Judith S.

    1973-01-01

    Discussed are personality aspects of Duchenne or pseudohypertrophic muscular dystrophy, a progressive wasting of muscular tissue, which afflicts only boys, and usually has its noticeable onset before the age of 6 years; and described is the development of three male dystrophic siblings. (DB)

  20. Effects of Passive Physical Exercise on Peripheral Vision in Muscular Dystrophic Children.

    ERIC Educational Resources Information Center

    Eickelberg, Warren; And Others

    1983-01-01

    The effects of passive exercise of the extremities on peripheral vision of muscular dystrophic children aged 9 to 13 years was investigated. Compared to control subjects, those who experienced six minutes of passive exercise evidenced increased peripheral vision. Curriculum revisions for muscular dystrophic children indicate the importance of…

  1. Scalpel or Straitjacket: CRISPR/Cas9 Approaches for Muscular Dystrophies.

    PubMed

    Himeda, Charis L; Jones, Takako I; Jones, Peter L

    2016-04-01

    Versatility of CRISPR/Cas9-based platforms makes them promising tools for the correction of diverse genetic/epigenetic disorders. Here we contrast the use of these genome editing tools in two myopathies with very different molecular origins: Duchenne muscular dystrophy, a monogenetic disease, and facioscapulohumeral muscular dystrophy, an epigenetic disorder with unique therapeutic challenges. PMID:26917062

  2. Mechanisms and assessment of statin-related muscular adverse effects

    PubMed Central

    Moßhammer, Dirk; Schaeffeler, Elke; Schwab, Matthias; Mörike, Klaus

    2014-01-01

    Statin-associated muscular adverse effects cover a wide range of symptoms, including asymptomatic increase of creatine kinase serum activity and life-threatening rhabdomyolysis. Different underlying pathomechanisms have been proposed. However, a unifying concept of the pathogenesis of statin-related muscular adverse effects has not emerged so far. In this review, we attempt to categorize these mechanisms along three levels. Firstly, among pharmacokinetic factors, it has been shown for some statins that inhibition of cytochrome P450-mediated hepatic biotransformation and hepatic uptake by transporter proteins contribute to an increase of systemic statin concentrations. Secondly, at the myocyte membrane level, cell membrane uptake transporters affect intracellular statin concentrations. Thirdly, at the intracellular level, inhibition of the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase results in decreased intracellular concentrations of downstream metabolites (e.g. selenoproteins, ubiquinone, cholesterol) and alteration of gene expression (e.g. ryanodine receptor 3, glycine amidinotransferase). We also review current recommendations for prescribers. PMID:25069381

  3. Juvenile spinal muscular atrophy: a new hexosaminidase deficiency phenotype.

    PubMed

    Johnson, W G; Wigger, H J; Karp, H R; Glaubiger, L M; Rowland, L P

    1982-01-01

    A 24-year-old Ashkenazi Jewish man was evaluated for a nine-year history of progressive leg weakness with fasciculations. Electromyography, nerve conduction velocities, muscle biopsy, and serum creatine kinase were consistent with anterior horn cell disease. On rectal biopsy, ganglion cells were filled with membranous cytoplasmic bodies and an unusual submucosal layer of periodic acid-Schiff positive histiocytes filled with granules was seen. Hexosaminidase A in serum and leukocytes was severely decreased in the patient and partially decreased in parents and a brother. A paternal relative had classic infantile Tay-Sachs disease. Juvenile spinal muscular atrophy in this patient, closely resembling the Kugelberg-Welander phenotype, resulted from an alpha-locus hexosaminidase deficiency disorder, possibly a genetic compound of HEX alpha 2 and a milder hexosaminidase alpha-locus allele. Other cases of hexosaminidase deficiency have included anterior horn cell disease as part of a more complex disorder, but this is the first case, to our knowledge, of a hexosaminidase deficiency disorder presenting as spinal muscular atrophy. PMID:6460466

  4. Morphometric studies of the muscular branch of the median nerve.

    PubMed

    Olave, E; Prates, J C; Gabrielli, C; Pardi, P

    1996-10-01

    The branch from the median nerve to the thenar muscles has a proximal and lateral (recurrent) course and is vulnerable to lesions that affect these muscles. Because of its anatomical-clinical importance, this branch was studied in 60 palmar regions from 30 cadavers of adult individuals of both sexes, aged between 23 and 77 y. It arose from the lateral branch of the median nerve in 83.3% of the cases. Its origin was distal to the flexor retinaculum in 48.3%, at the distal margin of the retinaculum in 31.6%, in the carpal tunnel in 18.3% and proximal to the retinaculum in 1.7%; it pierced the retinaculum in 15%. The point of recurrence of the branch was localised topographically to 34.6 +/- 3.6 mm from the distal wrist crease; the angle between its recurrent course and the longitudinal axis of the hand averaged 66.8 degrees. In 50% of the cases the muscular branch innervated abductor pollicis brevis (APB), opponens pollicis (OP) and the superficial head of flexor pollicis brevis (FPB), in 40% it supplied only APB and OP, and in 10% a short muscular branch gave rise to independent branches in the palm and which supplied APB, OP and the superficial head of FPB. The so called "accessory thenar branch' was found in 38.3%. PMID:8886966

  5. [Central Nervous Involvement in Patients with Fukuyama Congenital Muscular Dystrophy].

    PubMed

    Ishigaki, Keiko

    2016-02-01

    Fukuyama congenital muscular dystrophy (FCMD), the second most common muscular dystrophy in the Japanese population, is an autosomal recessive disorder caused by mutations in the fukutin (FKTN) gene. The main features of FCMD are a combination of infantile-onset hypotonia, generalized muscle weakness, eye abnormalities and central nervous system involvement with mental retardation and seizures associated with cortical migration defects. The FKTN gene product is thought to be necessary for maintaining migrating neurons in an immature state during migration, and for supporting migration via α-dystroglycan in the central nervous system. Typical magnetic resonance imaging findings in FCMD patients are cobblestone lissencephaly and cerebellar cystic lesions. White matter abnormalities with hyperintensity on T(2)-weighted images are seen especially in younger patients and those with severe phenotypes. Most FCMD patients are mentally retarded and the level is moderate to severe, with IQs ranging from 30 to 50. In our recent study, 62% of patients developed seizures. Among them, 71% had only febrile seizures, 6% had afebrile seizures from the onset, and 22% developed afebrile seizures following febrile seizures. Most patients had seizures that were controllable with just 1 type of antiepileptic drug, but 18% had intractable seizures that must be treated with 3 medications. PMID:26873231

  6. Clinical features of spinal and bulbar muscular atrophy

    PubMed Central

    Rhodes, Lindsay E.; Freeman, Brandi K.; Auh, Sungyoung; Kokkinis, Angela D.; La Pean, Alison; Chen, Cheunju; Lehky, Tanya J.; Shrader, Joseph A.; Levy, Ellen W.; Harris-Love, Michael; Di Prospero, Nicholas A.

    2009-01-01

    Spinal and bulbar muscular atrophy is an X-linked motor neuron disease caused by a CAG repeat expansion in the androgen receptor gene. To characterize the natural history and define outcome measures for clinical trials, we assessed the clinical history, laboratory findings and muscle strength and function in 57 patients with genetically confirmed disease. We also administered self-assessment questionnaires for activities of daily living, quality of life and erectile function. We found an average delay of over 5 years from onset of weakness to diagnosis. Muscle strength and function correlated directly with serum testosterone levels and inversely with CAG repeat length, age and duration of weakness. Motor unit number estimation was decreased by about half compared to healthy controls. Sensory nerve action potentials were reduced in nearly all subjects. Quantitative muscle assessment and timed 2 min walk may be useful as meaningful indicators of disease status. The direct correlation of testosterone levels with muscle strength indicates that androgens may have a positive effect on muscle function in spinal and bulbar muscular atrophy patients, in addition to the toxic effects described in animal models. PMID:19846582

  7. Nitric oxide synthase deficiency and the pathophysiology of muscular dystrophy

    PubMed Central

    Tidball, James G; Wehling-Henricks, Michelle

    2014-01-01

    The secondary loss of neuronal nitric oxide synthase (nNOS) that occurs in dystrophic muscle is the basis of numerous, complex and interacting features of the dystrophic pathology that affect not only muscle itself, but also influence the interaction of muscle with other tissues. Many mechanisms through which nNOS deficiency contributes to misregulation of muscle development, blood flow, fatigue, inflammation and fibrosis in dystrophic muscle have been identified, suggesting that normalization in NO production could greatly attenuate diverse aspects of the pathology of muscular dystrophy through multiple regulatory pathways. However, the relative importance of the loss of nNOS from the sarcolemma versus the importance of loss of total nNOS from dystrophic muscle remains unknown. Although most current evidence indicates that nNOS localization at the sarcolemma is not required to achieve NO-mediated reductions of pathology in muscular dystrophy, the question remains open concerning whether membrane localization would provide a more efficient rescue from features of the dystrophic phenotype. PMID:25194047

  8. Reassessing the improbability of a muscular crinoid stem

    PubMed Central

    Gorzelak, Przemysław; Głuchowski, Edward; Salamon, Mariusz A.

    2014-01-01

    Muscular articulations in modern stalked crinoids are only present in the arms. Although it has been suggested that certain coiled-stemmed fossil taxa may have been functionally adapted to utilize muscles, evidence supporting this interpretation is lacking. Here, we use cathodoluminescence and SEM to reveal the skeletal microstructure of the enigmatic coiled-stemmed taxon Ammonicrinus (Flexibilia). Based on the well-established link between skeletal microstructure and the nature of infilling soft tissues in modern echinoderms, we reconstructed the palaeoanatomy of the Middle Devonian ammonicrinids. We show that their median columnals with elongated lateral columnal enclosure extensions (LCEE) have stereom microstructure unexpectedly resembling that in the crinoid muscular arm plates. In particular, large ligamentary facets, that are present on each side of a transverse ridge, are mainly comprised of fine galleried stereom that is indicative of the mutable collagenous tissues. In contrast, fine labyrinthic stereom, commonly associated with muscles, is situated in the periphery on each side of the surface of elongated LCEE. Our findings thus strongly suggest that the muscles may have also been present in the stem of ammonicrinids. These results reassess the previous hypotheses about evolution of muscles in crinoids and provide new insights into the mode of life of Ammonicrinus. PMID:25116414

  9. Neurotrophins, cytokines, oxidative parameters and funcionality in Progressive Muscular Dystrophies.

    PubMed

    Comim, Clarissa M; Mathia, Gisiane B; Hoepers, Andreza; Tuon, Lisiane; Kapczinski, Flávio; Dal-Pizzol, Felipe; Quevedo, João; Rosa, Maria I

    2015-09-01

    We investigated the levels of brain derived-neurotrophic factor (BDNF), cytokines and oxidative parameters in serum and tried to correlate them with the age and functionality of patients with Progressive Muscle Dystrophies (PMD). The patients were separated into six groups (case and controls pared by age and gender), as follows: Duchenne Muscular Dystrophy (DMD); Steinert Myotonic Dystrophy (SMD); and Limb-girdle Muscular Dystrophy type-2A (LGMD2A). DMD patients (± 17.9 years old) had a decrease of functionality, an increase in the IL-1β and TNF-α levels and a decrease of IL-10 levels and superoxide dismutase activity in serum. SMD patients (± 25.8 years old) had a decrease of BDNF and IL-10 levels and superoxide dismutase activity and an increase of IL-1β levels in serum. LGMD2A patients (± 27.7 years old) had an decrease only in serum levels of IL-10. This research showed the first evidence of BDNF involvement in the SMD patients and a possible unbalance between pro-inflammatory and anti-inflammatory cytokine levels, along with decreased superoxide dismutase activity in serum of DMD and SMD patients. PMID:25910175

  10. Dystrophin in frameshift deletion patients with Becker Muscular Dystrophy

    SciTech Connect

    Gangopadhyay, S.B.; Ray, P.N.; Worton, R.G.; Sherratt, T.G.; Heckmatt, J.Z.; Dubowitz, V.; Strong, P.N.; Miller, G. ); Shokeir, M. )

    1992-09-01

    In a previous study the authors identified 14 cases with Duchenne muscular dystrophy (DMD) or its milder variant, Becker muscular dystrophy (BMD), with a deletion of exons 3-7, a deletion that would be expected to shift the translational reading frame of the mRNA and give a severe phenotype. They have examined dystrophin and its mRNA from muscle biopsies of seven cases with either mild or intermediate phenotypes. In all cases they detected slightly lower-molecular-weight dystrophin in 12%-15% abundance relative to the normal. By sequencing amplified mRNA they have found that exon 2 is spliced to exon 8, a splice that produces a frameshifted mRNA, and have found no evidence for alternate splicing that might be involved in restoration of dystrophin mRNA reading frame in the patients with a mild phenotype. Other transcriptional and posttranscriptional mechanisms such as cryptic promoter, ribosomal frameshifting, and reinitiation are suggested that might play some role in restoring the reading frame. 34 refs., 5 figs. 1 tab.

  11. Congenital Muscular Dystrophy and Generalized Epilepsy Caused by GMPPB Mutations

    PubMed Central

    Raphael, Alya R.; Couthouis, Julien; Sakamuri, Sarada; Siskind, Carly; Vogel, Hannes; Day, John W.; Gitler, Aaron D.

    2014-01-01

    The alpha-dystroglycanopathies are genetically heterogeneous muscular dystrophies that result from hypoglycosylation of alpha-dystroglycan (α-DG). Alpha-dystroglycan is an essential link between the extracellular matrix and the muscle fiber sarcolemma, and proper glycosylation is critical for its ability to bind to ligands in the extracellular matrix. We sought to identify the genetic basis of alpha-dystroglycanopathy in a family wherein the affected individuals presented with congenital muscular dystrophy, brain abnormalities and generalized epilepsy. We performed whole exome sequencing and identified compound heterozygous GMPPB mutations in the affected children. GMPPB is an enzyme in the glycosylation pathway, and GMPPB mutation were recently linked to eight cases of alpha-dystroglycanopathy with a range of symptoms. We identified a novel mutation in GMPPB (p.I219T) as well as a previously published mutation (p.R287Q). Thus, our work further confirms a role for GMPPB defects in alpha-dystroglycanopathy, and suggests that glycosylation may play a role in the neuronal membrane channels or networks involved in the physiology of generalized epilepsy syndromes. PMID:24780531

  12. Gaming magazines and the drive for muscularity in preadolescent boys: a longitudinal examination.

    PubMed

    Harrison, Kristen; Bond, Bradley J

    2007-09-01

    The development of a drive for muscularity among boys has been linked to various cultural influences, one of which is exposure to mass media depicting the muscular male body ideal. We sought to determine whether self-reported exposure to four ideal-body magazine genres (health/fitness, fashion, sports, and gaming) predicted an increased drive for muscularity 1 year later. A sample of 104 Black and 77 White preadolescent boys (mean age 8.77) participated in a 2-wave longitudinal panel study. Controlling Wave 1 grade, perceived thinness/adiposity, and drive for muscularity, exposure to video gaming magazines predicted a significant increase in Wave 2 drive for muscularity, but only for White boys. Discussion calls for the inclusion of video gaming magazine exposure measures in future research on print media and male body ideals, along with empirical exploration of racial themes in gaming magazines. PMID:18089273

  13. Independent mobility after early introduction of a power wheelchair in spinal muscular atrophy.

    PubMed

    Dunaway, Sally; Montes, Jacqueline; O'Hagen, Jessica; Sproule, Douglas M; Vivo, Darryl C De; Kaufmann, Petra

    2013-05-01

    Weakness resulting from spinal muscular atrophy causes severe limitations in functional mobility. The early introduction of power mobility has potential to enhance development and mitigate disability. These outcomes are achieved by simulating normal skill acquisition and by promoting motor learning, visuospatial system development, self-exploration, cognition, and social development. There are few reports on early power mobility in spinal muscular atrophy, and it is typically not prescribed until school age. The authors evaluated 6 children under age 2 years with neuromuscular disease (5 spinal muscular atrophy, 1 congenital muscular dystrophy) for power mobility. Parents recorded the practice hours necessary to achieve independence using the Power Mobility Skills Checklist. Four children achieved independence in all items on the checklist by 7.9 months (range: 73-458 days). Introduction of early power mobility is feasible in spinal muscular atrophy patients under age 2 years and should be introduced in late infancy when children typically acquire locomotor skills. PMID:22772161

  14. Amelioration of Muscular Dystrophy by Transgenic Expression of Niemann-Pick C1

    PubMed Central

    Steen, Michelle S.; Adams, Marvin E.; Tesch, Yan

    2009-01-01

    Duchenne muscular dystrophy (DMD) and other types of muscular dystrophies are caused by the loss or alteration of different members of the dystrophin protein complex. Understanding the molecular mechanisms by which dystrophin-associated protein abnormalities contribute to the onset of muscular dystrophy may identify new therapeutic approaches to these human disorders. By examining gene expression alterations in mouse skeletal muscle lacking α-dystrobrevin (Dtna−/−), we identified a highly significant reduction of the cholesterol trafficking protein, Niemann-Pick C1 (NPC1). Mutations in NPC1 cause a progressive neurodegenerative, lysosomal storage disorder. Transgenic expression of NPC1 in skeletal muscle ameliorates muscular dystrophy in the Dtna−/− mouse (which has a relatively mild dystrophic phenotype) and in the mdx mouse, a model for DMD. These results identify a new compensatory gene for muscular dystrophy and reveal a potential new therapeutic target for DMD. PMID:18946078

  15. [Calpain-3 gene defect causing limb gird muscular dystrophy in a Hungarian family].

    PubMed

    Horváth, Rita; Walter, Maggie C; Lochmüller, Hanns; Hübner, Angela; Karcagi, Veronika; Pikó, Henriett; Timár, László; Komoly, Sámuel

    2005-01-20

    Limb gird muscular dystrophies (LGMD2) are a clinically and genetically heterogeneous group of hereditary diseases with autosomal recessive trait, characterized by progressive atrophy and weakness predominantly in the proximal limb muscles. The authors present clinical, histological, immunohistochemical and immunoblot results of two sisters suffering from so far unclassified autosomal recessive limb girdle muscular dystrophy. Haplotype analysis for genes possibly involved in autosomal recessive limb girdle muscular dystrophies was performed in the genetically informative family. All of the results pointed to a molecular genetic defect of the calpain-3 (CAPN3) gene. Direct sequencing of the CAPN3 gene revealed compound heterozygous state for two mutations previously described in association with limb girdle muscular dystrophy, proving pathogenicity. The authors would like to emphasize the importance of the above described combined strategy in diagnosing limb girdle muscular dystrophies. PMID:15884399

  16. Developmental Defects in a Zebrafish Model for Muscular Dystrophies Associated with the Loss of Fukutin-Related Protein (FKRP)

    ERIC Educational Resources Information Center

    Thornhill, Paul; Bassett, David; Lochmuller, Hanns; Bushby, Kate; Straub, Volker

    2008-01-01

    A number of muscular dystrophies are associated with the defective glycosylation of [alpha]-dystroglycan and many are now known to result from mutations in a number of genes encoding putative or known glycosyltransferases. These diseases include severe forms of congenital muscular dystrophy (CMD) such as Fukuyama type congenital muscular dystrophy…

  17. Air stacking: effects on pulmonary function in patients with spinal muscular atrophy and in patients with congenital muscular dystrophy*,**

    PubMed Central

    Marques, Tanyse Bahia Carvalho; Neves, Juliana de Carvalho; Portes, Leslie Andrews; Salge, João Marcos; Zanoteli, Edmar; Reed, Umbertina Conti

    2014-01-01

    OBJECTIVE: Respiratory complications are the main causes of morbidity and mortality in patients with neuromuscular disease (NMD). The objectives of this study were to determine the effects that routine daily home air-stacking maneuvers have on pulmonary function in patients with spinal muscular atrophy (SMA) and in patients with congenital muscular dystrophy (CMD), as well as to identify associations between spinal deformities and the effects of the maneuvers. METHODS: Eighteen NMD patients (ten with CMD and eight with SMA) were submitted to routine daily air-stacking maneuvers at home with manual resuscitators for four to six months, undergoing pulmonary function tests before and after that period. The pulmonary function tests included measurements of FVC; PEF; maximum insufflation capacity (MIC); and assisted and unassisted peak cough flow (APCF and UPCF, respectively) with insufflations. RESULTS: After the use of home air-stacking maneuvers, there were improvements in the APCF and UPCF. In the patients without scoliosis, there was also a significant increase in FVC. When comparing patients with and without scoliosis, the increases in APCF and UPCF were more pronounced in those without scoliosis. CONCLUSIONS: Routine daily air-stacking maneuvers with a manual resuscitator appear to increase UPCF and APCF in patients with NMD, especially in those without scoliosis. PMID:25410841

  18. [Aran-Duchenne? Duchenne-Aran? The quarrel around progressive muscular atrophy].

    PubMed

    Bonduelle, M

    1990-01-01

    A description of progressive muscular atrophy, the first item in neuro-muscular nosography, figures in the memoir published by F.A. Aran in 1850. There, all the essential features of the disease can be found: its usual onset at the distal end of the upper limbs, its slowly progressive worsening, with muscular atrophy sparing certain muscles or muscular fascicles, its peculiar "claw hand", its muscular "fasciculations" and cramps, with untouched sensitivity. After praising Aran's "beautiful description", G.B. Duchenne de Boulogne subsequently persisted in claiming paternity, untiringly referring to a memoir on "muscular atrophy with fatty transformation" said to have been submitted to the Académie des Sciences in 1849. There is no trace of this memoir, and while it is true that the "localized electrisation" technique was applied by Duchenne to all the patients in Aran's memoir, and that he was the sole author of two of his observations, it is Aran who must be credited with the clinical description, the synthetic presentation and the appellation of "progressive muscular atrophy". Initially, this term covered a number of disparate facts which were later identified and put in their proper nosological place, even though this dismemberment left standing what Charcot called "Duchenne-Aran disease" before the Aran-Duchenne denomination prevailed. This denomination is now customary, and rightly so. PMID:2181591

  19. Independent Association of Muscular Strength and Carotid Intima-Media Thickness in Children.

    PubMed

    Melo, X; Santa-Clara, H; Santos, D A; Pimenta, N M; Minderico, C S; Fernhall, B; Sardinha, L B

    2015-07-01

    The aim of this cross-sectional study was to examine the influence of muscular strength on carotid intima-media thickness (cIMT) in children, controlling for the effect of cardiorespiratory fitness (CRF) and central adiposity and to examine if differences among muscular strength tertiles translate to physiological differences. We assessed cIMT of the common carotid artery in 366 children between 11-12 years of age (191 girls). Measures included cIMT assessed with high-resolution ultrasonography, a maximal handgrip strength test, body fat mass and lean mass from DXA and CRF determined using a maximal cycle ergometer test. Association between muscular strength and cIMT adjusted for CRF and central adiposity, as measured by trunk fat, was tested with multiple linear regression analysis. Differences in risk factors among muscular strength groups were tested with ANOVA. The Muscular Strength Index (MSI) was inversely associated with cIMT independently of CRF and central adiposity (p<0.05). The low MSI group had the highest values of cIMT, waist circumference and systolic blood pressure and the lowest CRF (p<0.05). There was an inverse and independent association between muscular strength and cIMT. Low muscular strength was associated with higher levels of cardiovascular disease risk factors in children. PMID:25875317

  20. Induced pluripotent stem cells from a spinal muscular atrophy patient

    PubMed Central

    Ebert, Allison D.; Yu, Junying; Rose, Ferrill F.; Mattis, Virginia B.; Lorson, Christian L.; Thomson, James A.; Svendsen, Clive N.

    2009-01-01

    Spinal muscular atrophy (SMA) is one of the most common inherited forms of neurological disease leading to infant mortality. Patients exhibit selective loss of lower motor neurons resulting in muscle weakness, paralysis, and often death. Although patient fibroblasts have been used extensively to study SMA, motor neurons have a unique anatomy and physiology which may underlie their vulnerability to the disease process. Here we report the generation of induced pluripotent stem (iPS) cells from skin fibroblast samples taken from a child with SMA. These cells expanded robustly in culture, maintained the disease genotype, and generated motor neurons that showed selective deficits compared to those derived from the child's unaffected mother. This is the first study to show human iPS cells can be used to model the specific pathology seen in a genetically inherited disease. As such, it represents a promising resource to study disease mechanisms, screen novel drug compounds, and develop new therapies. PMID:19098894

  1. Muscular effects of statins in the elderly female: a review

    PubMed Central

    Bhardwaj, Shilpa; Selvarajah, Shalini; Schneider, Eric B

    2013-01-01

    Statins have demonstrated substantial benefits in supporting cardiovascular health. Older individuals are more likely to experience the well-known muscle-related side effects of statins compared with younger individuals. Elderly females may be especially vulnerable to statin-related muscle disorder. This review will collate and discuss statin-related muscular effects, examine their molecular and genetic basis, and how these apply specifically to elderly women. Developing strategies to reduce the incidence of statin-induced myopathy in older adult women could contribute to a significant reduction in the overall incidence of statin-induced muscle disorder in this vulnerable group of patients. Reducing statin-related muscle disorder would likely improve overall patient compliance, thereby leading to an increase in improved short- and long-term outcomes associated with appropriate use of statins. PMID:23355775

  2. Bioelectrical Impedance Vector Analysis and Muscular Fitness in Healthy Men

    PubMed Central

    Rodríguez-Rodríguez, Fernando; Cristi-Montero, Carlos; González-Ruíz, Katherine; Correa-Bautista, Jorge Enrique; Ramírez-Vélez, Robinson

    2016-01-01

    Muscle strength can define the general muscular fitness (MF) measurable through hand-grip strength (HG), which is a factor that relates to the health of people of different ages. In this study we evaluated the muscle strength together with a bioimpedance electric analysis in 223 healthy Colombian adult subjects. The bioelectrical impedance vector analysis (BIVA) was conducted to determine the resistance (R), reactance (Xc) and phase angle (PhA). We classified the subjects into three groups (for tertiles), obtaining lower values of R and Xc in subjects with lower HG, plus a high correlation between PhA and HG. An increase in the level of PhA is associated with a high level of MF in a sample of healthy Latin American adult men. The BIVA’s parameters and PhA are a potentially effective preventive measure to be integrated into routine screening in the clinical setting. PMID:27384579

  3. Bioelectrical Impedance Vector Analysis and Muscular Fitness in Healthy Men.

    PubMed

    Rodríguez-Rodríguez, Fernando; Cristi-Montero, Carlos; González-Ruíz, Katherine; Correa-Bautista, Jorge Enrique; Ramírez-Vélez, Robinson

    2016-01-01

    Muscle strength can define the general muscular fitness (MF) measurable through hand-grip strength (HG), which is a factor that relates to the health of people of different ages. In this study we evaluated the muscle strength together with a bioimpedance electric analysis in 223 healthy Colombian adult subjects. The bioelectrical impedance vector analysis (BIVA) was conducted to determine the resistance (R), reactance (Xc) and phase angle (PhA). We classified the subjects into three groups (for tertiles), obtaining lower values of R and Xc in subjects with lower HG, plus a high correlation between PhA and HG. An increase in the level of PhA is associated with a high level of MF in a sample of healthy Latin American adult men. The BIVA's parameters and PhA are a potentially effective preventive measure to be integrated into routine screening in the clinical setting. PMID:27384579

  4. RASCH ANALYSIS OF CLINICAL OUTCOME MEASURES IN SPINAL MUSCULAR ATROPHY

    PubMed Central

    CANO, STEFAN J.; MAYHEW, ANNA; GLANZMAN, ALLAN M.; KROSSCHELL, KRISTIN J.; SWOBODA, KATHRYN J.; MAIN, MARION; STEFFENSEN, BIRGIT F.; BÉRARD, CAROLE; GIRARDOT, FRANÇOISE; PAYAN, CHRISTINE A.M.; MERCURI, EUGENIO; MAZZONE, ELENA; ELSHEIKH, BAKRI; FLORENCE, JULAINE; HYNAN, LINDA S.; IANNACCONE, SUSAN T.; NELSON, LESLIE L.; PANDYA, SHREE; ROSE, MICHAEL; SCOTT, CHARLES; SADJADI, REZA; YORE, MACKENSIE A.; JOYCE, CYNTHIA; KISSEL, JOHN T.

    2015-01-01

    Introduction Trial design for SMA depends on meaningful rating scales to assess outcomes. In this study Rasch methodology was applied to 9 motor scales in spinal muscular atrophy (SMA). Methods Data from all 3 SMA types were provided by research groups for 9 commonly used scales. Rasch methodology assessed the ordering of response option thresholds, tests of fit, spread of item locations, residual correlations, and person separation index. Results Each scale had good reliability. However, several issues impacting scale validity were identified, including the extent that items defined clinically meaningful constructs and how well each scale measured performance across the SMA spectrum. Conclusions The sensitivity and potential utility of each SMA scale as outcome measures for trials could be improved by establishing clear definitions of what is measured, reconsidering items that misfit and items whose response categories have reversed thresholds, and adding new items at the extremes of scale ranges. PMID:23836324

  5. Merosin-negative congenital muscular dystrophy: Report of five cases

    PubMed Central

    Incecik, Faruk; Herguner, Ozlem M.; Ceylaner, Serdar; Altunbasak, Sakir

    2015-01-01

    Context: Congenital muscular dystrophy type 1A (MDC1A) is caused by mutations in the laminin α-2 gene encoding laminin-a2. Aims: The purpose of this study is to determine clinical and genetic results in five Turkish patients with MDC1A. Setting and Designs: Five children with MDC1A were retrospectively analyzed. Results: Three (60%) were boys, and 2 (40%) were girls. Parental consanguinity was found in all the families. In all the patients, hypotonia, weakness, delayed motor milestones, markedly elevated creatine phosphokinase (CPK) concentration, and brain white matter abnormalities on magnetic resonance imaging were detected. Mutation analysis was performed in all the patients, and 3 different mutations were detected. However, a mutation in patient 1 and 2 has not been previously described in the literature. Conclusions: When a patient presents with severe congenital hypotonia, muscle weakness, high serum CPK levels, and white matter abnormalities, should be suspected as MDC1A. PMID:26962340

  6. Deletion patterns of Duchenne and Becker muscular dystrophies in Greece.

    PubMed Central

    Florentin, L; Mavrou, A; Kekou, K; Metaxotou, C

    1995-01-01

    We present molecular data from 90 Greek boys with Duchenne or Becker muscular dystrophy using cDNA analysis or multiplex PCR or both. Deletions were detected in 63.3% of patients and were mainly clustered in two areas of the gene, one in the 3' and one in the 5' end of the gene (exons 3-19 and 44-53). Almost 17% of deletion breakpoints lay in intron 44 while 29% of deletions have a breakpoint in intron 50. Thus the distribution of deletions in our DMD/BMD patients differs from that previously reported. Furthermore a 1:4.35 proximal:distal ratio was observed in familial cases and a 1:2.45 ratio in isolated ones. PMID:7897627

  7. Spinal muscular atrophy patient-derived motor neurons exhibit hyperexcitability

    PubMed Central

    Liu, Huisheng; Lu, Jianfeng; Chen, Hong; Du, Zhongwei; Li, Xue-Jun; Zhang, Su-Chun

    2015-01-01

    Spinal muscular atrophy (SMA) presents severe muscle weakness with limited motor neuron (MN) loss at an early stage, suggesting potential functional alterations in MNs that contribute to SMA symptom presentation. Using SMA induced pluripotent stem cells (iPSCs), we found that SMA MNs displayed hyperexcitability with increased membrane input resistance, hyperpolarized threshold, and larger action potential amplitude, which was mimicked by knocking down full length survival motor neuron (SMN) in non-SMA MNs. We further discovered that SMA MNs exhibit enhanced sodium channel activities with increased current amplitude and facilitated recovery, which was corrected by restoration of SMN1 in SMA MNs. Together we propose that SMN reduction results in MN hyperexcitability and impaired neurotransmission, the latter of which exacerbate each other via a feedback loop, thus contributing to severe symptoms at an early stage of SMA. PMID:26190808

  8. Dental characteristics of patients with Duchenne muscular dystrophy.

    PubMed

    Symons, A L; Townsend, G C; Hughes, T E

    2002-01-01

    A comprehensive assessment of the dental characteristics of 23 patients with Duchenne muscular dystrophy (DMD) was carried out, based on dental records, oral examinations and dental models. Decreasing muscle function was associated with increased plaque and calculus accumulation, leading to gingival inflammation, but caries experience was low. Disturbances in tooth form, number and eruption of the second premolars were observed in 39% of patients. Anterior and posterior open bites were common, associated with lip incompetence, mouth breathing, macroglossia and tongue thrusting. Maxillary and mandibular arch breadths were significantly larger, on average, in the DMD group than in controls. Rather than a normal parabolic arch form, the dental arches in DMD patients tended to be hyperbolic, with the posterior teeth being displaced buccally, consistent with an imbalance between the lingual and facial musculature. PMID:12613312

  9. Programmed cell death and the gene behind spinal muscular atrophy.

    PubMed Central

    Robinson, A

    1995-01-01

    A gene involved in the development of spinal muscular atrophy (SMA) has been found on human chromosome 5 after a 4-year search. Named the neuronal apoptosis inhibitor protein (NAIP) gene, it is believed to inhibit the normal process of apoptosis--the disintegration of single cells that results from programmed cell death--in motor neurons. The researchers who found the NAIP gene also discovered that healthy people carry one complete copy of the gene along with many other partial copies. Many children with SMA have the partial copies but not the complete gene. This discovery facilitates the accurate genetic diagnosis of SMA. But gene therapy for SMA will not be possible until researchers find a suitable vector to stably introduce activated and intact copies of the gene into the motor neurons of children with SMA in time to stop motor neuron loss. Images p1460-a PMID:7585374

  10. Cytokine profiles in multifocal motor neuropathy and progressive muscular atrophy.

    PubMed

    Vlam, L; Stam, M; de Jager, W; Cats, E A; van den Berg, L H; van der Pol, W L

    2015-09-15

    Multifocal motor neuropathy (MMN) and progressive muscular atrophy (PMA) are associated with IgM monoclonal gammopathy or the presence IgM anti-GM1-antibodies. To further investigate the pathophysiology of MMN and PMA we determined concentrations of 16 mainly B-cell associated inflammatory markers in serum from 25 patients with MMN, 55 patients with PMA, 25 patients with amyotrophic lateral sclerosis (ALS) and 50 healthy controls. Median serum concentrations of the 16 tested cytokines and chemokines were not significantly increased in patients with MMN or patients with PMA, irrespective of the presence of IgM monoclonal gammopathy or high IgM anti-GM1 antibodies. These results argue against a systemic B-cell mediated immune response underlying the pathogenesis of MMN and PMA. PMID:26298317

  11. [Therapeutic trials for Duchenne muscular dystrophy: between hopes and disappointments].

    PubMed

    Bloetzer, Clemens; Fluss, Joël; Jeannet, Pierre-Yves

    2012-02-22

    Duchenne muscular dystrophy is an X-linked progressive muscle disease. Since the discovery of the dystrophin gene responsible for the condition, various therapeutic strategies have been elaborated. In this paper we introduce three of them, which are well into clinical trials. The first is based on the ability to read through premature stop codons, the second is based on the technique of exon skipping. Both strategies are examples of "personalized medicines", tailored for specific mutation types. The third approach is a pharmacological one, potentially useful for all Duchenne patients, regardless of their mutation type. These first clinical trials raise many questions for researchers as well as for patients and their families, some of which are discussed. PMID:22432241

  12. Congenital muscular torticollis concurrent with sagittal synostosis: a case report.

    PubMed

    Kim, Seung-Hyun; Ahn, Ah-Reum; Yim, Shin-Young

    2014-10-01

    Congenital muscular torticollis (CMT) and craniosynostosis are diseases that cause plagiocephaly and craniofacial asymmetry in children. In our literature review, we did not find any report of concurrent manifestation of CMT and craniosynostosis. A 41-month-old boy visited our hospital with left torticollis, right laterocollis, and craniofacial asymmetry as the main findings. During clinical examination, prominent right sternocleidomastoid muscle and limited range of motion of the neck were noted, and right CMT was confirmed by magnetic resonance imaging of the neck. Three-dimensional computed tomography of the skull, which was conducted due to the unusual appearance of the skull with a large head circumference, mild brachycephaly, as well as left plagiocephaly, revealed premature closure of the sagittal suture. Thus, we report the first case that showed concurrence of CMT and sagittal synostosis. We recommend that concurrently manifested craniosynostosis needs to be examined if the subject with CMT displays unusual craniofacial asymmetry to a greater extent than deformational plagiocephaly. PMID:25379504

  13. Gene for OTC: characterisation and linkage to Duchenne muscular dystrophy.

    PubMed Central

    Davies, K E; Briand, P; Ionasescu, V; Ionasescu, G; Williamson, R; Brown, C; Cavard, C; Cathelineau, L

    1985-01-01

    Cloned coding sequences for rat and human ornithine transcarbamylase (OTC) were obtained by screening a rat and a human cDNA library respectively with a synthetic oligonucleotide corresponding to 27 bases of the rat sequence. These clones, 1100 bp long for the rat clone and 1300 bp for the human, contain approximately 80% of the human OTC coding sequence. The OTC mRNA length determined by Northern blot analysis is 1700bp. The human OTC sequence was shown to be localised Xp11.4-Xp21 using somatic cell hybrids. There is a frequent RFLP revealed with the restriction enzyme MspI. OTC is located more closely to the Duchenne muscular dystrophy mutation than previously reported markers such as RC8 and L1.28, and therefore should prove useful in carrier detection and haplotype analysis of families carrying the mutation causing the disease. Images PMID:3839070

  14. Newborn screening for spinal muscular atrophy: Anticipating an imminent need.

    PubMed

    Phan, Han C; Taylor, Jennifer L; Hannon, Harry; Howell, Rodney

    2015-04-01

    Spinal muscular atrophy (SMA) is the most common genetic cause of infant mortality. Children with type I SMA typically die by the age of 2 years. Recent progress in gene modification and other innovative therapies suggest that improved outcomes may soon be forthcoming. In animal models, therapeutic intervention initiated before the loss of motor neurons alters SMA phenotype and increases lifespan. Presently, supportive care including respiratory, nutritional, physiatry, and orthopedic management can ameliorate clinical symptoms and improve survival rates if SMA is diagnosed early in life. Newborn screening could help optimize these potential benefits. A recent report demonstrated that SMA detection can be multiplexed at minimal additional cost with the assay for severe combined immunodeficiency, already implemented by many newborn screening programs. The public health community should remain alert to the rapidly changing developments in early detection and treatment of SMA. PMID:25979781

  15. Acetoacetate Accelerates Muscle Regeneration and Ameliorates Muscular Dystrophy in Mice.

    PubMed

    Zou, Xiaoting; Meng, Jiao; Li, Li; Han, Wanhong; Li, Changyin; Zhong, Ran; Miao, Xuexia; Cai, Jun; Zhang, Yong; Zhu, Dahai

    2016-01-29

    Acetoacetate (AA) is a ketone body and acts as a fuel to supply energy for cellular activity of various tissues. Here, we uncovered a novel function of AA in promoting muscle cell proliferation. Notably, the functional role of AA in regulating muscle cell function is further evidenced by its capability to accelerate muscle regeneration in normal mice, and it ameliorates muscular dystrophy in mdx mice. Mechanistically, our data from multiparameter analyses consistently support the notion that AA plays a non-metabolic role in regulating muscle cell function. Finally, we show that AA exerts its function through activation of the MEK1-ERK1/2-cyclin D1 pathway, revealing a novel mechanism in which AA serves as a signaling metabolite in mediating muscle cell function. Our findings highlight the profound functions of a small metabolite as signaling molecule in mammalian cells. PMID:26645687

  16. Advances in therapeutic development for spinal muscular atrophy

    PubMed Central

    Howell, Matthew D; Singh, Natalia N; Singh, Ravindra N

    2015-01-01

    Spinal muscular atrophy (SMA) is a leading genetic cause of infant mortality. The disease originates from low levels of SMN protein due to deletion and/or mutations of SMN1 coupled with the inability of SMN2 to compensate for the loss of SMN1. While SMN1 and SMN2 are nearly identical, SMN2 predominantly generates a truncated protein (SMNΔ7) due to skipping of exon 7, the last coding exon. Several avenues for SMA therapy are being explored, including means to enhance SMN2 transcription, correct SMN2 exon 7 splicing, stabilize SMN/SMNΔ7 protein, manipulate SMN-regulated pathways and SMN1 gene delivery by viral vectors. This review focuses on the aspects of target discovery, validations and outcome measures for a promising therapy of SMA. PMID:25068989

  17. FSHD: copy number variations on the theme of muscular dystrophy

    PubMed Central

    Cabianca, Daphne Selvaggia

    2010-01-01

    In humans, copy number variations (CNVs) are a common source of phenotypic diversity and disease susceptibility. Facioscapulohumeral muscular dystrophy (FSHD) is an important genetic disease caused by CNVs. It is an autosomal-dominant myopathy caused by a reduction in the copy number of the D4Z4 macrosatellite repeat located at chromosome 4q35. Interestingly, the reduction of D4Z4 copy number is not sufficient by itself to cause FSHD. A number of epigenetic events appear to affect the severity of the disease, its rate of progression, and the distribution of muscle weakness. Indeed, recent findings suggest that virtually all levels of epigenetic regulation, from DNA methylation to higher order chromosomal architecture, are altered at the disease locus, causing the de-regulation of 4q35 gene expression and ultimately FSHD. PMID:21149563

  18. Duchenne muscular dystrophy drugs face tough path to approval.

    PubMed

    Hodgkinson, L; Sorbera, L; Graul, A I

    2016-03-01

    Highly anticipated as new disease-modifying treatments for Duchenne muscular dystrophy (DMD), therapeutics by BioMarin Pharmaceutical (Kyndrisa™; drisapersen) and Sarepta Therapeutics (eteplirsen; AVI-4658) both recently received negative FDA reviews and are now facing battles for approval in the U.S. At present, BioMarin is committed to working with the FDA to forge a pathway to approval following the failure of its NDA, while Sarepta awaits the formal decision on its NDA, which is expected by late May 2016. Despite the critical nature of both reviews, analysts consider that there is still a narrow possibility of approval of both drugs. According to Consensus forecasts from Thomson Reuters Cortellis for Competitive Intelligence, Kyndrisa is forecast to achieve sales of USD 533.71 million in 2021. PMID:27186594

  19. Gene discovery for facioscapulohumeral muscular dystrophy by machine learning techniques.

    PubMed

    González-Navarro, Félix F; Belanche-Muñoz, Lluís A; Gámez-Moreno, María G; Flores-Ríos, Brenda L; Ibarra-Esquer, Jorge E; López-Morteo, Gabriel A

    2016-04-28

    Facioscapulohumeral muscular dystrophy (FSHD) is a neuromuscular disorder that shows a preference for the facial, shoulder and upper arm muscles. FSHD affects about one in 20-400,000 people, and no effective therapeutic strategies are known to halt disease progression or reverse muscle weakness or atrophy. Many genes may be incorrectly regulated in affected muscle tissue, but the mechanisms responsible for the progressive muscle weakness remain largely unknown. Although machine learning (ML) has made significant inroads in biomedical disciplines such as cancer research, no reports have yet addressed FSHD analysis using ML techniques. This study explores a specific FSHD data set from a ML perspective. We report results showing a very promising small group of genes that clearly separates FSHD samples from healthy samples. In addition to numerical prediction figures, we show data visualizations and biological evidence illustrating the potential usefulness of these results. PMID:26960968

  20. Patient Identified Disease Burden in Facioscapulohumeral Muscular Dystrophy

    PubMed Central

    Johnson, Nicholas E; Quinn, Christine; Eastwood, Eileen; Tawil, Rabi; Heatwole, Chad R

    2013-01-01

    Introduction The multitude of symptoms associated with facioscapulohumeral muscular dystrophy (FSHD) disease burden are of varying importance. The extent of these symptoms and their cumulative effect on the FSHD population is unknown. Methods We conducted interviews with adult FSHD patients to identify which symptoms have the greatest effect on their lives. Each interview was recorded, transcribed, coded, and analyzed using a qualitative framework technique, triangulation, and 3-investigator consensus approach. Results 1375 quotes were obtained through 20 patient interviews. 251 symptoms of importance were identified representing 14 themes of FSHD disease burden. Symptoms associated with mobility impairment, activity limitation, and social role limitation were most frequently mentioned by participants. Conclusions There are multiple themes and symptoms, some previously under-recognized, that play a key role in FSHD disease burden. PMID:23225386

  1. Facioscapulohumeral muscular dystrophy and respiratory failure; what about the diaphragm?

    PubMed Central

    Hazenberg, A.; van Alfen, N.; Voet, N.B.M.; Kerstjens, H.A.M.; Wijkstra, P.J.

    2014-01-01

    Introduction We present a case of facioscapulohumeral muscular dystrophy (FSHD) with a diaphragm paralysis as the primary cause of ventilatory failure. FSHD is an autosomal dominant inherited disorder with a restricted pattern of weakness. Although respiratory weakness is a relatively unknown in FSHD, it is not uncommon. Methods We report on the clinical findings of a 68-year old male who presented with severe dyspnea while supine. Results Supplementing our clinical findings with laboratory, electrophysiological and radiological performances led to the diagnosis of diaphragm paralysis. Arterial blood gas in sitting position without supplemental oxygen showed a mild hypercapnia. His sleep improved after starting non-invasive ventilation and his daytime sleepiness disappeared. Discussion We conclude that in patients with FSHD who have symptoms of nocturnal hypoventilation, an adequate assessment of the diaphragm is recommended. This is of great importance as we know that nocturnal hypoventilation can be treated effectively by non-invasive ventilation. PMID:26029575

  2. Limb-girdle muscular dystrophy subtypes: First-reported cohort from northeastern China

    PubMed Central

    Mahmood, Omar Abdulmonem; Jiang, Xinmei; Zhang, Qi

    2013-01-01

    The relative frequencies of different subtypes of limb-girdle muscular dystrophies vary widely among different populations. We estimated the percentage of limb-girdle muscular dystrophy subtypes in Chinese people based on 68 patients with limb-girdle muscular dystrophy from the Myology Clinic, Neurology Department, First Hospital of Jilin University, China. A diagnosis of calpainopathy was made in 12 cases (17%), and dysferlin deficiency in 10 cases (15%). Two biopsies revealed α-sarcoglycan deficiency (3%), and two others revealed a lack of caveolin-3 (3%). A diagnosis of unclassified limb-girdle muscular dystrophy was made in the remaining patients (62%). The appearances of calpain 3- and dysferlin-deficient biopsies were similar, though rimmed vacuoles were unique to dysferlinopathy, while inflammatory infiltrates were present in both these limb-girdle muscular dystrophy type 2D biopsies. Macrophages were detected in seven dysferlinopathy biopsies. The results of this study suggest that the distribution of limb-girdle muscular dystrophy subtypes in the Han Chinese population is similar to that reported in the West. The less necrotic, regenerating and inflammatory appearance of limb-girdle muscular dystrophy type 2A, but with more lobulated fibers, supports the idea that calpainopathy is a less active, but more chronic disease than dysferlinopathy. Unusual features indicated an extended limb-girdle muscular dystrophy disease spectrum. The use of acid phosphatase stain should be considered in suspected dysferlinopathies. To the best of our knowledge, this is the first report to define the relative proportions of the various forms of limb-girdle muscular dystrophy in China, based on protein testing. PMID:25206500

  3. A review of nutrition in Duchenne muscular dystrophy.

    PubMed

    Davidson, Z E; Truby, H

    2009-10-01

    Duchenne muscular dystrophy (DMD) is a recessive X linked genetic disorder characterised by progressive muscle weakness and reduced muscle tone. Affecting only boys, it limits life expectancy to approximately 20 years. A literature review was conducted using MEDLINE and the Cochrane Library, employing the term 'Duchenne muscular dystrophy'. A total of 1491 articles in English were recovered. These papers were searched thematically under the headings: body composition (n = 10), energy expenditure (n = 10), nutrition (n = 6), corticosteroid therapy (n = 55) and gene therapy (n = 199). Key dietetic practice points were identified relevant to nutritional management. Papers supporting these key themes were assigned a level of evidence and grade of recommendation. There is limited high-quality evidence to guide the nutritional management of boys with DMD. Currently, the majority of evidence is based on expert opinion and clinical expertise. Delayed growth, short stature, muscle wasting and increased fat mass are characteristics of DMD and impact on nutritional status and energy requirements. The early introduction of steroids has altered the natural history of the disease, but can exacerbate weight gain in a population already susceptible to obesity. Prior to commencing steroids, anticipatory guidance for weight management should be provided. Malnutrition is a feature of end stage disease requiring a multidisciplinary approach, such as texture modification and supplemental feeding. Micronutrient requirements are yet to be determined but, as a result of corticosteroid treatment, vitamin D and calcium should be supplemented. Some evidence exists supporting supplementation with creatine monohydrate to improve muscle strength. More research is needed to provide a higher quality of evidence for dietitians working within this area. PMID:19743977

  4. An Immunological Fingerprint Differentiates Muscular Lymphatics from Arteries and Veins

    PubMed Central

    Bridenbaugh, Eric A.; Wang, Wei; Srimushnam, Maya; Cromer, Walter E.; Zawieja, Scott D.; Schmidt, Susan E.; Jupiter, Daniel C.; Huang, Hung-Chung; Van Buren, Vincent

    2013-01-01

    Abstract The principal function of the lymphatic system is to transport lymph from the interstitium to the nodes and then from the nodes to the blood. In doing so lymphatics play important roles in fluid homeostasis, macromolecular/antigen transport and immune cell trafficking. To better understand the genes that contribute to their unique physiology, we compared the transcriptional profile of muscular lymphatics (prenodal mesenteric microlymphatics and large, postnodal thoracic duct) to axillary and mesenteric arteries and veins isolated from rats. Clustering of the differentially expressed genes demonstrated that the lymph versus blood vessel differences were more profound than between blood vessels, particularly the microvessels. Gene ontology functional category analysis indicated that microlymphatics were enriched in antigen processing/presentation, IgE receptor signaling, catabolic processes, translation and ribosome; while they were diminished in oxygen transport, regulation of cell proliferation, glycolysis and inhibition of adenylate cyclase activity by G-proteins. We evaluated the differentially expressed microarray genes/products by qPCR and/or immunofluorescence. Immunofluorescence documented that multiple MHC class II antigen presentation proteins were highly expressed by an antigen-presenting cell (APC) type found resident within the lymphatic wall. These APCs also expressed CD86, a co-stimulatory protein necessary for T-cell activation. We evaluated the distribution and phenotype of APCs within the pre and postnodal lymphatic network. This study documents a novel population of APCs resident within the walls of muscular, prenodal lymphatics that indicates novel roles in antigen sampling and immune responses. In conclusion, these prenodal lymphatics exhibit a unique profile that distinguishes them from blood vessels and highlights the role of the lymphatic system as an immunovascular system linking the parenchymal interstitium, lymph nodes and the

  5. Current and emerging treatment strategies for Duchenne muscular dystrophy.

    PubMed

    Mah, Jean K

    2016-01-01

    Duchenne muscular dystrophy (DMD) is the most common form of muscular dystrophy in childhood. It is caused by mutations of the DMD gene, leading to progressive muscle weakness, loss of independent ambulation by early teens, and premature death due to cardiorespiratory complications. The diagnosis can usually be made after careful review of the history and examination of affected boys presenting with developmental delay, proximal weakness, and elevated serum creatine kinase, plus confirmation by muscle biopsy or genetic testing. Precise characterization of the DMD mutation is important for genetic counseling and individualized treatment. Current standard of care includes the use of corticosteroids to prolong ambulation and to delay the onset of secondary complications. Early use of cardioprotective agents, noninvasive positive pressure ventilation, and other supportive strategies has improved the life expectancy and health-related quality of life for many young adults with DMD. New emerging treatment includes viral-mediated microdystrophin gene replacement, exon skipping to restore the reading frame, and nonsense suppression therapy to allow translation and production of a modified dystrophin protein. Other potential therapeutic targets involve upregulation of compensatory proteins, reduction of the inflammatory cascade, and enhancement of muscle regeneration. So far, data from DMD clinical trials have shown limited success in delaying disease progression; unforeseen obstacles included immune response against the generated mini-dystrophin, inconsistent evidence of dystrophin production in muscle biopsies, and failure to demonstrate a significant improvement in the primary outcome measure, as defined by the 6-minute walk test in some studies. The long-term safety and efficacy of emerging treatments will depend on the selection of appropriate clinical end points and sensitive biomarkers to detect meaningful changes in disease progression. Correction of the underlying

  6. NAD+ Biosynthesis Ameliorates a Zebrafish Model of Muscular Dystrophy

    PubMed Central

    Goody, Michelle F.; Kelly, Meghan W.; Reynolds, Christine J.; Khalil, Andre; Crawford, Bryan D.; Henry, Clarissa A.

    2012-01-01

    Muscular dystrophies are common, currently incurable diseases. A subset of dystrophies result from genetic disruptions in complexes that attach muscle fibers to their surrounding extracellular matrix microenvironment. Cell-matrix adhesions are exquisite sensors of physiological conditions and mediate responses that allow cells to adapt to changing conditions. Thus, one approach towards finding targets for future therapeutic applications is to identify cell adhesion pathways that mediate these dynamic, adaptive responses in vivo. We find that nicotinamide riboside kinase 2b-mediated NAD+ biosynthesis, which functions as a small molecule agonist of muscle fiber-extracellular matrix adhesion, corrects dystrophic phenotypes in zebrafish lacking either a primary component of the dystrophin-glycoprotein complex or integrin alpha7. Exogenous NAD+ or a vitamin precursor to NAD+ reduces muscle fiber degeneration and results in significantly faster escape responses in dystrophic embryos. Overexpression of paxillin, a cell adhesion protein downstream of NAD+ in this novel cell adhesion pathway, reduces muscle degeneration in zebrafish with intact integrin receptors but does not improve motility. Activation of this pathway significantly increases organization of laminin, a major component of the extracellular matrix basement membrane. Our results indicate that the primary protective effects of NAD+ result from changes to the basement membrane, as a wild-type basement membrane is sufficient to increase resilience of dystrophic muscle fibers to damage. The surprising result that NAD+ supplementation ameliorates dystrophy in dystrophin-glycoprotein complex– or integrin alpha7–deficient zebrafish suggests the existence of an additional laminin receptor complex that anchors muscle fibers to the basement membrane. We find that integrin alpha6 participates in this pathway, but either integrin alpha7 or the dystrophin-glycoprotein complex is required in conjunction with integrin

  7. NAD+ biosynthesis ameliorates a zebrafish model of muscular dystrophy.

    PubMed

    Goody, Michelle F; Kelly, Meghan W; Reynolds, Christine J; Khalil, Andre; Crawford, Bryan D; Henry, Clarissa A

    2012-01-01

    Muscular dystrophies are common, currently incurable diseases. A subset of dystrophies result from genetic disruptions in complexes that attach muscle fibers to their surrounding extracellular matrix microenvironment. Cell-matrix adhesions are exquisite sensors of physiological conditions and mediate responses that allow cells to adapt to changing conditions. Thus, one approach towards finding targets for future therapeutic applications is to identify cell adhesion pathways that mediate these dynamic, adaptive responses in vivo. We find that nicotinamide riboside kinase 2b-mediated NAD+ biosynthesis, which functions as a small molecule agonist of muscle fiber-extracellular matrix adhesion, corrects dystrophic phenotypes in zebrafish lacking either a primary component of the dystrophin-glycoprotein complex or integrin alpha7. Exogenous NAD+ or a vitamin precursor to NAD+ reduces muscle fiber degeneration and results in significantly faster escape responses in dystrophic embryos. Overexpression of paxillin, a cell adhesion protein downstream of NAD+ in this novel cell adhesion pathway, reduces muscle degeneration in zebrafish with intact integrin receptors but does not improve motility. Activation of this pathway significantly increases organization of laminin, a major component of the extracellular matrix basement membrane. Our results indicate that the primary protective effects of NAD+ result from changes to the basement membrane, as a wild-type basement membrane is sufficient to increase resilience of dystrophic muscle fibers to damage. The surprising result that NAD+ supplementation ameliorates dystrophy in dystrophin-glycoprotein complex- or integrin alpha7-deficient zebrafish suggests the existence of an additional laminin receptor complex that anchors muscle fibers to the basement membrane. We find that integrin alpha6 participates in this pathway, but either integrin alpha7 or the dystrophin-glycoprotein complex is required in conjunction with integrin alpha

  8. Patterns of late gadolinium enhancement in Duchenne muscular dystrophy carriers

    PubMed Central

    2014-01-01

    Background This study was designed to assess whether cardiovascular magnetic resonance imaging (CMR) in Duchenne muscular dystrophy carriers (DMDc) may index any cell milieu elements of LV dysfunction and whether this cardiac phenotype may be related to genotype. The null hypothesis was that myocardial fibrosis, assessed by late gadolinium enhancement (LGE), might be similarly accounted for in DMDc and gender and age-matched controls. Methods Thirty DMDc patients had CMR and genotyping with 37 gender and age-matched controls. Systolic and diastolic LV function was assessed by 2D-echocardiography. Results Absolute and percent LGE were higher in muscular symptomatic (sym) than asymptomatic (asy) DMDc (1.77 ± 0.27 vs 0.76 ± 0.17 ml; F = 19.6, p < 0.0001 and 1.86 ± 0.26% vs 0.68 ± 0.17%, F = 22.1, p < 0.0001, respectively). There was no correlation between LGE and age. LGE was seen most frequently in segments 5 and 6; segment 5 was involved in all asy-DMDc. Subepicardial LGE predominated, compared to the mid-myocardial one (11 out of 14 DMDc). LGE was absent in the subendocardium. No correlations were seen between genotyping (type of mutation, gene region and protein domain), confined to the exon’s study, and cardiac phenotype. Conclusions A typical myocardial LGE-pattern location (LV segments 5 and 6) was a common finding in DMDc. LGE was more frequently subepicardial plus midmyocardial in sym-DMDc, with normal LV systolic and diastolic function. No genotype-phenothype correlation was found. PMID:25008475

  9. [Genetic Diagnosis and Molecular Therapies for Duchenne Muscular Dystrophy].

    PubMed

    Takeshima, Yasuhiro

    2015-10-01

    Duchenne muscular dystrophy (DMD) is the most common form of inherited muscle disease and is characterized by progressive muscle wasting, ultimately resulting in the death of patients in their twenties or thirties. DMD is characterized by a deficiency of the muscle dystrophin as a result of mutations in the dystrophin gene. Currently, no effective treatment for DMD is available. Promising molecular therapies which are mutation-specific have been developed. Transformation of an out-of-frame mRNA into an in-frame dystrophin message by inducing exon skipping is considered one of the approaches most likely to lead to success. We demonstrated that the intravenous administration of the antisense oligonucleotide against the splicing enhancer sequence results in exon skipping and production of the dystrophin protein in DMD case for the first time. After extensive studies, anti-sense oligonucleotides comprising different monomers have undergone clinical trials and provided favorable results, enabling improvements in ambulation of DMD patients. Induction of the read-through of nonsense mutations is expected to produce dystrophin in DMD patients with nonsense mutations, which are detected in 19% of DMD cases. The clinical effectiveness of gentamicin and PTC124 has been reported. We have demonstrated that arbekacin-mediated read-through can markedly ameliorate muscular dystrophy in vitro. We have already begun a clinical trial of nonsense mutation read-through therapy using arbekacin. Some of these drug candidates are planned to undergo submission for approval to regulatory agencies in the US and EU. We hope that these molecular therapies will contribute towards DMD treatment. PMID:26897856

  10. Muscular strength profile in Tunisian male national judo team

    PubMed Central

    Ghrairi, Mourad; Hammouda, Omar; Malliaropoulos, Nikos

    2014-01-01

    Summary Background: it is well established that muscle strength is a determinant factor in judo. However, little data are available for African athletes. Therefore, the aim of this study was to provide reference data of the muscular strength profile (MSP) for an African team, Tunisian judo team. Methods: the study was conducted among ten international judo athletes from Tunisia. To determine their MSP, we used an isokinetic dynamometer to assess Hamstrings, Quadriceps of both knees and external, internal rotators of both shoulders. The angular velocities of the assessments were; 90, 180, 240°/s for the knees and 60, 120°/s for the shoulders. Results: MSP was determined based on two parameters; the maximum peak torque (PT) of each muscle and the ratio agonistic/antagonistic muscles (R). The knee extensors and flexors in the “supporting leg” had higher PT than in the “attacking leg”; respectively, 245N.m versus 237 (p<0.05) and 147 N.m versus 145 (p>0.05). R was normal for both legs. Furthermore, both rotators of the dominant shoulder had higher PT; 84 N.m versus 71 for the internal rotators (p<0.05) and 34,7 N.m versus 29,0 for the lateral rotators (p<0.05). Inversely, R was higher in the non-dominant side; 45% versus 35, p<0.05). Conclusion: the MSP of the selected elites Tunisian judo athletes was characterized by 3 major features; a strength of the quadriceps in the standing leg significantly higher than in the attacking leg, a normal muscular balance Hamstrings/quadriceps in both legs and a strength of the shoulder’ rotators higher in the dominant side. PMID:25332926

  11. Current and emerging treatment strategies for Duchenne muscular dystrophy

    PubMed Central

    Mah, Jean K

    2016-01-01

    Duchenne muscular dystrophy (DMD) is the most common form of muscular dystrophy in childhood. It is caused by mutations of the DMD gene, leading to progressive muscle weakness, loss of independent ambulation by early teens, and premature death due to cardiorespiratory complications. The diagnosis can usually be made after careful review of the history and examination of affected boys presenting with developmental delay, proximal weakness, and elevated serum creatine kinase, plus confirmation by muscle biopsy or genetic testing. Precise characterization of the DMD mutation is important for genetic counseling and individualized treatment. Current standard of care includes the use of corticosteroids to prolong ambulation and to delay the onset of secondary complications. Early use of cardioprotective agents, noninvasive positive pressure ventilation, and other supportive strategies has improved the life expectancy and health-related quality of life for many young adults with DMD. New emerging treatment includes viral-mediated microdystrophin gene replacement, exon skipping to restore the reading frame, and nonsense suppression therapy to allow translation and production of a modified dystrophin protein. Other potential therapeutic targets involve upregulation of compensatory proteins, reduction of the inflammatory cascade, and enhancement of muscle regeneration. So far, data from DMD clinical trials have shown limited success in delaying disease progression; unforeseen obstacles included immune response against the generated mini-dystrophin, inconsistent evidence of dystrophin production in muscle biopsies, and failure to demonstrate a significant improvement in the primary outcome measure, as defined by the 6-minute walk test in some studies. The long-term safety and efficacy of emerging treatments will depend on the selection of appropriate clinical end points and sensitive biomarkers to detect meaningful changes in disease progression. Correction of the underlying

  12. Motor unit reorganization in progressive muscular dystrophies and congenital myopathies.

    PubMed

    Szmidt-Sałkowska, Elżbieta; Gaweł, Małgorzata; Lipowska, Marta

    2015-01-01

    The aim of this study was to analyze motor unit reorganization in different types of progressive muscular dystrophies and congenital myopathies. The study population consisted of patients with genetically verified progressive muscular dystrophies: Duchenne (DMD) (n=54), Becker (BMD) (n=30), facio-scapulo-humeral (FSHD) (n=37), and Emery-Dreifuss (E-DD) (n=26). Patients with probable limb-girdle dystrophy (L-GD) (n=58) and congenital myopathies (n=35) were also included in the study. Quantitative EMG recordings were obtained from 469 muscles. Muscle activity at rest and during slight voluntary and maximal muscle contraction was analyzed. The motor unit activity potential (MUAP) duration, amplitude, area, size index (SI), polyphasicity, and the presence of "outliers" were evaluated. Diminished values of MUAP parameters and decreased maximal amplitude of maximal muscle contraction were recorded most frequently in DMD and mainly in the biceps brachii muscles. SI was the most frequently changed EMG parameter. "Outliers" with amplitude below the normal range were recorded more frequently then a decreased mean MUAP amplitude (what could indicate a very high sensitivity of this EMG parameter). Pathological interference pattern was recorded in 34.7% of biceps brachii and in 21.2% of rectus femoris muscles. In FSHD, decreased MUAP duration and SI and pathological interference pattern with low amplitude were recorded most frequently in the tibial anterior and deltoid muscles. The presence of potentials with reduced parameters is a result of decreasing motor unit area (reduced number and size of muscle fibers), while high amplitude potentials recorded in BMD and E-DD could indicate a slow and mild course of disease and muscle regeneration. PMID:26188938

  13. Downstream effects of plectin mutations in epidermolysis bullosa simplex with muscular dystrophy.

    PubMed

    Winter, Lilli; Türk, Matthias; Harter, Patrick N; Mittelbronn, Michel; Kornblum, Cornelia; Norwood, Fiona; Jungbluth, Heinz; Thiel, Christian T; Schlötzer-Schrehardt, Ursula; Schröder, Rolf

    2016-01-01

    Mutations of the human plectin gene (PLEC) on chromosome 8q24 cause autosomal recessive epidermolysis bullosa simplex with muscular dystrophy (EBS-MD). In the present study we analyzed the downstream effects of PLEC mutations on plectin protein expression and localization, the structure of the extrasarcomeric desmin cytoskeleton, protein aggregate formation and mitochondrial distribution in skeletal muscle tissue from three EBS-MD patients. PLEC gene analysis in a not previously reported 35-year-old EBS-MD patient with additional disease features of cardiomyopathy and malignant arrhythmias revealed novel compound heterozygous (p.(Phe755del) and p.(Lys1040Argfs*139)) mutations resulting in complete abolition of plectin protein expression. In contrast, the other two patients with different homozygous PLEC mutations showed preserved plectin protein expression with one only expressing rodless plectin variants, and the other markedly reduced protein levels. Analysis of skeletal muscle tissue from all three patients revealed severe disruption of the extrasarcomeric intermediate filament cytoskeleton, protein aggregates positive for desmin, syncoilin, and synemin, degenerative myofibrillar changes, and mitochondrial abnormalities comprising respiratory chain dysfunction and an altered organelle distribution and amount.Our study demonstrates that EBS-MD causing PLEC mutations universally result in a desmin protein aggregate myopathy phenotype despite marked differences in individual plectin protein expression patterns. Since plectin is the key cytolinker protein that regulates the structural and functional organization of desmin filaments, the defective anchorage and spacing of assembled desmin filaments is the key pathogenetic event that triggers the formation of desmin protein aggregates as well as secondary mitochondrial pathology. PMID:27121971

  14. Autosomal recessive limb-girdle muscular dystrophies in the Czech Republic

    PubMed Central

    2014-01-01

    Background Autosomal recessive limb-girdle muscular dystrophies (LGMD2) include a number of disorders with heterogeneous etiology that cause predominantly weakness and wasting of the shoulder and pelvic girdle muscles. In this study, we determined the frequency of LGMD subtypes within a cohort of Czech LGMD2 patients using mutational analysis of the CAPN3, FKRP, SGCA, and ANO5 genes. Methods PCR-sequencing analysis; sequence capture and targeted resequencing. Results Mutations of the CAPN3 gene are the most common cause of LGMD2, and mutations in this gene were identified in 71 patients in a set of 218 Czech probands with a suspicion of LGMD2. Totally, we detected 37 different mutations of which 12 have been described only in Czech LGMD2A patients. The mutation c.550delA is the most frequent among our LGMD2A probands and was detected in 47.1% of CAPN3 mutant alleles. The frequency of particular forms of LGMD2 was 32.6% for LGMD2A (71 probands), 4.1% for LGMD2I (9 probands), 2.8% for LGMD2D (6 probands), and 1.4% for LGMD2L (3 probands). Further, we present the first results of a new approach established in the Czech Republic for diagnosis of neuromuscular diseases: sequence capture and targeted resequencing. Using this approach, we identified patients with mutations in the DYSF and SGCB genes. Conclusions We characterised a cohort of Czech LGMD2 patients on the basis of mutation analysis of genes associated with the most common forms of LGMD2 in the European population and subsequently compared the occurrence of particular forms of LGMD2 among countries on the basis of our results and published studies. PMID:25135358

  15. Dexmedetomidine and fentanyl combination for procedural sedation in a case of Duchenne muscular dystrophy

    PubMed Central

    Kulshrestha, Ashish; Bajwa, Sukhminder Jit Singh; Singh, Amarjit; Kapoor, Vinod

    2011-01-01

    Duchenne muscular dystrophy, an X-linked disorder characterized by progressive muscle weakness, is the most common muscular dystrophy among children leading to death before the end of third decade. Anesthesia in such patients pose a great challenge due to various complications associated with it. The dreaded metabolic and clinical complications occur due to various inhalational anesthetics and succinylcholine in this subset of patients. We are reporting a child with diagnosed Duchenne muscular dystrophy who underwent excision of dentigerous cyst in oral cavity under procedural sedation with combination of dexmedetomidine and fentanyl and thus administration of general anesthesia was avoided. PMID:25885395

  16. A Rare Case Report of Neurodegenerative Disease: Duchenne Muscular Dystrophy in Two Male Siblings.

    PubMed

    Suneja, B; Suneja, E S; Adlakha, V K; Chandna, P

    2015-01-01

    Duchenne muscular dystrophy (DMD) is an recessive X-linked mediated, musculoskeletal disorder that affects only males. It is the most common and severe form of muscular dystrophy where there is failure to manufacture dystrophin. Clinically, it is characterized by progressive muscle wasting eventually leading to premature death. This case report describes the genetic, oral and systemic findings in two cases of DMD in male siblings. How to cite this article: Suneja B, Suneja ES, Adlakha VK, Chandna P. A Rare Case Report of Neurodegenerative Disease: Duchenne Muscular Dystrophy in Two Male Siblings. Int J Clin Pediatr Dent 2015;8(2):163-165. PMID:26379389

  17. A Rare Case Report of Neurodegenerative Disease: Duchenne Muscular Dystrophy in Two Male Siblings

    PubMed Central

    Suneja, B; Suneja, ES; Chandna, P

    2015-01-01

    ABSTRACT Duchenne muscular dystrophy (DMD) is an recessive X-linked mediated, musculoskeletal disorder that affects only males. It is the most common and severe form of muscular dystrophy where there is failure to manufacture dystrophin. Clinically, it is characterized by progressive muscle wasting eventually leading to premature death. This case report describes the genetic, oral and systemic findings in two cases of DMD in male siblings. How to cite this article: Suneja B, Suneja ES, Adlakha VK, Chandna P. A Rare Case Report of Neurodegenerative Disease: Duchenne Muscular Dystrophy in Two Male Siblings. Int J Clin Pediatr Dent 2015;8(2):163-165. PMID:26379389

  18. The Intriguing Regulators of Muscle Mass in Sarcopenia and Muscular Dystrophy

    PubMed Central

    Sakuma, Kunihiro; Aoi, Wataru; Yamaguchi, Akihiko

    2014-01-01

    Recent advances in our understanding of the biology of muscle have led to new interest in the pharmacological treatment of muscle wasting. Loss of muscle mass and increased intramuscular fibrosis occur in both sarcopenia and muscular dystrophy. Several regulators (mammalian target of rapamycin, serum response factor, atrogin-1, myostatin, etc.) seem to modulate protein synthesis and degradation or transcription of muscle-specific genes during both sarcopenia and muscular dystrophy. This review provides an overview of the adaptive changes in several regulators of muscle mass in both sarcopenia and muscular dystrophy. PMID:25221510

  19. The relationship between muscularity, muscle:bone ratio and cut dimensions in male and female lamb carcasses and the measurement of muscularity using image analysis.

    PubMed

    Hopkins, D L

    1996-12-01

    Dorsal images of 57 whole lamb carcasses (mean 22.5 kg, SD 2.3 kg) were obtained on a slaughter chain using a video camera. The lambs represented two sexes (29 cryptorchids, 28 ewes) and one genotype (Poll Dorset × Border Leicester × Merino). Cryptorchid carcasses were significantly (P < 0.05) leaner than ewe carcasses at a common weight but there was little difference in dimensional measurements of M. longissimus thoracis et lumborum (LL). The cryptorchid carcasses had a significantly better conformation (based on the EUROP system) even when adjusted to the same carcass weight and subcutaneous fat level. From the hindleg and chump the following muscles were dissected and weighed: M. semimembranosus, M. adductor femoris, M. semitendinosus, M. biceps femoris, and M. quadriceps femoris. The femur was weighed, the length measured and a muscularity value calculated as described by Purchas et al. (1991 Meat Sci., 30, 181). There was no significant effect of sex on muscularity or muscle to bone ratio (M:B). Cryptorchid carcasses produced heavier (P < 0.05) round and midloin cuts but lighter (P < 0.05) chump and ribloin cuts. Overall there was no significant sex effect on the yield of hindquarter cuts. Correlation showed a significant (P < 0.001) association between LL area and muscularity, with a lower correlation between round and topside cross-sectional area and muscularity. Neither muscle cross-sectional area nor muscularity was significantly related to M:B ratios. Muscularity increased with increasing carcass weight (P < 0.001) but M:B did not. Prediction of muscularity was significantly (P < 0.05) improved by adding to hot carcass weight a measure of the combined width across the hind legs at interval three, as taken from video images, there being five equally-spaced intervals from the groin to the gambrel. A similar result was achieved by using carcass width at the third interval of five-eventy spaced intervals between the minimum shoulder width and the point of

  20. Ectopic Expression of Retrotransposon-Derived PEG11/RTL1 Contributes to the Callipyge Muscular Hypertrophy

    PubMed Central

    Xu, Xuewen; Ectors, Fabien; Davis, Erica E.; Pirottin, Dimitri; Cheng, Huijun; Farnir, Frédéric; Hadfield, Tracy; Cockett, Noelle; Charlier, Carole; Georges, Michel; Takeda, Haruko

    2015-01-01

    The callipyge phenotype is an ovine muscular hypertrophy characterized by polar overdominance: only heterozygous +Mat/CLPGPat animals receiving the CLPG mutation from their father express the phenotype. +Mat/CLPGPat animals are characterized by postnatal, ectopic expression of Delta-like 1 homologue (DLK1) and Paternally expressed gene 11/Retrotransposon-like 1 (PEG11/RTL1) proteins in skeletal muscle. We showed previously in transgenic mice that ectopic expression of DLK1 alone induces a muscular hypertrophy, hence demonstrating a role for DLK1 in determining the callipyge hypertrophy. We herein describe newly generated transgenic mice that ectopically express PEG11 in skeletal muscle, and show that they also exhibit a muscular hypertrophy phenotype. Our data suggest that both DLK1 and PEG11 act together in causing the muscular hypertrophy of callipyge sheep. PMID:26474044

  1. Clinical and genetic diversity of SMN1-negative proximal spinal muscular atrophies

    PubMed Central

    Jordanova, Albena

    2014-01-01

    Hereditary spinal muscular atrophy is a motor neuron disorder characterized by muscle weakness and atrophy due to degeneration of the anterior horn cells of the spinal cord. Initially, the disease was considered purely as an autosomal recessive condition caused by loss-of-function SMN1 mutations on 5q13. Recent developments in next generation sequencing technologies, however, have unveiled a growing number of clinical conditions designated as non-5q forms of spinal muscular atrophy. At present, 16 different genes and one unresolved locus are associated with proximal non-5q forms, having high phenotypic variability and diverse inheritance patterns. This review provides an overview of the current knowledge regarding the phenotypes, causative genes, and disease mechanisms associated with proximal SMN1-negative spinal muscular atrophies. We describe the molecular and cellular functions enriched among causative genes, and discuss the challenges in the post-genomics era of spinal muscular atrophy research. PMID:24970098

  2. Stakeholder cooperation to overcome challenges in orphan medicine development: the example of Duchenne muscular dystrophy.

    PubMed

    Straub, Volker; Balabanov, Pavel; Bushby, Kate; Ensini, Monica; Goemans, Nathalie; De Luca, Annamaria; Pereda, Alejandra; Hemmings, Robert; Campion, Giles; Kaye, Edward; Arechavala-Gomeza, Virginia; Goyenvalle, Aurelie; Niks, Erik; Veldhuizen, Olav; Furlong, Pat; Stoyanova-Beninska, Violeta; Wood, Matthew J; Johnson, Alex; Mercuri, Eugenio; Muntoni, Francesco; Sepodes, Bruno; Haas, Manuel; Vroom, Elizabeth; Aartsma-Rus, Annemieke

    2016-07-01

    Duchenne muscular dystrophy is a rare, progressive, muscle-wasting disease leading to severe disability and premature death. Treatment is currently symptomatic, but several experimental therapies are in development. Implemented care standards, validated outcome measures correlating with clinical benefit, and comprehensive information about the natural history of the disease are essential for regulatory approval of any treatment. However, for Duchenne muscular dystrophy and other rare diseases, these requirements are not always in place when potential therapies enter the clinical trial phase. A cooperative effort of stakeholders in Duchenne muscular dystrophy-including representatives from patients' groups, academia, industry, and regulatory agencies-is aimed at addressing this shortfall by identifying strategies to overcome challenges, developing the tools needed, and collecting relevant data. An open and constructive dialogue among European stakeholders has positively affected development of treatments for Duchenne muscular dystrophy; this approach could serve as a paradigm for development of treatments for rare diseases in general. PMID:27302365

  3. Imperatives for DUCHENNE MD: a Simplified Guide to Comprehensive Care for Duchenne Muscular Dystrophy.

    PubMed

    Kinnett, Kathi; Rodger, Sunil; Vroom, Elizabeth; Furlong, Pat; Aartsma-Rus, Annemieke; Bushby, Kate

    2015-01-01

    Duchenne muscular dystrophy (DMD) is a progressive, life-limiting muscle-wasting disease. Although no curative treatment is yet available, comprehensive multidisciplinary care has increased life expectancy significantly in recent decades. An international consensus care publication in 2010 outlined best-practice care, which includes corticosteroid treatment, respiratory, cardiac, orthopedic and rehabilitative interventions to address disease manifestations. While disease specialists are largely aware of these care standards, local physicians responsible for the day-to-day care of patients and families may be less familiar. To facilitate optimal care, a one-page document has been generated from published care recommendations, summarizing the key elements of comprehensive care for people living with DMD ("Imperatives for Duchenne muscular dystrophy). This document was developed through an international collaboration between Parent Project Muscular Dystrophy (PPMD), United Parent Projects Muscular Dystrophy (UPPMD) and TREAT-NMD. PMID:26331093

  4. Imperatives for DUCHENNE MD: a Simplified Guide to Comprehensive Care for Duchenne Muscular Dystrophy

    PubMed Central

    Kinnett, Kathi; Rodger, Sunil; Vroom, Elizabeth; Furlong, Pat; Aartsma-Rus, Annemieke; Bushby, Kate

    2015-01-01

    Duchenne muscular dystrophy (DMD) is a progressive, life-limiting muscle-wasting disease. Although no curative treatment is yet available, comprehensive multidisciplinary care has increased life expectancy significantly in recent decades. An international consensus care publication in 2010 outlined best-practice care, which includes corticosteroid treatment, respiratory, cardiac, orthopedic and rehabilitative interventions to address disease manifestations. While disease specialists are largely aware of these care standards, local physicians responsible for the day-to-day care of patients and families may be less familiar. To facilitate optimal care, a one-page document has been generated from published care recommendations, summarizing the key elements of comprehensive care for people living with DMD (“Imperatives for Duchenne muscular dystrophy). This document was developed through an international collaboration between Parent Project Muscular Dystrophy (PPMD), United Parent Projects Muscular Dystrophy (UPPMD) and TREAT-NMD.  PMID:26331093

  5. Proximal muscular atrophy and weakness: An unusual adverse effect of deferasirox iron chelation therapy.

    PubMed

    Vill, K; Müller-Felber, W; Teusch, V; Blaschek, A; Gerstl, L; Huetker, S; Albert, M H

    2016-01-01

    Deferasirox is a standard treatment for chronic transfusional iron overload. Adverse effects of deferasirox have been reported in large prospective studies. We report two cases of monozygotic twins manifesting with proximal muscular atrophy and weakness under deferasirox. Discontinuation of deferasirox resulted in symptom improvement and ultimately in complete remission five months after successful haematopoietic stem cell transplantation. Broad diagnostic work-up could not bring evidence of another aetiology of muscular weakness. Iron overload or beta thalassemia itself as a cause is considered unlikely in our patients because the chronological coincidence of muscular symptoms was contra-directional to serum ferritin levels and significant clinical improvement was observed promptly after cessation of deferasirox even before transplantation. These observations suggest that the development of muscular weakness in patients on deferasirox should be recognised as a possible adverse effect of the drug. PMID:27068298

  6. The effects of exposure to slender and muscular images on male body dissatisfaction.

    PubMed

    Galioto, Rachel; Crowther, Janis H

    2013-09-01

    This research examined the effects of appearance-based comparisons to muscular and slender idealized male bodies and the contribution of internalization and social comparison to change in body dissatisfaction. Participants were 111 male undergraduates who completed measures of body dissatisfaction, internalization, and social comparison and viewed images of either muscular or slender men in advertisements or product-only advertisements. Results indicated that exposure to both muscular and slender images was associated with an increase in body dissatisfaction, with no significant differences in the change in body dissatisfaction between the two image conditions. Internalization and trait social comparison were each associated with an increase in body dissatisfaction; however, upward social comparison was only a significant predictor of a change in body dissatisfaction for the males who viewed muscular images. These results highlight the impact of slender models on young men's body dissatisfaction and support the examination of media literacy interventions with this population. PMID:24008185

  7. The effect of thin and muscular images on women's body satisfaction.

    PubMed

    Benton, Catherine; Karazsia, Bryan T

    2015-03-01

    A substantial body of research documents that exposure to images depicting a "thin ideal" body figure effects women's state-oriented body satisfaction. However, there is evidence that the societal ideal body figure of females is evolving to be not just thin, but also muscular or toned. Therefore, the purpose of this research was to test the effect of exposure to ideal body figures that are both thin and muscular on female state body satisfaction. Researchers recruited female participants (N=366) from an online community (Amazon's Mechanical Turk) and randomly assigned them to view images in one of four conditions: thin, thin and muscular, thin and hypermuscular, and control (images of cars). Results indicated that state-oriented body satisfaction decreased in the thin condition and thin and muscular condition, but not the hypermuscular or control conditions. These findings have implications for clinical initiatives as well as future research. PMID:25528369

  8. Influence of the Level of Muscular Redundancy on the Validity of a Musculoskeletal Model.

    PubMed

    Moissenet, Florent; Chèze, Laurence; Dumas, Raphaël

    2016-02-01

    While recent literature has clearly demonstrated that an extensive personalization of the musculoskeletal models was necessary to reach high accuracy, several components of the generic models may be further investigated before defining subject-specific parameters. Among others, the choice in muscular geometry and thus the level of muscular redundancy in the model may have a noticeable influence on the predicted musculotendon and joint contact forces. In this context, the aim of this study was to investigate if the level of muscular redundancy can contribute or not to reduce inaccuracies in tibiofemoral contact forces predictions. For that, the dataset disseminated through the Sixth Grand Challenge Competition to Predict In Vivo Knee Loads was applied to a versatile 3D lower limb musculoskeletal model in which two muscular geometries (i.e., two different levels of muscular redundancy) were implemented. This dataset provides tibiofemoral implant measurements for both medial and lateral compartments and thus allows evaluation of the validity of the model predictions. The results suggest that an increase of the level of muscular redundancy corresponds to a better accuracy of total tibiofemoral contact force whatever the gait pattern investigated. However, the medial and lateral contact forces ratio and accuracy were not necessarily improved when increasing the level of muscular redundancy and may thus be attributed to other parameters such as the location of contact points. To conclude, the muscular geometry, among other components of the generic model, has a noticeable impact on joint contact forces predictions and may thus be correctly chosen even before trying to personalize the model. PMID:26632266

  9. Nutritional muscular dystrophy in a four-day-old Connemara foal

    PubMed Central

    2009-01-01

    This report describes a four-day-old, full-term Connemara colt, presented for the evaluation of a progressive inability to rise unassisted. A diagnosis of nutritional muscular dystrophy was made based on muscular weakness, elevated muscle enzymes and low vitamin E, selenium and glutathione peroxidase activity. The foal was treated with intramuscular vitamin E-selenium and made a full recovery. PMID:21851729

  10. Back pain in Duchenne muscular dystrophy: steroids are not always the culprit.

    PubMed

    Segal, Lee S; Odgers, Ryan; Carpentieri, David; Shrader, M Wade

    2016-01-01

    We report on a child with Duchenne muscular dystrophy on prolonged corticosteroid treatment who presented with back pain and was subsequently found to have a monostotic fibrous dysplasia lesion of the spine. It is the intent of this case report to emphasize the need to maintain a high index of suspicion for other potential causes of back pain in Duchenne muscular dystrophy besides vertebral compression fractures. PMID:25714938

  11. Complementary and Alternative Medicine for Duchenne and Becker Muscular Dystrophies: Characteristics of Users and Caregivers

    PubMed Central

    Zhu, Yong; Romitti, Paul A.; Conway, Kristin M.; Andrews, Jennifer; Liu, Ke; Meaney, F. John; Street, Natalie; Puzhankara, Soman; Druschel, Charlotte M.; Matthews, Dennis J.

    2015-01-01

    BACKGROUND Complementary and alternative medicine is frequently used in the management of chronic pediatric diseases, but little is known about its use by those with Duchenne or Becker muscular dystrophy. METHODS Complementary and alternative medicine use by male patients with Duchenne or Becker muscular dystrophy and associations with characteristics of male patients and their caregivers were examined through interviews with 362 primary caregivers identified from the Muscular Dystrophy Surveillance, Tracking, and Research Network. RESULTS Overall, 272 of the 362 (75.1%) primary caregivers reported that they had used any complementary and alternative medicine for the oldest Muscular Dystrophy Surveillance, Tracking, and Research Network male in their family. The most commonly reported therapies were from the mind-body medicine domain (61.0%) followed by those from the biologically based practice (39.2%), manipulative and body-based practice (29.3%), and whole medical system (6.9%) domains. Aquatherapy, prayer and/or blessing, special diet, and massage were the most frequently used therapies. Compared with nonusers, male patients who used any therapy were more likely to have an early onset of symptoms and use a wheel chair; their caregivers were more likely to be non-Hispanic white. Among domains, associations were observed with caregiver education and family income (mind-body medicines [excluding prayer and/or blessing only] and whole medical systems) and Muscular Dystrophy Surveillance, Tracking, and Research Network site (biologically based practices and mind-body medicines [excluding prayer and/or blessing only]). CONCLUSIONS Complementary and alternative medicine use was common in the management of Duchenne and Becker muscular dystrophies among Muscular Dystrophy Surveillance, Tracking, and Research Network males. This widespread use suggests further study to evaluate the efficacy of integrating complementary and alternative medicine into treatment regimens for

  12. Decreased Insulin Receptors but Normal Glucose Metabolism in Duchenne Muscular Dystrophy

    NASA Astrophysics Data System (ADS)

    de Pirro, Roberto; Lauro, Renato; Testa, Ivano; Ferretti, Ginofabrizio; de Martinis, Carlo; Dellantonio, Renzo

    1982-04-01

    Compared to matched controls, 17 patients with Duchenne muscular dystrophy showed decreased insulin binding to monocytes due to decreased receptor concentration. These patients showed no signs of altered glucose metabolism and retrospective analysis of the clinical records of a further 56 such patients revealed no modification in carbohydrate metabolism. These data suggest that reduced insulin receptor number does not produce overt modifications of glucose metabolism in Duchenne muscular dystrophy.

  13. Go big or go home: A thematic content analysis of pro-muscularity websites.

    PubMed

    Murray, Stuart B; Griffiths, Scott; Hazery, Leila; Shen, Tori; Wooldridge, Tom; Mond, Jonathan M

    2016-03-01

    Existing content analyses of pro-eating disorder web content have focused on thinness-oriented eating disorder pathology. With the increasing prevalence of muscularity-oriented body image concerns, we conducted a systematic content analysis of 421 active pro-muscularity websites including static content websites, blogs, and online forums. Emergent coding methods were utilized (Cohen's kappa range=.78-.88), and eight distinct thematic categories were identified: rigid dietary practices (26.2%), rigid exercise rules (18.4%), the broader benefits of muscularity (16.1%), the encouragement of the drive for size (15.9%), the labeling of non-ideal body (11.4%), marginalizing other areas of life (6.1%), muscle enhancing substances (3.3%), and minimizing medical risk (2.6%). Pro-muscularity websites provide explicit material surrounding potentially non-healthful muscularity-oriented eating and exercise practices. Clinician awareness of the potentially non-healthful behaviors involved in the pursuit of muscularity may enhance the detection and treatment of male eating disorders, in particular. PMID:26523689

  14. Muscular dystrophy in the Japanese Spitz: an inversion disrupts the DMD and RPGR genes.

    PubMed

    Atencia-Fernandez, Sabela; Shiel, Robert E; Mooney, Carmel T; Nolan, Catherine M

    2015-04-01

    An X-linked muscular dystrophy, with deficiency of full-length dystrophin and expression of a low molecular weight dystrophin-related protein, has been described in Japanese Spitz dogs. The aim of this study was to identify the causative mutation and develop a specific test to identify affected cases and carrier animals. Gene expression studies in skeletal muscle of an affected animal indicated aberrant expression of the Duchenne muscular dystrophy (dystrophin) gene and an anomaly in intron 19 of the gene. Genome-walking experiments revealed an inversion that interrupts two genes on the X chromosome, the Duchenne muscular dystrophy gene and the retinitis pigmentosa GTPase regulator gene. All clinically affected dogs and obligate carriers that were tested had the mutant chromosome, and it is concluded that the inversion is the causative mutation for X-linked muscular dystrophy in the Japanese Spitz breed. A PCR assay that amplifies mutant and wild-type alleles was developed and proved capable of identifying affected and carrier individuals. Unexpectedly, a 7-year-old male animal, which had not previously come to clinical attention, was shown to possess the mutant allele and to have a relatively mild form of the disease. This observation indicates phenotypic heterogeneity in Japanese Spitz muscular dystrophy, a feature described previously in humans and Golden Retrievers. With the availability of a simple, fast and accurate test for Japanese Spitz muscular dystrophy, detection of carrier animals and selected breeding should help eliminate the mutation from the breed. PMID:25644216

  15. Muscular atrophy of caveolin-3-deficient mice is rescued by myostatin inhibition.

    PubMed

    Ohsawa, Yutaka; Hagiwara, Hiroki; Nakatani, Masashi; Yasue, Akihiro; Moriyama, Keiji; Murakami, Tatsufumi; Tsuchida, Kunihiro; Noji, Sumihare; Sunada, Yoshihide

    2006-11-01

    Caveolin-3, the muscle-specific isoform of caveolins, plays important roles in signal transduction. Dominant-negative mutations of the caveolin-3 gene cause autosomal dominant limb-girdle muscular dystrophy 1C (LGMD1C) with loss of caveolin-3. However, identification of the precise molecular mechanism leading to muscular atrophy in caveolin-3-deficient muscle has remained elusive. Myostatin, a member of the muscle-specific TGF-beta superfamily, negatively regulates skeletal muscle volume. Here we report that caveolin-3 inhibited myostatin signaling by suppressing activation of its type I receptor; this was followed by hypophosphorylation of an intracellular effector, Mad homolog 2 (Smad2), and decreased downstream transcriptional activity. Loss of caveolin-3 in P104L mutant caveolin-3 transgenic mice caused muscular atrophy with increase in phosphorylated Smad2 (p-Smad2) as well as p21 (also known as Cdkn1a), a myostatin target gene. Introduction of the myostatin prodomain, an inhibitor of myostatin, by genetic crossing or intraperitoneal administration of the soluble type II myostatin receptor, another inhibitor, ameliorated muscular atrophy of the mutant caveolin-3 transgenic mice with suppression of p-Smad2 and p21 levels. These findings suggest that caveolin-3 normally suppresses the myostatin-mediated signal, thereby preventing muscular atrophy, and that hyperactivation of myostatin signaling participates in the pathogenesis of muscular atrophy in a mouse model of LGMD1C. Myostatin inhibition may be a promising therapy for LGMD1C patients. PMID:17039257

  16. [Development of an ultrasound-mediated nucleic acid delivery system for treating muscular dystrophies].

    PubMed

    Negishi, Yoichi; Hamano, Nobuhito; Shiono, Hitomi; Akiyama, Saki; Endo-Takahashi, Yoko; Suzuki, Ryo; Maruyama, Kazuo; Aramaki, Yukihiko

    2012-01-01

    Muscular dystrophies are a group of heterogeneous diseases that are characterized by progressive muscle weakness, wasting and degeneration. These muscular deficiencies are often caused by the loss of the protein dystrophin, a crucial element of the dystrophin-glycoprotein complex of muscle fibers. Duchenne muscular dystrophy (DMD) is a fatal, X-linked muscular disease that occurs in 1 out of every 3500 males. Therefore, feasible strategies for replacing or repairing the defective gene are required; however, to date, no effective therapeutic strategies for muscular dystrophies have been established. In this review, we first introduce gene therapies mediated by adeno-associated viruses (AAVs) including a functional dystrophin cDNA or antisense oligonucleotide (AO)-induced exon-skipping therapies, which are designed to exclude the mutated or additional exon(s) in the defective gene and thereby correct the translational reading frame. Recently, we developed "Bubble liposomes" (BLs), which are polyethylene glycol (PEG)-modified liposomes entrapping echo-contrast gas that is known as ultrasound (US) imaging gas. BL application combined with US exposure can function as a novel gene delivery tool, and we demonstrate that the US-mediated eruption of BLs is a feasible and efficient technique to deliver plasmid DNA or AOs for the treatment of muscular dystrophies. PMID:23208045

  17. Associations of maximal strength and muscular endurance with cardiovascular risk factors.

    PubMed

    Vaara, J P; Fogelholm, M; Vasankari, T; Santtila, M; Häkkinen, K; Kyröläinen, H

    2014-04-01

    The aim was to study the associations of maximal strength and muscular endurance with single and clustered cardiovascular risk factors. Muscular endurance, maximal strength, cardiorespiratory fitness and waist circumference were measured in 686 young men (25±5 years). Cardiovascular risk factors (plasma glucose, serum high- and low-density lipoprotein cholesterol, triglycerides, blood pressure) were determined. The risk factors were transformed to z-scores and the mean of values formed clustered cardiovascular risk factor. Muscular endurance was inversely associated with triglycerides, s-LDL-cholesterol, glucose and blood pressure (β=-0.09 to - 0.23, p<0.05), and positively with s-HDL cholesterol (β=0.17, p<0.001) independent of cardiorespiratory fitness. Muscular endurance was negatively associated with the clustered cardiovascular risk factor independent of cardiorespiratory fitness (β=-0.26, p<0.05), whereas maximal strength was not associated with any of the cardiovascular risk factors or the clustered cardiovascular risk factor independent of cardiorespiratory fitness. Furthermore, cardiorespiratory fitness was inversely associated with triglycerides, s-LDL-cholesterol and the clustered cardiovascular risk factor (β=-0.14 to - 0.24, p<0.005), as well as positively with s-HDL cholesterol (β=0.11, p<0.05) independent of muscular fitness. This cross-sectional study demonstrated that in young men muscular endurance and cardiorespiratory fitness were independently associated with the clustering of cardiovascular risk factors, whereas maximal strength was not. PMID:24022567

  18. Effects of a Circuit Training Program on Muscular and Cardiovascular Endurance and their Maintenance in Schoolchildren

    PubMed Central

    Mayorga-Vega, Daniel; Viciana, Jesús; Cocca, Armando

    The purpose of this study was to evaluate the effects of a circuit training program along with a maintenance program on muscular and cardiovascular endurance in children in a physical education setting. Seventy two children 10–12 years old from four different classes were randomly grouped into either an experimental group (n = 35) or a control group (n = 37) (two classes for each group). After an eight-week development program carried out twice a week and a four-week detraining period, the experimental group performed a four-week maintenance program once a week. The program included one circuit of eight stations of 15/45 to 35/25 seconds of work/rest performed twice. Abdominal muscular endurance (sit-ups in 30 seconds test), upper-limbs muscular endurance (bent arm hang test), and cardiovascular endurance (20-m endurance shuttle run test) were measured at the beginning and at the end of the development program, and at the end of the maintenance program. After the development program, muscular and cardiovascular endurance increased significantly in the experimental group (p < 0.05). The gains obtained remained after the maintenance program. The respective values did not change in the control group (p > 0.05). The results showed that the circuit training program was effective to increase and maintain both muscular and cardiovascular endurance among schoolchildren. This could help physical education teachers design programs that permit students to maintain fit muscular and cardiovascular endurance levels. PMID:24146716

  19. Adaptability and Prediction of Anticipatory Muscular Activity Parameters to Different Movements in the Sitting Position.

    PubMed

    Chikh, Soufien; Watelain, Eric; Faupin, Arnaud; Pinti, Antonio; Jarraya, Mohamed; Garnier, Cyril

    2016-08-01

    Voluntary movement often causes postural perturbation that requires an anticipatory postural adjustment to minimize perturbation and increase the efficiency and coordination during execution. This systematic review focuses specifically on the relationship between the parameters of anticipatory muscular activities and movement finality in sitting position among adults, to study the adaptability and predictability of anticipatory muscular activities parameters to different movements and conditions in sitting position in adults. A systematic literature search was performed using PubMed, Science Direct, Web of Science, Springer-Link, Engineering Village, and EbscoHost. Inclusion and exclusion criteria were applied to retain the most rigorous and specific studies, yielding 76 articles, Seventeen articles were excluded at first reading, and after the application of inclusion and exclusion criteria, 23 were retained. In a sitting position, central nervous system activity precedes movement by diverse anticipatory muscular activities and shows the ability to adapt anticipatory muscular activity parameters to the movement direction, postural stability, or charge weight. In addition, these parameters could be adapted to the speed of execution, as found for the standing position. Parameters of anticipatory muscular activities (duration, order, and amplitude of muscle contractions constituting the anticipatory muscular activity) could be used as a predictive indicator of forthcoming movement. In addition, this systematic review may improve methodology in empirical studies and assistive technology for people with disabilities. PMID:27440765

  20. Effect of spinal surgery on lung function in Duchenne muscular dystrophy.

    PubMed Central

    Kennedy, J. D.; Staples, A. J.; Brook, P. D.; Parsons, D. W.; Sutherland, A. D.; Martin, A. J.; Stern, L. M.; Foster, B. K.

    1995-01-01

    BACKGROUND--The effect on subsequent respiratory function of spinal stabilisation for scoliosis in Duchenne muscular dystrophy is unclear. In order to clarify this clinical problem, changes in the forced vital capacity of a group of children with Duchenne muscular dystrophy who had undergone spinal surgery were measured and compared with a group of children with Duchenne muscular dystrophy who had not had surgery. METHODS--In this retrospective study 17 boys with Duchenne muscular dystrophy who underwent spinal stabilisation at a mean age of 14.9 years (surgical group) were compared with 21 boys with Duchenne muscular dystrophy who had not had surgery (non-surgical group). The mean (SD) Cobb angle of the surgical group at 14.9 years was 57 (16.4) degrees, and of the non-surgical group at 15 years was 45 (29.9) degrees. Forced vital capacity expressed as percentage predicted (% FVC) was measured in total over a seven year period in the surgical group and over 6.5 years in the non-surgical group, and regression equations were calculated. Survival curves for both groups were also constructed. RESULTS--No difference was found between spinal stabilisation (surgical group) and the non-surgical group in the rate of deterioration of % FVC which was 3-5% per year. There was no difference in survival in either group. CONCLUSIONS--Spinal stabilisation in Duchenne muscular dystrophy does not alter the decline in pulmonary function, nor does it improve survival. PMID:8553273

  1. Vascular-targeted therapies for Duchenne muscular dystrophy

    PubMed Central

    2013-01-01

    Duchenne muscular dystrophy (DMD) is the most common muscular dystrophy and an X-linked recessive, progressive muscle wasting disease caused by the absence of a functional dystrophin protein. Dystrophin has a structural role as a cytoskeletal stabilization protein and protects cells against contraction-induced damage. Dystrophin also serves a signaling role through mechanotransduction of forces and localization of neuronal nitric oxide synthase (nNOS), which produces nitric oxide (NO) to facilitate vasorelaxation. In DMD, the signaling defects produce inadequate tissue perfusion caused by functional ischemia due to a diminished ability to respond to shear stress induced endothelium-dependent dilation. Additionally, the structural defects seen in DMD render myocytes with an increased susceptibility to mechanical stress. The combination of both defects is necessary to generate myocyte damage, which induces successive rounds of myofiber degeneration and regeneration, loss of calcium homeostasis, chronic inflammatory response, fibrosis, and myonecrosis. In individuals with DMD, these processes inevitably cause loss of ambulation shortly after the first decade and an abbreviated life with death in the third or fourth decade due to cardio-respiratory anomalies. There is no known cure for DMD, and although the culpable gene has been identified for more than twenty years, research on treatments has produced few clinically relevant results. Several recent studies on novel DMD therapeutics are vascular targeted and focused on attenuating the inherent functional ischemia. One approach improves vasorelaxation capacity through pharmaceutical inhibition of either phosphodiesterase 5 (PDE5) or angiotensin-converting enzyme (ACE). Another approach increases the density of the underlying vascular network by inducing angiogenesis, and this has been accomplished through either direct delivery of vascular endothelial growth factor (VEGF) or by downregulating the VEGF decoy

  2. Abnormal proliferation and spontaneous differentiation of myoblasts from a symptomatic female carrier of X-linked Emery-Dreifuss muscular dystrophy.

    PubMed

    Meinke, Peter; Schneiderat, Peter; Srsen, Vlastimil; Korfali, Nadia; Lê Thành, Phú; Cowan, Graeme J M; Cavanagh, David R; Wehnert, Manfred; Schirmer, Eric C; Walter, Maggie C

    2015-02-01

    Emery-Dreifuss muscular dystrophy (EDMD) is a neuromuscular disease characterized by early contractures, slowly progressive muscular weakness and life-threatening cardiac arrhythmia that can develop into cardiomyopathy. In X-linked EDMD (EDMD1), female carriers are usually unaffected. Here we present a clinical description and in vitro characterization of a mildly affected EDMD1 female carrying the heterozygous EMD mutation c.174_175delTT; p.Y59* that yields loss of protein. Muscle tissue sections and cultured patient myoblasts exhibited a mixed population of emerin-positive and -negative cells; thus uneven X-inactivation was excluded as causative. Patient blood cells were predominantly emerin-positive, but considerable nuclear lobulation was observed in non-granulocyte cells - a novel phenotype in EDMD. Both emerin-positive and emerin-negative myoblasts exhibited spontaneous differentiation in tissue culture, though emerin-negative myoblasts were more proliferative than emerin-positive cells. The preferential proliferation of emerin-negative myoblasts together with the high rate of spontaneous differentiation in both populations suggests that loss of functional satellite cells might be one underlying mechanism for disease pathology. This could also account for the slowly developing muscle phenotype. PMID:25454731

  3. Duchenne muscular dystrophy gene therapy in the canine model.

    PubMed

    Duan, Dongsheng

    2015-03-01

    Duchenne muscular dystrophy (DMD) is an X-linked lethal muscle disease caused by dystrophin deficiency. Gene therapy has significantly improved the outcome of dystrophin-deficient mice. Yet, clinical translation has not resulted in the expected benefits in human patients. This translational gap is largely because of the insufficient modeling of DMD in mice. Specifically, mice lacking dystrophin show minimum dystrophic symptoms, and they do not respond to the gene therapy vector in the same way as human patients do. Further, the size of a mouse is hundredfolds smaller than a boy, making it impossible to scale-up gene therapy in a mouse model. None of these limitations exist in the canine DMD (cDMD) model. For this reason, cDMD dogs have been considered a highly valuable platform to test experimental DMD gene therapy. Over the last three decades, a variety of gene therapy approaches have been evaluated in cDMD dogs using a number of nonviral and viral vectors. These studies have provided critical insight for the development of an effective gene therapy protocol in human patients. This review discusses the history, current status, and future directions of the DMD gene therapy in the canine model. PMID:25710459

  4. Duchenne muscular dystrophy gene therapy: Lost in translation?

    PubMed Central

    Duan, Dongsheng

    2011-01-01

    A milestone of molecular medicine is the identification of dystrophin gene mutation as the cause of Duchenne muscular dystrophy (DMD). Over the last 2 decades, major advances in dystrophin biology and gene delivery technology have created an opportunity to treat DMD with gene therapy. Remarkable success has been achieved in treating dystrophic mice. Several gene therapy strategies, including plasmid transfer, exon skipping, and adeno-associated virus-mediated microdystrophin therapy, have entered clinical trials. However, therapeutic benefit has not been realized in DMD patients. Bridging the gap between mice and humans is no doubt the most pressing issue facing DMD gene therapy now. In contrast to mice, dystrophin-deficient dogs are genetically and phenotypically similar to human patients. Preliminary gene therapy studies in the canine model may offer critical insights that cannot be obtained from murine studies. It is clear that the canine DMD model may represent an important link between mice and humans. Unfortunately, our current knowledge of dystrophic dogs is limited, and the full picture of disease progression remains to be clearly defined. We also lack rigorous outcome measures (such as in situ force measurement) to monitor therapeutic efficacy in dystrophic dogs. Undoubtedly, maintaining a dystrophic dog colony is technically demanding, and the cost of dog studies cannot be underestimated. A carefully coordinated effort from the entire DMD community is needed to make the best use of the precious dog resource. Successful DMD gene therapy may depend on valid translational studies in dystrophin-deficient dogs. PMID:21691429

  5. Genetic inhibition of JNK3 ameliorates spinal muscular atrophy.

    PubMed

    Genabai, Naresh K; Ahmad, Saif; Zhang, Zhanying; Jiang, Xiaoting; Gabaldon, Cynthia A; Gangwani, Laxman

    2015-12-15

    Mutation of the Survival Motor Neuron 1 (SMN1) gene causes spinal muscular atrophy (SMA), an autosomal recessive neurodegenerative disorder that occurs in early childhood. Degeneration of spinal motor neurons caused by SMN deficiency results in progressive muscle atrophy and death in SMA. The molecular mechanism underlying neurodegeneration in SMA is unknown. No treatment is available to prevent neurodegeneration and reduce the burden of illness in SMA. We report that the c-Jun NH2-terminal kinase (JNK) signaling pathway mediates neurodegeneration in SMA. The neuron-specific isoform JNK3 is required for neuron degeneration caused by SMN deficiency. JNK3 deficiency reduces degeneration of cultured neurons caused by low levels of SMN. Genetic inhibition of JNK pathway in vivo by Jnk3 knockout results in amelioration of SMA phenotype. JNK3 deficiency prevents the loss of spinal cord motor neurons, reduces muscle degeneration, improves muscle fiber thickness and muscle growth, improves motor function and overall growth and increases lifespan of mice with SMA that shows a systemic rescue of phenotype by a SMN-independent mechanism. JNK3 represents a potential (non-SMN) therapeutic target for the treatment of SMA. PMID:26423457

  6. Moving towards treatments for spinal muscular atrophy: hopes and limits.

    PubMed

    Wirth, Brunhilde; Barkats, Martine; Martinat, Cecile; Sendtner, Michael; Gillingwater, Thomas H

    2015-09-01

    Spinal muscular atrophy (SMA), one of the most frequent and devastating genetic disorders causing neuromuscular degeneration, has reached the forefront of clinical translation. The quite unique genetic situation of SMA patients, who lack functional SMN1 but carry the misspliced SMN2 copy gene, creates the possibility of correcting SMN2 splicing by antisense oligonucleotides or drugs. Both strategies showed impressive results in pre-clinical trials and are now in Phase II-III clinical trials. SMN gene therapy approaches using AAV9-SMN vectors are also highly promising and have entered a Phase I clinical trial. However, careful analysis of SMA animal models and patients has revealed some limitations that need to be taken very seriously, including: i) a limited time-window for successful therapy delivery, making neonatal screening of SMA mandatory; ii) multi-organ impairment, requiring systemic delivery of therapies; and iii) a potential need for combined therapies that both increase SMN levels and target pathways that preserve/rescue motor neuron function over the lifespan. Meeting these challenges will likely be crucial to cure SMA, instead of only ameliorating symptoms, particularly in its most severe form. This review discusses therapies currently in clinical trials, the hopes for SMA therapy, and the potential limitations of these new approaches. PMID:25920617

  7. Molecular bases of autosomal recessive limb-girdle muscular dystrophies.

    PubMed

    Nigro, V

    2003-09-01

    Limb-girdle muscular dystrophies (LGMD) are a heterogeneous group of genetically determined disorders with a primary or predominant involvement of the pelvic or shoulder girdle musculature. The clinical course is characterized by great variability, ranging from severe forms with rapid onset and progression to very mild forms allowing affected people to have fairly normal life spans and activity levels. Sixteen loci have been so far identified, six autosomal dominant and ten autosomal recessive. Linkage analyses indicate that there is further genetic heterogeneity both for dominant as well as for recessive LGMD. The dominant forms (LGMD1) are generally milder and relatively rare, representing less than 10% of all LGMD. The autosomal recessive forms (LGMD2) are much more common, having a cumulative prevalence of 1:15,000 with a number of geographical differences. The product of ten autosomal recessive LGMD genes has so far been identified. They are: calpain-3 (LGMD2A), dysferlin (LGMD2B), alpha-sarcoglycan (LGMD2D), beta-sarcoglycan (LGMD2E), gamma-sarcoglycan (LGMD2C), delta-sarcoglycan (LGMD2F), telethonin (LGMD2G), TRIM32 (LGMD2H), fukutin-related protein (LGMD2I) and titin (LGMD2J). There are, however, at least 25% of families who can be excluded from any known locus. The present review is devoted to outline the present advancements in the molecular bases of autosomal recessive LGMD. PMID:14959561

  8. [A case of spinal muscular atrophy type 0 in Japan].

    PubMed

    Okamoto, Kentaro; Saito, Kayoko; Sato, Takatoshi; Ishigaki, Keiko; Funatsuka, Makoto; Osawa, Makiko

    2012-09-01

    The patient was a 2-month-old female infant born at 41 weeks and 2 days of gestation presenting multiple arthrogryposis, severe muscle hypotonia and respiratory distress with difficulty in feeding. She suffered from repeated complications with aspiration pneumonia. On admission to our hospital, she exhibited fasciculation and absence of deep tendon reflexes. Examination of the motor nerve conduction velocity (MCV) revealed no muscle contraction. Deletions of the SMN and NAIP genes were noted. Based on severe clinical course and disease development in utero, she was given a diagnosis of spinal muscular atrophy (SMA) type 0 (very severe type). Arthrogryposis and disappearance of MCV are exclusion criteria for SMA. However, the clinical course of the infant was very severe and included such exclusion items. Consequently, when an infant presents muscle hypotonia and respiratory distress, SMA must be considered as one of the differential diagnoses, even though arthrogryposis is an exclusion criterion for SMA. We discuss this case in relation to the few extant reports on SMA type 0 in Japanese infants in the literature. PMID:23012868

  9. Genetic findings of Cypriot spinal muscular atrophy patients.

    PubMed

    Theodorou, L; Nicolaou, P; Koutsou, P; Georghiou, A; Anastasiadou, V; Tanteles, G; Kyriakides, T; Zamba-Papanicolaou, E; Christodoulou, K

    2015-10-01

    Spinal muscular atrophy (SMA) is an autosomal recessive, neurodegenerative disorder characterised commonly by proximal muscle weakness and wasting in the absence of sensory signs. Deletion or disruption of the SMN1 gene causes the disease. The SMN1 gene is located within an inverted duplication on chromosome 5q13 with the genes SMN2, NAIP and GTF2H2. MLPA analysis of 13 Cypriot SMA patients revealed that, 12 patients carried a homozygous SMN1 gene deletion and one patient carried two copies of the SMN1 gene. Two of 13 cases were a consequence of a paternally originating de novo mutation. Five genotypes were identified within the population, with the most frequent being a homozygous SMN1 and NAIP genes deletion. In conclusion, genotype-phenotype correlation revealed that SMN2 is inversely related to disease severity and that NAIP and GTF2H2 act as negative modifiers. This study provided, for the first time, a comprehensive overview of gene copy numbers and inheritance patterns within Cypriot SMA families. PMID:26017350

  10. Describing nutrition in spinal muscular atrophy: A systematic review.

    PubMed

    Moore, Georgia E; Lindenmayer, Amara W; McConchie, Grace A; Ryan, Monique M; Davidson, Zoe E

    2016-07-01

    Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disease of variable severity. Progressive muscle wasting and impairment in functional ability in SMA have a profound influence on nutritional outcomes. This systematic review summarises the existing evidence on nutrition in SMA. The search strategy was conducted across five databases in August 2014, and updated in March 2016, using key terms relating to growth, nutrition requirements, dietary intake and nutrition management. Studies were selected for inclusion using a two pass method, and data systematically extracted using standardised forms. Thirty-nine studies met eligibility criteria. Body composition is abnormal in patients with SMA, and feeding and swallowing issues are prevalent among sufferers of SMA types I and II. Nutritional management practices vary internationally. There is a paucity of literature regarding nutrition requirements in SMA, although it appears that energy expenditure may be reduced. Children with SMA require individualised nutritional management in order to address their growth and nutrition requirements. There is an urgent need for larger, coordinated, prospective intervention studies of nutrition in SMA. PMID:27241822

  11. Predictive factors for masticatory performance in Duchenne muscular dystrophy.

    PubMed

    van Bruggen, H W; van de Engel-Hoek, L; Steenks, M H; Bronkhorst, E M; Creugers, N H J; de Groot, I J M; Kalaykova, S I

    2014-08-01

    Patients with Duchenne muscular dystrophy (DMD) report masticatory and swallowing problems. Such problems may cause complications such as choking, and feeling of food sticking in the throat. We investigated whether masticatory performance in DMD is objectively impaired, and explored predictive factors for compromised mastication. Twenty-three patients and 23 controls filled out two questionnaires about mandibular function, and underwent a clinical examination of the masticatory system and measurements of anterior bite force and masticatory performance. In the patients, moreover, quantitative ultrasound of the tongue and motor function measurement was performed. The patients were categorized into ambulatory stage (early or late), early non-ambulatory stage, or late non-ambulatory stage. Masticatory performance, anterior bite force and occlusal contacts were all reduced in the patient group compared to the controls (all p < 0.001). Mastication abnormalities were present early in the disease process prior to a reduction of motor function measurement. The early non-ambulatory and late non-ambulatory stage groups showed less masticatory performance compared to the ambulatory stage group (p < 0.028 and p < 0.010, respectively). Multiple linear regression analysis revealed that stage of the disease was the strongest independent risk factor for the masticatory performance (R(2) = 0.52). Anterior bite force, occlusal contacts and masticatory performance in DMD are severely reduced. PMID:24969130

  12. Limb-girdle muscular dystrophies - international collaborations for translational research.

    PubMed

    Thompson, Rachel; Straub, Volker

    2016-05-01

    The limb-girdle muscular dystrophies (LGMDs) are a diverse group of genetic neuromuscular conditions that usually manifest in the proximal muscles of the hip and shoulder girdles. Since the identification of the first gene associated with the phenotype in 1994, an extensive body of research has identified the genetic defects responsible for over 30 LGMD subtypes, revealed an increasingly varied phenotypic spectrum, and exposed the need to move towards a systems-based understanding of the molecular pathways affected. New sequencing technologies, including whole-exome and whole-genome sequencing, are continuing to expand the range of genes and phenotypes associated with the LGMDs, and new computational approaches are helping clinicians to adapt to this new genomic medicine paradigm. However, 60 years on from the first description of LGMD, no curative therapies exist, and systematic exploration of the natural history is still lacking. To enable rapid translation of basic research to the clinic, well-phenotyped and genetically characterized patient cohorts are a necessity, and appropriate outcome measures and biomarkers must be developed through natural history studies. Here, we review the international collaborations that are addressing these translational research issues, and the lessons learned from large-scale LGMD sequencing programmes. PMID:27033376

  13. Clinical Usefulness of Sonoelastography in Infants With Congenital Muscular Torticollis

    PubMed Central

    Hong, Seong Kyung; Song, Jin Won; Woo, Seung Beom; Kim, Jong Min; Kim, Tae Eun

    2016-01-01

    Objective To evaluate the clinical usefulness of sonoelastography in infants with congenital muscular torticollis (CMT). Methods The medical records of 215 infants clinically diagnosed with CMT were retrospectively reviewed. Fifty-three infants met the inclusion criteria as follows: 1) infants diagnosed as CMT with a palpable neck mass before 3 months of age, 2) infants who were evaluated initially by both B-mode ultrasonography and sonoelastography, and 3) infants who had received physical therapy after being diagnosed with CMT. We checked the thickness of the sternocleidomastoid (SCM) muscles in B-mode ultrasonography, strain ratio of the SCM muscles in sonoelastography, and treatment duration. We evaluated the correlation between the treatment duration and the following factors: SCM muscle thickness, ratio of SCM muscle thickness on the affected to unaffected side (A/U ratio), and strain ratio. Results Both the thickness of the affected SCM muscle and the A/U ratio did not show significant correlation with the treatment duration (p=0.66, p=0.90). The strain ratio of the affected SCM muscle was significantly greater than that of the unaffected SCM muscle (p<0.001), and the strain ratio showed significant correlation with the treatment duration (p=0.001). Conclusion Sonoelastography may be a useful adjunctive tool to B-mode ultrasonography for evaluating infants with CMT, especially when predicting their rehabilitation outcomes. PMID:26949666

  14. Spinal muscular atrophy with respiratory distress type 1 (SMARD1)

    PubMed Central

    San Millan, Beatriz; Fernandez, Jose M.; Navarro, Carmen; Reparaz, Alfredo; Teijeira, Susana

    2016-01-01

    Background: Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is a clinically and genetically distinct and uncommon variant of SMA that results from irreversible degeneration of α-motor neurons in the anterior horns of the spinal cord and in ganglion cells on the spinal root ganglia. Aims: To describe the clinical, electrophysiological, neuropathological, and genetic findings, at different stages from birth to death, of a Spanish child diagnosed with SMARD1. Patient and methods: We report the case of a 3-month-old girl with severe respiratory insufficiency and, later, intense hypotonia. Paraclinical tests included biochemistry, chest X-ray, and electrophysiological studies, among others. Muscle and nerve biopsies were performed at 5 and 10 months and studied under light and electron microscopy. Post-mortem examination and genetic investigations were performed. Results: Pre- and post-mortem histopathological findings demonstrated the disease progression over time. Muscle biopsy at 5 months of age was normal, however a marked neurogenic atrophy was present in post-mortem samples. Peripheral motor and sensory nerves were severely involved likely due to a primary axonal disorder. Automatic sequencing of IGHMBP2 revealed a compound heterozygous mutation. Conclusions: The diagnosis of SMARD1 should be considered in children with early respiratory insufficiency or in cases of atypical SMA. Direct sequencing of the IGHMBP2 gene should be performed. PMID:26709713

  15. Optimization of Spinal Muscular Atrophy subject's muscle activity during gait

    NASA Astrophysics Data System (ADS)

    Umat, Gazlia; Rambely, Azmin Sham

    2014-06-01

    Spinal Muscular Atrophy (SMA) is a hereditary disease related muscle nerve disorder caused by degeneration of the anterior cells of the spinal cord. SMA is divided into four types according to the degree of seriousness. SMA patients show different gait with normal people. Therefore, this study focused on the effects of SMA patient muscle actions and the difference that exists between SMA subjects and normal subjects. Therefore, the electromyography (EMG) test will be used to track the behavior of muscle during walking and optimization methods are used to get the muscle stress that is capable of doing the work while walking. Involved objective function is non-linear function of the quadratic and cubic functions. The study concludes with a comparison of the objective function using the force that sought to use the moment of previous studies and the objective function using the data obtained from EMG. The results shows that the same muscles, peroneus longus and bisepsfemoris, were used during walking activity by SMA subjects and control subjects. Muscle stress force best solution achieved from part D in simulation carried out.

  16. Milder forms of muscular dystrophy associated with POMGNT2 mutations

    PubMed Central

    Endo, Yukari; Dong, Mingrui; Ogawa, Megumu; Hayashi, Yukiko K.; Kuru, Satoshi; Sugiyama, Kenji; Nagai, Shigehiro; Ozasa, Shiro; Nonaka, Ikuya; Nishino, Ichizo

    2015-01-01

    Objective: To determine the genetic variants in patients with dystroglycanopathy (DGP) and assess the pathogenicity of these variants. Methods: A total of 20 patients with DGP were identified by immunohistochemistry or Western blot analysis. Whole-exome sequencing (WES) was performed using patient samples. The pathogenicity of the variants identified was evaluated on the basis of the phenotypic recovery in a knockout (KO) haploid human cell line by transfection with mutated POMGNT2 cDNA and on the basis of the in vitro enzymatic activity of mutated proteins. Results: WES identified homozygous and compound heterozygous missense variants in POMGNT2 in 3 patients with the milder limb-girdle muscular dystrophy (LGMD) and intellectual disability without brain malformation. The 2 identified variants were located in the putative glycosyltransferase domain of POMGNT2, which affected its enzymatic activity. Mutated POMGNT2 cDNAs failed to rescue the phenotype of POMGNT2-KO cells. Conclusions: Novel variants in POMGNT2 are associated with milder forms of LGMD. The findings of this study expand the clinical and pathologic spectrum of DGP associated with POMGNT2 variants from the severest Walker-Warburg syndrome to the mildest LGMD phenotypes. The simple method to verify pathogenesis of variants may allow researchers to evaluate any variants present in all of the known causative genes and the variants in novel candidate genes to detect DGPs, particularly without using patients' specimens. PMID:27066570

  17. Motor unit remodelling in Duchenne muscular dystrophy. Electrophysiological assessment.

    PubMed

    Cruz Martínez, A; López-Terradas, J M

    1992-01-01

    Conventional EMG, motor and sensory conduction velocities, averaging analysis of MUPs, SFEMG, and muscle fiber conduction velocity in situ were performed in 14 boys with Duchenne muscular dystrophy (DD) aged 5 to 11 years. MUPs parameters study showed a striking increment of long duration MUPs followed by satellites and increase of polyphasic potentials of variable duration. The main findings in SFEMG examination were increment in fiber density of the motor unit, large MISI and presence of complex potentials of long duration in all patients. Muscle fiber conduction velocity in situ was significantly slower than in controls, with significant decrease in minimum conduction and increased variability (large SD) in propagation velocity values. Low conduction velocity of muscle fibers, long duration of polyphasics and MUPs followed by satellites, and large MISI were significantly related. These findings support the hypotheses which have suggested that the motor unit remodelling in DD is mainly myogenic. The abnormalities in muscle fiber conduction velocity in situ reflect an increased diameter variation of muscle fibers consistent with splitting fibers, small groups of regenerating and necrotic fibers, and fiber diameter variation found in histological studies. Thus, increased variability in fiber diameter may be the cause of complex and long duration MUPs in DD. PMID:1526215

  18. Reachable Workspace in Facioscapulohumeral muscular dystrophy (FSHD) by Kinect

    PubMed Central

    Han, Jay J.; Kurillo, Gregorij; Abresch, Richard T.; de Bie, Evan; Nicorici, Alina; Bajcsy, Ruzena

    2014-01-01

    Introduction A depth-ranging sensor (Kinect) based upper extremity motion analysis system was applied to determine the spectrum of reachable workspace encountered in facioscapulohumeral muscular dystrophy (FSHD). Methods Reachable workspaces were obtained from 22 individuals with FSHD and 24 age- and height-matched healthy controls. To allow comparison, total and quadrant reachable workspace relative surface areas (RSA) were obtained by normalizing the acquired reachable workspace by each individual’s arm length. Results Significantly contracted reachable workspace and reduced RSAs were noted for the FSHD cohort compared to controls (0.473±0.188 vs. 0.747±0.082; P<0.0001). With worsening upper extremity function as categorized by the FSHD evaluation subscale II+III, the upper quadrant RSAs decreased progressively, while the lower quadrant RSAs were relatively preserved. There were no side-to-side differences in reachable workspace based on hand-dominance. Discussion This study demonstrates the feasibility and potential of using an innovative Kinect-based reachable workspace outcome measure in FSHD. PMID:24828906

  19. Diffusion tensor imaging study in Duchenne muscular dystrophy

    PubMed Central

    Fu, Ya; Dong, Yuru; Zhang, Chao; Sun, Yu; Zhang, Shu; Mu, Xuetao; Wang, Hong; Xu, Weihai

    2016-01-01

    Background Duchenne muscular dystrophy (DMD) is a progressive muscle disorder associated with an intellectual deficit which is non-progressive. The aim of this study was to investigate brain microstructural changes in DMD and to explore the relationship between such changes and cognitive impairment. Methods All participants (12 DMD patients, 14 age-matched healthy boys), intelligence quotients (IQs) [both full (FIQ) and verbal (VIQ)] were evaluated using the Wechsler intelligence scale for children China revised (WISC-CR) edition, and brain gray matter (GM) and white matter (WM) changes were mapped using diffusion tensor imaging (DTI) with fractional anisotropy (FA). The differences between groups were analyzed using the t-test and the association of cognition with neuroimaging parameters was evaluated using Pearson’s correlation coefficient. Results Compared to the normal controls, the DMD group had lower FIQ (82.0±15.39 vs. 120.21±16.06) and significantly lower splenium of corpus callosum (CC) FA values (P<0.05). Splenium of CC FA was positively correlated with VIQ (r=0.588, P=0.044). Conclusions There were microstructural changes of splenium of CC in DMD patients, which was associated with cognitive impairment. PMID:27127762

  20. Dropped-head in recessive oculopharyngeal muscular dystrophy.

    PubMed

    Garibaldi, Matteo; Pennisi, Elena Maria; Bruttini, Mirella; Bizzarri, Veronica; Bucci, Elisabetta; Morino, Stefania; Talerico, Caterina; Stoppacciaro, Antonella; Renieri, Alessandra; Antonini, Giovanni

    2015-11-01

    A 69-year-old woman presented a dropped head, caused by severe neck extensor weakness that had started two years before. She had also developed a mild degree of dysphagia, rhinolalia, eyelid ptosis and proximal limb weakness during the last months. EMG revealed myopathic changes. Muscle MRI detected fatty infiltration in the posterior neck muscles and tongue. Muscle biopsy revealed fiber size variations, sporadic rimmed vacuoles, small scattered angulated fibers and a patchy myofibrillar network. Genetic analysis revealed homozygous (GCN)11 expansions in the PABPN1 gene that were consistent with recessive oculopharyngeal muscular dystrophy (OPMD). There are a few reports of the recessive form, which has a later disease onset with milder symptoms and higher clinical variability than the typical dominantly inherited form. This patient, who is the first Italian and the eighth worldwide reported case of recessive OPMD, is also the first case of OPMD with dropped-head syndrome, which thus expands the clinical phenotype of recessive OPMD. PMID:26494409

  1. Spinal muscular atrophy: An update on therapeutic progress

    PubMed Central

    Seo, Joonbae; Howell, Matthew D.; Singh, Natalia N.; Singh, Ravindra N.

    2013-01-01

    Humans have two nearly identical copies of survival motor neuron gene: SMN1 and SMN2. Deletion or mutation of SMN1 combined with the inability of SMN2 to compensate for the loss of SMN1 results in spinal muscular atrophy (SMA), a leading genetic cause of infant mortality. SMA affects 1 in ~6000 live births, a frequency much higher than in several genetic diseases. The major known defect of SMN2 is the predominant exon 7 skipping that leads to production of a truncated protein (SMNΔ7), which is unstable. Therefore, SMA has emerged as a model genetic disorder in which almost the entire disease population could be linked to the aberrant splicing of a single exon (i.e. SMN2 exon 7). Diverse treatment strategies aimed at improving the function of SMN2 have been envisioned. These strategies include, but are not limited to, manipulation of transcription, correction of aberrant splicing and stabilization of mRNA, SMN and SMNΔ7. This review summarizes up to date progress and promise of various in vivo studies reported for the treatment of SMA. PMID:23994186

  2. Oral approach-avoidance: affective consequences of muscular articulation dynamics.

    PubMed

    Topolinski, Sascha; Maschmann, Ira Theresa; Pecher, Diane; Winkielman, Piotr

    2014-06-01

    Can mouth movements shape attitudes? When people articulate different consonants (e.g., B or K) they press the tongue and the lips against various spots in the mouth. This allows for construction of words that feature systematic wanderings of consonantal stricture spots either from the front to the rear (inward; e.g., BENOKA) or from the rear to the front (outward; e.g., KENOBA) of the mouth. These wanderings of muscular strictures resemble the oral kinematics during either deglution (swallowing-like, inward movement) or expectoration (spitting-like, outward movement). Thus, we predicted that the articulation of inward and outward words induces motivational states associated with deglutition and expectoration--namely, approach and avoidance--which was tested in 9 experiments (total N = 822). Inward words were preferred over outward words, being labeled as nonsense words (Experiments 1, 4, 5, 6, and 9), company names (Experiment 2), or person names (Experiments 3, 7, and 8), with control words falling in between (Experiment 5). As a social-behavioral consequence, ostensible chat partners were more often chosen to interact with when having inward compared to outward names (Experiment 7). The effect was found in German-speaking (Experiments 1-5) and English-speaking (Experiment 6) samples, and it occurred even under silent reading (all experiments) and for negatively labeled targets (names of villains; Experiment 8). Showing articulation simulations as being the causal undercurrent, this effect was absent in aphasia patients who lacked covert subvocalizations (Experiment 9). PMID:24841094

  3. Feeding problems and malnutrition in spinal muscular atrophy type II.

    PubMed

    Messina, Sonia; Pane, Marika; De Rose, Paola; Vasta, Isabella; Sorleti, Domenica; Aloysius, Annie; Sciarra, Federico; Mangiola, Fortunato; Kinali, Maria; Bertini, Enrico; Mercuri, Eugenio

    2008-05-01

    The aim of the study was to conduct a survey using a dedicated questionnaire to assess feeding difficulties and weight gain in a population of 122 Spinal Muscular Atrophy (SMA) type II patients, aged between 1 and 47 years. All the answers were entered in a database and were analysed subdividing the cohort into age groups (1-5, 6-10, 11-14, 15-19, 20-29, and 30-50 years). Six out of our 122 patients (5%), all younger than 11 years, had weights more than 2SD above the median for age matched controls, whilst 45 (37%) had weights less than 2SD below the median. Chewing difficulties were reported in 34 of the 122 patients (28%) and limitation in the ability to open the mouth in 36 (30%) and both were increasingly more frequent with age. Swallowing difficulties were reported in 30 patients (25%). The results of our survey suggest that a number of patients with SMA type II have limited jaw opening, and chewing and swallowing difficulties. Our findings raise a few issues concerning standards of care that should be implemented in the monitoring and management of feeding difficulties and weight gain. PMID:18420410

  4. Plastin 3 expression in discordant spinal muscular atrophy (SMA) siblings.

    PubMed

    Bernal, Sara; Also-Rallo, Eva; Martínez-Hernández, Rebeca; Alías, Laura; Rodríguez-Alvarez, Francisco Javier; Millán, José M; Hernández-Chico, Concepción; Baiget, Montserrat; Tizzano, Eduardo F

    2011-06-01

    Spinal muscular atrophy (SMA) is caused by loss or mutations of the survival motor neuron 1 gene (SMN1). Its highly homologous copy, SMN2, is present in all SMA cases and is a phenotypic modifier. There are cases where asymptomatic siblings of typical SMA patients possess a homozygous deletion of SMN1 just like their symptomatic brothers or sisters. Plastin 3 (PLS3) when over expressed in lymphoblasts from females has been suggested to act as a genetic modifier of SMA. We studied PLS3 expression in four Spanish SMA families with discordant siblings haploidentical for the SMA locus. We excluded PLS3 as a possible modifier in two of our families with female discordant siblings. In the remaining two, we observed small differences in PLS3 expression between male and female discordant siblings. Indeed, we found that values of PLS3 expression in lymphoblasts and peripheral blood ranged from 12 to 200-fold less than those in fibroblasts. These findings warrant further investigation in motor neurons derived from induced pluripotential stem cells of these patients. PMID:21546251

  5. Muscle Activation during Gait in Children with Duchenne Muscular Dystrophy.

    PubMed

    Ropars, Juliette; Lempereur, Mathieu; Vuillerot, Carole; Tiffreau, Vincent; Peudenier, Sylviane; Cuisset, Jean-Marie; Pereon, Yann; Leboeuf, Fabien; Delporte, Ludovic; Delpierre, Yannick; Gross, Raphaël; Brochard, Sylvain

    2016-01-01

    The aim of this prospective study was to investigate changes in muscle activity during gait in children with Duchenne muscular Dystrophy (DMD). Dynamic surface electromyography recordings (EMGs) of 16 children with DMD and pathological gait were compared with those of 15 control children. The activity of the rectus femoris (RF), vastus lateralis (VL), medial hamstrings (HS), tibialis anterior (TA) and gastrocnemius soleus (GAS) muscles was recorded and analysed quantitatively and qualitatively. The overall muscle activity in the children with DMD was significantly different from that of the control group. Percentage activation amplitudes of RF, HS and TA were greater throughout the gait cycle in the children with DMD and the timing of GAS activity differed from the control children. Significantly greater muscle coactivation was found in the children with DMD. There were no significant differences between sides. Since the motor command is normal in DMD, the hyper-activity and co-contractions likely compensate for gait instability and muscle weakness, however may have negative consequences on the muscles and may increase the energy cost of gait. Simple rehabilitative strategies such as targeted physical therapies may improve stability and thus the pattern of muscle activity. PMID:27622734

  6. Outcomes of asymmetry in infants with congenital muscular torticollis

    PubMed Central

    Lee, KyeongSoo; Chung, EunJung; Koh, SeongEun; Lee, Byoung-Hee

    2015-01-01

    [Purpose] The purpose of this study was to assess the outcomes of asymmetry in infants with congenital muscular torticollis (CMT). [Subjects] A total of 102 patients with CMT under the age of 6 months were studied. [Methods] Asymmety was evaluated by determining the difference in the thicknesses of the two sternocleidomastoid muscles (DTSM) using ultrasonography, head tilt (HT) based on a physical examination, and the torticollis overall assessment (TOA). Patients received ultrasound and massage therapy for 30 minutes, in conjunction with passive stretching exercises, 3 times a week. [Results] The DTSM, HT, and TOA scores were significantly different after treatment. Pretest DTSM, HT, and TOA scores and pre-posttest change scores for DTSM, HT, and TOA scores were correlated with treatment duration in infants with CMT. [Conclusion] The findings of this study suggest that treatment duration is correlated with asymmetry evaluation parameters (DTSM, HT, and TOA) in infants with CMT. We propose that these results will help in reducing the treatment duration, and also in improving communication between doctors and therapists during the diagnosis and evaluation of torticollis. PMID:25729191

  7. Neuropsychological Investigation in Chinese Patients with Progressive Muscular Atrophy

    PubMed Central

    Cui, Bo; Cui, Liying; Liu, Mingsheng; Li, Xiaoguang; Ma, Junfang; Fang, Jia; Ding, Qingyun

    2015-01-01

    Background Progressive muscular atrophy (PMA) is a rare type of degenerative motor neuron disease (MND) of which the onset happens in adult period. Despite its well-defined clinical characteristics, its neuropsychological profile has remained poorly understood, considering the consensus of cognitive and behavioral impairment reached in amyotrophic lateral sclerosis (ALS). Methods We conducted a cross-sectional evaluation of Chinese PMA patients with a series of comprehensive batteries emphasizing the executive and attention function, and covering other domains of memory, language, visuospatial function, calculation and behavior as well. Their performances were compared with those of age- and education-matched ALS and healthy controls (HC). Results 21 patients newly diagnosed with PMA were consecutively enrolled into our ALS and other MND registry platform, accounting for 14.7% of all the incident MND cases registered during the same period. 20 patients who completed the neuropsychological batteries were included into analysis. Compared with HC, PMA performed significantly worse in maintenance function of attention, while they exhibited quantitative similarity to ALS in all behavioral inventories and neuropsychological tests except the time for Stroop interference effect. Conclusion PMA could display mild cognitive dysfunction in the same frontal-mediated territory of ALS but in a lesser degree, whereas they did not differ from ALS behaviorally. PMID:26042930

  8. Disease Mechanisms and Therapeutic Approaches in Spinal Muscular Atrophy

    PubMed Central

    Tisdale, Sarah

    2015-01-01

    Motor neuron diseases are neurological disorders characterized primarily by the degeneration of spinal motor neurons, skeletal muscle atrophy, and debilitating and often fatal motor dysfunction. Spinal muscular atrophy (SMA) is an autosomal-recessive motor neuron disease of high incidence and severity and the most common genetic cause of infant mortality. SMA is caused by homozygous mutations in the survival motor neuron 1 (SMN1) gene and retention of at least one copy of the hypomorphic gene paralog SMN2. Early studies established a loss-of-function disease mechanism involving ubiquitous SMN deficiency and suggested SMN upregulation as a possible therapeutic approach. In recent years, greater knowledge of the central role of SMN in RNA processing combined with deep characterization of animal models of SMA has significantly advanced our understanding of the cellular and molecular basis of the disease. SMA is emerging as an RNA disease not limited to motor neurons, but one that involves dysfunction of motor circuits that comprise multiple neuronal subpopulations and possibly other cell types. Advances in SMA research have also led to the development of several potential therapeutics shown to be effective in animal models of SMA that are now in clinical trials. These agents offer unprecedented promise for the treatment of this still incurable neurodegenerative disease. PMID:26063904

  9. Unusual molecular findings in autosomal recessive spinal muscular atrophy.

    PubMed Central

    Matthijs, G; Schollen, E; Legius, E; Devriendt, K; Goemans, N; Kayserili, H; Apäk, M Y; Cassiman, J J

    1996-01-01

    All three types of autosomal recessive spinal muscular atrophy map to chromosome 5q11.2-q13.3 and are associated with deletions or mutations of the SMN (survival motor neurone) gene. The availability of a test to distinguish between the SMN gene and its nearly identical centromeric copy cBCD541 allows molecular diagnosis. We have analysed patients from 24 Belgian and 34 Turkish families for the presence or absence of a deletion in the SMN gene. A homozygous deletion in the SMN gene was seen in 90% of unrelated SMA patients. A non-radioactive SSCP assay allows for a semiquantitative analysis of the copy number of the centromeric and SMN genes. Hence, direct carrier detection has become feasible under certain conditions. We observed a phenotypically normal male, father of an SMA type I patient, presenting with only a single copy of the SMN gene and lacking both copies of the cBCD541 gene. This illustrates that a reduction of the total number of SMN and cBCD541 genes to a single SMN copy is compatible with normal life. In another SMA type I family, there is evidence for a de novo deletion of the centromeric gene in a normal sib. This observation illustrates the susceptibility of the SMA locus to de novo deletions and rearrangements. Images PMID:8782046

  10. [Exon-skipping therapy for Duchenne muscular dystrophy].

    PubMed

    Takeda, Shin'ichi

    2011-11-01

    Duchenne muscular dystrophy (DMD) is caused by the lack of dystrophin at the sarcolemma. Exon skipping by antisense oligonucleotides is a novel method to restore the reading frame of the mutated DMD gene, and rescue dystrophin expression. We recently reported that systemic delivery of Morpholino antisense oligonucleotides targeting exon 6 and 8 of the canine DMD gene, efficiently recovered functional dystrophin at the sarcolamma of dystrophic dogs, and improved phenotypes of affected dogs without serious side effects (Ann Neurol. 65: 667-676, 2009). To optimize therapeutic antisense Morpholinos for more frequent mutations of the DMD gene, we designed antisense Morpholinos targeting exon 51 of the mouse DMD gene, and injected them separately or in combination into the muscles of mdx52 mice, in which exon 52 has been deleted by a gene targeting technique. We also tried systemic delivery of antisense Morpholino to skip exon 51 in mdx 52 mice and found the amelioration of the phenotypes (Mol Ther, 2010). Clinical trials of exon 51 skipping for DMD patients is now going in our country and application of antisense strategy to other hereditary neuromuscular diseases is largely expected. PMID:22277414

  11. Progress toward gene therapy of Duchenne muscular dystrophy.

    PubMed

    Hartigan-O'Connor, D; Chamberlain, J S

    1999-01-01

    Duchenne muscular dystrophy (DMD) is a common lethal disease for which no effective treatment is available. The lethal consequences of DMD are caused by absence of a structural protein, called dystrophin, from skeletal and cardiac muscle cells. The usefulness of gene replacement as therapy for this disease has been established in transgenic mouse models. Unfortunately, progress toward therapy for human patients has been limited by the characteristics of currently available viral vectors and by lack of a suitable technique for delivery of such vectors to a large mass of muscle cells. Successful gene therapy of DMD will require a vector that can carry most of the dystrophin coding sequence, that can be cheaply produce in large quantities, that can be delivered to a large mass of muscle cells, and that provides stable expression of dystrophin after delivery. We and others have worked to develop such a vector through modification of adenoviruses (Ad). Here we review the characteristics of conventional Ad vectors and new helper-dependent, or gutted, Ad vectors. Gutted Ad vectors contain cis-acting DNA sequences necessary for viral replication and packaging, but are deleted, or gutted, for all viral coding sequences. We found that gutted vectors efficiently delivered full-length dystrophin to the skeletal muscles of dystrophic (mdx) mice. Dystrophic muscles injected with these vectors expressed dystrophin for at least four months post-injection, which was the longest time point tested. These data suggest that gutted vectors will allow delivery and long-term expression of dystrophin. PMID:12194388

  12. Muscular Control of Turning and Maneuvering in Jellyfish Bells

    NASA Astrophysics Data System (ADS)

    Hoover, Alexander; Miller, Laura; Griffith, Boyce

    2014-11-01

    Jellyfish represent one of the earliest and simplest examples of swimming by a macroscopic organism. Contractions of an elastic bell that expels water are driven by coronal swimming muscles. The re-expansion of the bell is passively driven by stored elastic energy. A current question in jellyfish propulsion is how the underlying neuromuscular organization of their bell allows for maneuvering. Using an immersed boundary framework, we will examine the mechanics of swimming by incorporating material models that are informed by the musculature present in jellyfish into a model of the elastic jellyfish bell in three dimensions. The fully-coupled fluid structure interaction problem is solved using an adaptive and parallelized version of the immersed boundary method (IBAMR). We then use this model to understand how variability in the muscular activation patterns allows for complicated swimming behavior, such as steering. We will compare the results of the simulations with the actual turning maneuvers of several species of jellyfish. Numerical flow fields will also be compared to those produced by actual jellyfish using particle image velocimetry (PIV).

  13. Outcomes of asymmetry in infants with congenital muscular torticollis.

    PubMed

    Lee, KyeongSoo; Chung, EunJung; Koh, SeongEun; Lee, Byoung-Hee

    2015-02-01

    [Purpose] The purpose of this study was to assess the outcomes of asymmetry in infants with congenital muscular torticollis (CMT). [Subjects] A total of 102 patients with CMT under the age of 6 months were studied. [Methods] Asymmety was evaluated by determining the difference in the thicknesses of the two sternocleidomastoid muscles (DTSM) using ultrasonography, head tilt (HT) based on a physical examination, and the torticollis overall assessment (TOA). Patients received ultrasound and massage therapy for 30 minutes, in conjunction with passive stretching exercises, 3 times a week. [Results] The DTSM, HT, and TOA scores were significantly different after treatment. Pretest DTSM, HT, and TOA scores and pre-posttest change scores for DTSM, HT, and TOA scores were correlated with treatment duration in infants with CMT. [Conclusion] The findings of this study suggest that treatment duration is correlated with asymmetry evaluation parameters (DTSM, HT, and TOA) in infants with CMT. We propose that these results will help in reducing the treatment duration, and also in improving communication between doctors and therapists during the diagnosis and evaluation of torticollis. PMID:25729191

  14. Molecular Mechanisms of Neurodegeneration in Spinal Muscular Atrophy

    PubMed Central

    Ahmad, Saif; Bhatia, Kanchan; Kannan, Annapoorna; Gangwani, Laxman

    2016-01-01

    Spinal muscular atrophy (SMA) is an autosomal recessive motor neuron disease with a high incidence and is the most common genetic cause of infant mortality. SMA is primarily characterized by degeneration of the spinal motor neurons that leads to skeletal muscle atrophy followed by symmetric limb paralysis, respiratory failure, and death. In humans, mutation of the Survival Motor Neuron 1 (SMN1) gene shifts the load of expression of SMN protein to the SMN2 gene that produces low levels of full-length SMN protein because of alternative splicing, which are sufficient for embryonic development and survival but result in SMA. The molecular mechanisms of the (a) regulation of SMN gene expression and (b) degeneration of motor neurons caused by low levels of SMN are unclear. However, some progress has been made in recent years that have provided new insights into understanding of the cellular and molecular basis of SMA pathogenesis. In this review, we have briefly summarized recent advances toward understanding of the molecular mechanisms of regulation of SMN levels and signaling mechanisms that mediate neurodegeneration in SMA. PMID:27042141

  15. Reevaluating Measures of Disease Progression in Facioscapulohumeral Muscular Dystrophy

    PubMed Central

    Statland, Jeffrey M.; McDermott, Michael P.; Heatwole, Chad; Martens, William B.; Pandya, Shree; van der Kooi, E.L.; Kissel, John T.; Wagner, Kathryn R.; Tawil, Rabi

    2013-01-01

    Recent advances in the understanding of the molecular pathophysiology of facioscapulohumeral muscular dystrophy (FSHD) have identified potential therapeutic targets. Consequently, an accurate understanding of disease progression in FSHD is crucial for the design of future clinical trials. Data from 228 subjects in 3 clinical trials and 1 natural history study were compared to examine disease progression in FSHD. All studies utilized the same techniques for manual muscle testing and maximum voluntary isometric contraction testing. Both techniques yield a total strength score that can be followed over time as an indicator of disease progression. Whereas natural history data showed a decrease in strength over 1 year, there was an apparent increase in strength at 6 months in 2 of the 3 clinical trials in both the placebo and treatment groups, that persisted for up to 1 year for maximum voluntary isometric contraction testing. Variability estimates from the clinical trial data were consistent with those seen in the natural history data. Patients in clinical trials in FSHD may have better outcomes than those in natural history studies, regardless of treatment assignment, emphasizing the importance of placebo groups and the need for caution when interpreting the strength results of controlled and uncontrolled trials. PMID:23406877

  16. Pathways Implicated in Tadalafil Amelioration of Duchenne Muscular Dystrophy.

    PubMed

    De Arcangelis, Valeria; Strimpakos, Georgios; Gabanella, Francesca; Corbi, Nicoletta; Luvisetto, Siro; Magrelli, Armando; Onori, Annalisa; Passananti, Claudio; Pisani, Cinzia; Rome, Sophie; Severini, Cinzia; Naro, Fabio; Mattei, Elisabetta; Di Certo, Maria Grazia; Monaco, Lucia

    2016-01-01

    Numerous therapeutic approaches for Duchenne and Becker Muscular Dystrophy (DMD and BMD), the most common X-linked muscle degenerative disease, have been proposed. So far, the only one showing a clear beneficial effect is the use of corticosteroids. Recent evidence indicates an improvement of dystrophic cardiac and skeletal muscles in the presence of sustained cGMP levels secondary to a blocking of their degradation by phosphodiesterase five (PDE5). Due to these data, we performed a study to investigate the effect of the specific PDE5 inhibitor, tadalafil, on dystrophic skeletal muscle function. Chronic pharmacological treatment with tadalafil has been carried out in mdx mice. Behavioral and physiological tests, as well as histological and biochemical analyses, confirmed the efficacy of the therapy. We then performed a microarray-based genomic analysis to assess the pattern of gene expression in muscle samples obtained from the different cohorts of animals treated with tadalafil. This scrutiny allowed us to identify several classes of modulated genes. Our results show that PDE5 inhibition can ameliorate dystrophy by acting at different levels. Tadalafil can lead to (1) increased lipid metabolism; (2) a switch towards slow oxidative fibers driven by the up-regulation of PGC-1α; (3) an increased protein synthesis efficiency; (4) a better actin network organization at Z-disk. PMID:26097015

  17. Functional muscle ischemia in Duchenne and Becker muscular dystrophy

    PubMed Central

    Thomas, Gail D.

    2013-01-01

    Duchenne and Becker muscular dystrophy (DMD/BMD) comprise a spectrum of devastating X-linked muscle wasting disease for which there is no treatment. DMD/BMD is caused by mutations in the gene encoding dystrophin, a cytoskeletal protein that stabilizes the muscle membrane and also targets other proteins to the sarcolemma. Among these is the muscle-specific isoform of neuronal nitric oxide synthase (nNOSμ) which binds spectrin-like repeats within dystrophin's rod domain and the adaptor protein α-syntrophin. Dystrophin deficiency causes loss of sarcolemmal nNOSμ and reduces paracrine signaling of muscle-derived nitric oxide (NO) to the microvasculature, which renders the diseased muscle fibers susceptible to functional muscle ischemia during exercise. Repeated bouts of functional ischemia superimposed on muscle fibers already weakened by dystrophin deficiency result in use-dependent focal muscle injury. Genetic and pharmacologic strategies to boost nNOSμ-NO signaling in dystrophic muscle alleviate functional muscle ischemia and show promise as novel therapeutic interventions for the treatment of DMD/BMD. PMID:24391598

  18. Tendon Extracellular Matrix Alterations in Ullrich Congenital Muscular Dystrophy.

    PubMed

    Sardone, Francesca; Traina, Francesco; Bondi, Alice; Merlini, Luciano; Santi, Spartaco; Maraldi, Nadir Mario; Faldini, Cesare; Sabatelli, Patrizia

    2016-01-01

    Collagen VI (COLVI) is a non-fibrillar collagen expressed in skeletal muscle and most connective tissues. Mutations in COLVI genes cause two major clinical forms, Bethlem myopathy and Ullrich congenital muscular dystrophy (UCMD). In addition to congenital muscle weakness, patients affected by COLVI myopathies show axial and proximal joint contractures and distal joint hypermobility, which suggest the involvement of the tendon function. We examined a peroneal tendon biopsy and tenocyte culture of a 15-year-old patient affected by UCMD with compound heterozygous COL6A2 mutations. In patient's tendon biopsy, we found striking morphological alterations of tendon fibrils, consisting in irregular profiles and reduced mean diameter. The organization of the pericellular matrix of tenocytes, the primary site of collagen fibril assembly, was severely affected, as determined by immunoelectron microscopy, which showed an abnormal accumulation of COLVI and altered distribution of collagen I (COLI) and fibronectin (FBN). In patient's tenocyte culture, COLVI web formation and cell surface association were severely impaired; large aggregates of COLVI, which matched with COLI labeling, were frequently detected in the extracellular matrix. In addition, metalloproteinase MMP-2, an extracellular matrix-regulating enzyme, was increased in the conditioned medium of patient's tenocytes, as determined by gelatin zymography and western blot. Altogether, these data indicate that COLVI deficiency may influence the organization of UCMD tendon matrix, resulting in dysfunctional fibrillogenesis. The alterations of tendon matrix may contribute to the complex pathogenesis of COLVI related myopathies. PMID:27375477

  19. GEMINs: potential therapeutic targets for spinal muscular atrophy?

    PubMed Central

    Borg, Rebecca; Cauchi, Ruben J.

    2014-01-01

    The motor neuron degenerative disease spinal muscular atrophy (SMA) remains one of the most frequently inherited causes of infant mortality. Afflicted patients loose the survival motor neuron 1 (SMN1) gene but retain one or more copies of SMN2, a homolog that is incorrectly spliced. Primary treatment strategies for SMA aim at boosting SMN protein levels, which are insufficient in patients. SMN is known to partner with a set of diverse proteins collectively known as GEMINs to form a macromolecular complex. The SMN-GEMINs complex is indispensible for chaperoning the assembly of small nuclear ribonucleoproteins (snRNPs), which are key for pre-mRNA splicing. Pharmaceutics that alleviate the neuromuscular phenotype by restoring the fundamental function of SMN without augmenting its levels are also crucial in the development of an effective treatment. Their use as an adjunct therapy is predicted to enhance benefit to patients. Inspired by the surprising discovery revealing a premier role for GEMINs in snRNP biogenesis together with in vivo studies documenting their requirement for the correct function of the motor system, this review speculates on whether GEMINs constitute valid targets for SMA therapeutic development. PMID:25360080

  20. Serum Enzyme Profiles Differentiate Five Types of Muscular Dystrophy

    PubMed Central

    Zhu, Yuling; Zhang, Huili; Sun, Yiming; Li, Yaqin; Deng, Langhui; Wen, Xingxuan; Wang, Huaqiao; Zhang, Cheng

    2015-01-01

    Background. Differentiation among types of muscular dystrophy (MD) has remained challenging. In this retrospective study, we sought to develop a methodology for differentiation of MD types using analysis of serum enzyme profiles. Methods. The serum levels of enzymes from 232 patients, including 120 with DMD, 36 with BMD, 36 with FSHD, 46 with LGMD, and 11 with EDMD, were evaluated. Results. The characteristic profiles of serum enzymes facilitated differentiation of these five types of MD. DMD was characterized by simultaneous elevation of ALT, AST, LDH, and ALP; BMD and LGMD were characterized by elevation of ALT, AST, and LDH; and FSHD and EDMD were characterized by a lack of abnormal serum enzyme levels. We further developed discriminant functions to distinguish BMD and LGMD. For LGMD, LGMD2B patients had significantly higher ALP levels than non-LGMD2B patients (98 ± 59 U/L versus 45 ± 9 U/L, resp., p < 0.05). Conclusions. Our approach enabled the determination of MD subtypes using serum enzyme profiles prior to genetic testing, which will increase the chance a mutation will be found in the first gene analyzed. PMID:26063958

  1. Mouse fukutin deletion impairs dystroglycan processing and recapitulates muscular dystrophy

    PubMed Central

    Beedle, Aaron M.; Turner, Amy J.; Saito, Yoshiaki; Lueck, John D.; Foltz, Steven J.; Fortunato, Marisa J.; Nienaber, Patricia M.; Campbell, Kevin P.

    2012-01-01

    Dystroglycan is a transmembrane glycoprotein that links the extracellular basement membrane to cytoplasmic dystrophin. Disruption of the extensive carbohydrate structure normally present on α-dystroglycan causes an array of congenital and limb girdle muscular dystrophies known as dystroglycanopathies. The essential role of dystroglycan in development has hampered elucidation of the mechanisms underlying dystroglycanopathies. Here, we developed a dystroglycanopathy mouse model using inducible or muscle-specific promoters to conditionally disrupt fukutin (Fktn), a gene required for dystroglycan processing. In conditional Fktn-KO mice, we observed a near absence of functionally glycosylated dystroglycan within 18 days of gene deletion. Twenty-week-old KO mice showed clear dystrophic histopathology and a defect in glycosylation near the dystroglycan O-mannose phosphate, whether onset of Fktn excision driven by muscle-specific promoters occurred at E8 or E17. However, the earlier gene deletion resulted in more severe phenotypes, with a faster onset of damage and weakness, reduced weight and viability, and regenerating fibers of smaller size. The dependence of phenotype severity on the developmental timing of muscle Fktn deletion supports a role for dystroglycan in muscle development or differentiation. Moreover, given that this conditional Fktn-KO mouse allows the generation of tissue- and timing-specific defects in dystroglycan glycosylation, avoids embryonic lethality, and produces a phenotype resembling patient pathology, it is a promising new model for the study of secondary dystroglycanopathy. PMID:22922256

  2. Tendon Extracellular Matrix Alterations in Ullrich Congenital Muscular Dystrophy

    PubMed Central

    Sardone, Francesca; Traina, Francesco; Bondi, Alice; Merlini, Luciano; Santi, Spartaco; Maraldi, Nadir Mario; Faldini, Cesare; Sabatelli, Patrizia

    2016-01-01

    Collagen VI (COLVI) is a non-fibrillar collagen expressed in skeletal muscle and most connective tissues. Mutations in COLVI genes cause two major clinical forms, Bethlem myopathy and Ullrich congenital muscular dystrophy (UCMD). In addition to congenital muscle weakness, patients affected by COLVI myopathies show axial and proximal joint contractures and distal joint hypermobility, which suggest the involvement of the tendon function. We examined a peroneal tendon biopsy and tenocyte culture of a 15-year-old patient affected by UCMD with compound heterozygous COL6A2 mutations. In patient’s tendon biopsy, we found striking morphological alterations of tendon fibrils, consisting in irregular profiles and reduced mean diameter. The organization of the pericellular matrix of tenocytes, the primary site of collagen fibril assembly, was severely affected, as determined by immunoelectron microscopy, which showed an abnormal accumulation of COLVI and altered distribution of collagen I (COLI) and fibronectin (FBN). In patient’s tenocyte culture, COLVI web formation and cell surface association were severely impaired; large aggregates of COLVI, which matched with COLI labeling, were frequently detected in the extracellular matrix. In addition, metalloproteinase MMP-2, an extracellular matrix-regulating enzyme, was increased in the conditioned medium of patient’s tenocytes, as determined by gelatin zymography and western blot. Altogether, these data indicate that COLVI deficiency may influence the organization of UCMD tendon matrix, resulting in dysfunctional fibrillogenesis. The alterations of tendon matrix may contribute to the complex pathogenesis of COLVI related myopathies. PMID:27375477

  3. Spinal muscular atrophy in Holstein-Friesian calves.

    PubMed

    Pumarola, M; Añor, S; Majó, N; Borrás, D; Ferrer, I

    1997-02-01

    The clinical and neuropathological findings of spinal muscular atrophy (SMA) in Holstein-Friesian calves are described in four females and one male from a dairy farm composed of 150 cows and 2 breeding bulls. Locomotion difficulties started at the age of 15 days, and progressed to paraparesis and tetraparesis in 2 weeks. Signs consistent with denervation were revealed with electromyography. The neuropathological examination showed degeneration and loss of motor neurons in the spinal cord, together with astrocytosis. Among the remaining motor neurons were ghost cells and neurons filled with accumulations of straight filaments measuring 10-12 nm in diameter, which were strongly immunoreactive with antibodies produced against phosphorylated neurofilaments. Degenerating cells in SMA did not stain with the method of in situ labelling of nuclear DNA fragmentation and did not show c-Jun immunoreactivity. This feature contrasts with the in situ labelling of DNA breaks of apoptotic cells and with the strong c-Jun immunoreactivity restricted to dying cells during the whole process of naturally occurring cell death in the developing central nervous system. These features suggest that cell death in SMA differs from programmed cell death during normal development, and that pathological cell death in SMA should not be considered as a mere persistence or reactivation of normally occurring developmental cell death. PMID:9039466

  4. The immune system in Duchenne muscular dystrophy: Friend or foe

    PubMed Central

    Villalta, S Armando; Rosenberg, Amy S; Bluestone, Jeffrey A

    2015-01-01

    Duchenne muscular dystrophy (DMD) is a genetic disease caused by mutations in the X-linked dystrophin gene, resulting in reduced or absent protein production, subsequently leading to the structural instability of the dystroglycan complex (DGC), muscle degeneration, and early death in males. Thus, current treatments have been targeting the genetic defect either by bypassing the mutation through exon skipping or replacing the defective gene through gene therapy and stem cell approaches. However, what has been an underappreciated mediator of muscle pathology and, ultimately, of muscle degeneration and fibrotic replacement, is the prominent inflammatory response. Of potentially critical importance, however, is the fact that the elements mediating the inflammatory response also play an essential role in tissue repair. In this opinion piece, we highlight the detrimental and supportive immune parameters that occur as a consequence of the genetic disorder and discuss how changes to immunity can potentially ameliorate the disease intensity and be employed in conjunction with efforts to correct the genetic disorder. PMID:26481612

  5. Towards identification of the gene for spinal muscular atrophy

    SciTech Connect

    Steege, G. van der; Cobben, J.M.; Draaijers, T.G.

    1994-09-01

    The proximal spinal muscular atrophies (SMAs) are irreversible lower motor neuron diseases of unknown primary cause. According to age of onset and severity of illness, this group of disorders can be classified into three types: SMA types I, II, and III. All three types of autosomal recessive SMA have been localized to chromosome 5 in bands of q11.2-q13 by genetic analysis. The gene resides in a small genetic interval flanked by the markers D5S435 and D5S557. From a hybrid cell line containing 5q11-q14 as its only human chromosome 5 material we constructed a cosmid library. A cosmid clone mapped by FISH between D5S125 and D5S112 was used to isolate some YACs, from which cosmid libraries were constructed. cDNA libraries are screened by hybridization directly with the YACs and with cosmids that give Northern signals. At present we are analysing 7 different cDNA clones mapping between D5S435 and D5S557.

  6. Duchenne Muscular Dystrophy Gene Therapy in the Canine Model

    PubMed Central

    2015-01-01

    Abstract Duchenne muscular dystrophy (DMD) is an X-linked lethal muscle disease caused by dystrophin deficiency. Gene therapy has significantly improved the outcome of dystrophin-deficient mice. Yet, clinical translation has not resulted in the expected benefits in human patients. This translational gap is largely because of the insufficient modeling of DMD in mice. Specifically, mice lacking dystrophin show minimum dystrophic symptoms, and they do not respond to the gene therapy vector in the same way as human patients do. Further, the size of a mouse is hundredfolds smaller than a boy, making it impossible to scale-up gene therapy in a mouse model. None of these limitations exist in the canine DMD (cDMD) model. For this reason, cDMD dogs have been considered a highly valuable platform to test experimental DMD gene therapy. Over the last three decades, a variety of gene therapy approaches have been evaluated in cDMD dogs using a number of nonviral and viral vectors. These studies have provided critical insight for the development of an effective gene therapy protocol in human patients. This review discusses the history, current status, and future directions of the DMD gene therapy in the canine model. PMID:25710459

  7. Immunohistochemical Characterization of Facioscapulohumeral Muscular Dystrophy Muscle Biopsies

    PubMed Central

    Statland, Jeffrey M; Odrzywolski, Karen J; Shah, Bharati; Henderson, Don; Fricke, Alex F.; van der Maarel, Silvère M; Tapscott, Stephen J; Tawil, Rabi

    2015-01-01

    Background Posited pathological mechanisms in Facioscapulohumeral Muscular Dystrophy (FSHD) include activation in somatic tissue of normally silenced genes, increased susceptibility to oxidative stress, and induction of apoptosis. Objective To determine the histopathological changes in FSHD muscle biopsies and compare to possible pathological mechanisms of disease. Methods We performed a cross-sectional study on quadriceps muscle biopsies from 32 genetically confirmed FSHD participants, compared to healthy volunteers and myotonic dystrophy type 1 as disease controls. Biopsies were divided into groups to evaluate apoptosis rates, capillary density, myonuclear and satellite cell counts. Results Apoptosis rates were increased in FSHD (n=10, 0.74%) compared to myotonic dystrophy type 1 (n=10, 0.14%, P=0.003) and healthy volunteers (n=14, 0.13%, P=0.002). Apoptosis was higher in FSHD patients with the smallest residual D4Z4 fragments. Capillary density was decreased in FSHD1 (n=10, 316 capillaries/mm2) compared to healthy volunteers (n=15, 448 capillaries/mm2, P=0.001). No differences were seen in myonuclear or satellite cell counts. Conclusions Preliminary evidence for increased apoptosis rates and reduced capillary density may reflect histopathological correlates of disease activity in FSHD. The molecular-pathological correlates to these changes warrants further investigation. PMID:26345300

  8. Symptom Burden in Persons with Myotonic and Facioscapulohumeral Muscular Dystrophy

    PubMed Central

    Smith, Amanda E.; McMullen, Kara; Jensen, Mark P.; Carter, Gregory T.; Molton, Ivan R.

    2013-01-01

    Objective This study examines the prevalence of pain, fatigue, imbalance, memory impairment and vision loss in persons with myotonic and facioscapulohumeral dystrophy, and their association with functioning. Design A survey (n=170) included measures of severity (0–10 scales) and course of these symptoms, as well as measures of social integration, home competency, mental health and productive activity. Descriptive and regression analyses examined the associations between symptoms and functioning. Results Fatigue (91%), imbalance (82%) and pain (77%) were most commonly reported. The most severe symptom was fatigue (mean severity 5.14 ± 2.81), followed by imbalance (4.95 ± 3.25). Symptoms were most likely to stay the same or worsen since onset. Controlling for potential medical and demographic confounds, symptoms were associated with 17% of the mental health variance, 10% of home competency, 10% of social integration, 16% of productive activity for DM1 and 12% of productive activity for FSHD. Conclusions Pain, fatigue and imbalance are common in persons with muscular dystrophy. Interventions may be useful to mitigate their impact on functioning. Further research should examine these relationships to guide clinical practices. PMID:24247759

  9. De novo exonic mutation in MYH7 gene leading to exon skipping in a patient with early onset muscular weakness and fiber-type disproportion.

    PubMed

    Pajusalu, Sander; Talvik, Inga; Noormets, Klari; Talvik, Tiina; Põder, Haide; Joost, Kairit; Puusepp, Sanna; Piirsoo, Andres; Stenzel, Werner; Goebel, Hans H; Nikopensius, Tiit; Annilo, Tarmo; Nõukas, Margit; Metspalu, Andres; Õunap, Katrin; Reimand, Tiia

    2016-03-01

    Here we report on a case of MYH7-related myopathy in a boy with early onset of muscular weakness and delayed motor development in infancy. His most affected muscles were neck extensors showing a dropped head sign, proximal muscles of lower limbs with positive Gower's sign, and trunk muscles. Brain and spinal cord MRI scans, echocardiography, and laboratory analyses including creatine kinase and lactate did not reveal any abnormalities. Muscle histopathology showed fiber-type disproportion. Whole exome sequencing of the parents-offspring trio revealed a novel de novo c.5655G>A p.(Ala1885=) synonymous substitution of the last nucleotide in exon 38 of the MYH7 gene. Further RNA investigations proved the skipping of exon 38 (p.1854_1885del). This is a first report of an exon-skipping mutation in the MYH7 gene causing myopathy. This report broadens both the phenotypic and genotypic spectra of MYH7-related myopathies. PMID:26782017

  10. [Artificial ossification of muscular flap after plastic surgery of the bone cavity under the effect of electric current].

    PubMed

    Tkachenko, S S; Mussa, M; Rutskiĭ, V V

    1978-03-01

    Experiments in rabbits revealed that transplantation of a muscular flap on the central feeding pedicle in the tibis medullary canal and its electro-stimulation with direct microelectric current of 18-20 muA with the alternating polarity speeded up the process of reorganization of the muscular flap in the depth of which new osseous tissue was forming. Electrostimulation of osteogenesis in case of the muscular plastic transplantation promotes restoration of the anatomic integrity of the bone. PMID:667330

  11. Muscular exercise in type I-diabetics. I. Different metabolic reactions during heavy muscular work in dependence on actual insulin availability.

    PubMed

    Zander, E; Bruns, W; Wulfert, P; Besch, W; Lubs, D; Chlup, R; Schulz, B

    1983-07-01

    The present study focussed on the impact of heavy muscular work upon metabolic homeostasis in insulin dependent (type I) diabetics in situations involving a certain degree of hyper- and hypoinsulinemia. 20 juvenile type I-diabetics were compared with 6 nondiabetic healthy subjects. The diabetics were studied in states of hypo-(trial A) and hyperinsulinemia (trial B) at the start of the exercise. Differences in insulin availability resulted from the different times that had elapsed from the last insulin injection (3 hours in trial A and 1 hour in trial B) before the ergometer test started at 7 a.m. Six diabetics out of 20 patients were studied in both trials A and B to establish the reproducibility of metabolic reactions to the exercise. Bicycle ergometer tests were carried out in the upright position at 5 graded steps of 50 W, 75 W, 100 W, 125 W and a load near to exhaustion. Rest periods of five minutes were allowed between these work periods for taking blood samples before and after each work load. Plasma glucose, FFA, glycerol, lactate, alanine, IRI and HCP concentrations were investigated. The blood pressure at rest and during exercise was measured, and the physical working capacity (PWC170) was calculated according to Wahlund on the basis of the heart rate response to exercise. The results of the exercise tests reflect clearly the different metabolic reactions to heavy muscular work despite the relatively slight differences in insulin availability at the start: --Exhausting muscular work during the hypoinsulinemic state resulted in hyperglycemia and exaggerated lipolysis. --Heavy muscular work in a hyperinsulinemic state resulted in a reduced blood glucose level and antilipolytic reactions in comparison to nondiabetics. These findings suggest the great necessity of an adequate insulin availability during heavy muscular work in juvenile type I-diabetics. PMID:6352288

  12. Idebenone reduces respiratory complications in patients with Duchenne muscular dystrophy.

    PubMed

    McDonald, Craig M; Meier, Thomas; Voit, Thomas; Schara, Ulrike; Straathof, Chiara S M; D'Angelo, M Grazia; Bernert, Günther; Cuisset, Jean-Marie; Finkel, Richard S; Goemans, Nathalie; Rummey, Christian; Leinonen, Mika; Spagnolo, Paolo; Buyse, Gunnar M

    2016-08-01

    In Duchenne muscular dystrophy (DMD), progressive loss of respiratory function leads to restrictive pulmonary disease and places patients at significant risk for severe respiratory complications. Of particular concern are ineffective cough, secretion retention and recurrent respiratory tract infections. In a Phase 3 randomized controlled study (DMD Long-term Idebenone Study, DELOS) in DMD patients 10-18 years of age and not taking concomitant glucocorticoid steroids, idebenone (900 mg/day) reduced significantly the loss of respiratory function over a 1-year study period. In a post-hoc analysis of DELOS we found that more patients in the placebo group compared to the idebenone group experienced bronchopulmonary adverse events (BAEs): placebo: 17 of 33 patients, 28 events; idebenone: 6 of 31 patients, 7 events. The hazard ratios (HR) calculated "by patient" (HR 0.33, p = 0.0187) and for "all BAEs" (HR 0.28, p = 0.0026) indicated a clear idebenone treatment effect. The overall duration of BAEs was 222 days (placebo) vs. 82 days (idebenone). In addition, there was also a difference in the use of systemic antibiotics utilized for the treatment of BAEs. In the placebo group, 13 patients (39.4%) reported 17 episodes of antibiotic use compared to 7 patients (22.6%) reporting 8 episodes of antibiotic use in the idebenone group. Furthermore, patients in the placebo group used systemic antibiotics for longer (105 days) compared to patients in the idebenone group (65 days). This post-hoc analysis of DELOS indicates that the protective effect of idebenone on respiratory function is associated with a reduced risk of bronchopulmonary complications and a reduced need for systemic antibiotics. PMID:27238057

  13. Muscular dysfunction elicited by creep of lumbar viscoelastic tissue.

    PubMed

    Solomonow, M; Baratta, R V; Zhou, B-H; Burger, E; Zieske, A; Gedalia, A

    2003-08-01

    The biomechanics, histology and electromyography of the lumbar viscoelastic tissues and multifidus muscles of the in vivo feline were investigated during 20 min of static as well as cyclic flexion under load control and during 7 h of rest following the flexion. It was shown that the creep developed in the viscoelastic tissues during the 20 min of static or cyclic flexion did not fully recover over the 7 h of following rest. It was further seen that a neuromuscular disorder with five distinct components developed during and after the static and cyclic flexion. The neuromuscular disorder consisted of a decreasing magnitude of reflexive EMG from the multifidus upon flexion as well as of superimposed spasms. The recovery period was characterized by an initial muscle hyperexcitability, a slowly increasing reflexive EMG and a delayed hyperexcitability. Histological data from the supraspinous ligament demonstrate significant increase (x 10) in neutrophil density in the ligament 2 h into the recovery and even larger increase (x 100) 6 h into the recovery from the 20 min flexion, indicating an acute soft tissue inflammation. It was concluded that sustained static or cyclic loading of lumbar viscoelastic tissues may cause micro-damage in the collagen structure, which in turn reflexively elicit spasms in the multifidus as well as hyperexcitability early in the recovery when the majority of the creep recovers. The micro-damage, however, results in the time dependent development of inflammation. In all cases, the spasms, initial and delayed hyperexcitabilities represent increased muscular forces applied across the intervertebral joints in an attempt to limit the range of motion and unload the viscoelastic tissues in order to prevent further damage and to promote healing. It is suggested that a significant insight is gained as to the development and implications of a common idiopathic low back disorder as well as to the development of cumulative trauma disorders. PMID:12832168

  14. Onset Manifestations of Spinal and Bulbar Muscular Atrophy (Kennedy's Disease).

    PubMed

    Finsterer, Josef; Soraru, Gianni

    2016-03-01

    Spinal and bulbar muscular atrophy (SBMA) is regarded as a disorder with adult onset between third and fifth decade of life. However, there is increasing evidence that SBMA may start already before adulthood. The present study investigated the following: (1) Which clinical manifestations have been described so far in the literature as initial manifestations? (2) Which was the age at onset of these manifestations? and (3) Is age at onset dependent on the CAG-repeat length if non-motor manifestations are additionally considered? Data for this review were identified by searches of MEDLINE using appropriate search terms. Onset manifestations in SBMA can be classified as frequent, rare, motor, non-motor, or questionable. Frequent are muscle weakness, cramps, fasciculations/twitching, tremor, dysarthria, dysphagia, or gynecomastia. Rare are myalgia, easy fatigability, exercise intolerance, polyneuropathy, hyper-CKemia, under-masculinized genitalia, scrotal hypospadias, microphallus, laryngospasm, or oligospermia. Questionable manifestations include sensory disturbances, cognitive impairment, increased pituitary volume, diabetes, reduced tongue pressure, elevated creatine-kinase, or low androgens/high estrogens. Age at onset is highly variable ranging from 4-76 years. Non-motor manifestations develop usually before motor manifestations. Age at onset depends on what is considered as an onset manifestation. Considering non-motor onset manifestations, age at onset is independent of the CAG-repeat size. In conclusion, age at onset of SBMA depends on what is regarded as onset manifestation. If non-motor manifestations are additionally considered, age at onset is independent of the CAG-repeat length. Since life expectancy is hardly reduced in SBMA, re-investigation of patients from published studies with regard to their initial disease profiles is recommended. PMID:26482145

  15. Direct interplay between two candidate genes in FSHD muscular dystrophy

    PubMed Central

    Ferri, Giulia; Huichalaf, Claudia H.; Caccia, Roberta; Gabellini, Davide

    2015-01-01

    Facioscapulohumeral muscular dystrophy (FSHD) is one of the most common neuromuscular disorders. The major form of the disease (FSHD1) is linked to decrease in copy number of a 3.3-kb tandem repeated macrosatellite (D4Z4), located on chromosome 4q35. D4Z4 deletion alters chromatin structure of the locus leading to aberrant expression of nearby 4q35 genes. Given the high variability in disease onset and progression, multiple factors could contribute to the pathogenesis of FSHD. Among the FSHD candidate genes are double homeobox 4 (DUX4), encoded by the most telomeric D4Z4 unit, and FSHD region gene 1 (FRG1). DUX4 is a sequence-specific transcription factor. Here, we located putative DUX4 binding sites in the human FRG1 genomic area and we show specific DUX4 association to these regions. We found also that ectopically expressed DUX4 up-regulates the endogenous human FRG1 gene in healthy muscle cells, while DUX4 knockdown leads to a decrease in FRG1 expression in FSHD muscle cells. Moreover, DUX4 binds directly and specifically to its binding site located in the human FRG1 gene and transactivates constructs containing FRG1 genomic regions. Intriguingly, the mouse Frg1 genomic area lacks DUX4 binding sites and DUX4 is unable to activate the endogenous mouse Frg1 gene providing a possible explanation for the lack of muscle phenotype in DUX4 transgenic mice. Altogether, our results demonstrate that FRG1 is a direct DUX4 transcriptional target uncovering a novel regulatory circuit contributing to FSHD. PMID:25326393

  16. Quantifying the burden of caregiving in Duchenne muscular dystrophy.

    PubMed

    Landfeldt, Erik; Lindgren, Peter; Bell, Christopher F; Guglieri, Michela; Straub, Volker; Lochmüller, Hanns; Bushby, Katharine

    2016-05-01

    Duchenne muscular dystrophy (DMD) is a rare pediatric neuromuscular disease associated with progressive muscle degeneration and extensive care needs. Our objective was to estimate the caregiver burden associated with DMD. We made cross-sectional assessments of caregiver health-related quality of life (HRQL) and burden using the EuroQol EQ-5D, a Visual Analogue Scale (VAS), the SF-12 Health Survey, and the Zarit Caregiver Burden Interview (ZBI) administered online. Results were stratified by disease stage (early/late ambulatory/non-ambulatory) and caregivers' rating of patients' health and mental status. In total, caregivers to 770 patients participated. Mean EQ-5D utility ranged between 0.85 (95 % CI 0.82-0.88) and 0.77 (0.74-0.80) across ambulatory classes and 0.88 (0.85-0.90) and 0.57 (0.39-0.74) across caregivers' rating of patients' health and mental status. Mean VAS score was 0.74 (0.73-0.75), mean SF-12 Mental Health Component Summary score 44 (43-45), and mean ZBI score 29 (28-30). Anxiety and depression, recorded in up to 70 % of caregivers depending on patients' health and mental status, was significantly associated with annual household cost burden (>$5000 vs. <$1000, odds ratio 1.76, 95 % CI 1.18-2.63) and hours of leisure time devoted to informal care per week (25-50 vs. <25 h 2.01, 1.37-2.94; >50 vs. <25 h 3.35, 2.32-4.83) (p < 0.007). We show that caring for a person with DMD can be associated with a substantial burden and impaired HRQL. Our findings suggest that caregivers to patients with DMD should be screened for depression and emphasize the need for a holistic approach to family mental health in the context of chronic childhood disease. PMID:26964543

  17. Computer task performance by subjects with Duchenne muscular dystrophy

    PubMed Central

    Malheiros, Silvia Regina Pinheiro; da Silva, Talita Dias; Favero, Francis Meire; de Abreu, Luiz Carlos; Fregni, Felipe; Ribeiro, Denise Cardoso; de Mello Monteiro, Carlos Bandeira

    2016-01-01

    Aims Two specific objectives were established to quantify computer task performance among people with Duchenne muscular dystrophy (DMD). First, we compared simple computational task performance between subjects with DMD and age-matched typically developing (TD) subjects. Second, we examined correlations between the ability of subjects with DMD to learn the computational task and their motor functionality, age, and initial task performance. Method The study included 84 individuals (42 with DMD, mean age of 18±5.5 years, and 42 age-matched controls). They executed a computer maze task; all participants performed the acquisition (20 attempts) and retention (five attempts) phases, repeating the same maze. A different maze was used to verify transfer performance (five attempts). The Motor Function Measure Scale was applied, and the results were compared with maze task performance. Results In the acquisition phase, a significant decrease was found in movement time (MT) between the first and last acquisition block, but only for the DMD group. For the DMD group, MT during transfer was shorter than during the first acquisition block, indicating improvement from the first acquisition block to transfer. In addition, the TD group showed shorter MT than the DMD group across the study. Conclusion DMD participants improved their performance after practicing a computational task; however, the difference in MT was present in all attempts among DMD and control subjects. Computational task improvement was positively influenced by the initial performance of individuals with DMD. In turn, the initial performance was influenced by their distal functionality but not their age or overall functionality. PMID:26766911

  18. Mothers' psychological adaptation to Duchenne/Becker muscular dystrophy.

    PubMed

    Peay, Holly L; Meiser, Bettina; Kinnett, Kathleen; Furlong, Pat; Porter, Kathryn; Tibben, Aad

    2016-05-01

    Duchenne and Becker muscular dystrophy (DBMD) cause significant emotional and care-related burden on caregivers, but no studies have evaluated predictors of positive caregiver outcomes, including disorder-specific psychological adaptation. Using a community-engaged approach focused on supporting mothers in positive aspects of caregiving, this prospective study aims to assess (i) the association between child's baseline functional status and mothers' illness perceptions, resilience, and coping self-efficacy; and (ii) predictors of mothers' psychological adaptation to caring for a child with DBMD. Biological mothers with at least one living child with DBMD completed a baseline survey (n=205) with 1-year (n=147) and 2-year (n=144) follow-up surveys. Worse child's baseline function was associated not only with increased caregiver burden and reduced maternal resilience, but also with perception of positive disease impact on the family. At two follow-ups, increased psychological adaptation to DBMD was predicted by resilience (β=0.264, P=0.001) and perceived positive impact (β=0.310, P<0.001), controlling for mother's age (β=-0.305, P<0.001) and income (β=-0.088, P=0.245). Child's functional status and caregiver burden of DBMD did not predict DBMD-specific adaptation. Though clinicians caring for families with DBMD should anticipate increased caregiver burden as the disorder progresses, interventions focused on caregiver burden are not expected to influence mothers' psychosocial adaptation. Efforts to improve mothers' well-being should focus on fostering mothers' resilience and enhancing perceptions of positive disease impact (benefit finding). Results suggest that psychosocial interventions can highlight strengths and well-being rather than burden and deficit. PMID:26306645

  19. Muscular forces affect the glycosaminoglycan content of joint cartilage

    PubMed Central

    Ganse, Bergita; Zange, Jochen; Weber, Tobias; Pohle-Fröhlich, Regina; Johannes, Bernd W; Hackenbroch, Matthias; Rittweger, Jörn; Eysel, Peer; Koy, Timmo

    2015-01-01

    Background and purpose Unloading alters the thickness of joint cartilage. It is unknown, however, to what extent unloading leads to a loss of glycosaminoglycans (GAGs) in the cartilage tissue. We hypothesized that muscle forces, in addition to axial loading, are necessary to maintain the joint cartilage GAG content of the knee and the upper and lower ankle. Patients and methods The HEPHAISTOS orthosis was worn unilaterally by 11 men (mean age 31 (23–50) years old) for 56 days. The orthosis reduces activation and force production of the calf muscles while it permits full gravitational loading of the lower leg. MRI measurements of the knee and ankle were taken before the intervention, during the intervention (on day 49), and 14 days after the end of the intervention. Cartilage segmentation was conducted semiautomatically for the knee joint (4 segments) and for the upper (tibio-talar) and lower (subtalar) ankle joints (2 segments each). Linear mixed-effects (LME) models were used for statistical analysis. Results 8 volunteers completed the MRI experiment. In the lower ankle joint, differences in ΔT1 were found between the end of the intervention and 14 days after (p = 0.004), indicating a decrease in GAG content after reloading. There were no statistically significant differences in ΔT1 values in the knee and upper ankle joints. Interpretation Our findings suggest that in addition to gravitational load, muscular forces affect cartilage composition depending on the local distribution of forces in the joints affected by muscle contraction. PMID:25417835

  20. Sarcopenia and Sarcopenic Obesity in Patients with Muscular Dystrophy

    PubMed Central

    Merlini, Luciano; Vagheggini, Alessandro; Cocchi, Daniela

    2014-01-01

    Aging sarcopenia and muscular dystrophy (MD) are two conditions characterized by lower skeletal muscle quantity, lower muscle strength, and lower physical performance. Aging is associated with a peculiar alteration in body composition called “sarcopenic obesity” characterized by a decrease in lean body mass and increase in fat mass. To evaluate the presence of sarcopenia and obesity in a cohort of adult patients with MD, we have used the measurement techniques considered golden standard for sarcopenia that is for muscle mass dual-energy X-ray absorptiometry (DXA), for muscle strength hand-held dynamometry (HHD), and for physical performance gait speed. The study involved 14 adult patients with different types of MD. We were able to demonstrate that all patients were sarcopenic obese. We showed, in fact, that all were sarcopenic based on appendicular lean, fat and bone free, mass index (ALMI). In addition, all resulted obese according to the percentage of body fat determined by DXA in contrast to their body mass index ranging from underweight to obese. Skeletal muscle mass determined by DXA was markedly reduced in all patients and correlated with residual muscle strength determined by HHD, and physical performances determined by gait speed and respiratory function. Finally, we showed that ALMI was the best linear explicator of muscle strength and physical function. Altogether, our study suggests the relevance of a proper evaluation of body composition in MD and we propose to use, both in research and practice, the measurement techniques that has already been demonstrated effective in aging sarcopenia. PMID:25339901

  1. Oculopharyngeal muscular dystrophy: a late-onset polyalanine disease.

    PubMed

    Brais, B

    2003-01-01

    Oculopharyngeal muscular dystrophy (OPMD) is a muscle disease of late onset associated with progressive ptosis of the eyelids, dysphagia, and unique tubulofilamentous intranuclear inclusions (INIs). OPMD is usually transmitted as an autosomal dominant trait (OMIM 164300). A rarer allelic autosomal recessive form has also been observed (OMIM 257950). Both forms are caused by short (GCG)8-13 expansions in the polyadenylate-binding protein nuclear 1 gene (PABPN1) located on chromosome 14q11.1. The mutations cause the lengthening of an N-terminal polyalanine domain. Both slippage and unequal recombination have been proposed as the mutation mechanisms. The size of the mutation has not yet been conclusively shown to inversely correlate with the severity of the phenotype. Mutated PABPN1 proteins have been shown to be constituents of the INIs. The INIs also contain ubiquitin, proteasome subunits, HSP 40, HSP 70, SKIP, and abundant poly(A)-mRNA. The exact mechanism responsible for polyalanine toxicity in OPMD is unknown. Various intranuclear inclusion dependent and independent mechanisms have been proposed based on the major known function of PABPN1 in polyadenylation of mRNA and its shuttling from the nucleus to the cytoplasm. OPMD is one of the few triplet-repeat diseases for which the function of the mutated gene is known. Because of the increasing number of diseases caused by polyalanine expansions and the pathological overlap with CAG/polyglutamine diseases, what pathological insight is gained by the study of OPMD could lead to a better understanding of a much larger group of developmental and degenerative diseases. PMID:14526187

  2. Characterization of Pulmonary Function in Duchenne Muscular Dystrophy

    PubMed Central

    Mayer, OH; Finkel, RS; Rummey, C; Benton, MJ; Glanzman, AM; Flickinger, J; Lindström, B-M; Meier, T

    2015-01-01

    Decline in pulmonary function in Duchenne muscular dystrophy (DMD) contributes to significant morbidity and reduced longevity. Spirometry is widely used and fairly easily performed technique to assess lung function, and in particular lung volume; however, the acceptability criteria from the American Thoracic Society (ATS) may be overly restrictive and inappropriate for patients with neuromuscular disease. We examined prospective spirometry data (Forced Vital Capacity [FVC] and peak expiratory flow [PEF]) from 60 DMD patients enrolled in a natural history cohort study (median age 10.3y, range 5–24y). Expiratory flow-volume curves were examined by a pulmonologist and the data were evaluated for acceptability using ATS criteria modified based on the capabilities of patients with neuromuscular disease. Data were then analyzed for change with age, ambulation status and glucocorticoid use. At least one acceptable study was obtained in 44 subjects (73%) and 81 of the 131 studies (62%) were acceptable. The FVC and PEF showed similar relative changes in absolute values with increasing age: an increase through 10y, relative stabilization from 10–18y, and then a decrease at older age. The percent predicted FVC and PEF showed a near linear decline of approximately 5 percentage points/year from ages 5 to 24y. Surprisingly, no difference was observed in FVC or PEF by ambulation or steroid treatment. Acceptable spirometry can be performed on DMD patients over a broad range of ages. Using modified ATS criteria, curated spirometry data, excluding technically unacceptable data, may provide a more reliable means of determining change in lung function over time. PMID:25755201

  3. Fibrosis, adipogenesis, and muscle atrophy in congenital muscular torticollis.

    PubMed

    Chen, Huan-Xiong; Tang, Sheng-Ping; Gao, Fu-Tang; Xu, Jiang-Long; Jiang, Xian-Ping; Cao, Juan; Fu, Gui-Bing; Sun, Ke; Liu, Shi-Zhe; Shi, Wei

    2014-11-01

    In the traditional view, muscle atrophy and interstitial fibrosis were regarded as the basic pathological features of congenital muscular torticollis (CMT). But in the ultrastructure study, the mesenchyme-like cells, myoblasts, myofibroblasts, and fibroblasts were found in the proliferation of interstitium of CMT. To investigate the characteristics of pathological features and the mechanisms of muscle atrophy in CMT, we retrospectively reviewed the medical records of 185 CMT patients from July 2009 to July 2011 in Shenzhen Children's Hospital in China and performed pathological studies. According to age, the 185 CMT patients were divided into 4 groups. All resected surgical specimens were processed for hematoxylin and eosin staining and Masson trichromic staining. Sudan III staining was used for frozen sections, whereas immunohistochemical staining for S-100, calpain-1, ubiquitin, and 20S proteasome was carried out on 40 CMT specimens. Eight adductor muscle specimens from 8 patients with development dysplasia of the hip were taken as control group in the immunohistochemical staining. By Masson trichromic staining, the differences in the percent area of fibrous tissue in each CMT groups were significant. In Sudan III staining and immunostaining for S-100, adipocyte hyperplasia was the pathological feature of CMT. Moreover, compared with controls, most atrophic muscle fibers in CMT specimens were found to show strong immunoreactivity for calpain-1, ubiquitin, and 20S proteasome. With increasing age, fibrosis peaked at both sides and it was low in middle age group. Adipocytes increased with age. The characteristics of pathological features in CMT are changeable with age. The calpain and the ubiquitin-proteasome system may play a role in muscle atrophy of CMT. In the CMT, adipogenesis, fibrogenesis, and myogenesis may be the results of mesenchyme-like cells in SCM (sternocleidomastoid muscle). In conclusion, the present study furthermore supports maldevelopment of the

  4. Craniofacial Asymmetry in Adults With Neglected Congenital Muscular Torticollis

    PubMed Central

    Jeong, Kil-Yong; Min, Kyung-Jay; Woo, Jieun

    2015-01-01

    Objective To evaluate the craniofacial asymmetry in adults with neglected congenital muscular torticollis (CMT) by quantitative assessment based on craniofacial three-dimensional computed tomography (3D-CT). Methods Preoperative craniofacial asymmetry was measured by 3D-CT for 31 CMT subjects ≥18 years of age who visited a tertiary medical center and underwent 3D-CT between January 2009 and December 2013. The relationship between the age and the severity of craniofacial asymmetry was analyzed in reference to anteroposterior length asymmetry of the frontal bone and zygomatic arch, vertical and lateral displacements of the facial landmarks, and mandibular axis rotation. Results The age at CT was 27.71±7.02 years (range, 18-44 years). All intra-class correlation coefficients were higher than 0.7, suggesting good inter-rater reliability (p<0.05) of all the measurements. The frontal and the zygomatic length ratio (i.e., the anteroposterior length asymmetry on the axial plane) was 1.06±0.03 and 1.07±0.03, respectively, which was increased significantly with age in the linear regression analysis (r2=0.176, p=0.019 and r2=0.188, p=0.015, respectively). The vertical or lateral displacement of the facial landmarks and rotation of the mandibular axis did not significantly correlate with age (p>0.05). Conclusion Craniofacial asymmetry of neglected CMT became more severe with age in terms of anteroposterior length asymmetry of the ipsilateral frontal bone and zygomatic arch on the axial plane even after growth cessation. This finding may enhance the understanding of therapeutic strategies for craniofacial asymmetry in adults with neglected CMT. PMID:26161351

  5. Dysphagia in Duchenne muscular dystrophy: practical recommendations to guide management

    PubMed Central

    Toussaint, Michel; Davidson, Zoe; Bouvoie, Veronique; Evenepoel, Nathalie; Haan, Jurn; Soudon, Philippe

    2016-01-01

    Abstract Purpose: Duchenne muscular dystrophy (DMD) is a rapidly progressive neuromuscular disorder causing weakness of the skeletal, respiratory, cardiac and oropharyngeal muscles with up to one third of young men reporting difficulty swallowing (dysphagia). Recent studies on dysphagia in DMD clarify the pathophysiology of swallowing disorders and offer new tools for its assessment but little guidance is available for its management. This paper aims to provide a step-by-step algorithm to facilitate clinical decisions regarding dysphagia management in this patient population. Methods: This algorithm is based on 30 years of clinical experience with DMD in a specialised Centre for Neuromuscular Disorders (Inkendaal Rehabilitation Hospital, Belgium) and is supported by literature where available. Results: Dysphagia can worsen the condition of ageing patients with DMD. Apart from the difficulties of chewing and oral fragmentation of the food bolus, dysphagia is rather a consequence of an impairment in the pharyngeal phase of swallowing. By contrast with central neurologic disorders, dysphagia in DMD accompanies solid rather than liquid intake. Symptoms of dysphagia may not be clinically evident; however laryngeal food penetration, accumulation of food residue in the pharynx and/or true laryngeal food aspiration may occur. The prevalence of these issues in DMD is likely underestimated. Conclusions: There is little guidance available for clinicians to manage dysphagia and improve feeding for young men with DMD. This report aims to provide a clinical algorithm to facilitate the diagnosis of dysphagia, to identify the symptoms and to propose practical recommendations to treat dysphagia in the adult DMD population.Implications for RehabilitationLittle guidance is available for the management of dysphagia in Duchenne dystrophy.Food can penetrate the vestibule, accumulate as residue or cause aspiration.We propose recommendations and an algorithm to guide management of

  6. Hybrid approach for closure of muscular ventricular septal defects

    PubMed Central

    Haponiuk, Ireneusz; Chojnicki, Maciej; Jaworski, Radoslaw; Steffek, Mariusz; Juscinski, Jacek; Sroka, Mariusz; Fiszer, Roland; Sendrowska, Aneta; Gierat-Haponiuk, Katarzyna; Maruszewski, Bohdan

    2013-01-01

    Background The complexity of ventricular septal defects in early infancy led to development of new mini-invasive techniques based on collaboration of cardiac surgeons with interventional cardiologists, called hybrid procedures. Hybrid therapies aim to combine the advantages of surgical and interventional techniques in an effort to reduce the invasiveness. The aim of this study was to present our approach with mVSD patients and initial results in the development of a mini-invasive hybrid procedure in the Gdansk Hybrid Heartlink Programme (GHHP) at the Department of Pediatric Cardiac Surgery, Pomeranian Centre of Traumatology in Gdansk, Poland. Material/Methods The group of 11 children with mVSDs was enrolled in GHHP and 6 were finally qualified to hybrid trans-ventricular mVSD device closure. Mean age at time of hybrid procedure was 8.22 months (range: from 2.7 to 17.8 months, SD=5.1) and mean body weight was 6.3 kg (range: from 3.4 to 7.5 kg, SD=1.5). Results The implants of choice were Amplatzer VSD Occluder and Amplatzer Duct Occluder II (AGA Med. Corp, USA). The position of the implants was checked carefully before releasing the device with both transesophageal echocardiography and epicardial echocardiography. All patients survived and their general condition improved. No complications occurred. The closure of mVSD was complete in all children. Conclusions Hybrid procedures of periventricular muscular VSD closure appear feasible and effective for patients with septal defects with morphology unsuitable for classic surgical or interventional procedures. The modern strategy of joint cardiac surgical and interventional techniques provides the benefits of close cooperation between cardiac surgeon and interventional cardiologist for selected patients in difficult clinical settings. PMID:23892911

  7. Evidence for heterogeneity in facioscapulohumeral muscular dystrophy (FSHD)

    SciTech Connect

    Gilbert, J.R.; Stajich, J.M.; Wall, S.; Carter, S.C.; Qiu, H.; Vance, J.M.; Stewart, C.S.; Speer, M.C.; Pufky, J.; Yamaoka, L.H.; Rozear, M.; Roses, A.D.; Pericak-Vance, M.A. ); Samson, F.; Fardeau, M. )

    1993-08-01

    Facioscapulohumeral muscular dystrophy (FSHD) is a slowly progressive primary disease of muscle which is usually inherited as an autosomal dominant disorder. FSHD has been localized to the long arm of chromosome 4, specifically to the 4q3.5-qter region. Initially published linkage studies showed no evidence for heterogeneity in FSHD. In the present study the authors have examined individuals in seven FSHD families. Two-point lod scores show significant evidence for linkage for D4S163 (lod score 3.04 at recombination fraction .21) and D4S139 (lod score 3.84 at recombination fraction .20). D4S171 also gave a positive score (lod score 2.56 at recombination fraction .24). Significant evidence for heterogeneity was found for each of the three markers. Multipoint linkage analysis in this region resulted in a peak multipoint lod score of 6.47. The multipoint analysis supported the two-point studies with odds of 20:1 showing linkage and heterogeneity over linkage and homogeneity. Five of the seven families gave a posterior probability of >95% of being of the linked type, while two families appeared unlinked to this region of 4q (P<.01%). Individuals in the two unlinked families met the clinical criteria for the diagnosis of FSHD, including facial weakness, clavicular flattening, scapula winging, proximal muscle weakness, and myopathic changes on muscle biopsies without inflammatory or mitochondrial pathology. This study demonstrates genetic heterogeneity in FSHD and has important implications for both genetic counseling and the elucidation of the etiology of FSHD. 19 refs., 3 figs., 2 tabs.

  8. Red-Green Color Vision Impairment in Duchenne Muscular Dystrophy

    PubMed Central

    Costa, Marcelo Fernandes ; Oliveira, Andre Gustavo Fernandes ; Feitosa-Santana, Claudia ; Zatz, Mayana ; Ventura, Dora Fix 

    2007-01-01

    The present study evaluated the color vision of 44 patients with Duchenne muscular dystrophy (DMD) (mean age 14.8 years; SD 4.9) who were submitted to a battery of four different color tests: Cambridge Colour Test (CCT), Neitz Anomaloscope, Ishihara, and American Optical Hardy-Rand-Rittler (AO H-R-R). Patients were divided into two groups according to the region of deletion in the dystrophin gene: upstream of exon 30 (n=12) and downstream of exon 30 (n=32). The control group was composed of 70 age-matched healthy male subjects with no ophthalmological complaints. Of the patients with DMD, 47% (21/44) had a red-green color vision defect in the CCT, confirmed by the Neitz Anomaloscope with statistical agreement (P<.001). The Ishihara and the AO H-R-R had a lower capacity to detect color defects—5% and 7%, respectively, with no statistical similarity between the results of these two tests nor between CCT and Anomaloscope results (P>.05). Of the patients with deletion downstream of exon 30, 66% had a red-green color defect. No color defect was found in the patients with deletion upstream of exon 30. A negative correlation between the color thresholds and age was found for the controls and patients with DMD, suggesting a nonprogressive color defect. The percentage (66%) of patients with a red-green defect was significantly higher than the expected <10% for the normal male population (P<.001). In contrast, patients with DMD with deletion upstream of exon 30 had normal color vision. This color defect might be partially explained by a retina impairment related to dystrophin isoform Dp260. PMID:17503325

  9. Genetic Modifiers of Duchenne Muscular Dystrophy and Dilated Cardiomyopathy

    PubMed Central

    Politano, Luisa; Melacini, Paola; Calore, Chiara; Polo, Angela; Vianello, Sara; Sorarù, Gianni; Semplicini, Claudio; Pantic, Boris; Taglia, Antonella; Picillo, Ester; Magri, Francesca; Gorni, Ksenija; Messina, Sonia; Vita, Gian Luca; Vita, Giuseppe; Comi, Giacomo P.; Ermani, Mario; Calvo, Vincenzo; Angelini, Corrado; Hoffman, Eric P.; Pegoraro, Elena

    2015-01-01

    Objective Dilated cardiomyopathy (DCM) is a major complication and leading cause of death in Duchenne muscular dystrophy (DMD). DCM onset is variable, suggesting modifier effects of genetic or environmental factors. We aimed to determine if polymorphisms previously associated with age at loss of independent ambulation (LoA) in DMD (rs28357094 in the SPP1 promoter, rs10880 and the VTTT/IAAM haplotype in LTBP4) also modify DCM onset. Methods A multicentric cohort of 178 DMD patients was genotyped by TaqMan assays. We performed a time-to-event analysis of DCM onset, with age as time variable, and finding of left ventricular ejection fraction < 50% and/or end diastolic volume > 70 mL/m2 as event (confirmed by a previous normal exam < 12 months prior); DCM-free patients were censored at the age of last echocardiographic follow-up. Results Patients were followed up to an average age of 15.9 ± 6.7 years. Seventy-one/178 patients developed DCM, and median age at onset was 20.0 years. Glucocorticoid corticosteroid treatment (n = 88 untreated; n = 75 treated; n = 15 unknown) did not have a significant independent effect on DCM onset. Cardiological medications were not administered before DCM onset in this population. We observed trends towards a protective effect of the dominant G allele at SPP1 rs28357094 and recessive T allele at LTBP4 rs10880, which was statistically significant in steroid-treated patients for LTBP4 rs10880 (< 50% T/T patients developing DCM during follow-up [n = 13]; median DCM onset 17.6 years for C/C-C/T, log-rank p = 0.027). Conclusions We report a putative protective effect of DMD genetic modifiers on the development of cardiac complications, that might aid in risk stratification if confirmed in independent cohorts. PMID:26513582

  10. Direct interplay between two candidate genes in FSHD muscular dystrophy.

    PubMed

    Ferri, Giulia; Huichalaf, Claudia H; Caccia, Roberta; Gabellini, Davide

    2015-03-01

    Facioscapulohumeral muscular dystrophy (FSHD) is one of the most common neuromuscular disorders. The major form of the disease (FSHD1) is linked to decrease in copy number of a 3.3-kb tandem repeated macrosatellite (D4Z4), located on chromosome 4q35. D4Z4 deletion alters chromatin structure of the locus leading to aberrant expression of nearby 4q35 genes. Given the high variability in disease onset and progression, multiple factors could contribute to the pathogenesis of FSHD. Among the FSHD candidate genes are double homeobox 4 (DUX4), encoded by the most telomeric D4Z4 unit, and FSHD region gene 1 (FRG1). DUX4 is a sequence-specific transcription factor. Here, we located putative DUX4 binding sites in the human FRG1 genomic area and we show specific DUX4 association to these regions. We found also that ectopically expressed DUX4 up-regulates the endogenous human FRG1 gene in healthy muscle cells, while DUX4 knockdown leads to a decrease in FRG1 expression in FSHD muscle cells. Moreover, DUX4 binds directly and specifically to its binding site located in the human FRG1 gene and transactivates constructs containing FRG1 genomic regions. Intriguingly, the mouse Frg1 genomic area lacks DUX4 binding sites and DUX4 is unable to activate the endogenous mouse Frg1 gene providing a possible explanation for the lack of muscle phenotype in DUX4 transgenic mice. Altogether, our results demonstrate that FRG1 is a direct DUX4 transcriptional target uncovering a novel regulatory circuit contributing to FSHD. PMID:25326393

  11. Dissociation of the dystroglycan complex in caveolin-3-deficient limb girdle muscular dystrophy.

    PubMed

    Herrmann, R; Straub, V; Blank, M; Kutzick, C; Franke, N; Jacob, E N; Lenard, H G; Kröger, S; Voit, T

    2000-09-22

    Limb girdle muscular dystrophy is a group of clinically and genetically heterogeneous disorders inherited in an autosomal recessive or dominant mode. Caveolin-3, the muscle-specific member of the caveolin gene family, is implicated in the pathogenesis of autosomal dominant limb girdle muscular dystrophy 1C. Here we report on a 4-year-old girl presenting with myalgia and muscle cramps due to a caveolin-3 deficiency in her dystrophic skeletal muscle as a result of a heterozygous 136G-->A substitution in the caveolin-3 gene. The novel sporadic missense mutation in the caveolin signature sequence of the caveolin-3 gene changes an alanine to a threonine (A46T) and prevents the localization of caveolin-3 to the plasma membrane in a dominant negative fashion. Caveolin-3 has been suggested to interact with the dystrophin-glycoprotein complex, which in striated muscle fibers links the cytoskeleton to the extracellular matrix and with neuronal nitric oxide synthase. Similar to dystrophin-deficient Duchenne muscular dystrophy, a secondary decrease in neuronal nitric oxide synthase and alpha-dystroglycan expression was detected in the caveolin-3-deficient patient. These results implicate an important function of the caveolin signature sequence and common mechanisms in the pathogenesis of dystrophin-glycoprotein complex-associated muscular dystrophies with caveolin-3-deficient limb girdle muscular dystrophy. PMID:11001938

  12. Intrathecal Injections in Children With Spinal Muscular Atrophy: Nusinersen Clinical Trial Experience.

    PubMed

    Haché, Manon; Swoboda, Kathryn J; Sethna, Navil; Farrow-Gillespie, Alan; Khandji, Alexander; Xia, Shuting; Bishop, Kathie M

    2016-06-01

    Nusinersen (ISIS-SMNRx or ISIS 396443) is an antisense oligonucleotide drug administered intrathecally to treat spinal muscular atrophy. We summarize lumbar puncture experience in children with spinal muscular atrophy during a phase 1 open-label study of nusinersen and its extension. During the studies, 73 lumbar punctures were performed in 28 patients 2 to 14 years of age with type 2/3 spinal muscular atrophy. No complications occurred in 50 (68%) lumbar punctures; in 23 (32%) procedures, adverse events were attributed to lumbar puncture. Most common adverse events were headache (n = 9), back pain (n = 9), and post-lumbar puncture syndrome (n = 8). In a subgroup analysis, adverse events were more frequent in older children, children with type 3 spinal muscular atrophy, and with a 21- or 22-gauge needle compared to a 24-gauge needle or smaller. Lumbar punctures were successfully performed in children with spinal muscular atrophy; lumbar puncture-related adverse event frequency was similar to that previously reported in children. PMID:26823478

  13. Brillouin spectroscopy reveals changes in muscular viscoelasticity in Drosophila POMT mutants

    NASA Astrophysics Data System (ADS)

    Meng, Zhaokai; Baker, Ryan; Panin, Vladislav M.; Yakovlev, Vladislav V.

    2015-03-01

    Muscular dystrophy (MD) is a group of muscle diseases that induce weakness in skeletal muscle and cause progressive muscle degeneration. The muscular mechanical properties (i.e., viscoelasticity), however, have not been thoroughly examined before and after MD. On the other hand, Brillouin spectroscopy (BS) provides a non-invasive approach to probing the local sound speed within a small volume. Moreover, recent advances in background-free Brillouin spectroscopy enable investigators to imaging not only transparent samples, but also turbid ones. In this study, we investigated the mechanical properties of muscles while employing Drosophila model of dystroglycanopathies, human congenital muscular dystrophies resulting from abnormal glycosylation of alphadystroglycan. Specifically, we analyzed larval abdominal muscles of Drosophila with mutations in protein Omannosyltransferase (POMT) genes. As a comparison, we have also examined muscular tissues dissected from wildtype Drosophila. The Brillouin spectra were obtained by a background free VIPA (virtually imaged phased array) spectrometer described in the previous report. As a reference, the Raman spectra were also acquired for each test. Our current results indicated that POMT defects cause changes in muscle elasticity, which suggests that muscular dystrophy conditions may be also associated with abnormalities in muscle elastic properties.

  14. Endoplasmic reticulum stress in spinal and bulbar muscular atrophy: a potential target for therapy.

    PubMed

    Montague, Karli; Malik, Bilal; Gray, Anna L; La Spada, Albert R; Hanna, Michael G; Szabadkai, Gyorgy; Greensmith, Linda

    2014-07-01

    Spinal and bulbar muscular atrophy is an X-linked degenerative motor neuron disease caused by an abnormal expansion in the polyglutamine encoding CAG repeat of the androgen receptor gene. There is evidence implicating endoplasmic reticulum stress in the development and progression of neurodegenerative disease, including polyglutamine disorders such as Huntington's disease and in motor neuron disease, where cellular stress disrupts functioning of the endoplasmic reticulum, leading to induction of the unfolded protein response. We examined whether endoplasmic reticulum stress is also involved in the pathogenesis of spinal and bulbar muscular atrophy. Spinal and bulbar muscular atrophy mice that carry 100 pathogenic polyglutamine repeats in the androgen receptor, and develop a late-onset neuromuscular phenotype with motor neuron degeneration, were studied. We observed a disturbance in endoplasmic reticulum-associated calcium homeostasis in cultured embryonic motor neurons from spinal and bulbar muscular atrophy mice, which was accompanied by increased endoplasmic reticulum stress. Furthermore, pharmacological inhibition of endoplasmic reticulum stress reduced the endoplasmic reticulum-associated cell death pathway. Examination of spinal cord motor neurons of pathogenic mice at different disease stages revealed elevated expression of markers for endoplasmic reticulum stress, confirming an increase in this stress response in vivo. Importantly, the most significant increase was detected presymptomatically, suggesting that endoplasmic reticulum stress may play an early and possibly causal role in disease pathogenesis. Our results therefore indicate that the endoplasmic reticulum stress pathway could potentially be a therapeutic target for spinal and bulbar muscular atrophy and related polyglutamine diseases. PMID:24898351

  15. Trends with corticosteroid use in males with Duchenne muscular dystrophy born 1982-2001.

    PubMed

    Fox, Deborah J; Kumar, Anil; West, Nancy A; DiRienzo, A Gregory; James, Katherine A; Oleszek, Joyce

    2015-01-01

    This study examines trends in corticosteroid use for males with Duchenne muscular dystrophy by birth year, race/ethnicity, and knowledge of Duchenne muscular dystrophy family history. Firstborn males (n = 521) selected from a population-based surveillance system of Duchenne muscular dystrophy were analyzed using Kaplan Meier and regression methods. Comparing males born 1982 to 1986 with males born 1997 to 2001, steroid use increased from 54% to 72% and mean age at steroid initiation decreased from 8.2 to 7.1 years. Hispanics and non-Hispanic Black males used steroids less frequently and delayed initiation compared to white males. Compared to males without a Duchenne muscular dystrophy family history, males with known family history were half as likely to use steroids. Duration of steroid use increased over time and age at initiation decreased. Racial/ethnic disparities exist for steroid use and should be addressed to improve outcome and quality of life for boys with Duchenne muscular dystrophy. PMID:24682290

  16. Peripheral nerve blocks as the sole anesthetic technique in a patient with severe Duchenne muscular dystrophy.

    PubMed

    Bang, Seung Uk; Kim, Yee Suk; Kwon, Woo Jin; Lee, Sang Mook; Kim, Soo Hyang

    2016-04-01

    General anesthesia and central neuraxial blockades in patients with severe Duchenne muscular dystrophy are associated with high risks of complications, including rhabdomyolysis, malignant hyperthermia, hemodynamic instability, and postoperative mechanical ventilation. Here, we describe peripheral nerve blocks as a safe approach to anesthesia in a patient with severe Duchenne muscular dystrophy who was scheduled to undergo surgery. A 22-year-old male patient was scheduled to undergo reduction and internal fixation of a left distal femur fracture. He had been diagnosed with Duchenne muscular dystrophy at 5 years of age, and had no locomotive capability except for that of the finger flexors and toe extensors. He had developed symptoms associated with dyspnea 5 years before and required intermittent ventilation. We blocked the femoral nerve, lateral femoral cutaneous nerve, and parasacral plexus under ultrasound on the left leg. The patient underwent a successful operation using peripheral nerve blocks with no complications. In conclusion general anesthesia and central neuraxial blockades in patients with severe Duchenne muscular dystrophy are unsafe approaches to anesthesia because of hemodynamic instability and respiratory depression. Peripheral nerve blocks are the best way to reduce the risks of critical complications, and are a safe and feasible approach to anesthesia in patients with severe Duchenne muscular dystrophy. PMID:26721827

  17. Nutritional practices at a glance: spinal muscular atrophy type I nutrition survey findings.

    PubMed

    Davis, Rebecca Hurst; Godshall, Barbara J; Seffrood, Erin; Marcus, Mary; LaSalle, Bernard A; Wong, Brenda; Schroth, Mary K; Swoboda, Kathryn J

    2014-11-01

    Proactive nutritional management for children with spinal muscular atrophy type I can provide insight into improved spinal muscular atrophy care. This observational study consisted of a nutritional and medical history survey of children with spinal muscular atrophy type I collected in 2009-2011. Forty-four caregiver survey responses were evaluated using descriptive statistics. Average age of spinal muscular atrophy type I subjects was 5 years (5 mo-16 y). The subject cohort was composed of 22 males, 21 females, and 1 unreported. Nutrition support via feeding tube was utilized by 43 of 44 subjects. A majority of respondents reported using elemental or semi-elemental formula for subjects' essential caloric intake (34 of 44). Formula intolerance issues were reported by many caregivers (27 of 44). Half of caregivers implemented dietary changes on their own or with guidance from other families; 15 caregivers consulted a registered dietitian. Survey responses and comments indicate need for evidence-based nutritional guidelines for spinal muscular atrophy. PMID:24097849

  18. Intramuscular pressure and torque during isometric, concentric and eccentric muscular activity

    NASA Technical Reports Server (NTRS)

    Styf, J.; Ballard, R.; Aratow, M.; Crenshaw, A.; Watenpaugh, D.; Hargens, A. R.

    1995-01-01

    Intramuscular pressures, electromyography (EMG) and torque generation during isometric, concentric and eccentric maximal isokinetic muscle activity were recorded in 10 healthy volunteers. Pressure and EMG activity were continuously and simultaneously measured side by side in the tibialis anterior and soleus muscles. Ankle joint torque and position were monitored continuously by an isokinetic dynamometer during plantar flexion and dorsiflexion of the foot. The increased force generation during eccentric muscular activity, compared with other muscular activity, was not accompanied by higher intramuscular pressure. Thus, this study demonstrated that eccentric muscular activity generated higher torque values for each increment of intramuscular pressure. Intramuscular pressures during antagonistic co-activation were significantly higher in the tibilis anterior muscle (42-46% of maximal agonistic activity) compared with the soleus muscle (12-29% of maximal agonistic activity) and was largely due to active recruitment of muscle fibers. In summary, eccentric muscular activity creates higher torque values with no additional increase of the intramuscular pressure compared with concentric and isometric muscular activity.

  19. A method to accurately estimate the muscular torques of human wearing exoskeletons by torque sensors.

    PubMed

    Hwang, Beomsoo; Jeon, Doyoung

    2015-01-01

    In exoskeletal robots, the quantification of the user's muscular effort is important to recognize the user's motion intentions and evaluate motor abilities. In this paper, we attempt to estimate users' muscular efforts accurately using joint torque sensor which contains the measurements of dynamic effect of human body such as the inertial, Coriolis, and gravitational torques as well as torque by active muscular effort. It is important to extract the dynamic effects of the user's limb accurately from the measured torque. The user's limb dynamics are formulated and a convenient method of identifying user-specific parameters is suggested for estimating the user's muscular torque in robotic exoskeletons. Experiments were carried out on a wheelchair-integrated lower limb exoskeleton, EXOwheel, which was equipped with torque sensors in the hip and knee joints. The proposed methods were evaluated by 10 healthy participants during body weight-supported gait training. The experimental results show that the torque sensors are to estimate the muscular torque accurately in cases of relaxed and activated muscle conditions. PMID:25860074

  20. Emerging strategies for cell and gene therapy of the muscular dystrophies

    PubMed Central

    Muir, Lindsey A.; Chamberlain, Jeffrey S.

    2016-01-01

    The muscular dystrophies are a heterogeneous group of over 40 disorders that are characterised by muscle weakness and wasting. The most common are Duchenne muscular dystrophy and Becker muscular dystrophy, which result from mutations within the gene encoding dystrophin; myotonic dystrophy type 1, which results from an expanded trinucleotide repeat in the myotonic dystrophy protein kinase gene; and facioscapulohumeral dystrophy, which is associated with contractions in the subtelomeric region of human chromosome 1. Currently the only treatments involve clinical management of symptoms, although several promising experimental strategies are emerging. These include gene therapy using adeno-associated viral, lentiviral and adenoviral vectors and nonviral vectors, such as plasmid DNA. Exon-skipping and cell-based therapies have also shown promise in the effective treatment and regeneration of dystrophic muscle. The availability of numerous animal models for Duchenne muscular dystrophy has enabled extensive testing of a wide range of therapeutic approaches for this type of disorder. Consequently, we focus here on the therapeutic developments for Duchenne muscular dystrophy as a model of the types of approaches being considered for various types of dystrophy. We discuss the advantages and limitations of each therapeutic strategy, as well as prospects and recent successes in the context of future clinical applications. PMID:19555515

  1. A Congenital Muscular Dystrophy with Mitochondrial Structural Abnormalities Caused by Defective De Novo Phosphatidylcholine Biosynthesis

    PubMed Central

    Mitsuhashi, Satomi; Ohkuma, Aya; Talim, Beril; Karahashi, Minako; Koumura, Tomoko; Aoyama, Chieko; Kurihara, Mana; Quinlivan, Ros; Sewry, Caroline; Mitsuhashi, Hiroaki; Goto, Kanako; Koksal, Burcu; Kale, Gulsev; Ikeda, Kazutaka; Taguchi, Ryo; Noguchi, Satoru; Hayashi, Yukiko K.; Nonaka, Ikuya; Sher, Roger B.; Sugimoto, Hiroyuki; Nakagawa, Yasuhito; Cox, Gregory A.; Topaloglu, Haluk; Nishino, Ichizo

    2011-01-01

    Congenital muscular dystrophy is a heterogeneous group of inherited muscle diseases characterized clinically by muscle weakness and hypotonia in early infancy. A number of genes harboring causative mutations have been identified, but several cases of congenital muscular dystrophy remain molecularly unresolved. We examined 15 individuals with a congenital muscular dystrophy characterized by early-onset muscle wasting, mental retardation, and peculiar enlarged mitochondria that are prevalent toward the periphery of the fibers but are sparse in the center on muscle biopsy, and we have identified homozygous or compound heterozygous mutations in the gene encoding choline kinase beta (CHKB). This is the first enzymatic step in a biosynthetic pathway for phosphatidylcholine, the most abundant phospholipid in eukaryotes. In muscle of three affected individuals with nonsense mutations, choline kinase activities were undetectable, and phosphatidylcholine levels were decreased. We identified the human disease caused by disruption of a phospholipid de novo biosynthetic pathway, demonstrating the pivotal role of phosphatidylcholine in muscle and brain. PMID:21665002

  2. Enhanced autophagy as a potential mechanism for the improved physiological function by simvastatin in muscular dystrophy.

    PubMed

    Whitehead, Nicholas P

    2016-04-01

    Autophagy has recently emerged as an important cellular process for the maintenance of skeletal muscle health and function. Excessive autophagy can trigger muscle catabolism, leading to atrophy. In contrast, reduced autophagic flux is a characteristic of several muscle diseases, including Duchenne muscular dystrophy, the most common and severe inherited muscle disorder. Recent evidence demonstrates that enhanced reactive oxygen species (ROS) production by CYBB/NOX2 impairs autophagy in muscles from the dmd/mdx mouse, a genetic model of Duchenne muscular dystrophy. Statins decrease CYBB/NOX2 expression and activity and stimulate autophagy in skeletal muscle. Therefore, we treated dmd/mdx mice with simvastatin and showed decreased CYBB/NOX2-mediated oxidative stress and enhanced autophagy induction. This was accompanied by reduced muscle damage, inflammation and fibrosis, and increased muscle force production. Our data suggest that increased autophagy may be a potential mechanism by which simvastatin improves skeletal muscle health and function in muscular dystrophy. PMID:26890413

  3. The potential of sarcospan in adhesion complex replacement therapeutics for the treatment of muscular dystrophy.

    PubMed

    Marshall, Jamie L; Kwok, Yukwah; McMorran, Brian J; Baum, Linda G; Crosbie-Watson, Rachelle H

    2013-09-01

    Three adhesion complexes span the sarcolemma and facilitate critical connections between the extracellular matrix and the actin cytoskeleton: the dystrophin- and utrophin-glycoprotein complexes and α7β1 integrin. Loss of individual protein components results in a loss of the entire protein complex and muscular dystrophy. Muscular dystrophy is a progressive, lethal wasting disease characterized by repetitive cycles of myofiber degeneration and regeneration. Protein-replacement therapy offers a promising approach for the treatment of muscular dystrophy. Recently, we demonstrated that sarcospan facilitates protein-protein interactions amongst the adhesion complexes and is an important potential therapeutic target. Here, we review current protein-replacement strategies, discuss the potential benefits of sarcospan expression, and identify important experiments that must be addressed for sarcospan to move to the clinic. PMID:23601082

  4. [Current status and future prospects of research on Fukuyama muscular dystrophy].

    PubMed

    Toda, Tatsushi

    2015-08-01

    Fukuyama congenital muscular dystrophy(FCMD) is a second common childhood muscular dystrophy in Japan. All FCMD patients have ancestral insertion of the SVA retrotransposal element into fukutin. We show that aberrant mRNA splicing induced by SVA exon-trapping caused FCMD. Introduction of 3 cocktailed antisense oligonucleotides(AONs) targeting around these splice sites prevented pathogenic splicing in FCMD patient cells and model mice, and normalized protein production and functions of Fukutin as well as O-glycosylation of α-dystroglycan. We show the promise of splicing modulation therapy as the first radical clinical treatment for FCMD in the near future. We also show that fukutin is prerequisite to ameliorate muscular dystrophic phenotype by myofiber-selective LARGE expression. Recent advances in FCMD are discussed. PMID:26281700

  5. Fracture in Duchenne Muscular Dystrophy: Natural History and Vitamin D Deficiency.

    PubMed

    Perera, Nadia; Sampaio, Hugo; Woodhead, Helen; Farrar, Michelle

    2016-08-01

    The present study examined the natural history of fracture and vitamin D levels in Duchenne muscular dystrophy patients, who are vulnerable to osteoporosis and fractures. Retrospective analysis of a cohort of 48 Duchenne muscular dystrophy patients revealed that 43% of patients experienced ≥1 fracture. Fracture probabilities at ages 6, 9, 12, and 15 years were 4%, 9%, 31%, and 60% respectively, accelerating around the time of ambulation loss (mean age 11.8 ± 2.7 years). Chronic corticosteroid therapy was utilized in 69% of patients and was associated with all vertebral fractures. A history of vitamin D deficiency occurred in 84%, and 35% were currently deficient. Despite chronic vitamin D supplementation, 38% remained deficient. These results demonstrate that osteoporosis and fracture remain major concerns in Duchenne muscular dystrophy. Bone health should be optimized well before loss of ambulation, however current levels of vitamin D supplementation may be inadequate given high levels of deficiency. PMID:27221372

  6. Effects of Attentional Focusing Strategies on Muscular Power in Older Women.

    PubMed

    Makaruk, Hubert; Porter, Jared M; Dlugolecka, Barbara; Parnicka, Urszula; Makaruk, Beata

    2015-07-01

    The purpose of this study was to evaluate the effects of different foci of attention on parameters related to maximum muscular power in older women. Using a counterbalanced within-participant design, 23 physically active young-old women (age 59-69) completed a maximum effort cycle ergometer test following three types of verbal instructions. The external instruction (EXF) was designed to focus attention on moving the pedals as fast as possible, internal instruction (INF) directed attention toward moving the legs as fast as possible, and a control condition (CON) was created in which participants were instructed to perform the task to the best of their abilities. Results indicated that the EXF and CON conditions resulted in greater muscular power compared with the INF condition. Results also indicated that directing attention internally hindered muscular power performance in older women, which is consistent with the predictions of the constrained action hypothesis. PMID:24956607

  7. The potential of sarcospan in adhesion complex replacement therapeutics for the treatment of muscular dystrophy

    PubMed Central

    Marshall, Jamie L.; Kwok, Yukwah; McMorran, Brian; Baum, Linda G.; Crosbie-Watson, Rachelle H.

    2013-01-01

    Three adhesion complexes span the sarcolemma and facilitate critical connections between the extracellular matrix and the actin cytoskeleton: the dystrophin- and utrophin-glycoprotein complexes and α7β1 integrin. Loss of individual protein components results in a loss of the entire protein complex and muscular dystrophy. Muscular dystrophy is a progressive, lethal wasting disease characterized by repetitive cycles of myofiber degeneration and regeneration. Protein replacement therapy offers a promising approach for the treatment of muscular dystrophy. Recently, we demonstrated that sarcospan facilitates protein-protein interactions amongst the adhesion complexes and is an important therapeutic target. Here, we review current protein replacement strategies, discuss the potential benefits of sarcospan expression, and identify important experiments that must be addressed for sarcospan to move to the clinic. PMID:23601082

  8. De novo and inherited deletions of the 5q13 region in spinal muscular atrophies

    SciTech Connect

    Melki, J.; Lefebvre, S.; Burglen, L.; Burlet, P.; Clermont, O.; Reboullet, S.; Benichou, B.; Zeviani, M. ); Millasseau, P. ); Le Paslier, D. )

    1994-06-03

    Spinal muscular atrophies (SMAs) represent the second most common fatal autosomal recessive disorder after cystic fibrosis. Childhood spinal muscular atrophies are divided into severe (type I) and mild forms (types II and III). By a combination of genetic and physical mapping, a yeast artificial chromosome contig of the 5q13 region spanning the disease locus was constructed that showed the presence of low copy repeats in this region. Allele segregation was analyzed at the closest genetic loci detected by markers C212 and C272 in 201 SMA families. Inherited and de novo deletions were observed in nine unrelated SMA patients. Moreover, deletions were strongly suggested in at least 18 percent of SMA type I patients by the observation of marked heterozygosity deficiency for the loci studied. These results indicate that deletion events are statistically associated with the severe form of spinal muscular atrophy. 25 refs., 5 figs.

  9. Sexuality and the drive for muscularity: evidence of associations among British men.

    PubMed

    Swami, Viren; Diwell, Rachel; McCreary, Donald R

    2014-09-01

    Previous studies have documented associations between sexuality and body image, but the directionality of this association is unclear among men. This study examined whether men's drive for muscularity can be considered a correlate of their sexuality. A community-based sample of 292 heterosexual men from London, UK, completed a survey consisting of measures of drive for muscularity, sociosexuality, sexual assertiveness, sexual esteem, and sexual sensation seeking. A multiple regression analysis showed that greater drive for muscularity was predicted by more unrestricted sociosexuality (i.e., a greater proclivity for short-term, transient relationships), greater sexual sensation seeking, and greater sexual assertiveness, once the effects of participant age and body mass index had been accounted for. Possible avenues for intervention based on a sex-positive approach are discussed in conclusion. PMID:25201097

  10. In Vivo Dynamic Deformation of Articular Cartilage in Intact Joints Loaded by Controlled Muscular Contractions.

    PubMed

    Abusara, Ziad; Von Kossel, Markus; Herzog, Walter

    2016-01-01

    When synovial joints are loaded, the articular cartilage and the cells residing in it deform. Cartilage deformation has been related to structural tissue damage, and cell deformation has been associated with cell signalling and corresponding anabolic and catabolic responses. Despite the acknowledged importance of cartilage and cell deformation, there are no dynamic data on these measures from joints of live animals using muscular load application. Research in this area has typically been done using confined and unconfined loading configurations and indentation testing. These loading conditions can be well controlled and allow for accurate measurements of cartilage and cell deformations, but they have little to do with the contact mechanics occurring in a joint where non-congruent cartilage surfaces with different material and functional properties are pressed against each other by muscular forces. The aim of this study was to measure in vivo, real time articular cartilage deformations for precisely controlled static and dynamic muscular loading conditions in the knees of mice. Fifty and 80% of the maximal knee extensor muscular force (equivalent to approximately 0.4N and 0.6N) produced average peak articular cartilage strains of 10.5±1.0% and 18.3±1.3% (Mean ± SD), respectively, during 8s contractions. A sequence of 15 repeat, isometric muscular contractions (0.5s on, 3.5s off) of 50% and 80% of maximal muscular force produced cartilage strains of 3.0±1.1% and 9.6±1.5% (Mean ± SD) on the femoral condyles of the mouse knee. Cartilage thickness recovery following mechanical compression was highly viscoelastic and took almost 50s following force removal in the static tests. PMID:26807930

  11. In Vivo Dynamic Deformation of Articular Cartilage in Intact Joints Loaded by Controlled Muscular Contractions

    PubMed Central

    Abusara, Ziad; Von Kossel, Markus; Herzog, Walter

    2016-01-01

    When synovial joints are loaded, the articular cartilage and the cells residing in it deform. Cartilage deformation has been related to structural tissue damage, and cell deformation has been associated with cell signalling and corresponding anabolic and catabolic responses. Despite the acknowledged importance of cartilage and cell deformation, there are no dynamic data on these measures from joints of live animals using muscular load application. Research in this area has typically been done using confined and unconfined loading configurations and indentation testing. These loading conditions can be well controlled and allow for accurate measurements of cartilage and cell deformations, but they have little to do with the contact mechanics occurring in a joint where non-congruent cartilage surfaces with different material and functional properties are pressed against each other by muscular forces. The aim of this study was to measure in vivo, real time articular cartilage deformations for precisely controlled static and dynamic muscular loading conditions in the knees of mice. Fifty and 80% of the maximal knee extensor muscular force (equivalent to approximately 0.4N and 0.6N) produced average peak articular cartilage strains of 10.5±1.0% and 18.3±1.3% (Mean ± SD), respectively, during 8s contractions. A sequence of 15 repeat, isometric muscular contractions (0.5s on, 3.5s off) of 50% and 80% of maximal muscular force produced cartilage strains of 3.0±1.1% and 9.6±1.5% (Mean ± SD) on the femoral condyles of the mouse knee. Cartilage thickness recovery following mechanical compression was highly viscoelastic and took almost 50s following force removal in the static tests. PMID:26807930

  12. Overexpression of Latent TGFβ Binding Protein 4 in Muscle Ameliorates Muscular Dystrophy through Myostatin and TGFβ.

    PubMed

    Lamar, Kay-Marie; Bogdanovich, Sasha; Gardner, Brandon B; Gao, Quan Q; Miller, Tamari; Earley, Judy U; Hadhazy, Michele; Vo, Andy H; Wren, Lisa; Molkentin, Jeffery D; McNally, Elizabeth M

    2016-05-01

    Latent TGFβ binding proteins (LTBPs) regulate the extracellular availability of latent TGFβ. LTBP4 was identified as a genetic modifier of muscular dystrophy in mice and humans. An in-frame insertion polymorphism in the murine Ltbp4 gene associates with partial protection against muscular dystrophy. In humans, nonsynonymous single nucleotide polymorphisms in LTBP4 associate with prolonged ambulation in Duchenne muscular dystrophy. To better understand LTBP4 and its role in modifying muscular dystrophy, we created transgenic mice overexpressing the protective murine allele of LTBP4 specifically in mature myofibers using the human skeletal actin promoter. Overexpression of LTBP4 protein was associated with increased muscle mass and proportionally increased strength compared to age-matched controls. In order to assess the effects of LTBP4 in muscular dystrophy, LTBP4 overexpressing mice were bred to mdx mice, a model of Duchenne muscular dystrophy. In this model, increased LTBP4 led to greater muscle mass with proportionally increased strength, and decreased fibrosis. The increase in muscle mass and reduction in fibrosis were similar to what occurs when myostatin, a related TGFβ family member and negative regulator of muscle mass, was deleted in mdx mice. Supporting this, we found that myostatin forms a complex with LTBP4 and that overexpression of LTBP4 led to a decrease in myostatin levels. LTBP4 also interacted with TGFβ and GDF11, a protein highly related to myostatin. These data identify LTBP4 as a multi-TGFβ family ligand binding protein with the capacity to modify muscle disease through overexpression. PMID:27148972

  13. Overexpression of Latent TGFβ Binding Protein 4 in Muscle Ameliorates Muscular Dystrophy through Myostatin and TGFβ

    PubMed Central

    Gardner, Brandon B.; Gao, Quan Q.; Hadhazy, Michele; Vo, Andy H.; Wren, Lisa; Molkentin, Jeffery D.; McNally, Elizabeth M.

    2016-01-01

    Latent TGFβ binding proteins (LTBPs) regulate the extracellular availability of latent TGFβ. LTBP4 was identified as a genetic modifier of muscular dystrophy in mice and humans. An in-frame insertion polymorphism in the murine Ltbp4 gene associates with partial protection against muscular dystrophy. In humans, nonsynonymous single nucleotide polymorphisms in LTBP4 associate with prolonged ambulation in Duchenne muscular dystrophy. To better understand LTBP4 and its role in modifying muscular dystrophy, we created transgenic mice overexpressing the protective murine allele of LTBP4 specifically in mature myofibers using the human skeletal actin promoter. Overexpression of LTBP4 protein was associated with increased muscle mass and proportionally increased strength compared to age-matched controls. In order to assess the effects of LTBP4 in muscular dystrophy, LTBP4 overexpressing mice were bred to mdx mice, a model of Duchenne muscular dystrophy. In this model, increased LTBP4 led to greater muscle mass with proportionally increased strength, and decreased fibrosis. The increase in muscle mass and reduction in fibrosis were similar to what occurs when myostatin, a related TGFβ family member and negative regulator of muscle mass, was deleted in mdx mice. Supporting this, we found that myostatin forms a complex with LTBP4 and that overexpression of LTBP4 led to a decrease in myostatin levels. LTBP4 also interacted with TGFβ and GDF11, a protein highly related to myostatin. These data identify LTBP4 as a multi-TGFβ family ligand binding protein with the capacity to modify muscle disease through overexpression. PMID:27148972

  14. Muscular strength is inversely related to prevalence and incidence of obesity in adult men.

    PubMed

    Jackson, Allen W; Lee, Duck-Chul; Sui, Xuemei; Morrow, James R; Church, Timothy S; Maslow, Andrea L; Blair, Steven N

    2010-10-01

    The purpose of the study was to determine the relation between quintiles of muscular strength after adjustment for age and body weight, and excessive body fat (EBF) and excessive abdominal fat (EAF) when controlling for cardiorespiratory fitness (CRF) and other potential confounders. A two-phased cross-sectional and longitudinal study was conducted assessing the prevalence and incidence of EBF and EAF across quintiles of muscular strength. The sample included 3,258 men (mean age = 42.2 ± 8.9; weight (kg) = 81.2 ± 11.0; BMI = 25.3 ± 2.9; %fat = 19.4 ± 5.8; waist girth (cm) = 91.2 ± 9.0) who completed at least two clinical examinations as part of the Aerobics Center Longitudinal Study (ACLS). Muscular strength was assessed with tests of upper and lower body muscular strength using rack-mounted weights with participants placed into strength quintiles. CRF was measured by a modified Balke treadmill test, %fat via underwater weighing or seven-site skinfold measurements, and waist girth measured at the level of the umbilicus. EBF was defined as ≥25% and EAF was defined as >102 cm. There was a strong inverse gradient across quintiles of muscular strength for prevalence and incidence of EBF and EAF (P trend <0.01, each). With the lowest quintile serving as the referent, reductions in risk of EBF and EAF exceeded 70% for the highest strength quintile. Evidence suggests muscular strength may provide protection from EBF and EAF and their related comorbidities. PMID:19960002

  15. Genome-wide association study for behavior, type traits, and muscular development in Charolais beef cattle.

    PubMed

    Vallée, A; Daures, J; van Arendonk, J A M; Bovenhuis, H

    2016-06-01

    Behavior, type traits, and muscular development are of interest for beef cattle breeding. Genome-wide association studies (GWAS) enable the identification of candidate genes, which enables gene-based selection and provides insight in the genetic architecture of these traits. The objective of the current study was to perform a GWAS for 3 behavior traits, 12 type traits, and muscular development in Charolais cattle. Behavior traits, including aggressiveness at parturition, aggressiveness during gestation period, and maternal care, were scored by farmers. Type traits, including udder conformation, teat, feet and legs, and locomotion, were scored by trained classifiers. Data used in the GWAS consisted of 3,274 cows with phenotypic records and genotyping information for 44,930 SNP. When SNP had a false discovery rate (FDR) smaller than 0.05, they were referred to as significant. When SNP had a FDR between 0.05 and 0.20, they were referred to as suggestive. Four significant and 12 suggestive regions were detected for aggressiveness during gestation, maternal care, udder balance, teat thinness, teat length, foot angle, foot depth, and locomotion. These 4 significant and 12 suggestive regions were not supported by other significant SNP in close proximity. No SNP with major effects were detected for behavior and type traits, and SNP associations for these traits were spread across the genome, suggesting that behavior and type traits were influenced by many genes, each explaining a small part of genetic variance. The GWAS identified 1 region on chromosome 2 significantly associated with muscular development, which included the myostatin gene (), which is known to affect muscularity. No other regions associated with muscular development were found. Results showed that the myostatin region associated with muscular development had pleiotropic effects on udder volume, teat thinness, rear leg, and leg angle. PMID:27285908

  16. Proteomic assessment of a cell model of spinal muscular atrophy

    PubMed Central

    2011-01-01

    Background Deletion or mutation(s) of the survival motor neuron 1 (SMN1) gene causes spinal muscular atrophy (SMA), a neuromuscular disease characterized by spinal motor neuron death and muscle paralysis. Complete loss of the SMN protein is embryonically lethal, yet reduced levels of this protein result in selective death of motor neurons. Why motor neurons are specifically targeted by SMN deficiency remains to be determined. In this study, embryonic stem (ES) cells derived from a severe SMA mouse model were differentiated into motor neurons in vitro by addition of retinoic acid and sonic hedgehog agonist. Proteomic and western blot analyses were used to probe protein expression alterations in this cell-culture model of SMA that could be relevant to the disease. Results When ES cells were primed with Noggin/fibroblast growth factors (bFGF and FGF-8) in a more robust neural differentiation medium for 2 days before differentiation induction, the efficiency of in vitro motor neuron differentiation was improved from ~25% to ~50%. The differentiated ES cells expressed a pan-neuronal marker (neurofilament) and motor neuron markers (Hb9, Islet-1, and ChAT). Even though SMN-deficient ES cells had marked reduced levels of SMN (~20% of that in control ES cells), the morphology and differentiation efficiency for these cells are comparable to those for control samples. However, proteomics in conjunction with western blot analyses revealed 6 down-regulated and 14 up-regulated proteins with most of them involved in energy metabolism, cell stress-response, protein degradation, and cytoskeleton stability. Some of these activated cellular pathways showed specificity for either undifferentiated or differentiated cells. Increased p21 protein expression indicated that SMA ES cells were responding to cellular stress. Up-regulation of p21 was confirmed in spinal cord tissues from the same SMA mouse model from which the ES cells were derived. Conclusion SMN-deficient ES cells provide a

  17. Impaired Muscle Mitochondrial Biogenesis and Myogenesis in Spinal Muscular Atrophy

    PubMed Central

    Ripolone, Michela; Ronchi, Dario; Violano, Raffaella; Vallejo, Dionis; Fagiolari, Gigliola; Barca, Emanuele; Lucchini, Valeria; Colombo, Irene; Villa, Luisa; Berardinelli, Angela; Balottin, Umberto; Morandi, Lucia; Mora, Marina; Bordoni, Andreina; Fortunato, Francesco; Corti, Stefania; Parisi, Daniela; Toscano, Antonio; Sciacco, Monica; DiMauro, Salvatore; Comi, Giacomo P.; Moggio, Maurizio

    2016-01-01

    IMPORTANCE The important depletion of mitochondrial DNA (mtDNA) and the general depression of mitochondrial respiratory chain complex levels (including complex II) have been confirmed, implying an increasing paucity of mitochondria in the muscle from patients with types I, II, and III spinal muscular atrophy (SMA-I, -II, and -III, respectively). OBJECTIVE To investigate mitochondrial dysfunction in a large series of muscle biopsy samples from patients with SMA. DESIGN, SETTING, AND PARTICIPANTS We studied quadriceps muscle samples from 24 patients with genetically documented SMA and paraspinal muscle samples from 3 patients with SMA-II undergoing surgery for scoliosis correction. Postmortem muscle samples were obtained from 1 additional patient. Age-matched controls consisted of muscle biopsy specimens from healthy children aged 1 to 3 years who had undergone analysis for suspected myopathy. Analyses were performed at the Neuromuscular Unit, Istituto di Ricovero e Cura a Carattere Scientifico Foundation Ca’ Granda Ospedale Maggiore Policlinico-Milano, from April 2011 through January 2015. EXPOSURES We used histochemical, biochemical, and molecular techniques to examine the muscle samples. MAIN OUTCOMES AND MEASURES Respiratory chain activity and mitochondrial content. RESULTS Results of histochemical analysis revealed that cytochrome-c oxidase (COX) deficiency was more evident in muscle samples from patients with SMA-I and SMA-II. Residual activities for complexes I, II, and IV in muscles from patients with SMA-I were 41%, 27%, and 30%, respectively, compared with control samples (P < .005). Muscle mtDNA content and cytrate synthase activity were also reduced in all 3 SMA types (P < .05). We linked these alterations to downregulation of peroxisome proliferator–activated receptor coactivator 1α, the transcriptional activators nuclear respiratory factor 1 and nuclear respiratory factor 2, mitochondrial transcription factor A, and their downstream targets

  18. Analysing regenerative potential in zebrafish models of congenital muscular dystrophy.

    PubMed

    Wood, A J; Currie, P D

    2014-11-01

    The congenital muscular dystrophies (CMDs) are a clinically and genetically heterogeneous group of muscle disorders. Clinically hypotonia is present from birth, with progressive muscle weakness and wasting through development. For the most part, CMDs can mechanistically be attributed to failure of basement membrane protein laminin-α2 sufficiently binding with correctly glycosylated α-dystroglycan. The majority of CMDs therefore arise as the result of either a deficiency of laminin-α2 (MDC1A) or hypoglycosylation of α-dystroglycan (dystroglycanopathy). Here we consider whether by filling a regenerative medicine niche, the zebrafish model can address the present challenge of delivering novel therapeutic solutions for CMD. In the first instance the readiness and appropriateness of the zebrafish as a model organism for pioneering regenerative medicine therapies in CMD is analysed, in particular for MDC1A and the dystroglycanopathies. Despite the recent rapid progress made in gene editing technology, these approaches have yet to yield any novel zebrafish models of CMD. Currently the most genetically relevant zebrafish models to the field of CMD, have all been created by N-ethyl-N-nitrosourea (ENU) mutagenesis. Once genetically relevant models have been established the zebrafish has several important facets for investigating the mechanistic cause of CMD, including rapid ex vivo development, optical transparency up to the larval stages of development and relative ease in creating transgenic reporter lines. Together, these tools are well suited for use in live-imaging studies such as in vivo modelling of muscle fibre detachment. Secondly, the zebrafish's contribution to progress in effective treatment of CMD was analysed. Two approaches were identified in which zebrafish could potentially contribute to effective therapies. The first hinges on the augmentation of functional redundancy within the system, such as upregulating alternative laminin chains in the candyfloss

  19. Dysferlin-Deficient Muscular Dystrophy Identified Through Laboratory Testing for Elevated Aminotransferases

    PubMed Central

    Achdjian, Houry; Usta, Yousef; Nanda, Rakesh

    2016-01-01

    We present a 24-year-old combat veteran who underwent extensive work-up for elevated aminotransferases, including liver biopsy, with no underlying pathology identified. Subsequent investigations showed elevated creatinine kinase and aldolase. The patient was later diagnosed with biopsy-proven dysferlin-deficient muscular dystrophy. Persistent transaminase elevation despite negative liver work-up should prompt clinicians to consider extrahepatic sources of enzyme elevation. Promptly correlating aminotransferase elevation with musculoskeletal pathology may present an opportunity for clinicians to detect myopathies such as muscular dystrophy in their preclinical stages. PMID:26958568

  20. Using hegemonic masculinity to explain gay male attraction to muscular and athletic men.

    PubMed

    Lanzieri, Nicholas; Hildebrandt, Tom

    2011-01-01

    This article reviews relevant research on male homosexual attraction. Utilizing masculinity as its theoretical frame, the authors use childhood experiences with both fathers and peers, the gay community's inculcation of heteronormative ideologies, and the gay media's adherence to masculine prototypes, to provide causal explanations for the appeal of muscular, lean, and athletic physiques. While the authors acknowledge that not all individuals within the gay community look toward muscularity and athleticism as the primary components of attractiveness, it nonetheless remains important to examine the theoretical perspectives that may explain the appeal of this specific aesthetic. PMID:21294030

  1. Usefulness of sugammadex in a patient with Becker muscular dystrophy and dilated cardiomyopathy.

    PubMed

    Shimauchi, Tsukasa; Yamaura, Ken; Sugibe, Sayaka; Hoka, Sumio

    2014-09-01

    A 54-year-old patient with Becker muscular dystrophy and dilated cardiomyopathy underwent laparoscopic cholecystectomy under total intravenous anesthesia. Muscle relaxation was induced by rocuronium (0.4 mg/kg body weight) under train-of-four (TOF) ratio monitoring. The TOF ratio was 0 at intubation, and 0.2 at the end of surgery. Residual muscle relaxant activity was successfully reversed by sugammadex (2 mg/kg body weight) without any hemodynamic adverse effects (TOF ratio 1.0 at extubation). The clinical and hemodynamic findings suggest that sugammadex can be safely used in patients with Becker muscular dystrophy and dilated cardiomyopathy. PMID:25199695

  2. Use of Hydrodissection to Prevent Nerve and Muscular Damage during Radiofrequency Ablation of Kidney Tumors

    PubMed Central

    Lee, S. Justin; Choyke, Lynda T.; Locklin, Julia K.; Wood, Bradford J.

    2008-01-01

    Muscular complications are uncommon but have been reported after radiofrequency (RF) ablation of renal tumors. Ablation of renal lesions near the psoas muscle may result in paresthesia in the distribution of the genitofemoral nerve. The present report describes a case of sensory and muscular dysfunction after RF ablation of a renal lesion lying on top of the psoas muscle that was treated without hydrodissection. To prevent this complication, hydrodissection was effectively used in two other patients during RF ablation of lesions abutting or in close proximity to the psoas muscle. PMID:17185695

  3. Effects of therapeutic exercise on masticatory function in patients with progressive muscular dystrophy.

    PubMed Central

    Kawazoe, Y; Kobayashi, M; Tasaka, T; Tamamoto, M

    1982-01-01

    The slope of the curve relating integrated electromyographic activity of masseter muscle to biting force, the latency of the jaw-jerk reflex, and masticatory performance wee estimated in patients with Duchenne type of progressive muscular dystrophy before and during therapeutic exercise of the somatogenc system. The slope and latency were slightly decreased, and masticatory performance was increased during exercise. These results suggest that therapeutic exercise of the stomatognathic system is effective in improving masticatory function in patients with progressive muscular dystrophy. Images PMID:7077343

  4. Cardiorespiratory responses to exercise in patients with spinal muscular atrophy and limb-girdle dystrophy.

    PubMed

    Silva, A C; Russo, A K; Piçarro, I C; Schmidt, B; Gabbai, A; Oliveira, A S; Tarasantchi, J

    1987-01-01

    Maximum oxygen consumption, maximum heart rate and maximum ventilation during cycle ergometer exercise were studied in individuals with spinal muscular atrophy (N = 8) and limb-girdle dystrophy (N = 8). The limiting factors in aerobic power may be related to loss of functional muscular mass rather than to changes in the oxygen transport system. There was no correlation between VO2 max values and muscle strength as determined by a manual test of the affected muscles recruited for bicycle exercise. The results, therefore, do not support the possibility of a correlation between these indices previously proposed on the basis of clinical evidence. PMID:3452446

  5. Distribution of myosin heavy chain isoforms in muscular dystrophy: insights into disease pathology

    PubMed Central

    Beedle, Aaron M

    2016-01-01

    Myosin heavy chain isoforms are an important component defining fiber type specific properties in skeletal muscle, such as oxidative versus glycolytic metabolism, rate of contraction, and fatigability. While the molecular mechanisms that underlie specification of the different fiber types are becoming clearer, how this programming becomes disrupted in muscular dystrophy and the functional consequences of fiber type changes in disease are not fully resolved. Fiber type changes in disease, with specific focus on muscular dystrophies caused by defects in the dystrophin glycoprotein complex, are discussed. PMID:27430020

  6. Evidence for linkage disequilibrium in chromosome 13-linked Duchenne-like muscular dystrophy

    SciTech Connect

    Othmane, K.B.; Speer, M.C.; Stauffer, J.

    1995-09-01

    Duchenne-like muscular dystrophy (DLMD) is an autosomal recessive Limb Girdle muscular dystrophy (LGMD2C) characterized by late age of onset, proximal muscle weakness leading to disability, high creatine kinase values, normal intelligence and normal dystrophin in muscle biopsy. We have shown previously that three DLMD families from Tunisia are linked to chromosome 13q12. To further localize the LGMD2C gene, we have investigated seven additional families (119 individuals). Both genotyping and two-point linkage analysis were performed as described elsewhere. 7 refs., 1 fig., 1 tab.

  7. Muscular dystrophy in a patient with multiple sclerosis. Another "double-trouble"?

    PubMed

    Parissis, Dimitrios; Ioannidis, Panagiotis; Bakirtzis, Christos; Grigoriadis, Nikolaos; Karacostas, Dimitrios

    2015-07-01

    Facioscapulohumeral muscular dystrophy (FSHD) is considered a relatively common muscular dystrophy affecting approximately 1:15,000 individuals in the general population. Single case reports have described the rare co-occurrence of FSHD with other hereditary neuromuscular disorders, leading to atypical phenotypes. We report herein the case of a 26-year-old woman with genetically proven FSHD, who additionally developed otherwise typical multiple sclerosis (MS). Although there is no direct relationship between FSHD and MS, they might, nevertheless, share some common pathophysiological mechanisms, as recent research suggests. In particular, we comment on the potential, but not yet proven, role of immunological factors in the pathogenesis of FSHD. PMID:26195054

  8. Muscularity versus leanness: an examination of body ideals and predictors of disordered eating in heterosexual and gay college students.

    PubMed

    Smith, April R; Hawkeswood, Sean E; Bodell, Lindsay P; Joiner, Thomas E

    2011-06-01

    The aim of the current study was to add to the growing body of research on men with eating disorders by examining the association between different types of body dissatisfaction (muscularity and body fat) and disordered eating in heterosexual and gay men. Two hundred four participants (over one-third were gay) completed measures assessing disordered eating, muscularity and body fat dissatisfaction, and sexual orientation. Body fat dissatisfaction, but not muscularity dissatisfaction, predicted disordered eating, dietary restraint, and concerns about weight and eating in gay and heterosexual men. These findings were consistent across all measures of body fat and muscularity dissatisfaction, providing stronger evidence that body fat dissatisfaction may be a greater risk factor for disordered eating in both gay and heterosexual college aged men than muscularity dissatisfaction. PMID:21561818

  9. Computer method for the analysis of evoked motor unit potentials. 2. Duchenne, limb-girdle, facioscapulohumeral and myotonic muscular dystrophies.

    PubMed Central

    Ballantyne, J P; Hansen, S

    1975-01-01

    Single motor unit potentials recorded from surface electrodes over the extensor digitorum brevis muscle and evoked by stimulation of the anterior tibial nerve at the ankle were obtained by a computer subtraction method. Their latencies, durations, amplitudes, and areas were measured in control subjects and patients with Duchenne, limb-girdle, facioscapulohumeral, and myotonic muscular dystrophy. Lateral popliteal motor nerve conduction velocities were also recorded. In the muscular dystrophies there was a significant increase in both the latencies and durations of motor unit potentials, the latter in notable contrast with the findings of conventional needle electromyography. Fastest motor conduction velocities were significantly reduced in the limb-girdle, facioscapulohumeral, and myotonic muscular dystrophy patients, while the shortest distal motor latencies were significantly prolonged in these patients and those with Duchenne muscular dystrophy. The results support the presence of a definitive neurogenic influence in the muscular dystrophies. PMID:1151411

  10. Modulation of myoblast fusion by caveolin-3 in dystrophic skeletal muscle cells: implications for Duchenne muscular dystrophy and limb-girdle muscular dystrophy-1C.

    PubMed

    Volonte, Daniela; Peoples, Aaron J; Galbiati, Ferruccio

    2003-10-01

    Caveolae are vesicular invaginations of the plasma membrane. Caveolin-3 is the principal structural component of caveolae in skeletal muscle cells in vivo. We have recently generated caveolin-3 transgenic mice and demonstrated that overexpression of wild-type caveolin-3 in skeletal muscle fibers is sufficient to induce a Duchenne-like muscular dystrophy phenotype. In addition, we have shown that caveolin-3 null mice display mild muscle fiber degeneration and T-tubule system abnormalities. These data are consistent with the mild phenotype observed in Limb-girdle muscular dystrophy-1C (LGMD-1C) in humans, characterized by a approximately 95% reduction of caveolin-3 expression. Thus, caveolin-3 transgenic and null mice represent valid mouse models to study Duchenne muscular dystrophy (DMD) and LGMD-1C, respectively, in humans. Here, we derived conditionally immortalized precursor skeletal muscle cells from caveolin-3 transgenic and null mice. We show that overexpression of caveolin-3 inhibits myoblast fusion to multinucleated myotubes and lack of caveolin-3 enhances the fusion process. M-cadherin and microtubules have been proposed to mediate the fusion of myoblasts to myotubes. Interestingly, we show that M-cadherin is downregulated in caveolin-3 transgenic cells and upregulated in caveolin-3 null cells. For the first time, variations of M-cadherin expression have been linked to a muscular dystrophy phenotype. In addition, we demonstrate that microtubules are disorganized in caveolin-3 null myotubes, indicating the importance of the cytoskeleton network in mediating the phenotype observed in these cells. Taken together, these results propose caveolin-3 as a key player in myoblast fusion and suggest that defects of the fusion process may represent additional molecular mechanisms underlying the pathogenesis of DMD and LGMD-1C in humans. PMID:14517320

  11. Which one Enhances Muscular Performance in ACL Reconstructed Subjects

    PubMed Central

    Harput, Gulcan; Ulusoy, Burak; Atay, Ahmet Ozgur; Baltacı, Gul

    2014-01-01

    Objectives: The aim of this study was to investigate the effects of functional knee brace and kinesiotaping on muscular performance in anterior cruciate ligament reconstructed subjects who reached return to sport phase of the rehabilitation. Methods: Twenty (17 males, 3 females, Age: 24.7±7.1 years, Body weight: 74.4±12.0 kg, Height: 177.9±6.5 cm, BMI: 23.9±3.6 kg/m2) subjects who underwent anterior cruciate ligament reconstruction by using hamstring tendon auto graft were included in this study. When the subjects reached the return to sports phase of rehabilitation which was 6th months after surgery, knee muscle strength, jump performance and balance tests were performed 3 times: bare, with knee brace and with kinesio taping. The order of the tests were randomized to eliminate the effects of fatigue and motor learning. Quadriceps and hamstring muscle strength was measured on an isokinetic dynamometer at 180 °/s and 60°/s angular velocities. Vertical Jump (VJ) and One Leg Hop Tests (OLHT) were used to assess jump performance. Star Excursion Balance Test (SEBT) with anterior, posteromedial and posterolateral reach distance was used to assess the dynamic balance. When all tests were performed, the subjects were asked under which test condition they felt more confident. Repeated measures of ANOVA was used to analyze the difference among three test conditions (bare, kinesiotaping, knee brace). Bonferroni post hoc test was used for pairwise comparison. Results: SEBT posteromedial (PM)and posterolateral (PL) reach distances were found significantly different among three test conditions(PM: F(2,38)=3.42,p=0.04), PL: F(2,38)=4.37,p=0.02). Kinesiotaping increased posteromedial reach distance (p=0.03). On the other hand, brace decreased posterolateral reach distance (p=0.04). VJ and OLHT performance were also found significantly different between three test conditions (VJ: F (2,38)=3.44,p=0.04, OLHT: (F(2,38)=4.04,p=0.02). Kinesio taping increased one leg hop distance

  12. Pregnancy and delivery in Leyden-Möbius muscular dystrophy. Case Report.

    PubMed

    Vavrinkova, Blanka; Binder, Tomas

    2015-01-01

    Leyden-Möbius muscular dystrophy is an autosomal recessive hereditary disease of unknown aetiology; it is a congenital disorder of protein metabolism primarily affecting proximal muscle groups leading to progressive muscular dystrophy. It later spreads to the muscles of the pelvic floor and lower extremities. The estimated incidence is 1:200,000. This paper describe a case of pregnancy and delivery in woman with progressive Leyden-Moebius muscular dystrophy. Cesarean section was performed due to progression of the underlying disease. First postoperative day DIC occure and surgical revision of abdominal cavity was performed. Although the uterine suture was strong, diffuse bleeding was present. Blood was not coagulating. Supravaginal amputation of the uterus was performed including left-sided adnexectomy due to bleeding from the left ovarium. Due to the severity of the condition and assumed necessity of long-term controlled ventilation, the patient was transferred to the intensive medicine department. She was dismissed home after 91 days of hospitalisation. Gravidity in advanced muscular dystrophy is rare and associated with a high risk. Due to muscle weakness, diaphragm weakness, atrophy of individual muscle groups, spine deformities and often dislocation of thoracic organs, these patients cannot avoid the caesarean section to end their pregnancy, followed by prolonged intubation and controlled ventilation. During pregnancy, the growing uterus elevates the diaphragm and impairs breathing. Therefore, pregnancies in such patients will probably always have to be ended prematurely. PMID:26313391

  13. Neuromuscular disease. Diagnosis and discovery in limb-girdle muscular dystrophy.

    PubMed

    Angelini, Corrado

    2016-01-01

    Whole-exome sequencing is a new tool for neuromuscular clinicians, and recent findings show that it improves the diagnosis of limb-girdle muscular dystrophy. The technique has a dual role as a tool for diagnosis and discovery in genetically heterogeneous neuromuscular diseases. PMID:26670295

  14. Development of Screening Method for an Frail Elderly by Measurement Quantitative Lower Limb Muscular Strength

    NASA Astrophysics Data System (ADS)

    Yamashita, Kazuhiko; Iwakami, Yumi; Imaizumi, Kazuya; Sato, Mitsuru; Nakajima, Sawako; Ino, Shuichi; Kawasumi, Masashi; Ifukube, Tohru

    Falling is one of the most serious problems for the elderly. The aim of this study was to develop a screening method for identifying factors that increase the risk of falling among the elderly, particularly with regard to lower limb muscular strength. Subjects were 48 elderly volunteers, including 25 classed as healthy and 23 classed as frail. All subjects underwent measurement of lower limb muscular strength via toe gap force and measurement of muscle strength of the hip joint adductor via knee gap force. In the frail group, toe gap force of the right foot was 20% lower than that in the healthy group; toe gap force of the left foot in the frail group was 23% lower than that in the healthy group, while knee gap force was 20% lower. Furthermore, we found that combining left toe gap force and knee gap force gave the highest odds ratio (6.05) with 82.6% sensitivity and 56.0% specificity when the toe gap force was 24 N and the knee gap force was 100 N. Thus, lower limb muscular strength can be used for simple and efficient screening, and approaches to prevent falls can be based on quantitative data such as lower limb muscular strength.

  15. Congenital muscular dystrophy with glycosylation defects of alpha-dystroglycan in Japan.

    PubMed

    Matsumoto, Hiroshi; Hayashi, Yukiko K; Kim, Dae-Son; Ogawa, Megumu; Murakami, Terumi; Noguchi, Satoru; Nonaka, Ikuya; Nakazawa, Tomoyuki; Matsuo, Takiko; Futagami, Satoshi; Campbell, Kevin P; Nishino, Ichizo

    2005-05-01

    Glycosylation defects of alpha-dystroglycan (alpha-DG) cause various muscular dystrophies. We performed clinical, pathological and genetic analyses of 62 Japanese patients with congenital muscular dystrophy, whose skeletal muscle showed deficiency of glycosylated form of alpha-DG. We found, the first Japanese patient with congenital muscular dystrophy 1C with a novel compound heterozygous mutation in the fukutin-related protein gene. Fukuyama-type congenital muscular dystrophy was genetically confirmed in 54 of 62 patients. Two patients with muscle-eye-brain disease and one Walker-Warburg syndrome were also genetically confirmed. Four patients had no mutation in any known genes associated with glycosylation of alpha-DG. Interestingly, the molecular mass of alpha-DG in the skeletal muscle was similar and was reduced to approximately 90 kDa among these patients, even though the causative gene and the clinico-pathological severity were different. This result suggests that other factors can modify clinical features of the patients with glycosylation defects of alpha-DG. PMID:15833426

  16. Mild and severe muscular dystrophy caused by a single gamma-sarcoglycan mutation.

    PubMed

    McNally, E M; Passos-Bueno, M R; Bönnemann, C G; Vainzof, M; de Sá Moreira, E; Lidov, H G; Othmane, K B; Denton, P H; Vance, J M; Zatz, M; Kunkel, L M

    1996-11-01

    Autosomal recessive muscular dystrophy is genetically heterogeneous. One form of this disorder, limb-girdle muscular dystrophy type 2C (LGMD 2C), is prevalent in northern Africa and has been shown to be associated with a single mutation in the gene encoding the dystrophin-associated protein gamma-sarcoglycan. The previous mutation analysis of gamma-sarcoglycan required the availability of muscle biopsies. To establish a mutation assay for genomic DNA, the intron-exon structure of the gamma-sarcoglycan gene was determined, and primers were designed to amplify each of the exons encoding gamma-sarcoglycan. We studied a group of Brazilian muscular dystrophy patients for mutations in the gamma-sarcoglycan gene. These patients were selected on the basis of autosomal inheritance and/or the presence of normal dystrophin and/or deficiency of alpha-sarcoglycan immunostaining. Four of 19 patients surveyed had a single, homozygous mutation in the gamma-sarcoglycan gene. The mutation identified in these patients, all of African-Brazilian descent, is identical to that seen in the North African population, suggesting that even patients of remote African descent may carry this mutation. The phenotype in these patients varied considerably. Of four families with an identical mutation, three have a severe Duchenne-like muscular dystrophy. However, one family has much milder symptoms, suggesting that other loci may be present that modify the severity of the clinical course resulting from gamma-sarcoglycan gene mutations. PMID:8900232

  17. DNA Damage, Somatic Aneuploidy, and Malignant Sarcoma Susceptibility in Muscular Dystrophies

    PubMed Central

    Schmidt, Wolfgang M.; Uddin, Mohammed H.; Dysek, Sandra; Moser-Thier, Karin; Pirker, Christine; Höger, Harald; Ambros, Inge M.; Ambros, Peter F.; Berger, Walter; Bittner, Reginald E.

    2011-01-01

    Albeit genetically highly heterogeneous, muscular dystrophies (MDs) share a convergent pathology leading to muscle wasting accompanied by proliferation of fibrous and fatty tissue, suggesting a common MD–pathomechanism. Here we show that mutations in muscular dystrophy genes (Dmd, Dysf, Capn3, Large) lead to the spontaneous formation of skeletal muscle-derived malignant tumors in mice, presenting as mixed rhabdomyo-, fibro-, and liposarcomas. Primary MD–gene defects and strain background strongly influence sarcoma incidence, latency, localization, and gender prevalence. Combined loss of dystrophin and dysferlin, as well as dystrophin and calpain-3, leads to accelerated tumor formation. Irrespective of the primary gene defects, all MD sarcomas share non-random genomic alterations including frequent losses of tumor suppressors (Cdkn2a, Nf1), amplification of oncogenes (Met, Jun), recurrent duplications of whole chromosomes 8 and 15, and DNA damage. Remarkably, these sarcoma-specific genetic lesions are already regularly present in skeletal muscles in aged MD mice even prior to sarcoma development. Accordingly, we show also that skeletal muscle from human muscular dystrophy patients is affected by gross genomic instability, represented by DNA double-strand breaks and age-related accumulation of aneusomies. These novel aspects of molecular pathologies common to muscular dystrophies and tumor biology will potentially influence the strategies to combat these diseases. PMID:21533183

  18. Aquatic Therapy for a Child with Type III Spinal Muscular Atrophy: A Case Report

    ERIC Educational Resources Information Center

    Salem, Yasser; Gropack, Stacy Jaffee

    2010-01-01

    Spinal muscular atrophy (SMA) is a neuromuscular disorder characterized by degeneration of alpha motor neurons. This case report describes an aquatic therapy program and the outcomes for a 3-year-old girl with type III SMA. Motor skills were examined using the 88-item Gross Motor Function Measure (GMFM), the Peabody Developmental Motor Scales…

  19. Cathepsin S Contributes to the Pathogenesis of Muscular Dystrophy in Mice.

    PubMed

    Tjondrokoesoemo, Andoria; Schips, Tobias G; Sargent, Michelle A; Vanhoutte, Davy; Kanisicak, Onur; Prasad, Vikram; Lin, Suh-Chin J; Maillet, Marjorie; Molkentin, Jeffery D

    2016-05-01

    Duchenne muscular dystrophy (DMD) is an X-linked recessive disease caused by mutations in the gene encoding dystrophin. Loss of dystrophin protein compromises the stability of the sarcolemma membrane surrounding each muscle cell fiber, leading to membrane ruptures and leakiness that induces myofiber necrosis, a subsequent inflammatory response, and progressive tissue fibrosis with loss of functional capacity. Cathepsin S (Ctss) is a cysteine protease that is actively secreted in areas of tissue injury and ongoing inflammation, where it participates in extracellular matrix remodeling and healing. Here we show significant induction of Ctss expression and proteolytic activity following acute muscle injury or in muscle from mdx mice, a model of DMD. To examine the functional ramifications associated with greater Ctss expression, the Ctss gene was deleted in the mdx genetic background, resulting in protection from muscular dystrophy pathogenesis that included reduced myofiber turnover and histopathology, reduced fibrosis, and improved running capacity. Mechanistically, deletion of the Ctss gene in the mdx background significantly increased myofiber sarcolemmal membrane stability with greater expression and membrane localization of utrophin, integrins, and β-dystroglycan, which anchor the membrane to the basal lamina and underlying cytoskeletal proteins. Consistent with these results, skeletal muscle-specific transgenic mice overexpressing Ctss showed increased myofiber necrosis, muscle histopathology, and a functional deficit reminiscent of muscular dystrophy. Hence, Ctss induction during muscular dystrophy is a pathologic event that partially underlies disease pathogenesis, and its inhibition might serve as a new therapeutic strategy in DMD. PMID:26966179

  20. Unique pattern of late gadolinium enhancement on cardiac magnetic resonance imaging in Duchenne muscular dystrophy.

    PubMed

    Ganigara, Madhusudan; Sharma, Bharti; Komalla, Ravi Babu; Vyas, Suman Y; Mannam, Gopichand; Rao, Nitin Krishna

    2016-01-01

    Cardiomyopathy is an important cause of morbidity and mortality in patients with Duchenne muscular dystrophy (DMD). Early recognition of myocardial involvement and initiation of therapy are important for improved outcomes. Cardiac magnetic resonance imaging (CMR) is a sensitive tool in early detection of myocardial fibrosis in these children. PMID:27212861

  1. Pursuit of Muscularity in Adolescent Boys: Relations among Biopsychosocial Variables and Clinical Outcomes

    ERIC Educational Resources Information Center

    Cafri, Guy; van den Berg, Patricia; Thompson, J. Kevin

    2006-01-01

    Adolescent boys (n = 269) were assessed for levels of several risky behaviors related to the pursuit of muscularity, including substance use (anabolic steroids, prohormones, and ephedrine) dieting to gain weight, and symptoms of muscle dysmorphia (MD). The association between these behaviors and a variety of putative biological, psychological, and…

  2. SIRT1: A Novel Target for the Treatment of Muscular Dystrophies

    PubMed Central

    Kuno, Atsushi; Horio, Yoshiyuki

    2016-01-01

    Muscular dystrophies are inherited myogenic disorders accompanied by progressive skeletal muscle weakness and degeneration. Duchenne muscular dystrophy (DMD) is the most common and severe form of muscular dystrophy and is caused by mutations in the gene that encodes the cytoskeletal protein dystrophin. The treatment for DMD is limited to glucocorticoids, which are associated with multiple side effects. Thus, the identification of novel therapeutic targets is urgently needed. SIRT1 is an NAD+-dependent histone/protein deacetylase that plays roles in diverse cellular processes, including stress resistance and cell survival. Studies have shown that SIRT1 activation provides beneficial effects in the dystrophin-deficient mdx mouse, a model of DMD. SIRT1 activation leads to the attenuation of oxidative stress and inflammation, a shift from the fast to slow myofiber phenotype, and the suppression of tissue fibrosis. Although further research is needed to clarify the molecular mechanisms underlying the protective role of SIRT1 in mdx mice, we propose SIRT1 as a novel therapeutic target for patients with muscular dystrophies. PMID:27073590

  3. Dystrophin analysis using a panel of anti-dystrophin antibodies in Duchenne and Becker muscular dystrophy.

    PubMed

    Muntoni, F; Mateddu, A; Cianchetti, C; Marrosu, M G; Clerk, A; Cau, M; Congiu, R; Cao, A; Melis, M A

    1993-01-01

    Dystrophin, the protein product of the Duchenne muscular dystrophy (DMD) gene, was studied in 19 patients with Xp21 disorders and in 25 individuals with non-Xp21 muscular dystrophy. Antibodies raised to seven different regions spanning most of the protein were used for immunocytochemistry. In all patients specific dystrophin staining anomalies were detected and correlated with clinical severity and also gene deletion. In patients with Becker muscular dystrophy (BMD) the anomalies detected ranged from inter- and intra-fibre variation in labelling intensity with the same antibody or several antibodies to general reduction in staining and discontinuous staining. In vitro evidence of abnormal dystrophin breakdown was observed reanalysing the muscle of patients, with BMD and not that of non-Xp21 dystrophies, after it has been stored for several months. A number of patients with DMD showed some staining but this did not represent a diagnostic problem. Based on the data presented, it was concluded that immunocytochemistry is a powerful technique in the prognostic diagnosis of Xp21 muscular dystrophies. PMID:8429320

  4. Changes of muscular load with aging in the motion of pulling up disposable diapers.

    PubMed

    Yoto, Tsuyoshi Yi; Sakuragawa, Satoshi; Suzuki, Taka-aki; Tamura, Hisae; Yamaki, Rumi; Fujioka, Yoshihisa; Katsuura, Tetsuo

    2010-01-01

    To elucidate how aging affects the muscular load required for pulling up pants-style disposable diapers, and why some elderly people cannot pull up the rear of their disposable diapers well, we evaluated the electromyogram (EMG) of 8 young subjects (21.5+/-1.5 years) and 7 elderly subjects (71.6+/-6.1 years). EMG was measured for four muscles--biceps brachii, deltoid, brachioradialis, and flexor carpi ulnaris. We evaluated the muscular load during a series of motions for pulling a disposable diaper up at the front and the rear of the body using an EMG-Video Synchronous Split Method. The analysis revealed that the front and the rear integral EMG of elderly subjects were both significantly larger than those of young subjects for all four muscles. For the deltoid and flexor carpi ulnaris muscles, the maximum amplitude of EMG when pulling up the rear of the disposable diapers was significantly larger in the elderly subjects than the young ones. These results suggest that the muscular load involved in pulling up the rear of disposable diapers may increase due to changes in body habitus caused by aging. Since muscular strength decreases with age, it seems likely that the elderly individuals will eventually be unable to pull up the rear of their diapers. PMID:20551584

  5. Yearly Changes in the Body Composition and Muscular Strength of High School Wrestlers.

    ERIC Educational Resources Information Center

    Housh, Terry J.; And Others

    1988-01-01

    Changes in body composition as well as absolute and relative isokinetic forearm flexion and extension strength of high school wrestlers were studied. Increase in weight and improved wrestling performance were found to be, in part, a function of yearly changes in body composition and muscular strength. (JD)

  6. Dystropathology increases energy expenditure and protein turnover in the Mdx mouse model of Duchenne muscular dystrophy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The skeletal muscles in Duchenne muscular dystrophy and the mdx mouse model lack functional dystrophin and undergo repeated bouts of necrosis, regeneration, and growth. These processes have a high metabolic cost. However, the consequences for whole body energy and protein metabolism, and on the diet...

  7. Na+ Dysregulation Coupled with Ca2+ Entry through NCX1 Promotes Muscular Dystrophy in Mice

    PubMed Central

    Burr, Adam R.; Millay, Douglas P.; Goonasekera, Sanjeewa A.; Park, Ki Ho; Sargent, Michelle A.; Collins, James; Altamirano, Francisco; Philipson, Kenneth D.; Allen, Paul D.; Ma, Jianjie; López, José Rafael

    2014-01-01

    Unregulated Ca2+ entry is thought to underlie muscular dystrophy. Here, we generated skeletal-muscle-specific transgenic (TG) mice expressing the Na+-Ca2+ exchanger 1 (NCX1) to model its identified augmentation during muscular dystrophy. The NCX1 transgene induced dystrophy-like disease in all hind-limb musculature, as well as exacerbated the muscle disease phenotypes in δ-sarcoglycan (Sgcd−/−), Dysf−/−, and mdx mouse models of muscular dystrophy. Antithetically, muscle-specific deletion of the Slc8a1 (NCX1) gene diminished hind-limb pathology in Sgcd−/− mice. Measured increases in baseline Na+ and Ca2+ in dystrophic muscle fibers of the hind-limb musculature predicts a net Ca2+ influx state due to reverse-mode operation of NCX1, which mediates disease. However, the opposite effect is observed in the diaphragm, where NCX1 overexpression mildly protects from dystrophic disease through a predicted enhancement in forward-mode NCX1 operation that reduces Ca2+ levels. Indeed, Atp1a2+/− (encoding Na+-K+ ATPase α2) mice, which have reduced Na+ clearance rates that would favor NCX1 reverse-mode operation, showed exacerbated disease in the hind limbs of NCX1 TG mice, similar to treatment with the Na+-K+ ATPase inhibitor digoxin. Treatment of Sgcd−/− mice with ranolazine, a broadly acting Na+ channel inhibitor that should increase NCX1 forward-mode operation, reduced muscular pathology. PMID:24662047

  8. Na+ dysregulation coupled with Ca2+ entry through NCX1 promotes muscular dystrophy in mice.

    PubMed

    Burr, Adam R; Millay, Douglas P; Goonasekera, Sanjeewa A; Park, Ki Ho; Sargent, Michelle A; Collins, James; Altamirano, Francisco; Philipson, Kenneth D; Allen, Paul D; Ma, Jianjie; López, José Rafael; Molkentin, Jeffery D

    2014-06-01

    Unregulated Ca(2+) entry is thought to underlie muscular dystrophy. Here, we generated skeletal-muscle-specific transgenic (TG) mice expressing the Na(+)-Ca(2+) exchanger 1 (NCX1) to model its identified augmentation during muscular dystrophy. The NCX1 transgene induced dystrophy-like disease in all hind-limb musculature, as well as exacerbated the muscle disease phenotypes in δ-sarcoglycan (Sgcd(-/-)), Dysf(-/-), and mdx mouse models of muscular dystrophy. Antithetically, muscle-specific deletion of the Slc8a1 (NCX1) gene diminished hind-limb pathology in Sgcd(-/-) mice. Measured increases in baseline Na(+) and Ca(2+) in dystrophic muscle fibers of the hind-limb musculature predicts a net Ca(2+) influx state due to reverse-mode operation of NCX1, which mediates disease. However, the opposite effect is observed in the diaphragm, where NCX1 overexpression mildly protects from dystrophic disease through a predicted enhancement in forward-mode NCX1 operation that reduces Ca(2+) levels. Indeed, Atp1a2(+/-) (encoding Na(+)-K(+) ATPase α2) mice, which have reduced Na(+) clearance rates that would favor NCX1 reverse-mode operation, showed exacerbated disease in the hind limbs of NCX1 TG mice, similar to treatment with the Na(+)-K(+) ATPase inhibitor digoxin. Treatment of Sgcd(-/-) mice with ranolazine, a broadly acting Na(+) channel inhibitor that should increase NCX1 forward-mode operation, reduced muscular pathology. PMID:24662047

  9. Limb–Girdle and Congenital Muscular Dystrophies: Current Diagnostics, Management, and Emerging Technologies

    PubMed Central

    Rocha, Carolina Tesi; Hoffman, Eric P.

    2014-01-01

    The muscular dystrophies show muscle degeneration and regeneration (necrotizing myopathy) on muscle biopsy, typically associated with elevated serum creatine kinase, and muscle weakness. In 1986, the first causative gene was identified for the most prevalent and best-characterized form of muscular dystrophy, Duchenne muscular dystrophy. Over the past 25 years, the number of other genes determined to cause different subtypes has grown rapidly. This review gives a synopsis of the 45 genetically defined types of muscular dystrophies and describes the clinical, pathologic, and molecular aspects of each disease. DNA diagnosis remains the most sensitive and specific method for differential diagnosis, but molecular diagnostics can be expensive and complex (because of multiple genes at multiple testing facilities) and reimbursement may be challenging to obtain. However, emerging DNA sequencing technologies (eg, single-molecule thirdgeneration sequencing units) promise to dramatically reduce the complexity and costs of DNA diagnostics. Treatment for nearly all forms remains supportive and is aimed at preventing complications. However, several promising approaches have entered clinical trials, providing tangible hope that quality of life will improve for many patients in the near future. PMID:20467841

  10. The Effects of Muscular Fatigue on the Kinetics of Sprint Running.

    ERIC Educational Resources Information Center

    Sprague, Paul; Mann, Ralph V.

    1983-01-01

    To compare the kinematic and kinetic effects of fatigue on the biomechanics of sprint running, male subjects were filmed performing a short maximal exertion sprint and a long fatiguing sprint. Observable differences in the productive muscular activity of the better and the poorer sprinters occurred during the ground-phase of their strides.…

  11. Serum Osteopontin as a Novel Biomarker for Muscle Regeneration in Duchenne Muscular Dystrophy.

    PubMed

    Kuraoka, Mutsuki; Kimura, En; Nagata, Tetsuya; Okada, Takashi; Aoki, Yoshitsugu; Tachimori, Hisateru; Yonemoto, Naohiro; Imamura, Michihiro; Takeda, Shin'ichi

    2016-05-01

    Duchenne muscular dystrophy is a lethal X-linked muscle disorder. We have already reported that osteopontin (OPN), an inflammatory cytokine and myogenic factor, is expressed in the early dystrophic phase in canine X-linked muscular dystrophy in Japan, a dystrophic dog model. To further explore the possibility of OPN as a new biomarker for disease activity in Duchenne muscular dystrophy, we monitored serum OPN levels in dystrophic and wild-type dogs at different ages and compared the levels to other serum markers, such as serum creatine kinase, matrix metalloproteinase-9, and tissue inhibitor of metalloproteinase-1. Serum OPN levels in the dystrophic dogs were significantly elevated compared with those in wild-type dogs before and 1 hour after a cesarean section birth and at the age of 3 months. The serum OPN level was significantly correlated with the phenotypic severity of dystrophic dogs at the period corresponding to the onset of muscle weakness, whereas other serum markers including creatine kinase were not. Immunohistologically, OPN was up-regulated in infiltrating macrophages and developmental myosin heavy chain-positive regenerating muscle fibers in the dystrophic dogs, whereas serum OPN was highly elevated. OPN expression was also observed during the synergic muscle regeneration process induced by cardiotoxin injection. In conclusion, OPN is a promising biomarker for muscle regeneration in dystrophic dogs and can be applicable to boys with Duchenne muscular dystrophy. PMID:26963343

  12. Muscularity as a function of species, sex and age in small mammals

    NASA Technical Reports Server (NTRS)

    Pace, N.; Rahlmann, D. F.; Smith, A. H.

    1984-01-01

    Changes in the body skeletal muscle mass SMM (measured as a function of the ratio between the body creatine mass and the fat-free muscle creatine), and in muscularity (expressed as the ratio of SMM to fat-free body mass) were studied as functions of age, sex, and species in mouse, rat, hamster, guinea pig, and rabbit. Six animals of each sex were examined in eight age cohorts ranging from 1 to 24 months. Both species and age factors affect SMM. Strong sexual dimorphism in the SMM changes with age was displayed by mouse, rat, and guinea pig, whereas the hamster and rabbit were statistically monomorphic. The mouse, rat, and hamster attain a maximal SMM at about 1 year of age, whereas in the guinea pig and rabbit the decrease in SMM starts after 2 years. The value of muscularity reached a peak at age of 2-3 months in all animals of both sexes, with a pronounced difference among the species. The mouse emerged as the most muscular, while the guinea pig the least muscular, of all species.

  13. Sit-ups and Push-ups Only--Are We Heading for Muscular Imbalance?

    ERIC Educational Resources Information Center

    Bennett, Jane G.; Murphy, Debra J.

    1995-01-01

    Physical education teachers should incorporate the concept of muscular balance into their daily curricula and select activities that work the muscles as they are used in everyday activities. The article focuses on maintaining normal strength between the anterior and posterior trunk muscles, detailing appropriate exercises. (SM)

  14. Non-Traditional Muscular Strength and Endurance Activities for Elementary and Middle School Children

    ERIC Educational Resources Information Center

    Maina, Michael P.; Feather, Ryan; Edmunds, Cynthia; Maina, Julie Schlegel; Ryan, Stu; Griffin, Michael

    2014-01-01

    Over the past decade many muscular strength and endurance routines have been introduced to children and adults toward improving overall health and fitness. When performed correctly, there are countless benefits to performing weight bearing resistance-type exercises to develop the upper, lower, and core areas of the body. The National Association…

  15. Dystrophin insufficiency causes a Becker muscular dystrophy-like phenotype in swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Duchenne muscular dystrophy (DMD) is caused by a dystrophin deficiency while Becker MD is caused by a dystrophin insufficiency or expression of a partially functional dystrophin protein. Deficiencies in existing mouse and dog models necessitate the development of a novel large animal model. Our pu...

  16. Adolescent Boys and Body Image: Weight and Muscularity Concerns as Dual Pathways to Body Dissatisfaction

    ERIC Educational Resources Information Center

    Jones, Diane Carlson; Crawford, Joy K.

    2005-01-01

    This research evaluated a dual pathway model for body dissatisfaction among adolescent boys. The study provides empirical support for the importance of distinguishing between weight and muscularity concerns in understanding male body image. A total of 128 boys from grades 8 and 11 completed a self-report questionnaire. Results indicated that…

  17. A Biopsychosocial Model of Disordered Eating and the Pursuit of Muscularity in Adolescent Boys

    ERIC Educational Resources Information Center

    Ricciardelli, Lina A.; McCabe, Marita P.

    2004-01-01

    This review provides an evaluation of the correlates and/or risk factors associated with disordered eating and the pursuit of muscularity among adolescent boys. One of the main conclusions is that similar factors and processes are associated with both behavioral problems. Several factors found to be consistently associated with disordered eating…

  18. Emerinopathy and Laminopathy Clinical, pathological and molecular features of muscular dystrophy with nuclear envelopathy in Japan

    PubMed Central

    Astejada, MN; Goto, K; Nagano, A; Ura, S; Noguchi, S; Nonaka, I; Nishino, I; Hayashi, YK

    2007-01-01

    Summary Mutations in the genes for nuclear envelope proteins of emerin (EMD) and lamin A/C (LMNA) are known to cause Emery-Dreifuss muscular dystrophy (EDMD) and limb girdle muscular dystrophy (LGMD). We compared clinical features of the muscular dystrophy patients associated with mutations in EMD (emerinopathy) and LMNA (laminopathy) in our series. The incidence of laminopathy was slightly higher than that of emerinopathy. The age at onset of the disease in emerinopathy was variable and significantly older than in laminopathy. The initial symptom of emerinopathy was also variable, whereas nearly all laminopathy patients presented initially with muscle weakness. Calf hypertrophy was often seen in laminopathy, underscoring the importance of mutation screening for LMNA in childhood muscular dystrophy with calf hypertrophy. The clinical spectrum of emerinopathy is actually wider than previously known including EDMD, LGMD, conduction defects with minimal muscle/joint involvement, and their intermittent forms. Pathologically, no marked difference was observed between emerinopathy and laminopathy. Increased number and variation in size of myonuclei were detected. More precise observations using electron microscopy is warranted to characterize the detailed nuclear changes in nuclear envelopathy. PMID:18646565

  19. Unique pattern of late gadolinium enhancement on cardiac magnetic resonance imaging in Duchenne muscular dystrophy

    PubMed Central

    Ganigara, Madhusudan; Sharma, Bharti; Komalla, Ravi Babu; Vyas, Suman Y.; Mannam, Gopichand; Rao, Nitin Krishna

    2016-01-01

    Cardiomyopathy is an important cause of morbidity and mortality in patients with Duchenne muscular dystrophy (DMD). Early recognition of myocardial involvement and initiation of therapy are important for improved outcomes. Cardiac magnetic resonance imaging (CMR) is a sensitive tool in early detection of myocardial fibrosis in these children. PMID:27212861

  20. A family of juvenile proximal spinal muscular atrophy with dominant inheritance.

    PubMed Central

    Cao, A; Cainchetti, C; Calisti, L; Tangheroni, W

    1976-01-01

    A family with juvenile proximal spinal muscular atrophy with dominant inheritance and complete penetrance is reported. The disease occurred in three generations and showed high variations in the age of onset and progression among the affected members. A characteristic feature was the constant involvement of facial nuclei. Images PMID:933110

  1. Improving the Reading Skills of Young People with Duchenne Muscular Dystrophy in Preparation for Adulthood

    ERIC Educational Resources Information Center

    Hoskin, Janet; Fawcett, Angela

    2014-01-01

    Duchenne muscular dystrophy (DMD) is a progressive genetic condition that affects both muscle and brain. Children with DMD are at risk of psycho-social difficulties such as poor academic achievement and behavioural and socio-emotional problems. This article by Janet Hoskin and Angela Fawcett, both from the University of Swansea, describes how 34…

  2. Mild and severe muscular dystrophy caused by a single {gamma}-sarcoglycan mutation

    SciTech Connect

    McNally, E.M.; Boennemann, C.G.; Lidov, H.G.W.

    1996-11-01

    Autosomal recessive muscular dystrophy is genetically heterogeneous. One form of this disorder, limb-girdle muscular dystrophy type 2C (LGMD 2C), is prevalent in northern Africa and has been shown to be associated with a single mutation in the gene encoding the dystrophin-associated protein {gamma}-sarcoglycan. The previous mutation analysis of {gamma}-sarcoglycan required the availability of muscle biopsies. To establish a mutation assay for genomic DNA, the intron-exon structure of the {gamma}-sarcoglycan gene was determined, and primers were designed to amplify each of the exons encoding {gamma}-sarcoglycan. We studied a group of Brazilian muscular dystrophy patients for mutations in the {gamma}-sarcoglycan gene. These patients were selected on the basis of autosomal inheritance and/or the presence of normal dystrophin and/or deficiency of {alpha}-sarcoglycan immunostaining. Four of 19 patients surveyed had a single, homozygous mutation in the {gamma}-sarcoglycan gene. The mutation identified in these patients, all of African-Brazilian descent, is identical to that seen in the North African population, suggesting that even patients of remote African descent may carry this mutation. The phenotype in these patients varied considerably. Of four families with an identical mutation, three have a severe Duchenne-like muscular dystrophy. However, one family has much milder symptoms, suggesting that other loci may be present that modify the severity of the clinical course resulting from {gamma}-sarcoglycan gene mutations. 19 refs., 5 figs., 3 tabs.

  3. Parents' Perspectives on Coping with Duchenne Muscular Dystrophy and Concomitant Specific Learning Disabilities

    ERIC Educational Resources Information Center

    Webb, Carol L.

    2005-01-01

    This study addresses parental perspectives and coping strategies related to Duchenne muscular dystrophy and specific learning disabilities. Data were collected through individual semi-structured in-depth interviews with fifteen sets of parents. Participants were selected based on variables such as age of children, number of children with both…

  4. Evaluation of Narrative Abilities in Patients Suffering from Duchenne Muscular Dystrophy

    ERIC Educational Resources Information Center

    Marini, A.; Lorusso, M. L.; D'Angelo, M. G.; Civati, F.; Turconi, A. C.; Fabbro, F.; Bresolin, N.

    2007-01-01

    The present work investigated cognitive, linguistic and narrative abilities in a group of children suffering from Duchenne Muscular Dystrophy, an allelic X-linked recessive disorder caused by mutations in the gene encoding dystrophin. The patients showed mildly reduced IQ with lower Verbal than Performance Intelligence Quotient and were mildly…

  5. Bilingual Skills Training Program. Barbering/Cosmetology. Module 6.0: Muscular System.

    ERIC Educational Resources Information Center

    Northern New Mexico Community Coll., El Rito.

    This module on the muscular system is the sixth of ten (CE 028 308-318) in the barbering/cosmetology course of a bilingual skills training program. (A Vocabulary Development Workbook for modules 6-10 is available as CE 028 313.) The course is designed to furnish theoretical and laboratory experience. Module objectives are for students to develop…

  6. Relationship of Muscular Strength on Work Performance in High School Students with Mental Retardation

    ERIC Educational Resources Information Center

    Smail, Karen M.; Horvat, Michael

    2006-01-01

    The relationship of muscular strength on work performance measures in high school students with mild mental retardation was investigated. Ten students from a self contained Special Education class were matched according to age, gender, height, and weight then randomly assigned to either the treatment group or control group. The treatment group…

  7. Mutation in Exon 1f of PLEC, Leading to Disruption of Plectin Isoform 1f, Causes Autosomal-Recessive Limb-Girdle Muscular Dystrophy

    PubMed Central

    Gundesli, Hulya; Talim, Beril; Korkusuz, Petek; Balci-Hayta, Burcu; Cirak, Sebahattin; Akarsu, Nurten A.; Topaloglu, Haluk; Dincer, Pervin

    2010-01-01

    Limb-girdle muscular dystrophy (LGMD) is a genetically heterogeneous group of inherited muscular disorders manifesting symmetric, proximal, and slowly progressive muscle weakness. Using Affymetrix 250K SNP Array genotyping and homozygosity mapping, we mapped an autosomal-recessive LGMD phenotype to the telomeric portion of chromosome 8q in a consanguineous Turkish family with three affected individuals. DNA sequence analysis of PLEC identified a homozygous c.1_9del mutation containing an initiation codon in exon 1f, which is an isoform-specific sequence of plectin isoform 1f. The same homozygous mutation was also detected in two additional families during the analysis of 72 independent LGMD2-affected families. Moreover, we showed that the expression of PLEC was reduced in the patient's muscle and that there was almost no expression for plectin 1f mRNA as a result of the mutation. In addition to dystrophic changes in muscle, ultrastructural alterations, such as membrane duplications, an enlarged space between the membrane and sarcomere, and misalignment of Z-disks, were observed by transmission electron microscopy. Unlike the control skeletal muscle, no sarcolemmal staining of plectin was detected in the patient's muscle. We conclude that as a result of plectin 1f deficiency, the linkage between the sarcolemma and sarcomere is broken, which could affect the structural organization of the myofiber. Our data show that one of the isoforms of plectin plays a key role in skeletal muscle function and that disruption of the plectin 1f can cause the LGMD2 phenotype without any dermatologic component as was previously reported with mutations in constant exons of PLEC. PMID:21109228

  8. Effects of systemic hypoxia on human muscular adaptations to resistance exercise training.

    PubMed

    Kon, Michihiro; Ohiwa, Nao; Honda, Akiko; Matsubayashi, Takeo; Ikeda, Tatsuaki; Akimoto, Takayuki; Suzuki, Yasuhiro; Hirano, Yuichi; Russell, Aaron P

    2014-06-01

    Hypoxia is an important modulator of endurance exercise-induced oxidative adaptations in skeletal muscle. However, whether hypoxia affects resistance exercise-induced muscle adaptations remains unknown. Here, we determined the effect of resistance exercise training under systemic hypoxia on muscular adaptations known to occur following both resistance and endurance exercise training, including muscle cross-sectional area (CSA), one-repetition maximum (1RM), muscular endurance, and makers of mitochondrial biogenesis and angiogenesis, such as peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), citrate synthase (CS) activity, nitric oxide synthase (NOS), vascular endothelial growth factor (VEGF), hypoxia-inducible factor-1 (HIF-1), and capillary-to-fiber ratio. Sixteen healthy male subjects were randomly assigned to either a normoxic resistance training group (NRT, n = 7) or a hypoxic (14.4% oxygen) resistance training group (HRT, n = 9) and performed 8 weeks of resistance training. Blood and muscle biopsy samples were obtained before and after training. After training muscle CSA of the femoral region, 1RM for bench-press and leg-press, muscular endurance, and skeletal muscle VEGF protein levels significantly increased in both groups. The increase in muscular endurance was significantly higher in the HRT group. Plasma VEGF concentration and skeletal muscle capillary-to-fiber ratio were significantly higher in the HRT group than the NRT group following training. Our results suggest that, in addition to increases in muscle size and strength, HRT may also lead to increased muscular endurance and the promotion of angiogenesis in skeletal muscle. PMID:24907297

  9. Trainability of muscular activity level during maximal voluntary co-contraction: comparison between bodybuilders and nonathletes.

    PubMed

    Maeo, Sumiaki; Takahashi, Takumi; Takai, Yohei; Kanehisa, Hiroaki

    2013-01-01

    Antagonistic muscle pairs cannot be fully activated simultaneously, even with maximal effort, under conditions of voluntary co-contraction, and their muscular activity levels are always below those during agonist contraction with maximal voluntary effort (MVE). Whether the muscular activity level during the task has trainability remains unclear. The present study examined this issue by comparing the muscular activity level during maximal voluntary co-contraction for highly experienced bodybuilders, who frequently perform voluntary co-contraction in their training programs, with that for untrained individuals (nonathletes). The electromyograms (EMGs) of biceps brachii and triceps brachii muscles during maximal voluntary co-contraction of elbow flexors and extensors were recorded in 11 male bodybuilders and 10 nonathletes, and normalized to the values obtained during the MVE of agonist contraction for each of the corresponding muscles (% EMGMVE). The involuntary coactivation level in antagonist muscle during the MVE of agonist contraction was also calculated. In both muscles, % EMGMVE values during the co-contraction task for bodybuilders were significantly higher (P<0.01) than those for nonathletes (biceps brachii: 66±14% in bodybuilders vs. 46±13% in nonathletes, triceps brachii: 74±16% vs. 57±9%). There was a significant positive correlation between a length of bodybuilding experience and muscular activity level during the co-contraction task (r = 0.653, P = 0.03). Involuntary antagonist coactivation level during MVE of agonist contraction was not different between the two groups. The current result indicates that long-term participation in voluntary co-contraction training progressively enhances muscular activity during maximal voluntary co-contraction. PMID:24260233

  10. Characterization of Information-Based Learning Benefits with Submovement Dynamics and Muscular Rhythmicity

    PubMed Central

    Hwang, Ing-Shiou; Huang, Chien-Ting; Yang, Jeng-Feng; Guo, Mei-Chun

    2013-01-01

    For skill advancement, motor variability must be optimized based on target information during practice sessions. This study investigated structural changes in kinematic variability by characterizing submovement dynamics and muscular oscillations after practice with visuomotor tracking under different target conditions. Thirty-six participants were randomly assigned to one of three groups (simple, complex, and random). Each group practiced tracking visual targets with trajectories of varying complexity. The velocity trajectory of tracking was decomposed into 1) a primary contraction spectrally identical to the target rate and 2) an intermittent submovement profile. The learning benefits and submovement dynamics were conditional upon experimental manipulation of the target information. Only the simple and complex groups improved their skills with practice. The size of the submovements was most greatly reduced by practice with the least target information (simple > complex > random). Submovement complexity changed in parallel with learning benefits, with the most remarkable increase in practice under a moderate amount of target information (complex > simple > random). In the simple and complex protocols, skill improvements were associated with a significant decline in alpha (8–12 Hz) muscular oscillation but a potentiation of gamma (35–50 Hz) muscular oscillation. However, the random group showed no significant change in tracking skill or submovement dynamics, except that alpha muscular oscillation was reduced. In conclusion, submovement and gamma muscular oscillation are biological markers of learning benefits. Effective learning with an appropriate amount of target information reduces the size of submovements. In accordance with the challenge point hypothesis, changes in submovement complexity in response to target information had an inverted-U function, pertaining to an abundant trajectory-tuning strategy with target exactness. PMID:24367568

  11. Effects of two deep water training programs on cardiorespiratory and muscular strength responses in older adults.

    PubMed

    Kanitz, Ana Carolina; Delevatti, Rodrigo Sudatti; Reichert, Thais; Liedtke, Giane Veiga; Ferrari, Rodrigo; Almada, Bruna Pereira; Pinto, Stephanie Santana; Alberton, Cristine Lima; Kruel, Luiz Fernando Martins

    2015-04-01

    This study aimed to investigate the effects of two deep water training programs on cardiorespiratory and muscular strength responses in older adults. Thirty-four older adults men were placed into two groups: deep water endurance training (ET; n = 16; 66 ± 4 years) and deep water strength prior to endurance training (concurrent training: CT; n = 18; 64 ± 4 years). The training period lasted 12 weeks, with three sessions a week. The resting heart rate and the oxygen uptake at peak (VO2peak) and at the second ventilatory threshold (VO2VT2) were evaluated during a maximal incremental test on a cycle ergometer before and after training. In addition, maximal dynamic strength (one repetition maximum test--1RM) and local muscular resistance (maximum repetitions at 60% 1RM) of the knee extensors and flexors were evaluated. After the training period, the heart rate at rest decreased significantly, while the VO2peak and VO2VT2 showed significant increases in both groups (p<0.05). Only the VO2VT2 resulted in significantly greater values for the ET compared to the CT group after the training (p<0.05). In addition, after training, there was a significant increase in the maximal dynamic strength of the knee extensors and the local muscular endurance of the knee extensors and flexors, with no difference between the groups (p > 0.05). In summary, the two training programs were effective at producing significant improvements in cardiorespiratory and muscular strength responses in older adult men. However, deep water endurance training at high intensities provides increased cardiorespiratory responses compared to CT and results in similar muscular strength responses. PMID:25700846

  12. A Nonsense Variant in COL6A1 in Landseer Dogs with Muscular Dystrophy.

    PubMed

    Steffen, Frank; Bilzer, Thomas; Brands, Jan; Golini, Lorenzo; Jagannathan, Vidhya; Wiedmer, Michaela; Drögemüller, Michaela; Drögemüller, Cord; Leeb, Tosso

    2015-12-01

    A novel canine muscular dystrophy in Landseer dogs was observed. We had access to five affected dogs from two litters. The clinical signs started at a few weeks of age, and the severe progressive muscle weakness led to euthanasia between 5 and 15 months of age. The pedigrees of the affected dogs suggested a monogenic autosomal-recessive inheritance of the trait. Linkage and homozygosity mapping indicated two potential genome segments for the causative variant on chromosomes 10 and 31 harboring a total of 4.8 Mb of DNA or 0.2% of the canine genome. Using the Illumina sequencing technology, we obtained a whole-genome sequence from one affected Landseer. Variants were called with respect to the dog reference genome and compared with the genetic variants of 170 control dogs from other breeds. The affected Landseer dog was homozygous for a single, private nonsynonymous variant in the critical intervals, a nonsense variant in the COL6A1 gene (Chr31:39,303,964G>T; COL6A1:c.289G>T; p.E97*). Genotypes at this variant showed perfect concordance with the muscular dystrophy phenotype in all five cases and more than 1000 control dogs. Variants in the human COL6A1 gene cause Bethlem myopathy or Ullrich congenital muscular dystrophy. We therefore conclude that the identified canine COL6A1 variant is most likely causative for the observed muscular dystrophy in Landseer dogs. On the basis of the nature of the genetic variant in Landseer dogs and their severe clinical phenotype these dogs represent a model for human Ullrich congenital muscular dystrophy. PMID:26438297

  13. A Nonsense Variant in COL6A1 in Landseer Dogs with Muscular Dystrophy

    PubMed Central

    Steffen, Frank; Bilzer, Thomas; Brands, Jan; Golini, Lorenzo; Jagannathan, Vidhya; Wiedmer, Michaela; Drögemüller, Michaela; Drögemüller, Cord; Leeb, Tosso

    2015-01-01

    A novel canine muscular dystrophy in Landseer dogs was observed. We had access to five affected dogs from two litters. The clinical signs started at a few weeks of age, and the severe progressive muscle weakness led to euthanasia between 5 and 15 months of age. The pedigrees of the affected dogs suggested a monogenic autosomal-recessive inheritance of the trait. Linkage and homozygosity mapping indicated two potential genome segments for the causative variant on chromosomes 10 and 31 harboring a total of 4.8 Mb of DNA or 0.2% of the canine genome. Using the Illumina sequencing technology, we obtained a whole-genome sequence from one affected Landseer. Variants were called with respect to the dog reference genome and compared with the genetic variants of 170 control dogs from other breeds. The affected Landseer dog was homozygous for a single, private nonsynonymous variant in the critical intervals, a nonsense variant in the COL6A1 gene (Chr31:39,303,964G>T; COL6A1:c.289G>T; p.E97*). Genotypes at this variant showed perfect concordance with the muscular dystrophy phenotype in all five cases and more than 1000 control dogs. Variants in the human COL6A1 gene cause Bethlem myopathy or Ullrich congenital muscular dystrophy. We therefore conclude that the identified canine COL6A1 variant is most likely causative for the observed muscular dystrophy in Landseer dogs. On the basis of the nature of the genetic variant in Landseer dogs and their severe clinical phenotype these dogs represent a model for human Ullrich congenital muscular dystrophy. PMID:26438297

  14. Analysis of calpain-3 protein in muscle biopsies of different muscular dystrophies from India

    PubMed Central

    Renjini, R.; Gayathri, N.; Nalini, A.; Bharath, M.M. Srinivas

    2012-01-01

    Background & objectives: Calpain-3, a Ca2+-dependent protease has been implicated in the pathology of neuromuscular disorders (NMDs). The current study aimed to analyze calpain-3 expression in cases diagnosed as muscular dystrophy from the Indian population. Methods: Calpain-3 Western blot analysis in muscle biopsies of immunohistochemically confirmed cases of Duchenne muscular dystrophy (DMD) (n=10), dysferlinopathy (n=30) and sarcoglycanopathy (n=8) was carried out. Calpain-3 Western blotting was also used in a blinded study to identify cases of calpain-3 deficiency in 28 NMD patients with potential muscular dystrophy. Results: Calpain-3 appeared as a full length 94 kDa band with an autolytic product (~60 kDa) on Western blots with antibody NCL-CALP-12A2 (Ab-2). Eight of the 10 DMD samples showed absence of 94 kDa band but presence of 60 kDa band while one case of sarcoglycanopathy showed absence of both. Twenty one of the 30 dysferlinopathy samples showed both bands while six showed only the 60 kDa band and three showed absence of both. In the blinded study, five NMD cases with potential muscular dystrophy that showed complete absence of both bands in retrospect exhibited clinical features of limb girdle muscular dystrophy 2A (LGMD2A). Interpretation & conclusions: While the study revealed a consistent pattern of calpain-3 in DMD, one sarcoglycanopathy and three dysferlinopathy samples exhibited secondary reduction in calpain-3. It was recognized that both calpain-3 bands should be considered to confirm calpain deficiency. Further, western blot offers an economical and fast preliminary screening method for LGMD2A especially in cases of complete absence of calpain-3 prior to conclusive diagnosis by genetic testing. PMID:22825607

  15. Muscle Quantitative MR Imaging and Clustering Analysis in Patients with Facioscapulohumeral Muscular Dystrophy Type 1

    PubMed Central

    Lareau-Trudel, Emilie; Le Troter, Arnaud; Ghattas, Badih; Pouget, Jean; Attarian, Shahram; Bendahan, David; Salort-Campana, Emmanuelle

    2015-01-01

    Background Facioscapulohumeral muscular dystrophy type 1 (FSHD1) is the third most common inherited muscular dystrophy. Considering the highly variable clinical expression and the slow disease progression, sensitive outcome measures would be of interest. Methods and Findings Using muscle MRI, we assessed muscular fatty infiltration in the lower limbs of 35 FSHD1 patients and 22 healthy volunteers by two methods: a quantitative imaging (qMRI) combined with a dedicated automated segmentation method performed on both thighs and a standard T1-weighted four-point visual scale (visual score) on thighs and legs. Each patient had a clinical evaluation including manual muscular testing, Clinical Severity Score (CSS) scale and MFM scale. The intramuscular fat fraction measured using qMRI in the thighs was significantly higher in patients (21.9 ± 20.4%) than in volunteers (3.6 ± 2.8%) (p<0.001). In patients, the intramuscular fat fraction was significantly correlated with the muscular fatty infiltration in the thighs evaluated by the mean visual score (p<0.001). However, we observed a ceiling effect of the visual score for patients with a severe fatty infiltration clearly indicating the larger accuracy of the qMRI approach. Mean intramuscular fat fraction was significantly correlated with CSS scale (p≤0.01) and was inversely correlated with MMT score, MFM subscore D1 (p≤0.01) further illustrating the sensitivity of the qMRI approach. Overall, a clustering analysis disclosed three different imaging patterns of muscle involvement for the thighs and the legs which could be related to different stages of the disease and put forth muscles which could be of interest for a subtle investigation of the disease progression and/or the efficiency of any therapeutic strategy. Conclusion The qMRI provides a sensitive measurement of fat fraction which should also be of high interest to assess disease progression and any therapeutic strategy in FSHD1 patients. PMID:26181385

  16. Masculinities and ethnicities: Ethnic differences in drive for muscularity in British men and the negotiation of masculinity hierarchies.

    PubMed

    Swami, Viren

    2016-08-01

    Although relatively little is known about ethnic differences in men's drive for muscularity, recent theoretical developments suggest that ethnic minority men may desire greater muscularity to contest their positions of relative subordinate masculinity. This study tested this hypothesis in a sample of 185 White, 180 Black British, and 182 South Asian British men. Participants completed self-report measures of drive for muscularity, need for power, adherence to traditional cultural values, and ethnic group affiliation. Taking into account between-group differences in body mass index, results indicated that White men had significantly lower drive for muscularity than Black and South Asian men, who were not significantly different from each other. In addition, greater need for power was significantly associated with higher drive for muscularity in ethnic minority, but not White, men. Greater adherence to traditional cultural values, but not ethnic group affiliation, was associated with lower drive for muscularity in all ethnic groups. These results suggest that ethnic minority men may desire greater muscularity as a means of negotiating masculinity and attendant ideals of appearance. PMID:26592864

  17. Nanolipodendrosome-loaded glatiramer acetate and myogenic differentiation 1 as augmentation therapeutic strategy approaches in muscular dystrophy

    PubMed Central

    Afzal, Ehsan; Zakeri, Saba; Keyhanvar, Peyman; Bagheri, Meisam; Mahjoubi, Parvin; Asadian, Mahtab; Omoomi, Nogol; Dehqanian, Mohammad; Ghalandarlaki, Negar; Darvishmohammadi, Tahmineh; Farjadian, Fatemeh; Golvajoee, Mohammad Sadegh; Afzal, Shadi; Ghaffari, Maryam; Cohan, Reza Ahangari; Gravand, Amin; Ardestani, Mehdi Shafiee

    2013-01-01

    Backgrond Muscular dystrophies consist of a number of juvenile and adult forms of complex disorders which generally cause weakness or efficiency defects affecting skeletal muscles or, in some kinds, other types of tissues in all parts of the body are vastly affected. In previous studies, it was observed that along with muscular dystrophy, immune inflammation was caused by inflammatory cells invasion – like T lymphocyte markers (CD8+/CD4+). Inflammatory processes play a major part in muscular fibrosis in muscular dystrophy patients. Additionally, a significant decrease in amounts of two myogenic recovery factors (myogenic differentation 1 [MyoD] and myogenin) in animal models was observed. The drug glatiramer acetate causes anti-inflammatory cytokines to increase and T helper (Th) cells to induce, in an as yet unknown mechanism. MyoD recovery activity in muscular cells justifies using it alongside this drug. Methods In this study, a nanolipodendrosome carrier as a drug delivery system was designed. The purpose of the system was to maximize the delivery and efficiency of the two drug factors, MyoD and myogenin, and introduce them as novel therapeutic agents in muscular dystrophy phenotypic mice. The generation of new muscular cells was analyzed in SW1 mice. Then, immune system changes and probable side effects after injecting the nanodrug formulations were investigated. Results The loaded lipodendrimer nanocarrier with the candidate drug, in comparison with the nandrolone control drug, caused a significant increase in muscular mass, a reduction in CD4+/CD8+ inflammation markers, and no significant toxicity was observed. The results support the hypothesis that the nanolipodendrimer containing the two candidate drugs will probably be an efficient means to ameliorate muscular degeneration, and warrants further investigation. PMID:23966782

  18. Immunological identification of a high molecular weight protein as a condidate for the product of the Duchenne muscular dystrophy gene

    SciTech Connect

    Kao, L.; Krstenansky, J.; Mendell, J.; Rammohan, K.W.; Gruenstein, E. )

    1988-06-01

    An oligopeptide was synthesized based on translation of the nucleotide sequence of the putative exon region of clone pERT87-25 from the gene for Duchenne muscular dystrophy. Immunization of rabbits with this oligopeptide induced the formation of antibodies directed against a protein present in human, rat, and rabbit skeletal muscle. This protein, which is missing in the skeletal muscle of two patients with Duchenne muscular dystrophy, has a molecular mass of {approx}320-420 kDa and is clearly different from the putative Duchenne muscular dystrophy-related protein nebulin. The data suggest that this 320-420-kDa protein is produced by the Duchenne muscular dystrophy gene.

  19. The gene copy ratios of SMN1/SMN2 in Japanese carriers with type I spinal muscular atrophy.

    PubMed

    Diep Tran, T; Kroepfl, T; Saito, M; Nagura, M; Ichiseki, H; Kubota, M; Toda, T; Sakakihara, Y

    2001-08-01

    Spinal muscular atrophy is an autosomal recessive neurodegenerative disorder with progressive weakness and atrophy of voluntary muscles. The survival motor neuron gene (SMN) is present in two highly homologous copies (SMN1 and SMN2) on chromosome 5q13. Homozygous deletion of exons 7 and 8 of SMN1 is responsible for spinal muscular atrophy. In spinal muscular atrophy patients, SMN2 partially compensates for the lack of SMN1. Previously, we reported the relatively high incidence of a large deletion including the SMN1 region in Japanese spinal muscular atrophy type I patients. In order to further establish the genetic background of Japanese spinal muscular atrophy type I patients, we investigated the SMN1/SMN2 ratio in the carriers. In normal individuals, there is one copy of each gene on the chromosome (the SMN1/SMN2 ratio was 1). Among 15 carriers (14 parents and one carrier sibling of Japanese type I spinal muscular atrophy patients with homozygous deletion of exons 7 and 8 of SMN1), we found that the SMN1/SMN2 ratio was 0.5 or 1 in 11 (73.3%) carriers. The remaining four carriers had an SMN1/SMN2 ratio of 1/3. This finding supports the idea that deletion rather than conversion is the main genetic event in type I spinal muscular atrophy. In addition, the ratio of SMN1/SMN2 among Japanese carriers, which was thought to be higher than that of the Western population, was compatible with the results obtained in Western populations. For further insight into the characteristic genetic background of spinal muscular atrophy in Japanese, determination of the gene copy number is essential. PMID:11504604

  20. Muscular pseudotumor of the breast following doxorubicin and radiation therapy for oat cell carcinoma of the lung

    SciTech Connect

    Wergowske, G.; Chang, J.C.; Marger, D.

    1982-12-01

    Two male patients developed muscular pseudotumor of the breast following combined treatment of radiation and chemotherapy with cyclophosphamide, doxorubicin, methotrexate and procarbazine for oat cell carcinoma of the lung. The pathologic findings of the biopsy specimens revealed muscle and capillary changes similar to previously reported myocardiotoxicity from doxorubicin and radiation therapy. Discussed is a possible additive or synergistic toxic effect of doxorubicin and radiation therapy in the development of muscular pseudotumor of the breast.

  1. G-CSF supports long-term muscle regeneration in mouse models of muscular dystrophy.

    PubMed

    Hayashiji, Nozomi; Yuasa, Shinsuke; Miyagoe-Suzuki, Yuko; Hara, Mie; Ito, Naoki; Hashimoto, Hisayuki; Kusumoto, Dai; Seki, Tomohisa; Tohyama, Shugo; Kodaira, Masaki; Kunitomi, Akira; Kashimura, Shin; Takei, Makoto; Saito, Yuki; Okata, Shinichiro; Egashira, Toru; Endo, Jin; Sasaoka, Toshikuni; Takeda, Shin'ichi; Fukuda, Keiichi

    2015-01-01

    Duchenne muscular dystrophy (DMD) is a chronic and life-threatening disease that is initially supported by muscle regeneration but eventually shows satellite cell exhaustion and muscular dysfunction. The life-long maintenance of skeletal muscle homoeostasis requires the satellite stem cell pool to be preserved. Asymmetric cell division plays a pivotal role in the maintenance of the satellite cell pool. Here we show that granulocyte colony-stimulating factor receptor (G-CSFR) is asymmetrically expressed in activated satellite cells. G-CSF positively affects the satellite cell population during multiple stages of differentiation in ex vivo cultured fibres. G-CSF could be important in developing an effective therapy for DMD based on its potential to modulate the supply of multiple stages of regenerated myocytes. This study shows that the G-CSF-G-CSFR axis is fundamentally important for long-term muscle regeneration, functional maintenance and lifespan extension in mouse models of DMD with varying severities. PMID:25865621

  2. Peter Becker and his Nazi past: the man behind Becker muscular dystrophy and Becker myotonia.

    PubMed

    Zeidman, Lawrence A; Kondziella, Daniel

    2014-04-01

    Peter Becker was a German neurologist who helped classify the muscular dystrophies, and described Becker muscular dystrophy and Becker myotonia. His involvement in National Socialism began in 1933, when he was compelled by his peers to join the SA (brown shirts). He later joined the Nazi party, the Nazi Doctors Association, and the Nazi Lecturers' Association. He renewed his SA membership to maintain his position at a genetics institute. Colleagues stated postwar that he was not an active Nazi, and he was de-Nazified in 1947, able to continue his career. Later, Becker admitted to most, but not all, of his Nazi memberships in his autobiography, and wrote 2 books exploring the origins of Nazism and racial hygiene. The "neurologic court of opinion" must weigh in on how we should best remember Becker, and at the very least, we as neurologists must learn the dangers of career opportunism at any cost. PMID:23576413

  3. Is muscle spindle proprioceptive function spared in muscular dystrophies? A muscle tendon vibration study.

    PubMed

    Ribot-Ciscar, Edith; Tréfouret, Sylvie; Aimonetti, Jean-Marc; Attarian, Shahram; Pouget, Jean; Roll, Jean-Pierre

    2004-06-01

    Muscular dystrophies (MDs) are characterized by the degeneration of skeletal muscle fibers. The aim of the present study was to determine whether the intrafusal fibers of muscle spindles are also affected in MD. The functional integrity of muscle spindles was tested by analyzing their involvement in the perception of body segment movements and in the control of posture. Twenty MD patients (4 with dystrophinopathy, 5 with myotonic dystrophies, 5 with fascioscapulohumeral MD, and 6 with limb-girdle dystrophies) and 10 healthy subjects participated in the study. The MD patients perceived passive movements and experienced illusory movements similar to those perceived by healthy subjects in terms of their direction and velocity. Vibratory stimulation applied to the neck and ankle muscle tendons induced postural responses in MD patients with spatial and temporal characteristics similar to those produced by healthy subjects. These results suggest that the proprioceptive function of muscle spindles is spared in muscular dystrophies. PMID:15170619

  4. Imaging normal and cancerous human gastric muscular layer in transverse and longitudinal sections by multiphoton microscopy.

    PubMed

    Zhou, Yi; Kang, Deyong; Yang, Zhenrong; Li, Lianhuang; Zhuo, Shuangmu; Zhu, Xiaoqin; Zhou, Yongjian; Chen, Jianxin

    2016-07-01

    Multiphoton microscopy (MPM) based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) has been widely used for imaging microstructure of biological tissues. In this article, we used MPM to investigate the microstructure changes of normal and cancerous human gastric muscular layer in transverse and longitudinal sections. The results displayed different patterns of microstructure changes of smooth muscular tissue, cell morphology and interstitial fibers in transverse and longitudinal sections, being similar to standard histopathological images but without the need for tissue processing. Our study demonstrated that MPM can bring more detailed complementary information on tissue architecture through observing transverse and longitudinal sections of tissues, which are the important pathological information when the pathologists diagnose the gastrointestinal lesions. These observations indicate that MPM could be an important potential tool to provide real-time pathological diagnosis for gastric cancer in the future. SCANNING 38:357-364, 2016. © 2015 Wiley Periodicals, Inc. PMID:26435529

  5. Effect of Cellular Therapy in Progression of Becker’s Muscular Dystrophy: A Case Study

    PubMed Central

    Sharma, Alok; Sane, Hemangi; Gokulchandra, Nandini; Sharan, Rishabh; Paranjape, Amruta; Yadav, Jayanti; Badhe, Prerna

    2016-01-01

    Becker muscular dystrophy (BMD) is an inherited disorder due to deletions of the dystrophin gene that leads to muscle weakness. Effects of bone marrow mononuclear cell (BMMNC) transplantation in Muscular Dystrophy have shown to be safe and beneficial. We treated a 20-year-old male suffering from BMD with autologous BMMNC transplantation followed by multidisciplinary rehabilitation. He presented with muscle weakness and had difficulty in performing his activities. The BMMNCs were transplanted via intrathecal and intramuscular routes. The effects were measured on clinical and functional changes. Over 9 months, gradual improvement was noticed in muscle strength, respiratory functions and North Star Ambulatory Assessment Scale. Functional Independence Measure, Berg Balance Score, Brooke and Vignos Scale remained stable indicating halting of the progression. The case report suggests that cellular therapy combined with rehabilitation may have possibility of repairing and regenerating muscle fibers and decreasing the rate of progression of BMD. PMID:27054018

  6. Perinatal Management of Pregnancy Complicated by Autosomal Dominant Emery–Dreifuss Muscular Dystrophy

    PubMed Central

    Sato, Megumi; Shirasawa, Hiromitsu; Makino, Kenichi; Miura, Hiroshi; Sato, Wataru; Shimizu, Dai; Sato, Naoki; Kumagai, Jin; Sato, Akira; Terada, Yukihiro

    2016-01-01

    Introduction Autosomal dominant Emery–Dreifuss muscular dystrophy (AD-EDMD) is rare compared with other forms of muscular dystrophy and is characterized by cardiac conduction defects. Here, we present the case of a patient diagnosed with AD-EDMD during the first trimester of pregnancy who developed acute preeclampsia and subsequently, congestive heart failure (CHF) following cesarean section. Case A 36-year-old, gravida 0 para 0 woman was diagnosed with AD-EDMD by genetic testing during the first trimester of pregnancy, and she suddenly developed preeclampsia and partial HELLP (hemolytic anemia, elevated liver enzymes, and low platelets) syndrome at 33 weeks of gestation. The patient subsequently developed CHF following cesarean section. Conclusion CHF can occur as a direct result of the cardiac defects arising due to EDMD, and therefore, careful prenatal and postpartum management is recommended for such cases. PMID:27054045

  7. Relatively low proportion of dystrophin gene deletions in Israeli Duchenne and Becker muscular dystrophy patients.

    PubMed

    Shomrat, R; Gluck, E; Legum, C; Shiloh, Y

    1994-02-15

    Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are allelic disorders caused by mutations in the X-linked dystrophin gene. The most common mutations in western populations are deletions that are spread non-randomly throughout the gene. Molecular analysis of the dystrophin gene structure by hybridization of the full length cDNA to Southern blots and by PCR in 62 unrelated Israeli male DMD/BMD patients showed deletions in 23 (37%). This proportion is significantly lower than that found in European and North American populations (55-65%). Seventy-eight percent of the deletions were confined to exons 44-52, half of these to exons 44-45, and the remaining 22% to exons 1 and 19. There was no correlation between the size of the deletion and the severity of the disease. All the deletions causing frameshift resulted in the DMD phenotypes. PMID:8160727

  8. Examination of muscularity and body fat depictions in magazines that target heterosexual and gay men.

    PubMed

    Lanzieri, Nicholas; Cook, Brian J

    2013-03-01

    Previous content analyses of magazine images have typically examined within genres but failed to include comparisons between publications intended for various populations. The purpose of this study was to examine depictions of muscularity and thinness of male images in several widely distributed magazines that target male audiences from a variety of genres. Twenty-three magazine titles with the highest circulation rates that targeted heterosexual men, gay men, and general audiences were selected for image analyses. We found that magazines that target gay male audiences depicted images of men who were thinner in comparison to magazines targeting heterosexual men. Both gay and heterosexual magazines depicted male images with greater muscularity than magazines intended for general audiences. Differences in male image depictions in magazines may contribute to the promotion of an unattainable body ideal in some subgroups of gay culture. PMID:23352323

  9. Importance of Skin Changes in the Differential Diagnosis of Congenital Muscular Dystrophies

    PubMed Central

    Yis, Uluç; Baydan, Figen; Karakaya, Mert; Hız Kurul, Semra; Cirak, Sebahattin

    2016-01-01

    Megaconial congenital muscular dystrophy (OMIM 602541) is characterized with early-onset hypotonia, muscle wasting, proximal weakness, cardiomyopathy, mildly elevated serum creatine kinase (CK) levels, and mild-to-moderate intellectual disability. We report two siblings in a consanguineous family admitted for psychomotor delay. Physical examination revealed proximal muscle weakness, contractures in the knee of elder sibling, diffuse mild generalized muscle atrophy, and dry skin with ichthyosis together with multiple nummular eczema in both siblings. Serum CK values were elevated up to 500 U/L. For genetic work-up, we performed whole exome sequencing (WES) after Nimblegen enrichment on the Illumina platform. The WES revealed a novel homozygous missense mutation in the Choline Kinase-Beta (CHKB) gene c.1031G>A (p.R344Q) in exon 9. Ichthyosis-like skin changes with intense pruritus and nummular eczema may lead to clinical diagnosis in cases with megaconial congenital muscular dystrophy. PMID:27123443

  10. Muscle MRI findings in limb girdle muscular dystrophy type 2L.

    PubMed

    Sarkozy, Anna; Deschauer, Marcus; Carlier, Robert-Yves; Schrank, Bertold; Seeger, Jürgen; Walter, Maggie C; Schoser, Benedikt; Reilich, Peter; Leturq, France; Radunovic, Aleksandar; Behin, Anthony; Laforet, Pascal; Eymard, Bruno; Schreiber, Herbert; Hicks, Debbie; Vaidya, Sujit S; Gläser, Dieter; Carlier, Pierre G; Bushby, Kate; Lochmüller, Hanns; Straub, Volker

    2012-10-01

    Limb girdle muscular dystrophy type 2L (LGMD2L) is an adult-onset slowly progressive muscular dystrophy associated with recessive mutations in the ANO5 gene. We analysed the muscle MRI pattern in a cohort of 25 LGMD2L patients in order to understand the extent and progression of muscle pathology in LGM2L and assess if muscle MRI might help in the diagnostic work-up of these patients. Our results showed a homogeneous pattern of muscle pathology on muscle MRI, with a predominant involvement of the posterior compartment muscles in both the thighs and calves. The muscles of the anterior compartments in the leg together with the sartorius and gracilis muscles were best preserved, which partially overlaps with patterns observed for other recessive LGMDs. Muscle MRI therefore does not appear to be as useful in the diagnostic work up of LGMD2L as for other neuromuscular diseases, such as Bethlem myopathy or myofibrillar myopathy. PMID:22980763

  11. Limb girdle muscular dystrophy type 2L presenting as necrotizing myopathy.

    PubMed

    Schneider, Ilka; Stoltenburg, Gisela; Deschauer, Marcus; Winterholler, Martin; Hanisch, Frank

    2014-05-01

    Recessive mutations in the ANO5 gene, encoding anoctamin 5, cause proximal limb girdle muscular dystrophy (LGMD2L), Miyoshi-type distal myopathy (MM3) and asymptomatic hyper- CKemia. We report a woman with exertion-induced myalgia and weakness in the hip girdle manifesting at the age of 40. Creatine kinase (CK) was increased 20-fold. Histologically the dominating feature was necrotizing myopathy, but long-term immunosuppressive therapy did not change CK level or myopathic symptoms. Molecular genetic investigation led to the finding of the homozygous ANO5 c.191dupA mutation. This is a report of a muscular dystrophy due to ANO5 mutation presenting histologically as necrotizing myopathy. For this reason our finding extends the histological spectrum of myopathies due to ANO5 mutations as well as the possible differential diagnoses for necrotizing myopathy. PMID:24843231

  12. Progress in muscular dystrophy research with special emphasis on gene therapy

    PubMed Central

    SUGITA, Hideo; TAKEDA, Shin’ichi

    2010-01-01

    Duchenne muscular dystrophy (DMD) is an X-linked, progressive muscle-wasting disease caused by mutations in the DMD gene. Since the disease was described by physicians in the 19th century, information about the subject has been accumulated. One author (Sugita) was one of the coworkers who first reported that the serum creatine kinase (CK) level is elevated in progressive muscular dystrophy patients. Even 50 years after that first report, an elevated serum CK level is still the most useful marker in the diagnosis of DMD, a sensitive index of the state of skeletal muscle, and useful to evaluate therapeutic effects. In the latter half of this article, we describe recent progress in the therapy of DMD, with an emphasis on gene therapies, particularly exon skipping. PMID:20689232

  13. Model organisms in the fight against muscular dystrophy: lessons from drosophila and Zebrafish.

    PubMed

    Plantié, Emilie; Migocka-Patrzałek, Marta; Daczewska, Małgorzata; Jagla, Krzysztof

    2015-01-01

    Muscular dystrophies (MD) are a heterogeneous group of genetic disorders that cause muscle weakness, abnormal contractions and muscle wasting, often leading to premature death. More than 30 types of MD have been described so far; those most thoroughly studied are Duchenne muscular dystrophy (DMD), myotonic dystrophy type 1 (DM1) and congenital MDs. Structurally, physiologically and biochemically, MDs affect different types of muscles and cause individual symptoms such that genetic and molecular pathways underlying their pathogenesis thus remain poorly understood. To improve our knowledge of how MD-caused muscle defects arise and to find efficacious therapeutic treatments, different animal models have been generated and applied. Among these, simple non-mammalian Drosophila and zebrafish models have proved most useful. This review discusses how zebrafish and Drosophila MD have helped to identify genetic determinants of MDs and design innovative therapeutic strategies with a special focus on DMD, DM1 and congenital MDs. PMID:25859781

  14. [Dystrophin gene expression in patients with Duchenne muscular dystrophy after myoblast transplantation].

    PubMed

    Shishkin, S S; Terekhov, S M; Krokhina, T B; Shakhovskaia, N I; Podobedova, A N; Linnaia, G F; Tarasov, V I; Ovchinnikov, V I; Krakhmaleva, I N; Zakharov, S F; Ershova, E S; Limborskaia, S A; Pogoda, T V; Zotikov, E A; Kut'ina, R M; Tarksh, M A; Sukhorukov, V S; Gerasimova, N L

    2001-08-01

    Based on originally designed technique of myoblast cultivation and in accordance with the approved by the Russian Ministry of Health "one muscle treatment" protocol of myoblast transplantation to the Duchenne muscular dystrophy patients, the first in Russia clinical trial of this gene correction method was carried out. Immonologically related myoblast cultures (30 to 90 million cells per patient) were injected after all preliminary procedures into tibialis anterior muscles of four boys selected from a group of volunteer recipients (Duchenne muscular dystrophy patients) based on the analysis of a number of surface antigens in donor-recipient pairs. The condition of the patients remained satisfactory during the whole period of post-transplantation follow-up (from 6 months to 1.5 years). Six months after myoblast transplantation the presence of donor DNA or dystrophin synthesis was demonstrated in muscle biopsies of three out of four patients. This result confirms efficacy and safety of the procedure used. PMID:11642111

  15. What do mouse models of muscular dystrophy tell us about the DAPC and its components?

    PubMed Central

    Whitmore, Charlotte; Morgan, Jennifer

    2014-01-01

    There are over 30 mouse models with mutations or inactivations in the dystrophin-associated protein complex. This complex is thought to play a crucial role in the functioning of muscle, as both a shock absorber and signalling centre, although its role in the pathogenesis of muscular dystrophy is not fully understood. The first mouse model of muscular dystrophy to be identified with a mutation in a component of the dystrophin-associated complex (dystrophin) was the mdx mouse in 1984. Here, we evaluate the key characteristics of the mdx in comparison with other mouse mutants with inactivations in DAPC components, along with key modifiers of the disease phenotype. By discussing the differences between the individual phenotypes, we show that the functioning of the DAPC and consequently its role in the pathogenesis is more complicated than perhaps currently appreciated. PMID:25270874

  16. A Clinical Algorithm for Early Identification and Intervention of Cervical Muscular Torticollis.

    PubMed

    Nichter, Stephanie

    2016-06-01

    Congenital muscular torticollis (CMT) is a common newborn pediatric muscular deformity of the neck. The purpose of this article is to suggest a clinical algorithm for pediatric clinicians to promote prompt identification and intervention for infants with CMT. Early intervention for a child with CMT at less than 1 month of age yields a 98% success rate by 2.5 months of age, with the infant achieving near normal range of motion. Intervention initiated at 6 months of age or later can require 9 to 10 months of therapy with less success in achieving full range of motion of the cervical musculature. The clinical algorithm proposed here incorporates the American Physical Therapy Association guideline for CMT to optimize outcomes for the child and reduce health care expenditures. Current evidence and guidelines demonstrate that primary care providers are the primary diagnostic clinicians, while physical therapists are the preferred provider for the treatment of CMT. PMID:26307184

  17. Dystrophin Gene Replacement and Gene Repair Therapy for Duchenne Muscular Dystrophy in 2016: An Interview.

    PubMed

    Duan, Dongsheng

    2016-03-01

    After years of relentless efforts, gene therapy has now begun to deliver its therapeutic promise in several diseases. A number of gene therapy products have received regulatory approval in Europe and Asia. Duchenne muscular dystrophy (DMD) is an X-linked inherited lethal muscle disease. It is caused by mutations in the dystrophin gene. Replacing and/or repairing the mutated dystrophin gene holds great promises to treated DMD at the genetic level. Last several years have evidenced significant developments in preclinical experimentations in murine and canine models of DMD. There has been a strong interest in moving these promising findings to clinical trials. In light of rapid progress in this field, the Parent Project Muscular Dystrophy (PPMD) recently interviewed me on the current status of DMD gene therapy and readiness for clinical trials. Here I summarized the interview with PPMD. PMID:27003751

  18. Effect of Cellular Therapy in Progression of Becker's Muscular Dystrophy: A Case Study.

    PubMed

    Sharma, Alok; Sane, Hemangi; Gokulchandra, Nandini; Sharan, Rishabh; Paranjape, Amruta; Kulkarni, Pooja; Yadav, Jayanti; Badhe, Prerna

    2016-02-23

    Becker muscular dystrophy (BMD) is an inherited disorder due to deletions of the dystrophin gene that leads to muscle weakness. Effects of bone marrow mononuclear cell (BMMNC) transplantation in Muscular Dystrophy have shown to be safe and beneficial. We treated a 20-year-old male suffering from BMD with autologous BMMNC transplantation followed by multidisciplinary rehabilitation. He presented with muscle weakness and had difficulty in performing his activities. The BMMNCs were transplanted via intrathecal and intramuscular routes. The effects were measured on clinical and functional changes. Over 9 months, gradual improvement was noticed in muscle strength, respiratory functions and North Star Ambulatory Assessment Scale. Functional Independence Measure, Berg Balance Score, Brooke and Vignos Scale remained stable indicating halting of the progression. The case report suggests that cellular therapy combined with rehabilitation may have possibility of repairing and regenerating muscle fibers and decreasing the rate of progression of BMD. PMID:27054018

  19. An ex vivo gene therapy approach to treat muscular dystrophy using inducible pluripotent stem cells.

    PubMed

    Filareto, Antonio; Parker, Sarah; Darabi, Radbod; Borges, Luciene; Iacovino, Michelina; Schaaf, Tory; Mayerhofer, Timothy; Chamberlain, Jeffrey S; Ervasti, James M; McIvor, R Scott; Kyba, Michael; Perlingeiro, Rita C R

    2013-01-01

    Duchenne muscular dystrophy is a progressive and incurable neuromuscular disease caused by genetic and biochemical defects of the dystrophin-glycoprotein complex. Here we show the regenerative potential of myogenic progenitors derived from corrected dystrophic induced pluripotent stem cells generated from fibroblasts of mice lacking both dystrophin and utrophin. We correct the phenotype of dystrophic induced pluripotent stem cells using a Sleeping Beauty transposon system carrying the micro-utrophin gene, differentiate these cells into skeletal muscle progenitors and transplant them back into dystrophic mice. Engrafted muscles displayed large numbers of micro-utrophin-positive myofibers, with biochemically restored dystrophin-glycoprotein complex and improved contractile strength. The transplanted cells seed the satellite cell compartment, responded properly to injury and exhibit neuromuscular synapses. We also detect muscle engraftment after systemic delivery of these corrected progenitors. These results represent an important advance towards the future treatment of muscular dystrophies using genetically corrected autologous induced pluripotent stem cells. PMID:23462992

  20. Psychometric properties of the Drive for Muscularity Scale in Malay men.

    PubMed

    Swami, Viren; Barron, David; Lau, Poh Li; Jaafar, Jas Laile

    2016-06-01

    The Drive for Muscularity Scale (DMS) is a widely used measure in studies of men's body image, but few studies have examined its psychometric properties outside English-speaking samples. Here, we assessed the factor structure of a Malay translation of the DMS. A community sample of 159 Malay men from Kuala Lumpur, Malaysia, completed the DMS, along with measures of self-esteem, body appreciation, and muscle discrepancy. Exploratory factor analysis led to the extraction of two factors, differentiating attitudes from behaviours, which mirrors the parent scale. Both factors also loaded on to a higher-order drive for muscularity factor. The subscales of the Malay DMS had adequate internal consistencies and good convergent validity, insofar as significant relationships were reported with self-esteem, body appreciation, muscle discrepancy, and body mass index. These results indicate that the Malay DMS has acceptable psychometric properties and can be used to assess body image concerns in Malay men. PMID:27037873

  1. Multisystem disorder and limb girdle muscular dystrophy caused by LMNA p.R28W mutation.

    PubMed

    Türk, Matthias; Wehnert, Manfred; Schröder, Rolf; Chevessier, Frédéric

    2013-07-01

    Primary laminopathies caused by mutations in the LMNA gene typically display an extremely pleiotropic clinical presentation including cardiac, muscular and metabolic phenotypes. Additionally, many atypical laminopathies have been described combining features of two or more of the distinctive disorders or syndromes associated with LMNA mutations. We report on a 46-year-old female patient with a heterozygous p.R28W LMNA mutation, who presented with a novel clinical phenotype comprising severe limb-girdle muscular dystrophy, pronounced partial lipodystrophy, cardiac conduction defect, polycystic ovary disease and a metabolic syndrome with insulin-resistant diabetes mellitus and hypertriglyceridemia. On examination, her 23-year old daughter solely showed early signs of a LGMD phenotype. PMID:23746545

  2. Sarcolemmal proteins and the spectrum of limb-girdle muscular dystrophies.

    PubMed

    Bönnemann, Carsten G; Finkel, Richard S

    2002-06-01

    Proteins of the sarcolemma are of crucial importance for the pathogenesis of muscular dystrophies. This update focuses on the dystrophin-associated proteins including the dystroglycan and sarcoglycan complexes, caveolin-3, dysferlin, and the extracellular matrix component collagen type VI. The molecular findings are correlated with some of the clinical phenotypes that are part of the limb-girdle muscular dystrophy spectrum, including fukutin-related proteinopathy (LGMD 21), the sarcoglycanopathies (LGMD 2C-F), caveolinopathy (LGMD 1C), dysferlinopathy (LGMD 2B), and finally Bethlem myopathy. Although recent progress has been tremendous, much remains to be learned about the pathophysiological consequences caused by a deficiency of any one of these components. PMID:12139001

  3. [E-health application for home monitoring of neuro-muscular rehabilitation].

    PubMed

    Ciorap, R; Arotăriţei, D; Topoliceanu, F; Lupu, R; Corciovă, C; Ungureanu, Monica

    2005-01-01

    In many medical fields the recovery of muscular activity or its improvement up to the level of the optimal parameters is required. Apart from the classical solution for rehabilitation (physical exercises) the use of electrical stimulation has become quite frequent of late. The paper presents an interface that detects the electromyographic (EMG) activity, assesses it, and generates appropriate electrical stimuli, by means of a specific type of fuzzy control system, in order to control the dynamics of the EMG. The proposed interface will detect the motion and muscular activity, it will evaluate and generate the electrical stimulus using a fuzzy system tuned by dynamic of motion. The application will transmit e-Health information to the physician via Internet, synthetic, at request using TCP/IP stack and SMS services for wireless communication. PMID:16607817

  4. Relatively low proportion of dystrophin gene deletions in Israeili Duchenne and Becker muscular dystrophy patients

    SciTech Connect

    Shomrat, R.; Gluck, E.; Legum, C.; Shiloh, Y.

    1994-02-15

    Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are allelic disorders caused by mutations in the X-linked dystrophin gene. The most common mutations in western populations are deletions that are spread non-randomly throughout the gene. Molecular analysis of the dystrophin gene structure by hybridization of the full length cDNA to Southern blots and by PCR in 62 unrelated Israeli male DMD/BMD patients showed deletions in 23 (37%). This proportion is significantly lower than that found in European and North American populations (55-65%). Seventy-eight percent of the deletions were confined to exons 44-52, half of these exons 44-45, and the remaining 22% to exons 1 and 19. There was no correlation between the size of the deletion and the severity of the disease. All the deletions causing frameshift resulted in the DMD phenotypes. 43 refs., 1 fig., 1 tab.

  5. Expression of the Murine Duchenne Muscular Dystrophy Gene in Muscle and Brain

    NASA Astrophysics Data System (ADS)

    Chamberlain, Jeffrey S.; Pearlman, Joel A.; Muzny, Donna M.; Gibbs, Richard A.; Ranier, Joel E.; Reeves, Alice A.; Caskey, C. Thomas

    1988-03-01

    Complementary DNA clones were isolated that represent the 5' terminal 2.5 kilobases of the murine Duchenne muscular dystrophy (Dmd) messenger RNA (mRNA). Mouse Dmd mRNA was detectable in skeletal and cardiac muscle and at a level approximately 90 percent lower in brain. Dmd mRNA is also present, but at much lower than normal levels, in both the muscle and brain of three different strains of dystrophic mdx mice. The identification of Dmd mRNA in brain raises the possibility of a relation between human Duchenne muscular dystrophy (DMD) gene expression and the mental retardation found in some DMD males. These results also provide evidence that the mdx mutations are allelic variants of mouse Dmd gene mutations.

  6. Diffusion and ideal MRI techniques to characterize limb-girdle muscular dystrophy

    NASA Astrophysics Data System (ADS)

    Hernández-Salazar, G.; Hidalgo-Tobon, S.; Vargas-Cañas, S.; Marrufo-Melendez, O.; Solis-Najera, S.; Taboada-Barajas, J.; Rodríguez, A. O.; Delgado-Hernández, R.

    2012-10-01

    Limb-girdle muscular dystrophies (LGMD) are a group of autosomal dominantly or recessively inherited muscular dystrophies that also present with primary proximal (limb-girdle) muscle weakness. In the thigh, muscles at the back are affected, with a tendency to preserve the tibialis anterior and gastrocnemius. The aim of this study was to compare quantitative MRI measurements from IDEAL-based imaging and DW imaging in the thigh muscles of adults with LGMDs and healthy volunteers(HC). Six women (three patients and three healthy volunteers) were examined. Imaging experiments were conducted on a 1.5T GE scanner (General Electric Medical Systems. Milwaukee). T1 IDEAL 2D images and diffusion images were acquired. Results demonstrated that the use of noninvasive MRI techniques may provide the means to characterize the muscle through quantitative methods to determine the percentage of fat and ADC values.

  7. The clinical and molecular genetic approach to Duchenne and Becker muscular dystrophy: an updated protocol.

    PubMed Central

    van Essen, A J; Kneppers, A L; van der Hout, A H; Scheffer, H; Ginjaar, I B; ten Kate, L P; van Ommen, G J; Buys, C H; Bakker, E

    1997-01-01

    Detection of large rearrangements in the dystrophin gene in Duchenne and Becker muscular dystrophy is possible in about 65-70% of patients by Southern blotting or multiplex PCR. Subsequently, carrier detection is possible by assessing the intensity of relevant bands, but preferably by a non-quantitative test method. Detection of microlesions in Duchenne and Becker muscular dystrophy is currently under way. Single strand conformational analysis, heteroduplex analysis, and the protein truncation test are mostly used for this purpose. In this paper we review the available methods for detection of large and small mutations in patients and in carriers and propose a systematic approach for genetic analysis and genetic counselling of DMD and BMD families, including prenatal and preimplantation diagnosis. Images PMID:9350811

  8. Muscular axillary arch accompanying variation of the musculocutaneous nerve: axillary arch

    PubMed Central

    Jung, Soo-Jung; Lee, Hyunsu; Choi, In-Jang

    2016-01-01

    Continuous attention has been developed on the anatomical variations of the axilla in anatomist and surgeon due to their clinical importance. The axillary region is an anatomical space between the lateral part of the chest wall and the medial aspect of the upper limb. During the routine dissection of embalmed cadavers, we found variant muscular slip originating from the lateral border of tendinous part of the latissimus dorsi and continuing 9 cm more crossing the axilla. And then, it inserted into the superior margin of the insertion of the pectoralis major. We considered this muscular variation as axillary arch muscle. Correct identification of the relevant anatomy and subsequent simple surgical division is curative, paying special attention to anatomical variations in this region and its clinical importance due to its close relationship to the neurovascular elements of the axilla. PMID:27382519

  9. Normal vaginal delivery in a patient with autosomal recessive limb-girdle muscular dystrophy

    PubMed Central

    Black, Carin; Said, Joanne

    2010-01-01

    The limb-girdle muscular dystrophies (LGMDs) are a group of genetically determined disorders of skeletal muscle, predominantly affecting the pelvic and shoulder-girdle musculature. The clinical course is variable but steadily progressive. Type 2A LGMD is the most frequent form, accounting for approximately 30% of identified cases. There are few reports of patients with Type 2A LGMD undergoing pregnancy and delivery. This case outlines a successful vaginal delivery in a woman with this condition.

  10. Congenital cervical spinal muscular atrophy: a non-familial, non progressive condition of the upper limbs.

    PubMed Central

    Hageman, G; Ramaekers, V T; Hilhorst, B G; Rozeboom, A R

    1993-01-01

    Two patients with congenital cervical spinal muscular atrophy had symmetrical severe muscle weakness and wasting confined to the upper limbs, areflexia and congenital contractures. The shoulders were internally rotated, elbows extended and wrists flexed. There were no sensory or bulbar symptoms, scoliosis, long tract signs or lower limb involvement. This condition should be regarded as a neurogenic type of arthrogryposis, limited to the upper limbs. Images PMID:8482956

  11. Equivalence Reliability among the FITNESSGRAM[R] Upper-Body Tests of Muscular Strength and Endurance

    ERIC Educational Resources Information Center

    Sherman, Todd; Barfield, J. P.

    2006-01-01

    This study was designed to investigate the equivalence reliability between the suggested FITNESSGRAM[R] muscular strength and endurance test, the 90[degrees] push-up (PSU), and alternate FITNESSGRAM[R] tests of upper-body strength and endurance (i.e., modified pull-up [MPU], flexed-arm hang [FAH], and pull-up [PU]). Children (N = 383) in Grades 3…

  12. The Effects of Individualized Resistance Strength Programs on Knee Muscular Imbalances in Junior Elite Soccer Players

    PubMed Central

    Śliwowski, Robert; Jadczak, Łukasz; Hejna, Rafał; Wieczorek, Andrzej

    2015-01-01

    The purpose of this study was to investigate the effects of a resistance training program on the muscular strength of soccer players’ knees that initially presented unilateral and bilateral differences. For this study, a team of 24 male well-trained junior soccer players was divided into two strength program training groups: a Resistance Training Control Group (RTCG) composed of 10 players that did not have muscular imbalances and a Resistance Training Experimental Group (RTEG) composed of 14 players that had muscular imbalances. All players followed a resistance training program for six weeks, two times per week, during the transition period. The program of individualized strength training consisted of two parts. The first part, which was identical in terms of the choice of training loads, was intended for both training groups and contained two series of exercises including upper and lower body exercises. The second part of the program was intended only for RTEG and consisted of two additional series for the groups of muscles that had identified unilateral and bilateral differences. The applied program showed various directions in the isokinetic profile of changes. In the case of RTCG, the adaptations related mainly to the quadriceps muscle (the peak torque (PT) change for the dominant leg was statistically significant (p < 0.05)). There were statistically significant changes in RTEG (p < 0.05) related to PT for the hamstrings in both legs, which in turn resulted in an increase in the conventional hamstring/quadriceps ratio (H/Q). It is interesting that the statistically significant (p < 0.05) changes were noted only for the dominant leg. No statistically significant changes in bilateral differences (BD) were noted in either group. These results indicate that individualized resistance training programs could provide additional benefits to traditional strength training protocols to improve muscular imbalances in post-adolescent soccer players. PMID:26630271

  13. Saving grace: distally pedicled gracilis muscular flap in lower limb salvage

    PubMed Central

    Amin, Kavit; Dempsey, Marlese; Ghali, Shadi; Grobbelaar, Adriaan

    2014-01-01

    During the 1970s, the incidence of limb amputation following surgery for sarcoma excision was as high as 50%. Two important developments have led to modern day limb salvage, namely chemotherapy and precision imaging techniques. We present a case of limb salvage in a patient with osteosarcoma plagued with recurrent infection after prosthetic revision. We discuss the use of the distally based pedicled gracilis muscular flap, which has little mention as a reconstructive option for defects around the knee. PMID:25085952

  14. A founder mutation in Anoctamin 5 is a major cause of limb girdle muscular dystrophy

    PubMed Central

    Muelas, Nuria; Köehler, Katrin; Huebner, Angela; Hudson, Gavin; Chinnery, Patrick F.; Barresi, Rita; Eagle, Michelle; Polvikoski, Tuomo; Bailey, Geraldine; Miller, James; Radunovic, Aleksander; Hughes, Paul J.; Roberts, Richard; Krause, Sabine; Walter, Maggie C.; Laval, Steven H.; Straub, Volker; Lochmüller, Hanns; Bushby, Kate

    2014-01-01

    The limb girdle muscular dystrophies (LGMDs) are a group of disorders with wide genetic and clinical heterogeneity. Recently, mutations in the ANO5 gene, which encodes a putative calcium-activated chloride channel belonging to the Anoctamin family of proteins, were identified in five families with one of two previously identified disorders, LGMD2L and non-dysferlin Miyoshi muscular dystrophy (MMD3). We screened a candidate group of 64 patients from 59 British and German kindreds and found the truncating mutation, c.191dupA in exon 5 of ANO5 in 20 patients, homozygously in 15 and in compound heterozygosity with other ANO5 variants in the rest. An intragenic SNP and an extragenic microsatellite marker are in linkage disequilibrium with the mutation, suggesting a founder effect in the Northern European population. We have further defined the clinical phenotype of ANO5-associated muscular dystrophy. Patients show adult onset proximal lower limb weakness with highly raised creatinine kinase (CK) values (average 4500 IU/l) and frequent muscle atrophy and asymmetry of muscle involvement. Onset varies from the early 20s to 50s and the weakness is generally slowly progressive, with most patients remaining ambulant for several decades. Distal presentation is much less common but a milder degree of distal lower limb weakness is often observed. Upper limb strength is only mildly affected and cardiac and respiratory function is normal. Females appear less frequently affected. In the North of England population we have identified eight patients with ANO5 mutations, suggesting a minimum prevalence of 0.27/100 000, twice as common as dysferlinopathy. We suggest that mutations in ANO5 represent a relatively common cause of adult onset muscular dystrophy with high CK and that mutation screening, particularly of the common mutation c.191dupA, should be an early step in the diagnostic algorithm of adult LGMD patients. PMID:21186264

  15. Prevalence of Duchenne and Becker Muscular Dystrophies in the United States

    PubMed Central

    Romitti, Paul A.; Zhu, Yong; Puzhankara, Soman; James, Katherine A.; Nabukera, Sarah K.; Zamba, Gideon K.D.; Ciafaloni, Emma; Cunniff, Christopher; Druschel, Charlotte M.; Mathews, Katherine D.; Matthews, Dennis J.; Meaney, F. John; Andrews, Jennifer G.; Caspers Conway, Kristin M.; Fox, Deborah J.; Street, Natalie; Adams, Melissa M.; Bolen, Julie

    2015-01-01

    OBJECTIVE To estimate prevalence of childhood-onset Duchenne and Becker muscular dystrophies (DBMD) in 6 sites in the United States by race/ethnicity and phenotype (Duchenne muscular dystrophy [DMD] or Becker muscular dystrophy [BMD]). METHODS In 2002, the Centers for Disease Control and Prevention established the Muscular Dystrophy Surveillance, Tracking, and Research Network (MD STARnet) to conduct longitudinal, population-based surveillance and research of DBMD in the United States. Six sites conducted active, multiple-source case finding and record abstraction to identify MD STARnet cases born January 1982 to December 2011. We used cross-sectional analyses to estimate prevalence of DBMD per 10 000 boys, ages 5 to 9 years, for 4 quinquennia (1991–1995, 1996–2000, 2001–2005, and 2006–2010) and prevalence per 10 000 male individuals, ages 5 to 24 years, in 2010. Prevalence was also estimated by race/ethnicity and phenotype. RESULTS Overall, 649 cases resided in an MD STARnet site during $1 quinquennia. Prevalence estimates per 10 000 boys, ages 5 to 9 years, were 1.93, 2.05, 2.04, and 1.51, respectively, for 1991–1995, 1996–2000, 2001–2005, and 2006–2010. Prevalence tended to be higher for Hispanic individuals than non-Hispanic white or black individuals, and higher for DMD than BMD. In 2010, prevalence of DBMD was 1.38 per 10 000 male individuals, ages 5 to 24 years. CONCLUSIONS We present population-based prevalence estimates for DBMD in 6 US sites. Prevalence differed by race/ethnicity, suggesting potential cultural and socioeconomic influences in the diagnosis of DBMD. Prevalence also was higher for DMD than BMD. Continued longitudinal surveillance will permit us to examine racial/ethnic and socioeconomic differences in treatment and outcomes for MD STARnet cases. PMID:25687144

  16. Angelo Mosso and muscular fatigue: 116 years after the first Congress of Physiologists: IUPS commemoration.

    PubMed

    Di Giulio, Camillo; Daniele, Franca; Tipton, Charles M

    2006-06-01

    At the first International Congress of Physiologists in Basel, Switzerland, the Italian physiologist Angelo Mosso (1846-1910) discussed his findings on muscular fatigue while demonstrating the functioning of an ergograph (work recorder). One hundred sixteen years later, Mosso's career, scientific accomplishments, and legacy in the study of muscular fatigue were commemorated at the 2005 International Congress of Physiological Sciences. After receiving his degree in Medicine and Surgery from Turin, Italy, in 1870, Mosso was able to study and interact with renowned physiologists as Wilhelm Ludwig, Du Bois-Reymond, Hugo Kronecker, and Etienne Marey. By 1879, he was Professor of Physiology at the University in Turin, where he conducted research pertaining to blood circulation, respiration, physical education, high-altitude physiology, and muscular fatigue. Using tracings from the ergograph (concentric contractions of the flexor muscles of the middle finger that were volitionally or electrically stimulated), he was able to characterize muscle fatigue and to associate its occurrence with central or peripheral influences. He demonstrated that exercise would increase muscular strength and endurance while prolonging the occurrence of fatigue, which he postulated was a chemical process that involved the production of toxic substances such as carbonic acid. The phenomenon of contracture was described, and his collective studies led to the formulation of laws pertaining to exhaustion and to the 1891 publication of La Fatica (Fatigue). Besides La Fatica, Mosso will be remembered as a scientist with a love for physiology, a concern for the social welfare of his countrymen, and as one who sought to integrate physiological, philosophical, and psychological concepts in his experimental studies. PMID:16709733

  17. Homozygotes for oculopharyngeal muscular dystrophy have a severe form of the disease.

    PubMed

    Blumen, S C; Brais, B; Korczyn, A D; Medinsky, S; Chapman, J; Asherov, A; Nisipeanu, P; Codère, F; Bouchard, J P; Fardeau, M; Tomé, F M; Rouleau, G A

    1999-07-01

    Autosomal dominant oculopharyngeal muscular dystrophy (OPMD) usually begins with ptosis or dysphagia during the fifth or sixth decade of life. We studied 7 patients with OPMD symptoms starting before the age of 36 years. All were found to be homozygotes for the dominant (GCG)9 OPMD mutation. On average, disease onset was 18 years earlier than in heterozygotes, and patients had a significantly larger number of muscle nuclei containing intranuclear inclusions (INIs) (9.4 vs 4.9%). PMID:10401788

  18. Muscular balance, core stability, and injury prevention for middle- and long-distance runners.

    PubMed

    Fredericson, Michael; Moore, Tammara

    2005-08-01

    This article is intended to provide an understanding of the importance of core musculature to runners and to offer exercises that will help them achieve desired mobility, stability, muscular balance, and neuromuscular control. Please see Table 1 for an example of how to incorporate these exercises into a periodized training program. It is highly recommended, however, that athletes consult a skilled practitioner to address individual needs and maximize results from a program of this nature. PMID:16005399

  19. Influence of Immune Responses in Gene/Stem Cell Therapies for Muscular Dystrophies

    PubMed Central

    Sitzia, Clementina; Erratico, Silvia; Torrente, Yvan

    2014-01-01

    Muscular dystrophies (MDs) are a heterogeneous group of diseases, caused by mutations in different components of sarcolemma, extracellular matrix, or enzymes. Inflammation and innate or adaptive immune response activation are prominent features of MDs. Various therapies under development are directed toward rescuing the dystrophic muscle damage using gene transfer or cell therapy. Here we discussed current knowledge about involvement of immune system responses to experimental therapies in MDs. PMID:24959590

  20. The Construction of a Muscular Strength Test Battery for Girls in the Primary Grades.

    ERIC Educational Resources Information Center

    DiNucci, James M.; Pelton, Elois B.

    This study was designed to construct a gross muscular strength test battery for girls 6-9 years of age in grades 1-3. The subjects for this investigation were a random sample of 183 girls in grades 1-3 of the public schools of Natchitoches, Louisiana. The variables selected were 22 cable tension strength tests developed by Clarke and associates.…