Science.gov

Sample records for musculoaponeurotic fibrosarcoma oncogene

  1. Oncogenes

    SciTech Connect

    Compans, R.W.; Cooper, M.; Koprowski, H.; McConell, I.; Melchers, F.; Nussenzweig, V.; Oldstone, M.; Olsnes, S.; Saedler, H.; Vogt, P.K.

    1989-01-01

    This book covers the following topics: Roles of drosophila proto-oncogenes and growth factor homologs during development of the fly; Interaction of oncogenes with differentiation programs; Genetics of src: structure and functional organization of a protein tyrosine kinase; Structures and activities of activated abl oncogenes; Eukaryotic RAS proteins and yeast proteins with which they interact. This book presents up-to-data review articles on oncogenes. The editor includes five contributions which critically evaluate recent research in the field.

  2. Musculoaponeurotic Area of the Hip and Clinicophotographic Scaling System

    PubMed Central

    Mena-Chávez, J. Alejandro

    2015-01-01

    Background: With the evolution of body contouring, few innovative alternatives have been developed for cosmetic treatment in the hip area. Methods: A multicenter controlled study was conducted, including a prior review of the literature regarding the hip area. Dissections were performed on 4 male cadavers, outlining the “musculoaponeurotic area of the hip.” The area was subdivided into anterior and posterior surfaces. A clinical study was conducted in 79 patients, obtaining a scale by using the most prominent points on the sides of both thighs as the main reference. With the lines marked on photographs and the measurements, a “clinicophotographic scaling system” was designed. Results: The anterior surface corresponds to the tensor fasciae latae and its tendon as well as to the aponeurosis of the gluteus medius. The posterior surface corresponds with the iliotibial tract and the tendon insertions of the gluteus maximus. The average dimensions of the cadaver “musculoaponeurotic area of the hip” are as follows: length, 17.5 cm, and width, 11.5 cm. Using the “clinicophotographic scaling system,” the dimensions are as follows: length, 14.9 cm, and width, 10.3 cm. Conclusions: The “musculoaponeurotic area of the hip” was defined involving muscles, tendons, aponeurosis, fascia, subcutaneous cellular tissue, and skin. The borders were established using important anatomical points that determine the length and width of the area. The “clinicophotographic scaling system” was used to clinically calculate the length and width of the area. By examination and palpation, the borders and dimensions of this area could be determined. PMID:26180724

  3. A Novel Technique of Supra Superficial Musculoaponeurotic System Hyaluronic Acid Injection for Lower Face Lifting

    PubMed Central

    Sahawatwong, Sinijchaya; Sirithanabadeekul, Punyaphat; Patanajareet, Vasiyapha; Wattanakrai, Penpun

    2016-01-01

    Background: Various methods attempting to correct sagging of the lower face focus mainly on manipulation of the superficial musculoaponeurotic System. Each technique has its own limitation. The authors propose a relatively simple, conservative method utilizing hyaluronic acid injection just above the superficial musculoaponeurotic System. Objective: To address a novel hyaluronic injection technique to lift the lower face. Methods: Details of the injection techniques are described. The Position of the hyaluronic acid injected and the effect of hyaluronic acid on the superficial musculoaponeurotic System were confirmed by ultrasonography in one of the cases. Results: Sonogram images demonstrated the location of the injected hyaluronic acid and pressure effect of hyaluronic acid on the superficial musculoaponeurotic System, confirming the ability to manipulate the superficial musculoaponeurotic System by this injection technique. The lifting result of this Single injection technique was immediately visible and maintained for at least 26 weeks. Conclusion: This is a less invasive, reproducible method that provides a sustained face lifting result. The authors propose the term “supraSMAS lift” for this novel injection technique. PMID:27047633

  4. Fibrosarcoma of maxilla: A rare case report

    PubMed Central

    Shrivastava, Sandhya; Nayak, Sushruth K; Nayak, Prachi; Sahu, Sourabh

    2016-01-01

    Fibrosarcoma is a malignant tumor of fibroblasts. At one time, it was considered one of the most common soft tissue sarcomas. However, the diagnosis of fibrosarcoma is made much less frequently today because of the recognition and separate classification of other spindle cell lesions that have similar microscopic features. Of all the fibrosarcomas occurring in humans, only 0.05% occur in the head and neck region. Here, we present a case of 22-year-old female patient with the swelling on the left anterior aspect of the face. Histopathologically, the lesion was diagnosed as fibrosarcoma and immunohistochemically, the lesional cells showed positivity for vimentin. PMID:27194883

  5. Recurrent congenital fibrosarcoma with heart metastases.

    PubMed

    Lohi, Olli; Vornanen, Martine; Kähkönen, Marketta; Vettenranta, Kim; Parto, Katriina; Arola, Mikko

    2012-07-01

    Congenital fibrosarcomas are malignant tumors that arise in soft tissues. In infants this unique tumor does not commonly metastasize, even though there may be local recurrences. We report here a boy who had congenital fibrosarcoma in his right foot, which was completely excised at the age of 3 days. Four months later, a solitary encapsulated metastasis emerged in thoracic chest wall, which was operated. During adjuvant chemotherapy he developed histologically confirmed fibrosarcoma metastases in the heart. After extended treatment with cyclophosphamide/topotecan and gemcitabine/docetaxel, the heart tumors disappeared and he has been in complete remission for 3 years. PMID:22217490

  6. Fibrosarcoma of the Gingiva: An Unusual Presentation

    PubMed Central

    Akhtar, Kafil; Hasan, Syed Abrar; Sherwani, Rana K; Ahmad, Murad

    2016-01-01

    Fibrosarcoma is a malignant tumor of the fibroblasts, which is liable to recur and metastasize, most frequently in the lungs. Although fibrosarcomas are rare, they can occur anywhere in the body. The most common sites are in the retroperitoneum, thigh, knee, and distal extremities. It is very uncommon in the head and neck region and comprises only about 1% of all the malignancies in humans. Almost 23% are seen in the oral cavity. The prognosis for fibrosarcomas is poor with a five-year survival rate of 20–35%. The common modality of treatment is radical surgery. We report a rare presentation of gingival fibrosarcoma in a young female, who presented with a painless lump. PMID:27403246

  7. Andreas Vesalius' 500th Anniversary: Initiation of the Superficial Facial System and Superficial Musculoaponeurotic System Concepts.

    PubMed

    Brinkman, Romy J; Hage, J Joris

    2016-02-01

    Because of their relevance for liposuction and rhytidectomies, respectively, the superficial fascial system (SFS) and superficial musculoaponeurotic system (SMAS) have been thoroughly studied over the past decennia. Although it is well known that the SMAS concept was introduced by Tessier in 1974, it remains unknown who first properly described the stratum membranosum of the SFS. In light of the 500th birthday of Andreas Vesalius (1515-1564), we searched his 1543 masterwork De Humani Corporis Fabrica Libri Septem and related work for references to these structures. We found ample reference to both structures as the membrana carnosa (or fleshy membrane) in his works and concluded that Vesalius recognized the extension, nature, and functions of the stratum membranosum of the SFS, as well as its more musculous differentiation as the SMAS in the head and neck area, and the dartos in the perineogenital area. In doing so, Vesalius recorded most details of the SFS and SMAS concepts avant la lettre. PMID:26761152

  8. c-K-ras overexpression is characteristic for metastases derived from a methylcholanthrene-induced fibrosarcoma.

    PubMed

    Algarra, I; Perez, M; Serrano, M J; Garrido, F; Gaforio, J J

    We investigated the relationship between the activation of the c-myc and c-K-ras proto-oncogenes and the acquisition of metastatic potential in a methylcholanthrene-induced BALB/c fibrosarcoma. The murine fibrosarcoma GR9 was originally induced in BALB/c mice following exposure to the carcinogenic chemical 3-methylcholanthrene. To induce spontaneous metastasis, we used two tumor cell clones (B9 and G2) known to differ in their metastatic potential, local tumor growth, H-2 class I expression and sensitivity to natural killer (NK) cells. The metastatic nodes were obtained from the lung, liver and kidney. The results showed: (1) amplification of the c-myc proto-oncogene in original tumor clones as well as in all metastatic nodes; (2) mRNA overexpression without amplification of the K-ras proto-oncogene in the metastatic cells, regardless of their anatomical location; (3) no c-K-ras point mutations at codons 12 and 61, and (4) in general, a statistically significantly reduced in vitro sensitivity of metastatic tumor cells to NK cells as compared with the tumor clones used to induce them (p<0.05). These results therefore suggest that overexpressed c-K-ras mRNA is important during tumor progression, perhaps rendering metastatic tumor cells more resistant to lysis by NK cells. PMID:10729771

  9. Transformation of Dermatofibrosarcoma Protuberans into a Fibrosarcoma

    PubMed Central

    Sbai, Mohamed Ali; Benzarti, Sofien; Bouzaidi, Khaled; Sbei, Feten; Maalla, Riadh

    2016-01-01

    Dermatofibrosarcoma protuberans is a rare cutaneous mesenchymal tumor characterized by a low potential of malignancy with a very low rate of metastasis but an important rate of local recurrence. Its transformation into a fibrosarcoma is exceptional, responsible for a higher metastatic potential. This transformation implies a closer surveillance. Through a case report and literature review, we will try to expose epidemiological, clinical, histological, therapeutic, and outcome particularities of this entity. PMID:26955135

  10. Neurogenic fibrosarcoma following radiation therapy for seminoma

    SciTech Connect

    O'Brien, W.M.; Abbondanzo, S.L.; Chun, B.K.; Manz, H.J.; Maxted, W.C.

    1989-05-01

    We report a case of radiation-induced neurogenic fibrosarcoma that developed in a patient who received radiation therapy for seminoma. The sarcoma developed within the irradiated field after a latency period of nineteen years. Although the occurrence of a secondary neoplasm is unusual, this possibility should be included in the differential diagnosis of patients who present with tumor growth after a long interval following radiation therapy.

  11. A transition in transcriptional activation by the glucocorticoid and retinoic acid receptors at the tumor stage of dermal fibrosarcoma development.

    PubMed Central

    Vivanco, M D; Johnson, R; Galante, P E; Hanahan, D; Yamamoto, K R

    1995-01-01

    In transgenic mice harboring the bovine papillomavirus genome, fibrosarcomas arise along an experimentally accessible pathway in which normal dermal fibroblasts progress through two pre-neoplastic stages, mild and aggressive fibromatosis, followed by a final transition to the tumor stage. We found that the glucocorticoid receptor (GR) displays only modest transcriptional regulatory activity in cells derived from the three non-tumor stages, whereas it is highly active in fibrosarcoma cells. Upon inoculation into mice, the aggressive fibromatosis cells progress to tumor cells that have high GR activity; thus, the increased transcriptional regulatory activity of GR correlates with the cellular transition to the tumor stage. The intracellular levels of GR, as well as its hormone-dependent nuclear translocation and specific DNA binding activities, are unaltered throughout the progression. Strikingly, the low GR activity observed in the pre-neoplastic stages cannot be overcome by exogenous GR introduced by co-transfection. Moreover, comparisons of primary embryo fibroblasts and their transformed derivatives revealed a similar pattern--modest GR activity, unresponsive to overexpressed GR protein, in the normal cells was strongly increased in the transformed cells. Likewise, the retinoic acid receptor (RAR) displayed similar differential activity in the fibrosarcoma pathway. Thus, the oncogenic transformation of fibroblasts, and likely other cell types, is accompanied by a striking increase in the activities of transcriptional regulators such as GR and RAR. We suggest that normal primary cells have a heretofore unrecognized capability to limit the magnitude of induction of gene expression. Images PMID:7774580

  12. Keloidal fibromas and fibrosarcomas in the dog.

    PubMed

    Mikaelian, I; Gross, T L

    2002-01-01

    Sixteen dogs (2-12 years of age) presented with one (n = 15) or two (n = 1) cutaneous nodules (n = 16) or a dermal plaque (n = 1). Intact males (n = 9) and neutered males (n = 4) were more affected than were females (n = 3). Histologically, these lesions were characterized by focal dermal and subcutaneous deposition of thick hyalinized collagen fibers intermingled with fibroblasts, and in 13 of 17 lesions, a variable number of CD18-positive cells were interpreted as reactive macrophages. Fibroblasts in three dogs formed intersecting fascicles, interpreted as evidence of malignant transformation. The terms keloidal fibroma and keloidal fibrosarcoma can be applied to these lesions. Excision was curative in five dogs with keloidal fibroma for which follow-up was available. However, because malignant transformation may occur, wide excision of canine keloidal lesions is warranted. PMID:12102210

  13. Ameloblastic Fibrosarcoma Arising in the Maxilla

    PubMed Central

    Pillay, Rachael R.; Bilski, Arthur; Batstone, Martin

    2016-01-01

    Background: Ameloblastic fibrosarcoma (AFS) is a rare odontogenic neoplasm of the jaw that usually arises de novo or through a malignant change in the mesenchymal component of a preexisting or recurrent benign fibroma. The majority of AFS cases reported in the literature arise in the mandible. Case Report: A 35-year-old male presented with an asymptomatic left maxillary mass that on imaging was found to be effacing most of his maxillary sinus. He underwent a left maxillectomy with free-flap reconstruction and adjuvant radiotherapy to the tumor bed. Conclusion: Wide local excision remains the treatment of choice for AFS, given the poor survival rates of patients with recurrent disease. However, long-term studies and follow-up are needed to elucidate the role of adjuvant therapies in the primary treatment of AFS. PMID:27303223

  14. Development of the Platysma Muscle and the Superficial Musculoaponeurotic System (Human Specimens at 8–17 Weeks of Development)

    PubMed Central

    De la Cuadra-Blanco, C.; Peces-Peña, M. D.; Carvallo-de Moraes, L. O.; Herrera-Lara, M. E.; Mérida-Velasco, J. R.

    2013-01-01

    There is controversy regarding the description of the different regions of the face of the superficial musculoaponeurotic system (SMAS) and its relationship with the superficial mimetic muscles. The purpose of this study is to analyze the development of the platysma muscle and the SMAS in human specimens at 8–17 weeks of development using an optical microscope. Furthermore, we propose to study the relationship of the anlage of the SMAS and the neighbouring superficial mimetic muscles. The facial musculature derives from the mesenchyme of the second arch and migrates towards the different regions of the face while forming premuscular laminae. During the 8th week of development, the cervical, infraorbital, mandibular, and temporal laminae are observed to be on the same plane. The platysma muscle derives from the cervical lamina and its mandibular extension enclosing the lower part of the parotid region and the cheek, while the SMAS derives from the upper region. During the period of development analyzed in this study, we have observed no continuity between the anlage of the SMAS and that of the superficial layer of the temporal fascia and the zygomaticus major muscle. Nor have we observed any structure similar to the SMAS in the labial region. PMID:24396304

  15. Spontaneous Fibrosarcoma in a Djungarian Hamster (Phodopus sungorus)

    PubMed Central

    Kondo, Hirotaka; Onuma, Mamoru; Ito, Hidetoshi; Shibuya, Hisashi; Sato, Tsuneo

    2008-01-01

    A 1.5-y-old female Djungarian hamster (Phodopus sungorus) presented with a large subcutaneous mass surrounding the right shoulder. Radiography revealed dislocation of the right humeral articulation and osteolytic lesions of the right scapula. Histologically, the mass was composed of spindle to stellate cells arranged in fascicles interwoven with delicate collagen fibers, and neoplastic cells infiltrated the bone, skeletal muscle, and subcutaneous tissues. Neoplastic cells stained intensely positive for vimentin and negative for S100 protein, neurofilament, and desmin. A minority of neoplastic cells (10% to 20%) stained moderately for smooth muscle actin. The mass was diagnosed as a fibrosarcoma. Although fibrosarcomas are relatively common in dogs and cats, this is the first report of fibrosarcoma in a domestic Djungarian hamster. PMID:18589873

  16. Oral fibrosarcoma in a black iguana (Ctenosaura pectinata).

    PubMed

    Salinas, Elizabeth Morales; Arriaga, Bertha O Aguilar; Lezama, José Ramírez; Bernal, Adriana Méndez; Garrido, Serafin J López

    2013-06-01

    A case of oral fibrosarcoma in a 13-yr-old male black iguana (Ctenosaura pectinata) is reported here. The iguana exhibited new tissue formation involving a large part of the maxilla and hard palate, which histologically and ultrastructurally corresponded to a primary fibrosarcoma of the oral cavity. Although there are reports of fibrosarcomas in other reptiles, such as snakes and crocodiles, no reports of this neoplasm in the oral cavity of an iguana were reported, which suggests that it is either infrequent or infrequently sampled for histological diagnosis. As an isolated case in an adult iguana living at a conservation center, it is likely that this diagnosis is associated with advanced age. The prognosis is considered unfavorable. PMID:23805579

  17. Proto-oncogenes II.

    PubMed

    Rosen, P

    1988-12-01

    In reviewing recent literature on activated proto-oncogenes including retroviral infection (without oncogene), translocation and inherited childhood cancer, I have come to the conclusion that activated proto-oncogenes are not involved in development of tumors. There is one exception in which a translocated proto-myc leads to transformation. That is the case of the trangenic mouse embryo where faulty development occurs. PMID:3226361

  18. [Congenital Fibrosarcoma of the Left Index Finger - An Unusual Case].

    PubMed

    Mailänder, L; Piza-Katzer, H

    2016-02-01

    Congenital fibrosarcoma is a rare mesenchymal soft tissue tumour, which most commonly develops in the peripheral extremities during infancy. Diagnostic work-up is a challenge for clinicians and pathologists alike, because in many cases the lesion initially resembles a haemangioma on macroscopic inspection. A 4-month-old boy presented with a strongly vascularised tumour of the left index finger, which had been diagnosed as a capillary haemangioma by means of a biopsy performed in another facility. The lesion had been treated with systemic and intralesional cortisone injections. Due to ulceration and the risk of infection, the tumour mass was resected with the index finger being preserved. The histological appearance was inconclusive. PCR revealed a congenital fibrosarcoma. 2 years after surgery, the boy is free from recurrence. PMID:26895521

  19. Electrochemical treatment of mouse and rat fibrosarcomas with direct current

    SciTech Connect

    Chou, C.K.; McDougall, J.A.; Ahn, C.; Vora, N.

    1997-03-01

    Electrochemical treatment (ECT) of cancer utilizes direct current to produce chemical changes in tumors. ECT has been suggested as an effective alternative local cancer therapy. However, a methodology is not established, and mechanisms are not well studied. In vivo studies were conducted to evaluate the effectiveness of ECT on animal tumor models. Radiation-induced fibrosarcomas were implanted subcutaneously in 157 female C3H/HeJ mice. Larger rat fibrosarcomas were implanted on 34 female Fisher 344 rats. When the spheroidal tumors reached 10 mm in the mice, two to five platinum electrodes were inserted into the tumors at various spacings and orientations. Ten rats in a pilot group were treated when their ellipsoidal tumors were about 25 mm long; electrode insertion was similar to the later part of the mouse study; i.e., two at the base and two at the center. A second group of 24 rats was treated with six or seven electrodes when their tumors were about 20 mm long; all electrodes were inserted at the tumor base. Of the 24 rats, 12 of these were treated once, 10 were treated twice, and 2 were treated thrice. All treated tumors showed necrosis and regression for both mice and rats; however, later tumor recurrence reduced long-term survival. When multiple treatments were implemented, the best 3 month mouse tumor cure rate was 59.3%, and the best 6 month rat tumor cure rate was 75.0%. These preliminary results indicate that ECT is effective on the radiation-induced fibrosarcoma (RIF-1) mouse tumor and rat fibrosarcoma. The effectiveness is dependent on electrode placement and dosage.

  20. Rare Undifferentiated Tumour of Thyroid: Primary Thyroid Fibrosarcoma

    PubMed Central

    Girgin, Sadullah; Göya, Cemil; Büyükbayram, Hüseyin; Urakçi, Zuhat

    2016-01-01

    Primary thyroid fibrosarcoma cases are very rare. Although it is a known fact that soft tissue sarcomas show slow growth, there have been some cases in literature similar to our case in which there was a fast-growing tumour tissue causing breathing and swallowing difficulties due to painless pressure. For diagnosis, there is no specific clinical or radiological finding. We report a 67-year-old male with a mobile fast-growing mass covering almost all over the neck that appeared 2 months prior to the admission. Laboratory findings showed that the patient was euthyroid. Fine needle aspiration biopsy results are consistent with suspicion of a mesenchymal, histiocytic, epithelial or lymphoid tissue origined malignancy. Patient was taken into surgical operation. The thyroid tissue invaded the main vascular structure, trachea and esophagus. Due to this situation R1 resection was applied. Immunohistopathological examination showed a conventional type of fibrosarcoma. After the surgery, radiotherapy and chemotherapy had been planned and applied. Patients died before the radiotherapy sessions ended. It should be kept in mind that a rapid growth in thyroid tissue can be thyroid fibrosarcoma, there could be a rapid clinical course and poor prognosis after operation.

  1. Radiation-induced dural fibrosarcoma with unusually short latent period

    SciTech Connect

    Ghatak, N.R.; Aydin, F.; Leshner, R.T. Tulane Univ., New Orleans, LA )

    1993-05-01

    Although rare, the occurrence of radiation-induced intracranial neoplasms of various types is well known. Among these tumors, fibrosarcomas, especially in the region of seila turcica, seem to be the most common type. These tumors characteristically occur after a long latent period, usually several years, following radiation therapy. The authors now report a case of apparently radiation-induced fibrosarcoma with some unusual features in a 10-year-old boy who was treated with radiation for medulloblastoma. He received a total dose of 53.2 Gy radiation delivered at 1.8 per fraction with 6 MV acceleration using the standard craniospinal technique. An MRI at 15 months after the completion of radiotherapy showed a mass over the cerebral convexity, which increased two-fold in size within a period of 4 months. A well circumscribed tumor was removed from the fronto-parietal convexity. The tumor measured 5x4.5x1.5 cm and was attached to the dura with invasion of the overlying bone. Histologically, it displayed the characteristic features of a low-grade fibrosarcoma. The patient remains free of tumor 18 months after the surgery. This case emphasizes the potential risk for the development of a second neoplasm following therapeutic radiation and also documents, to the authors' knowledge, the shortest latent period reported so far between administration of radiotherapy and development of an intracranial tumor.

  2. Fibrosarcoma arising from gouty tophi: report of a unique case and review of literature

    PubMed Central

    Wang, Jian-Jun; Wang, Hai-Yan; Cheng, Kai; Wang, Xuan; Yu, Bo; Shi, Shan-Shan; Zhou, Xiao-Jun; Shi, Qun-Li

    2015-01-01

    Fibrosarcoma is a malignant mesenchymal tumor. To the author’s best knowledge, no previous case of fibrosarcoma arising from gouty tophi has been reported. Here we reported the first case of fibrosarcoma arising from gouty tophi. A case of 58-year-old man was presented with a mass with ulcer and infection in the second joint of left middle finger for 2 months, with long standing gouty tophi. The tumor was biopsied and the biopsy showed complete excision of the tumor. With the pathological and immunohistochemical features considered, the diagnosis of fibrosarcoma associated with gouty tophi was made. The clinical findings, pathological characteristics and treatment were described. PMID:26097616

  3. Ameloblastic Fibrosarcoma of the Mandible With Distant Metastases.

    PubMed

    Pourdanesh, Fereydoun; Mohamadi, Mansoureh; Moshref, Mohammad; Soltaninia, Omid

    2015-10-01

    Ameloblastic fibrosarcoma is a mixed odontogenic tumor that can originate de novo or from a transformed ameloblastic fibroma. This report describes the case of a 34-year-old woman with a recurrent, rapidly growing, debilitating lesion. This lesion appeared as a large painful mandibular swelling that filled the oral cavity and extended to the infratemporal fossa. The lesion had been previously misdiagnosed as ameloblastoma. Twenty months after final surgery and postoperative chemotherapy, lung metastases were diagnosed after she reported respiratory signs and symptoms. PMID:26207695

  4. A Role for the Cavin-3/Matrix Metalloproteinase-9 Signaling Axis in the Regulation of PMA-Activated Human HT1080 Fibrosarcoma Cell Neoplastic Phenotype

    PubMed Central

    Toufaily, Chirine; Charfi, Cyndia; Annabi, Bayader; Annabi, Borhane

    2014-01-01

    Caveolae are specialized cell membrane invaginations known to regulate several cancer cell functions and oncogenic signaling pathways. Among other caveolar proteins, they are characterized by the presence of proteins of the cavin family. In this study, we assessed the impact of cavin-1, cavin-2, and cavin-3 on cell migration in a human HT-1080 fibrosarcoma model. We found that all cavin-1, -2 and -3 transcripts were expressed and that treatment with phorbol 12-myristate 13-acetate (PMA), which is known to prime cell migration and proliferation, specifically upregulated cavin-3 gene and protein expression. PMA also triggered matrix metalloproteinase (MMP)-9 secretion, but reduced the global cell migration index. Overexpression of recombinant forms of the three cavins demonstrated that only cavin-3 was able to reduce basal cell migration, and this anti-migratory effect was potentiated by PMA. Interestingly, cavin-3 overexpression inhibited PMA-induced MMP-9, while cavin-3 gene silencing led to an increase in MMP-9 gene expression and secretion. Furthermore, recombinant cavin-3 significantly prevented PMA-mediated dephosphorylation of AKT, a crucial regulator in MMP-9 transcription. In conclusion, our results demonstrate that cellular cavin-3 expression may repress MMP-9 transcriptional regulation in part through AKT. We suggest that the balance in cavin-3-to-MMP-9 expression regulates the extent of extracellular matrix degradation, confirming the tumor-suppressive role of cavin-3 in controlling the invasive potential of human fibrosarcoma cells. PMID:25520561

  5. Infantile fibrosarcoma of ethmoid sinus, misdiagnosed as an adenoid in a 5-year-old child

    PubMed Central

    Geramizadeh, Bita; Khademi, Bijan; Karimi, Mehran; Shekarkhar, Golsa

    2015-01-01

    Infantile fibrosarcoma of head and neck is rare and the presence of this tumor in ethmoid sinus is even more uncommon. To the best of our knowledge, <5 cases have been reported in the last 20 years in the English literature, so far, only one of which has been infantile type in a 15 months old girl. In this case report, we will explain our experience with a rare case of infantile fibrosarcoma originating from ethmoid sinus in a 5-year-old boy who presented with dyspnea and epistaxis. After biopsy, it was diagnosed as fibrosarcoma of sinus origin. PMID:26604519

  6. Prenatal diagnosis of a fibrosarcoma of the thigh: a case report.

    PubMed

    Durin, Luc; Jeanne-Pasquier, Corinne; Bailleul, Patrick; Eboué, Cyril; Aicardi, Stéphanie; Herlicoviez, Michel; Dreyfus, Michel

    2006-01-01

    We report a rare case of fibrosarcoma of the thigh suspected prenatally. At 27 weeks of gestation a voluminous, vascularised mass was discovered at ultrasound on the foetus' left leg, suggestive of haemangioma or a fibrosarcoma. There were no signs of heart failure. A rapid increase in the tumour mass was noted and a caesarean section was carried out at 39 weeks because of abnormal foetal heart rate. Postnatal ultrasound examination was comparable to that carried out prenatally; pathological examination of the mass biopsied and immunohistochemical investigation provided a diagnosis of congenital fibrosarcoma. After neoadjuvant chemotherapy and surgery the infant is now in complete remission without amputation. PMID:16968999

  7. Spontaneous generation of germline characteristics in mouse fibrosarcoma cells

    NASA Astrophysics Data System (ADS)

    Ma, Zhan; Hu, Yao; Jiang, Guoying; Hou, Jun; Liu, Ruilai; Lu, Yuan; Liu, Chunfang

    2012-10-01

    Germline/embryonic-specific genes have been found to be activated in somatic tumors. In this study, we further showed that cells functioning as germline could be present in mouse fibrosarcoma cells (L929 cell line). Early germline-like cells spontaneously appeared in L929 cells and further differentiated into oocyte-like cells. These germline-like cells can, in turn, develop into blastocyst-like structures in vitro and cause teratocarcinomas in vivo, which is consistent with natural germ cells in function. Generation of germline-like cells from somatic tumors might provide a novel way to understand why somatic cancer cells have strong features of embryonic/germline development. It is thought that the germline traits of tumors are associated with the central characteristics of malignancy, such as immortalization, invasion, migration and immune evasion. Therefore, germline-like cells in tumors might provide potential targets to tumor biology, diagnosis and therapy.

  8. Oncogenes and growth control

    SciTech Connect

    Kahn, P.; Graf, T.

    1986-01-01

    This book contains six sections, each consisting of several papers. Some of the paper titles are: A Role for Proto-Oncogenes in Differentiation.; The ras Gene Family; Regulation of Human Globin Gene Expression; Regulation of Gene Expression by Steroid Hormones; The Effect of DNA Methylation on DNA-Protein Interactions and on the Regulation of Gene Expression; and Trans-Acting Elements Encoded in Immediate Early Genes of DNA Tumor Viruses.

  9. The human oncogenic viruses

    SciTech Connect

    Luderer, A.A.; Weetall, H.H

    1986-01-01

    This book contains eight selections. The titles are: Cytogenetics of the Leukemias and Lymphomas; Cytogenetics of Solid Tumors: Renal Cell Carcinoma, Malignant Melanoma, Retinoblastoma, and Wilms' Tumor; Elucidation of a Normal Function for a Human Proto-Oncogene; Detection of HSV-2 Genes and Gene Products in Cervical Neoplasia; Papillomaviruses in Anogennital Neoplasms; Human Epstein-Barr Virus and Cancer; Hepatitis B Virus and Hepatocellular Carcinoma; and Kaposi's Sarcoma: Acquired Immunodeficiency Syndrome (AIDS) and Associated Viruses.

  10. [Hypophosphatemic oncogenic osteomalacia].

    PubMed

    Mátyus, J; Szebenyi, B; Rédl, P; Mikita, J; Gáspár, L; Haris, A; Radó, J; Kakuk, G

    2000-12-17

    The first case of oncogen osteomalacia in Hungary is reported, to draw the attention of the medical profession to it and to present the new data about its pathomechanism. Pathological hip fracture caused by hypophosphataemic osteomalacia due to isolated renal phosphate wasting was found in a previously healthy 19 years old sportsman. In spite of daily 1.5 micrograms calcitriol treatment and phosphate supplementation, hypophosphataemia persisted for 13 years and he needed regular indometacin medication for his bone pain. During that time an 1.5 cm gingival tumour was found and radically removed. The serum phosphate level returned to normal in a few hours after the operation (preoperative 0.51, after 2, 4 and 8 hours 0.61, 0.68 and 0.79 mmol/l respectively), and remained normal without calcitriol. The histological examination showed epulis with fibroblast and vascular cell proliferation, which has never been previously reported in connection with oncogenic osteomalacia. The pain resolved after 3 months and the bone density became normal in one year. Oncogenic osteomalacia must be considered in every case presenting with atypical hypophosphataemic osteomalacia. Careful dental examination is needed also in the course of search for the underlying tumour. Every tumour-like growth, even the common epulis, has to be operated radically and serum phosphate monitored in the postoperative period in all such cases. PMID:11196239

  11. Targeting a newly established spontaneous feline fibrosarcoma cell line by gene transfer.

    PubMed

    Nande, Rounak; Di Benedetto, Altomare; Aimola, Pierpaolo; De Carlo, Flavia; Carper, Miranda; Claudio, Charlene D; Denvir, Jim; Valluri, Jagan; Duncan, Gary C; Claudio, Pier Paolo

    2012-01-01

    Fibrosarcoma is a deadly disease in cats and is significantly more often located at classical vaccine injections sites. More rare forms of spontaneous non-vaccination site (NSV) fibrosarcomas have been described and have been found associated to genetic alterations. Purpose of this study was to compare the efficacy of adenoviral gene transfer in NVS fibrosarcoma. We isolated and characterized a NVS fibrosarcoma cell line (Cocca-6A) from a spontaneous fibrosarcoma that occurred in a domestic calico cat. The feline cells were karyotyped and their chromosome number was counted using a Giemsa staining. Adenoviral gene transfer was verified by western blot analysis. Flow cytometry assay and Annexin-V were used to study cell-cycle changes and cell death of transduced cells. Cocca-6A fibrosarcoma cells were morphologically and cytogenetically characterized. Giemsa block staining of metaphase spreads of the Cocca-6A cells showed deletion of one of the E1 chromosomes, where feline p53 maps. Semi-quantitative PCR demonstrated reduction of p53 genomic DNA in the Cocca-6A cells. Adenoviral gene transfer determined a remarkable effect on the viability and growth of the Cocca-6A cells following single transduction with adenoviruses carrying Mda-7/IL-24 or IFN-γ or various combination of RB/p105, Ras-DN, IFN-γ, and Mda-7 gene transfer. Therapy for feline fibrosarcomas is often insufficient for long lasting tumor eradication. More gene transfer studies should be conducted in order to understand if these viral vectors could be applicable regardless the origin (spontaneous vs. vaccine induced) of feline fibrosarcomas. PMID:22666387

  12. Targeting a Newly Established Spontaneous Feline Fibrosarcoma Cell Line by Gene Transfer

    PubMed Central

    Nande, Rounak; De Carlo, Flavia; Carper, Miranda; Claudio, Charlene D.; Denvir, Jim; Valluri, Jagan; Duncan, Gary C.; Claudio, Pier Paolo

    2012-01-01

    Fibrosarcoma is a deadly disease in cats and is significantly more often located at classical vaccine injections sites. More rare forms of spontaneous non-vaccination site (NSV) fibrosarcomas have been described and have been found associated to genetic alterations. Purpose of this study was to compare the efficacy of adenoviral gene transfer in NVS fibrosarcoma. We isolated and characterized a NVS fibrosarcoma cell line (Cocca-6A) from a spontaneous fibrosarcoma that occurred in a domestic calico cat. The feline cells were karyotyped and their chromosome number was counted using a Giemsa staining. Adenoviral gene transfer was verified by western blot analysis. Flow cytometry assay and Annexin-V were used to study cell-cycle changes and cell death of transduced cells. Cocca-6A fibrosarcoma cells were morphologically and cytogenetically characterized. Giemsa block staining of metaphase spreads of the Cocca-6A cells showed deletion of one of the E1 chromosomes, where feline p53 maps. Semi-quantitative PCR demonstrated reduction of p53 genomic DNA in the Cocca-6A cells. Adenoviral gene transfer determined a remarkable effect on the viability and growth of the Cocca-6A cells following single transduction with adenoviruses carrying Mda-7/IL-24 or IFN-γ or various combination of RB/p105, Ras-DN, IFN-γ, and Mda-7 gene transfer. Therapy for feline fibrosarcomas is often insufficient for long lasting tumor eradication. More gene transfer studies should be conducted in order to understand if these viral vectors could be applicable regardless the origin (spontaneous vs. vaccine induced) of feline fibrosarcomas. PMID:22666387

  13. Recombinant TIMP-1-GPI inhibits growth of fibrosarcoma and enhances tumor sensitivity to doxorubicin.

    PubMed

    Bao, Q; Niess, H; Djafarzadeh, R; Zhao, Y; Schwarz, B; Angele, M K; Jauch, K-W; Nelson, P J; Bruns, C J

    2014-09-01

    Fibrosarcomas show a high incidence of recurrence and general resistance to apoptosis. Limiting tumor regrowth and increasing their sensitivity to chemotherapy and apoptosis represent key issues in developing more effective treatments of these tumors. Tissue inhibitor of metalloproteinase 1 (TIMP-1) broadly blocks matrix metalloproteinase (MMP) activity and can moderate tumor growth and metastasis. We previously described generation of a recombinant fusion protein linking TIMP-1 to glycosylphophatidylinositol (GPI) anchor (TIMP-1-GPI) that efficiently directs the inhibitor to cell surfaces. In the present report, we examined the effect of TIMP-1-GPI treatment on fibrosarcoma biology. Exogenously applied TIMP-1-GPI efficiently incorporated into surface membranes of human HT1080 fibrosarcoma cells. It inhibited their proliferation, migration, suppressed cancer cell clone formation, and enhanced apoptosis. Doxorubicin, the standard chemotherapeutic drug for fibrosarcoma, was tested alone or in combination with TIMP-1-GPI. In parallel, the influence of treatment on HT1080 side population cells (exhibiting tumor stem cell-like characteristics) was investigated using Hoechst 33342 staining. The sequential combination of TIMP-1-GPI and doxorubicin showed more than additive effects on apoptosis, while TIMP-1-GPI treatment alone effectively decreased "stem-cell like" side population cells of HT1080. TIMP-1-GPI treatment was validated using HT1080 fibrosarcoma murine xenografts. Growing tumors treated with repeated local injections of TIMP-1-GPI showed dramatically inhibited fibrosarcoma growth and reduced angiogenesis. Intraoperative peritumoral application of GPI-anchored TIMP-1 as an adjuvant to surgery may help maintain tumor control by targeting microscopic residual fibrosarcoma cells and increasing their sensitivity to chemotherapy. PMID:23934106

  14. Antiproliferative role of Indigofera aspalathoides on 20 methylcholanthrene induced fibrosarcoma in rats

    PubMed Central

    Kumar, Sivagnanam Selva; Rao, Mudiganti Ram Krishna; Balasubramanian, Maruthaiveeran Periyasamy

    2012-01-01

    Objective To find out the anticancer effect of Indigofera aspalathoides (I. aspalathoides) on 20-methylcholanthrene induced fibrosarcoma in rats. Methods Fibrosarcoma was induced in Wistar strain male albino rats by 20-methylcholanthrene. Intraperitoneous (i.p.) administration of 250 mg/kg body weight/day of aqueous extract of I. aspalathoides for 30 d effectively suppressed chemically induced tumors. Parameters such as body weight, liver and kidney weight, tumor weight, mean survival time, behavioral changes, blood glucose, blood glycogen and marker enzymes such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), acid phosphatase (ACP) and 5′-nucleiotidase (5′-NT) in serum, liver and kidney and lipid profiles such as total cholesterol, phospholipids, free fatty acids in liver and kidney of control and experimental animals were studied. Results Fibrosarcoma bearing animals were ferocious and anxious. The mean survival time was found to increase after the treatment. The body weights were significantly decreased (P<0.001) in group II fibrosarcoma animals which steadily increased after the treatment with I. aspalathoides. The liver and kidney weights were significantly increased whereas the tumor weights decreased as compared to the weights in untreated fibrosarcoma bearing rats. The blood glucose and the liver and kidney glycogen levels were found to decrease significantly (P<0.001) in group II animals. Elevated activities of marker enzymes were observed in serum, liver and kidney of fibrosarcoma bearing Group II animals which were normalize after I. aspalathoides treatment. In the liver and kidney of Group II animals the total cholesterol increased whereas the phospholipids and free fatty acid levels decreased (P<0.001) which were normalized after treatment. Conclusions The treatment by I. aspalathoides on fibrosarcoma bearing rats has improved the levels of various parameters indicating its antiproliferative and

  15. PRIMARY FIBROSARCOMA OF THE THYROID GLAND: CASE REPORT.

    PubMed

    Dabelić, Nina; Mateša, Neven; Jukić, Tomislav; Soldić, Željko; Kust, Davor; Prgomet, Angela; Bolanca, Ante; Kusić, Zvonko

    2016-03-01

    Due to progressive dyspnea, a male patient aged 59 underwent medical examination in 2003 in a local hospital. Neck ultrasound and fine-needle aspiration biopsy (FNAB) of a suspect lesion in the thyroid gland revealed the presence of a malignant neoplasm, i.e. mesenchymal tumor. Immunocytochemistry for epithelial membrane antigen, chromogranin A and leukocyte common antigen (CD45) was negative, while vimentin and S-100 were positive. The patient was referred to a university hospital center, where further oncologic work-up was done. Neck ultrasound revealed a tumor in the left lobe of the thyroid, with extension to the aortic arch. After repeated FNAB, cytologic diagnosis of primary thyroid fibrosarcoma was established. Due to the locally advanced and consequently inoperable disease, primary radiotherapy to the neck region (64 Gy in 32 fractions) was applied, followed by 6 cycles of chemotherapy with doxorubicin. After completion of therapy, computed tomography scan demonstrated significant regression of primary disease, but it was still not amenable to surgical treatment. Thus, the decision of the oncology board was active surveillance of the patient. During 9-year follow up, no signs of progression or activity of the disease were found. PMID:27333734

  16. Congenital Fibrosarcoma and History of Prenatal Exposure to Petroleum Derivatives

    PubMed Central

    Soldin, Offie P.; López-Hernández, Fernando A.; Trasande, Leonardo; Ferrís-Tortajada, Josep

    2012-01-01

    Congenital fibrosarcoma (CFS) is a rare fibrous tissue malignancy that usually presents in the first few years of life. It is unique among human sarcomas in that it has an excellent prognosis. We describe a temporal clustering of a number of cases of CFS and investigate the possible associated prenatal risk factors. The Pediatric Environmental History, a questionnaire developed in our clinic that is instrumental in determining environmental risk factors for tumor-related disease, was essential in documenting the presence or absence of risk factors considered as human carcinogens. We found a history of exposure to petroleum products in four cases of CFS that occurred at a greater than expected rate in a short time frame–an apparent cancer cluster. We call attention to the possibility that exposure to petroleum products raises the risk of developing CFS. While future studies should focus on systematic investigation of CFS and its underlying mechanisms, this report suggests the need for proactive measures to avoid exposure to solvents and petroleum products during pregnancy. PMID:22945410

  17. Principles of Cancer Therapy: Oncogene and Non-oncogene Addiction

    PubMed Central

    Luo, Ji; Solimini, Nicole L.; Elledge, Stephen J.

    2010-01-01

    Cancer is a complex collection of distinct genetic diseases united by common hallmarks. Here, we expand upon the classic hallmarks to include the stress phenotypes of tumorigenesis. We describe a conceptual framework of how oncogene and non-oncogene addictions contribute to these hallmarks and how they can be exploited through stress sensitization and stress overload to selectively kill cancer cells. In particular, we present evidence for a large class of non-oncogenes that are essential for cancer cell survival and present attractive drug targets. Finally, we discuss the path ahead to therapeutic discovery and provide theoretical considerations for combining orthogonal cancer therapies. PMID:19269363

  18. Principles of cancer therapy: oncogene and non-oncogene addiction.

    PubMed

    Luo, Ji; Solimini, Nicole L; Elledge, Stephen J

    2009-03-01

    Cancer is a complex collection of distinct genetic diseases united by common hallmarks. Here, we expand upon the classic hallmarks to include the stress phenotypes of tumorigenesis. We describe a conceptual framework of how oncogene and non-oncogene addictions contribute to these hallmarks and how they can be exploited through stress sensitization and stress overload to selectively kill cancer cells. In particular, we present evidence for a large class of non-oncogenes that are essential for cancer cell survival and present attractive drug targets. Finally, we discuss the path ahead to therapeutic discovery and provide theoretical considerations for combining orthogonal cancer therapies. PMID:19269363

  19. Primary sclerosing epithelioid fibrosarcoma of bone: analysis of a series.

    PubMed

    Wojcik, John B; Bellizzi, Andrew M; Dal Cin, Paola; Bredella, Miriam A; Fletcher, Christopher D M; Hornicek, Francis J; Deshpande, Vikram; Hornick, Jason L; Nielsen, G Petur

    2014-11-01

    Sclerosing epithelioid fibrosarcoma (SEF) is a rare, aggressive malignant neoplasm characterized by small nests and linear arrays of epithelioid cells embedded in a dense collagenous matrix. Very few primary SEFs of bone have been reported. Recognition is critical, as the dense extracellular collagenous matrix can be interpreted as osteoid, leading to misdiagnosis as-osteosarcoma. MUC4 and SATB2 are 2 recently characterized immunohistochemical markers for SEF and osteosarcoma, respectively. In reports to date, osteosarcomas are positive for SATB2 and negative for MUC4, whereas soft tissue SEFs have shown the opposite immunohistochemical profile (SATB2-/MUC4+). The purpose of this study was to characterize the clinicopathologic and immunohistochemical features of 8 primary SEFs of bone. The patients presented at a wide range of ages (25 to 73 y; median 52 y). Tumors mostly involved long bones of the extremities, with 3 cases involving the femur, 2 involving the ulna, and 1 involving the humerus. Other sites of involvement included the second rib (1) and the C6 vertebra (1). Follow-up information was available for 7 patients, 3 of whom developed metastases within 2 years of diagnosis. The other 4 patients were free of local recurrence or metastases at 1, 5, 12, and >84 months of follow-up, respectively. Radiographically, the tumors were predominantly lytic and poorly marginated. Histologically, 6 tumors showed pure SEF morphology, and 2 showed hybrid SEF/low-grade fibromyxoid sarcoma morphology. Focal dystrophic mineralization was seen in 1 case but was limited to areas of necrosis. None of the tumors showed the lace-like pattern of mineralization typical of osteosarcoma. The majority (6/8) of the tumors strongly expressed MUC4. SATB2 was negative in all but 1 case, which showed variable weak to moderate staining in ∼50% of nuclei. In general, the combination of morphology, MUC4 expression, and the absence of SATB2 expression was highly useful in arriving at the

  20. [Sclerosing epithelioid fibrosarcoma of the paravertebral column. Case report and literature review].

    PubMed

    Puerta Roldán, Patricia; Rodríguez Rodríguez, Rodrigo; Bagué Rossell, Silvia; de Juan Delago, Manel; Molet Teixidó, Joan

    2013-01-01

    Sclerosing epithelioid fibrosarcoma (SEF) is a rare variant of low-grade fibrosarcoma, with specific histological and immunohistochemical features and a poor prognosis. We report a case of SEF of the paravertebral column in a 49-year old male who presented a paraspinal mass with extension into the L4-L5 neural foramen and invasion of the L5 nerve root. Histology of the tumourectomy specimen and its immunohistochemical study led to the diagnosis of SEF. This case was particularly unusual due to its paravertebral column location and, despite its low grade, illustrates the malignant potential of SEF. PMID:23154129

  1. Loss of oncogenic ras expression does not correlate with loss of tumorigenicity in human cells.

    PubMed Central

    Plattner, R; Anderson, M J; Sato, K Y; Fasching, C L; Der, C J; Stanbridge, E J

    1996-01-01

    ras oncogenes are mutated in at variety of human tumors, which suggests that they play an important role in human carcinogenesis. To determine whether continued oncogenic ras expression is necessary to maintain the malignant phenotype, we studied the human fibrosarcoma cell line, HT1080, which contains one mutated and one wild-type N-ras allele. We isolated a variant of this cell line that no longer contained the mutated copy of the N-ras gene. Loss of mutant N-ras resulted in cells that displayed a less transformed phenotype characterized by a flat morphology, decreased growth rate, organized actin stress fibers, and loss of anchorage-independent growth. The transformed phenotype was restored following reintroduction of mutant N-ras. Although loss of the oncogenic N-ras drastically affected in vitro growth parameters, the variant remained tumorigenic in nude mice indicating that mutated N-ras expression is not necessary for maintenance of the tumorigenic phenotype. We confirmed this latter observation in colon carcinoma cell lines that have lost activated K-ras expression via targeted knockout of the mutant K-ras gene. Images Fig. 1 Fig. 2 Fig. 3 Fig. 5 PMID:8692875

  2. Response rate of fibrosarcoma cells to cytotoxic drugs on the expression level correlates to the therapeutic response rate of fibrosarcomas and is mediated by regulation of apoptotic pathways

    PubMed Central

    Lehnhardt, Marcus; Klein-Hitpass, Ludger; Kuhnen, Cornelius; Homann, Heinz Herbert; Daigeler, Adrien; Steinau, Hans Ulrich; Roehrs, Sonja; Schnoor, Laura; Steinstraesser, Lars; Mueller, Oliver

    2005-01-01

    Background Because of the high resistance rate of fibrosarcomas against cytotoxic agents clinical chemotherapy of these tumors is not established. A better understanding of the diverse modes of tumor cell death following cytotoxic therapies will provide a molecular basis for new chemotherapeutic strategies. In this study we elucidated the response of a fibrosarcoma cell line to clinically used cytostatic agents on the level of gene expression. Methods HT1080 fibrosarcoma cells were exposed to the chemotherapeutic agents doxorubicin, actinomycin D or vincristine. Total RNA was isolated and the gene expression patterns were analyzed by microarray analysis. Expression levels for 46 selected candidate genes were validated by quantitative real-time PCR. Results The analysis of the microarray data resulted in 3.309 (actinomycin D), 1.019 (doxorubicin) and 134 (vincristine) probesets that showed significant expression changes. For the RNA synthesis blocker actinomycin D, 99.4% of all differentially expressed probesets were under-represented. In comparison, probesets down-regulated by doxorubicin comprised only 37.4% of all genes effected by this agent. Closer analysis of the differentially regulated genes revealed that doxorubicin induced cell death of HT1080 fibrosarcoma cells mainly by regulating the abundance of factors mediating the mitochondrial (intrinsic) apoptosis pathway. Furthermore doxorubicin influences other pathways and crosstalk to other pathways (including to the death receptor pathway) at multiple levels. We found increased levels of cytochrome c, APAF-1 and members of the STAT-family (STAT1, STAT3), while Bcl-2 expression was decreased. Caspase-1, -3, -6, -8, and -9 were increased indicating that these proteases are key factors in the execution of doxorubicin mediated apoptosis. Conclusion This study demonstrates that chemotherapy regulates the expression of apoptosis-related factors in fibrosarcoma cells. The number and the specific pattern of the genes

  3. Pro‑apoptotic effects of pycnogenol on HT1080 human fibrosarcoma cells.

    PubMed

    Harati, Kamran; Slodnik, Pawel; Chromik, Ansgar Michael; Behr, Björn; Goertz, Ole; Hirsch, Tobias; Kapalschinski, Nicolai; Klein-Hitpass, Ludger; Kolbenschlag, Jonas; Uhl, Waldemar; Lehnhardt, Marcus; Daigeler, Adrien

    2015-04-01

    Complete surgical resection with clear margins remains the mainstay of therapy for localised fibrosarcomas. Nevertheless, metastatic fibrosarcomas still represent a therapeutic dilemma. Commonly used chemotherapeutic agents like doxorubicin have proven to be effective in <30% of all cases of disseminated fibrosarcoma. Especially elderly patients with cardiac subdisease are not suitable for systemic chemotherapy with doxorubicin. Therefore we tested the apoptotic effects of the well-tolerated pine bark extract pycnogenol and its constituents on human fibrosarcoma cells (HT1080). Ten healthy subjects (six females, four males, mean age 24.8 ± 6 years) received a single dose of 300 mg pycnogenol orally. Blood plasma samples were obtained before and 6 h after intake of pycnogenol. HT1080 cells were treated with these plasma samples. Additionally, HT1080 were incubated separately with catechin, epicatechin and taxifolin that are known as the main constituents of pycnogenol. Vital, apoptotic and necrotic cells were quantified using flow cytometric analysis. Gene expression was analyzed by RNA microarray. The results showed that single application of taxifolin, catechin and epicatechin reduced cell viability of HT1080 cells only moderately. A single dose of 300 mg pycnogenol given to 10 healthy adults produced plasma samples that led to significant apoptotic cell death ex vivo whereas pycnogenol-negative serum displayed no apoptotic activity. Microarray analysis revealed remarkable expression changes induced by pycnogenol in a variety of genes, which are involved in different apoptotic pathways of cancer cells [Janus kinase 1 (JAK1), DUSP1, RHOA, laminin γ1 (LAMC1), fibronectin 1 (FN1), catenin α1 (CTNNA1), ITGB1]. In conclusion, metabolised pycnogenol induces apoptosis in human fibrosarcoma cells. Pycnogenol exhibits its pro-apoptotic activity as a mixture and is more effective than its main constituents catechin, epicatechin and taxifolin indicating that the

  4. Canine cutaneous peripheral nerve sheath tumours versus fibrosarcomas can be differentiated by neuroectodermal marker genes in their transcriptome.

    PubMed

    Klopfleisch, R; Meyer, A; Lenze, D; Hummel, M; Gruber, A D

    2013-02-01

    The diagnostic differentiation between canine fibrosarcomas and peripheral nerve sheath tumours (PNSTs) is based on histopathological phenotype. Histological differentiation of these tumours can, however, be challenging and there is a lack of immunohistochemical markers to prove their histogenic origin. To identify possible PNST markers and to further characterize their histogenic origin we compared histologically well-defined canine fibrosarcomas and PNSTs by cDNA microarray analysis. Forty-five annotated gene products were significantly differentially expressed between both tumour types. Seven of these gene products, known to be specifically expressed in neuroectodermal tissues, had higher expression levels in PNSTs: FMN2, KIF1B, GLI1, ROBO1, NMUR2, DOK4 and HMG20B. Conversely, eight genes associated with carcinogenesis had higher expression in fibrosarcomas: FHL2, PLAGL1, FNBP1L, BAG2, HK1, CSK and Cox5A. Comparison of the fibrosarcoma and PNST transcriptome therefore identified PNST phenotype-associated genes involved in neuroectodermal differentiation, which may be useful as diagnostic markers. Furthermore, the genes associated with the fibrosarcoma phenotype may serve as markers to differentiate fibrosarcomas from other tumour types. PMID:22818216

  5. Etoposide incorporated into camel milk phospholipids liposomes shows increased activity against fibrosarcoma in a mouse model.

    PubMed

    Maswadeh, Hamzah M; Aljarbou, Ahmad N; Alorainy, Mohammed S; Alsharidah, Mansour S; Khan, Masood A

    2015-01-01

    Phospholipids were isolated from camel milk and identified by using high performance liquid chromatography and gas chromatography-mass spectrometry (GC/MS). Anticancer drug etoposide (ETP) was entrapped in liposomes, prepared from camel milk phospholipids, to determine its activity against fibrosarcoma in a murine model. Fibrosarcoma was induced in mice by injecting benzopyrene (BAP) and tumor-bearing mice were treated with various formulations of etoposide, including etoposide entrapped camel milk phospholipids liposomes (ETP-Cam-liposomes) and etoposide-loaded DPPC-liposomes (ETP-DPPC-liposomes). The tumor-bearing mice treated with ETP-Cam-liposomes showed slow progression of tumors and increased survival compared to free ETP or ETP-DPPC-liposomes. These results suggest that ETP-Cam-liposomes may prove to be a better drug delivery system for anticancer drugs. PMID:25821817

  6. Protective effect of Dunaliella salina (Volvocales, Chlorophyta) against experimentally induced fibrosarcoma on wistar rats.

    PubMed

    Raja, Rathinam; Hemaiswarya, Shanmugam; Balasubramanyam, Dakshanamoorthy; Rengasamy, Ramasamy

    2007-01-01

    The beta-carotene-yielding microalga, Dunaliella salina (Dunal) Teod. maintained in De Walne's medium was harvested and lyophilized. Fibrosarcoma was induced in rats by 20-methylcholanthrene. 0.5 g and 1.0 g of lyophilized D. salina powder was administered to the rats orally through carboxy methyl cellulose. Cisplatin was administered along with vitamin E to compare the protective effect of D. salina against fibrosarcoma. Administration of D. salina decreased the levels of cholesterol and lactate dehydrogenase as well as the activities of catalase, superoxide dismutase, serum aspartate aminotransaminase, serum alanine aminotransferase, when compared to control. A significant reduction in the levels of hepatic and renal RNA and DNA was observed in the sarcoma rats when treated with D. salina powder. Histopathological studies of tumor tissues showed regenerative and regressive changes. beta-carotene globules isolated from the powder of Dunaliella salina confirmed the presence of 9-cis-beta-carotene and all-trans-beta-carotene. PMID:16713216

  7. Immunomodulatory properties of silver nanoparticles contribute to anticancer strategy for murine fibrosarcoma.

    PubMed

    Chakraborty, Biswajit; Pal, Ramkrishna; Ali, Mohammed; Singh, Leichombam Mohindro; Shahidur Rahman, Dewan; Kumar Ghosh, Sujit; Sengupta, Mahuya

    2016-03-01

    The use of nanotechnology in nanoparticle-based cancer therapeutics is gaining impetus due to the unique biophysical properties of nanoparticles at the quantum level. Silver nanoparticles (AgNPs) have been reported as one type of potent therapeutic nanoparticles. The present study is aimed to determine the effect of AgNPs in arresting the growth of a murine fibrosarcoma by a reductive mechanism. Initially, a bioavailability study showed that mouse serum albumin (MSA)-coated AgNPs have enhanced uptake; therefore, toxicity studies of AgNP-MSA at 10 different doses (1-10 mg/kg b.w.) were performed in LACA mice by measuring the complete blood count, lipid profile and histological parameters. The complete blood count, lipid profile and histological parameter results showed that the doses from 2 to 8 mg (IC50: 6.15 mg/kg b.w.) sequentially increased the count of leukocytes, lymphocytes and granulocytes, whereas the 9- and 10-mg doses showed conclusive toxicity. In an antitumor study, the incidence and size of fibrosarcoma were reduced or delayed when murine fibrosarcoma groups were treated by AgNP-MSA. Transmission electron micrographs showed that considerable uptake of AgNP-MSA by the sentinel immune cells associated with tumor tissue and a morphologically buckled structure of the immune cells containing AgNP-MSA. Because the toxicity studies revealed a relationship between AgNPs and immune function, the protumorigenic cytokines TNF-α, IL-6 and IL-1β were also assayed in AgNP-MSA-treated and non-treated fibrosarcoma groups, and these cytokines were found to be downregulated after treatment with AgNP-MSA. PMID:25938978

  8. Immunomodulatory properties of silver nanoparticles contribute to anticancer strategy for murine fibrosarcoma

    PubMed Central

    Chakraborty, Biswajit; Pal, Ramkrishna; Ali, Mohammed; Singh, Leichombam Mohindro; Shahidur Rahman, Dewan; Kumar Ghosh, Sujit; Sengupta, Mahuya

    2016-01-01

    The use of nanotechnology in nanoparticle-based cancer therapeutics is gaining impetus due to the unique biophysical properties of nanoparticles at the quantum level. Silver nanoparticles (AgNPs) have been reported as one type of potent therapeutic nanoparticles. The present study is aimed to determine the effect of AgNPs in arresting the growth of a murine fibrosarcoma by a reductive mechanism. Initially, a bioavailability study showed that mouse serum albumin (MSA)-coated AgNPs have enhanced uptake; therefore, toxicity studies of AgNP-MSA at 10 different doses (1–10 mg/kg b.w.) were performed in LACA mice by measuring the complete blood count, lipid profile and histological parameters. The complete blood count, lipid profile and histological parameter results showed that the doses from 2 to 8 mg (IC50: 6.15 mg/kg b.w.) sequentially increased the count of leukocytes, lymphocytes and granulocytes, whereas the 9- and 10-mg doses showed conclusive toxicity. In an antitumor study, the incidence and size of fibrosarcoma were reduced or delayed when murine fibrosarcoma groups were treated by AgNP-MSA. Transmission electron micrographs showed that considerable uptake of AgNP-MSA by the sentinel immune cells associated with tumor tissue and a morphologically buckled structure of the immune cells containing AgNP-MSA. Because the toxicity studies revealed a relationship between AgNPs and immune function, the protumorigenic cytokines TNF-α, IL-6 and IL-1β were also assayed in AgNP-MSA-treated and non-treated fibrosarcoma groups, and these cytokines were found to be downregulated after treatment with AgNP-MSA. PMID:25938978

  9. Fourier-transform infrared spectroscopic comparison of cultured human fibroblast and fibrosarcoma cells

    NASA Astrophysics Data System (ADS)

    Yang, Difei; Castro, Dan J.; El-Sayed, Ivan H.; El-Sayed, Mostafa A.; Saxton, Romaine E.; Zhang, Nancy Y.

    1995-05-01

    Infrared vibration spectroscopy appears to be a more powerful technique for diagnosis than visible or UV spectroscopy. Advantages of IR spectra include: 1) vibrational motion has a smaller tissue absorption coefficient than electronic motion, 2) scattering of infrared radiation has a lower cross section than visible or UV light, (these two facts allow deeper penetration of IR radiation) and 3) vibration spectra provide a better fingerprint of chemical groups present in cells than the unresolved broad electronic spectrum of biological molecules. In the present work, Fourier-transform IR spectroscopy was used to compare cultured human fibroblast and malignant fibrosarcoma cells. Significant differences were observed by comparing the spectra of the normal cells with that of the cancer cells. the PO2 symmetric stretching mode at 1082cm-1 in the cancer cell is reduced in intensity. These observations are similar to those reported previously by Wong et al in comparing the IR spectra of pairs of normal and cancerous cells from the colon and cervix. However, the observed increase in the relative intensity of the symmetric to antisymmetric CH3 bending mode are only found in fibrosarcoma and basal cell carcinoma. The decrease in intensity of the CH2 bending mode relative to that of CH3 mode was observed only for fibrosarcoma cells. This finding with paired human fibroblast and fibrosarcoma cells suggests that fatty acid chains or side chains of protein in the cancer cells are partially degraded leading to more terminal carbon. It is also possible that changes in the environment upon carcinogenesis induces a change in the relative absorption cross sections for the CH3 and CH2 bending vibrations.

  10. The T-box transcription factor 3 is a promising biomarker and a key regulator of the oncogenic phenotype of a diverse range of sarcoma subtypes.

    PubMed

    Willmer, T; Cooper, A; Sims, D; Govender, D; Prince, S

    2016-01-01

    Sarcomas represent a complex group of malignant neoplasms of mesenchymal origin and their heterogeneity poses a serious diagnostic and therapeutic challenge. There is therefore a need to elucidate the molecular mechanisms underpinning the pathogenesis of the more than 70 distinguishable sarcoma subtypes. The transcription factor TBX3, a critical developmental regulator, is overexpressed in several cancers of epithelial origin where it contributes to tumorigenesis by different molecular mechanisms. However, the status and role of TBX3 in sarcomas have not been reported. Here we show that a diverse subset of soft tissue and bone sarcoma cell lines and patient-derived sarcoma tissues express high levels of TBX3. We further explore the significance of this overexpression using a small interferring RNA approach and demonstrate that TBX3 promotes the migratory ability of chondrosarcoma, rhabdomyosarcoma and liposarcoma cells but inhibits fibrosarcoma cell migration. This suggested that TBX3 may play a key role in the development of different sarcoma subtypes by functioning as either an oncoprotein or as a brake to prevent tumour progression. To further explore this, TBX3 knockdown and overexpression cell culture models were established using chondrosarcoma and fibrosarcoma cells as representatives of each scenario, and the resulting cells were characterized with regard to key features of tumorigenesis. Results from in vitro and in vivo assays reveal that, while TBX3 promotes substrate-dependent and -independent cell proliferation, migration and tumour formation in chondrosarcoma cells, it discourages fibrosarcoma formation. Our findings provide novel evidence linking TBX3 to cancers of mesenchymal origin. Furthermore, we show that TBX3 may be a biomarker for the diagnosis of histologically dynamic sarcoma subtypes and that it impacts directly on their oncogenic phenotype. Indeed, we reveal that TBX3 may exhibit oncogene or tumour suppressor activity in sarcomas, which

  11. [A case of advanced prostate fibrosarcoma that reacted well to chemotherapy].

    PubMed

    Yokoyama, Hitoshi; Saito, Tetsuichi; Yamagishi, Takahiro; Ogawa, Teruyuki; Kurizaki, Yoshiki; Kato, Haruaki; Ishizuka, Osamu; Nishizawa, Osamu

    2014-09-01

    Prostate fibrosarcoma is an extremely rare tumor for which complete excision has been the mainstay of treatment. Although chemotherapy has been attempted in cases with positive surgical margins and/or advanced stage disease, the effectiveness of this therapy has not been established. Herein, we report a case of advanced prostate fibrosarcoma that reacted well to chemotherapy. A 40-year-old man was referred for treatment of a large prostatic tumor with multiple lung, liver, and bone metastases. Needle biopsy of the prostate revealed that the tumor was a high-grade undifferentiated sarcoma. Chemotherapy with doxorubicin and ifosfamide was administered. After five courses of chemotherapy, the primary prostate tumor decreased markedly, and the lung and liver metastases almost disappeared. Radical cystoprostatectomy and ileal conduit formation were performed. Pathological diagnosis was fibrosarcoma. Another three courses of doxorubicin and ifosfamide therapy were performed, and doxorubicin was replaced by etoposide because the maximum dose of doxorubicin was reached. However, the effectiveness of the second-line therapy was poor, and the tumor progressed again. The patient died of lung metastasis 15 months later. PMID:25293801

  12. Verapamil potentiation of melphalan cytotoxicity and cellular uptake in murine fibrosarcoma and bone marrow.

    PubMed Central

    Robinson, B. A.; Clutterbuck, R. D.; Millar, J. L.; McElwain, T. J.

    1985-01-01

    Growth delay by melphalan of two fibrosarcomas in CBA mice was prolonged by intraperitoneal (i.p.) verapamil, 10 mg kg-1. Verapamil also increased the area under the blood concentration time curve and the gastrointestinal toxicity of melphalan. Verapamil promoted melphalan cytotoxicity to murine bone marrow both in vivo, by CFU-S assay, and in vitro, by CFU-GM assay. In 1 microgram ml-1 [14C]-melphalan, verapamil (10 micrograms ml-1) increased by 1.5 times the [14C]-melphalan accumulation by murine bone marrow, reversibly and independently of external calcium. Efflux of [14C]-melphalan from murine bone marrow was retarded by verapamil. Verapamil increased [14C]-melphalan uptake by disaggregated fibrosarcoma cells but had no effect on melphalan accumulation and cytotoxicity in human bone marrow. Although verapamil affected melphalan pharmacokinetics, enhancement of cellular melphalan uptake by verapamil in murine fibrosarcoma and bone marrow appeared to account for much of the increase in melphalan cytotoxicity. The lack of potentiation of melphalan by verapamil in human marrow suggests differences in melphalan transport or in verapamil membrane interactions in mouse and man. PMID:4074636

  13. Effects of verapamil and alcohol on blood flow, melphalan uptake and cytotoxicity, in murine fibrosarcomas and human melanoma xenografts.

    PubMed

    Robinson, B A; Clutterbuck, R D; Millar, J L; McElwain, T J

    1986-05-01

    Verapamil had previously been shown to increase cellular melphalan uptake and cytotoxicity in fibrosarcomas, and increased the area under the blood concentration versus time curve (AUC) for melphalan in CBA mice. Verapamil (10 mg kg-1 i.p.) had no effect on the fractional distribution of cardiac output (FDCO), measured with 86Rb-rubidium chloride, to subcutaneous fibrosarcomas. 14C-Melphalan uptake by FS13 fibrosarcomas was increased 60 min after verapamil (10 mg kg-1 i.p.), but not after lower doses which did not affect the AUC. Flunarizine (5 mg kg-1 i.p.) also had no effect on FDCO to FS13 fibrosarcomas, and tended to increase 14C-melphalan content of blood and the fibrosarcomas and to promote growth delay by melphalan. Alcohol increased FDCO to FS13 fibrosarcomas, maximally at a 1:20 dilution in saline, but had no effect on 14C-melphalan uptake or growth delay. Thus, melphalan cytotoxicity correlated with tumour melphalan uptake, and both followed changes in the AUC for melphalan but not changes in FDCO. In these murine fibrosarcomas melphalan uptake and cytotoxicity were not limited by blood flow. In subcutaneous human melanoma HX46 xenografts, verapamil had no effect on the FDCO, nor on 14C-melphalan uptake, and did not affect blood 14C-melphalan levels, suggesting absence of effects on the AUC and on cellular uptake. Alcohol did not increase the FDCO to HX46 xenografts, providing evidence for a different vascular supply. PMID:3718818

  14. Oncogenicity of human N-ras oncogene and proto-oncogene introduced into retroviral vectors

    SciTech Connect

    Souyri, M.; Vigon, I.; Charon, M.; Tambourin, P. )

    1989-09-01

    The N-ras gene is the only member of the ras family which has never been naturally transduced into a retrovirus. In order to study the in vitro and in vivo oncogenicity of N-ras and to compare its pathogenicity to that of H-ras, the authors have inserted an activated or a normal form of human N-ras cDNA into a slightly modified Harvey murine sarcoma virus-derived vector in which the H-ras p21 coding region had been deleted. The resulting constructions were transfected into NIH 3T3 cells. The activated N-ras-containing construct (HSN) induced 10{sup 4} foci per {mu}g of DNA and was found to be as transforming as H-ras was. After infection of the transfected cells by either the ecotropic Moloney murine leukemia virus or the amphotropic 4070A helper viruses, rescued transforming viruses were injected into newborn mice. Both pseudotypes of HSN virus containing activated N-ras induced the typical Harvey disease with similar latency. However, they found that the virus which contained normal N-ras p21 (HSn) was also pathogenic and induced splenomegaly, lymphadenopathies, and sarcoma in mice after a latency of 3 to 7 weeks. In addition, Moloney murine leukemia virus pseudotypes of N-ras caused neurological disorders in 30% of the infected animals. These results differed markedly from those of previous experiments in which the authors had inserted the activated form of N-ras in the pSV(X) vector: the resulting SVN-ras virus was transforming on NIH 3T3 cells but was poorly oncogenic in vivo. Altogether, these data demonstrated unequivocally that N-ras is potentially as oncogenic as H-ras and that such oncogenic effect could depend on the vector environment.

  15. (Oncogenic action of ionizing radiation)

    SciTech Connect

    Not Available

    1990-01-01

    An extensive experiment involving approximately 400 rats exposed to the neon ion beam at the Bevalac in Berkeley, CA and to electrons is nearing completion. The carcinogenicity of energetic electrons was determined for comparison with the neon ion results. As in past reports we will describe progress in three areas corresponding to the specific aims of the proposal: (1) carcinogenesis and DNA strand breaks in rat skin following exposure by the neon ions or electrons; (2) DNA strand breaks in the epidermis as a function of radiation penetration; (3) oncogene activation in radiation-induced rat skin cancers. 72 refs., 6 tabs.

  16. Oncogenic Brain Metazoan Parasite Infection

    PubMed Central

    Spurgeon, Angela N.; Cress, Marshall C.; Gabor, Oroszi; Ding, Qing-Qing; Miller, Douglas C.

    2013-01-01

    Multiple observations suggest that certain parasitic infections can be oncogenic. Among these, neurocysticercosis is associated with increased risk for gliomas and hematologic malignancies. We report the case of a 71-year-old woman with colocalization of a metazoan parasite, possibly cysticercosis, and a WHO grade IV neuroepithelial tumor with exclusively neuronal differentiation by immunohistochemical stains (immunopositive for synaptophysin, neurofilament protein, and Neu-N and not for GFAP, vimentin, or S100). The colocalization and temporal relationship of these two entities suggest a causal relationship. PMID:24151568

  17. Antitumor effectiveness of different amounts of electrical charge in Ehrlich and fibrosarcoma Sa-37 tumors

    PubMed Central

    Ciria, HC; Quevedo, MS; Cabrales, LB; Bruzón, RP; Salas, MF; Pena, OG; González, TR; López, DS; Flores, JM

    2004-01-01

    Background In vivo studies were conducted to quantify the effectiveness of low-level direct electric current for different amounts of electrical charge and the survival rate in fibrosarcoma Sa-37 and Ehrlich tumors, also the effect of direct electric in Ehrlich tumor was evaluate through the measurements of tumor volume and the peritumoral and tumoral findings. Methods BALB/c male mice, 7–8 week old and 20–22 g weight were used. Ehrlich and fibrosarcoma Sa-37 cell lines, growing in BALB/c mice. Solid and subcutaneous Ehrlich and fibrosarcoma Sa-37 tumors, located dorsolaterally in animals, were initiated by the inoculation of 5 × 106 and 1 × 105 viable tumor cells, respectively. For each type of tumor four groups (one control group and three treated groups) consisting of 10 mice randomly divided were formed. When the tumors reached approximately 0.5 cm3, four platinum electrodes were inserted into their bases. The electric charge delivered to the tumors was varied in the range of 5.5 to 110 C/cm3 for a constant time of 45 minutes. An additional experiment was performed in BALB/c male mice bearing Ehrlich tumor to examine from a histolological point of view the effects of direct electric current. A control group and a treated group with 77 C/cm3 (27.0 C in 0.35 cm3) and 10 mA for 45 min were formed. In this experiment when the tumor volumes reached 0.35 cm3, two anodes and two cathodes were inserted into the base perpendicular to the tumor long axis. Results Significant tumor growth delay and survival rate were achieved after electrotherapy and both were dependent on direct electric current intensity, being more marked in fibrosarcoma Sa-37 tumor. Complete regressions for fibrosarcoma Sa-37 and Ehrlich tumors were observed for electrical charges of 80 and 92 C/cm3, respectively. Histopathological and peritumoral findings in Ehrlich tumor revealed in the treated group marked tumor necrosis, vascular congestion, peritumoral neutrophil infiltration, an acute

  18. Inflammatory myofibroblastic tumor, inflammatory fibrosarcoma, and related lesions: an historical review with differential diagnostic considerations.

    PubMed

    Coffin, C M; Dehner, L P; Meis-Kindblom, J M

    1998-05-01

    The concept of the inflammatory myofibroblastic tumor (IMT) has evolved from an already perplexing pathological process, the inflammatory pseudotumor, which was initially recognized in the lung and regarded as a pseudoneoplasm, although its histological features resembled a spindle cell sarcoma. Despite the pathological findings and their apparent prognostic implications, most affected individuals regardless of the primary site have had favorable clinical outcomes. The designation of inflammatory pseudotumor came to be widely accepted, although these lesions were clearly tumors or masses that may or may not have been pseudoneoplasms. An aberrant or exaggerated response to tissue injury without an established cause has generally been favored as the pathogenesis of the inflammatory pseudotumor or IMT. Once the myofibroblast was identified and its function in tissue repair was established, this cell type was found in a variety of soft tissue lesions from nodular fasciitis to malignant fibrous histiocytoma. The myofibroblast was eventually recognized as the principal cell type in the inflammatory pseudotumor, which provided the opportunity to redesignate this tumor as IMT. Some of the clinical and pathological aspects of the IMT began to suggest the possibility that these lesions are more similar to neoplasms than a postinflammatory process. Another step in the evolution of the inflammatory pseudotumor and IMT occurred with the report of a mesenteric or retroperitoneal tumor with similar pathological features to the latter tumors but with more aggressive behavior to warrant an interpretation of malignancy as an inflammatory fibrosarcoma. The IMT and inflammatory fibrosarcoma appear to have many overlapping clinical and pathological features. These tumors are histogenetically related, and if they are separate entities, they are differentiated more by degrees than absolutes. The therapeutic approach to these tumors should relay primarily on surgical resection. Studies in

  19. Comparison of the chemotactic responsiveness of two fibrosarcoma subpopulations of differing malignancy.

    PubMed Central

    Orr, F. W.; Varani, J.; Delikatny, J.; Jain, N.; Ward, P. A.

    1981-01-01

    There are several points of similarity between the processes of cancer metastasis and inflammation. In both, cells circulate in the vasculature, arrest, and cross vessel walls, thereby entering the extravascular tissues. In vitro, leukocytes and some, but not all, tumor cells exhibit chemotaxis. Since the chemotactic response of leukocytes effect their transvascular migration, we propose that chemotactic responsiveness contributes to the ability of circulating tumor cells to localize in extravascular tissues. This study was done to seek a relationship between chemotactic responsiveness of tumor cells and their behavior in vivo. Two subpopulations of cells were isolated from a methylcholanthrene-induced fibrosarcoma. The two cell lines were compared with regard to their biologic behavior in vivo and their chemotactic responsiveness in vitro. In vivo one subpopulation was highly malignant. An injection of 2.0 x 10(5) cells into the footpad of syngeneic mice led to the development of primary tumors in 87% of the animals and lung metastases in 61% of the animals with primary tumors. This line demonstrated chemotaxis to a factor that behaved similarly in gel filtration and showed immunologic reactivity similar to that of a previously described tumor cell chemotactic factor derived from the fifth component of complement. In contrast, an injection of the same number of cells from the second subpopulation of fibrosarcoma cells led to the development of primary tumors in only 12% of syngeneic mice, and lung metastases did not occur. Neither this subpopulation nor normal embryonic fibroblasts demonstrated chemotactic responsiveness. We postulate that the ability of tumor cells to respond to specific chemotactic stimuli may be one of the many unique properties which distinguish malignant from benign tumor cells. This is the first report documenting the chemotactic responsiveness of non-ascites tumors and fibrosarcomas. PMID:7468766

  20. Targeting Androgen Receptor/Src Complex Impairs the Aggressive Phenotype of Human Fibrosarcoma Cells

    PubMed Central

    Di Donato, Marzia; Hayashi, Ryo; Arra, Claudio; Appella, Ettore; Auricchio, Ferdinando; Migliaccio, Antimo

    2013-01-01

    Background Hormones and growth factors influence the proliferation and invasiveness of human mesenchymal tumors. The highly aggressive human fibrosarcoma HT1080 cell line harbors classical androgen receptor (AR) that responds to androgens triggering cell migration in the absence of significant mitogenesis. As occurs in many human cancer cells, HT1080 cells also express epidermal growth factor receptor (EGFR). Experimental Findings: We report that the pure anti-androgen Casodex inhibits the growth of HT1080 cell xenografts in immune-depressed mice, revealing a novel role of AR in fibrosarcoma progression. In HT1080 cultured cells EGF, but not androgens, robustly increases DNA synthesis. Casodex abolishes the EGF mitogenic effect, implying a crosstalk between EGFR and AR. The mechanism underlying this crosstalk has been analyzed using an AR-derived small peptide, S1, which prevents AR/Src tyrosine kinase association and androgen-dependent Src activation. Present findings show that in HT1080 cells EGF induces AR/Src Association, and the S1 peptide abolishes both the assembly of this complex and Src activation. The S1 peptide inhibits EGF-stimulated DNA synthesis, cell matrix metalloproteinase-9 (MMP-9) secretion and invasiveness of HT1080 cells. Both Casodex and S1 peptide also prevent DNA synthesis and migration triggered by EGF in various human cancer-derived cells (prostate, breast, colon and pancreas) that express AR. Conclusion This study shows that targeting the AR domain involved in AR/Src association impairs EGF signaling in human fibrosarcoma HT1080 cells. The EGF-elicited processes inhibited by the peptide (DNA synthesis, MMP-9 secretion and invasiveness) cooperate in increasing the aggressive phenotype of HT1080 cells. Therefore, AR represents a new potential therapeutic target in human fibrosarcoma, as supported by Casodex inhibition of HT1080 cell xenografts. The extension of these findings in various human cancer-derived cell lines highlights the

  1. Inhibitory effect of delphinidin from Solanum melongena on human fibrosarcoma HT-1080 invasiveness in vitro.

    PubMed

    Nagase, H; Sasaki, K; Kito, H; Haga, A; Sato, T

    1998-04-01

    We investigated the inhibitory effect of eggplant (Solanum melongena var. marunasu) extract on human fibrosarcoma HT-1080 cell invasion of reconstituted basement membrane [Matrigel (MG)]. We found that the effective component of the plant extract was delphinidin, a flavonoid pigment contained in the peel. The extract and delphinidin did not affect tumor cell adhesion to MG or haptotactic migration to MG. HT-1080 secretes matrix metalloproteinase(MMP)-2 and MMP-9, which degrade extracellular matrix as part of the invasive process. Delphinidin slightly inhibited the activity of MMPs, which may have been responsible, in part, for the inhibition of tumor cell invasiveness. PMID:9581517

  2. Interleukin-2 and syngeneic bone marrow transplantation in a murine fibrosarcoma model.

    PubMed

    Ho, S P; Stebler, B; Ershler, W B

    1991-04-01

    Mice received interleukin-2 (IL-2) either before and after, or just after intravenous inoculation of syngeneic fibrosarcoma cells. Fewer pulmonary tumor colonies were observed in those animals treated with IL-2, and the best results were observed when IL-2 was administered prior to tumor inoculation. When mice were lethally irradiated and reconstituted with tumor-contaminated bone marrow, IL-2 treatment was also associated with fewer tumor lung colonies. IL-2 may prove to be a useful adjuvant therapy, particularly in the setting of autologous bone marrow transplantation when the infused marrow is contaminated with tumor cells. PMID:1873353

  3. Effect of Terminalia catappa on lipid profile in transplanted fibrosarcoma in rats

    PubMed Central

    Naitik, Pandya; Prakash, Tigari; Kotresha, Dupadahalli; Rao, Nadendla Rama

    2012-01-01

    To evaluate the effect of an antitumor activity of Terminalia catappa on lipid lowering activity in transplanted fibrosarcoma in Wistar albino rats. Methylcholantherene–induced fibrosarcoma was transplanted in rats. After 30th day when tumor became palpable, started the treatment of ethanolic extract of Terminalia catappa by orally (250 and 500 mg/kg) for a period of 20 days. The blood sample was collected on 21st day, and the liver and the kidney were also removed for studying the lipid profile in serum and the tissues. The levels of total cholesterol, triglycerides and very low density lipoprotein (VLDL) were markedly elevated and high density lipoprotein (HDL) was markedly decreased in the serum of tumor bearing rats. Significant alterations were also observed in the lipid profile of liver and kidney. These changes were significantly reversed in Terminalia catappa (500 mg/kg) treated animals. The reversal of altered lipid levels to normal values in rats with experimentally induced tumor was showed antitumor activity by Terminalia catappa. PMID:22701253

  4. Effect of Terminalia catappa on lipid profile in transplanted fibrosarcoma in rats.

    PubMed

    Naitik, Pandya; Prakash, Tigari; Kotresha, Dupadahalli; Rao, Nadendla Rama

    2012-05-01

    To evaluate the effect of an antitumor activity of Terminalia catappa on lipid lowering activity in transplanted fibrosarcoma in Wistar albino rats. Methylcholantherene-induced fibrosarcoma was transplanted in rats. After 30(th) day when tumor became palpable, started the treatment of ethanolic extract of Terminalia catappa by orally (250 and 500 mg/kg) for a period of 20 days. The blood sample was collected on 21(st) day, and the liver and the kidney were also removed for studying the lipid profile in serum and the tissues. The levels of total cholesterol, triglycerides and very low density lipoprotein (VLDL) were markedly elevated and high density lipoprotein (HDL) was markedly decreased in the serum of tumor bearing rats. Significant alterations were also observed in the lipid profile of liver and kidney. These changes were significantly reversed in Terminalia catappa (500 mg/kg) treated animals. The reversal of altered lipid levels to normal values in rats with experimentally induced tumor was showed antitumor activity by Terminalia catappa. PMID:22701253

  5. Skull sclerosing epithelioid fibrosarcoma: A case report and review of the literature

    PubMed Central

    XU, JINGJING; WANG, JIAWEI; ZHANG, MINMING; LI, BAIZHOU

    2016-01-01

    Sclerosing epithelioid fibrosarcoma (SEF) is an unusual variant of fibrosarcoma that was previously considered to be a low-grade tumor with an indolent course. The tumor occurs most commonly in the soft tissue of the limb, trunk, head and neck, and occasionally in the bone and visceral organs. The skull is a rare primary site for SEF, with only 3 cases reported to date. The current study reports a case of SEF occurring in the occipital bone of a 24-year-old man, who lacked neurological symptoms. Imaging revealed a large mass emanating from the occipital bone and involving the superior sagittal sinus, torcular herophili and adjacent brain tissue. Histological and immunohistochemical characteristics confirmed the diagnosis of SEF. The patient experienced local recurrence and distant metastasis at 10 and 15 months, respectively, subsequent to the resection of the primary mass. The current case and review of the literature suggest that skull SEF may behave clinically as an aggressive malignant sarcoma. Radiological findings indicated the biological and histopathological characteristics of the tumor. Thus, its clinical behavior and certain imaging features may suggest this diagnosis. PMID:27123127

  6. Paeonol Oxime Inhibits bFGF-Induced Angiogenesis and Reduces VEGF Levels in Fibrosarcoma Cells

    PubMed Central

    Han, Ihn; Jung, Ji Hoon; Lee, Eun-Ok; Zhu, Shudong; Chen, Chang-Yan; Kim, Sung-Hoon

    2010-01-01

    Background We previously reported the anti-angiogenic activity of paeonol isolated from Moutan Cortex. In the present study, we investigated the negative effect of paeonol oxime (PO, a paeonol derivative) on basic fibroblast growth factor (bFGF)-mediated angiogenesis in human umbilical vein endothelial cells (HUVECs) (including tumor angiogenesis) and pro-survival activity in HT-1080 fibrosarcoma cell line. Methodology/Principal Findings We showed that PO (IC50  = 17.3 µg/ml) significantly inhibited bFGF-induced cell proliferation, which was achieved with higher concentrations of paeonol (IC50 over 200 µg). The treatment with PO blocked bFGF-stimulated migration and in vitro capillary differentiation (tube formation) in a dose-dependent manner. Furthermore, PO was able to disrupt neovascularization in vivo. Interestingly, PO (25 µg/ml) decreased the cell viability of HT-1080 fibrosarcoma cells but not that of HUVECs. The treatment with PO at 12.5 µg/ml reduced the levels of phosphorylated AKT and VEGF expression (intracellular and extracelluar) in HT-1080 cells. Consistently, immunefluorescence imaging analysis revealed that PO treatment attenuated AKT phosphorylation in HT-1080 cells. Conclusions/Significance Taken together, these results suggest that PO inhibits bFGF-induced angiogenesis in HUVECs and decreased the levels of PI3K, phospho-AKT and VEGF in HT-1080 cells. PMID:20808805

  7. Tuftsin Augments Antitumor Efficacy of Liposomized Etoposide against Fibrosarcoma in Swiss Albino Mice

    PubMed Central

    Khan, Arif; Khan, Aijaz A; Dwivedi, Varun; Ahmad, Manzoor G; Hakeem, Seema; Owais, Mohammad

    2007-01-01

    Anticancer drugs are generally plagued by toxic manifestations at doses necessary for control of various forms of cancer. Incorporating such drugs into liposomes not only reduces toxicity but also enhances the therapeutic index. Some antioxidants and potent immunomodulators have also been shown to impart significant antitumor activity presumably by nonspecific activation of the host immune system. In the present study, we evaluated augmentation of the antitumor activity of etoposide (ETP) by the immunomodulator tuftsin in Swiss albino mice with fibrosarcoma. The efficacies of the free form of ETP, liposomized ETP (Lip-ETP), and tuftsin-bearing liposomized ETP (Tuft-Lip-ETP) formulations were evaluated on the basis of tumor regression, effect on expression level of p53wt and p53mut, and survival of the treated animals. Tuft-Lip-ETP, when administered at a dosage of 10 mg/kg body weight/day for five days, significantly reduced tumor volume, delayed tumor growth, and also up-regulated the expression of p53wt. In contrast, although Lip-ETP delayed tumor growth, it did not decrease tumor size. The results of the present study suggest that tuftsin incorporation in drug-loaded liposomes is a promising treatment strategy for various forms of cancers, including fibrosarcoma. PMID:17622310

  8. Oncogenic Activities of Human Papillomaviruses

    PubMed Central

    McLaughlin-Drubin, Margaret E.; Münger, Karl

    2009-01-01

    Infectious etiologies for certain human cancers have long been suggested by epidemiological studies and studies with animals. Important support for this concept came from the discovery by Harald zur Hausen’s group that human cervical carcinoma almost universally contains certain “high-risk” human papillomavirus (HPV) types. Over the years, much has been learned about the carcinogenic activities of high-risk HPVs. These studies have revealed that two viral proteins, E6 and E7, that are consistently expressed in HPV-associated carcinomas, are necessary for induction and maintenance of the transformed phenotype. Hence, HPV-associated tumors are unique amongst human solid tumors in that they are universally caused by exposure to the same, molecularly defined oncogenic agents, and the molecular signal transduction pathways subverted by these viral transforming agents are frequently disrupted in other, non-virus associated human cancers. PMID:19540281

  9. No change in mRNA expression of immune-related genes in peripheral blood mononuclear cells challenged with Theileria annulata in Murrah buffalo (Bubalus bubalis).

    PubMed

    Panigrahi, Manjit; Kumar, Amod; Bhushan, Bharat; Ghosh, Srikant; Saravanan, B C; Sulabh, Sourabh; Parida, Subhashree; Gaur, Gyanendra Kumar

    2016-07-01

    Water buffaloes (Bubalus bubalis) act as carrier to Theileria annulata and show less clinical sign of tropical theileriosis as compared to indigenous and exotic cattle. Differential expression of immune-related genes such as major histocompatibility complex, class II, DQ alpha 1 (MHC-DQα), signal-regulatory protein alpha (SIRPA), prion protein (PRNP), Toll-like receptor 10 (TLR10), c-musculoaponeurotic fibrosarcoma oncogene homolog (cMAF) and V-maf avian musculoaponeurotic fibrosarcoma oncogene homolog B (MAFB) genes influence host resistance to this disease in exotic, crossbred and indigenous cattle. In the present study we examined the differential mRNA expression of the abovesaid immune-related genes in response to T. annulata infection in buffaloes. Peripheral blood mononuclear cells (PBMCs) harvested from blood samples of buffaloes were challenged with ground-up tick supernatant carrying T. annulata sporozoites in vitro. After 48h of in vitro challenge qPCR was employed to measure the relative mRNA expression of MHC-DQα, SIRPA, PRNP, TLR10, cMAF and MAFB genes in infected and control PBMCs. In the current study, the selected genes showed no change in mRNA expression after T.annulata infection which indicates that they have little role in providing host resistance to theileriosis in buffaloes. PMID:26997138

  10. Lameness and pleural effusion associated with an aggressive fibrosarcoma in a horse.

    PubMed

    Jorgensen, J S; Geoly, F J; Berry, C R; Breuhaus, B A

    1997-05-01

    An 8-year-old Thoroughbred gelding was admitted for evaluation of chronic lameness of the left scapulohumeral joint of 3 months' duration. Radiography revealed a radiolucent lesion with the proximal portion of the humerus in the area of the metaphysis. Scintigraphy confirmed radiographic findings, with an increased uptake of technetium Tc 99m medronate in the proximal portion of the left humerus. A preliminary diagnosis of humeral fracture was made. Two weeks later, the horse was readmitted for clinical signs of respiratory distress. Radiographic and ultrasonographic evaluation revealed masses within the thoracic and abdominal cavities. The diagnosis was changed to neoplasm with multiple metastases. Because of the unfavorable prognosis, the horse was euthanatized. Necropsy findings confirmed an aggressive neoplasm. Special histochemical stains, immunohistochemistry, and electron microscopy were required to characterize the neoplasm as an anaplastic fibrosarcoma. Findings in this horse illustrate the importance of considering neoplasia, resulting in bone lesions, as a possible cause of chronic lameness in horses. PMID:9143540

  11. The radiosensitivity of a murine fibrosarcoma as measured by three cell survival assays.

    PubMed

    Rice, L; Urano, M; Suit, H D

    1980-04-01

    The radiation sensitivity of a weakly immunogenic spontaneous fibrosarcoma of the C3Hf/Sed mouse (designated FSa-II) was assessed by three in vivo cell survival methods: end-point dilution (TD50) assay, lung colony (LC) assay, and agar diffusion chamber (ADC) assay. The hypoxic fraction of this tumour was also determined by the ADC method. Although there was a good agreement of the cell survival data between the ADC and LC methods, the TD50 method yielded a considerably less steep cell survival curve. Beneficial aspects and limitations of each assay are discussed. In addition, the use of the ADC method for the growth of xenogeneic cell lines and a preliminary experiment with human tumour cells in non-immunosuppressed hosts suggest that this method may be a valuable adjunct for studying the growth and therapeutic responses of human tumour cells. PMID:6932931

  12. Unusual case of infantile fibrosarcoma evaluated on F-18 fluorodeoxyglucose positron emission tomography-computed tomography.

    PubMed

    Bedmutha, Akshay; Singh, Natasha; Shivdasani, Divya; Gupta, Nitin

    2016-01-01

    Infantile fibrosarcoma (IFS) is a rare soft-tissue sarcoma originating from extremities and occasionally from axial soft tissue. The prognosis is good with favorable long-term survival. It is rarely metastasizing tumor, the chances being lesser with IFS originating from extremities. Use of neoadjuvant chemotherapy (NACT) as a treatment regime further reduces the chances of local relapse and distant metastasis. The organs commonly affected in metastatic IFS are lungs and lymph nodes. We report an unusual case of an IFS originating from extremity, which received NACT, yet presented with an early metastatic disease involving soft tissues and sparing lungs and lymph nodes, as demonstrated on fluorodeoxyglucose positron emission tomography-computed tomography. PMID:27385891

  13. Unusual case of infantile fibrosarcoma evaluated on F-18 fluorodeoxyglucose positron emission tomography-computed tomography

    PubMed Central

    Bedmutha, Akshay; Singh, Natasha; Shivdasani, Divya; Gupta, Nitin

    2016-01-01

    Infantile fibrosarcoma (IFS) is a rare soft-tissue sarcoma originating from extremities and occasionally from axial soft tissue. The prognosis is good with favorable long-term survival. It is rarely metastasizing tumor, the chances being lesser with IFS originating from extremities. Use of neoadjuvant chemotherapy (NACT) as a treatment regime further reduces the chances of local relapse and distant metastasis. The organs commonly affected in metastatic IFS are lungs and lymph nodes. We report an unusual case of an IFS originating from extremity, which received NACT, yet presented with an early metastatic disease involving soft tissues and sparing lungs and lymph nodes, as demonstrated on fluorodeoxyglucose positron emission tomography-computed tomography. PMID:27385891

  14. Targeting oncogenic Ras signaling in hematologic malignancies

    PubMed Central

    Ward, Ashley F.; Braun, Benjamin S.

    2012-01-01

    Ras proteins are critical nodes in cellular signaling that integrate inputs from activated cell surface receptors and other stimuli to modulate cell fate through a complex network of effector pathways. Oncogenic RAS mutations are found in ∼ 25% of human cancers and are highly prevalent in hematopoietic malignancies. Because of their structural and biochemical properties, oncogenic Ras proteins are exceedingly difficult targets for rational drug discovery, and no mechanism-based therapies exist for cancers with RAS mutations. This article reviews the properties of normal and oncogenic Ras proteins, the prevalence and likely pathogenic role of NRAS, KRAS, and NF1 mutations in hematopoietic malignancies, relevant animal models of these cancers, and implications for drug discovery. Because hematologic malignancies are experimentally tractable, they are especially valuable platforms for addressing the fundamental question of how to reverse the adverse biochemical output of oncogenic Ras in cancer. PMID:22898602

  15. PPARγ1 phosphorylation enhances proliferation and drug resistance in human fibrosarcoma cells

    SciTech Connect

    Pang, Xiaojuan; Shu, Yuxin; Niu, Zhiyuan; Zheng, Wei; Wu, Haochen; Lu, Yan; Shen, Pingping

    2014-03-10

    Post-translational regulation plays a critical role in the control of cell growth and proliferation. The phosphorylation of peroxisome proliferator-activated receptor γ (PPARγ) is the most important post-translational modification. The function of PPARγ phosphorylation has been studied extensively in the past. However, the relationship between phosphorylated PPARγ1 and tumors remains unclear. Here we investigated the role of PPARγ1 phosphorylation in human fibrosarcoma HT1080 cell line. Using the nonphosphorylation (Ser84 to alanine, S84A) and phosphorylation (Ser84 to aspartic acid, S84D) mutant of PPARγ1, the results suggested that phosphorylation attenuated PPARγ1 transcriptional activity. Meanwhile, we demonstrated that phosphorylated PPARγ1 promoted HT1080 cell proliferation and this effect was dependent on the regulation of cell cycle arrest. The mRNA levels of cyclin-dependent kinase inhibitor (CKI) p21{sup Waf1/Cip1} and p27{sup Kip1} descended in PPARγ1{sup S84D} stable HT1080 cell, whereas the expression of p18{sup INK4C} was not changed. Moreover, compared to the PPARγ1{sup S84A}, PPARγ1{sup S84D} up-regulated the expression levels of cyclin D1 and cyclin A. Finally, PPARγ1 phosphorylation reduced sensitivity to agonist rosiglitazone and increased resistance to anticancer drug 5-fluorouracil (5-FU) in HT1080 cell. Our findings establish PPARγ1 phosphorylation as a critical event in human fibrosarcoma growth. These findings raise the possibility that chemical compounds that prevent the phosphorylation of PPARγ1 could act as anticancer drugs. - Highlights: • Phosphorylation attenuates PPARγ1 transcriptional activity. • Phosphorylated PPARγ1 promotes HT1080 cells proliferation. • PPARγ1 phosphorylation regulates cell cycle by mediating expression of cell cycle regulators. • PPARγ1 phosphorylation reduces sensitivity to agonist and anticancer drug. • Our findings establish PPARγ1 phosphorylation as a critical event in HT1080

  16. The epsin family of endocytic adaptors promotes fibrosarcoma migration and invasion.

    PubMed

    Coon, Brian G; Burgner, John; Camonis, Jacques H; Aguilar, R Claudio

    2010-10-22

    Abnormalities in the process of endocytosis are classically linked to malignant transformation through the deficient down-regulation of signaling receptors. The present study describes a non-classical mechanism that does not require internalization by which endocytic proteins affect cell migration and basement membrane invasion. Specifically, we found that the endocytic adaptor epsin binds and regulates the biological properties of the signaling molecule RalBP1 (Ral-binding protein 1). Epsin interacted with the N terminus of RalBP1 via its characteristic epsin N-terminal homology (ENTH) domain. A combination of siRNA-mediated knock-down and transfection of siRNA-resistant constructs in fibrosarcoma cells demonstrated that impairment of the epsin-RalBP1 interaction led to cell migration and basement membrane invasion defects. We found the ENTH domain was necessary and sufficient to sustain normal cell migration and invasion. Because all the epsin endocytic motifs reside in the C-terminal part of the molecule, these results suggest that this novel regulatory circuit does not require endocytosis. In addition, cells depleted of epsin-RalBP1 complex displayed deficient activation of Rac1 and Arf6 suggesting a signaling function for this novel interaction. Further, overexpression of either epsin or RalBP1 enhanced migration and invasion of fibrosarcoma cells. Collectively, our results indicate that epsin regulates RalBP1 function in Rac1- and Arf6-dependent pathways to ultimately affect cell migration and invasion. We propose that the observed up-regulation of both epsin and RalBP1 in certain cancers contributes to their invasive characteristics. PMID:20709745

  17. The Epsin Family of Endocytic Adaptors Promotes Fibrosarcoma Migration and Invasion*

    PubMed Central

    Coon, Brian G.; Burgner, John; Camonis, Jacques H.; Aguilar, R. Claudio

    2010-01-01

    Abnormalities in the process of endocytosis are classically linked to malignant transformation through the deficient down-regulation of signaling receptors. The present study describes a non-classical mechanism that does not require internalization by which endocytic proteins affect cell migration and basement membrane invasion. Specifically, we found that the endocytic adaptor epsin binds and regulates the biological properties of the signaling molecule RalBP1 (Ral-binding protein 1). Epsin interacted with the N terminus of RalBP1 via its characteristic epsin N-terminal homology (ENTH) domain. A combination of siRNA-mediated knock-down and transfection of siRNA-resistant constructs in fibrosarcoma cells demonstrated that impairment of the epsin-RalBP1 interaction led to cell migration and basement membrane invasion defects. We found the ENTH domain was necessary and sufficient to sustain normal cell migration and invasion. Because all the epsin endocytic motifs reside in the C-terminal part of the molecule, these results suggest that this novel regulatory circuit does not require endocytosis. In addition, cells depleted of epsin-RalBP1 complex displayed deficient activation of Rac1 and Arf6 suggesting a signaling function for this novel interaction. Further, overexpression of either epsin or RalBP1 enhanced migration and invasion of fibrosarcoma cells. Collectively, our results indicate that epsin regulates RalBP1 function in Rac1- and Arf6-dependent pathways to ultimately affect cell migration and invasion. We propose that the observed up-regulation of both epsin and RalBP1 in certain cancers contributes to their invasive characteristics. PMID:20709745

  18. Elastin peptides regulate HT-1080 fibrosarcoma cell migration and invasion through an Hsp90-dependent mechanism

    PubMed Central

    Donet, M; Brassart-Pasco, S; Salesse, S; Maquart, F-X; Brassart, B

    2014-01-01

    Background: The elastin-derived peptides (EDPs) exert protumoural activities by potentiating the secretion of matrix metalloproteinases (MMP) and the plasminogen–plasmin activating system. In the present paper, we studied heat-shock protein 90 (Hsp90) involvement in this mechanism. Methods: HT-1080 fibrosarcoma cell migration and invasion were studied in artificial wound assay and modified Boyden chamber assay, respectively. Heat-shock protein 90 was studied by western blot and immunofluorescence. Matrix metalloproteinase–2 and urokinase plasminogen activator (uPA) were studied by gelatin±plasminogen zymography and immunofluorescence. Heat-shock protein 90 partners were studied by immunoprecipitation. Messenger RNA expression was studied using real-time PCR. Small interfering RNAs were used to confirm the essential role of Hsp90. Results: We showed that kappa-elastin and VGVAPG elastin hexapeptide stimulated Hsp90, pro-MMP-2 and uPA secretion within 6 h, whereas AGVPGLGVG and GRKRK peptides had no effect. No increase of mRNA level was observed. Heat-shock protein 90-specific inhibitors inhibit EDP-stimulated HT-1080 cell-invasive capacity and restrained EDP-stimulated pro-MMP-2 and uPA secretions. The inhibitory effect was reproduced by using Hsp90-blocking antibody or Hsp90 knockdown by siRNA. Heat-shock protein 90 interacted with and stabilised uPA and pro-MMP-2 in conditioned culture media of HT-1080 fibrosarcoma cells. Conclusions: Taken together, our results demonstrate that EDPs exert protumoural activities through an Hsp90-dependent mechanism involving pro-MMP-2 and uPA. PMID:24874477

  19. RAS oncogenes: weaving a tumorigenic web

    PubMed Central

    Pylayeva-Gupta, Yuliya; Grabocka, Elda; Bar-Sagi, Dafna

    2013-01-01

    RAS proteins are essential components of signalling pathways that emanate from cell surface receptors. Oncogenic activation of these proteins owing to missense mutations is frequently detected in several types of cancer. A wealth of biochemical and genetic studies indicates that RAS proteins control a complex molecular circuitry that consists of a wide array of interconnecting pathways. In this Review, we describe how RAS oncogenes exploit their extensive signalling reach to affect multiple cellular processes that drive tumorigenesis. PMID:21993244

  20. Oncogene Overdose: Too Much of a Bad Thing for Oncogene-Addicted Cancer Cells

    PubMed Central

    Amin, Amit Dipak; Rajan, Soumya S.; Groysman, Matthew J.; Pongtornpipat, Praechompoo; Schatz, Jonathan H.

    2015-01-01

    Acquired resistance to targeted inhibitors remains a major, and inevitable, obstacle in the treatment of oncogene-addicted cancers. Newer-generation inhibitors may help overcome resistance mutations, and inhibitor combinations can target parallel pathways, but durable benefit to patients remains elusive in most clinical scenarios. Now, recent studies suggest a third approach may be available in some cases—exploitation of oncogene overexpression that may arise to promote resistance. Here, we discuss the importance of maintaining oncogenic signaling at “just-right” levels in cells, with too much signaling, or oncogene overdose, being potentially as detrimental as too little. This is highlighted in particular by recent studies of mutant-BRAF in melanoma and the fusion kinase nucleophosmin–anaplastic lymphoma kinase (NPM–ALK) in anaplastic large cell lymphoma. Oncogene overdose may be exploitable to prolong tumor control through intermittent dosing in some cases, and studies of acute lymphoid leukemias suggest that it may be specifically pharmacologically inducible. PMID:26688666

  1. Characterization of a novel fusion gene EML4-NTRK3 in a case of recurrent congenital fibrosarcoma

    PubMed Central

    Tannenbaum-Dvir, Sarah; Glade Bender, Julia L.; Church, Alanna J.; Janeway, Katherine A.; Harris, Marian H.; Mansukhani, Mahesh M.; Nagy, Peter L.; Andrews, Stuart J.; Murty, Vundavalli V.; Kadenhe-Chiweshe, Angela; Connolly, Eileen P.; Kung, Andrew L.; Dela Cruz, Filemon S.

    2015-01-01

    Abstract We describe the clinical course of a recurrent case of congenital fibrosarcoma diagnosed in a 9-mo-old boy with a history of hemimelia. Following complete surgical resection of the primary tumor, the patient subsequently presented with bulky bilateral pulmonary metastases 6 mo following surgery. Molecular characterization of the tumor revealed the absence of the prototypical ETV6-NTRK3 translocation. However, tumor characterization incorporating cytogenetic, array comparative genomic hybridization, and RNA sequencing analyses, revealed a somatic t(2;15)(2p21;15q25) translocation resulting in the novel fusion of EML4 with NTRK3. Cloning and expression of EML4-NTRK3 in murine fibroblast NIH 3T3 cells revealed a potent tumorigenic phenotype as assessed in vitro and in vivo. These results demonstrate that multiple fusion partners targeting NTRK3 can contribute to the development of congenital fibrosarcoma. PMID:27148571

  2. Characterization of a novel fusion gene EML4-NTRK3 in a case of recurrent congenital fibrosarcoma.

    PubMed

    Tannenbaum-Dvir, Sarah; Glade Bender, Julia L; Church, Alanna J; Janeway, Katherine A; Harris, Marian H; Mansukhani, Mahesh M; Nagy, Peter L; Andrews, Stuart J; Murty, Vundavalli V; Kadenhe-Chiweshe, Angela; Connolly, Eileen P; Kung, Andrew L; Dela Cruz, Filemon S

    2015-10-01

    We describe the clinical course of a recurrent case of congenital fibrosarcoma diagnosed in a 9-mo-old boy with a history of hemimelia. Following complete surgical resection of the primary tumor, the patient subsequently presented with bulky bilateral pulmonary metastases 6 mo following surgery. Molecular characterization of the tumor revealed the absence of the prototypical ETV6-NTRK3 translocation. However, tumor characterization incorporating cytogenetic, array comparative genomic hybridization, and RNA sequencing analyses, revealed a somatic t(2;15)(2p21;15q25) translocation resulting in the novel fusion of EML4 with NTRK3. Cloning and expression of EML4-NTRK3 in murine fibroblast NIH 3T3 cells revealed a potent tumorigenic phenotype as assessed in vitro and in vivo. These results demonstrate that multiple fusion partners targeting NTRK3 can contribute to the development of congenital fibrosarcoma. PMID:27148571

  3. Epithelial Dysplasia in Ameloblastic Fibrosarcoma Arising from Recurrent Ameloblastic Fibroma in a 26-Year-Old Iranian Man

    PubMed Central

    Mohsenifar, Zhaleh; Behrad, Samira; Abbas, Fatemeh Mashhadi

    2015-01-01

    Patient: Male, 26 Final Diagnosis: Ameloblastic fibrosarcoma Symptoms: Swelling Medication: — Clinical Procedure: Hemimandibulectomy Specialty: Dentistry Objective: Rare disease Background: Ameloblastic fibrosarcoma (AFS) is a rare malignant odontogenic tumor with a mesenchymal component, showing sarcomatous features and epithelial nests resembling ameloblastic fibroma (AF). Case Report: We report a case of AFS showing epithelial dysplasia arising in a recurrent AF in the left mandible after 3 years in a 26-year-old man, which is regarded as an uncommon histopathologic finding in AFS. We also emphasize the comprehensive clinical, radiographic, and histopathologic evaluation, and immunohistochemical staining of this patient. Conclusions: We conclude that it is important to consider malignancy alternations in the epithelial component of AFS, along with that of the mesenchymal component, to provide a proper diagnosis and treatment of recurrent AF. PMID:26289384

  4. The RET oncogene in papillary thyroid carcinoma.

    PubMed

    Prescott, Jason D; Zeiger, Martha A

    2015-07-01

    Papillary thyroid carcinoma (PTC) is the most common form of thyroid cancer, accounting for greater than 80% of cases. Surgical resection, with or without postoperative radioiodine therapy, remains the standard of care for patients with PTC, and the prognosis is generally excellent with appropriate treatment. Despite this, significant numbers of patients will not respond to maximal surgical and medical therapy and ultimately will die from the disease. This mortality reflects an incomplete understanding of the oncogenic mechanisms that initiate, drive, and promote PTC. Nonetheless, significant insights into the pathologic subcellular events underlying PTC have been discovered over the last 2 decades, and this remains an area of significant research interest. Chromosomal rearrangements resulting in the expression of fusion proteins that involve the rearranged during transfection (RET) proto-oncogene were the first oncogenic events to be identified in PTC. Members of this fusion protein family (the RET/PTC family) appear to play an oncogenic role in approximately 20% of PTCs. Herein, the authors review the current understanding of the clinicopathologic role of RET/PTC fusion proteins in PTC development and progression and the molecular mechanisms by which RET/PTCs exert their oncogenic effects on the thyroid epithelium. PMID:25731779

  5. Metabolic alterations accompanying oncogene-induced senescence

    PubMed Central

    Aird, Katherine M; Zhang, Rugang

    2014-01-01

    Senescence is defined as a stable cell growth arrest. Oncogene-induced senescence (OIS) occurs in normal primary human cells after activation of an oncogene in the absence of other cooperating oncogenic stimuli. OIS is therefore considered a bona fide tumor suppression mechanism in vivo. Indeed, overcoming OIS-associated stable cell growth arrest can lead to tumorigenesis. Although cells that have undergone OIS do not replicate their DNA, they remain metabolically active. A number of recent studies report significant changes in cellular metabolism during OIS, including alterations in nucleotide, glucose, and mitochondrial metabolism and autophagy. These alterations may be necessary for stable senescence-associated cell growth arrest, and overcoming these shifts in metabolism may lead to tumorigenesis. This review highlights what is currently known about alterations in cellular metabolism during OIS and the implication of OIS-associated metabolic changes in cellular transformation and the development of cancer therapeutic strategies. PMID:27308349

  6. Epigenetic Pathways of Oncogenic Viruses: Therapeutic Promises.

    PubMed

    El-Araby, Amr M; Fouad, Abdelrahman A; Hanbal, Amr M; Abdelwahab, Sara M; Qassem, Omar M; El-Araby, Moustafa E

    2016-02-01

    Cancerous transformation comprises different events that are both genetic and epigenetic. The ultimate goal for such events is to maintain cell survival and proliferation. This transformation occurs as a consequence of different features such as environmental and genetic factors, as well as some types of infection. Many viral infections are considered to be causative agents of a number of different malignancies. To convert normal cells into cancerous cells, oncogenic viruses must function at the epigenetic level to communicate with their host cells. Oncogenic viruses encode certain epigenetic factors that lead to the immortality and proliferation of infected cells. The epigenetic effectors produced by oncogenic viruses constitute appealing targets to prevent and treat malignant diseases caused by these viruses. In this review, we highlight the importance of epigenetic reprogramming for virus-induced oncogenesis, with special emphasis on viral epigenetic oncoproteins as therapeutic targets. The discovery of molecular components that target epigenetic pathways, especially viral factors, is also discussed. PMID:26754591

  7. Evaluation of the safety and efficacy of TRAIL and taurolidine use on human fibrosarcoma xenografts in vivo

    PubMed Central

    HARATI, KAMRAN; EMMELMANN, SABINE; BEHR, BJÖRN; GOERTZ, OLE; HIRSCH, TOBIAS; KAPALSCHINSKI, NICOLAI; KOLBENSCHLAG, JONAS; STRICKER, INGO; TANNAPFEL, ANDREA; LEHNHARDT, MARCUS; DAIGELER, ADRIEN

    2016-01-01

    Fibrosarcomas are rare malignant soft tissue tumours that exhibit a poor response to current therapeutic regimens. Previously, tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) and taurolidine were observed to induce apoptosis synergistically in HT1080 human fibrosarcoma cells in vitro. Consequently, the present study aimed to assess the safety and efficacy of TRAIL in combination with taurolidine on the local growth of fibrosarcoma xenografts in vivo. HT1080 fibrosarcoma cells were inoculated subcutaneously into both flanks of 49 athymic nude mice in order to establish tumour xenografts. TRAIL and taurolidine were applied intraperitoneally at various single and cumulative treatment doses. After 12 days, the experiment was terminated and surviving animals were euthanised. Tumour progression was determined during and following treatment. To assess the potential toxic effects of the two compounds, the organs (lung, liver, kidney and heart) of all animals were examined histologically. The results revealed that combined treatment with TRAIL and taurolidine significantly inhibited the growth of HT1080 xenografts, whereas untreated animals had steadily increasing tumours. The most effective combination was TRAIL at 2 µg per application (cumulative dose, 16 µg) and taurolidine at 30/15 mg per application (cumulative dose, 180 mg), reducing the mean size of implanted xenografts to 10.9 mm2 following treatment (vs. 48.9 mm2 in the control group; P=0.0100). Despite distinct tumour mass reduction, the rate of mortality was significantly increased in animals treated with TRAIL and taurolidine in a taurolidine dose-dependent manner; however, histological examinations of relevant organs revealed no evidence of systemic toxicity (mean survival time, 7.9 days in the treated groups vs. 12 days in the control group; P<0.0010). In summary, whilst the combination of TRAIL and taurolidine synergistically inhibited the growth of fibrosarcoma xenografts in vivo, it was

  8. Type I collagen gel protects murine fibrosarcoma L929 cells from TNFα-induced cell death

    SciTech Connect

    Wang, Hong-Ju; He, Wen-Qi; Chen, Ling; Liu, Wei-Wei; Xu, Qian; Xia, Ming-Yu; Hayashi, Toshihiko; Fujisaki, Hitomi; Hattori, Shunji; Tashiro, Shin-ichi; Onodera, Satoshi; Ikejima, Takashi

    2015-02-20

    Murine fibrosarcoma L929 cells have been used to test efficacy of proinflammatory cytokine TNFα. In the present study, we reported on protective effect of type I collagen gel used as L929 cell culture. L929 cell grew and proliferated well on collagen gel. However, the L929 cells exhibited cobblestone-like morphology which was much different from the spread fusiform shape when cultured on conventional cell dishes as well as the cells tended to aggregate. On conventional cell culture dishes, the cells treated with TNFα became round in shape and eventually died in a necroptotic manner. The cells cultured on collagen gel, however, were completely unaffected. TNFα treatment was reported to induce autophagy in L929 cells on the plastic dish, and therefore we investigated the effect of collagen gel on induction of autophagy. The results indicated that autophagy induced by TNFα treatment was much reduced when the cells were cultured on collagen gel. In conclusion, type I collagen gel protected L929 cell from TNFα-induced cell death. - Highlights: • Collagen gel culture changed the morphology of L929 cells. • L929 cell cultured on collagen gel were resistant to TNFα-induced cell death. • Collagen gel culture inhibited TNFα-induced autophagy in L929 cells.

  9. A case of interscapular fibrosarcoma in a dwarf rabbit (Oryctolagus cuniculus).

    PubMed

    Petterino, Claudio; Modesto, Paola; Strata, Daniela; Vascellari, Marta; Mutinelli, Franco; Ferrari, Angelo; Ratto, Alessandra

    2009-11-01

    A 1-year-old, intact, male dwarf rabbit (Oryctolagus cuniculus) was vaccinated against myxomatosis and rabbit viral hemorrhagic disease in February 1999, and a localized reaction appeared in the same anatomic site within a few days. No regression was observed after subcutaneous antibiotic treatment. The rabbit was kept under observation, and the swelling apparently disappeared in 3 months. The owner then decided to avoid any further subcutaneous drug administration. The referring veterinarian examined the animal on July 2006 for the sudden appearance of a nodular, 4.5 cm x 3.5 cm x 2.0 cm, subcutaneous mass located over the interscapular space. Fine-needle aspiration was performed, and a population of neoplastic spindle cells, rare pleomorphic multinucleated cells, and rare leukocytes were observed. The mass was surgically removed, fixed in 10% neutral buffered formalin, and routinely processed for histologic, histochemical, and immunohistochemical diagnostic investigation. The neoplastic tissue exhibited fascicles composed of malignant spindle-shaped cells with elongated to oval hyperchromatic nuclei and scant cytoplasm. Occasional multinucleated cells were also observed. The neoplastic cells were immunoreactive for vimentin but did not stain for smooth muscle actin, desmin, myoglobin, and cytokeratins (AE1/AE3). Moreover, the histochemical stain for aluminum was positive. The diagnosis was fibrosarcoma based on morphologic and immunohistochemical results. The histologic features of this neoplasm were remarkably similar to feline injection-site sarcoma. PMID:19901300

  10. Mechanistic investigation of toxicity of chromium oxide nanoparticles in murine fibrosarcoma cells

    PubMed Central

    Alarifi, Saud; Ali, Daoud; Alkahtani, Saad

    2016-01-01

    Chromium oxide nanoparticles (Cr2O3NPs) are widely used in polymers and paints. In the present study, we aimed to determine the toxicity of Cr2O3NPs in murine fibrosarcoma (L929) cells. The cytotoxicity of Cr2O3NPs was measured by MTT and neutral red uptake assays; Cr2O3NPs had significant cytotoxic effects on L929 cells. Enhancement of intracellular reactive oxygen species was observed in L929 cells after exposure to Cr2O3NPs. Cr2O3NPs produced caspase-3, indicating that exposure to Cr2O3NPs induced apoptosis. After exposure to Cr2O3NPs, the cellular glutathione level decreased and lipid peroxidation, superoxide dismutase, and catalase increased in a dose- and time-dependent manner. By using single-cell gel tests, we also observed increased DNA damage in a Cr2O3NP exposure-duration- and dose-dependent fashion. Cell toxicity and DNA damage may be useful biomarkers for determining the safety of Cr2O3NPs in human and animal health. PMID:27099490

  11. Pycnogenol (PYC) induces apoptosis in human fibrosarcoma (HFS) cells under metal-mediated oxidative stress.

    PubMed

    Park, Yeon Sun; Kim, Young Gon

    2011-01-01

    Pycnogenol (PYC), polyphenolic compounds with antioxidant activity, acted as a prooxidant. PYC caused oxidative stress in human fibrosarcoma cells (HFS) when administered following pretreatment with iron chloride. The generated reactive oxygen species (ROS) caused the formation of 8-hydroxy-2'-deoxyguanosine (8-OHdG) in DNA and resulted in more apoptosis in HFS cells than in the human fibroblastoma (HFB) cells. DNA damage and cellular viability at different PYC concentrations were closely consistent with cell growth, high performance liquid chromatography (HPLC), Enzyme Linked Immunosorbent Assay (ELISA) and assays of two major antioxidant enzymes, superoxide dismutase (SOD) and catalase. Although the presence of PYC induced total SOD and catalase activities under oxidative stress in dose dependent fashion, more apoptotic cells were induced in HFS cells with increased [8-OHdG] than in HFB cells. The results suggest that PYC selectively induced cell death in HFS cells. This further confirmed that PYC-induced apoptosis is mediated primarily through the activation of caspase-3 apoptotic marker in HFS cells but not in HFB cells. We conclude that PYC would behave as either antioxidant or prooxidant dependant upon the cellular types. PMID:22754951

  12. Glutathione replenishing potential of CeO₂ nanoparticles in human breast and fibrosarcoma cells.

    PubMed

    Akhtar, Mohd Javed; Ahamed, Maqusood; Alhadlaq, Hisham A; Khan, M A Majeed; Alrokayan, Salman A

    2015-09-01

    Recently, cerium oxide nanoparticles (CeO2 NPs) has been reported for multi-enzyme mimetic activities like that of superoxide dismutase and catalase. Here, we report glutathione (GSH) replenishing response by CeO2 NPs in human breast (MCF-7) and fibrosarcoma (HT-1080) cells. CeO2 NPs were found to be mostly cuboidal in shape with average diameter of 25 nm. Effects on cell viability, reactive oxygen species (ROS) generation, and mitochondrial outer membrane potential (MOMP) suggested CeO2 NPs to be reasonably non-cytotoxic. Data on membrane damage and lipid peroxidation correlated well with the cell viability results suggesting NPs of CeO2 to be biocompatible. Interestingly, CeO2 NPs significantly increased intracellular GSH in cells challenged with oxidants. Replenishment of depleted GSH in oxidatively challenged cells was comparable with the GSH restoring potential of known antioxidant N-acetyl cysteine (NAC), a precursor of GSH. Like NAC, CeO2 NPs significantly replenished depleted GSH in both cell types challenged with hydrogen peroxide (H2O2) and zinc oxide (ZnO) NPs. Moreover, CeO2 NPs treated cells were significantly protected from cytotoxicity caused by H2O2 and ZnO NPs. Our findings, therefore, suggest CeO2 NPs as a potential antioxidant rather than a toxic material. PMID:25965428

  13. Mechanistic investigation of toxicity of chromium oxide nanoparticles in murine fibrosarcoma cells.

    PubMed

    Alarifi, Saud; Ali, Daoud; Alkahtani, Saad

    2016-01-01

    Chromium oxide nanoparticles (Cr2O3NPs) are widely used in polymers and paints. In the present study, we aimed to determine the toxicity of Cr2O3NPs in murine fibrosarcoma (L929) cells. The cytotoxicity of Cr2O3NPs was measured by MTT and neutral red uptake assays; Cr2O3NPs had significant cytotoxic effects on L929 cells. Enhancement of intracellular reactive oxygen species was observed in L929 cells after exposure to Cr2O3NPs. Cr2O3NPs produced caspase-3, indicating that exposure to Cr2O3NPs induced apoptosis. After exposure to Cr2O3NPs, the cellular glutathione level decreased and lipid peroxidation, superoxide dismutase, and catalase increased in a dose- and time-dependent manner. By using single-cell gel tests, we also observed increased DNA damage in a Cr2O3NP exposure-duration- and dose-dependent fashion. Cell toxicity and DNA damage may be useful biomarkers for determining the safety of Cr2O3NPs in human and animal health. PMID:27099490

  14. [Establishment and characterization of human ovarian fibrosarcoma cell line and its sensitivity to anticancer agents].

    PubMed

    Kiyozuka, Y; Nishimura, H; Iwanaga, S; Yakushiji, M; Ito, K; Nakano, S; Tamori, N; Adachi, S; Noda, T; Imai, S

    1992-04-01

    We succeeded in establishing a cell line (KEN-3) for subculture from a fibrosarcoma which originated in the ovary in a girl aged 17 years. Its characteristics and sensitivity to anticancer agents are reported in this paper. 1. Characteristics of established cell line. Lined cells consist of multinucleated giant cells mixed among many spindle-shaped cells. They grow in small colonies and have none of the pavement-like arrangement characteristic of epithelial tumor cells. The number of chromosomes ranged from 45 to 128 (mode: pseudo-triploidy region, 65). The doubling time, cellular density and plating efficiency were 76.9 hours, 5.4 x 10(5)/cm2 and 30.2%, respectively. Concerning tumor markers, CEA and sialyl SSEA-1 were only produced in small quantities. Subculture was possible subcutaneously in the nude mouse with no capacity for the production of ascites. 2. Susceptibility to anticancer agents and GP170 expression. The in vitro susceptibility to about 12 types of anticancer agents was investigated with the MTT assay. IC50/PPC was shown to be less than 1 for Adriamycin only. The sensitivity to CDDP (IC50/PPC: 4.8) was low, and no sensitivity was observed at all to DTIC, which is used frequently for mesenchymal tumors. GP170 (mdr-1 products) was positive in established cells in immunohistochemical stain. PMID:1351514

  15. Phase-specific cytotoxicity in vivo of hydroxyurea on murine fibrosarcoma pulmonary nodules.

    PubMed Central

    Grdina, D. J.

    1982-01-01

    The cytotoxic effects in vivo of hydroxyurea (HU) on murine fibrosarcoma (FSa) cells grown as pulmonary tumours were determined. Tumour cells from 13-day-old nodules were made into suspension and separated on the basis of cell size by centrifugal elutriation. Flow microfluorometry (FMF) was used to determine the cell-cycle parameters and the relative synchrony of the separated populations, as well as the degree of contamination by normal diploid cells in each of the tumour-cell populations. HU cytotoxicity was tested by administering both a single 1 mg/g i.p. dose into mice that had been injected i.v. 20 min earlier with known numbers of synchronized viable FSa cells, and i.p. doses of 1 mg/g each into mice bearing 13-day-old pulmonary nodules. In the latter experiments, animals were killed 1 h after the last dose, and the tumour nodules were excised and made into a single-cell suspension and elutriated. Known numbers of cells from each fraction were injected into recipient mice to determine survival. In both sets of experiments, cell killing by HU correlated with the percentage of S-phase cells. The treatment of 13-day-old pulmonary nodules with 3 doses of HU also depleted the (G2+M) phase tumour cells and increased the heterogeneity between tumour subpopulations, as determined by FMF analysis. PMID:7073937

  16. Heparin effect on DNA synthesis in a murine fibrosarcoma cell line: influence of anionic density

    SciTech Connect

    Piepkorn, M.W.; Daynes, R.A.

    1983-09-01

    The effects of heparin subfractions on DNA synthesis in a murine cutaneous fibrosarcoma cell line were examined. Porcine mucosal heparin was preparatively fractionated for anionic charge density by DEAE-Sephadex chromatography and for molecular weight by Sephadex G-100 filtration. The cell line was plated from confluent monolayer cultures and grown in medium and fetal bovine serum, with or without a heparin fraction at a final concentration of 10 micrograms/ml. At intervals thereafter, the cells were pulsed with (/sup 3/H)thymidine. A low-charge density heparin fraction stimulated (/sup 3/H)thymidine incorporation (cpm/mg protein and cpm/cell) during the first 3 days of growth compared to control values without added heparin, whereas a high-charge density heparin fraction had little of this effect (186 +/- 35% of control vs. 101 +/- 14%, respectively; P less than .05). The augmentation of DNA synthesis observed with the low-charge density fraction correlated with increased proportions of cells in S and G2 phases compared with those of the controls, as determined by flow cytofluorometry. Low- and high-molecular-weight heparin fractions did not significantly alter DNA synthesis. Heparin subfractions are thus heterogeneous with respect to their effect on cellular DNA synthesis in this tumor line.

  17. Inhibitory effect of aminoethyl-chitooligosaccharides on invasion of human fibrosarcoma cells.

    PubMed

    Hong, Sugyeong; Ngo, Dai-Nghiep; Kim, Moon-Moo

    2016-07-01

    Chitooligosaccharides (COS) have been reported to show a variety of biological efficacies such as anti-bacterial activity, anti-tumor activity and immune activity. The purpose of this study is to investigate the inhibitory effect of aminoethyl-chitooligosaccharides (AE-COS) synthesized from COS that were substituted hydroxyl groups with aminoethyl group at C-6 position on cell invasion of human fibrosarcoma cells. First of all, the effect of AE-COS on cell viability was observed using MTT assay. The cytotoxicity of AE-COS was increased in a dose dependent manner. The inhibitory effects of AE-COS on the activity and expression level of MMP-2 and MMP-9 related to invasion of cancer cells were examined using gelatin zymography and western blot. It was found that AE-COS above 20μg/ml showed the inhibitory effect on the activity and expression of MMP-9. Furthermore, AE-COS at 20μg/ml reduced the expression level of p50, a part of NF-κB, compared with phorbol-12- myristate-13- acetate (PMA) group. The available data let us hypothesize that AE-COS could provide chemoprevention as an inhibitor against cell invasion associated with metastasis. PMID:27348727

  18. Malignant progression of a mouse fibrosarcoma by host cells reactive to a foreign body (gelatin sponge).

    PubMed Central

    Okada, F.; Hosokawa, M.; Hamada, J. I.; Hasegawa, J.; Kato, M.; Mizutani, M.; Ren, J.; Takeichi, N.; Kobayashi, H.

    1992-01-01

    The QR regressor tumour (QR-32), a fibrosarcoma which is unable to grow progressively in normal syngeneic C57BL/6 mice, was able to grow progressively in 13 out of 22 mice (59%) when it was subcutaneously coimplanted with gelatin sponge. We established four culture tumour lines from the resultant tumours (QRsP tumour lines). These QRsP tumour lines were able to grow progressively in mice even in the absence of gelatin sponge. The ability of QRsP tumour cells to colonise the lungs after intravenous injection and to produce high amounts of prostaglandin E2 (PGE2) during in vitro cell culture was much greater than that of parent QR-32 cells. These biological characteristics of QR-32 cells and QRsP tumour cells were found to be stable for at least 6 months when they were maintained in culture. We also observed that QR-32 cells were able to grow progressively in five out of 12 (42%) mice after coimplantation with plastic non-adherent peritoneal cells obtained from mice which had been intraperitoneally implanted with gelatin sponge. These host cells reactive to gelatin sponge increased the production of high amounts of PGE2 by QR-32 cells during 48 h coculture. Preliminary in vitro studies implicated the involvement of hydrogen peroxide and hydroxyl radical as some of the factors necessary to induce QR-32 cells to produce high amounts of PGE2 and to accelerate tumour progression. PMID:1419599

  19. Nano-Scaled Particles of Titanium Dioxide Convert Benign Mouse Fibrosarcoma Cells into Aggressive Tumor Cells

    PubMed Central

    Onuma, Kunishige; Sato, Yu; Ogawara, Satomi; Shirasawa, Nobuyuki; Kobayashi, Masanobu; Yoshitake, Jun; Yoshimura, Tetsuhiko; Iigo, Masaaki; Fujii, Junichi; Okada, Futoshi

    2009-01-01

    Nanoparticles are prevalent in both commercial and medicinal products; however, the contribution of nanomaterials to carcinogenesis remains unclear. We therefore examined the effects of nano-sized titanium dioxide (TiO2) on poorly tumorigenic and nonmetastatic QR-32 fibrosarcoma cells. We found that mice that were cotransplanted subcutaneously with QR-32 cells and nano-sized TiO2, either uncoated (TiO2−1, hydrophilic) or coated with stearic acid (TiO2−2, hydrophobic), did not form tumors. However, QR-32 cells became tumorigenic after injection into sites previously implanted with TiO2−1, but not TiO2−2, and these developing tumors acquired metastatic phenotypes. No differences were observed either histologically or in inflammatory cytokine mRNA expression between TiO2−1 and TiO2−2 treatments. However, TiO2−2, but not TiO2−1, generated high levels of reactive oxygen species (ROS) in cell-free conditions. Although both TiO2−1 and TiO2−2 resulted in intracellular ROS formation, TiO2−2 elicited a stronger response, resulting in cytotoxicity to the QR-32 cells. Moreover, TiO2−2, but not TiO2−1, led to the development of nuclear interstices and multinucleate cells. Cells that survived the TiO2 toxicity acquired a tumorigenic phenotype. TiO2-induced ROS formation and its related cell injury were inhibited by the addition of antioxidant N-acetyl-l-cysteine. These results indicate that nano-sized TiO2 has the potential to convert benign tumor cells into malignant ones through the generation of ROS in the target cells. PMID:19815711

  20. Recurrent EWSR1-CREB3L1 gene fusions in sclerosing epithelioid fibrosarcoma.

    PubMed

    Arbajian, Elsa; Puls, Florian; Magnusson, Linda; Thway, Khin; Fisher, Cyril; Sumathi, Vaiyapuri P; Tayebwa, Johnbosco; Nord, Karolin H; Kindblom, Lars-Gunnar; Mertens, Fredrik

    2014-06-01

    Sclerosing epithelioid fibrosarcoma (SEF) and low-grade fibromyxoid sarcoma (LGFMS) are 2 distinct types of sarcoma, with a subset of cases showing overlapping morphologic and immunohistochemical features. LGFMS is characterized by expression of the MUC4 protein, and about 90% of cases display a distinctive FUS-CREB3L2 gene fusion. In addition, SEF is often MUC4 positive, but is genetically less well studied. Fluorescence in situ hybridization (FISH) studies have shown involvement of the FUS gene in the majority of so-called hybrid LGFMS/SEF and in 10% to 25% of sarcomas with pure SEF morphology. In this study, we investigated a series of 10 primary tumors showing pure SEF morphology, 4 cases of LGFMS that at local or distant relapse showed predominant SEF morphology, and 1 primary hybrid LGFMS/SEF. All but 1 case showed diffuse expression for MUC4. Using FISH, reverse transcription polymerase chain reaction, and/or mRNA sequencing in selected cases, we found recurrent EWSR1-CREB3L1 fusion transcripts by reverse transcription polymerase chain reaction in 3/10 pure SEF cases and splits and deletions of the EWSR1 and/or CREB3L1 genes by FISH in 6 additional cases. All 5 cases of LGFMS with progression to SEF morphology or hybrid features had FUS-CREB3L2 fusion transcripts. Our results indicate that EWSR1 and CREB3L1 rearrangements are predominant over FUS and CREB3L2 rearrangements in pure SEF, highlighting that SEF and LGFMS are different tumor types, with different impacts on patient outcome. PMID:24441665

  1. Cyclic-radiation response of murine fibrosarcoma cells grown as pulmonary nodules

    SciTech Connect

    Grdina, D.J.; Hunter, N.

    1982-10-01

    The radiation age response of murine fibrosarcoma (FSa) cells grown as pulmonary nudules in C/sub 3/Hf/Kam mice was determined. FSa cells were irradiated in vivo either with 10 Gy as 14 day-old lung tumors (i.e., artifical micrometastases) following cell separation and synchronization by centrifugal elutriation. Flow microfluorometry (FMF) was used to determine cell-cycle parameters and the relative synchrony of the separated populations, as well as the percent contamination of normal diploid cells in each of the tumor cells populations. Tumor populations containing up to 90% G/sub 1/-, 60% S-, and 75% G/sub 2/+M-phase tumor cells were obtained. Cell clonogenicity, determined using a lung colony assay, ranged from 0.7 to 6% for control FSa cells from the various elutriator fractions. The radiation sensitivity of these separated cell populations varied by a factor of 6, regardless of whether the cells were irradiated as artifical micro or macro-metastases. In each experiment, tumor population most enriched in S-phase cells exhibited the greatest radiation sensitivity. To confirm that these populations were highly enriched in S-phase cells and to demonstrate that they were more radiosensitive than FSa cells in other parts of the cell cycle, the elutriated tumor population were exposed to either suicide labeling by high specific activity tritated thymidine or hydroxyurea. The resultant age response curves were qualitatively similar to those obtained following irradiation and reflected the S-phase sensitivity of FSa cells to these agents.

  2. Cyclic-radiation response of murine fibrosarcoma cells grown as pulmonary nodules

    SciTech Connect

    Grdina, D.J.; Hunter, N.

    1982-10-01

    The radiation age response of murine fibrosarcoma (FSa) cells grown as pulmonary nodules in C/sub 3/Hf/Kam mice was determined. FSa cells were irradiated in vivo either with 10 Gy as 14 day-old lung tumors (i.e., artificial macrometastases) prior to cell separation or with 5 Gy as single cells trapped in the lungs of recipient mice (i.e., artificial micrometastases) following cell separation and synchronization by centrifugal elutriation. Flow microfluorometry (FMF) was used to determine cell-cycle parameters and the relative synchrony of the separated populations, as well as the percent contamination of normal diploid cells in each of the tumor cell populations. Tumor populations containing up to 90% G/sub 1/, 60% S-, and 75% G/sub 2/+M-phase tumor cells were obtained. Cell clonogenicity, determined using a lung colony assay, ranged from 0.7 to 6% for control FSa cells from the various elutriator fractions. The radiation sensitivity of these separated cell populations varied by a factor of 6, regardless of whether the cells were irradiated as artificial micro or macro-metastases. In each experiment, tumor populations most enriched in s-phase cells exhibited the greatest radiation sensitivity. To confirm that these populations were highly enriched in S-phase cells and to demonstrate that they were more radiosensitive than FSa cells in other parts of the cell cycle, the elutriated tumor populations were exposed to either suicide labeling by high specific activity tritiated thymidine or hydroxyurea. The resultant age response curves were qualitatively similar to those obtained following irradiation and reflected the S-phase sensitivity of FSa cells to these agents.

  3. Function of oncogenes in cancer development: a changing paradigm

    PubMed Central

    Vicente-Dueñas, Carolina; Romero-Camarero, Isabel; Cobaleda, Cesar; Sánchez-García, Isidro

    2013-01-01

    Tumour-associated oncogenes induce unscheduled proliferation as well as genomic and chromosomal instability. According to current models, therapeutic strategies that block oncogene activity are likely to selectively target tumour cells. However, recent evidences have revealed that oncogenes are only essential for the proliferation of some specific tumour cell types, but not all. Indeed, the latest studies of the interactions between the oncogene and its target cell have shown that oncogenes contribute to cancer development not only by inducing proliferation but also by developmental reprogramming of the epigenome. This provides the first evidence that tumorigenesis can be initiated by stem cell reprogramming, and uncovers a new role for oncogenes in the origin of cancer. Here we analyse these evidences and propose an updated model of oncogene function that can explain the full range of genotype–phenotype associations found in human cancer. Finally, we discuss how this vision opens new avenues for developing novel anti-cancer interventions. PMID:23632857

  4. Structure of mutant human oncogene protein determined

    SciTech Connect

    Baum, R.

    1989-01-16

    The protein encoded by a mutant human oncogene differs only slightly in structure from the native protein that initiates normal cell division, a finding that may complicate efforts to develop inhibitors of the mutant protein. Previously, the x-ray structure of the protein encoded by the normal c-Ha-ras gene, a protein believed to signal cells to start or stop dividing through its interaction with guanosine triphosphate (GTP), was reported. The structure of the protein encoded by a transforming c-Ha-ras oncogene, in which a valine codon replaces the normal glycine codon at position 12 in the gene, has now been determined. The differences in the structures of the mutant and normal proteins are located primarily in a loop that interacts with the /beta/-phosphate of a bound guanosine diphosphate (GDP) molecule.

  5. TARGETING ONCOGENIC BRAF IN HUMAN CANCER

    PubMed Central

    Pratilas, Christine; Xing, Feng; Solit, David

    2012-01-01

    MAPK pathway activation is a frequent event in human cancer and is often the result of activating mutations in the BRAF and RAS oncogenes. BRAF missense kinase domain mutations, the vast majority of which are V600E, occur in approximately 8% of human tumors. These mutations, which are non-overlapping in distribution with RAS mutations, are observed most frequently in melanoma but also in tumors arising in the colon, thyroid, lung and other sites. Supporting its classification as an oncogene, V600EBRAF stimulates ERK signaling, induces proliferation and is capable of promoting transformation. Given the frequent occurrence of BRAF mutations in human cancer and the continued requirement for BRAF activity in the tumors in which it is mutated, efforts are underway to develop targeted inhibitors of BRAF and its downstream effectors. These agents offer the possibility of greater efficacy and less toxicity than the systemic therapies currently available for tumors driven by activating mutations in the MAPK pathway. Early clinical results with the BRAF-selective inhibitors PLX4032 and GSK2118436 suggest that this strategy will prove successful in a select group of patients whose tumors are driven by oncogenic BRAF. PMID:21818706

  6. Oncogenes in Cell Survival and Cell Death

    PubMed Central

    Shortt, Jake; Johnstone, Ricky W.

    2012-01-01

    The transforming effects of proto-oncogenes such as MYC that mediate unrestrained cell proliferation are countered by “intrinsic tumor suppressor mechanisms” that most often trigger apoptosis. Therefore, cooperating genetic or epigenetic effects to suppress apoptosis (e.g., overexpression of BCL2) are required to enable the dual transforming processes of unbridled cell proliferation and robust suppression of apoptosis. Certain oncogenes such as BCR-ABL are capable of concomitantly mediating the inhibition of apoptosis and driving cell proliferation and therefore are less reliant on cooperating lesions for transformation. Accordingly, direct targeting of BCR-ABL through agents such as imatinib have profound antitumor effects. Other oncoproteins such as MYC rely on the anti-apoptotic effects of cooperating oncoproteins such as BCL2 to facilitate tumorigenesis. In these circumstances, where the primary oncogenic driver (e.g., MYC) cannot yet be therapeutically targeted, inhibition of the activity of the cooperating antiapoptotic protein (e.g., BCL2) can be exploited for therapeutic benefit. PMID:23209150

  7. Effects of Toxoplasma gondii and Toxocara canis Antigens on WEHI-164 Fibrosarcoma Growth in a Mouse Model

    PubMed Central

    Shirzad, Hedayatollah; Mansoori, Fataneh; Zabardast, Nozhat; Mahmoodzadeh, Mahdi

    2009-01-01

    Cancer is the main cause of death in developed countries. However, in underdeveloped countries infections and parasitic diseases are the main causes of death. There are raising scientific evidences indicating that parasitic infections induce antitumor activity against certain types of cancers. In this study, the effects of Toxoplasma gondii and Toxocara canis egg antigens in comparison with Bacillus Calmette Guerin (BCG) (known to have anticancer distinctive) on WEHI-164 fibosarcoma transplanted to BALB/c mice was investigated. Groups of 6 male BALB/c mice injected with T. gondii antigen, BCG, or T. canis egg antigen as case groups and alum alone as control groups. All mice were then challenged with WEHI-164 fibrosarcoma cells. The mice were examined for growth of the solid tumor and the tumor sizes were measured every other day up to 4 wk. The mean tumor area in T. gondii, BCG, or alum alone injected mice in 4 different days of measurements was 25 mm2, 23 mm2, and 186 mm2 respectively. Also the mean tumor area in T. canis injected mice in 4 different days was 25.5 mm2 compared to the control group (alum treated) which was 155 mm2. T. gondii parasites and T. canis egg antigens induced inhibition of the tumor growth in the fibrosarcoma mouse model. We need further study to clarify the mechanisms of anti-cancer effects. PMID:19488426

  8. Applications of calcium electroporation to effective apoptosis induction in fibrosarcoma cells and stimulation of normal muscle cells.

    PubMed

    Zielichowska, Anna; Daczewska, Małgorzata; Saczko, Jolanta; Michel, Olga; Kulbacka, Julita

    2016-06-01

    The electroporation (EP) supports various types of anticancer therapies by the selective transport of cytostatics. Increase in intracellular calcium level by EP may be a new approach to fibrosarcoma treatment. Calcium is one of the most important factors of cell proliferation, differentiation and cell death (apoptosis or necrosis). Calcium level balanced by electroporation can cause different effects on normal and pathological cells. The efficiency and safety of electroporation combined with Ca(2+) ions were examined in our study. The two muscle cell lines were used: normal rat skeletal muscle cells - L6 and cancer muscle cells - Wehi-164 (fibrosarcoma). Two CaCl2 concentrations were tested: 0.5 mM and 5 mM combined with EP parameters: 1000 V/cm, 1200 V/cm, and 1500 V/cm. The results show that EP supported by Ca(2+) is cytotoxic for Wehi-164 cells and simultaneously safe for normal muscle cells. The main type of cell death - apoptosis - was confirmed by Tunnel and Annexin V/PI assay. Additionally, sPLA2 pro-tumorigenic influence was proved by immunocytochemistry. Moreover, EP with 0.5 mM of Ca(2+) slightly stimulates the normal muscle cells - L6 to increase proliferation. PMID:26874618

  9. Antioxidant Effect of Berberine and its Phenolic Derivatives Against Human Fibrosarcoma Cells.

    PubMed

    Pongkittiphan, Veerachai; Chavasiri, Warinthorn; Supabphol, Roongtawan

    2015-01-01

    Berberine (B1), isolated from stems of Coscinium fenestratum (Goetgh.) Colebr, was used as a principle structure to synthesize three phenolic derivatives: berberrubine (B2) with a single phenolic group, berberrubine chloride (B3) as a chloride counter ion derivative, and 2,3,9,10-tetra-hydroxyberberine chloride (B4) with four phenolic groups, to investigate their direct and indirect antioxidant activities. For DPPH assay, compounds B4, B3, and B2 showed good direct antioxidant activity (IC50 values=10.7±1.76, 55.2±2.24, and 87.4±6.65 μM, respectively) whereas the IC50 value of berberine was higher than 500 μM. Moreover, compound B4 exhibited a better DPPH scavenging activity than BHT as a standard antioxidant (IC50=72.7±7.22 μM) due to the ortho position of hydroxyl groups and its capacity to undergo intramolecular hydrogen bonding. For cytotoxicity assay against human fibrosarcoma cells (HT1080) using MTT reagent, the sequence of IC50 value at 7-day treatment stated that B1

  10. Activation of proto-oncogenes by disruption of chromosome neighborhoods.

    PubMed

    Hnisz, Denes; Weintraub, Abraham S; Day, Daniel S; Valton, Anne-Laure; Bak, Rasmus O; Li, Charles H; Goldmann, Johanna; Lajoie, Bryan R; Fan, Zi Peng; Sigova, Alla A; Reddy, Jessica; Borges-Rivera, Diego; Lee, Tong Ihn; Jaenisch, Rudolf; Porteus, Matthew H; Dekker, Job; Young, Richard A

    2016-03-25

    Oncogenes are activated through well-known chromosomal alterations such as gene fusion, translocation, and focal amplification. In light of recent evidence that the control of key genes depends on chromosome structures called insulated neighborhoods, we investigated whether proto-oncogenes occur within these structures and whether oncogene activation can occur via disruption of insulated neighborhood boundaries in cancer cells. We mapped insulated neighborhoods in T cell acute lymphoblastic leukemia (T-ALL) and found that tumor cell genomes contain recurrent microdeletions that eliminate the boundary sites of insulated neighborhoods containing prominent T-ALL proto-oncogenes. Perturbation of such boundaries in nonmalignant cells was sufficient to activate proto-oncogenes. Mutations affecting chromosome neighborhood boundaries were found in many types of cancer. Thus, oncogene activation can occur via genetic alterations that disrupt insulated neighborhoods in malignant cells. PMID:26940867

  11. Oncogenic role of nucleophosmin/B23.

    PubMed

    Yung, Benjamin Yat Ming

    2007-01-01

    Nucleophosmin/B23 was first identified as a nucleolar protein expressed at higher levels in cancer cells compared to normal cells. Nucleophosmin/B23 has long been thus thought to have a role in tumor formation. With our efforts and others in the last 15 years, nucleophosmin/B23 has proven to have an oncogenic role. In this review, we provide evidence suggesting that nucleophosmin/B23 may be a crucial gene in regulation of cancer growth and discuss how nucleophosmin/B23 can contribute to tumorigenesis. PMID:17939258

  12. Melanoma: oncogenic drivers and the immune system

    PubMed Central

    Karachaliou, Niki; Pilotto, Sara; Teixidó, Cristina; Viteri, Santiago; González-Cao, María; Riso, Aldo; Morales-Espinosa, Daniela; Molina, Miguel Angel; Chaib, Imane; Santarpia, Mariacarmela; Richardet, Eduardo; Bria, Emilio

    2015-01-01

    Advances and in-depth understanding of the biology of melanoma over the past 30 years have contributed to a change in the consideration of melanoma as one of the most therapy-resistant malignancies. The finding that oncogenic BRAF mutations drive tumor growth in up to 50% of melanomas led to a molecular therapy revolution for unresectable and metastatic disease. Moving beyond BRAF, inactivation of immune regulatory checkpoints that limit T cell responses to melanoma has provided targets for cancer immunotherapy. In this review, we discuss the molecular biology of melanoma and we focus on the recent advances of molecularly targeted and immunotherapeutic approaches. PMID:26605311

  13. Hedgehog Cholesterolysis: Specialized Gatekeeper to Oncogenic Signaling.

    PubMed

    Callahan, Brian P; Wang, Chunyu

    2015-01-01

    Discussions of therapeutic suppression of hedgehog (Hh) signaling almost exclusively focus on receptor antagonism; however, hedgehog's biosynthesis represents a unique and potentially targetable aspect of this oncogenic signaling pathway. Here, we review a key biosynthetic step called cholesterolysis from the perspectives of structure/function and small molecule inhibition. Cholesterolysis, also called cholesteroylation, generates cholesterol-modified Hh ligand via autoprocessing of a hedgehog precursor protein. Post-translational modification by cholesterol appears to be restricted to proteins in the hedgehog family. The transformation is essential for Hh biological activity and upstream of signaling events. Despite its decisive role in generating ligand, cholesterolysis remains conspicuously unexplored as a therapeutic target. PMID:26473928

  14. Targeting oncogenes to improve breast cancer chemotherapy.

    PubMed

    Christensen, Laura A; Finch, Rick A; Booker, Adam J; Vasquez, Karen M

    2006-04-15

    Despite recent advances in treatment, breast cancer remains a serious health threat for women. Traditional chemotherapies are limited by a lack of specificity for tumor cells and the cell cycle dependence of many chemotherapeutic agents. Here we report a novel strategy to help overcome these limitations. Using triplex-forming oligonucleotides (TFOs) to direct DNA damage site-specifically to oncogenes overexpressed in human breast cancer cells, we show that the effectiveness of the anticancer nucleoside analogue gemcitabine can be improved significantly. TFOs targeted to the promoter region of c-myc directly inhibited gene expression by approximately 40%. When used in combination, specific TFOs increased the incorporation of gemcitabine at the targeted site approximately 4-fold, presumably due to induction of replication-independent DNA synthesis. Cells treated with TFOs and gemcitabine in combination showed a reduction in both cell survival and capacity for anchorage-independent growth (approximately 19% of untreated cells). This combination affected the tumorigenic potential of these cancer cells to a significantly greater extent than either treatment alone. This novel strategy may be used to increase the range of effectiveness of antitumor nucleosides in any tumor which overexpresses a targetable oncogene. Multifaceted chemotherapeutic approaches such as this, coupled with triplex-directed gene targeting, may lead to more than incremental improvements in nonsurgical treatment of breast tumors. PMID:16618728

  15. TP53: an oncogene in disguise

    PubMed Central

    Soussi, T; Wiman, K G

    2015-01-01

    The standard classification used to define the various cancer genes confines tumor protein p53 (TP53) to the role of a tumor suppressor gene. However, it is now an indisputable fact that many p53 mutants act as oncogenic proteins. This statement is based on multiple arguments including the mutation signature of the TP53 gene in human cancer, the various gains-of-function (GOFs) of the different p53 mutants and the heterogeneous phenotypes developed by knock-in mouse strains modeling several human TP53 mutations. In this review, we will shatter the classical and traditional image of tumor protein p53 (TP53) as a tumor suppressor gene by emphasizing its multiple oncogenic properties that make it a potential therapeutic target that should not be underestimated. Analysis of the data generated by the various cancer genome projects highlights the high frequency of TP53 mutations and reveals that several p53 hotspot mutants are the most common oncoprotein variants expressed in several types of tumors. The use of Muller's classical definition of mutations based on quantitative and qualitative consequences on the protein product, such as ‘amorph', ‘hypomorph', ‘hypermorph' ‘neomorph' or ‘antimorph', allows a more meaningful assessment of the consequences of cancer gene modifications, their potential clinical significance, and clearly demonstrates that the TP53 gene is an atypical cancer gene. PMID:26024390

  16. Infantile Fibrosarcoma With NTRK3-ETV6 Fusion Successfully Treated With the Tropomyosin-Related Kinase Inhibitor LOXO-101.

    PubMed

    Nagasubramanian, Ramamoorthy; Wei, Julie; Gordon, Paul; Rastatter, Jeff C; Cox, Michael C; Pappo, Alberto

    2016-08-01

    Infantile fibrosarcoma (IFS) is a rare pediatric cancer typically presenting in the first 2 years of life. Surgical resection is usually curative and chemotherapy is active against gross residual disease. However, when recurrences occur, therapeutic options are limited. We report a case of refractory IFS with constitutive activation of the tropomyosin-related kinase (TRK) signaling pathway from an ETS variant gene 6-neurotrophin 3 receptor gene (ETV6-NTRK3) gene fusion. The patient enrolled in a pediatric Phase 1 trial of LOXO-101, an experimental, highly selective inhibitor of TRK. The patient experienced a rapid, radiographic response, demonstrating the potential for LOXO-101 to provide benefit for IFS harboring NTRK gene fusions. PMID:27093299

  17. Primary renal sclerosing epithelioid fibrosarcoma: report of 2 cases with EWSR1-CREB3L1 gene fusion.

    PubMed

    Argani, Pedram; Lewin, Jack R; Edmonds, Pamela; Netto, George J; Prieto-Granada, Carlos; Zhang, Lei; Jungbluth, Achim A; Antonescu, Cristina R

    2015-03-01

    We report the first 2 genetically confirmed cases of primary renal sclerosing epithelioid fibrosarcoma (SEF), occurring in a 17-year-old boy and a 61-year-old woman. In both cases, the tumors demonstrated the typical epithelioid clear cell morphology associated with extensive hyalinizing fibrosis, raising the differential diagnosis of solitary fibrous tumor, metanephric stromal tumor, and the sclerosing variant of clear cell sarcoma of the kidney. Both neoplasms demonstrated diffuse immunoreactivity for MUC4, a highly specific marker for SEF, and both demonstrated evidence of rearrangement of both the EWSR1 and CREB3L1 genes, which have recently been shown to be fused in this entity. Both neoplasms presented with metastatic disease. Primary renal SEF represents yet another translocation-associated sarcoma now shown to arise primarily in the kidney. PMID:25353281

  18. MEK1act/tubulin interaction is an important determinant of mitotic stability in cultured HT1080 human fibrosarcoma cells

    PubMed Central

    Cao, Jia-ning; Shafee, Norazizah; Vickery, Larry; Kaluz, Stefan; Ru, Ning; Stanbridge, Eric J.

    2010-01-01

    Activation of the MAPK pathway plays a major role in neoplastic cell transformation. Using a proteomics approach we identified α tubulin and β tubulin as proteins that interact with activated MEK1, a central MAPK regulatory kinase. Confocal analysis revealed spatio-temporal control of MEK1-tubulin co-localization that was most prominent in the mitotic spindle apparatus in variant HT1080 human fibrosarcoma cells. Peptide arrays identified the critical role of positively charged amino acids R108, R113, R160 and K157 on the surface of MEK1 for tubulin interaction. Overexpression of activated MEK1 caused defects in spindle arrangement, chromosome segregation and ploidy. In contrast, chromosome polyploidy was reduced in the presence of an activated MEK1 mutant (R108A, R113A) that disrupted interactions with tubulin. Our findings indicate the importance of signaling by activated MEK1-tubulin in spindle organization and chromosomal instability. PMID:20570892

  19. 40 CFR 798.3320 - Combined chronic toxicity/oncogenicity.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 32 2014-07-01 2014-07-01 false Combined chronic toxicity/oncogenicity. 798.3320 Section 798.3320 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Chronic Exposure § 798.3320 Combined chronic toxicity/oncogenicity....

  20. Sclerosing epithelioid fibrosarcoma of the kidney: clinicopathologic and molecular study of a rare neoplasm at a novel location.

    PubMed

    Ohlmann, Carsten-Henning; Brecht, Ines B; Junker, Kerstin; van der Zee, Jill A; Nistor, Adriana; Bohle, Rainer M; Stöckle, Michael; Metzler, Markus; Hartmann, Arndt; Agaimy, Abbas

    2015-08-01

    Sclerosing epithelioid fibrosarcoma (SEF) is a rare fibrosarcoma variant with specific histomorphology and consistent translocation (EWSR1-CREB3L1/2). To date, 110 cases have been reported; only 15 originated within the abdomen. With only 2 cases reported parallel to our study and one case briefly mentioned in a previous series, primary renal SEF is exceptionally rare but might be underrecognized. We herein describe 2 cases affecting a 23-year-old woman and a 43-year-old man. Tumor size was 22 and 4.2 cm, respectively. Patient 1 developed skeletal and multiple pulmonary metastases. She died of disease 82 months later, despite aggressive multimodality therapy. Patient 2 has no evidence of recurrence or metastasis (8 months after surgery). Histologic examination showed similar appearance with monotonous bland medium-sized epithelioid cells with rounded slightly vesicular nuclei and clear cytoplasm imparting a carcinoma-like appearance set within a highly sclerotic hyaline fibrous stroma. The tumor cells were arranged in nests, single cell cords, trabeculae, or solid sheets with frequent entrapment of renal tubules and glomeruli. Immunohistochemistry showed strong expression of vimentin, bcl2, CD99, and MUC4, whereas cytokeratin and other markers were negative. Fluorescence in situ hybridization showed a translocation involving the EWSR1 gene locus in case 2. Molecular analysis in case 1 was not successful due to poor signal quality. To our knowledge, this is the second report documenting primary renal SEF. Awareness of this entity would help avoid misinterpretation as clear cell carcinoma, sclerosing perivascular epithelioid cell tumor, Xp.11 translocation carcinoma, and other more frequent neoplasms at this site. PMID:25990776

  1. TGIF function in oncogenic Wnt signaling.

    PubMed

    Razzaque, Mohammed S; Atfi, Azeddine

    2016-04-01

    Transforming growth-interacting factor (TGIF) has been implicated in the pathogenesis of many types of human cancer, but the underlying mechanisms remained mostly enigmatic. Our recent study has revealed that TGIF functions as a mediator of oncogenic Wnt/β-catenin signaling. We found that TGIF can interact with and sequesters Axin1 and Axin2 into the nucleus, thereby culminating in disassembly of the β-catenin-destruction complex and attendant accumulation of β-catenin in the nucleus, where it activates expression of Wnt target genes, including TGIF itself. We have provided proof-of-concept evidences that high levels of TGIF expression correlate with poor prognosis in patients with triple negative breast cancer (TNBC), and that TGIF empowers Wnt-driven mammary tumorigenesis in vivo. Here, we will briefly summarize how TGIF influences Wnt signaling to promote tumorigenesis. PMID:26522669

  2. Hedgehog Cholesterolysis: Specialized Gatekeeper to Oncogenic Signaling

    PubMed Central

    Callahan, Brian P.; Wang, Chunyu

    2015-01-01

    Discussions of therapeutic suppression of hedgehog (Hh) signaling almost exclusively focus on receptor antagonism; however, hedgehog’s biosynthesis represents a unique and potentially targetable aspect of this oncogenic signaling pathway. Here, we review a key biosynthetic step called cholesterolysis from the perspectives of structure/function and small molecule inhibition. Cholesterolysis, also called cholesteroylation, generates cholesterol-modified Hh ligand via autoprocessing of a hedgehog precursor protein. Post-translational modification by cholesterol appears to be restricted to proteins in the hedgehog family. The transformation is essential for Hh biological activity and upstream of signaling events. Despite its decisive role in generating ligand, cholesterolysis remains conspicuously unexplored as a therapeutic target. PMID:26473928

  3. Mutational patterns in oncogenes and tumour suppressors.

    PubMed

    Baeissa, Hanadi M; Benstead-Hume, Graeme; Richardson, Christopher J; Pearl, Frances M G

    2016-06-15

    All cancers depend upon mutations in critical genes, which confer a selective advantage to the tumour cell. Knowledge of these mutations is crucial to understanding the biology of cancer initiation and progression, and to the development of targeted therapeutic strategies. The key to understanding the contribution of a disease-associated mutation to the development and progression of cancer, comes from an understanding of the consequences of that mutation on the function of the affected protein, and the impact on the pathways in which that protein is involved. In this paper we examine the mutation patterns observed in oncogenes and tumour suppressors, and discuss different approaches that have been developed to identify driver mutations within cancers that contribute to the disease progress. We also discuss the MOKCa database where we have developed an automatic pipeline that structurally and functionally annotates all proteins from the human proteome that are mutated in cancer. PMID:27284061

  4. Oncogene regulation. An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element.

    PubMed

    Mansour, Marc R; Abraham, Brian J; Anders, Lars; Berezovskaya, Alla; Gutierrez, Alejandro; Durbin, Adam D; Etchin, Julia; Lawton, Lee; Sallan, Stephen E; Silverman, Lewis B; Loh, Mignon L; Hunger, Stephen P; Sanda, Takaomi; Young, Richard A; Look, A Thomas

    2014-12-12

    In certain human cancers, the expression of critical oncogenes is driven from large regulatory elements, called super-enhancers, that recruit much of the cell's transcriptional apparatus and are defined by extensive acetylation of histone H3 lysine 27 (H3K27ac). In a subset of T-cell acute lymphoblastic leukemia (T-ALL) cases, we found that heterozygous somatic mutations are acquired that introduce binding motifs for the MYB transcription factor in a precise noncoding site, which creates a super-enhancer upstream of the TAL1 oncogene. MYB binds to this new site and recruits its H3K27 acetylase-binding partner CBP, as well as core components of a major leukemogenic transcriptional complex that contains RUNX1, GATA-3, and TAL1 itself. Additionally, most endogenous super-enhancers found in T-ALL cells are occupied by MYB and CBP, which suggests a general role for MYB in super-enhancer initiation. Thus, this study identifies a genetic mechanism responsible for the generation of oncogenic super-enhancers in malignant cells. PMID:25394790

  5. Oncogenic Ras stimulates Eiger/TNF exocytosis to promote growth

    PubMed Central

    Chabu, Chiswili; Xu, Tian

    2014-01-01

    Oncogenic mutations in Ras deregulate cell death and proliferation to cause cancer in a significant number of patients. Although normal Ras signaling during development has been well elucidated in multiple organisms, it is less clear how oncogenic Ras exerts its effects. Furthermore, cancers with oncogenic Ras mutations are aggressive and generally resistant to targeted therapies or chemotherapy. We identified the exocytosis component Sec15 as a synthetic suppressor of oncogenic Ras in an in vivo Drosophila mosaic screen. We found that oncogenic Ras elevates exocytosis and promotes the export of the pro-apoptotic ligand Eiger (Drosophila TNF). This blocks tumor cell death and stimulates overgrowth by activating the JNK-JAK-STAT non-autonomous proliferation signal from the neighboring wild-type cells. Inhibition of Eiger/TNF exocytosis or interfering with the JNK-JAK-STAT non-autonomous proliferation signaling at various steps suppresses oncogenic Ras-mediated overgrowth. Our findings highlight important cell-intrinsic and cell-extrinsic roles of exocytosis during oncogenic growth and provide a new class of synthetic suppressors for targeted therapy approaches. PMID:25411211

  6. Activation of ras oncogenes preceding the onset of neoplasia

    SciTech Connect

    Kumar, R.; Barbacid, M. ); Sukumar, S. )

    1990-06-01

    The identification of ras oncogenes in human and animal cancers including precancerous lesions indicates that these genes participate in the early stages of neoplastic development. Yet, these observations do not define the timing of ras oncogene activation in the multistep process of carcinogenesis. To ascertain the timing of ras oncogene activation, an animal model system was devised that involves the induction of mammary carcinomas in rats exposed at birth to the carcinogen nitrosomethylurea. High-resolution restriction fragment length polymorphism analysis of polymerase chain reaction-amplified ras sequences revealed the presence of both H-ras and K-ras oncogenes in normal mammary glands 2 weeks after carcinogen treatment and at least 2 months before the onset of neoplasia. These ras oncogenes can remain latent within the mammary gland until exposure to estrogens, demonstrating that activation of ras oncogenes can precede the onset of neoplasia and suggesting that normal physiological proliferative processes such as estrogen-induced mammary gland development may lead to neoplasia if the targeted cells harbor latent ras oncogenes.

  7. Noncanonical Roles of the Immune System in Eliciting Oncogene Addiction

    PubMed Central

    Casey, Stephanie C.; Bellovin, David I.; Felsher, Dean W.

    2013-01-01

    Summary Cancer is highly complex. The magnitude of this complexity makes it highly surprising that even the brief suppression of an oncogene can sometimes result in rapid and sustained tumor regression illustrating that cancers can be “oncogene addicted” [1-10]. The essential implication is that oncogenes may not only fuel the initiation of tumorigenesis, but in some cases necessarily their surfeit of activation is paramaount to maintain a neoplastic state [11]. Oncogene suppression acutely restores normal physiological programs that effectively overrides secondary genetic events and a cancer collapses [12,13]. Oncogene addiction is mediated both through both tumor intrinsic cell-autonomous mechanisms including proliferative arrest, apoptosis, differentiation and cellular senescence [1,2,4,12] but also host-dependent mechanisms that interact with these tumor intrinsic programs [14,15]. Notably, oncogene inactivation elicits a host immune response that involves specific immune effectors and cytokines that facilitate a remodeling of the tumor microenvironment including the shut down of angiogenesis and the induction of cellular senescence of tumor cells [16]. Hence, immune effectors are critically involved in tumor initiation and prevention [17-19] and progression [20], but also appear to be essential to tumor regression upon oncogene inactivation [21-23]. The understanding how the inactivation of an oncogene elicits a systemic signal in the host that prompts a deconstruction of a tumor could have important implications. The combination of oncogene-targeted therapy together with immunomodulatory therapy may be ideal for the development of both a robust tumor intrinsic as well as immunological effectively leading to sustained tumor regression. PMID:23571026

  8. The oncogenic action of ionizing radiation on rat skin

    SciTech Connect

    Burns, F.J.

    1991-01-01

    Progress has occurred in several areas corresponding to the specific aims of the proposal: (1) Progression and multiple events in radiation carcinogenesis of rat skin as a function of LET; (2) cell cycle kinetics of irradiated rat epidermis as determined by double labeling and double emulsion autoradiography; (3) oncogene activation detected by in situ hybridization in radiation-induced rat skin tumors; (4) amplification of the c-myc oncogene in radiation-induced rat skin tumors as a function of LET; and (5) transformation of rat skin keratinocytes by ionizing radiation in combination with c-Ki-ras and c-myc oncogenes. 111 refs., 13 figs., 12 tabs.

  9. Protective effects of S-2-(3-aminopropylamino)ethylphosphorothioic acid against radiation damage of normal tissues and a fibrosarcoma in mice

    SciTech Connect

    Milas, L.; Hunter, N.; Reid, B.O.; Thames, H.D. Jr.

    1982-05-01

    S-2-(3-Aminopropylamino)ethylphosphorothioic acid (WR-2721) was investigated for its protective effect against radiation-produced damage of jejunum, testis, lung, hair follicles, and a fibrosarcoma of C3Hf/Kam mice. Most of these tissues were radioprotected, and the degree of radioprotection depended on the dose of WR-2721 and the time interval between administration of WR-2721 and radiation treatment. WR-2721 increased resistance of jejunal epithelial cells and spermatogenic cells to single doses of gamma-rays by factors of 1.64 and 1.54, respectively. Protection against hair loss was less pronounced; the dose-modifying factor here was 1.24. The radiation-induced acute damage of the lung expressed by the increased formation of tumor nodules in the lung was not decreased by treatment of animals with WR-2721 before radiation. In contrast, WR-2721 augmented the radiation-induced enhancement of metastasis formation in the lung. WR-2721 protected fibrosarcoma micrometastases in the lung against therapeutic effect of radiation by a factor of 1.238. In contrast, this compound had no effect on the therapy of an 8-mm fibrosarcoma growing in the legs of mice.

  10. Oncogenic Potential of Hepatitis C Virus Proteins

    PubMed Central

    Banerjee, Arup; Ray, Ratna B.; Ray, Ranjit

    2010-01-01

    Chronic hepatitis C virus (HCV) infection is a major risk factor for liver disease progression, and may lead to cirrhosis and hepatocellular carcinoma (HCC). The HCV genome contains a single-stranded positive sense RNA with a cytoplasmic lifecycle. HCV proteins interact with many host-cell factors and are involved in a wide range of activities, including cell cycle regulation, transcriptional regulation, cell proliferation, apoptosis, lipid metabolism, and cell growth promotion. Increasing experimental evidences suggest that HCV contributes to HCC by modulating pathways that may promote malignant transformation of hepatocytes. At least four of the 10 HCV gene products, namely core, NS3, NS5A and NS5B play roles in several potentially oncogenic pathways. Induction of both endoplasmic reticulum (ER) stress and oxidative stress by HCV proteins may also contribute to hepatocyte growth promotion. The current review identifies important functions of the viral proteins connecting HCV infections and potential for development of HCC. However, most of the putative transforming potentials of the HCV proteins have been defined in artificial cellular systems, and need to be established relevant to infection and disease models. The new insight into the mechanisms for HCV mediated disease progression may offer novel therapeutic targets for one of the most devastating human malignancies in the world today. PMID:21994721

  11. Oncogene-dependent apoptosis is mediated by caspase-9

    PubMed Central

    Fearnhead, Howard O.; Rodriguez, Joe; Govek, Eve-Ellen; Guo, Wenjun; Kobayashi, Ryuji; Hannon, Greg; Lazebnik, Yuri A.

    1998-01-01

    Understanding how oncogenic transformation sensitizes cells to apoptosis may provide a strategy to kill tumor cells selectively. We previously developed a cell-free system that recapitulates oncogene dependent apoptosis as reflected by activation of caspases, the core of the apoptotic machinery. Here, we show that this activation requires a previously identified apoptosis-promoting complex consisting of caspase-9, APAF-1, and cytochrome c. As predicted by the in vitro system, preventing caspase-9 activation blocked drug-induced apoptosis in cells sensitized by E1A, an adenoviral oncogene. Oncogenes, such as E1A, appear to facilitate caspase-9 activation by several mechanisms, including the control of cytochrome c release from the mitochondria. PMID:9811857

  12. Oncogenes: The Passport for Viral Oncolysis Through PKR Inhibition

    PubMed Central

    Fernandes, Janaina

    2016-01-01

    The transforming properties of oncogenes are derived from gain-of-function mutations, shifting cell signaling from highly regulated homeostatic to an uncontrolled oncogenic state, with the contribution of the inactivating mutations in tumor suppressor genes P53 and RB, leading to tumor resistance to conventional and target-directed therapy. On the other hand, this scenario fulfills two requirements for oncolytic virus infection in tumor cells: inactivation of tumor suppressors and presence of oncoproteins, also the requirements to engage malignancy. Several of these oncogenes have a negative impact on the main interferon antiviral defense, the double-stranded RNA-activated protein kinase (PKR), which helps viruses to spontaneously target tumor cells instead of normal cells. This review is focused on the negative impact of overexpression of oncogenes on conventional and targeted therapy and their positive impact on viral oncolysis due to their ability to inhibit PKR-induced translation blockage, allowing virion release and cell death. PMID:27486347

  13. Oncogenes: The Passport for Viral Oncolysis Through PKR Inhibition.

    PubMed

    Fernandes, Janaina

    2016-01-01

    The transforming properties of oncogenes are derived from gain-of-function mutations, shifting cell signaling from highly regulated homeostatic to an uncontrolled oncogenic state, with the contribution of the inactivating mutations in tumor suppressor genes P53 and RB, leading to tumor resistance to conventional and target-directed therapy. On the other hand, this scenario fulfills two requirements for oncolytic virus infection in tumor cells: inactivation of tumor suppressors and presence of oncoproteins, also the requirements to engage malignancy. Several of these oncogenes have a negative impact on the main interferon antiviral defense, the double-stranded RNA-activated protein kinase (PKR), which helps viruses to spontaneously target tumor cells instead of normal cells. This review is focused on the negative impact of overexpression of oncogenes on conventional and targeted therapy and their positive impact on viral oncolysis due to their ability to inhibit PKR-induced translation blockage, allowing virion release and cell death. PMID:27486347

  14. ERBB2 oncogenicity: ERBIN helps to perform the job

    PubMed Central

    Mei, Lin; Borg, Jean-Paul

    2015-01-01

    ERBB2 (v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2) is an oncogenic tyrosine kinase receptor that is overexpressed in breast cancer. Antibodies and inhibitors targeting ERBB2 are currently available, although therapeutic failures remain frequent. We discuss here recent data showing that the scaffold protein ERBB2IP (ERBB2 interacting protein, best known as ERBIN) regulates ERBB2 stability and may represent a future therapeutic target. PMID:27308480

  15. Silent assassin: oncogenic ras directs epigenetic inactivation of target genes.

    PubMed

    Cheng, Xiaodong

    2008-01-01

    Oncogenic transformation is associated with genetic changes and epigenetic alterations. A study now shows that oncogenic Ras uses a complex and elaborate epigenetic silencing program to specifically repress the expression of multiple unrelated cancer-suppressing genes through a common pathway. These results suggest that cancer-related epigenetic modifications may arise through a specific and instructive mechanism and that genetic changes and epigenetic alterations are intimately connected and contribute to tumorigenesis cooperatively. PMID:18385037

  16. Know thy neighbor: stromal cells can contribute oncogenic signals

    NASA Technical Reports Server (NTRS)

    Tlsty, T. D.; Hein, P. W.

    2001-01-01

    Although the stroma within carcinogenic lesions is known to be supportive and responsive to tumors, new data increasingly show that the stroma also has a more active, oncogenic role in tumorigenesis. Stromal cells and their products can transform adjacent tissues in the absence of pre-existing tumor cells by inciting phenotypic and genomic changes in the epithelial cells. The oncogenic action of distinctive stromal components has been demonstrated through a variety of approaches, which provide clues about the cellular pathways involved.

  17. Hydrophilic extract from Posidonia oceanica inhibits activity and expression of gelatinases and prevents HT1080 human fibrosarcoma cell line invasion

    PubMed Central

    Barletta, Emanuela; Ramazzotti, Matteo; Fratianni, Florinda; Pessani, Daniela; Degl'Innocenti, Donatella

    2015-01-01

    Posidonia oceanica (L.) Delile is an endemic Mediterranean sea-grass distributed in the infralittoral zones, where it forms meadows playing a recognized ecological role in the coastal marine habitat. Although its use as a traditional herbal remedy is poorly documented, recent literature reports interesting pharmacological activities as antidiabetic, antioxidant and vasoprotective. Differently from previous literature, this study presents a hydrophilic extraction method that recovers metabolites that may be tested in biological buffers. We showed for the first time in the highly invasive HT1080 human fibrosarcoma cell line that our hydrophilic extract from P. oceanica was able to strongly decrease gene and protein expression of gelatinases MMP-2 and MMP-9 and to directly inhibit in a dose-dependent manner gelatinolytic activity in vitro. Moreover, we have revealed that our extract strongly inhibited HT1080 cell migration and invasion. Biochemical analysis of the hydrophilic extract showed that catechins were the major constituents with minor contribution of gallic acid, ferulic acid and chlorogenic plus a fraction of uncharacterized phenols. However, if each individual compound was tested independently, none by itself was able to induce a direct inhibition of gelatinases as strong as that observed in total extract, opening up new routes to the identification of novel compounds. These results indicate that our hydrophilic extract from P. oceanica might be a source of new pharmacological natural products for treatment or prevention of several diseases related to an altered MMP-2 and MMP-9 expression. PMID:26176658

  18. Hydrophilic extract from Posidonia oceanica inhibits activity and expression of gelatinases and prevents HT1080 human fibrosarcoma cell line invasion.

    PubMed

    Barletta, Emanuela; Ramazzotti, Matteo; Fratianni, Florinda; Pessani, Daniela; Degl'Innocenti, Donatella

    2015-01-01

    Posidonia oceanica (L.) Delile is an endemic Mediterranean sea-grass distributed in the infralittoral zones, where it forms meadows playing a recognized ecological role in the coastal marine habitat. Although its use as a traditional herbal remedy is poorly documented, recent literature reports interesting pharmacological activities as antidiabetic, antioxidant and vasoprotective. Differently from previous literature, this study presents a hydrophilic extraction method that recovers metabolites that may be tested in biological buffers. We showed for the first time in the highly invasive HT1080 human fibrosarcoma cell line that our hydrophilic extract from P. oceanica was able to strongly decrease gene and protein expression of gelatinases MMP-2 and MMP-9 and to directly inhibit in a dose-dependent manner gelatinolytic activity in vitro. Moreover, we have revealed that our extract strongly inhibited HT1080 cell migration and invasion. Biochemical analysis of the hydrophilic extract showed that catechins were the major constituents with minor contribution of gallic acid, ferulic acid and chlorogenic plus a fraction of uncharacterized phenols. However, if each individual compound was tested independently, none by itself was able to induce a direct inhibition of gelatinases as strong as that observed in total extract, opening up new routes to the identification of novel compounds. These results indicate that our hydrophilic extract from P. oceanica might be a source of new pharmacological natural products for treatment or prevention of several diseases related to an altered MMP-2 and MMP-9 expression. PMID:26176658

  19. Receptor-dependent antiproliferative effects of corticosteroids in radiation-induced fibrosarcomas and implications for sequential therapy

    SciTech Connect

    Braunschweiger, P.G.; Ting, H.L.; Schiffer, L.M.

    1982-05-01

    Competitive binding studies with (/sup 3/H)dexamethasone and Scatchard analysis demonstrated a single class of high-affinity, low-capacity glucocorticoid receptor sites in 105,000 x g cytosols from radiation-induced fibrosarcomas. In vivo, both dexamethasone (DEX) and methylprednisolone treatments resulted in dose-dependent inhibition of tumor growth and cell proliferation. Changes in the sensitivity of the clonogenic cell population to 3 mM hydroxyurea were used to assess changes in the clonogenic cell proliferation during and after treatments with DEX or methylprednisolone. Neither methylprednisolone nor DEX given every 12 hr for three doses resulted in significant cell kill in the clonogenic fraction. However, changes in the hydroxyurea sensitivity of the clonogenic population after cessation of DEX treatments indicated G1 cell cycle progression delay with transient enrichment of S-phase clonogenic cells 24 to 48 hr after cessation of DEX treatments. The duration of the DEX-induced progression delay and the timing of maximal S-phase cellularity after DEX was directly correlated with the level of glucocorticoid receptors in the treated tumors. Using regrowth delay to assess the efficacy of kinetically directed sequential chemotherapy, the effectiveness of vincristine, given after DEX, was highly sequence dependent, with the most effective treatment interval being coincident with maximal S-phase clonogenic fraction. Other studies indicated that the effectiveness of cyclophosphamide could also be increased by time sequencing after DEX.

  20. Sclerosing epithelioid fibrosarcoma presenting as intraabdominal sarcomatosis with a novel EWSR1-CREB3L1 gene fusion.

    PubMed

    Stockman, David L; Ali, Siraj M; He, Jie; Ross, Jeffrey S; Meis, Jeanne M

    2014-10-01

    We report a case of intraabdominal sclerosing epithelioid fibrosarcoma (SEF) with a t (11;22)(p11.2;q12.2) Ewing sarcoma breakpoint region 1-cAMP-responsive element-binding protein 3-like 1 translocation. A 43-year old man presented with massive ascites and shortness of breath. Imaging studies revealed a large mesenteric-based mass with extensive omental/peritoneal disease. After resection and cytoreductive surgery, the tumor recurred with metastasis to the lungs; the patient is still alive with disease. Histologically, there was a uniform population of epithelioid cells arranged in cords and nests, embedded in a dense collagenous matrix; no areas of low-grade fibromyxoid sarcoma were identified. All immunohistochemical markers were nonreactive. Fluorescence in situ hybridization studies showed rearrangement of Ewing sarcoma breakpoint region 1. Genomic profiling by clinical grade next-generation sequencing revealed a fusion gene between intron 11 of Ewing sarcoma breakpoint region 1 (22q12.2) and intron 5 of cAMP-responsive element-binding protein 3-like 1 (11p11.2). This is the first report of "pure" or true SEF presenting as intraabdominal sarcomatosis with confirmation of the recently described unique Ewing sarcoma breakpoint region 1-cAMP-responsive element-binding protein 3-like 1 gene fusion in SEF without areas of low-grade fibromyxoid sarcoma. PMID:25123073

  1. Primary sclerosing epithelioid fibrosarcoma of kidney with variant histomorphologic features: report of 2 cases and review of the literature.

    PubMed

    Ertoy Baydar, Dilek; Kosemehmetoglu, Kemal; Aydin, Oguz; Bridge, Julia A; Buyukeren, Berrin; Aki, Fazil Tuncay

    2015-01-01

    The authors present two cases of primary sclerosing epithelioid fibrosarcoma (SEF) of the kidney. Both patients had a mass in the upper part of the left kidney without any primary extrarenal neoplastic lesions. Grossly, the tumors were solid masses both measuring 7.5 cm in the greatest diameter. Histologically, one of the lesions exhibited a predominantly lobular growth of round or oval small uniform epithelioid cells in variable cellularity. Circular zones of crowded tumor cells alternating with hypocellular collagenous tissue in a concentric fashion around entrapped native renal tubules were distinctive. The second case was distinctive with significant cytological atypia in the neoplastic cells and prominent reactive proliferations in the trapped renal tubules. Immunohistochemically, vimentin, bcl-2 and MUC4 were diffusely positive in both. They were negative for S-100 protein, CD34, and desmin, whereas CD99 were positive in one lesion. Fluorescence in situ hybridization assay using dual staining probes detected EWSR1-CREB3L1 fusion in each lesion, which is characteristic molecular findings of SEF. One patient presented widespread distant metastases at the time of diagnosis. In the other, no tumor deposits were detected other than primary. Both patients have been alive with 30 and 10 month follow-ups, respectively. These tumors are 6th and 7th cases of primary renal SEF in the literature confirmed by FISH study, which exhibit unique and remarkable histomorphologic features. PMID:26449317

  2. Repositioning of human interphase chromosomes by nucleolar dynamics in the reverse transformation of HT1080 fibrosarcoma cells.

    PubMed

    Krystosek, A

    1998-05-25

    An experimental system which should be valuable for studying the role of spatial positioning of the nuclear genome in human cell function has been developed. Reverse transformation of the malignant HT1080 fibrosarcoma cell line upon treatment with 8-chloro-cAMP results in growth inhibition, cytoskeletal reorganization, changes in nuclear shape and chromatin accessibility, and formation of prominent nucleoli. Fluorescent in situ hybridization was used to study DNA positioning during nuclear remodeling. Morphometric analysis of the hybridization sites for both repetitive sequences and "painting probes" for whole chromosomes indicated dispersal of acrocentric chromosomes in untreated cells and a highly organized central location of these ribosome gene-containing chromosomes in association with one or a few large nucleoli in nondividing treated cells. The results suggest that there was a directed movement of interphase chromosomes during a response which normalized a malignant cell line. These large-scale repositionings may serve two functions in restoring a normal transcriptional setup to the nucleus. First, ribosome genes are placed in the nucleolus, their transcriptional suborganelle. Second, nucleolar anchorings together with additional perinucleolar centromeric associations orient the domain shapes of entire chromosomes, installing gene-rich chromosomal regions into pockets of (accessible) DNAse I-sensitive chromatin populated by spliceosomes. PMID:9633529

  3. Growth-related variations in the glycosaminoglycan synthesis of ultraviolet light-induced murine cutaneous fibrosarcoma cells

    SciTech Connect

    Piepkorn, M.; Carney, H.; Linker, A.

    1985-08-01

    Glycosaminoglycan synthesis was studied in cell populations of ultraviolet light-induced murine cutaneous fibrosarcoma cells under conditions of varying growth rates in vitro. After labeling with the precursors, /sup 3/H-glucosamine and /sup 35/SO/sub 4/, sulfated glycosaminoglycans recoverable by direct proteolysis of the culture monolayers increased approximately 5-fold on a per cell basis from sparsely populated, exponential cell cultures (greater than 85% of cells in S, G2, or M phases) to stationary cultures inhibited by high cell density (greater than 50% of cells in G1). Within this cell surface-associated material, the relative ratio of heparan sulfate to the chondroitin sulfates was approximately 60/40% under conditions of exponential growth; in the growth-arrested cultures, the reverse ratio was found. The substratum attached material, obtained from the flask surface after ethyl glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid (EGTA)-mediated detachment of the monolayers, contained relatively more hyaluronic acid, heparan sulfate, and chondroitin sulfates in the most actively proliferating cultures compared with the growth-inhibited cell populations. Furthermore, heparan sulfate and the chondroitin sulfates, which were enriched in the substratum material and in the cell pellet of exponential cultures, showed a relative shift to the cell surface-associated compartment (releasable by mild trypsinization after EGTA-mediated cell detachment) and to the compartment loosely associated with the pericellular matrix (i.e., released into the supernatant during detachment of the monolayers in the presence of EGTA).

  4. Identification of Novel Small Molecule Inhibitors of Oncogenic RET Kinase

    PubMed Central

    Moccia, Marialuisa; Liu, Qingsong; Guida, Teresa; Federico, Giorgia; Brescia, Annalisa; Zhao, Zheng; Choi, Hwan Geun; Deng, Xianming; Tan, Li; Wang, Jinhua; Billaud, Marc; Gray, Nathanael S.

    2015-01-01

    Oncogenic mutation of the RET receptor tyrosine kinase is observed in several human malignancies. Here, we describe three novel type II RET tyrosine kinase inhibitors (TKI), ALW-II-41-27, XMD15-44 and HG-6-63-01, that inhibit the cellular activity of oncogenic RET mutants at two digit nanomolar concentration. These three compounds shared a 3-trifluoromethyl-4-methylpiperazinephenyl pharmacophore that stabilizes the ‘DFG-out’ inactive conformation of RET activation loop. They blocked RET-mediated signaling and proliferation with an IC50 in the nM range in fibroblasts transformed by the RET/C634R and RET/M918T oncogenes. They also inhibited autophosphorylation of several additional oncogenic RET-derived point mutants and chimeric oncogenes. At a concentration of 10 nM, ALW-II-41-27, XMD15-44 and HG-6-63-01 inhibited RET kinase and signaling in human thyroid cancer cell lines carrying oncogenic RET alleles; they also inhibited proliferation of cancer, but not non-tumoral Nthy-ori-3-1, thyroid cells, with an IC50 in the nM range. The three compounds were capable of inhibiting the ‘gatekeeper’ V804M mutant which confers substantial resistance to established RET inhibitors. In conclusion, we have identified a type II TKI scaffold, shared by ALW-II-41-27, XMD15-44 and HG-6-63-01, that may be used as novel lead for the development of novel agents for the treatment of cancers harboring oncogenic activation of RET. PMID:26046350

  5. Oncogenic Ras influences the expression of multiple lncRNAs.

    PubMed

    Kotake, Yojiro; Naemura, Madoka; Kitagawa, Kyoko; Niida, Hiroyuki; Tsunoda, Toshiyuki; Shirasawa, Senji; Kitagawa, Masatoshi

    2016-08-01

    Recent ultrahigh-density tiling array and large-scale transcriptome analysis have revealed that large numbers of long non-coding RNAs (lncRNAs) are transcribed in mammals. Several lncRNAs have been implicated in transcriptional regulation, organization of nuclear structure, and post-transcriptional processing. However, the regulation of expression of lncRNAs is less well understood. Here, we show that the exogenous and endogenous expression of an oncogenic form of small GTPase Ras (called oncogenic Ras) decrease the expression of lncRNA ANRIL (antisense non-coding RNA in the INK4 locus), which is involved in the regulation of cellular senescence. We also show that forced expression of oncogenic Ras increases the expression of lncRNA PANDA (p21 associated ncRNA DNA damage activated), which is involved in the regulation of apoptosis. Microarray analysis demonstrated that expression of multiple lncRNAs fluctuated by forced expression of oncogenic Ras. These findings indicate that oncogenic Ras regulates the expression of a large number of lncRNAs including functional lncRNAs, such as ANRIL and PANDA. PMID:25501747

  6. Oncogenic Ras/Src cooperativity in pancreatic neoplasia

    PubMed Central

    Shields, DJ; Murphy, EA; Desgrosellier, JS; Mielgo, A; Lau, SKM; Barnes, LA; Lesperance, J; Huang, M; Schmedt, C; Tarin, D; Lowy, AM; Cheresh, DA

    2011-01-01

    Pancreas cancer is one of the most lethal malignancies and is characterized by activating mutations of Kras, present in 95% of patients. More than 60% of pancreatic cancers also display increased c-Src activity, which is associated with poor prognosis. Although loss of tumor suppressor function (for example, p16, p53, Smad4) combined with oncogenic Kras signaling has been shown to accelerate pancreatic duct carcinogenesis, it is unclear whether elevated Src activity contributes to Kras-dependent tumorigenesis or is simply a biomarker of disease progression. Here, we demonstrate that in the context of oncogenic Kras, activation of c-Src through deletion of C-terminal Src kinase (CSK) results in the development of invasive pancreatic ductal adenocarcinoma (PDA) by 5–8 weeks. In contrast, deletion of CSK alone fails to induce neoplasia, while oncogenic Kras expression yields PDA at low frequency after a latency of 12 months. Analysis of cell lines derived from Ras/Src-induced PDA’s indicates that oncogenic Ras/Src cooperativity may lead to genomic instability, yet Ras/Src-driven tumor cells remain dependent on Src signaling and as such, Src inhibition suppresses growth of Ras/Src-driven tumors. These findings demonstrate that oncogenic Ras/Src cooperate to accelerate PDA onset and support further studies of Src-directed therapies in pancreatic cancer. PMID:21242978

  7. Inhibition of ras oncogene: a novel approach to antineoplastic therapy.

    PubMed

    Scharovsky, O G; Rozados, V R; Gervasoni, S I; Matar, P

    2000-01-01

    The most frequently detected oncogene alterations, both in animal and human cancers, are the mutations in the ras oncogene family. These oncogenes are mutated or overexpressed in many human tumors, with a high incidence in tumors of the pancreas, thyroid, colon, lung and certain types of leukemia. Ras is a small guanine nucleotide binding protein that transduces biological information from the cell surface to cytoplasmic components within cells. The signal is transduced to the cell nucleus through second messengers, and it ultimately induces cell division. Oncogenic forms of p21(ras) lead to unregulated, sustained signaling through downstream effectors. The ras family of oncogenes is involved in the development of both primary tumors and metastases making it a good therapeutic target. Several therapeutic approaches to cancer have been developed pointing to reducing the altered gene product or to eliminating its biological function: (1) gene therapy with ribozymes, which are able to break down specific RNA sequences, or with antisense oligonucleotides, (2) immunotherapy through passive or active immunization protocols, and (3) inhibition of p21(ras) farnesylation either by inhibition of farnesyl transferase or synthesis inhibition of farnesyl moieties. PMID:10895051

  8. Oncogenes and RNA splicing of human tumor viruses.

    PubMed

    Ajiro, Masahiko; Zheng, Zhi-Ming

    2014-09-01

    Approximately 10.8% of human cancers are associated with infection by an oncogenic virus. These viruses include human papillomavirus (HPV), Epstein-Barr virus (EBV), Merkel cell polyomavirus (MCV), human T-cell leukemia virus 1 (HTLV-1), Kaposi's sarcoma-associated herpesvirus (KSHV), hepatitis C virus (HCV) and hepatitis B virus (HBV). These oncogenic viruses, with the exception of HCV, require the host RNA splicing machinery in order to exercise their oncogenic activities, a strategy that allows the viruses to efficiently export and stabilize viral RNA and to produce spliced RNA isoforms from a bicistronic or polycistronic RNA transcript for efficient protein translation. Infection with a tumor virus affects the expression of host genes, including host RNA splicing factors, which play a key role in regulating viral RNA splicing of oncogene transcripts. A current prospective focus is to explore how alternative RNA splicing and the expression of viral oncogenes take place in a cell- or tissue-specific manner in virus-induced human carcinogenesis. PMID:26038756

  9. Molecular Understanding of Growth Inhibitory Effect from Irradiated to Bystander Tumor Cells in Mouse Fibrosarcoma Tumor Model

    PubMed Central

    Desai, Sejal; Srambikkal, Nishad; Yadav, Hansa D.; Shetake, Neena; Balla, Murali M. S.; Kumar, Amit; Ray, Pritha; Ghosh, Anu

    2016-01-01

    Even though bystander effects pertaining to radiation risk assessment has been extensively studied, the molecular players of radiation induced bystander effect (RIBE) in the context of cancer radiotherapy are poorly known. In this regard, the present study is aimed to investigate the effect of irradiated tumor cells on the bystander counterparts in mouse fibrosarcoma (WEHI 164 cells) tumor model. Mice co-implanted with WEHI 164 cells γ-irradiated with a lethal dose of 15 Gy and unirradiated (bystander) WEHI 164 cells showed inhibited tumor growth, which was measured in terms of tumor volume and Luc+WEHI 164 cells based bioluminescence in vivo imaging. Histopathological analysis and other assays revealed decreased mitotic index, increased apoptosis and senescence in these tumor tissues. In addition, poor angiogenesis was observed in these tumor tissues, which was further confirmed by fluorescence imaging of tumor vascularisation and CD31 expression by immuno-histochemistry. Interestingly, the growth inhibitory bystander effect was exerted more prominently by soluble factors obtained from the irradiated tumor cells than the cellular fraction. Cytokine profiling of the supernatants obtained from the irradiated tumor cells showed increased levels of VEGF, Rantes, PDGF, GMCSF and IL-2 and decreased levels of IL-6 and SCF. Comparative proteomic analysis of the supernatants from the irradiated tumor cells showed differential expression of total 24 protein spots (21 up- and 3 down-regulated) when compared with the supernatant from the unirradiated control cells. The proteins which showed substantially higher level in the supernatant from the irradiated cells included diphosphate kinase B, heat shock cognate, annexin A1, angiopoietin-2, actin (cytoplasmic 1/2) and stress induced phosphoprotein 1. However, the levels of proteins like annexin A2, protein S100 A4 and cofilin was found to be lower in this supernatant. In conclusion, our results provided deeper insight about

  10. Molecular Understanding of Growth Inhibitory Effect from Irradiated to Bystander Tumor Cells in Mouse Fibrosarcoma Tumor Model.

    PubMed

    Desai, Sejal; Srambikkal, Nishad; Yadav, Hansa D; Shetake, Neena; Balla, Murali M S; Kumar, Amit; Ray, Pritha; Ghosh, Anu; Pandey, B N

    2016-01-01

    Even though bystander effects pertaining to radiation risk assessment has been extensively studied, the molecular players of radiation induced bystander effect (RIBE) in the context of cancer radiotherapy are poorly known. In this regard, the present study is aimed to investigate the effect of irradiated tumor cells on the bystander counterparts in mouse fibrosarcoma (WEHI 164 cells) tumor model. Mice co-implanted with WEHI 164 cells γ-irradiated with a lethal dose of 15 Gy and unirradiated (bystander) WEHI 164 cells showed inhibited tumor growth, which was measured in terms of tumor volume and Luc+WEHI 164 cells based bioluminescence in vivo imaging. Histopathological analysis and other assays revealed decreased mitotic index, increased apoptosis and senescence in these tumor tissues. In addition, poor angiogenesis was observed in these tumor tissues, which was further confirmed by fluorescence imaging of tumor vascularisation and CD31 expression by immuno-histochemistry. Interestingly, the growth inhibitory bystander effect was exerted more prominently by soluble factors obtained from the irradiated tumor cells than the cellular fraction. Cytokine profiling of the supernatants obtained from the irradiated tumor cells showed increased levels of VEGF, Rantes, PDGF, GMCSF and IL-2 and decreased levels of IL-6 and SCF. Comparative proteomic analysis of the supernatants from the irradiated tumor cells showed differential expression of total 24 protein spots (21 up- and 3 down-regulated) when compared with the supernatant from the unirradiated control cells. The proteins which showed substantially higher level in the supernatant from the irradiated cells included diphosphate kinase B, heat shock cognate, annexin A1, angiopoietin-2, actin (cytoplasmic 1/2) and stress induced phosphoprotein 1. However, the levels of proteins like annexin A2, protein S100 A4 and cofilin was found to be lower in this supernatant. In conclusion, our results provided deeper insight about

  11. Growth-Inhibitory and Apoptosis-Inducing Effects of Punica granatum L. var. spinosa (Apple Punice) on Fibrosarcoma Cell Lines

    PubMed Central

    Sineh Sepehr, Koushan; Baradaran, Behzad; Mazandarani, Masoumeh; Yousefi, Bahman; Abdollahpour Alitappeh, Meghdad; Khori, Vahid

    2014-01-01

    Purpose: Punica granatum L. var. granatum (Pomegranate), an herbaceous plant found in Iran, The aim of this study was to investigate the cytotoxic effects, induction of apoptosis, and the mechanism of cell death of ethanol extract from Punica granatum L. var. spinosa on the mouse fibrosarcoma cell line, WEHI-164. Methods: Various parts of the herbs were extracted from fruit using ethanol as the solvent, and the cytotoxicity and cell viability of the ethanolic extract were determined by the MTT assay. To determine whether necrosis or apoptosis is the predominant cause of cell death, cell death detection was performed using the ELISA method. The induction of apoptosis was confirmed using the terminal deoxynucleotidyl transferase- (TdT-) mediated dUTP nick end labeling (TUNEL) assay. Moreover, a sensitive immunoblotting technique was used to examine the production of Caspase-3 and Bcl2 proteins. Results: Our findings suggested that the ethalonic extract of Punica granatum L. var. spinosa altered cell morphology, decreased cell viability, suppressed cell proliferation and induced cell death in a time- and dose-dependent manner in WEHI-164 cells (IC50 = 229.024μg/ml), when compared to a chemotherapeutic anticancer drug, Toxol (Vesper Pharmaceuticals), with increased nucleosome production from apoptotic cells. Induction of apoptosis by the plant extract was proved by the decrease of pro-Caspase-3 and Bcl2 proteins and quantitatively confirmed by Immunoblotting analysis. Conclusion: The results obtained from the present study have demonstrated the growth-inhibitory effect of Ethanol Extracts from Punica granatum L. var. spinosa, and clearly showed that apoptosis was the major mechanism of in-vitro cell death induced by the extract. PMID:25671193

  12. Opposing oncogenic activities of small DNA tumor virus transforming proteins

    PubMed Central

    Chinnadurai, G.

    2011-01-01

    The E1A gene of species C human adenovirus is an intensely investigated model viral oncogene that immortalizes primary cells and mediates oncogenic cell transformation in cooperation with other viral or cellular oncogenes. Investigations using E1A proteins have illuminated important paradigms in cell proliferation and the functions of cellular proteins such as the retinoblastoma protein. Studies with E1A have led to the surprising discovery that E1A also suppresses cell transformation and oncogenesis. Here, I review our current understanding of the transforming and tumor suppressive functions of E1A, and how E1A studies led to the discovery of a related tumor suppressive function in benign human papillomaviruses. The potential role of these opposing functions in viral replication in epithelial cells is also discussed. PMID:21330137

  13. Oncogene addiction: pathways of therapeutic response, resistance, and road maps toward a cure

    PubMed Central

    Pagliarini, Raymond; Shao, Wenlin; Sellers, William R

    2015-01-01

    A key goal of cancer therapeutics is to selectively target the genetic lesions that initiate and maintain cancer cell proliferation and survival. While most cancers harbor multiple oncogenic mutations, a wealth of preclinical and clinical data supports that many cancers are sensitive to inhibition of single oncogenes, a concept referred to as ‘oncogene addiction’. Herein, we describe the clinical evidence supporting oncogene addiction and discuss common mechanistic themes emerging from the response and acquired resistance to oncogene-targeted therapies. Finally, we suggest several opportunities toward exploiting oncogene addiction to achieve curative cancer therapies. PMID:25680965

  14. Abnormal structure of the canine oncogene, related to the human c-yes-1 oncogene, in canine mammary tumor tissue.

    PubMed

    Miyoshi, N; Tateyama, S; Ogawa, K; Yamaguchi, R; Kuroda, H; Yasuda, N; Shimizu, T

    1991-12-01

    Cellular oncogenes of genomic DNA in 6 canine primary mammary tumors were screened by Southern blot analysis, using 7 oncogene probes. A canine genomic oncogene related to the human c-yes-1 oncogene was detected as abnormal bands in solid carcinoma genomic DNA digested with EcoRI, HindIII, HindIII-EcoRI, or HindIII-BamHI. Comparison was made between other tumor specimens and control specimens obtained from 4 clinically normal dogs--1 mixed breed and 3 Shiba Inu dogs (the same breed as the dog from which the solid carcinoma was obtained). These abnormal bands were 0.1 to 1 kilobase shorter than the normal gene. However, digestion of genomic DNA obtained from normal WBC of this dog also produced all of the abnormal bands as observed in digested DNA from the solid carcinoma tissue. Therefore, in this dog, the genomic DNA of all somatic cells from the ontogenic stage still had the abnormal sequences related to the human c-yes-1 oncogene, and it is possible that this abnormal structure may have some role (eg, as an initiator) in tumorigenesis or the progression of this tumor. PMID:1789521

  15. Oncogenic osteomalacia: Problems in diagnosis and long-term management

    PubMed Central

    Dhammi, Ish K; Jain, Anil K; Singh, Ajay Pal; Mishra, Puneet; Jain, Saurabh

    2010-01-01

    Oncogenic osteomalacia is a rare association between mesenchymal tumors and hypophosphatemic rickets. It is more of a biochemical entity than a clinical one. The pathophysiology of the tumor is not clear. However, it has been seen that the clinical and biochemical parameters become normal if the lesion responsible for producing the osteomalacia is excised. For a clinical diagnosis a high index of suspicion is necessary. We present three such cases where in one the oncogenic osteomalacia reversed while in rest it did not. We present this case report to sensitize about the entity. PMID:20924490

  16. Stromal control of oncogenic traits expressed in response to the overexpression of GLI2, a pleiotropic oncogene.

    PubMed

    Snijders, A M; Huey, B; Connelly, S T; Roy, R; Jordan, R C K; Schmidt, B L; Albertson, D G

    2009-02-01

    Hedgehog signaling is often activated in tumors, yet it remains unclear how GLI2, a transcription factor activated by this pathway, acts as an oncogene. We show that GLI2 is a pleiotropic oncogene. The overexpression induces genomic instability and blocks differentiation, likely mediated in part by enhanced expression of the stem cell gene SOX2. GLI2 also induces transforming growth factor (TGF)B1-dependent transdifferentiation of foreskin and tongue, but not gingival fibroblasts into myofibroblasts, creating an environment permissive for invasion by keratinocytes, which are in various stages of differentiation having downregulated GLI2. Thus, upregulated GLI2 expression is sufficient to induce a number of the acquired characteristics of tumor cells; however, the stroma, in a tissue-specific manner, determines whether certain GLI2 oncogenic traits are expressed. PMID:19015636

  17. Mouse Elk oncogene maps to chromosome X and a novel Elk oncogene (Elk3) maps to chromosome 10.

    PubMed

    Tamai, Y; Taketo, M; Nozaki, M; Seldin, M F

    1995-03-20

    The Elk protein is a member of the Ets family found in both vertebrates and invertebrates. Human ELK1 encoded by ELK1 binds alone or together with serum response factor to DNA and regulates gene expression in a variety of biological processes. Using a panel of interspecific backcross mice, we have mapped the Elk oncogene (Elk) and a novel type Elk oncogene (Elk3), closely related to ELK1. Elk maps to Chr X, and Elk3 maps to the proximal region of Chr 10. PMID:7601474

  18. Mouse Elk oncogene maps to chromosome X and a novel Elk oncogene (Elk3) maps to chromosome 10

    SciTech Connect

    Tamai, Yoshitaka; Taketo, Makoto; Nozaki, Masami

    1995-03-20

    The Elk protein is a member of the Ets family found in both vertebrates and invertebrates. Human ELK1 encoded by ELK1 binds alone or together with serum response factor to DNA and regulates gene expression in a variety of biological processes. Using a panel of interspecific backcross mice, we have mapped the Elk oncogene (Elk) and a novel type Elk oncogene (Elk3), closely related to ELK1. Elk maps to Chr X, and Elk3 maps to the proximal region of Chr 10. 18 refs., 1 fig., 1 tab.

  19. Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma

    PubMed Central

    Northcott, Paul A; Lee, Catherine; Zichner, Thomas; Stütz, Adrian M; Erkek, Serap; Kawauchi, Daisuke; Shih, David JH; Hovestadt, Volker; Zapatka, Marc; Sturm, Dominik; Jones, David TW; Kool, Marcel; Remke, Marc; Cavalli, Florence; Zuyderduyn, Scott; Bader, Gary; VandenBerg, Scott; Esparza, Lourdes Adriana; Ryzhova, Marina; Wang, Wei; Wittmann, Andrea; Stark, Sebastian; Sieber, Laura; Seker-Cin, Huriye; Linke, Linda; Kratochwil, Fabian; Jäger, Natalie; Buchhalter, Ivo; Imbusch, Charles D; Zipprich, Gideon; Raeder, Benjamin; Schmidt, Sabine; Diessl, Nicolle; Wolf, Stephan; Wiemann, Stefan; Brors, Benedikt; Lawerenz, Chris; Eils, Jürgen; Warnatz, Hans-Jörg; Risch, Thomas; Yaspo, Marie-Laure; Weber, Ursula D; Bartholomae, Cynthia C; von Kalle, Christof; Turányi, Eszter; Hauser, Peter; Sanden, Emma; Darabi, Anna; Siesjö, Peter; Sterba, Jaroslav; Zitterbart, Karel; Sumerauer, David; van Sluis, Peter; Versteeg, Rogier; Volckmann, Richard; Koster, Jan; Schuhmann, Martin U; Ebinger, Martin; Grimes, H. Leighton; Robinson, Giles W; Gajjar, Amar; Mynarek, Martin; von Hoff, Katja; Rutkowski, Stefan; Pietsch, Torsten; Scheurlen, Wolfram; Felsberg, Jörg; Reifenberger, Guido; Kulozik, Andreas E; von Deimlmg, Andreas; Witt, Olaf; Eils, Roland; Gilbertson, Richard J; Korshunov, Andrey; Taylor, Michael D; Lichter, Peter; Korbel, Jan O; Wechsler-Reya, Robert J; Pfister, Stefan M

    2014-01-01

    Summary Paragraph Medulloblastoma is a highly malignant paediatric brain tumour currently treated with a combination of surgery, radiation, and chemotherapy, posing a considerable burden of toxicity to the developing child. Genomics has illuminated the extensive intertumoural heterogeneity of medulloblastoma, identifying four distinct molecular subgroups. Group 3 and Group 4 subgroup medulloblastomas account for the majority of paediatric cases; yet, oncogenic drivers for these subtypes remain largely unidentified. Here we describe a series of prevalent, highly disparate genomic structural variants, restricted to Groups 3 and 4, resulting in specific and mutually exclusive activation of the growth factor independent 1 family protooncogenes, GFI1 and GFI1B. Somatic structural variants juxtapose GFI1/GFI1B coding sequences proximal to active enhancer elements, including super-enhancers, instigating oncogenic activity. Our results, supported by evidence from mouse models, identify GFI1 and GFI1B as prominent medulloblastoma oncogenes and implicate ‘enhancer hijacking’ as an efficient mechanism driving oncogene activation in a childhood cancer. PMID:25043047

  20. Autophagic activity dictates the cellular response to oncogenic RAS

    PubMed Central

    Wang, Yihua; Wang, Xiao Dan; Lapi, Eleonora; Sullivan, Alexandra; Jia, Wei; He, You-Wen; Ratnayaka, Indrika; Zhong, Shan; Goldin, Robert D.; Goemans, Christoph G.; Tolkovsky, Aviva M.; Lu, Xin

    2012-01-01

    RAS is frequently mutated in human cancers and has opposing effects on autophagy and tumorigenesis. Identifying determinants of the cellular responses to RAS is therefore vital in cancer research. Here, we show that autophagic activity dictates the cellular response to oncogenic RAS. N-terminal Apoptosis-stimulating of p53 protein 2 (ASPP2) mediates RAS-induced senescence and inhibits autophagy. Oncogenic RAS-expressing ASPP2(Δ3/Δ3) mouse embryonic fibroblasts that escape senescence express a high level of ATG5/ATG12. Consistent with the notion that autophagy levels control the cellular response to oncogenic RAS, overexpressing ATG5, but not autophagy-deficient ATG5 mutant K130R, bypasses RAS-induced senescence, whereas ATG5 or ATG3 deficiency predisposes to it. Mechanistically, ASPP2 inhibits RAS-induced autophagy by competing with ATG16 to bind ATG5/ATG12 and preventing ATG16/ATG5/ATG12 formation. Hence, ASPP2 modulates oncogenic RAS-induced autophagic activity to dictate the cellular response to RAS: to proliferate or senesce. PMID:22847423

  1. In silico search of DNA drugs targeting oncogenes.

    PubMed

    Papadakis, George; Gizeli, Electra

    2012-01-01

    Triplex forming oligonucleotides (TFOs) represent a class of drug candidates for antigene therapy. Based on strict criteria, we investigated the potential of 25 known oncogenes to be regulated by TFOs in the mRNA synthesis level and we report specific target sequences found in seven of these genes. PMID:23221090

  2. miR-17–92 explains MYC oncogene addiction

    PubMed Central

    Li, Yulin; Casey, Stephanie C; Choi, Peter S; Felsher, Dean W

    2014-01-01

    MYC regulates tumorigenesis by coordinating the expression of thousands of genes. We found that MYC appears to regulate the decisions between cell survival versus death and self-renewal versus senescence through the microRNA miR-17–92 cluster. Addiction to the MYC oncogene may therefore in fact be an addiction to miR-17–92. PMID:27308380

  3. Oncogenic KRAS Regulates Tumor Cell Signaling via Stromal Reciprocation

    PubMed Central

    Tape, Christopher J.; Ling, Stephanie; Dimitriadi, Maria; McMahon, Kelly M.; Worboys, Jonathan D.; Leong, Hui Sun; Norrie, Ida C.; Miller, Crispin J.; Poulogiannis, George; Lauffenburger, Douglas A.; Jørgensen, Claus

    2016-01-01

    Summary Oncogenic mutations regulate signaling within both tumor cells and adjacent stromal cells. Here, we show that oncogenic KRAS (KRASG12D) also regulates tumor cell signaling via stromal cells. By combining cell-specific proteome labeling with multivariate phosphoproteomics, we analyzed heterocellular KRASG12D signaling in pancreatic ductal adenocarcinoma (PDA) cells. Tumor cell KRASG12D engages heterotypic fibroblasts, which subsequently instigate reciprocal signaling in the tumor cells. Reciprocal signaling employs additional kinases and doubles the number of regulated signaling nodes from cell-autonomous KRASG12D. Consequently, reciprocal KRASG12D produces a tumor cell phosphoproteome and total proteome that is distinct from cell-autonomous KRASG12D alone. Reciprocal signaling regulates tumor cell proliferation and apoptosis and increases mitochondrial capacity via an IGF1R/AXL-AKT axis. These results demonstrate that oncogene signaling should be viewed as a heterocellular process and that our existing cell-autonomous perspective underrepresents the extent of oncogene signaling in cancer. Video Abstract PMID:27087446

  4. Targeting Oncogenic Mutant p53 for Cancer Therapy

    PubMed Central

    Parrales, Alejandro; Iwakuma, Tomoo

    2015-01-01

    Among genetic alterations in human cancers, mutations in the tumor suppressor p53 gene are the most common, occurring in over 50% of human cancers. The majority of p53 mutations are missense mutations and result in the accumulation of dysfunctional p53 protein in tumors. These mutants frequently have oncogenic gain-of-function activities and exacerbate malignant properties of cancer cells, such as metastasis and drug resistance. Increasing evidence reveals that stabilization of mutant p53 in tumors is crucial for its oncogenic activities, while depletion of mutant p53 attenuates malignant properties of cancer cells. Thus, mutant p53 is an attractive druggable target for cancer therapy. Different approaches have been taken to develop small-molecule compounds that specifically target mutant p53. These include compounds that restore wild-type conformation and transcriptional activity of mutant p53, induce depletion of mutant p53, inhibit downstream pathways of oncogenic mutant p53, and induce synthetic lethality to mutant p53. In this review article, we comprehensively discuss the current strategies targeting oncogenic mutant p53 in cancers, with special focus on compounds that restore wild-type p53 transcriptional activity of mutant p53 and those reducing mutant p53 levels. PMID:26732534

  5. Folate levels modulate oncogene-induced replication stress and tumorigenicity

    PubMed Central

    Lamm, Noa; Maoz, Karin; Bester, Assaf C; Im, Michael M; Shewach, Donna S; Karni, Rotem; Kerem, Batsheva

    2015-01-01

    Chromosomal instability in early cancer stages is caused by replication stress. One mechanism by which oncogene expression induces replication stress is to drive cell proliferation with insufficient nucleotide levels. Cancer development is driven by alterations in both genetic and environmental factors. Here, we investigated whether replication stress can be modulated by both genetic and non-genetic factors and whether the extent of replication stress affects the probability of neoplastic transformation. To do so, we studied the effect of folate, a micronutrient that is essential for nucleotide biosynthesis, on oncogene-induced tumorigenicity. We show that folate deficiency by itself leads to replication stress in a concentration-dependent manner. Folate deficiency significantly enhances oncogene-induced replication stress, leading to increased DNA damage and tumorigenicity in vitro. Importantly, oncogene-expressing cells, when grown under folate deficiency, exhibit a significantly increased frequency of tumor development in mice. These findings suggest that replication stress is a quantitative trait affected by both genetic and non-genetic factors and that the extent of replication stress plays an important role in cancer development. PMID:26197802

  6. Serum screening for oncogene proteins in workers exposed to PCBs.

    PubMed Central

    Brandt-Rauf, P W; Niman, H L

    1988-01-01

    A cohort of 16 municipal workers engaged in cleaning oil from old transformers was examined for possible health effects from exposure to polychlorinated biphenyls (PCBs). In addition to the evaluation of routine clinical parameters (history, physical examination, liver function tests, serum triglycerides, serum PCB values), a new screening technique for the presence of oncogene proteins in serum using monoclonal antibodies was used to ascertain the potential carcinogenic risk from exposure in these workers. Except for one individual, serum PCB concentrations were found to be relatively low in this cohort, probably due to the observance of appropriate protective precautions. The results of liver function test were within normal limits and serum triglyceride concentrations showed no consistent relation to PCB concentrations. Six individuals, all of whom were smokers, showed abnormal banding patterns for fes oncogene related proteins. The individual with the highest serum PCB concentration also exhibited significantly raised levels of the H-ras oncogene related P21 protein in his serum. These oncogene protein findings may be indicative of an increased risk for the development of malignant disease in these individuals. Images PMID:3143397

  7. Oncogenic KRAS Regulates Tumor Cell Signaling via Stromal Reciprocation.

    PubMed

    Tape, Christopher J; Ling, Stephanie; Dimitriadi, Maria; McMahon, Kelly M; Worboys, Jonathan D; Leong, Hui Sun; Norrie, Ida C; Miller, Crispin J; Poulogiannis, George; Lauffenburger, Douglas A; Jørgensen, Claus

    2016-05-01

    Oncogenic mutations regulate signaling within both tumor cells and adjacent stromal cells. Here, we show that oncogenic KRAS (KRAS(G12D)) also regulates tumor cell signaling via stromal cells. By combining cell-specific proteome labeling with multivariate phosphoproteomics, we analyzed heterocellular KRAS(G12D) signaling in pancreatic ductal adenocarcinoma (PDA) cells. Tumor cell KRAS(G12D) engages heterotypic fibroblasts, which subsequently instigate reciprocal signaling in the tumor cells. Reciprocal signaling employs additional kinases and doubles the number of regulated signaling nodes from cell-autonomous KRAS(G12D). Consequently, reciprocal KRAS(G12D) produces a tumor cell phosphoproteome and total proteome that is distinct from cell-autonomous KRAS(G12D) alone. Reciprocal signaling regulates tumor cell proliferation and apoptosis and increases mitochondrial capacity via an IGF1R/AXL-AKT axis. These results demonstrate that oncogene signaling should be viewed as a heterocellular process and that our existing cell-autonomous perspective underrepresents the extent of oncogene signaling in cancer. VIDEO ABSTRACT. PMID:27087446

  8. Emerging landscape of oncogenic signatures across human cancers

    PubMed Central

    Ciriello, Giovanni; Miller, Martin L; Aksoy, Bülent Arman; Senbabaoglu, Yasin; Schultz, Nikolaus; Sander, Chris

    2014-01-01

    Cancer therapy is challenged by the diversity of molecular implementations of oncogenic processes and by the resulting variation in therapeutic responses. Projects such as The Cancer Genome Atlas (TCGA) provide molecular tumor maps in unprecedented detail. The interpretation of these maps remains a major challenge. Here we distilled thousands of genetic and epigenetic features altered in cancers to ~500 selected functional events (SFEs). Using this simplified description, we derived a hierarchical classification of 3,299 TCGA tumors from 12 cancer types. The top classes are dominated by either mutations (M class) or copy number changes (C class). This distinction is clearest at the extremes of genomic instability, indicating the presence of different oncogenic processes. The full hierarchy shows functional event patterns characteristic of multiple cross-tissue groups of tumors, termed oncogenic signature classes. Targetable functional events in a tumor class are suggestive of class-specific combination therapy. These results may assist in the definition of clinical trials to match actionable oncogenic signatures with personalized therapies. PMID:24071851

  9. The Minority Report: Targeting the Rare Oncogenes in NSCLC

    PubMed Central

    McCoach, Caroline E.

    2014-01-01

    Lung cancer is still responsible for the highest number of cancer deaths worldwide. Despite this fact, significant progress has been made in the treatment of non-small cell lung cancer (NSCLC). Specifically, efforts to identify and treat genetic alterations (gene mutations, gene fusions, gene amplification events, etc.) that result in oncogenic drivers are now standard of care (EGFR and ALK) or an intense area of research. The most prevalent oncogenic drivers have likely already been identified; thus, there is now a focus on subgroups of tumors with less common genetic alterations. Interestingly, as we explore these less common mutations, we are discovering that many occur across other tumor types (i.e., non-lung cancer), further justifying their study. Furthermore, many studies have demonstrated that by searching broadly for multiple genetic alterations in large subsets of patients they are able to identify potentially targetable alterations in the majority of patients. Although individually, the rare oncogenic drivers subgroups may seem to occur too infrequently to justify their exploration, the fact that the majority of patients with NSCLC harbor a potentially actionable driver mutation within their tumors and the fact that different types of cancers often have the same oncogenic driver justifies this approach. PMID:25228144

  10. Notch signaling: switching an oncogene to a tumor suppressor

    PubMed Central

    Lobry, Camille; Oh, Philmo; Mansour, Marc R.; Look, A. Thomas

    2014-01-01

    The Notch signaling pathway is a regulator of self-renewal and differentiation in several tissues and cell types. Notch is a binary cell-fate determinant, and its hyperactivation has been implicated as oncogenic in several cancers including breast cancer and T-cell acute lymphoblastic leukemia (T-ALL). Recently, several studies also unraveled tumor-suppressor roles for Notch signaling in different tissues, including tissues where it was before recognized as an oncogene in specific lineages. Whereas involvement of Notch as an oncogene in several lymphoid malignancies (T-ALL, B-chronic lymphocytic leukemia, splenic marginal zone lymphoma) is well characterized, there is growing evidence involving Notch signaling as a tumor suppressor in myeloid malignancies. It therefore appears that Notch signaling pathway’s oncogenic or tumor-suppressor abilities are highly context dependent. In this review, we summarize and discuss latest advances in the understanding of this dual role in hematopoiesis and the possible consequences for the treatment of hematologic malignancies. PMID:24608975

  11. Protein kinase Cι expression and oncogenic signaling mechanisms in cancer.

    PubMed

    Murray, Nicole R; Kalari, Krishna R; Fields, Alan P

    2011-04-01

    Accumulating evidence demonstrates that PKCι is an oncogene and prognostic marker that is frequently targeted for genetic alteration in many major forms of human cancer. Functional data demonstrate that PKCι is required for the transformed phenotype of lung, pancreatic, ovarian, prostate, colon, and brain cancer cells. Future studies will be required to determine whether PKCι is also an oncogene in the many other cancer types that also overexpress PKCι. Studies of PKCι using genetically defined models of tumorigenesis have revealed a critical role for PKCι in multiple stages of tumorigenesis, including tumor initiation, progression, and metastasis. Recent studies in a genetic model of lung adenocarcinoma suggest a role for PKCι in transformation of lung cancer stem cells. These studies have important implications for the therapeutic use of aurothiomalate (ATM), a highly selective PKCι signaling inhibitor currently undergoing clinical evaluation. Significant progress has been made in determining the molecular mechanisms by which PKCι drives the transformed phenotype, particularly the central role played by the oncogenic PKCι-Par6 complex in transformed growth and invasion, and of several PKCι-dependent survival pathways in chemo-resistance. Future studies will be required to determine the composition and dynamics of the PKCι-Par6 complex, and the mechanisms by which oncogenic signaling through this complex is regulated. Likewise, a better understanding of the critical downstream effectors of PKCι in various human tumor types holds promise for identifying novel prognostic and surrogate markers of oncogenic PKCι activity that may be clinically useful in ongoing clinical trials of ATM. PMID:20945390

  12. A Network-Based Model of Oncogenic Collaboration for Prediction of Drug Sensitivity

    PubMed Central

    Laderas, Ted G.; Heiser, Laura M.; Sönmez, Kemal

    2015-01-01

    Tumorigenesis is a multi-step process, involving the acquisition of multiple oncogenic mutations that transform cells, resulting in systemic dysregulation that enables proliferation, invasion, and other cancer hallmarks. The goal of precision medicine is to identify therapeutically-actionable mutations from large-scale omic datasets. However, the multiplicity of oncogenes required for transformation, known as oncogenic collaboration, makes assigning effective treatments difficult. Motivated by this observation, we propose a new type of oncogenic collaboration where mutations in genes that interact with an oncogene may contribute to the oncogene’s deleterious potential, a new genomic feature that we term “surrogate oncogenes.” Surrogate oncogenes are representatives of these mutated subnetworks that interact with oncogenes. By mapping mutations to a protein–protein interaction network, we determine the significance of the observed distribution using permutation-based methods. For a panel of 38 breast cancer cell lines, we identified a significant number of surrogate oncogenes in known oncogenes such as BRCA1 and ESR1, lending credence to this approach. In addition, using Random Forest Classifiers, we show that these significant surrogate oncogenes predict drug sensitivity for 74 drugs in the breast cancer cell lines with a mean error rate of 30.9%. Additionally, we show that surrogate oncogenes are predictive of survival in patients. The surrogate oncogene framework incorporates unique or rare mutations from a single sample, and therefore has the potential to integrate patient-unique mutations into drug sensitivity predictions, suggesting a new direction in precision medicine and drug development. Additionally, we show the prevalence of significant surrogate oncogenes in multiple cancers from The Cancer Genome Atlas, suggesting that surrogate oncogenes may be a useful genomic feature for guiding pancancer analyses and assigning therapies across many tissue

  13. Functional implications of mitochondrial reactive oxygen species generated by oncogenic viruses

    PubMed Central

    Choi, Young Bong; Harhaj, Edward William

    2014-01-01

    Between 15–20% of human cancers are associated with infection by oncogenic viruses. Oncogenic viruses, including HPV, HBV, HCV and HTLV-1, target mitochondria to influence cell proliferation and survival. Oncogenic viral gene products also trigger the production of reactive oxygen species which can elicit oxidative DNA damage and potentiate oncogenic host signaling pathways. Viral oncogenes may also subvert mitochondria quality control mechanisms such as mitophagy and metabolic adaptation pathways to promote virus replication. Here, we will review recent progress on viral regulation of mitophagy and metabolic adaptation and their roles in viral oncogenesis. PMID:25580106

  14. Regulation of oncogene-induced cell cycle exit and senescence by chromatin modifiers

    PubMed Central

    David, Gregory

    2012-01-01

    Oncogene activation leads to dramatic changes in numerous biological pathways controlling cellular division, and results in the initiation of a transcriptional program that promotes transformation. Conversely, it also triggers an irreversible cell cycle exit called cellular senescence, which allows the organism to counteract the potentially detrimental uncontrolled proliferation of damaged cells. Therefore, a tight transcriptional control is required at the onset of oncogenic signal, coordinating both positive and negative regulation of gene expression. Not surprisingly, numerous chromatin modifiers contribute to the cellular response to oncogenic stress. While these chromatin modifiers were initially thought of as mere mediators of the cellular response to oncogenic stress, recent studies have uncovered a direct and specific regulation of chromatin modifiers by oncogenic signals. We review here the diverse functions of chromatin modifiers in the cellular response to oncogenic stress, and discuss the implications of these findings on the regulation of cell cycle progression and proliferation by activated oncogenes. PMID:22825329

  15. Enhancing Anti-Tumor Efficacy of Doxorubicin by Non-Covalent Conjugation to Gold Nanoparticles – In Vitro Studies on Feline Fibrosarcoma Cell Lines

    PubMed Central

    Wójcik, Michał; Lewandowski, Wiktor; Król, Magdalena; Pawłowski, Karol; Mieczkowski, Józef; Lechowski, Roman; Zabielska, Katarzyna

    2015-01-01

    Background Feline injection-site sarcomas are malignant skin tumors of mesenchymal origin, the treatment of which is a challenge for veterinary practitioners. Methods of treatment include radical surgery, radiotherapy and chemotherapy. The most commonly used cytostatic drugs are cyclophosphamide, doxorubicin and vincristine. However, the use of cytostatics as adjunctive treatment is limited due to their adverse side-effects, low biodistribution after intravenous administration and multidrug resistance. Colloid gold nanoparticles are promising drug delivery systems to overcome multidrug resistance, which is a main cause of ineffective chemotherapy treatment. The use of colloid gold nanoparticles as building blocks for drug delivery systems is preferred due to ease of surface functionalization with various molecules, chemical stability and their low toxicity. Methods Stability and structure of the glutathione-stabilized gold nanoparticles non-covalently modified with doxorubicin (Au-GSH-Dox) was confirmed using XPS, TEM, FT-IR, SAXRD and SAXS analyses. MTT assay, Annexin V and Propidium Iodide Apoptosis assay and Rhodamine 123 and Verapamil assay were performed on 4 feline fibrosarcoma cell lines (FFS1WAW, FFS1, FFS3, FFS5). Statistical analyses were performed using Graph Pad Prism 5.0 (USA). Results A novel approach, glutathione-stabilized gold nanoparticles (4.3 +/- 1.1 nm in diameter) non-covalently modified with doxorubicin (Au-GSH-Dox) was designed and synthesized. A higher cytotoxic effect (p<0.01) of Au-GSH-Dox than that of free doxorubicin has been observed in 3 (FFS1, FFS3, FFS1WAW) out of 4 feline fibrosarcoma cell lines. The effect has been correlated to the activity of glycoprotein P (main efflux pump responsible for multidrug resistance). Conclusions The results indicate that Au-GSH-Dox may be a potent new therapeutic agent to increase the efficacy of the drug by overcoming the resistance to doxorubicin in feline fibrosarcoma cell lines. Moreover, as

  16. Eriobotrya japonica hydrophilic extract modulates cytokines in normal tissues, in the tumor of Meth-A-fibrosarcoma bearing mice, and enhances their survival time

    PubMed Central

    2011-01-01

    Background Cytokines play a key role in the immune response to developing tumors, and therefore modulating their levels and actions provides innovative strategies for enhancing the activity of antigen presenting cells and polarizing towards T helper 1 type response within tumor microenvironment. One of these approaches could be the employment of plant extracts that have cytokine immunomodulation capabilities. Previously, we have shown that the Eriobotrya japonica hydrophilic extract (EJHE) induces proinflammatory cytokines in vitro and in vivo. Methods The present study explored the in vivo immunomodulatory effect on interferon-gamma (IFN-γ), interleukin-17 (IL-17), and transforming growth factor-beta 1 (TGF-β1) evoked by two water-extracts prepared from EJ leaves in the tissues of normal and Meth-A-fibrosarcoma bearing mice. Results Intraperitoneal (i.p.) administration of 10 μg of EJHE and EJHE-water residue (WR), prepared from butanol extraction, increased significantly IFN-γ production in the spleen (p < 0.01) and lung (p < 0.03) tissues at 6-48 hours and suppressed significantly TGF-β1 production levels (p < 0.001) in the spleen for as long as 48 hours. The latter responses, however, were not seen in Meth-A fibrosarcoma-bearing mice. On the contrary, triple i.p. injections, 24 hours apart; of 10 μg EJHE increased significantly IFN-γ production in the spleen (p < 0.02) while only EJHE-WR increased significantly IFN-γ, TGF-β1 and IL-17 (p < 0.03 - 0.005) production within the tumor microenvironment of Meth-A fibrosarcoma. In addition, the present work revealed a significant prolongation of survival time (median survival time 72 days vs. 27 days of control, p < 0.007) of mice inoculated i.p. with Meth-A cells followed by three times/week for eight weeks of i.p. administration of EJHE-WR. The latter prolonged survival effect was not seen with EJHE. Conclusions The therapeutic value of EJHE-WR as an anticancer agent merits further investigation of

  17. Oncogenic microtubule hyperacetylation through BEX4-mediated sirtuin 2 inhibition.

    PubMed

    Lee, Jin-Kwan; Lee, Janet; Go, Heounjeong; Lee, Chang Geun; Kim, Suhyeon; Kim, Hyun-Soo; Cho, Hyeseong; Choi, Kyeong Sook; Ha, Geun-Hyoung; Lee, Chang-Woo

    2016-01-01

    Five brain-expressed X-linked (BEX) gene members (BEX1-5) are arranged in tandem on chromosome X, and are highly conserved across diverse species. However, little is known about the function and role of BEX. This study represents a first attempt to demonstrate the molecular details of a novel oncogene BEX4. Among BEX proteins, BEX4 localizes to microtubules and spindle poles, and interacts with α-tubulin (α-TUB) and sirtuin 2 (SIRT2). The overexpression of BEX4 leads to the hyperacetylation of α-TUB by inhibiting SIRT2-mediated deacetylation. Furthermore, we found BEX4 expression conferred resistance to apoptotic cell death but led to acquisition of aneuploidy, and also increased the proliferating potential and growth of tumors. These results suggest that BEX4 overexpression causes an imbalance between TUB acetylation and deacetylation by SIRT2 inhibition and induces oncogenic aneuploidy transformation. PMID:27512957

  18. Malignant transformation of diploid human fibroblasts by transfection of oncogenes

    SciTech Connect

    McCormick, J.J.

    1992-01-01

    This document consist of brief reports prepared by postdoctoral students supported by the project, each describing his accomplishments under the grant. Topics include (1) Malignant Transformation of MSU-1. 1 Cells by Gamma Radiation, (2) Correlation between Levels of ras Expression and Presence of Transformed Phenotypes Including Tumorigenicity, Using a Modulatable Promoter, (3) Relation between Specific rad Oncogene Expression, (4) Correlation of Genetic Changes in Fibroblastic Tumors with Malignancies, (5)Transformation of MSU-1.1 Cells by sis Oncogene, (6) Malignant Transformation of MSU-1.0 Cells, (7) Correlation of Urokinase Plasminogen Activation (mu-PA) with Malignant Phenotype, (8)Two Dimensional Gel Electrophoresis Studies of the Proteins of the Major Cell Strains of the MSU-1 Family of Cells, and (9) Correlation between Proteinase Activity Levels and Malignancy.

  19. SUMOylated IRF-1 shows oncogenic potential by mimicking IRF-2

    SciTech Connect

    Park, Sun-Mi; Chae, Myounghee; Kim, Bo-Kyoung; Seo, Taegun; Jang, Ik-Soon; Choi, Jong-Soon; Kim, Il-Chul; Lee, Je-Ho; Park, Junsoo

    2010-01-01

    Interferon regulatory factor-1 (IRF-1) is an interferon-induced transcriptional activator that suppresses tumors by impeding cell proliferation. Recently, we demonstrated that the level of SUMOylated IRF-1 is elevated in tumor cells, and that SUMOylation of IRF-1 attenuates its tumor-suppressive function. Here we report that SUMOylated IRF-1 mimics IRF-2, an antagonistic repressor, and shows oncogenic potential. To demonstrate the role of SUMOylated IRF-1 in tumorigenesis, we used SUMO-IRF-1 recombinant protein. Stable expression of SUMO-IRF-1 in NIH3T3 cells resulted in focus formation and anchorage-independent growth in soft agar. Inoculation of SUMO-IRF-1-transfected cells into athymic nude mice resulted in tumor formation and infiltration of adipose tissues. Finally, we demonstrated that SUMO-IRF-1 transforms NIH3T3 cells in a dose-dependent manner suggesting that SUMOylated IRF-1 may act as an oncogenic protein in tumor cells.

  20. Oncogenes and human cancer--a surgeon's perspective.

    PubMed Central

    Markham, N. I.

    1985-01-01

    Amongst the most significant of the advances that have occurred in molecular biology in the last decade has been the development of our understanding of oncogenes, genes that would seem to be responsible for causing cancer. Subtle genetic differences between tumour cells and their normal counterparts have now been discovered, and there is much excitement being generated as new light is shed on the very roots of malignant change. Much of the technology is complicated and confusing, yet the subject should be one with which practising surgeons have a background understanding, for clinicians will possibly soon be able to utilise the results of this basic scientific research in everyday practice. This review article attempts to explain the background to the discovery of oncogenes, how they act, and how the technology may be able to be clinically used in the future in the battle to overcome cancer. PMID:4051429

  1. Comparison of liver oncogenic potential among human RAS isoforms

    PubMed Central

    Chung, Sook In; Moon, Hyuk; Ju, Hye-Lim; Kim, Dae Yeong; Cho, Kyung Joo; Ribback, Silvia; Dombrowski, Frank; Calvisi, Diego F.; Ro, Simon Weonsang

    2016-01-01

    Mutation in one of three RAS genes (i.e., HRAS, KRAS, and NRAS) leading to constitutive activation of RAS signaling pathways is considered a key oncogenic event in human carcinogenesis. Whether activated RAS isoforms possess different oncogenic potentials remains an unresolved question. Here, we compared oncogenic properties among RAS isoforms using liver-specific transgenesis in mice. Hydrodynamic transfection was performed using transposons expressing short hairpin RNA downregulating p53 and an activated RAS isoform, and livers were harvested at 23 days after gene delivery. No differences were found in the hepatocarcinogenic potential among RAS isoforms, as determined by both gross examination of livers and liver weight per body weight ratio (LW/BW) of mice expressing HRASQ61L, KRAS4BG12V and NRASQ61K. However, the tumorigenic potential differed significantly between KRAS splicing variants. The LW/BW ratio in KRAS4AG12V mice was significantly lower than in KRAS4BG12V mice (p < 0.001), and KRAS4AG12V mice lived significantly longer than KRRAS4BG12V mice (p < 0.0001). Notably, tumors from KRAS4AG12V mice displayed higher expression of the p16INK4A tumor suppressor when compared with KRAS4BG12V tumors. Forced overexpression of p16INK4A significantly reduced tumor growth in KRAS4BG12V mice, suggesting that upregulation of p16INK4A by KRAS4AG12V presumably delays tumor development driven by the latter oncogene. PMID:26799184

  2. Oncogenic mutations in GNAQ occur early in uveal melanoma

    PubMed Central

    Onken, Michael D.; Worley, Lori A.; Long, Meghan D.; Duan, Shenghui; Council, M. Laurin; Bowcock, Anne M.; Harbour, J. William

    2008-01-01

    Purpose Early/initiating oncogenic mutations have been identified for many cancers, but such mutations remain unidentified in uveal melanoma (UM). An extensive search for such mutations was undertaken, focusing on the RAF/MEK/ERK pathway, which is often the target of initiating mutations in other types of cancer. Methods DNA samples from primary UMs were analyzed for mutations in 24 potential oncogenes that affect the RAF/MEK/ERK pathway. For GNAQ, a stimulatory αq G-protein subunit which was recently found to be mutated in uveal melanomas, re-sequencing was expanded to include 67 primary UMs and 22 peripheral blood samples. GNAQ status was analyzed for association with clinical, pathologic, chromosomal, immunohistochemical and transcriptional features. Results Activating mutations at codon 209 were identified in GNAQ in 33/67 (49%) primary UMs, including 2/9 (22%) iris melanomas and 31/58 (54%) posterior UMs. No mutations were found in the other 23 potential oncogenes. GNAQ mutations were not found in normal blood DNA samples. Consistent with GNAQ mutation being an early or initiating event, this mutation was not associated with any clinical, pathologic or molecular features associated with late tumor progression. Conclusions GNAQ mutations occur in about half of UMs, representing the most common known oncogenic mutation in this cancer. The presence of this mutation in tumors at all stages of malignant progression suggests that it is an early event in UM. Mutations in this G-protein provide new insights into UM pathogenesis and could lead to new therapeutic possibilities. PMID:18719078

  3. The oncogenic action of ionizing radiation on rat skin

    SciTech Connect

    Burns, F.J.; Garte, S.J.

    1990-01-01

    An extensive experiment involving approximately 400 rats exposed to the neon ion beam at the Bevalac in Berkeley, CA and to electrons is nearing completion. Progress is described in three areas corresponding to the specific aims of the proposal: (1) carcinogenesis and DNA strand breaks in rat skin following exposure by the neon ions or electrons; (2) oncogene activation in radiation-induced rat skin cancers; (3) DNA strand breaks in the epidermis as a function of radiation penetration. 59 refs., 4 tabs.

  4. Oncogenic long noncoding RNA FAL1 in human cancer

    PubMed Central

    Zhong, Xiaomin; Hu, Xiaowen; Zhang, Lin

    2015-01-01

    Long non-coding RNAs (lncRNAs) are defined as RNA transcripts larger than 200 nucleotides that do not appear to have protein-coding potential. Accumulating evidence indicates that lncRNAs are involved in tumorigenesis. Our work reveals that lncRNA FAL1 (focally amplified lncRNA on chromosome 1) is frequently and focally amplified in human cancers and mediates oncogenic functions. PMID:27308441

  5. Activation of oncogenes by radon progeny and x-rays

    SciTech Connect

    Ling, C.C.

    1990-01-01

    The overall goal of this proposal is to study the carcinogenic effect of both high and low LET radiation at the molecular level, utilizing techniques developed in molecular biology, cancer cell biology and radiation biology. The underlying assumption is that malignant transformation of normal cells is a multistep process requiring two or more molecular events in the genomic DNA. We hypothesize that radiation may induce such events in one or more steps of the multistep process. We will use in vitro models of transformation that reproduce the stepwise progression of normal cells toward the transformed phenotype and ask whether radiation can provide the necessary activating function at discrete steps along this path. Our strategy involves transfecting into normal primary cells a variety of cloned oncogenes that are known to supply only some of the functions necessary for full transformation. These partially transformed'' cells will be the targets for irradiation by x-rays and alpha particles. The results will provide the basis for assessing the ability of ionizing radiation to activate oncogenic functions that complement'' the oncogene already present in the transfected cells and produce the fully transformed phenotype. Progress is described. 121 refs.

  6. RNAi screens in mice identify physiological regulators of oncogenic growth

    PubMed Central

    Beronja, Slobodan; Janki, Peter; Heller, Evan; Lien, Wen-Hui; Keyes, Brice; Oshimori, Naoki; Fuchs, Elaine

    2013-01-01

    Summary Tissue growth is the multifaceted outcome of a cell’s intrinsic capabilities and its interactions with the surrounding environment. Decoding these complexities is essential for understanding human development and tumorigenesis. Here, we tackle this problem by carrying out the first genome-wide RNAi-mediated screens in mice. Focusing on skin development and oncogenic (HrasG12V-induced) hyperplasia, our screens uncover novel as well as anticipated regulators of embryonic epidermal growth. Among top oncogenic screen hits are Mllt6 and the Wnt effector β-catenin; they maintain HrasG12V-dependent hyperproliferation. We also expose β-catenin as an unanticipated antagonist of normal epidermal growth, functioning through Wnt-independent intercellular adhesion. Finally, we document physiological relevance to mouse and human cancers, thereby establishing the feasibility of in vivo mammalian genome-wide investigations to dissect tissue development and tumorigenesis. By documenting some oncogenic growth regulators, we pave the way for future investigations of other hits and raise promise for unearthing new targets for cancer therapies. PMID:23945586

  7. PVT1: a rising star among oncogenic long noncoding RNAs.

    PubMed

    Colombo, Teresa; Farina, Lorenzo; Macino, Giuseppe; Paci, Paola

    2015-01-01

    It is becoming increasingly clear that short and long noncoding RNAs critically participate in the regulation of cell growth, differentiation, and (mis)function. However, while the functional characterization of short non-coding RNAs has been reaching maturity, there is still a paucity of well characterized long noncoding RNAs, even though large studies in recent years are rapidly increasing the number of annotated ones. The long noncoding RNA PVT1 is encoded by a gene that has been long known since it resides in the well-known cancer risk region 8q24. However, a couple of accidental concurrent conditions have slowed down the study of this gene, that is, a preconception on the primacy of the protein-coding over noncoding RNAs and the prevalent interest in its neighbor MYC oncogene. Recent studies have brought PVT1 under the spotlight suggesting interesting models of functioning, such as competing endogenous RNA activity and regulation of protein stability of important oncogenes, primarily of the MYC oncogene. Despite some advancements in modelling the PVT1 role in cancer, there are many questions that remain unanswered concerning the precise molecular mechanisms underlying its functioning. PMID:25883951

  8. KRAS insertion mutations are oncogenic and exhibit distinct functional properties

    PubMed Central

    White, Yasmine; Bagchi, Aditi; Van Ziffle, Jessica; Inguva, Anagha; Bollag, Gideon; Zhang, Chao; Carias, Heidi; Dickens, David; Loh, Mignon; Shannon, Kevin; Firestone, Ari J.

    2016-01-01

    Oncogenic KRAS mutations introduce discrete amino acid substitutions that reduce intrinsic Ras GTPase activity and confer resistance to GTPase-activating proteins (GAPs). Here we discover a partial duplication of the switch 2 domain of K-Ras encoding a tandem repeat of amino acids G60_A66dup in a child with an atypical myeloproliferative neoplasm. K-Ras proteins containing this tandem duplication or a similar five amino acid E62_A66dup mutation identified in lung and colon cancers transform the growth of primary myeloid progenitors and of Ba/F3 cells. Recombinant K-RasG60_A66dup and K-RasE62_A66dup proteins display reduced intrinsic GTP hydrolysis rates, accumulate in the GTP-bound conformation and are resistant to GAP-mediated GTP hydrolysis. Remarkably, K-Ras proteins with switch 2 insertions are impaired for PI3 kinase binding and Akt activation, and are hypersensitive to MEK inhibition. These studies illuminate a new class of oncogenic KRAS mutations and reveal unexpected plasticity in oncogenic Ras proteins that has diagnostic and therapeutic implications. PMID:26854029

  9. PVT1: A Rising Star among Oncogenic Long Noncoding RNAs

    PubMed Central

    Colombo, Teresa; Farina, Lorenzo; Macino, Giuseppe; Paci, Paola

    2015-01-01

    It is becoming increasingly clear that short and long noncoding RNAs critically participate in the regulation of cell growth, differentiation, and (mis)function. However, while the functional characterization of short non-coding RNAs has been reaching maturity, there is still a paucity of well characterized long noncoding RNAs, even though large studies in recent years are rapidly increasing the number of annotated ones. The long noncoding RNA PVT1 is encoded by a gene that has been long known since it resides in the well-known cancer risk region 8q24. However, a couple of accidental concurrent conditions have slowed down the study of this gene, that is, a preconception on the primacy of the protein-coding over noncoding RNAs and the prevalent interest in its neighbor MYC oncogene. Recent studies have brought PVT1 under the spotlight suggesting interesting models of functioning, such as competing endogenous RNA activity and regulation of protein stability of important oncogenes, primarily of the MYC oncogene. Despite some advancements in modelling the PVT1 role in cancer, there are many questions that remain unanswered concerning the precise molecular mechanisms underlying its functioning. PMID:25883951

  10. PERK Integrates Oncogenic Signaling and Cell Survival During Cancer Development.

    PubMed

    Bu, Yiwen; Diehl, J Alan

    2016-10-01

    Unfolded protein responses (UPR), consisting of three major transducers PERK, IRE1, and ATF6, occur in the midst of a variety of intracellular and extracellular challenges that perturb protein folding in the endoplasmic reticulum (ER). ER stress occurs and is thought to be a contributing factor to a number of human diseases, including cancer, neurodegenerative disorders, and various metabolic syndromes. In the context of neoplastic growth, oncogenic stress resulting from dysregulation of oncogenes such as c-Myc, Braf(V600E) , and HRAS(G12V) trigger the UPR as an adaptive strategy for cancer cell survival. PERK is an ER resident type I protein kinase harboring both pro-apoptotic and pro-survival capabilities. PERK, as a coordinator through its downstream substrates, reprograms cancer gene expression to facilitate survival in response to oncogenes and microenvironmental challenges, such as hypoxia, angiogenesis, and metastasis. Herein, we discuss how PERK kinase engages in tumor initiation, transformation, adaption microenvironmental stress, chemoresistance and potential opportunities, and potential opportunities for PERK targeted therapy. J. Cell. Physiol. 231: 2088-2096, 2016. © 2016 Wiley Periodicals, Inc. PMID:26864318

  11. The human minisatellite consensus at breakpoints of oncogene translocations.

    PubMed Central

    Krowczynska, A M; Rudders, R A; Krontiris, T G

    1990-01-01

    A reexamination of human minisatellite (hypervariable) regions following the cloning and sequencing of the new minisatellite, VTR1.1, revealed that many of these structures possessed a strongly conserved copy of the chi-like octamer, GC[A/T]GG[A/T]GG. In oncogene translocations apparently created by aberrant VDJ recombinase activity, this VTR octamer was often found within a few bases of the breakpoint (p less than 10(-10)). Three bcl2 rearrangements which occurred within 2 bp of one another were located precisely adjacent to this consensus; it defined the 5' border of that oncogene's major breakpoint cluster. Several c-myc translocations also occurred within 2 bp of this sequence. While the appearance of a chi-like element in polymorphic minisatellite sequences is consistent with a role promoting either recombination or replication slippage, the existence of such elements at sites of somatic translocations suggests chi function in site-specific recombination, perhaps as a subsidiary recognition signal in immunoglobulin gene rearrangement. We discuss the implications of these observations for mechanisms by which oncogene translocations and minisatellite sequences are generated. Images PMID:1969618

  12. CRAF R391W is a melanoma driver oncogene

    PubMed Central

    Atefi, Mohammad; Titz, Bjoern; Tsoi, Jennifer; Avramis, Earl; Le, Allison; Ng, Charles; Lomova, Anastasia; Lassen, Amanda; Friedman, Michael; Chmielowski, Bartosz; Ribas, Antoni; Graeber, Thomas G.

    2016-01-01

    Approximately 75% of melanomas have known driver oncogenic mutations in BRAF, NRAS, GNA11 or GNAQ, while the mutations providing constitutive oncogenic signaling in the remaining melanomas are not known. We established a melanoma cell line from a tumor with none of the common driver mutations. This cell line demonstrated a signaling profile similar to BRAF-mutants, but lacked sensitivity to the BRAF inhibitor vemurafenib. RNA-seq mutation data implicated CRAF R391W as the alternative driver mutation of this melanoma. CRAF R391W was homozygous and over expressed. These melanoma cells were highly sensitive to CRAF, but not BRAF knockdown. In reconstitution experiments, CRAF R391W, but not CRAF WT, transformed NIH3T3 cells in soft-agar colony formation assays, increased kinase activity in vitro, induced MAP kinase signaling and conferred vemurafenib resistance. MAP kinase inducing activity was dependent on CRAF dimerization. Thus, CRAF is a bona fide alternative oncogene for BRAF/NRAS/GNAQ/GNA11 wild type melanomas. PMID:27273450

  13. Oncogene-tumor suppressor gene feedback interactions and their control.

    PubMed

    Aguda, Baltazar D; del Rosario, Ricardo C H; Chan, Michael W Y

    2015-12-01

    We propose the hypothesis that for a particular type of cancer there exists a key pair of oncogene (OCG) and tumor suppressor gene (TSG) that is normally involved in strong stabilizing negative feedback loops (nFBLs) of molecular interactions, and it is these interactions that are sufficiently perturbed during cancer development. These nFBLs are thought to regulate oncogenic positive feedback loops (pFBLs) that are often required for the normal cellular functions of oncogenes. Examples given in this paper are the pairs of MYC and p53, KRAS and INK4A, and E2F1 and miR-17-92. We propose dynamical models of the aforementioned OCG-TSG interactions and derive stability conditions of the steady states in terms of strengths of cycles in the qualitative interaction network. Although these conditions are restricted to predictions of local stability, their simple linear expressions in terms of competing nFBLs and pFBLs make them intuitive and practical guides for experimentalists aiming to discover drug targets and stabilize cancer networks. PMID:26775863

  14. Oncogenic transformation of diverse gastrointestinal tissues in primary organoid culture

    PubMed Central

    Li, Xingnan; Nadauld, Lincoln; Ootani, Akifumi; Corney, David C.; Pai, Reetesh K.; Gevaert, Olivier; Cantrell, Michael A.; Rack, Paul G.; Neal, James T.; Chan, Carol W-M.; Yeung, Trevor; Gong, Xue; Yuan, Jenny; Wilhelmy, Julie; Robine, Sylvie; Attardi, Laura D.; Plevritis, Sylvia K.; Hung, Kenneth E.; Chen, Chang-Zheng; Ji, Hanlee P.; Kuo, Calvin J.

    2014-01-01

    The application of primary organoid cultures containing epithelial and mesenchymal elements to cancer modeling holds promise for combining the accurate multilineage differentiation and physiology of in vivo systems with the facile in vitro manipulation of transformed cell lines. Here, a single air-liquid interface culture method was used without modification to engineer oncogenic mutations into primary epithelial/mesenchymal organoids from mouse colon, stomach and pancreas. Pancreatic and gastric organoids exhibited dysplasia upon KrasG12D expression and/or p53 loss, and readily generated adenocarcinoma upon in vivo transplantation. In contrast, primary colon organoids required combinatorial Apc, p53, KrasG12D and Smad4 mutations for progressive transformation to invasive adenocarcinoma-like histology in vitro and tumorigenicity in vivo, recapitulating multi-hit models of colorectal cancer (CRC), and versus more promiscuous transformation of small intestinal organoids. Colon organoid culture functionally validated the microRNA miR-483 as a dominant driver oncogene at the Insulin-like growth factor-2 (IGF2) 11p15.5 CRC amplicon, inducing dysplasia in vitro and tumorigenicity in vivo. These studies demonstrate the general utility of a highly tractable primary organoid system for cancer modeling and driver oncogene validation in diverse gastrointestinal tissues. PMID:24859528

  15. Lung cancers unrelated to smoking: characterized by single oncogene addiction?

    PubMed

    Suda, Kenichi; Tomizawa, Kenji; Yatabe, Yasushi; Mitsudomi, Tetsuya

    2011-08-01

    Lung cancer is a major cause of cancer-related mortality worldwide. Currently, adenocarcinoma is its most common histological subtype in many countries. In contrast with small cell lung cancer or squamous cell carcinoma, lung adenocarcinoma often arises in never-smokers, especially in East Asian countries, as well as in smokers. Adenocarcinoma in never-smokers is associated with a lower incidence of genetic alterations (i.e., somatic mutations, loss of heterozygosity, and methylation) than in smokers. In addition, most adenocarcinomas in never-smokers harbor one of the proto-oncogene aberrations that occur in a mutually exclusive manner (EGFR mutation, KRAS mutation, HER2 mutations, or ALK translocation). It is of note that the proliferation and survival of lung cancer cells that harbor one of these oncogenic aberrations depend on the signaling from each aberrantly activated oncoprotein (oncogene addiction). Therefore, most adenocarcinomas in never-smokers can be effectively treated by molecularly targeted drugs that inhibit each oncoprotein. Moreover, from a pathological aspect, lung adenocarcinoma in never-smokers is characterized by terminal respiratory unit-type adenocarcinoma and a particular gene expression profile. Finally, epidemiological analyses have identified many candidate causes of lung cancer in never-smokers (genetic, environmental, and hormonal factors). The elucidation of the particular features of lung cancer unrelated to smoking and the development of new therapeutic modalities may reduce the mortality from lung cancers in the future. PMID:21655907

  16. Glucose metabolism and hexosamine pathway regulate oncogene-induced senescence.

    PubMed

    Gitenay, D; Wiel, C; Lallet-Daher, H; Vindrieux, D; Aubert, S; Payen, L; Simonnet, H; Bernard, D

    2014-01-01

    Oncogenic stress-induced senescence (OIS) prevents the ability of oncogenic signals to induce tumorigenesis. It is now largely admitted that the mitogenic effect of oncogenes requires metabolic adaptations to respond to new energetic and bio constituent needs. Yet, whether glucose metabolism affects OIS response is largely unknown. This is largely because of the fact that most of the OIS cellular models are cultivated in glucose excess. In this study, we used human epithelial cells, cultivated without glucose excess, to study alteration and functional role of glucose metabolism during OIS. We report a slowdown of glucose uptake and metabolism during OIS. Increasing glucose metabolism by expressing hexokinase2 (HK2), which converts glucose to glucose-6-phosphate (G6P), favors escape from OIS. Inversely, expressing a glucose-6-phosphatase, [corrected] pharmacological inhibition of HK2, or adding nonmetabolizable glucose induced a premature senescence. Manipulations of various metabolites covering G6P downstream pathways (hexosamine, glycolysis, and pentose phosphate pathways) suggest an unexpected role of the hexosamine pathway in controlling OIS. Altogether, our results show that decreased glucose metabolism occurs during and participates to OIS. PMID:24577087

  17. Utilizing signature-score to identify oncogenic pathways of cholangiocarcinoma

    PubMed Central

    Hsiao, Tzu-Hung; Chen, Hung-I Harry; Lu, Jo-Yang; Lin, Pei-Ying; Keller, Charles; Comerford, Sarah; Tomlinson, Gail E.; Chen, Yidong

    2013-01-01

    Extracting maximal information from gene signature sets (GSSs) via microarray-based transcriptional profiling involves assigning function to up and down regulated genes. Here we present a novel sample scoring method called Signature-score (S-score) which can be used to quantify the expression pattern of tumor samples from previously identified gene signature sets. A simulation result demonstrated an improved accuracy and robustness by S-score method comparing with other scoring methods. By applying the S-score method to cholangiocarcinoma (CAC), an aggressive hepatic cancer that arises from bile ducts cells, we identified enriched oncogenic pathways in two large CAC data sets. Thirteen pathways were enriched in CAC compared with normal liver and bile duct. Moreover, using S-score, we were able to dissect correlations between CAC-associated oncogenic pathways and Gene Ontology function. Two major oncogenic clusters and associated functions were identified. Cluster 1, which included beta-catenin and Ras, showed a positive correlation with the cell cycle, while cluster 2, which included TGF-beta, cytokeratin 19 and EpCAM was inversely correlated with immune function. We also used S-score to identify pathways that are differentially expressed in CAC and hepatocellular carcinoma (HCC), the more common subtype of liver cancer. Our results demonstrate the utility and effectiveness of S-score in assigning functional roles to tumor-associated gene signature sets and in identifying potential therapeutic targets for specific liver cancer subtypes. PMID:23905013

  18. Oncogene-mediated tumor transformation sensitizes cells to autophagy induction.

    PubMed

    Gargini, Ricardo; García-Escudero, Vega; Izquierdo, Marta; Wandosell, Francisco

    2016-06-01

    The process of tumorigenesis induces alterations in numerous cellular pathways including the main eukaryotic metabolic routes. It has been recently demonstrated that autophagy is part of the oncogene-induced senescence phenotype although its role in tumor establishment has not been completely clarified. In the present study, we showed that non‑transformed cells are sensitized to mitochondrial stress and autophagy induction when they are transformed by oncogenes such as c-Myc or Ras. We observed that overexpression of c-Myc or Ras increased AMP-activated protein kinase (AMPK) phosphorylation and the expression of p62, a known partner for degradation by autophagy. The activation of AMPK was found to favor the activation of FoxO3 which was prevented by the inhibition of AMPK. The transcriptional activation mediated by FoxO3 upregulated genes such as BNIP3 and LC3. Finally, the transformation by oncogenes such as c-Myc and Ras predisposes tumor cells to autophagy induction as a consequence of mitochondrial stress and impairs tumor growth in vitro and in vivo, which may have therapeutic implications. PMID:27035659

  19. Distant metastatic spread of molecularly proven infantile fibrosarcoma of the chest in a 2-month-old girl: case report and review of literature.

    PubMed

    van Grotel, Martine; Blanco, Esther; Sebire, Neil J; Slater, Olga; Chowdhury, Tanzina; Anderson, John

    2014-04-01

    Infantile fibrosarcoma (IFS) is a malignant neoplasm, arising in children younger than 2 years of age and with a hallmark chromosomal translocation t(12;15)(p13;q26) encoding an ETV6-NTRK3 fusion oncoprotein. A review of the world literature found no reported cases of molecularly proven IFS with distant metastatic spread at presentation. We report the case of a 2-month-old infant girl presenting with a chest wall primary IFS bearing and expressing the ETV6-NTRK3 fusion, who had several pulmonary metastatic deposits at diagnosis. She achieved complete remission with chemotherapy and surgery. To our knowledge, this is the first reported case of molecularly proven IFS with distant metastatic spread. PMID:24276045

  20. Inhibitory effect of the carnosine-gallic acid synthetic peptide on MMP-2 and MMP-9 in human fibrosarcoma HT1080 cells.

    PubMed

    Kim, Sung-Rae; Eom, Tae-Kil; Byun, Hee-Guk

    2014-09-01

    Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases that degrade extracellular matrix components and play important roles in a variety of biological and pathological processes such as malignant tumor metastasis and invasion. In this study, we constructed carnosine-gallic acid peptide (CGP) to identify a better MMP inhibitor than carnosine. The inhibitory effects of CGP on MMP-2 and MMP-9 were investigated in the human fibrosarcoma (HT1080) cell line. As a result, CGP significantly decreased MMP-2 and MMP-9 expression levels without a cytotoxic effect. Moreover, CGP may inhibit migration and invasion in HT1080 cells through the urokinase plasminogen activator (uPA)-uPA receptor signaling pathways to inhibit MMP-2 and MMP-9. Based on these results, it appears that CGP may play an important role in preventing and treating several MMP-2 and MMP-9-mediated health problems such as metastasis. PMID:24956509

  1. Galangin and kaempferol suppress phorbol-12-myristate-13-acetate-induced matrix metalloproteinase-9 expression in human fibrosarcoma HT-1080 cells.

    PubMed

    Choi, Yu Jung; Lee, Young Hun; Lee, Seung-Taek

    2015-01-01

    Matrix metalloproteinase (MMP)-9 degrades type IV collagen in the basement membrane and plays crucial roles in several pathological implications, including tumorigenesis and inflammation. In this study, we analyzed the effect of flavonols on MMP-9 expression in phorbol-12-myristate-13-acetate (PMA)-induced human fibrosarcoma HT-1080 cells. Galangin and kaempferol efficiently decreased MMP-9 secretion, whereas fisetin only weakly decreased its secretion. Galangin and kaempferol did not affect cell viability at concentrations up to 30 μM. Luciferase reporter assays showed that galangin and kaempferol decrease transcription of MMP-9 mRNA. Moreover, galangin and kaempferol strongly reduce IκBα phosphorylation and significantly decrease JNK phosphorylation. These results indicate that galangin and kaempferol suppress PMA-induced MMP-9 expression by blocking activation of NF-κB and AP-1. Therefore, these flavonols could be used as chemopreventive agents to lower the risk of diseases involving MMP-9. PMID:25518925

  2. Salinomycin causes migration and invasion of human fibrosarcoma cells by inducing MMP-2 expression via PI3-kinase, ERK-1/2 and p38 kinase pathways.

    PubMed

    Yu, Seon-Mi; Kim, Song Ja

    2016-06-01

    Salinomycin (SAL) is a polyether ionophore antibiotic that has recently been shown to regulate a variety of cellular responses in various human cancer cells. However, the effects of SAL on metastatic capacity of HT1080 human fibrosarcoma cells have not been elucidated. We investigated the effect of SAL on migration and invasion, with emphasis on the expression and activation of matrix metalloproteinase (MMP)-2 in HT1080 human fibrosarcoma cells. Treatment of SAL promoted the expression and activation of MMP-2 in a dose- and time-dependent manner, as detected by western blot analysis, gelatin zymography, and real-time polymerase chain reaction. SAL also increased metastatic capacities, as determined by an increase in the migration and invasion of cells using the wound healing assay and the invasion assay, respectively. To confirm the detailed molecular mechanisms of these effects, we measured the activation of phosphoinositide 3 kinase (PI3-kinase) and mitogen-activated protein kinase (MAPK)s (ERK-1/2 and p38 kinase), as detected by the phosphorylated proteins through western blot analysis. SAL treatment increased the phosphorylation of Akt and MAPKs. Inhibition of PI3-kinase, ERK-1/2, and p38 kinase with LY294002, PD98059, and SB203580, respectively, in the presence of SAL suppressed the metastatic capacity by reducing MMP-2 expression, as determined by gelatin zymography. Our results indicate that the PI3-kinase and MAPK signaling pathways are involved in migration and invasion of HT1080 through induction of MMP-2 expression and activation. In conclusion, SAL significantly increases the metastatic capacity of HT1080 cells by inducing MMP-2 expression via PI3-kinase and MAPK pathways. Our results suggest that SAL may be a potential agent for the study of cancer metastatic capacities. PMID:27035160

  3. The Superficial Musculoaponeurotic System of the Face: A Model Explored

    PubMed Central

    Broughton, M.; Fyfe, G. M.

    2013-01-01

    Regional differences in the integument of the body are explained, at least in part, by differences in fascial arrangements. In the face, where the skin is more mobile due to the action of the underlying facial muscles, fascial organisation is important for support and separation of muscle groups. This study used bequeathed cadaver material to investigate a current model of the SMAS proposed by Macchi et al., the original boundaries of which were explored and extended using both histology and gross dissection. As a clearly identifiable structure spanning the lateral and midface, the SMAS in the specimen supported the model proposed by Macchi et al. The three main findings that support the model were the layered morphological appearance of the SMAS, its progression from fibrous to aponeurotic in a lateral to medial direction, and the enveloping of the zygomaticus musculature. Extension beyond the proposed model into the temporal region was observed, but nasal and forehead regions showed no evidence of SMAS, while its presence in the cervical platysma region remained inconclusive. Fascial and soft tissue variability was considerable within facial regions of the examined specimen, helping to explain the debate around the SMAS in the literature. PMID:24294524

  4. Oncogenic NRAS Primes Primary Acute Myeloid Leukemia Cells for Differentiation.

    PubMed

    Brendel, Cornelia; Teichler, Sabine; Millahn, Axel; Stiewe, Thorsten; Krause, Michael; Stabla, Kathleen; Ross, Petra; Huynh, Minh; Illmer, Thomas; Mernberger, Marco; Barckhausen, Christina; Neubauer, Andreas

    2015-01-01

    RAS mutations are frequently found among acute myeloid leukemia patients (AML), generating a constitutively active signaling protein changing cellular proliferation, differentiation and apoptosis. We have previously shown that treatment of AML patients with high-dose cytarabine is preferentially beneficial for those harboring oncogenic RAS. On the basis of a murine AML cell culture model, we ascribed this effect to a RAS-driven, p53-dependent induction of differentiation. Hence, in this study we sought to confirm the correlation between RAS status and differentiation of primary blasts obtained from AML patients. The gene expression signature of AML blasts with oncogenic NRAS indeed corresponded to a more mature profile compared to blasts with wildtype RAS, as demonstrated by gene set enrichment analysis (GSEA) and real-time PCR analysis of myeloid ecotropic viral integration site 1 homolog (MEIS1) in a unique cohort of AML patients. In addition, in vitro cell culture experiments with established cell lines and a second set of primary AML cells showed that oncogenic NRAS mutations predisposed cells to cytarabine (AraC) driven differentiation. Taken together, our findings show that AML with inv(16) and NRAS mutation have a differentiation gene signature, supporting the notion that NRAS mutation may predispose leukemic cells to AraC induced differentiation. We therefore suggest that promotion of differentiation pathways by specific genetic alterations could explain the superior treatment outcome after therapy in some AML patient subgroups. Whether a differentiation gene expression status may generally predict for a superior treatment outcome in AML needs to be addressed in future studies. PMID:25901794

  5. Autism Linked to Increased Oncogene Mutations but Decreased Cancer Rate

    PubMed Central

    Zimmerman, M. Bridget; Mahajan, Vinit B.; Bassuk, Alexander G.

    2016-01-01

    Autism spectrum disorder (ASD) is one phenotypic aspect of many monogenic, hereditary cancer syndromes. Pleiotropic effects of cancer genes on the autism phenotype could lead to repurposing of oncology medications to treat this increasingly prevalent neurodevelopmental condition for which there is currently no treatment. To explore this hypothesis we sought to discover whether autistic patients more often have rare coding, single-nucleotide variants within tumor suppressor and oncogenes and whether autistic patients are more often diagnosed with neoplasms. Exome-sequencing data from the ARRA Autism Sequencing Collaboration was compared to that of a control cohort from the Exome Variant Server database revealing that rare, coding variants within oncogenes were enriched for in the ARRA ASD cohort (p<1.0x10-8). In contrast, variants were not significantly enriched in tumor suppressor genes. Phenotypically, children and adults with ASD exhibited a protective effect against cancer, with a frequency of 1.3% vs. 3.9% (p<0.001), but the protective effect decreased with age. The odds ratio of neoplasm for those with ASD relative to controls was 0.06 (95% CI: 0.02, 0.19; p<0.0001) in the 0 to 14 age group; 0.35 (95% CI: 0.14, 0.87; p = 0.024) in the 15 to 29 age group; 0.41 (95% CI: 0.15, 1.17; p = 0.095) in the 30 to 54 age group; and 0.49 (95% CI: 0.14, 1.74; p = 0.267) in those 55 and older. Both males and females demonstrated the protective effect. These findings suggest that defects in cellular proliferation, and potentially senescence, might influence both autism and neoplasm, and already approved drugs targeting oncogenic pathways might also have therapeutic value for treating autism. PMID:26934580

  6. Targeting the oncogenic Met receptor by antibodies and gene therapy.

    PubMed

    Vigna, E; Comoglio, P M

    2015-04-01

    The receptor for hepatocyte growth factor (HGF), a tyrosine kinase encoded by the Met oncogene, has a crucial role in cancer growth, invasion and metastasis. It is a validated therapeutic target for 'personalized' treatment of a number of malignancies. Therapeutic tools prompting selective, robust and highly effective Met inhibition potentially represent a major step in the battle against cancer. Antibodies targeting either Met or its ligand HGF, although challenging, demonstrate to be endowed with promising features. Here we briefly review and discuss the state of the art in the field. PMID:24882574

  7. IGF-Binding Protein 2 – Oncogene or Tumor Suppressor?

    PubMed Central

    Pickard, Adam; McCance, Dennis J.

    2015-01-01

    The role of insulin-like growth factor binding protein 2 (IGFBP2) in cancer is unclear. In general, IGFBP2 is considered to be oncogenic and its expression is often observed to be elevated in cancer. However, there are a number of conflicting reports in vitro and in vivo where IGFBP2 acts in a tumor suppressor manner. In this mini-review, we discuss the factors influencing the variation in IGFBP2 expression in cancer and our interpretation of these findings. PMID:25774149

  8. Oncogenic rearrangements driving ionizing radiation–associated human cancer

    PubMed Central

    Santoro, Massimo; Carlomagno, Francesca

    2013-01-01

    The Chernobyl nuclear disaster has caused a remarkable increase in radiation-induced papillary thyroid carcinoma in children and young adults. In this issue of the JCI, Ricarte-Filho and colleagues demonstrate that chromosomal rearrangements are the oncogenic “drivers” in most post-Chernobyl carcinomas and that they often lead to unscheduled activation of the MAPK signaling pathway. These findings represent a major step forward in our understanding of radiation-induced carcinogenesis and suggest various hypotheses about the mechanisms underlying the formation and selection of gene rearrangements during cancer cell evolution. PMID:24162670

  9. The role of human cervical cancer oncogene in cancer progression.

    PubMed

    Li, Xin-Yu; Wang, Xin

    2015-01-01

    Human cervical cancer oncogene (HCCR) was identified by differential display RT-PCR by screened abnormally expressed genes in cervical human cancers. The overexpressed gene is not only identified in cervical tissues, but also in various human cancers as leukemia/lymphoma, breast, stomach, colon, liver, kidney and ovarian cancer. For its special sensitivities and specificities in human breast cancer and hepatocellular carcinoma, it is expected to be a new biomarker to replace or combine with the existing biomarkers in the diagnose. The HCCR manifests as a negative regulator of the p53 tumor suppressor gene, and its expression is regulated by the PI3K/Akt signaling pathway, modulated by TCF/β-catenin, it also participates in induction of the c-kit proto-oncogene, in activation of PKC and telomerase activities, but the accurate biochemical mechanisms of how HCCR contributes to the malignancies is still unknown. The aim of this review is to summarize the roles of HCCR in cancer progression and the molecular mechanisms involved. PMID:26309489

  10. KIT oncogene inhibition drives intratumoral macrophage M2 polarization.

    PubMed

    Cavnar, Michael J; Zeng, Shan; Kim, Teresa S; Sorenson, Eric C; Ocuin, Lee M; Balachandran, Vinod P; Seifert, Adrian M; Greer, Jonathan B; Popow, Rachel; Crawley, Megan H; Cohen, Noah A; Green, Benjamin L; Rossi, Ferdinand; Besmer, Peter; Antonescu, Cristina R; DeMatteo, Ronald P

    2013-12-16

    Tumor-associated macrophages (TAMs) are a major component of the cancer microenvironment. Modulation of TAMs is under intense investigation because they are thought to be nearly always of the M2 subtype, which supports tumor growth. Gastrointestinal stromal tumor (GIST) is the most common human sarcoma and typically results from an activating mutation in the KIT oncogene. Using a spontaneous mouse model of GIST and 57 freshly procured human GISTs, we discovered that TAMs displayed an M1-like phenotype and function at baseline. In both mice and humans, the KIT oncoprotein inhibitor imatinib polarized TAMs to become M2-like, a process which involved TAM interaction with apoptotic tumor cells leading to the induction of CCAAT/enhancer binding protein (C/EBP) transcription factors. In human GISTs that eventually developed resistance to imatinib, TAMs reverted to an M1-like phenotype and had a similar gene expression profile as TAMs from untreated human GISTs. Therefore, TAM polarization depends on tumor cell oncogene activity and has important implications for immunotherapeutic strategies in human cancers. PMID:24323358

  11. Development of lung adenocarcinomas with exclusive dependence on oncogene fusions.

    PubMed

    Saito, Motonobu; Shimada, Yoko; Shiraishi, Kouya; Sakamoto, Hiromi; Tsuta, Koji; Totsuka, Hirohiko; Chiku, Suenori; Ichikawa, Hitoshi; Kato, Mamoru; Watanabe, Shun-Ichi; Yoshida, Teruhiko; Yokota, Jun; Kohno, Takashi

    2015-06-01

    This report delivers a comprehensive genetic alteration profile of lung adenocarcinomas (LADC) driven by ALK, RET, and ROS1 oncogene fusions. These tumors are difficult to study because of their rarity. Each drives only a low percentage of LADCs. Whole-exome sequencing and copy-number variation analyses were performed on a Japanese LADC cohort (n = 200) enriched in patients with fusions (n = 31, 15.5%), followed by deep resequencing for validation. The driver fusion cases showed a distinct profile with smaller numbers of nonsynonymous mutations in cancer-related genes or truncating mutations in SWI/SNF chromatin remodeling complex genes than in other LADCs (P < 0.0001). This lower mutation rate was independent of age, gender, smoking status, pathologic stage, and tumor differentiation (P < 0.0001) and was validated in nine fusion-positive cases from a U.S. LADCs cohort (n = 230). In conclusion, our findings indicate that LADCs with ALK, RET, and ROS1 fusions develop exclusively via their dependence on these oncogene fusions. The presence of such few alterations beyond the fusions supports the use of monotherapy with tyrosine kinase inhibitors targeting the fusion products in fusion-positive LADCs. PMID:25855381

  12. Secreted primary human malignant mesothelioma exosome signature reflects oncogenic cargo.

    PubMed

    Greening, David W; Ji, Hong; Chen, Maoshan; Robinson, Bruce W S; Dick, Ian M; Creaney, Jenette; Simpson, Richard J

    2016-01-01

    Malignant mesothelioma (MM) is a highly-aggressive heterogeneous malignancy, typically diagnosed at advanced stage. An important area of mesothelioma biology and progression is understanding intercellular communication and the contribution of the secretome. Exosomes are secreted extracellular vesicles shown to shuttle cellular cargo and direct intercellular communication in the tumour microenvironment, facilitate immunoregulation and metastasis. In this study, quantitative proteomics was used to investigate MM-derived exosomes from distinct human models and identify select cargo protein networks associated with angiogenesis, metastasis, and immunoregulation. Utilising bioinformatics pathway/network analyses, and correlation with previous studies on tumour exosomes, we defined a select mesothelioma exosomal signature (mEXOS, 570 proteins) enriched in tumour antigens and various cancer-specific signalling (HPGD/ENO1/OSMR) and secreted modulators (FN1/ITLN1/MAMDC2/PDGFD/GBP1). Notably, such circulating cargo offers unique insights into mesothelioma progression and tumour microenvironment reprogramming. Functionally, we demonstrate that oncogenic exosomes facilitate the migratory capacity of fibroblast/endothelial cells, supporting the systematic model of MM progression associated with vascular remodelling and angiogenesis. We provide biophysical and proteomic characterisation of exosomes, define a unique oncogenic signature (mEXOS), and demonstrate the regulatory capacity of exosomes in cell migration/tube formation assays. These findings contribute to understanding tumour-stromal crosstalk in the context of MM, and potential new diagnostic and therapeutic extracellular targets. PMID:27605433

  13. Secreted primary human malignant mesothelioma exosome signature reflects oncogenic cargo

    PubMed Central

    Greening, David W.; Ji, Hong; Chen, Maoshan; Robinson, Bruce W. S.; Dick, Ian M.; Creaney, Jenette; Simpson, Richard J.

    2016-01-01

    Malignant mesothelioma (MM) is a highly-aggressive heterogeneous malignancy, typically diagnosed at advanced stage. An important area of mesothelioma biology and progression is understanding intercellular communication and the contribution of the secretome. Exosomes are secreted extracellular vesicles shown to shuttle cellular cargo and direct intercellular communication in the tumour microenvironment, facilitate immunoregulation and metastasis. In this study, quantitative proteomics was used to investigate MM-derived exosomes from distinct human models and identify select cargo protein networks associated with angiogenesis, metastasis, and immunoregulation. Utilising bioinformatics pathway/network analyses, and correlation with previous studies on tumour exosomes, we defined a select mesothelioma exosomal signature (mEXOS, 570 proteins) enriched in tumour antigens and various cancer-specific signalling (HPGD/ENO1/OSMR) and secreted modulators (FN1/ITLN1/MAMDC2/PDGFD/GBP1). Notably, such circulating cargo offers unique insights into mesothelioma progression and tumour microenvironment reprogramming. Functionally, we demonstrate that oncogenic exosomes facilitate the migratory capacity of fibroblast/endothelial cells, supporting the systematic model of MM progression associated with vascular remodelling and angiogenesis. We provide biophysical and proteomic characterisation of exosomes, define a unique oncogenic signature (mEXOS), and demonstrate the regulatory capacity of exosomes in cell migration/tube formation assays. These findings contribute to understanding tumour-stromal crosstalk in the context of MM, and potential new diagnostic and therapeutic extracellular targets. PMID:27605433

  14. Design of a small molecule against an oncogenic noncoding RNA.

    PubMed

    Velagapudi, Sai Pradeep; Cameron, Michael D; Haga, Christopher L; Rosenberg, Laura H; Lafitte, Marie; Duckett, Derek R; Phinney, Donald G; Disney, Matthew D

    2016-05-24

    The design of precision, preclinical therapeutics from sequence is difficult, but advances in this area, particularly those focused on rational design, could quickly transform the sequence of disease-causing gene products into lead modalities. Herein, we describe the use of Inforna, a computational approach that enables the rational design of small molecules targeting RNA to quickly provide a potent modulator of oncogenic microRNA-96 (miR-96). We mined the secondary structure of primary microRNA-96 (pri-miR-96) hairpin precursor against a database of RNA motif-small molecule interactions, which identified modules that bound RNA motifs nearby and in the Drosha processing site. Precise linking of these modules together provided Targaprimir-96 (3), which selectively modulates miR-96 production in cancer cells and triggers apoptosis. Importantly, the compound is ineffective on healthy breast cells, and exogenous overexpression of pri-miR-96 reduced compound potency in breast cancer cells. Chemical Cross-Linking and Isolation by Pull-Down (Chem-CLIP), a small-molecule RNA target validation approach, shows that 3 directly engages pri-miR-96 in breast cancer cells. In vivo, 3 has a favorable pharmacokinetic profile and decreases tumor burden in a mouse model of triple-negative breast cancer. Thus, rational design can quickly produce precision, in vivo bioactive lead small molecules against hard-to-treat cancers by targeting oncogenic noncoding RNAs, advancing a disease-to-gene-to-drug paradigm. PMID:27170187

  15. Oncogenic KRAS confers chemoresistance by upregulating NRF2

    PubMed Central

    Tao, Shasha; Wang, Shue; Moghaddam, Seyed Javad; Ooi, Aikseng; Chapman, Eli; Wong, Pak K.; Zhang, Donna D.

    2014-01-01

    Oncogenic KRAS mutations found in 20–30% of all non-small cell lung cancers (NSCLC) are associated with chemoresistance and poor prognosis. Here we demonstrate that activation of the cell protective stress response gene NRF2 by KRAS is responsible for its ability to promote drug resistance. RNAi-mediated silencing of NRF2 was sufficient to reverse resistance to cisplatin elicited by ectopic expression of oncogenic KRAS in NSCLC cells. Mechanistically, KRAS increased NRF2 gene transcription through a TPA response element (TRE) located in the NRF2 promoter. In a mouse model of mutant KrasG12D-induced lung cancer, we found that suppressing the NRF2 pathway with the chemical inhibitor brusatol enhanced the antitumor efficacy of cisplatin. Co-treatment reduced tumor burden and improved survival. Our findings illuminate the mechanistic details of KRAS-mediated drug resistance and provide a preclinical rationale to improve the management of lung tumors harboring KRAS mutations with NRF2 pathway inhibitors. PMID:25339352

  16. Proteogenomic analysis reveals exosomes are more oncogenic than ectosomes.

    PubMed

    Keerthikumar, Shivakumar; Gangoda, Lahiru; Liem, Michael; Fonseka, Pamali; Atukorala, Ishara; Ozcitti, Cemil; Mechler, Adam; Adda, Christopher G; Ang, Ching-Seng; Mathivanan, Suresh

    2015-06-20

    Extracellular vesicles (EVs) include the exosomes (30-100 nm) that are produced through the endocytic pathway via the multivesicular bodies and the ectosomes (100-1000 nm) that are released through the budding of the plasma membrane. Despite the differences in the mode of biogenesis and size, reliable markers that can distinguish between exosomes and ectosomes are non-existent. Moreover, the precise functional differences between exosomes and ectosomes remains poorly characterised. Here, using label-free quantitative proteomics, we highlight proteins that could be exploited as markers to discriminate between exosomes and ectosomes. For the first time, a global proteogenomics analysis unveiled the secretion of mutant proteins that are implicated in cancer progression through tumor-derived EVs. Follow up integrated bioinformatics analysis highlighted the enrichment of oncogenic cargo in exosomes and ectosomes. Interestingly, exosomes induced significant cell proliferation and migration in recipient cells compared to ectosomes confirming the oncogenic nature of exosomes. These findings ascertain that cancer cells facilitate oncogenesis by the secretion of mutant and oncoproteins into the tumor microenvironment via exosomes and ectosomes. The integrative proteogenomics approach utilized in this study has the potential to identify disease biomarker candidates which can be later assayed in liquid biopsies obtained from cancer patients. PMID:25944692

  17. Knockin of mutant PIK3CA activates multiple oncogenic pathways

    PubMed Central

    Gustin, John P.; Karakas, Bedri; Weiss, Michele B.; Abukhdeir, Abde M.; Lauring, Josh; Garay, Joseph P.; Cosgrove, David; Tamaki, Akina; Konishi, Hiroyuki; Konishi, Yuko; Mohseni, Morassa; Wang, Grace; Rosen, D. Marc; Denmeade, Samuel R.; Higgins, Michaela J.; Vitolo, Michele I.; Bachman, Kurtis E.; Park, Ben Ho

    2009-01-01

    The phosphatidylinositol 3-kinase subunit PIK3CA is frequently mutated in human cancers. Here we used gene targeting to “knock in” PIK3CA mutations into human breast epithelial cells to identify new therapeutic targets associated with oncogenic PIK3CA. Mutant PIK3CA knockin cells were capable of epidermal growth factor and mTOR-independent cell proliferation that was associated with AKT, ERK, and GSK3β phosphorylation. Paradoxically, the GSK3β inhibitors lithium chloride and SB216763 selectively decreased the proliferation of human breast and colorectal cancer cell lines with oncogenic PIK3CA mutations and led to a decrease in the GSK3β target gene CYCLIN D1. Oral treatment with lithium preferentially inhibited the growth of nude mouse xenografts of HCT-116 colon cancer cells with mutant PIK3CA compared with isogenic HCT-116 knockout cells containing only wild-type PIK3CA. Our findings suggest GSK3β is an important effector of mutant PIK3CA, and that lithium, an FDA-approved therapy for bipolar disorders, has selective antineoplastic properties against cancers that harbor these mutations. PMID:19196980

  18. Insulator dysfunction and oncogene activation in IDH mutant gliomas.

    PubMed

    Flavahan, William A; Drier, Yotam; Liau, Brian B; Gillespie, Shawn M; Venteicher, Andrew S; Stemmer-Rachamimov, Anat O; Suvà, Mario L; Bernstein, Bradley E

    2016-01-01

    Gain-of-function IDH mutations are initiating events that define major clinical and prognostic classes of gliomas. Mutant IDH protein produces a new onco-metabolite, 2-hydroxyglutarate, which interferes with iron-dependent hydroxylases, including the TET family of 5'-methylcytosine hydroxylases. TET enzymes catalyse a key step in the removal of DNA methylation. IDH mutant gliomas thus manifest a CpG island methylator phenotype (G-CIMP), although the functional importance of this altered epigenetic state remains unclear. Here we show that human IDH mutant gliomas exhibit hypermethylation at cohesin and CCCTC-binding factor (CTCF)-binding sites, compromising binding of this methylation-sensitive insulator protein. Reduced CTCF binding is associated with loss of insulation between topological domains and aberrant gene activation. We specifically demonstrate that loss of CTCF at a domain boundary permits a constitutive enhancer to interact aberrantly with the receptor tyrosine kinase gene PDGFRA, a prominent glioma oncogene. Treatment of IDH mutant gliomaspheres with a demethylating agent partially restores insulator function and downregulates PDGFRA. Conversely, CRISPR-mediated disruption of the CTCF motif in IDH wild-type gliomaspheres upregulates PDGFRA and increases proliferation. Our study suggests that IDH mutations promote gliomagenesis by disrupting chromosomal topology and allowing aberrant regulatory interactions that induce oncogene expression. PMID:26700815

  19. Oncogenic programmes and Notch activity: an 'organized crime'?

    PubMed

    Dominguez, Maria

    2014-04-01

    The inappropriate Notch signalling can influence virtually all aspect of cancer, including tumour-cell growth, survival, apoptosis, angiogenesis, invasion and metastasis, although it does not do this alone. Hence, elucidating the partners of Notch that are active in cancer is now the focus of much intense research activity. The genetic toolkits available, coupled to the small size and short life of the fruit fly Drosophila melanogaster, makes this an inexpensive and effective animal model, suited to large-scale cancer gene discovery studies. The fly eye is not only a non-vital organ but its stereotyped size and disposition also means it is easy to screen for mutations that cause tumours and metastases and provides ample opportunities to test cancer theories and to unravel unanticipated nexus between Notch and other cancer genes, or to discover unforeseen Notch's partners in cancer. These studies suggest that Notch's oncogenic capacity is brought about not simply by increasing signal strength but through partnerships, whereby oncogenes gain more by cooperating than acting individually, as in a ring 'organized crime'. PMID:24780858

  20. Insulator dysfunction and oncogene activation in IDH mutant gliomas

    PubMed Central

    Flavahan, William A.; Drier, Yotam; Liau, Brian B.; Gillespie, Shawn M.; Venteicher, Andrew S.; Stemmer-Rachamimov, Anat O.; Suvà, Mario L.; Bernstein, Bradley E.

    2015-01-01

    Gain-of-function IDH mutations are initiating events that define major clinical and prognostic classes of gliomas1,2. Mutant IDH protein produces a novel onco-metabolite, 2-hydroxyglutarate (2-HG), that interferes with iron-dependent hydroxylases, including the TET family of 5′-methylcytosine hydroxylases3–7. TET enzymes catalyze a key step in the removal of DNA methylation8,9. IDH mutant gliomas thus manifest a CpG island methylator phenotype (G-CIMP)10,11, though the functional significance of this altered epigenetic state remains unclear. Here we show that IDH mutant gliomas exhibit hyper-methylation at CTCF binding sites, compromising binding of this methylation-sensitive insulator protein. Reduced CTCF binding is associated with loss of insulation between topological domains and aberrant gene activation. We specifically demonstrate that loss of CTCF at a domain boundary permits a constitutive enhancer to aberrantly interact with the receptor tyrosine kinase gene PDGFRA, a prominent glioma oncogene. Treatment of IDH mutant gliomaspheres with demethylating agent partially restores insulator function and down-regulates PDGFRA. Conversely, CRISPR-mediated disruption of the CTCF motif in IDH wildtype gliomaspheres up-regulates PDGFRA and increases proliferation. Our study suggests that IDH mutations promote gliomagenesis by disrupting chromosomal topology and allowing aberrant regulatory interactions that induce oncogene expression. PMID:26700815

  1. Comparative Full Length Sequence Analysis of Oncogenic and Vaccine (Rispens) Strains of Marek's Disease Virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The complete DNA sequence of the Marek’s disease virus serotype 1 vaccine strain CVI988 was determined and consists of 178,311 bp with an overall gene organization identical to that of the oncogenic strains. In examining open reading frames (ORFs), nine ORFs differ between vaccine and oncogenic stra...

  2. GENES FOR TUMOR MARKERS ARE CLUSTERED WITH CELLULAR PROTO-ONCOGENES ON HUMAN CHROMOSOMES

    EPA Science Inventory

    The relative mapping positions of genes for polypeptides expressed abnormally in tumors (tumor markers) and cellular proto-oncogenes were analyzed and a remarkable degree of co-mapping of tumor marker genes with oncogenes in the human karyotype were found. It is proposed that abe...

  3. Can anti-tumor immunity help to explain “oncogene addiction”?

    PubMed Central

    Restifo, Nicholas P.

    2010-01-01

    Summary “Oncogene addiction” refers to the process of tumor cell death that can occur after inactivation of a single oncogene. In this issue of Cancer Cell, Rakhra, et al. argue that complete tumor clearance after molecular targeted therapies requires a functioning immune system, pointing the way toward radically new combination therapies. PMID:21075303

  4. Dimerization mediated through a leucine zipper activates the oncogenic potential of the met receptor tyrosine kinase.

    PubMed Central

    Rodrigues, G A; Park, M

    1993-01-01

    Oncogenic activation of the met (hepatocyte growth factor/scatter factor) receptor tyrosine kinase involves a genomic rearrangement that generates a hybrid protein containing tpr-encoded sequences at its amino terminus fused directly to the met-encoded receptor kinase domain. Deletion of Tpr sequences abolishes the transforming ability of this protein, implicating this region in oncogenic activation. We demonstrate, by site-directed mutagenesis and coimmunoprecipitation experiments, that a leucine zipper motif within Tpr mediates dimerization of the tpr-met product and is essential for the transforming activity of the met oncogene. By analogy with ligand-stimulated activation of receptor tyrosine kinases, we propose that constitutive dimerization mediated by a leucine zipper motif within Tpr is responsible for oncogenic activation of the Met kinase. The possibility that this mechanism of activation represents a paradigm for a class of receptor tyrosine kinase oncogenes activated by DNA rearrangement is discussed. Images PMID:8413267

  5. Induction of promyelocytic leukemia (PML) oncogenic domains (PODs) by papillomavirus

    SciTech Connect

    Nakahara, Tomomi; Lambert, Paul F.

    2007-09-30

    Promyelocytic leukemia oncogenic domains (PODs), also called nuclear domain 10 (ND10), are subnuclear structures that have been implicated in a variety of cellular processes as well as the life cycle of DNA viruses including papillomaviruses. In order to investigate the interplay between papillomaviruses and PODs, we analyzed the status of PODs in organotypic raft cultures of human keratinocytes harboring HPV genome that support the differentiation-dependent HPV life cycle. The number of PODs per nucleus was increased in the presence of HPV genomes selectively within the poorly differentiated layers but was absent in the terminally differentiated layers of the stratified epithelium. This increase in PODs was correlated with an increase in abundance of post-translationally modified PML protein. Neither the E2-dependent transcription nor viral DNA replication was reliant upon the presence of PML. Implications of these findings in terms of HPV's interaction with its host are discussed.

  6. Oncogenic Transcription Factors: Cornerstones of Inflammation-Linked Pancreatic Carcinogenesis

    PubMed Central

    Baumgart, Sandra; Ellenrieder, Volker; Fernandez-Zapico, Martin E.

    2012-01-01

    Transcription factors are proteins that regulate gene expression by modulating the synthesis of messenger RNA. Since this process is frequently one dominant control point in the production of many proteins, transcription factors represent the key regulators of numerous cellular functions, including proliferation, differentiation, and apoptosis. Pancreatic cancer progression is characterized by the activation of inflammatory signaling pathways converging on a limited set of transcription factors that fine-tune gene expression patterns contributing to the growth and maintenance of these tumors. Thus, strategies targeting these transcriptional networks activated in pancreatic cancer cells could block the effects of upstream inflammatory responses participating in pancreatic tumorigenesis. In this article we review this field of research and summarize current strategies to target oncogenic transcription factors and their activating signaling networks in the treatment of pancreatic cancer. PMID:21997559

  7. Oncogenic viruses: Lessons learned using next-generation sequencing technologies.

    PubMed

    Flippot, Ronan; Malouf, Gabriel G; Su, Xiaoping; Khayat, David; Spano, Jean-Philippe

    2016-07-01

    Fifteen percent of cancers are driven by oncogenic human viruses. Four of those viruses, hepatitis B virus, human papillomavirus, Merkel cell polyomavirus, and human T-cell lymphotropic virus, integrate the host genome. Viral oncogenesis is the result of epigenetic and genetic alterations that happen during viral integration. So far, little data have been available regarding integration mechanisms and modifications in the host genome. However, the emergence of high-throughput sequencing and bioinformatic tools enables researchers to establish the landscape of genomic alterations and predict the events that follow viral integration. Cooperative working groups are currently investigating these factors in large data sets. Herein, we provide novel insights into the initiating events of cancer onset during infection with integrative viruses. Although much remains to be discovered, many improvements are expected from the clinical point of view, from better prognosis classifications to better therapeutic strategies. PMID:27156225

  8. Oncogenic and Therapeutic Targeting of PTEN Loss in Bone Malignancies.

    PubMed

    Xi, Yongming; Chen, Yan

    2015-09-01

    Being a tumor suppressor, PTEN functions as a dual-specificity protein and phospholipid phosphatase and regulates a variety of cellular processes and signal transduction pathways. Loss of PTEN function has been detected frequently in different forms of cancers, such as breast, prostate and lung cancer, gastric and colon cancer, skin cancer, as well as endometrial carcinoma. In this review, we provide a summary of PTEN and its role in bone malignancies including bone metastases, multiple myeloma, and osteosarcoma, etc. We highlight the importance of PTEN loss leading to activation of the oncogenic PI3K/Akt/mTOR pathway in tumorigenesis and progression, which can be attributed to both genetic and non-genetic alterations involving gene mutation, loss of heterozygosity, promoter hypermethylation, and microRNA mediated negative regulation. We also discuss the emerging therapeutic applications targeting PTEN loss for the treatment of these bone malignant diseases. PMID:25773992

  9. A Computational Drug Repositioning Approach for Targeting Oncogenic Transcription Factors.

    PubMed

    Gayvert, Kaitlyn M; Dardenne, Etienne; Cheung, Cynthia; Boland, Mary Regina; Lorberbaum, Tal; Wanjala, Jackline; Chen, Yu; Rubin, Mark A; Tatonetti, Nicholas P; Rickman, David S; Elemento, Olivier

    2016-06-14

    Mutations in transcription factor (TF) genes are frequently observed in tumors, often leading to aberrant transcriptional activity. Unfortunately, TFs are often considered undruggable due to the absence of targetable enzymatic activity. To address this problem, we developed CRAFTT, a computational drug-repositioning approach for targeting TF activity. CRAFTT combines ChIP-seq with drug-induced expression profiling to identify small molecules that can specifically perturb TF activity. Application to ENCODE ChIP-seq datasets revealed known drug-TF interactions, and a global drug-protein network analysis supported these predictions. Application of CRAFTT to ERG, a pro-invasive, frequently overexpressed oncogenic TF, predicted that dexamethasone would inhibit ERG activity. Dexamethasone significantly decreased cell invasion and migration in an ERG-dependent manner. Furthermore, analysis of electronic medical record data indicates a protective role for dexamethasone against prostate cancer. Altogether, our method provides a broadly applicable strategy for identifying drugs that specifically modulate TF activity. PMID:27264179

  10. SOCS1 in cancer: An oncogene and a tumor suppressor.

    PubMed

    Beaurivage, Claudia; Champagne, Audrey; Tobelaim, William S; Pomerleau, Véronique; Menendez, Alfredo; Saucier, Caroline

    2016-06-01

    The Suppressor Of Cytokine Signaling 1 (SOCS1) has been extensively investigated in immune cells where it works as a potent inhibitor of inflammation by negative feedback regulation of the cytokine-activated JAK-STAT signaling pathways. SOCS1 is also recognized as a tumor suppressor in numerous cancers and its critical functional relevance in non-immune cells, including epithelial cells, has just begun to emerge. Most notably, conflicting results from clinical and experimental studies suggest that SOCS1 may function as either a tumor suppressor or a tumor promoter, in a cell context-dependent manner. Here, we present an overview of the mechanisms underlying SOCS1 function as a tumor suppressor and discuss the emerging evidences of SOCS1 activity as an oncogene. PMID:26811119

  11. Significance of oncogenes and tumor suppressor genes in AML prognosis.

    PubMed

    Kavianpour, Maria; Ahmadzadeh, Ahmad; Shahrabi, Saeid; Saki, Najmaldin

    2016-08-01

    Acute myeloid leukemia (AML) is a heterogeneous disorder among hematologic malignancies. Several genetic alterations occur in this disease, which cause proliferative progression, reducing differentiation and apoptosis in leukemic cells as well as increasing their survival. In the genetic study of AML, genetic translocations, gene overexpression, and mutations effective upon biology and pathogenesis of this disease have been recognized. Proto-oncogenes and tumor suppressor genes, which are important in normal development of myeloid cells, are involved in the regulation of cell cycle and apoptosis, undergo mutation in this type of leukemia, and are effective in prognosis of AML subtypes. This review deals with these genes, the assessment of which can be important in the diagnosis and prognosis of patients as well as therapeutic outcome. PMID:27179964

  12. Nuclear compartmentalization of the v-myb oncogene product.

    PubMed Central

    Boyle, W J; Lampert, M A; Li, A C; Baluda, M A

    1985-01-01

    Nuclei obtained from chicken leukemic myeloblasts transformed by avian myeloblastosis virus were fractionated into various subnuclear compartments, which were then analyzed by specific immunoprecipitation for the presence of the leukemogenic product, p48v-myb, of the viral oncogene. In cells labeled for 30 or 60 min with L-[35S]methionine and in unlabeled exponentially dividing leukemic cells analyzed by Western blotting, p48v-myb was detected within the nucleoplasm (29 +/- 9% [standard deviation] of the total), chromatin (7 +/- 4%), and lamina-nuclear matrix (64 +/- 9%). Also, in myeloblasts analyzed by immunofluorescence during mitosis, p48v-myb appeared to be dispersed through the cell like the lamina-nuclear matrix complex. Strong attachment to the nuclear matrix-lamina complex suggests that p48v-myb may be involved in DNA replication or transcription or both. Images PMID:3018495

  13. A mouse model of melanoma driven by oncogenic KRAS

    PubMed Central

    Milagre, Carla; Dhomen, Nathalie; Geyer, Felipe C; Hayward, Robert; Lambros, Maryou; Reis-Filho, Jorge S; Marais, Richard

    2010-01-01

    The small G-protein NRAS is mutated in 22% of human melanomas, whereas the related proteins, KRAS and HRAS are mutated in only 2% and 1% of melanomas respectively. We have developed a mouse models of melanoma in which Cre recombinase/loxP technology is used to drive inducible expression of G12VKRAS in the melanocytic lineage. The mice develop skin hyper-pigmentation, nevi and tumors that bear many of the cardinal histopathology features and molecular characteristics of human melanoma. These tumors invade and destroy the underlying muscles and cells derived from them can grow as subcutaneous tumors and colonise the lungs of nude mice. These data establish that oncogenic KRAS can be a founder event in melanomagenesis. PMID:20516123

  14. Structural Effects of Oncogenic PI3K alpha Mutations

    SciTech Connect

    S Gabelli; C Huang; D Mandelker; O Schmidt-Kittler; B Vogelstein; L Amzel

    2011-12-31

    Physiological activation of PI3K{alpha} is brought about by the release of the inhibition by p85 when the nSH2 binds the phosphorylated tyrosine of activated receptors or their substrates. Oncogenic mutations of PI3K{alpha} result in a constitutively activated enzyme that triggers downstream pathways that increase tumor aggressiveness and survival. Structural information suggests that some mutations also activate the enzyme by releasing p85 inhibition. Other mutations work by different mechanisms. For example, the most common mutation, His1047Arg, causes a conformational change that increases membrane association resulting in greater accessibility to the substrate, an integral membrane component. These effects are examples of the subtle structural changes that result in increased activity. The structures of these and other mutants are providing the basis for the design of isozyme-specific, mutation-specific inhibitors for individualized cancer therapies.

  15. Dimerize RACK1 upon transformation with oncogenic ras

    SciTech Connect

    Chu, L.-Y.; Chen, Y.-H.; Chuang, N.-N. . E-mail: zonnc@sinica.edu.tw

    2005-05-06

    From our previous studies, we learned that syndecan-2/p120-GAP complex provided docking site for Src to prosecute tyrosine kinase activity upon transformation with oncogenic ras. And, RACK1 protein was reactive with syndecan-2 to keep Src inactivated, but not when Ras was overexpressed. In the present study, we characterized the reaction between RACK1 protein and Ras. RACK1 was isolated from BALB/3T3 cells transfected with plasmids pcDNA3.1-[S-ras(Q{sub 61}K)] of shrimp Penaeus japonicus and RACK1 was revealed to react with GTP-K{sub B}-Ras(Q{sub 61}K), not GDP-K{sub B}-Ras(Q{sub 61}K). This selective interaction between RACK1 and GTP-K{sub B}-Ras(Q{sub 61}K) was further confirmed with RACK1 of human placenta and mouse RACK1-encoded fusion protein. We found that RACK1 was dimerized upon reaction with GTP-K{sub B}-Ras(Q{sub 61}K), as well as with 14-3-3{beta} and geranylgeranyl pyrophosphate, as revealed by phosphorylation with Src tyrosine kinase. We reported the complex of RACK1/GTP-K{sub B}-Ras(Q{sub 61}K) reacted selectively with p120-GAP. This interaction was sufficient to dissemble RACK1 into monomers, a preferred form to compete for the binding of syndecan-2. These data indicate that the reaction of GTP-K{sub B}-Ras(Q{sub 61}K) with RACK1 in dimers may operate a mechanism to deplete RACK1 from reaction with syndecan-2 upon transformation by oncogenic ras and the RACK1/GTP-Ras complex may provide a route to react with p120-GAP and recycle monomeric RACK1 to syndecan-2.

  16. Class I PI3K in oncogenic cellular transformation

    PubMed Central

    Zhao, Li; Vogt, Peter K.

    2009-01-01

    Class I phosphoinositide 3-kinase (PI3K) is a dimeric enzyme, consisting of a catalytic and a regulatory subunit. The catalytic subunit occurs in four isoforms designated as p110α, p110β, p110γ and p110δ. These combine with several regulatory subunits; for p110α, β and δ the standard regulatory subunit is p85, for p110γ it is p101. PI3Ks play important roles in human cancer. PIK3CA, the gene encoding p110α, is mutated frequently in common cancers, including carcinoma of the breast, prostate, colon and endometrium. Eighty percent of these mutations are represented by one of three amino acid substitutions in the helical or kinase domains of the enzyme. The mutant p110α shows a gain of function in enzymatic and signaling activity and is oncogenic in cell culture and in animal model systems. Structural and genetic data suggest that the mutations affect regulatory inter- and intramolecular interactions and support the conclusion that there are at least two molecular mechanisms for the gain-of-function in p110α. One of these mechanisms operates largely independently of binding to p85, the other abolishes the requirement for an interaction with Ras. The non-alpha isoforms of p110 do not show cancer-specific mutations. However, they are often differentially expressed in cancer and, in contrast to p110α, wild-type non-alpha isoforms of p110 are oncogenic when overexpressed in cell culture. The isoforms of p110 have become promising drug targets. Isoform-selective inhibitors have been identified. Inhibitors that target exclusively the cancer-specific mutants of p110α constitute an important goal and challenge for current drug development. PMID:18794883

  17. Oncogenic Radiation Abscopal Effects In Vivo: Interrogating Mouse Skin

    SciTech Connect

    Mancuso, Mariateresa; Leonardi, Simona; Giardullo, Paola; Pasquali, Emanuela; Tanori, Mirella; De Stefano, Ilaria; Casciati, Arianna; Naus, Christian C.; Pazzaglia, Simonetta; Saran, Anna

    2013-08-01

    Purpose: To investigate the tissue dependence in transmission of abscopal radiation signals and their oncogenic consequences in a radiosensitive mouse model and to explore the involvement of gap junction intercellular communication (GJIC) in mediating radiation tumorigenesis in off-target mouse skin. Methods and Materials: Patched1 heterozygous (Ptch1{sup +/−}) mice were irradiated at postnatal day 2 (P2) with 10 Gy of x-rays. Individual lead cylinders were used to protect the anterior two-thirds of the body, whereas the hindmost part was directly exposed to radiation. To test the role of GJICs and their major constituent connexin43 (Cx43), crosses between Ptch1{sup +/−} and Cx43{sup +/−} mice were similarly irradiated. These mouse groups were monitored for their lifetime, and skin basal cell carcinomas (BCCs) were counted and recorded. Early responses to DNA damage - Double Strand Breaks (DSBs) and apoptosis - were also evaluated in shielded and directly irradiated skin areas. Results: We report abscopal tumor induction in the shielded skin of Ptch1{sup +/−} mice after partial-body irradiation. Endpoints were induction of early nodular BCC-like tumors and macroscopic infiltrative BCCs. Abscopal tumorigenesis was significantly modulated by Cx43 status, namely, Cx43 reduction was associated with decreased levels of DNA damage and oncogenesis in out-of-field skin, suggesting a key role of GJIC in transmission of oncogenic radiation signals to unhit skin. Conclusions: Our results further characterize the nature of abscopal responses and the implications they have on pathologic processes in different tissues, including their possible underlying mechanistic bases.

  18. Oncogenes in human testicular cancer: DNA and RNA studies.

    PubMed Central

    Peltomäki, P.; Alfthan, O.; de la Chapelle, A.

    1991-01-01

    Oncogene dosage and expression were studied in 16 testicular neoplasms, 14 of germ cell and two of non-germ cell origin. In comparison with normal DNA, tumour DNA of a total of eight patients (seven with germ cell neoplasm and one with testicular lymphoma) showed increased dosages of KRAS2, PDGFA, EGFR, MET and PDGFB. The most frequent (occurring in six tumours) and prominent (up to 3-4-fold) increases were detected in the dosages of KRAS2 (on chromosome 12p) and PDGFA (chromosome 7p), relative to a reference locus from chromosome 2. Importantly, there was a similar increase in 12p dosage in general in these tumours, suggesting the presence of the characteristic isochromosome 12p marker. On the contrary, possible 7p polysomy (assessed by molecular methods) did not explain the PDGFA (or EGFR) changes in all cases. NRAS, MYCN, CSFIR, MYB, MYC, ABL, HRASI, TP53, and ERBB2 did not reveal any consistent alterations in tumour DNA. In RNA dot blot assays the expression of KRAS2, PDGFA, EGFR, or MYC was generally not increased in the tumour samples when compared to that in normal testicular tissue of the same patients although there was interindividual variation in mRNA levels. It thus appears that while oncogene dosage changes occur in a proportion of testis cancers, they are often part of changes in large chromosomal regions or whole arms and are seldom accompanied by altered expression. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:1829952

  19. Comprehensive analysis of targetable oncogenic mutations in chinese cervical cancers

    PubMed Central

    Xiang, Libing; Li, Jiajia; Jiang, Wei; Shen, Xuxia; Yang, Wentao; Wu, Xiaohua; Yang, Huijuan

    2015-01-01

    Mutations in 16 targetable oncogenic genes were examined using reverse transcription polymerase chain reaction (RT-PCR) and direct sequencing in 285 Chinese cervical cancers. Their clinicopathological relevance and prognostic significance was assessed. Ninety-two nonsynonymous somatic mutations were identified in 29.8% of the cancers. The mutation rates were as follows: PIK3CA (12.3%), KRAS (5.3%), HER2 (4.2%), FGFR3-TACC3 fusions (3.9%), PTEN (2.8%), FGFR2 (1.8%), FGFR3 (0.7%), NRAS (0.7%), HRAS (0.4%) and EGFR (0.4%). No mutations were detected in AKT1 or BRAF, and the fusions FGFR1-TACC1, EML4-ALK, CCDC6-RET and KIF5B-RET were not found in any of the cancers. RTK and RAS mutations were more common in non-squamous carcinomas than in squamous carcinomas (P=0.043 and P=0.042, respectively). RAS mutations were more common in young patients (<45 years) (13.7% vs. 7.7%, P=0.027). RTK mutations tended to be more common in young patients, whereas PIK3CA/PTEN/AKT mutations tended to be more common in old patients. RAS mutations were significantly associated with disease relapse. To our knowledge, this is the first comprehensive analysis of major targetable oncogenic mutations in a large cohort of cervical cancer cases. Our data reveal that a considerable proportion of patients with cervical cancers harbor known druggable mutations and might benefit from targeted therapy. PMID:25669975

  20. Pancreatitis promotes oncogenic KrasG12D-induced pancreatic transformation through activation of Nupr1

    PubMed Central

    Grasso, Daniel; Garcia, Maria Noé; Hamidi, Tewfik; Cano, Carla; Calvo, Ezequiel; Lomberk, Gwen; Urrutia, Raul; Iovanna, Juan L

    2014-01-01

    During the initiation stage of pancreatic adenocarcinoma induced by oncogenic Kras, pancreatic cells are exposed to both a protumoral effect and an opposing tumor suppressive process known as oncogene-induced senescence. Pancreatitis disrupts this balance in favor of the transforming effect of oncogenes by lowering the tumor suppressive threshold of oncogene-induced senescence through expression of the stress protein Nupr1. PMID:27308320

  1. 5-Azacytidine regulates matrix metalloproteinase-9 expression, and the migration and invasion of human fibrosarcoma HT1080 cells via PI3-kinase and ERK1/2 pathways.

    PubMed

    Yu, Seon-Mi; Kim, Song Ja

    2016-09-01

    Abnormal methylation of promoter CpG islands is one of the hallmarks of cancer cells, and is catalyzed by DNA methyltransferases. 5-azacytidine (5-aza C), a methyltransferase inhibitor, can cause demethylation of promoter regions of diverse genes. Epigenetic processes contribute to the regulation of matrix metalloproteinase (MMP) expression. However, little is known about the mechanisms and effects of 5-aza C on the invasive and migratory capacities of human fibrosarcoma HT1080 cells. In the present study, we found that 5-aza C induces MMP-9 activity, as determined by zymography. HT1080 cell proliferation was determined following 5-aza C administration by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Cell cycle was examined by flow cytometry. 5-aza C treatment inhibited cell proliferation without affecting cell viability. Furthermore, 5-aza C significantly promoted migration and invasion of HT1080 cells. 5-aza C treatment enhanced phosphorylation of extracellular signal-regulated kinase (ERK) and phosphoinositide (PI)3-kinase/Akt, and their inhibitors blocked MMP-9 activity induction, and cellular invasion and migration. Together, these findings suggest that promoter methylation may be one of the mechanisms modulating MMP-9 levels in HT1080 cells, and that 5-aza C-induced MMP-9 production is associated with the activation of ERK and PI3-kinase/Akt signaling pathways. PMID:27573026

  2. T cell intrinsic USP15 deficiency promotes excessive IFN-γ production and an immunosuppressive tumor microenvironment in MCA-induced fibrosarcoma

    PubMed Central

    Zou, Qiang; Jin, Jin; Xiao, Yichuan; Zhou, Xiaofei; Hu, Hongbo; Cheng, Xuhong; Kazimi, Nasser; Ullrich, Stephen E; Sun, Shao-Cong

    2015-01-01

    USP15 is a deubiquitinase that negatively regulates activation of naïve CD4+ T cells and generation of IFN-γ-producing T helper 1 (Th1) cells. USP15 deficiency in mice promotes antitumor T cell responses in a transplantable cancer model; however, it has remained unclear how deregulated T cell activation impacts primary tumor development during the prolonged interplay between tumors and the immune system. Here, we find that the USP15-deficient mice are hypersensitive to methylcholantrene (MCA)-induced fibrosarcomas. Excessive IFN-γ production in USP15-deficient mice promotes expression of the immunosuppressive molecule PD-L1 and the chemokine CXCL12, causing accumulation of T-bet+ regulatory T cells and CD11b+Gr-1+ myeloid-derived suppressor cells at tumor site. Mixed bone marrow adoptive transfer studies further reveals a T cell-intrinsic role for USP15 in regulating IFN-γ production and tumor development. These findings suggest that T cell intrinsic USP15 deficiency causes excessive production of IFN-γ, which promotes an immunosuppressive tumor microenvironment, during MCA-induced primary tumorigenesis. PMID:26686633

  3. Cumulative influence of elastin peptides and plasminogen on matrix metalloproteinase activation and type I collagen invasion by HT-1080 fibrosarcoma cells.

    PubMed

    Huet, Eric; Brassart, Bertrand; Cauchard, Jean-Hubert; Debelle, Laurent; Birembaut, Philippe; Wallach, Jean; Emonard, Herve; Polette, Myriam; Hornebeck, William

    2002-01-01

    HT-1080 fibrosarcoma cells express at their plasma membrane the elastin-binding protein (EBP). Occupancy of EBP by elastin fragments, tropoelastin or XGVAPG peptides was found to trigger procollagenase-1 (proMMP-1) overproduction by HT-1080 cells at the protein and enzyme levels. RT-PCR analysis indicated that elastin peptides did not modify the MMP-1 mRNA steady state levels, suggesting the involvement of a post-transcriptional mechanism. We previously reported that binding of elastin peptides to EBP induced other matrix metalloproteinases (MMP-2 and MT1-MMP) expression. Since those peptides were here found to also accelerate the secretion of urokinase from HT-1080 cells, culture medium was supplemented with plasminogen together with elastin peptides at aims to induce or potentiate MMPs activation cascades. In such conditions, plasmin activity was generated and exacerbate proMMP-1 and proMMP-2 activation. As a consequence, elastin peptides and plasminogen-treated HT-1080 cells displayed a significant type I collagen matrix invasive capacity. PMID:11964074

  4. Exposure to airborne PM2.5 suppresses microRNA expression and deregulates target oncogenes that cause neoplastic transformation in NIH3T3 cells

    PubMed Central

    Cheng, Xinxin; Shao, Mingming; Wu, Chen; Wang, Suhan; Li, Hongmin; Wei, Lixuan; Gao, Yanning; Tan, Wen; Cheng, Shujun; Wu, Tangchun; Yu, Dianke; Lin, Dongxin

    2015-01-01

    Long-term exposure to airborne PM2.5 is associated with increased lung cancer risk but the underlying mechanism remains unclear. We characterized global microRNA and mRNA expression in human bronchial epithelial cells exposed to PM2.5 organic extract and integrally analyzed microRNA-mRNA interactions. Foci formation and xenograft tumorigenesis in mice with NIH3T3 cells expressing genes targeted by microRNAs were performed to explore the oncogenic potential of these genes. We also detected plasma levels of candidate microRNAs in subjects exposed to different levels of air PM2.5 and examined the aberrant expression of genes targeted by these microRNAs in human lung cancer. Under our experimental conditions, treatment of cells with PM2.5 extract resulted in downregulation of 138 microRNAs and aberrant expression of 13 mRNAs (11 upregulation and 2 downregulation). In silico and biochemical analyses suggested SLC30A1, SERPINB2 and AKR1C1, among the upregulated genes, as target for miR-182 and miR-185, respectively. Ectopic expression of each of these genes significantly enhanced foci formation in NIH3T3 cells. Following subcutaneous injection of these cells into nude mice, fibrosarcoma were formed from SLC30A1- or SERPINB2-expressing cells. Reduced plasma levels of miR-182 were detected in subjects exposed to high level of PM2.5 than in those exposed to low level of PM2.5 (P = 0.043). Similar results were seen for miR-185 although the difference was not statistically significant (P = 0.328). Increased expressions of SLC30A1, SERPINB2 and AKR1C1 were detected in human lung cancer. These results suggest that modulation of miR-182 and miR-185 and their target genes may contribute to lung carcinogenesis attributable to PM2.5 exposure. PMID:26338969

  5. Sequence comparison in the crossover region of an oncogenic avian retrovirus recombinant and its nononcogenic parent: Genetic regions that control growth rate and oncogenic potential

    SciTech Connect

    Tsichlis, P.N.; Donehower, L.; Hager, G.; Zeller, N.; Malavarca, R.; Astrin, S.; Skalka, A.M.

    1982-11-01

    NTRE is an avian retrovirus recombinant of the endogeneous nononcogenic Rous-associated virus-0 (RAV-0) and the oncogenic, exogeneous, transformation-defective (td) Prague strain of Rous sarcoma virus B (td-PrRSV-B). Oligonucleotide mapping had shown that the recombinant virus is indistinguishable from its RAV-0 parent except for the 3'-end sequences, which were derived from td-PrRSV-B. However, the virus exhibits properties which are typical of an exogenous virus: it grows to high titers in tissue culture, and it is oncogenic in vivo. To accurately define the genetic region responsible for these properties, the authors determined the nucleotide sequences of the recombinant and its RAV-0 parent by using molecular clones of their DNA. These were compared with sequences already available for PrRSV-C, a virus closely related to the exogenous parent td-PrRSV-B. The results suggested that the crossover event which generated NTRE 7 took place in a region -501 to -401 nucleotides from the 3' end of the td-PrRSV parental genome and that sequences to the right of the recombination region were responsible for its growth properties and oncogenic potential. Since the exogenous-virus-specific sequences are expected to be missing from transformation-defective mutants of the Schmidt-Ruppin strain of RSV, which, like other exogeneous viruses, grow to high tiers in tissue culture and are oncogenic in vivo, the authors concluded that the growth properties and oncogenic potential of the exogeneous viruses are determined by sequences in the U3 region of the long terminal repeat. However, the authors propose that the exogeneous-virus-specific region may play a role in determining the oncogenic spectrum of a given oncogenic virus.

  6. Decreased virus population diversity in p53-null mice infected with weakly oncogenic Abelson virus.

    PubMed

    Marchlik, Erica; Kalman, Richard; Rosenberg, Naomi

    2005-09-01

    The Abelson murine leukemia virus (Ab-MLV), like other retroviruses that contain v-onc genes, arose following a recombination event between a replicating retrovirus and a cellular oncogene. Although experimentally validated models have been presented to address the mechanism by which oncogene capture occurs, very little is known about the events that influence emerging viruses following the recombination event that incorporates the cellular sequences. One feature that may play a role is the genetic makeup of the host in which the virus arises; a number of host genes, including oncogenes and tumor suppressor genes, have been shown to affect the pathogenesis of many murine leukemia viruses. To examine how a host gene might affect an emerging v-onc gene-containing retrovirus, we studied the weakly oncogenic Ab-MLV-P90A strain, a mutant that generates highly oncogenic variants in vivo, and compared the viral populations in normal mice and mice lacking the p53 tumor suppressor gene. While variants arose in both p53+/+ and p53-/- tumors, the samples from the wild-type animals contained a more diverse virus population. Differences in virus population diversity were not observed when wild-type and null animals were infected with a highly oncogenic wild-type strain of Ab-MLV. These results indicate that p53, and presumably other host genes, affects the selective forces that operate on virus populations in vivo and likely influences the evolution of oncogenic retroviruses such as Ab-MLV. PMID:16140739

  7. Common and overlapping oncogenic pathways contribute to the evolution of acute myeloid leukemias

    PubMed Central

    Kvinlaug, Brynn T; Chan, Wai-In; Bullinger, Lars; Ramaswami, Mukundhan; Sears, Christopher; Foster, Donna; Lazic, Stanley E; Okabe, Rachel; Benner, Axel; Lee, Benjamin H; De Silva, Inusha; Valk, Peter JM; Delwel, Ruud; Armstrong, Scott A; Döhner, Hartmut; Gilliland, D Gary; Huntly, Brian JP

    2011-01-01

    Fusion oncogenes in acute myeloid leukemia (AML) promote self-renewal from committed progenitors, thereby linking transformation and self-renewal pathways. Like most cancers, AML is a genetically and biologically heterogeneous disease, but it is unclear whether transformation results from common or overlapping genetic programs acting downstream of multiple mutations, or by the engagement of unique genetic programs acting cooperatively downstream of individual mutations. This distinction is important, because the involvement of common programs would imply the existence of common molecular targets to treat AML, no matter which fusion oncogenes are involved. Here we demonstrate that the ability to promote self-renewal is a generalized property of leukemia-associated oncogenes. Disparate oncogenes initiated overlapping transformation and self-renewal gene expression programs, the common elements of which were defined in established leukemia stem cells from an animal model as well as from a large cohort of patients with differing AML subtypes, where they strongly predicted pathobiological character. Notably, individual genes commonly activated in these programs could partially phenocopy the self-renewal function of leukemia-associated oncogenes in committed murine progenitors. Further, they could generate AML following expression in murine bone marrow. In summary, our findings reveal the operation of common programs of self-renewal and transformation downstream of leukemia-associated oncogenes, suggesting mechanistically common therapeutic approaches to AML are likely to be possible, regardless of the identity of the driver oncogene involved. PMID:21505102

  8. DNA damage and repair in oncogenic transformation by heavy ion radiation

    NASA Astrophysics Data System (ADS)

    Yang, T. C.; Mei, M.; George, K. A.; Craise, L. M.

    Energetic heavy ions are present in galactic cosmic rays and solar particle events. One of the most important late effects in risk assessment is carcinogenesis. We have studied the carcinogenic effects of heavy ions at the cellular and molecular levels and have obtained quantitative data on dose-response curves and on the repair of oncogenic lesions for heavy particles with various charges and energies. Studies with repair inhibitors and restriction endonucleases indicated that for oncogenic transformation DNA is the primary target. Results from heavy ion experiments showed that the cross section increased with LET and reached a maximum value of about 0.02 mum^2 at about 500 keV/mum. This limited size of cross section suggests that only a fraction of cellular genomic DNA is important in radiogenic transformation. Free radical scavengers, such as DMSO, do not give any effect on induction of oncogenic transformation by 600 MeV/u iron particles, suggesting most oncogenic damage induced by high-LET heavy ions is through direct action. Repair studies with stationary phase cells showed that the amount of reparable oncogenic lesions decreased with an increase of LET and that heavy ions with LET greater than 200 keV/mum produced only irreparable oncogenic damage. An enhancement effect for oncogenic transformation was observed in cells irradiated by low-dose-rate argon ions (400 MeV/u; 120 keV/mum). Chromosomal aberrations, such as translocation and deletion, but not sister chromatid exchange, are essential for heavy-ion-induced oncogenic transformation. The basic mechanism(s) of misrepair of DNA damage, which form oncogenic lesions, is unknown.

  9. DNA damage and repair in oncogenic transformation by heavy ion radiation

    NASA Technical Reports Server (NTRS)

    Yang, T. C.; Mei, M.; George, K. A.; Craise, L. M.

    1996-01-01

    Energetic heavy ions are present in galactic cosmic rays and solar particle events. One of the most important late effects in risk assessment is carcinogenesis. We have studied the carcinogenic effects of heavy ions at the cellular and molecular levels and have obtained quantitative data on dose-response curves and on the repair of oncogenic lesions for heavy particles with various charges and energies. Studies with repair inhibitors and restriction endonucleases indicated that for oncogenic transformation DNA is the primary target. Results from heavy ion experiments showed that the cross section increased with LET and reached a maximum value of about 0.02 micrometer2 at about 500 keV/micrometer. This limited size of cross section suggests that only a fraction of cellular genomic DNA is important in radiogenic transformation. Free radical scavengers, such as DMSO, do not give any effect on induction of oncogenic transformation by 600 MeV/u iron particles, suggesting most oncogenic damage induced by high-LET heavy ions is through direct action. Repair studies with stationary phase cells showed that the amount of reparable oncogenic lesions decreased with an increase of LET and that heavy ions with LET greater than 200 keV/micrometer produced only irreparable oncogenic damage. An enhancement effect for oncogenic transformation was observed in cells irradiated by low-dose-rate argon ions (400 MeV/u; 120 keV/micrometer). Chromosomal aberrations, such as translocation and deletion, but not sister chromatid exchange, are essential for heavy-ion-induced oncogenic transformation. The basic mechanism(s) of misrepair of DNA damage, which form oncogenic lesions, is unknown.

  10. An in vivo screen identifies ependymoma oncogenes and tumor-suppressor genes

    PubMed Central

    Mohankumar, Kumarasamypet M.; Currle, David S.; White, Elsie; Boulos, Nidal; Dapper, Jason; Eden, Christopher; Nimmervoll, Birgit; Thiruvenkatam, Radhika; Connelly, Michele; Kranenburg, Tanya A.; Neale, Geoffrey; Olsen, Scott; Wang, Yong-Dong; Finkelstein, David; Wright, Karen; Gupta, Kirti; Ellison, David W.; Thomas, Arzu Onar; Gilbertson, Richard J.

    2015-01-01

    Cancers are characterized by non-random, chromosome copy number alterations that presumably contain oncogenes and tumor–suppressor genes (TSGs). The affected loci are often large, making it difficult to pinpoint which genes are driving the cancer. Here, we report a cross-species in vivo screen of 84 candidate oncogenes and 39 candidate TSGs, located within 28 recurrent chromosomal alterations in ependymoma. Through a series of mouse models we validate eight new ependymoma oncogenes and 10 ependymoma TSGs that converge on a small number of cell functions including vesicle trafficking, DNA modification and cholesterol biosynthesis, pinpointing these as potential new therapeutic targets. PMID:26075792

  11. Oncogenically active MYD88 mutations in human lymphoma

    PubMed Central

    Ngo, Vu N.; Young, Ryan M.; Schmitz, Roland; Jhavar, Sameer; Xiao, Wenming; Lim, Kian-Huat; Kohlhammer, Holger; Xu, Weihong; Yang, Yandan; Zhao, Hong; Shaffer, Arthur L.; Romesser, Paul; Wright, George; Powell, John; Rosenwald, Andreas; Muller-Hermelink, Hans Konrad; Ott, German; Gascoyne, Randy D.; Connors, Joseph M.; Rimsza, Lisa M.; Campo, Elias; Jaffe, Elaine S.; Delabie, Jan; Smeland, Erlend B.; Fisher, Richard I.; Braziel, Rita M.; Tubbs, Raymond R.; Cook, J. R.; Weisenburger, Denny D.; Chan, Wing C.; Staudt, Louis M.

    2016-01-01

    The activated B-cell-like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL) remains the least curable form of this malignancy despite recent advances in therapy1. Constitutive nuclear factor (NF)-κB and JAK kinase signalling promotes malignant cell survival in these lymphomas, but the genetic basis for this signalling is incompletely understood. Here we describe the dependence of ABC DLBCLs on MYD88, an adaptor protein that mediates toll and interleukin (IL)-1 receptor signalling2,3, and the discovery of highly recurrent oncogenic mutations affecting MYD88 in ABC DLBCL tumours. RNA interference screening revealed that MYD88 and the associated kinases IRAK1 and IRAK4 are essential for ABC DLBCL survival. High-throughput RNA resequencing uncovered MYD88 mutations in ABC DLBCL lines. Notably, 29% of ABC DLBCL tumours harboured the same amino acid substitution, L265P, in the MYD88 Toll/IL-1 receptor (TIR) domain at an evolutionarily invariant residue in its hydrophobic core. This mutation was rare or absent in other DLBCL subtypes and Burkitt’s lymphoma, but was observed in 9% of mucosa-associated lymphoid tissue lymphomas. At a lower frequency, additional mutations were observed in the MYD88 TIR domain, occurring in both the ABC and germinal centre B-cell-like (GCB) DLBCL subtypes. Survival of ABC DLBCL cells bearing the L265P mutation was sustained by the mutant but not the wild-type MYD88 isoform, demonstrating that L265P is a gain-of-function driver mutation. The L265P mutant promoted cell survival by spontaneously assembling a protein complex containing IRAK1 and IRAK4, leading to IRAK4 kinase activity, IRAK1 phosphorylation, NF-κB signalling, JAK kinase activation of STAT3, and secretion of IL-6, IL-10 and interferon-β. Hence, theMYD88 signalling pathway is integral to the pathogenesis of ABC DLBCL, supporting the development of inhibitors of IRAK4 kinase and other components of this pathway for the treatment of tumours bearing oncogenic MYD88 mutations

  12. Jaeumganghwa-Tang Induces Apoptosis via the Mitochondrial Pathway and Lactobacillus Fermentation Enhances Its Anti-Cancer Activity in HT1080 Human Fibrosarcoma Cells

    PubMed Central

    Kim, Aeyung; Im, Minju; Hwang, Youn-Hwan; Yang, Hye Jin; Ma, Jin Yeul

    2015-01-01

    Jaeumganghwa-tang (JGT, Zi-yin-jiang-huo-tang in Chinese and Jiin-koka-to in Japanese) is an oriental herbal formula that has long been used as a traditional medicine to treat respiratory and kidney diseases. Recent studies revealed that JGT exhibited potent inhibitory effects on allergies, inflammation, pain, convulsions, and prostate hyperplasia. Several constituent herbs in JGT induce apoptotic cancer cell death. However, the anti-cancer activity of JGT has not been examined. In this study, we investigated the anti-cancer effects of JGT using highly tumorigenic HT1080 human fibrosarcoma cells and elucidated the underlying mechanisms. In addition, we examined whether the Lactobacillus fermentation of JGT enhanced its anti-cancer activity using an in vivo xenograft model because fermentation of herbal extracts is thought to strengthen their therapeutic effects. Data revealed that JGT suppressed the growth of cancer cells efficiently by stimulating G1 cell cycle arrest and then inducing apoptotic cell death by causing mitochondrial damage and activating caspases. The phosphorylation of p38 and ERK also played a role in JGT-induced cell death. In vitro experiments demonstrated that JGT fermented with Lactobacillus acidophilus, designated fJGT162, elicited similar patterns of cell death as did non-fermented JGT. Meanwhile, the daily oral administration of 120 mg/kg fJGT162 to HT1080-bearing BALB/c nude mice suppressed tumor growth dramatically (up to 90%) compared with saline treatment, whereas the administration of non-fermented JGT suppressed tumor growth by ~70%. Collectively, these results suggest that JGT and fJGT162 are safe and useful complementary and alternative anti-cancer herbal therapies, and that Lactobacillus fermentation improves the in vivo anti-cancer efficacy of JGT significantly. PMID:26020238

  13. A Quantitative Comparison of Human HT-1080 Fibrosarcoma Cells and Primary Human Dermal Fibroblasts Identifies a 3D Migration Mechanism with Properties Unique to the Transformed Phenotype

    PubMed Central

    Schwartz, Michael P.; Rogers, Robert E.; Singh, Samir P.; Lee, Justin Y.; Loveland, Samuel G.; Koepsel, Justin T.; Witze, Eric S.; Montanez-Sauri, Sara I.; Sung, Kyung E.; Tokuda, Emi Y.; Sharma, Yasha; Everhart, Lydia M.; Nguyen, Eric H.; Zaman, Muhammad H.; Beebe, David J.; Ahn, Natalie G.; Murphy, William L.; Anseth, Kristi S.

    2013-01-01

    Here, we describe an engineering approach to quantitatively compare migration, morphologies, and adhesion for tumorigenic human fibrosarcoma cells (HT-1080s) and primary human dermal fibroblasts (hDFs) with the aim of identifying distinguishing properties of the transformed phenotype. Relative adhesiveness was quantified using self-assembled monolayer (SAM) arrays and proteolytic 3-dimensional (3D) migration was investigated using matrix metalloproteinase (MMP)-degradable poly(ethylene glycol) (PEG) hydrogels (“synthetic extracellular matrix” or “synthetic ECM”). In synthetic ECM, hDFs were characterized by vinculin-containing features on the tips of protrusions, multipolar morphologies, and organized actomyosin filaments. In contrast, HT-1080s were characterized by diffuse vinculin expression, pronounced β1-integrin on the tips of protrusions, a cortically-organized F-actin cytoskeleton, and quantitatively more rounded morphologies, decreased adhesiveness, and increased directional motility compared to hDFs. Further, HT-1080s were characterized by contractility-dependent motility, pronounced blebbing, and cortical contraction waves or constriction rings, while quantified 3D motility was similar in matrices with a wide range of biochemical and biophysical properties (including collagen) despite substantial morphological changes. While HT-1080s were distinct from hDFs for each of the 2D and 3D properties investigated, several features were similar to WM239a melanoma cells, including rounded, proteolytic migration modes, cortical F-actin organization, and prominent uropod-like structures enriched with β1-integrin, F-actin, and melanoma cell adhesion molecule (MCAM/CD146/MUC18). Importantly, many of the features observed for HT-1080s were analogous to cellular changes induced by transformation, including cell rounding, a disorganized F-actin cytoskeleton, altered organization of focal adhesion proteins, and a weakly adherent phenotype. Based on our results

  14. Jaeumganghwa-Tang Induces Apoptosis via the Mitochondrial Pathway and Lactobacillus Fermentation Enhances Its Anti-Cancer Activity in HT1080 Human Fibrosarcoma Cells.

    PubMed

    Kim, Aeyung; Im, Minju; Hwang, Youn-Hwan; Yang, Hye Jin; Ma, Jin Yeul

    2015-01-01

    Jaeumganghwa-tang (JGT, Zi-yin-jiang-huo-tang in Chinese and Jiin-koka-to in Japanese) is an oriental herbal formula that has long been used as a traditional medicine to treat respiratory and kidney diseases. Recent studies revealed that JGT exhibited potent inhibitory effects on allergies, inflammation, pain, convulsions, and prostate hyperplasia. Several constituent herbs in JGT induce apoptotic cancer cell death. However, the anti-cancer activity of JGT has not been examined. In this study, we investigated the anti-cancer effects of JGT using highly tumorigenic HT1080 human fibrosarcoma cells and elucidated the underlying mechanisms. In addition, we examined whether the Lactobacillus fermentation of JGT enhanced its anti-cancer activity using an in vivo xenograft model because fermentation of herbal extracts is thought to strengthen their therapeutic effects. Data revealed that JGT suppressed the growth of cancer cells efficiently by stimulating G1 cell cycle arrest and then inducing apoptotic cell death by causing mitochondrial damage and activating caspases. The phosphorylation of p38 and ERK also played a role in JGT-induced cell death. In vitro experiments demonstrated that JGT fermented with Lactobacillus acidophilus, designated fJGT162, elicited similar patterns of cell death as did non-fermented JGT. Meanwhile, the daily oral administration of 120 mg/kg fJGT162 to HT1080-bearing BALB/c nude mice suppressed tumor growth dramatically (up to 90%) compared with saline treatment, whereas the administration of non-fermented JGT suppressed tumor growth by ~70%. Collectively, these results suggest that JGT and fJGT162 are safe and useful complementary and alternative anti-cancer herbal therapies, and that Lactobacillus fermentation improves the in vivo anti-cancer efficacy of JGT significantly. PMID:26020238

  15. Evaluation of (188)Re-labeled NGR-VEGI protein for radioimaging and radiotherapy in mice bearing human fibrosarcoma HT-1080 xenografts.

    PubMed

    Ma, Wenhui; Shao, Yahui; Yang, Weidong; Li, Guiyu; Zhang, Yingqi; Zhang, Mingru; Zuo, Changjing; Chen, Kai; Wang, Jing

    2016-07-01

    Vascular endothelial growth inhibitor (VEGI) is an anti-angiogenic protein, which includes three isoforms: VEGI-174, VEGI-192, and VEGI-251. The NGR (asparagine-glycine-arginine)-containing peptides can specifically bind to CD13 (Aminopeptidase N) receptor which is overexpressed in angiogenic blood vessels and tumor cells. In this study, a novel NGR-VEGI fusion protein was prepared and labeled with (188)Re for radioimaging and radiotherapy in mice bearing human fibrosarcoma HT-1080 xenografts. Single photon emission computerized tomography (SPECT) imaging results revealed that (188)Re-NGR-VEGI exhibits good tumor-to-background contrast in CD13-positive HT-1080 tumor xenografts. The CD13 specificity of (188)Re-NGR-VEGI was further verified by significant reduction of tumor uptake in HT-1080 tumor xenografts with co-injection of the non-radiolabeled NGR-VEGI protein. The biodistribution results demonstrated good tumor-to-muscle ratio (4.98 ± 0.25) of (188)Re-NGR-VEGI at 24 h, which is consistent with the results from SPECT imaging. For radiotherapy, 18.5 MBq of (188)Re-NGR-VEGI showed excellent tumor inhibition effect in HT-1080 tumor xenografts with no observable toxicity, which was confirmed by the tumor size change and hematoxylin and eosin (H&E) staining of major mouse organs. In conclusion, these data demonstrated that (188)Re-NGR-VEGI has the potential as a theranostic agent for CD13-targeted tumor imaging and therapy. PMID:26768609

  16. A genetic dichotomy between pure sclerosing epithelioid fibrosarcoma (SEF) and hybrid SEF/low-grade fibromyxoid sarcoma: a pathologic and molecular study of 18 cases.

    PubMed

    Prieto-Granada, Carlos; Zhang, Lei; Chen, Hsiao-Wei; Sung, Yun-Shao; Agaram, Narasimhan P; Jungbluth, Achim A; Antonescu, Cristina R

    2015-01-01

    Sclerosing epithelioid fibrosarcoma (SEF) is a rare soft tissue tumor exhibiting considerable morphologic overlap with low-grade fibromyxoid sarcoma (LGFMS). Moreover, both SEF and LGFMS show MUC4 expression by immunohistochemistry. While the majority of LGFMS cases are characterized by a FUS-CREB3L1 fusion, both FUS-CREB3L2 and EWSR1-CREB3L1 fusions were recently demonstrated in a small number of LGFMS and SEF/LGFMS hybrid tumors. In contrast, recent studies pointed out that SEF harbor frequent EWSR1 rearrangements, with only a minority of cases showing FUS-CREB3L2 fusions. In an effort to further characterize the molecular characteristics of pure SEF and hybrid SEF/LGFMS lesions, we undertook a clinicopathologic, immunohistochemical and genetic analysis of a series of 10 SEF and 8 hybrid SEF/LGFMS tumors. The mortality rate was similar between the two groups, 44% within the pure SEF group and 37% in the hybrid SEF/LGFMS with a mean overall follow-up of 66 months. All but one pure SEF and all hybrid SEF/LGFMS-tested cases showed MUC4 immunoreactivity. The majority (90%) of pure SEF cases showed EWSR1 gene rearrangements by fluorescence in situ hybridization with only one case exhibiting FUS rearrangement. Of the nine EWSR1 positive cases, six cases harbored CREB3L1 break-apart, two had CREB3L2 rearrangement (a previously unreported finding) and one lacked evidence of CREB3L1/2 abnormalities. In contrast, all hybrid SEF/LGFMS tumors exhibited FUS and CREB3L2 rearrangements. These results further demarcate a relative cytogenetic dichotomy between pure SEF, often characterized by EWSR1 rearrangements, and hybrid SEF/LGFMS, harboring FUS-CREB3L2 fusion; the latter group recapitulating the genotype of LGFMS. PMID:25231134

  17. Derivation of transplantable 7,12-dimethylbenz(a)anthracene-induced chicken fibrosarcoma lines: differences in metastasizing properties and organ specificity

    SciTech Connect

    Galton, J.E.; Xue, B.; Hochwald, G.M.; Thorbecke, G.J.

    1982-08-01

    Transplantable 7,12-dimethylbenz(a)anthracene-induced SC chicken fibrosarcoma (CHCT-NYU) lines were studied for their ability to grow in internal organs after iv injection (artificial metastases) into 1- to 3-week-old chickens. Some tumor lines were recently derived, whereas others were studied after many serial subcutaneous transplantations. Artificial metastases were seen in the stomach, pancreas, lungs, heart, and muscle, and occasionally in the kidneys and liver. Agammaglobulinemic recipients showed more extensive organ involvement than normal recipients of the same age. Whole-body ..gamma..-irradiation enhanced the incidence of artificial metastases, particularly in lungs. Antibody from the serum of a primary tumor-bearing host reduced the growth of the corresponding tumor in many organs. The metastatic pattern of line CHCT-NYU4 was a relatively stable property. However, intravenous transplantation of tumor cells from line CHCT-NYU4 taken from the liver, lungs, and pancreas of a single recipient established sublines with changes in organ specificity. After a few such serial transplants of liver-derived tumor, a line was derived that grew virtually in the liver alone. A subline with preference for growth in lungs was also obtained, but its ability to grow in the pancreas persisted. A pancreas-derived tumor line also grew in the liver and lungs. Subcutaneous transplants of tissue fragments of the lung-derived tumor line caused the appearance of spontaneous metastases in lungs. The incidence of spontaneous metastases with the lung-derived line was much greater than that with the liver-derived line or with the original CHCT-NYU4 line.

  18. HER-2/neu oncogene expression and proliferation in breast cancers.

    PubMed Central

    Bacus, S. S.; Ruby, S. G.; Weinberg, D. S.; Chin, D.; Ortiz, R.; Bacus, J. W.

    1990-01-01

    Amplification of the HER-2/neu proto-oncogene in breast cancer has been reported to correlate with poor patient prognosis. The proliferation, or growth fraction, of cells has also been shown to be of prognostic importance in breast cancer. A study was conducted to evaluate the correlation between HER-2/neu gene expression and proliferation in breast cancer. Quantitative immunohistochemical methods for the detection of the HER-2/neu protein expression and for assessing the proliferation fraction on frozen sections of tumor cells were used. The detection of epidermal growth factor receptor (EGFR) along with quantitative DNA ploidy analysis, also was performed on the same breast cancers. The results indicated two subgroups of invasive ductal carcinoma; 1) HER-2/neu overexpressing cases that were negative for EGFR expression and had low proliferation fraction, and a tetraploid DNA pattern (22 cases), and 2) other combinations of HER-2/neu expression and EGFR expression, with a high proliferation fraction and an aneuploid DNA pattern (38 cases). Eight cases of carcinoma in situ were positive for HER-2/neu overexpression and negative for EGFR expression, and had a high proliferation fraction and a tetraploid DNA pattern. Twenty-six cases of low-grade carcinoma exhibited low proliferation and a diploid DNA pattern. Images Figure 1 Figure 2 PMID:1973597

  19. The LMO2 oncogene regulates DNA replication in hematopoietic cells

    PubMed Central

    Sincennes, Marie-Claude; Humbert, Magali; Grondin, Benoît; Lisi, Véronique; Veiga, Diogo F. T.; Haman, André; Cazaux, Christophe; Mashtalir, Nazar; Affar, EL Bachir; Verreault, Alain; Hoang, Trang

    2016-01-01

    Oncogenic transcription factors are commonly activated in acute leukemias and subvert normal gene expression networks to reprogram hematopoietic progenitors into preleukemic stem cells, as exemplified by LIM-only 2 (LMO2) in T-cell acute lymphoblastic leukemia (T-ALL). Whether or not these oncoproteins interfere with other DNA-dependent processes is largely unexplored. Here, we show that LMO2 is recruited to DNA replication origins by interaction with three essential replication enzymes: DNA polymerase delta (POLD1), DNA primase (PRIM1), and minichromosome 6 (MCM6). Furthermore, tethering LMO2 to synthetic DNA sequences is sufficient to transform these sequences into origins of replication. We next addressed the importance of LMO2 in erythroid and thymocyte development, two lineages in which cell cycle and differentiation are tightly coordinated. Lowering LMO2 levels in erythroid progenitors delays G1-S progression and arrests erythropoietin-dependent cell growth while favoring terminal differentiation. Conversely, ectopic expression in thymocytes induces DNA replication and drives these cells into cell cycle, causing differentiation blockade. Our results define a novel role for LMO2 in directly promoting DNA synthesis and G1-S progression. PMID:26764384

  20. Lysyl oxidase activity regulates oncogenic stress response and tumorigenesis.

    PubMed

    Wiel, C; Augert, A; Vincent, D F; Gitenay, D; Vindrieux, D; Le Calvé, B; Arfi, V; Lallet-Daher, H; Reynaud, C; Treilleux, I; Bartholin, L; Lelievre, E; Bernard, D

    2013-01-01

    Cellular senescence, a stable proliferation arrest, is induced in response to various stresses. Oncogenic stress-induced senescence (OIS) results in blocked proliferation and constitutes a fail-safe program counteracting tumorigenesis. The events that enable a tumor in a benign senescent state to escape from OIS and become malignant are largely unknown. We show that lysyl oxidase activity contributes to the decision to maintain senescence. Indeed, in human epithelial cell the constitutive expression of the LOX or LOXL2 protein favored OIS escape, whereas inhibition of lysyl oxidase activity was found to stabilize OIS. The relevance of these in vitro observations is supported by in vivo findings: in a transgenic mouse model of aggressive pancreatic ductal adenocarcinoma (PDAC), increasing lysyl oxidase activity accelerates senescence escape, whereas inhibition of lysyl oxidase activity was found to stabilize senescence, delay tumorigenesis, and increase survival. Mechanistically, we show that lysyl oxidase activity favors the escape of senescence by regulating the focal-adhesion kinase. Altogether, our results demonstrate that lysyl oxidase activity participates in primary tumor growth by directly impacting the senescence stability. PMID:24113189

  1. Oncogenic Role of Merlin/NF2 in Glioblastoma

    PubMed Central

    Guerrero, Paola A.; Yin, Wei; Camacho, Laura; Marchetti, Dario

    2014-01-01

    Glioblastoma is the most common and aggressive primary brain tumor in adults, with a poor prognosis because of its resistance to radiotherapy and chemotherapy. Merlin/NF2 (neurofibromatosis type 2) is a tumor suppressor found to be mutated in most nervous system tumors; however, it is not mutated in glioblastomas. Merlin associates with several transmembrane receptors and intracellular proteins serving as an anchoring molecule. Additionally, it acts as a key component of cell motility. By selecting subpopulations of U251 glioblastoma cells, we observed that high expression of phosphorylated Merlin at serine 518 (S518-Merlin), Notch1 and epidermal growth factor receptor (EGFR) correlated with increased cell proliferation and tumorigenesis. These cells were defective in cell-contact inhibition with changes in Merlin phosphorylation directly affecting Notch1, EGFR expression as well as downstream targets Hes1 and Ccnd. Of note, we identified a function for S518-Merlin which is distinct from what has been reported when the expression of Merlin is diminished in relation to EGFR and Notch expression, providing first-time evidence that demonstrates that the phosphorylation of Merlin at S518 in glioblastoma promotes oncogenic properties that are not only the result of inactivation of the tumor suppressor role of Merlin, but also, an independent process implicating a Merlin-driven regulation of Notch1 and EGFR. PMID:25043298

  2. NF-κB as a target for oncogenic viruses

    PubMed Central

    Sun, Shao-Cong; Cesarman, Ethel

    2013-01-01

    NF-κB is a pivotal transcription factor that controls cell survival and proliferation in diverse physiological processes. The activity of NF-κB is tightly controlled through its cytoplasmic sequestration by specific inhibitors, IκBs. Various cellular stimuli induce the activation of an IκB kinase (IKK), which phosphorylates IκBs and triggers their proteasomal degradation, causing nuclear translocation of activated NF-κB. Under normal conditions, the activation of NF-κB occurs transiently, thus ensuring rapid but temporary induction of target genes. Deregulated NF-κB activation contributes to the development of various diseases, including cancers and immunological disorders. Accumulated studies demonstrate that the NF-κB signaling pathway is a target of several human oncogenic viruses, including the human T-cell leukemia virus type 1 (HTLV1), the Kaposi sarcoma-associated herpesvirus (KSHV), and the Epstein bar virus (EBV). These viruses encode specific oncoproteins that target different signaling components of the NF-κB pathway, leading to persistent activation of NF-κB. This chapter will discuss the molecular mechanisms by which NF-κB is activated by the viral oncoproteins. PMID:20845110

  3. CXCR4 in breast cancer: oncogenic role and therapeutic targeting

    PubMed Central

    Xu, Chao; Zhao, Hong; Chen, Haitao; Yao, Qinghua

    2015-01-01

    Chemokines are 8–12 kDa peptides that function as chemoattractant cytokines and are involved in cell activation, differentiation, and trafficking. Chemokines bind to specific G-protein-coupled seven-span transmembrane receptors. Chemokines play a fundamental role in the regulation of a variety of cellular, physiological, and developmental processes. Their aberrant expression can lead to a variety of human diseases including cancer. C-X-C chemokine receptor type 4 (CXCR4), also known as fusin or CD184, is an alpha-chemokine receptor specific for stromal-derived-factor-1 (SDF-1 also called CXCL12). CXCR4 belongs to the superfamily of the seven transmembrane domain heterotrimeric G protein-coupled receptors and is functionally expressed on the cell surface of various types of cancer cells. CXCR4 also plays a role in the cell proliferation and migration of these cells. Recently, CXCR4 has been reported to play an important role in cell survival, proliferation, migration, as well as metastasis of several cancers including breast cancer. This review is mainly focused on the current knowledge of the oncogenic role and potential drugs that target CXCR4 in breast cancer. Additionally, CXCR4 proangiogenic molecular mechanisms will be reviewed. Strict biunivocal binding affinity and activation of CXCR4/CXCL12 complex make CXCR4 a unique molecular target for prevention and treatment of breast cancer. PMID:26356032

  4. Oncogenic activation of ERG: A predominant mechanism in prostate cancer.

    PubMed

    Sreenath, Taduru L; Dobi, Albert; Petrovics, Gyorgy; Srivastava, Shiv

    2011-01-01

    Prevalent gene fusions involving regulatory sequences of the androgen receptor (AR) regulated genes (primarily TMPRSS2) and protein coding sequences of nuclear transcription factors of the ETS gene family (predominantly ERG) result in unscheduled androgen dependent ERG expression in prostate cancer (CaP).Cumulative data from a large number of studies in the past six years accentuate ERG alterations in more than half of all CaP patients in Western countries. Studies underscore that ERG functions are involved in the biology of CaP. ERG expression in normal context is selective to endothelial cells, specific hematopoetic cells and pre-cartilage cells. Normal functions of ERG are highlighted in hematopoetic stem cells. Emerging data continues to unravel molecular and cellular mechanisms by which ERG may contribute to CaP. Herein, we focus on biological and clinical aspects of ERG oncogenic alterations, potential of ERG-based stratification of CaP and the possibilities of targeting the ERG network in developing new therapeutic strategies for the disease. PMID:22279422

  5. Oncogenes-antioncogenes and virus therapy of cancer.

    PubMed

    Sinkovics, J G

    1989-01-01

    Viruses can render services to mankind. 1. Retroviruses pinpoint and transduce cellular oncogenes. 2. Retroviral vectors can introduce antioncogenes (the RB gene) into malignant cells thus rendering the recipient cells nonmalignant. 3. Oncolytic viruses lyse tumor cells. 4. Parvoviruses replicate only in dividing cells and exert lysis and antioncogene effect in tumor cells without affecting resting normal cells. 5. Myxo- and paramyxoviruses (and other viruses) upgrade the immunogenicity of cell surface antigens thus eliciting rejection type host immunity against these cells which is operational against not virus-infected cells of the same type (post-oncolytic antitumor immunity). 6. Viruses or virally infected cells (including tumor cells) induce the production of lymphokines and cytokines (interferons, interleukins and tumor necrosis factor) and activate NK cells and specific immune T cells cytotoxic to virus-infected cells (including tumor cells). 7. Measles virus may activate suppressor cells and both directly (by infecting lymphoma cells) and indirectly (by inducing molecular mediators of suppressor mononuclear cells inhibitory to the growth of neoplastic lymphoid and hematopoietic cells) induce remissions of lympho- and hematopoietic malignancies. 8. Retroviral vectors deliver genes into tumor cells for encoding new surface antigens that render the tumor cells highly antigenic and more vulnerable to rejection type immune reactions of the host. Examples illustrate each statement. Immunotherapy of tumors with active tumor-specific immunization after the induction of suppressor cells by fetal antigens and the elimination of the proliferating suppressor clones by cyclophosphamide will again be proposed. PMID:2556069

  6. Oncogene Induced Cellular Senescence Elicits an Anti-Warburg Effect

    PubMed Central

    Li, Mingxi; Durbin, Kenneth R.; Sweet, Steve M. M.; Tipton, Jeremiah D.; Zheng, Yupeng; Kelleher, Neil L.

    2013-01-01

    Cellular senescence, an irreversible cell cycle arrest induced by a diversity of stimuli, has been considered as an innate tumor suppressing mechanism with implications and applications in cancer therapy. Using a targeted proteomics approach we show that fibroblasts induced into senescence by expression of oncogenic Ras exhibit a decrease of global acetylation on all core histones, consistent with formation of senescence-associated heterochromatic foci. We also detected clear increases in repressive markers (e.g., >50% elevation of H3K27me2/3) along with decreases in histone marks associated with increased transcriptional expression/elongation (e.g., H3K36me2/3). Despite the increases in repressive marks of chromatin, 179 loci (of 2206 total) were found to be upregulated by global quantitative proteomics. The changes in the cytosolic proteome indicated an upregulation of mitochondrial proteins and downregulation of proteins involved in glycolysis. These alterations in primary metabolism are opposite of the well-known Warburg effect observed in cancer cells. This study significantly improves our understanding of stress-induced senescence and provides a potential application for triggering it in anti-proliferative strategies that target the primary metabolism in cancer cells. PMID:23798001

  7. A Computational Drug Repositioning Approach for Targeting Oncogenic Transcription Factors

    PubMed Central

    Gayvert, Kaitlyn; Dardenne, Etienne; Cheung, Cynthia; Boland, Mary Regina; Lorberbaum, Tal; Wanjala, Jackline; Chen, Yu; Rubin, Mark; Tatonetti, Nicholas P.; Rickman, David; Elemento, Olivier

    2016-01-01

    Summary Mutations in transcription factors (TFs) genes are frequently observed in tumors, often leading to aberrant transcriptional activity. Unfortunately, TFs are often considered undruggable due to the absence of targetable enzymatic activity. To address this problem, we developed CRAFTT, a Computational drug-Repositioning Approach For Targeting Transcription factor activity. CRAFTT combines ChIP-seq with drug-induced expression profiling to identify small molecules that can specifically perturb TF activity. Application to ENCODE ChIP-seq datasets revealed known drug-TF interactions and a global drug-protein network analysis further supported these predictions. Application of CRAFTT to ERG, a pro-invasive, frequently over-expressed oncogenic TF predicted that dexamethasone would inhibit ERG activity. Indeed, dexamethasone significantly decreased cell invasion and migration in an ERG-dependent manner. Furthermore, analysis of Electronic Medical Record data indicates a protective role for dexamethasone against prostate cancer. Altogether, our method provides a broadly applicable strategy to identify drugs that specifically modulate TF activity. PMID:27264179

  8. Oncogene-like induction of cellular invasion from centrosome amplification

    PubMed Central

    Godinho, Susana A.; Picone, Remigio; Burute, Mithila; Dagher, Regina; Su, Ying; Leung, Cheuk T.; Polyak, Kornelia; Brugge, Joan S.; Thery, Manuel; Pellman, David

    2014-01-01

    Centrosome amplification has long been recognized as a feature of human tumors, however its role in tumorigenesis remains unclear1. Centrosome amplification is poorly tolerated by non-transformed cells, and, in the absence of selection, extra centrosomes are spontaneously lost2. Thus, the high frequency of centrosome amplification, particularly in more aggressive tumors3, raises the possibility that extra centrosomes could, in some contexts, confer advantageous characteristics that promote tumor progression. Using a three-dimensional model system and other approaches to culture human mammary epithelial cells, we find that centrosome amplification triggers cell invasion. This invasive behavior is similar to that induced by overexpression of the breast cancer oncogene ErbB24 and indeed enhances invasiveness triggered by ErbB2. We show that, through increased centrosomal microtubule nucleation, centrosome amplification increases Rac1 activity, which disrupts normal cell-cell adhesion and promotes invasion. These findings demonstrate that centrosome amplification, a structural alteration of the cytoskeleton, can promote features of malignant transformation. PMID:24739973

  9. Papillomavirus sequences integrate near cellular oncogenes in some cervical carcinomas

    SciTech Connect

    Duerst, M.; Croce, C.M.; Gissmann, L.; Schwarz, E.; Huebner, K.

    1987-02-01

    The chromosomal locations of cellular sequences flanking integrated papillomavirus DNA in four cervical cell lines and a primary cervical carcinoma have been determined. The two human papillomavirus (HPV) 16 flanking sequences derived from the tumor were localized to chromosomes regions 20pter..-->..20q13 and 3p25..-->..3qter, regions that also contain the protooncogenes c-src-1 and c-raf-1, respectively. The HPV 16 integration site in the SiHa cervical carcinoma-derived cell line is in chromosome region 13q14..-->..13q32. The HPV 18 integration site in SW756 cervical carcinoma cells is in chromosome 12 but is not closely linked to the Ki-ras2 gene. Finally, in two cervical carcinoma cell lines, HeLa and C4-I, HPV 18 DNA is integrated in chromosome 8, 5' of the c-myc gene. The HeLaHPV 18 integration site is within 40 kilobases 5' of the c-myc gene, inside the HL60 amplification unit surrounding and including the c-myc gene. Additionally, steady-state levels of c-myc mRNA are elevated in HeLa and C4-I cells relative to other cervical carcinoma cell lines. Thus, in at least some genital tumors, cis-activation of cellular oncogenes by HPV may be involved in malignant transformation of cervical cells.

  10. Oncogenic potential diverge among human papillomavirus type 16 natural variants

    SciTech Connect

    Sichero, Laura; Simao Sobrinho, Joao; Lina Villa, Luisa

    2012-10-10

    We compared E6/E7 protein properties of three different HPV-16 variants: AA, E-P and E-350G. Primary human foreskin keratinocytes (PHFK) were transduced with HPV-16 E6 and E7 and evaluated for proliferation and ability to grow in soft agar. E-P infected keratinocytes presented the lowest efficiency in colony formation. AA and E-350G keratinocytes attained higher capacity for in vitro transformation. We observed similar degradation of TP53 among HPV-16 variants. Furthermore, we accessed the expression profile in early (p5) and late passage (p30) transduced cells of 84 genes commonly involved in carcinogenesis. Most differences could be attributed to HPV-16 E6/E7 expression. In particular, we detected different expression of ITGA2 and CHEK2 in keratinocytes infected with AA and AA/E-350G late passage cells, respectively, and higher expression of MAP2K1 in E-350G transduced keratinocytes. Our results indicate differences among HPV-16 variants that could explain, at least in part, differences in oncogenic potential attributed to these variants.

  11. ARF and ATM/ATR cooperate in p53-mediated apoptosis upon oncogenic stress

    SciTech Connect

    Pauklin, Siim . E-mail: spauklin@ut.ee; Kristjuhan, Arnold; Maimets, Toivo; Jaks, Viljar

    2005-08-26

    Induction of apoptosis is pivotal for eliminating cells with damaged DNA or deregulated proliferation. We show that tumor suppressor ARF and ATM/ATR kinase pathways cooperate in the induction of apoptosis in response to elevated expression of c-myc, {beta}-catenin or human papilloma virus E7 oncogenes. Overexpression of oncogenes leads to the formation of phosphorylated H2AX foci, induction of Rad51 protein levels and ATM/ATR-dependent phosphorylation of p53. Inhibition of ATM/ATR kinases abolishes both induction of Rad51 and phosphorylation of p53, and remarkably reduces the level of apoptosis induced by co-expression of oncogenes and ARF. However, the induction of apoptosis is downregulated in p53-/- cells and does not depend on activities of ATM/ATR kinases, indicating that efficient induction of apoptosis by oncogene activation depends on coordinated action of ARF and ATM/ATR pathways in the regulation of p53.

  12. Oncogenes and inflammation rewire host energy metabolism in the tumor microenvironment

    PubMed Central

    Martinez-Outschoorn, Ubaldo E; Curry, Joseph M; Ko, Ying-Hui; Lin, Zhao; Tuluc, Madalina; Cognetti, David; Birbe, Ruth C; Pribitkin, Edmund; Bombonati, Alessandro; Pestell, Richard G; Howell, Anthony; Sotgia, Federica; Lisanti, Michael P

    2013-01-01

    Here, we developed a model system to evaluate the metabolic effects of oncogene(s) on the host microenvironment. A matched set of “normal” and oncogenically transformed epithelial cell lines were co-cultured with human fibroblasts, to determine the “bystander” effects of oncogenes on stromal cells. ROS production and glucose uptake were measured by FACS analysis. In addition, expression of a panel of metabolic protein biomarkers (Caveolin-1, MCT1, and MCT4) was analyzed in parallel. Interestingly, oncogene activation in cancer cells was sufficient to induce the metabolic reprogramming of cancer-associated fibroblasts toward glycolysis, via oxidative stress. Evidence for “metabolic symbiosis” between oxidative cancer cells and glycolytic fibroblasts was provided by MCT1/4 immunostaining. As such, oncogenes drive the establishment of a stromal-epithelial “lactate-shuttle”, to fuel the anabolic growth of cancer cells. Similar results were obtained with two divergent oncogenes (RAS and NFκB), indicating that ROS production and inflammation metabolically converge on the tumor stroma, driving glycolysis and upregulation of MCT4. These findings make stromal MCT4 an attractive target for new drug discovery, as MCT4 is a shared endpoint for the metabolic effects of many oncogenic stimuli. Thus, diverse oncogenes stimulate a common metabolic response in the tumor stroma. Conversely, we also show that fibroblasts protect cancer cells against oncogenic stress and senescence by reducing ROS production in tumor cells. Ras-transformed cells were also able to metabolically reprogram normal adjacent epithelia, indicating that cancer cells can use either fibroblasts or epithelial cells as “partners” for metabolic symbiosis. The antioxidant N-acetyl-cysteine (NAC) selectively halted mitochondrial biogenesis in Ras-transformed cells, but not in normal epithelia. NAC also blocked stromal induction of MCT4, indicating that NAC effectively functions as an “MCT4

  13. Andrographolide derivatives inhibit guanine nucleotide exchange and abrogate oncogenic Ras function.

    PubMed

    Hocker, Harrison J; Cho, Kwang-Jin; Chen, Chung-Ying K; Rambahal, Nandini; Sagineedu, Sreenivasa Rao; Shaari, Khozirah; Stanslas, Johnson; Hancock, John F; Gorfe, Alemayehu A

    2013-06-18

    Aberrant signaling by oncogenic mutant rat sarcoma (Ras) proteins occurs in ∼15% of all human tumors, yet direct inhibition of Ras by small molecules has remained elusive. Recently, several small-molecule ligands have been discovered that directly bind Ras and inhibit its function by interfering with exchange factor binding. However, it is unclear whether, or how, these ligands could lead to drugs that act against constitutively active oncogenic mutant Ras. Using a dynamics-based pocket identification scheme, ensemble docking, and innovative cell-based assays, here we show that andrographolide (AGP)--a bicyclic diterpenoid lactone isolated from Andrographis paniculata--and its benzylidene derivatives bind to transient pockets on Kirsten-Ras (K-Ras) and inhibit GDP-GTP exchange. As expected for inhibitors of exchange factor binding, AGP derivatives reduced GTP loading of wild-type K-Ras in response to acute EGF stimulation with a concomitant reduction in MAPK activation. Remarkably, however, prolonged treatment with AGP derivatives also reduced GTP loading of, and signal transmission by, oncogenic mutant K-RasG12V. In sum, the combined analysis of our computational and cell biology results show that AGP derivatives directly bind Ras, block GDP-GTP exchange, and inhibit both wild-type and oncogenic K-Ras signaling. Importantly, our findings not only show that nucleotide exchange factors are required for oncogenic Ras signaling but also demonstrate that inhibiting nucleotide exchange is a valid approach to abrogating the function of oncogenic mutant Ras. PMID:23737504

  14. Andrographolide derivatives inhibit guanine nucleotide exchange and abrogate oncogenic Ras function

    PubMed Central

    Hocker, Harrison J.; Cho, Kwang-Jin; Chen, Chung-Ying K.; Rambahal, Nandini; Sagineedu, Sreenivasa Rao; Shaari, Khozirah; Stanslas, Johnson; Hancock, John F.; Gorfe, Alemayehu A.

    2013-01-01

    Aberrant signaling by oncogenic mutant rat sarcoma (Ras) proteins occurs in ∼15% of all human tumors, yet direct inhibition of Ras by small molecules has remained elusive. Recently, several small-molecule ligands have been discovered that directly bind Ras and inhibit its function by interfering with exchange factor binding. However, it is unclear whether, or how, these ligands could lead to drugs that act against constitutively active oncogenic mutant Ras. Using a dynamics-based pocket identification scheme, ensemble docking, and innovative cell-based assays, here we show that andrographolide (AGP)—a bicyclic diterpenoid lactone isolated from Andrographis paniculata—and its benzylidene derivatives bind to transient pockets on Kirsten-Ras (K-Ras) and inhibit GDP–GTP exchange. As expected for inhibitors of exchange factor binding, AGP derivatives reduced GTP loading of wild-type K-Ras in response to acute EGF stimulation with a concomitant reduction in MAPK activation. Remarkably, however, prolonged treatment with AGP derivatives also reduced GTP loading of, and signal transmission by, oncogenic mutant K-RasG12V. In sum, the combined analysis of our computational and cell biology results show that AGP derivatives directly bind Ras, block GDP–GTP exchange, and inhibit both wild-type and oncogenic K-Ras signaling. Importantly, our findings not only show that nucleotide exchange factors are required for oncogenic Ras signaling but also demonstrate that inhibiting nucleotide exchange is a valid approach to abrogating the function of oncogenic mutant Ras. PMID:23737504

  15. Translation Start Sequences Affect the Efficiency of Silencing of Agrobacterium tumefaciens T-DNA Oncogenes1

    PubMed Central

    Lee, Hyewon; Humann, Jodi L.; Pitrak, Jennifer S.; Cuperus, Josh T.; Parks, T. Dawn; Whistler, Cheryl A.; Mok, Machteld C.; Ream, L. Walt

    2003-01-01

    Agrobacterium tumefaciens oncogenes cause transformed plant cells to overproduce auxin and cytokinin. Two oncogenes encode enzymes that convert tryptophan to indole-3-acetic acid (auxin): iaaM (tryptophan mono-oxygenase) and iaaH (indole-3-acetamide hydrolase). A third oncogene (ipt) encodes AMP isopentenyl transferase, which produces cytokinin (isopentenyl-AMP). Inactivation of ipt and iaaM (or iaaH) abolishes tumorigenesis. Because adequate means do not exist to control crown gall, we created resistant plants by introducing transgenes designed to elicit posttranscriptional gene silencing (PTGS) of iaaM and ipt. Transgenes that elicit silencing trigger sequence-specific destruction of the inducing RNA and messenger RNAs with related sequences. Although PTGS has proven effective against a variety of target genes, we found that a much higher percentage of transgenic lines silenced iaaM than ipt, suggesting that transgene sequences influenced the effectiveness of PTGS. Sequences required for oncogene silencing included a translation start site. A transgene encoding a translatable sense-strand RNA from the 5′ end of iaaM silenced the iaaM oncogene, but deletion of the translation start site abolished the ability of the transgene to silence iaaM. Silencing A. tumefaciens T-DNA oncogenes is a new and effective method to produce plants resistant to crown gall disease. PMID:12972655

  16. MicroRNAs: Modulators of the Ras Oncogenes in Oral Cancer.

    PubMed

    Murugan, Avaniyapuram Kannan; Munirajan, Arasambattu Kannan; Alzahrani, Ali S

    2016-07-01

    Oral squamous cell carcinoma (OSCC) of the head and neck is one of the six most common cancers in the world. OSCC remains the most common cause of cancer deaths in Asian countries. Conventional treatments for OSCC have not improved the overall 5 years survival and therefore alternative therapeutic targets are often sought. Ras is one of the most frequently deregulated oncogenes in oral cancer. Direct targeting the ras has proven unrealistic and hence, exploring and understanding alternative pathways and/or molecules which regulate ras and its signaling that could pave the way for novel molecular targets and therapy for oral cancer. Recently, microRNAs (miRNAs) have been reported to regulate ras oncogenes in human cancers. In this article, we address the microRNA-mediated regulation of the ras oncogenes in oral cancer. We describe extensively the tumor suppressive and oncogenic roles of miRNAs in regulation of ras oncogenes in OSCC. We also discuss the role of miRNA-mediated ras regulation in therapeutic determination of oral cancer. Complete understanding of the miRNA regulation of ras oncogenes in oral cancer may facilitate to plan better strategies for diagnosis, molecular therapeutic targeting and the overall prognosis of this common and deadly cancer. J. Cell. Physiol. 231: 1424-1431, 2016. © 2015 Wiley Periodicals, Inc. PMID:26620726

  17. The transcription factor LSF: a novel oncogene for hepatocellular carcinoma

    PubMed Central

    Santhekadur, Prasanna K; Rajasekaran, Devaraja; Siddiq, Ayesha; Gredler, Rachel; Chen, Dong; Schaus, Scott E; Hansen, Ulla; Fisher, Paul B; Sarkar, Devanand

    2012-01-01

    The transcription factor LSF (Late SV40 Factor), also known as TFCP2, belongs to the LSF/CP2 family related to Grainyhead family of proteins and is involved in many biological events, including regulation of cellular and viral promoters, cell cycle, DNA synthesis, cell survival and Alzheimer’s disease. Our recent studies establish an oncogenic role of LSF in Hepatocellular carcinoma (HCC). LSF overexpression is detected in human HCC cell lines and in more than 90% cases of human HCC patients, compared to normal hepatocytes and liver, and its expression level showed significant correlation with the stages and grades of the disease. Forced overexpression of LSF in less aggressive HCC cells resulted in highly aggressive, angiogenic and multi-organ metastatic tumors in nude mice. Conversely, inhibition of LSF significantly abrogated growth and metastasis of highly aggressive HCC cells in nude mice. Microarray studies revealed that as a transcription factor LSF modulated specific genes regulating invasion, angiogenesis, chemoresistance and senescence. LSF transcriptionally regulates thymidylate synthase (TS) gene, thus contributing to cell cycle regulation and chemoresistance. Our studies identify a network of proteins, including osteopontin (OPN), Matrix metalloproteinase-9 (MMP-9), c-Met and complement factor H (CFH), that are directly regulated by LSF and play important role in LSF-induced hepatocarcinogenesis. A high throughput screening identified small molecule inhibitors of LSF DNA binding and the prototype of these molecules, Factor Quinolinone inhibitor 1 (FQI1), profoundly inhibited cell viability and induced apoptosis in human HCC cells without exerting harmful effects to normal immortal human hepatocytes and primary mouse hepatocytes. In nude mice xenograft studies, FQI1 markedly inhibited growth of human HCC xenografts as well as angiogenesis without exerting any toxicity. These studies establish a key role of LSF in hepatocarcinogenesis and usher in a

  18. Immunoprevention of Chemical Carcinogenesis through Early Recognition of Oncogene Mutations

    PubMed Central

    Nasti, Tahseen H.; Rudemiller, Kyle J.; Cochran, J. Barry; Kim, Hee Kyung; Tsuruta, Yuko; Fineberg, Naomi S.; Athar, Mohammad

    2015-01-01

    Prevention of tumors induced by environmental carcinogens has not been achieved. Skin tumors produced by polyaromatic hydrocarbons, such as 7,12-dimethylbenz(a)anthracene (DMBA), often harbor an H-ras point mutation, suggesting that it is a poor target for early immunosurveillance. The application of pyrosequencing and allele-specific PCR techniques established that mutations in the genome and expression of the Mut H-ras gene could be detected as early as 1 d after DMBA application. Further, DMBA sensitization raised Mut H-ras epitope–specific CTLs capable of eliminating Mut H-ras+ preneoplastic skin cells, demonstrating that immunosurveillance is normally induced but may be ineffective owing to insufficient effector pool size and/or immunosuppression. To test whether selective pre-expansion of CD8 T cells with specificity for the single Mut H-ras epitope was sufficient for tumor prevention, MHC class I epitope–focused lentivector-infected dendritic cell– and DNA-based vaccines were designed to bias toward CTL rather than regulatory T cell induction. Mut H-ras, but not wild-type H-ras, epitope-focused vaccination generated specific CTLs and inhibited DMBA-induced tumor initiation, growth, and progression in preventative and therapeutic settings. Transferred Mut H-ras–specific effectors induced rapid tumor regression, overcoming established tumor suppression in tumor-bearing mice. These studies support further evaluation of oncogenic mutations for their potential to act as early tumor-specific, immunogenic epitopes in expanding relevant immunosurveillance effectors to block tumor formation, rather than treating established tumors. PMID:25694611

  19. RECQL4 helicase has oncogenic potential in sporadic breast cancers.

    PubMed

    Arora, Arvind; Agarwal, Devika; Abdel-Fatah, Tarek Ma; Lu, Huiming; Croteau, Deborah L; Moseley, Paul; Aleskandarany, Mohammed A; Green, Andrew R; Ball, Graham; Rakha, Emad A; Chan, Stephen Yt; Ellis, Ian O; Wang, Lisa L; Zhao, Yongliang; Balajee, Adayabalam S; Bohr, Vilhelm A; Madhusudan, Srinivasan

    2016-03-01

    RECQL4 helicase is a molecular motor that unwinds DNA, a process essential during DNA replication and DNA repair. Germ-line mutations in RECQL4 cause type II Rothmund-Thomson syndrome (RTS), characterized by a premature ageing phenotype and cancer predisposition. RECQL4 is widely considered to be a tumour suppressor, although its role in human breast cancer is largely unknown. As the RECQL4 gene is localized to chromosome 8q24, a site frequently amplified in sporadic breast cancers, we hypothesized that it may play an oncogenic role in breast tumourigenesis. To address this, we analysed large cohorts for gene copy number changes (n = 1977), mRNA expression (n = 1977) and protein level (n = 1902). Breast cancer incidence was also explored in 58 patients with type II RTS. DNA replication dynamics and chemosensitivity was evaluated in RECQL4-depleted breast cancer cells in vitro. Amplification or gain in gene copy number (30.6%), high-level mRNA expression (51%) and high levels of protein (23%) significantly associated with aggressive tumour behaviour, including lymph node positivity, larger tumour size, HER2 overexpression, ER-negativity, triple-negative phenotypes and poor survival. RECQL4 depletion impaired the DNA replication rate and increased chemosensitivity in cultured breast cancer cells. Thus, although recognized as a 'safe guardian of the genome', our data provide compelling evidence that RECQL4 is tumour promoting in established breast cancers. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. PMID:26690729

  20. SUMOylation Confers Posttranslational Stability on NPM-ALK Oncogenic Protein.

    PubMed

    Vishwamitra, Deeksha; Curry, Choladda V; Shi, Ping; Alkan, Serhan; Amin, Hesham M

    2015-09-01

    Nucleophosmin-anaplastic lymphoma kinase-expressing (NPM-ALK+) T-cell lymphoma is an aggressive form of cancer that commonly affects children and adolescents. The expression of NPM-ALK chimeric oncogene results from the chromosomal translocation t(2;5)(p23;q35) that causes the fusion of the ALK and NPM genes. This translocation generates the NPM-ALK protein tyrosine kinase that forms the constitutively activated NPM-ALK/NPM-ALK homodimers. In addition, NPM-ALK is structurally associated with wild-type NPM to form NPM/NPM-ALK heterodimers, which can translocate to the nucleus. The mechanisms that sustain the stability of NPM-ALK are not fully understood. SUMOylation is a posttranslational modification that is characterized by the reversible conjugation of small ubiquitin-like modifiers (SUMOs) with target proteins. SUMO competes with ubiquitin for substrate binding and therefore, SUMOylation is believed to protect target proteins from proteasomal degradation. Moreover, SUMOylation contributes to the subcellular distribution of target proteins. Herein, we found that the SUMOylation pathway is deregulated in NPM-ALK+ T-cell lymphoma cell lines and primary lymphoma tumors from patients. We also identified Lys24 and Lys32 within the NPM domain as the sites where NPM-ALK conjugates with SUMO-1 and SUMO-3. Importantly, antagonizing SUMOylation by the SENP1 protease decreased the accumulation of NPM-ALK and suppressed lymphoma cell viability, proliferation, and anchorage-independent colony formation. One possible mechanism for the SENP1-mediated decrease in NPM-ALK levels was the increase in NPM-ALK association with ubiquitin, which facilitates its degradation. Our findings propose a model in which aberrancies in SUMOylation contribute to the pathogenesis of NPM-ALK+ T-cell lymphoma. Unraveling such pathogenic mechanisms may lead to devising novel strategies to eliminate this aggressive neoplasm. PMID:26476082

  1. Oncogenic KRAS and BRAF Drive Metabolic Reprogramming in Colorectal Cancer.

    PubMed

    Hutton, Josiah E; Wang, Xiaojing; Zimmerman, Lisa J; Slebos, Robbert J C; Trenary, Irina A; Young, Jamey D; Li, Ming; Liebler, Daniel C

    2016-09-01

    Metabolic reprogramming, in which altered utilization of glucose and glutamine supports rapid growth, is a hallmark of most cancers. Mutations in the oncogenes KRAS and BRAF drive metabolic reprogramming through enhanced glucose uptake, but the broader impact of these mutations on pathways of carbon metabolism is unknown. Global shotgun proteomic analysis of isogenic DLD-1 and RKO colon cancer cell lines expressing mutant and wild type KRAS or BRAF, respectively, failed to identify significant differences (at least 2-fold) in metabolic protein abundance. However, a multiplexed parallel reaction monitoring (PRM) strategy targeting 73 metabolic proteins identified significant protein abundance increases of 1.25-twofold in glycolysis, the nonoxidative pentose phosphate pathway, glutamine metabolism, and the phosphoserine biosynthetic pathway in cells with KRAS G13D mutations or BRAF V600E mutations. These alterations corresponded to mutant KRAS and BRAF-dependent increases in glucose uptake and lactate production. Metabolic reprogramming and glucose conversion to lactate in RKO cells were proportional to levels of BRAF V600E protein. In DLD-1 cells, these effects were independent of the ratio of KRAS G13D to KRAS wild type protein. A study of 8 KRAS wild type and 8 KRAS mutant human colon tumors confirmed the association of increased expression of glycolytic and glutamine metabolic proteins with KRAS mutant status. Metabolic reprogramming is driven largely by modest (<2-fold) alterations in protein expression, which are not readily detected by the global profiling methods most commonly employed in proteomic studies. The results indicate the superiority of more precise, multiplexed, pathway-targeted analyses to study functional proteome systems. Data are available through MassIVE Accession MSV000079486 at ftp://MSV000079486@massive.ucsd.edu. PMID:27340238

  2. Oncogenic roles of carbonic anhydrase 8 in human osteosarcoma cells.

    PubMed

    Wang, Tze-Kai; Lin, Yu-Ming; Lo, Che-Min; Tang, Chih-Hsin; Teng, Chieh-Lin Jerry; Chao, Wei-Ting; Wu, Min Huan; Liu, Chin-San; Hsieh, Mingli

    2016-06-01

    Carbonic anhydrase 8 (CA8), a member of the carbonic anhydrase family, is one of the three isozymes that do not catalyze the reversible hydration of carbon dioxide due to the lack of one important histidine. In the present study, we observed increased expression of CA8 in more aggressive types of human osteosarcoma (OS) cells and found that CA8 expression is correlated with disease stages, such that more intense expression occurs in the disease late stage. We also demonstrated that overexpression of CA8 in human OS (HOS) cells significantly increased cell proliferation both in vitro and in vivo. Downregulated CA8 sensitized cells to apoptotic stress induced by staurosporine and cisplatin, suggesting a specific role of CA8 to protect cells from stresses. In addition, downregulation of CA8 in HOS cells reduced cell invasion and colony formation ability in soft agar and further decreased matrix metalloproteinase 9 and focal adhesion kinase expression, indicating that CA8 might facilitate cancer cell invasion via the activation of FAK-MMP9 signaling. Interestingly, HOS cells with CA8 knockdown showed a significant decrease in glycolytic activity and cell death under glucose withdrawal, further indicating that CA8 may be involved in regulating aerobic glycolysis and enhancing cell viability. Knockdown of CA8 significantly decreased phosphorylated Akt expression suggesting that the oncogenic role of CA8 may be mediated by the regulation of Akt activation through p-Akt induction. Importantly, the inhibition of glycolysis by 2-deoxyglucose sensitized CA8 HOS-CA8-myc cells to cisplatin treatment under low glucose condition, highlighting a new therapeutic option for OS cancer. PMID:26711783

  3. A Screen Identifies the Oncogenic Micro-RNA miR-378a-5p as a Negative Regulator of Oncogene-Induced Senescence

    PubMed Central

    Kooistra, Susanne Marije; Nørgaard, Lise Christine Rudkjær; Lees, Michael James; Steinhauer, Cornelia; Johansen, Jens Vilstrup; Helin, Kristian

    2014-01-01

    Oncogene-induced senescence (OIS) can occur in response to hyperactive oncogenic signals and is believed to be a fail-safe mechanism protecting against tumorigenesis. To identify new factors involved in OIS, we performed a screen for microRNAs that can overcome or inhibit OIS in human diploid fibroblasts. This screen led to the identification of miR-378a-5p and in addition several other miRNAs that have previously been shown to play a role in senescence. We show that ectopic expression of miR-378a-5p reduces the expression of several senescence markers, including p16INK4A and senescence-associated β-galactosidase. Moreover, cells with ectopic expression of miR-378a-5p retain proliferative capacity even in the presence of an activated Braf oncogene. Finally, we identified several miR-378a-5p targets in diploid fibroblasts that might explain the mechanism by which the microRNA can delay OIS. We speculate that miR-378a-5p might positively influence tumor formation by delaying OIS, which is consistent with a known pro-oncogenic function of this microRNA. PMID:24651706

  4. ER functions of oncogenes and tumor suppressors: Modulators of intracellular Ca(2+) signaling.

    PubMed

    Bittremieux, Mart; Parys, Jan B; Pinton, Paolo; Bultynck, Geert

    2016-06-01

    Intracellular Ca(2+) signals that arise from the endoplasmic reticulum (ER), the major intracellular Ca(2+)-storage organelle, impact several mitochondrial functions and dictate cell survival and cell death processes. Furthermore, alterations in Ca(2+) signaling in cancer cells promote survival and establish a high tolerance towards cell stress and damage, so that the on-going oncogenic stress does not result in the activation of cell death. Over the last years, the mechanisms underlying these oncogenic alterations in Ca(2+) signaling have started to emerge. An important aspect of this is the identification of several major oncogenes, including Bcl-2, Bcl-XL, Mcl-1, PKB/Akt, and Ras, and tumor suppressors, such as p53, PTEN, PML, BRCA1, and Beclin 1, as direct and critical regulators of Ca(2+)-transport systems located at the ER membranes, including IP3 receptors and SERCA Ca(2+) pumps. In this way, these proteins execute part of their function by controlling the ER-mitochondrial Ca(2+) fluxes, favoring either survival (oncogenes) or cell death (tumor suppressors). Oncogenic mutations, gene deletions or amplifications alter the expression and/or function of these proteins, thereby changing the delicate balance between oncogenes and tumor suppressors, impacting oncogenesis and favoring malignant cell function and behavior. In this review, we provided an integrated overview of the impact of the major oncogenes and tumor suppressors, often altered in cancer cells, on Ca(2+) signaling from the ER Ca(2+) stores. This article is part of a Special Issue entitled: Calcium and Cell Fate. Guest Editors: Jacques Haiech, Claus Heizmann, Joachim Krebs, Thierry Capiod and Olivier Mignen. PMID:26772784

  5. Diversity of mutations in the RET proto-oncogene and its oncogenic mechanism in medullary thyroid cancer.

    PubMed

    Hedayati, Mehdi; Zarif Yeganeh, Marjan; Sheikholeslami, Sara; Afsari, Farinaz

    2016-08-01

    Thyroid cancer is the most common endocrine malignancy and accounts for nearly 1% of all of human cancer. Thyroid cancer has four main histological types: papillary, follicular, medullary, and anaplastic. Papillary, follicular, and anaplastic thyroid carcinomas are derived from follicular thyroid cells, whereas medullary thyroid carcinoma (MTC) originates from the neural crest parafollicular cells or C-cells of the thyroid gland. MTC represents a neuroendocrine tumor and differs considerably from differentiated thyroid carcinoma. MTC is one of the aggressive types of thyroid cancer, which represents 3-10% of all thyroid cancers. It occurs in hereditary (25%) and sporadic (75%) forms. The hereditary form of MTC has an autosomal dominant mode of inheritance. According to the present classification, hereditary MTC is classified as a multiple endocrine neoplasi type 2 A & B (MEN2A & MEN2B) and familial MTC (FMTC). The RET proto-oncogene is located on chromosome 10q11.21. It is composed of 21 exons and encodes a transmembrane receptor tyrosine kinase. RET regulates a complex network of signal transduction pathways during development, survival, proliferation, differentiation, and migration of the enteric nervous system progenitor cells. Gain of function mutations in RET have been well demonstrated in MTC development. Variants of MTC result from different RET mutations, and they have a good genotype-phenotype correlation. Various MTC related mutations have been reported in different exons of the RET gene. We proposed that RET genetic mutations may be different in distinct populations. Therefore, the aim of this study was to find a geographical pattern of RET mutations in different populations. PMID:26678667

  6. The oncogenic action of ionizing radiation on rat skin

    SciTech Connect

    Burns, F.J.; Garte, S.J.

    1992-01-01

    The multistage theory of carcinogenesis specifies that cells progress to cancer through a series of discrete, irreversible genetic alterations, but data on radiation-induced cancer incidence in rat skin suggests that an intermediate repairable alteration may occur. Data are presented on cancer induction in rat skin exposed to an electron beam (LET=0.34 keV/[mu]), a neon ion beam (LET=45) or an argon ion beam (LET=125). The rats were observed for tumors at least 78 weeks with squamous and basal cell carcinomas observed. The total cancer yield was fitted by the quadratic equation, and the equation parameters were estimated by linear regression for each type of radiation. Analysis of the DNA from the electron-induced carcinomas indicated that K-ras and/or c-myc oncogenes were activated. In situ hybridization indicated that the cancers contain subpopulations of cells with differing amounts of c-myc and H-ras amplification. The results are consistent with the idea that ionizing radiation produces stable, carcinogenically relevant lesions via 2 repairable events at low LET and via a non-repairable linked event pathway at high LET; either pathway may advance the cell by 1 stage. The proliferative response of rat epidermis following exposure to ionizing radiation was quantified by injection of [sup 14]C-thymidine. The return of these cells to S-phase a second time was detected by a second label ([sup 3]H). When the labeled cells were in G1-phase, the dorsal skin was irradiated with X-rays. All labeling indices were determined. The [sup 14]C labeling index was constant and unaffected by the radiation. The proportion of all cells entering S-phase averaged 3.5% at 18 hr and increased after 44, 52 and 75 hr to average levels of 11.8%, 5. 3%, and 6.6% at 0, 10 and 25 Gy respectively. The proportion of S-phase cells labeled with [sup 14]C increased after 42 hr and remained relatively constant thereafter.

  7. Oncogenes and tumor suppressor genes: comparative genomics and network perspectives

    PubMed Central

    2015-01-01

    Background Defective tumor suppressor genes (TSGs) and hyperactive oncogenes (OCGs) heavily contribute to cell proliferation and apoptosis during cancer development through genetic variations such as somatic mutations and deletions. Moreover, they usually do not perform their cellular functions individually but rather execute jointly. Therefore, a comprehensive comparison of their mutation patterns and network properties may provide a deeper understanding of their roles in the cancer development and provide some clues for identification of novel targets. Results In this study, we performed a comprehensive survey of TSGs and OCGs from the perspectives of somatic mutations and network properties. For comparative purposes, we choose five gene sets: TSGs, OCGs, cancer drug target genes, essential genes, and other genes. Based on the data from Pan-Cancer project, we found that TSGs had the highest mutation frequency in most tumor types and the OCGs second. The essential genes had the lowest mutation frequency in all tumor types. For the network properties in the human protein-protein interaction (PPI) network, we found that, relative to target proteins, essential proteins, and other proteins, the TSG proteins and OCG proteins both tended to have higher degrees, higher betweenness, lower clustering coefficients, and shorter shortest-path distances. Moreover, the TSG proteins and OCG proteins tended to have direct interactions with cancer drug target proteins. To further explore their relationship, we generated a TSG-OCG network and found that TSGs and OCGs connected strongly with each other. The integration of the mutation frequency with the TSG-OCG network offered a network view of TSGs, OCGs, and their interactions, which may provide new insights into how the TSGs and OCGs jointly contribute to the cancer development. Conclusions Our study first discovered that the OCGs and TSGs had different mutation patterns, but had similar and stronger protein

  8. Retinoid X receptors orchestrate osteoclast differentiation and postnatal bone remodeling

    PubMed Central

    Menéndez-Gutiérrez, María P.; Rőszer, Tamás; Fuentes, Lucía; Núñez, Vanessa; Escolano, Amelia; Redondo, Juan Miguel; De Clerck, Nora; Metzger, Daniel; Valledor, Annabel F.; Ricote, Mercedes

    2015-01-01

    Osteoclasts are bone-resorbing cells that are important for maintenance of bone remodeling and mineral homeostasis. Regulation of osteoclast differentiation and activity is important for the pathogenesis and treatment of diseases associated with bone loss. Here, we demonstrate that retinoid X receptors (RXRs) are key elements of the transcriptional program of differentiating osteoclasts. Loss of RXR function in hematopoietic cells resulted in formation of giant, nonresorbing osteoclasts and increased bone mass in male mice and protected female mice from bone loss following ovariectomy, which induces osteoporosis in WT females. The increase in bone mass associated with RXR deficiency was due to lack of expression of the RXR-dependent transcription factor v-maf musculoaponeurotic fibrosarcoma oncogene family, protein B (MAFB) in osteoclast progenitors. Evaluation of osteoclast progenitor cells revealed that RXR homodimers directly target and bind to the Mafb promoter, and this interaction is required for proper osteoclast proliferation, differentiation, and activity. Pharmacological activation of RXRs inhibited osteoclast differentiation due to the formation of RXR/liver X receptor (LXR) heterodimers, which induced expression of sterol regulatory element binding protein-1c (SREBP-1c), resulting in indirect MAFB upregulation. Our study reveals that RXR signaling mediates bone homeostasis and suggests that RXRs have potential as targets for the treatment of bone pathologies such as osteoporosis. PMID:25574839

  9. cDNA cloning and mRNA expression of canine pancreatic and duodenum homeobox 1 (Pdx-1).

    PubMed

    Takemitsu, Hiroshi; Yamamoto, Ichiro; Lee, Peter; Ohta, Taizo; Mori, Nobuko; Arai, Toshiro

    2012-10-01

    Pancreatic and duodenal homeobox 1 (Pdx-1) is a critical insulin transcription factor expressed by pancreatic β-cells, and is crucial in the early stage of pancreas development. Unfortunately, nothing concerning Pdx-1 in canine has been elucidated yet. In this study, full length canine Pdx-1 cDNA was cloned and it was 1498 bp in length, consisting of a 99 bp 5'-untranslated region (UTR), a 849 bp coding region, and a 550 bp 3'-UTR region. A deduced 282 amino acid sequence of canine PDX-1 displayed high overall sequence identity with human, bovine, and mouse PDX-1. qRT-PCR analysis revealed that a high level of Pdx1 mRNA expression is exists in the duodenum and pancreas of canines. In addition, functional canine insulin promoter-luciferase reporter constructs with various canine insulin promoter region fragments revealed that our Pdx-1 isolated cDNA sequence encodes for a functionally active PDX-1 protein. Significant promoter activity was observed within the -583 bp 5'-upstream region of canine insulin gene with Chinese hamster ovary cells. In addition, Pdx-1 appears to have a synergistic effect with beta cell transactivator 2 (BETA2) and V-maf avian musculoaponeurotic fibrosarcoma oncogene homolog A (MafA), which also have important roles in the activation of the insulin gene promoter. Our results confirm that similar to humans, Pdx1 plays an important role in expression of insulin gene in canines. PMID:22172402

  10. Mutations Impairing GSK3-Mediated MAF Phosphorylation Cause Cataract, Deafness, Intellectual Disability, Seizures, and a Down Syndrome-like Facies

    PubMed Central

    Niceta, Marcello; Stellacci, Emilia; Gripp, Karen W.; Zampino, Giuseppe; Kousi, Maria; Anselmi, Massimiliano; Traversa, Alice; Ciolfi, Andrea; Stabley, Deborah; Bruselles, Alessandro; Caputo, Viviana; Cecchetti, Serena; Prudente, Sabrina; Fiorenza, Maria T.; Boitani, Carla; Philip, Nicole; Niyazov, Dmitriy; Leoni, Chiara; Nakane, Takaya; Keppler-Noreuil, Kim; Braddock, Stephen R.; Gillessen-Kaesbach, Gabriele; Palleschi, Antonio; Campeau, Philippe M.; Lee, Brendan H.L.; Pouponnot, Celio; Stella, Lorenzo; Bocchinfuso, Gianfranco; Katsanis, Nicholas; Sol-Church, Katia; Tartaglia, Marco

    2015-01-01

    Transcription factors operate in developmental processes to mediate inductive events and cell competence, and perturbation of their function or regulation can dramatically affect morphogenesis, organogenesis, and growth. We report that a narrow spectrum of amino-acid substitutions within the transactivation domain of the v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog (MAF), a leucine zipper-containing transcription factor of the AP1 superfamily, profoundly affect development. Seven different de novo missense mutations involving conserved residues of the four GSK3 phosphorylation motifs were identified in eight unrelated individuals. The distinctive clinical phenotype, for which we propose the eponym Aymé-Gripp syndrome, is not limited to lens and eye defects as previously reported for MAF/Maf loss of function but includes sensorineural deafness, intellectual disability, seizures, brachycephaly, distinctive flat facial appearance, skeletal anomalies, mammary gland hypoplasia, and reduced growth. Disease-causing mutations were demonstrated to impair proper MAF phosphorylation, ubiquitination and proteasomal degradation, perturbed gene expression in primary skin fibroblasts, and induced neurodevelopmental defects in an in vivo model. Our findings nosologically and clinically delineate a previously poorly understood recognizable multisystem disorder, provide evidence for MAF governing a wider range of developmental programs than previously appreciated, and describe a novel instance of protein dosage effect severely perturbing development. PMID:25865493

  11. A programmable synthetic lineage-control network that differentiates human IPSCs into glucose-sensitive insulin-secreting beta-like cells.

    PubMed

    Saxena, Pratik; Heng, Boon Chin; Bai, Peng; Folcher, Marc; Zulewski, Henryk; Fussenegger, Martin

    2016-01-01

    Synthetic biology has advanced the design of standardized transcription control devices that programme cellular behaviour. By coupling synthetic signalling cascade- and transcription factor-based gene switches with reverse and differential sensitivity to the licensed food additive vanillic acid, we designed a synthetic lineage-control network combining vanillic acid-triggered mutually exclusive expression switches for the transcription factors Ngn3 (neurogenin 3; OFF-ON-OFF) and Pdx1 (pancreatic and duodenal homeobox 1; ON-OFF-ON) with the concomitant induction of MafA (V-maf musculoaponeurotic fibrosarcoma oncogene homologue A; OFF-ON). This designer network consisting of different network topologies orchestrating the timely control of transgenic and genomic Ngn3, Pdx1 and MafA variants is able to programme human induced pluripotent stem cells (hIPSCs)-derived pancreatic progenitor cells into glucose-sensitive insulin-secreting beta-like cells, whose glucose-stimulated insulin-release dynamics are comparable to human pancreatic islets. Synthetic lineage-control networks may provide the missing link to genetically programme somatic cells into autologous cell phenotypes for regenerative medicine. PMID:27063289

  12. A programmable synthetic lineage-control network that differentiates human IPSCs into glucose-sensitive insulin-secreting beta-like cells

    PubMed Central

    Saxena, Pratik; Heng, Boon Chin; Bai, Peng; Folcher, Marc; Zulewski, Henryk; Fussenegger, Martin

    2016-01-01

    Synthetic biology has advanced the design of standardized transcription control devices that programme cellular behaviour. By coupling synthetic signalling cascade- and transcription factor-based gene switches with reverse and differential sensitivity to the licensed food additive vanillic acid, we designed a synthetic lineage-control network combining vanillic acid-triggered mutually exclusive expression switches for the transcription factors Ngn3 (neurogenin 3; OFF-ON-OFF) and Pdx1 (pancreatic and duodenal homeobox 1; ON-OFF-ON) with the concomitant induction of MafA (V-maf musculoaponeurotic fibrosarcoma oncogene homologue A; OFF-ON). This designer network consisting of different network topologies orchestrating the timely control of transgenic and genomic Ngn3, Pdx1 and MafA variants is able to programme human induced pluripotent stem cells (hIPSCs)-derived pancreatic progenitor cells into glucose-sensitive insulin-secreting beta-like cells, whose glucose-stimulated insulin-release dynamics are comparable to human pancreatic islets. Synthetic lineage-control networks may provide the missing link to genetically programme somatic cells into autologous cell phenotypes for regenerative medicine. PMID:27063289

  13. A rare variant at 11p13 is associated with tuberculosis susceptibility in the Han Chinese population

    PubMed Central

    Chen, Cheng; Zhao, Qi; Hu, Yi; Shao, Yan; Li, Guoli; Zhu, Limei; Lu, Wei; Xu, Biao

    2016-01-01

    Genome-wide association studies (GWASs) have yet to be conducted for tuberculosis (TB) susceptibility in China. Two previously identified single nucleotide polymorphisms (SNPs) from tuberculosis GWASs, rs2057178 and rs4331426, were evaluated for TB predisposition. The associations between SNPs and gene expression levels were analyzed using the genomic data and corresponding whole-genome expression of the Han Chinese in Beijing, China. Genotyping was successfully completed for 763 pulmonary TB patients and 763 healthy controls. The T allele of the rare variant rs2057178 was significantly associated with TB predisposition (χ2 = 14.07, P = 0.0002). Meanwhile, the CT genotype of rs2057178 was associated with a decreased risk of TB (adjusted OR = 0.52, 95% CI, 0.34–0.78). The CT genotype of rs2057178 was also associated with decreased expression levels of infection-related gene, suppressor of cytokine signaling 2 (SOCS2), and increased expression levels of v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog B (MAFB). No gene expression levels were found to be associated with the genotype of rs4331426. We found that the rare variant rs2057178 was significantly associated with TB in the Han Chinese population. Moreover, the expression levels of MAFB and SOCS2 correlated with rs2057178 and might be potential candidates for assessing TB susceptibility. PMID:27035414

  14. Mutations Impairing GSK3-Mediated MAF Phosphorylation Cause Cataract, Deafness, Intellectual Disability, Seizures, and a Down Syndrome-like Facies.

    PubMed

    Niceta, Marcello; Stellacci, Emilia; Gripp, Karen W; Zampino, Giuseppe; Kousi, Maria; Anselmi, Massimiliano; Traversa, Alice; Ciolfi, Andrea; Stabley, Deborah; Bruselles, Alessandro; Caputo, Viviana; Cecchetti, Serena; Prudente, Sabrina; Fiorenza, Maria T; Boitani, Carla; Philip, Nicole; Niyazov, Dmitriy; Leoni, Chiara; Nakane, Takaya; Keppler-Noreuil, Kim; Braddock, Stephen R; Gillessen-Kaesbach, Gabriele; Palleschi, Antonio; Campeau, Philippe M; Lee, Brendan H L; Pouponnot, Celio; Stella, Lorenzo; Bocchinfuso, Gianfranco; Katsanis, Nicholas; Sol-Church, Katia; Tartaglia, Marco

    2015-05-01

    Transcription factors operate in developmental processes to mediate inductive events and cell competence, and perturbation of their function or regulation can dramatically affect morphogenesis, organogenesis, and growth. We report that a narrow spectrum of amino-acid substitutions within the transactivation domain of the v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog (MAF), a leucine zipper-containing transcription factor of the AP1 superfamily, profoundly affect development. Seven different de novo missense mutations involving conserved residues of the four GSK3 phosphorylation motifs were identified in eight unrelated individuals. The distinctive clinical phenotype, for which we propose the eponym Aymé-Gripp syndrome, is not limited to lens and eye defects as previously reported for MAF/Maf loss of function but includes sensorineural deafness, intellectual disability, seizures, brachycephaly, distinctive flat facial appearance, skeletal anomalies, mammary gland hypoplasia, and reduced growth. Disease-causing mutations were demonstrated to impair proper MAF phosphorylation, ubiquitination and proteasomal degradation, perturbed gene expression in primary skin fibroblasts, and induced neurodevelopmental defects in an in vivo model. Our findings nosologically and clinically delineate a previously poorly understood recognizable multisystem disorder, provide evidence for MAF governing a wider range of developmental programs than previously appreciated, and describe a novel instance of protein dosage effect severely perturbing development. PMID:25865493

  15. Sexually dimorphic expression of Mafb regulates masculinization of the embryonic urethral formation

    PubMed Central

    Suzuki, Kentaro; Numata, Tomokazu; Suzuki, Hiroko; Raga, Dennis Diana; Ipulan, Lerrie Ann; Yokoyama, Chikako; Matsushita, Shoko; Hamada, Michito; Nakagata, Naomi; Nishinakamura, Ryuichi; Kume, Shoen; Takahashi, Satoru; Yamada, Gen

    2014-01-01

    Masculinization of external genitalia is an essential process in the formation of the male reproductive system. Prominent characteristics of this masculinization are the organ size and the sexual differentiation of the urethra. Although androgen is a pivotal inducer of the masculinization, the regulatory mechanism under the control of androgen is still unknown. Here, we address this longstanding question about how androgen induces masculinization of the embryonic external genitalia through the identification of the v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog B (Mafb) gene. Mafb is expressed prominently in the mesenchyme of male genital tubercle (GT), the anlage of external genitalia. MAFB expression is rarely detected in the mesenchyme of female GTs. However, exposure to exogenous androgen induces its mesenchymal expression in female GTs. Furthermore, MAFB expression is prominently down-regulated in male GTs of androgen receptor (Ar) KO mice, indicating that AR signaling is necessary for its expression. It is revealed that Mafb KO male GTs exhibit defective embryonic urethral formation, giving insight into the common human congenital anomaly hypospadias. However, the size of Mafb KO male GTs is similar with that of wild-type males. Moreover, androgen treatment fails to induce urethral masculinization of the GTs in Mafb KO mice. The current results provide evidence that Mafb is an androgen-inducible, sexually dimorphic regulator of embryonic urethral masculinization. PMID:25362053

  16. Appropriate therapy for type 2 diabetes mellitus in view of pancreatic β-cell glucose toxicity: "the earlier, the better".

    PubMed

    Kaneto, Hideaki; Matsuoka, Taka-Aki; Kimura, Tomohiko; Obata, Atsushi; Shimoda, Masashi; Kamei, Shinji; Mune, Tomoatsu; Kaku, Kohei

    2016-03-01

    Pancreatic β-cells secrete insulin when blood glucose levels become high; however, when β-cells are chronically exposed to hyperglycemia, β-cell function gradually deteriorates, which is known as β-cell glucose toxicity. In the diabetic state, nuclear expression of the pancreatic transcription factors pancreatic and duodenal homeobox 1 (PDX-1) and v-Maf musculoaponeurotic fibrosarcoma oncogene family, protein A (MafA) is decreased. In addition, incretin receptor expression in β-cells is decreased, which is likely involved in the impairment of incretin effects in diabetes. Clinically, it is important to select appropriate therapy for type 2 diabetes mellitus (T2DM) so that β-cell function can be preserved. In addition, when appropriate pharmacological interventions against β-cell glucose toxicity are started at the early stages of diabetes, β-cell function is substantially restored, which is not observed if treatment is started at advanced stages. These observations indicate that it is likely that downregulation of pancreatic transcription factors and/or incretin receptors is involved in β-cell dysfunction observed in T2DM and it is very important to start appropriate pharmacological intervention against β-cell glucose toxicity in the early stages of diabetes. PMID:26223490

  17. Combined Inactivation of MYC and K-Ras Oncogenes Reverses Tumorigenesis in Lung Adenocarcinomas and Lymphomas

    PubMed Central

    Koh, Shan; Komatsubara, Kim; Chen, Joy; Horng, George; Bellovin, David I.; Giuriato, Sylvie; Wang, Craig S.; Whitsett, Jeffrey A.; Felsher, Dean W.

    2008-01-01

    Background Conditional transgenic models have established that tumors require sustained oncogene activation for tumor maintenance, exhibiting the phenomenon known as “oncogene-addiction.” However, most cancers are caused by multiple genetic events making it difficult to determine which oncogenes or combination of oncogenes will be the most effective targets for their treatment. Methodology/Principal Findings To examine how the MYC and K-rasG12D oncogenes cooperate for the initiation and maintenance of tumorigenesis, we generated double conditional transgenic tumor models of lung adenocarcinoma and lymphoma. The ability of MYC and K-rasG12D to cooperate for tumorigenesis and the ability of the inactivation of these oncogenes to result in tumor regression depended upon the specific tissue context. MYC-, K-rasG12D- or MYC/K-rasG12D-induced lymphomas exhibited sustained regression upon the inactivation of either or both oncogenes. However, in marked contrast, MYC-induced lung tumors failed to regress completely upon oncogene inactivation; whereas K-rasG12D-induced lung tumors regressed completely. Importantly, the combined inactivation of both MYC and K-rasG12D resulted more frequently in complete lung tumor regression. To account for the different roles of MYC and K-rasG12D in maintenance of lung tumors, we found that the down-stream mediators of K-rasG12D signaling, Stat3 and Stat5, are dephosphorylated following conditional K-rasG12D but not MYC inactivation. In contrast, Stat3 becomes dephosphorylated in lymphoma cells upon inactivation of MYC and/or K-rasG12D. Interestingly, MYC-induced lung tumors that failed to regress upon MYC inactivation were found to have persistent Stat3 and Stat5 phosphorylation. Conclusions/Significance Taken together, our findings point to the importance of the K-Ras and associated down-stream Stat effector pathways in the initiation and maintenance of lymphomas and lung tumors. We suggest that combined targeting of oncogenic

  18. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1.

    PubMed

    Barbie, David A; Tamayo, Pablo; Boehm, Jesse S; Kim, So Young; Moody, Susan E; Dunn, Ian F; Schinzel, Anna C; Sandy, Peter; Meylan, Etienne; Scholl, Claudia; Fröhling, Stefan; Chan, Edmond M; Sos, Martin L; Michel, Kathrin; Mermel, Craig; Silver, Serena J; Weir, Barbara A; Reiling, Jan H; Sheng, Qing; Gupta, Piyush B; Wadlow, Raymond C; Le, Hanh; Hoersch, Sebastian; Wittner, Ben S; Ramaswamy, Sridhar; Livingston, David M; Sabatini, David M; Meyerson, Matthew; Thomas, Roman K; Lander, Eric S; Mesirov, Jill P; Root, David E; Gilliland, D Gary; Jacks, Tyler; Hahn, William C

    2009-11-01

    The proto-oncogene KRAS is mutated in a wide array of human cancers, most of which are aggressive and respond poorly to standard therapies. Although the identification of specific oncogenes has led to the development of clinically effective, molecularly targeted therapies in some cases, KRAS has remained refractory to this approach. A complementary strategy for targeting KRAS is to identify gene products that, when inhibited, result in cell death only in the presence of an oncogenic allele. Here we have used systematic RNA interference to detect synthetic lethal partners of oncogenic KRAS and found that the non-canonical IkappaB kinase TBK1 was selectively essential in cells that contain mutant KRAS. Suppression of TBK1 induced apoptosis specifically in human cancer cell lines that depend on oncogenic KRAS expression. In these cells, TBK1 activated NF-kappaB anti-apoptotic signals involving c-Rel and BCL-XL (also known as BCL2L1) that were essential for survival, providing mechanistic insights into this synthetic lethal interaction. These observations indicate that TBK1 and NF-kappaB signalling are essential in KRAS mutant tumours, and establish a general approach for the rational identification of co-dependent pathways in cancer. PMID:19847166

  19. Cancer induction by restriction of oncogene expression to the stem cell compartment

    PubMed Central

    Pérez-Caro, María; Cobaleda, César; González-Herrero, Inés; Vicente-Dueñas, Carolina; Bermejo-Rodríguez, Camino; Sánchez-Beato, Margarita; Orfao, Alberto; Pintado, Belén; Flores, Teresa; Sánchez-Martín, Manuel; Jiménez, Rafael; Piris, Miguel A; Sánchez-García, Isidro

    2009-01-01

    In human cancers, all cancerous cells carry the oncogenic genetic lesions. However, to elucidate whether cancer is a stem cell-driven tissue, we have developed a strategy to limit oncogene expression to the stem cell compartment in a transgenic mouse setting. Here, we focus on the effects of the BCR-ABLp210 oncogene, associated with chronic myeloid leukaemia (CML) in humans. We show that CML phenotype and biology can be established in mice by restricting BCR-ABLp210 expression to stem cell antigen 1 (Sca1)+ cells. The course of the disease in Sca1-BCR-ABLp210 mice was not modified on STI571 treatment. However, BCR-ABLp210-induced CML is reversible through the unique elimination of the cancer stem cells (CSCs). Overall, our data show that oncogene expression in Sca1+ cells is all that is required to fully reprogramme it, giving rise to a full-blown, oncogene-specified tumour with all its mature cellular diversity, and that elimination of the CSCs is enough to eradicate the whole tumour. PMID:19037256

  20. The HPV-16 E7 oncogene sensitizes malignant cells to IFN-alpha-induced apoptosis

    SciTech Connect

    Wang, Yisong

    2005-10-01

    Interferons (IFNs) exert antitumor effects in several human malignancies, but their mechanism of action is unclear. There is a great variability in sensitivity to IFN treatment depending on both tumor type and the individual patient. The reason for this variable sensitivity is not known. The fact that several IFN-induced anticellular effects are exerted through modulation of proto-oncogenes and tumor suppressor genes may indicate that the malignant genotype may be decisive in the cell's sensitivity to IFN. To determine if a deregulated oncogene could alter the cellular response to IFN, a mouse lymphoma cell line (J3D) was stably transfected with the viral human papillomavirus-16 (HPV-16) E7 oncogene. The E7-transfected cells and their respective mock-transfected sister clones were treated with IFN-{alpha} and examined for possible IFN-induced anticellular effects. We found that the E7-transfected clones were greatly sensitized to IFN-{alpha}-induced apoptosis compared with their mock-transfected counterparts. Induction of apoptosis in the transfected cells correlated with the ability of IFN to activate parts of the proapoptotic machinery specifically in these cells, including activation of caspases and the proapoptotic protein Bak. In summary, our data suggest that transfection of malignant cells with the E7 oncogene can sensitize them to IFN-{alpha}-induced apoptosis. This demonstrates that an oncogenic event may alter the cellular sensitivity to IFN and might also have implications for treatment of HPV related diseases with IFN.

  1. Cancer-specific mutations in PIK3CA are oncogenic in vivo

    PubMed Central

    Bader, Andreas G.; Kang, Sohye; Vogt, Peter K.

    2006-01-01

    The PIK3CA gene, coding for the catalytic subunit p110α of class IA phosphatidylinositol 3-kinases (PI3Ks), is frequently mutated in human cancer. Mutated p110α proteins show a gain of enzymatic function in vitro and are oncogenic in cell culture. Here, we show that three prevalent mutants of p110α, E542K, E545K, and H1047R, are oncogenic in vivo. They induce tumors in the chorioallantoic membrane of the chicken embryo and cause hemangiosarcomas in the animal. These tumors are marked by increased angiogenesis and an activation of the Akt pathway. The target of rapamycin inhibitor RAD001 blocks tumor growth induced by the H1047R p110α mutant. The in vivo oncogenicity of PIK3CA mutants in an avian species strongly suggests a critical role for these mutated proteins in human malignancies. PMID:16432179

  2. Role of papillomavirus oncogenes in human cervical cancer: Transgenic animal studies

    SciTech Connect

    Griep, A.E.; Lambert, P.F.

    1994-05-01

    Human papillomaviruses are believed to be etiologic agents for the majority of human cervical carcinoma, a common cancer that is a leading cause of death by cancer among women worldwide. In cervical carcinoma, a subset of papillomaviral genes, namely E6 and E7, are expressed. In vitro tissue culture studies indicate that HPV E6 and E7 are oncogenes, and that their oncogenicity is due in part to their capacity to inactivate cellular tumor suppressor genes. The behavior of E6 and E7 in vitro and the genetic evidence from analysis of human cancers suggest that the E6 and E7 genes play a significant role in the development of cervical cancer. This hypothesis is now being tested using animal models. In this review, we summarize our current knowledge of the oncogenicity of papillomavirus genes that has been generated through their study in transgenic mice. 82 refs., 4 figs., 1 tab.

  3. [Study of Her-2/neu oncogene in relation to prognosis of human breast cancer].

    PubMed

    Chen, R S

    1993-10-01

    A follow-up study of 143 cases of human breast cancer for over 5 years proved that Her-2/neu oncogene overexpression is much more common in the high risk group (patients died within 5 years) in comparison with the low risk group (patients survived over 5 years). The difference between these 2 groups was statistically significant. The Her-2/neu oncogene positive rate in infiltrative ductal carcinoma was 33.3%, the lower the differentiation, the higher the positive rate. Histological typing is also related to the positive rate, comedocarcinoma (intraductal carcinoma) expresses the highest positive rate while lobular carcinoma the lowest. Selection of fixation fluid and the mastering of diagnostic criteria are also important. In the author's opinion, only membrane staining in monoclonal antibody C-erbB-2 can be recognized as truly positive. In conclusion, Her-2/neu oncogene expression can be used as a supplemental marker when considering prognosis in breast cancer. PMID:7909501

  4. Bilateral insufficiency fracture of the femoral head and neck in a case of oncogenic osteomalacia.

    PubMed

    Chouhan, V; Agrawal, K; Vinothkumar, T K; Mathesul, A

    2010-07-01

    We describe a case of oncogenic osteomalacia in an adult male who presented with low back pain and bilateral hip pain. Extensive investigations had failed to find a cause. A plain pelvic radiograph showed Looser's zones in both femoral necks. MRI confirmed the presence of insufficiency fractures bilaterally in the femoral head and neck. Biochemical investigations confirmed osteomalacia which was unresponsive to treatment with vitamin D and calcium. A persistently low serum phosphate level suggested a diagnosis of hypophosphataemic osteomalacia. The level of fibroblast growth factor-23 was highly raised, indicating the cause as oncogenic osteomalacia. This was confirmed on positron-emission tomography, MRI and excision of a benign fibrous histiocytoma following a rapid recovery. The diagnosis of oncogenic osteomalacia may be delayed due to the non-specific presenting symptoms. Subchondral insufficiency fractures of the femoral head may be missed unless specifically looked for. PMID:20595128

  5. Role of "oncogenic nexus" of CIP2A in breast oncogenesis: how does it work?

    PubMed

    De, Pradip; Carlson, Jennifer H; Leyland-Jones, Brian; Dey, Nandini

    2015-01-01

    The CIP2A gene is an oncogene associated with solid and hematologic malignancies [1]. CIP2A protein is an oncoprotein and a potential cancer therapy target [2]. Literature shows that CIP2A inhibits the tumor suppressor protein PP2A [3] which downregulates phophorylation of AKT, a hallmark of cancers [4] and stabilizes the proto-oncogene, c-MYC in tumor cells [5], the comprehensive action of CIP2A and its functional interaction(s) with other oncoproteins and tumor suppressors is not clearly established. Recently we tried to put forward a contextual mode-of-action of CIP2A protein in a review which proposed that CIP2A influences oncogenesis via an "oncogenic nexus" [1]. In this review we critically evaluated the potential relevance of the mode-of-action of the "oncogenic nexus" of CIP2A in breast carcinogenesis and appraised the role of this nexus in different PAM50 luminal A, PAM50 luminal B, PAM50 HER2-enriched and PAM50 basal BC. This review has a novel approach. Here we have not only compiled and discussed the latest developments in this field but also presented data obtained from c-BioPortal and STRING10 in order to substantiate our view regarding the mode-of-action of the "oncogenic nexus" of CIP2A. We functionally correlated alterations of genes pertaining to the "oncogenic nexus" of CIP2A with protein-protein interactions between the different components of the nexus including (1) subunits of PP2A, (2) multiple transcription factors including MYC oncogene and (3) components of the PI3K-mTOR and the MAPK-ERK oncogenic pathways. Using these proteins as "input" to STRING10 we studied the association, Action view, at the highest Confidence level. OncoPrints (c-BioPortal) showed alterations (%) of regulatory subunits genes of PP2A (PPP2R1A and PPP2R1B) along with alterations of CIP2A in breast invasive carcinoma (TCGA, Nature 2012 & TCGA, Provisional). Similar genetic alterations of PP2A were also observed in samples of breast tumors at our Avera Research

  6. Pancreatitis-induced Inflammation Contributes to Pancreatic Cancer by Inhibiting Oncogene-Induced Senescence

    PubMed Central

    Guerra, Carmen; Collado, Manuel; Navas, Carolina; Schuhmacher, Alberto J; Hernández-Porras, Isabel; Cañamero, Marta; Rodriguez-Justo, Manuel; Serrano, Manuel; Barbacid, Mariano

    2016-01-01

    Pancreatic acinar cells of adult mice (≥P60) are resistant to transformation by some of the most robust oncogenic insults including expression of K-Ras oncogenes and loss of p16Ink4a/p19Arf or Trp53 tumor suppressors. Yet, these acinar cells yield pancreatic intraepithelial neoplasias (mPanIN) and ductal adenocarcinomas (mPDAC) if exposed to limited bouts of non-acute pancreatitis, providing they harbor K-Ras oncogenes. Pancreatitis contributes to tumor progression by abrogating the senescence barrier characteristic of low-grade mPanINs. Attenuation of pancreatitis-induced inflammation also accelerates tissue repair and thwarts mPanIN expansion. Patients with chronic pancreatitis display senescent PanINs, if they have received anti-inflammatory drugs. These results put forward the concept that anti-inflammatory treatment of people diagnosed with pancreatitis may reduce their risk of developing PDAC. PMID:21665147

  7. Human lung epithelial cells progressed to malignancy through specific oncogenic manipulations

    PubMed Central

    Sato, Mitsuo; Larsen, Jill E.; Lee, Woochang; Sun, Han; Shames, David S.; Dalvi, Maithili P.; Ramirez, Ruben D.; Tang, Hao; DiMaio, J. Michael; Gao, Boning; Xie, Yang; Wistuba, Ignacio I.; Gazdar, Adi F.; Shay, Jerry W.; Minna, John D.

    2013-01-01

    We used CDK4/hTERT-immortalized normal human bronchial epithelial cells (HBECs) from several individuals to study lung cancer pathogenesis by introducing combinations of common lung cancer oncogenic changes (p53, KRAS, MYC) and followed the stepwise transformation of HBECs to full malignancy. This model demonstrated that: 1) the combination of five genetic alterations (CDK4, hTERT, sh-p53, KRASV12, and c-MYC) is sufficient for full tumorigenic conversion of HBECs; 2) genetically-identical clones of transformed HBECs exhibit pronounced differences in tumor growth, histology, and differentiation; 3) HBECs from different individuals vary in their sensitivity to transformation by these oncogenic manipulations; 4) high levels of KRASV12 are required for full malignant transformation of HBECs, however prior loss of p53 function is required to prevent oncogene-induced senescence; 5) over-expression of c-MYC greatly enhances malignancy but only in the context of sh-p53+KRASV12; 6) growth of parental HBECs in serum-containing medium induces differentiation while growth of oncogenically manipulated HBECs in serum increases in vivo tumorigenicity, decreases tumor latency, produces more undifferentiated tumors, and induces epithelial-to-mesenchymal transition (EMT); 7) oncogenic transformation of HBECs leads to increased sensitivity to standard chemotherapy doublets; 8) an mRNA signature derived by comparing tumorigenic vs. non-tumorigenic clones was predictive of outcome in lung cancer patients. Collectively, our findings demonstrate this HBEC model system can be used to study the effect of oncogenic mutations, their expression levels, and serum-derived environmental effects in malignant transformation, while also providing clinically translatable applications such as development of prognostic signatures and drug response phenotypes. PMID:23449933

  8. Molecular cloning of an activated human oncogene, homologous to v-raf, from primary stomach cancer.

    PubMed Central

    Shimizu, K; Nakatsu, Y; Sekiguchi, M; Hokamura, K; Tanaka, K; Terada, M; Sugimura, T

    1985-01-01

    Transfection with high molecular weight DNA from a primary stomach cancer induced foci of transformed NIH 3T3 cells, and the transformed cells were tumorigenic in nude mice. By screening with a human Alu-family probe, we isolated the human DNA sequence from the secondary transformant cells. This transforming sequence encompasses about 60 kilobase pairs and is unrelated to known human transforming genes. Examination of homologies between this sequence and retroviral oncogenes revealed that the human transforming sequence is closely related to the v-raf oncogene of murine transforming retrovirus 3611-MSV. Images PMID:3862088

  9. Implication of oncogenic signaling pathways as a treatment strategy for neurodegenerative disorders - contemporary approaches.

    PubMed

    Sieradzki, Adrian; Yendluri, Bharat B; Palacios, Hector H; Parvathaneni, Kalpana; Reddy, V Prakash; Obrenovich, Mark E; Gąsiorowski, Kazimierz; Leszek, Jerzy; Aliev, Gjumrakch

    2011-03-01

    Recent evidence has associated the aberrant, proximal re-expression of various cell cycle control elements with neuronal cell vulnerability in Alzheimer's and Parkinson's diseases, as a common chronic neurodegeneration. This phenomenon associated with oncogenic transduction pathway activation has attracted the interest of scientists all over the world for a few years now. The purpose of this paper is to outline areas of research related to oncogenic factors or medicines in the context of potential applications for future treatment of the above mentioned chronic and, largely, incurable diseases. PMID:21222633

  10. Comparative Evaluation of Vaccine Efficacy of Recombinant Marek's Disease Virus Vaccine Lacking Meq Oncogene in Commercial Chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marek's disease virus oncogene meq has been identified as the gene involved in tumorigenesis in chickens. We have recently developed a Meq-null virus, rMd5delMeq, in which the oncogene Meq was deleted. Vaccine efficacy experiments conducted in ADOL 15I5 x 71 chickens vaccinated with rMd5delMeq virus...

  11. Recombinant Marek's disease virus (MDV) lacking Meq oncogene confers protection against challenge with a very virulent plus strain of MDV

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marek’s disease virus (MDV) encodes a basic leucine-zipper protein, Meq that shares homology with Jun/Fos family of transcriptional factors. Evidence that Meq is an oncogene of MDV came from the recent studies of a Meq-null virus, rMd5'Meq. This virus replicated well in vitro, but was non-oncogenic ...

  12. CYCLOPENTA-FUSED POLYCYCLIC AROMATIC HYDROCARBONS IN STRAIN A/J MOUSE LUNG: DNA ADDUCTS, ONCOGENE MUTATIONS, & TUMORIGENESIS

    EPA Science Inventory

    Cyclopenta-fused Polycyclic Aromatic Hydrocarbons in Strain AJJ Mouse Lung: DNA Adducts, Oncogene Mutations, and Tumorigenesis.

    We have examined the relationships between DNA adducts, Ki-ras oncogene mutations, DNA adducts, and adenoma induction in the lungs of strain A/J...

  13. Use of Molecular Imaging Markers of Glycolysis, Hypoxia and Proliferation (18F-FDG, 64Cu-ATSM and 18F-FLT) in a Dog with Fibrosarcoma: The Importance of Individualized Treatment Planning and Monitoring

    PubMed Central

    Zornhagen, Kamilla Westarp; Clausen, Malene M.; Hansen, Anders E.; Law, Ian; McEvoy, Fintan J.; Engelholm, Svend A.; Kjær, Andreas; Kristensen, Annemarie T.

    2015-01-01

    Glycolysis, hypoxia, and proliferation are important factors in the tumor microenvironment contributing to treatment-resistant aggressiveness. Imaging these factors using combined functional positron emission tomography and computed tomography can potentially guide diagnosis and management of cancer patients. A dog with fibrosarcoma was imaged using 18F-FDG, 64Cu-ATSM, and 18F-FLT before, during, and after 10 fractions of 4.5 Gy radiotherapy. Uptake of all tracers decreased during treatment. Fluctuations in 18F-FDG and 18F-FLT PET uptakes and a heterogeneous spatial distribution of the three tracers were seen. Tracer distributions partially overlapped. It appears that each tracer provides distinct information about tumor heterogeneity and treatment response. PMID:26854160

  14. Use of Molecular Imaging Markers of Glycolysis, Hypoxia and Proliferation ((18)F-FDG, (64)Cu-ATSM and (18)F-FLT) in a Dog with Fibrosarcoma: The Importance of Individualized Treatment Planning and Monitoring.

    PubMed

    Zornhagen, Kamilla Westarp; Clausen, Malene M; Hansen, Anders E; Law, Ian; McEvoy, Fintan J; Engelholm, Svend A; Kjær, Andreas; Kristensen, Annemarie T

    2015-01-01

    Glycolysis, hypoxia, and proliferation are important factors in the tumor microenvironment contributing to treatment-resistant aggressiveness. Imaging these factors using combined functional positron emission tomography and computed tomography can potentially guide diagnosis and management of cancer patients. A dog with fibrosarcoma was imaged using (18)F-FDG, (64)Cu-ATSM, and (18)F-FLT before, during, and after 10 fractions of 4.5 Gy radiotherapy. Uptake of all tracers decreased during treatment. Fluctuations in (18)F-FDG and (18)F-FLT PET uptakes and a heterogeneous spatial distribution of the three tracers were seen. Tracer distributions partially overlapped. It appears that each tracer provides distinct information about tumor heterogeneity and treatment response. PMID:26854160

  15. Liquid Biopsy for Detection of Actionable Oncogenic Mutations in Human Cancers and Electric Field Induced Release and Measurement Liquid Biopsy (eLB)

    PubMed Central

    Tu, Michael; Chia, David; Wei, Fang; Wong, David

    2015-01-01

    Oncogenic activations by mutations in key cancer genes such as EGFR and KRAS are frequently associated with human cancers. Molecular targeting of specific oncogenic mutations in human cancer is a major therapeutic inroad for anti-cancer drug therapy. In addition, progressive developments of oncogene mutations lead to drug resistance. Therefore, the ability to detect and continuously monitor key actionable oncogenic mutations is important to guide the use of targeted molecular therapies to improve long-term clinical outcomes in cancer patients. Current oncogenic mutation detection is based on direct sampling of cancer tissue by surgical resection or biopsy. Oncogenic mutations were recently shown to be detectable in circulating bodily fluids of cancer patients. This field of investigation, termed liquid biopsy, permits a less invasive means of assessing the oncogenic mutation profile of a patient. This paper will review the analytical strategies used to assess oncogenic mutations from biofluid samples. Clinical applications will also be discussed. PMID:26645892

  16. DNA-hypomethylating agent, 5'-azacytidine, induces cyclooxygenase-2 expression via the PI3-kinase/Akt and extracellular signal-regulated kinase-1/2 pathways in human HT1080 fibrosarcoma cells.

    PubMed

    Yu, Seon-Mi; Kim, Song-Ja

    2015-10-01

    The cytosine analogue 5'-azacytidine (5'-aza) induces DNA hypomethylation by inhibiting DNA methyltransferase. In clinical trials, 5'-aza is widely used in epigenetic anticancer treatments. Accumulated evidence shows that cyclooxygenase-2 (COX-2) is overexpressed in various cancers, indicating that it may play a critical role in carcinogenesis. However, few studies have been performed to explore the molecular mechanism underlying the increased COX-2 expression. Therefore, we tested the hypothesis that 5'-aza regulates COX-2 expression and prostaglandin E2 (PGE2) production. The human fibrosarcoma cell line HT1080, was treated with various concentrations of 5'-aza for different time periods. Protein expressions of COX-2, DNA (cytosine-5)-methyltransferase 1 (DNMT1), pAkt, Akt, extracellular signal-regulated kinase (ERK), and phosphorylated ERK (pERK) were determined using western blot analysis, and COX-2 mRNA expression was determined using RT-PCR. PGE2 production was evaluated using the PGE2 assay kit. The localization and expression of COX-2 were determined using immunofluorescence staining. Treatment with 5'-aza induces protein and mRNA expression of COX-2. We also observed that 5'-aza-induced COX-2 expression and PGE2 production were inhibited by S-adenosylmethionine (SAM), a methyl donor. Treatment with 5'-aza phosphorylates PI3-kinase/Akt and ERK-1/2; inhibition of these pathways by LY294002, an inhibitor of PI3-kinase/Akt, or PD98059, an inhibitor of ERK-1/2, respectively, prevents 5'-aza-induced COX-2 expression and PGE2 production. Overall, these observations indicate that the hypomethylating agent 5'-aza modulates COX-2 expression via the PI3-kinase/Akt and ERK-1/2 pathways in human HT1080 fibrosarcoma cells. PMID:26238650

  17. Oncogenic RAS-induced senescence in human primary thyrocytes: molecular effectors and inflammatory secretome involved

    PubMed Central

    Vizioli, Maria Grazia; Santos, Joana; Pilotti, Silvana; Mazzoni, Mara; Anania, Maria Chiara; Miranda, Claudia; Pagliardini, Sonia; Pierotti, Marco A.

    2014-01-01

    Oncogene-induced senescence (OIS) is a robust and sustained antiproliferative response to oncogenic stress and constitutes an efficient barrier to tumour progression. We have recently proposed that OIS may be involved in the pathogenesis of thyroid carcinoma by restraining tumour progression as well as the transition of well differentiated to more aggressive variants. Here, an OIS inducible model was established and used for dissecting the molecular mechanisms and players regulating senescence in human primary thyrocytes. We show that oncogenic RAS induces senescence in thyrocytes as judged by changes in cell morphology, activation of p16INK4a and p53/p21CIP1 tumour suppressor pathways, senescence-associated β-galactosidase (SA-β-Gal) activity, and induction of proinflammatory components including IL-8 and its receptor CXCR2. Using RNA interference (RNAi) we demonstrate that p16INK4a is necessary for the onset of senescence in primary thyrocytes as its depletion rescues RAS-induced senescence. Furthermore, we found that IL-8/CXCR2 network reinforces the growth arrest triggered by oncogenic RAS, as its abrogation is enough to resume proliferation. Importantly, we observed that CXCR2 expression coexists with OIS markers in thyroid tumour samples, suggesting that CXCR2 contributes to senescence, thus limiting thyroid tumour progression. PMID:25268744

  18. Lymphomas that recur after MYC suppression continue to exhibit oncogene addiction

    PubMed Central

    Choi, Peter S.; van Riggelen, Jan; Gentles, Andrew J.; Bachireddy, Pavan; Rakhra, Kavya; Adam, Stacey J.; Plevritis, Sylvia K.; Felsher, Dean W.

    2011-01-01

    The suppression of oncogenic levels of MYC is sufficient to induce sustained tumor regression associated with proliferative arrest, differentiation, cellular senescence, and/or apoptosis, a phenomenon known as oncogene addiction. However, after prolonged inactivation of MYC in a conditional transgenic mouse model of Eμ-tTA/tetO-MYC T-cell acute lymphoblastic leukemia, some of the tumors recur, recapitulating what is frequently observed in human tumors in response to targeted therapies. Here we report that these recurring lymphomas express either transgenic or endogenous Myc, albeit in many cases at levels below those in the original tumor, suggesting that tumors continue to be addicted to MYC. Many of the recurring lymphomas (76%) harbored mutations in the tetracycline transactivator, resulting in expression of the MYC transgene even in the presence of doxycycline. Some of the remaining recurring tumors expressed high levels of endogenous Myc, which was associated with a genomic rearrangement of the endogenous Myc locus or activation of Notch1. By gene expression profiling, we confirmed that the primary and recurring tumors have highly similar transcriptomes. Importantly, shRNA-mediated suppression of the high levels of MYC in recurring tumors elicited both suppression of proliferation and increased apoptosis, confirming that these tumors remain oncogene addicted. These results suggest that tumors induced by MYC remain addicted to overexpression of this oncogene. PMID:21969595

  19. Survival or death: disequilibrating the oncogenic and tumor suppressive autophagy in cancer

    PubMed Central

    Liu, B; Wen, X; Cheng, Y

    2013-01-01

    Autophagy (macroautophagy) is an evolutionarily conserved lysosomal degradation process, in which a cell degrades long-lived proteins and damaged organelles. Recently, accumulating evidence has revealed the core molecular machinery of autophagy in carcinogenesis; however, the intricate relationship between autophagy and cancer continue to remain an enigma. Why does autophagy have either pro-survival (oncogenic) or pro-death (tumor suppressive) role at different cancer stages, including cancer stem cell, initiation and progression, invasion and metastasis, as well as dormancy? How does autophagy modulate a series of oncogenic and/or tumor suppressive pathways, implicated in microRNA (miRNA) involvement? Whether would targeting the oncogenic and tumor suppressive autophagic network be a novel strategy for drug discovery? To address these problems, we focus on summarizing the dynamic oncogenic and tumor suppressive roles of autophagy and their relevant small-molecule drugs, which would provide a new clue to elucidate the oncosuppressive (survival or death) autophagic network as a potential therapeutic target. PMID:24176850

  20. Somatic Copy Number Alterations at Oncogenic Loci Show Diverse Correlations with Gene Expression

    PubMed Central

    Roszik, Jason; Wu, Chang-Jiun; Siroy, Alan E.; Lazar, Alexander J.; Davies, Michael A; Woodman, Scott E; Kwong, Lawrence N

    2016-01-01

    Somatic copy number alterations (SCNAs) affecting oncogenic drivers have a firmly established role in promoting cancer. However, no agreed-upon standard exists for calling locus-specific amplifications and deletions in each patient sample. Here, we report the correlative analysis of copy number amplitude and length with gene expression across 6,109 samples from The Cancer Genome Atlas (TCGA) dataset across 16 cancer types. Using specificity, sensitivity, and precision-based scores, we assigned optimized amplitude and length cutoffs for nine recurrent SCNAs affecting known oncogenic drivers, using mRNA expression as a functional readout. These cutoffs captured the majority of SCNA-driven, highly-expression-altered samples. The majority of oncogenes required only amplitude cutoffs, as high amplitude samples were almost invariably focal; however, CDKN2A and PTEN uniquely required both amplitude and length cutoffs as primary predictors. For PTEN, these extended to downstream AKT activation. In contrast, SCNA genes located peri-telomerically or in fragile sites showed poor expression-copy number correlations. Overall, our analyses identify optimized amplitude and length cutoffs as efficient predictors of gene expression changes for specific oncogenic SCNAs, yet warn against one-size-fits-all interpretations across all loci. Our results have implications for cancer data analyses and the clinic, where copy number and mutation data are increasingly used to personalize cancer therapy. PMID:26787600

  1. Oncogene-induced reactive oxygen species fuel hyperproliferation and DNA damage response activation

    PubMed Central

    Ogrunc, M; Di Micco, R; Liontos, M; Bombardelli, L; Mione, M; Fumagalli, M; Gorgoulis, V G; d'Adda di Fagagna, F

    2014-01-01

    Oncogene-induced reactive oxygen species (ROS) have been proposed to be signaling molecules that mediate proliferative cues. However, ROS may also cause DNA damage and proliferative arrest. How these apparently opposite roles can be reconciled, especially in the context of oncogene-induced cellular senescence, which is associated both with aberrant mitogenic signaling and DNA damage response (DDR)-mediated arrest, is unclear. Here, we show that ROS are indeed mitogenic signaling molecules that fuel oncogene-driven aberrant cell proliferation. However, by their very same ability to mediate cell hyperproliferation, ROS eventually cause DDR activation. We also show that oncogenic Ras-induced ROS are produced in a Rac1 and NADPH oxidase (Nox4)-dependent manner. In addition, we show that Ras-induced ROS can be detected and modulated in a living transparent animal: the zebrafish. Finally, in cancer we show that Nox4 is increased in both human tumors and a mouse model of pancreatic cancer and specific Nox4 small-molecule inhibitors act synergistically with existing chemotherapic agents. PMID:24583638

  2. Identification of kinase fusion oncogenes in post-Chernobyl radiation-induced thyroid cancers

    PubMed Central

    Ricarte-Filho, Julio C.; Li, Sheng; Garcia-Rendueles, Maria E.R.; Montero-Conde, Cristina; Voza, Francesca; Knauf, Jeffrey A.; Heguy, Adriana; Viale, Agnes; Bogdanova, Tetyana; Thomas, Geraldine A.; Mason, Christopher E.; Fagin, James A.

    2013-01-01

    Exposure to ionizing radiation during childhood markedly increases the risk of developing papillary thyroid cancer. We examined tissues from 26 Ukrainian patients with thyroid cancer who were younger than 10 years of age and living in contaminated areas during the time of the Chernobyl nuclear reactor accident. We identified nonoverlapping somatic driver mutations in all 26 cases through candidate gene assays and next-generation RNA sequencing. We found that 22 tumors harbored fusion oncogenes that arose primarily through intrachromosomal rearrangements. Altogether, 23 of the oncogenic drivers identified in this cohort aberrantly activate MAPK signaling, including the 2 somatic rearrangements resulting in fusion of transcription factor ETS variant 6 (ETV6) with neurotrophic tyrosine kinase receptor, type 3 (NTRK3) and fusion of acylglycerol kinase (AGK) with BRAF. Two other tumors harbored distinct fusions leading to overexpression of the nuclear receptor PPARγ. Fusion oncogenes were less prevalent in tumors from a cohort of children with pediatric thyroid cancers that had not been exposed to radiation but were from the same geographical regions. Radiation-induced thyroid cancers provide a paradigm of tumorigenesis driven by fusion oncogenes that activate MAPK signaling or, less frequently, a PPARγ-driven transcriptional program. PMID:24135138

  3. Derepression of hTERT gene expression promotes escape from oncogene-induced cellular senescence

    PubMed Central

    Patel, Priyanka L.; Suram, Anitha; Mirani, Neena; Bischof, Oliver; Herbig, Utz

    2016-01-01

    Oncogene-induced senescence (OIS) is a critical tumor-suppressing mechanism that restrains cancer progression at premalignant stages, in part by causing telomere dysfunction. Currently it is unknown whether this proliferative arrest presents a stable and therefore irreversible barrier to cancer progression. Here we demonstrate that cells frequently escape OIS induced by oncogenic H-Ras and B-Raf, after a prolonged period in the senescence arrested state. Cells that had escaped senescence displayed high oncogene expression levels, retained functional DNA damage responses, and acquired chromatin changes that promoted c-Myc–dependent expression of the human telomerase reverse transcriptase gene (hTERT). Telomerase was able to resolve existing telomeric DNA damage response foci and suppressed formation of new ones that were generated as a consequence of DNA replication stress and oncogenic signals. Inhibition of MAP kinase signaling, suppressing c-Myc expression, or inhibiting telomerase activity, caused telomere dysfunction and proliferative defects in cells that had escaped senescence, whereas ectopic expression of hTERT facilitated OIS escape. In human early neoplastic skin and breast tissue, hTERT expression was detected in cells that displayed features of senescence, suggesting that reactivation of telomerase expression in senescent cells is an early event during cancer progression in humans. Together, our data demonstrate that cells arrested in OIS retain the potential to escape senescence by mechanisms that involve derepression of hTERT expression. PMID:27503890

  4. Somatic Copy Number Alterations at Oncogenic Loci Show Diverse Correlations with Gene Expression

    NASA Astrophysics Data System (ADS)

    Roszik, Jason; Wu, Chang-Jiun; Siroy, Alan E.; Lazar, Alexander J.; Davies, Michael A.; Woodman, Scott E.; Kwong, Lawrence N.

    2016-01-01

    Somatic copy number alterations (SCNAs) affecting oncogenic drivers have a firmly established role in promoting cancer. However, no agreed-upon standard exists for calling locus-specific amplifications and deletions in each patient sample. Here, we report the correlative analysis of copy number amplitude and length with gene expression across 6,109 samples from The Cancer Genome Atlas (TCGA) dataset across 16 cancer types. Using specificity, sensitivity, and precision-based scores, we assigned optimized amplitude and length cutoffs for nine recurrent SCNAs affecting known oncogenic drivers, using mRNA expression as a functional readout. These cutoffs captured the majority of SCNA-driven, highly-expression-altered samples. The majority of oncogenes required only amplitude cutoffs, as high amplitude samples were almost invariably focal; however, CDKN2A and PTEN uniquely required both amplitude and length cutoffs as primary predictors. For PTEN, these extended to downstream AKT activation. In contrast, SCNA genes located peri-telomerically or in fragile sites showed poor expression-copy number correlations. Overall, our analyses identify optimized amplitude and length cutoffs as efficient predictors of gene expression changes for specific oncogenic SCNAs, yet warn against one-size-fits-all interpretations across all loci. Our results have implications for cancer data analyses and the clinic, where copy number and mutation data are increasingly used to personalize cancer therapy.

  5. CONSISTENT ONCOGENE METHYLATION CHANGES IN EPITHELIAL CELLS CHEMICALLY TRANSFORMED IN VITRO

    EPA Science Inventory

    Many cancers occurring in humans and In animals are accompanied by alterations in oncogene DNA secluences, amplification, or changes in expression (1,2). In some cases the changes are quite specific and prevalent such as in Burkitts's lymphoma, pancreatic, and thyroid carcinoma (...

  6. A Double-Edged Sword: How Oncogenes and Tumor Suppressor Genes Can Contribute to Chromosomal Instability

    PubMed Central

    Orr, Bernardo; Compton, Duane A.

    2013-01-01

    Most solid tumors are characterized by abnormal chromosome numbers (aneuploidy) and karyotypic profiling has shown that the majority of these tumors are heterogeneous and chromosomally unstable. Chromosomal instability (CIN) is defined as persistent mis-segregation of whole chromosomes and is caused by defects during mitosis. Large-scale genome sequencing has failed to reveal frequent mutations of genes encoding proteins involved in mitosis. On the contrary, sequencing has revealed that most mutated genes in cancer fall into a limited number of core oncogenic signaling pathways that regulate the cell cycle, cell growth, and apoptosis. This led to the notion that the induction of oncogenic signaling is a separate event from the loss of mitotic fidelity, but a growing body of evidence suggests that oncogenic signaling can deregulate cell cycle progression, growth, and differentiation as well as cause CIN. These new results indicate that the induction of CIN can no longer be considered separately from the cancer-associated driver mutations. Here we review the primary causes of CIN in mitosis and discuss how the oncogenic activation of key signal transduction pathways contributes to the induction of CIN. PMID:23825799

  7. Oncogenic transformation by vrel requires an amino-terminal activation domain

    SciTech Connect

    Kamens, J.; Brent, R. . Dept. of Molecular Biology); Richardson, P.; Gilmore, T. . Dept. of Biology); Mosialos, G. . Dept. of Chemistry)

    1990-06-01

    The mechanism by which the products of the v-{ital rel} oncogene, the corresponding c-{ital rel} proto-oncogene, and the related {ital dorsal} gene of {ital Drosophila melanogaster} exert their effects is not clear. The authors show that the v-{ital rel}, chicken c-{ital rel}, and {ital dorsal} proteins activated gene expression when fused to LexA sequences and bound to DNA upstream of target genes in {ital Saccharomyces cerevisiae}. They have defined two distinct activation regions in the c-{ital rel} protein. Region I, located in the amino-terminal half of {ital rel} and {ital dorsal} proteins, contains no stretches of glutamines, prolines, or acidic amino acids and therefore may be a novel activation domain. Lesions in the v-{ital rel} protein that diminished or abolished oncogenic transformation of avian spleen cells correspondingly affected transcription activation by region I. Region II, located in the carboxy terminus of the c-{ital rel} protein, is highly acidic. Region II is not present in the v-{ital rel} protein or in a transforming mutant derivative of the c-{ital rel} protein. The authors' results show that the oncogenicity of Rel proteins requires activation region I and suggest that the biological function of {ital rel} and {ital dorsal} proteins depends on transcription activation by this region.

  8. Power of PTEN/AKT: Molecular switch between tumor suppressors and oncogenes

    PubMed Central

    XIE, YINGQIU; NAIZABEKOV, SANZHAR; CHEN, ZHANLIN; TOKAY, TURSONJAN

    2016-01-01

    An increasing amount of evidence has shown that tumor suppressors can become oncogenes, or vice versa, but the mechanism behind this is unclear. Recent findings have suggested that phosphatase and tensin homolog (PTEN) is one of the powerful switches for the conversion between tumor suppressors and oncogenes. PTEN regulates a number of cellular processes, including cell death and proliferation, through the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway. Furthermore, a number of studies have suggested that PTEN deletions may alter various functions of certain tumor suppressor and oncogenic proteins. The aim of the present review was to analyze specific cases driven by PTEN loss/AKT activation, including aberrant signaling pathways and novel drug targets for clinical application in personalized medicine. The findings illustrate how PTEN loss and/or AKT activation switches MDM2-dependent p53 downregulation, and induces conversion between oncogene and tumor suppressor in enhancer of zeste homolog 2, BTB domain-containing 7A, alternative reading frame 2, p27 and breast cancer 1, early onset, through multiple mechanisms. This review highlights the genetic basis of complex drug targets and provides insights into the rationale of precision cancer therapy. PMID:27347153

  9. INO80 governs superenhancer-mediated oncogenic transcription and tumor growth in melanoma.

    PubMed

    Zhou, Bingying; Wang, Li; Zhang, Shu; Bennett, Brian D; He, Fan; Zhang, Yan; Xiong, Chengliang; Han, Leng; Diao, Lixia; Li, Pishun; Fargo, David C; Cox, Adrienne D; Hu, Guang

    2016-06-15

    Superenhancers (SEs) are large genomic regions with a high density of enhancer marks. In cancer, SEs are found near oncogenes and dictate cancer gene expression. However, how oncogenic SEs are regulated remains poorly understood. Here, we show that INO80, a chromatin remodeling complex, is required for SE-mediated oncogenic transcription and tumor growth in melanoma. The expression of Ino80, the SWI/SNF ATPase, is elevated in melanoma cells and patient melanomas compared with normal melanocytes and benign nevi. Furthermore, Ino80 silencing selectively inhibits melanoma cell proliferation, anchorage-independent growth, tumorigenesis, and tumor maintenance in mouse xenografts. Mechanistically, Ino80 occupies >90% of SEs, and its occupancy is dependent on transcription factors such as MITF and Sox9. Ino80 binding reduces nucleosome occupancy and facilitates Mediator recruitment, thus promoting oncogenic transcription. Consistently, genes co-occupied by Ino80 and Med1 are selectively expressed in melanomas compared with melanocytes. Together, our results reveal an essential role of INO80-dependent chromatin remodeling in SE function and suggest a novel strategy for disrupting SEs in cancer treatment. PMID:27340176

  10. Derepression of hTERT gene expression promotes escape from oncogene-induced cellular senescence.

    PubMed

    Patel, Priyanka L; Suram, Anitha; Mirani, Neena; Bischof, Oliver; Herbig, Utz

    2016-08-23

    Oncogene-induced senescence (OIS) is a critical tumor-suppressing mechanism that restrains cancer progression at premalignant stages, in part by causing telomere dysfunction. Currently it is unknown whether this proliferative arrest presents a stable and therefore irreversible barrier to cancer progression. Here we demonstrate that cells frequently escape OIS induced by oncogenic H-Ras and B-Raf, after a prolonged period in the senescence arrested state. Cells that had escaped senescence displayed high oncogene expression levels, retained functional DNA damage responses, and acquired chromatin changes that promoted c-Myc-dependent expression of the human telomerase reverse transcriptase gene (hTERT). Telomerase was able to resolve existing telomeric DNA damage response foci and suppressed formation of new ones that were generated as a consequence of DNA replication stress and oncogenic signals. Inhibition of MAP kinase signaling, suppressing c-Myc expression, or inhibiting telomerase activity, caused telomere dysfunction and proliferative defects in cells that had escaped senescence, whereas ectopic expression of hTERT facilitated OIS escape. In human early neoplastic skin and breast tissue, hTERT expression was detected in cells that displayed features of senescence, suggesting that reactivation of telomerase expression in senescent cells is an early event during cancer progression in humans. Together, our data demonstrate that cells arrested in OIS retain the potential to escape senescence by mechanisms that involve derepression of hTERT expression. PMID:27503890

  11. Oncogene transcription in normal human IMR-90 fibroblasts: induction by serum and tetradecanoyl phorbol acetate

    SciTech Connect

    Bower, E.A.; Kaji, H.

    1988-01-01

    The authors report studies of oncogene transcription induced by the addition of serum to quiescent cultures of human IMR-90 fibroblasts. Oncogene messenger RNAs for c-myc, c-erbB and c-ras were increased in a specific temporal sequence after the addition of serum. Compounds that are proposed to exert their actions by the stimulation of cell growth were tested for their effect on oncogene transcription in IMR-90 fibroblasts. The tumor promoter tetradecanoyl phorbol acetate (TPA) was found to selectively induce the transcription of c-myc without observable effect on the transcription of the other oncogenes studied, and without inducing cell division. The inactive analog, phorbol didecanoate (PDD), and two complete carcinogens dimethylbenzanthracene (DMBA) and 4-nitro quinoline-1-oxide (4NQO) were without effect on the transcription of the genes studied. These results suggest that the complete ordered sequence of gene transcription is necessary to achieve the physiologic response of cell division, and that classical promoters and complete carcinogens achieve their effects through different pathways.

  12. Significance of hepatitis virus infection in the oncogenic initiation of hepatocellular carcinoma

    PubMed Central

    Sukowati, Caecilia HC; El-Khobar, Korri E; Ie, Susan I; Anfuso, Beatrice; Muljono, David H; Tiribelli, Claudio

    2016-01-01

    Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related death worldwide. Chronic infection of hepatitis B virus (HBV) and/or hepatitis C virus (HCV) is a major risk factor in the development of the HCC, independently from excessive alcohol abuse and metabolic disease. Since the biology of HBV and HCV is different, their oncogenic effect may go through different mechanisms, direct and/or indirect. Viral hepatitis infection is associated with cellular inflammation, oxidative stress, and DNA damage, that may lead to subsequent hepatic injuries such as chronic hepatitis, fibrosis, cirrhosis, and finally HCC. Direct oncogenic properties of these viruses are related with their genotypic characteristics and the ability of viral proteins to interact with host proteins, thus altering the molecular pathways balance of the cells. In addition, the integration of HBV DNA, especially the gene S and X, in a particular site of the host genome can disrupt chromosomal stability and may activate various oncogenic mechanisms, including those in hematopoietic cells. Recently, several studies also had demonstrated that viral hepatitis could trigger the population of hepatic cancer stem cells. This review summarize available pre-clinical and clinical data in literature regarding oncogenic properties of HBV and HCV in the early initiation of HCC. PMID:26819517

  13. Netrin-1 exerts oncogenic activities through enhancing Yes-associated protein stability

    PubMed Central

    Qi, Qi; Li, Dean Y.; Luo, Hongbo R.; Guan, Kun-Liang; Ye, Keqiang

    2015-01-01

    Yes-associated protein (YAP), a transcription coactivator, is the major downstream effector of the Hippo pathway, which plays a critical role in organ size control and cancer development. However, how YAP is regulated by extracellular stimuli in tumorigenesis remains incompletely understood. Netrin-1, a laminin-related secreted protein, displays proto-oncogenic activity in cancers. Nonetheless, the downstream signaling mediating its oncogenic effects is not well defined. Here we show that netrin-1 via its transmembrane receptors, deleted in colorectal cancer and uncoordinated-5 homolog, up-regulates YAP expression, escalating YAP levels in the nucleus and promoting cancer cell proliferation and migration. Inactivating netrin-1, deleted in colorectal cancer, or uncoordinated-5 homolog B (UNC5B) decreases YAP protein levels, abrogating cancer cell progression by netrin-1, whereas knockdown of mammalian STE20-like protein kinase 1/2 (MST1/2) or large tumor suppressor kinase 1/2 (Lats1/2), two sets of upstream core kinases of the Hippo pathway, has no effect in blocking netrin-1–induced up-regulation of YAP. Netrin-1 stimulates phosphatase 1A to dephosphorylate YAP, which leads to decreased ubiquitination and degradation, enhancing YAP accumulation and signaling. Hence, our findings support that netrin-1 exerts oncogenic activity through YAP signaling, providing a mechanism coupling extracellular signals to the nuclear YAP oncogene. PMID:26039999

  14. Identification of kinase fusion oncogenes in post-Chernobyl radiation-induced thyroid cancers.

    PubMed

    Ricarte-Filho, Julio C; Li, Sheng; Garcia-Rendueles, Maria E R; Montero-Conde, Cristina; Voza, Francesca; Knauf, Jeffrey A; Heguy, Adriana; Viale, Agnes; Bogdanova, Tetyana; Thomas, Geraldine A; Mason, Christopher E; Fagin, James A

    2013-11-01

    Exposure to ionizing radiation during childhood markedly increases the risk of developing papillary thyroid cancer. We examined tissues from 26 Ukrainian patients with thyroid cancer who were younger than 10 years of age and living in contaminated areas during the time of the Chernobyl nuclear reactor accident. We identified nonoverlapping somatic driver mutations in all 26 cases through candidate gene assays and next-generation RNA sequencing. We found that 22 tumors harbored fusion oncogenes that arose primarily through intrachromosomal rearrangements. Altogether, 23 of the oncogenic drivers identified in this cohort aberrantly activate MAPK signaling, including the 2 somatic rearrangements resulting in fusion of transcription factor ETS variant 6 (ETV6) with neurotrophic tyrosine kinase receptor, type 3 (NTRK3) and fusion of acylglycerol kinase (AGK) with BRAF. Two other tumors harbored distinct fusions leading to overexpression of the nuclear receptor PPARγ. Fusion oncogenes were less prevalent in tumors from a cohort of children with pediatric thyroid cancers that had not been exposed to radiation but were from the same geographical regions. Radiation-induced thyroid cancers provide a paradigm of tumorigenesis driven by fusion oncogenes that activate MAPK signaling or, less frequently, a PPARγ-driven transcriptional program. PMID:24135138

  15. Mutant p53 exerts oncogenic functions by modulating cancer cell metabolism

    PubMed Central

    Zhou, Ge; Myers, Jeffrey N

    2014-01-01

    The metabolic function of p53 is important for its oncosuppressive function. Mutant p53 (mutp53) with gain of oncogenic function can regulate cell metabolism. Our recent study revealed a novel transcription-independent mechanism for a gain-of-function mutp53 that directly inhibits activation of adenosine monophosphate-activated protein kinase (AMPK) to promote cancer cell metabolism. PMID:27308343

  16. Avian myeloblastosis virus and E26 virus oncogene products are nuclear proteins.

    PubMed Central

    Boyle, W J; Lampert, M A; Lipsick, J S; Baluda, M A

    1984-01-01

    The defective acute leukemia viruses avian myeloblastosis virus (AMV) and E26 virus each contain an inserted cellular sequence related to the same highly conserved cellular gene, proto-amv. The oncogenes of these two retroviruses differ from this cellular proto-oncogene in gene structure, transcript structure, and gene product. The product of the AMV oncogene (myb) is a 48,000 Mr protein, p48myb, encoded by a transduced segment (amv) of proto-amv flanked by short helper-virus-derived terminal sequences. The E26 virus oncogene product is a 135,000 Mr protein, p135gag-amve-ets, encoded by significant portions of a viral structural gene (gag), sequences related to proto-amv (amve), and additional E26-specific sequences (ets) transduced from cellular proto-ets. Both p48myb and p135gag-amve-ets transforming proteins are located in the nucleus of cells transformed by these viruses. A protein of 110,000 Mr which is specifically immunoprecipitated by antisera to amv peptides and may be the product of the normal cellular gene (proto-amv) has been located in the cytoplasm of cells that express proto-amv mRNA. Images PMID:6087315

  17. Chromosomal integration of an avian oncogenic herpesvirus reveals telomeric preferences and evidence for lymphoma clonality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marek’s disease (MD) is a highly contagious neoplastic disease resulting from a cell-associated oncogenic herpesvirus, Marek’s disease virus (MDV) that induces lymphoid tumors in chickens, its natural host. Genomic interactions between virus and host, and their involvement in the process of tumorig...

  18. A component of the mir-17-92 polycistronic oncomir promotes oncogene-dependent apoptosis

    PubMed Central

    Olive, Virginie; Sabio, Erich; Bennett, Margaux J; De Jong, Caitlin S; Biton, Anne; McGann, James C; Greaney, Samantha K; Sodir, Nicole M; Zhou, Alicia Y; Balakrishnan, Asha; Foth, Mona; Luftig, Micah A; Goga, Andrei; Speed, Terence P; Xuan, Zhenyu; Evan, Gerard I; Wan, Ying; Minella, Alex C; He, Lin

    2013-01-01

    mir-17-92, a potent polycistronic oncomir, encodes six mature miRNAs with complex modes of interactions. In the Eμ-myc Burkitt’s lymphoma model, mir-17-92 exhibits potent oncogenic activity by repressing c-Myc-induced apoptosis, primarily through its miR-19 components. Surprisingly, mir-17-92 also encodes the miR-92 component that negatively regulates its oncogenic cooperation with c-Myc. This miR-92 effect is, at least in part, mediated by its direct repression of Fbw7, which promotes the proteosomal degradation of c-Myc. Thus, overexpressing miR-92 leads to aberrant c-Myc increase, imposing a strong coupling between excessive proliferation and p53-dependent apoptosis. Interestingly, miR-92 antagonizes the oncogenic miR-19 miRNAs; and such functional interaction coordinates proliferation and apoptosis during c-Myc-induced oncogenesis. This miR-19:miR-92 antagonism is disrupted in B-lymphoma cells that favor a greater increase of miR-19 over miR-92. Altogether, we suggest a new paradigm whereby the unique gene structure of a polycistronic oncomir confers an intricate balance between oncogene and tumor suppressor crosstalk. DOI: http://dx.doi.org/10.7554/eLife.00822.001 PMID:24137534

  19. MYC oncogene overexpression drives renal cell carcinoma in a mouse model through glutamine metabolism

    PubMed Central

    Shroff, Emelyn H.; Eberlin, Livia S.; Dang, Vanessa M.; Gouw, Arvin M.; Gabay, Meital; Adam, Stacey J.; Bellovin, David I.; Tran, Phuoc T.; Philbrick, William M.; Garcia-Ocana, Adolfo; Casey, Stephanie C.; Li, Yulin; Dang, Chi V.; Zare, Richard N.; Felsher, Dean W.

    2015-01-01

    The MYC oncogene is frequently mutated and overexpressed in human renal cell carcinoma (RCC). However, there have been no studies on the causative role of MYC or any other oncogene in the initiation or maintenance of kidney tumorigenesis. Here, we show through a conditional transgenic mouse model that the MYC oncogene, but not the RAS oncogene, initiates and maintains RCC. Desorption electrospray ionization–mass-spectrometric imaging was used to obtain chemical maps of metabolites and lipids in the mouse RCC samples. Gene expression analysis revealed that the mouse tumors mimicked human RCC. The data suggested that MYC-induced RCC up-regulated the glutaminolytic pathway instead of the glycolytic pathway. The pharmacologic inhibition of glutamine metabolism with bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide impeded MYC-mediated RCC tumor progression. Our studies demonstrate that MYC overexpression causes RCC and points to the inhibition of glutamine metabolism as a potential therapeutic approach for the treatment of this disease. PMID:25964345

  20. A view on EGFR-targeted therapies from the oncogene-addiction perspective

    PubMed Central

    Perez, Rolando; Crombet, Tania; de Leon, Joel; Moreno, Ernesto

    2013-01-01

    Tumor cell growth and survival can often be impaired by inactivating a single oncogen– a phenomenon that has been called as “oncogene addiction.” It is in such scenarios that molecular targeted therapies may succeed. among known oncogenes, the epidermal growth factor receptor (EGFR) has become the target of different cancer therapies. So far, however, the clinical benefit from EGFR-targeted therapies has been rather limited. a critical review of the large amount of clinical data obtained with anti-EGFR agents, carried out from the perspective of the oncogene addiction concept, may help to understand the causes of the unsatisfactory results. In this article we intend to do such an exercise taking as basis for the analysis a few case studies of anti-EGFR agents that are currently in the clinic. There, the “EGFR addiction” phenomenon becomes apparent in high-responder patients. We further discuss how the concept of oncogene addiction needs to be interpreted on the light of emerging experimental evidences and ideas; in particular, that EGFR addiction may reflect the interconnection of several cellular pathways. In this regard we set forth several hypotheses; namely, that requirement of higher glucose uptake by hypoxic tumor cells may reinforce EGFR addiction; and that chronic use of EGFR-targeted antibodies in EGFR-addicted tumors would induce stable disease by reversing the malignant phenotype of cancer stem cells and also by sustaining an anti-tumor T cell response. Finally, we discuss possible reasons for the failure of certain combinatorial therapies involving anti-EGFR agents, arguing that some of these agents might produce either a negative or a positive trans-modulation effect on other oncogenes. It becomes evident that we need operational definitions of EGFR addiction in order to determine which patient populations may benefit from treatment with anti-EGFR drugs, and to improve the design of these therapies. PMID:23637683

  1. Carcinogen-specific mutations in preferred Ras-Raf pathway oncogenes directed by strand bias.

    PubMed

    Keller, Ross R; Gestl, Shelley A; Lu, Amy Q; Hoke, Alicia; Feith, David J; Gunther, Edward J

    2016-08-01

    Carcinogen exposures inscribe mutation patterns on cancer genomes and sometimes bias the acquisition of driver mutations toward preferred oncogenes, potentially dictating sensitivity to targeted agents. Whether and how carcinogen-specific mutation patterns direct activation of preferred oncogenes remains poorly understood. Here, mouse models of breast cancer were exploited to uncover a mechanistic link between strand-biased mutagenesis and oncogene preference. When chemical carcinogens were employed during Wnt1-initiated mammary tumorigenesis, exposure to either 7,12-dimethylbenz(a)anthracene (DMBA) or N-ethyl-N-nitrosourea (ENU) dramatically accelerated tumor onset. Mammary tumors that followed DMBA exposure nearly always activated the Ras pathway via somatic Hras(CAA61CTA) mutations. Surprisingly, mammary tumors that followed ENU exposure typically lacked Hras mutations, and instead activated the Ras pathway downstream via Braf(GTG636GAG) mutations. Hras(CAA61CTA) mutations involve an A-to-T change on the sense strand, whereas Braf(GTG636GAG) mutations involve an inverse T-to-A change, suggesting that strand-biased mutagenesis may determine oncogene preference. To examine this possibility further, we turned to an alternative Wnt-driven tumor model in which carcinogen exposures augment a latent mammary tumor predisposition in Apc(min) mice. DMBA and ENU each accelerated mammary tumor onset in Apc(min) mice by introducing somatic, "second-hit" Apc mutations. Consistent with our strand bias model, DMBA and ENU generated strikingly distinct Apc mutation patterns, including stringently strand-inverse mutation signatures at A:T sites. Crucially, these contrasting signatures precisely match those proposed to confer bias toward Hras(CAA61CTA) versus Braf(GTG636GAG) mutations in the original tumor sets. Our findings highlight a novel mechanism whereby exposure history acts through strand-biased mutagenesis to specify activation of preferred oncogenes. PMID:27207659

  2. Anti-tumor effects of genetic vaccines against HPV major oncogenes

    PubMed Central

    Cordeiro, Marcelo Nazário; Paolini, Francesca; Massa, Silvia; Curzio, Gianfranca; Illiano, Elena; Duarte Silva, Anna Jéssica; Franconi, Rosella; Bissa, Massimiliano; Morghen, Carlo De Giuli; de Freitas, Antonio Carlos; Venuti, Aldo

    2014-01-01

    Expression of HPV E5, E6 and E7 oncogenes are likely to overcome the regulation of cell proliferation and to escape immunological control, allowing uncontrolled growth and providing the potential for malignant transformation. Thus, their three oncogenic products may represent ideal target antigens for immunotherapeutic strategies. In previous attempts, we demonstrated that genetic vaccines against recombinant HPV16 E7 antigen were able to affect the tumor growth in a pre-clinical mouse model. To improve this anti-HPV strategy we developed a novel approach in which we explored the effects of E5-based genetic immunization. We designed novel HPV16 E5 genetic vaccines based on two different gene versions: whole E5 gene and E5Multi. The last one is a long multi epitope gene designed as a harmless E5 version. Both E5 genes were codon optimized for mammalian expression. In addition, we demonstrated that HPV 16 E5 oncogene is expressed in C3 mouse cell line making it an elective model for the study of E5 based vaccine. In this mouse model the immunological and biological activity of the E5 vaccines were assessed in parallel with the activity of anti-E7 and anti-E6 vaccines already reported to be effective in an immunotherapeutic setting. These E7 and E6 vaccines were made with mutated oncogenes, the E7GGG mutant that does not bind pRb and the E6F47R mutant that is less effective in inhibiting p53, respectively. Results confirmed the immunological activity of genetic formulations based on attenuated HPV16 oncogenes and showed that E5-based genetic immunization provided notable anti-tumor effects. PMID:25483514

  3. Genome wide proteomics of ERBB2 and EGFR and other oncogenic pathways in inflammatory breast cancer.

    PubMed

    Zhang, Emma Yue; Cristofanilli, Massimo; Robertson, Fredika; Reuben, James M; Mu, Zhaomei; Beavis, Ronald C; Im, Hogune; Snyder, Michael; Hofree, Matan; Ideker, Trey; Omenn, Gilbert S; Fanayan, Susan; Jeong, Seul-Ki; Paik, Young-Ki; Zhang, Anna Fan; Wu, Shiaw-Lin; Hancock, William S

    2013-06-01

    In this study we selected three breast cancer cell lines (SKBR3, SUM149 and SUM190) with different oncogene expression levels involved in ERBB2 and EGFR signaling pathways as a model system for the evaluation of selective integration of subsets of transcriptomic and proteomic data. We assessed the oncogene status with reads per kilobase per million mapped reads (RPKM) values for ERBB2 (14.4, 400, and 300 for SUM149, SUM190, and SKBR3, respectively) and for EGFR (60.1, not detected, and 1.4 for the same 3 cell lines). We then used RNA-Seq data to identify those oncogenes with significant transcript levels in these cell lines (total 31) and interrogated the corresponding proteomics data sets for proteins with significant interaction values with these oncogenes. The number of observed interactors for each oncogene showed a significant range, e.g., 4.2% (JAK1) to 27.3% (MYC). The percentage is measured as a fraction of the total protein interactions in a given data set vs total interactors for that oncogene in STRING (Search Tool for the Retrieval of Interacting Genes/Proteins, version 9.0) and I2D (Interologous Interaction Database, version 1.95). This approach allowed us to focus on 4 main oncogenes, ERBB2, EGFR, MYC, and GRB2, for pathway analysis. We used bioinformatics sites GeneGo, PathwayCommons and NCI receptor signaling networks to identify pathways that contained the four main oncogenes and had good coverage in the transcriptomic and proteomic data sets as well as a significant number of oncogene interactors. The four pathways identified were ERBB signaling, EGFR1 signaling, integrin outside-in signaling, and validated targets of C-MYC transcriptional activation. The greater dynamic range of the RNA-Seq values allowed the use of transcript ratios to correlate observed protein values with the relative levels of the ERBB2 and EGFR transcripts in each of the four pathways. This provided us with potential proteomic signatures for the SUM149 and 190 cell lines

  4. Genome wide proteomics of ERBB2 and EGFR and other oncogenic pathways in inflammatory breast cancer

    PubMed Central

    Zhang, Emma Yue; Cristofanilli, Massimo; Robertson, Fredika; Reuben, James M; Mu, Zhaomei; Beavis, Ronald C.; Im, Hogune; Snyder, Michael; Hofree, Matan; Ideker, Trey; Omenn, Gilbert S.; Fanayan, Susan; Jeong, Seul-Ki; Paik, Young-ki; Zhang, Anna Fan; Wu, Shiaw-Lin; Hancock, William S.

    2014-01-01

    In this study we selected three breast cancer cell lines (SKBR3, SUM149 and SUM190) with different oncogene expression levels involved in ERBB2 and EGFR signaling pathways as a model system for the evaluation of selective integration of subsets of transcriptomic and proteomic data. We assessed the oncogene status with RPKM values (Reads Per Kilobase per Million mapped reads1) for ERBB2 (14.4, 400 and 300 for SUM149, SUM 190 and SKBR3 respectively and for EGFR 60.1, not detected and 1.4 for the same 3 cell lines. We then used RNA-Seq data to identify those oncogenes with significant transcript levels in these cell lines (total 31) and interrogated the corresponding proteomics data sets for proteins with significant interaction values with these oncogenes. The number of observed interactors for each oncogene showed a significant range, e.g. 4.2% (JAK1) to 27.3% (MYC). The percentage is measured as a fraction of the total protein interactions in a given data set vs. total interactors for that oncogene in STRING (Search Tool for the Retrieval of Interacting Genes/Proteins, version 9.0) and I2D (Interologous Interaction Database, version 1.95). This approach allowed us to focus on 4 main oncogenes, ERBB2, EGFR, MYC, and GRB2, for pathway analysis. We used the following bioinformatics sites, GeneGo, PathwayCommons and NCI receptor signaling networks to identify pathways which contained the four main oncogenes, had good coverage in the transcriptomic and proteomic data sets as well as significant number of oncogene interactors. The four pathways identified were ERBB signaling, EGFR1 signaling, integrin outside-in signaling, and validated targets of C-MYC transcriptional activation. The greater dynamic range of the RNA-Seq values allowed the use of transcript ratios to correlate observed protein values with the relative levels of the ERBB2 and EGFR transcripts in each of the four pathways. This provided us with potential proteomic signatures for the SUM149 and 190 cell

  5. Rodent p53 suppresses the transforming activity of the activated Neu oncogene by modulating the Basal promoter activity of Neu.

    PubMed

    Matin, A; Xie, Y; Kao, M; Hung, M

    1995-05-01

    The rat neu oncogene encodes a dominant transforming oncogene. The mouse wild-type p53 suppresses the transforming activity of the neu oncogene while different p53 mutants demonstrate varying ability to repress neu-induced transformation. Suppression of neu-transforming activity is due to inhibition of transcription. Deletion analysis of the rat neu promoter shows that p53 represses the basal promoter activity of neu. Therefore, rodent p53 suppresses the transforming potential of neu by inhibiting transcription from the basal promoter of neu. PMID:21556644

  6. v-cbl, an oncogene from a dual-recombinant murine retrovirus that induces early B-lineage lymphomas.

    PubMed Central

    Langdon, W Y; Hartley, J W; Klinken, S P; Ruscetti, S K; Morse, H C

    1989-01-01

    Cas NS-1 is an acutely transforming murine retrovirus that induces pre-B and pro-B cell lymphomas. Molecular cloning showed it was generated from the ecotropic Cas-Br-M virus by sequential recombinations with endogenous retroviral sequences and a cellular oncogene. The oncogene sequence shows no homology with known oncogenes but some similarity to the yeast transcriptional activator GCN4. A 100-kDa gag-cbl fusion protein, with no detectable kinase activity, is responsible for the cellular transformation. The cellular homologue of v-cbl, present in mouse and human DNA, is expressed in a range of hemopoietic lineages. Images PMID:2784003

  7. Targeting the production of oncogenic microRNAs with multimodal synthetic small molecules.

    PubMed

    Vo, Duc Duy; Staedel, Cathy; Zehnacker, Laura; Benhida, Rachid; Darfeuille, Fabien; Duca, Maria

    2014-03-21

    MicroRNAs (miRNAs) are a recently discovered category of small RNA molecules that regulate gene expression at the post-transcriptional level. Accumulating evidence indicates that miRNAs are aberrantly expressed in a variety of human cancers and revealed to be oncogenic and to play a pivotal role in initiation and progression of these pathologies. It is now clear that the inhibition of oncogenic miRNAs, defined as blocking their biosynthesis or their function, could find an application in the therapy of different types of cancer in which these miRNAs are implicated. Here we report the design, synthesis, and biological evaluation of new small-molecule RNA ligands targeting the production of oncogenic microRNAs. In this work we focused our attention on miR-372 and miR-373 that are implicated in the tumorigenesis of different types of cancer such as gastric cancer. These two oncogenic miRNAs are overexpressed in gastric cancer cells starting from their precursors pre-miR-372 and pre-miR-373, two stem-loop structured RNAs that lead to mature miRNAs after cleavage by the enzyme Dicer. The small molecules described herein consist of the conjugation of two RNA binding motives, i.e., the aminoglycoside neomycin and different natural and artificial nucleobases, in order to obtain RNA ligands with increased affinity and selectivity compared to that of parent compounds. After the synthesis of this new series of RNA ligands, we demonstrated that they are able to inhibit the production of the oncogenic miRNA-372 and -373 by binding their pre-miRNAs and inhibiting the processing by Dicer. Moreover, we proved that some of these compounds bear anti-proliferative activity toward gastric cancer cells and that this activity is likely linked to a decrease in the production of targeted miRNAs. To date, only few examples of small molecules targeting oncogenic miRNAs have been reported, and such inhibitors could be extremely useful for the development of new anticancer therapeutic

  8. Repurposing a Prokaryotic Toxin-Antitoxin System for the Selective Killing of Oncogenically Stressed Human Cells.

    PubMed

    Preston, Mark A; Pimentel, Belén; Bermejo-Rodríguez, Camino; Dionne, Isabelle; Turnbull, Alice; de la Cueva-Méndez, Guillermo

    2016-07-15

    Prokaryotes express intracellular toxins that pass unnoticed to carrying cells until coexpressed antitoxin partners are degraded in response to stress. Although not evolved to function in eukaryotes, one of these toxins, Kid, induces apoptosis in mammalian cells, an effect that is neutralized by its cognate antitoxin, Kis. Here we engineered this toxin-antitoxin pair to create a synthetic system that becomes active in human cells suffering a specific oncogenic stress. Inspired by the way Kid becomes active in bacterial cells, we produced a Kis variant that is selectively degraded in human cells expressing oncoprotein E6. The resulting toxin-antitoxin system functions autonomously in human cells, distinguishing those that suffer the oncogenic insult, which are killed by Kid, from those that do not, which remain protected by Kis. Our results provide a framework for developing personalized anticancer strategies avoiding off-target effects, a challenge that has been hardly tractable by other means thus far. PMID:26230535

  9. Sirtuin-3 (SIRT3), a therapeutic target with oncogenic and tumor-suppressive function in cancer

    PubMed Central

    Chen, Y; Fu, L L; Wen, X; Wang, X Y; Liu, J; Cheng, Y; Huang, J

    2014-01-01

    Sirtuin-3 (SIRT3), a major mitochondria NAD+-dependent deacetylase, may target mitochondrial proteins for lysine deacetylation and also regulate cellular functions. And, SIRT3 is an emerging instrumental regulator of the mitochondrial adaptive response to stress, such as metabolic reprogramming and antioxidant defense mechanisms. Accumulating evidence has recently demonstrated that SIRT3 may function as either oncogene or tumor suppressor on influencing cell death by targeting a series of key modulators and their relevant pathways in cancer. Thus, in this review, we present the structure, transcriptional regulation, and posttranslational modifications of SIRT3. Subsequently, we focus on highlighting the Janus role of SIRT3 with oncogenic or tumor-suppressive function in cancer, which may provide more new clues for exploring SIRT3 as a therapeutic target for drug discovery. PMID:24503539

  10. Mitochondrial Ca2+ Remodeling is a Prime Factor in Oncogenic Behavior

    PubMed Central

    Rimessi, Alessandro; Patergnani, Simone; Bonora, Massimo; Wieckowski, Mariusz R.; Pinton, Paolo

    2015-01-01

    Cancer is sustained by defects in the mechanisms underlying cell proliferation, mitochondrial metabolism, and cell death. Mitochondrial Ca2+ ions are central to all these processes, serving as signaling molecules with specific spatial localization, magnitude, and temporal characteristics. Mutations in mtDNA, aberrant expression and/or regulation of Ca2+-handling/transport proteins and abnormal Ca2+-dependent relationships among the cytosol, endoplasmic reticulum, and mitochondria can cause the deregulation of mitochondrial Ca2+-dependent pathways that are related to these processes, thus determining oncogenic behavior. In this review, we propose that mitochondrial Ca2+ remodeling plays a pivotal role in shaping the oncogenic signaling cascade, which is a required step for cancer formation and maintenance. We will describe recent studies that highlight the importance of mitochondria in inducing pivotal “cancer hallmarks” and discuss possible tools to manipulate mitochondrial Ca2+ to modulate cancer survival. PMID:26161362

  11. Wnt/β-catenin, an oncogenic pathway targeted by H. pylori in gastric carcinogenesis

    PubMed Central

    Song, Xiaowen; Xin, Na; Wang, Wei; Zhao, Chenghai

    2015-01-01

    A section of gastric cancers presents nuclear β-catenin accumulation correlated with H. pylori infection. H. pylori stimulate Wnt/β-catenin pathway by activating oncogenic c-Met and epidermal growth factor receptor (EGFR), or by inhibiting tumor suppressor Runx3 and Trefoil factor 1 (TFF1). H. pylori also trigger Wnt/β-catenin pathway by recruiting macrophages. Moreover, Wnt/β-catenin pathway is found involved in H. pylori-induced gastric cancer stem cell generation. Recently, by using gastroids, researchers have further revealed that H. pylori induce gastric epithelial cell proliferation through β-catenin. These findings indicate that Wnt/β-catenin is an oncogenic pathway activated by H. pylori. Therefore, this pathway is a potential therapy target for H. pylori-related gastric cancer. PMID:26417932

  12. Role of the proto-oncogene Pokemon in cellular transformation and ARF repression.

    PubMed

    Maeda, Takahiro; Hobbs, Robin M; Merghoub, Taha; Guernah, Ilhem; Zelent, Arthur; Cordon-Cardo, Carlos; Teruya-Feldstein, Julie; Pandolfi, Pier Paolo

    2005-01-20

    Aberrant transcriptional repression through chromatin remodelling and histone deacetylation has been postulated to represent a driving force underlying tumorigenesis because histone deacetylase inhibitors have been found to be effective in cancer treatment. However, the molecular mechanisms by which transcriptional derepression would be linked to tumour suppression are poorly understood. Here we identify the transcriptional repressor Pokemon (encoded by the Zbtb7 gene) as a critical factor in oncogenesis. Mouse embryonic fibroblasts lacking Zbtb7 are completely refractory to oncogene-mediated cellular transformation. Conversely, Pokemon overexpression leads to overt oncogenic transformation both in vitro and in vivo in transgenic mice. Pokemon can specifically repress the transcription of the tumour suppressor gene ARF through direct binding. We find that Pokemon is aberrantly overexpressed in human cancers and that its expression levels predict biological behaviour and clinical outcome. Pokemon's critical role in cellular transformation makes it an attractive target for therapeutic intervention. PMID:15662416

  13. Oncogenic potential of guanine nucleotide stimulatory factor alpha subunit in thyroid glands of transgenic mice.

    PubMed Central

    Michiels, F M; Caillou, B; Talbot, M; Dessarps-Freichey, F; Maunoury, M T; Schlumberger, M; Mercken, L; Monier, R; Feunteun, J

    1994-01-01

    Transgenic mice have been used to address the issue of the oncogenic potential of mutant guanine nucleotide stimulatory factor (Gs) alpha subunit in the thyroid gland. The expression of the mutant Arg-201-->His Gs alpha subunit transgene has been directed to murine thyroid epithelial cells by bovine thyroglobulin promoter. The transgenic animals develop hyperfunctioning thyroid adenomas with increased intracellular cAMP levels and high uptake of [125I]iodine and produced elevated levels of circulating triiodothyronine and thyroxine. These animals demonstrate that the mutant form of Gs alpha subunit carries an oncogenic activity, thus supporting the model that deregulation of cAMP level alters growth control in thyroid epithelium. These animals represent models for humans with autonomously functioning thyroid nodules. Images PMID:7937980

  14. Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia

    PubMed Central

    Pylayeva-Gupta, Yuliya; Lee, Kyoung Eun; Hajdu, Cristina H.; Miller, George; Bar-Sagi, Dafna

    2013-01-01

    Summary Stromal responses elicited by early stage neoplastic lesions can promote tumor growth. However, the molecular mechanisms that underlie the early recruitment of stromal cells to sites of neoplasia remain poorly understood. Here we demonstrate an oncogenic KrasG12D-dependent upregulation of GM-CSF in mouse pancreatic ductal epithelial cells (PDEC). An enhanced GM-CSF production is also observed in human PanIN lesions. KrasG12D-dependent production of GM-CSF in vivo is required for the recruitment of Gr1+CD11b+ myeloid cells. The suppression of GM-CSF production inhibits the in vivo growth of KrasG12D-PDECs and, consistent with the role of GM-CSF in Gr1+CD11b+ mobilization, this effect is mediated by CD8+ T cells. These results identify a pathway that links oncogenic activation to the evasion of anti-tumor immunity. PMID:22698407

  15. miR-454 functions as an oncogene by inhibiting CHD5 in hepatocellular carcinoma

    PubMed Central

    Sun, Lei; Yao, Hong; Lu, Baoling; Zhu, Liying

    2015-01-01

    Previous studies showed that miR-454 acted as an oncogene or tumor suppressor in cancer. However, its function in HCC remains unknown. In this study, we found that miR-454 expression was upregulated in HCC cell lines and tissues. Knockdown of miR-454 inhibited HCC cell proliferation and invasion and epithelial mesenchymal transition (EMT), whereas overexpression of miR-454 promoted HCC cell proliferation and invasion and EMT. Furthermore, we identified the CHD5 as a direct target of miR-454. CHD5 was downregulated in HCC tissues and cell lines and the expression level of CHD5 was inversely correlated with the expression of miR-454 in HCC tissues. In addition, knockdown of miR-454 inhibited the growth of HepG2-engrafted tumors in vivo. Taken together, these results indicated that miR-454 functioned as an oncogene in HCC. PMID:26287602

  16. Initiation of oncogenic transformation in human mammary epithelial cells by charged particles

    NASA Technical Reports Server (NTRS)

    Yang, T. C.; Georgy, K. A.; Craise, L. M.; Durante, M.

    1997-01-01

    Experimental studies have shown that high linear-energy transfer (LET) charged particles can be more effective than x-rays and gamma-rays in inducing oncogenic transformation in cultured cells and tumors in animals. Based on these results, experiments were designed and performed with an immortal human mammary epithelial cell line (H184B5), and several clones transformed by heavy ions were obtained. Cell fusion experiments were subsequently done, and results indicate that the transforming gene(s) is recessive. Chromosome analysis with fluorescence in situ hybridization (FISH) techniques also showed additional translocations in transformed human mammary epithelial cells. In addition, studies with these cell lines indicate that heavy ions can effectively induce deletion, break, and dicentrics. Deletion of tumor suppressor gene(s) and/or formation of translocation through DNA double strand breaks is a likely mechanism for the initiation of oncogenic transformation in human mammary epithelial cells.

  17. Oncogenic transformation through the cell cycle and the LET dependent inverse dose rate effect

    NASA Technical Reports Server (NTRS)

    Geard, C. R.; Miller, R. C.; Brenner, D. J.; Hall, E. J.; Wachholz, B. W. (Principal Investigator)

    1994-01-01

    Synchronised populations of mouse C3H/10T-1/2 cells were obtained by a stringent mitotic dislodgment procedure. Mitotic cells rapidly attach and progress sequentially through the cell cycle. Irradiation (3 Gy of X rays) was carried out at intervals from 0 to 18 h after initiating cell cycle progression of the mitotic cells. Oncogenic transformation was enhanced 10-fold over cells irradiated soon after replating (G1 and S phases) for cells in a near 2 h period corresponding to cells in G2 phase but not in mitosis. The cell surviving fraction had a 2-1/2-fold variation with resistant peaks corresponding to the late G1 and late S phases. These findings provide experimental support for the hypothesis initiated by Rossi and Kellerer and developed by Brenner and Hall to explain the LET dependent inverse dose rate effect for oncogenic transformation.

  18. The proto-oncogene c-ets is preferentially expressed in lymphoid cells.

    PubMed Central

    Chen, J H

    1985-01-01

    The transforming sequences of the avian acute leukemia virus, E26, contain two distinct oncogenes, v-mybE and v-ets, fused together. By using a probe containing v-ets sequences, polyadenylated transcripts of the c-ets proto-oncogene were detected in avian tissues; they included a major 7.0-kilobase and a minor 2.0-kilobase species. These c-ets mRNAs were detected at high levels only in lymphoid organs and in avian T and B lymphoid cell lines. A similar pattern of c-ets transcription was observed in human hematopoietic cell lines, with transcripts detected in lymphoid B and T cells but not in erythroid or myeloid cells. The E26 oncogene was inserted into an inducible expression vector, and a 90-kilodalton protein (bp90) was produced in bacteria. Rabbit antisera raised to purified bp90 precipitated P135gag-mybE-ets, the v-mybE-ets polyprotein expressed in E26-transformed cells, and also reacted with p50v-mybA, the transforming protein of the avian myeloblastosis virus. Antiserum to bp90 was absorbed with a bacterially synthesized v-mybA protein to remove anti-myb activity. The absorbed anti-bp90 serum retained the ability to immunoprecipitate P135gag-mybE-ets from E26-transformed cells and specifically reacted with a 56-kilodalton polypeptide (p56) detected in chicken lymphoid organs and in T and B lymphocytes of both avian and human origin. The data suggest that p56 is a translational product of the c-ets proto-oncogene and imply that p56 may be involved in regulating the growth of lymphoid cells. Images PMID:3018492

  19. RNA polymerase III transcription--a battleground for tumour suppressors and oncogenes.

    PubMed

    White, R J

    2004-01-01

    This review provides a summary of the European Association for Cancer Research Award Lecture, presented at the ECCO12 meeting in Copenhagen in September 2003. It describes what we have learnt about the mechanisms responsible for deregulating RNA polymerase III transcription in transformed cells. A network has been discovered of unanticipated links to key tumour suppressors and oncogenes. Novel functions have been revealed for RB, p53 and c-Myc, that may help explain their profound biological effects. PMID:14687785

  20. Proto-oncogene expression in porcine myocardium subjected to ischemia and reperfusion.

    PubMed

    Brand, T; Sharma, H S; Fleischmann, K E; Duncker, D J; McFalls, E O; Verdouw, P D; Schaper, W

    1992-12-01

    The molecular basis of myocardial adaptation to ischemia and reperfusion is poorly understood. It is thought that nuclear proto-oncogenes act as third messengers, converting cytoplasmic signal transduction into long-term changes of gene expression. We studied the expression of six nuclear proto-oncogenes (Egr-1, c-fos, fosB, c-jun, junB, and c-myc) in myocardium subjected to ischemia and reperfusion in anesthetized pigs. Stunning was achieved by two 10-minute left anterior descending coronary artery occlusions separated by 30 minutes of reperfusion. Hearts were excised after the first occlusion, after the first reperfusion, and at 30, 120, 150, and 210 minutes of reperfusion after the second occlusion. Total RNA was prepared from stunned as well as normally perfused myocardial tissue and subjected to Northern blotting. The response of the six nuclear proto-oncogenes varied.fosB gene expression was never detected. The c-myc gene was expressed, but its level was unchanged by ischemia. c-jun expression was slightly increased by ischemia (3.1 +/- 0.6-fold). The c-fos, Egr-1, and junB genes were highly induced, being fivefold to sevenfold higher in experimental than in control tissue. In three animals pretreated with the beta 1-antagonist metoprolol and then subjected to the above experimental protocol, the induction of proto-oncogenes was similar to that in nonblocked controls. Our results show that the myocardial adaptive response to ischemic stress includes the induction of at least four transcription factors that may be further operative in repair processes and angiogenesis. PMID:1385005

  1. Oncogenic action of beta, proton, alpha and electron radiation on the rat skin

    SciTech Connect

    Burns, F.J.

    1980-01-01

    Rat skin is being utilized as an empirical model for testing dose and time related aspects of the oncogenic action of ionizing radiation, ultraviolet light, and polycyclic aromatic hydrocarbons. Molecular lesions in the skin DNA, including, strand breaks and thymine dimers, are being measured and compared to tumor induction. The induction and repair kinetics of molcular lesions are being compared to split dose repair. Modifiers and radiosensitizers are being utilized to test specific aspects of a chromosome breakage theory of radiation oncogenesis.

  2. Mate choice for more melanin as a mechanism to maintain a functional oncogene

    PubMed Central

    Fernandez, André A.; Morris, Molly R.

    2008-01-01

    The mechanisms by which cancer evolves and persists in natural systems have been difficult to ascertain. In the Xiphophorus melanoma model, a functional oncogene (Xiphophorus melanoma receptor kinase Xmrk) has been maintained for several million years despite being deleterious and in an extremely unstable genomic region. Melanomas in Xiphophorus spp. fishes (platyfishes and swordtails) have been investigated since the 1920s, and, yet, positive selection that could explain the maintenance of Xmrk has not been found. Here, we show that Xiphophorus cortezi females from two populations prefer males with the spotted caudal (Sc) melanin pattern, which is associated with the presence of the Xmrk oncogene and serves as the site of melanoma formation within this species. Moreover, X. cortezi females prefer males with an enhanced Sc to males with a reduced Sc pattern. RT-PCR analysis confirms tissue-specific Xmrk expression within the Sc pattern in X. cortezi. Because of the association of Xmrk with the Sc pigment pattern and the fact that melanoma formation augments this visual signal, sexual selection appears to be maintaining this oncogene because of a mating preference for Sc, as well as the exaggeration of this male trait. At the individual level, decreases in viability and fecundity because of Xmrk and subsequent melanoma formation may be mitigated via increases in mate acquisition. At the population level, maintenance of this oncogene appears to be under frequency dependent selection, as we detected female preference for males without Sc in a third population that had higher frequencies of Sc in females. PMID:18757731

  3. The Activating Transcription Factor 3 Protein Suppresses the Oncogenic Function of Mutant p53 Proteins*

    PubMed Central

    Wei, Saisai; Wang, Hongbo; Lu, Chunwan; Malmut, Sarah; Zhang, Jianqiao; Ren, Shumei; Yu, Guohua; Wang, Wei; Tang, Dale D.; Yan, Chunhong

    2014-01-01

    Mutant p53 proteins (mutp53) often acquire oncogenic activities, conferring drug resistance and/or promoting cancer cell migration and invasion. Although it has been well established that such a gain of function is mainly achieved through interaction with transcriptional regulators, thereby modulating cancer-associated gene expression, how the mutp53 function is regulated remains elusive. Here we report that activating transcription factor 3 (ATF3) bound common mutp53 (e.g. R175H and R273H) and, subsequently, suppressed their oncogenic activities. ATF3 repressed mutp53-induced NFKB2 expression and sensitized R175H-expressing cancer cells to cisplatin and etoposide treatments. Moreover, ATF3 appeared to suppress R175H- and R273H-mediated cancer cell migration and invasion as a consequence of preventing the transcription factor p63 from inactivation by mutp53. Accordingly, ATF3 promoted the expression of the metastasis suppressor SHARP1 in mutp53-expressing cells. An ATF3 mutant devoid of the mutp53-binding domain failed to disrupt the mutp53-p63 binding and, thus, lost the activity to suppress mutp53-mediated migration, suggesting that ATF3 binds to mutp53 to suppress its oncogenic function. In line with these results, we found that down-regulation of ATF3 expression correlated with lymph node metastasis in TP53-mutated human lung cancer. We conclude that ATF3 can suppress mutp53 oncogenic function, thereby contributing to tumor suppression in TP53-mutated cancer. PMID:24554706

  4. Untargeted metabolomics for profiling oncogene-specific metabolic signatures of prostate cancer

    PubMed Central

    Priolo, Carmen; Loda, Massimo

    2015-01-01

    Oncogene-associated metabolic signatures in prostate cancer, identified by an integrative analysis of cultured cells and murine and human tumors, suggest that AKT activation results in a glycolytic phenotype whereas MYC induces aberrant lipid metabolism. Heterogeneity in human tumors makes this simplistic interpretation obtained from experimental models more challenging. Metabolic reprogramming as a function of distinct molecular aberrations has major diagnostic and therapeutic implications. PMID:27308491

  5. Identification of Tumor Suppressors and Oncogenes from Genomic and Epigenetic Features in Ovarian Cancer

    PubMed Central

    Wrzeszczynski, Kazimierz O.; Varadan, Vinay; Byrnes, James; Lum, Elena; Kamalakaran, Sitharthan; Levine, Douglas A.; Dimitrova, Nevenka; Zhang, Michael Q.; Lucito, Robert

    2011-01-01

    The identification of genetic and epigenetic alterations from primary tumor cells has become a common method to identify genes critical to the development and progression of cancer. We seek to identify those genetic and epigenetic aberrations that have the most impact on gene function within the tumor. First, we perform a bioinformatic analysis of copy number variation (CNV) and DNA methylation covering the genetic landscape of ovarian cancer tumor cells. We separately examined CNV and DNA methylation for 42 primary serous ovarian cancer samples using MOMA-ROMA assays and 379 tumor samples analyzed by The Cancer Genome Atlas. We have identified 346 genes with significant deletions or amplifications among the tumor samples. Utilizing associated gene expression data we predict 156 genes with altered copy number and correlated changes in expression. Among these genes CCNE1, POP4, UQCRB, PHF20L1 and C19orf2 were identified within both data sets. We were specifically interested in copy number variation as our base genomic property in the prediction of tumor suppressors and oncogenes in the altered ovarian tumor. We therefore identify changes in DNA methylation and expression for all amplified and deleted genes. We statistically define tumor suppressor and oncogenic features for these modalities and perform a correlation analysis with expression. We predicted 611 potential oncogenes and tumor suppressors candidates by integrating these data types. Genes with a strong correlation for methylation dependent expression changes exhibited at varying copy number aberrations include CDCA8, ATAD2, CDKN2A, RAB25, AURKA, BOP1 and EIF2C3. We provide copy number variation and DNA methylation analysis for over 11,500 individual genes covering the genetic landscape of ovarian cancer tumors. We show the extent of genomic and epigenetic alterations for known tumor suppressors and oncogenes and also use these defined features to identify potential ovarian cancer gene candidates. PMID

  6. MUC1 alters oncogenic events and transcription in human breast cancer cells

    PubMed Central

    Hattrup, Christine L; Gendler, Sandra J

    2006-01-01

    Introduction MUC1 is an oncoprotein whose overexpression correlates with aggressiveness of tumors and poor survival of cancer patients. Many of the oncogenic effects of MUC1 are believed to occur through interaction of its cytoplasmic tail with signaling molecules. As expected for a protein with oncogenic functions, MUC1 is linked to regulation of proliferation, apoptosis, invasion, and transcription. Methods To clarify the role of MUC1 in cancer, we transfected two breast cancer cell lines (MDA-MB-468 and BT-20) with small interfering (si)RNA directed against MUC1 and analyzed transcriptional responses and oncogenic events (proliferation, apoptosis and invasion). Results Transcription of several genes was altered after transfection of MUC1 siRNA, including decreased MAP2K1 (MEK1), JUN, PDGFA, CDC25A, VEGF and ITGAV (integrin αv), and increased TNF, RAF1, and MMP2. Additional changes were seen at the protein level, such as increased expression of c-Myc, heightened phosphorylation of AKT, and decreased activation of MEK1/2 and ERK1/2. These were correlated with cellular events, as MUC1 siRNA in the MDA-MB-468 line decreased proliferation and invasion, and increased stress-induced apoptosis. Intriguingly, BT-20 cells displayed similar levels of apoptosis regardless of siRNA, and actually increased proliferation after MUC1 siRNA. Conclusion These results further the growing knowledge of the role of MUC1 in transcription, and suggest that the regulation of MUC1 in breast cancer may be more complex than previously appreciated. The differences between these two cell lines emphasize the importance of understanding the context of cell-specific signaling events when analyzing the oncogenic functions of MUC1, and caution against generalizing the results of individual cell lines without adequate confirmation in intact biological systems. PMID:16846534

  7. Differential effects on ARF stability by normal vs. oncogenic levels of c-Myc expression

    PubMed Central

    Chen, Delin; Kon, Ning; Zhong, Jiayun; Zhang, Pingzhao; Yu, Long; Gu, Wei

    2013-01-01

    SUMMARY ARF suppresses aberrant cell growth upon c-Myc overexpression through activating p53 responses. Nevertheless, the precise mechanism by which ARF specifically, restrains the oncogenic potential of c-Myc without affecting its normal physiological function is not well understood. Here, we show that low levels of c-Myc expression stimulate cell proliferation whereas high levels inhibit through activating the ARF-p53 response. Although the mRNA levels of ARF are induced under both scenarios, the accumulation of ARF protein occurs only when ULF-mediated degradation of ARF is inhibited by c-Myc overexpression. Moreover, the levels of ARF are reduced through ULF-mediated ubiquitination upon DNA damage. Blocking ARF degradation by c-Myc overexpression dramatically stimulates the apoptotic responses. Our study reveals that ARF stability control is crucial for differentiating normal (low) vs. oncogenic (high) levels of c-Myc expression and suggests that differential effects on ULF- mediated ARF ubiquitination by c-Myc levels act as a barrier in oncogene-induced stress responses. PMID:23747016

  8. Rab1A is an mTORC1 activator and a colorectal oncogene.

    PubMed

    Thomas, Janice D; Zhang, Yan-Jie; Wei, Yue-Hua; Cho, Jun-Hung; Morris, Laura E; Wang, Hui-Yun; Zheng, X F Steven

    2014-11-10

    Amino acid (AA) is a potent mitogen that controls growth and metabolism. Here we describe the identification of Rab1 as a conserved regulator of AA signaling to mTORC1. AA stimulates Rab1A GTP binding and interaction with mTORC1 and Rheb-mTORC1 interaction in the Golgi. Rab1A overexpression promotes mTORC1 signaling and oncogenic growth in an AA- and mTORC1-dependent manner. Conversely, Rab1A knockdown selectively attenuates oncogenic growth of Rab1-overexpressing cancer cells. Moreover, Rab1A is overexpressed in colorectal cancer (CRC), which is correlated with elevated mTORC1 signaling, tumor invasion, progression, and poor prognosis. Our results demonstrate that Rab1 is an mTORC1 activator and an oncogene and that hyperactive AA signaling through Rab1A overexpression drives oncogenesis and renders cancer cells prone to mTORC1-targeted therapy. PMID:25446900

  9. Transmembrane voltage potential of somatic cells controls oncogene-mediated tumorigenesis at long-range

    PubMed Central

    Chernet, Brook T.; Levin, Michael

    2014-01-01

    The microenvironment is increasingly recognized as a crucial aspect of cancer. In contrast and complement to the field's focus on biochemical factors and extracellular matrix, we characterize a novel aspect of host:tumor interaction – endogenous bioelectric signals among non-excitable somatic cells. Extending prior work focused on the bioelectric state of cancer cells themselves, we show for the first time that the resting potentials of distant cells are critical for oncogene-dependent tumorigenesis. In the Xenopus laevis tadpole model, we used human oncogenes such as mutant KRAS to drive formation of tumor-like structures that exhibited overproliferation, increased nuclear size, hypoxia, acidity, and leukocyte attraction. Remarkably, misexpression of hyperpolarizing ion channels at distant sites within the tadpole significantly reduced the incidence of these tumors. The suppression of tumorigenesis could also be achieved by hyperpolarization using native CLIC1 chloride channels, suggesting a treatment modality not requiring gene therapy. Using a dominant negative approach, we implicate HDAC1 as the mechanism by which resting potential changes affect downstream cell behaviors. Based on published data on the voltage-mediated changes of butyrate flux through the SLC5A8 transporter, we present a model linking resting potentials of host cells to the ability of oncogenes to initiate tumorigenesis. Antibiotic data suggest that the relevant butyrate is generated by a native bacterial species, identifying a novel link between the microbiome and cancer that is mediated by alterations in bioelectric signaling. PMID:24830454

  10. Oncogene activation in spontaneous and chemically induced rodent tumors: implications for risk analysis

    SciTech Connect

    Reynolds, S.H.; Stowers, S.J.; Patterson, R.M.; Maronpot, R.R.; Anderson, M.W.

    1988-06-01

    The validity of rodent tumor end points in assessing the potential hazards of chemical exposure to humans is a somewhat controversial but very important issue since most chemicals are classified as potentially hazardous to humans on the basis of long-term carcinogenesis studies in rodents. The ability to distinguish between genotoxic, cytotoxic, or receptor-mediated promotion effects of chemical treatment would aid in the interpretation of rodent carcinogenesis data. Activated oncogenes in spontaneously occurring and chemically induced rodent tumors were examined and compared as one approach to determine the mechanism by which chemical treatment caused an increased incidence of rodent tumors. Different patterns of activated oncogenes were found not only in spontaneous versus chemically induced mouse liver tumors but also in a variety of spontaneous rat tumors versus chemically induced rat lung tumors. In the absence of cytotoxic effects, it could be argued that the chemicals in question activated protooncogenes by a direct genotoxic mechanism. These results provided a basis for the analysis of activated oncogenes in spontaneous and chemically induced rodent tumors to provide information at a molecular level to aid in the extrapolation of rodent carcinogenesis data to human risk assessment.

  11. The Pbx Interaction Motif of Hoxa1 Is Essential for Its Oncogenic Activity

    PubMed Central

    Delval, Stéphanie; Taminiau, Arnaud; Lamy, Juliette; Lallemand, Cécile; Gilles, Christine; Noël, Agnès; Rezsohazy, René

    2011-01-01

    Hoxa1 belongs to the Hox family of homeodomain transcription factors involved in patterning embryonic territories and governing organogenetic processes. In addition to its developmental functions, Hoxa1 has been shown to be an oncogene and to be overexpressed in the mammary gland in response to a deregulation of the autocrine growth hormone. It has therefore been suggested that Hoxa1 plays a pivotal role in the process linking autocrine growth hormone misregulation and mammary carcinogenesis. Like most Hox proteins, Hoxa1 can interact with Pbx proteins. This interaction relies on a Hox hexapeptidic sequence centred on conserved Tryptophan and Methionine residues. To address the importance of the Hox-Pbx interaction for the oncogenic activity of Hoxa1, we characterized here the properties of a Hoxa1 variant with substituted residues in the hexapeptide and demonstrate that the Hoxa1 mutant lost its ability to stimulate cell proliferation, anchorage-independent cell growth, and loss of contact inhibition. Therefore, the hexapeptide motif of Hoxa1 is required to confer its oncogenic activity, supporting the view that this activity relies on the ability of Hoxa1 to interact with Pbx. PMID:21957483

  12. The Pbx interaction motif of Hoxa1 is essential for its oncogenic activity.

    PubMed

    Delval, Stéphanie; Taminiau, Arnaud; Lamy, Juliette; Lallemand, Cécile; Gilles, Christine; Noël, Agnès; Rezsohazy, René

    2011-01-01

    Hoxa1 belongs to the Hox family of homeodomain transcription factors involved in patterning embryonic territories and governing organogenetic processes. In addition to its developmental functions, Hoxa1 has been shown to be an oncogene and to be overexpressed in the mammary gland in response to a deregulation of the autocrine growth hormone. It has therefore been suggested that Hoxa1 plays a pivotal role in the process linking autocrine growth hormone misregulation and mammary carcinogenesis. Like most Hox proteins, Hoxa1 can interact with Pbx proteins. This interaction relies on a Hox hexapeptidic sequence centred on conserved Tryptophan and Methionine residues. To address the importance of the Hox-Pbx interaction for the oncogenic activity of Hoxa1, we characterized here the properties of a Hoxa1 variant with substituted residues in the hexapeptide and demonstrate that the Hoxa1 mutant lost its ability to stimulate cell proliferation, anchorage-independent cell growth, and loss of contact inhibition. Therefore, the hexapeptide motif of Hoxa1 is required to confer its oncogenic activity, supporting the view that this activity relies on the ability of Hoxa1 to interact with Pbx. PMID:21957483

  13. Aging-associated inflammation promotes selection for adaptive oncogenic events in B cell progenitors

    PubMed Central

    Henry, Curtis J.; Casás-Selves, Matias; Kim, Jihye; Zaberezhnyy, Vadym; Aghili, Leila; Daniel, Ashley E.; Jimenez, Linda; Azam, Tania; McNamee, Eoin N.; Clambey, Eric T.; Klawitter, Jelena; Serkova, Natalie J.; Tan, Aik Choon; Dinarello, Charles A.; DeGregori, James

    2015-01-01

    The incidence of cancer is higher in the elderly; however, many of the underlying mechanisms for this association remain unexplored. Here, we have shown that B cell progenitors in old mice exhibit marked signaling, gene expression, and metabolic defects. Moreover, B cell progenitors that developed from hematopoietic stem cells (HSCs) transferred from young mice into aged animals exhibited similar fitness defects. We further demonstrated that ectopic expression of the oncogenes BCR-ABL, NRASV12, or Myc restored B cell progenitor fitness, leading to selection for oncogenically initiated cells and leukemogenesis specifically in the context of an aged hematopoietic system. Aging was associated with increased inflammation in the BM microenvironment, and induction of inflammation in young mice phenocopied aging-associated B lymphopoiesis. Conversely, a reduction of inflammation in aged mice via transgenic expression of α-1-antitrypsin or IL-37 preserved the function of B cell progenitors and prevented NRASV12-mediated oncogenesis. We conclude that chronic inflammatory microenvironments in old age lead to reductions in the fitness of B cell progenitor populations. This reduced progenitor pool fitness engenders selection for cells harboring oncogenic mutations, in part due to their ability to correct aging-associated functional defects. Thus, modulation of inflammation — a common feature of aging — has the potential to limit aging-associated oncogenesis. PMID:26551682

  14. Transglutaminase 2 contributes to a TP53-induced autophagy program to prevent oncogenic transformation

    PubMed Central

    Yeo, Shi Yun; Itahana, Yoko; Guo, Alvin Kunyao; Han, Rachel; Iwamoto, Kozue; Nguyen, Hung Thanh; Bao, Yi; Kleiber, Kai; Wu, Ya Jun; Bay, Boon Huat; Voorhoeve, Mathijs; Itahana, Koji

    2016-01-01

    Genetic alterations which impair the function of the TP53 signaling pathway in TP53 wild-type human tumors remain elusive. To identify new components of this pathway, we performed a screen for genes whose loss-of-function debilitated TP53 signaling and enabled oncogenic transformation of human mammary epithelial cells. We identified transglutaminase 2 (TGM2) as a putative tumor suppressor in the TP53 pathway. TGM2 suppressed colony formation in soft agar and tumor formation in a xenograft mouse model. The depletion of growth supplements induced both TGM2 expression and autophagy in a TP53-dependent manner, and TGM2 promoted autophagic flux by enhancing autophagic protein degradation and autolysosome clearance. Reduced expression of both CDKN1A, which regulates the cell cycle downstream of TP53, and TGM2 synergized to promote oncogenic transformation. Our findings suggest that TGM2-mediated autophagy and CDKN1A-mediated cell cycle arrest are two important barriers in the TP53 pathway that prevent oncogenic transformation. DOI: http://dx.doi.org/10.7554/eLife.07101.001 PMID:26956429

  15. Determination of somatic oncogenic mutations linked to target-based therapies using MassARRAY technology

    PubMed Central

    Llorca-Cardeñosa, Marta J.; Mongort, Cristina; Alonso, Elisa; Navarro, Samuel; Burgues, Octavio; Vivancos, Ana; Cejalvo, Juan Miguel; Perez-Fidalgo, José Alejandro; Roselló, Susana; Ribas, Gloria; Cervantes, Andrés

    2016-01-01

    Somatic mutation analysis represents a useful tool in selecting personalized therapy. The aim of our study was to determine the presence of common genetic events affecting actionable oncogenes using a MassARRAY technology in patients with advanced solid tumors who were potential candidates for target-based therapies. The analysis of 238 mutations across 19 oncogenes was performed in 197 formalin-fixed paraffin-embedded samples of different tumors using the OncoCarta Panel v1.0 (Sequenom Hamburg, Germany). Of the 197 specimens, 97 (49.2%) presented at least one mutation. Forty-nine different oncogenic mutations in 16 genes were detected. Mutations in KRAS and PIK3CA were detected in 40/97 (41.2%) and 30/97 (30.9%) patients respectively. Thirty-one patients (32.0%) had mutations in two genes, 20 of them (64.5%) initially diagnosed with colorectal cancer. The co-occurrence of mutation involved mainly KRAS, PIK3CA, KIT and RET. Mutation profiles were validated using a customized panel and the Junior Next-Generation Sequencing technology (GS-Junior 454, Roche). Twenty-eight patients participated in early clinical trials or received specific treatments according to the molecular characterization (28.0%). MassARRAY technology is a rapid and effective method for identifying key cancer-driving mutations across a large number of samples, which allows for a more appropriate selection for personalized therapies. PMID:26968814

  16. HER2 missense mutations have distinct effects on oncogenic signaling and migration

    PubMed Central

    Zabransky, Daniel J.; Yankaskas, Christopher L.; Cochran, Rory L.; Wong, Hong Yuen; Croessmann, Sarah; Chu, David; Kavuri, Shyam M.; Red Brewer, Monica; Rosen, D. Marc; Dalton, W. Brian; Cimino-Mathews, Ashley; Cravero, Karen; Button, Berry; Kyker-Snowman, Kelly; Cidado, Justin; Erlanger, Bracha; Parsons, Heather A.; Manto, Kristen M.; Bose, Ron; Lauring, Josh; Arteaga, Carlos L.; Konstantopoulos, Konstantinos; Park, Ben Ho

    2015-01-01

    Recurrent human epidermal growth factor receptor 2 (HER2) missense mutations have been reported in human cancers. These mutations occur primarily in the absence of HER2 gene amplification such that most HER2-mutant tumors are classified as “negative” by FISH or immunohistochemistry assays. It remains unclear whether nonamplified HER2 missense mutations are oncogenic and whether they are targets for HER2-directed therapies that are currently approved for the treatment of HER2 gene-amplified breast cancers. Here we functionally characterize HER2 kinase and extracellular domain mutations through gene editing of the endogenous loci in HER2 nonamplified human breast epithelial cells. In in vitro and in vivo assays, the majority of HER2 missense mutations do not impart detectable oncogenic changes. However, the HER2 V777L mutation increased biochemical pathway activation and, in the context of a PIK3CA mutation, enhanced migratory features in vitro. However, the V777L mutation did not alter in vivo tumorigenicity or sensitivity to HER2-directed therapies in proliferation assays. Our results suggest the oncogenicity and potential targeting of HER2 missense mutations should be considered in the context of cooperating genetic alterations and provide previously unidentified insights into functional analysis of HER2 mutations and strategies to target them. PMID:26508629

  17. Increased H+ efflux is sufficient to induce dysplasia and necessary for viability with oncogene expression

    PubMed Central

    Grillo-Hill, Bree K; Choi, Changhoon; Jimenez-Vidal, Maite; Barber, Diane L

    2015-01-01

    Intracellular pH (pHi) dynamics is increasingly recognized as an important regulator of a range of normal and pathological cell behaviors. Notably, increased pHi is now acknowledged as a conserved characteristic of cancers and in cell models is confirmed to increase proliferation and migration as well as limit apoptosis. However, the significance of increased pHi for cancer in vivo remains unresolved. Using Drosophila melanogaster, we show that increased pHi is sufficient to induce dysplasia in the absence of other transforming cues and potentiates growth and invasion with oncogenic Ras. Using a genetically encoded biosensor we also confirm increased pHi in situ. Moreover, in Drosophila models and clonal human mammary cells we show that limiting H+ efflux with oncogenic Raf or Ras induces acidosis and synthetic lethality. Further, we show lethality in invasive primary tumor cell lines with inhibiting H+ efflux. Synthetic lethality with reduced H+ efflux and activated oncogene expression could be exploited therapeutically to restrain cancer progression while limiting off-target effects. DOI: http://dx.doi.org/10.7554/eLife.03270.001 PMID:25793441

  18. Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells.

    PubMed

    Scholl, Claudia; Fröhling, Stefan; Dunn, Ian F; Schinzel, Anna C; Barbie, David A; Kim, So Young; Silver, Serena J; Tamayo, Pablo; Wadlow, Raymond C; Ramaswamy, Sridhar; Döhner, Konstanze; Bullinger, Lars; Sandy, Peter; Boehm, Jesse S; Root, David E; Jacks, Tyler; Hahn, William C; Gilliland, D Gary

    2009-05-29

    An alternative to therapeutic targeting of oncogenes is to perform "synthetic lethality" screens for genes that are essential only in the context of specific cancer-causing mutations. We used high-throughput RNA interference (RNAi) to identify synthetic lethal interactions in cancer cells harboring mutant KRAS, the most commonly mutated human oncogene. We find that cells that are dependent on mutant KRAS exhibit sensitivity to suppression of the serine/threonine kinase STK33 irrespective of tissue origin, whereas STK33 is not required by KRAS-independent cells. STK33 promotes cancer cell viability in a kinase activity-dependent manner by regulating the suppression of mitochondrial apoptosis mediated through S6K1-induced inactivation of the death agonist BAD selectively in mutant KRAS-dependent cells. These observations identify STK33 as a target for treatment of mutant KRAS-driven cancers and demonstrate the potential of RNAi screens for discovering functional dependencies created by oncogenic mutations that may enable therapeutic intervention for cancers with "undruggable" genetic alterations. PMID:19490892

  19. PIK3CA is implicated as an oncogene in ovarian cancer

    SciTech Connect

    Shayesteh, Laleh; Lu, Yiling; Kuo, Wen-Lin; Baldocchi, Russell; Godfrey, Tony; Collins, Colin; Pinkel, Daniel; Powell, Bethan; Mills,Gordon B.; Gray, Joe W.

    1998-03-25

    Ovarian cancer is the leading cause of death from gynecological malignancy and the fourth leading cause of cancer death among American women, yet little is known about its molecular aetiology. Studies using comparative genomic hybridization (CGH) have revealed several regions of recurrent, abnormal, DNA sequence copy number that may encode genes involved in the genesis or progression of the disease. One region at 3q26 found to be increased in copy number in approximately 40 percent of ovarian and other cancers contains PIK3CA, which encodes the p110 a catalytic subunit of phosphatidylinositol 3-kinase(PI3-kinase). The association between PIK3CA copy number and PI3-kinase activity makes PIK3CA a candidate oncogene because a broad range of cancer-related functions have been associated with PI3-kinase mediated signaling. These include proliferation, glucose transport and catabolism, cell adhesion, apoptosis, RAS signaling and oncogenic transformation. In addition, downstream effectors of PI3-kinase,AKT1 and AKT2, have been found to be amplified or activated in human tumors, including ovarian cancer. We show here that PIK3CA is frequently increased in copy number in ovarian cancers, that the increased copy number is associated with increased PIK3CA transcription, p110 a protein expression and PI3-kinase activity and that treatment with the PI3-kinase inhibitor LY294002 decreases proliferation and increases apoptosis. Our observations suggest PIK3CA is an oncogene that has an important role in ovarian cancer.

  20. Identification of Oncogenic Point Mutations and Hyperphosphorylation of Anaplastic Lymphoma Kinase in Lung Cancer12

    PubMed Central

    Wang, Yi-Wei; Tu, Pang-Hsien; Lin, Kuen-Tyng; Lin, Shu-Chen; Ko, Jenq-Yuh; Jou, Yuh-Shan

    2011-01-01

    The oncogenic property of anaplastic lymphoma kinase (ALK) plays an essential role in the pathogenesis of various cancers and serves as an important therapeutic target. In this study, we identified frequent intragenic loss of heterozygosity and six novel driver mutations within ALK in lung adenocarcinomas. Overexpression of H694R or E1384K mutant ALK leads to hyperphosphorylation of ALK, and activation of its downstream mediators STAT3, AKT, and ERK resulted in enhanced cell proliferation, colony formation, cell migration, and tumor growth in xenograft models. Furthermore, the activated phospho-Y1604 ALK was increasingly detected in 13 human lung cancer cell lines and 263 lung cancer specimens regardless of tumor stages and types. Treatment of two different ALK inhibitors, WHI-P154 and NVP-TAE684, resulted in the down-regulation of aberrant ALK signaling, shrinkage of tumor, and suppression of metastasis and significantly improved survival of ALK mutant-bearing mice. Together, we identified that novel ALK point mutations possessed tumorigenic effects mainly through hyperphosphorylation of Y1604 and activation of downstream oncogenic signaling. The upregulated phospho-Y1604 ALK could serve as a diagnostic biomarker for lung cancer. Furthermore, targeting oncogenic mutant ALKs with inhibitors could be a promising strategy to improve the therapeutic efficacy of fatal lung cancers. PMID:21847362

  1. Detection of Enhancer-Associated Rearrangements Reveals Mechanisms of Oncogene Dysregulation in B-cell Lymphoma

    PubMed Central

    Ryan, Russell J.H.; Drier, Yotam; Whitton, Holly; Cotton, M. Joel; Kaur, Jasleen; Issner, Robbyn; Gillespie, Shawn; Epstein, Charles B.; Nardi, Valentina; Sohani, Aliyah R.; Hochberg, Ephraim P.; Bernstein, Bradley E.

    2015-01-01

    B-cell lymphomas frequently contain genomic rearrangements that lead to oncogene activation by heterologous distal regulatory elements. We utilized a novel approach, termed ‘Pinpointing Enhancer-Associated Rearrangements by Chromatin Immunoprecipitation’ or PEAR-ChIP, to simultaneously map enhancer activity and proximal rearrangements in lymphoma cell lines and patient biopsies. This method detects rearrangements involving known cancer genes, including CCND1, BCL2, MYC, PDCD1LG2, NOTCH1, CIITA, and SGK1, as well as novel enhancer duplication events of likely oncogenic significance. We identify lymphoma subtype-specific enhancers in the MYC locus that are silenced in lymphomas with MYC-activating rearrangements and are associated with germline polymorphisms that alter lymphoma risk. We show that BCL6-locus enhancers are acetylated by the BCL6-activating transcription factor MEF2B, and can undergo genomic duplication, or target the MYC promoter for activation in the context of a “pseudo-double-hit” t(3;8)(q27;q24) rearrangement linking the BCL6 and MYC loci. Our work provides novel insights regarding enhancer-driven oncogene activation in lymphoma. PMID:26229090

  2. N- myc oncogene amplification is correlated to trace metal concentrations in neuroblastoma cultured cells

    NASA Astrophysics Data System (ADS)

    Gouget, B.; Sergeant, C.; Benard, J.; Llabador, Y.; Simonoff, M.

    2000-10-01

    N- myc oncogene amplification is a powerful predictor of aggressive behavior of neuroblastoma (NB), the most common solid tumor of the early childhood. Since N- myc overexpression - subsequent to amplification - determines a phenotype of invasiveness and metastatic spreading, it is assumed that N- myc amplified neuroblasts synthesize zinc metalloenzymes leading to tumor invasion and formation of metastases. In order to test a possible relation between N- myc oncogene amplification and trace metal contents in human NB cells, Fe, Cu and Zn concentrations have been measured by nuclear microprobe analysis in three human neuroblastoma cell lines with various degrees of N- myc amplification. Elemental determinations show uniform distribution of trace metals within the cells, but variations of intracellular trace metal concentrations with respect to the degree of N- myc amplification are highly dependent on the nature of the element. Zinc concentration is higher in both N- myc amplified cell lines (IMR-32 and IGR-N-91) than in the non-amplified cells (SK-N-SH). In contrast, intracellular iron content is particularly low in N- myc amplified cell lines. Moreover, copper concentrations showed an increase with the degree of N- myc amplification. These results indicate that a relationship exists between intracellular trace metals and N- myc oncogene amplification. They further suggest that trace metals very probably play a determinant role in mechanisms of the neuroblastoma invasiveness.

  3. Beneficial effects of low dose radiation in response to the oncogenic KRAS induced cellular transformation.

    PubMed

    Kim, Rae-Kwon; Kim, Min-Jung; Seong, Ki Moon; Kaushik, Neha; Suh, Yongjoon; Yoo, Ki-Chun; Cui, Yan-Hong; Jin, Young Woo; Nam, Seon Young; Lee, Su-Jae

    2015-01-01

    Recently low dose irradiation has gained attention in the field of radiotherapy. For lack of understanding of the molecular consequences of low dose irradiation, there is much doubt concerning its risks on human beings. In this article, we report that low dose irradiation is capable of blocking the oncogenic KRAS-induced malignant transformation. To address this hypothesis, we showed that low dose irradiation, at doses of 0.1 Gray (Gy); predominantly provide defensive response against oncogenic KRAS -induced malignant transformation in human cells through the induction of antioxidants without causing cell death and acts as a critical regulator for the attenuation of reactive oxygen species (ROS). Importantly, we elucidated that knockdown of antioxidants significantly enhanced ROS generation, invasive and migratory properties and abnormal acini formation in KRAS transformed normal as well as cancer cells. Taken together, this study demonstrates that low dose irradiation reduces the KRAS induced malignant cellular transformation through diminution of ROS. This interesting phenomenon illuminates the beneficial effects of low dose irradiation, suggesting one of contributory mechanisms for reducing the oncogene induced carcinogenesis that intensify the potential use of low dose irradiation as a standard regimen. PMID:26515758

  4. The MYC 3' Wnt-Responsive Element Drives Oncogenic MYC Expression in Human Colorectal Cancer Cells.

    PubMed

    Rennoll, Sherri A; Eshelman, Melanie A; Raup-Konsavage, Wesley M; Kawasawa, Yuka Imamura; Yochum, Gregory S

    2016-01-01

    Mutations in components of the Wnt/β-catenin signaling pathway drive colorectal cancer (CRC) by deregulating expression of downstream target genes including the c-MYC proto-oncogene (MYC). The critical regulatory DNA enhancer elements that control oncogenic MYC expression in CRC have yet to be fully elucidated. In previous reports, we correlated T-cell factor (TCF) and β-catenin binding to the MYC 3' Wnt responsive DNA element (MYC 3' WRE) with MYC expression in HCT116 cells. Here we used CRISPR/Cas9 to determine whether this element is a critical driver of MYC. We isolated a clonal population of cells that contained a deletion of a single TCF binding element (TBE) within the MYC 3' WRE. This deletion reduced TCF/β-catenin binding to this regulatory element and decreased MYC expression. Using RNA-Seq analysis, we found altered expression of genes that regulate metabolic processes, many of which are known MYC target genes. We found that 3' WRE-Mut cells displayed a reduced proliferative capacity, diminished clonogenic growth, and a decreased potential to form tumors in vivo. These findings indicate that the MYC 3' WRE is a critical driver of oncogenic MYC expression and suggest that this element may serve as a therapeutic target for CRC. PMID:27223305

  5. Cellular oncogene expression following exposure of mice to {gamma}-rays

    SciTech Connect

    Anderson, A.; Woloschak, G.E.

    1991-06-12

    We examined the effects of total body exposure of BCF1 mice to {gamma}-rays (300 cGy) in modulating expression of cellular oncogenes in both gut and liver tissues. We selected specific cellular oncogenes (c-fos, c-myc, c-src, and c-H-ras), based on their normal expression in liver and gut tissues from untreated mice. As early as 5 min. following whole body exposure of BCF1 mice to {gamma}-rays we detected induction of mRNA specific for c-src and c-H-ras in both liver and gut tissues. c-fos RNA was slightly decreased in accumulation in gut but was unaffected in liver tissue from irradiated mice relative to untreated controls. c-myc mRNA accumulation was unaffected in all tissues examined. These experiments document that modulation of cellular oncogene expression can occur as an early event in tissues following irradiation and suggest that this modulation may play a role in radiation-induced carcinogenesis.

  6. p53 mutations cooperate with oncogenic Kras to promote adenocarcinoma from pancreatic ductal cells.

    PubMed

    Bailey, J M; Hendley, A M; Lafaro, K J; Pruski, M A; Jones, N C; Alsina, J; Younes, M; Maitra, A; McAllister, F; Iacobuzio-Donahue, C A; Leach, S D

    2016-08-11

    Pancreatic cancer is one of the most lethal malignancies, with virtually all patients eventually succumbing to their disease. Mutations in p53 have been documented in >50% of pancreatic cancers. Owing to the high incidence of p53 mutations in PanIN 3 lesions and pancreatic tumors, we interrogated the comparative ability of adult pancreatic acinar and ductal cells to respond to oncogenic Kras and mutant Tp53(R172H) using Hnf1b:CreER(T2) and Mist1:CreER(T2) mice. These studies involved co-activation of a membrane-tethered GFP lineage label, allowing for direct visualization and isolation of cells undergoing Kras and mutant p53 activation. Kras activation in Mist1(+) adult acinar cells resulted in brisk PanIN formation, whereas no evidence of pancreatic neoplasia was observed for up to 6 months following Kras activation in Hnf1beta(+) adult ductal cells. In contrast to the lack of response to oncogenic Kras alone, simultaneous activation of Kras and mutant p53 in adult ductal epithelium generated invasive PDAC in 75% of mice as early as 2.5 months after tamoxifen administration. These data demonstrate that pancreatic ductal cells, whereas exhibiting relative resistance to oncogenic Kras alone, can serve as an effective cell of origin for pancreatic ductal adenocarcinoma in the setting of gain-of-function mutations in p53. PMID:26592447

  7. G protein-coupled receptors as oncogenic signals in glioma: emerging therapeutic avenues

    PubMed Central

    Cherry, Allison E; Stella, Nephi

    2014-01-01

    Gliomas are the most common malignant intracranial tumors. Newly developed targeted therapies for these cancers aim to inhibit oncogenic signals, many of which emanate from receptor tyrosine kinases, including the epidermal growth factor receptor (EGFR) and the vascular endothelial growth factor receptor (VEGFR). Unfortunately, the first generation treatments targeting these oncogenic signals provide little survival benefit in both mouse xenograft models and human patients. The search for new treatment options has uncovered several G protein-coupled receptor (GPCR) candidates and generated a growing interest in this class of proteins as alternative therapeutic targets for the treatment of various cancers, including GBM. GPCRs constitute a large family of membrane receptors that influence oncogenic pathways through canonical and non-canonical signaling. Accordingly, evidence indicates that GPCRs display a unique ability to crosstalk with receptor tyrosine kinases, making them important molecular components controlling tumorigenesis. This review summarizes the current research on GPCR functionality in gliomas and explores the potential of modulating these receptors to treat this devastating disease. PMID:25158675

  8. CDK1 phosphorylation of TAZ in mitosis inhibits its oncogenic activity

    PubMed Central

    Zhang, Lin; Chen, Xingcheng; Stauffer, Seth; Yang, Shuping; Chen, Yuanhong; Dong, Jixin

    2015-01-01

    The transcriptional co-activator with PDZ-binding motif (TAZ) is a downstream effector of the Hippo tumor suppressor pathway, which plays important roles in cancer and stem cell biology. Hippo signaling inactivates TAZ through phosphorylation (mainly at S89). In the current study, we define a new layer of regulation of TAZ activity that is critical for its oncogenic function. We found that TAZ is phosphorylated in vitro and in vivo by the mitotic kinase CDK1 at S90, S105, T326, and T346 during the G2/M phase of the cell cycle. Interestingly, mitotic phosphorylation inactivates TAZ oncogenic activity, as the non-phosphorylatable mutant (TAZ-S89A/S90A/S105A/T326A/T346A, TAZ-5A) possesses higher activity in epithelial-mesenchymal transition, anchorage-independent growth, cell migration, and invasion when compared to the TAZ-S89A mutant. Accordingly, TAZ-5A has higher transcriptional activity compared to the TAZ-S89A mutant. Finally, we show that TAZ-S89A or TAZ-5A (to a greater extent) was sufficient to induce spindle and centrosome defects, and chromosome misalignment/missegregation in immortalized epithelial cells. Together, our results reveal a previously unrecognized connection between TAZ oncogenicity and mitotic phospho-regulation. PMID:26375055

  9. Oncogenic features of the bone morphogenic protein 7 (BMP7) in pheochromocytoma

    PubMed Central

    Leinhäuser, Ines; Richter, Andrea; Lee, Misu; Höfig, Ines; Anastasov, Nataša; Fend, Falko; Ercolino, Tonino; Mannelli, Massimo; Gimenez-Roqueplo, Anne-Paule; Robledo, Mercedes; de Krijger, Ronald; Beuschlein, Felix; Atkinson, Michael J.; Pellegata, Natalia S.

    2015-01-01

    BMP7 is a growth factor playing pro- or anti-oncogenic roles in cancer in a cell type-dependent manner. We previously reported that the BMP7 gene is overexpressed in pheochromocytomas (PCCs) developing in MENX-affected rats and human patients. Here, analyzing a large cohort of PCC patients, we found that 72% of cases showed elevated levels of the BMP7 protein. To elucidate the role of BMP7 in PCC, we modulated its levels in PCC cell lines (overexpression in PC12, knockdown in MPC and MTT cells) and conducted functional assays. Active BMP signaling promoted cell proliferation, migration, and invasion, and sustained survival of MENX rat primary PCC cells. In PCC, BMP7 signals through the PI3K/AKT/mTOR pathway and causes integrin β1 up-regulation. Silencing integrin β1 in PC12 cells suppressed BMP7-mediated oncogenic features. Treatment of MTT cells with DMH1, a novel BMP antagonist, suppressed proliferation and migration. To verify the clinical applicability of our findings, we evaluated a dual PI3K/mTOR inhibitor (NVP-BEZ235) in MENX-affected rats in vivo. PCCs treated with NVP-BEZ235 had decreased proliferation and integrin β1 levels, and higher apoptosis. Altogether, BMP7 activates pro-oncogenic pathways in PCC. Downstream effectors of BMP7-mediated signaling may represent novel targets for treating progressive/inoperable PCC, still orphan of effective therapy. PMID:26337467

  10. Oncogenic features of the bone morphogenic protein 7 (BMP7) in pheochromocytoma.

    PubMed

    Leinhäuser, Ines; Richter, Andrea; Lee, Misu; Höfig, Ines; Anastasov, Nataša; Fend, Falko; Ercolino, Tonino; Mannelli, Massimo; Gimenez-Roqueplo, Anne-Paule; Robledo, Mercedes; de Krijger, Ronald; Beuschlein, Felix; Atkinson, Michael J; Pellegata, Natalia S

    2015-11-17

    BMP7 is a growth factor playing pro- or anti-oncogenic roles in cancer in a cell type-dependent manner. We previously reported that the BMP7 gene is overexpressed in pheochromocytomas (PCCs) developing in MENX-affected rats and human patients. Here, analyzing a large cohort of PCC patients, we found that 72% of cases showed elevated levels of the BMP7 protein. To elucidate the role of BMP7 in PCC, we modulated its levels in PCC cell lines (overexpression in PC12, knockdown in MPC and MTT cells) and conducted functional assays. Active BMP signaling promoted cell proliferation, migration, and invasion, and sustained survival of MENX rat primary PCC cells. In PCC, BMP7 signals through the PI3K/AKT/mTOR pathway and causes integrin β1 up-regulation. Silencing integrin β1 in PC12 cells suppressed BMP7-mediated oncogenic features. Treatment of MTT cells with DMH1, a novel BMP antagonist, suppressed proliferation and migration. To verify the clinical applicability of our findings, we evaluated a dual PI3K/mTOR inhibitor (NVP-BEZ235) in MENX-affected rats in vivo. PCCs treated with NVP-BEZ235 had decreased proliferation and integrin β1 levels, and higher apoptosis. Altogether, BMP7 activates pro-oncogenic pathways in PCC. Downstream effectors of BMP7-mediated signaling may represent novel targets for treating progressive/inoperable PCC, still orphan of effective therapy. PMID:26337467

  11. Emerging Roles of Agrobacterial Plant-Transforming Oncogenes in Plant Defense Reactions

    NASA Astrophysics Data System (ADS)

    Bulgakov, Victor P.; Inyushkina, Yuliya V.; Gorpenchenko, Tatiana Y.; Koren, Olga G.; Shkryl, Yuri N.; Zhuravlev, Yuri N.

    2009-01-01

    For recent years, engineering plant metabolic pathways by using rol genes looks promising in several aspects. New directions of rol-gene studies are highlighted in this work underlying the unique regulatory properties of the genes. It is known that following agrobacterial infection, the Agrobacterium rhizogenes rolA, rolB and rolC genes are transferred to plant genome, causing tumor formation and hairy root disease. In this report, we show mat these oncogenes are also involved in regulation of plant defense reactions, including the production of secondary metabolites. Situations occur where the rol genes perform their own critical function to regulate secondary metabolism by bypassing upstream plant control mechanisms and directing defense reactions via a "short cut." The rolC gene expressed in transformed plant cells is efficient in establishing an enhanced resistance of host cells to salt and temperature stresses. The emerging complexity of the rol-gene triggered effects and the involvement of signals generated by these genes in basic processes of cell biology such as calcium and ROS signaling indicate that the plant oncogenes, like some animal protooncogenes, use sophisticated strategies to affect cell growth and differentiation. The data raise the intriguing possibility that some components of plant and animal oncogene signaling pathways share common features.

  12. Oncogenic Ras differentially regulates metabolism and anoikis in extracellular matrix-detached cells.

    PubMed

    Mason, J A; Davison-Versagli, C A; Leliaert, A K; Pape, D J; McCallister, C; Zuo, J; Durbin, S M; Buchheit, C L; Zhang, S; Schafer, Z T

    2016-08-01

    In order for cancer cells to survive during metastasis, they must overcome anoikis, a caspase-dependent cell death process triggered by extracellular matrix (ECM) detachment, and rectify detachment-induced metabolic defects that compromise cell survival. However, the precise signals used by cancer cells to facilitate their survival during metastasis remain poorly understood. We have discovered that oncogenic Ras facilitates the survival of ECM-detached cancer cells by using distinct effector pathways to regulate metabolism and block anoikis. Surprisingly, we find that while Ras-mediated phosphatidylinositol (3)-kinase signaling is critical for rectifying ECM-detachment-induced metabolic deficiencies, the critical downstream effector is serum and glucocorticoid-regulated kinase-1 (SGK-1) rather than Akt. Our data also indicate that oncogenic Ras blocks anoikis by diminishing expression of the phosphatase PHLPP1 (PH Domain and Leucine-Rich Repeat Protein Phosphatase 1), which promotes anoikis through the activation of p38 MAPK. Thus, our study represents a novel paradigm whereby oncogene-initiated signal transduction can promote the survival of ECM-detached cells through divergent downstream effectors. PMID:26915296

  13. Hepatoma-derived growth factor/nucleolin axis as a novel oncogenic pathway in liver carcinogenesis

    PubMed Central

    Huang, Chao-Cheng; Kung, Mei-Lang; Chu, Tian-Huei; Yi, Li-Na; Huang, Shih-Tsung; Chan, Hoi-Hung; Chuang, Jiin-Haur; Liu, Li-Feng; Wu, Han-Chung; Wu, Deng-Chyang; Chang, Min-Chi; Tai, Ming-Hong

    2015-01-01

    Hepatoma-derived growth factor (HDGF) overexpression is involved in liver fibrosis and carcinogenesis. However, the receptor(s) and signaling for HDGF remain unclear. By using affinity chromatography and proteomic techniques, nucleolin (NCL) was identified and validated as a HDGF-interacting membrane protein in hepatoma cells. Exogenous HDGF elicited the membrane NCL accumulation within 0.5 hour by protein stabilization and transcriptional NCL upregulation within 24 hours. Blockade of surface NCL by antibodies neutralization potently suppressed HDGF uptake and HDGF-stimulated phosphatidylinositol 3-kinase (PI3K)/Akt signaling in hepatoma cells. By using rescectd hepatocellular carcinoma (HCC) tissues, immunohistochemical analysis revealed NCL overexpression was correlated with tumour grades, vascular invasion, serum alpha-fetoprotein levels and the poor survival in HCC patients. Multivariate analysis showed NCL was an independent prognostic factor for survival outcome of HCC patients after surgery. To delineate the role of NCL in liver carcinogenesis, ectopic NCL overexpression promoted the oncogenic behaviours and induced PI3K/Akt activation in hepatoma cells. Conversely, NCL knockdown by RNA interference attenuated the oncogenic behaviours and PI3K/Akt signaling, which could be partially rescued by exogenous HDGF supply. In summary, this study provides the first evidence that surface NCL transmits the oncogenic signaling of HDGF and facilitates a novel diagnostic and therapeutic target for HCC. PMID:25938538

  14. Activation of proto-oncogenes in human and mouse lung tumors

    SciTech Connect

    Reynolds, S.H.; Anderson, M.W. )

    1991-06-01

    Lung cancer is a leading cause of cancer-related deaths in several nations. Epidemiological studies have indicated that 85% of all lung cancer deaths and 30% of all cancer deaths in the US are associated with tobacco smoking. Various chemicals in tobacco smoke are thought to react with DNA and to ultimately yield heritable mutations. In an effort to understand the molecular mechanisms involved in lung tumorigenesis, the authors have analyzed proto-oncogene activation in a series of human lung tumors from smokers and spontaneously occurring and chemically induced lung tumors in mice. Approximately 86% of the human lung tumors and > 90% of the mouse lung tumors were found to contain activated oncogenes. ras Oncogenes activated by point mutations were detected in many of the human lung adenocarcinomas and virtually all of the mouse lung adenomas and adenocarcinomas. The mutation profiles of the activated K-ras genes detected in the chemically induced mouse lung tumors suggest that the observed mutations result from genotoxic effects of the chemicals. Comparison of the K-ras mutations observed in the human lung adenocarcinomas with mutation profiles observed in the mouse lung tumors suggest that bulky hydrophobic DNA adducts may be responsible for the majority of the mutations observed in the activated human K-ras genes. Other data indicate that approximately 20% of human lung tumors contain potentially novel transforming genes that may also be targets for mutagens in cigarette smoke.

  15. Individual and Complementary Effects of Human Papillomavirus Oncogenes on Epithelial Cell Proliferation and Differentiation.

    PubMed

    Bergner, Sven; Halec, Gordana; Schmitt, Markus; Aubin, François; Alonso, Angel; Auvinen, Eeva

    2016-01-01

    Previous studies on human papillomavirus (HPV) type 16 protein functions have established the oncogenic nature of three viral proteins: E5, E6 and E7. Here we have studied the functions of these proteins by functional deletion of the individual E5, E6 or E7, or both E6 and E7 oncogenes in the context of the whole viral genome. These mutants, or the intact wild-type genome, were expressed from the natural viral promoters along with differentiation of epithelial HaCaT cells in three-dimensional collagen raft cultures. High episomal viral copy numbers were obtained using a transfection-based loxp-HPV16-eGFP-N1 vector system. All epithelial equivalents carrying the different HPV type 16 genomes showed pronounced hyperplastic and dysplastic morphology. Particularly the E7 oncogene, with contribution of E6, was shown to enhance cell proliferation. Specifically, the crucial role of E7 in HPV-associated hyperproliferation was clearly manifested. Based on morphological characteristics, immunohistochemical staining for differentiation and proliferation markers, and low expression of E1^E4, we propose that our raft culture models produce cervical intraepithelial neoplasia (CIN)1 and CIN2-like tissue. Our experimental setting provides an alternative tool to study concerted functions of HPV proteins in the development of epithelial dysplasia. PMID:26636751

  16. Pin1 is required for sustained B cell proliferation upon oncogenic activation of Myc

    PubMed Central

    D'Artista, Luana; Bisso, Andrea; Piontini, Andrea; Doni, Mirko; Verrecchia, Alessandro; Kress, Theresia R.; Morelli, Marco J.; Del Sal, Giannino; Amati, Bruno; Campaner, Stefano

    2016-01-01

    The c-myc proto-oncogene is activated by translocation in Burkitt's lymphoma and substitutions in codon 58 stabilize the Myc protein or augment its oncogenic potential. In wild-type Myc, phosphorylation of Ser 62 and Thr 58 provides a landing pad for the peptidyl prolyl-isomerase Pin1, which in turn promotes Ser 62 dephosphorylation and Myc degradation. However, the role of Pin1 in Myc-induced lymphomagenesis remains unknown. We show here that genetic ablation of Pin1 reduces lymphomagenesis in Eμ-myc transgenic mice. In both Pin1-deficient B-cells and MEFs, the proliferative response to oncogenic Myc was selectively impaired, with no alterations in Myc-induced apoptosis or mitogen-induced cell cycle entry. This proliferative defect wasn't attributable to alterations in either Ser 62 phosphorylation or Myc-regulated transcription, but instead relied on the activity of the ARF-p53 pathway. Pin1 silencing in lymphomas retarded disease progression in mice, making Pin1 an attractive therapeutic target in Myc-driven tumors. PMID:26943576

  17. Hepatoma-derived growth factor/nucleolin axis as a novel oncogenic pathway in liver carcinogenesis.

    PubMed

    Chen, San-Cher; Hu, Tsung-Hui; Huang, Chao-Cheng; Kung, Mei-Lang; Chu, Tian-Huei; Yi, Li-Na; Huang, Shih-Tsung; Chan, Hoi-Hung; Chuang, Jiin-Haur; Liu, Li-Feng; Wu, Han-Chung; Wu, Deng-Chyang; Chang, Min-Chi; Tai, Ming-Hong

    2015-06-30

    Hepatoma-derived growth factor (HDGF) overexpression is involved in liver fibrosis and carcinogenesis. However, the receptor(s) and signaling for HDGF remain unclear. By using affinity chromatography and proteomic techniques, nucleolin (NCL) was identified and validated as a HDGF-interacting membrane protein in hepatoma cells. Exogenous HDGF elicited the membrane NCL accumulation within 0.5 hour by protein stabilization and transcriptional NCL upregulation within 24 hours. Blockade of surface NCL by antibodies neutralization potently suppressed HDGF uptake and HDGF-stimulated phosphatidylinositol 3-kinase (PI3K)/Akt signaling in hepatoma cells. By using rescectd hepatocellular carcinoma (HCC) tissues, immunohistochemical analysis revealed NCL overexpression was correlated with tumour grades, vascular invasion, serum alpha-fetoprotein levels and the poor survival in HCC patients. Multivariate analysis showed NCL was an independent prognostic factor for survival outcome of HCC patients after surgery. To delineate the role of NCL in liver carcinogenesis, ectopic NCL overexpression promoted the oncogenic behaviours and induced PI3K/Akt activation in hepatoma cells. Conversely, NCL knockdown by RNA interference attenuated the oncogenic behaviours and PI3K/Akt signaling, which could be partially rescued by exogenous HDGF supply. In summary, this study provides the first evidence that surface NCL transmits the oncogenic signaling of HDGF and facilitates a novel diagnostic and therapeutic target for HCC. PMID:25938538

  18. Modulation of junction tension by tumor suppressors and proto-oncogenes regulates cell-cell contacts.

    PubMed

    Bosveld, Floris; Guirao, Boris; Wang, Zhimin; Rivière, Mathieu; Bonnet, Isabelle; Graner, François; Bellaïche, Yohanns

    2016-02-15

    Tumor suppressors and proto-oncogenes play crucial roles in tissue proliferation. Furthermore, de-regulation of their functions is deleterious to tissue architecture and can result in the sorting of somatic rounded clones minimizing their contact with surrounding wild-type (wt) cells. Defects in the shape of somatic clones correlate with defects in proliferation, cell affinity, cell-cell adhesion, oriented cell division and cortical contractility. Combining genetics, live-imaging, laser ablation and computer simulations, we aim to analyze whether distinct or similar mechanisms can account for the common role of tumor suppressors and proto-oncogenes in cell-cell contact regulation. In Drosophila epithelia, the tumor suppressors Fat (Ft) and Dachsous (Ds) regulate cell proliferation, tissue morphogenesis, planar cell polarity and junction tension. By analyzing the evolution over time of ft mutant cells and clones, we show that ft clones reduce their cell-cell contacts with the surrounding wt tissue in the absence of concomitant cell divisions and over-proliferation. This contact reduction depends on opposed changes of junction tensions in the clone bulk and its boundary with neighboring wt tissue. More generally, either clone bulk or boundary junction tension is modulated by the activation of Yorkie, Myc and Ras, yielding similar contact reductions with wt cells. Together, our data highlight mechanical roles for proto-oncogene and tumor suppressor pathways in cell-cell interactions. PMID:26811379

  19. Development of neutralizing monoclonal antibodies for oncogenic human papillomavirus types 31, 33, 45, 52, and 58.

    PubMed

    Brown, Martha J; Seitz, Hanna; Towne, Victoria; Müller, Martin; Finnefrock, Adam C

    2014-04-01

    Human papillomavirus (HPV) is the etiological agent for all cervical cancers, a significant number of other anogenital cancers, and a growing number of head and neck cancers. Two licensed vaccines offer protection against the most prevalent oncogenic types, 16 and 18, responsible for approximately 70% of cervical cancer cases worldwide and one of these also offers protection against types 6 and 11, responsible for 90% of genital warts. The vaccines are comprised of recombinantly expressed major capsid proteins that self-assemble into virus-like particles (VLPs) and prevent infection by eliciting neutralizing antibodies. Adding the other frequently identified oncogenic types 31, 33, 45, 52, and 58 to a vaccine would increase the coverage against HPV-induced cancers to approximately 90%. We describe the generation and characterization of panels of monoclonal antibodies to these five additional oncogenic HPV types, and the selection of antibody pairs that were high affinity and type specific and recognized conformation-dependent neutralizing epitopes. Such characteristics make these antibodies useful tools for monitoring the production and potency of a prototype vaccine as well as monitoring vaccine-induced immune responses in the clinic. PMID:24574536

  20. Overview on how oncogenic Kras promotes pancreatic carcinogenesis by inducing low intracellular ROS levels.

    PubMed

    Kong, Bo; Qia, Chengjia; Erkan, Mert; Kleeff, Jörg; Michalski, Christoph W

    2013-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease without clearly known disease causes. Recent epidemiological and animal studies suggest that the supplementation of dietary antioxidants (e.g., vitamins C and E) decreases cancer risk, implying that increased reactive oxygen species (ROS) may play a role in pancreatic carcinogenesis. However, oncogenic Kras mutations (e.g., Kras(G12D)), which are present in more than 90% of PDAC, have been proven to foster low intracellular ROS levels. Here, oncogenic Kras activates expression of a series of anti-oxidant genes via Nrf2 (nuclear factor, erythroid derived 2, like 2) and also mediates an unusual metabolic pathway of glutamine to generate NADPH. This can then be used as the reducing power for ROS detoxification, leading collectively to low ROS levels in pancreatic pre-neoplastic cells and in cancer cells. In adult stem cells and cancer stem cells, low ROS levels have been associated with the formation of a proliferation-permissive intracellular environment and with perseverance of self-renewal capacities. Therefore, it is conceivable that low intracellular ROS levels may contribute significantly to oncogenic Kras-mediated PDAC formation. PMID:24062691

  1. Congenital fibrosarcoma in complete remission with Somatostatin, Bromocriptine, Retinoids, Vitamin D3, Vitamin E, Vitamin C, Melatonin, Calcium, Chondroitin sulfate associated with low doses of Cyclophosphamide in a 14-year Follow up.

    PubMed

    Di Bella, Giuseppe; Toscano, Rosilde; Ricchi, Alessandro; Colori, Biagio

    2015-01-01

    At birth, a male child presented a 6 cm tumour in the right leg. The tumour was partially removed after just 12 days. Histology showed a congenital fibrosarcoma associated with reactive lymphadenitis. A first cycle of adjuvant chemotherapy did not prevent the rapid progression of the disease. Subsequent evaluation for surgical removal raised serious concerns due to the need for a major operation involving total amputation of the right leg and hemipelvectomy. Since surgery could not exclude the possibility of disease recurrence and since the traditional cycles of chemotherapy did not offer any possibility of a cure, the parents opted for the Di Bella Method. The combined use of Somatostatin, Melatonin, Retinoids solubilized in Vit. E, Vit. C, Vit. D3, Calcium, and Chondroitin sulfate associated with low doses of Cyclophosphamide resulted in a complete objective response, still present 14 years later, with no toxicity and without the need for hospitalization, allowing a normal quality of life and perfectly normal adolescent psycho-physical development. PMID:26921571

  2. Activation of phospholipase D by growth factors and oncogenes in murine fibroblasts follow alternative but cross-talking pathways.

    PubMed Central

    del Peso, L; Lucas, L; Esteve, P; Lacal, J C

    1997-01-01

    Phospholipase D (PLD) is activated by a variety of stimuli, including mitogenic stimulation by growth factors and oncogene transformation. Activation of PLD by growth factors requires protein kinase C (PKC) since depletion of the enzyme by down-regulation or direct inhibition by specific drugs completely abrogates this effect. Transformation by the ras and src oncogenes is also associated with an increase in basal PLD activity. However, this effect is not dependent on PKC, suggesting that growth factors and oncogenes may activate PLD by two independent mechanisms. Here we demonstrate that activation of PLD by phorbol esters is greatly enhanced in ras-transformed cells, suggesting synergistic activation of PLD by ras oncogenes and PKC. Also, ras-transformed cells showed a dramatic attenuation of the PLD activation induced by growth factors, although receptor function was still detectable. This attenuation paralleled the specific uncoupling of the phosphatidylinositol-specific phospholipase C (PI-PLC) pathway, indicating that activation of PLD by growth factors may be mediated by PI-PLC and PKC activation. Attenuation of PLD activation by platelet-derived growth factor was also observed in several oncogene-transformed cells, as well as the uncoupling of the PI-PLC pathway. Neither the co-operation with PKC activation nor the attenuation of the PLD response to growth factors in ras-transformed cells was a general consequence of cell transformation, since cells transformed by other oncogenes showed a normal response to either treatment. These results support the existence of at least two alternative signalling routes for the activation of PLD, one mediated by the PI-PLC/diacylglycerol/PKC pathway and a second one mediated by several oncogenes, independent of the PKC pathway, which synergizes with the PI-PLC/PKC-dependent pathway. PMID:9065772

  3. The prolactin receptor mediates HOXA1-stimulated oncogenicity in mammary carcinoma cells.

    PubMed

    Hou, Lin; Xu, Bing; Mohankumar, Kumarasamypet M; Goffin, Vincent; Perry, Jo K; Lobie, Peter E; Liu, Dong-Xu

    2012-12-01

    The HOX genes are a highly conserved subgroup of homeodomain-containing transcription factors that are crucial to normal development. Forced expression of HOXA1 results in oncogenic transformation of immortalized human mammary cells with aggressive tumour formation in vivo. Microarray analysis identified that the prolactin receptor (PRLR) was significantly upregulated by forced expression of HOXA1 in mammary carcinoma cells. To determine prolactin (PRL) involvement in HOXA1‑induced oncogenicity in mammary carcinoma cells (MCF-7), we examined the effect of human prolactin (hPRL)-initiated PRLR signal transduction on changes in cellular behaviour mediated by HOXA1. Forced expression of HOXA1 in MCF-7 cells increased PRLR mRNA and protein expression. Forced expression of HOXA1 also enhanced hPRL-stimulated phosphorylation of both STAT5A/B and p44/42 MAPK, and increased subsequent transcriptional activity of STAT5A and STAT5B, and Elk-1 and Sap1a, respectively. Moreover, forced expression of HOXA1 in MCF-7 cells enhanced the hPRL‑stimulated increase in total cell number as a consequence of enhanced cell proliferation and cell survival, and also enhanced hPRL-stimulated anchorage-independent growth in soft agar. Increased anchorage-independent growth was attenuated by the PRLR antagonist ∆1-9-G129R‑hPRL. In conclusion, we have demonstrated that HOXA1 increases expression of the cell surface receptor PRLR and enhances PRLR-mediated signal transduction. Thus, the PRLR is one mediator of HOXA1‑stimulated oncogenicity in mammary carcinoma cells. PMID:23064471

  4. Combining Immunotherapy with Oncogene-Targeted Therapy: A New Road for Melanoma Treatment

    PubMed Central

    Aris, Mariana; Barrio, María Marcela

    2015-01-01

    Cutaneous melanoma arises from the malignant transformation of skin melanocytes; its incidence and mortality have been increasing steadily over the last 50 years, now representing 3% of total tumors. Once melanoma metastasizes, prognosis is somber and therapeutic options are limited. However, the discovery of prevalent BRAF mutations in at least 50% of melanoma tumors led to development of BRAF-inhibitors, and other drugs targeting the MAPK pathway including MEK-inhibitors, are changing this reality. These recently approved treatments for metastatic melanoma have made a significant impact on patient survival; though the results are shadowed by the appearance of drug-resistance. Combination therapies provide a rational strategy to potentiate efficacy and potentially overcome resistance. Undoubtedly, the last decade has also born a renaissance of immunotherapy, and encouraging advances in metastatic melanoma treatment are illuminating the road. Immune checkpoint blockades, such as CTLA-4 antagonist-antibodies, and multiple cancer vaccines are now invaluable arms of anti-tumor therapy. Recent work has brought to light the delicate relationship between tumor biology and the immune system. Host immunity contributes to the anti-tumor activity of oncogene-targeted inhibitors within a complex network of cytokines and chemokines. Therefore, combining immunotherapy with oncogene-targeted drugs may be the key to melanoma control. Here, we review ongoing clinical studies of combination therapies using both oncogene inhibitors and immunotherapeutic strategies in melanoma patients. We will revisit the preclinical evidence that tested sequential and concurrent schemes in suitable animal models and formed the basis for the current trials. Finally, we will discuss potential future directions of the field. PMID:25709607

  5. Multiple endocrine neoplasias type 2B and RET proto-oncogene

    PubMed Central

    2012-01-01

    Multiple Endocrine Neoplasia type 2B (MEN 2B) is an autosomal dominant complex oncologic neurocristopathy including medullary thyroid carcinoma, pheochromocytoma, gastrointestinal disorders, marphanoid face, and mucosal multiple ganglioneuromas. Medullary thyroid carcinoma is the major cause of mortality in MEN 2B syndrome, and it often appears during the first years of life. RET proto-oncogene germline activating mutations are causative for MEN 2B. The 95% of MEN 2B patients are associated with a point mutation in exon 16 (M918/T). A second point mutation at codon 883 has been found in 2%-3% of MEN 2B cases. RET proto-oncogene is also involved in different neoplastic and not neoplastic neurocristopathies. Other RET mutations cause MEN 2A syndrome, familial medullary thyroid carcinoma, or Hirschsprung's disease. RET gene expression is also involved in Neuroblastoma. The main diagnosis standards are the acetylcholinesterase study of rectal mucosa and the molecular analysis of RET. In our protocol the rectal biopsy is, therefore, the first approach. RET mutation detection offers the possibility to diagnose MEN 2B predisposition at a pre-clinical stage in familial cases, and to perform an early total prophylactic thyroidectomy. The surgical treatment of MEN 2B is total thyroidectomy with cervical limphadenectomy of the central compartment of the neck. When possible, this intervention should be performed with prophylactic aim before 1 year of age in patients with molecular genetic diagnosis. Recent advances into the mechanisms of RET proto-oncogene signaling and pathways of RET signal transduction in the development of MEN 2 and MTC will allow new treatment possibilities. PMID:22429913

  6. The Plasticity of Oncogene Addiction: Implications for Targeted Therapies Directed to Receptor Tyrosine Kinases12

    PubMed Central

    Pillay, Vinochani; Allaf, Layal; Wilding, Alexander L; Donoghue, Jacqui F; Court, Naomi W; Greenall, Steve A; Scott, Andrew M; Johns, Terrance G

    2009-01-01

    A common mutation of the epidermal growth factor receptor (EGFR) in glioblastoma multiforme (GBM) is an extracellular truncation known as the de2-7 EGFR (or EGFRvIII). Hepatocyte growth factor (HGF) is the ligand for the receptor tyrosine kinase (RTK) c-Met, and this signaling axis is often active in GBM. The expression of the HGF/c-Met axis or de2-7 EGFR independently enhances GBMgrowth and invasiveness, particularly through the phosphatidylinositol-3 kinase/pAkt pathway. Using RTK arrays, we show that expression of de2-7 EGFR in U87MG GBM cells leads to the coactivation of several RTKs, including platelet-derived growth factor receptor β and c-Met. A neutralizing antibody to HGF (AMG102) did not inhibit de2-7 EGFR-mediated activation of c-Met, demonstrating that it is ligand-independent. Therapy for parental U87MG xenografts with AMG 102 resulted in significant inhibition of tumor growth, whereas U87MG.Δ2-7 xenografts were profoundly resistant. Treatment of U87MG.Δ2-7 xenografts with panitumumab, an anti-EGFR antibody, only partially inhibited tumor growth as xenografts rapidly reverted to the HGF/c-Met signaling pathway. Cotreatment with panitumumab and AMG 102 prevented this escape leading to significant tumor inhibition through an apoptotic mechanism, consistent with the induction of oncogenic shock. This observation provides a rationale for using panitumumab and AMG 102 in combination for the treatment of GBM patients. These results illustrate that GBM cells can rapidly change the RTK driving their oncogene addiction if the alternate RTK signals through the same downstream pathway. Consequently, inhibition of a dominant oncogene by targeted therapy can alter the hierarchy of RTKs resulting in rapid therapeutic resistance. PMID:19412429

  7. RNAi-mediated oncogene silencing confers resistance to crown gall tumorigenesis.

    PubMed

    Escobar, M A; Civerolo, E L; Summerfelt, K R; Dandekar, A M

    2001-11-01

    Crown gall disease, caused by the soil bacterium Agrobacterium tumefaciens, results in significant economic losses in perennial crops worldwide. A. tumefaciens is one of the few organisms with a well characterized horizontal gene transfer system, possessing a suite of oncogenes that, when integrated into the plant genome, orchestrate de novo auxin and cytokinin biosynthesis to generate tumors. Specifically, the iaaM and ipt oncogenes, which show approximately 90% DNA sequence identity across studied A. tumefaciens strains, are required for tumor formation. By expressing two self-complementary RNA constructions designed to initiate RNA interference (RNAi) of iaaM and ipt, we generated transgenic Arabidopsis thaliana and Lycopersicon esculentum plants that are highly resistant to crown gall disease development. In in vitro root inoculation bioassays with two biovar I strains of A. tumefaciens, transgenic Arabidopsis lines averaged 0.0-1.5% tumorigenesis, whereas wild-type controls averaged 97.5% tumorigenesis. Similarly, several transformed tomato lines that were challenged by stem inoculation with three biovar I strains, one biovar II strain, and one biovar III strain of A. tumefaciens displayed between 0.0% and 24.2% tumorigenesis, whereas controls averaged 100% tumorigenesis. This mechanism of resistance, which is based on mRNA sequence homology rather than the highly specific receptor-ligand binding interactions characteristic of traditional plant resistance genes, should be highly durable. If successful and durable under field conditions, RNAi-mediated oncogene silencing may find broad applicability in the improvement of tree crop and ornamental rootstocks. PMID:11687652

  8. IL-33 Facilitates Oncogene Induced Cholangiocarcinoma in Mice by an IL-6 Sensitive Mechanism

    PubMed Central

    Yamada, Daisaku; Rizvi, Sumera; Razumilava, Nataliya; Bronk, Steven F.; Davila, Jaime I.; Champion, Mia D.; Borad, Mitesh J.; Bezerra, Jorge A.; Chen, Xin; Gores, Gregory J.

    2015-01-01

    Cholangiocarcinoma (CCA) is a lethal hepatobiliary neoplasm originating from the biliary apparatus. In humans, CCA risk factors include hepatobiliary inflammation and fibrosis. The recently identified IL-1 family member, IL-33, has been shown to be a biliary mitogen which also promotes liver inflammation and fibrosis. Our aim was to generate a mouse model of CCA mimicking the human disease. Ectopic oncogene expression in the biliary tract was accomplished by the Sleeping Beauty transposon transfection system with transduction of constitutively active AKT (myr-AKT) and Yes-associated protein (YAP). Intrabiliary instillation of the transposon-transposase complex was coupled with lobar bile duct ligation in CL57BL/6 mice, followed by administration of IL-33 for three consecutive days. Tumors developed in 72% of the male mice receiving both oncogenes plus IL-33 by 10 weeks, but in only 20% of the male mice transduced with the oncogenes alone. Tumors expressed SOX9 and pancytokeratin (PanCK) [features of cholangiocarcinoma] but were negative for HepPar1 [a marker of hepatocellular carcinoma (HCC)]. RNA profiling revealed substantive overlap with human CCA specimens. Not only did IL-33 induce IL-6 expression by human cholangiocytes, but IL-33 likely facilitated tumor development in vivo by an IL-6 sensitive process, as tumor development was significantly attenuated in Il-6 -/- male animals. Furthermore, tumor formation occurred at a similar rate when IL-6 was substituted for IL-33 in this model. In conclusion, the transposase-mediated transduction of constitutively active AKT and YAP in the biliary epithelium coupled with lobar obstruction and IL-33 administration results in the development of CCA with morphological and biochemical features of the human disease. This model highlights the role of inflammatory cytokines in CCA oncogenesis. PMID:25580681

  9. The Role of Hypoxia Inducible Factor-1 Alpha in Bypassing Oncogene-Induced Senescence

    PubMed Central

    Kilic Eren, Mehtap; Tabor, Vedrana

    2014-01-01

    Oncogene induced senescence (OIS) is a sustained anti-proliferative response acutely induced in primary cells via activation of mitogenic oncogenes such as Ras/BRAF. This mechanism acts as an initial barrier preventing normal cells transformation into malignant cell. Besides oncogenic activation and DNA damage response (DDR), senescence is modulated by a plethora of other factors, and one of the most important one is oxygen tension of the tissue. The aim of this study was to determine the impact of hypoxia on RasV12-induced senescence in human diploid fibroblasts (HDFs). We showed here that hypoxia prevents execution of oncogene induced senescence (OIS), through a strong down-regulation of senescence hallmarks, such as SA- β-galactosidase, H3K9me3, HP1γ, p53, p21CIP1 and p16INK4a in association with induction of hypoxia inducible factor-1α (HIF-1α). In addition, hypoxia also decreased marks of H-RasV12-induced DDR in both cell lines through down-regulation of ATM/ATR, Chk1 and Chk2 phosphorylation as well as decreased γ-H2AX positivity. Utilizing shRNA system targeting HIF-1α we show that HIF-1α is directly involved in down regulation of p53 and its target p21CIP1 but not p16INK4a. In line with this finding we found that knock down of HIF-1α leads to a strong induction of apoptotic response, but not restoration of senescence in Ras expressing HDFs in hypoxia. This indicates that HIF-1α is an important player in early steps of tumorigenesis, leading to suppression of senescence through its negative regulation of p53 and p21CIP1. In our work we describe a mechanism through which hypoxia and specifically HIF-1α preclude cells from maintaining senescence-driven anti proliferative response. These findings indicate the possible mechanism through which hypoxic environment helps premalignant cells to evade impingement of cellular failsafe pathways. PMID:24984035

  10. Regulation of B versus T lymphoid lineage fate decision by the proto-oncogene LRF

    PubMed Central

    Maeda, Takahiro; Merghoub, Taha; Hobbs, Robin M.; Dong, Lin; Maeda, Manami; Zakrzewski, Johannes; van den Brink, Marcel R. M.; Zelent, Arthur; Shigematsu, Hirokazu; Akashi, Koichi; Teruya-Feldstein, Julie; Cattoretti, Giorgio; Pandolfi, Pier Paolo

    2010-01-01

    Hematopoietic stem cells in the bone marrow give rise to lymphoid progenitors, which subsequently differentiate into B and T lymphocytes. Here we show that the proto-oncogene LRF plays an essential role in the B versus T lymphoid cell fate decision. We demonstrate that LRF is key for instructing early lymphoid progenitors to develop into B lineage cells by repressing T cell-instructive signals produced by the cell fate signal protein, Notch. We propose a new model for lymphoid lineage commitment, in which LRF acts as a master regulator of B versus T lineage fate decision. PMID:17495164

  11. Normal Expression of a Rearranged and Mutated c-myc Oncogene after Transfection into Fibroblasts

    NASA Astrophysics Data System (ADS)

    Richman, Adam; Hayday, Adrian

    1989-10-01

    Expression of the c-myc oncogene is deregulated in a variety of malignancies. Rearrangement and mutation of the c-myc locus is a characteristic feature of human Burkitt's lymphoma. Whether deregulation is solely a result of mutation of c-myc or whether it is influenced by the transformed B cell context has not been determined. A translocated and mutated allele of c-myc was stably transfected into fibroblasts. The rearranged allele was expressed indistinguishably from a normal c-myc gene: it had serum-regulated expression, was transcribed with normal promoter preference, and was strongly attenuated. Thus mutations by themselves are insufficient to deregulate c-myc transcription.

  12. Oncogenic and oncosuppressive signal transduction at mitochondria-associated endoplasmic reticulum membranes

    PubMed Central

    Marchi, Saverio; Giorgi, Carlotta; Oparka, Monika; Duszynski, Jerzy; Wieckowski, Mariusz R; Pinton, Paolo

    2014-01-01

    The different mechanisms employed by proto-oncogenes and tumor suppressors to regulate cell death pathways are strictly linked to their localization. In addition to the canonical control of apoptosis at a transcriptional/nuclear level, intracellular zones are emerging as pivotal sites for the activities of several proapoptotic and antiapoptotic factors. Here, we review the function of the endoplasmic reticulum-mitochondria interface as a primary platform for decoding danger signals as well as a structural accommodation for several regulator or effector proteins. PMID:27308328

  13. BTB-Zinc Finger Oncogenes Are Required for Ras and Notch-Driven Tumorigenesis in Drosophila

    PubMed Central

    Doggett, Karen; Turkel, Nezaket; Willoughby, Lee F.; Ellul, Jason; Murray, Michael J.; Richardson, Helena E.; Brumby, Anthony M.

    2015-01-01

    During tumorigenesis, pathways that promote the epithelial-to-mesenchymal transition (EMT) can both facilitate metastasis and endow tumor cells with cancer stem cell properties. To gain a greater understanding of how these properties are interlinked in cancers we used Drosophila epithelial tumor models, which are driven by orthologues of human oncogenes (activated alleles of Ras and Notch) in cooperation with the loss of the cell polarity regulator, scribbled (scrib). Within these tumors, both invasive, mesenchymal-like cell morphology and continual tumor overgrowth, are dependent upon Jun N-terminal kinase (JNK) activity. To identify JNK-dependent changes within the tumors we used a comparative microarray analysis to define a JNK gene signature common to both Ras and Notch-driven tumors. Amongst the JNK-dependent changes was a significant enrichment for BTB-Zinc Finger (ZF) domain genes, including chronologically inappropriate morphogenesis (chinmo). chinmo was upregulated by JNK within the tumors, and overexpression of chinmo with either RasV12 or Nintra was sufficient to promote JNK-independent epithelial tumor formation in the eye/antennal disc, and, in cooperation with RasV12, promote tumor formation in the adult midgut epithelium. Chinmo primes cells for oncogene-mediated transformation through blocking differentiation in the eye disc, and promoting an escargot-expressing stem or enteroblast cell state in the adult midgut. BTB-ZF genes are also required for Ras and Notch-driven overgrowth of scrib mutant tissue, since, although loss of chinmo alone did not significantly impede tumor development, when loss of chinmo was combined with loss of a functionally related BTB-ZF gene, abrupt, tumor overgrowth was significantly reduced. abrupt is not a JNK-induced gene, however, Abrupt is present in JNK-positive tumor cells, consistent with a JNK-associated oncogenic role. As some mammalian BTB-ZF proteins are also highly oncogenic, our work suggests that EMT

  14. BTB-Zinc Finger Oncogenes Are Required for Ras and Notch-Driven Tumorigenesis in Drosophila.

    PubMed

    Doggett, Karen; Turkel, Nezaket; Willoughby, Lee F; Ellul, Jason; Murray, Michael J; Richardson, Helena E; Brumby, Anthony M

    2015-01-01

    During tumorigenesis, pathways that promote the epithelial-to-mesenchymal transition (EMT) can both facilitate metastasis and endow tumor cells with cancer stem cell properties. To gain a greater understanding of how these properties are interlinked in cancers we used Drosophila epithelial tumor models, which are driven by orthologues of human oncogenes (activated alleles of Ras and Notch) in cooperation with the loss of the cell polarity regulator, scribbled (scrib). Within these tumors, both invasive, mesenchymal-like cell morphology and continual tumor overgrowth, are dependent upon Jun N-terminal kinase (JNK) activity. To identify JNK-dependent changes within the tumors we used a comparative microarray analysis to define a JNK gene signature common to both Ras and Notch-driven tumors. Amongst the JNK-dependent changes was a significant enrichment for BTB-Zinc Finger (ZF) domain genes, including chronologically inappropriate morphogenesis (chinmo). chinmo was upregulated by JNK within the tumors, and overexpression of chinmo with either RasV12 or Nintra was sufficient to promote JNK-independent epithelial tumor formation in the eye/antennal disc, and, in cooperation with RasV12, promote tumor formation in the adult midgut epithelium. Chinmo primes cells for oncogene-mediated transformation through blocking differentiation in the eye disc, and promoting an escargot-expressing stem or enteroblast cell state in the adult midgut. BTB-ZF genes are also required for Ras and Notch-driven overgrowth of scrib mutant tissue, since, although loss of chinmo alone did not significantly impede tumor development, when loss of chinmo was combined with loss of a functionally related BTB-ZF gene, abrupt, tumor overgrowth was significantly reduced. abrupt is not a JNK-induced gene, however, Abrupt is present in JNK-positive tumor cells, consistent with a JNK-associated oncogenic role. As some mammalian BTB-ZF proteins are also highly oncogenic, our work suggests that EMT

  15. Kaposi Sarcoma of Childhood: Inborn or Acquired Immunodeficiency to Oncogenic HHV-8.

    PubMed

    Jackson, Carolyn C; Dickson, Mark A; Sadjadi, Mahan; Gessain, Antoine; Abel, Laurent; Jouanguy, Emmanuelle; Casanova, Jean-Laurent

    2016-03-01

    Kaposi sarcoma (KS) is an endothelial malignancy caused by human herpes virus-8 (HHV-8) infection. The epidemic and iatrogenic forms of childhood KS result from a profound and acquired T cell deficiency. Recent studies have shown that classic KS of childhood can result from rare single-gene inborn errors of immunity, with mutations in WAS, IFNGR1, STIM1, and TNFRSF4. The pathogenesis of the endemic form of childhood KS has remained elusive. We review childhood KS pathogenesis and its relationship to inherited and acquired immunodeficiency to oncogenic HHV-8. PMID:26469702

  16. Evidence that synthetic lethality underlies the mutual exclusivity of oncogenic KRAS and EGFR mutations in lung adenocarcinoma

    PubMed Central

    Unni, Arun M; Lockwood, William W; Zejnullahu, Kreshnik; Lee-Lin, Shih-Queen; Varmus, Harold

    2015-01-01

    Human lung adenocarcinomas (LUAD) contain mutations in EGFR in ∼15% of cases and in KRAS in ∼30%, yet no individual adenocarcinoma appears to carry activating mutations in both genes, a finding we have confirmed by re-analysis of data from over 600 LUAD. Here we provide evidence that co-occurrence of mutations in these two genes is deleterious. In transgenic mice programmed to express both mutant oncogenes in the lung epithelium, the resulting tumors express only one oncogene. We also show that forced expression of a second oncogene in human cancer cell lines with an endogenous mutated oncogene is deleterious. The most prominent features accompanying loss of cell viability were vacuolization, other changes in cell morphology, and increased macropinocytosis. Activation of ERK, p38 and JNK in the dying cells suggests that an overly active MAPK signaling pathway may mediate the phenotype. Together, our findings indicate that mutual exclusivity of oncogenic mutations may reveal unexpected vulnerabilities and therapeutic possibilities. DOI: http://dx.doi.org/10.7554/eLife.06907.001 PMID:26047463

  17. Translation-dependent mechanisms lead to PML upregulation and mediate oncogenic K-RAS-induced cellular senescence

    PubMed Central

    Scaglioni, Pier Paolo; Rabellino, Andrea; Yung, Thomas M; Bernardi, Rosa; Choi, Sooyeon; Konstantinidou, Georgia; Nardella, Caterina; Cheng, Ke; Pandolfi, Pier Paolo

    2012-01-01

    Expression of oncogenic K-RAS in primary cells elicits oncogene-induced cellular senescence (OIS), a form of growth arrest that potently opposes tumourigenesis. This effect has been largely attributed to transcriptional mechanisms that depend on the p53 tumour suppressor protein. The PML tumour suppressor was initially identified as a component of the PML-RARα oncoprotein of acute promyelocytic leukaemia (APL). PML, a critical OIS mediator, is upregulated by oncogenic K-RAS in vivo and in vitro. We demonstrate here that oncogenic K-RAS induces PML protein upregulation by activating the RAS/MEK1/mTOR/eIF4E pathway even in the absence of p53. Under these circumstances, PML mRNA is selectively associated to polysomes. Importantly, we find that the PML 5′ untranslated mRNA region plays a key role in mediating PML protein upregulation and that its presence is essential for an efficient OIS response. These findings demonstrate that upregulation of PML translation plays a central role in oncogenic K-RAS-induced OIS. Thus, selective translation initiation plays a critical role in tumour suppression with important therapeutic implications for the treatment of solid tumours and APL. PMID:22359342

  18. Effect of track structure and radioprotectors on the induction of oncogenic transformation in murine fibroblasts by heavy ions

    NASA Technical Reports Server (NTRS)

    Miller, R. C.; Martin, S. G.; Hanson, W. R.; Marino, S. A.; Hall, E. J.; Wachholz, B. W. (Principal Investigator)

    1998-01-01

    The oncogenic potential of high-energy 56Fe particles (1 GeV/nucleon) accelerated with the Alternating Gradient Synchrotron at the Brookhaven National Laboratory was examined utilizing the mouse C3H 10T1/2 cell model. The dose-averaged LET for high-energy 56Fe is estimated to be 143 keV/micrometer with the exposure conditions used in this study. For 56Fe ions, the maximum relative biological effectiveness (RBEmax) values for cell survival and oncogenic transformation were 7.71 and 16.5 respectively. Compared to 150 keV/micrometer 4He nuclei, high-energy 56Fe nuclei were significantly less effective in cell killing and oncogenic induction. The prostaglandin E1 analog misoprostol, an effective oncoprotector of C3H 10T1/2 cells exposed to X rays, was evaluated for its potential as a radioprotector of oncogenic transformation with high-energy 56Fe. Exposure of cells to misoprostol did not alter 56Fe cytotoxicity or the rate of 56Fe-induced oncogenic transformation.

  19. In vitro transformation of immature hematopoietic cells by the P210 BCR/ABL oncogene product of the Philadelphia chromosome

    SciTech Connect

    McLaughlin, J.; Chianese, E.; Witte, O.N.

    1987-09-01

    The Philadelphia chromosome is the cytogenetic hallmark of human chronic myelogenous leukemia. RNA splicing joins sequences from a gene on chromosome 22 (BCR) across the translocation breakpoint to a portion of the ABL oncogene from chromosome 9, resulting in a chimeric protein (P210) that is an active tyrosine kinase. Although strongly correlated with this specific human neoplasm, and implicated as an oncogene by analogy to the gene product of the Abelson murine leukemia virus, the P210 gene had not been tested directly for oncogenic potential in hematopoietic cells. The authors have used a retroviral gene-transfer system to express P210 in mouse bone marrow cells. When infected bone marrow is plated under conditions for long-term culture of cells of the B-lymphoid lineage, cells expressing high amounts of P210 tyrosine kinase dominate the culture and rapidly lead to clonal outgrowths of immature lymphoid cells. Expression of P210 is growth-stimulatory but not sufficient for full oncogenic behavior. Some clonal lines progress toward a fully malignant phenotype as judged by increased cloning efficiency in agar suspension and frequency and rapidity of tumor induction in syngeneic mice. Such in vitro systems should be useful in evaluating the sequential and perhaps synergistic involvement of the P210 gene and other oncogenes as models for the progressive changes observed in human chronic myelogenous leukemia.

  20. BCR first exon sequences specifically activate the BCR/ABL tyrosine kinase oncogene of Philadelphia chromosome-positive human leukemias

    SciTech Connect

    Muller, A.J.; Witte, O.N. ); Young, J.C.; Pendergast, A.; Pondel, M. ); Landau, N.R.; Littman, D.R. )

    1991-04-01

    The c-abl proto-oncogene encodes a cytoplasmic tyrosine kinase which is homologous to the src gene product in its kinase domain and in the upstream kinase regulatory domains SH2 (src homology region 2) and SH3 (src homology region 3). The murine v-abl oncogene product has lost the SH3 domain as a consequence of N-terminal fusion of gag sequences. Deletion of the SH3 domain is sufficient to render the murine c-abl proto-oncogene product transforming when myristylated N-terminal membrane localization sequences are also present. In contrast, the human BCR/ABL oncogene of the Philadelphia chromosome translocation has an intact SH3 domain and its product is not myristylated at the N terminus. To analyze the contribution of BCR-encoded sequences to BCR/ABL-mediated transformation, the effects of a series of deletions and substitutions were assessed in fibroblast and hematopoietic-cell transformation assays. BCR first-exon sequences specifically potentiate transformation and tyrosine kinase activation when they are fused to the second exon of otherwise intact c-ABL. This suggests that BCR-encoded sequences specifically interfere with negative regulation of the ABL-encoded tyrosine kinase, which would represent a novel mechanism for the activation of nonreceptor tyrosine kinase-encoding proto-oncogenes.

  1. JNK1 determines the oncogenic or tumor-suppressive activity of the integrin-linked kinase in human rhabdomyosarcoma.

    PubMed

    Durbin, Adam D; Somers, Gino R; Forrester, Michael; Pienkowska, Malgorzata; Hannigan, Gregory E; Malkin, David

    2009-06-01

    Although most reports describe the protein kinase integrin-linked kinase (ILK) as a proto-oncogene, occasional studies detail opposing functions in the regulation of normal and transformed cell proliferation, differentiation, and apoptosis. Here, we demonstrated that ILK functions as an oncogene in the highly aggressive pediatric sarcoma alveolar rhabdomyosarcoma (ARMS) and as a tumor suppressor in the related embryonal rhabdomyosarcoma (ERMS). These opposing functions hinge on signaling through a noncanonical ILK target, JNK1, to the proto-oncogene c-Jun. RNAi-mediated depletion of ILK induced activation of JNK and its target, c-Jun, resulting in growth of ERMS cells, whereas in ARMS cells, it led to loss of JNK/c-Jun signaling and suppression of growth both in vitro and in vivo. Ectopic expression of the fusion gene characteristic of ARMS (paired box 3-forkhead homolog in rhabdomyosarcoma [PAX3-FKHR]) in ERMS cells was sufficient to convert them to an ARMS signaling phenotype and render ILK activity oncogenic. Furthermore, restoration of JNK1 in ARMS reestablished a tumor-suppressive function for ILK. These findings indicate what we believe to be a novel effector pathway regulated by ILK, provide a mechanism for interconversion of oncogenic and tumor-suppressor functions of a single regulatory protein based on the genetic background of the tumor cells, and suggest a rationale for tailored therapy of rhabdomyosarcoma based on the different activities of ILK. PMID:19478459

  2. Selective targeting of BCL6 induces oncogene addiction switching to BCL2 in B-cell lymphoma

    PubMed Central

    Patel, Jayeshkumar; Hatzi, Katerina; Malik, Alka; Tam, Wayne; Martin, Peter; Leonard, John; Melnick, Ari; Cerchietti, Leandro

    2016-01-01

    The BCL6 oncogene plays a crucial role in sustaining diffuse large B-cell lymphomas (DLBCL) through transcriptional repression of key checkpoint genes. BCL6-targeted therapy kills lymphoma cells by releasing these checkpoints. However BCL6 also directly represses several DLBCL oncogenes such as BCL2 and BCL-XL that promote lymphoma survival. Herein we show that DLBCL cells that survive BCL6-targeted therapy induce a phenomenon of “oncogene-addiction switching” by reactivating BCL2-family dependent anti-apoptotic pathways. Thus, most DLBCL cells require concomitant inhibition of BCL6 and BCL2-family members for effective lymphoma killing. Moreover, in DLBCL cells initially resistant to BH3 mimetic drugs, BCL6 inhibition induces a newly developed reliance on anti-apoptotic BCL2-family members for survival that translates in acquired susceptibility to BH3 mimetic drugs ABT-737 and obatoclax. In germinal center B cell-like (GCB)-DLBCL cells, the proteasome inhibitor bortezomib and the NEDD inhibitor MLN4924 post-transcriptionally activated the BH3-only sensitizer NOXA thus counteracting the oncogenic switch to BCL2 induced by BCL6-targeting. Hence our study indicates that BCL6 inhibition induces an on-target feedback mechanism based on the activation of anti-apoptotic BH3 members. This oncogene-addition switching mechanism was harnessed to develop rational combinatorial therapies for GCB-DLBCL. PMID:26657288

  3. The regulation of MDM2 oncogene and its impact on human cancers

    PubMed Central

    Zhao, Yuhan; Yu, Haiyang; Hu, Wenwei

    2014-01-01

    Tumor suppressor p53 plays a central role in preventing tumor formation. The levels and activity of p53 is under tight regulation to ensure its proper function. Murine double minute 2 (MDM2), a p53 target gene, is an E3 ubiquitin ligase. MDM2 is a key negative regulator of p53 protein, and forms an auto-regulatory feedback loop with p53. MDM2 is an oncogene with both p53-dependent and p53-independent oncogenic activities, and often has increased expression levels in a variety of human cancers. MDM2 is highly regulated; the levels and function of MDM2 are regulated at the transcriptional, translational and post-translational levels. This review provides an overview of the regulation of MDM2. Dysregulation of MDM2 impacts significantly upon the p53 functions, and in turn the tumorigenesis. Considering the key role that MDM2 plays in human cancers, a better understanding of the regulation of MDM2 will help us to develop novel and more effective cancer therapeutic strategies to target MDM2 and activate p53 in cells. PMID:24389645

  4. Activation of diverse signaling pathways by oncogenic PIK3CA mutations

    PubMed Central

    Wu, Xinyan; Renuse, Santosh; Sahasrabuddhe, Nandini A.; Zahari, Muhammad Saddiq; Chaerkady, Raghothama; Kim, Min-Sik; Nirujogi, Raja S.; Mohseni, Morassa; Kumar, Praveen; Raju, Rajesh; Zhong, Jun; Yang, Jian; Neiswinger, Johnathan; Jeong, Jun-Seop; Newman, Robert; Powers, Maureen A.; Somani, Babu Lal; Gabrielson, Edward; Sukumar, Saraswati; Stearns, Vered; Qian, Jiang; Zhu, Heng; Vogelstein, Bert; Park, Ben Ho; Pandey, Akhilesh

    2014-01-01

    The PIK3CA gene is frequently mutated in human cancers. Here we carry out a SILAC-based quantitative phosphoproteomic analysis using isogenic knockin cell lines containing ‘driver’ oncogenic mutations of PIK3CA to dissect the signaling mechanisms responsible for oncogenic phenotypes induced by mutant PIK3CA. From 8,075 unique phosphopeptides identified, we observe that aberrant activation of PI3K pathway leads to increased phosphorylation of a surprisingly wide variety of kinases and downstream signaling networks. Here, by integrating phosphoproteomic data with human protein microarray-based AKT1 kinase assays, we discover and validate six novel AKT1 substrates, including cortactin. Through mutagenesis studies, we demonstrate that phosphorylation of cortactin by AKT1 is important for mutant PI3K enhanced cell migration and invasion. Our study describes a quantitative and global approach for identifying mutation-specific signaling events and for discovering novel signaling molecules as readouts of pathway activation or potential therapeutic targets. PMID:25247763

  5. Mutant p53 oncogenic functions are sustained by Plk2 kinase through an autoregulatory feedback loop.

    PubMed

    Valenti, Fabio; Fausti, Francesca; Biagioni, Francesca; Shay, Tal; Fontemaggi, Giulia; Domany, Eytan; Yaffe, Michael B; Strano, Sabrina; Blandino, Giovanni; Di Agostino, Silvia

    2011-12-15

    Aberrant activation of kinases has emerged to be a key event along with tumor progression, maintenance of tumor phenotype and response to anticancer treatments. This study documents the existence of an oncogenic auto-regulatory feedback loop that includes the Polo-like kinase-2 (Snk/Plk2) and mutant p53 proteins. Plk2 protein binds to and phosphorylates mutant p53, thereby potentiating its oncogenic activities. Phosphorylated mutant p53 binds more efficiently to p300 consequently strengthening its own transcriptional activity. Plk2 gene is regulated at a transcriptional level by both wt- and mutant p53 proteins. This leads to growth suppression or enhanced cell proliferation and chemo-resistance, respectively. In turn, the siRNA-mediated knock down of either mutant p53 or Plk2 proteins significantly curtails the growth properties of tumor cells and their chemo-resistance to anticancer treatments. Therefore, this paper identifies a novel tumor network including Plk2 and mutant p53 proteins whose triggering in response to DNA damage might disclose important implications for the treatment of human cancers. PMID:22134238

  6. c-fos oncogene underexpression in salivary gland tumors as measured by in situ hybridization.

    PubMed Central

    Birek, C.; Lui, E.; Dardick, I.

    1993-01-01

    Tissue from 35 salivary gland tumors and 14 normal salivary glands was analyzed by in situ hybridization and computer-assisted morphometry for the expression of the c-fos oncogene. The normal salivary gland tissues were found to express c-fos focally, mainly in the acinar secretory cells. The majority of the cells in the normal tissues showed a high level of expression (47.74 +/- 5.31% of cells had 46 to 60 grains per cell and another 45.79 +/- 2.18% showed > 60 grains per cell). All the tumors examined exhibited a relatively low, uniform distribution of c-fos expression. For example, in the poorly differentiated adenocarcinomas, 96.83 +/- 04% of the cells were found to have < 15 grains per cell. A general linear model for multivariate analysis showed a significant difference between the various tumor types and the normal salivary gland tissues (P = 0.0001). These data support the hypothesis that salivary gland tumors belong to a group of epithelial neoplasias in which the loss of cellular differentiation is linked with underexpression of the c-fos oncogene. Images Figure 1 Figure 2 Figure 3 PMID:8456948

  7. Oncogene-induced telomere dysfunction enforces cellular senescence in human cancer precursor lesions

    PubMed Central

    Suram, Anitha; Kaplunov, Jessica; Patel, Priyanka L; Ruan, Haihe; Cerutti, Aurora; Boccardi, Virginia; Fumagalli, Marzia; Di Micco, Raffaella; Mirani, Neena; Gurung, Resham Lal; Hande, Manoor Prakash; d'Adda di Fagagna, Fabrizio; Herbig, Utz

    2012-01-01

    In normal human somatic cells, telomere dysfunction causes cellular senescence, a stable proliferative arrest with tumour suppressing properties. Whether telomere dysfunction-induced senescence (TDIS) suppresses cancer growth in humans, however, is unknown. Here, we demonstrate that multiple and distinct human cancer precursor lesions, but not corresponding malignant cancers, are comprised of cells that display hallmarks of TDIS. Furthermore, we demonstrate that oncogenic signalling, frequently associated with initiating cancer growth in humans, dramatically affected telomere structure and function by causing telomeric replication stress, rapid and stochastic telomere attrition, and consequently telomere dysfunction in cells that lack hTERT activity. DNA replication stress induced by drugs also resulted in telomere dysfunction and cellular senescence in normal human cells, demonstrating that telomeric repeats indeed are hypersensitive to DNA replication stress. Our data reveal that TDIS, accelerated by oncogene-induced DNA replication stress, is a biological response of cells in human cancer precursor lesions and provide strong evidence that TDIS is a critical tumour suppressing mechanism in humans. PMID:22569128

  8. STAT5 Outcompetes STAT3 To Regulate the Expression of the Oncogenic Transcriptional Modulator BCL6

    PubMed Central

    Walker, Sarah R.; Nelson, Erik A.; Yeh, Jennifer E.; Pinello, Luca; Yuan, Guo-Cheng

    2013-01-01

    Inappropriate activation of the transcription factors STAT3 and STAT5 has been shown to drive cancer pathogenesis through dysregulation of genes involved in cell survival, growth, and differentiation. Although STAT3 and STAT5 are structurally related, they can have opposite effects on key genes, including BCL6. BCL6, a transcriptional repressor, has been shown to be oncogenic in diffuse large B cell lymphoma. BCL6 also plays an important role in breast cancer pathogenesis, a disease in which STAT3 and STAT5 can be activated individually or concomitantly. To determine the mechanism by which these oncogenic transcription factors regulate BCL6 transcription, we analyzed their effects at the levels of chromatin and gene expression. We found that STAT3 increases expression of BCL6 and enhances recruitment of RNA polymerase II phosphorylated at a site associated with transcriptional initiation. STAT5, in contrast, represses BCL6 expression below basal levels and decreases the association of RNA polymerase II at the gene. Furthermore, the repression mediated by STAT5 is dominant over STAT3-mediated induction. STAT5 exerts this effect by displacing STAT3 from one of the two regulatory regions to which it binds. These findings may underlie the divergent biology of breast cancers containing activated STAT3 alone or in conjunction with activated STAT5. PMID:23716595

  9. Identification and Validation of Oncogenes in Liver Cancer Using an Integrative Oncogenomic Approach

    PubMed Central

    Zender, Lars; Spector, Mona S.; Xue, Wen; Flemming, Peer; Cordon-Cardo, Carlos; Silke, John; Fan, Sheung-Tat; Luk, John M.; Wigler, Michael; Hannon, Gregory J.; Mu, David; Lucito, Robert; Powers, Scott; Lowe, Scott W.

    2010-01-01

    SUMMARY The heterogeneity and instability of human tumors hamper straightforward identification of cancer-causing mutations through genomic approaches alone. Herein we describe a mouse model of liver cancer initiated from progenitor cells harboring defined cancer-predisposing lesions. Genome-wide analyses of tumors in this mouse model and in human hepatocellular carcinomas revealed a recurrent amplification at mouse chromosome 9qA1, the syntenic region of human chromosome 11q22. Gene-expression analyses delineated cIAP1, a known inhibitor of apoptosis, and Yap, a transcription factor, as candidate oncogenes in the amplicon. In the genetic context of their amplification, both cIAP1 and Yap accelerated tumorigenesis and were required to sustain rapid growth of amplicon-containing tumors. Furthermore, cIAP1 and Yap cooperated to promote tumorigenesis. Our results establish a tractable model of liver cancer, identify two oncogenes that cooperate by virtue of their coamplification in the same genomic locus, and suggest an efficient strategy for the annotation of human cancer genes. PMID:16814713

  10. Viral Interactions with PDZ Domain-Containing Proteins-An Oncogenic Trait?

    PubMed

    James, Claire D; Roberts, Sally

    2016-01-01

    Many of the human viruses with oncogenic capabilities, either in their natural host or in experimental systems (hepatitis B and C, human T cell leukaemia virus type 1, Kaposi sarcoma herpesvirus, human immunodeficiency virus, high-risk human papillomaviruses and adenovirus type 9), encode in their limited genome the ability to target cellular proteins containing PSD95/ DLG/ZO-1 (PDZ) interaction modules. In many cases (but not always), the viruses have evolved to bind the PDZ domains using the same short linear peptide motifs found in host protein-PDZ interactions, and in some cases regulate the interactions in a similar fashion by phosphorylation. What is striking is that the diverse viruses target a common subset of PDZ proteins that are intimately involved in controlling cell polarity and the structure and function of intercellular junctions, including tight junctions. Cell polarity is fundamental to the control of cell proliferation and cell survival and disruption of polarity and the signal transduction pathways involved is a key event in tumourigenesis. This review focuses on the oncogenic viruses and the role of targeting PDZ proteins in the virus life cycle and the contribution of virus-PDZ protein interactions to virus-mediated oncogenesis. We highlight how many of the viral associations with PDZ proteins lead to deregulation of PI3K/AKT signalling, benefitting virus replication but as a consequence also contributing to oncogenesis. PMID:26797638

  11. FGFR2 signaling underlies p63 oncogenic function in squamous cell carcinoma

    PubMed Central

    Ramsey, Matthew R.; Wilson, Catherine; Ory, Benjamin; Rothenberg, S. Michael; Faquin, William; Mills, Alea A.; Ellisen, Leif W.

    2013-01-01

    Oncogenic transcription factors drive many human cancers, yet identifying and therapeutically targeting the resulting deregulated pathways has proven difficult. Squamous cell carcinoma (SCC) is a common and lethal human cancer, and relatively little progress has been made in improving outcomes for SCC due to a poor understanding of its underlying molecular pathogenesis. While SCCs typically lack somatic oncogene-activating mutations, they exhibit frequent overexpression of the p53-related transcription factor p63. We developed an in vivo murine tumor model to investigate the function and key transcriptional programs of p63 in SCC. Here, we show that established SCCs are exquisitely dependent on p63, as acute genetic ablation of p63 in advanced, invasive SCC induced rapid and dramatic apoptosis and tumor regression. In vivo genome-wide gene expression analysis identified a tumor-survival program involving p63-regulated FGFR2 signaling that was activated by ligand emanating from abundant tumor-associated stroma. Correspondingly, we demonstrate the therapeutic efficacy of extinguishing this signaling axis in endogenous SCCs using the clinical FGFR2 inhibitor AZD4547. Collectively, these results reveal an unanticipated role for p63-driven paracrine FGFR2 signaling as an addicting pathway in human cancer and suggest a new approach for the treatment of SCC. PMID:23867503

  12. Overexpressed homeobox B9 regulates oncogenic activities by transforming growth factor-β1 in gliomas

    SciTech Connect

    Fang, Liping; Xu, Yinghui; Zou, Lijuan

    2014-03-28

    Highlights: • HOXB9 is overexpressed in gliomas. • HOXB9 over expression had shorter survival time than down expression in gliomas. • HOXB9 stimulated the proliferation, migration and sphere formation of glioma cells. • Activation of TGF-β1 contributed to HOXB9-induced oncogenic activities. - Abstract: Glioma is the leading cause of deaths related to tumors in the central nervous system. The mechanisms of gliomagenesis remain elusive to date. Homeobox B9 (HOXB9) has a crucial function in the regulation of gene expression and cell survival, but its functions in glioma formation and development have yet to be elucidated. This study showed that HOXB9 expression in glioma tissues was significantly higher than that in nontumor tissues. Higher HOXB9 expression was also significantly associated with advanced clinical stage in glioma patients. HOXB9 overexpression stimulated the proliferation, migration, and sphere formation of glioma cells, whereas HOXB9 knockdown elicited an opposite effect. HOXB9 overexpression also increased the tumorigenicity of glioma cells in vivo. Moreover, the activation of transforming growth factor-β1 contributed to HOXB9-induced oncogenic activities. HOXB9 could be used as a predictable biomarker to be detected in different pathological and histological subtypes in glioma for diagnosis or prognosis.

  13. High incidence of oncogenic HPV genotypes found in women from Southern Brazil

    PubMed Central

    Entiauspe, Ludmila G; Silveira, Mariângela; Nunes, Emily M; Basgalupp, Suélen P; Stauffert, Dulce; Dellagostin, Odir A.; Collares, Tiago; Seixas, Fabiana K.

    2014-01-01

    Oncogenic HPV genotypes are strongly associated with premalignant and malignant cervical lesion. The purpose was to determine human papillomavirus (HPV) prevalence and genotypes, and to estimate cervical cancer risk factor associations. Cervical samples were obtained from 251 women seeking gynecological care at the Pelotas School of Medicine Clinic. This is a cross-sectional study. HPV-DNA was amplified by nested-PCR using MY09/11 and GP5/6 primers, and the sequencing was used for genotyping. Sociodemographic and behavioral risk factors were obtained by closed questionnaire, and its relationship to HPV infection prevalence were analyzed. Statistical analyses were performed using SPSS 16.0 software, and differences were considered significant at p < 0.05. As results, the prevalence of HPV infection was 29.9%. The most frequent genotype was HPV-16 (41.3%), followed by HPV-18 (17.3%), and HPV-33 (9.3%). Others nine HPV genotypes were also found. On this population, prevalence of oncogenic HPV genotypes was high, but does not seem to confer relationship with the risk factors investigated. Future investigations in larger populations are necessary, for the proposition of more appropriated monitoring strategies and treatment according to the Brazilian health service reality, as well as patients. PMID:25242959

  14. Determination of Oncogenic Human Papillomavirus (HPV) Genotypes in Anogenital Cancers in Myanmar.

    PubMed

    Mu Mu Shwe; Hlaing Myat Thu; Khin Saw Aye; Aye Aye Myint; Mya Thida; Khin Shwe Mar; Khin Khin Oo; Khin Sandar Aye; Okada, Shigeru; Kyaw Zin Thant

    2016-04-01

    Molecular and epidemiologic investigations suggest a causal role for human papillomavirus (HPV) in anogenital cancers. This study identified oncogenic HPV genotypes in anogenital cancers among men and women in a 2013 cross-sectional descriptive study in Myanmar. In total, 100 biopsy tissues of histologically confirmed anogenital cancers collected in 2008-2012 were studied, including 30 penile and 9 anal cancers from Yangon General Hospital and 61 vulvar cancers from Central Women's Hospital, Yangon. HPV-DNA testing and genotyping were performed by polymerase chain reaction-restriction fragment length polymorphism. Overall, 34% of anogenital cancers were HPV-positive. HPV was found in 44.4% of anal (4/9), 36.1% of vulvar (22/61), and 26.7% of penile (8/30) cancers. The most frequent genotypes in anal cancers were HPV 16 (75% ) and 18 (25% ). In vulvar cancers, HPV 33 was most common (40.9% ), followed by 16 (31.8% ), 31 (22.7% ), and 18 (4.6% ). In penile cancers, HPV 16 (62.5% ) was most common, followed by 33 (25% ) and 18 (12.5% ). This is the first report of evidencebased oncogenic HPV genotypes in anogenital cancers among men and women in Myanmar. This research provides valuable information for understanding the burden of HPV-associated cancers of the anus, penis, and vulva and considering the effectiveness of prophylactic HPV vaccination. PMID:27094835

  15. RUNX3 is a novel negative regulator of oncogenic TEAD-YAP complex in gastric cancer.

    PubMed

    Qiao, Y; Lin, S J; Chen, Y; Voon, D C-C; Zhu, F; Chuang, L S H; Wang, T; Tan, P; Lee, S C; Yeoh, K G; Sudol, M; Ito, Y

    2016-05-19

    Runt-related transcription factor 3 (RUNX3) is a well-documented tumour suppressor that is frequently inactivated in gastric cancer. Here, we define a novel mechanism by which RUNX3 exerts its tumour suppressor activity involving the TEAD-YAP complex, a potent positive regulator of proliferative genes. We report that the TEAD-YAP complex is not only frequently hyperactivated in liver and breast cancer, but also confers a strong oncogenic activity in gastric epithelial cells. The increased expression of TEAD-YAP in tumour tissues significantly correlates with poorer overall survival of gastric cancer patients. Strikingly, RUNX3 physically interacts with the N-terminal region of TEAD through its Runt domain. This interaction markedly reduces the DNA-binding ability of TEAD that attenuates the downstream signalling of TEAD-YAP complex. Mutation of RUNX3 at Arginine 122 to Cysteine, which was previously identified in gastric cancer, impairs the interaction between RUNX3 and TEAD. Our data reveal that RUNX3 acts as a tumour suppressor by negatively regulating the TEAD-YAP oncogenic complex in gastric carcinogenesis. PMID:26364597

  16. Tocopherol Succinate: Modulation of Antioxidant Enzymes and Oncogene Expression, and Hematopoietic Recovery

    SciTech Connect

    Singh, Vijay K.; Parekh, Vaishali I.; Brown, Darren S.; Kao, Tzu-Cheg; Mog, Steven R.

    2011-02-01

    Purpose: A class of naturally occurring isoforms of tocopherol (tocols) was shown to have varying degrees of protection when administered before radiation exposure. We recently demonstrated that {alpha}-tocopherol succinate (TS) is a potential radiation prophylactic agent. Our objective in this study was to further investigate the mechanism of action of TS in mice exposed to {sup 60}Co {gamma}-radiation. Methods and Materials: We evaluated the effects of TS on expression of antioxidant enzymes and oncogenes by quantitative RT-PCR in bone marrow cells of {sup 60}Co {gamma}-irradiated mice. Further, we tested the ability of TS to rescue and repopulate hematopoietic stem cells by analyzing bone marrow cellularity and spleen colony forming unit in spleen of TS-injected and irradiated mice. Results: Our results demonstrate that TS modulated the expression of antioxidant enzymes and inhibited expression of oncogenes in irradiated mice at different time points. TS also increased colony forming unit-spleen numbers and bone marrow cellularity in irradiated mice. Conclusions: Results provide additional support for the observed radioprotective efficacy of TS and insight into mechanisms.

  17. Exploiting oncogene-induced replicative stress for the selective killing of Myc-driven tumors

    PubMed Central

    Lopez-Contreras, Andres J.; Toledo, Luis I.; Soria, Rebeca; Montaña, Maria F.; Artista, Luana D'; Schleker, Thomas; Guerra, Carmen; Garcia, Elena; Barbacid, Mariano; Hidalgo, Manuel; Amati, Bruno; Fernandez-Capetillo, Oscar

    2016-01-01

    Oncogene-induced replicative stress activates an Atr- and Chk1-dependent response, which has been proposed to be widespread in tumors. We here explored whether the presence of replicative stress could be exploited for the selective elimination of cancer cells. To this end, we evaluated the impact of targeting the replicative stress-response on cancer development. In mice, the reduced levels of Atr found on a mouse model of the Atr-Seckel syndrome completely prevented the development of Myc-induced lymphomas or pancreatic tumors, both of which show abundant levels of replicative stress. Moreover, Chk1 inhibitors are very effective in killing Myc-driven lymphomas. In contrast, pancreatic adenocarcinomas initiated by K-RasG12V show no detectable evidence of replicative stress and are non-responsive to this therapy. Besides cancer, Myc overexpression aggravated the phenotypes of Atr-Seckel mice, revealing that oncogenes can modulate the severity of replicative stress-associated diseases. PMID:22120667

  18. S6K1 alternative splicing modulates its oncogenic activity and regulates mTORC1

    PubMed Central

    Ben-Hur, Vered; Denichenko, Polina; Siegfried, Zahava; Maimon, Avi; Krainer, Adrian; Davidson, Ben; Karni, Rotem

    2016-01-01

    Ribosomal S6 Kinase 1 (S6K1) is a major mTOR downstream signaling molecule which regulates cell size and translation efficiency. Here we report that short isoforms of S6K1 are over-produced in breast cancer cell lines and tumors. Overexpression of S6K1 short isoforms induces transformation of human breast epithelial cells. The long S6K1 variant (Iso-1) induced opposite effects: It inhibits Ras-induced transformation and tumor formation, while its knockdown or knockout induced transformation, suggesting that Iso-1 has a tumor suppressor activity. We further found that S6K1 short isoforms bind and activate mTORC1, elevating 4E-BP1 phosphorylation, cap-dependent translation and Mcl-1 protein levels. Both a phosphorylation-defective 4E-BP1 mutant and the mTORC1 inhibitor rapamycin partially blocked the oncogenic effects of S6K1 short isoforms, suggesting that these are mediated by mTORC1 and 4E-BP1. Thus, alternative splicing of S6K1 acts as a molecular switch in breast cancer cells elevating oncogenic isoforms that activate mTORC1. PMID:23273915

  19. Tuning of alternative splicing--switch from proto-oncogene to tumor suppressor.

    PubMed

    Shchelkunova, Aleksandra; Ermolinsky, Boris; Boyle, Meghan; Mendez, Ivan; Lehker, Michael; Martirosyan, Karen S; Kazansky, Alexander V

    2013-01-01

    STAT5B, a specific member of the STAT family, is intimately associated with prostate tumor progression. While the full form of STAT5B is thought to promote tumor progression, a naturally occurring truncated isoform acts as a tumor suppressor. We previously demonstrated that truncated STAT5 is generated by insertion of an alternatively spliced exon and results in the introduction of an early termination codon. Present approaches targeting STAT proteins based on inhibition of functional domains of STAT's, such as DNA-binding, cooperative binding (protein-protein interaction), dimerization and phosphorylation will halt the action of the entire gene, both the proto-oncogenic and tumor suppressor functions of Stat5B. In this report we develop a new approach aimed at inhibiting the expression of full-length STAT5B (a proto-oncogene) while simultaneously enhancing the expression of STAT5∆B (a tumor suppressor). We have demonstrated the feasibility of using steric-blocking splice-switching oligonucleotides (SSOs) with a complimentary sequence to the targeted exon-intron boundary to enhance alternative intron/exon retention (up to 10%). The functional effect of the intron/exon proportional tuning was validated by cell proliferation and clonogenic assays. The new scheme applies specific steric-blocking splice-switching oligonucleotides and opens an opportunity for anti-tumor treatment as well as for the alteration of functional abilities of other STAT proteins. PMID:23289016

  20. Tuning of Alternative Splicing - Switch From Proto-Oncogene to Tumor Suppressor

    PubMed Central

    Shchelkunova, Aleksandra; Ermolinsky, Boris; Boyle, Meghan; Mendez, Ivan; Lehker, Michael; Martirosyan, Karen S.; Kazansky, Alexander V.

    2013-01-01

    STAT5B, a specific member of the STAT family, is intimately associated with prostate tumor progression. While the full form of STAT5B is thought to promote tumor progression, a naturally occurring truncated isoform acts as a tumor suppressor. We previously demonstrated that truncated STAT5 is generated by insertion of an alternatively spliced exon and results in the introduction of an early termination codon. Present approaches targeting STAT proteins based on inhibition of functional domains of STAT's, such as DNA-binding, cooperative binding (protein-protein interaction), dimerization and phosphorylation will halt the action of the entire gene, both the proto-oncogenic and tumor suppressor functions of Stat5B. In this report we develop a new approach aimed at inhibiting the expression of full-length STAT5B (a proto-oncogene) while simultaneously enhancing the expression of STAT5∆B (a tumor suppressor). We have demonstrated the feasibility of using steric-blocking splice-switching oligonucleotides (SSOs) with a complimentary sequence to the targeted exon-intron boundary to enhance alternative intron/exon retention (up to 10%). The functional effect of the intron/exon proportional tuning was validated by cell proliferation and clonogenic assays. The new scheme applies specific steric-blocking splice-switching oligonucleotides and opens an opportunity for anti-tumor treatment as well as for the alteration of functional abilities of other STAT proteins. PMID:23289016

  1. BRAF vs RAS oncogenes: are mutations of the same pathway equal? differential signalling and therapeutic implications

    PubMed Central

    Oikonomou, Eftychia; Koustas, Evangelos; Goulielmaki, Maria; Pintzas, Alexander

    2014-01-01

    As the increased knowledge of tumour heterogeneity and genetic alterations progresses, it exemplifies the need for further personalized medicine in modern cancer management. Here, the similarities but also the differential effects of RAS and BRAF oncogenic signalling are examined and further implications in personalized cancer diagnosis and therapy are discussed. Redundant mechanisms mediated by the two oncogenes as well as differential regulation of signalling pathways and gene expression by RAS as compared to BRAF are addressed. The implications of RAS vs BRAF differential functions, in relevant tumour types including colorectal cancer, melanoma, lung cancer are discussed. Current therapeutic findings and future viewpoints concerning the exploitation of RAS-BRAF-pathway alterations for the development of novel therapeutics and efficient rational combinations, as well as companion tests for relevant markers of response will be evaluated. The concept that drug-resistant cells may also display drug dependency, such that altered dosing may prevent the emergence of lethal drug resistance posed a major therapy hindrance. PMID:25361007

  2. SIRT6 deacetylates PKM2 to suppress its nuclear localization and oncogenic functions

    PubMed Central

    Bhardwaj, Abhishek; Das, Sanjeev

    2016-01-01

    SIRT6 (sirtuin 6) is a member of sirtuin family of deacetylases involved in diverse processes including genome stability, metabolic homeostasis, and tumorigenesis. However, the role of SIRT6 deacetylase activity in its tumor-suppressor functions is not well understood. Here we report that SIRT6 binds to and deacetylates nuclear PKM2 (pyruvate kinase M2) at the lysine 433 residue. PKM2 is a glycolytic enzyme with nonmetabolic nuclear oncogenic functions. SIRT6-mediated deacetylation results in PKM2 nuclear export. We further have identified exportin 4 as the specific transporter mediating PKM2 nuclear export. As a result of SIRT6-mediated deacetylation, PKM2 nuclear protein kinase and transcriptional coactivator functions are abolished. Thus, SIRT6 suppresses PKM2 oncogenic functions, resulting in reduced cell proliferation, migration potential, and invasiveness. Furthermore, studies in mouse tumor models demonstrate that PKM2 deacetylation is integral to SIRT6-mediated tumor suppression and inhibition of metastasis. Additionally, reduced SIRT6 levels correlate with elevated nuclear acetylated PKM2 levels in increasing grades of hepatocellular carcinoma. These findings provide key insights into the pivotal role of deacetylase activity in SIRT6 tumor-suppressor functions. PMID:26787900

  3. Oncogenic role of p21 in hepatocarcinogenesis suggests a new treatment strategy

    PubMed Central

    Ohkoshi, Shogo; Yano, Masahiko; Matsuda, Yasunobu

    2015-01-01

    A well-known tumor suppressor, p21, acts paradoxically by promoting tumor growth in some cellular conditions. These conflicting functions have been demonstrated in association with the HBx gene and in hepatocarcinogenesis. The molecular behavior of p21 depends on its subcellular localization. Nuclear p21 may inhibit cell proliferation and be proapoptotic, while cytoplasmic p21 may have oncogenic and anti-apoptotic functions. Because most typical tumor suppressive proteins also have different effects according to subcellular localization, elucidating the regulatory mechanisms underlying nucleo-cytoplasmic transport of these proteins would be significant and may lead to a new strategy for anti-hepatocellular carcinoma (HCC) therapy. Chromosome region maintenance 1 (CRM1) is a major nuclear export receptor involved in transport of tumor suppressors from nucleus to cytoplasm. Expression of CRM1 is enhanced in a variety of malignancies and in vitro studies have shown the efficacy of specific inhibition of CRM1 against cancer cell lines. Interestingly, interferon may keep p21 in the nucleus; this is one of the mechanisms of its anti-hepatocarcinogenic function. Here we review the oncogenic property of p21, which depends on its subcellular localization, and discuss the rationale underlying a new strategy for HCC treatment and prevention. PMID:26576099

  4. The dark and the bright side of Stat3: proto-oncogene and tumor-suppressor.

    PubMed

    Ecker, Andrea; Simma, Olivia; Hoelbl, Andrea; Kenner, Lukas; Beug, Hartmut; Moriggl, Richard; Sexl, Veronika

    2009-01-01

    Stat transcription factors have been implicated in tumorigenesis in mice and men. Stat3 and Stat5 are considered powerful proto-oncogenes, whereas Stat1 has been demonstrated to suppress tumor formation. We demonstrate here for the first time that a constitutive active version of Stat3alpha (Stat3alphaC) may also suppress transformation. Mouse embryonic fibroblasts (MEFs) deficient for p53 can be transformed with either c-myc or with rasV12 alone. Interestingly, transformation by c-myc is efficiently suppressed by co-expression of Stat3alphaC, but Stat3alphaC does not interfere with transformation by the rasV12-oncogene. In contrast, transplantation of bone marrow cells expressing Stat3alphaC induces the formation of a highly aggressive T cell leukemia in mice. The leukemic cells invaded multiple organs including lung, heart, salivary glands, liver and kidney. Interestingly, transplanted mice developed a similar leukemia when the bone marrow cells were transduced with Stat3beta, which is also constitutively active when expressed at significant levels. Our experiments demonstrate that Stat3 has both - tumor suppressing and tumor promoting properties. PMID:19273247

  5. Role of pHi, and proton transporters in oncogene-driven neoplastic transformation

    PubMed Central

    Reshkin, Stephan Joel; Greco, Maria Raffaella; Cardone, Rosa Angela

    2014-01-01

    The change of a normal, healthy cell to a transformed cell is the first step in the evolutionary arc of a cancer. While the role of oncogenes in this ‘passage’ is well known, the role of ion transporters in this critical step is less known and is fundamental to our understanding the early physiological processes of carcinogenesis. Cancer cells and tissues have an aberrant regulation of hydrogen ion dynamics leading to a reversal of the normal tissue intracellular to extracellular pH gradient (ΔpHi to ΔpHe). When this perturbation in pH dynamics occurs during carcinogenesis is less clear. Very early studies using the introduction of different oncogene proteins into cells observed a concordance between neoplastic transformation and a cytoplasmic alkalinization occurring concomitantly with a shift towards glycolysis in the presence of oxygen, i.e. ‘Warburg metabolism’. These processes may instigate a vicious cycle that drives later progression towards fully developed cancer where the reversed pH gradient becomes ever more pronounced. This review presents our understanding of the role of pH and the NHE1 in driving transformation, in determining the first appearance of the cancer ‘hallmark’ characteristics and how the use of pharmacological approaches targeting pH/NHE1 may open up new avenues for efficient treatments even during the first steps of cancer development. PMID:24493748

  6. PPM1D exerts its oncogenic properties in human pancreatic cancer through multiple mechanisms.

    PubMed

    Wu, Bo; Guo, Bo-Min; Kang, Jie; Deng, Xian-Zhao; Fan, You-Ben; Zhang, Xiao-Ping; Ai, Kai-Xing

    2016-03-01

    Protein phosphatase, Mg(2+)/Mn(2+) dependent, 1D (PPM1D) is emerging as an oncogene by virtue of its negative control on several tumor suppressor pathways. However, the clinical significance of PPM1D in pancreatic cancer (PC) has not been defined. In this study, we determined PPM1D expression in human PC tissues and cell lines and their irrespective noncancerous controls. We subsequently investigated the functional role of PPM1D in the migration, invasion, and apoptosis of MIA PaCa-2 and PANC-1 PC cells in vitro and explored the signaling pathways involved. Furthermore, we examined the role of PPM1D in PC tumorigenesis in vivo. Our results showed that PPM1D is overexpressed in human PC tissues and cell lines and significantly correlated with tumor growth and metastasis. PPM1D promotes PC cell migration and invasion via potentiation of the Wnt/β-catenin pathway through downregulation of apoptosis-stimulating of p53 protein 2 (ASPP2). In contrast to PPM1D, our results showed that ASPP2 is downregulated in PC tissues. Additionally, PPM1D suppresses PC cell apoptosis via inhibition of the p38 MAPK/p53 pathway through both dephosphorylation of p38 MAPK and downregulation of ASPP2. Furthermore, PPM1D promotes PC tumor growth in vivo. Our results demonstrated that PPM1D is an oncogene in PC. PMID:26714478

  7. AID-expressing epithelium is protected from oncogenic transformation by an NKG2D surveillance pathway.

    PubMed

    Pérez-García, Arantxa; Pérez-Durán, Pablo; Wossning, Thomas; Sernandez, Isora V; Mur, Sonia M; Cañamero, Marta; Real, Francisco X; Ramiro, Almudena R

    2015-10-01

    Activation-induced deaminase (AID) initiates secondary antibody diversification in germinal center B cells, giving rise to higher affinity antibodies through somatic hypermutation (SHM) or to isotype-switched antibodies through class switch recombination (CSR). SHM and CSR are triggered by AID-mediated deamination of cytosines in immunoglobulin genes. Importantly, AID activity in B cells is not restricted to Ig loci and can promote mutations and pro-lymphomagenic translocations, establishing a direct oncogenic mechanism for germinal center-derived neoplasias. AID is also expressed in response to inflammatory cues in epithelial cells, raising the possibility that AID mutagenic activity might drive carcinoma development. We directly tested this hypothesis by generating conditional knock-in mouse models for AID overexpression in colon and pancreas epithelium. AID overexpression alone was not sufficient to promote epithelial cell neoplasia in these tissues, in spite of displaying mutagenic and genotoxic activity. Instead, we found that heterologous AID expression in pancreas promotes the expression of NKG2D ligands, the recruitment of CD8(+) T cells, and the induction of epithelial cell death. Our results indicate that AID oncogenic potential in epithelial cells can be neutralized by immunosurveillance protective mechanisms. PMID:26282919

  8. Oncogene- and drug resistance-associated alternative exon usage in acute myeloid leukemia (AML).

    PubMed

    Mohamed, Aminetou Mint; Balsat, Marie; Thenoz, Morgan; Koering, Catherine; Payen-Gay, Lea; Cheok, Meyling; Mortada, Hussein; Auboeuf, Didier; Pinatel, Christiane; El-Hamri, Mohamed; Dumontet, Charles; Cros, Emeline; Flandrin-Gresta, Pascale; Nibourel, Olivier; Preudhomme, Claude; Michallet, Mauricette; Thomas, Xavier; Nicolini, Franck; Solly, Françoise; Guyotat, Denis; Campos, Lydia; Wattel, Eric; Mortreux, Franck

    2016-01-19

    In addition to spliceosome gene mutations, oncogene expression and drug resistance in AML might influence exon expression. We performed exon-array analysis and exon-specific PCR (ESPCR) to identify specific landscapes of exon expression that are associated with DEK and WT1 oncogene expression and the resistance of AML cells to AraC, doxorubicin or azacitidine. Data were obtained for these five conditions through exon-array analysis of 17 cell lines and 24 patient samples and were extended through qESPCR of samples from 152 additional AML cases. More than 70% of AEUs identified by exon-array were technically validated through ESPCR. In vitro, 1,130 to 5,868 exon events distinguished the 5 conditions from their respective controls while in vivo 6,560 and 9,378 events distinguished chemosensitive and chemoresistant AML, respectively, from normal bone marrow. Whatever the cause of this effect, 30 to 80% of mis-spliced mRNAs involved genes unmodified at the whole transcriptional level. These AEUs unmasked new functional pathways that are distinct from those generated by transcriptional deregulation. These results also identified new putative pathways that could help increase the understanding of the effects mediated by DEK or WT1, which may allow the targeting of these pathways to prevent resistance of AML cells to chemotherapeutic agents. PMID:26284582

  9. Epigenetics provides a new generation of oncogenes and tumour-suppressor genes

    PubMed Central

    Esteller, M

    2006-01-01

    Cancer is nowadays recognised as a genetic and epigenetic disease. Much effort has been devoted in the last 30 years to the elucidation of the ‘classical' oncogenes and tumour-suppressor genes involved in malignant cell transformation. However, since the acceptance that major disruption of DNA methylation, histone modification and chromatin compartments are a common hallmark of human cancer, epigenetics has come to the fore in cancer research. One piece is still missing from the story: are the epigenetic genes themselves driving forces on the road to tumorigenesis? We are in the early stages of finding the answer, and the data are beginning to appear: knockout mice defective in DNA methyltransferases, methyl-CpG-binding proteins and histone methyltransferases strongly affect the risk of cancer onset; somatic mutations, homozygous deletions and methylation-associated silencing of histone acetyltransferases, histone methyltransferases and chromatin remodelling factors are being found in human tumours; and the first cancer-prone families arising from germline mutations in epigenetic genes, such as hSNF5/INI1, have been described. Even more importantly, all these ‘new' oncogenes and tumour-suppressor genes provide novel molecular targets for designed therapies, and the first DNA-demethylating agents and inhibitors of histone deacetylases are reaching the bedside of patients with haematological malignancies. PMID:16404435

  10. Interplay Between Metabolism and Oncogenic Process: Role of microRNAs

    PubMed Central

    Arora, Aastha; Singh, Saurabh; Bhatt, Anant Narayan; Pandey, Sanjay; Sandhir, Rajat; Dwarakanath, Bilikere S.

    2015-01-01

    Cancer is a complex disease that arises from the alterations in the composition and regulation of several genes leading to the disturbances in signaling pathways, resulting in the dysregulation of cell proliferation and death as well as the ability of transformed cells to invade the host tissue and metastasize. It is increasingly becoming clear that metabolic reprograming plays a critical role in tumorigenesis and metastasis. Therefore, targeting this phenotype is considered as a promising approach for the development of therapeutics and adjuvants. The process of metabolic reprograming is linked to the activation of oncogenes and/or suppression of tumor suppressor genes, which are further regulated by microRNAs (miRNAs) that play important roles in the interplay between oncogenic process and metabolic reprograming. Looking at the advances made in the recent past, it appears that the translation of knowledge from research in the areas of metabolism, miRNA, and therapeutic response will lead to paradigm shift in the management of this disease. PMID:26740741

  11. The FBI1/Akirin2 Target Gene, BCAM, Acts as a Suppressive Oncogene

    PubMed Central

    Akiyama, Hirotada; Iwahana, Yoshimasa; Suda, Mikiya; Yoshimura, Atsunori; Kogai, Hiroyuki; Nagashima, Ai; Ohtsuka, Hiroko; Komiya, Yuko; Tashiro, Fumio

    2013-01-01

    Basal cell adhesion molecule (BCAM), known to be a splicing variant of Lutheran glycoprotein (LU), is an immunoglobulin superfamily membrane protein that acts as a laminin α5 receptor. The high affinity of BCAM/LU for laminin α5 is thought to contribute to the pathogenesis of sickle red blood cells and to various developmental processes. However, the function of BCAM in carcinogenesis is poorly understood. Based on microarray expression analysis, we found that BCAM was one of the target genes of the oncogenic 14-3-3β-FBI1/Akirin2 complex, which acts as a transcriptional repressor and suppresses MAPK phosphatase-1 gene expression. To elucidate the detailed function of BCAM in malignant tumors, we established BCAM-expressing hepatoma K2 cells. These cells lost the malignant characteristics of parental cells, such as anchorage-independent growth, migration, invasion, and tumorigenicity. Moreover, luciferase reporter assays and chromatin immunoprecipitation analysis revealed that the 14-3-3β-FBI1/Akirin2 complex bound to the BCAM promoter and repressed transcription. Thus, these data indicate that BCAM is a suppressive oncoprotein, and that FBI1/Akirin2 is involved in tumorigenicity and metastasis of hepatoma through the downregulation of suppressive oncogenes. PMID:24223164

  12. The FBI1/Akirin2 target gene, BCAM, acts as a suppressive oncogene.

    PubMed

    Akiyama, Hirotada; Iwahana, Yoshimasa; Suda, Mikiya; Yoshimura, Atsunori; Kogai, Hiroyuki; Nagashima, Ai; Ohtsuka, Hiroko; Komiya, Yuko; Tashiro, Fumio

    2013-01-01

    Basal cell adhesion molecule (BCAM), known to be a splicing variant of Lutheran glycoprotein (LU), is an immunoglobulin superfamily membrane protein that acts as a laminin α5 receptor. The high affinity of BCAM/LU for laminin α5 is thought to contribute to the pathogenesis of sickle red blood cells and to various developmental processes. However, the function of BCAM in carcinogenesis is poorly understood. Based on microarray expression analysis, we found that BCAM was one of the target genes of the oncogenic 14-3-3β-FBI1/Akirin2 complex, which acts as a transcriptional repressor and suppresses MAPK phosphatase-1 gene expression. To elucidate the detailed function of BCAM in malignant tumors, we established BCAM-expressing hepatoma K2 cells. These cells lost the malignant characteristics of parental cells, such as anchorage-independent growth, migration, invasion, and tumorigenicity. Moreover, luciferase reporter assays and chromatin immunoprecipitation analysis revealed that the 14-3-3β-FBI1/Akirin2 complex bound to the BCAM promoter and repressed transcription. Thus, these data indicate that BCAM is a suppressive oncoprotein, and that FBI1/Akirin2 is involved in tumorigenicity and metastasis of hepatoma through the downregulation of suppressive oncogenes. PMID:24223164

  13. Beyond ALK-RET, ROS1 and other oncogene fusions in lung cancer.

    PubMed

    Kohno, Takashi; Nakaoku, Takashi; Tsuta, Koji; Tsuchihara, Katsuya; Matsumoto, Shingo; Yoh, Kiyotaka; Goto, Koichi

    2015-04-01

    Fusions of the RET and ROS1 protein tyrosine kinase oncogenes with several partner genes were recently identified as new targetable genetic aberrations in cases of non-small cell lung cancer (NSCLC) lacking activating EGFR, KRAS, ALK, BRAF, or HER2 oncogene aberrations. RET and ROS1 fusion-positive tumors are mainly observed in young, female, and/or never smoking patients. Studies based on in vitro and in vivo (i.e., mouse) models and studies of several fusion-positive patients indicate that inhibiting the kinase activity of the RET and ROS1 fusion proteins is a promising therapeutic strategy. Accordingly, there are several ongoing clinical trials aimed at examining the efficacy of tyrosine kinase inhibitors (TKIs) against RET and ROS1 proteins in patients with fusion-positive lung cancer. Other gene fusions (NTRK1, NRG1, and FGFR1/2/3) that are targetable by existing TKIs have also been identified in NSCLCs. Options for personalized lung cancer therapy will be increased with the help of multiplex diagnosis systems able to detect multiple druggable gene fusions. PMID:25870798

  14. Oncogenic transformation of Drosophila somatic cells induces a functional piRNA pathway.

    PubMed

    Fagegaltier, Delphine; Falciatori, Ilaria; Czech, Benjamin; Castel, Stephane; Perrimon, Norbert; Simcox, Amanda; Hannon, Gregory J

    2016-07-15

    Germline genes often become re-expressed in soma-derived human cancers as "cancer/testis antigens" (CTAs), and piRNA (PIWI-interacting RNA) pathway proteins are found among CTAs. However, whether and how the piRNA pathway contributes to oncogenesis in human neoplasms remain poorly understood. We found that oncogenic Ras combined with loss of the Hippo tumor suppressor pathway reactivates a primary piRNA pathway in Drosophila somatic cells coincident with oncogenic transformation. In these cells, Piwi becomes loaded with piRNAs derived from annotated generative loci, which are normally restricted to either the germline or the somatic follicle cells. Negating the pathway leads to increases in the expression of a wide variety of transposons and also altered expression of some protein-coding genes. This correlates with a reduction in the proliferation of the transformed cells in culture, suggesting that, at least in this context, the piRNA pathway may play a functional role in cancer. PMID:27474441

  15. In vivo multiplexed interrogation of amplified genes identifies GAB2 as an ovarian cancer oncogene

    PubMed Central

    Dunn, Gavin P.; Cheung, Hiu Wing; Agarwalla, Pankaj K.; Thomas, Sapana; Zektser, Yulia; Karst, Alison M.; Boehm, Jesse S.; Weir, Barbara A.; Berlin, Aaron M.; Zou, Lihua; Getz, Gad; Liu, Joyce F.; Hirsch, Michelle; Vazquez, Francisca; Root, David E.; Beroukhim, Rameen; Drapkin, Ronny; Hahn, William C.

    2014-01-01

    High-grade serous ovarian cancers are characterized by widespread recurrent copy number alterations. Although some regions of copy number change harbor known oncogenes and tumor suppressor genes, the genes targeted by the majority of amplified or deleted regions in ovarian cancer remain undefined. Here we systematically tested amplified genes for their ability to promote tumor formation using an in vivo multiplexed transformation assay. We identified the GRB2-associated binding protein 2 (GAB2) as a recurrently amplified gene that potently transforms immortalized ovarian and fallopian tube secretory epithelial cells. Cancer cell lines overexpressing GAB2 require GAB2 for survival and show evidence of phosphatidylinositol 3-kinase (PI3K) pathway activation, which was required for GAB2-induced transformation. Cell lines overexpressing GAB2 were as sensitive to PI3K inhibition as cell lines harboring mutant PIK3CA. Together, these observations nominate GAB2 as an ovarian cancer oncogene, identify an alternative mechanism to activate PI3K signaling, and underscore the importance of PI3K signaling in this cancer. PMID:24385586

  16. Scribble acts as an oncogene in Eμ-myc-driven lymphoma.

    PubMed

    Hawkins, E D; Oliaro, J; Ramsbottom, K M; Newbold, A; Humbert, P O; Johnstone, R W; Russell, S M

    2016-03-01

    Scribble complex proteins maintain apicobasal polarity, regulate cell fate determination and function as tumour suppressors in epithelial tissue. Despite evidence that the function of Scribble is maintained in the lymphocyte lineage, we still understand little about its role as a tumour suppressor in haematological malignancies. Using the Eμ-myc model of Burkitt's lymphoma we investigated the role of Scribble in lymphomagenesis. We found that contrary to its well-documented tumour suppressor role in epithelial tissue, loss of Scribble expression delayed the expansion of peripheral B cells and delayed the onset of Eμ-myc-driven lymphoma. This was despite upregulated ERK phosphorylation levels in Scribble-deficient tumours, which are associated with loss of Scribble expression and the development of more aggressive Burkitt's lymphoma. Interestingly, the developmental stage of lymphoma was unaffected by Scribble expression challenging any role for Scribble in fate determination in the haematopoetic lineage. These data provide evidence for oncogenic properties of Scribble in Myc-driven B-cell lymphomagenesis, reinforcing recent findings that overexpression of a mutant form of Scribble can act as an oncogene in epithelial cells. Our results support the growing appreciation that the tumour regulatory functions of Scribble, and other polarity protein family members, are context dependent. PMID:25982280

  17. Methylation profile and amplification of proto-oncogenes in rat pancreas induced with phytoestrogens

    SciTech Connect

    Lyn-Cook, B.D.; Blann, E.; Bo, J.

    1995-01-01

    Specific gene hypermethylation has been shown in DNA from neonatal rats exposed to the phytoestrogens, coumestrol, and equol. The pancreas is an organ in which estrogen receptors have been shown to be present. Studies have correlated the development of acute pancreatitis with rising levels of human estrogen binding proteins. Neonatal rats were dosed with 10 or 100 {mu}g of coumestrol or equol on postnatal day (PND) 1-10. The animals were sacrificed at Day 15. The pancreas was excised and pancreatic acinar cells isolated for molecular analysis. DNA was isolated from the cells by lysis in TEN-9 buffer supplemented with proteinase K and 0.1% SDS. High molecular weight (HMW) DNA was digested with the methylated DNA specific restriction enzymes, Hpa II and Msp I, for determination of methylation profiles. Both coumestrol and equol at high doses caused hypermethylation of the c-H-ras proto-oncogene. No hypermethylation or hypomethylation was observed in the proto-oncogenes, c-myc or c-fos. Methylation is thought to be an epigenetic mechanism involved in the activation (hypomethylation) or inactivation (hypermethylation) of cellular genes which are known to play a role in carcinogenesis. Epidemiology studies have shown that equol may have anti-carcinogenic effects on some hormone-dependent cancers. Additional studies are needed to further understand the role of phytoestrogens and methylation in relation to pancreatic disorders. 15 refs., 4 figs.

  18. Tribbles breaking bad: TRIB2 suppresses FOXO and acts as an oncogenic protein in melanoma.

    PubMed

    Link, Wolfgang

    2015-10-01

    TRIB2 (tribbles homolog 2) encodes one of three members of the tribbles family in mammals. These members share a Trb (tribbles) domain, which is homologous to protein serine-threonine kinases, but lack the active site lysine. The tribbles proteins interact and modulate the activity of signal transduction pathways in a number of physiological and pathological processes. TRIB2 has been identified as an oncogene that inactivates the transcription factor CCAAT/enhancer-binding protein α (C/EBPα) and causes acute myelogenous leukaemia (AML). Recent research provided compelling evidence that TRIB2 can also act as oncogenic driver in solid tumours, such as lung and liver cancer. In particular, our recent work demonstrated that TRIB2 is dramatically overexpressed in malignant melanomas compared with normal skin and promotes the malignant phenotype of melanoma cells via the down-regulation of FOXO (forkhead box protein O) tumour suppressor activity in vitro and in vivo. TRIB2 was found to be expressed in normal skin, but its expression consistently increased in benign nevi, melanoma and was highest in samples from patients with malignant melanoma. The observation that TRIB2 strongly correlates with the progression of melanocyte-derived malignancies suggests TRIB2 as a meaningful biomarker to both diagnose and stage melanoma. In addition, interfering with TRIB2 activity might be a therapeutic strategy for the treatment of several different tumour types. PMID:26517928

  19. Viral Interactions with PDZ Domain-Containing Proteins—An Oncogenic Trait?

    PubMed Central

    James, Claire D.; Roberts, Sally

    2016-01-01

    Many of the human viruses with oncogenic capabilities, either in their natural host or in experimental systems (hepatitis B and C, human T cell leukaemia virus type 1, Kaposi sarcoma herpesvirus, human immunodeficiency virus, high-risk human papillomaviruses and adenovirus type 9), encode in their limited genome the ability to target cellular proteins containing PSD95/ DLG/ZO-1 (PDZ) interaction modules. In many cases (but not always), the viruses have evolved to bind the PDZ domains using the same short linear peptide motifs found in host protein-PDZ interactions, and in some cases regulate the interactions in a similar fashion by phosphorylation. What is striking is that the diverse viruses target a common subset of PDZ proteins that are intimately involved in controlling cell polarity and the structure and function of intercellular junctions, including tight junctions. Cell polarity is fundamental to the control of cell proliferation and cell survival and disruption of polarity and the signal transduction pathways involved is a key event in tumourigenesis. This review focuses on the oncogenic viruses and the role of targeting PDZ proteins in the virus life cycle and the contribution of virus-PDZ protein interactions to virus-mediated oncogenesis. We highlight how many of the viral associations with PDZ proteins lead to deregulation of PI3K/AKT signalling, benefitting virus replication but as a consequence also contributing to oncogenesis. PMID:26797638

  20. Pervasive transcription read-through promotes aberrant expression of oncogenes and RNA chimeras in renal carcinoma

    PubMed Central

    Grosso, Ana R; Leite, Ana P; Carvalho, Sílvia; Matos, Mafalda R; Martins, Filipa B; Vítor, Alexandra C; Desterro, Joana MP; Carmo-Fonseca, Maria; de Almeida, Sérgio F

    2015-01-01

    Aberrant expression of cancer genes and non-canonical RNA species is a hallmark of cancer. However, the mechanisms driving such atypical gene expression programs are incompletely understood. Here, our transcriptional profiling of a cohort of 50 primary clear cell renal cell carcinoma (ccRCC) samples from The Cancer Genome Atlas (TCGA) reveals that transcription read-through beyond the termination site is a source of transcriptome diversity in cancer cells. Amongst the genes most frequently mutated in ccRCC, we identified SETD2 inactivation as a potent enhancer of transcription read-through. We further show that invasion of neighbouring genes and generation of RNA chimeras are functional outcomes of transcription read-through. We identified the BCL2 oncogene as one of such invaded genes and detected a novel chimera, the CTSC-RAB38, in 20% of ccRCC samples. Collectively, our data highlight a novel link between transcription read-through and aberrant expression of oncogenes and chimeric transcripts that is prevalent in cancer. DOI: http://dx.doi.org/10.7554/eLife.09214.001 PMID:26575290

  1. Integrative genome analysis reveals an oncomir/oncogene cluster regulating glioblastoma survivorship.

    PubMed

    Kim, Hyunsoo; Huang, Wei; Jiang, Xiuli; Pennicooke, Brenton; Park, Peter J; Johnson, Mark D

    2010-02-01

    Using a multidimensional genomic data set on glioblastoma from The Cancer Genome Atlas, we identified hsa-miR-26a as a cooperating component of a frequently occurring amplicon that also contains CDK4 and CENTG1, two oncogenes that regulate the RB1 and PI3 kinase/AKT pathways, respectively. By integrating DNA copy number, mRNA, microRNA, and DNA methylation data, we identified functionally relevant targets of miR-26a in glioblastoma, including PTEN, RB1, and MAP3K2/MEKK2. We demonstrate that miR-26a alone can transform cells and it promotes glioblastoma cell growth in vitro and in the mouse brain by decreasing PTEN, RB1, and MAP3K2/MEKK2 protein expression, thereby increasing AKT activation, promoting proliferation, and decreasing c-JUN N-terminal kinase-dependent apoptosis. Overexpression of miR-26a in PTEN-competent and PTEN-deficient glioblastoma cells promoted tumor growth in vivo, and it further increased growth in cells overexpressing CDK4 or CENTG1. Importantly, glioblastoma patients harboring this amplification displayed markedly decreased survival. Thus, hsa-miR-26a, CDK4, and CENTG1 comprise a functionally integrated oncomir/oncogene DNA cluster that promotes aggressiveness in human cancers by cooperatively targeting the RB1, PI3K/AKT, and JNK pathways. PMID:20080666

  2. AID-expressing epithelium is protected from oncogenic transformation by an NKG2D surveillance pathway

    PubMed Central

    Pérez-García, Arantxa; Pérez-Durán, Pablo; Wossning, Thomas; Sernandez, Isora V; Mur, Sonia M; Cañamero, Marta; Real, Francisco X; Ramiro, Almudena R

    2015-01-01

    Activation-induced deaminase (AID) initiates secondary antibody diversification in germinal center B cells, giving rise to higher affinity antibodies through somatic hypermutation (SHM) or to isotype-switched antibodies through class switch recombination (CSR). SHM and CSR are triggered by AID-mediated deamination of cytosines in immunoglobulin genes. Importantly, AID activity in B cells is not restricted to Ig loci and can promote mutations and pro-lymphomagenic translocations, establishing a direct oncogenic mechanism for germinal center-derived neoplasias. AID is also expressed in response to inflammatory cues in epithelial cells, raising the possibility that AID mutagenic activity might drive carcinoma development. We directly tested this hypothesis by generating conditional knock-in mouse models for AID overexpression in colon and pancreas epithelium. AID overexpression alone was not sufficient to promote epithelial cell neoplasia in these tissues, in spite of displaying mutagenic and genotoxic activity. Instead, we found that heterologous AID expression in pancreas promotes the expression of NKG2D ligands, the recruitment of CD8+ T cells, and the induction of epithelial cell death. Our results indicate that AID oncogenic potential in epithelial cells can be neutralized by immunosurveillance protective mechanisms. PMID:26282919

  3. Human Oncogenic Herpesvirus and Post-translational Modifications - Phosphorylation and SUMOylation.

    PubMed

    Chang, Pei-Ching; Campbell, Mel; Robertson, Erle S

    2016-01-01

    Pathogens, especially viruses, evolve abilities to utilize cellular machineries to facilitate their survival and propagation. Post-translational modifications (PTMs), especially phosphorylation and SUMOylation, that reversibly modulate the function and interactions of target proteins are among the most important features in cell signaling pathways. PTM-dependent events also serve as one of the favorite targets for viruses. Among the seven unambiguous human oncogenic viruses, hepatitis B virus (HBV), hepatitis C virus (HCV), Epstein-Barr virus (EBV), Kaposi's sarcoma-associated herpesvirus (KSHV), human papillomavirus (HPV), Human T lymphotrophic virus-1 (HTLV-1), and Merkel cell polyomavirus (MCPyV), two are herpesviruses. The life cycle of herpesviruses consists of latent and lytic phases and the rapid switch between these states includes global remodeling of the viral genome from heterochromatin-to-euchromatin. The balance between lytic replication and latency is essential for herpesvirus to maintain a persistent infection through a combination of viral propagation and evasion of the host immune response, which consequently may contribute to tumorigenesis. It is no surprise that the swift reversibility of PTMs, especially SUMOylation, a modification that epigenetically regulates chromatin structure, is a major hijack target of the host for oncogenic herpesviruses. In this brief review, we summarize the varied ways in which herpesviruses engage the host immune components through PTMs, focusing on phosphorylation and SUMOylation. PMID:27379086

  4. MTDH is an oncogene in multiple myeloma, which is suppressed by Bortezomib treatment

    PubMed Central

    Yang, Hongbao; Feng, Zhenqing; Yang, Ye

    2016-01-01

    Metadherin (MTDH) is identified as an oncogene in multiple cancers including breast cancer, bladder cancer and endometrial cancer. However, the function of MTDH in multiple myeloma (MM) is still unexplored. In this study, we disclose that MTDH is an oncogene in MM. This is characterized by an elevation mRNA level of MTDH and chromosomal gain of MTDH locus in MM cells compared to normal samples. Moreover, MTDH expression significantly increased in MMSET translocation (MS) subgroup, one of the high-risk subgroups in MM, and was significantly correlated with MM patients' poor outcomes in Total Therapy 2 (TT2) cohort. Further knockdown of MTDH expression by shRNA in MM cells induced cell apoptosis, inhibited MM cells growth in vitro and decreased xenograft tumor formation in vivo. Interestingly, opposite to TT2, MM patients with high-MTDH expression showed favorable survival outcomes in the TT3 cohort, while Bortezomib treatment was the major difference between TT2 and TT3 cohort. Furthermore we proved that Bortezomib suppressed pre- and post-transcription levels of MTDH expression of MM cells in vitro and in vivo. Finally, our studies demonstrated that MTDH is a transcriptional gene of MMSET/NFκB /MYC signaling in MM cells, which is inhibited by Bortezomib treatment. PMID:26683226

  5. Disrupting the Oncogenic Synergism between Nucleolin and Ras Results in Cell Growth Inhibition and Cell Death

    PubMed Central

    Schokoroy, Sari; Juster, Dolly; Kloog, Yoel; Pinkas-Kramarski, Ronit

    2013-01-01

    Background The ErbB receptors, Ras proteins and nucleolin are major contributors to malignant transformation. The pleiotropic protein nucleolin can bind to both Ras protein and ErbB receptors. Previously, we have demonstrated a crosstalk between Ras, nucleolin and the ErbB1 receptor. Activated Ras facilitates nucleolin interaction with ErbB1 and stabilizes ErbB1 levels. The three oncogenes synergistically facilitate anchorage independent growth and tumor growth in nude mice. Methodology/Principal Findings In the present study we used several cancer cell lines. The effect of Ras and nucleolin inhibition was determined using cell growth, cell death and cell motility assays. Protein expression was determined by immunohistochemistry. We found that inhibition of Ras and nucleolin reduces tumor cell growth, enhances cell death and inhibits anchorage independent growth. Our results reveal that the combined treatment affects Ras and nucleolin levels and localization. Our study also indicates that Salirasib (FTS, Ras inhibitor) reduces cell motility, which is not affected by the nucleolin inhibitor. Conclusions/Significance These results suggest that targeting both nucleolin and Ras may represent an additional avenue for inhibiting cancers driven by these oncogenes. PMID:24086490

  6. Monoclonal antibodies to individual tyrosine-phosphorylated protein substrates of oncogene-encoded tyrosine kinases

    SciTech Connect

    Kanner, S.B.; Reynolds, A.B.; Vines, R.R.; Parsons, J.T. )

    1990-05-01

    Cellular transformation by oncogenic retroviruses encoding protein tyrosine kinases coincides with the tyrosine-specific phosphorylation of multiple protein substrates. Previous studies have shown that tyrosine phosphorylation of a protein of 120 kDa, p120, correlated with src transformation in chicken embryo fibroblasts. Additionally, the authors previously identified two phosphotyrosine-containing cellular proteins, p130 and p110, that formed stable complexes with activated variants of pp60{sup src}, the src-encoded tyrosine kinase. To study transformation-relevant tyrosine kinase substrates, they have generated monoclonal antibodies to individual tyrosine phosphoproteins, including p130, p120, p110, and five additional phosphoproteins (p210, p125, p118, p85, and p185/p64). These antibodies detected several of the same tyrosine phosphoproteins in chicken embryo fibroblasts transformed by avian retroviruses Y73 and CT10, encoding the yes and crk oncogenes, respectively. Protein substrates in mouse, rat, hamster, and human cells overexpressing activated variants of chicken pp60{sup src} were also detected by several of the monoclonal antibodies.

  7. Oncogenic role of leptin and Notch interleukin-1 leptin crosstalk outcome in cancer

    PubMed Central

    Lipsey, Crystal C; Harbuzariu, Adriana; Daley-Brown, Danielle; Gonzalez-Perez, Ruben R

    2016-01-01

    Obesity is a global pandemic characterized by high levels of body fat (adiposity) and derived-cytokines (i.e., leptin). Research shows that adiposity and leptin provide insight on the link between obesity and cancer progression. Leptin’s main function is to regulate energy balance. However, obese individuals routinely develop leptin resistance, which is the consequence of the breakdown in the signaling mechanism controlling satiety resulting in the accumulation of leptin. Therefore, leptin levels are often chronically elevated in human obesity. Elevated leptin levels are related to higher incidence, increased progression and poor prognosis of several human cancers. In addition to adipose tissue, cancer cells can also secrete leptin and overexpress leptin receptors. Leptin is known to act as a mitogen, inflammatory and pro-angiogenic factor that induces cancer cell proliferation and tumor angiogenesis. Moreover, leptin signaling induces cancer stem cells, which are involved in cancer recurrence and drug resistance. A novel and complex signaling crosstalk between leptin, Notch and interleukin-1 (IL-1) [Notch, IL-1 and leptin crosstalk outcome (NILCO)] seems to be an important driver of leptin-induced oncogenic actions. Leptin and NILCO signaling mediate the activation of cancer stem cells that can affect drug resistance. Thus, leptin and NILCO signaling are key links between obesity and cancer progression. This review presents updated data suggesting that adiposity affects cancer incidence, progression, and response to treatment. Here we show data supporting the oncogenic role of leptin in breast, endometrial, and pancreatic cancers. PMID:27019796

  8. The histone demethylase LSD1 is a novel oncogene and therapeutic target in oral cancer.

    PubMed

    Wang, Yanling; Zhu, Yumin; Wang, Qiong; Hu, Huijun; Li, Zhongwu; Wang, Dongmiao; Zhang, Wei; Qi, Bin; Ye, Jinhai; Wu, Heming; Jiang, Hongbing; Liu, Laikui; Yang, Jianrong; Cheng, Jie

    2016-04-28

    The histone demethylase LSD1 functions as a key pro-oncogene and attractive therapeutic target in human cancer. Here we sought to interrogate the oncogenic roles of LSD1 in OSCC tumorigenesis and therapeutic intervention by integrating chemical-induced OSCC model, genetic and pharmacological loss-of-function approaches. Our data revealed that aberrant LSD1 overexpression in OSCC was significantly associated with tumor aggressiveness and shorter overall survival. Increased abundance of LSD1 was detected along with disease progression in DMBA- or 4NQO-induced OSCC animal models. LSD1 depletion via siRNA-mediated knockdown in OSCC cells resulted in impaired cell proliferation, migration/invasion, tumorsphere formation and reduced xenograft growth while inducing cell apoptosis and enhancing chemosensitivity to 5-FU. Moreover, treatments of LSD1 chemical inhibitors (pargyline and tranylcypromine) induced its protein reduction probably via enhanced protein degradation and produced similar phenotypic changes resembling LSD1 silencing in OSCC cells. Pharmacological inhibition of LSD1 by intraperitoneal delivery of these inhibitors resulted in impaired xenograft overgrowth. Taken together, our data reveal the tumorigenic roles of LSD1 and identified LSD1 as a novel biomarker with diagnostic and prognostic significance, and also establish that targeting LSD1 by chemical inhibitors is a viable therapeutic strategy against OSCC. PMID:26872725

  9. Direct inhibition of oncogenic KRAS by hydrocarbon-stapled SOS1 helices

    PubMed Central

    Leshchiner, Elizaveta S.; Parkhitko, Andrey; Bird, Gregory H.; Luccarelli, James; Bellairs, Joseph A.; Escudero, Silvia; Opoku-Nsiah, Kwadwo; Godes, Marina; Perrimon, Norbert; Walensky, Loren D.

    2015-01-01

    Activating mutations in the Kirsten rat sarcoma viral oncogene homolog (KRAS) underlie the pathogenesis and chemoresistance of ∼30% of all human tumors, yet the development of high-affinity inhibitors that target the broad range of KRAS mutants remains a formidable challenge. Here, we report the development and validation of stabilized alpha helices of son of sevenless 1 (SAH-SOS1) as prototype therapeutics that directly inhibit wild-type and mutant forms of KRAS. SAH-SOS1 peptides bound in a sequence-specific manner to KRAS and its mutants, and dose-responsively blocked nucleotide association. Importantly, this functional binding activity correlated with SAH-SOS1 cytotoxicity in cancer cells expressing wild-type or mutant forms of KRAS. The mechanism of action of SAH-SOS1 peptides was demonstrated by sequence-specific down-regulation of the ERK-MAP kinase phosphosignaling cascade in KRAS-driven cancer cells and in a Drosophila melanogaster model of Ras85DV12 activation. These studies provide evidence for the potential utility of SAH-SOS1 peptides in neutralizing oncogenic KRAS in human cancer. PMID:25624485

  10. Oncogenic Herpesvirus KSHV Hijacks BMP-Smad1-Id Signaling to Promote Tumorigenesis

    PubMed Central

    Li, Shasha; Dong, Jiazhen; Wang, Xing; Wang, Yuhan; He, Li; He, Zhiheng; Gao, Yuan; Gao, Shou-Jiang; Lan, Ke

    2014-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma (KS), a malignancy commonly found in AIDS patients. Whether KS is a true neoplasm or hyperplasia has been a subject of intensive debate until recently when KSHV is unequivocally shown to efficiently infect, immortalize and transform rat primary mesenchymal precursor cells (MM). Moreover, KSHV-transformed MM cells (KMM) efficiently induce tumors with hallmark features of KS when inoculated into nude mice. Here, we showed Smad1 as a novel binding protein of KSHV latency-associated nuclear antigen (LANA). LANA interacted with and sustained BMP-activated p-Smad1 in the nucleus and enhanced its loading on the Id promoters. As a result, Ids were significantly up-regulated in KMM cells and abundantly expressed in human KS lesions. Strikingly, genetic and chemical inhibition of the BMP-Smad1-Id pathway blocked the oncogenic phenotype of KSHV-transformed cells in vitro and in vivo. These findings illustrate a novel mechanism by which a tumor virus hijacks and converts a developmental pathway into an indispensable oncogenic pathway for tumorigenesis. Importantly, our results demonstrate the efficacy of targeting the BMP-Smad1-Id pathway for inhibiting the growth of KSHV-induced tumors, and therefore identify the BMP pathway as a promising therapeutic target for KS. PMID:25010525

  11. RUNX3 Has an Oncogenic Role in Head and Neck Cancer

    PubMed Central

    Tsunematsu, Takaaki; Kudo, Yasusei; Iizuka, Shinji; Ogawa, Ikuko; Fujita, Tsuyoshi; Kurihara, Hidemi; Abiko, Yoshimitsu; Takata, Takashi

    2009-01-01

    Background Runt-related transcription factor 3 (RUNX3) is a tumor suppressor of cancer and appears to be an important component of the transforming growth factor-beta (TGF-ß)-induced tumor suppression pathway. Surprisingly, we found that RUNX3 expression level in head and neck squamous cell carcinoma (HNSCC) tissues, which is one of the most common types of human cancer, was higher than that in normal tissues by a previously published microarray dataset in our preliminary study. Therefore, here we examined the oncogenic role of RUNX3 in HNSCC. Principal Findings Frequent RUNX3 expression and its correlation with malignant behavior were observed in HNSCC. Ectopic RUNX3 overexpression promoted cell growth and inhibited serum starvation-induced apoptosis and chemotherapeutic drug induced apoptosis in HNSCC cells. These findings were confirmed by RUNX3 knockdown. Moreover, RUNX3 overexpression enhanced tumorsphere formation. RUNX3 expression level was well correlated with the methylation status in HNSCC cells. Moreover, RUNX3 expression was low due to the methylation of its promoter in normal oral epithelial cells. Conclusions/Significance Our findings suggest that i) RUNX3 has an oncogenic role in HNSCC, ii) RUNX3 expression observed in HNSCC may be caused in part by demethylation during cancer development, and iii) RUNX3 expression can be a useful marker for predicting malignant behavior and the effect of chemotherapeutic drugs in HNSCC. PMID:19521519

  12. Beyond ALK-RET, ROS1 and other oncogene fusions in lung cancer

    PubMed Central

    Nakaoku, Takashi; Tsuta, Koji; Tsuchihara, Katsuya; Matsumoto, Shingo; Yoh, Kiyotaka; Goto, Koichi

    2015-01-01

    Fusions of the RET and ROS1 protein tyrosine kinase oncogenes with several partner genes were recently identified as new targetable genetic aberrations in cases of non-small cell lung cancer (NSCLC) lacking activating EGFR, KRAS, ALK, BRAF, or HER2 oncogene aberrations. RET and ROS1 fusion-positive tumors are mainly observed in young, female, and/or never smoking patients. Studies based on in vitro and in vivo (i.e., mouse) models and studies of several fusion-positive patients indicate that inhibiting the kinase activity of the RET and ROS1 fusion proteins is a promising therapeutic strategy. Accordingly, there are several ongoing clinical trials aimed at examining the efficacy of tyrosine kinase inhibitors (TKIs) against RET and ROS1 proteins in patients with fusion-positive lung cancer. Other gene fusions (NTRK1, NRG1, and FGFR1/2/3) that are targetable by existing TKIs have also been identified in NSCLCs. Options for personalized lung cancer therapy will be increased with the help of multiplex diagnosis systems able to detect multiple druggable gene fusions. PMID:25870798

  13. Inhibition of the Pim1 Oncogene Results in Diminished Visual Function

    PubMed Central

    Yin, Jun; Shine, Lisa; Raycroft, Francis; Deeti, Sudhakar; Reynolds, Alison; Ackerman, Kristin M.; Glaviano, Antonino; O'Farrell, Sean; O'Leary, Olivia; Kilty, Claire; Kennedy, Ciaran; McLoughlin, Sarah; Rice, Megan; Russell, Eileen; Higgins, Desmond G.; Hyde, David R.; Kennedy, Breandan N.

    2012-01-01

    Our objective was to profile genetic pathways whose differential expression correlates with maturation of visual function in zebrafish. Bioinformatic analysis of transcriptomic data revealed Jak-Stat signalling as the pathway most enriched in the eye, as visual function develops. Real-time PCR, western blotting, immunohistochemistry and in situ hybridization data confirm that multiple Jak-Stat pathway genes are up-regulated in the zebrafish eye between 3–5 days post-fertilisation, times associated with significant maturation of vision. One of the most up-regulated Jak-Stat genes is the proto-oncogene Pim1 kinase, previously associated with haematological malignancies and cancer. Loss of function experiments using Pim1 morpholinos or Pim1 inhibitors result in significant diminishment of visual behaviour and function. In summary, we have identified that enhanced expression of Jak-Stat pathway genes correlates with maturation of visual function and that the Pim1 oncogene is required for normal visual function. PMID:23300608

  14. PAK1 is a breast cancer oncogene that coordinately activates MAPK and MET signaling

    PubMed Central

    Shrestha, Yashaswi; Schafer, Eric J.; Boehm, Jesse S.; Thomas, Sapana R.; He, Frank; Du, Jinyan; Wang, Shumei; Barretina, Jordi; Weir, Barbara A.; Zhao, Jean J.; Polyak, Kornelia; Golub, Todd R.; Beroukhim, Rameen; Hahn, William C.

    2011-01-01

    Activating mutations in the RAS family or BRAF frequently occur in many types of human cancers but are rarely detected in breast tumors. However, activation of the RAS-RAF-MEK-ERK Mitogen-Activated Protein Kinase (MAPK) pathway is commonly observed in human breast cancers, suggesting that other genetic alterations lead to activation of this signaling pathway. To identify breast cancer oncogenes that activate the MAPK pathway, we screened a library of human kinases for their ability to induce anchorage-independent growth in a derivative of immortalized human mammary epithelial cells (HMLE). We identified PAK1 as a kinase that permitted HMLE cells to form anchorage-independent colonies. PAK1 is amplified in several human cancer types, including 33% of breast tumor samples and cancer cell lines. The kinase activity of PAK1 is necessary for PAK1-induced transformation. Moreover, we show that PAK1 simultaneously activates MAPK and MET signaling; the latter via inhibition of Merlin. Disruption of these activities inhibits PAK1-driven anchorage-independent growth. These observations establish PAK1 amplification as an alternative mechanism for MAPK activation in human breast cancer and credential PAK1 as a breast cancer oncogene that coordinately regulates multiple signaling pathways, the cooperation of which leads to malignant transformation. PMID:22105362

  15. MicroRNAs Involved in Tumor Suppressor and Oncogene Pathways; Implications for Hepatobiliary Neoplasia

    PubMed Central

    Mott, Justin L.

    2009-01-01

    MicroRNAs are a class of small regulatory RNAs that function to modulate protein expression. This control allows for fine-tuning of the cellular phenotype, including regulation of proliferation, cell signaling, and apoptosis; not surprisingly, microRNAs contribute to liver cancer biology. Recent investigations in human liver cancers and tumor-derived cell lines have demonstrated decreased or increased expression of particular microRNAs in hepatobiliary cancer cells. Based on predicted and validated protein targets as well as functional consequences of altered expression, microRNAs with decreased expression in liver tumor cells may normally aid in limiting neoplastic transformation. Conversely, selected microRNAs that are upregulated in liver tumor cells can promote malignant features, contributing to carcinogenesis. In addition, microRNAs themselves are subject to regulated expression, including regulation by tumor suppressor and oncogene pathways. This review will focus on the expression and function of cancer-related microRNAs, including their intimate involvement in tumor suppressor and oncogene signaling networks relevant to hepatobiliary neoplasia. PMID:19585622

  16. Identification of MYC-Dependent Transcriptional Programs in Oncogene-Addicted Liver Tumors.

    PubMed

    Kress, Theresia R; Pellanda, Paola; Pellegrinet, Luca; Bianchi, Valerio; Nicoli, Paola; Doni, Mirko; Recordati, Camilla; Bianchi, Salvatore; Rotta, Luca; Capra, Thelma; Ravà, Micol; Verrecchia, Alessandro; Radaelli, Enrico; Littlewood, Trevor D; Evan, Gerard I; Amati, Bruno

    2016-06-15

    Tumors driven by activation of the transcription factor MYC generally show oncogene addiction. However, the gene expression programs that depend upon sustained MYC activity remain unknown. In this study, we employed a mouse model of liver carcinoma driven by a reversible tet-MYC transgene, combined with chromatin immunoprecipitation and gene expression profiling to identify MYC-dependent regulatory events. As previously reported, MYC-expressing mice exhibited hepatoblastoma- and hepatocellular carcinoma-like tumors, which regressed when MYC expression was suppressed. We further show that cellular transformation, and thus initiation of liver tumorigenesis, were impaired in mice harboring a MYC mutant unable to associate with the corepressor protein MIZ1 (ZBTB17). Notably, switching off the oncogene in advanced carcinomas revealed that MYC was required for the continuous activation and repression of distinct sets of genes, constituting no more than half of all genes deregulated during tumor progression and an even smaller subset of all MYC-bound genes. Altogether, our data provide the first detailed analysis of a MYC-dependent transcriptional program in a fully developed carcinoma and offer a guide to identifying the critical effectors contributing to MYC-driven tumor maintenance. Cancer Res; 76(12); 3463-72. ©2016 AACR. PMID:27197165

  17. Atypical Protein Kinase Cι as a human oncogene and therapeutic target

    PubMed Central

    Parker, Peter J.; Justilien, Verline; Riou, Philippe; Linch, Mark; Fields, Alan P.

    2014-01-01

    Protein kinase inhibitors represent a major class of targeted therapeutics that has made a positive impact on treatment of cancer and other disease indications. Among the promising kinase targets for further therapeutic development are members of the Protein Kinase C (PKC) family.The PKCs are central components of many signaling pathways that regulate diverse cellular functions including proliferation, cell cycle, differentiation, survival, cell migration, and polarity. Genetic manipulation of individual PKC isozymes has demonstrated that they often fulfill distinct, nonredundant cellular functions.11 Participation of PKC members in different intracellular signaling pathways reflects responses to varying extracellular stimuli, intracellular localization, tissue distribution, phosphorylation status, and intermolecular interactions. PKC activity, localization, phosphorylation, and/or expression are often altered in human tumors, and PKC isozymes have been implicated in various aspects of transformation, including uncontrolled proliferation, migration, invasion, metastasis, angiogenesis, and resistance to apoptosis. Despite the strong relationship between PKC isozymes and cancer, to date only atypical PKCiota has been shown to function as a bona fide oncogene, and as such is a particularly attractive therapeutic target for cancer treatment. In this review, we discuss the role of PKCiota in transformation and describe mechanism-based approaches to therapeutically target oncogenic PKCiota signaling in cancer. PMID:24231509

  18. Premature polyadenylation of MAGI3 produces a dominantly-acting oncogene in human breast cancer

    PubMed Central

    Ni, Thomas K; Kuperwasser, Charlotte

    2016-01-01

    Genetic mutation, chromosomal rearrangement and copy number amplification are common mechanisms responsible for generating gain-of-function, cancer-causing alterations. Here we report a new mechanism by which premature cleavage and polyadenylation (pPA) of RNA can produce an oncogenic protein. We identify a pPA event at a cryptic intronic poly(A) signal in MAGI3, occurring in the absence of local exonic and intronic mutations. The altered mRNA isoform, called MAGI3pPA, produces a truncated protein that acts in a dominant-negative manner to prevent full-length MAGI3 from interacting with the YAP oncoprotein, thereby relieving YAP inhibition and promoting malignant transformation of human mammary epithelial cells. We additionally find evidence for recurrent expression of MAGI3pPAin primary human breast tumors but not in tumor-adjacent normal tissues. Our results provide an example of how pPA contributes to cancer by generating a truncated mRNA isoform that encodes an oncogenic, gain-of-function protein. DOI: http://dx.doi.org/10.7554/eLife.14730.001 PMID:27205883

  19. Human Oncogenic Herpesvirus and Post-translational Modifications – Phosphorylation and SUMOylation

    PubMed Central

    Chang, Pei-Ching; Campbell, Mel; Robertson, Erle S.

    2016-01-01

    Pathogens, especially viruses, evolve abilities to utilize cellular machineries to facilitate their survival and propagation. Post-translational modifications (PTMs), especially phosphorylation and SUMOylation, that reversibly modulate the function and interactions of target proteins are among the most important features in cell signaling pathways. PTM-dependent events also serve as one of the favorite targets for viruses. Among the seven unambiguous human oncogenic viruses, hepatitis B virus (HBV), hepatitis C virus (HCV), Epstein-Barr virus (EBV), Kaposi’s sarcoma-associated herpesvirus (KSHV), human papillomavirus (HPV), Human T lymphotrophic virus-1 (HTLV-1), and Merkel cell polyomavirus (MCPyV), two are herpesviruses. The life cycle of herpesviruses consists of latent and lytic phases and the rapid switch between these states includes global remodeling of the viral genome from heterochromatin-to-euchromatin. The balance between lytic replication and latency is essential for herpesvirus to maintain a persistent infection through a combination of viral propagation and evasion of the host immune response, which consequently may contribute to tumorigenesis. It is no surprise that the swift reversibility of PTMs, especially SUMOylation, a modification that epigenetically regulates chromatin structure, is a major hijack target of the host for oncogenic herpesviruses. In this brief review, we summarize the varied ways in which herpesviruses engage the host immune components through PTMs, focusing on phosphorylation and SUMOylation. PMID:27379086

  20. mTORC1 is a critical mediator of oncogenic Semaphorin3A signaling.

    PubMed

    Yamada, Daisuke; Kawahara, Kohichi; Maeda, Takehiko

    2016-08-01

    Aberration of signaling pathways by genetic mutations or alterations in the surrounding tissue environments can result in tumor development or metastasis. However, signaling molecules responsible for these processes have not been completely elucidated. Here, we used mouse Lewis lung carcinoma cells (LLC) to explore the mechanism by which the oncogenic activity of Semaphorin3A (Sema3A) signaling is regulated. Sema3A knockdown by shRNA did not affect apoptosis, but decreased cell proliferation in LLCs; both the mammalian target of rapamycin complex 1 (mTORC1) level and glycolytic activity were also decreased. In addition, Sema3A knockdown sensitized cells to inhibition of oxidative phosphorylation by oligomycin, but conferred resistance to decreased cell viability induced by glucose starvation. Furthermore, recombinant SEMA3A rescued the attenuation of cell proliferation and glycolytic activity in LLCs after Sema3A knockdown, whereas mTORC1 inhibition by rapamycin completely counteracted this effect. These results demonstrate that Sema3A signaling exerts its oncogenic effect by promoting an mTORC1-mediated metabolic shift from oxidative phosphorylation to aerobic glycolysis. PMID:27246732

  1. CCAT1: a pivotal oncogenic long non-coding RNA in human cancers.

    PubMed

    Xin, Yu; Li, Zheng; Shen, Jianxiong; Chan, Matthew T V; Wu, William Ka Kei

    2016-06-01

    Long non-coding RNAs (lncRNAs) compose a group of non-protein-coding RNAs - more than 200 nucleotides in length. Recent studies have shown that lncRNAs play important roles in different cellular processes, including proliferation, differentiation, migration and invasion. Deregulation of lncRNAs has been widely reported in human tumours, in which they are able to function as either oncogenes (on the one hand) or tumour suppressor genes (on the other). Deregulation of CCAT1 (colon cancer-associated transcript-1), an oncogenic lncRNA, has been documented in different types of malignancy, such as gastric cancer, colorectal cancer and hepatocellular carcinoma. In this regard, enforced expression of CCAT1 exerts potent tumorigenic effects by promoting cell proliferation, invasion and migration. Recent evidence has also shown that CCAT1 may serve as a prognostic cancer biomarker. In this review, we provide an overview of current evidence relating to the role and biological function of CCAT1 in tumour development. PMID:27134049

  2. Antineoplastic Effects of siRNA against TMPRSS2-ERG Junction Oncogene in Prostate Cancer.

    PubMed

    Urbinati, Giorgia; Ali, Hafiz Muhammad; Rousseau, Quentin; Chapuis, Hubert; Desmaële, Didier; Couvreur, Patrick; Massaad-Massade, Liliane

    2015-01-01

    TMPRSS2-ERG junction oncogene is present in more than 50% of patients with prostate cancer and its expression is frequently associated with poor prognosis. Our aim is to achieve gene knockdown by siRNA TMPRSS2-ERG and then to assess the biological consequences of this inhibition. First, we designed siRNAs against the two TMPRSS2-ERG fusion variants (III and IV), most frequently identified in patients' biopsies. Two of the five siRNAs tested were found to efficiently inhibit mRNA of both TMPRSS2-ERG variants and to decrease ERG protein expression. Microarray analysis further confirmed ERG inhibition by both siRNAs TMPRSS2-ERG and revealed one common down-regulated gene, ADRA2A, involved in cell proliferation and migration. The siRNA against TMPRSS2-ERG fusion variant IV showed the highest anti-proliferative effects: Significantly decreased cell viability, increased cleaved caspase-3 and inhibited a cluster of anti-apoptotic proteins. To propose a concrete therapeutic approach, siRNA TMPRSS2-ERG IV was conjugated to squalene, which can self-organize as nanoparticles in water. The nanoparticles of siRNA TMPRSS2-ERG-squalene injected intravenously in SCID mice reduced growth of VCaP xenografted tumours, inhibited oncoprotein expression and partially restored differentiation (decrease in Ki67). In conclusion, this study offers a new prospect of treatment for prostate cancer based on siRNA-squalene nanoparticles targeting TMPRSS2-ERG junction oncogene. PMID:25933120

  3. Distinct cellular properties of oncogenic KIT receptor tyrosine kinase mutants enable alternative courses of cancer cell inhibition.

    PubMed

    Shi, Xiarong; Sousa, Leiliane P; Mandel-Bausch, Elizabeth M; Tome, Francisco; Reshetnyak, Andrey V; Hadari, Yaron; Schlessinger, Joseph; Lax, Irit

    2016-08-16

    Large genomic sequencing analysis as part of precision medicine efforts revealed numerous activating mutations in receptor tyrosine kinases, including KIT. Unfortunately, a single approach is not effective for inhibiting cancer cells or treating cancers driven by all known oncogenic KIT mutants. Here, we show that each of the six major KIT oncogenic mutants exhibits different enzymatic, cellular, and dynamic properties and responds distinctly to different KIT inhibitors. One class of KIT mutants responded well to anti-KIT antibody treatment alone or in combination with a low dose of tyrosine kinase inhibitors (TKIs). A second class of KIT mutants, including a mutant resistant to imatinib treatment, responded well to a combination of TKI with anti-KIT antibodies or to anti-KIT toxin conjugates, respectively. We conclude that the preferred choice of precision medicine treatments for cancers driven by activated KIT and other RTKs may rely on clear understanding of the dynamic properties of oncogenic mutants. PMID:27482095

  4. Expression of BCR-ABL1 oncogene relative to ABL1 gene changes overtime in chronic myeloid leukemia

    SciTech Connect

    Gupta, Manu; Milani, Lili; Hermansson, Monica; Simonsson, Bengt; Markevaern, Berit; Syvaenen, Ann Christine; Barbany, Gisela

    2008-02-15

    Using a quantitative single nucleotide polymorphism (SNP) assay we have investigated the changes in the expression of the BCR-ABL1 oncogene relative to the wild-type ABL1 and BCR alleles in cells from chronic myeloid leukemia (CML) patients not responding to therapy. The results show a progressive increase in the BCR-ABL1 oncogene expression at the expense of decreased expression of the ABL1 allele, not involved in the fusion. No relative changes in the expression of the two BCR alleles were found. These results demonstrate that allele-specific changes in gene expression, with selective, progressive silencing of the wild-type ABL1 allele in favor of the oncogenic BCR-ABL1 allele occur in CML patients with therapy-resistant disease.

  5. Role of “oncogenic nexus” of CIP2A in breast oncogenesis: how does it work?

    PubMed Central

    De, Pradip; Carlson, Jennifer H; Leyland-Jones, Brian; Dey, Nandini

    2015-01-01

    The CIP2A gene is an oncogene associated with solid and hematologic malignancies [1]. CIP2A protein is an oncoprotein and a potential cancer therapy target [2]. Literature shows that CIP2A inhibits the tumor suppressor protein PP2A [3] which downregulates phophorylation of AKT, a hallmark of cancers [4] and stabilizes the proto-oncogene, c-MYC in tumor cells [5], the comprehensive action of CIP2A and its functional interaction(s) with other oncoproteins and tumor suppressors is not clearly established. Recently we tried to put forward a contextual mode-of-action of CIP2A protein in a review which proposed that CIP2A influences oncogenesis via an “oncogenic nexus” [1]. In this review we critically evaluated the potential relevance of the mode-of-action of the “oncogenic nexus” of CIP2A in breast carcinogenesis and appraised the role of this nexus in different PAM50 luminal A, PAM50 luminal B, PAM50 HER2-enriched and PAM50 basal BC. This review has a novel approach. Here we have not only compiled and discussed the latest developments in this field but also presented data obtained from c-BioPortal and STRING10 in order to substantiate our view regarding the mode-of-action of the “oncogenic nexus” of CIP2A. We functionally correlated alterations of genes pertaining to the “oncogenic nexus” of CIP2A with protein-protein interactions between the different components of the nexus including (1) subunits of PP2A, (2) multiple transcription factors including MYC oncogene and (3) components of the PI3K-mTOR and the MAPK-ERK oncogenic pathways. Using these proteins as “input” to STRING10 we studied the association, Action view, at the highest Confidence level. OncoPrints (c-BioPortal) showed alterations (%) of regulatory subunits genes of PP2A (PPP2R1A and PPP2R1B) along with alterations of CIP2A in breast invasive carcinoma (TCGA, Nature 2012 & TCGA, Provisional). Similar genetic alterations of PP2A were also observed in samples of breast tumors at our

  6. The oncogenic transcription factor c-Jun regulates glutaminase expression and sensitizes cells to glutaminase-targeted therapy

    PubMed Central

    Lukey, Michael J.; Greene, Kai Su; Erickson, Jon W.; Wilson, Kristin F.; Cerione, Richard A.

    2016-01-01

    Many transformed cells exhibit altered glucose metabolism and increased utilization of glutamine for anabolic and bioenergetic processes. These metabolic adaptations, which accompany tumorigenesis, are driven by oncogenic signals. Here we report that the transcription factor c-Jun, product of the proto-oncogene JUN, is a key regulator of mitochondrial glutaminase (GLS) levels. Activation of c-Jun downstream of oncogenic Rho GTPase signalling leads to elevated GLS gene expression and glutaminase activity. In human breast cancer cells, GLS protein levels and sensitivity to GLS inhibition correlate strongly with c-Jun levels. We show that c-Jun directly binds to the GLS promoter region, and is sufficient to increase gene expression. Furthermore, ectopic overexpression of c-Jun renders breast cancer cells dependent on GLS activity. These findings reveal a role for c-Jun as a driver of cancer cell metabolic reprogramming, and suggest that cancers overexpressing JUN may be especially sensitive to GLS-targeted therapies. PMID:27089238

  7. Ras-oncogenic Drosophila hindgut but not midgut cells use an inflammation-like program to disseminate to distant sites.

    PubMed

    Christofi, Theodoulakis; Apidianakis, Yiorgos

    2013-01-01

    The gastrointestinal tract is habitable by a variety of microorganisms and it is often a tissue inflicted by inflammation. Much discussion is raised in recent years about the role of microbiota in intestinal inflammation, but their role in intestinal cancer remains unclear. Here we discuss and extent our work on Drosophila melanogaster models of tumorigenesis and tumor cell invasion upon intestinal infection. In Drosophila midgut bacteria that cause enterocyte damage induce intestinal stem cell proliferation, which is diverted toward aberrant stem cell expansion upon oncogene expression to induce dysplastic tumors. In the hindgut though, oncogenes synergize with the innate immune response-not the bacterially mediated damage-to induce tumor cell invasion and dissemination to distant sites. Interestingly, our novel gene expression analysis of Drosophila hemocyte-like cells suggests commonalities with oncogenic hindgut cells in the innate immune response and the expression of matrix metalloproteinase 1 in response to bacterial infection. PMID:23060054

  8. Intragenic sex-chromosomal crossovers of Xmrk oncogene alleles affect pigment pattern formation and the severity of melanoma in Xiphophorus.

    PubMed Central

    Gutbrod, H; Schartl, M

    1999-01-01

    The X and Y chromosomes of the platyfish (Xiphophorus maculatus) contain a region that encodes several important traits, including the determination of sex, pigment pattern formation, and predisposition to develop malignant melanoma. Several sex-chromosomal crossovers were identified in this region. As the melanoma-inducing oncogene Xmrk is the only molecularly identified constituent, its genomic organization on both sex chromosomes was analyzed in detail. Using X and Y allele-specific sequence differences a high proportion of the crossovers was found to be intragenic in the oncogene Xmrk, concentrating in the extracellular domain-encoding region. The genetic and molecular data allowed establishment of an order of loci over approximately 0.6 cM. It further revealed a sequence located within several kilobases of the extracellular domain-encoding region of Xmrk that regulates overexpression of the oncogene. PMID:9927468

  9. The cnidarian origin of the proto-oncogenes NF-κB/STAT and WNT-like oncogenic pathway drives the ctenophores (Review)

    PubMed Central

    SINKOVICS, JOSEPH G.

    2015-01-01

    The cell survival pathways of the diploblastic early multicellular eukaryotic hosts contain and operate the molecular machinery resembling those of malignantly transformed individual cells of highly advanced multicellular hosts (including Homo). In the present review, the STAT/NF-κB pathway of the cnidarian Nematostella vectensis is compared with that of human tumors (malignant lymphomas, including Reed-Sternberg cells) pointing out similarities, including possible viral initiation in both cases. In the ctenophore genome and proteome, β-catenin gains intranuclear advantages due to a physiologically weak destructive complex in the cytoplasm, and lack of natural inhibitors (the Dickkopfs). Thus, a scenario similar to what tumor cells initiate and achieve is presented through several constitutive loss-of-function type mutations in the destructive complex and in the elimination of inhibitors. Vice versa, malignantly transformed individual cells of advanced multicellular hosts assume pheno-genotypic resemblance to cells of unicellular or early multicellular hosts, and presumably to their ancient predecessors, by returning to the semblance of immortality and to the resumption of the state of high degree of resistance to physicochemical insults. Human leukemogenic and oncogenic pathways are presented for comparisons. The supreme bioengineers RNA/DNA complex encoded both the malignantly transformed immortal cell and the human cerebral cortex. The former generates molecules for the immortality of cellular life in the Universe. The latter invents the inhibitors of the process in order to gain control over it. PMID:26239915

  10. The cnidarian origin of the proto-oncogenes NF-κB/STAT and WNT-like oncogenic pathway drives the ctenophores (Review).

    PubMed

    Sinkovics, Joseph G

    2015-10-01

    The cell survival pathways of the diploblastic early multicellular eukaryotic hosts contain and operate the molecular machinery resembling those of malignantly transformed individual cells of highly advanced multicellular hosts (including Homo). In the present review, the STAT/NF-κB pathway of the cnidarian Nematostella vectensis is compared with that of human tumors (malignant lymphomas, including Reed-Sternberg cells) pointing out similarities, including possible viral initiation in both cases. In the ctenophore genome and proteome, β-catenin gains intranuclear advantages due to a physiologically weak destructive complex in the cytoplasm, and lack of natural inhibitors (the dickkopfs). Thus, a scenario similar to what tumor cells initiate and achieve is presented through several constitutive loss-of-function type mutations in the destructive complex and in the elimination of inhibitors. Vice versa, malignantly transformed individual cells of advanced multicellular hosts assume pheno-genotypic resemblance to cells of unicellular or early multicellular hosts, and presumably to their ancient predecessors, by returning to the semblance of immortality and to the resumption of the state of high degree of resistance to physicochemical insults. Human leukemogenic and oncogenic pathways are presented for comparisons. The supreme bioengineers RNA/DNA complex encoded both the malignantly transformed immortal cell and the human cerebral cortex. The former generates molecules for the immortality of cellular life in the Universe. The latter invents the inhibitors of the process in order to gain control over it. PMID:26239915

  11. Regulation of matrix metalloproteinase-2 (gelatinase A, MMP-2), membrane-type matrix metalloproteinase-1 (MT1-MMP) and tissue inhibitor of metalloproteinases-2 (TIMP-2) expression by elastin-derived peptides in human HT-1080 fibrosarcoma cell line.

    PubMed

    Brassart, B; Randoux, A; Hornebeck, W; Emonard, H

    1998-08-01

    Soluble kappa-elastin peptides were shown to stimulate the expression of MMP-2 (but not MMP-9) by human fibrosarcoma HT-1080 cells, both at the protein and mRNA levels; maximal effect being observed at a concentration of 25 microg/ml of kappa-elastin. The stimulatory effect could be reproduced using Val-Gly-Val-Ala-Pro-Gly (VGVAPG) peptide, an elastin-derived hydrophobic hexapeptide which represented the elastin receptor binding sequence of tropoelastin. Furthermore, treatment of cells with lactose (30 mM), which dissociated 67-kDa elastin binding protein (EBP) from cell surfaces, completely abolished this effect, suggesting that the elastin receptor could mediate such a response. Using a specific monoclonal antibody, 67-kDa EBP was detected in HT-1080 membrane preparations by Western immunoblotting. Following treatment with 25 microg/ml kappa-elastin or 200 microg/ml VGVAPG, increased levels of the active 62-kDa form of MMP-2 were found in HT-1080 cell extracts. Stimulation of MT1-MMP mRNA expression by treatment with elastin-derived peptides (EDPs) was shown by competitive polymerase chain reaction (PCR). A reverse zymography analysis revealed that EDPs also stimulated TIMP-2 (but not TIMP-1) production by HT-1080 cells. Competitive PCR confirmed increased TIMP-2 mRNA expression by such treatment. These results suggest that occupancy of the 67-kDa elastin receptor by elastin-derived peptides enhanced both expression and activation of proMMP-2 and consequently, could promote the invasive/metastatic ability of tumor cells expressing this receptor. PMID:9872597

  12. INTRODUCTION OF A HA-RAS ONCOGENE INTO RAT LIVER EPITHELIAL CELLS AND PARENCHYMAL HEPATACYTES CONFERS REISTANCE TO THE GROWTH INHIBITORY EFFECTS OF TGF-B

    EPA Science Inventory

    Growth of rat liver epithelial cells (RLEC) and primary cultures of parenchymal hepatocytes is potentially inhibited by TGF-b. Transfection of a mutaged Ha-ras oncogene, but not a human c-myc oncogene, into RLEC resulted in cell lines ressitant to growth inhibition by TGF-b under...

  13. The role of the ras oncogene in the formation of tumours.

    PubMed

    Gilbert, P X; Harris, H

    1988-07-01

    A c-Ha-ras 1 oncogene, cloned from the EJ human bladder carcinoma cell line, was inserted into a shuttle vector carrying the selectable marker gene gpt that encodes the enzyme xanthine-guanine phosphoribosyl transferase. This construct, pSV2gptEJ, was transfected into NIH 3T3 cells by the calcium phosphate precipitation method and cells that had incorporated the plasmid were selected by growth in the presence of mycophenolic acid to which gpt confers resistance. A number of transfectant clones were tested for tumorigenicity by inoculation into nude mice. The take incidence was variable and the tumours arose only after a prolonged latent period. Many inocula produced no tumours. These results were consistent with the view that the tumours arose by selective overgrowth of minority cell populations. Cell lines were derived by explantation of these tumours and were back-selected in 2-thioxanthine, a cytotoxic analogue of the xanthine-guanine phosphoribosyl transferase substrate. Five clones were obtained that did not express detectable levels of the c-Ha-ras 1 oncogene product, p21ras. All of them showed a less-transformed morphology than the transfected NIH 3T3 cells from which they originated. Nonetheless three of these clones were found to be tumorigenic at all sites tested. This finding demonstrates that once tumorigenic variants have been selected from the ras-transformed cells, continued production of the p21ras protein is not necessary for the maintenance of tumorigenicity. Cytogenetic analysis revealed that the transfection procedure itself introduced major and stable perturbations of the genome of the transfected cells and confirmed that tumours were produced by selective overgrowth of variants with a chromosome constitution palpably different from that of the majority of the cells injected. In the light of the complex background of genomic changes produced in NIH 3T3 cells by transfection with the c-Ha-ras 1 oncogene, no conclusion can be drawn in genetic

  14. Resting Potential, Oncogene-induced Tumorigenesis, and Metastasis: The Bioelectric Basis of Cancer in vivo

    PubMed Central

    Lobikin, Maria; Chernet, Brook; Lobo, Daniel; Levin, Michael

    2012-01-01

    Cancer may result from localized failure of instructive cues that normally orchestrate cell behaviors towards the patterning needs of the organism. Steady-state gradients of transmembrane voltage (Vmem) in non-neural cells are instructive, epigenetic signals that regulate pattern formation during embryogenesis and morphostatic repair. Here, we review molecular data on the role of bioelectric cues in cancer and present new findings in the Xenopus laevis model on how the microenvironment’s biophysical properties contribute to cancer in vivo. First, we investigated the melanoma-like phenotype arising from serotonergic signaling by “instructor” cells – a cell population that is able to induce a metastatic phenotype in normal melanocytes. We show that when these instructor cells are depolarized, blood vessel patterning is disrupted in addition to the metastatic phenotype induced in melanocytes. Surprisingly, very few instructor cells need to be depolarized for the hyperpigmentation phenotype to occur; we present a model of antagonistic signaling by serotonin receptors that explains the unusual all-or-none nature of this effect. In addition to the body-wide depolarization-induced metastatic phenotype, we investigated the bioelectrical properties of tumor-like structures induced by canonical oncogenes and cancer-causing compounds. Exposure to carcinogen 4-Nitroquinoline 1-oxide (4NQO) induces localized tumors, but has a broad (and variable) effect on the bioelectric properties of the whole body. Tumors induced by oncogenes show aberrantly high sodium content, representing a non-invasive diagnostic modality. Importantly, depolarized transmembrane potential is not only a marker of cancer but is functionally instructive: susceptibility to oncogene-induced tumorigenesis is significantly reduced by forced prior expression of hyperpolarizing ion channels. Importantly, the same effect can be achieved by pharmacological manipulation of endogenous chloride channels

  15. Arsenic trioxide inhibits cell proliferation and human papillomavirus oncogene expression in cervical cancer cells

    SciTech Connect

    Wang, Hongtao; Gao, Peng; Zheng, Jie

    2014-09-05

    Highlights: • As{sub 2}O{sub 3} inhibits growth of cervical cancer cells and expression of HPV oncogenes in these cells. • HPV-negative cervical cancer cells are more sensitive to As{sub 2}O{sub 3} than HPV-positive cervical cancer cells. • HPV-18 positive cervical cancer cells are more sensitive to As{sub 2}O{sub 3} than HPV-16 positive cancer cells. • Down-regulation of HPV oncogenes by As{sub 2}O{sub 3} is partially due to the diminished AP-1 binding. - Abstract: Arsenic trioxide (As{sub 2}O{sub 3}) has shown therapeutic effects in some leukemias and solid cancers. However, the molecular mechanisms of its anticancer efficacy have not been clearly elucidated, particularly in solid cancers. Our previous data showed that As{sub 2}O{sub 3} induced apoptosis of human papillomavirus (HPV) 16 DNA-immortalized human cervical epithelial cells and cervical cancer cells and inhibited the expression of HPV oncogenes in these cells. In the present study, we systemically examined the effects of As{sub 2}O{sub 3} on five human cervical cancer cell lines and explored the possible molecular mechanisms. MTT assay showed that HPV-negative C33A cells were more sensitive to growth inhibition induced by As{sub 2}O{sub 3} than HPV-positive cervical cancer cells, and HPV 18-positive HeLa and C4-I cells were more sensitive to As{sub 2}O{sub 3} than HPV 16-positive CaSki and SiHa cells. After As{sub 2}O{sub 3} treatment, both mRNA and protein levels of HPV E6 and E7 obviously decreased in all HPV positive cell lines. In contrast, p53 and Rb protein levels increased in all tested cell lines. Transcription factor AP-1 protein expression decreased significantly in HeLa, CaSki and C33A cells with ELISA method. These results suggest that As{sub 2}O{sub 3} is a potential anticancer drug for cervical cancer.

  16. Resting potential, oncogene-induced tumorigenesis, and metastasis: the bioelectric basis of cancer in vivo

    NASA Astrophysics Data System (ADS)

    Lobikin, Maria; Chernet, Brook; Lobo, Daniel; Levin, Michael

    2012-12-01

    Cancer may result from localized failure of instructive cues that normally orchestrate cell behaviors toward the patterning needs of the organism. Steady-state gradients of transmembrane voltage (Vmem) in non-neural cells are instructive, epigenetic signals that regulate pattern formation during embryogenesis and morphostatic repair. Here, we review molecular data on the role of bioelectric cues in cancer and present new findings in the Xenopus laevis model on how the microenvironment's biophysical properties contribute to cancer in vivo. First, we investigated the melanoma-like phenotype arising from serotonergic signaling by ‘instructor’ cells—a cell population that is able to induce a metastatic phenotype in normal melanocytes. We show that when these instructor cells are depolarized, blood vessel patterning is disrupted in addition to the metastatic phenotype induced in melanocytes. Surprisingly, very few instructor cells need to be depolarized for the hyperpigmentation phenotype to occur; we present a model of antagonistic signaling by serotonin receptors that explains the unusual all-or-none nature of this effect. In addition to the body-wide depolarization-induced metastatic phenotype, we investigated the bioelectrical properties of tumor-like structures induced by canonical oncogenes and cancer-causing compounds. Exposure to carcinogen 4-nitroquinoline 1-oxide (4NQO) induces localized tumors, but has a broad (and variable) effect on the bioelectric properties of the whole body. Tumors induced by oncogenes show aberrantly high sodium content, representing a non-invasive diagnostic modality. Importantly, depolarized transmembrane potential is not only a marker of cancer but is functionally instructive: susceptibility to oncogene-induced tumorigenesis is significantly reduced by forced prior expression of hyperpolarizing ion channels. Importantly, the same effect can be achieved by pharmacological manipulation of endogenous chloride channels, suggesting

  17. Comprehensive analysis of the ubiquitinome during oncogene-induced senescence in human fibroblasts

    PubMed Central

    Bengsch, Fee; Tu, Zhigang; Tang, Hsin-Yao; Zhu, Hengrui; Speicher, David W; Zhang, Rugang

    2015-01-01

    Oncogene-induced senescence (OIS) is an important tumor suppression mechanism preventing uncontrolled proliferation in response to aberrant oncogenic signaling. The profound functional and morphological remodelling of the senescent cell involves extensive changes. In particular, alterations in protein ubiquitination during senescence have not been systematically analyzed previously. Here, we report the first global ubiquitination profile of primary human cells undergoing senescence. We employed a well-characterized in vitro model of OIS, primary human fibroblasts expressing oncogenic RAS. To compare the ubiquitinome of RAS-induced OIS and controls, ubiquitinated peptides were enriched by immune affinity purification and subjected to liquid chromatography tandem mass spectrometry (LC-MS/MS). We identified 4,472 ubiquitination sites, with 397 sites significantly changed (>3 standard deviations) in senescent cells. In addition, we performed mass spectrometry analysis of total proteins in OIS and control cells to account for parallel changes in both protein abundance and ubiquitin levels that did not affect the percentage of ubiquitination of a given protein. Pathway analysis revealed that the OIS-induced ubiquitinome alterations mainly affected 3 signaling networks: eIF2 signaling, eIF4/p70S6K signaling, and mTOR signaling. Interestingly, the majority of the changed ubiquitinated proteins in these pathways belong to the translation machinery. This includes several translation initiation factors (eIF2C2, eIF2B4, eIF3I, eIF3L, eIF4A1) and elongation factors (eEF1G, eEF1A) as well as 40S (RPS4X, RPS7, RPS11 and RPS20) and 60S ribosomal subunits (RPL10, RPL11, RPL18 and RPL35a). In addition, we observed enriched ubiquitination of aminoacyl-tRNA ligases (isoleucyl-, glutamine-, and tyrosine-tRNA ligase), which provide the amino acid-loaded tRNAs for protein synthesis. These results suggest that ubiquitination affects key components of the translation machinery to regulate

  18. Hepatitis C Virus Core from Two Different Genotypes Has an Oncogenic Potential but Is Not Sufficient for Transforming Primary Rat Embryo Fibroblasts in Cooperation with the H-ras Oncogene

    PubMed Central

    Chang, Jun; Yang, Se-Hwan; Cho, Young-Gyu; Hwang, Soon Bong; Hahn, Young Shin; Sung, Young Chul

    1998-01-01

    Persistent infection with hepatitis C virus (HCV) is associated with the development of liver cirrhosis and hepatocellular carcinoma. To examine the oncogenic potential of the HCV core gene product, primary rat embryo fibroblasts (REFs) were transfected with the core gene in the presence or absence of the H-ras oncogene. In contrast to a previous report (R. B. Ray, L. M. Lagging, K. Meyer, and R. Ray, J. Virol. 70:4438–4443, 1996), HCV core proteins from two different genotypes (type 1a and type 1b) were not found to transform REFs to tumorigenic phenotype in cooperation with the H-ras oncogene, although the core protein was successfully expressed 20 days after transfection. In addition, REFs transfected with E1A- but not core-expressing plasmid showed the phenotype of immortalized cells when selected with G418. The biological activity was confirmed by observing the transcription activation from two viral promoters, Rous sarcoma virus long terminal repeat and simian virus 40 promoter, which are known to be activated by the core protein from HCV-1 isolate. In contrast to the result with primary cells, the Rat-1 cell line, stably expressing HCV core protein, exhibited focus formation, anchorage-independent growth, and tumor formation in nude mice. HCV core protein was able to induce the transformation of Rat-1 cells with various efficiencies depending on the expression level of the core protein. These results indicate that HCV core protein has an oncogenic potential to transform the Rat-1 cell line but is not sufficient to either immortalize primary REFs by itself or transform primary cells in conjunction with the H-ras oncogene. PMID:9525629

  19. Activation Mechanism of Oncogenic Deletion Mutations in BRAF, EGFR, and HER2.

    PubMed

    Foster, Scott A; Whalen, Daniel M; Özen, Ayşegül; Wongchenko, Matthew J; Yin, JianPing; Yen, Ivana; Schaefer, Gabriele; Mayfield, John D; Chmielecki, Juliann; Stephens, Philip J; Albacker, Lee A; Yan, Yibing; Song, Kyung; Hatzivassiliou, Georgia; Eigenbrot, Charles; Yu, Christine; Shaw, Andrey S; Manning, Gerard; Skelton, Nicholas J; Hymowitz, Sarah G; Malek, Shiva

    2016-04-11

    Activating mutations in protein kinases drive many cancers. While how recurring point mutations affect kinase activity has been described, the effect of in-frame deletions is not well understood. We show that oncogenic deletions within the β3-αC loop of HER2 and BRAF are analogous to the recurrent EGFR exon 19 deletions. We identify pancreatic carcinomas with BRAF deletions mutually exclusive with KRAS mutations. Crystal structures of BRAF deletions reveal the truncated loop restrains αC in an active "in" conformation, imparting resistance to inhibitors like vemurafenib that bind the αC "out" conformation. Characterization of loop length explains the prevalence of five amino acid deletions in BRAF, EGFR, and HER2 and highlights the importance of this region for kinase activity and inhibitor efficacy. PMID:26996308

  20. The RET proto-oncogene: a potential target for molecular cancer therapy.

    PubMed

    Pützer, Brigitte M; Drosten, Matthias

    2004-07-01

    The inhibition of activated receptor tyrosine kinases has defined a new era of selective cancer therapy. The value of these approaches has been demonstrated for a growing number of tyrosine kinases. Gain-of-function alterations within the RET proto-oncogene are responsible for the development of medullary, as well as papillary, thyroid carcinoma and make it a candidate for the design of targeted therapies. Recently, various strategies have been used to block the activity of RET in pre-clinical models, providing evidence that RET is a potential target for a selective cancer-therapy approach, especially when considering that the inhibition of RET activity is sufficient to revert neoplastic characteristics. Although the ideal clinically useful therapeutic option has yet to be developed, successes with other selective tyrosine kinase inhibitors encourages further effort. PMID:15242684