Science.gov

Sample records for mutagenesis reveal sr-bi

  1. Knockdown expression and hepatic deficiency reveal anatheroprotective role for SR-BI in liver and peripheral tissues

    SciTech Connect

    Huby, Thierry; Doucet, Chantal; Dachet, Christiane; Ouzilleau,Betty; Ueda, Yukihiko; Afzal, Veena; Rubin, Edward; Chapman, M. John; Lesnik, Philippe

    2006-07-18

    Scavenger receptor SR-BI has been implicated inHDL-dependent atheroprotective mechanisms. We report the generation of anSR-BI conditional knockout mouse model in which SR-BI gene targeting byloxP site insertion produced a hypomorphic allele (hypomSR-BI).Attenuated SR-BI expression in hypomSR-BI mice resulted in 2-foldelevation in plasma total cholesterol (TC) levels. Cre-mediated SR-BIgene inactivation of the hypomorphic SR-BI allele in hepatocytes(hypomSR-BI-KOliver) was associated with high plasma TC concentrations,increased plasma free cholesterol/TC (FC/TC) ratio, and alipoprotein-cholesterol profile typical of SR-BI-/- mice. Plasma TClevels were increased 2-fold in hypomSR-BI and control mice fed anatherogenic diet, whereas hypomSR-BI-KOliver and SR-BI-/- mice developedsevere hypercholesterolemia due to accumulation of FC-rich, VLDL-sizedparticles. Atherosclerosis in hypomSR-BI mice was enhanced (2.5-fold)compared with that in controls, but to a much lower degree than inhypomSR-BI-KOliver (32-fold) and SR-BI-/- (48-fold) mice. The lattermodels did not differ in either plasma lipid levels or in the capacity ofVLDL-sized lipoproteins to induce macrophage cholesterol loading.However, reduced atherosclerosis in hypomSR-BI-KOliver mice wasassociated with decreased lesional macrophage content as compared withthat in SR-BI-/- mice. These data imply that, in addition to its majoratheroprotective role in liver, SR-BI may exert an antiatherogenic rolein extrahepatic tissues.

  2. Knockdown expression and hepatic deficiency reveal an atheroprotective role for SR-BI in liver and peripheral tissues

    PubMed Central

    Huby, Thierry; Doucet, Chantal; Dachet, Christiane; Ouzilleau, Betty; Ueda, Yukihiko; Afzal, Veena; Rubin, Edward; Chapman, M. John; Lesnik, Philippe

    2006-01-01

    Scavenger receptor SR-BI has been implicated in HDL-dependent atheroprotective mechanisms. We report the generation of an SR-BI conditional knockout mouse model in which SR-BI gene targeting by loxP site insertion produced a hypomorphic allele (hypomSR-BI). Attenuated SR-BI expression in hypomSR-BI mice resulted in 2-fold elevation in plasma total cholesterol (TC) levels. Cre-mediated SR-BI gene inactivation of the hypomorphic SR-BI allele in hepatocytes (hypomSR-BI–KOliver) was associated with high plasma TC concentrations, increased plasma free cholesterol/TC (FC/TC) ratio, and a lipoprotein-cholesterol profile typical of SR-BI–/– mice. Plasma TC levels were increased 2-fold in hypomSR-BI and control mice fed an atherogenic diet, whereas hypomSR-BI–KOliver and SR-BI–/– mice developed severe hypercholesterolemia due to accumulation of FC-rich, VLDL-sized particles. Atherosclerosis in hypomSR-BI mice was enhanced (2.5-fold) compared with that in controls, but to a much lower degree than in hypomSR-BI–KOliver (32-fold) and SR-BI–/– (48-fold) mice. The latter models did not differ in either plasma lipid levels or in the capacity of VLDL-sized lipoproteins to induce macrophage cholesterol loading. However, reduced atherosclerosis in hypomSR-BI–KOliver mice was associated with decreased lesional macrophage content as compared with that in SR-BI–/– mice. These data imply that, in addition to its major atheroprotective role in liver, SR-BI may exert an antiatherogenic role in extrahepatic tissues. PMID:16964311

  3. Low-density lipoprotein upregulate SR-BI through Sp1 Ser702 phosphorylation in hepatic cells.

    PubMed

    Yang, Fan; Du, Yu; Zhang, Jin; Jiang, Zhibo; Wang, Li; Hong, Bin

    2016-09-01

    Scavenger receptor class B type I (SR-BI) is one of the key proteins in the process of reverse cholesterol transport (RCT), and its major function is to uptake high density lipoprotein (HDL) cholesterol from plasma into liver cells. The regulation of SR-BI expression is important for controlling serum lipid content and reducing the risks of cardiovascular diseases. Here we found that SR-BI expression was significantly increased by LDL in vivo and in vitro, and the transcription factor specific protein 1 (Sp1) plays a critical role in this process. Results from co-immunoprecipitation experiments indicate that the activation of SR-BI was associated with Sp1-recruited protein complexes in the promoter region of SR-BI, where histone acetyltransferase p300 was recruited and histone deacetylase HDAC1 was dismissed. As a result, histone acetylation increased, leading to activation of SR-BI transcription. With further investigation, we found that LDL phosphorylated Sp1 through ERK1/2 pathway, which affected Sp1 protein complexes formation in SR-BI promoter. Using mass spectrometry and site directed mutagenesis, a new Sp1 phosphorylation site Ser702 was defined to be associated with Sp1-HDAC1 interaction and may be important in SR-BI activation, shedding light on the knowledge of delicate mechanism of hepatic HDL receptor SR-BI gene modulation by LDL. PMID:27320013

  4. A novel Bi-based oxybromide SrBiO{sub 2}Br: Synthesis, optical property and photocatalytic activity

    SciTech Connect

    He, Ying; Huang, Hongwei Zhang, Yihe Li, Xiaowei; Tian, Na; Guo, Yuxi; Luo, Yi

    2015-04-15

    Highlights: • SrBiO{sub 2}Br was first explored as a novel photocatalyst. • SrBiO{sub 2}Br has been successfully synthesized by a solid state reaction. • We systematically synthesized SrBiO{sub 2}Br in different temperature. • SrBiO{sub 2}Br calcinated at 700 °C exhibited the highest photocatalytic activity. - Abstract: A novel Bi-based photocatalyst SrBiO{sub 2}Br with layered structure was successfully synthesized via a solid state reaction method. The as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV–vis diffuse reflectance spectra (DRS). SrBiO{sub 2}Br has an indirect-transition optical band-gap of 2.58 eV. Density functional calculations revealed that conduction band (CB) were composed of the Bi 6p and Br 4s orbitals, and valence band (VB) were occupied by Br 4p and O 2p. The photodecomposition of rhodamine-B (RhB) experiments demonstrated SrBiO{sub 2}Br can be used as photocatalysts under ultraviolet (UV) light and visible light irradiation (λ > 400 nm). The results revealed that SrBiO{sub 2}Br calcinated at 700 °C exhibited the highest photocatalytic activity among the obtained SrBiO{sub 2}Br samples.

  5. Synthesis and Characterization of SrBi

    SciTech Connect

    Wang, Ying C.; Hoffmann, Roald; DiSalvo, Francis J.

    2001-01-01

    SrBi{sub 2}Se{sub 4} was synthesized at 945 C and its structure was determined using single-crystal X-ray diffraction data obtained at 165 K. SrBi{sub 2}Se{sub 4}is isotypic to 12-Ba Bi{sub 2}Se{sub 4} and Eu1.1 Bi{sub 2}Se{sub 4}. The compound crystallizes in P6{sub 3}/m (Z=12) with a=25.970(2) {angstrom} and c=4.2437(3) {angstrom}. Final R{sub 1}=0.0630 and w R{sub 2}=0.1246 (I > 2{sigma}(I)). The coordination environments of Bi are distorted Se octahedra. These octahedra build up a uniaxial three-dimensional network with tunnels along the z direction, which are filled by Sr{sup 2+}. There is also a second tunnel along the z direction which is partially occupied by Bi atoms. The coordination spheres of Sr are bicapped trigonal prisms of Se. Transport measurements indicate that SrBi{sub 2}Se{sub 4}is semiconducting. This work adds one high-symmetry compound to the family of complex chalcogenides, in which low-symmetry compounds are common.

  6. Photoluminescence of pyrochlore phase in SrBi2Ta2O9 thin films

    NASA Astrophysics Data System (ADS)

    Wang, Y. P.; Ning, H. F.; Zhou, L.; Shen, J. K.; Liu, Z. G.

    2003-07-01

    SrBi2Ta2O9 thin films were prepared by pulsed laser deposition at different substrate temperatures. Photoluminescence (PL) has been detected at room temperature from the pyrochlore phase in the SrBi2Ta2O9 film deposited at 850 °C. The PL shows five luminescence bands of 330, 365, 407, 490, and 600 nm. And the PL excitation shows six excitation bands of 278, 330, 365, 407, 490, and 600 nm. The one-to-one correspondence of PL and PL excitation spectra reveals a band-to-band excitation and a multienergy-gap structure in the pyrochlore phase in SrBi2Ta2O9 films.

  7. Structure of LIMP-2 provides functional insights with implications for SR-BI and CD36.

    PubMed

    Neculai, Dante; Schwake, Michael; Ravichandran, Mani; Zunke, Friederike; Collins, Richard F; Peters, Judith; Neculai, Mirela; Plumb, Jonathan; Loppnau, Peter; Pizarro, Juan Carlos; Seitova, Alma; Trimble, William S; Saftig, Paul; Grinstein, Sergio; Dhe-Paganon, Sirano

    2013-12-01

    Members of the CD36 superfamily of scavenger receptor proteins are important regulators of lipid metabolism and innate immunity. They recognize normal and modified lipoproteins, as well as pathogen-associated molecular patterns. The family consists of three members: SR-BI (which delivers cholesterol to the liver and steroidogenic organs and is a co-receptor for hepatitis C virus), LIMP-2/LGP85 (which mediates lysosomal delivery of β-glucocerebrosidase and serves as a receptor for enterovirus 71 and coxsackieviruses) and CD36 (a fatty-acid transporter and receptor for phagocytosis of effete cells and Plasmodium-infected erythrocytes). Notably, CD36 is also a receptor for modified lipoproteins and β-amyloid, and has been implicated in the pathogenesis of atherosclerosis and of Alzheimer's disease. Despite their prominent roles in health and disease, understanding the function and abnormalities of the CD36 family members has been hampered by the paucity of information about their structure. Here we determine the crystal structure of LIMP-2 and infer, by homology modelling, the structure of SR-BI and CD36. LIMP-2 shows a helical bundle where β-glucocerebrosidase binds, and where ligands are most likely to bind to SR-BI and CD36. Remarkably, the crystal structure also shows the existence of a large cavity that traverses the entire length of the molecule. Mutagenesis of SR-BI indicates that the cavity serves as a tunnel through which cholesterol(esters) are delivered from the bound lipoprotein to the outer leaflet of the plasma membrane. We provide evidence supporting a model whereby lipidic constituents of the ligands attached to the receptor surface are handed off to the membrane through the tunnel, accounting for the selective lipid transfer characteristic of SR-BI and CD36. PMID:24162852

  8. Contributions of a disulfide bond and a reduced cysteine side chain to the intrinsic activity of the high-density lipoprotein receptor SR-BI.

    PubMed

    Yu, Miao; Lau, Thomas Y; Carr, Steven A; Krieger, Monty

    2012-12-18

    The high-density lipoprotein (HDL) receptor scavenger receptor class B, type I (SR-BI), binds HDL and mediates selective cholesteryl ester uptake. SR-BI's structure and mechanism are poorly understood. We used mass spectrometry to assign the two disulfide bonds in SR-BI that connect cysteines within the conserved Cys(321)-Pro(322)-Cys(323) (CPC) motif and connect Cys(280) to Cys(334). We used site-specific mutagenesis to evaluate the contributions of the CPC motif and the side chain of extracellular Cys(384) to HDL binding and lipid uptake. The effects of CPC mutations on activity were context-dependent. Full wild-type (WT) activity required Pro(322) and Cys(323) only when Cys(321) was present. Reduced intrinsic activities were observed for CXC and CPX, but not XXC, XPX, or XXX mutants (X ≠ WT residue). Apparently, a free thiol side chain at position 321 that cannot form an intra-CPC disulfide bond with Cys(323) is deleterious, perhaps because of aberrant disulfide bond formation. Pro(322) may stabilize an otherwise strained CPC disulfide bond, thus supporting WT activity, but this disulfide bond is not absolutely required for normal activity. C(384)X (X = S, T, L, Y, G, or A) mutants exhibited altered activities that varied with the side chain's size: larger side chains phenocopied WT SR-BI treated with its thiosemicarbazone inhibitor BLT-1 (enhanced binding, weakened uptake); smaller side chains produced almost inverse effects (increased uptake:binding ratio). C(384)X mutants were BLT-1-resistant, supporting the proposal that Cys(384)'s thiol interacts with BLT-1. We discuss the implications of our findings on the functions of the extracellular loop cysteines in SR-BI and compare our results to those presented by other laboratories. PMID:23205738

  9. Contributions of a disulfide bond and a reduced cysteine side chain to the intrinsic activity of the HDL receptor SR-BI

    PubMed Central

    Yu, Miao; Lau, Thomas Y.; Carr, Steven A.; Krieger, Monty

    2013-01-01

    The high density lipoprotein (HDL) receptor, scavenger receptor class B, type I (SR-BI), binds HDL and mediates selective cholesteryl ester uptake. SR-BI's structure and mechanism are poorly understood. We used mass spectrometry to assign the two disulfide bonds in SR-BI that connect cysteines within the conserved Cys321-Pro322-Cys323 (CPC) motif and connect Cys280 to Cys334. We used site-specific mutagenesis to evaluate the contributions of the CPC motif and the side chain of extracellular Cys384 to HDL binding and lipid uptake. The effects of CPC mutations on activity were context dependent. Full wild-type (WT) activity required Pro322 and Cys323 only when Cys321 was present. Reduced intrinsic activities were observed for CXC and CPX, but not XXC, XPX or XXX mutants (X≠WT residue). Apparently, a free thiol side chain at position 321 that cannot form an intra-CPC disulfide bond with Cys323 is deleterious, perhaps because of aberrant disulfide bond formation. Pro322 may stabilize an otherwise strained CPC disulfide bond, thus supporting WT activity, but this disulfide bond is not absolutely required for activity. C384X (X=S,T,L,Y,G,A) mutants exhibited altered activities that varied with the side chain's size: larger side chains phenocopied WT SR-BI treated with its thiosemicarbazone inhibitor BLT-1 (increased binding, decreased uptake); smaller side chains produced almost inverse effects (increased uptake:binding ratio). C384X mutants were BLT-1 resistant, supporting the proposal that Cys384's thiol interacts with BLT-1. We discuss the implications of our findings on the functions of the extracellular loop cysteines in SR-BI and compare our results to those presented by other laboratories. PMID:23205738

  10. The Role of Siglec-1 and SR-BI Interaction in the Phagocytosis of Oxidized Low Density Lipoprotein by Macrophages

    PubMed Central

    Li, Chang; Zhu, Lin; Wu, Li-juan; Zhong, Ren-qian

    2013-01-01

    Background Macrophages play a proatherosclerotic role in atherosclerosis via oxLDL uptake. As an adhesion molecular of I-type lectins, Siglec-1 is highly expressed on circulating monocytes and plaque macrophages of atherosclerotic patients, but the exact role of Siglec-1 has not been elucidated. Methods In this study, oxLDL was used to stimulate Siglec-1 and some oxLDL receptors (SR-BI, CD64, CD32B, LOX-1 and TLR-4) expression on bone marrow-derived macrophages, whereas small interfering RNA was used to down-regulate Siglec-1. Meanwhile, an ELISA-based assay for Siglec-1-oxLDL interaction was performed, and co-immunoprecipitation (co-IP) and laser scanning confocal microscopy (LSCM) were used to determine the role of Siglec-1 in oxLDL uptake by macrophages. Results We found that oxLDL could up-regulate the expression of various potential oxLDL receptors, including Siglec-1, in a dose-dependent manner. Moreover, down-regulation of Siglec-1 could attenuate oxLDL uptake by Oil red O staining. LSCM revealed that Siglec-1 and CD64/SR-BI may colocalize on oxLDL-stimulated macrophage surface, whereas co-IP showed that Siglec-1 and SR-BI can be immunoprecipitated by each other. However, no direct interaction between Siglec-1 and oxLDL was found in the in vitro protein interaction system. Conclusions Thus, Siglec-1 can interact with SR-BI in the phagocytosis of oxLDL by macrophages, rather than act as an independent receptor for oxLDL. PMID:23520536

  11. Difference in expression patterns of placental cholesterol transporters, ABCA1 and SR-BI, in Meishan and Yorkshire pigs with different placental efficiency

    PubMed Central

    Hong, Linjun; Xu, Xiangdong; Huang, Ji; Lei, Minggang; Xu, Dequan; Zhao, Shuhong; Yu, Mei

    2016-01-01

    Cholesterol is a key cell membrane component and precursor of steroid hormones. The maternal cholesterol is an important exogenous cholesterol source for the developing embryos and its transportation is mediated by ABCA1 and SR-BI. Here we reported that during the peri-implantation period in pigs, ABCA1 was expressed by uterine luminal epithelium (LE) and interestingly, its expression was more abundantly in LE on mesometrial side of uterus. However, SR-BI was expressed primarily by LE, glandular epithelial cells (GE) and trophoblast cells (Tr). During the placentation period, the expression levels of ABCA1 and SR-BI proteins at epithelial bilayer and placental areolae were significantly higher in Chinese Meishan pigs compared to Yorkshire pigs. Consisitently, mRNA levels of HMGCR, the rate-limiting enzyme for cholesterol synthesis, were significantly higher in Meishan placentas than in Yorkshire placentas. Our findings revealed the routes of transplacental cholesterol transport mediated by ABCA1 and SR-BI in pigs and indicated that ABCA1 related pathway may participate in anchoring the conceptus to the mesometrial side of uterus. Additionally, an ABCA1 dependent compensatory mechanism related to the placental efficiency in response to the smaller placenta size in Meishan pigs was suggested. PMID:26852751

  12. Difference in expression patterns of placental cholesterol transporters, ABCA1 and SR-BI, in Meishan and Yorkshire pigs with different placental efficiency.

    PubMed

    Hong, Linjun; Xu, Xiangdong; Huang, Ji; Lei, Minggang; Xu, Dequan; Zhao, Shuhong; Yu, Mei

    2016-01-01

    Cholesterol is a key cell membrane component and precursor of steroid hormones. The maternal cholesterol is an important exogenous cholesterol source for the developing embryos and its transportation is mediated by ABCA1 and SR-BI. Here we reported that during the peri-implantation period in pigs, ABCA1 was expressed by uterine luminal epithelium (LE) and interestingly, its expression was more abundantly in LE on mesometrial side of uterus. However, SR-BI was expressed primarily by LE, glandular epithelial cells (GE) and trophoblast cells (Tr). During the placentation period, the expression levels of ABCA1 and SR-BI proteins at epithelial bilayer and placental areolae were significantly higher in Chinese Meishan pigs compared to Yorkshire pigs. Consisitently, mRNA levels of HMGCR, the rate-limiting enzyme for cholesterol synthesis, were significantly higher in Meishan placentas than in Yorkshire placentas. Our findings revealed the routes of transplacental cholesterol transport mediated by ABCA1 and SR-BI in pigs and indicated that ABCA1 related pathway may participate in anchoring the conceptus to the mesometrial side of uterus. Additionally, an ABCA1 dependent compensatory mechanism related to the placental efficiency in response to the smaller placenta size in Meishan pigs was suggested. PMID:26852751

  13. Epitaxial growth of (001)-oriented and (110)-oriented SrBi2Ta2O9 thin films

    NASA Astrophysics Data System (ADS)

    Lettieri, J.; Jia, Y.; Urbanik, M.; Weber, C. I.; Maria, J.-P.; Schlom, D. G.; Li, H.; Ramesh, R.; Uecker, R.; Reiche, P.

    1998-11-01

    Epitaxial SrBi2Ta2O9 thin films have been grown with (001) and (110) orientations by pulsed laser deposition on (001) LaAlO3-Sr2AlTaO6 and (100) LaSrAlO4 substrates, respectively. Four-circle x-ray diffraction and transmission electron microscopy reveal nearly phase pure epitaxial films. Minimization of surface mesh mismatch between the film and substrate (i.e., choice of appropriate substrate material and orientation) was used to stabilize the desired orientations and achieve epitaxial growth.

  14. Synthesis and characterization of rare-earth doped SrBi{sub 2}Nb{sub 2}O{sub 9} phase in lithium borate based nanocrystallized glasses

    SciTech Connect

    Harihara Venkataraman, B.; Fujiwara, Takumi; Komatsu, Takayuki

    2009-06-15

    Glass composites comprising of un-doped and samarium-doped SrBi{sub 2}Nb{sub 2}O{sub 9} nanocrystallites are fabricated in the glass system 16.66SrO-16.66[(1-x)Bi{sub 2}O{sub 3}-xSm{sub 2}O{sub 3}]-16.66Nb{sub 2}O{sub 5}-50Li{sub 2}B{sub 4}O{sub 7} (0<=x<=0.5, in mol%) via the melt quenching technique. The glassy nature of the as-quenched samples is established by differential thermal analyses. Transmission electron microscopic studies reveal the presence of about 15 nm sized spherical crystallites of the fluorite-like SrBi{sub 1.9}Sm{sub 0.1}Nb{sub 2}O{sub 9} phase in the samples heat treated at 530 deg. C. The formation of layered perovskite-type un-doped and samarium-doped SrBi{sub 2}Nb{sub 2}O{sub 9} nanocrystallites with an orthorhombic structure through the intermediate fluorite phase is confirmed by X-ray powder diffraction and micro-Raman spectroscopic studies. The influence of samarium doping on the lattice parameters, lattice distortions, and the Raman peak positions of SrBi{sub 2}Nb{sub 2}O{sub 9} perovskite phase is clarified. The dielectric constants of the perovskite SrBi{sub 2}Nb{sub 2}O{sub 9} and SrBi{sub 1.9}Sm{sub 0.1}Nb{sub 2}O{sub 9} nanocrystals are relatively larger than those of the corresponding fluorite-like phase and the precursor glass. - Graphical Abstract: This figure shows the XRD patterns at room temperature for the as-quenched and heat treated samples in Sm{sub 2}O{sub 3}-doped (x=0.1) glass. Based on these results, it is concluded that the formation of samarium-doped perovskite SBN phase takes place via an intermediate fluorite-like phase in the crystallization of this glass.

  15. Ferroelectric domain structures in SrBi2Nb2O9 epitaxial thin films: Electron microscopy and phase-field simulations

    NASA Astrophysics Data System (ADS)

    Li, Y. L.; Chen, L. Q.; Asayama, G.; Schlom, D. G.; Zurbuchen, M. A.; Streiffer, S. K.

    2004-06-01

    Ferroelectric domain structures of (001)SrBi2Nb2O9 epitaxial films, investigated using both transmission electron microscopy and phase-field simulations, are reported. Experiment and numerical simulation both reveal that the domain structures consist of irregularly shaped domains with curved domain walls. It is shown that the elastic contribution to domain structures can be neglected in SrBi2Nb2O9 due to its small ferroelastic distortion, less than 0.0018%. Two-beam dark-field imaging using reflections unique to domains of each of the two 90° polarization axes reveal the domain structure. Phase-field simulation is based on the elastic and electrostatic solutions obtained for thin films under different mechanical and electric boundary conditions. The effects of ferroelastic distortion and dielectric constant on ferroelectric domains are systematically analyzed. It is demonstrated that electrostatic interactions which favor straight domain walls are not sufficient to overcome the domain wall energy which favors curved domains in SrBi2Nb2O9.

  16. Features of MotA proton channel structure revealed by tryptophan-scanning mutagenesis.

    PubMed Central

    Sharp, L L; Zhou, J; Blair, D F

    1995-01-01

    The MotA protein of Escherichia coli is a component of the flagellar motors that functions in transmembrane proton conduction. Here, we report several features of MotA structure revealed by use of a mutagenesis-based approach. Single tryptophan residues were introduced at many positions within the four hydrophobic segments of MotA, and the effects on function were measured. Function was disrupted according to a periodic pattern that implies that the membrane-spanning segments are alpha-helices and that identifies the lipid-facing parts of each helix. The results support a hypothesis for MotA structure and mechanism in which water molecules form most of the proton-conducting pathway. The success of this approach in studying MotA suggests that it could be useful in structure-function studies of other integral membrane proteins. Images Fig. 1 PMID:7644518

  17. Identification of the Molecular Target of Small Molecule Inhibitors of HDL Receptor SR-BI Activity†,‡,§

    PubMed Central

    Nieland, Thomas J. F.; Shaw, Jared T.; Jaipuri, Firoz A.; Duffner, Jay L.; Koehler, Angela N.; Banakos, Sotirios; Zannis, Vassilis I.; Kirchhausen, Tomas; Krieger, Monty

    2009-01-01

    Scavenger receptor, class B, type I (SR-BI), controls high-density lipoprotein (HDL) metabolism by mediating cellular selective uptake of lipids from HDL without the concomitant degradation of the lipoprotein particle. We previously identified in a high-throughput chemical screen of intact cells five compounds (BLT-1–5) that inhibit SR-BI-dependent lipid transport from HDL, but do not block HDL binding to SR-BI on the cell surface. Although these BLTs are widely used to examine the diverse functions of SR-BI, their direct target(s), SR-BI itself or some other component of the SR-BI pathway, has not been identified. Here we show that SR-BI in the context of a membrane lipid environment is the target of BLT-1, -3, -4, and -5. The analysis using intact cells and an in vitro system of purified SR-BI reconstituted into liposomes was aided by information derived from structure–activity relationship (SAR) analysis of the most potent of these BLTs, the thiosemicarbazone BLT-1. We found that the sulfur atom of BLT-1 was crucially important for its inhibitory activity, because changing it to an oxygen atom resulted in the isostructural, but essentially inactive, semicarbazone derivative BLT-1sc. SAR analysis also established the importance of BLT-1’s hydrophobic tail. BLTs and their corresponding inactive compounds can be used to explore the mechanism and function of SR-BI-mediated selective lipid uptake in diverse mammalian experimental models. Consequently, BLTs may help determine the therapeutic potential of SR-BI-targeted pharmaceutical drugs. PMID:18067275

  18. Influence of Zr4+ doping on structural and electrical properties of SrBi4Ti4O15 ceramic

    NASA Astrophysics Data System (ADS)

    Nayak, P.; Badapanda, T.; Panigrahi, S.

    2015-06-01

    This article reports a systematic study of doping effects on the structural and electrical properties of layer structured strontium bismuth titanate ceramic. In this study monophasic SrBi4Ti4-xZrxO15 with x=0.00, 0.05, 0.10, 0.15, 0.20, 0.25 ceramics were synthesized from the solid-state reaction route. X-ray diffraction analysis shows that the Zr-modified SBT ceramics have a pure four-layer Aurivillius phase structure. Dielectric properties revealed that the diffuseness of phase transition increases where as corresponding permittivity value decrease with increasing Zr content. Piezoelectric properties of SBTZ ceramics were improved by the modification of Zirconium ion. Moreover, the reason behind for improvement of piezoelectric properties of modified SBTZ ceramics was also discussed.

  19. High-throughput mutagenesis reveals functional determinants for DNA targeting by activation-induced deaminase.

    PubMed

    Gajula, Kiran S; Huwe, Peter J; Mo, Charlie Y; Crawford, Daniel J; Stivers, James T; Radhakrishnan, Ravi; Kohli, Rahul M

    2014-09-01

    Antibody maturation is a critical immune process governed by the enzyme activation-induced deaminase (AID), a member of the AID/APOBEC DNA deaminase family. AID/APOBEC deaminases preferentially target cytosine within distinct preferred sequence motifs in DNA, with specificity largely conferred by a small 9-11 residue protein loop that differs among family members. Here, we aimed to determine the key functional characteristics of this protein loop in AID and to thereby inform our understanding of the mode of DNA engagement. To this end, we developed a methodology (Sat-Sel-Seq) that couples saturation mutagenesis at each position across the targeting loop, with iterative functional selection and next-generation sequencing. This high-throughput mutational analysis revealed dominant characteristics for residues within the loop and additionally yielded enzymatic variants that enhance deaminase activity. To rationalize these functional requirements, we performed molecular dynamics simulations that suggest that AID and its hyperactive variants can engage DNA in multiple specific modes. These findings align with AID's competing requirements for specificity and flexibility to efficiently drive antibody maturation. Beyond insights into the AID-DNA interface, our Sat-Sel-Seq approach also serves to further expand the repertoire of techniques for deep positional scanning and may find general utility for high-throughput analysis of protein function. PMID:25064858

  20. Novel gene function revealed by mouse mutagenesis screens for models of age-related disease

    PubMed Central

    Potter, Paul K.; Bowl, Michael R.; Jeyarajan, Prashanthini; Wisby, Laura; Blease, Andrew; Goldsworthy, Michelle E.; Simon, Michelle M.; Greenaway, Simon; Michel, Vincent; Barnard, Alun; Aguilar, Carlos; Agnew, Thomas; Banks, Gareth; Blake, Andrew; Chessum, Lauren; Dorning, Joanne; Falcone, Sara; Goosey, Laurence; Harris, Shelley; Haynes, Andy; Heise, Ines; Hillier, Rosie; Hough, Tertius; Hoslin, Angela; Hutchison, Marie; King, Ruairidh; Kumar, Saumya; Lad, Heena V.; Law, Gemma; MacLaren, Robert E.; Morse, Susan; Nicol, Thomas; Parker, Andrew; Pickford, Karen; Sethi, Siddharth; Starbuck, Becky; Stelma, Femke; Cheeseman, Michael; Cross, Sally H.; Foster, Russell G.; Jackson, Ian J.; Peirson, Stuart N.; Thakker, Rajesh V.; Vincent, Tonia; Scudamore, Cheryl; Wells, Sara; El-Amraoui, Aziz; Petit, Christine; Acevedo-Arozena, Abraham; Nolan, Patrick M.; Cox, Roger; Mallon, Anne-Marie; Brown, Steve D. M.

    2016-01-01

    Determining the genetic bases of age-related disease remains a major challenge requiring a spectrum of approaches from human and clinical genetics to the utilization of model organism studies. Here we report a large-scale genetic screen in mice employing a phenotype-driven discovery platform to identify mutations resulting in age-related disease, both late-onset and progressive. We have utilized N-ethyl-N-nitrosourea mutagenesis to generate pedigrees of mutagenized mice that were subject to recurrent screens for mutant phenotypes as the mice aged. In total, we identify 105 distinct mutant lines from 157 pedigrees analysed, out of which 27 are late-onset phenotypes across a range of physiological systems. Using whole-genome sequencing we uncover the underlying genes for 44 of these mutant phenotypes, including 12 late-onset phenotypes. These genes reveal a number of novel pathways involved with age-related disease. We illustrate our findings by the recovery and characterization of a novel mouse model of age-related hearing loss. PMID:27534441

  1. High-throughput mutagenesis reveals functional determinants for DNA targeting by activation-induced deaminase

    PubMed Central

    Gajula, Kiran S.; Huwe, Peter J.; Mo, Charlie Y.; Crawford, Daniel J.; Stivers, James T.; Radhakrishnan, Ravi; Kohli, Rahul M.

    2014-01-01

    Antibody maturation is a critical immune process governed by the enzyme activation-induced deaminase (AID), a member of the AID/APOBEC DNA deaminase family. AID/APOBEC deaminases preferentially target cytosine within distinct preferred sequence motifs in DNA, with specificity largely conferred by a small 9–11 residue protein loop that differs among family members. Here, we aimed to determine the key functional characteristics of this protein loop in AID and to thereby inform our understanding of the mode of DNA engagement. To this end, we developed a methodology (Sat-Sel-Seq) that couples saturation mutagenesis at each position across the targeting loop, with iterative functional selection and next-generation sequencing. This high-throughput mutational analysis revealed dominant characteristics for residues within the loop and additionally yielded enzymatic variants that enhance deaminase activity. To rationalize these functional requirements, we performed molecular dynamics simulations that suggest that AID and its hyperactive variants can engage DNA in multiple specific modes. These findings align with AID's competing requirements for specificity and flexibility to efficiently drive antibody maturation. Beyond insights into the AID-DNA interface, our Sat-Sel-Seq approach also serves to further expand the repertoire of techniques for deep positional scanning and may find general utility for high-throughput analysis of protein function. PMID:25064858

  2. Novel gene function revealed by mouse mutagenesis screens for models of age-related disease.

    PubMed

    Potter, Paul K; Bowl, Michael R; Jeyarajan, Prashanthini; Wisby, Laura; Blease, Andrew; Goldsworthy, Michelle E; Simon, Michelle M; Greenaway, Simon; Michel, Vincent; Barnard, Alun; Aguilar, Carlos; Agnew, Thomas; Banks, Gareth; Blake, Andrew; Chessum, Lauren; Dorning, Joanne; Falcone, Sara; Goosey, Laurence; Harris, Shelley; Haynes, Andy; Heise, Ines; Hillier, Rosie; Hough, Tertius; Hoslin, Angela; Hutchison, Marie; King, Ruairidh; Kumar, Saumya; Lad, Heena V; Law, Gemma; MacLaren, Robert E; Morse, Susan; Nicol, Thomas; Parker, Andrew; Pickford, Karen; Sethi, Siddharth; Starbuck, Becky; Stelma, Femke; Cheeseman, Michael; Cross, Sally H; Foster, Russell G; Jackson, Ian J; Peirson, Stuart N; Thakker, Rajesh V; Vincent, Tonia; Scudamore, Cheryl; Wells, Sara; El-Amraoui, Aziz; Petit, Christine; Acevedo-Arozena, Abraham; Nolan, Patrick M; Cox, Roger; Mallon, Anne-Marie; Brown, Steve D M

    2016-01-01

    Determining the genetic bases of age-related disease remains a major challenge requiring a spectrum of approaches from human and clinical genetics to the utilization of model organism studies. Here we report a large-scale genetic screen in mice employing a phenotype-driven discovery platform to identify mutations resulting in age-related disease, both late-onset and progressive. We have utilized N-ethyl-N-nitrosourea mutagenesis to generate pedigrees of mutagenized mice that were subject to recurrent screens for mutant phenotypes as the mice aged. In total, we identify 105 distinct mutant lines from 157 pedigrees analysed, out of which 27 are late-onset phenotypes across a range of physiological systems. Using whole-genome sequencing we uncover the underlying genes for 44 of these mutant phenotypes, including 12 late-onset phenotypes. These genes reveal a number of novel pathways involved with age-related disease. We illustrate our findings by the recovery and characterization of a novel mouse model of age-related hearing loss. PMID:27534441

  3. Effect of annealing on the charge-voltage characteristics of SrBi2(TaxNb1-x)2O9 films

    NASA Astrophysics Data System (ADS)

    Morozovsky, N. V.; Semchenko, A. V.; Sidsky, V. V.; Kolos, V. V.; Turtsevich, A. S.; Eliseev, E. A.; Morozovska, A. N.

    2015-05-01

    The effect of changes of the Nb content and annealing on charge-voltage and current-voltage characteristics of film structures Pt/SrBi2(Ta1-xNbx)2O9/Pt/TiO2/SiO2/Si-substrate with х=0, 0.1, 0.2 was studied theoretically and experimentally. Theoretical modeling, which takes into account the mobile charged donors impact on the features of charge-voltage and current-voltage characteristics of ferroelectric-semiconductor films, revealed the changes of conductivity value and ferroelectric parameters. The results of theoretical analysis and experimental results are in qualitative agreement.

  4. Linear and nonlinear optical properties of SrBi4Ti4O15 thin films

    NASA Astrophysics Data System (ADS)

    Rambabu, A.; Reddy, E. Sivanagi; Hamad, Syed; Raju, K. C. James; Rao, S. Venugopal

    2016-05-01

    Polycrystalline SrBi4Ti4O15 thin films with good morphology and layered perovskite structure were fabricated on fused silica substrates using r f magnetron sputtering system at various oxygen mixing percentages (25 and 50). The crystallite sizes of the particles are in 17-28 nm range. The Nonlinear optical properties were investigated by using Z-scan method at a wavelength of 800 nm with 2 ps duration pulses. The films exhibit the fast and giant optical nonlinearities having the two-photon absorption coefficient (β) with magnitude of 10-8-10-9 cm/W and the nonlinear refraction coefficient of ˜10-12 cm2/W. These results indicate SrBi4Ti4O15 thin films are promising candidates for applications in nonlinear optical and optical signal processing devices.

  5. Scavenger receptor class B type I (SR-BI) is involved in vitamin E transport across the enterocyte

    PubMed Central

    Reboul, Emmanuelle; Klein, Alexis; Bietrix, Florence; Gleize, Béatrice; Malezet-Desmoulins, Christiane; Schneider, Martina; Margotat, Alain; Lagrost, Laurent; Collet, Xavier; Borel, Patrick

    2006-01-01

    Although cellular uptake of vitamin E was initially described as a passive process, recent studies in the liver and brain have shown that SR-BI is involved in this phenomenon. As SR-BI is expressed at high levels in the intestine, the present study addressed the involvement of SR-BI in vitamin E trafficking across enterocytes. Apical uptake and efflux of the main dietary forms of vitamin E was examined using Caco-2 TC-7 cell monolayers as a model of human intestinal epithelium. RRR-γ-tocopherol bioavailability was compared between wild-type mice and mice overexpressing SR-BI in the intestine. The effect of vitamin E on enterocyte SR-BI mRNA levels was measured by real-time quantitative RT-PCR. Concentration-dependent curves for vitamin E uptake were similar for RRR-α-, RRR-γ- and DL-α-tocopherol. RRR-α-tocopherol transport was dependent on incubation temperature, with a 60% reduction in absorption at 4°C compared to 37°C (p<0.05). Vitamin E flux in enterocytes was directed from the apical to the basal side, with a relative 10-fold reduction in the transfer process when measured in the opposite direction (p<0.05). Co-incubation with cholesterol, γ-tocopherol or lutein significantly impaired α-tocopherol absorption. Anti-human SR-BI antibodies and BLT1 (a chemical inhibitor of lipid transport via SR-BI) blocked up to 80% of vitamin E uptake and up to 30 % of apical vitamin E efflux (p<0.05), and similar results were obtained for RRR-γ-tocopherol. SR-BI mRNA levels were not significantly modified after a 24-hour incubation of Caco-2 cells with vitamin E. Finally, RRR-γ-tocopherol bioavailability was 2.7-fold higher in mice overexpressing SR-BI than in wild-type mice (p<0.05). The present data show for the first time that vitamin E intestinal absorption is, at least partly, mediated by SR-BI. PMID:16380385

  6. A Sleeping Beauty mutagenesis screen reveals a tumor suppressor role for Ncoa2/Src-2 in liver cancer.

    PubMed

    O'Donnell, Kathryn A; Keng, Vincent W; York, Brian; Reineke, Erin L; Seo, Daekwan; Fan, Danhua; Silverstein, Kevin A T; Schrum, Christina T; Xie, Wei Rose; Mularoni, Loris; Wheelan, Sarah J; Torbenson, Michael S; O'Malley, Bert W; Largaespada, David A; Boeke, Jef D

    2012-05-22

    The Sleeping Beauty (SB) transposon mutagenesis system is a powerful tool that facilitates the discovery of mutations that accelerate tumorigenesis. In this study, we sought to identify mutations that cooperate with MYC, one of the most commonly dysregulated genes in human malignancy. We performed a forward genetic screen with a mouse model of MYC-induced liver cancer using SB-mediated mutagenesis. We sequenced insertions in 63 liver tumor nodules and identified at least 16 genes/loci that contribute to accelerated tumor development. RNAi-mediated knockdown in a liver progenitor cell line further validate three of these genes, Ncoa2/Src-2, Zfx, and Dtnb, as tumor suppressors in liver cancer. Moreover, deletion of Ncoa2/Src-2 in mice predisposes to diethylnitrosamine-induced liver tumorigenesis. These findings reveal genes and pathways that functionally restrain MYC-mediated liver tumorigenesis and therefore may provide targets for cancer therapy. PMID:22556267

  7. Impairment of the ABCA1 and SR-BI-mediated cholesterol efflux pathways and HDL anti-inflammatory activity in Alzheimer's disease.

    PubMed

    Khalil, Abdelouahed; Berrougui, Hicham; Pawelec, Graham; Fulop, Tamas

    2012-01-01

    The aim of our study was to investigate the effect of Alzheimer's disease (AD) on the cholesterol efflux capacity and anti-inflammatory activity of HDL. HDL and apoA-I were isolated from 20 healthy subjects and from 39 AD patients. Our results showed that serum- and HDL-mediated cholesterol efflux is significantly impaired in AD patients. This impairment of serum and HDL cholesterol efflux capacity was significantly inversely correlated to the AD severity as evaluated by MMSE scores. Results obtained from SR-BI-enriched Fu5AH and ABCA1-enriched J774 cells revealed that AD impaired the interaction of HDL and apoA-I with both the ABCA1 transporter and SR-BI receptor. Purified apoA-I from AD patients also failed to remove free excess cholesterol from ABCA1-enriched J774 macrophages. Interestingly, the decrease in plasma α-tocopherol content and the increase in MDA formation and HDL relative electrophoretic mobility indicated that AD patients had higher levels of oxidative stress. The anti-inflammatory activity of HDL was also significantly lower in AD patients as measured by the level of ICAM-1 expression. In conclusion, our study provides evidence for the first time that the functionality of HDL is impaired in AD and that this alteration might be caused by AD-associated oxidative stress and inflammation. PMID:22178419

  8. Structural, magnetic, and dielectric studies of the Aurivillius compounds SrBi5Ti4MnO18 and SrBi5Ti4Mn0.5Co0.5O18

    NASA Astrophysics Data System (ADS)

    Yuan, B.; Yang, J.; Song, D. P.; Zuo, X. Z.; Tang, X. W.; Zhu, X. B.; Dai, J. M.; Song, W. H.; Sun, Y. P.

    2015-01-01

    We have successfully synthesized the Aurivillius compounds SrBi5Ti4MnO18 and SrBi5Ti4Mn0.5Co0.5O18 using a modified Pechini method. Both samples have an orthorhombic structure with the space group B2cb. The valence state of Mn is suggested to be +3 and the doped Co ions exist in the form of Co2+ and Co3+ based on the results of x-ray photoelectron spectroscopy. The sample SrBi5Ti4MnO18 exhibits a dominant paramagnetic state with the existence of superparamagnetic state as evidenced by the electron paramagnetic resonance results, whereas SrBi5Ti4Mn0.5Co0.5O18 undergoes a ferrimagnetic transition at 161 K originating from the antiferromagnetic coupling of Co-based and Mn-based sublattices, and a ferromagnetic transition at 45 K arising from the Mn3+-O-Co3+ (low spin) interaction. The sample SrBi5Ti4Mn0.5Co0.5O18 exhibits two dielectric anomalies. One corresponds to a relaxor-like dielectric relaxation which follows the Vogel-Fulcher function and the other dielectric relaxation obeys the Arrhenius law arising from the collective motion of oxygen vacancies. In addition, the sample SrBi5Ti4Mn0.5Co0.5O18 exhibits a magnetodielectric effect caused by the Maxwell-Wagner effect because of the conductivity of the sample. This is demonstrated by the fact that the activation energy in dielectric loss process is close to that for dc conductivity and the magnetodielectric effect is sensitive to the measured frequency.

  9. Microarray analyses reveal that plant mutagenesis may induce more transcriptomic changes than transgene insertion

    PubMed Central

    Batista, Rita; Saibo, Nelson; Lourenço, Tiago; Oliveira, Maria Margarida

    2008-01-01

    Controversy regarding genetically modified (GM) plants and their potential impact on human health contrasts with the tacit acceptance of other plants that were also modified, but not considered as GM products (e.g., varieties raised through conventional breeding such as mutagenesis). What is beyond the phenotype of these improved plants? Should mutagenized plants be treated differently from transgenics? We have evaluated the extent of transcriptome modification occurring during rice improvement through transgenesis versus mutation breeding. We used oligonucleotide microarrays to analyze gene expression in four different pools of four types of rice plants and respective controls: (i) a γ-irradiated stable mutant, (ii) the M1 generation of a 100-Gy γ-irradiated plant, (iii) a stable transgenic plant obtained for production of an anticancer antibody, and (iv) the T1 generation of a transgenic plant produced aiming for abiotic stress improvement, and all of the unmodified original genotypes as controls. We found that the improvement of a plant variety through the acquisition of a new desired trait, using either mutagenesis or transgenesis, may cause stress and thus lead to an altered expression of untargeted genes. In all of the cases studied, the observed alteration was more extensive in mutagenized than in transgenic plants. We propose that the safety assessment of improved plant varieties should be carried out on a case-by-case basis and not simply restricted to foods obtained through genetic engineering. PMID:18303117

  10. Microarray analyses reveal that plant mutagenesis may induce more transcriptomic changes than transgene insertion.

    PubMed

    Batista, Rita; Saibo, Nelson; Lourenço, Tiago; Oliveira, Maria Margarida

    2008-03-01

    Controversy regarding genetically modified (GM) plants and their potential impact on human health contrasts with the tacit acceptance of other plants that were also modified, but not considered as GM products (e.g., varieties raised through conventional breeding such as mutagenesis). What is beyond the phenotype of these improved plants? Should mutagenized plants be treated differently from transgenics? We have evaluated the extent of transcriptome modification occurring during rice improvement through transgenesis versus mutation breeding. We used oligonucleotide microarrays to analyze gene expression in four different pools of four types of rice plants and respective controls: (i) a gamma-irradiated stable mutant, (ii) the M1 generation of a 100-Gy gamma-irradiated plant, (iii) a stable transgenic plant obtained for production of an anticancer antibody, and (iv) the T1 generation of a transgenic plant produced aiming for abiotic stress improvement, and all of the unmodified original genotypes as controls. We found that the improvement of a plant variety through the acquisition of a new desired trait, using either mutagenesis or transgenesis, may cause stress and thus lead to an altered expression of untargeted genes. In all of the cases studied, the observed alteration was more extensive in mutagenized than in transgenic plants. We propose that the safety assessment of improved plant varieties should be carried out on a case-by-case basis and not simply restricted to foods obtained through genetic engineering. PMID:18303117

  11. [Serum amyloid A promotes the inflammatory response via p38-MAPK/SR-BI pathway in THP-1 macrophages].

    PubMed

    Zhu, Ming-Yan; Wang, Yan; Wang, Yu; Peng, Feng-Ling; Ou, Han-Xiao; Zheng, Xiang; Shi, Jin-Feng; Zeng, Gao-Feng; Mo, Zhong-Cheng

    2016-06-25

    To investigate the effect and mechanism of serum amyloid A (SAA) on the expression of scavenger receptor class B type I (SR-BI) and inflammatory response in THP-1 macrophages, the human THP-1 cells were treated with SAA and p38-MAPK agonist (anisomycin) or p38-MAPK inhibitor (SB203580). Then, the expressions of SR-BI, phosphorylated p38-MAPK and inflammatory factors (MCP-1, TNF-α, IL-1β) were examined by real-time quantitative PCR, Western blotting and ELISA, respectively. The results showed that, compared with control group, SAA increased the levels of inflammatory factors (MCP-1, TNF-α, IL-1β), down-regulated the expressions of SR-BI, and up-regulated the expression of phosphorylated p38-MAPK protein in a concentration- and time-dependent manner in THP-1 cells (P < 0.05). After treatment with SAA and p38-MAPK agonist (anisomycin) in THP-1 cells, the expression of SR-BI was down-regulated, and the levels of inflammatory factors and phosphorylated p38-MAPK protein expression were increased, compared with the group only treated by SAA (P < 0.05). In contrast, the SR-BI expression was up-regulated, whereas inflammatory factors and phosphorylated p38-MAPK protein expressions were decreased after the cells were treated with SAA and p38-MAPK inhibitor (SB203580) (P < 0.05). The results suggest that SAA-promoted inflammatory response in THP-1 macrophages may be through the phosphorylation of p38-MAPK and inhibition of SR-BI expression. PMID:27350202

  12. A directed mutagenesis screen in Drosophila melanogaster reveals new mutants that influence hedgehog signaling.

    PubMed Central

    Haines, N; van den Heuvel, M

    2000-01-01

    The Hedgehog signaling pathway has been recognized as essential for patterning processes in development of metazoan animal species. The signaling pathway is, however, not entirely understood. To start to address this problem, we set out to isolate new mutations that influence Hedgehog signaling. We performed a mutagenesis screen for mutations that dominantly suppress Hedgehog overexpression phenotypes in the Drosophila melanogaster wing. We isolated four mutations that influence Hedgehog signaling. These were analyzed in the amenable wing system using genetic and molecular techniques. One of these four mutations affects the stability of the Hedgehog expression domain boundary, also known as the organizer in the developing wing. Another mutation affects a possible Hedgehog autoregulation mechanism, which stabilizes the same boundary. PMID:11102373

  13. Mos1 mutagenesis reveals a diversity of mechanisms affecting response of Caenorhabditis elegans to the bacterial pathogen Microbacterium nematophilum.

    PubMed

    Yook, Karen; Hodgkin, Jonathan

    2007-02-01

    A specific host-pathogen interaction exists between Caenorhabditis elegans and the gram-positive bacterium Microbacterium nematophilum. This bacterium is able to colonize the rectum of susceptible worms and induces a defensive tail-swelling response in the host. Previous mutant screens have identified multiple loci that affect this interaction. Some of these loci correspond to known genes, but many bus genes [those with a bacterially unswollen (Bus) mutant phenotype] have yet to be cloned. We employed Mos1 transposon mutagenesis as a means of more rapidly cloning bus genes and identifying new mutants with altered pathogen response. This approach revealed new infection-related roles for two well-characterized and much-studied genes, egl-8 and tax-4. It also allowed the cloning of a known bus gene, bus-17, which encodes a predicted galactosyltransferase, and of a new bus gene, bus-19, which encodes a novel, albeit ancient, protein. The results illustrate advantages and disadvantages of Mos1 transposon mutagenesis in this system. PMID:17151260

  14. The Roles of Cytochrome b559 in Assembly and Photoprotection of Photosystem II Revealed by Site-Directed Mutagenesis Studies

    PubMed Central

    Chu, Hsiu-An; Chiu, Yi-Fang

    2016-01-01

    Cytochrome b559 (Cyt b559) is one of the essential components of the Photosystem II reaction center (PSII). Despite recent accomplishments in understanding the structure and function of PSII, the exact physiological function of Cyt b559 remains unclear. Cyt b559 is not involved in the primary electron transfer pathway in PSII but may participate in secondary electron transfer pathways that protect PSII against photoinhibition. Site-directed mutagenesis studies combined with spectroscopic and functional analysis have been used to characterize Cyt b559 mutant strains and their mutant PSII complex in higher plants, green algae, and cyanobacteria. These integrated studies have provided important in vivo evidence for possible physiological roles of Cyt b559 in the assembly and stability of PSII, protecting PSII against photoinhibition, and modulating photosynthetic light harvesting. This mini-review presents an overview of recent important progress in site-directed mutagenesis studies of Cyt b559 and implications for revealing the physiological functions of Cyt b559 in PSII. PMID:26793230

  15. Influence of Zr{sup 4+} doping on structural and electrical properties of SrBi{sub 4}Ti{sub 4}O{sub 15} ceramic

    SciTech Connect

    Nayak, P. Panigrahi, S.; Badapanda, T.

    2015-06-24

    This article reports a systematic study of doping effects on the structural and electrical properties of layer structured strontium bismuth titanate ceramic. In this study monophasic SrBi{sub 4}Ti{sub 4-x}Zr{sub x}O{sub 15} with x=0.00, 0.05, 0.10, 0.15, 0.20, 0.25 ceramics were synthesized from the solid-state reaction route. X-ray diffraction analysis shows that the Zr-modified SBT ceramics have a pure four-layer Aurivillius phase structure. Dielectric properties revealed that the diffuseness of phase transition increases where as corresponding permittivity value decrease with increasing Zr content. Piezoelectric properties of SBTZ ceramics were improved by the modification of Zirconium ion. Moreover, the reason behind for improvement of piezoelectric properties of modified SBTZ ceramics was also discussed.

  16. Sleeping Beauty mutagenesis reveals cooperating mutations and pathways in pancreatic adenocarcinoma

    PubMed Central

    Mann, Karen M.; Ward, Jerrold M.; Yew, Christopher Chin Kuan; Kovochich, Anne; Dawson, David W.; Black, Michael A.; Brett, Benjamin T.; Sheetz, Todd E.; Dupuy, Adam J.; Chang, David K.; Biankin, Andrew V.; Waddell, Nicola; Kassahn, Karin S.; Grimmond, Sean M.; Rust, Alistair G.; Adams, David J.; Jenkins, Nancy A.; Copeland, Neal G.

    2012-01-01

    Pancreatic cancer is one of the most deadly cancers affecting the Western world. Because the disease is highly metastatic and difficult to diagnosis until late stages, the 5-y survival rate is around 5%. The identification of molecular cancer drivers is critical for furthering our understanding of the disease and development of improved diagnostic tools and therapeutics. We have conducted a mutagenic screen using Sleeping Beauty (SB) in mice to identify new candidate cancer genes in pancreatic cancer. By combining SB with an oncogenic Kras allele, we observed highly metastatic pancreatic adenocarcinomas. Using two independent statistical methods to identify loci commonly mutated by SB in these tumors, we identified 681 loci that comprise 543 candidate cancer genes (CCGs); 75 of these CCGs, including Mll3 and Ptk2, have known mutations in human pancreatic cancer. We identified point mutations in human pancreatic patient samples for another 11 CCGs, including Acvr2a and Map2k4. Importantly, 10% of the CCGs are involved in chromatin remodeling, including Arid4b, Kdm6a, and Nsd3, and all SB tumors have at least one mutated gene involved in this process; 20 CCGs, including Ctnnd1, Fbxo11, and Vgll4, are also significantly associated with poor patient survival. SB mutagenesis provides a rich resource of mutations in potential cancer drivers for cross-comparative analyses with ongoing sequencing efforts in human pancreatic adenocarcinoma. PMID:22421440

  17. Sleeping Beauty mutagenesis reveals cooperating mutations and pathways in pancreatic adenocarcinoma.

    PubMed

    Mann, Karen M; Ward, Jerrold M; Yew, Christopher Chin Kuan; Kovochich, Anne; Dawson, David W; Black, Michael A; Brett, Benjamin T; Sheetz, Todd E; Dupuy, Adam J; Chang, David K; Biankin, Andrew V; Waddell, Nicola; Kassahn, Karin S; Grimmond, Sean M; Rust, Alistair G; Adams, David J; Jenkins, Nancy A; Copeland, Neal G

    2012-04-17

    Pancreatic cancer is one of the most deadly cancers affecting the Western world. Because the disease is highly metastatic and difficult to diagnosis until late stages, the 5-y survival rate is around 5%. The identification of molecular cancer drivers is critical for furthering our understanding of the disease and development of improved diagnostic tools and therapeutics. We have conducted a mutagenic screen using Sleeping Beauty (SB) in mice to identify new candidate cancer genes in pancreatic cancer. By combining SB with an oncogenic Kras allele, we observed highly metastatic pancreatic adenocarcinomas. Using two independent statistical methods to identify loci commonly mutated by SB in these tumors, we identified 681 loci that comprise 543 candidate cancer genes (CCGs); 75 of these CCGs, including Mll3 and Ptk2, have known mutations in human pancreatic cancer. We identified point mutations in human pancreatic patient samples for another 11 CCGs, including Acvr2a and Map2k4. Importantly, 10% of the CCGs are involved in chromatin remodeling, including Arid4b, Kdm6a, and Nsd3, and all SB tumors have at least one mutated gene involved in this process; 20 CCGs, including Ctnnd1, Fbxo11, and Vgll4, are also significantly associated with poor patient survival. SB mutagenesis provides a rich resource of mutations in potential cancer drivers for cross-comparative analyses with ongoing sequencing efforts in human pancreatic adenocarcinoma. PMID:22421440

  18. Alanine Scanning Mutagenesis of Anti-TRAP (AT) Reveals Residues Involved in Binding to TRAP

    PubMed Central

    Chen, Yanling; Gollnick, Paul

    2008-01-01

    SUMMARY The trp RNA-binding attenuation protein (TRAP) regulates expression of the tryptophan biosynthetic (trp) genes in response to changes in intracellular levels of free L-tryptophan in many gram positive bacteria. When activated by binding tryptophan, TRAP binds to the mRNAs of several genes involved in tryptophan metabolism, and down-regulates transcription or translation of these genes. Anti-TRAP (AT) is an antagonist of TRAP that binds to tryptophan-activated TRAP and prevents it from binding to its RNA targets, and thereby up-regulates trp gene expression. The crystal structure shows that AT is a cone-shaped trimer (AT3) with the N-terminal residues of the three subunits assembled at the apex of the cone and that these trimers can further assemble into a dodecameric (AT12) structure. Using alanine-scanning mutagenesis we found four residues, all located on the “top” region of AT3, which are essential for binding to TRAP. Fluorescent labeling experiments further suggest that the top region of AT is in close juxtaposition to TRAP in the AT-TRAP complex. In vivo studies confirmed the importance of these residues on the top of AT in regulating TRAP mediated gene regulation. PMID:18334255

  19. Surface and finite size effects impact on the phase diagrams, polar, and dielectric properties of (Sr,Bi)Ta2O9 ferroelectric nanoparticles

    NASA Astrophysics Data System (ADS)

    Eliseev, E. A.; Semchenko, A. V.; Fomichov, Y. M.; Glinchuk, M. D.; Sidsky, V. V.; Kolos, V. V.; Pleskachevsky, Yu. M.; Silibin, M. V.; Morozovsky, N. V.; Morozovska, A. N.

    2016-05-01

    In the framework of the thermodynamic approach Landau-Ginzburg-Devonshire (LGD) combined with the equations of electrostatics, we investigated the effect of polarization surface screening on finite size effects of the phase diagrams, polar, and dielectric properties of ferroelectric nanoparticles of different shapes. We obtained and analyzed the analytical results for the dependences of the ferroelectric phase transition temperature, critical size, spontaneous polarization, and thermodynamic coercive field on the shape and size of the nanoparticles. The pronounced size effect of these characteristics on the scaling parameter, the ratio of the particle characteristic size to the length of the surface screening, was revealed. Also our modeling predicts a significant impact of the flexo-chemical effect (that is a joint action of flexoelectric effect and chemical pressure) on the temperature of phase transition, polar, and dielectric properties of nanoparticles when their chemical composition deviates from the stoichiometric one. We showed on the example of the stoichiometric nanosized SrBi2Ta2O9 particles that except the vicinity of the critical size, where the system splitting into domains has an important role, results of analytical calculation of the spontaneous polarization have a little difference from the numerical ones. We revealed a strong impact of the flexo-chemical effect on the phase transition temperature, polar, and dielectric properties of SryBi2+xTa2O9 nanoparticles when the ratio Sr/Bi deviates from the stoichiometric value of 0.5 within the range from 0.35 to 0.65. From the analysis of experimental data, we derived the parameters of the theory, namely, the coefficients of expansion of the LGD functional, the contribution of flexo-chemical effect, and the length of the surface screening.

  20. Genome-wide mutagenesis reveals that ORF7 is a novel VZV skin-tropic factor.

    PubMed

    Zhang, Zhen; Selariu, Anca; Warden, Charles; Huang, Grace; Huang, Ying; Zaccheus, Oluleke; Cheng, Tong; Xia, Ningshao; Zhu, Hua

    2010-01-01

    The Varicella Zoster Virus (VZV) is a ubiquitous human alpha-herpesvirus that is the causative agent of chicken pox and shingles. Although an attenuated VZV vaccine (v-Oka) has been widely used in children in the United States, chicken pox outbreaks are still seen, and the shingles vaccine only reduces the risk of shingles by 50%. Therefore, VZV still remains an important public health concern. Knowledge of VZV replication and pathogenesis remains limited due to its highly cell-associated nature in cultured cells, the difficulty of generating recombinant viruses, and VZV's almost exclusive tropism for human cells and tissues. In order to circumvent these hurdles, we cloned the entire VZV (p-Oka) genome into a bacterial artificial chromosome that included a dual-reporter system (GFP and luciferase reporter genes). We used PCR-based mutagenesis and the homologous recombination system in the E. coli to individually delete each of the genome's 70 unique ORFs. The collection of viral mutants obtained was systematically examined both in MeWo cells and in cultured human fetal skin organ samples. We use our genome-wide deletion library to provide novel functional annotations to 51% of the VZV proteome. We found 44 out of 70 VZV ORFs to be essential for viral replication. Among the 26 non-essential ORF deletion mutants, eight have discernable growth defects in MeWo. Interestingly, four ORFs were found to be required for viral replication in skin organ cultures, but not in MeWo cells, suggesting their potential roles as skin tropism factors. One of the genes (ORF7) has never been described as a skin tropic factor. The global profiling of the VZV genome gives further insights into the replication and pathogenesis of this virus, which can lead to improved prevention and therapy of chicken pox and shingles. PMID:20617166

  1. Properties of the Mechanosensitive Channel MscS Pore Revealed by Tryptophan Scanning Mutagenesis

    PubMed Central

    2015-01-01

    Bacterial mechanosensitive channels gate when the transmembrane turgor rises to levels that compromise the structural integrity of the cell wall. Gating creates a transient large diameter pore that allows hydrated solutes to pass from the cytoplasm at rates close to those of diffusion. In the closed conformation, the channel limits transmembrane solute movement, even that of protons. In the MscS crystal structure (Protein Data Bank entry 2oau), a narrow, hydrophobic opening is visible in the crystal structure, and it has been proposed that a vapor lock created by the hydrophobic seals, L105 and L109, is the barrier to water and ions. Tryptophan scanning mutagenesis has proven to be a highly valuable tool for the analysis of channel structure. Here Trp residues were introduced along the pore-forming TM3a helix and in selected other parts of the protein. Mutants were investigated for their expression, stability, and activity and as fluorescent probes of the physical properties along the length of the pore. Most Trp mutants were expressed at levels similar to that of the parent (MscS YFF) and were stable as heptamers in detergent in the presence and absence of urea. Fluorescence data suggest a long hydrophobic region with low accessibility to aqueous solvents, extending from L105/L109 to G90. Steady-state fluorescence anisotropy data are consistent with significant homo-Förster resonance energy transfer between tryptophan residues from different subunits within the narrow pore. The data provide new insights into MscS structure and gating. PMID:26126964

  2. Targeted mutagenesis of zebrafish antithrombin III triggers disseminated intravascular coagulation and thrombosis, revealing insight into function

    PubMed Central

    Liu, Yang; Kretz, Colin A.; Maeder, Morgan L.; Richter, Catherine E.; Tsao, Philip; Vo, Andy H.; Huarng, Michael C.; Rode, Thomas; Hu, Zhilian; Mehra, Rohit; Olson, Steven T.; Joung, J. Keith

    2014-01-01

    Pathologic blood clotting is a leading cause of morbidity and mortality in the developed world, underlying deep vein thrombosis, myocardial infarction, and stroke. Genetic predisposition to thrombosis is still poorly understood, and we hypothesize that there are many additional risk alleles and modifying factors remaining to be discovered. Mammalian models have contributed to our understanding of thrombosis, but are low throughput and costly. We have turned to the zebrafish, a tool for high-throughput genetic analysis. Using zinc finger nucleases, we show that disruption of the zebrafish antithrombin III (at3) locus results in spontaneous venous thrombosis in larvae. Although homozygous mutants survive into early adulthood, they eventually succumb to massive intracardiac thrombosis. Characterization of null fish revealed disseminated intravascular coagulation in larvae secondary to unopposed thrombin activity and fibrinogen consumption, which could be rescued by both human and zebrafish at3 complementary DNAs. Mutation of the human AT3-reactive center loop abolished the ability to rescue, but the heparin-binding site was dispensable. These results demonstrate overall conservation of AT3 function in zebrafish, but reveal developmental variances in the ability to tolerate excessive clot formation. The accessibility of early zebrafish development will provide unique methods for dissection of the underlying mechanisms of thrombosis. PMID:24782510

  3. Expression of the Scavenger Receptor Class B type I (SR-BI) family in Drosophila melanogaster.

    PubMed

    Herboso, Leire; Talamillo, Ana; Pérez, Coralia; Barrio, Rosa

    2011-01-01

    In mammals, cholesterol is transformed into steroid hormones in the adrenal gland, the ovaries or the testes. The Scavenger Receptors Class B Type I (SR-BI) are membrane proteins that belong to the CD36 family and participate in the selective uptake of high density lipoprotein cholesteryl ester in the mammalian steroidogenic tissues. Fourteen members of the CD36 family have been identified in Diptera, although their expression patterns remain uncharacterized. Using in situ hybridization we have characterized the expression patterns of the fourteen SR-BIs in Drosophila melanogaster. We analyzed three different developmental larval stages prior to and during the peak of the insect steroid hormone ecdysone, which triggers the larval to pupal transition. We focused on the steroidogenic tissues, such as the prothoracic gland, the ovaries and the testes, and extended our analysis to non-steroidogenic tissues, such as the fat body, salivary glands, the gut, the gastric caeca or the central nervous system. Our results show highly regulated expression patterns, with three genes crq, pes and Snmp being upregulated in steroidogenic tissues at the onset of pupariation when steroidogenesis is crucial. This study underlines the importance of the transport of cholesterol and steroids in the process of ecdysone synthesis. PMID:21948708

  4. Reaction Mechanism of Glutamate Carboxypeptidase II Revealed by Mutagenesis, X-ray Crystallography, and Computational Methods

    SciTech Connect

    Klusak, Vojtech; Barinka, Cyril; Plechanovova, Anna; Mlcochova, Petra; Konvalinka, Jan; Rulisek, Lubomir; Lubkowski, Jacek

    2009-05-29

    Glutamate carboxypeptidase II (GCPII, EC 3.4.17.21) is a zinc-dependent exopeptidase and an important therapeutic target for neurodegeneration and prostate cancer. The hydrolysis of N-acetyl-l-aspartyl-l-glutamate (N-Ac-Asp-Glu), the natural dipeptidic substrate of the GCPII, is intimately involved in cellular signaling within the mammalian nervous system, but the exact mechanism of this reaction has not yet been determined. To investigate peptide hydrolysis by GCPII in detail, we constructed a mutant of human GCPII [GCPII(E424A)], in which Glu424, a putative proton shuttle residue, is substituted with alanine. Kinetic analysis of GCPII(E424A) using N-Ac-Asp-Glu as substrate revealed a complete loss of catalytic activity, suggesting the direct involvement of Glu424 in peptide hydrolysis. Additionally, we determined the crystal structure of GCPII(E424A) in complex with N-Ac-Asp-Glu at 1.70 {angstrom} resolution. The presence of the intact substrate in the GCPII(E424A) binding cavity substantiates our kinetic data and allows a detailed analysis of GCPII/N-Ac-Asp-Glu interactions. The experimental data are complemented by the combined quantum mechanics/molecular mechanics calculations (QM/MM) which enabled us to characterize the transition states, including the associated reaction barriers, and provided detailed information concerning the GCPII reaction mechanism. The best estimate of the reaction barrier was calculated to be {Delta}G {approx} 22({+-}5) kcal{center_dot}mol{sup -1}, which is in a good agreement with the experimentally observed reaction rate constant (k{sub cat} {approx} 1 s{sup -1}). Combined together, our results provide a detailed and consistent picture of the reaction mechanism of this highly interesting enzyme at the atomic level.

  5. Multidrug resistance P-glycoprotein dampens SR-BI cholesteryl ester uptake from high density lipoproteins in human leukemia cells

    PubMed Central

    Spolitu, Stefano; Uda, Sabrina; Deligia, Stefania; Frau, Alessandra; Collu, Maria; Angius, Fabrizio; Batetta, Barbara

    2016-01-01

    Tumor cells are characterised by a high content of cholesterol esters (CEs), while tumor-bearing patients show low levels of high-density lipoproteins (HDLs). The origin and significance of high CE levels in cancer cell biology has not been completely clarified. Recent evidence that lymphoblastic cells selectively acquire exogenous CE from HDL via the scavenger receptor SR-BI has drawn attention to the additional membrane proteins involved in this pathway. P-glycopotein-MDR1 (P-gp) is a product of the MDR1 gene and confers resistance to antitumor drugs. Its possible role in plasma membrane cholesterol trafficking and CE metabolism has been suggested. In the present study this aspect was investigated in a lymphoblastic cell line selected for MDR1 resistance. CEM were made resistant by stepwise exposure to low (LR) and high (HR) doses of vincristine (VCR). P-gp activity (3H-vinblastine), CE content, CE and triglycerides (TG) synthesis (14C-oleate), neutral lipids and Dil-HDL uptake (fluorescence), SR-BI, ABCA1 and P-gp protein expression (western blotting) were determined. To better evaluate the relationship between CE metabolism and P-gp activity, the ACAT inhibitor Sandoz-58035 and the P-gp inhibitors progesterone, cyclosporine and verapamil were used. CE content and synthesis were similar in the parental and resistant cells. However, in the latter population, SR-BI protein expression increased, whereas CE-HDL uptake decreased. These changes correlated with the degree of VCR-resistance. As well as reverting MDR1-resistance, the inhibitors of P-gp activity induced the CE-HDL/SR-BI pathway by reactivating membrane cholesterol trafficking. Indeed, CE-HDL uptake, SRBI expression and CE content increased, whereas there was a decrease in cholesterol esterification. These results demonstrated that P-gp overexpression impairs anticancer drug uptake as well as the SR-BI mediated selective CE-HDL uptake. This suggests that these membrane proteins act in an opposite manner on

  6. Multidrug resistance P-glycoprotein dampens SR-BI cholesteryl ester uptake from high density lipoproteins in human leukemia cells.

    PubMed

    Spolitu, Stefano; Uda, Sabrina; Deligia, Stefania; Frau, Alessandra; Collu, Maria; Angius, Fabrizio; Batetta, Barbara

    2016-01-01

    Tumor cells are characterised by a high content of cholesterol esters (CEs), while tumor-bearing patients show low levels of high-density lipoproteins (HDLs). The origin and significance of high CE levels in cancer cell biology has not been completely clarified. Recent evidence that lymphoblastic cells selectively acquire exogenous CE from HDL via the scavenger receptor SR-BI has drawn attention to the additional membrane proteins involved in this pathway. P-glycopotein-MDR1 (P-gp) is a product of the MDR1 gene and confers resistance to antitumor drugs. Its possible role in plasma membrane cholesterol trafficking and CE metabolism has been suggested. In the present study this aspect was investigated in a lymphoblastic cell line selected for MDR1 resistance. CEM were made resistant by stepwise exposure to low (LR) and high (HR) doses of vincristine (VCR). P-gp activity ((3)H-vinblastine), CE content, CE and triglycerides (TG) synthesis ((14)C-oleate), neutral lipids and Dil-HDL uptake (fluorescence), SR-BI, ABCA1 and P-gp protein expression (western blotting) were determined. To better evaluate the relationship between CE metabolism and P-gp activity, the ACAT inhibitor Sandoz-58035 and the P-gp inhibitors progesterone, cyclosporine and verapamil were used. CE content and synthesis were similar in the parental and resistant cells. However, in the latter population, SR-BI protein expression increased, whereas CE-HDL uptake decreased. These changes correlated with the degree of VCR-resistance. As well as reverting MDR1-resistance, the inhibitors of P-gp activity induced the CE-HDL/SR-BI pathway by reactivating membrane cholesterol trafficking. Indeed, CE-HDL uptake, SRBI expression and CE content increased, whereas there was a decrease in cholesterol esterification. These results demonstrated that P-gp overexpression impairs anticancer drug uptake as well as the SR-BI mediated selective CE-HDL uptake. This suggests that these membrane proteins act in an opposite

  7. Mechanism of Porcine Liver Xanthine Oxidoreductase Mediated N-Oxide Reduction of Cyadox as Revealed by Docking and Mutagenesis Studies

    PubMed Central

    Hao, Haihong; Dai, Menghong; Wang, Xu; Huang, Lingli; Liu, Zhenli; Yuan, Zonghui

    2013-01-01

    Xanthine oxidoreductase (XOR) is a cytoplasmic molybdenum-containing oxidoreductase, catalyzing both endogenous purines and exogenous compounds. It is suggested that XOR in porcine hepatocytes catalyzes the N-oxide reduction of quinoxaline 1,4-di-N-oxides (QdNOs). To elucidate the molecular mechanism underlying this metabolism, the cDNA of porcine XOR was cloned and heterologously expressed in Spodoptera frugiperda insect cells. The bovine XOR, showing sequence identity of 91% to porcine XOR, was employed as template for homology modeling. By docking cyadox, a representative compound of QdNOs, into porcine XOR model, eight amino acid residues, Gly47, Asn352, Ser360, Arg427, Asp430, Asp431, Ser1227 and Lys1230, were located at distances of less than 4Å to cyadox. Site-directed mutagenesis was performed to analyze their catalytic functions. Compared with wild type porcine XOR, G47A, S360P, D431A, S1227A, and K1230A displayed altered kinetic parameters in cyadox reduction, similarly to that in xanthine oxidation, indicating these mutations influenced electron-donating process of xanthine before subsequent electron transfer to cyadox to fulfill the N-oxide reduction. Differently, R427E and D430H, both located in the 424–434 loop, exhibited a much lower Km and a decreased Vmax respectively in cyadox reduction. Arg427 may be related to the substrate binding of porcine XOR to cyadox, and Asp430 is suggested to be involved in the transfer of electron to cyadox. This study initially reveals the possible catalytic mechanism of porcine XOR in cyadox metabolism, providing with novel insights into the structure-function relationship of XOR in the reduction of exogenous di-N-oxides. PMID:24040113

  8. Transposon Mutagenesis Paired with Deep Sequencing of Caulobacter crescentus under Uranium Stress Reveals Genes Essential for Detoxification and Stress Tolerance

    PubMed Central

    Yung, Mimi C.; Park, Dan M.; Overton, K. Wesley; Blow, Matthew J.; Hoover, Cindi A.; Smit, John; Murray, Sean R.; Ricci, Dante P.; Christen, Beat; Bowman, Grant R.

    2015-01-01

    ABSTRACT The ubiquitous aquatic bacterium Caulobacter crescentus is highly resistant to uranium (U) and facilitates U biomineralization and thus holds promise as an agent of U bioremediation. To gain an understanding of how C. crescentus tolerates U, we employed transposon (Tn) mutagenesis paired with deep sequencing (Tn-seq) in a global screen for genomic elements required for U resistance. Of the 3,879 annotated genes in the C. crescentus genome, 37 were found to be specifically associated with fitness under U stress, 15 of which were subsequently tested through mutational analysis. Systematic deletion analysis revealed that mutants lacking outer membrane transporters (rsaFa and rsaFb), a stress-responsive transcription factor (cztR), or a ppGpp synthetase/hydrolase (spoT) exhibited a significantly lower survival rate under U stress. RsaFa and RsaFb, which are homologues of TolC in Escherichia coli, have previously been shown to mediate S-layer export. Transcriptional analysis revealed upregulation of rsaFa and rsaFb by 4- and 10-fold, respectively, in the presence of U. We additionally show that rsaFa mutants accumulated higher levels of U than the wild type, with no significant increase in oxidative stress levels. Our results suggest a function for RsaFa and RsaFb in U efflux and/or maintenance of membrane integrity during U stress. In addition, we present data implicating CztR and SpoT in resistance to U stress. Together, our findings reveal novel gene targets that are key to understanding the molecular mechanisms of U resistance in C. crescentus. IMPORTANCE Caulobacter crescentus is an aerobic bacterium that is highly resistant to uranium (U) and has great potential to be used in U bioremediation, but its mechanisms of U resistance are poorly understood. We conducted a Tn-seq screen to identify genes specifically required for U resistance in C. crescentus. The genes that we identified have previously remained elusive using other omics approaches and thus

  9. Reaction Mechanism of N-Acetylneuraminic Acid Lyase Revealed by a Combination of Crystallography, QM/MM Simulation, and Mutagenesis

    PubMed Central

    2014-01-01

    N-Acetylneuraminic acid lyase (NAL) is a Class I aldolase that catalyzes the reversible condensation of pyruvate with N-acetyl-d-mannosamine (ManNAc) to yield the sialic acid N-acetylneuraminic acid (Neu5Ac). Aldolases are finding increasing use as biocatalysts for the stereospecific synthesis of complex molecules. Incomplete understanding of the mechanism of catalysis in aldolases, however, can hamper development of new enzyme activities and specificities, including control over newly generated stereocenters. In the case of NAL, it is clear that the enzyme catalyzes a Bi-Uni ordered condensation reaction in which pyruvate binds first to the enzyme to form a catalytically important Schiff base. The identity of the residues required for catalysis of the condensation step and the nature of the transition state for this reaction, however, have been a matter of conjecture. In order to address, this we crystallized a Y137A variant of the E. coli NAL in the presence of Neu5Ac. The three-dimensional structure shows a full length sialic acid bound in the active site of subunits A, B, and D, while in subunit C, discontinuous electron density reveals the positions of enzyme-bound pyruvate and ManNAc. These ‘snapshot’ structures, representative of intermediates in the enzyme catalytic cycle, provided an ideal starting point for QM/MM modeling of the enzymic reaction of carbon–carbon bond formation. This revealed that Tyr137 acts as the proton donor to the aldehyde oxygen of ManNAc during the reaction, the activation barrier is dominated by carbon–carbon bond formation, and proton transfer from Tyr137 is required to obtain a stable Neu5Ac-Lys165 Schiff base complex. The results also suggested that a triad of residues, Tyr137, Ser47, and Tyr110 from a neighboring subunit, are required to correctly position Tyr137 for its function, and this was confirmed by site-directed mutagenesis. This understanding of the mechanism and geometry of the transition states along the C

  10. Thickness-Shear Vibration Mode Characteristics of SrBi4Ti4O15-Based Ceramics

    NASA Astrophysics Data System (ADS)

    Oka, Hitoshi; Hirose, Masakazu; Tsukada, Takeo; Watanabe, Yasuo; Nomura, Takeshi

    2000-09-01

    Dielectric and piezoelectric properties have been investigated in bismuth layer-structure compounds SrBi4Ti4O15 (SBT) and BaBi4Ti4O15 (BBT)-based solid solutions. Lanthanum-substituted and manganese-added SBT and BBT form solid solutions for all levels of Ba substitution. The Curie temperature and coercive field strength decrease monotonously with the amount of Ba substitution. The mechanical quality factor, Qm, of the thickness-shear vibration mode also decreases. The value of elastic compliance increases with the amount of Ba substitution, but conversely its temperature dependency decreases.

  11. Optical Temperature Sensor Through Upconversion Emission from the Er3+ Doped SrBi8Ti7O27 Ferroelectrics

    NASA Astrophysics Data System (ADS)

    Zou, Hua; Wang, Xusheng; Hu, Yifeng; Zhu, Xiaoqing; Sui, Yongxing; Song, Zhitang

    2016-06-01

    Er doped SrBi8Ti7O27 (SBT) ferroelectric ceramics were prepared by a solid-state reaction technique. By Er doping, the intensive green upconversion emissions were recorded under 980 nm diode laser excitation with 20 mW. The fluorescence spectrum was investigated in the temperature range of 150-580 K. By the fluorescence intensity ratio technique, the green emission band was studied as a function of temperature with a maximum sensing sensitivity of 0.0028 at 510 K. These results indicate that the Er doped SBT ferroelectric ceramics are promising multifunctional sensing materials.

  12. Upconversion luminescence, ferroelectrics and piezoelectrics of Er Doped SrBi{sub 4}Ti{sub 4}O{sub 15}

    SciTech Connect

    Peng Dengfeng; Zou Hua; Wang Xusheng; Yao Xi; Xu Chaonan; Lin Jian; Sun Tiantuo

    2012-12-15

    Er{sup 3+} doped SrBi{sub 4}Ti{sub 4}O{sub 15} (SBT) bismuth layered-structure ferroelectric ceramics were synthesized by the traditional solid-state method, and their upconversion photoluminescent (UC) properties were investigated as a function of Er{sup 3+} concentration and incident pump power. Green (555 nm) and red (670 nm) emission bands were obtained under 980 nm excitation at room temperature, which corresponded to the radiative transitions from {sup 4}S{sub 3/2}, and {sup 4}F{sub 9/2} to {sup 4}I{sub 15/2}, respectively. The emission color of the samples could be changed with moderating the doping concentrations. The dependence of UC intensity on pumping power indicated a two-photon emission process. Studies on dielectric properties indicated that the introduction of Er increased the ferroelectric-paraelectric phase transition temperature (Tc) of SBT, thus making this ceramic suitable for piezoelectric sensor applications at higher temperatures. Piezoelectric measurement showed that the doped SBT had a relative higher piezoelectric constant d{sub 33} compared with the non-doped ceramics. The thermal annealing behaviors of the doped sample revealed a stable piezoelectric property. The doped SBT showed bright UC emission while simultaneously having increased Tc and d{sub 33}. As a multifunctional material, Er doped SBT ferroelectric oxide showed great potential in application of sensor, future optical-electro integration and coupling devices.

  13. Ferrimagnetic and spin-glass transition in the Aurivillius compound SrBi5Ti4Cr0.5Co0.5O18

    NASA Astrophysics Data System (ADS)

    Yuan, B.; Yang, J.; Zuo, X. Z.; Song, D. P.; Tang, X. W.; Zhu, X. B.; Dai, J. M.; Song, W. H.; Sun, Y. P.

    2015-06-01

    Single-phase polycrystalline SrBi5Ti4CrO18 and SrBi5Ti4Cr0.5Co0.5O18 were synthesized by a modified Pechini method. Both samples have an orthorhombic structure with the space group B2cb. The valence state of Cr is suggested to be +3 and the Co ions exist in the form of Co2+ and Co3+ based on the results of x-ray photoelectron spectroscopy. The sample SrBi5Ti4CrO18 exhibits the paramagnetic state, whereas SrBi5Ti4Cr0.5Co0.5O18 undergoes a ferrimagnetic transition at 89 K originating from the antiferromagnetic coupling of Cr-based and Co-based sublattices. In addition, SrBi5Ti4Cr0.5Co0.5O18 shows a typical spin-glass behavior below 89 K with zν = 6.02 and τ0 = (1.75 ± 0.33) × 10-14 s as evidenced by the results of the frequency dependence of ac susceptibility and magnetic relaxation measurements. In particular, both the dielectric constant and dielectric loss of SrBi5Ti4Cr0.5Co0.5O18 exhibit the characteristics of dielectric relaxation around 89 K with the activation energy of (0.14 ± 0.02) eV, which can be ascribed to the electron hopping of Co2+-VO-Co3+ through the bridging oxygen vacancies.

  14. SR-BI protects against endotoxemia in mice through its roles in glucocorticoid production and hepatic clearance

    PubMed Central

    Cai, Lei; Ji, Ailing; de Beer, Frederick C.; Tannock, Lisa R.; van der Westhuyzen, Deneys R.

    2007-01-01

    Septic shock results from an uncontrolled inflammatory response, mediated primarily by LPS. Cholesterol transport plays an important role in the host response to LPS, as LPS is neutralized by lipoproteins and adrenal cholesterol uptake is required for antiinflammatory glucocorticoid synthesis. In this study, we show that scavenger receptor B-I (SR-BI), an HDL receptor that mediates HDL cholesterol ester uptake into cells, is required for the normal antiinflammatory response to LPS-induced endotoxic shock. Despite elevated plasma HDL levels, SR-BI–null mice displayed an uncontrollable inflammatory cytokine response and a markedly higher lethality rate than control mice in response to LPS. In addition, SR-BI–null mice showed a lack of inducible glucocorticoid synthesis in response to LPS, bacterial infection, stress, or ACTH. Glucocorticoid insufficiency in SR-BI–null mice was due to primary adrenal malfunction resulting from deficient cholesterol delivery from HDL. Furthermore, corticosterone supplementation decreased the sensitivity of SR-BI–null mice to LPS. Plasma from control and SR-BI–null mice exhibited a similar ability to neutralize LPS, whereas SR-BI–null mice showed decreased plasma clearance of LPS into the liver and hepatocytes compared with normal mice. We conclude that SR-BI in mice is required for the antiinflammatory response to LPS-induced endotoxic shock, likely through its essential role in facilitating glucocorticoid production and LPS hepatic clearance. PMID:18064300

  15. Electrical properties of ferroelectric-gate FETs with SrBi2Ta2O9 formed using MOCVD technique

    NASA Astrophysics Data System (ADS)

    Yan, Kang; Takahashi, Mitsue; Sakai, Shigeki

    2012-09-01

    Ferroelectric-gate field-effect transistors (FeFETs) with a Pt/SrBi2Ta2O9/Hf-Al-O/Si gate stack were fabricated using the metal-organic chemical vapor deposition (MOCVD) technique to prepare the SrBi2Ta2O9 (SBT) ferroelectric layer. A good threshold voltage ( V th) distribution was found for more than 90 n-channel FeFETs in one chip with a 170 nm SBT layer owing to the good film uniformity of the SBT layer deposited by MOCVD. The average memory window (Vw^{av}) and the standard deviations ( σ thl, σ thr) of the left- and right-side branches of the drain-gate voltage curves of the FeFETs yielded a Vw^{av}/(σ_{thl} + σ_{thr}) value of 5.45, indicating that the FeFETs can be adapted for large-scale-integration. The electric field, the energy band profile in the gate stack, and the gate leakage current were also investigated at high gate voltages. We found that the effect of Fowler-Nordheim tunneling appeared under these conditions. Because of the tunneling injection and trapping of electrons into the gate insulators, the operation voltage ranges of the FeFETs were limited by this tunneling.

  16. Hypolipidemic action of the SERM acolbifene is associated with decreased liver MTP and increased SR-BI and LDL receptors.

    PubMed

    Lemieux, Christian; Gélinas, Yves; Lalonde, Josée; Labrie, Fernand; Cianflone, Katherine; Deshaies, Yves

    2005-06-01

    This study aimed to identify the mechanisms of the hypolipidemic action of the selective estrogen receptor modulator (SERM) acolbifene (ACOL). Four weeks of treatment with ACOL reduced fasting and postprandial plasma triglycerides (TGs), an effect associated with lower VLDL-TG secretion rate (-25%), and decreased mRNA of microsomal triglyceride transfer protein (MTP; -29%). ACOL increased liver TG concentration (+100%) and amplified the feeding-induced increase in the master lipogenic regulators sterol-regulatory element binding protein-1a (SREBP-1a) and SREBP-1c. ACOL decreased total, HDL, and non-HDL cholesterol (CHOL) by 50%. SREBP-2 mRNA and HMG-CoA reductase activity were minimally affected by ACOL. However, in the fasted state, liver concentration of scavenger receptor class B type I (SR-BI) protein, but not mRNA, was 3-fold higher in ACOL-treated than in control animals and correlated with plasma HDL-CHOL levels (r = 0.80, P < 0.002). Liver LDL receptor (LDLR) protein, but not mRNA, was increased 2-fold by ACOL, independently of the nutritional status. This study demonstrates that ACOL possesses the unique ability among SERMs to reduce VLDL-TG secretion, likely by reducing MTP expression, and strongly suggests that the robust hypocholesterolemic action of ACOL is related to increased removal of CHOL from the circulation as a consequence of enhanced liver SR-BI and LDLR abundance. PMID:15741653

  17. Large enhancement of superconducting transition temperature of SrBi3 induced by Na substitution for Sr

    PubMed Central

    Iyo, Akira; Yanagi, Yousuke; Kinjo, Tatsuya; Nishio, Taichiro; Hase, Izumi; Yanagisawa, Takashi; Ishida, Shigeyuki; Kito, Hijiri; Takeshita, Nao; Oka, Kunihiko; Yoshida, Yoshiyuki; Eisaki, Hiroshi

    2015-01-01

    The Matthias rule, which is an empirical correlation between the superconducting transition temperature (Tc) and the average number of valence electrons per atom (n) in alloys and intermetallic compounds, has been used in the past as a guiding principle to search for new superconductors with higher Tc. The intermetallic compound SrBi3 (AuCu3 structure) exhibits a Tc of 5.6 K. An ab-initio electronic band structure calculation for SrBi3 predicted that Tc increases on decreasing the Fermi energy, i.e., on decreasing n, because of a steep increase in the density of states. In this study, we demonstrated that high-pressure (~ 3 GPa) and low-temperature ( < 350 °C) synthesis conditions enables the substitution of Na for about 40 at.% of Sr. With a consequent decrease in n, the Tc of (Sr,Na)Bi3 increases to 9.0 K. A new high-Tc peak is observed in the oscillatory dependence of Tc on n in compounds with the AuCu3 structure. We have shown that the oscillatory dependence of Tc is in good agreement with the band structure calculation. Our experiments reaffirm the importance of controlling the number of electrons in intermetallic compounds. PMID:25965162

  18. Novel structure--function information on biogenic amine transporters revealed by site-directed mutagenesis and alkylation.

    PubMed

    Reith, Maarten E A

    2013-07-01

    The study reported by Wenge and Bönisch in this issue provides critical structural information regarding extracellular loop 2 (EL2) of the human norepinephrine transporter (NET). A systematic search among all 10 cysteine and 13 histidine residues in NET led to His222 in EL2 as the target for N-ethylmaleimide: its alkylation interferes with [(3)H]nisoxetine binding, indicating the part of EL2 containing His 222 reaches back into the protein interior where it prevents access by nisoxetine to its binding site. Thus, EL2 in human NET does much more than conformationally assisting substrate translocation. The present study underscores the importance of site-directed mutagenesis approaches to elucidate structural features that cannot be deduced from crystals of homolog proteins. In the case of NET, the closest crystal structure is that of the homolog LeuT, but EL2 is difficult to align with 22 less loop residues in LeuT than in NET. The present results could only be achieved by the systematic mutagenesis study of all cysteines and all histidines in NET. PMID:23532308

  19. Highly localized strain fields due to planar defects in epitaxial SrBi2Nb2O9 thin films

    NASA Astrophysics Data System (ADS)

    Boulle, A.; Guinebretière, R.; Dauger, A.

    2005-04-01

    Thin films of (00l) oriented SrBi2Nb2O9 epitaxially grown on SrTiO3 by sol-gel spin coating have been studied by means of high-resolution x-ray diffraction reciprocal space mapping. It is shown that these materials contain highly localized heterogeneous strain fields due to imperfect stacking faults (i.e., faults that do not propagate throughout the crystallites building up the film). In the film plane, the strain fields are confined to 11 nm wide regions and characterized by a vertical displacement of 0.18c (where c is the cell parameter) showing that the stacking faults are mainly composed of one additional (or missing) perovskite layer. Prolonged thermal annealing at 700 °C strongly reduces the density of stacking faults and yields a more uniform strain distribution within the film volume without inducing significant grain growth.

  20. Effect of La-substitution on the structure, dielectric and ferroelectric properties of Nb modified SrBi{sub 8}Ti{sub 7}O{sub 27} ceramics

    SciTech Connect

    Parida, Geetanjali Bera, J.

    2015-08-15

    Graphical abstract: The ferroelectric properties of Nb modified Bi{sub 4}Ti{sub 3}O{sub 12}–SrBi{sub 4}Ti{sub 4}O{sub 15} intergrowth ceramics increases significantly when Bi is substituted by La. - Highlights: • La{sup 3+} substitution for Bi{sup 3+} in Nb doped Bi{sub 4}Ti{sub 3}O{sub 12}–SrBi{sub 4}Ti{sub 4}O{sub 15} ferroelectrics is reported. • The orthorhombic distortion of the structure decreased with the increasing La. • La acts as a grain growth inhibitor in the ceramics. • The remnant polarization of the ferroelectrics increased significantly with La substitution. - Abstract: The effect of La substitution on the electrical properties of SrLa{sub x}Bi{sub 8−x}Ti{sub 6.88}Nb{sub 0}.{sub 12}O{sub 27} intergrowth Aurivillius phase ferroelectric ceramic was investigated. La content ‘x’ was ranging from 0.0 to 1.0 in a step of 0.2. The ceramic phase was synthesized through a modified oxalate route. X-ray diffraction was used to identify the phase and to investigate the change in lattice parameter and microstrain with the substitution. La-substitution does not affect the crystal structure of the intergrowth. Microstructural investigation revealed that the grain size of the ceramic decreases with La addition. The lattice parameters and orthorhombicity of intergrowth structure were found to decrease with increasing La substitution. The temperature dependence of dielectric behavior was investigated in the temperature range 30–700 °C and the frequency of 100 kHz. The remnant polarization 2P{sub r} increased and the Curie temperature T{sub c} decreased with the increase in the La substitution.

  1. Targeted mutagenesis of intergenic regions in the Neisseria gonorrhoeae gonococcal genetic island reveals multiple regulatory mechanisms controlling type IV secretion.

    PubMed

    Ramsey, Meghan E; Bender, Tobias; Klimowicz, Amy K; Hackett, Kathleen T; Yamamoto, Ami; Jolicoeur, Adrienne; Callaghan, Melanie M; Wassarman, Karen M; van der Does, Chris; Dillard, Joseph P

    2015-09-01

    Gonococci secrete chromosomal DNA into the extracellular environment using a type IV secretion system (T4SS). The secreted DNA acts in natural transformation and initiates biofilm development. Although the DNA and its effects are detectable, structural components of the T4SS are present at very low levels, suggestive of uncharacterized regulatory control. We sought to better characterize the expression and regulation of T4SS genes and found that the four operons containing T4SS genes are transcribed at very different levels. Increasing transcription of two of the operons through targeted promoter mutagenesis did not increase DNA secretion. The stability and steady-state levels of two T4SS structural proteins were affected by a homolog of tail-specific protease. An RNA switch was also identified that regulates translation of a third T4SS operon. The switch mechanism relies on two putative stem-loop structures contained within the 5' untranslated region of the transcript, one of which occludes the ribosome binding site and start codon. Mutational analysis of these stem loops supports a model in which induction of an alternative structure relieves repression. Taken together, these results identify multiple layers of regulation, including transcriptional, translational and post-translational mechanisms controlling T4SS gene expression and DNA secretion. PMID:26076069

  2. Functional mutagenesis screens reveal the ‘cap structure’ formation in disulfide-bridge free TASK channels

    PubMed Central

    Goldstein, Matthias; Rinné, Susanne; Kiper, Aytug K.; Ramírez, David; Netter, Michael F.; Bustos, Daniel; Ortiz-Bonnin, Beatriz; González, Wendy; Decher, Niels

    2016-01-01

    Two-pore-domain potassium (K2P) channels have a large extracellular cap structure formed by two M1-P1 linkers, containing a cysteine for dimerization. However, this cysteine is not present in the TASK-1/3/5 subfamily. The functional role of the cap is poorly understood and it remained unclear whether K2P channels assemble in the domain-swapped orientation or not. Functional alanine-mutagenesis screens of TASK-1 and TRAAK were used to build an in silico model of the TASK-1 cap. According to our data the cap structure of disulfide-bridge free TASK channels is similar to that of other K2P channels and is most likely assembled in the domain-swapped orientation. As the conserved cysteine is not essential for functional expression of all K2P channels tested, we propose that hydrophobic residues at the inner leaflets of the cap domains can interact with each other and that this way of stabilizing the cap is most likely conserved among K2P channels. PMID:26794006

  3. PiggyBac Transposon-Mediated Mutagenesis in Rats Reveals a Crucial Role of Bbx in Growth and Male Fertility.

    PubMed

    Wang, Chieh-Ying; Tang, Ming-Chu; Chang, Wen-Chi; Furushima, Kenryo; Jang, Chuan-Wei; Behringer, Richard R; Chen, Chun-Ming

    2016-09-01

    Bobby sox homolog (Bbx) is an evolutionally conserved gene, but its biological function remains elusive. Here, we characterized defects of Bbx mutant rats that were created by PiggyBac-mediated insertional mutagenesis. Smaller body size and male infertility were the two major phenotypes of homozygous Bbx mutants. Bbx expression profile analysis showed that Bbx was more highly expressed in the testis and pituitary gland than in other organs. Histology and hormonal gene expression analysis of control and Bbx-null pituitary glands showed that loss of Bbx appeared to be dispensable for pituitary histogenesis and the expression of major hormones. BBX was localized in the nuclei of postmeiotic spermatids and Sertoli cells in wild-type testes, but absent in mutant testes. An increased presence of aberrant multinuclear giant cells and apoptotic cells was observed in mutant seminiferous tubules. TUNEL-positive cells costained with CREM (round spermatid marker), but not PLZF (spermatogonia marker), gammaH2Ax (meiotic spermatocyte marker), or GATA4 (Sertoli cell marker). Finally, there were drastically reduced numbers and motility of epididymal sperm from Bbx-null rats. These results suggest that loss of BBX induces apoptosis of postmeiotic spermatids and results in spermiogenesis defects and infertility. PMID:27465138

  4. Insertional mutagenesis and deep profiling reveals gene hierarchies and a Myc/p53-dependent bottleneck in lymphomagenesis.

    PubMed

    Huser, Camille A; Gilroy, Kathryn L; de Ridder, Jeroen; Kilbey, Anna; Borland, Gillian; Mackay, Nancy; Jenkins, Alma; Bell, Margaret; Herzyk, Pawel; van der Weyden, Louise; Adams, David J; Rust, Alistair G; Cameron, Ewan; Neil, James C

    2014-02-01

    Retroviral insertional mutagenesis (RIM) is a powerful tool for cancer genomics that was combined in this study with deep sequencing (RIM/DS) to facilitate a comprehensive analysis of lymphoma progression. Transgenic mice expressing two potent collaborating oncogenes in the germ line (CD2-MYC, -Runx2) develop rapid onset tumours that can be accelerated and rendered polyclonal by neonatal Moloney murine leukaemia virus (MoMLV) infection. RIM/DS analysis of 28 polyclonal lymphomas identified 771 common insertion sites (CISs) defining a 'progression network' that encompassed a remarkably large fraction of known MoMLV target genes, with further strong indications of oncogenic selection above the background of MoMLV integration preference. Progression driven by RIM was characterised as a Darwinian process of clonal competition engaging proliferation control networks downstream of cytokine and T-cell receptor signalling. Enhancer mode activation accounted for the most efficiently selected CIS target genes, including Ccr7 as the most prominent of a set of chemokine receptors driving paracrine growth stimulation and lymphoma dissemination. Another large target gene subset including candidate tumour suppressors was disrupted by intragenic insertions. A second RIM/DS screen comparing lymphomas of wild-type and parental transgenics showed that CD2-MYC tumours are virtually dependent on activation of Runx family genes in strong preference to other potent Myc collaborating genes (Gfi1, Notch1). Ikzf1 was identified as a novel collaborating gene for Runx2 and illustrated the interface between integration preference and oncogenic selection. Lymphoma target genes for MoMLV can be classified into (a) a small set of master regulators that confer self-renewal; overcoming p53 and other failsafe pathways and (b) a large group of progression genes that control autonomous proliferation in transformed cells. These findings provide insights into retroviral biology, human cancer genetics

  5. High-density lipoprotein inhibits ox-LDL-induced adipokine secretion by upregulating SR-BI expression and suppressing ER Stress pathway.

    PubMed

    Song, Guohua; Wu, Xia; Zhang, Pu; Yu, Yang; Yang, Mingfeng; Jiao, Peng; Wang, Ni; Song, Haiming; Wu, You; Zhang, Xiangjian; Liu, Huaxia; Qin, Shucun

    2016-01-01

    Endoplasmic reticulum stress (ERS) in adipocytes can modulate adipokines secretion. The aim of this study was to explore the protective effect of high-density lipoprotein (HDL) on oxidized low-density lipoprotein (ox-LDL)-induced ERS-C/EBP homologous protein (CHOP) pathway-mediated adipokine secretion. Our results showed that serum adipokines, including visfatin, resistin and TNF-α, correlated inversely with serum HDL cholesterol level in patients with abdominal obesity. In vitro, like ERS inhibitor 4-phenylbutyric acid (PBA), HDL inhibited ox-LDL- or tunicamycin (TM, an ERS inducer)-induced increase in visfatin and resistin secretion. Moreover, HDL inhibited ox-LDL-induced free cholesterol (FC) accumulation in whole cell lysate and in the endoplasmic reticulum. Additionally, like PBA, HDL inhibited ox-LDL- or TM-induced activation of ERS response as assessed by the decreased phosphorylation of protein kinase-like ER kinase and eukaryotic translation initiation factor 2α and reduced nuclear translocation of activating transcription factor 6 as well as the downregulation of Bip and CHOP. Furthermore, HDL increased scavenger receptor class B type I (SR-BI) expression and SR-BI siRNA treatment abolished the inhibitory effects of HDL on ox-LDL-induced FC accumulation and CHOP upregulation. These data indicate that HDL may suppress ox-LDL-induced FC accumulation in adipocytes through upregulation of SR-BI, subsequently preventing ox-LDL-induced ER stress-CHOP pathway-mediated adipocyte inflammation. PMID:27468698

  6. High-density lipoprotein inhibits ox-LDL-induced adipokine secretion by upregulating SR-BI expression and suppressing ER Stress pathway

    PubMed Central

    Song, Guohua; Wu, Xia; Zhang, Pu; Yu, Yang; Yang, Mingfeng; Jiao, Peng; Wang, Ni; Song, Haiming; Wu, You; Zhang, Xiangjian; Liu, Huaxia; Qin, Shucun

    2016-01-01

    Endoplasmic reticulum stress (ERS) in adipocytes can modulate adipokines secretion. The aim of this study was to explore the protective effect of high-density lipoprotein (HDL) on oxidized low-density lipoprotein (ox-LDL)-induced ERS-C/EBP homologous protein (CHOP) pathway-mediated adipokine secretion. Our results showed that serum adipokines, including visfatin, resistin and TNF-α, correlated inversely with serum HDL cholesterol level in patients with abdominal obesity. In vitro, like ERS inhibitor 4-phenylbutyric acid (PBA), HDL inhibited ox-LDL- or tunicamycin (TM, an ERS inducer)-induced increase in visfatin and resistin secretion. Moreover, HDL inhibited ox-LDL-induced free cholesterol (FC) accumulation in whole cell lysate and in the endoplasmic reticulum. Additionally, like PBA, HDL inhibited ox-LDL- or TM-induced activation of ERS response as assessed by the decreased phosphorylation of protein kinase-like ER kinase and eukaryotic translation initiation factor 2α and reduced nuclear translocation of activating transcription factor 6 as well as the downregulation of Bip and CHOP. Furthermore, HDL increased scavenger receptor class B type I (SR-BI) expression and SR-BI siRNA treatment abolished the inhibitory effects of HDL on ox-LDL-induced FC accumulation and CHOP upregulation. These data indicate that HDL may suppress ox-LDL-induced FC accumulation in adipocytes through upregulation of SR-BI, subsequently preventing ox-LDL-induced ER stress-CHOP pathway-mediated adipocyte inflammation. PMID:27468698

  7. Mutagenesis of GATA motifs controlling the endoderm regulator elt-2 reveals distinct dominant and secondary cis-regulatory elements.

    PubMed

    Du, Lawrence; Tracy, Sharon; Rifkin, Scott A

    2016-04-01

    Cis-regulatory elements (CREs) are crucial links in developmental gene regulatory networks, but in many cases, it can be difficult to discern whether similar CREs are functionally equivalent. We found that despite similar conservation and binding capability to upstream activators, different GATA cis-regulatory motifs within the promoter of the C. elegans endoderm regulator elt-2 play distinctive roles in activating and modulating gene expression throughout development. We fused wild-type and mutant versions of the elt-2 promoter to a gfp reporter and inserted these constructs as single copies into the C. elegans genome. We then counted early embryonic gfp transcripts using single-molecule RNA FISH (smFISH) and quantified gut GFP fluorescence. We determined that a single primary dominant GATA motif located 527bp upstream of the elt-2 start codon was necessary for both embryonic activation and later maintenance of transcription, while nearby secondary GATA motifs played largely subtle roles in modulating postembryonic levels of elt-2. Mutation of the primary activating site increased low-level spatiotemporally ectopic stochastic transcription, indicating that this site acts repressively in non-endoderm cells. Our results reveal that CREs with similar GATA factor binding affinities in close proximity can play very divergent context-dependent roles in regulating the expression of a developmentally critical gene in vivo. PMID:26896592

  8. Targeted mutagenesis of the human papillomavirus type 16 E2 transactivation domain reveals separable transcriptional activation and DNA replication functions.

    PubMed

    Sakai, H; Yasugi, T; Benson, J D; Dowhanick, J J; Howley, P M

    1996-03-01

    The E2 gene products of papillomavirus play key roles in viral replication, both as regulators of viral transcription and as auxiliary factors that act with E1 in viral DNA replication. We have carried out a detailed structure-function analysis of conserved amino acids within the N-terminal domain of the human papillomavirus type 16 (HPV16) E2 protein. These mutants were tested for their transcriptional activation activities as well as transient DNA replication and E1 binding activities. Analysis of the stably expressed mutants revealed that the transcriptional activation and replication activities of HPV16 E2 could be dissociated. The 173A mutant was defective for the transcriptional activation function but retained wild-type DNA replication activity, whereas the E39A mutant wild-type transcriptional activation function but was defective in transient DNA replication assays. The E39A mutant was also defective for HPV16 E1 binding in vitro, suggesting that the ability of E2 protein to form a complex with E1 appears to be essential for its function as an auxiliary replication factor. PMID:8627680

  9. Site-Directed Mutagenesis of HgcA and HgcB Reveals Amino Acid Residues Important for Mercury Methylation

    PubMed Central

    Smith, Steven D.; Bridou, Romain; Johs, Alexander; Parks, Jerry M.; Elias, Dwayne A.; Hurt, Richard A.; Brown, Steven D.; Podar, Mircea

    2015-01-01

    Methylmercury is a potent neurotoxin that is produced by anaerobic microorganisms from inorganic mercury by a recently discovered pathway. A two-gene cluster, consisting of hgcA and hgcB, encodes two of the proteins essential for this activity. hgcA encodes a corrinoid protein with a strictly conserved cysteine proposed to be the ligand for cobalt in the corrinoid cofactor, whereas hgcB encodes a ferredoxin-like protein thought to be an electron donor to HgcA. Deletion of either gene eliminates mercury methylation by the methylator Desulfovibrio desulfuricans ND132. Here, site-directed mutants of HgcA and HgcB were constructed to determine amino acid residues essential for mercury methylation. Mutations of the strictly conserved residue Cys93 in HgcA, the proposed ligand for the corrinoid cobalt, to Ala or Thr completely abolished the methylation capacity, but a His substitution produced measurable methylmercury. Mutations of conserved amino acids near Cys93 had various impacts on the methylation capacity but showed that the structure of the putative “cap helix” region harboring Cys93 is crucial for methylation function. In the ferredoxin-like protein HgcB, only one of two conserved cysteines found at the C terminus was necessary for methylation, but either cysteine sufficed. An additional, strictly conserved cysteine, Cys73, was also determined to be essential for methylation. This study supports the previously predicted importance of Cys93 in HgcA for methylation of mercury and reveals additional residues in HgcA and HgcB that facilitate the production of this neurotoxin. PMID:25724962

  10. Site-Directed Mutagenesis of HgcA and HgcB Reveals Amino Acid Residues Important for Mercury Methylation

    SciTech Connect

    Smith, Steven D.; Bridou, Romain; Johs, Alexander; Parks, Jerry M.; Elias, Dwayne A.; Hurt, Richard A.; Brown, Steven D.; Podar, Mircea; Wall, Judy D.

    2015-02-27

    Methylmercury is a potent neurotoxin that is produced by anaerobic microorganisms from inorganic mercury by a recently discovered pathway. A two-gene cluster, consisting of hgcA and hgcB, encodes two of the proteins essential for this activity. hgcA encodes a corrinoid protein with a strictly conserved cysteine proposed to be the ligand for cobalt in the corrinoid cofactor, whereas hgcB encodes a ferredoxin-like protein thought to be an electron donor to HgcA. Deletion of either gene eliminates mercury methylation by the methylator Desulfovibrio desulfuricans ND132. Here, site-directed mutants of HgcA and HgcB were constructed to determine amino acid residues essential for mercury methylation. Mutations of the strictly conserved residue Cys93 in HgcA, the proposed ligand for the corrinoid cobalt, to Ala or Thr completely abolished the methylation capacity, but a His substitution produced measurable methylmercury. Mutations of conserved amino acids near Cys93 had various impacts on the methylation capacity but showed that the structure of the putative “cap helix” region harboring Cys93 is crucial for methylation function. In the ferredoxin-like protein HgcB, only one of two conserved cysteines found at the C terminus was necessary for methylation, but either cysteine sufficed. An additional, strictly conserved cysteine, Cys73, was also determined to be essential for methylation. Ultimately, this study supports the previously predicted importance of Cys93 in HgcA for methylation of mercury and reveals additional residues in HgcA and HgcB that facilitate the production of this neurotoxin.

  11. Site-Directed Mutagenesis of HgcA and HgcB Reveals Amino Acid Residues Important for Mercury Methylation

    DOE PAGESBeta

    Smith, Steven D.; Bridou, Romain; Johs, Alexander; Parks, Jerry M.; Elias, Dwayne A.; Hurt, Richard A.; Brown, Steven D.; Podar, Mircea; Wall, Judy D.

    2015-02-27

    Methylmercury is a potent neurotoxin that is produced by anaerobic microorganisms from inorganic mercury by a recently discovered pathway. A two-gene cluster, consisting of hgcA and hgcB, encodes two of the proteins essential for this activity. hgcA encodes a corrinoid protein with a strictly conserved cysteine proposed to be the ligand for cobalt in the corrinoid cofactor, whereas hgcB encodes a ferredoxin-like protein thought to be an electron donor to HgcA. Deletion of either gene eliminates mercury methylation by the methylator Desulfovibrio desulfuricans ND132. Here, site-directed mutants of HgcA and HgcB were constructed to determine amino acid residues essential formore » mercury methylation. Mutations of the strictly conserved residue Cys93 in HgcA, the proposed ligand for the corrinoid cobalt, to Ala or Thr completely abolished the methylation capacity, but a His substitution produced measurable methylmercury. Mutations of conserved amino acids near Cys93 had various impacts on the methylation capacity but showed that the structure of the putative “cap helix” region harboring Cys93 is crucial for methylation function. In the ferredoxin-like protein HgcB, only one of two conserved cysteines found at the C terminus was necessary for methylation, but either cysteine sufficed. An additional, strictly conserved cysteine, Cys73, was also determined to be essential for methylation. Ultimately, this study supports the previously predicted importance of Cys93 in HgcA for methylation of mercury and reveals additional residues in HgcA and HgcB that facilitate the production of this neurotoxin.« less

  12. Site-directed Mutagenesis Reveals Regions Implicated in the Stability and Fiber Formation of Human λ3r Light Chains*

    PubMed Central

    Villalba, Miryam I.; Canul-Tec, Juan C.; Luna-Martínez, Oscar D.; Sánchez-Alcalá, Rosalba; Olamendi-Portugal, Timoteo; Rudiño-Piñera, Enrique; Rojas, Sonia; Sánchez-López, Rosana; Fernández-Velasco, Daniel A.; Becerril, Baltazar

    2015-01-01

    Light chain amyloidosis (AL) is a disease that affects vital organs by the fibrillar aggregation of monoclonal light chains. λ3r germ line is significantly implicated in this disease. In this work, we contrasted the thermodynamic stability and aggregation propensity of 3mJL2 (nonamyloidogenic) and 3rJL2 (amyloidogenic) λ3 germ lines. Because of an inherent limitation (extremely low expression), Cys at position 34 of the 3r germ line was replaced by Tyr reaching a good expression yield. A second substitution (W91A) was introduced in 3r to obtain a better template to incorporate additional mutations. Although the single mutant (C34Y) was not fibrillogenic, the second mutation located at CDR3 (W91A) induced fibrillogenesis. We propose, for the first time, that CDR3 (position 91) affects the stability and fiber formation of human λ3r light chains. Using the double mutant (3rJL2/YA) as template, other variants were constructed to evaluate the importance of those substitutions into the stability and aggregation propensity of λ3 light chains. A change in position 7 (P7D) boosted 3rJL2/YA fibrillogenic properties. Modification of position 48 (I48M) partially reverted 3rJL2/YA fibril aggregation. Finally, changes at positions 8 (P8S) or 40 (P40S) completely reverted fibril formation. These results confirm the influential roles of N-terminal region (positions 7 and 8) and the loop 40–60 (positions 40 and 48) on AL. X-ray crystallography revealed that the three-dimensional topology of the single and double λ3r mutants was not significantly altered. This mutagenic approach helped to identify key regions implicated in λ3 AL. PMID:25505244

  13. Integration of SrBi2Ta2O9 thin films for high density ferroelectric random access memory

    NASA Astrophysics Data System (ADS)

    Wouters, D. J.; Maes, D.; Goux, L.; Lisoni, J. G.; Paraschiv, V.; Johnson, J. A.; Schwitters, M.; Everaert, J.-L.; Boullart, W.; Schaekers, M.; Willegems, M.; Vander Meeren, H.; Haspeslagh, L.; Artoni, C.; Caputa, C.; Casella, P.; Corallo, G.; Russo, G.; Zambrano, R.; Monchoix, H.; Vecchio, G.; Van Autryve, L.

    2006-09-01

    Ferroelectric random access memory (FeRAM) is an attractive candidate technology for embedded nonvolatile memory, especially in applications where low power and high program speed are important. Market introduction of high-density FeRAM is, however, lagging behind standard complementary metal-oxide semiconductor (CMOS) because of the difficult integration technology. This paper discusses the major integration issues for high-density FeRAM, based on SrBi2Ta2O9 (strontium bismuth tantalate or SBT), in relation to the fabrication of our stacked cell structure. We have worked in the previous years on the development of SBT-FeRAM integration technology, based on a so-called pseudo-three-dimensional (3D) cell, with a capacitor that can be scaled from quasi two-dimensional towards a true three-dimensional capacitor where the sidewalls will importantly contribute to the signal. In the first phase of our integration development, we integrated our FeRAM cell in a 0.35μm CMOS technology. In a second phase, then, possibility of scaling of our cell is demonstrated in 0.18μm technology. The excellent electrical and reliability properties of the small integrated ferroelectric capacitors prove the feasibility of the technology, while the verification of the potential 3D effect confirms the basic scaling potential of our concept beyond that of the single-mask capacitor. The paper outlines the different material and technological challenges, and working solutions are demonstrated. While some issues are specific to our own cell, many are applicable to different stacked FeRAM cell concepts, or will become more general concerns when more developments are moving into 3D structures.

  14. Structural, magnetic, and dielectric studies of the Aurivillius compounds SrBi{sub 5}Ti{sub 4}MnO{sub 18} and SrBi{sub 5}Ti{sub 4}Mn{sub 0.5}Co{sub 0.5}O{sub 18}

    SciTech Connect

    Yuan, B.; Yang, J. Zuo, X. Z.; Tang, X. W.; Zhu, X. B.; Dai, J. M.; Song, W. H.; Song, D. P.; Sun, Y. P.

    2015-01-14

    We have successfully synthesized the Aurivillius compounds SrBi{sub 5}Ti{sub 4}MnO{sub 18} and SrBi{sub 5}Ti{sub 4}Mn{sub 0.5}Co{sub 0.5}O{sub 18} using a modified Pechini method. Both samples have an orthorhombic structure with the space group B2cb. The valence state of Mn is suggested to be +3 and the doped Co ions exist in the form of Co{sup 2+} and Co{sup 3+} based on the results of x-ray photoelectron spectroscopy. The sample SrBi{sub 5}Ti{sub 4}MnO{sub 18} exhibits a dominant paramagnetic state with the existence of superparamagnetic state as evidenced by the electron paramagnetic resonance results, whereas SrBi{sub 5}Ti{sub 4}Mn{sub 0.5}Co{sub 0.5}O{sub 18} undergoes a ferrimagnetic transition at 161 K originating from the antiferromagnetic coupling of Co-based and Mn-based sublattices, and a ferromagnetic transition at 45 K arising from the Mn{sup 3+}-O-Co{sup 3+} (low spin) interaction. The sample SrBi{sub 5}Ti{sub 4}Mn{sub 0.5}Co{sub 0.5}O{sub 18} exhibits two dielectric anomalies. One corresponds to a relaxor-like dielectric relaxation which follows the Vogel-Fulcher function and the other dielectric relaxation obeys the Arrhenius law arising from the collective motion of oxygen vacancies. In addition, the sample SrBi{sub 5}Ti{sub 4}Mn{sub 0.5}Co{sub 0.5}O{sub 18} exhibits a magnetodielectric effect caused by the Maxwell-Wagner effect because of the conductivity of the sample. This is demonstrated by the fact that the activation energy in dielectric loss process is close to that for dc conductivity and the magnetodielectric effect is sensitive to the measured frequency.

  15. Oxygen-vacancy-related dielectric relaxation in SrBi2Ta1.8V0.2O9 ferroelectrics

    NASA Astrophysics Data System (ADS)

    Wu, Yun; Forbess, Mike J.; Seraji, Seana; Limmer, Steven J.; Chou, Tammy P.; Cao, Guozhong

    2001-05-01

    The strontium bismuth tantalate vanadate, SrBi2Ta1.8V0.2O9, (SBTV) layered perovskite ferroelectrics were made by solid state powder sintering. It was found that the SBTV ferroelectrics had the same crystal structure as that of strontium bismuth tantalate, SrBi2Ta2O9 (SBT), but an increased paraferroelectric transition temperature at ˜360 °C as compared to 305 °C for SBT. In addition, SBTV ferroelectrics showed a frequency dispersion at low frequencies and broadened dielectric peaks at the paraferroelectric transition temperature that shifted to a higher temperature with a reduced frequency. However, after a postsintering annealing at 850 °C in air for 60 h, SBTV ferroelectrics showed reduced dielectric constants and tangent loss, particularly at high temperatures. In addition, no frequency dependence of paraferroelectric transition was found in the annealed SBTV ferroelectrics. Furthermore, there was a significant reduction in dc conductivity with annealing. The prior results implied that the dielectric relaxation in the as-sintered SBTV ferroelectrics was most likely due to the oxygen-vacancy-related dielectric relaxation instead of relaxor ferroelectric behavior.

  16. Crystal structure and dielectric properties of ordered perovskites Ba 2BiSbO 6 and BaSrBiSbO 6

    NASA Astrophysics Data System (ADS)

    Mangalam, R. V. K.; Suard, E.; Sundaresan, A.

    2009-01-01

    Neutron powder diffraction studies showed that the ordered perovskites Ba 2BiSbO 6 (BBS) and BaSrBiSbO 6 (BSBS) crystallize in a rhombohedral structure with the space group R3bar. The room-temperature lattice parameters are a=6.0351(2) Å; α=60.202(1)° and a=5.9809(2) Å; α=60.045(2)°, respectively. BBS exhibits a dielectric anomaly near room temperature which may be related to structural transition from the R3bar to low-temperature monoclinic I2/m symmetry. BSBS shows a dielectric anomaly near 723 K which coincides with a phase transition from the rhombohedral to cubic (Fm3barm) structure. In contrast to BBS, BSBS does not undergo structural transition below room temperature.

  17. Photoluminescence, enhanced ferroelectric, and dielectric properties of Pr{sup 3+}-doped SrBi{sub 2}Nb{sub 2}O{sub 9} multifunctional ceramics

    SciTech Connect

    Zou, Hua; Yu, Yao; Li, Jun; Cao, Qiufeng; Wang, Xusheng; Hou, Junwei

    2015-09-15

    Pr{sup 3+}-doped SrBi{sub 2}Nb{sub 2}O{sub 9} (SBN) multifunctional ceramics were synthesized by the conventional solid state method. The photoluminescence (PL) excitation and emission spectra, enhanced ferroelectric and dielectric properties were investigated. The X-ray diffraction (XRD) and FESEM analyses indicated that the samples were simple phase and uniform flake-structure. Under the 250–350 nm ultraviolet (UV) excitations, the red emission was obtained and the optimal emission intensity was investigated when Pr doping level was 0.005 mol. With the increasing of the Pr{sup 3+} ion contents, the ferroelectric properties were enhanced obviously. As a new multifunctional material, the Pr{sup 3+}-doped SBN ceramics could be used for a wide range of application, such as integrated electro-optical devices.

  18. Impact of total ionizing dose irradiation on Pt/SrBi{sub 2}Ta{sub 2}O{sub 9}/HfTaO/Si memory capacitors

    SciTech Connect

    Yan, S. A.; Tang, M. H. E-mail: lizheng@xtu.edu.cn; Xiao, Y. G.; Zhang, W. L.; Zhao, W.; Guo, H. X.; Xiong, Y.; Li, Z. E-mail: lizheng@xtu.edu.cn; Ding, H.; Chen, J. W.; Zhou, Y. C.

    2015-01-05

    In this work, metal-ferroelectric-insulator-semiconductor (MFIS) structure capacitors with SrBi{sub 2}Ta{sub 2}O{sub 9} (300 nm) as ferroelectric thin film and HfTaO (6 nm, 8 nm, 10 nm, and 12 nm) as insulating buffer layer were proposed and investigated. The prepared capacitors were fabricated and characterized before radiation and then subjected to {sup 60}Co gamma irradiation in steps of two dose levels. Significant irradiation-induced degradation of the electrical characteristics was observed. The radiation experimental results indicated that stability and reliability of as-fabricated MFIS capacitors for nonvolatile memory applications could become uncontrollable under strong irradiation dose and/or long irradiation time.

  19. Ferrimagnetic and spin-glass transition in the Aurivillius compound SrBi{sub 5}Ti{sub 4}Cr{sub 0.5}Co{sub 0.5}O{sub 18}

    SciTech Connect

    Yuan, B.; Yang, J. Zuo, X. Z.; Tang, X. W.; Zhu, X. B.; Dai, J. M.; Song, W. H.; Song, D. P.; Sun, Y. P.

    2015-06-21

    Single-phase polycrystalline SrBi{sub 5}Ti{sub 4}CrO{sub 18} and SrBi{sub 5}Ti{sub 4}Cr{sub 0.5}Co{sub 0.5}O{sub 18} were synthesized by a modified Pechini method. Both samples have an orthorhombic structure with the space group B2cb. The valence state of Cr is suggested to be +3 and the Co ions exist in the form of Co{sup 2+} and Co{sup 3+} based on the results of x-ray photoelectron spectroscopy. The sample SrBi{sub 5}Ti{sub 4}CrO{sub 18} exhibits the paramagnetic state, whereas SrBi{sub 5}Ti{sub 4}Cr{sub 0.5}Co{sub 0.5}O{sub 18} undergoes a ferrimagnetic transition at 89 K originating from the antiferromagnetic coupling of Cr-based and Co-based sublattices. In addition, SrBi{sub 5}Ti{sub 4}Cr{sub 0.5}Co{sub 0.5}O{sub 18} shows a typical spin-glass behavior below 89 K with zν = 6.02 and τ{sub 0} = (1.75 ± 0.33) × 10{sup −14} s as evidenced by the results of the frequency dependence of ac susceptibility and magnetic relaxation measurements. In particular, both the dielectric constant and dielectric loss of SrBi{sub 5}Ti{sub 4}Cr{sub 0.5}Co{sub 0.5}O{sub 18} exhibit the characteristics of dielectric relaxation around 89 K with the activation energy of (0.14 ± 0.02) eV, which can be ascribed to the electron hopping of Co{sup 2+}-V{sub O}-Co{sup 3+} through the bridging oxygen vacancies.

  20. A systematic survey of conserved histidines in the core subunits of Photosystem I by site-directed mutagenesis reveals the likely axial ligands of P700.

    PubMed

    Redding, K; MacMillan, F; Leibl, W; Brettel, K; Hanley, J; Rutherford, A W; Breton, J; Rochaix, J D

    1998-01-01

    The Photosystem I complex catalyses the transfer of an electron from lumenal plastocyanin to stromal ferredoxin, using the energy of an absorbed photon. The initial photochemical event is the transfer of an electron from the excited state of P700, a pair of chlorophylls, to a monomer chlorophyll serving as the primary electron acceptor. We have performed a systematic survey of conserved histidines in the last six transmembrane segments of the related polytopic membrane proteins PsaA and PsaB in the green alga Chlamydomonas reinhardtii. These histidines, which are present in analogous positions in both proteins, were changed to glutamine or leucine by site-directed mutagenesis. Double mutants in which both histidines had been changed to glutamine were screened for changes in the characteristics of P700 using electron paramagnetic resonance, Fourier transform infrared and visible spectroscopy. Only mutations in the histidines of helix 10 (PsaA-His676 and PsaB-His656) resulted in changes in spectroscopic properties of P700, leading us to conclude that these histidines are most likely the axial ligands to the P700 chlorophylls. PMID:9427740

  1. Comprehensive mutagenesis of the fimS promoter regulatory switch reveals novel regulation of type 1 pili in uropathogenic Escherichia coli

    PubMed Central

    Zhang, Huibin; Susanto, Teodorus T.; Wan, Yue

    2016-01-01

    Type 1 pili (T1P) are major virulence factors for uropathogenic Escherichia coli (UPEC), which cause both acute and recurrent urinary tract infections. T1P expression therefore is of direct relevance for disease. T1P are phase variable (both piliated and nonpiliated bacteria exist in a clonal population) and are controlled by an invertible DNA switch (fimS), which contains the promoter for the fim operon encoding T1P. Inversion of fimS is stochastic but may be biased by environmental conditions and other signals that ultimately converge at fimS itself. Previous studies of fimS sequences important for T1P phase variation have focused on laboratory-adapted E. coli strains and have been limited in the number of mutations or by alteration of the fimS genomic context. We surmounted these limitations by using saturating genomic mutagenesis of fimS coupled with accurate sequencing to detect both mutations and phase status simultaneously. In addition to the sequences known to be important for biasing fimS inversion, our method also identifies a previously unknown pair of 5′ UTR inverted repeats that act by altering the relative fimA levels to control phase variation. Thus we have uncovered an additional layer of T1P regulation potentially impacting virulence and the coordinate expression of multiple pilus systems. PMID:27035967

  2. The influence of microscopic parameters on the ionic conductivity of SrBi2(Nb1-xVx)2O9-δ(0≤x≤0.3) ceramics

    NASA Astrophysics Data System (ADS)

    Harihara Venkataraman, B.; Varma, K. B. R.

    2005-10-01

    Layered SrBi2(Nb1-xVx)2O9-δ (SBVN) ceramics with x lying in the range 0 0.3 (30 mol%) were fabricated by the conventional sintering technique. The microstructural studies confirmed the truncating effect of V2O5 on the abnormal platy growth of SBN grains. The electrical conductivity studies were centred in the 573 823 K as the Curie temperature lies in this range. The concentration of mobile charge carriers (n), the diffusion constant (D0) and the mean free path (a) were calculated by using Rice and Roth formalism. The conductivity parameters such as ion-hopping rate (ωp) and the charge carrier concentration (K‧) term have been calculated using Almond and West formalism. The aforementioned microscopic parameters were found to be V2O5 content dependent on SrBi2(Nb1-xVx)2O9-δ ceramics.

  3. Mutagenesis Reveals the Complex Relationships between ATPase Rate and the Chaperone Activities of Escherichia coli Heat Shock Protein 70 (Hsp70/DnaK)*

    PubMed Central

    Chang, Lyra; Thompson, Andrea D.; Ung, Peter; Carlson, Heather A.; Gestwicki, Jason E.

    2010-01-01

    The Escherichia coli 70-kDa heat shock protein, DnaK, is a molecular chaperone that engages in a variety of cellular activities, including the folding of proteins. During this process, DnaK binds its substrates in coordination with a catalytic ATPase cycle. Both the ATPase and protein folding activities of DnaK are stimulated by its co-chaperones, DnaJ and GrpE. However, it is not yet clear how changes in the stimulated ATPase rate of DnaK impact the folding process. In this study, we performed mutagenesis throughout the nucleotide-binding domain of DnaK to generate a collection of mutants in which the stimulated ATPase rates varied from 0.7 to 13.6 pmol/μg/min−1. We found that this range was largely established by differences in the ability of the mutants to be stimulated by one or both of the co-chaperones. Next, we explored how changes in ATPase rate might impact refolding of denatured luciferase in vitro and found that the two activities were poorly correlated. Unexpectedly, we found several mutants that refold luciferase normally in the absence of significant ATP turnover, presumably by increasing the flexibility of DnaK. Finally, we tested whether DnaK mutants could complement growth of ΔdnaK E. coli cells under heat shock and found that the ability to refold luciferase was more predictive of in vivo activity than ATPase rate. This study provides insights into how flexibility and co-chaperone interactions affect DnaK-mediated ATP turnover and protein folding. PMID:20439464

  4. N-Ethyl-N-Nitrosourea (ENU) Mutagenesis Reveals an Intronic Residue Critical for Caenorhabditis elegans 3' Splice Site Function in Vivo.

    PubMed

    Itani, Omar A; Flibotte, Stephane; Dumas, Kathleen J; Guo, Chunfang; Blumenthal, Thomas; Hu, Patrick J

    2016-01-01

    Metazoan introns contain a polypyrimidine tract immediately upstream of the AG dinucleotide that defines the 3' splice site. In the nematode Caenorhabditis elegans, 3' splice sites are characterized by a highly conserved UUUUCAG/R octamer motif. While the conservation of pyrimidines in this motif is strongly suggestive of their importance in pre-mRNA splicing, in vivo evidence in support of this is lacking. In an N-ethyl-N-nitrosourea (ENU) mutagenesis screen in Caenorhabditis elegans, we have isolated a strain containing a point mutation in the octamer motif of a 3' splice site in the daf-12 gene. This mutation, a single base T-to-G transversion at the -5 position relative to the splice site, causes a strong daf-12 loss-of-function phenotype by abrogating splicing. The resulting transcript is predicted to encode a truncated DAF-12 protein generated by translation into the retained intron, which contains an in-frame stop codon. Other than the perfectly conserved AG dinucleotide at the site of splicing, G at the -5 position of the octamer motif is the most uncommon base in C. elegans 3' splice sites, occurring at closely paired sites where the better match to the splicing consensus is a few bases downstream. Our results highlight both the biological importance of the highly conserved -5 uridine residue in the C. elegans 3' splice site octamer motif as well as the utility of using ENU as a mutagen to study the function of polypyrimidine tracts and other AU- or AT-rich motifs in vivo. PMID:27172199

  5. N-Ethyl-N-Nitrosourea (ENU) Mutagenesis Reveals an Intronic Residue Critical for Caenorhabditis elegans 3′ Splice Site Function in Vivo

    PubMed Central

    Itani, Omar A.; Flibotte, Stephane; Dumas, Kathleen J.; Guo, Chunfang; Blumenthal, Thomas; Hu, Patrick J.

    2016-01-01

    Metazoan introns contain a polypyrimidine tract immediately upstream of the AG dinucleotide that defines the 3′ splice site. In the nematode Caenorhabditis elegans, 3′ splice sites are characterized by a highly conserved UUUUCAG/R octamer motif. While the conservation of pyrimidines in this motif is strongly suggestive of their importance in pre-mRNA splicing, in vivo evidence in support of this is lacking. In an N-ethyl-N-nitrosourea (ENU) mutagenesis screen in Caenorhabditis elegans, we have isolated a strain containing a point mutation in the octamer motif of a 3′ splice site in the daf-12 gene. This mutation, a single base T-to-G transversion at the -5 position relative to the splice site, causes a strong daf-12 loss-of-function phenotype by abrogating splicing. The resulting transcript is predicted to encode a truncated DAF-12 protein generated by translation into the retained intron, which contains an in-frame stop codon. Other than the perfectly conserved AG dinucleotide at the site of splicing, G at the –5 position of the octamer motif is the most uncommon base in C. elegans 3′ splice sites, occurring at closely paired sites where the better match to the splicing consensus is a few bases downstream. Our results highlight both the biological importance of the highly conserved –5 uridine residue in the C. elegans 3′ splice site octamer motif as well as the utility of using ENU as a mutagen to study the function of polypyrimidine tracts and other AU- or AT-rich motifs in vivo. PMID:27172199

  6. Reduction of the hydrogen degradation in SrBi2(Ta1-xNbx)2O9 by TiN barrier metal

    NASA Astrophysics Data System (ADS)

    Furuya, Akira; Cuchiaro, J. D.

    2000-11-01

    The use of ferroelectric SrBi2(Ta1-xNbx)2O9 (SBTN) as a mainstream form of nonvolatile memory requires that the degradation of its electrical qualities that is caused by annealing in a hydrogen atmosphere be reduced. Titanium nitride (TiN) is a candidate for use as a barrier-metal layer against hydrogen diffusion. The relationship between the degradation in the qualities of SBTN and the quality of the TiN barrier metal has been investigated. TiN when sputtered onto SBTN capacitors creates a good barrier under all sputtering conditions, and maintains the electrical characteristics of the SBTN through annealing in an atmosphere of H2. Higher density TiN films provide more effective protection. The characteristics of the degraded capacitor were investigated in terms of its current-voltage characteristic. Remanent polarization can be recovered from, at least partially, by applying a series of bipolar pulses. This rejuvenation of the electrical qualities indicates that degradation arises from a combination of electrical and structural faults.

  7. Site-directed mutagenesis of Gln103 reveals the influence of this residue on the redox properties and stability of MauG.

    PubMed

    Shin, Sooim; Yukl, Erik T; Sehanobish, Esha; Wilmot, Carrie M; Davidson, Victor L

    2014-03-01

    The diheme enzyme MauG catalyzes a six-electron oxidation that is required for the posttranslational modification of a precursor of methylamine dehydrogenase (preMADH) to complete the biosynthesis of its protein-derived cofactor, tryptophan tryptophylquinone (TTQ). Crystallographic and computational studies have implicated Gln103 in stabilizing the Fe(IV)═O moiety of the bis-Fe(IV) state by hydrogen bonding. The role of Gln103 was probed by site-directed mutagenesis. Q103L and Q103E mutations resulted in no expression and very little expression of the protein, respectively. Q103A MauG exhibited oxidative damage when isolated. Q103N MauG was isolated at levels comparable to that of wild-type MauG and exhibited normal activity in catalyzing the biosynthesis of TTQ from preMADH. The crystal structure of the Q103N MauG-preMADH complex suggests that a water may mediate hydrogen bonding between the shorter Asn103 side chain and the Fe(IV)═O moiety. The Q103N mutation caused the two redox potentials associated with the diferric/diferrous redox couple to become less negative, although the redox cooperativity of the hemes of MauG was retained. Upon addition of H2O2, Q103N MauG exhibits changes in the absorbance spectrum in the Soret and near-IR regions consistent with formation of the bis-Fe(IV) redox state. However, the rate of spontaneous return of the spectrum in the Soret region was 4.5-fold greater for Q103N MauG than for wild-type MauG. In contrast, the rate of spontaneous decay of the absorbance at 950 nm, which is associated with charge-resonance stabilization of the high-valence state, was similar for wild-type MauG and Q103N MauG. This suggests that as a consequence of the mutation a different distribution of resonance structures stabilizes the bis-Fe(IV) state. These results demonstrate that subtle changes in the structure of the side chain of residue 103 can significantly affect the overall protein stability of MauG and alter the redox properties of the

  8. Distinct functions of the laminin β LN domain and collagen IV during cardiac extracellular matrix formation and stabilization of alary muscle attachments revealed by EMS mutagenesis in Drosophila

    PubMed Central

    2014-01-01

    Background The Drosophila heart (dorsal vessel) is a relatively simple tubular organ that serves as a model for several aspects of cardiogenesis. Cardiac morphogenesis, proper heart function and stability require structural components whose identity and ways of assembly are only partially understood. Structural components are also needed to connect the myocardial tube with neighboring cells such as pericardial cells and specialized muscle fibers, the so-called alary muscles. Results Using an EMS mutagenesis screen for cardiac and muscular abnormalities in Drosophila embryos we obtained multiple mutants for two genetically interacting complementation groups that showed similar alary muscle and pericardial cell detachment phenotypes. The molecular lesions underlying these defects were identified as domain-specific point mutations in LamininB1 and Cg25C, encoding the extracellular matrix (ECM) components laminin β and collagen IV α1, respectively. Of particular interest within the LamininB1 group are certain hypomorphic mutants that feature prominent defects in cardiac morphogenesis and cardiac ECM layer formation, but in contrast to amorphic mutants, only mild defects in other tissues. All of these alleles carry clustered missense mutations in the laminin LN domain. The identified Cg25C mutants display weaker and largely temperature-sensitive phenotypes that result from glycine substitutions in different Gly-X-Y repeats of the triple helix-forming domain. While initial basement membrane assembly is not abolished in Cg25C mutants, incorporation of perlecan is impaired and intracellular accumulation of perlecan as well as the collagen IV α2 chain is detected during late embryogenesis. Conclusions Assembly of the cardiac ECM depends primarily on laminin, whereas collagen IV is needed for stabilization. Our data underscore the importance of a correctly assembled ECM particularly for the development of cardiac tissues and their lateral connections. The mutational

  9. Computer Simulation of Mutagenesis.

    ERIC Educational Resources Information Center

    North, J. C.; Dent, M. T.

    1978-01-01

    A FORTRAN program is described which simulates point-substitution mutations in the DNA strands of typical organisms. Its objective is to help students to understand the significance and structure of the genetic code, and the mechanisms and effect of mutagenesis. (Author/BB)

  10. 2004 Mutagenesis Gordon Conference

    SciTech Connect

    Dr. Sue Jinks-Robertson

    2005-09-16

    Mutations are genetic alterations that drive biological evolution and cause many, if not all, human diseases. Mutation originates via two distinct mechanisms: ''vertical'' variation is de novo change of one or few bases, whereas ''horizontal'' variation occurs by genetic recombination, which creates new mosaics of pre-existing sequences. The Mutagenesis Conference has traditionally focused on the generation of mutagenic intermediates during normal DNA synthesis or in response to environmental insults, as well as the diverse repair mechanisms that prevent the fixation of such intermediates as permanent mutations. While the 2004 Conference will continue to focus on the molecular mechanisms of mutagenesis, there will be increased emphasis on the biological consequences of mutations, both in terms of evolutionary processes and in terms of human disease. The meeting will open with two historical accounts of mutation research that recapitulate the intellectual framework of this field and thereby place the current research paradigms into perspective. The two introductory keynote lectures will be followed by sessions on: (1) mutagenic systems, (2) hypermutable sequences, (3) mechanisms of mutation, (4) mutation avoidance systems, (5) mutation in human hereditary and infectious diseases, (6) mutation rates in evolution and genotype-phenotype relationships, (7) ecology, mutagenesis and the modeling of evolution and (8) genetic diversity of the human population and models for human mutagenesis. The Conference will end with a synthesis of the meeting as the keynote closing lecture.

  11. Inhibition of intestinal absorption of cholesterol by ezetimibe or bile acids by SC-435 alters lipoprotein metabolism and extends the lifespan of SR-BI/apoE double knockout mice.

    PubMed

    Braun, Anne; Yesilaltay, Ayce; Acton, Susan; Broschat, Kay O; Krul, Elaine S; Napawan, Nida; Stagliano, Nancy; Krieger, Monty

    2008-05-01

    SR-BI/apoE double knockout (dKO) mice exhibit many features of human coronary heart disease (CHD), including hypercholesterolemia, occlusive coronary atherosclerosis, cardiac hypertrophy, myocardial infarctions, cardiac dysfunction and premature death. Ezetimibe is a FDA-approved, intestinal cholesterol absorption inhibitor that lowers plasma LDL cholesterol in humans and animals and inhibits aortic root atherosclerosis in apoE KO mice, but has not been proven to reduce CHD. Three-week-ezetimibe treatment of dKO mice (0.005% (w/w) in standard chow administered from weaning) resulted in a 35% decrease in cholesterol in IDL/LDL-size lipoproteins, but not in VLDL- and HDL-size lipoproteins. Ezetimibe treatment significantly reduced aortic root (57%) and coronary arterial (68%) atherosclerosis, cardiomegaly (24%) and cardiac fibrosis (57%), and prolonged the lives of the mice (27%). This represents the first demonstration of beneficial effects of ezetimibe treatment on CHD. The dKO mice were similarly treated with SC-435 (0.01% (w/w)), an apical sodium codependent bile acid transporter (ASBT) inhibitor, that blocks intestinal absorption of bile acids, lowers plasma cholesterol in animals, and reduces aortic root atherosclerosis in apoE KO mice. The effects of SC-435 treatment were similar to those of ezetimibe: 37% decrease in ILD/LDL-size lipoprotein cholesterol and 57% prolongation in median lifespan. Thus, inhibition of intestinal absorption of either cholesterol (ezetimibe) or bile acids (SC-435) significantly reduced plasma IDL/LDL-size lipoprotein cholesterol levels and improved survival of SR-BI/apoE dKO mice. The SR-BI/apoE dKO murine model of atherosclerotic occlusive, arterial CHD appears to provide a useful system to evaluate compounds that modulate cholesterol homeostasis and atherosclerosis. PMID:18054357

  12. Procollagen C-endopeptidase Enhancer Protein 2 (PCPE2) Reduces Atherosclerosis in Mice by Enhancing Scavenger Receptor Class B1 (SR-BI)-mediated High-density Lipoprotein (HDL)-Cholesteryl Ester Uptake.

    PubMed

    Pollard, Ricquita D; Blesso, Christopher N; Zabalawi, Manal; Fulp, Brian; Gerelus, Mark; Zhu, Xuewei; Lyons, Erica W; Nuradin, Nebil; Francone, Omar L; Li, Xiang-An; Sahoo, Daisy; Thomas, Michael J; Sorci-Thomas, Mary G

    2015-06-19

    Studies in human populations have shown a significant correlation between procollagen C-endopeptidase enhancer protein 2 (PCPE2) single nucleotide polymorphisms and plasma HDL cholesterol concentrations. PCPE2, a 52-kDa glycoprotein located in the extracellular matrix, enhances the cleavage of C-terminal procollagen by bone morphogenetic protein 1 (BMP1). Our studies here focused on investigating the basis for the elevated concentration of enlarged plasma HDL in PCPE2-deficient mice to determine whether they protected against diet-induced atherosclerosis. PCPE2-deficient mice were crossed with LDL receptor-deficient mice to obtain LDLr(-/-), PCPE2(-/-) mice, which had elevated HDL levels compared with LDLr(-/-) mice with similar LDL concentrations. We found that LDLr(-/-), PCPE2(-/-) mice had significantly more neutral lipid and CD68+ infiltration in the aortic root than LDLr(-/-) mice. Surprisingly, in light of their elevated HDL levels, the extent of aortic lipid deposition in LDLr(-/-), PCPE2(-/-) mice was similar to that reported for LDLr(-/-), apoA-I(-/-) mice, which lack any apoA-I/HDL. Furthermore, LDLr(-/-), PCPE2(-/-) mice had reduced HDL apoA-I fractional clearance and macrophage to fecal reverse cholesterol transport rates compared with LDLr(-/-) mice, despite a 2-fold increase in liver SR-BI expression. PCPE2 was shown to enhance SR-BI function by increasing the rate of HDL-associated cholesteryl ester uptake, possibly by optimizing SR-BI localization and/or conformation. We conclude that PCPE2 is atheroprotective and an important component of the reverse cholesterol transport HDL system. PMID:25947382

  13. A comprehensive alanine-scanning mutagenesis study reveals roles for salt bridges in the structure and activity of Pseudomonas aeruginosa elastase.

    PubMed

    Bian, Fei; Yue, Shousong; Peng, Zhenying; Zhang, Xiaowei; Chen, Gao; Yu, Jinhui; Xuan, Ning; Bi, Yuping

    2015-01-01

    The relationship between salt bridges and stability/enzymatic activity is unclear. We studied this relationship by systematic alanine-scanning mutation analysis using the typical M4 family metalloprotease Pseudomonas aeruginosa elastase (PAE, also known as pseudolysin) as a model. Structural analysis revealed seven salt bridges in the PAE structure. We constructed ten mutants for six salt bridges. Among these mutants, six (Asp189Ala, Arg179Ala, Asp201Ala, Arg205Ala, Arg245Ala and Glu249Ala) were active and four (Asp168Ala, Arg198Ala, Arg253Ala, and Arg279Ala) were inactive. Five mutants were purified, and their catalytic efficiencies (kcat/Km), half-lives (t1/2) and thermal unfolding curves were compared with those of PAE. Mutants Asp189Ala and Arg179Ala both showed decreased thermal stabilities and increased activities, suggesting that the salt bridge Asp189-Arg179 stabilizes the protein at the expense of catalytic efficiency. In contrast, mutants Asp201Ala and Arg205Ala both showed slightly increased thermal stability and slightly decreased activity, suggesting that the salt bridge Asp201-Arg205 destabilizes the protein. Mutant Glu249Ala is related to a C-terminal salt bridge network and showed both decreased thermal stability and decreased activity. Furthermore, Glu249Ala showed a thermal unfolding curve with three discernable states [the native state (N), the partially unfolded state (I) and the unfolded state (U)]. In comparison, there were only two discernable states (N and U) in the thermal unfolding curve of PAE. These results suggest that Glu249 is important for catalytic efficiency, stability and unfolding cooperativity. This study represents a systematic mutational analyses of salt bridges in the model metalloprotease PAE and provides important insights into the structure-function relationship of enzymes. PMID:25815820

  14. Structure and Mutagenesis of the Parainfluenza Virus 5 Hemagglutinin-Neuraminidase Stalk Domain Reveals a Four-Helix Bundle and the Role of the Stalk in Fusion Promotion

    SciTech Connect

    Bose, Sayantan; Welch, Brett D.; Kors, Christopher A.; Yuan, Ping; Jardetzky, Theodore S.; Lamb, Robert A.

    2014-10-02

    Paramyxovirus entry into cells requires the fusion protein (F) and a receptor binding protein (hemagglutinin-neuraminidase [HN], H, or G). The multifunctional HN protein of some paramyxoviruses, besides functioning as the receptor (sialic acid) binding protein (hemagglutinin activity) and the receptor-destroying protein (neuraminidase activity), enhances F activity, presumably by lowering the activation energy required for F to mediate fusion of viral and cellular membranes. Before or upon receptor binding by the HN globular head, F is believed to interact with the HN stalk. Unfortunately, until recently none of the receptor binding protein crystal structures have shown electron density for the stalk domain. Parainfluenza virus 5 (PIV5) HN exists as a noncovalent dimer-of-dimers on the surface of cells, linked by a single disulfide bond in the stalk. Here we present the crystal structure of the PIV5-HN stalk domain at a resolution of 2.65 {angstrom}, revealing a four-helix bundle (4HB) with an upper (N-terminal) straight region and a lower (C-terminal) supercoiled part. The hydrophobic core residues are a mix of an 11-mer repeat and a 3- to 4-heptad repeat. To functionally characterize the role of the HN stalk in F interactions and fusion, we designed mutants along the PIV5-HN stalk that are N-glycosylated to physically disrupt F-HN interactions. By extensive study of receptor binding, neuraminidase activity, oligomerization, and fusion-promoting functions of the mutant proteins, we found a correlation between the position of the N-glycosylation mutants on the stalk structure and their neuraminidase activities as well as their abilities to promote fusion.

  15. ENU mutagenesis reveals that Notchless homolog 1 (Drosophila) affects Cdkn1a and several members of the Wnt pathway during murine pre-implantation development

    PubMed Central

    2012-01-01

    Background Our interests lie in determining the genes and genetic pathways that are important for establishing and maintaining maternal-fetal interactions during pregnancy. Mutation analysis targeted to a 34 Mb domain flanked by Trp53 and Wnt3 demonstrates that this region of mouse chromosome 11 contains a large number of essential genes. Two mutant alleles (l11Jus1 and l11Jus4), which fall into the same complementation group, survive through implantation but fail prior to gastrulation. Results Through a positional cloning strategy, we discovered that these homozygous mutant alleles contain non-conservative missense mutations in the Notchless homolog 1 (Drosophila) (Nle1) gene. NLE1 is a member of the large WD40-repeat protein family, and is thought to signal via the canonical NOTCH pathway in vertebrates. However, the phenotype of the Nle1 mutant mice is much more severe than single Notch receptor mutations or even in animals in which NOTCH signaling is blocked. To test the hypothesis that NLE1 functions in multiple signaling pathways during pre-implantation development, we examined expression of multiple Notch downstream target genes, as well as select members of the Wnt pathway in wild-type and mutant embryos. We did not detect altered expression of any primary members of the Notch pathway or in Notch downstream target genes. However, our data reveal that Cdkn1a, a NOTCH target, was upregulated in Nle1 mutants, while several members of the Wnt pathway are downregulated. In addition, we found that Nle1 mutant embryos undergo caspase-mediated apoptosis as hatched blastocysts, but not as morulae or blastocysts. Conclusions Taken together, these results uncover potential novel functions for NLE1 in the WNT and CDKN1A pathways during embryonic development in mammals. PMID:23231322

  16. Mutagenesis Study Reveals the Rim of Catalytic Entry Site of HDAC4 and -5 as the Major Binding Surface of SMRT Corepressor.

    PubMed

    Kim, Gwang Sik; Jung, Ha-Eun; Kim, Jeong-Sun; Lee, Young Chul

    2015-01-01

    Histone deacetylases (HDACs) play a pivotal role in eukaryotic gene expression by modulating the levels of acetylation of chromatin and related transcription factors. In contrast to class I HDACs (HDAC1, -2, -3 and -8), the class IIa HDACs (HDAC4, -5, -7 and -9) harbor cryptic deacetylases activity and recruit the SMRT-HDAC3 complex to repress target genes in vivo. In this regard, the specific interaction between the HDAC domain of class IIa HDACs and the C-terminal region of SMRT repression domain 3 (SRD3c) is known to be critical, but the molecular basis of this interaction has not yet been addressed. Here, we used an extensive mutant screening system, named the "partitioned one- plus two-hybrid system", to isolate SRD3c interaction-defective (SRID) mutants over the entire catalytic domains of HDAC4 (HDAC4c) and -5. The surface presentation of the SRID mutations on the HDAC4c structure revealed that most of the mutations were mapped to the rim surface of the catalytic entry site, strongly suggesting this mutational hot-spot region as the major binding surface of SRD3c. Notably, among the HDAC4c surface residues required for SRD3c binding, some residues (C667, C669, C751, D759, T760 and F871) are present only in class IIa HDACs, providing the molecular basis for the specific interactions between SRD3c and class IIa enzymes. To investigate the functional consequence of SRID mutation, the in vitro HDAC activities of HDAC4 mutants immuno-purified from HEK293 cells were measured. The levels of HDAC activity of the HDAC4c mutants were substantially decreased compared to wild-type. Consistent with this, SRID mutations of HDAC4c prevented the association of HDAC4c with the SMRT-HDAC3 complex in vivo. Our findings may provide structural insight into the binding interface of HDAC4 and -5 with SRD3c, as a novel target to design modulators specific to these enzymes. PMID:26161557

  17. Interfacial conditions and electrical properties of the SrBi 2Ta 2O 9/ZrO 2/Si (MFIS) structure according to the heat treatment of the ZrO 2 buffer layer

    NASA Astrophysics Data System (ADS)

    Park, Chul-Ho; Kim, Jae-Hyun; Kim, Min-Cheol; Son, Young-Gook; Won, Mi-Sook

    2005-08-01

    The possibility of the ZrO 2 buffer layer as the insulator for the metal-ferroelectric-insulator-semiconductor (MFIS) structure was investigated. ZrO 2 and SrBi 2Ta 2O 9 (SBT) thin films were deposited on the p-type Si(1 1 1) wafer by the rf magnetron-sputtering method. According to the process with and without the post-annealing of the ZrO 2 buffer layer, the diffusion amount of Sr, Bi, Ta elements show slight difference through the glow discharge spectrometer (GDS) analysis. From X-ray photoelectron spectroscopy (XPS) results, we could confirm that the post-annealing process affects the chemical binding condition of the interface between the ZrO 2 thin film and the Si substrate, which results in the chemical stability of the ZrO 2 thin film. The electrical properties of the MFIS structure were relatively improved by the post-annealing ZrO 2 buffer layer. The window memory of the Pt/SBT (260 nm, 800 °C)/ZrO 2 (20 nm) structure increases from 0.75 to 2.2 V. This memory window is sufficient for the practical application of the NDRO-FRAM operating at low voltage.

  18. Optimization of Combinatorial Mutagenesis

    NASA Astrophysics Data System (ADS)

    Parker, Andrew S.; Griswold, Karl E.; Bailey-Kellogg, Chris

    Protein engineering by combinatorial site-directed mutagenesis evaluates a portion of the sequence space near a target protein, seeking variants with improved properties (stability, activity, immunogenicity, etc.). In order to improve the hit-rate of beneficial variants in such mutagenesis libraries, we develop methods to select optimal positions and corresponding sets of the mutations that will be used, in all combinations, in constructing a library for experimental evaluation. Our approach, OCoM (Optimization of Combinatorial Mutagenesis), encompasses both degenerate oligonucleotides and specified point mutations, and can be directed accordingly by requirements of experimental cost and library size. It evaluates the quality of the resulting library by one- and two-body sequence potentials, averaged over the variants. To ensure that it is not simply recapitulating extant sequences, it balances the quality of a library with an explicit evaluation of the novelty of its members. We show that, despite dealing with a combinatorial set of variants, in our approach the resulting library optimization problem is actually isomorphic to single-variant optimization. By the same token, this means that the two-body sequence potential results in an NP-hard optimization problem. We present an efficient dynamic programming algorithm for the one-body case and a practically-efficient integer programming approach for the general two-body case. We demonstrate the effectiveness of our approach in designing libraries for three different case study proteins targeted by previous combinatorial libraries - a green fluorescent protein, a cytochrome P450, and a beta lactamase. We found that OCoM worked quite efficiently in practice, requiring only 1 hour even for the massive design problem of selecting 18 mutations to generate 107 variants of a 443-residue P450. We demonstrate the general ability of OCoM in enabling the protein engineer to explore and evaluate trade-offs between quality and

  19. Transposon Mutagenesis of the Plant-Associated Bacillus amyloliquefaciens ssp. plantarum FZB42 Revealed That the nfrA and RBAM17410 Genes Are Involved in Plant-Microbe-Interactions

    PubMed Central

    Dietel, Kristin; Beator, Barbara; Dolgova, Olga; Fan, Ben; Bleiss, Wilfrid; Ziegler, Jörg; Schmid, Michael; Hartmann, Anton; Borriss, Rainer

    2014-01-01

    Bacillus amyloliquefaciens ssp. plantarum FZB42 represents the prototype of Gram-positive plant growth promoting and biocontrol bacteria. In this study, we applied transposon mutagenesis to generate a transposon library, which was screened for genes involved in multicellular behavior and biofilm formation on roots as a prerequisite of plant growth promoting activity. Transposon insertion sites were determined by rescue-cloning followed by DNA sequencing. As in B. subtilis, the global transcriptional regulator DegU was identified as an activator of genes necessary for swarming and biofilm formation, and the DegU-mutant of FZB42 was found impaired in efficient root colonization. Direct screening of 3,000 transposon insertion mutants for plant-growth-promotion revealed the gene products of nfrA and RBAM_017140 to be essential for beneficial effects exerted by FZB42 on plants. We analyzed the performance of GFP-labeled wild-type and transposon mutants in the colonization of lettuce roots using confocal laser scanning microscopy. While the wild-type strain heavily colonized root surfaces, the nfrA mutant did not colonize lettuce roots, although it was not impaired in growth in laboratory cultures, biofilm formation and swarming motility on agar plates. The RBAM17410 gene, occurring in only a few members of the B. subtilis species complex, was directly involved in plant growth promotion. None of the mutant strains were affected in producing the plant growth hormone auxin. We hypothesize that the nfrA gene product is essential for overcoming the stress caused by plant response towards bacterial root colonization. PMID:24847778

  20. Maximizing mutagenesis with solubilized CRISPR-Cas9 ribonucleoprotein complexes.

    PubMed

    Burger, Alexa; Lindsay, Helen; Felker, Anastasia; Hess, Christopher; Anders, Carolin; Chiavacci, Elena; Zaugg, Jonas; Weber, Lukas M; Catena, Raul; Jinek, Martin; Robinson, Mark D; Mosimann, Christian

    2016-06-01

    CRISPR-Cas9 enables efficient sequence-specific mutagenesis for creating somatic or germline mutants of model organisms. Key constraints in vivo remain the expression and delivery of active Cas9-sgRNA ribonucleoprotein complexes (RNPs) with minimal toxicity, variable mutagenesis efficiencies depending on targeting sequence, and high mutation mosaicism. Here, we apply in vitro assembled, fluorescent Cas9-sgRNA RNPs in solubilizing salt solution to achieve maximal mutagenesis efficiency in zebrafish embryos. MiSeq-based sequence analysis of targeted loci in individual embryos using CrispRVariants, a customized software tool for mutagenesis quantification and visualization, reveals efficient bi-allelic mutagenesis that reaches saturation at several tested gene loci. Such virtually complete mutagenesis exposes loss-of-function phenotypes for candidate genes in somatic mutant embryos for subsequent generation of stable germline mutants. We further show that targeting of non-coding elements in gene regulatory regions using saturating mutagenesis uncovers functional control elements in transgenic reporters and endogenous genes in injected embryos. Our results establish that optimally solubilized, in vitro assembled fluorescent Cas9-sgRNA RNPs provide a reproducible reagent for direct and scalable loss-of-function studies and applications beyond zebrafish experiments that require maximal DNA cutting efficiency in vivo. PMID:27130213

  1. Optimization of combinatorial mutagenesis.

    PubMed

    Parker, Andrew S; Griswold, Karl E; Bailey-Kellogg, Chris

    2011-11-01

    Protein engineering by combinatorial site-directed mutagenesis evaluates a portion of the sequence space near a target protein, seeking variants with improved properties (e.g., stability, activity, immunogenicity). In order to improve the hit-rate of beneficial variants in such mutagenesis libraries, we develop methods to select optimal positions and corresponding sets of the mutations that will be used, in all combinations, in constructing a library for experimental evaluation. Our approach, OCoM (Optimization of Combinatorial Mutagenesis), encompasses both degenerate oligonucleotides and specified point mutations, and can be directed accordingly by requirements of experimental cost and library size. It evaluates the quality of the resulting library by one- and two-body sequence potentials, averaged over the variants. To ensure that it is not simply recapitulating extant sequences, it balances the quality of a library with an explicit evaluation of the novelty of its members. We show that, despite dealing with a combinatorial set of variants, in our approach the resulting library optimization problem is actually isomorphic to single-variant optimization. By the same token, this means that the two-body sequence potential results in an NP-hard optimization problem. We present an efficient dynamic programming algorithm for the one-body case and a practically-efficient integer programming approach for the general two-body case. We demonstrate the effectiveness of our approach in designing libraries for three different case study proteins targeted by previous combinatorial libraries--a green fluorescent protein, a cytochrome P450, and a beta lactamase. We found that OCoM worked quite efficiently in practice, requiring only 1 hour even for the massive design problem of selecting 18 mutations to generate 10⁷ variants of a 443-residue P450. We demonstrate the general ability of OCoM in enabling the protein engineer to explore and evaluate trade-offs between quality and

  2. Intrinsic relationship between electronic structures and phase transition of SrBi{sub 2−x}Nd{sub x}Nb{sub 2}O{sub 9} ceramics from ultraviolet ellipsometry at elevated temperatures

    SciTech Connect

    Duan, Z. H.; Jiang, K.; Xu, L. P.; Li, Y. W.; Hu, Z. G. Chu, J. H.

    2014-02-07

    The ferroelectric orthorhombic to paraelectric tetragonal phase transition of SrBi{sub 2−x}Nd{sub x}Nb{sub 2}O{sub 9} (x = 0, 0.05, 0.1, and 0.2) layer-structured ceramics has been investigated by temperature-dependent spectroscopic ellipsometry. Based on the analysis of dielectric functions from 0 to 500 °C with double Tauc-Lorentz dispersion model, the interband transitions located at ultraviolet region have shown an abrupt variation near the Curie temperature. The changes of dielectric functions are mainly due to the thermal-optical and/or photoelastic effect. Moreover, the characteristic alteration in interband transitions can be ascribed to distortion of NbO{sub 6} octahedron and variation of hybridization between Bi 6s and O 2p states during the structure transformation.

  3. Chlordecone Altered Hepatic Disposition of [14C]Cholesterol and Plasma Cholesterol Distribution but not SR-BI or ABCG8 Proteins in Livers of C57BL/6 Mice

    PubMed Central

    Lee, Junga; Scheri, Richard C.; Curtis, Lawrence R.

    2011-01-01

    Organochlorine (OC) insecticides continue to occur in tissues of humans and wildlife throughout the world although they were banned in the United States a few decades ago. Low doses of the OC insecticide chlordecone (CD) alter hepatic disposition of lipophilic xenobiotics and perturb lipid homeostasis in rainbow trout, mice and rats. CD pretreatment altered tissue and hepatic subcellular distribution of exogenous [14C]cholesterol (CH) equivalents 4 and 16 h after a bolus intraperitoneal (ip) injection of 5 ml corn oil/kg that contained 10 mg CH/kg. CD pretreatment altered tissue distribution of exogenously administered [14C]CH by decreased hepatic and renal accumulation, and increased biliary excretion up to 300%. Biliary excretion of polar [14C]CH metabolites was not altered by CD. CD pretreatment decreased subcellular distribution of [14C]CH equivalents in hepatic cytosol and microsomes and lipoprotein-rich fraction-to-homogenate ratio. CD pretreatment increased the ratio of [14C]CH equivalents in high density lipoprotein (HDL) to that in plasma and reduced [14C]CH equivalents in the non-HDL fraction 4 h after a bolus lipid dose. CD pretreatment increased plasma non-HDL total CH by 80% 4 h after a bolus lipid dose. Scavenger receptor class B type I (SR-BI) and ATPbinding cassette transporter G8 (ABCG8) proteins were quantified by western blotting in hepatic membranes from control and CD treated mice. Liver membrane contents of SR-BI and ABCG8 proteins were unchanged by CD pretreatment. The data demonstrated that a single dose of CD altered CH homeostasis and lipoprotein metabolism. PMID:18387646

  4. Environmental stress induces trinucleotide repeat mutagenesis in human cells.

    PubMed

    Chatterjee, Nimrat; Lin, Yunfu; Santillan, Beatriz A; Yotnda, Patricia; Wilson, John H

    2015-03-24

    The dynamic mutability of microsatellite repeats is implicated in the modification of gene function and disease phenotype. Studies of the enhanced instability of long trinucleotide repeats (TNRs)-the cause of multiple human diseases-have revealed a remarkable complexity of mutagenic mechanisms. Here, we show that cold, heat, hypoxic, and oxidative stresses induce mutagenesis of a long CAG repeat tract in human cells. We show that stress-response factors mediate the stress-induced mutagenesis (SIM) of CAG repeats. We show further that SIM of CAG repeats does not involve mismatch repair, nucleotide excision repair, or transcription, processes that are known to promote TNR mutagenesis in other pathways of instability. Instead, we find that these stresses stimulate DNA rereplication, increasing the proportion of cells with >4 C-value (C) DNA content. Knockdown of the replication origin-licensing factor CDT1 eliminates both stress-induced rereplication and CAG repeat mutagenesis. In addition, direct induction of rereplication in the absence of stress also increases the proportion of cells with >4C DNA content and promotes repeat mutagenesis. Thus, environmental stress triggers a unique pathway for TNR mutagenesis that likely is mediated by DNA rereplication. This pathway may impact normal cells as they encounter stresses in their environment or during development or abnormal cells as they evolve metastatic potential. PMID:25775519

  5. Environmental stress induces trinucleotide repeat mutagenesis in human cells

    PubMed Central

    Chatterjee, Nimrat; Lin, Yunfu; Santillan, Beatriz A.; Yotnda, Patricia; Wilson, John H.

    2015-01-01

    The dynamic mutability of microsatellite repeats is implicated in the modification of gene function and disease phenotype. Studies of the enhanced instability of long trinucleotide repeats (TNRs)—the cause of multiple human diseases—have revealed a remarkable complexity of mutagenic mechanisms. Here, we show that cold, heat, hypoxic, and oxidative stresses induce mutagenesis of a long CAG repeat tract in human cells. We show that stress-response factors mediate the stress-induced mutagenesis (SIM) of CAG repeats. We show further that SIM of CAG repeats does not involve mismatch repair, nucleotide excision repair, or transcription, processes that are known to promote TNR mutagenesis in other pathways of instability. Instead, we find that these stresses stimulate DNA rereplication, increasing the proportion of cells with >4 C-value (C) DNA content. Knockdown of the replication origin-licensing factor CDT1 eliminates both stress-induced rereplication and CAG repeat mutagenesis. In addition, direct induction of rereplication in the absence of stress also increases the proportion of cells with >4C DNA content and promotes repeat mutagenesis. Thus, environmental stress triggers a unique pathway for TNR mutagenesis that likely is mediated by DNA rereplication. This pathway may impact normal cells as they encounter stresses in their environment or during development or abnormal cells as they evolve metastatic potential. PMID:25775519

  6. GERM-LINE SPECIFIC FACTORS IN CHEMICAL MUTAGENESIS

    EPA Science Inventory

    Chemical mutagenesis test results ave not revealed evidence of germ-line specific mutagens. owever, conventional assays have indicated that there are male-female differences in mutagenic response, as well as quantitative/qualitative differences in induced mutations which depend u...

  7. Forward and reverse mutagenesis in C. elegans

    PubMed Central

    Kutscher, Lena M.; Shaham, Shai

    2014-01-01

    Mutagenesis drives natural selection. In the lab, mutations allow gene function to be deciphered. C. elegans is highly amendable to functional genetics because of its short generation time, ease of use, and wealth of available gene-alteration techniques. Here we provide an overview of historical and contemporary methods for mutagenesis in C. elegans, and discuss principles and strategies for forward (genome-wide mutagenesis) and reverse (target-selected and gene-specific mutagenesis) genetic studies in this animal. PMID:24449699

  8. Optogenetic mutagenesis in Caenorhabditis elegans

    PubMed Central

    Noma, Kentaro; Jin, Yishi

    2015-01-01

    Reactive oxygen species (ROS) can modify and damage DNA. Here we report an optogenetic mutagenesis approach that is free of toxic chemicals and easy to perform by taking advantage of a genetically encoded ROS generator. This method relies on the potency of ROS generation by His-mSOG, the mini singlet oxygen generator, miniSOG, fused to a histone. Caenorhabditis elegans expressing His-mSOG in the germline behave and reproduce normally, without photoinduction. Following exposure to blue light, the His-mSOG animals produce progeny with a wide range of heritable phenotypes. We show that optogenetic mutagenesis by His-mSOG induces a broad spectrum of mutations including single-nucleotide variants (SNVs), chromosomal deletions, as well as integration of extrachromosomal transgenes, which complements those derived from traditional chemical or radiation mutagenesis. The optogenetic mutagenesis expands the toolbox for forward genetic screening and also provides direct evidence that nuclear ROS can induce heritable and specific genetic mutations. PMID:26632265

  9. Characterization of the dielectric properties and alternating current conductivity of the SrBi5-xLaxTi4FeO18 (x=0, 0.2) compound

    NASA Astrophysics Data System (ADS)

    Almodovar, N. S.; Portelles, J.; Raymond, O.; Heiras, J.; Siqueiros, J. M.

    2007-12-01

    Lanthanum-doped bismuth layer-structured ferroelectric ceramics SrBi5-xLaxTi4FeO18 (x =0,0.2) were prepared by the solid-state reaction method. X-ray diffraction patterns indicate that single phases were formed. Hysteresis loops at room temperature (20 °C) show that the La-doped ceramic presents a slightly lower spontaneous polarization than the undoped compound. Measurements of relative permittivity and dielectric loss versus temperature were performed from room temperature to 700 °C in the 100 Hz-1 MHz frequency range. Three anomalies were observed in the thermal behavior of the relative permittivity in both samples. Anomalies around the temperatures of 465 and 430 °C have been identified as the ferroelectric-paraelectric transition temperatures for the x =0 and 0.2 compounds, respectively. The sizable shift of the transition temperatures toward lower temperatures with the La doping is interpreted as a manifestation of the La ion incorporation into the crystal structure. From the conductivity studies, the activation energies as functions of frequency for three different temperature zones are obtained. It is found that activation energies are strongly frequency dependent, particularly in the low-frequency region. The frequency dependence of the conductivity at different temperatures was analyzed using Jonscher's power law and the Almond-West conductivity formalism.

  10. A model for optical and electrical polarization fatigue in SrBi{sub 2}Ta{sub 2}O{sub 9} and Pb(Zr,Ti)O{sub 3}

    SciTech Connect

    Al-Shareef, H.N.; Dimos, D.; Warren, W.L.; Tuttle, B.A.

    1996-06-01

    Polarization fatigue, the decrease in switchable polarization with electric field cycling, has received considerable attention lately because ferroelectric thin films are being evaluated for use in nonvolatile memory applications. Here, the authors find that significant polarization fatigue (> 90%) can be induced in SrBi{sub 2}Ta{sub 2}O{sub 9} (SBT) thin films using (a) broad-band optical illumination combined with a bias near the switching threshold and (b) electric field cycling under broadband optical illumination. In the latter case, the extent of polarization fatigue increases with decreasing cycling voltage. In either case, the optically fatigued SBT capacitors can be fully rejuvenated by applying a saturating dc bias with light or by electric field cycling without light, which suggests a field-assisted recovery mechanism. A similar behavior was observed in Pb(Zr,Ti)O{sub 3} (PZT) films with LSCO electrodes. Based on these results, they suggest that polarization fatigue in ferroelectrics is essentially a dynamic competition between domain wall pinning due to electronic charge trapping, and field-assisted unpinning of the domain walls. Thus, domain wall pinning is not necessarily absent in nominally fatigue-free systems. Instead, these systems are ones in which domain wall unpinning occurs at least as rapidly as any pinning. Factors which may affect the pinning and unpinning rates will be discussed.

  11. Site-directed mutagenesis reveals a conservation of the copper-binding site and the crucial role of His24 in CopH from Cupriavidus metallidurans CH34.

    PubMed

    Sendra, Véronique; Gambarelli, Serge; Bersch, Beate; Covès, Jacques

    2009-12-01

    CopH is a periplasmic copper-binding protein from Cupriavidus metallidurans CH34 that contains two histidine residues. Both His24 and His26 contribute to the formation of two high-affinity copper-binding sites in wild-type CopH and are likely involved in a 2N2O coordination sphere in the equatorial plane. We have used site-directed mutagenesis, and a series of spectroscopic and calorimetric studies to further characterize the copper-binding sites in CopH. While His24 plays a predominant role in copper affinity, one Cu-binding site was lost when either histidine residue was mutated. However, as shown by NMR and EPR, the mutation of the His residues does not affect the structural organization of the Cu-binding site nor the number of nitrogen ligands involved in copper ligation. In the absence of structural data, we propose a model that conciliates most of the spectroscopic data recorded during this study. PMID:19857899

  12. Novel full color greenish-white-emitting SrBi()3∶Eu phosphor for white light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Liu, Yufeng; Ding, Yanjun; Peng, Zhimin

    2014-01-01

    The full color greenish-white-emitting phosphors Eu-doped Sr3Bi( have been successfully synthesized by the conventional solid-state reaction, and its photoluminescence properties have been investigated for the first time. The emission spectra of Sr3Bi(∶Eu phosphors exhibit a greenish-white-emitting by combining blue, green, and red emissions, which are originated from the 5d→4f transition of the Eu. The excitation spectra reveal broad strong bands from 300 to 400 nm, which match well with the readily available emissions from near-ultraviolet light-emitting diode (LED) chips. The correlated color temperature, color rendering index (CRI), and Commission Internationale de I'Eclairage chromaticity coordinates of the entitled phosphors excited by 330 and 365 nm are also investigated. The experimental results indicate that the Eu-doped Sr3Bi( phosphors are a promising innovative greenish-white-emitting phosphor for white LEDs.

  13. High dielectric permittivity in the microwave region of SrBi2Nb2O9 (SBN) added La2O3, PbO and Bi2O3, obtained by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Rocha, M. J. S.; Silva, P. M. O.; Theophilo, K. R. B.; Sancho, E. O.; Paula, P. V. L.; Silva, M. A. S.; Honorato, S. B.; Sombra, A. S. B.

    2012-08-01

    This paper presents the microwave dielectric properties and a structural study of SrBi2Nb2O9 (SBN) added La2O3, PbO or Bi2O3 obtained by a solid state procedure. High-energy mechanical milling was used to reduce the particle size, which allows for a better shaping of the green body and an increased reactivity. The mechanical milling activation process produced a reduced sintering temperature in the material, decreasing the loss of the volatile elements and controlling the growth of the grain that is produced when a high temperature is required to obtain dense ceramics. The incorporation of La3+, or Pb2+, or Bi3+ of different amounts (0, 3, 5, 10 and 15 wt%) was used to improve the densification without changing the crystal structure, since with a low doping content these ions can occupy the A site of the perovskite blocks; they can also occupy the Bi3+ sites in Bi2O3 layers. A single orthorhombic phase was formed after calcination at 800 °C for 2 h. X-ray diffraction, Fourier transformation, infrared and Raman spectroscopy have been carried out in order to investigate the effects of doping on SBN. The dielectric permittivity (ɛ‧r) and loss in the microwave region (2-4 GHz) of SBN ceramics with additions of Bi2O3, La2O3 and PbO were studied. Higher values of permittivity (ɛr‧ = 154.6) have been obtained for the SBN added La (15 wt%) a lower loss (tg δ = 0.01531) was also achieved in the SBN added La (15 wt%) sample with PVA and TEOS, respectively. The samples that showed the highest dielectric permittivities were all lanthanum doped, all with values of permittivity above 90. A comparative study associated with different types of binders was completed (with glycerin, PVA and TEOS). This procedure allowed us to obtain phases at lower temperatures than usually appear in the literature. The microwave dielectric properties (permittivity and loss) in the region 2-4 GHz, were studied for all samples. The structural and microwave dielectric properties of SBN show a

  14. MECHANISM OF CHEMICAL MUTAGENESIS IV.

    PubMed Central

    Lorkiewicz, Z.; Szybalski, Waclaw

    1961-01-01

    Lorkiewicz, Z. (University of Wisconsin, Madison), and Waclaw Szybalski. Mechanism of chemical mutagenesis. IV. Reaction between triethylene melamine and nucleic acid components. J. Bacteriol. 82: 195–201. 1961.—Triethylene melamine interacts primarily with phosphorylated intracellular deoxyribonucleic acid (DNA) precursors and not with DNA. It was found by direct chemical and chromatographic analysis that only pyrimidine precursors of nucleic acids are attacked by triethylene melamine. In the course of the triethylene melamine-deoxycytidine reaction the mutagenicity of the reaction mixture is lost, but the mutagenicity of the triethylene melamine-thymidine reaction products significantly increases above that of the reaction substrates. Several steps are postulated to explain the mechanism of the triethylene melamine-initiated mutagenic reaction: (i) Reaction I, semireversible uptake of triethylene melamine; (ii) reaction II, chemical interaction between triethylene melamine and intracellular thymidine mono- or triphosphate with the production of a functional analogue of the latter; (iii) incorporation of this fraudulent analogue into the newly formed DNA strand; (iv) occurrence of self-perpetuating errors in the sequence of natural bases during subsequent rounds of replication of the analogue-containing DNA strand. It is postulated that the mechanism of mutagenic responses to different types of mutagens can fit either a simplified (mutagenic base analogues) or extended version (radiation) of this schema. PMID:16561917

  15. Highly Efficient Targeted Mutagenesis in Mice Using TALENs

    PubMed Central

    Panda, Sudeepta Kumar; Wefers, Benedikt; Ortiz, Oskar; Floss, Thomas; Schmid, Bettina; Haass, Christian; Wurst, Wolfgang; Kühn, Ralf

    2013-01-01

    Targeted mouse mutants are instrumental for the analysis of gene function in health and disease. We recently provided proof-of-principle for the fast-track mutagenesis of the mouse genome, using transcription activator-like effector nucleases (TALENs) in one-cell embryos. Here we report a routine procedure for the efficient production of disease-related knockin and knockout mutants, using improved TALEN mRNAs that include a plasmid-coded poly(A) tail (TALEN-95A), circumventing the problematic in vitro polyadenylation step. To knock out the C9orf72 gene as a model of frontotemporal lobar degeneration, TALEN-95A mutagenesis induced sequence deletions in 41% of pups derived from microinjected embryos. Using TALENs together with mutagenic oligodeoxynucleotides, we introduced amyotrophic lateral sclerosis patient-derived missense mutations in the fused in sarcoma (Fus) gene at a rate of 6.8%. For the simple identification of TALEN-induced mutants and their progeny we validate high-resolution melt analysis (HRMA) of PCR products as a sensitive and universal genotyping tool. Furthermore, HRMA of off-target sites in mutant founder mice revealed no evidence for undesired TALEN-mediated processing of related genomic sequences. The combination of TALEN-95A mRNAs for enhanced mutagenesis and of HRMA for simplified genotyping enables the accelerated, routine production of new mouse models for the study of genetic disease mechanisms. PMID:23979585

  16. Systematic Mutagenesis of the Escherichia coli Genome†

    PubMed Central

    Kang, Yisheng; Durfee, Tim; Glasner, Jeremy D.; Qiu, Yu; Frisch, David; Winterberg, Kelly M.; Blattner, Frederick R.

    2004-01-01

    A high-throughput method has been developed for the systematic mutagenesis of the Escherichia coli genome. The system is based on in vitro transposition of a modified Tn5 element, the Sce-poson, into linear fragments of each open reading frame. The transposon introduces both positive (kanamycin resistance) and negative (I-SceI recognition site) selectable markers for isolation of mutants and subsequent allele replacement, respectively. Reaction products are then introduced into the genome by homologous recombination via the λRed proteins. The method has yielded insertion alleles for 1976 genes during a first pass through the genome including, unexpectedly, a number of known and putative essential genes. Sce-poson insertions can be easily replaced by markerless mutations by using the I-SceI homing endonuclease to select against retention of the transposon as demonstrated by the substitution of amber and/or in-frame deletions in six different genes. This allows a Sce-poson-containing gene to be specifically targeted for either designed or random modifications, as well as permitting the stepwise engineering of strains with multiple mutations. The promiscuous nature of Tn5 transposition also enables a targeted gene to be dissected by using randomly inserted Sce-posons as shown by a lacZ allelic series. Finally, assessment of the insertion sites by an iterative weighted matrix algorithm reveals that these hyperactive Tn5 complexes generally recognize a highly degenerate asymmetric motif on one end of the target site helping to explain the randomness of Tn5 transposition. PMID:15262929

  17. Economical analysis of saturation mutagenesis experiments.

    PubMed

    Acevedo-Rocha, Carlos G; Reetz, Manfred T; Nov, Yuval

    2015-01-01

    Saturation mutagenesis is a powerful technique for engineering proteins, metabolic pathways and genomes. In spite of its numerous applications, creating high-quality saturation mutagenesis libraries remains a challenge, as various experimental parameters influence in a complex manner the resulting diversity. We explore from the economical perspective various aspects of saturation mutagenesis library preparation: We introduce a cheaper and faster control for assessing library quality based on liquid media; analyze the role of primer purity and supplier in libraries with and without redundancy; compare library quality, yield, randomization efficiency, and annealing bias using traditional and emergent randomization schemes based on mixtures of mutagenic primers; and establish a methodology for choosing the most cost-effective randomization scheme given the screening costs and other experimental parameters. We show that by carefully considering these parameters, laboratory expenses can be significantly reduced. PMID:26190439

  18. Economical analysis of saturation mutagenesis experiments

    PubMed Central

    Acevedo-Rocha, Carlos G.; Reetz, Manfred T.; Nov, Yuval

    2015-01-01

    Saturation mutagenesis is a powerful technique for engineering proteins, metabolic pathways and genomes. In spite of its numerous applications, creating high-quality saturation mutagenesis libraries remains a challenge, as various experimental parameters influence in a complex manner the resulting diversity. We explore from the economical perspective various aspects of saturation mutagenesis library preparation: We introduce a cheaper and faster control for assessing library quality based on liquid media; analyze the role of primer purity and supplier in libraries with and without redundancy; compare library quality, yield, randomization efficiency, and annealing bias using traditional and emergent randomization schemes based on mixtures of mutagenic primers; and establish a methodology for choosing the most cost-effective randomization scheme given the screening costs and other experimental parameters. We show that by carefully considering these parameters, laboratory expenses can be significantly reduced. PMID:26190439

  19. MAMMALIAN CELL MUTAGENESIS, BANBURY CONFERENCE (JOURNAL VERSION)

    EPA Science Inventory

    A conference on mammalian cell mutagenesis was held at the Banbury Center, Cold Spring Harbor, NY, USA, March 22-25, 1987. The objective of the conference was to provide a forum for discussions concerning the genetic, biochemical, and molecular basis of induced mutations in stand...

  20. CHALLENGES FOR THE FUTURE IN ENVIRONMENTAL MUTAGENESIS

    EPA Science Inventory

    CHALLENGES FOR THE FUTURE IN ENVIRONMENTAL MUTAGENESIS
    Michael D. Waters
    US Environmental Protection Agency, MD-51A, Research Triangle Park, NC 27711 USA

    Our rapidly growing understanding of the structure of the human genome is forming the basis for numerous new...

  1. Faux Mutagenesis: Teaching Troubleshooting through Controlled Failure

    ERIC Educational Resources Information Center

    Hartberg, Yasha

    2006-01-01

    By shifting pedagogical goals from obtaining successful mutations to teaching students critical troubleshooting skills, it has been possible to introduce site-directed mutagenesis into an undergraduate teaching laboratory. Described in this study is an inexpensive laboratory exercise in which students follow a slightly modified version of…

  2. An APOBEC Cytidine Deaminase Mutagenesis Pattern is Widespread in Human Cancers

    PubMed Central

    Roberts, Steven A.; Lawrence, Michael S.; Klimczak, Leszek J.; Grimm, Sara A.; Fargo, David; Stojanov, Petar; Kiezun, Adam; Kryukov, Gregory V.; Carter, Scott L.; Saksena, Gordon; Harris, Shawn; Shah, Ruchir R.; Resnick, Michael A.; Getz, Gad; Gordenin, Dmitry A.

    2013-01-01

    Recent studies indicate that a subclass of APOBEC cytidine deaminases, which convert cytosine to uracil during RNA editing and retrovirus or retrotransposon restriction, may induce mutation clusters in human tumors. We show here that throughout cancer genomes APOBEC mutagenesis is pervasive and correlates with APOBEC mRNA levels. Mutation clusters in whole-genome and exome datasets conformed to stringent criteria indicative of an APOBEC mutation pattern. Applying these criteria to 954,247 mutations in 2,680 exomes of 14 cancer types, mostly from TCGA, revealed significant presence of the APOBEC mutation pattern in bladder, cervical, breast, head and neck and lung cancers, reaching 68% of all mutations in some samples. Within breast cancer, the HER2E subtype was clearly enriched with tumors displaying the APOBEC mutation pattern, suggesting this type of mutagenesis is functionally linked with cancer development. The APOBEC mutation pattern also extended to cancer-associated genes, implying that ubiquitous APOBEC mutagenesis is carcinogenic. PMID:23852170

  3. REPLACR-mutagenesis, a one-step method for site-directed mutagenesis by recombineering.

    PubMed

    Trehan, Ashutosh; Kiełbus, Michał; Czapinski, Jakub; Stepulak, Andrzej; Huhtaniemi, Ilpo; Rivero-Müller, Adolfo

    2016-01-01

    Mutagenesis is an important tool to study gene regulation, model disease-causing mutations and for functional characterisation of proteins. Most of the current methods for mutagenesis involve multiple step procedures. One of the most accurate methods for genetically altering DNA is recombineering, which uses bacteria expressing viral recombination proteins. Recently, the use of in vitro seamless assembly systems using purified enzymes for multiple-fragment cloning as well as mutagenesis is gaining ground. Although these in vitro isothermal reactions are useful when cloning multiple fragments, for site-directed mutagenesis it is unnecessary. Moreover, the use of purified enzymes in vitro is not only expensive but also more inaccurate than the high-fidelity recombination inside bacteria. Here we present a single-step method, named REPLACR-mutagenesis (Recombineering of Ends of linearised PLAsmids after PCR), for creating mutations (deletions, substitutions and additions) in plasmids by in vivo recombineering. REPLACR-mutagenesis only involves transformation of PCR products in bacteria expressing Red/ET recombineering proteins. Modifications in a variety of plasmids up to bacterial artificial chromosomes (BACs; 144 kb deletion) have been achieved by this method. The presented method is more robust, involves fewer steps and is cost-efficient. PMID:26750263

  4. REPLACR-mutagenesis, a one-step method for site-directed mutagenesis by recombineering

    PubMed Central

    Trehan, Ashutosh; Kiełbus, Michał; Czapinski, Jakub; Stepulak, Andrzej; Huhtaniemi, Ilpo; Rivero-Müller, Adolfo

    2016-01-01

    Mutagenesis is an important tool to study gene regulation, model disease-causing mutations and for functional characterisation of proteins. Most of the current methods for mutagenesis involve multiple step procedures. One of the most accurate methods for genetically altering DNA is recombineering, which uses bacteria expressing viral recombination proteins. Recently, the use of in vitro seamless assembly systems using purified enzymes for multiple-fragment cloning as well as mutagenesis is gaining ground. Although these in vitro isothermal reactions are useful when cloning multiple fragments, for site-directed mutagenesis it is unnecessary. Moreover, the use of purified enzymes in vitro is not only expensive but also more inaccurate than the high-fidelity recombination inside bacteria. Here we present a single-step method, named REPLACR-mutagenesis (Recombineering of Ends of linearised PLAsmids after PCR), for creating mutations (deletions, substitutions and additions) in plasmids by in vivo recombineering. REPLACR-mutagenesis only involves transformation of PCR products in bacteria expressing Red/ET recombineering proteins. Modifications in a variety of plasmids up to bacterial artificial chromosomes (BACs; 144 kb deletion) have been achieved by this method. The presented method is more robust, involves fewer steps and is cost-efficient. PMID:26750263

  5. Final report [DNA Repair and Mutagenesis - 1999

    SciTech Connect

    Walker, Graham C.

    2001-05-30

    The meeting, titled ''DNA Repair and Mutagenesis: Mechanism, Control, and Biological Consequences'', was designed to bring together the various sub-disciplines that collectively comprise the field of DNA Repair and Mutagenesis. The keynote address was titled ''Mutability Doth Play Her Cruel Sports to Many Men's Decay: Variations on the Theme of Translesion Synthesis.'' Sessions were held on the following themes: Excision repair of DNA damage; Transcription and DNA excision repair; UmuC/DinB/Rev1/Rad30 superfamily of DNA polymerases; Cellular responses to DNA damage, checkpoints, and damage tolerance; Repair of mismatched bases, mutation; Genome-instability, and hypermutation; Repair of strand breaks; Replicational fidelity, and Late-breaking developments; Repair and mutation in challenging environments; and Defects in DNA repair: consequences for human disease and aging.

  6. Fluorometric method of quantitative cell mutagenesis

    DOEpatents

    Dolbeare, F.A.

    1980-12-12

    A method for assaying a cell culture for mutagenesis is described. A cell culture is stained first with a histochemical stain, and then a fluorescent stain. Normal cells in the culture are stained by both the histochemical and fluorescent stains, while abnormal cells are stained only by the fluorescent stain. The two stains are chosen so that the histochemical stain absorbs the wavelengths that the fluorescent stain emits. After the counterstained culture is subjected to exciting light, the fluorescence from the abnormal cells is detected.

  7. The Parasol Protocol for computational mutagenesis.

    PubMed

    Aronica, P G A; Verma, C; Popovic, B; Leatherbarrow, R J; Gould, I R

    2016-07-01

    To aid in the discovery and development of peptides and proteins as therapeutic agents, a virtual screen can be used to predict trends and direct workflow. We have developed the Parasol Protocol, a dynamic method implemented using the AMBER MD package, for computational site-directed mutagenesis. This tool can mutate between any pair of amino acids in a computationally expedient, automated manner. To demonstrate the potential of this methodology, we have employed the protocol to investigate a test case involving stapled peptides, and have demonstrated good agreement with experiment. PMID:27255759

  8. Fluorometric method of quantitative cell mutagenesis

    DOEpatents

    Dolbeare, Frank A.

    1982-01-01

    A method for assaying a cell culture for mutagenesis is described. A cell culture is stained first with a histochemical stain, and then a fluorescent stain. Normal cells in the culture are stained by both the histochemical and fluorescent stains, while abnormal cells are stained only by the fluorescent stain. The two stains are chosen so that the histochemical stain absorbs the wavelengths that the fluorescent stain emits. After the counterstained culture is subjected to exciting light, the fluorescence from the abnormal cells is detected.

  9. Effect of the microwave oven on structural, morphological and electrical properties of SrBi{sub 4}Ti{sub 4}O{sub 15} thin films grown on Pt/Ti/SiO{sub 2}/Si substrates by a soft chemical method

    SciTech Connect

    Simoes, A.Z.; Ramirez, M.A. Riccardi, C.S.; Longo, E.; Varela, J.A.

    2008-06-15

    Thin films of SrBi{sub 4}Ti{sub 4}O{sub 15} (SBTi), a prototype of the Bi-layered-ferroelectric oxide family, were obtained by a soft chemical method and crystallized in a domestic microwave oven. For comparison, films were also crystallized in a conventional method at 700 deg. C for 2 h. Structural and morphological characterization of the SBTi thin films were investigated by X-ray diffraction (XRD) and atomic force microscopy (AFM), respectively. Using platinum coated silicon substrates, the ferroelectric properties of the films were determined. Remanent polarization P{sub r} and a coercive field E{sub c} values of 5.1 {mu}C/cm{sup 2} and 135 kV/cm for the film thermally treated in the microwave oven and 5.4 {mu}C/cm{sup 2} and 85 kV/cm for the film thermally treated in conventional furnace were found. The films thermally treated in the conventional furnace exhibited excellent fatigue-free characteristics up to 10{sup 10} switching cycles indicating that SBTi thin films are a promising material for use in non-volatile memories.

  10. Mutagenesis as a Genetic Research Strategy

    PubMed Central

    Falk, Raphael

    2010-01-01

    Morgan's three students (Muller, Sturtevant, and Bridges) introduced reductionist empirical methods to the study of the chromosomal theory of heredity. Herman J. Muller concentrated on mutations, namely changes in the heterocatalytic properties of genes, without losing their autocatalytic (self-replication) properties. Experimental induction of mutations allowed quantitative analyses of genes' parameters, but hopes to deduce their chemicophysical character were never fulfilled. Once the model for DNA structure was proposed, the reductionist notions of mutation analysis were successfully applied to the molecular genes. However, it was soon realized that the concept of the particulate gene was inadequate. The more the molecular analysis of the genome advanced, the clearer it became that the entities of heredity must be conceived within systems' perspectives, for which special tools for handling large number of variables were developed. Analytic mutagenesis, however, continues to be a major strategy for the study of the cellular and chromosomal mechanisms that control mutation inductions. PMID:20713742

  11. Mutagenesis assays of human amniotic fluid

    SciTech Connect

    Everson, R.B.; Milne, K.L.; Warbuton, D.; McClamrock, H.D.; Buchanan, P.D.

    1985-01-01

    Extracts of amniocentesis samples from 144 women were tested for the presence of mutagenic substances using tester strain TA1538 in the Ames Salmonella/mammalian-microsome mutagenicity test. Because the volume of amniotic fluid in these samples was limited (generally less than 10 ml), the authors investigated modifications of this mutagenesis assay that could increase its ability to detect effects from small quantities of test material. Using mutagenicity in samples of urine from smokers as a model, it appeared that improved ability to detect small amounts of mutagen could be obtained by reducing volumes of media and reagents while keeping the amount of test sample constant. Tests of amniotic fluid extracts by this modified procedure showed small increases in revertants, about 50% above dimethylsulfoxide solvent control values. The increases suggest the presence of small amounts of mutagenic material in many of the amniotic fluid samples. At the doses employed, mutagenic activity in these samples was not associated with maternal smoking.

  12. Homemade Site Directed Mutagenesis of Whole Plasmids

    PubMed Central

    Laible, Mark; Boonrod, Kajohn

    2009-01-01

    Site directed mutagenesis of whole plasmids is a simple way to create slightly different variations of an original plasmid. With this method the cloned target gene can be altered by substitution, deletion or insertion of a few bases directly into a plasmid. It works by simply amplifying the whole plasmid, in a non PCR-based thermocycling reaction. During the reaction mutagenic primers, carrying the desired mutation, are integrated into the newly synthesized plasmid. In this video tutorial we demonstrate an easy and cost effective way to introduce base substitutions into a plasmid. The protocol works with standard reagents and is independent from commercial kits, which often are very expensive. Applying this protocol can reduce the total cost of a reaction to an eighth of what it costs using some of the commercial kits. In this video we also comment on critical steps during the process and give detailed instructions on how to design the mutagenic primers. PMID:19488024

  13. A threshold of endogenous stress is required to engage cellular response to protect against mutagenesis

    PubMed Central

    Saintigny, Yannick; Chevalier, François; Bravard, Anne; Dardillac, Elodie; Laurent, David; Hem, Sonia; Dépagne, Jordane; Radicella, J. Pablo; Lopez, Bernard S.

    2016-01-01

    Endogenous stress represents a major source of genome instability, but is in essence difficult to apprehend. Incorporation of labeled radionuclides into DNA constitutes a tractable model to analyze cellular responses to endogenous attacks. Here we show that incorporation of [3H]thymidine into CHO cells generates oxidative-induced mutagenesis, but, with a peak at low doses. Proteomic analysis showed that the cellular response differs between low and high levels of endogenous stress. In particular, these results confirmed the involvement of proteins implicated in redox homeostasis and DNA damage signaling pathways. Induced-mutagenesis was abolished by the anti-oxidant N-acetyl cysteine and plateaued, at high doses, upon exposure to L-buthionine sulfoximine, which represses cellular detoxification. The [3H]thymidine-induced mutation spectrum revealed mostly base substitutions, exhibiting a signature specific for low doses (GC > CG and AT > CG). Consistently, the enzymatic activity of the base excision repair protein APE-1 is induced at only medium or high doses. Collectively, the data reveal that a threshold of endogenous stress must be reached to trigger cellular detoxification and DNA repair programs; below this threshold, the consequences of endogenous stress escape cellular surveillance, leading to high levels of mutagenesis. Therefore, low doses of endogenous local stress can jeopardize genome integrity more efficiently than higher doses. PMID:27406380

  14. A threshold of endogenous stress is required to engage cellular response to protect against mutagenesis.

    PubMed

    Saintigny, Yannick; Chevalier, François; Bravard, Anne; Dardillac, Elodie; Laurent, David; Hem, Sonia; Dépagne, Jordane; Radicella, J Pablo; Lopez, Bernard S

    2016-01-01

    Endogenous stress represents a major source of genome instability, but is in essence difficult to apprehend. Incorporation of labeled radionuclides into DNA constitutes a tractable model to analyze cellular responses to endogenous attacks. Here we show that incorporation of [(3)H]thymidine into CHO cells generates oxidative-induced mutagenesis, but, with a peak at low doses. Proteomic analysis showed that the cellular response differs between low and high levels of endogenous stress. In particular, these results confirmed the involvement of proteins implicated in redox homeostasis and DNA damage signaling pathways. Induced-mutagenesis was abolished by the anti-oxidant N-acetyl cysteine and plateaued, at high doses, upon exposure to L-buthionine sulfoximine, which represses cellular detoxification. The [(3)H]thymidine-induced mutation spectrum revealed mostly base substitutions, exhibiting a signature specific for low doses (GC > CG and AT > CG). Consistently, the enzymatic activity of the base excision repair protein APE-1 is induced at only medium or high doses. Collectively, the data reveal that a threshold of endogenous stress must be reached to trigger cellular detoxification and DNA repair programs; below this threshold, the consequences of endogenous stress escape cellular surveillance, leading to high levels of mutagenesis. Therefore, low doses of endogenous local stress can jeopardize genome integrity more efficiently than higher doses. PMID:27406380

  15. Targeted mutagenesis of an odorant receptor co-receptor using TALEN in Ostrinia furnacalis.

    PubMed

    Yang, Bin; Fujii, Takeshi; Ishikawa, Yukio; Matsuo, Takashi

    2016-03-01

    Genome editing using transcription activator-like effector nuclease (TALEN) has been applied for various model organisms but not yet for agricultural pest insects. In this study, TALEN-mediated mutagenesis of the gene encoding odorant receptor co-receptor (Orco) of an important agricultural pest Ostrinia furnacalis (OfurOrco) was carried out. Of the two pairs of TALEN constructs designed, one generated somatic and germline mutations at rates of 70.8% and 20.8%, respectively. Physiological and behavioral analyses using a gas chromatograph-electroantennographic detector system and a wind tunnel, respectively, revealed that antennal responses to sex pheromone components were decreased to trace levels, and behavioral responses were abolished in OfurOrco mutants. This study demonstrated that TALEN-mediated mutagenesis is applicable to pest insects, and these results will open the way for a better understanding of chemosensory systems in wild insects. PMID:26689645

  16. Heat shock and herpes virus: enhanced reactivation without untargeted mutagenesis

    SciTech Connect

    Lytle, C.D.; Carney, P.G.

    1988-01-01

    Enhanced reactivation of Ultraviolet-irradiated virus has been reported to occur in heat-shocked host cells. Since enhanced virus reactivation is often accompanied by untargeted mutagenesis, we investigated whether such mutagenesis would occur for herpes simplex virus (HSV) in CV-1 monkey kidney cells subjected to heat shock. In addition to expressing enhanced reactivation, the treated cells were transiently more susceptible to infection by unirradiated HSV. No mutagenesis of unirradiated HSV was found whether infection occurred at the time of increased susceptibility to infection or during expression of enhanced viral reactivation.

  17. Protein engineering: single or multiple site-directed mutagenesis.

    PubMed

    Hsieh, Pei-Chung; Vaisvila, Romualdas

    2013-01-01

    Site-directed mutagenesis techniques are invaluable tools in molecular biology to study the structural and functional properties of a protein. To expedite the time required and simplify methods for mutagenesis, we recommend two protocols in this chapter. The first method for single site-directed mutagenesis, which includes point mutations, insertions, or deletions, can be achieved by an inverse PCR strategy with mutagenic primers and the high-fidelity Phusion(®) DNA Polymerase to introduce a site-directed mutation with exceptional efficiency. The second method is for engineering multiple mutations into a gene of interest. This can be completed in one step by PCR with mutagenic primers and by assembling all mutagenized PCR products using the Gibson Assembly™ Master Mix. This method allows multiple nucleotides to be changed simultaneously, which not only saves time but also reagents compared to traditional methods of mutagenesis. PMID:23423897

  18. Symposium on molecular and cellular mechanisms of mutagenesis

    SciTech Connect

    Not Available

    1981-01-01

    These proceedings contain abstracts only of the 21 papers presented at the Sympsoium. The papers dealt with molecular mechanisms of mutagenesis and cellular responses to chemical and physical mutagenic agents. (ERB)

  19. Codon compression algorithms for saturation mutagenesis.

    PubMed

    Pines, Gur; Pines, Assaf; Garst, Andrew D; Zeitoun, Ramsey I; Lynch, Sean A; Gill, Ryan T

    2015-05-15

    Saturation mutagenesis is employed in protein engineering and genome-editing efforts to generate libraries that span amino acid design space. Traditionally, this is accomplished by using degenerate/compressed codons such as NNK (N = A/C/G/T, K = G/T), which covers all amino acids and one stop codon. These solutions suffer from two types of redundancy: (a) different codons for the same amino acid lead to bias, and (b) wild type amino acid is included within the library. These redundancies increase library size and downstream screening efforts. Here, we present a dynamic approach to compress codons for any desired list of amino acids, taking into account codon usage. This results in a unique codon collection for every amino acid to be mutated, with the desired redundancy level. Finally, we demonstrate that this approach can be used to design precise oligo libraries amendable to recombineering and CRISPR-based genome editing to obtain a diverse population with high efficiency. PMID:25303315

  20. Signature-tagged mutagenesis of Vibrio vulnificus

    PubMed Central

    YAMAMOTO, Mai; KASHIMOTO, Takashige; TONG, Ping; XIAO, Jianbo; SUGIYAMA, Michiko; INOUE, Miyuki; MATSUNAGA, Rie; HOSOHARA, Kohei; NAKATA, Kazue; YOKOTA, Kenji; OGUMA, Keiji; YAMAMOTO, Koichiro

    2015-01-01

    Vibrio vulnificus is the causative agent of primary septicemia, wound infection and gastroenteritis in immunocompromised people. In this study, signature-tagged mutagenesis (STM) was applied to identify the virulence genes of V. vulnificus. Using STM, 6,480 mutants in total were constructed and divided into 81 sets (INPUT pools); each mutant in a set was assigned a different tag. Each INPUT pool was intraperitoneally injected into iron-overloaded mice, and in vivo surviving mutants were collected from blood samples from the heart (OUTPUT pools). From the genomic DNA of mixed INPUT or OUTPUT pools, digoxigenin-labeled DNA probes against the tagged region were prepared and used for dot hybridization. Thirty tentatively attenuated mutants, which were hybridized clearly with INPUT probes but barely with OUTPUT probes, were negatively selected. Lethal doses of 11 of the 30 mutants were reduced to more than 1/100; of these, the lethal doses of 2 were reduced to as low as 1/100,000. Transposon-inserted genes in the 11 attenuated mutants were those for IMP dehydrogenase, UDP-N-acetylglucosamine-2-epimerase, aspartokinase, phosphoribosylformylglycinamidine cyclo-ligase, malate Na (+) symporter and hypothetical protein. When mice were immunized with an attenuated mutant strain into which IMP dehydrogenase had been inserted with a transposon, they were protected against V. vulnificus infection. In this study, we demonstrated that the STM method can be used to search for the virulence genes of V. vulnificus. PMID:25755021

  1. Mutagenesis during plant responses to UVB radiation.

    PubMed

    Holá, M; Vágnerová, R; Angelis, K J

    2015-08-01

    We tested an idea that induced mutagenesis due to unrepaired DNA lesions, here the UV photoproducts, underlies the impact of UVB irradiation on plant phenotype. For this purpose we used protonemal culture of the moss Physcomitrella patens with 50% of apical cells, which mimics actively growing tissue, the most vulnerable stage for the induction of mutations. We measured the UVB mutation rate of various moss lines with defects in DNA repair (pplig4, ppku70, pprad50, ppmre11), and in selected clones resistant to 2-Fluoroadenine, which were mutated in the adenosine phosphotrasferase gene (APT), we analysed induced mutations by sequencing. In parallel we followed DNA break repair and removal of cyclobutane pyrimidine dimers with a half-life τ = 4 h 14 min determined by comet assay combined with UV dimer specific T4 endonuclease V. We show that UVB induces massive, sequence specific, error-prone bypass repair that is responsible for a high mutation rate owing to relatively slow, though error-free, removal of photoproducts by nucleotide excision repair (NER). PMID:25542779

  2. Sleeping Beauty mutagenesis in a mouse medulloblastoma model defines networks that discriminate between human molecular subgroups.

    PubMed

    Genovesi, Laura A; Ng, Ching Ging; Davis, Melissa J; Remke, Marc; Taylor, Michael D; Adams, David J; Rust, Alistair G; Ward, Jerrold M; Ban, Kenneth H; Jenkins, Nancy A; Copeland, Neal G; Wainwright, Brandon J

    2013-11-12

    The Sleeping Beauty (SB) transposon mutagenesis screen is a powerful tool to facilitate the discovery of cancer genes that drive tumorigenesis in mouse models. In this study, we sought to identify genes that functionally cooperate with sonic hedgehog signaling to initiate medulloblastoma (MB), a tumor of the cerebellum. By combining SB mutagenesis with Patched1 heterozygous mice (Ptch1(lacZ/+)), we observed an increased frequency of MB and decreased tumor-free survival compared with Ptch1(lacZ/+) controls. From an analysis of 85 tumors, we identified 77 common insertion sites that map to 56 genes potentially driving increased tumorigenesis. The common insertion site genes identified in the mutagenesis screen were mapped to human orthologs, which were used to select probes and corresponding expression data from an independent set of previously described human MB samples, and surprisingly were capable of accurately clustering known molecular subgroups of MB, thereby defining common regulatory networks underlying all forms of MB irrespective of subgroup. We performed a network analysis to discover the likely mechanisms of action of subnetworks and used an in vivo model to confirm a role for a highly ranked candidate gene, Nfia, in promoting MB formation. Our analysis implicates candidate cancer genes in the deregulation of apoptosis and translational elongation, and reveals a strong signature of transcriptional regulation that will have broad impact on expression programs in MB. These networks provide functional insights into the complex biology of human MB and identify potential avenues for intervention common to all clinical subgroups. PMID:24167280

  3. Isolation of rare recombinants without using selectable markers for one-step seamless BAC mutagenesis

    PubMed Central

    Lyozin, George T.; Kosaka, Yasuhiro; Demarest, Bradley L.; Yost, H. Joseph; Kuehn, Michael R.; Brunelli, Luca

    2014-01-01

    Current laboratory methods to isolate rare (1:10,000 to 1:100,000) bacterial artificial chromosome (BAC) recombinants require selectable markers. Seamless BAC mutagenesis needs two steps: isolation of rare recombinants using selectable markers, followed by marker removal through counterselection. Here we illustrate founder principle-driven enrichment (FPE), a simple method developed to rapidly isolate rare recombinants without using selectable markers, allowing one-step seamless BAC mutagenesis. As proof-of-principle, we isolated 1:100,000 seamless fluorescent protein-modified Nodal BACs via FPE and confirmed BAC functionality by generating fluorescent reporter mice. We also isolated small indel P1-phage derived artificial chromosome (PAC) and BAC recombinants. Statistical analysis revealed that 1:100,000 recombinants can be isolated running <40 PCRs and we developed a web-based calculator to optimize FPE. By eliminating the need for selection-counterselection, this work highlights a straightforward and low-cost approach to BAC mutagenesis, providing a tool for seamless recombineering pipelines in functional genomics. PMID:25028895

  4. Mouse ENU Mutagenesis to Understand Immunity to Infection: Methods, Selected Examples, and Perspectives

    PubMed Central

    Caignard, Grégory; Eva, Megan M.; van Bruggen, Rebekah; Eveleigh, Robert; Bourque, Guillaume; Malo, Danielle; Gros, Philippe; Vidal, Silvia M.

    2014-01-01

    Infectious diseases are responsible for over 25% of deaths globally, but many more individuals are exposed to deadly pathogens. The outcome of infection results from a set of diverse factors including pathogen virulence factors, the environment, and the genetic make-up of the host. The completion of the human reference genome sequence in 2004 along with technological advances have tremendously accelerated and renovated the tools to study the genetic etiology of infectious diseases in humans and its best characterized mammalian model, the mouse. Advancements in mouse genomic resources have accelerated genome-wide functional approaches, such as gene-driven and phenotype-driven mutagenesis, bringing to the fore the use of mouse models that reproduce accurately many aspects of the pathogenesis of human infectious diseases. Treatment with the mutagen N-ethyl-N-nitrosourea (ENU) has become the most popular phenotype-driven approach. Our team and others have employed mouse ENU mutagenesis to identify host genes that directly impact susceptibility to pathogens of global significance. In this review, we first describe the strategies and tools used in mouse genetics to understand immunity to infection with special emphasis on chemical mutagenesis of the mouse germ-line together with current strategies to efficiently identify functional mutations using next generation sequencing. Then, we highlight illustrative examples of genes, proteins, and cellular signatures that have been revealed by ENU screens and have been shown to be involved in susceptibility or resistance to infectious diseases caused by parasites, bacteria, and viruses. PMID:25268389

  5. PiggyBac transposon mutagenesis: a tool for cancer gene discovery in mice.

    PubMed

    Rad, Roland; Rad, Lena; Wang, Wei; Cadinanos, Juan; Vassiliou, George; Rice, Stephen; Campos, Lia S; Yusa, Kosuke; Banerjee, Ruby; Li, Meng Amy; de la Rosa, Jorge; Strong, Alexander; Lu, Dong; Ellis, Peter; Conte, Nathalie; Yang, Fang Tang; Liu, Pentao; Bradley, Allan

    2010-11-19

    Transposons are mobile DNA segments that can disrupt gene function by inserting in or near genes. Here, we show that insertional mutagenesis by the PiggyBac transposon can be used for cancer gene discovery in mice. PiggyBac transposition in genetically engineered transposon-transposase mice induced cancers whose type (hematopoietic versus solid) and latency were dependent on the regulatory elements introduced into transposons. Analysis of 63 hematopoietic tumors revealed that PiggyBac is capable of genome-wide mutagenesis. The PiggyBac screen uncovered many cancer genes not identified in previous retroviral or Sleeping Beauty transposon screens, including Spic, which encodes a PU.1-related transcription factor, and Hdac7, a histone deacetylase gene. PiggyBac and Sleeping Beauty have different integration preferences. To maximize the utility of the tool, we engineered 21 mouse lines to be compatible with both transposon systems in constitutive, tissue- or temporal-specific mutagenesis. Mice with different transposon types, copy numbers, and chromosomal locations support wide applicability. PMID:20947725

  6. CRISPR/Cas9-mediated targeted gene mutagenesis in Spodoptera litura.

    PubMed

    Bi, Hong-Lun; Xu, Jun; Tan, An-Jiang; Huang, Yong-Ping

    2016-06-01

    Custom-designed nuclease technologies such as the clustered regularly interspaced short palindromic repeat (CRISPR)-associated (Cas) system provide attractive genome editing tools for insect functional genetics. The targeted gene mutagenesis mediated by the CRISPR/Cas9 system has been achieved in several insect orders including Diptera, Lepidoptera and Coleoptera. However, little success has been reported in agricultural pests due to the lack of genomic information and embryonic microinjection techniques in these insect species. Here we report that the CRISPR/Cas9 system induced efficient gene mutagenesis in an important Lepidopteran pest Spodoptera litura. We targeted the S. litura Abdominal-A (Slabd-A) gene which is an important embryonic development gene and plays a significant role in determining the identities of the abdominal segments of insects. Direct injection of Cas9 messenger RNA and Slabd-A-specific single guide RNA (sgRNA) into S. litura embryos successfully induced the typical abd-A deficient phenotype, which shows anomalous segmentation and ectopic pigmentation during the larval stage. A polymerase chain reaction-based analysis revealed that the Cas9/sgRNA complex effectively induced a targeted mutagenesis in S. litura. These results demonstrate that the CRISPR/Cas9 system is a powerful tool for genome manipulation in Lepidopteran pests such as S. litura. PMID:27061764

  7. Induction of Pectinase Hyper Production by Multistep Mutagenesis Using a Fungal Isolate--Aspergillus flavipes.

    PubMed

    Akbar, Sabika; Prasuna, R Gyana; Khanam, Rasheeda

    2014-04-01

    Aspergillus flavipes, a slow growing pectinase producing ascomycete, was isolated from soil identified and characterised in the previously done preliminary studies. Optimisation studies revealed that Citrus peel--groundnut oil cake [CG] production media is the best media for production of high levels of pectinase up to 39 U/ml using wild strain of A. flavipes. Strain improvement of this isolated strain for enhancement of pectinase production using multistep mutagenesis procedure is the endeavour of this project. For this, the wild strain of A. flavipes was treated with both physical (UV irradiation) and chemical [Colchicine, Ethidium bromide, H2O2] mutagens to obtain Ist generation mutants. The obtained mutants were assayed and differentiated basing on pectinase productivity. The better pectinase producing strains were further subjected to multistep mutagenesis to attain stability in mutants. The goal of this project was achieved by obtaining the best pectinase secreting mutant, UV80 of 45 U/ml compared to wild strain and sister mutants. This fact was confirmed by quantitatively analysing 3rd generation mutants obtained after multistep mutagenesis. PMID:26563068

  8. Sleeping Beauty mutagenesis in a mouse medulloblastoma model defines networks that discriminate between human molecular subgroups

    PubMed Central

    Genovesi, Laura A.; Ng, Ching Ging; Davis, Melissa J.; Remke, Marc; Taylor, Michael D.; Adams, David J.; Rust, Alistair G.; Ward, Jerrold M.; Ban, Kenneth H.; Jenkins, Nancy A.; Copeland, Neal G.; Wainwright, Brandon J.

    2013-01-01

    The Sleeping Beauty (SB) transposon mutagenesis screen is a powerful tool to facilitate the discovery of cancer genes that drive tumorigenesis in mouse models. In this study, we sought to identify genes that functionally cooperate with sonic hedgehog signaling to initiate medulloblastoma (MB), a tumor of the cerebellum. By combining SB mutagenesis with Patched1 heterozygous mice (Ptch1lacZ/+), we observed an increased frequency of MB and decreased tumor-free survival compared with Ptch1lacZ/+ controls. From an analysis of 85 tumors, we identified 77 common insertion sites that map to 56 genes potentially driving increased tumorigenesis. The common insertion site genes identified in the mutagenesis screen were mapped to human orthologs, which were used to select probes and corresponding expression data from an independent set of previously described human MB samples, and surprisingly were capable of accurately clustering known molecular subgroups of MB, thereby defining common regulatory networks underlying all forms of MB irrespective of subgroup. We performed a network analysis to discover the likely mechanisms of action of subnetworks and used an in vivo model to confirm a role for a highly ranked candidate gene, Nfia, in promoting MB formation. Our analysis implicates candidate cancer genes in the deregulation of apoptosis and translational elongation, and reveals a strong signature of transcriptional regulation that will have broad impact on expression programs in MB. These networks provide functional insights into the complex biology of human MB and identify potential avenues for intervention common to all clinical subgroups. PMID:24167280

  9. Cationic Antimicrobial Peptides Promote Microbial Mutagenesis and Pathoadaptation in Chronic Infections

    PubMed Central

    Limoli, Dominique H.; Rockel, Andrea B.; Host, Kurtis M.; Jha, Anuvrat; Kopp, Benjamin T.; Hollis, Thomas; Wozniak, Daniel J.

    2014-01-01

    Acquisition of adaptive mutations is essential for microbial persistence during chronic infections. This is particularly evident during chronic Pseudomonas aeruginosa lung infections in cystic fibrosis (CF) patients. Thus far, mutagenesis has been attributed to the generation of reactive species by polymorphonucleocytes (PMN) and antibiotic treatment. However, our current studies of mutagenesis leading to P. aeruginosa mucoid conversion have revealed a potential new mutagen. Our findings confirmed the current view that reactive oxygen species can promote mucoidy in vitro, but revealed PMNs are proficient at inducing mucoid conversion in the absence of an oxidative burst. This led to the discovery that cationic antimicrobial peptides can be mutagenic and promote mucoidy. Of specific interest was the human cathelicidin LL-37, canonically known to disrupt bacterial membranes leading to cell death. An alternative role was revealed at sub-inhibitory concentrations, where LL-37 was found to induce mutations within the mucA gene encoding a negative regulator of mucoidy and to promote rifampin resistance in both P. aeruginosa and Escherichia coli. The mechanism of mutagenesis was found to be dependent upon sub-inhibitory concentrations of LL-37 entering the bacterial cytosol and binding to DNA. LL-37/DNA interactions then promote translesion DNA synthesis by the polymerase DinB, whose error-prone replication potentiates the mutations. A model of LL-37 bound to DNA was generated, which reveals amino termini α-helices of dimerized LL-37 bind the major groove of DNA, with numerous DNA contacts made by LL-37 basic residues. This demonstrates a mutagenic role for antimicrobials previously thought to be insusceptible to resistance by mutation, highlighting a need to further investigate their role in evolution and pathoadaptation in chronic infections. PMID:24763694

  10. [Rapid site-directed mutagenesis on full-length plasmid DNA by using designed restriction enzyme assisted mutagenesis].

    PubMed

    Zhang, Baozhong; Ran, Duoliang; Zhang, Xin; An, Xiaoping; Shan, Yunzhu; Zhou, Yusen; Tong, Yigang

    2009-02-01

    To use the designed restriction enzyme assisted mutagenesis technique to perform rapid site-directed mutagenesis on double-stranded plasmid DNA. The target amino acid sequence was reversely translated into DNA sequences with degenerate codons, resulting in large amount of silently mutated sequences containing various restriction endonucleases (REs). Certain mutated sequence with an appropriate RE was selected as the target DNA sequence for designing mutation primers. The full-length plasmid DNA was amplified with high-fidelity Phusion DNA polymerase and the amplified product was 5' phosphorylated by T4 polynucleotide kinase and then self-ligated. After transformation into an E. coli host the transformants were rapidly screened by cutting with the designed RE. With this strategy we successfully performed the site-directed mutagenesis on an 8 kb plasmid pcDNA3.1-pIgR and recovered the wild-type amino acid sequence of human polymeric immunoglobulin receptor (pIgR). A novel site-directed mutagenesis strategy based on DREAM was developed which exploited RE as a rapid screening measure. The highly efficient, high-fidelity Phusion DNA polymerase was applied to ensure the efficient and faithful amplification of the full-length sequence of a plasmid of up to 8 kb. This rapid mutagenesis strategy avoids using any commercial site-directed mutagenesis kits, special host strains or isotopes. PMID:19459340

  11. 2012 MUTAGENESIS GORDON RESEARCH CONFERENCE, AUGUST 19-23, 2012

    SciTech Connect

    Demple, Bruce

    2012-08-23

    The delicate balance among cellular pathways that control mutagenic changes in DNA will be the focus of the 2012 Mutagenesis Gordon Research Conference. Mutagenesis is essential for evolution, while genetic stability maintains cellular functions in all organisms from microbes to metazoans. Different systems handle DNA lesions at various times of the cell cycle and in different places within the nucleus, and inappropriate actions can lead to mutations. While mutation in humans is closely linked to disease, notably cancers, mutational systems can also be beneficial. The conference will highlight topics of beneficial mutagenesis, including full establishment of the immune system, cell survival mechanisms, and evolution and adaptation in microbial systems. Equal prominence will be given to detrimental mutation processes, especially those involved in driving cancer, neurological diseases, premature aging, and other threats to human health. Provisional session titles include Branching Pathways in Mutagenesis; Oxidative Stress and Endogenous DNA Damage; DNA Maintenance Pathways; Recombination, Good and Bad; Problematic DNA Structures; Localized Mutagenesis; Hypermutation in the Microbial World; and Mutation and Disease.

  12. Graphene oxide can induce in vitro and in vivo mutagenesis

    NASA Astrophysics Data System (ADS)

    Liu, Yuanyuan; Luo, Yi; Wu, Jing; Wang, Yinsong; Yang, Xiaoying; Yang, Rui; Wang, Baiqi; Yang, Jinrong; Zhang, Ning

    2013-12-01

    Graphene oxide (GO) has attracted enormous interests due to its extraordinary properties. Recent studies have confirmed the cytotoxicity of GO, we further investigate its mutagenic potential in this study. The results showed that GO interfered with DNA replication and induced mutagenesis at molecular level. GO treatments at concentrations of 10 and 100 μg/mL altered gene expression patterns at cellular level, and 101 differentially expressed genes mediated DNA-damage control, cell apoptosis, cell cycle, and metabolism. Intravenous injection of GO at 4 mg/kg for 5 consecutive days clearly induced formation of micronucleated polychromic erythrocytes in mice, and its mutagenesis potential appeared to be comparable to cyclophosphamide, a classic mutagen. In conclusion, GO can induce mutagenesis both in vitro and in vivo, thus extra consideration is required for its biomedical applications.

  13. An algorithm for protein engineering: simulations of recursive ensemble mutagenesis.

    PubMed Central

    Arkin, A P; Youvan, D C

    1992-01-01

    An algorithm for protein engineering, termed recursive ensemble mutagenesis, has been developed to produce diverse populations of phenotypically related mutants whose members differ in amino acid sequence. This method uses a feedback mechanism to control successive rounds of combinatorial cassette mutagenesis. Starting from partially randomized "wild-type" DNA sequences, a highly parallel search of sequence space for peptides fitting an experimenter's criteria is performed. Each iteration uses information gained from the previous rounds to search the space more efficiently. Simulations of the technique indicate that, under a variety of conditions, the algorithm can rapidly produce a diverse population of proteins fitting specific criteria. In the experimental analog, genetic selection or screening applied during recursive ensemble mutagenesis should force the evolution of an ensemble of mutants to a targeted cluster of related phenotypes. Images PMID:1502200

  14. A computer program to display codon changes caused by mutagenesis.

    PubMed

    Sirotkin, K

    1988-04-01

    A FORTRAN program for displaying the correspondence between codon changes and different possible base changes is presented. Changes of both single bases and dimers are considered. The user can specify the mutagenesis spectrum. Additionally, the user can choose whether or not to consider single or double events in a codon and whether or not to consider the possibility that the change of two bases (a dimer) can overlap a codon boundary. Furthermore, a variety of ways may be chosen to display and summarize the codon changes that can result from the specified mutagenesis. A user-supplied sequence or the genetic code table can be analyzed. PMID:3167596

  15. Mutagenesis protocols in Saccharomyces cerevisiae by in vivo overlap extension.

    PubMed

    Alcalde, Miguel

    2010-01-01

    A high recombination frequency and its ease of manipulation has made Saccharomyces cerevisiae a unique model eukaryotic organism to study homologous recombination. Indeed, the well-developed recombination machinery in S. cerevisiae facilitates the construction of mutant libraries for directed evolution experiments. In this context, in vivo overlap extension (IVOE) is a particularly attractive protocol that takes advantage of the eukaryotic apparatus to carry out combinatorial saturation mutagenesis, site-directed recombination or site-directed mutagenesis, avoiding ligation steps and additional PCR reactions that are common to standard in vitro protocols. PMID:20676972

  16. Production and Screening of High Yield Avermectin B1b Mutant of Streptomyces avermitilis 41445 Through Mutagenesis

    PubMed Central

    Siddique, Samia; Syed, Quratulain; Adnan, Ahmad; Qureshi, Fahim Ashraf

    2014-01-01

    Background: Secondary metabolite production from wild strains is very low for economical purpose therefore certain strain improvement strategies are required to achieve hundred times greater yield of metabolites. Most important strain improvement techniques include physical and chemical mutagenesis. Broad spectrum mutagenesis through UV irradiation is the most important and convenient physical method. Objectives: The present study was conducted for enhanced production of avermectin B1b from Streptomyces avermitilis 41445 by mutagenesis using ultraviolet (UV) radiation, ethidium bromide (EB), and ethyl methanesulfonate (EMS) as mutagens. Materials and Methods: S. avermitilis DSM 41445 maintained on yeast extract malt extract glucose medium (YMG) was used as inoculum for SM2 fermentation medium. Spores of S. avermitilis DSM 41445 were exposed to UV radiation for physical broad spectrum mutagenesis and to EMS and EB for chemical mutagenesis. For each mutagen, the lethality rate and mutation rate were calculated along with positive mutation rate. Results: Avermectin B1b-hyper-producing mutant, produced using these three different methods, was selected according to the HPLC results. The mutant obtained after 45 minutes of UV radiation to the spores of S. avermitilis 41445, was found to be the best mutant for the enhanced production of avermectin B1b component (254.14 mg/L). Other avermectin B1b-hyper-producing mutants, were obtained from EMS (1 µL/mL) and EB (30 µL/mL) treatments, and yielded 202.63 mg/L and 199.30 mg/L of B1b, respectively. Conclusions: The hereditary stability analysis of the UV mentioning 45 minutes revealed the UV exposure time for mutants and 3 represented the colony taken from the plate irradiated for 45 minutes mutant showed that the production of avermectin B1b remained constant and no reverse mutation occurred after 15 generations. PMID:25147669

  17. Site-targeted mutagenesis for stabilization of recombinant monoclonal antibody expressed in tobacco (Nicotiana tabacum) plants.

    PubMed

    Hehle, Verena K; Paul, Matthew J; Roberts, Victoria A; van Dolleweerd, Craig J; Ma, Julian K-C

    2016-04-01

    This study examined the degradation pattern of a murine IgG1κ monoclonal antibody expressed in and extracted from transformedNicotiana tabacum Gel electrophoresis of leaf extracts revealed a consistent pattern of recombinant immunoglobulin bands, including intact and full-length antibody, as well as smaller antibody fragments. N-terminal sequencing revealed these smaller fragments to be proteolytic cleavage products and identified a limited number of protease-sensitive sites in the antibody light and heavy chain sequences. No strictly conserved target sequence was evident, although the peptide bonds that were susceptible to proteolysis were predominantly and consistently located within or near to the interdomain or solvent-exposed regions in the antibody structure. Amino acids surrounding identified cleavage sites were mutated in an attempt to increase resistance. Different Guy's 13 antibody heavy and light chain mutant combinations were expressed transiently inN. tabacumand demonstrated intensity shifts in the fragmentation pattern, resulting in alterations to the full-length antibody-to-fragment ratio. The work strengthens the understanding of proteolytic cleavage of antibodies expressed in plants and presents a novel approach to stabilize full-length antibody by site-directed mutagenesis.-Hehle, V. K., Paul, M. J., Roberts, V. A., van Dolleweerd, C. J., Ma, J. K.-C. Site-targeted mutagenesis for stabilization of recombinant monoclonal antibody expressed in tobacco (Nicotiana tabacum) plants. PMID:26712217

  18. Site-targeted mutagenesis for stabilization of recombinant monoclonal antibody expressed in tobacco (Nicotiana tabacum) plants

    PubMed Central

    Hehle, Verena K.; Paul, Matthew J.; Roberts, Victoria A.; van Dolleweerd, Craig J.; Ma, Julian K.-C.

    2016-01-01

    This study examined the degradation pattern of a murine IgG1κ monoclonal antibody expressed in and extracted from transformed Nicotiana tabacum. Gel electrophoresis of leaf extracts revealed a consistent pattern of recombinant immunoglobulin bands, including intact and full-length antibody, as well as smaller antibody fragments. N-terminal sequencing revealed these smaller fragments to be proteolytic cleavage products and identified a limited number of protease-sensitive sites in the antibody light and heavy chain sequences. No strictly conserved target sequence was evident, although the peptide bonds that were susceptible to proteolysis were predominantly and consistently located within or near to the interdomain or solvent-exposed regions in the antibody structure. Amino acids surrounding identified cleavage sites were mutated in an attempt to increase resistance. Different Guy’s 13 antibody heavy and light chain mutant combinations were expressed transiently in N. tabacum and demonstrated intensity shifts in the fragmentation pattern, resulting in alterations to the full-length antibody-to-fragment ratio. The work strengthens the understanding of proteolytic cleavage of antibodies expressed in plants and presents a novel approach to stabilize full-length antibody by site-directed mutagenesis.—Hehle, V. K., Paul, M. J., Roberts, V. A., van Dolleweerd, C. J., Ma, J. K.-C. Site-targeted mutagenesis for stabilization of recombinant monoclonal antibody expressed in tobacco (Nicotiana tabacum) plants. PMID:26712217

  19. 2002 Gordon Research Conference on Mutagenesis. Final Progress Report

    SciTech Connect

    2002-08-02

    The Gordon Research Conference (GRC) on MUTAGENESIS was held at Bates College from 7/28/02 thru 8/2/02. The Conference was well-attended with 157 participants. The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both U.S. and foreign scientists, senior researchers, young investigators, and students.

  20. Transposon mutagenesis of Bacteroides fragilis using a mariner transposon vector.

    PubMed

    Veeranagouda, Yaligara; Husain, Fasahath; Wexler, Hannah M

    2013-08-01

    The mariner transposon vector pYV07 was tested for use in the mutagenesis of Bacteroides fragilis 638R. The transposon vector efficiently generated mutants in B. fragilis 638R. The transposon disrupted genes were scattered throughout the genome of B. fragilis 638R. This method serves as a powerful tool to study B. fragilis. PMID:23664906

  1. CRISPR/Cas9-targeted mutagenesis in Caenorhabditis elegans.

    PubMed

    Waaijers, Selma; Portegijs, Vincent; Kerver, Jana; Lemmens, Bennie B L G; Tijsterman, Marcel; van den Heuvel, Sander; Boxem, Mike

    2013-11-01

    The generation of genetic mutants in Caenorhabditis elegans has long relied on the selection of mutations in large-scale screens. Directed mutagenesis of specific loci in the genome would greatly speed up analysis of gene function. Here, we adapt the CRISPR/Cas9 system to generate mutations at specific sites in the C. elegans genome. PMID:23979586

  2. What Can a Micronucleus Teach? Learning about Environmental Mutagenesis

    ERIC Educational Resources Information Center

    Linde, Ana R.; Garcia-Vazquez, Eva

    2009-01-01

    The micronucleus test is widely employed in environmental health research. It can also be an excellent tool for learning important concepts in environmental health. In this article we present an inquiry-based laboratory exercise where students explore several theoretical and practical aspects of environmental mutagenesis employing the micronucleus…

  3. Insertional mutagenesis using Tnt1 retrotransposon in potato

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potato is the third most important food crop in the world. However, genetics and genomics research of potato has lagged behind many major crop species due to its autotetraploidy and a highly heterogeneous genome. Insertional mutagenesis using T-DNA or transposable elements, which is available in sev...

  4. Methods for targetted mutagenesis in gram-positive bacteria

    SciTech Connect

    Yang, Yunfeng

    2014-05-27

    The present invention provides a method of targeted mutagenesis in Gram-positive bacteria. In particular, the present invention provides a method that effectively integrates a suicide integrative vector into a target gene in the chromosome of a Gram-positive bacterium, resulting in inactivation of the target gene.

  5. Coupled mutagenesis screens and genetic mapping in zebrafish.

    PubMed Central

    Rawls, John F; Frieda, Matthew R; McAdow, Anthony R; Gross, Jason P; Clayton, Chad M; Heyen, Candy K; Johnson, Stephen L

    2003-01-01

    Forward genetic analysis is one of the principal advantages of the zebrafish model system. However, managing zebrafish mutant lines derived from mutagenesis screens and mapping the corresponding mutations and integrating them into the larger collection of mutations remain arduous tasks. To simplify and focus these endeavors, we developed an approach that facilitates the rapid mapping of new zebrafish mutations as they are generated through mutagenesis screens. We selected a minimal panel of 149 simple sequence length polymorphism markers for a first-pass genome scan in crosses involving C32 and SJD inbred lines. We also conducted a small chemical mutagenesis screen that identified several new mutations affecting zebrafish embryonic melanocyte development. Using our first-pass marker panel in bulked-segregant analysis, we were able to identify the genetic map positions of these mutations as they were isolated in our screen. Rapid mapping of the mutations facilitated stock management, helped direct allelism tests, and should accelerate identification of the affected genes. These results demonstrate the efficacy of coupling mutagenesis screens with genetic mapping. PMID:12663538

  6. Favipiravir elicits antiviral mutagenesis during virus replication in vivo

    PubMed Central

    Arias, Armando; Thorne, Lucy; Goodfellow, Ian

    2014-01-01

    Lethal mutagenesis has emerged as a novel potential therapeutic approach to treat viral infections. Several studies have demonstrated that increases in the high mutation rates inherent to RNA viruses lead to viral extinction in cell culture, but evidence during infections in vivo is limited. In this study, we show that the broad-range antiviral nucleoside favipiravir reduces viral load in vivo by exerting antiviral mutagenesis in a mouse model for norovirus infection. Increased mutation frequencies were observed in samples from treated mice and were accompanied with lower or in some cases undetectable levels of infectious virus in faeces and tissues. Viral RNA isolated from treated animals showed reduced infectivity, a feature of populations approaching extinction during antiviral mutagenesis. These results suggest that favipiravir can induce norovirus mutagenesis in vivo, which in some cases leads to virus extinction, providing a proof-of-principle for the use of favipiravir derivatives or mutagenic nucleosides in the clinical treatment of noroviruses. DOI: http://dx.doi.org/10.7554/eLife.03679.001 PMID:25333492

  7. Targeted mutagenesis in mammalian cells mediated by intracellular triple helix formation.

    PubMed Central

    Wang, G; Levy, D D; Seidman, M M; Glazer, P M

    1995-01-01

    As an alternative to standard gene transfer techniques for genetic manipulation, we have investigated the use of triple helix-forming oligonucleotides to target mutations to selected genes within mammalian cells. By treating monkey COS cells with oligonucleotides linked to psoralen, we have generated targeted mutations in a simian virus 40 (SV40) vector contained within the cells via intracellular triple helix formation. Oligonucleotide entry into the cells and sequence-specific triplex formation within the SV40 DNA deliver the psoralen to the targeted site. Photoactivation of the psoralen by long-wavelength UV light yields adducts and thereby mutations at that site. We engineered into the SV40 vector novel supF mutation reporter genes containing modified polypurine sites amenable to triplex formation. By comparing the abilities of a series of oligonucleotides to target these new sites, we show that targeted mutagenesis in vivo depends on the strength and specificity of the third-strand binding. Oligonucleotides with weak target site binding affinity or with only partial target site homology were ineffective at inducing mutations in the SV40 vectors within the COS cells. We also show that the targeted mutagenesis is dependent on the oligonucleotide concentration and is influenced by the timing of the oligonucleotide treatment and of the UV irradiation of the cells. Frequencies of intracellular targeted mutagenesis in the range of 1 to 2% were observed, depending upon the conditions of the experiment. DNA sequence analysis revealed that most of the mutations were T.A-to-A.T transversions precisely at the targeted psoralen intercalation site. Several deletions encompassing that site were also seen. The ability to target mutations to selected sites within mammalian cells by using modified triplex-forming oligonucleotides may provide a new research tool and may eventually lead to therapeutic applications. PMID:7862165

  8. Illegitimate recombination: An efficient method for random mutagenesis in Mycobacterium avium subsp. hominissuis

    PubMed Central

    2012-01-01

    Background The genus Mycobacterium (M.) comprises highly pathogenic bacteria such as M. tuberculosis as well as environmental opportunistic bacteria called non-tuberculous mycobacteria (NTM). While the incidence of tuberculosis is declining in the developed world, infection rates by NTM are increasing. NTM are ubiquitous and have been isolated from soil, natural water sources, tap water, biofilms, aerosols, dust and sawdust. Lung infections as well as lymphadenitis are most often caused by M. avium subsp. hominissuis (MAH), which is considered to be among the clinically most important NTM. Only few virulence genes from M. avium have been defined among other things due to difficulties in generating M. avium mutants. More efforts in developing new methods for mutagenesis of M. avium and identification of virulence-associated genes are therefore needed. Results We developed a random mutagenesis method based on illegitimate recombination and integration of a Hygromycin-resistance marker. Screening for mutations possibly affecting virulence was performed by monitoring of pH resistance, colony morphology, cytokine induction in infected macrophages and intracellular persistence. Out of 50 randomly chosen Hygromycin-resistant colonies, four revealed to be affected in virulence-related traits. The mutated genes were MAV_4334 (nitroreductase family protein), MAV_5106 (phosphoenolpyruvate carboxykinase), MAV_1778 (GTP-binding protein LepA) and MAV_3128 (lysyl-tRNA synthetase LysS). Conclusions We established a random mutagenesis method for MAH that can be easily carried out and combined it with a set of phenotypic screening methods for the identification of virulence-associated mutants. By this method, four new MAH genes were identified that may be involved in virulence. PMID:22966811

  9. Sleeping Beauty-mediated somatic mutagenesis implicates CSF1 in the formation of high grade astrocytomas

    PubMed Central

    Bender, Aaron M.; Collier, Lara S.; Rodriguez, Fausto J.; Tieu, Christina; Larson, Jon D.; Halder, Chandralekha; Mahlum, Eric; Kollmeyer, Thomas M.; Akagi, Keiko; Sarkar, Gobinda; Largaespada, David A.; Jenkins, Robert B.

    2010-01-01

    The Sleeping Beauty (SB) transposon system has been used as an insertional mutagenesis tool to identify novel cancer genes. To identify glioma-associated genes, we evaluated tumor formation in brain tissue from 117 transgenic mice that had undergone constitutive SB-mediated transposition. Upon analysis, 21 samples (18%) contained neoplastic tissue with features of high grade astrocytomas. These tumors expressed glial markers and were histologically similar to human glioma. Genomic DNA from SB-induced astrocytoma tissue was extracted and transposon insertion sites were identified. Insertions in the growth factor gene Csf1 were found in 13 of the 21 tumors (62%), clustered in introns 5 and 8. Using RT-PCR, we documented increased Csf1 RNAs in tumor versus adjacent normal tissue, with identification of transposon-terminated Csf1 mRNAs in astrocytomas with SB insertions in intron 8. Analysis of human glioblastomas revealed increased levels of Csf1 RNA and protein. Together, these results indicate that SB-insertional mutagenesis can identify high-grade astrocytoma-associated genes, and they imply an important role for CSF1 in the development of these tumors. PMID:20388773

  10. Identification of 17 hearing impaired mouse strains in the TMGC ENU-mutagenesis screen

    SciTech Connect

    Kermany, Mohammad; Parker, Lisan; Guo, Yun-Kai; Miller, Darla R; Swanson, Douglas J; Yoo, Tai-June; Goldowitz, Daniel; Zuo, Jian

    2006-01-01

    The Tennessee Mouse Genome Consortium (TMGC) employed an N-ethyl-N-nitrosourea (ENU)-mutagenesis scheme to identify mouse recessive mutants with hearing phenotypes. We employed auditory brainstem responses (ABR) to click and 8, 16, and 32 kHz stimuli and screened 285 pedigrees (1819 mice of 8-11 weeks old in various mixed genetic backgrounds) each bred to carry a homozygous ENU-induced mutation. To define mutant pedigrees, we measured P12 mice per pedigree in P2 generations and used a criterion where the mean ABR threshold per pedigree was two standard deviations above the mean of all offspring from the same parental strain. We thus identified 17 mutant pedigrees (6%), all exhibiting hearing loss at high frequencies (P16 kHz) with an average threshold elevation of 30-35 dB SPL. Interestingly, four mutants showed sex-biased hearing loss and six mutants displayed wide range frequency hearing loss. Temporal bone histology revealed that six of the first nine mutants displayed cochlear morphological defects: degeneration of spiral ganglia, spiral ligament fibrocytes or inner hair cells (but not outer hair cells) mostly in basal turns. In contrast to other ENU-mutagenesis auditory screens, our screen identified high-frequency, mild and sex-biased hearing defects. Further characterization of these 17 mouse models will advance our understanding of presbycusis and noise-induced hearing loss in humans.

  11. Specific mutagenesis of a chlorophyll-binding protein. Progress report.

    SciTech Connect

    Eaton-Rye, Dr., Julian; Shen, Gaozhong

    1990-01-01

    During the first phase of the project regarding specific mutagenesis of the chlorophyll-binding protein CP47 in photosystem II (PS II) most of the time has been devoted to (1) establishment of an optimal procedure for the reintroduction of psbB (the gene encoding CP47) carrying a site-directed mutation into the experimental organism, the cyanobacterium Synechocystis sp. PCC 6803, (2) preparations for site-directed mutagenesis, and (3) creation and analysis of chimaeric spinach/cyanobacterial CP47 mutants of Synechocystis. In the coming year, psbB constructs with site-directed mutations in potential chlorophyll-binding regions of CP47 will be introduced into the Synechocystis genome, and site-directed mutants will be characterized according to procedures described in the original project description. In addition, analysis of chimaeric CP47 mutants will be continued.

  12. Minimizing off-Target Mutagenesis Risks Caused by Programmable Nucleases.

    PubMed

    Ishida, Kentaro; Gee, Peter; Hotta, Akitsu

    2015-01-01

    Programmable nucleases, such as zinc finger nucleases (ZFNs), transcription activator like effector nucleases (TALENs), and clustered regularly interspersed short palindromic repeats associated protein-9 (CRISPR-Cas9), hold tremendous potential for applications in the clinical setting to treat genetic diseases or prevent infectious diseases. However, because the accuracy of DNA recognition by these nucleases is not always perfect, off-target mutagenesis may result in undesirable adverse events in treated patients such as cellular toxicity or tumorigenesis. Therefore, designing nucleases and analyzing their activity must be carefully evaluated to minimize off-target mutagenesis. Furthermore, rigorous genomic testing will be important to ensure the integrity of nuclease modified cells. In this review, we provide an overview of available nuclease designing platforms, nuclease engineering approaches to minimize off-target activity, and methods to evaluate both on- and off-target cleavage of CRISPR-Cas9. PMID:26501275

  13. Structural evidence for the rare tautomer hypothesis of spontaneous mutagenesis

    SciTech Connect

    Wang, Weina; Hellinga, Homme W.; Beese, Lorena S.

    2012-05-10

    Even though high-fidelity polymerases copy DNA with remarkable accuracy, some base-pair mismatches are incorporated at low frequency, leading to spontaneous mutagenesis. Using high-resolution X-ray crystallographic analysis of a DNA polymerase that catalyzes replication in crystals, we observe that a C {center_dot} A mismatch can mimic the shape of cognate base pairs at the site of incorporation. This shape mimicry enables the mismatch to evade the error detection mechanisms of the polymerase, which would normally either prevent mismatch incorporation or promote its nucleolytic excision. Movement of a single proton on one of the mismatched bases alters the hydrogen-bonding pattern such that a base pair forms with an overall shape that is virtually indistinguishable from a canonical, Watson-Crick base pair in double-stranded DNA. These observations provide structural evidence for the rare tautomer hypothesis of spontaneous mutagenesis, a long-standing concept that has been difficult to demonstrate directly.

  14. Antiviral Strategies Based on Lethal Mutagenesis and Error Threshold.

    PubMed

    Perales, Celia; Domingo, Esteban

    2016-01-01

    The concept of error threshold derived from quasispecies theory is at the basis of lethal mutagenesis, a new antiviral strategy based on the increase of virus mutation rate above an extinction threshold. Research on this strategy is justified by several inhibitor-escape routes that viruses utilize to ensure their survival. Successive steps in the transition from an organized viral quasispecies into loss of biologically meaningful genomic sequences are dissected. The possible connections between theoretical models and experimental observations on lethal mutagenesis are reviewed. The possibility of using combination of virus-specific mutagenic nucleotide analogues and broad-spectrum, non-mutagenic inhibitors is evaluated. We emphasize the power that quasispecies theory has had to stimulate exploration of new means to combat pathogenic viruses. PMID:26294225

  15. Efficient site-directed saturation mutagenesis using degenerate oligonucleotides.

    PubMed

    Steffens, David L; Williams, John G K

    2007-07-01

    We describe a reliable protocol for constructing single-site saturation mutagenesis libraries consisting of all 20 naturally occurring amino acids at a specific site within a protein. Such libraries are useful for structure-function studies and directed evolution. This protocol extends the utility of Stratagene's QuikChange Site-Directed Mutagenesis Kit, which is primarily recommended for single amino acid substitutions. Two complementary primers are synthesized, containing a degenerate mixture of the four bases at the three positions of the selected codon. These primers are added to starting plasmid template and thermal cycled to produce mutant DNA molecules, which are subsequently transformed into competent bacteria. The protocol does not require purification of mutagenic oligonucleotides or PCR products. This reduces both the cost and turnaround time in high-throughput directed evolution applications. We have utilized this protocol to generate over 200 site-saturation libraries in a DNA polymerase, with a success rate of greater than 95%. PMID:17595310

  16. Minimizing off-Target Mutagenesis Risks Caused by Programmable Nucleases

    PubMed Central

    Ishida, Kentaro; Gee, Peter; Hotta, Akitsu

    2015-01-01

    Programmable nucleases, such as zinc finger nucleases (ZFNs), transcription activator like effector nucleases (TALENs), and clustered regularly interspersed short palindromic repeats associated protein-9 (CRISPR-Cas9), hold tremendous potential for applications in the clinical setting to treat genetic diseases or prevent infectious diseases. However, because the accuracy of DNA recognition by these nucleases is not always perfect, off-target mutagenesis may result in undesirable adverse events in treated patients such as cellular toxicity or tumorigenesis. Therefore, designing nucleases and analyzing their activity must be carefully evaluated to minimize off-target mutagenesis. Furthermore, rigorous genomic testing will be important to ensure the integrity of nuclease modified cells. In this review, we provide an overview of available nuclease designing platforms, nuclease engineering approaches to minimize off-target activity, and methods to evaluate both on- and off-target cleavage of CRISPR-Cas9. PMID:26501275

  17. Insertional mutagenesis by transposable elements in the mammalian genome.

    PubMed

    Amariglio, N; Rechavi, G

    1993-01-01

    Several mammalian repetitive transposable genetic elements were characterized in recent years, and their role in mutagenesis is delineated in this review. Two main groups have been described: elements with symmetrical termini such as the murine IAP sequences and the human THE 1 elements and elements characterized by a poly-A rich tail at the 3' end such as the SINE and LINE sequences. The characteristic property of such mobile elements to spread and integrate in the host genome leads to insertional mutagenesis. Both germline and somatic mutations have been documented resulting from the insertion of the various types of mammalian repetitive transposable genetic elements. As foreseen by Barbara McClintock, such genetic events can cause either the activation or the inactivation of specific genes, resulting in their identification via an altered phenotype. Several disease states, such as hemophilia and cancer, are the result of this apparent aspect of genome instability. PMID:8385004

  18. European Community research on environmental mutagenesis and carcinogenesis.

    PubMed Central

    Sors, A I

    1993-01-01

    Within the 12 Member States of the European Community (EC), environmental policy is now formulated primarily at Community level. As a result, the EC has important regulatory responsibilities for the protection of workers, consumers, and the general public from risks that may arise from environmental chemicals, foremost among them potential carcinogens and mutagens. An important part of EC environmental research and development is intended to provide a scientific basis for these regulations as well as increasing understanding of the basic mechanisms involved in environmental carcinogenesis and mutagenesis. This paper contains a brief introduction to EC environment policy and research, followed by an overview of EC chemicals control activities that are of particular relevance to the research and development program. Community-level research on environmental mutagenesis and carcinogenesis is then reviewed in some detail, including the achievements of recent projects, the scientific content of the current program, and perspectives for the future. PMID:8143645

  19. Oligonucleotide-directed site-specific mutagenesis in Drosophila melanogaster.

    PubMed Central

    Banga, S S; Boyd, J B

    1992-01-01

    An efficient technique has been developed for performing in vivo site-directed mutagenesis in Drosophila melanogaster. This procedure involves directed repair of P-element-induced DNA lesions after injection of a modified DNA sequence into early embryos. An oligonucleotide of 50 base pairs, whose sequence spans the P-element insertion site, mediates base replacement in the endogenous gene. Restriction mapping, DNA sequencing, and polymerase chain reaction analysis demonstrate that base substitutions present in an injected oligonucleotide are incorporated into genomic sequences flanking a P insertion site in the white gene. This analysis suggests that progeny bearing directed mutations are recovered with a frequency of about 0.5 x 10(-3). Because Drosophila remains a premier organism for the analysis of eukaryotic gene regulation, this system should find strong application in that analysis as well as in the analysis of DNA recombination, conversion, repair, and mutagenesis. Images PMID:1311850

  20. A Chemical Mutagenesis Screen Identifies Mouse Models with ERG Defects.

    PubMed

    Charette, Jeremy R; Samuels, Ivy S; Yu, Minzhong; Stone, Lisa; Hicks, Wanda; Shi, Lan Ying; Krebs, Mark P; Naggert, Jürgen K; Nishina, Patsy M; Peachey, Neal S

    2016-01-01

    Mouse models provide important resources for many areas of vision research, pertaining to retinal development, retinal function and retinal disease. The Translational Vision Research Models (TVRM) program uses chemical mutagenesis to generate new mouse models for vision research. In this chapter, we report the identification of mouse models for Grm1, Grk1 and Lrit3. Each of these is characterized by a primary defect in the electroretinogram. All are available without restriction to the research community. PMID:26427409

  1. Metal mutagenesis in transgenic Chinese hamster cell lines.

    PubMed Central

    Klein, C B; Kargacin, B; Su, L; Cosentino, S; Snow, E T; Costa, M

    1994-01-01

    Metals are toxic agents for which genotoxic effects are often difficult to demonstrate. To study metal mutagenesis, we have used two stable hprt/gpt+ transgenic cell lines that were derived from Chinese hamster V79 cells. Both the G12 and G10 cell lines are known to be very sensitive to clastogens such as X-rays and bleomycin, with the mutagenic response of the integrated xanthine guanine phosphoribosyl transferase (gpt) gene in G10 usually exceeding that of the same gene in the transgenic G12 cells. In studies with carcinogenic insoluble nickel compounds, a high level of mutagenesis was found at the gpt locus of G12 cells but not at the endogenous hypoxanthine phosphoribosyl transferase (hprt) locus of V79 cells. We have since demonstrated the similar recovery of a high frequency of viable G12 mutants with other insoluble nickel salts including nickel oxides (black and green). The relative mutant yield for the insoluble nickel compounds (G12 > G10) is the opposite of that obtained with nonmetal clastogens (G10 > G12). In the G12 cells, nickel mutagenesis may be related to the integration of the gpt sequence into a heterochromatic region of the genome. For some of the insoluble nickel compounds, significant inhibition of both cytotoxicity and mutant yield resulted when the G12 cells were pretreated with vitamin E. In comparison with the nickel studies, the mutagenic responses to chromium compounds in these cell lines were not as dramatic. Mutagenesis of the gpt target could not be demonstrated with other metals such as mercury or vanadium. PMID:7843139

  2. Transcriptional mutagenesis: causes and involvement in tumor development

    PubMed Central

    Brégeon, Damien; Doetsch, Paul W.

    2013-01-01

    The majority of normal cells in a human do not multiply continuously but are quiescent and devote most of their energy to gene transcription. When DNA damages in the transcribed strand of an active gene are bypassed by an RNA polymerase, they can miscode at the damaged site and produce mutant transcripts. This process known as transcriptional mutagenesis can lead to the production of mutant proteins that could be important in tumor development. PMID:21346784

  3. Nitrosoguanidine and ultraviolet light mutagenesis in Eudorina elegans (chlorophyceae)

    SciTech Connect

    Toby, A.L.; Kemp, C.L.

    1980-06-01

    Reversion of an acetate requiring strain and the induction of sectored colonies are used to establish optimal conditions for nitrosoguanidine and ultraviolet light mutagenesis in Eudorina elegans Ehrenberg. Nitrosoguanidine is more effective in causing reversion of the acetate requiring strain and inducing auxotrophs. Morphogenetic mutants are more readily induced by ultraviolet light. The effectiveness of ultraviolet light as a mutagen is cell cycle dependent whereas the mutagenic action of nitrosoguanidine is not.

  4. Targeted mutagenesis of Arabidopsis thaliana using engineered TAL effector nucleases.

    PubMed

    Christian, Michelle; Qi, Yiping; Zhang, Yong; Voytas, Daniel F

    2013-10-01

    Custom TAL effector nucleases (TALENs) are increasingly used as reagents to manipulate genomes in vivo. Here, we used TALENs to modify the genome of the model plant, Arabidopsis thaliana. We engineered seven TALENs targeting five Arabidopsis genes, namely ADH1, TT4, MAPKKK1, DSK2B, and NATA2. In pooled seedlings expressing the TALENs, we observed somatic mutagenesis frequencies ranging from 2-15% at the intended targets for all seven TALENs. Somatic mutagenesis frequencies as high as 41-73% were observed in individual transgenic plant lines expressing the TALENs. Additionally, a TALEN pair targeting a tandemly duplicated gene induced a 4.4-kb deletion in somatic cells. For the most active TALEN pairs, namely those targeting ADH1 and NATA2, we found that TALEN-induced mutations were transmitted to the next generation at frequencies of 1.5-12%. Our work demonstrates that TALENs are useful reagents for achieving targeted mutagenesis in this important plant model. PMID:23979944

  5. Development of an inducible transposon system for efficient random mutagenesis in Clostridium acetobutylicum

    PubMed Central

    Zhang, Ying; Xu, Shu; Chai, Changsheng; Yang, Sheng; Jiang, Weihong; Minton, Nigel P.; Gu, Yang

    2016-01-01

    Clostridium acetobutylicum is an industrially important Gram-positive organism, which is capable of producing economically important chemicals in the ABE (Acetone, Butanol and Ethanol) fermentation process. Renewed interests in the ABE process necessitate the availability of additional genetics tools to facilitate the derivation of a greater understanding of the underlying metabolic and regulatory control processes in operation through forward genetic strategies. In this study, a xylose inducible, mariner-based, transposon system was developed and shown to allow high-efficient random mutagenesis in the model strain ATCC 824. Of the thiamphenicol resistant colonies obtained, 91.9% were shown to be due to successful transposition of the catP-based mini-transposon element. Phenotypic screening of 200 transposon clones revealed a sporulation-defective clone with an insertion in spo0A, thereby demonstrating that this inducible transposon system can be used for forward genetic studies in C. acetobutylicum. PMID:27001972

  6. Systematic analysis of the kalimantacin assembly line NRPS module using an adapted targeted mutagenesis approach.

    PubMed

    Uytterhoeven, Birgit; Appermans, Kenny; Song, Lijiang; Masschelein, Joleen; Lathouwers, Thomas; Michiels, Chris W; Lavigne, Rob

    2016-04-01

    Kalimantacin is an antimicrobial compound with strong antistaphylococcal activity that is produced by a hybrid trans-acyltransferase polyketide synthase/nonribosomal peptide synthetase system in Pseudomonas fluorescens BCCM_ID9359. We here present a systematic analysis of the substrate specificity of the glycine-incorporating adenylation domain from the kalimantacin biosynthetic assembly line by a targeted mutagenesis approach. The specificity-conferring code was adapted for use in Pseudomonas and mutated adenylation domain active site sequences were introduced in the kalimantacin gene cluster, using a newly adapted ligation independent cloning method. Antimicrobial activity screens and LC-MS analyses revealed that the production of the kalimantacin analogues in the mutated strains was abolished. These results support the idea that further insight in the specificity of downstream domains in nonribosomal peptide synthetases and polyketide synthases is required to efficiently engineer these strains in vivo. PMID:26666990

  7. Development of an inducible transposon system for efficient random mutagenesis in Clostridium acetobutylicum.

    PubMed

    Zhang, Ying; Xu, Shu; Chai, Changsheng; Yang, Sheng; Jiang, Weihong; Minton, Nigel P; Gu, Yang

    2016-04-01

    Clostridium acetobutylicum is an industrially important Gram-positive organism, which is capable of producing economically important chemicals in the ABE (Acetone, Butanol and Ethanol) fermentation process. Renewed interests in the ABE process necessitate the availability of additional genetics tools to facilitate the derivation of a greater understanding of the underlying metabolic and regulatory control processes in operation through forward genetic strategies. In this study, a xylose inducible, mariner-based, transposon system was developed and shown to allow high-efficient random mutagenesis in the model strain ATCC 824. Of the thiamphenicol resistant colonies obtained, 91.9% were shown to be due to successful transposition of the catP-based mini-transposon element. Phenotypic screening of 200 transposon clones revealed a sporulation-defective clone with an insertion in spo0A, thereby demonstrating that this inducible transposon system can be used for forward genetic studies in C. acetobutylicum. PMID:27001972

  8. Structure-based mutagenesis reveals the albumin-binding site of the neonatal Fc receptor

    PubMed Central

    Andersen, Jan Terje; Dalhus, Bjørn; Cameron, Jason; Daba, Muluneh Bekele; Plumridge, Andrew; Evans, Leslie; Brennan, Stephan O.; Gunnarsen, Kristin Støen; Bjørås, Magnar; Sleep, Darrell; Sandlie, Inger

    2012-01-01

    Albumin is the most abundant protein in blood where it has a pivotal role as a transporter of fatty acids and drugs. Like IgG, albumin has long serum half-life, protected from degradation by pH-dependent recycling mediated by interaction with the neonatal Fc receptor, FcRn. Although the FcRn interaction with IgG is well characterized at the atomic level, its interaction with albumin is not. Here we present structure-based modelling of the FcRn–albumin complex, supported by binding analysis of site-specific mutants, providing mechanistic evidence for the presence of pH-sensitive ionic networks at the interaction interface. These networks involve conserved histidines in both FcRn and albumin domain III. Histidines also contribute to intramolecular interactions that stabilize the otherwise flexible loops at both the interacting surfaces. Molecular details of the FcRn–albumin complex may guide the development of novel albumin variants with altered serum half-life as carriers of drugs. PMID:22215085

  9. Extensive site-directed mutagenesis reveals interconnected functional units in the alkaline phosphatase active site.

    PubMed

    Sunden, Fanny; Peck, Ariana; Salzman, Julia; Ressl, Susanne; Herschlag, Daniel

    2015-01-01

    Enzymes enable life by accelerating reaction rates to biological timescales. Conventional studies have focused on identifying the residues that have a direct involvement in an enzymatic reaction, but these so-called 'catalytic residues' are embedded in extensive interaction networks. Although fundamental to our understanding of enzyme function, evolution, and engineering, the properties of these networks have yet to be quantitatively and systematically explored. We dissected an interaction network of five residues in the active site of Escherichia coli alkaline phosphatase. Analysis of the complex catalytic interdependence of specific residues identified three energetically independent but structurally interconnected functional units with distinct modes of cooperativity. From an evolutionary perspective, this network is orders of magnitude more probable to arise than a fully cooperative network. From a functional perspective, new catalytic insights emerge. Further, such comprehensive energetic characterization will be necessary to benchmark the algorithms required to rationally engineer highly efficient enzymes. PMID:25902402

  10. Genes Associated with Desiccation and Osmotic Stress in Listeria monocytogenes as Revealed by Insertional Mutagenesis.

    PubMed

    Hingston, Patricia A; Piercey, Marta J; Truelstrup Hansen, Lisbeth

    2015-08-15

    Listeria monocytogenes is a foodborne pathogen whose survival in food processing environments may be associated with its tolerance to desiccation. To probe the molecular mechanisms used by this bacterium to adapt to desiccation stress, a transposon library of 11,700 L. monocytogenes mutants was screened, using a microplate assay, for strains displaying increased or decreased desiccation survival (43% relative humidity, 15°C) in tryptic soy broth (TSB). The desiccation phenotypes of selected mutants were subsequently assessed on food-grade stainless steel (SS) coupons in TSB plus 1% glucose (TSB-glu). Single transposon insertions in mutants exhibiting a change in desiccation survival of >0.5 log CFU/cm(2) relative to that of the wild type were determined by sequencing arbitrary PCR products. Strain morphology, motility, and osmotic stress survival (in TSB-glu plus 20% NaCl) were also analyzed. The initial screen selected 129 desiccation-sensitive (DS) and 61 desiccation-tolerant (DT) mutants, out of which secondary screening on SS confirmed 15 DT and 15 DS mutants. Among the DT mutants, seven immotile and flagellum-less strains contained transposons in genes involved in flagellum biosynthesis (fliP, flhB, flgD, flgL) and motor control (motB, fliM, fliY), while others harbored transposons in genes involved in membrane lipid biosynthesis, energy production, potassium uptake, and virulence. The genes that were interrupted in the 15 DS mutants included those involved in energy production, membrane transport, protein metabolism, lipid biosynthesis, oxidative damage control, and putative virulence. Five DT and 14 DS mutants also demonstrated similar significantly (P < 0.05) different survival relative to that of the wild type when exposed to osmotic stress, demonstrating that some genes likely have similar roles in allowing the organism to survive the two water stresses. PMID:26025900

  11. Genes Associated with Desiccation and Osmotic Stress in Listeria monocytogenes as Revealed by Insertional Mutagenesis

    PubMed Central

    Hingston, Patricia A.; Piercey, Marta J.

    2015-01-01

    Listeria monocytogenes is a foodborne pathogen whose survival in food processing environments may be associated with its tolerance to desiccation. To probe the molecular mechanisms used by this bacterium to adapt to desiccation stress, a transposon library of 11,700 L. monocytogenes mutants was screened, using a microplate assay, for strains displaying increased or decreased desiccation survival (43% relative humidity, 15°C) in tryptic soy broth (TSB). The desiccation phenotypes of selected mutants were subsequently assessed on food-grade stainless steel (SS) coupons in TSB plus 1% glucose (TSB-glu). Single transposon insertions in mutants exhibiting a change in desiccation survival of >0.5 log CFU/cm2 relative to that of the wild type were determined by sequencing arbitrary PCR products. Strain morphology, motility, and osmotic stress survival (in TSB-glu plus 20% NaCl) were also analyzed. The initial screen selected 129 desiccation-sensitive (DS) and 61 desiccation-tolerant (DT) mutants, out of which secondary screening on SS confirmed 15 DT and 15 DS mutants. Among the DT mutants, seven immotile and flagellum-less strains contained transposons in genes involved in flagellum biosynthesis (fliP, flhB, flgD, flgL) and motor control (motB, fliM, fliY), while others harbored transposons in genes involved in membrane lipid biosynthesis, energy production, potassium uptake, and virulence. The genes that were interrupted in the 15 DS mutants included those involved in energy production, membrane transport, protein metabolism, lipid biosynthesis, oxidative damage control, and putative virulence. Five DT and 14 DS mutants also demonstrated similar significantly (P < 0.05) different survival relative to that of the wild type when exposed to osmotic stress, demonstrating that some genes likely have similar roles in allowing the organism to survive the two water stresses. PMID:26025900

  12. Chemical mutagenesis: an emerging issue for public health.

    PubMed Central

    Claxton, L D; Barry, P Z

    1977-01-01

    Chemical mutagens are recognized as prevalent in the environment and a potential threat to the health of future generations. This paper presents an overview of chemical mutagenesis as an issue for public health. Several problems in the determination of risk to human populations are discussed, including difficulties of extrapolating scientific data to humans, the latency period between exposure and recognizable genetic damage, and the large number of chemicals which must be tested. Test systems are described. Possibilities of control through federal regulation are discussed. PMID:911015

  13. Mutagenesis of the borage Delta(6) fatty acid desaturase.

    PubMed

    Sayanova, O; Beaudoin, F; Libisch, B; Shewry, P; Napier, J

    2000-12-01

    The consensus sequence of the third histidine box of a range of Delta(5), Delta(6), Delta(8) and sphingolipid desaturases differs from that of the membrane-bound non-fusion Delta(12) and Delta(15) desaturases in the presence of glutamine instead of histidine. We have used site-directed mutagenesis to determine the importance of glutamine and other residues of the third histidine box and created a chimaeric enzyme to determine the ability of the Cyt b(5) fusion domain from the plant sphingolipid desaturase to substitute for the endogenous domain of the Delta(6) desaturase. PMID:11171152

  14. Pollen tetrads in the detection of environmental mutagenesis

    SciTech Connect

    Mulcahy, D.L.

    1981-01-01

    Although pollen is a very sensitive indicator of environmental mutagenesis, it is also sensitive to nonmutagenic environmental stress. By analyzing pollen tetrads, rather than individual pollen grains, it is possible to distinguish between mutagenic and nonmutagenic influences. Another advantage of using pollen tetrads in mutagenicity studies is that it is possible to discriminate between pre- and post-pachytene mutations. This eliminates the mutant sector problem of a single mutational event giving rise to a large number of mutant cells. Methods of analyzing pollen tetrads are described.

  15. Mutagenesis in Newts: Protocol for Iberian Ribbed Newts.

    PubMed

    Hayashi, Toshinori; Takeuchi, Takashi

    2016-01-01

    Newts have the remarkable capability of organ/tissue regeneration, and have been used as a unique experimental model for regenerative biology. The Iberian ribbed newt (Pleurodeles waltl) is suitable as a model animal. We have established methods for artificial insemination and efficient transgenesis using P. waltl newts. In addition to the transgenic technique, development of TALENs enables targeting mutagenesis in the newts. We have reported that TALENs efficiently disrupted targeted genes in newt embryos. In this chapter, we introduce a protocol for TALEN-mediated gene targeting in Iberian ribbed newts. PMID:26443218

  16. Therapeutic genome mutagenesis using synthetic donor DNA and triplex-forming molecules.

    PubMed

    Reza, Faisal; Glazer, Peter M

    2015-01-01

    Genome mutagenesis can be achieved in a variety of ways, though a select few are suitable for therapeutic settings. Among them, the harnessing of intracellular homologous recombination affords the safety and efficacy profile suitable for such settings. Recombinagenic donor DNA and mutagenic triplex-forming molecules co-opt this natural recombination phenomenon to enable the specific, heritable editing and targeting of the genome. Editing the genome is achieved by designing the sequence-specific recombinagenic donor DNA to have base mismatches, insertions, and deletions that will be incorporated into the genome when it is used as a template for recombination. Targeting the genome is similarly achieved by designing the sequence-specific mutagenic triplex-forming molecules to further recruit the recombination machinery thereby upregulating its activity with the recombinagenic donor DNA. This combination of extracellularly introduced, designed synthetic molecules and intercellularly ubiquitous, evolved natural machinery enables the mutagenesis of chromosomes and engineering of whole genomes with great fidelity while limiting nonspecific interactions. Herein, we demonstrate the harnessing of recombinagenic donor DNA and mutagenic triplex-forming molecular technology for potential therapeutic applications. These demonstrations involve, among others, utilizing this technology to correct genes so that they become physiologically functional, to induce dormant yet functional genes in place of non-functional counterparts, to place induced genes under regulatory elements, and to disrupt genes to abrogate a cellular vulnerability. Ancillary demonstrations of the design and synthesis of this recombinagenic and mutagenic molecular technology as well as their delivery and assayed interaction with duplex DNA reveal a potent technological platform for engineering specific changes into the living genome. PMID:25408401

  17. Breeding of New Strains of Mushroom by Basidiospore Chemical Mutagenesis

    PubMed Central

    Lee, Jia; Kang, Hyeon-Woo; Kim, Sang-Woo; Lee, Chang-Yun

    2011-01-01

    Chemical mutagenesis of basidiospores of Hypsizygus marmoreus generated new mushroom strains. The basidospores were treated with methanesulfonate methylester, an alkylating agent, to yield 400 mutant monokaryotic mycelia. Twenty fast-growing mycelia were selected and mated each other by hyphal fusion. Fifty out of the 190 matings were successful (mating rate of 26.3%), judged by the formation of clamp connections. The mutant dikaryons were cultivated to investigate their morphological and cultivation characteristics. Mutant strains No. 3 and No. 5 showed 10% and 6% increase in fruiting body production, respectively. Eight mutant strains showed delayed and reduced primordia formation, resulting in the reduced production yield with prolonged cultivation period. The number of the fruiting bodies of mutant No. 31, which displayed reduced primordial formation, was only 15, compared to the parental number of 65. Another interesting phenotype was a fruiting body with a flattened stipe and pileus. Dikaryons generated by mating with the mutant spore No. 14 produced flat fruiting bodies. Further molecular biological studies will provide details of the mechanism. This work shows that the chemical mutagenesis approach is highly utilizable in the development of mushroom strains as well as in the generation of resources for molecular genetic studies. PMID:22783115

  18. Fitness Loss and Library Size Determination in Saturation Mutagenesis

    PubMed Central

    Nov, Yuval

    2013-01-01

    Saturation mutagenesis is a widely used directed evolution technique, in which a large number of protein variants, each having random amino acids in certain predetermined positions, are screened in order to discover high-fitness variants among them. Several metrics for determining the library size (the number of variants screened) have been suggested in the literature, but none of them incorporates the actual fitness of the variants discovered in the experiment. We present the results of an extensive simulation study, which is based on probabilistic models for protein fitness landscape, and which investigates how the result of a saturation mutagenesis experiment – the fitness of the best variant discovered – varies as a function of the library size. In particular, we study the loss of fitness in the experiment: the difference between the fitness of the best variant discovered, and the fitness of the best variant in variant space. Our results are that the existing criteria for determining the library size are conservative, so smaller libraries are often satisfactory. Reducing the library size can save labor, time, and expenses in the laboratory. PMID:23844158

  19. Mechanisms of Base Substitution Mutagenesis in Cancer Genomes

    PubMed Central

    Bacolla, Albino; Cooper, David N.; Vasquez, Karen M.

    2014-01-01

    Cancer genome sequence data provide an invaluable resource for inferring the key mechanisms by which mutations arise in cancer cells, favoring their survival, proliferation and invasiveness. Here we examine recent advances in understanding the molecular mechanisms responsible for the predominant type of genetic alteration found in cancer cells, somatic single base substitutions (SBSs). Cytosine methylation, demethylation and deamination, charge transfer reactions in DNA, DNA replication timing, chromatin status and altered DNA proofreading activities are all now known to contribute to the mechanisms leading to base substitution mutagenesis. We review current hypotheses as to the major processes that give rise to SBSs and evaluate their relative relevance in the light of knowledge acquired from cancer genome sequencing projects and the study of base modifications, DNA repair and lesion bypass. Although gene expression data on APOBEC3B enzymes provide support for a role in cancer mutagenesis through U:G mismatch intermediates, the enzyme preference for single-stranded DNA may limit its activity genome-wide. For SBSs at both CG:CG and YC:GR sites, we outline evidence for a prominent role of damage by charge transfer reactions that follow interactions of the DNA with reactive oxygen species (ROS) and other endogenous or exogenous electron-abstracting molecules. PMID:24705290

  20. A mouse chromosome 4 balancer ENU-mutagenesis screen isolates eleven lethal lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ENU-mutagenesis is a powerful technique to identify genes regulating mammalian development. To functionally annotate the distal region of mouse chromosome 4, we performed an ENU-mutagenesis screen using a balancer chromosome targeted to this region of the genome. We isolated 11 lethal lines that map...

  1. Establishment of a counter-selectable markerless mutagenesis system in Veillonella atypica.

    PubMed

    Zhou, Peng; Li, Xiaoli; Qi, Fengxia

    2015-05-01

    Using an alternative sigma factor ecf3 as target, we successfully established the first markerless mutagenesis system in the Veillonella genus. This system will be a valuable tool for mutagenesis of multiple genes for gene function analysis as well as for gene regulation studies in Veillonella. PMID:25771833

  2. CRISPR-Cas9 enables conditional mutagenesis of challenging loci.

    PubMed

    Schick, Joel A; Seisenberger, Claudia; Beig, Joachim; Bürger, Antje; Iyer, Vivek; Maier, Viola; Perera, Sajith; Rosen, Barry; Skarnes, William C; Wurst, Wolfgang

    2016-01-01

    The International Knockout Mouse Consortium (IKMC) has produced a genome-wide collection of 15,000 isogenic targeting vectors for conditional mutagenesis in C57BL/6N mice. Although most of the vectors have been used successfully in murine embryonic stem (ES) cells, there remain a set of nearly two thousand genes that have failed to target even after several attempts. Recent attention has turned to the use of new genome editing technology for the generation of mutant alleles in mice. Here, we demonstrate how Cas9-assisted targeting can be combined with the IKMC targeting vector resource to generate conditional alleles in genes that have previously eluded targeting using conventional methods. PMID:27580957

  3. Targeted Mutagenesis in Zebrafish Using Customized Zinc Finger Nucleases

    PubMed Central

    Foley, Jonathan E.; Maeder, Morgan L.; Pearlberg, Joseph; Joung, J. Keith; Peterson, Randall T.; Yeh, Jing-Ruey J.

    2009-01-01

    Zebrafish mutants have traditionally been obtained using random mutagenesis or retroviral insertions, methods that cannot be targeted to a specific gene and require laborious gene mapping and sequencing. Recently, we and others have shown that customized zinc finger nucleases (ZFNs) can introduce targeted frame-shift mutations with high efficiency, thereby enabling directed creation of zebrafish gene mutations. Here we describe a detailed protocol for constructing ZFN expression vectors, for generating and introducing ZFN-encoding RNAs into zebrafish embryos, and for identifying ZFN-generated mutations in targeted genomic sites. All of our vectors and methods are compatible with previously described Zinc Finger Consortium reagents for constructing engineered zinc finger arrays. Using these methods, zebrafish founders carrying targeted mutations can be identified within four months. PMID:20010934

  4. Radiosensitivity Parameters For Lethal Mutagenesis In Caenorhabditis Elegans

    SciTech Connect

    Cucinotta, F.A.; Wilson, J.W.; Katz, R.

    1994-01-01

    For the first time track structure theory has been applied to radiobiological effects in a living organism. Data for lethal mutagenesis in Caenorhabditis elegans, obtained after irradiation with nine different types of ions of atomic number 1-57 and gamma rays have yielded radiosensitivity parameters (E{sub 0}, sigma{sub 0}, Kappa, m = 68 Gy, 2.5 x 10(exp {minus}9) cm (exp 2), 750, 2) comparable with those found for the transformation of C3HT10 1/2 cells (180 Gy, 1.15 x 10(exp {minus}10) cm(exp 2), 750, 2) but remote from those (E{sub 0} and sigma{sub 0} = approx. 2 Gy, approx. 5 x 10(exp {minus}7) cm(exp 2)) for mammalian cell survival.

  5. Mutant fatty acid desaturase and methods for directed mutagenesis

    DOEpatents

    Shanklin, John; Whittle, Edward J.

    2008-01-29

    The present invention relates to methods for producing fatty acid desaturase mutants having a substantially increased activity towards substrates with fewer than 18 carbon atom chains relative to an unmutagenized precursor desaturase having an 18 carbon chain length specificity, the sequences encoding the desaturases and to the desaturases that are produced by the methods. The present invention further relates to a method for altering a function of a protein, including a fatty acid desaturase, through directed mutagenesis involving identifying candidate amino acid residues, producing a library of mutants of the protein by simultaneously randomizing all amino acid candidates, and selecting for mutants which exhibit the desired alteration of function. Candidate amino acids are identified by a combination of methods. Enzymatic, binding, structural and other functions of proteins can be altered by the method.

  6. CRISPR-Cas9 enables conditional mutagenesis of challenging loci

    PubMed Central

    Schick, Joel A.; Seisenberger, Claudia; Beig, Joachim; Bürger, Antje; Iyer, Vivek; Maier, Viola; Perera, Sajith; Rosen, Barry; Skarnes, William C.; Wurst, Wolfgang

    2016-01-01

    The International Knockout Mouse Consortium (IKMC) has produced a genome-wide collection of 15,000 isogenic targeting vectors for conditional mutagenesis in C57BL/6N mice. Although most of the vectors have been used successfully in murine embryonic stem (ES) cells, there remain a set of nearly two thousand genes that have failed to target even after several attempts. Recent attention has turned to the use of new genome editing technology for the generation of mutant alleles in mice. Here, we demonstrate how Cas9-assisted targeting can be combined with the IKMC targeting vector resource to generate conditional alleles in genes that have previously eluded targeting using conventional methods. PMID:27580957

  7. Mutagenesis and differentiation induction in mammalian cells by environmental chemicals

    SciTech Connect

    Friedman, J.; Huberman, E.

    1980-01-01

    These studies indicate that in agreement with the somatic mutation hypothesis, chemical carcinogens: (1) are mutagenic for mammalian cells as tested in the cell-mediated assay; (2) the degree of mutagenicity is correlated with their degree of carcinogenicity; (3) that at least in cases when analyzed carefully the metabolites responsible for mutagenesis are also responsible for initiating the carcinogenic event; and (4) that a cell organ type specificity can be established using the cell-mediated assay. Studies with HL-60 cells and HO melanoma cells and those of others suggest that tumor-promoting phorbol diesters can alter cell differentiation in various cell types and that the degree of the observed alteration in the differentiation properties may be related to the potency of the phorbol esters. Thus these and similar systems may serve as models for both studies and identification of certain types of tumor promoting agents. (ERB)

  8. Environmental mutagenesis during the end-Permian ecological crisis.

    PubMed

    Visscher, Henk; Looy, Cindy V; Collinson, Margaret E; Brinkhuis, Henk; van Konijnenburg-van Cittert, Johanna H A; Kürschner, Wolfram M; Sephton, Mark A

    2004-08-31

    During the end-Permian ecological crisis, terrestrial ecosystems experienced preferential dieback of woody vegetation. Across the world, surviving herbaceous lycopsids played a pioneering role in repopulating deforested terrain. We document that the microspores of these lycopsids were regularly released in unseparated tetrads indicative of failure to complete the normal process of spore development. Although involvement of mutation has long been hinted at or proposed in theory, this finding provides concrete evidence for chronic environmental mutagenesis at the time of global ecological crisis. Prolonged exposure to enhanced UV radiation could account satisfactorily for a worldwide increase in land plant mutation. At the end of the Permian, a period of raised UV stress may have been the consequence of severe disruption of the stratospheric ozone balance by excessive emission of hydrothermal organohalogens in the vast area of Siberian Traps volcanism. PMID:15282373

  9. Environmental mutagenesis during the end-Permian ecological crisis

    PubMed Central

    Visscher, Henk; Looy, Cindy V.; Collinson, Margaret E.; Brinkhuis, Henk; van Konijnenburg-van Cittert, Johanna H. A.; Kürschner, Wolfram M.; Sephton, Mark A.

    2004-01-01

    During the end-Permian ecological crisis, terrestrial ecosystems experienced preferential dieback of woody vegetation. Across the world, surviving herbaceous lycopsids played a pioneering role in repopulating deforested terrain. We document that the microspores of these lycopsids were regularly released in unseparated tetrads indicative of failure to complete the normal process of spore development. Although involvement of mutation has long been hinted at or proposed in theory, this finding provides concrete evidence for chronic environmental mutagenesis at the time of global ecological crisis. Prolonged exposure to enhanced UV radiation could account satisfactorily for a worldwide increase in land plant mutation. At the end of the Permian, a period of raised UV stress may have been the consequence of severe disruption of the stratospheric ozone balance by excessive emission of hydrothermal organohalogens in the vast area of Siberian Traps volcanism. PMID:15282373

  10. Marker reconstitution mutagenesis: a simple and efficient reverse genetic approach.

    PubMed

    Tang, Xie; Huang, Junqi; Padmanabhan, Anup; Bakka, Kavya; Bao, Yun; Tan, Brenda Yuelin; Cande, W Zacheus; Balasubramanian, Mohan K

    2011-03-01

    A novel reverse genetic approach termed 'marker reconstitution mutagenesis' was designed to generate mutational allelic series in genes of interest. This approach consists of two simple steps which utilize two selective markers. First, using one selective marker, a partial fragment of another selective marker gene is inserted adjacently to a gene of interest by homologous recombination. Second, random mutations are introduced precisely into the gene of interest, together with the reconstitution of the latter selective marker by homologous recombination. This approach was successfully tested for several genes in the fission yeast Schizosaccharomyces pombe. It circumvents the problems encountered with other methods and should be adaptable to any organism that incorporates exogenous DNA by homologous recombination. PMID:21360732

  11. Precision Targeted Mutagenesis via Cas9 Paired Nickases in Rice

    PubMed Central

    Mikami, Masafumi; Toki, Seiichi; Endo, Masaki

    2016-01-01

    Recent reports of CRISPR- (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) mediated heritable mutagenesis in plants highlight the need for accuracy of the mutagenesis directed by this system. Off-target mutations are an important issue when considering functional gene analysis, as well as the molecular breeding of crop plants with large genome size, i.e. with many duplicated genes, and where the whole-genome sequence is still lacking. In mammals, off-target mutations can be suppressed by using Cas9 paired nickases together with paired guide RNAs (gRNAs). However, the performance of Cas9 paired nickases has not yet been fully assessed in plants. Here, we analyzed on- and off-target mutation frequency in rice calli and regenerated plants using Cas9 nuclease or Cas9 nickase with paired gRNAs. When Cas9 paired nickases were used, off-target mutations were fully suppressed in rice calli and regenerated plants. However, on-target mutation frequency also decreased compared with that induced by the Cas9 paired nucleases system. Since the gRNA sequence determines specific binding of Cas9 protein–gRNA ribonucleoproteins at the targeted sequence, the on-target mutation frequency of Cas9 paired nickases depends on the design of paired gRNAs. Our results suggest that a combination of gRNAs that can induce mutations at high efficiency with Cas9 nuclease should be used together with Cas9 nickase. Furthermore, we confirmed that a combination of gRNAs containing a one nucleotide (1 nt) mismatch toward the target sequence could not induce mutations when expressed with Cas9 nickase. Our results clearly show the effectiveness of Cas9 paired nickases in delivering on-target specific mutations. PMID:26936792

  12. Cationic Peptides Facilitate Iron-induced Mutagenesis in Bacteria

    PubMed Central

    Rodríguez-Rojas, Alexandro; Makarova, Olga; Müller, Uta; Rolff, Jens

    2015-01-01

    Pseudomonas aeruginosa is the causative agent of chronic respiratory infections and is an important pathogen of cystic fibrosis patients. Adaptive mutations play an essential role for antimicrobial resistance and persistence. The factors that contribute to bacterial mutagenesis in this environment are not clear. Recently it has been proposed that cationic antimicrobial peptides such as LL-37 could act as mutagens in P. aeruginosa. Here we provide experimental evidence that mutagenesis is the product of a joint action of LL-37 and free iron. By estimating mutation rate, mutant frequencies and assessing mutational spectra in P. aeruginosa treated either with LL-37, iron or a combination of both we demonstrate that mutation rate and mutant frequency were increased only when free iron and LL-37 were present simultaneously. Colistin had the same effect. The addition of an iron chelator completely abolished this mutagenic effect, suggesting that LL-37 enables iron to enter the cells resulting in DNA damage by Fenton reactions. This was also supported by the observation that the mutational spectrum of the bacteria under LL-37-iron regime showed one of the characteristic Fenton reaction fingerprints: C to T transitions. Free iron concentration in nature and within hosts is kept at a very low level, but the situation in infected lungs of cystic fibrosis patients is different. Intermittent bleeding and damage to the epithelial cells in lungs may contribute to the release of free iron that in turn leads to generation of reactive oxygen species and deterioration of the respiratory tract, making it more susceptible to the infection. PMID:26430769

  13. Cationic Peptides Facilitate Iron-induced Mutagenesis in Bacteria.

    PubMed

    Rodríguez-Rojas, Alexandro; Makarova, Olga; Müller, Uta; Rolff, Jens

    2015-10-01

    Pseudomonas aeruginosa is the causative agent of chronic respiratory infections and is an important pathogen of cystic fibrosis patients. Adaptive mutations play an essential role for antimicrobial resistance and persistence. The factors that contribute to bacterial mutagenesis in this environment are not clear. Recently it has been proposed that cationic antimicrobial peptides such as LL-37 could act as mutagens in P. aeruginosa. Here we provide experimental evidence that mutagenesis is the product of a joint action of LL-37 and free iron. By estimating mutation rate, mutant frequencies and assessing mutational spectra in P. aeruginosa treated either with LL-37, iron or a combination of both we demonstrate that mutation rate and mutant frequency were increased only when free iron and LL-37 were present simultaneously. Colistin had the same effect. The addition of an iron chelator completely abolished this mutagenic effect, suggesting that LL-37 enables iron to enter the cells resulting in DNA damage by Fenton reactions. This was also supported by the observation that the mutational spectrum of the bacteria under LL-37-iron regime showed one of the characteristic Fenton reaction fingerprints: C to T transitions. Free iron concentration in nature and within hosts is kept at a very low level, but the situation in infected lungs of cystic fibrosis patients is different. Intermittent bleeding and damage to the epithelial cells in lungs may contribute to the release of free iron that in turn leads to generation of reactive oxygen species and deterioration of the respiratory tract, making it more susceptible to the infection. PMID:26430769

  14. Association of elevated mutagenesis in the spleen with genetic susceptibility to induced plasmacytoma development in mice.

    PubMed

    Felix, K; Kelliher, K; Bornkamm, G W; Janz, S

    1998-04-15

    Using the phage lambdaLIZ-based transgenic in vivo mutagenesis assay, mean mutant rates were determined in the spleen of mice exposed to sustained oxidative stress and were found to be increased approximately 3-fold in plasmacytoma-susceptible BALB/c and C.D2-Idh1-Pep3 mice, but not in plasmacytoma-resistant DBA/2N mice. This finding suggests a correlation between the genetic susceptibility to inflammation-induced peritoneal plasmacytomagenesis and the phenotype of increased mutagenesis in lymphoid tissues, raising the possibility that plasmacytoma resistance genes may inhibit tumor development by minimizing oxidative mutagenesis in B cells. PMID:9563470

  15. A Defect in DNA Ligase4 Enhances the Frequency of TALEN-Mediated Targeted Mutagenesis in Rice.

    PubMed

    Nishizawa-Yokoi, Ayako; Cermak, Tomas; Hoshino, Tomoki; Sugimoto, Kazuhiko; Saika, Hiroaki; Mori, Akiko; Osakabe, Keishi; Hamada, Masao; Katayose, Yuichi; Starker, Colby; Voytas, Daniel F; Toki, Seiichi

    2016-02-01

    We have established methods for site-directed mutagenesis via transcription activator-like effector nucleases (TALENs) in the endogenous rice (Oryza sativa) waxy gene and demonstrated stable inheritance of TALEN-induced somatic mutations to the progeny. To analyze the role of classical nonhomologous end joining (cNHEJ) and alternative nonhomologous end joining (altNHEJ) pathways in TALEN-induced mutagenesis in plant cells, we investigated whether a lack of DNA Ligase4 (Lig4) affects the kinetics of TALEN-induced double-strand break repair in rice cells. Deep-sequencing analysis revealed that the frequency of all types of mutations, namely deletion, insertion, combination of insertion with deletion, and substitution, in lig4 null mutant calli was higher than that in a lig4 heterozygous mutant or the wild type. In addition, the ratio of large deletions (greater than 10 bp) and deletions repaired by microhomology-mediated end joining (MMEJ) to total deletion mutations in lig4 null mutant calli was higher than that in the lig4 heterozygous mutant or wild type. Furthermore, almost all insertions (2 bp or greater) were shown to be processed via copy and paste of one or more regions around the TALENs cleavage site and rejoined via MMEJ regardless of genetic background. Taken together, our findings indicate that the dysfunction of cNHEJ leads to a shift in the repair pathway from cNHEJ to altNHEJ or synthesis-dependent strand annealing. PMID:26668331

  16. Sleeping beauty-mediated somatic mutagenesis implicates CSF1 in the formation of high-grade astrocytomas.

    PubMed

    Bender, Aaron M; Collier, Lara S; Rodriguez, Fausto J; Tieu, Christina; Larson, Jon D; Halder, Chandralekha; Mahlum, Eric; Kollmeyer, Thomas M; Akagi, Keiko; Sarkar, Gobinda; Largaespada, David A; Jenkins, Robert B

    2010-05-01

    The Sleeping Beauty (SB) transposon system has been used as an insertional mutagenesis tool to identify novel cancer genes. To identify glioma-associated genes, we evaluated tumor formation in the brain tissue from 117 transgenic mice that had undergone constitutive SB-mediated transposition. Upon analysis, 21 samples (18%) contained neoplastic tissue with features of high-grade astrocytomas. These tumors expressed glial markers and were histologically similar to human glioma. Genomic DNA from SB-induced astrocytoma tissue was extracted and transposon insertion sites were identified. Insertions in the growth factor gene Csf1 were found in 13 of the 21 tumors (62%), clustered in introns 5 and 8. Using reverse transcription-PCR, we documented increased Csf1 RNAs in tumor versus adjacent normal tissue, with the identification of transposon-terminated Csf1 mRNAs in astrocytomas with SB insertions in intron 8. Analysis of human glioblastomas revealed increased levels of Csf1 RNA and protein. Together, these results indicate that SB-insertional mutagenesis can identify high-grade astrocytoma-associated genes and they imply an important role for CSF1 in the development of these tumors. PMID:20388773

  17. Improving the solubility of anti-LINGO-1 monoclonal antibody Li33 by isotype switching and targeted mutagenesis

    SciTech Connect

    Pepinsky, R. Blake; Silvian, Laura; Berkowitz, Steven A.; Farrington, Graham; Lugovskoy, Alexey; Walus, Lee; Eldredge, John; Capili, Allan; Mi, Sha; Graff, Christilyn; Garber, Ellen

    2010-11-15

    Monoclonal antibodies (Mabs) are a favorite drug platform of the biopharmaceutical industry. Currently, over 20 Mabs have been approved and several hundred others are in clinical trials. The anti-LINGO-1 Mab Li33 was selected from a large panel of antibodies by Fab phage display technology based on its extraordinary biological activity in promoting oligodendrocyte differentiation and myelination in vitro and in animal models of remyelination. However, the Li33 Fab had poor solubility when converted into a full antibody in an immunoglobulin G1 framework. A detailed analysis of the biochemical and structural features of the antibody revealed several possible reasons for its propensity to aggregate. Here, we successfully applied three molecular approaches (isotype switching, targeted mutagenesis of complementarity determining region residues, and glycosylation site insertion mutagenesis) to address the solubility problem. Through these efforts we were able to improve the solubility of the Li33 Mab from 0.3 mg/mL to >50 mg/mL and reduce aggregation to an acceptable level. These strategies can be readily applied to other proteins with solubility issues.

  18. A Defect in DNA Ligase4 Enhances the Frequency of TALEN-Mediated Targeted Mutagenesis in Rice1[OPEN

    PubMed Central

    Cermak, Tomas; Sugimoto, Kazuhiko; Saika, Hiroaki; Mori, Akiko; Osakabe, Keishi; Hamada, Masao; Katayose, Yuichi; Voytas, Daniel F.

    2016-01-01

    We have established methods for site-directed mutagenesis via transcription activator-like effector nucleases (TALENs) in the endogenous rice (Oryza sativa) waxy gene and demonstrated stable inheritance of TALEN-induced somatic mutations to the progeny. To analyze the role of classical nonhomologous end joining (cNHEJ) and alternative nonhomologous end joining (altNHEJ) pathways in TALEN-induced mutagenesis in plant cells, we investigated whether a lack of DNA Ligase4 (Lig4) affects the kinetics of TALEN-induced double-strand break repair in rice cells. Deep-sequencing analysis revealed that the frequency of all types of mutations, namely deletion, insertion, combination of insertion with deletion, and substitution, in lig4 null mutant calli was higher than that in a lig4 heterozygous mutant or the wild type. In addition, the ratio of large deletions (greater than 10 bp) and deletions repaired by microhomology-mediated end joining (MMEJ) to total deletion mutations in lig4 null mutant calli was higher than that in the lig4 heterozygous mutant or wild type. Furthermore, almost all insertions (2 bp or greater) were shown to be processed via copy and paste of one or more regions around the TALENs cleavage site and rejoined via MMEJ regardless of genetic background. Taken together, our findings indicate that the dysfunction of cNHEJ leads to a shift in the repair pathway from cNHEJ to altNHEJ or synthesis-dependent strand annealing. PMID:26668331

  19. Site-directed Mutagenesis Switching a Dimethylallyl Tryptophan Synthase to a Specific Tyrosine C3-Prenylating Enzyme*

    PubMed Central

    Fan, Aili; Zocher, Georg; Stec, Edyta; Stehle, Thilo; Li, Shu-Ming

    2015-01-01

    The tryptophan prenyltransferases FgaPT2 and 7-DMATS (7-dimethylallyl tryptophan synthase) from Aspergillus fumigatus catalyze C4- and C7-prenylation of the indole ring, respectively. 7-DMATS was found to accept l-tyrosine as substrate as well and converted it to an O-prenylated derivative. An acceptance of l-tyrosine by FgaPT2 was also observed in this study. Interestingly, isolation and structure elucidation revealed the identification of a C3-prenylated l-tyrosine as enzyme product. Molecular modeling and site-directed mutagenesis led to creation of a mutant FgaPT2_K174F, which showed much higher specificity toward l-tyrosine than l-tryptophan. Its catalytic efficiency toward l-tyrosine was found to be 4.9-fold in comparison with that of non-mutated FgaPT2, whereas the activity toward l-tryptophan was less than 0.4% of that of the wild-type. To the best of our knowledge, this is the first report on an enzymatic C-prenylation of l-tyrosine as free amino acid and altering the substrate preference of a prenyltransferase by mutagenesis. PMID:25477507

  20. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis

    PubMed Central

    Canver, Matthew C.; Smith, Elenoe C.; Sher, Falak; Pinello, Luca; Sanjana, Neville E.; Shalem, Ophir; Chen, Diane D.; Schupp, Patrick G.; Vinjamur, Divya S.; Garcia, Sara P.; Luc, Sidinh; Kurita, Ryo; Nakamura, Yukio; Fujiwara, Yuko; Maeda, Takahiro; Yuan, Guo-Cheng; Feng, Zhang; Orkin, Stuart H.; Bauer, Daniel E.

    2015-01-01

    Summary Enhancers, critical determinants of cellular identity, are commonly identified by correlative chromatin marks and gain-of-function potential, though only loss-of-function studies can demonstrate their requirement in the native genomic context. Previously we identified an erythroid enhancer of BCL11A, subject to common genetic variation associated with fetal hemoglobin (HbF) level, whose mouse ortholog is necessary for erythroid BCL11A expression. Here we develop pooled CRISPR-Cas9 guide RNA libraries to perform in situ saturating mutagenesis of the human and mouse enhancers. This approach reveals critical minimal features and discrete vulnerabilities of these enhancers. Despite conserved function of the composite enhancers, their architecture diverges. The crucial human sequences appear primate-specific. Through editing of primary human progenitors and mouse transgenesis, we validate the BCL11A erythroid enhancer as a target for HbF reinduction. The detailed enhancer map will inform therapeutic genome editing. The screening approach described here is generally applicable to functional interrogation of noncoding genomic elements. PMID:26375006

  1. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis.

    PubMed

    Canver, Matthew C; Smith, Elenoe C; Sher, Falak; Pinello, Luca; Sanjana, Neville E; Shalem, Ophir; Chen, Diane D; Schupp, Patrick G; Vinjamur, Divya S; Garcia, Sara P; Luc, Sidinh; Kurita, Ryo; Nakamura, Yukio; Fujiwara, Yuko; Maeda, Takahiro; Yuan, Guo-Cheng; Zhang, Feng; Orkin, Stuart H; Bauer, Daniel E

    2015-11-12

    Enhancers, critical determinants of cellular identity, are commonly recognized by correlative chromatin marks and gain-of-function potential, although only loss-of-function studies can demonstrate their requirement in the native genomic context. Previously, we identified an erythroid enhancer of human BCL11A, subject to common genetic variation associated with the fetal haemoglobin level, the mouse orthologue of which is necessary for erythroid BCL11A expression. Here we develop pooled clustered regularly interspaced palindromic repeat (CRISPR)-Cas9 guide RNA libraries to perform in situ saturating mutagenesis of the human and mouse enhancers. This approach reveals critical minimal features and discrete vulnerabilities of these enhancers. Despite conserved function of the composite enhancers, their architecture diverges. The crucial human sequences appear to be primate-specific. Through editing of primary human progenitors and mouse transgenesis, we validate the BCL11A erythroid enhancer as a target for fetal haemoglobin reinduction. The detailed enhancer map will inform therapeutic genome editing, and the screening approach described here is generally applicable to functional interrogation of non-coding genomic elements. PMID:26375006

  2. An Assessment of Heavy Ion Irradiation Mutagenesis for Reverse Genetics in Wheat (Triticum aestivum L.)

    PubMed Central

    Fitzgerald, Timothy L.; Powell, Jonathan J.; Stiller, Jiri; Weese, Terri L.; Abe, Tomoko; Zhao, Guangyao; Jia, Jizeng; McIntyre, C. Lynne; Li, Zhongyi; Manners, John M.; Kazan, Kemal

    2015-01-01

    Reverse genetic techniques harnessing mutational approaches are powerful tools that can provide substantial insight into gene function in plants. However, as compared to diploid species, reverse genetic analyses in polyploid plants such as bread wheat can present substantial challenges associated with high levels of sequence and functional similarity amongst homoeologous loci. We previously developed a high-throughput method to identify deletions of genes within a physically mutagenized wheat population. Here we describe our efforts to combine multiple homoeologous deletions of three candidate disease susceptibility genes (TaWRKY11, TaPFT1 and TaPLDß1). We were able to produce lines featuring homozygous deletions at two of the three homoeoloci for all genes, but this was dependent on the individual mutants used in crossing. Intriguingly, despite extensive efforts, viable lines possessing homozygous deletions at all three homoeoloci could not be produced for any of the candidate genes. To investigate deletion size as a possible reason for this phenomenon, we developed an amplicon sequencing approach based on synteny to Brachypodium distachyon to assess the size of the deletions removing one candidate gene (TaPFT1) in our mutants. These analyses revealed that genomic deletions removing the locus are relatively large, resulting in the loss of multiple additional genes. The implications of this work for the use of heavy ion mutagenesis for reverse genetic analyses in wheat are discussed. PMID:25719507

  3. Evaluation of Glucose Dehydrogenase and Pyrroloquinoline Quinine (pqq) Mutagenesis that Renders Functional Inadequacies in Host Plants.

    PubMed

    Naveed, Muhammad; Sohail, Younas; Khalid, Nauman; Ahmed, Iftikhar; Mumtaz, Abdul Samad

    2015-08-01

    The rhizospheric zone abutting plant roots usually clutches a wealth of microbes. In the recent past, enormous genetic resources have been excavated with potential applications in host plant interaction and ancillary aspects. Two Pseudomonas strains were isolated and identified through 16S rRNA and rpoD sequence analyses as P. fluorescens QAU67 and P. putida QAU90. Initial biochemical characterization and their root-colonizing traits indicated their potential role in plant growth promotion. Such aerobic systems, involved in gluconic acid production and phosphate solubilization, essentially require the pyrroloquinoline quinine (PQQ)- dependent glucose dehydrogenase (GDH) in the genome. The PCR screening and amplification of GDH and PQQ and subsequent induction of mutagenesis characterized their possible role as antioxidants as well as in growth promotion, as probed in vitro in lettuce and in vivo in rice, bean, and tomato plants. The results showed significant differences (p < or = 0.05) in parameters of plant height, fresh weight, and dry weight, etc., deciphering a clear and in fact complementary role of GDH and PQQ in plant growth promotion. Our study not only provides direct evidence of the in vivo role of GDH and PQQ in host plants but also reveals their functional inadequacy in the event of mutation at either of these loci. PMID:25839331

  4. Molecular Mechanisms for High Hydrostatic Pressure-Induced Wing Mutagenesis in Drosophila melanogaster.

    PubMed

    Wang, Hua; Wang, Kai; Xiao, Guanjun; Ma, Junfeng; Wang, Bingying; Shen, Sile; Fu, Xueqi; Zou, Guangtian; Zou, Bo

    2015-01-01

    Although High hydrostatic pressure (HHP) as an important physical and chemical tool has been increasingly applied to research of organism, the response mechanisms of organism to HHP have not been elucidated clearly thus far. To identify mutagenic mechanisms of HHP on organisms, here, we treated Drosophila melanogaster (D. melanogaster) eggs with HHP. Approximately 75% of the surviving flies showed significant morphological abnormalities from the egg to the adult stages compared with control flies (p < 0.05). Some eggs displayed abnormal chorionic appendages, some larvae were large and red, and some adult flies showed wing abnormalities. Abnormal wing phenotypes of D. melanogaster induced by HHP were used to investigate the mutagenic mechanisms of HHP on organism. Thus 285 differentially expressed genes associated with wing mutations were identified using Affymetrix Drosophila Genome Array 2.0 and verified with RT-PCR. We also compared wing development-related central genes in the mutant flies with control flies using DNA sequencing to show two point mutations in the vestigial (vg) gene. This study revealed the mutagenic mechanisms of HHP-induced mutagenesis in D. melanogaster and provided a new model for the study of evolution on organisms. PMID:26446369

  5. [KIL-d] Protein Element Confers Antiviral Activity via Catastrophic Viral Mutagenesis.

    PubMed

    Suzuki, Genjiro; Weissman, Jonathan S; Tanaka, Motomasa

    2015-11-19

    Eukaryotic cells are targeted by pathogenic viruses and have developed cell defense mechanisms against viral infection. In yeast, the cellular extrachromosomal genetic element [KIL-d] alters killer activity of M double-stranded RNA killer virus and confers cell resistance against the killer virus. However, its underlying mechanism and the molecular nature of [KIL-d] are unknown. Here, we demonstrate that [KIL-d] is a proteinaceous prion-like aggregate with non-Mendelian cytoplasmic transmission. Deep sequencing analyses revealed that [KIL-d] selectively increases the rate of de novo mutation in the killer toxin gene of the viral genome, producing yeast harboring a defective mutant killer virus with a selective growth advantage over those with WT killer virus. These results suggest that a prion-like [KIL-d] element reprograms the viral replication machinery to induce mutagenesis and genomic inactivation via the long-hypothesized mechanism of "error catastrophe." The findings also support a role for prion-like protein aggregates in cellular defense and adaptation. PMID:26590718

  6. Exploring purine N7 interactions via atomic mutagenesis: The group I ribozyme as a case study

    PubMed Central

    Forconi, Marcello; Benz-Moy, Tara; Gleitsman, Kristin Rule; Ruben, Eliza; Metz, Clyde; Herschlag, Daniel

    2012-01-01

    Atomic mutagenesis has emerged as a powerful tool to unravel specific interactions in complex RNA molecules. An early extensive study of analogs of the exogenous guanosine nucleophile in group I intron self-splicing by Bass and Cech demonstrated structure–function relationships analogous to those seen for protein ligands and provided strong evidence for a well-formed substrate binding site made of RNA. Subsequent functional and structural studies have confirmed these interacting sites and extended our understanding of them, with one notable exception. Whereas 7-methyl guanosine did not affect reactivity in the original study, a subsequent study revealed a deleterious effect of the seemingly more conservative 7-deaza substitution. Here we investigate this paradox, studying these and other analogs with the more thoroughly characterized ribozyme derived from the Tetrahymena group I intron. We found that the 7-deaza substitution lowers binding by ∼20-fold, relative to the cognate exogenous guanosine nucleophile, whereas binding and reaction with 7-methyl and 8-aza-7-deaza substitutions have no effect. These and additional results suggest that there is no functionally important contact between the N7 atom of the exogenous guanosine and the ribozyme. Rather, they are consistent with indirect effects introduced by the N7 substitution on stacking interactions and/or solvation that are important for binding. The set of analogs used herein should be valuable in deciphering nucleic acid interactions and how they change through reaction cycles for other RNAs and RNA/protein complexes. PMID:22543863

  7. Mutational spectrum at GATA1 provides insights into mutagenesis and leukemogenesis in Down syndrome

    PubMed Central

    Cabelof, Diane C.; Patel, Hiral V.; Chen, Qing; van Remmen, Holly; Matherly, Larry H.; Ge, Yubin

    2009-01-01

    Down syndrome (DS) children have a unique genetic susceptibility to develop leukemia, in particular, acute megakaryocytic leukemia (AMkL) associated with somatic GATA1 mutations. The study of this genetic susceptibility with the use of DS as a model of leukemogenesis has broad applicability to the understanding of leukemia in children overall. On the basis of the role of GATA1 mutations in DS AMkL, we analyzed the mutational spectrum of GATA1 mutations to begin elucidating possible mechanisms by which these sequence alterations arise. Mutational analysis revealed a predominance of small insertion/deletion, duplication, and base substitution mutations, including G:C>T:A, G:C>A:T, and A:T>G:C. This mutational spectrum points to potential oxidative stress and aberrant folate metabolism secondary to genes on chromosome 21 (eg, cystathionine-β-synthase, superoxide dismutase) as potential causes of GATA1 mutations. Furthermore, DNA repair capacity evaluated in DS and non-DS patient samples provided evidence that the base excision repair pathway is compromised in DS tissues, suggesting that inability to repair DNA damage also may play a critical role in the unique susceptibility of DS children to develop leukemia. A model of leukemogenesis in DS is proposed in which mutagenesis is driven by cystathionine-β-synthase overexpression and altered folate homeostasis that becomes fixed as the ability to repair DNA damage is compromised. PMID:19633202

  8. Antibacterial activity and mutagenesis of sponge-associated Pseudomonas fluorescens H41.

    PubMed

    Ye, Lumeng; Santos-Gandelman, Juliana F; Hardoim, Cristiane C P; George, Isabelle; Cornelis, Pierre; Laport, Marinella S

    2015-07-01

    Marine sponges (phylum Porifera) are well known to harbour a complex and diverse bacterial community. Some of these sponge-associated bacteria have been shown to be the real producers of secondary metabolites with a wide range of activities from antimicrobials to anticancer agents. Previously, we revealed that the strain Pseudomonas fluorescens H41 isolated from the sponge Haliclona sp. (collected at the coast of Rio de Janeiro, Brazil) showed a strong antimicrobial activity against clinical and marine bacteria. Thus, in this study the genes involved in the antimicrobial activity of P. fluorescens H41 were identified. To this end, a library of mutants was generated via miniTnphoA3 transposon mutagenesis and the resulting clones were characterized for their antimicrobial activity. It was demonstrated that genes involved in the biosynthesis of the pyoverdine siderophore are related to the inhibitory activity of P. fluorescens H41. Therefore, this strain might play an important role in the biocontrol of the host sponge. PMID:25957971

  9. Improving the neutral phytase activity from Bacillus amyloliquefaciens DSM 1061 by site-directed mutagenesis.

    PubMed

    Xu, Wei; Shao, Rong; Wang, Zupeng; Yan, Xiuhua

    2015-03-01

    Neutral phytase is used as a feed additive for degradation of anti-nutritional phytate in aquatic feed industry. Site-directed mutagenesis of Bacillus amyloliquefaciens DSM 1061 phytase was performed with an aim to increase its activity. Mutation residues were chosen based on multiple sequence alignments and structure analysis of neutral phytsaes from different microorganisms. The mutation sites on surface (D148E, S197E and N156E) and around the active site (D52E) of phytase were selected. Analysis of the phytase variants showed that the specific activities of mutants D148E and S197E remarkably increased by about 35 and 13% over a temperature range of 40-75 °C at pH 7.0, respectively. The k cat of mutants D148E and S197E were 1.50 and 1.25 times than that of the wild-type phytase, respectively. Both D148E and S197E showed much higher thermostability than that of the wild-type phytase. However, mutants N156E and D52E led to significant loss of specific activity of the enzyme. Structural analysis revealed that these mutations may affect conformation of the active site of phytase. The present mutant phytases D148E and S197E with increased activities and thermostabilities have application potential as additives in aquaculture feed. PMID:25613522

  10. Conversed mutagenesis of an inactive peptide to ASIC3 inhibitor for active sites determination.

    PubMed

    Osmakov, Dmitry I; Koshelev, Sergey G; Andreev, Yaroslav A; Dyachenko, Igor A; Bondarenko, Dmitry A; Murashev, Arkadii N; Grishin, Eugene V; Kozlov, Sergey A

    2016-06-15

    Peptide Ugr9-1 from the venom of sea anemone Urticina grebelnyi selectively inhibits the ASIC3 channel and significantly reverses inflammatory and acid-induced pain in vivo. A close homolog peptide Ugr 9-2 does not have these features. To find the pharmacophore residues and explore structure-activity relationships of Ugr 9-1, we performed site-directed mutagenesis of Ugr 9-2 and replaced several positions by the corresponding residues from Ugr 9-1. Mutant peptides Ugr 9-2 T9F and Ugr 9-2 Y12H were able to inhibit currents of the ASIC3 channels 2.2 times and 1.3 times weaker than Ugr 9-1, respectively. Detailed analysis of the spatial models of Ugr 9-1, Ugr 9-2 and both mutant peptides revealed the presence of the basic-aromatic clusters on opposite sides of the molecule, each of which is responsible for the activity. Additionally, Ugr9-1 mutant with truncated N- and C-termini retained similar with the Ugr9-1 action in vitro and was equally potent in vivo model of thermal hypersensitivity. All together, these results are important for studying the structure-activity relationships of ligand-receptor interaction and for the future development of peptide drugs from animal toxins. PMID:26686983

  11. Random and direct mutagenesis to enhance protein secretion in Ashbya gossypii

    PubMed Central

    Ribeiro, Orquídea; Magalhães, Frederico; Aguiar, Tatiana Q; Wiebe, Marilyn G; Penttilä, Merja; Domingues, Lucília

    2013-01-01

    To improve the general secretion ability of the biotechnologically relevant fungus Ashbya gossypii, random mutagenesis with ethyl methane sulfonate (EMS) was performed. The selection and screening strategy followed revealed mutants with improved secretion of heterologous Trichoderma reesei endoglucanase I (EGI), native α-amylase and/or native β-glucosidase. One mutant, S436, presented 1.4- to 2-fold increases in all extracellular enzymatic activities measured, when compared with the parent strain, pointing to a global improvement in protein secretion. Three other mutants exhibited 2- to 3-fold improvements in only one (S397, B390) or two (S466) of the measured activities.   A targeted genetic approach was also followed. Two homologs of the Saccharomyces cerevisiae GAS1, AgGAS1A (AGL351W) and AgGAS1B (AGL352W), were deleted from the A. gossypii genome. For both copies deletion, a new antibiotic marker cassette conferring resistance to phleomycin, BLE3, was constructed. GAS1 encodes an β-1,3-glucanosyltransglycosylase involved in cell wall assembly. Higher permeability of the cell wall was expected to increase the protein secretion capacity. However, total protein secreted to culture supernatants and secreted EGI activity did not increase in the Aggas1AΔ mutants. Deletion of the AgGAS1B copy affected cellular morphology and resulted in severe retardation of growth, similarly to what has been reported for GAS1-defficient yeast. Thus, secretion could not be tested in these mutants. PMID:23644277

  12. Structural insights from random mutagenesis of Campylobacter jejuni oligosaccharyltransferase PglB

    PubMed Central

    2012-01-01

    Background Protein glycosylation is of fundamental importance in many biological systems. The discovery of N-glycosylation in bacteria and the functional expression of the N-oligosaccharyltransferase PglB of Campylobacter jejuni in Escherichia coli enabled the production of engineered glycoproteins and the study of the underlying molecular mechanisms. A particularly promising application for protein glycosylation in recombinant bacteria is the production of potent conjugate vaccines where polysaccharide antigens of pathogenic bacteria are covalently bound to immunogenic carrier proteins. Results In this study capsular polysaccharides of the clinically relevant pathogen Staphylococcus aureus serotype 5 (CP5) were expressed in Escherichia coli and linked in vivo to a detoxified version of Pseudomonas aeruginosa exotoxin (EPA). We investigated which amino acids of the periplasmic domain of PglB are crucial for the glycosylation reaction using a newly established 96-well screening system enabling the relative quantification of glycoproteins by enzyme-linked immunosorbent assay. A random mutant library was generated by error-prone PCR and screened for inactivating amino acid substitutions. In addition to 15 inactive variants with amino acid changes within the previously known, strictly conserved WWDYG motif of N-oligosaccharyltransferases, 8 inactivating mutations mapped to a flexible loop in close vicinity of the amide nitrogen atom of the acceptor asparagine as revealed in the crystal structure of the homologous enzyme C. lari PglB. The importance of the conserved loop residue H479 for glycosylation was confirmed by site directed mutagenesis, while a change to alanine of the adjacent, non-conserved L480 had no effect. In addition, we investigated functional requirements in the so-called MIV motif of bacterial N-oligosaccharyltransferases. Amino acid residues I571 and V575, which had been postulated to interact with the acceptor peptide, were subjected to cassette

  13. Particulate matter inhibits DNA repair and enhances mutagenesis.

    PubMed

    Mehta, Manju; Chen, Lung-Chi; Gordon, Terry; Rom, William; Tang, Moon-Shong

    2008-12-01

    Exposure to ambient air pollution has been associated with adverse health effects including lung cancer. A recent epidemiology study has established that each 10 microg/m3 elevation in long-term exposure to average PM2.5 ambient concentration was associated with approximately 8% of lung cancer mortality. The underlying mechanisms of how PM contributes to lung carcinogenesis, however, remain to be elucidated. We have recently found that transition metals such as nickel and chromium and oxidative stress induced lipid peroxidation metabolites such as aldehydes can greatly inhibit nucleotide excision repair (NER) and enhance carcinogen-induced mutations. Because PM is rich in metal and aldehyde content and can induce oxidative stress, we tested the effect of PM on DNA repair capacity in cultured human lung cells using in vitro DNA repair synthesis and host cell reactivation assays. We found that PM greatly inhibits NER for ultraviolet (UV) light and benzo(a)pyrene diol epoxide (BPDE) induced DNA damage in human lung cells. We further demonstrated that PM exposure can significantly increase both spontaneous and UV-induced mutagenesis. These results together suggest that the carcinogenicity of PM may act through its combined effect on suppression of DNA repair and enhancement of DNA replication errors. PMID:18804180

  14. Efficient Gene Transfer and Targeted Mutagenesis in Fusobacterium nucleatum

    PubMed Central

    Haake, Susan Kinder; Yoder, Sean; Gerardo, Sharon Hunt

    2006-01-01

    Fusobacterium nucleatum is a Gram-negative anaerobe important in dental biofilm ecology and infectious diseases with significant societal impact. The lack of efficient genetic systems has hampered molecular analyses in this microorganism. We previously reported construction of a shuttle plasmid, pHS17, using the native fusobacterial plasmid pFN1 and an erythromycin resistance cassette. However, the host range of pHS17 was restricted to F. nucleatum, ATCC 10953 and the transformation efficiency was limited. This study was undertaken to improve genetic systems for molecular analysis in F. nucleatum. We identified a second F. nucleatum strain, ATCC 23726, which is transformed with improved efficiency compared to ATCC 10953. Two novel second generation pFN1-based shuttle plasmids, pHS23 and pHS30, were developed and enable transformation of ATCC 23726 at 6.2 x 104 and 1.5 x 106 transformants/microgram of plasmid DNA, respectively. The transformation efficiency of pHS30, which harbors a catP gene conferring resistance to chloramphenicol, was more than 1,000-fold greater than that of pHS17. The improved transformation efficiency facilitated disruption of the chromosomal rnr gene using a suicide plasmid pHS19, the first demonstration of targeted mutagenesis in F. nucleatum. These results provide significant advances in the development of systems for molecular analysis in F. nucleatum. PMID:16115683

  15. Site-directed mutagenesis and gene deletion using reverse genetics.

    PubMed

    Muhl, Daniela; Filloux, Alain

    2014-01-01

    Understanding gene function is far easier when tools are available to engineer a bacterial strain lacking a specific gene and phenotypically compare its behavior with the corresponding parental strain. Such mutants could be selected randomly, either by natural selection under particular stress conditions or by random mutagenesis using transposon delivery as described elsewhere in this book. However, with the advent of the genomic era there are now hundreds of bacterial genomes whose sequence is available, and thus, genes can be identified, chosen, and strategies designed to specifically inactivate them. This can be done by using suicide plasmids and is most convenient when the bacterium of interest is easily amenable to genetic manipulation. The method presented here will describe the use of a suicide vector, pKNG101, which allows the selection of a double-recombination event. The first event results in the integration of the pKNG101 derivative carrying the "mutator" fragment onto the chromosome, and could be selected on plates containing appropriate antibiotics. The pKNG101 carries the sacB gene, which induces death when cells are grown on sucrose. Growth on sucrose plates will thus select the second homologous recombination event, which results in removing the plasmid backbone and leaving behind the mutated target gene. This method has been widely used over the last 20 years to inactivate genes in a wide range of gram-negative bacteria and in particular in Pseudomonas aeruginosa. PMID:24818930

  16. Targeted mutagenesis using CRISPR/Cas system in medaka

    PubMed Central

    Ansai, Satoshi; Kinoshita, Masato

    2014-01-01

    ABSTRACT Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) system-based RNA-guided endonuclease (RGEN) has recently emerged as a simple and efficient tool for targeted genome editing. In this study, we showed successful targeted mutagenesis using RGENs in medaka, Oryzias latipes. Somatic and heritable mutations were induced with high efficiency at the targeted genomic sequence on the DJ-1 gene in embryos that had been injected with the single guide RNA (sgRNA) transcribed by a T7 promoter and capped RNA encoding a Cas9 nuclease. The sgRNAs that were designed for the target genomic sequences without the 5′ end of GG required by the T7 promoter induced the targeted mutations. This suggests that the RGEN can target any sequence adjacent to an NGG protospacer adjacent motif (PAM) sequence, which occurs once every 8 bp. The off-target alterations at 2 genomic loci harboring double mismatches in the 18-bp targeting sequences were induced in the RGEN-injected embryos. However, we also found that the off-target effects could be reduced by lower dosages of sgRNA. Taken together, our results suggest that CRISPR/Cas-mediated RGENs may be an efficient and flexible tool for genome editing in medaka. PMID:24728957

  17. Analysis of HIV-2 Vpx by modeling and insertional mutagenesis

    SciTech Connect

    Mahnke, Lisa A. . E-mail: lmahnke@im.wustl.edu; Belshan, Michael; Ratner, Lee . E-mail: lratner@im.wustl.edu

    2006-04-25

    Vpx facilitates HIV-2 nuclear localization by a poorly understood mechanism. We have compared Vpx to an NMR structure HIV-1 Vpr in a central helical domain and probed regions of Vpx by insertional mutagenesis. A predicted loop between helices two and three appears to be unique, overlapping with a known novel nuclear localization signal. Overall, Vpx was found to be surprisingly flexible, tolerating a series of large insertions. We found that insertion within the polyproline-containing C-terminus destabilizes nuclear localization, whereas mutating a second helix in the central domain disrupts viral packaging. Other insertional mutants in the predicted loop and in a linker region between the central domain and the C-terminus may be useful as sites of intramolecular tags as they could be packaged adequately and retained preintegration complex associated integration activity in a serum starvation assay. An unexpected result was found within a previously defined nuclear localization motif near aa 71. This mutant retained robust nuclear localization in a GFP fusion assay and was competent for preintegration complex associated nuclear import. In summary, we have modeled helical content in Vpx and assessed potential sites of intramolecular tags which may prove useful for protein-protein interactions studies.

  18. Retroviral Vectors for Analysis of Viral Mutagenesis and Recombination

    PubMed Central

    Rawson, Jonathan M.O.; Mansky, Louis M.

    2014-01-01

    Retrovirus population diversity within infected hosts is commonly high due in part to elevated rates of replication, mutation, and recombination. This high genetic diversity often complicates the development of effective diagnostics, vaccines, and antiviral drugs. This review highlights the diverse vectors and approaches that have been used to examine mutation and recombination in retroviruses. Retroviral vectors for these purposes can broadly be divided into two categories: those that utilize reporter genes as mutation or recombination targets and those that utilize viral genes as targets of mutation or recombination. Reporter gene vectors greatly facilitate the detection, quantification, and characterization of mutants and/or recombinants, but may not fully recapitulate the patterns of mutagenesis or recombination observed in native viral gene sequences. In contrast, the detection of mutations or recombination events directly in viral genes is more biologically relevant but also typically more challenging and inefficient. We will highlight the advantages and disadvantages of the various vectors and approaches used as well as propose ways in which they could be improved. PMID:25254386

  19. Oligonucleotide-directed mutagenesis for precision gene editing.

    PubMed

    Sauer, Noel J; Mozoruk, Jerry; Miller, Ryan B; Warburg, Zachary J; Walker, Keith A; Beetham, Peter R; Schöpke, Christian R; Gocal, Greg F W

    2016-02-01

    Differences in gene sequences, many of which are single nucleotide polymorphisms, underlie some of the most important traits in plants. With humanity facing significant challenges to increase global agricultural productivity, there is an urgent need to accelerate the development of these traits in plants. oligonucleotide-directed mutagenesis (ODM), one of the many tools of Cibus' Rapid Trait Development System (RTDS(™) ) technology, offers a rapid, precise and non-transgenic breeding alternative for trait improvement in agriculture to address this urgent need. This review explores the application of ODM as a precision genome editing technology, with emphasis on using oligonucleotides to make targeted edits in plasmid, episomal and chromosomal DNA of bacterial, fungal, mammalian and plant systems. The process of employing ODM by way of RTDS technology has been improved in many ways by utilizing a fluorescence conversion system wherein a blue fluorescent protein (BFP) can be changed to a green fluorescent protein (GFP) by editing a single nucleotide of the BFP gene (CAC→TAC; H66 to Y66). For example, dependent on oligonucleotide length, applying oligonucleotide-mediated technology to target the BFP transgene in Arabidopsis thaliana protoplasts resulted in up to 0.05% precisely edited GFP loci. Here, the development of traits in commercially relevant plant varieties to improve crop performance by genome editing technologies such as ODM, and by extension RTDS, is reviewed. PMID:26503400

  20. Genome-wide transposon mutagenesis in pathogenic Leptospira species.

    PubMed

    Murray, Gerald L; Morel, Viviane; Cerqueira, Gustavo M; Croda, Julio; Srikram, Amporn; Henry, Rebekah; Ko, Albert I; Dellagostin, Odir A; Bulach, Dieter M; Sermswan, Rasana W; Adler, Ben; Picardeau, Mathieu

    2009-02-01

    Leptospira interrogans is the most common cause of leptospirosis in humans and animals. Genetic analysis of L. interrogans has been severely hindered by a lack of tools for genetic manipulation. Recently we developed the mariner-based transposon Himar1 to generate the first defined mutants in L. interrogans. In this study, a total of 929 independent transposon mutants were obtained and the location of insertion determined. Of these mutants, 721 were located in the protein coding regions of 551 different genes. While sequence analysis of transposon insertion sites indicated that transposition occurred in an essentially random fashion in the genome, 25 unique transposon mutants were found to exhibit insertions into genes encoding 16S or 23S rRNAs, suggesting these genes are insertional hot spots in the L. interrogans genome. In contrast, loci containing notionally essential genes involved in lipopolysaccharide and heme biosynthesis showed few transposon insertions. The effect of gene disruption on the virulence of a selected set of defined mutants was investigated using the hamster model of leptospirosis. Two attenuated mutants with disruptions in hypothetical genes were identified, thus validating the use of transposon mutagenesis for the identification of novel virulence factors in L. interrogans. This library provides a valuable resource for the study of gene function in L. interrogans. Combined with the genome sequences of L. interrogans, this provides an opportunity to investigate genes that contribute to pathogenesis and will provide a better understanding of the biology of L. interrogans. PMID:19047402

  1. Functional mapping of Cre recombinase by pentapeptide insertional mutagenesis.

    PubMed

    Petyuk, Vladislav; McDermott, Jeffrey; Cook, Malcolm; Sauer, Brian

    2004-08-27

    Cre is a site-specific recombinase from bacteriophage P1. It is a member of the tyrosine integrase family and catalyzes reciprocal recombination between specific 34-bp sites called loxP. To analyze the structure-function relationships of this enzyme, we performed large scale pentapeptide insertional mutagenesis to generate insertions of five amino acids at random positions in the protein. The high density of insertion mutations into Cre allowed us to identify an unexpected degree of functional tolerance to insertions into the 4-5 beta-hairpin and into the loop between helices J and K (both of which contact the DNA in the minor groove) and also into helix A. The phenotypes of the majority of inserts allowed us to confirm a variety of predictions made on the basis of sequence conservation, known three-dimensional structure, and proposed catalytic mechanism. In particular, most insertions into conserved regions or secondary structure elements inactivated Cre, and most insertions located in nonconserved, unstructured regions preserved Cre activity. Less expectedly, the non-conserved and poorly structured loops and linkers between helices A-B, E-F, and M-N did not tolerate insertions, thus identifying these as critical regions for recombinase activity. We purified and characterized in vitro several representatives of these "unexpected" Cre insertion mutants. The role of those regions in the recombination process is discussed. PMID:15218019

  2. Recurrent AAV2-related insertional mutagenesis in human hepatocellular carcinomas.

    PubMed

    Nault, Jean-Charles; Datta, Shalini; Imbeaud, Sandrine; Franconi, Andrea; Mallet, Maxime; Couchy, Gabrielle; Letouzé, Eric; Pilati, Camilla; Verret, Benjamin; Blanc, Jean-Frédéric; Balabaud, Charles; Calderaro, Julien; Laurent, Alexis; Letexier, Mélanie; Bioulac-Sage, Paulette; Calvo, Fabien; Zucman-Rossi, Jessica

    2015-10-01

    Hepatocellular carcinomas (HCCs) are liver tumors related to various etiologies, including alcohol intake and infection with hepatitis B (HBV) or C (HCV) virus. Additional risk factors remain to be identified, particularly in patients who develop HCC without cirrhosis. We found clonal integration of adeno-associated virus type 2 (AAV2) in 11 of 193 HCCs. These AAV2 integrations occurred in known cancer driver genes, namely CCNA2 (cyclin A2; four cases), TERT (telomerase reverse transcriptase; one case), CCNE1 (cyclin E1; three cases), TNFSF10 (tumor necrosis factor superfamily member 10; two cases) and KMT2B (lysine-specific methyltransferase 2B; one case), leading to overexpression of the target genes. Tumors with viral integration mainly developed in non-cirrhotic liver (9 of 11 cases) and without known risk factors (6 of 11 cases), suggesting a pathogenic role for AAV2 in these patients. In conclusion, AAV2 is a DNA virus associated with oncogenic insertional mutagenesis in human HCC. PMID:26301494

  3. Lethal Mutagenesis of HIV with Mutagenic Nucleoside Analogs

    NASA Astrophysics Data System (ADS)

    Loeb, Lawrence A.; Essigmann, John M.; Kazazi, Farhad; Zhang, Jue; Rose, Karl D.; Mullins, James I.

    1999-02-01

    The human immunodeficiency virus (HIV) replicates its genome and mutates at exceptionally high rates. As a result, the virus is able to evade immunological and chemical antiviral agents. We tested the hypothesis that a further increase in the mutation rate by promutagenic nucleoside analogs would abolish viral replication. We evaluated deoxynucleoside analogs for lack of toxicity to human cells, incorporation by HIV reverse transcriptase, resistance to repair when incorporated into the DNA strand of an RNA\\cdot DNA hybrid, and mispairing at high frequency. Among the candidates tested, 5-hydroxydeoxycytidine (5-OH-dC) fulfilled these criteria. In seven of nine experiments, the presence of this analog resulted in the loss of viral replicative potential after 9-24 sequential passages of HIV in human CEM cells. In contrast, loss of viral replication was not observed in 28 control cultures passaged in the absence of the nucleoside analog, nor with other analogs tested. Sequence analysis of a portion of the HIV reverse transcriptase gene demonstrated a disproportionate increase in G -> A substitutions, mutations predicted to result from misincorporation of 5-OH-dC into the cDNA during reverse transcription. Thus, "lethal mutagenesis" driven by the class of deoxynucleoside analogs represented by 5-OH-dC could provide a new approach to treating HIV infections and, potentially, other viral infections.

  4. Multiplex Conditional Mutagenesis Using Transgenic Expression of Cas9 and sgRNAs.

    PubMed

    Yin, Linlin; Maddison, Lisette A; Li, Mingyu; Kara, Nergis; LaFave, Matthew C; Varshney, Gaurav K; Burgess, Shawn M; Patton, James G; Chen, Wenbiao

    2015-06-01

    Determining the mechanism of gene function is greatly enhanced using conditional mutagenesis. However, generating engineered conditional alleles is inefficient and has only been widely used in mice. Importantly, multiplex conditional mutagenesis requires extensive breeding. Here we demonstrate a system for one-generation multiplex conditional mutagenesis in zebrafish (Danio rerio) using transgenic expression of both cas9 and multiple single guide RNAs (sgRNAs). We describe five distinct zebrafish U6 promoters for sgRNA expression and demonstrate efficient multiplex biallelic inactivation of tyrosinase and insulin receptor a and b, resulting in defects in pigmentation and glucose homeostasis. Furthermore, we demonstrate temporal and tissue-specific mutagenesis using transgenic expression of Cas9. Heat-shock-inducible expression of cas9 allows temporal control of tyr mutagenesis. Liver-specific expression of cas9 disrupts insulin receptor a and b, causing fasting hypoglycemia and postprandial hyperglycemia. We also show that delivery of sgRNAs targeting ascl1a into the eye leads to impaired damage-induced photoreceptor regeneration. Our findings suggest that CRISPR/Cas9-based conditional mutagenesis in zebrafish is not only feasible but rapid and straightforward. PMID:25855067

  5. Extinction of hepatitis C virus by ribavirin in hepatoma cells involves lethal mutagenesis.

    PubMed

    Ortega-Prieto, Ana M; Sheldon, Julie; Grande-Pérez, Ana; Tejero, Héctor; Gregori, Josep; Quer, Josep; Esteban, Juan I; Domingo, Esteban; Perales, Celia

    2013-01-01

    Lethal mutagenesis, or virus extinction produced by enhanced mutation rates, is under investigation as an antiviral strategy that aims at counteracting the adaptive capacity of viral quasispecies, and avoiding selection of antiviral-escape mutants. To explore lethal mutagenesis of hepatitis C virus (HCV), it is important to establish whether ribavirin, the purine nucleoside analogue used in anti-HCV therapy, acts as a mutagenic agent during virus replication in cell culture. Here we report the effect of ribavirin during serial passages of HCV in human hepatoma Huh-7.5 cells, regarding viral progeny production and complexity of mutant spectra. Ribavirin produced an increase of mutant spectrum complexity and of the transition types associated with ribavirin mutagenesis, resulting in HCV extinction. Ribavirin-mediated depletion of intracellular GTP was not the major contributory factor to mutagenesis since mycophenolic acid evoked a similar decrease in GTP without an increase in mutant spectrum complexity. The intracellular concentration of the other nucleoside-triphosphates was elevated as a result of ribavirin treatment. Mycophenolic acid extinguished HCV without an intervening mutagenic activity. Ribavirin-mediated, but not mycophenolic acid-mediated, extinction of HCV occurred via a decrease of specific infectivity, a feature typical of lethal mutagenesis. We discuss some possibilities to explain disparate results on ribavirin mutagenesis of HCV. PMID:23976977

  6. Genome-Wide Transposon Mutagenesis in Saccharomyces cerevisiae and Candida albicans

    PubMed Central

    Xu, Tao; Bharucha, Nikë; Kumar, Anuj

    2016-01-01

    Transposon mutagenesis is an effective method for generating large sets of random mutations in target DNA, with applicability toward numerous types of genetic screens in prokaryotes, single-celled eukaryotes, and metazoans alike. Relative to methods of random mutagenesis by chemical/UV treatment, transposon insertions can be easily identified in mutants with phenotypes of interest. The construction of transposon insertion mutants is also less labor-intensive on a genome-wide scale than methods for targeted gene replacement, although transposon insertions are not precisely targeted to a specific residue, and thus coverage of the target DNA can be problematic. The collective advantages of transposon mutagenesis have been well demonstrated in studies of the budding yeast Saccharomyces cerevisiae and the related pathogenic yeast Candida albicans, as transposon mutagenesis has been used extensively for phenotypic screens in both yeasts. Consequently, we present here protocols for the generation and utilization of transposon-insertion DNA libraries in S. cerevisiae and C. albicans. Specifically, we present methods for the large-scale introduction of transposon insertion alleles in a desired strain of S. cerevisiae. Methods are also presented for transposon mutagenesis of C. albicans, encompassing both the construction of the plasmid-based transposon-mutagenized DNA library and its introduction into a desired strain of Candida. In total, these methods provide the necessary information to implement transposon mutagenesis in yeast, enabling the construction of large sets of identifiable gene disruption mutations, with particular utility for phenotypic screening in nonstandard genetic backgrounds. PMID:21815095

  7. Perturbation of bacteriochlorophyll molecules in Fenna-Matthews-Olson protein complexes through mutagenesis of cysteine residues.

    PubMed

    Saer, Rafael; Orf, Gregory S; Lu, Xun; Zhang, Hao; Cuneo, Matthew J; Myles, Dean A A; Blankenship, Robert E

    2016-09-01

    The Fenna-Matthews-Olson (FMO) pigment-protein complex in green sulfur bacteria transfers excitation energy from the chlorosome antenna complex to the reaction center. In understanding energy transfer in the FMO protein, the individual contributions of the bacteriochlorophyll pigments to the FMO complex's absorption spectrum could provide detailed information with which molecular and energetic models can be constructed. The absorption properties of the pigments, however, are such that their spectra overlap significantly. To overcome this, we used site-directed mutagenesis to construct a series of mutant FMO complexes in the model green sulfur bacterium Chlorobaculum tepidum (formerly Chlorobium tepidum). Two cysteines at positions 49 and 353 in the C. tepidum FMO complex, which reside near hydrogen bonds between BChls 2 and 3, and their amino acid binding partner serine 73 and tyrosine 15, respectively, were changed to alanine residues. The resulting C49A, C353A, and C49A C353A double mutants were analyzed with a combination of optical absorption and circular dichroism (CD) spectroscopies. Our results revealed changes in the absorption properties of several underlying spectral components in the FMO complex, as well as the redox behavior of the complex in response to the reductant sodium dithionite. A high-resolution X-ray structure of the C49A C353A double mutant reveals that these spectral changes appear to be independent of any major structural rearrangements in the FMO mutants. Our findings provide important tests for theoretical calculations of the C. tepidum FMO absorption spectrum, and additionally highlight a possible role for cysteine residues in the redox activity of the pigment-protein complex. PMID:27114180

  8. Alanine screening mutagenesis establishes the critical inactivating damage of irradiated E. coli lactose repressor.

    PubMed

    Goffinont, Stephane; Villette, Sandrine; Spotheim-Maurizot, Melanie

    2012-06-01

    The function of the E. coli lactose operon requires the binding of lactose repressor to operator DNA. We have previously shown that γ rradiation destabilizes the repressor-operator complex because the repressor loses its DNA-binding ability. It was suggested that the observed oxidation of the four tyrosines (Y7, Y12, Y17, Y47) and the concomitant structural changes of the irradiated DNA-binding domains (headpieces) could be responsible for the inactivation. To pinpoint the tyrosine whose oxidation has the strongest effect, four headpieces containing the product of tyrosine oxidation, 3,4-dihydroxyphenylalanine (DOPA), were simulated by molecular dynamics. We have observed that replacing Y47 by DOPA triggers the largest change of structure and stability of the headpiece and have concluded that Y47 oxidation is the greatest contributor to the decrease of repressor binding to DNA. To experimentally verify this conclusion, we applied the alanine screening mutagenesis approach. Tetrameric mutated repressors bearing an alanine instead of each one of the tyrosines were prepared and their binding to operator DNA was checked. Their binding ability is quite similar to that of the wild-type repressor, except for the Y47A mutant whose binding is strongly reduced. Circular dichroism determinations revealed small reductions of the proportion of α helices and of the melting temperature for Y7A, Y12A and Y17A headpieces, but much larger ones were revealed for Y47A headpiece. These results established the critical role of Y47 oxidation in modifying the structure and stability of the headpiece, and in reduction of the binding ability of the whole lactose repressor. PMID:22551504

  9. Structure-based design of combinatorial mutagenesis libraries

    PubMed Central

    Verma, Deeptak; Grigoryan, Gevorg; Bailey-Kellogg, Chris

    2015-01-01

    The development of protein variants with improved properties (thermostability, binding affinity, catalytic activity, etc.) has greatly benefited from the application of high-throughput screens evaluating large, diverse combinatorial libraries. At the same time, since only a very limited portion of sequence space can be experimentally constructed and tested, an attractive possibility is to use computational protein design to focus libraries on a productive portion of the space. We present a general-purpose method, called “Structure-based Optimization of Combinatorial Mutagenesis” (SOCoM), which can optimize arbitrarily large combinatorial mutagenesis libraries directly based on structural energies of their constituents. SOCoM chooses both positions and substitutions, employing a combinatorial optimization framework based on library-averaged energy potentials in order to avoid explicitly modeling every variant in every possible library. In case study applications to green fluorescent protein, β-lactamase, and lipase A, SOCoM optimizes relatively small, focused libraries whose variants achieve energies comparable to or better than previous library design efforts, as well as larger libraries (previously not designable by structure-based methods) whose variants cover greater diversity while still maintaining substantially better energies than would be achieved by representative random library approaches. By allowing the creation of large-scale combinatorial libraries based on structural calculations, SOCoM promises to increase the scope of applicability of computational protein design and improve the hit rate of discovering beneficial variants. While designs presented here focus on variant stability (predicted by total energy), SOCoM can readily incorporate other structure-based assessments, such as the energy gap between alternative conformational or bound states. PMID:25611189

  10. Germinal cell mutagenesis in specially designed maize genotypes.

    PubMed Central

    Plewa, M J; Wagner, E D

    1981-01-01

    We have used three inbreds of Zea mays in our in situ and laboratory studies in environmental mutagenesis. Inbred W22 plants homozygous for wx-C were used in a study to detect the possible mutagenic properties of 32 pesticides or combination of pesticides under modern agricultural conditions. The large numbers of pollen grains analyzed and the ease in detecting mutant pollen grains enabled us to treat the experimental plants with field recommended rates of pesticides. In a current study we are evaluating the possible mutagenicity of Chicago municipal sewage sludge. We are measuring the frequency of mutant pollen grains in inbred M14 at both the wx-C and wx-90 heteroalleles. These plants were exposed to various concentrations of municipal sewage sludge under field conditions. We have inbred Early-Early Synthetic for five generations and tested this inbred with known mutagens. Early-Early Synthetic is a rapidly maturing inbred growing from kernel to anthesis in approximately 4 weeks and attaining a height of approximately 50 cm. Plants of this inbred have been chronically treated with ethylmethanesulfonate (EMS) or maleic hydrazide (MH) under laboratory conditions and forward mutation at the wx locus was measured in the pollen grains. EMS and MH were mutagenic at concentrations of 1 microM and 10 nM, respectively. The concentrations of EMS and MH were calibrated in Early-Early Synthetic to a linear increase in the frequency of forward mutant pollen grains. The construction of a maize monitor for environmental mutagens is currently in progress. This assay will measure forward or reverse mutation at the wx locus in pollen grains, point mutation in somatic cells and will incorporate a cytogenetic endpoint in root-tip cells. Images FIGURE 2. FIGURE 3. FIGURE 5. PMID:6780335