Science.gov

Sample records for mutans biofilm formation

  1. Effect of Lactobacillus species on Streptococcus mutans biofilm formation.

    PubMed

    Ahmed, Ayaz; Dachang, Wu; Lei, Zhou; Jianjun, Liu; Juanjuan, Qiu; Yi, Xin

    2014-09-01

    Streptococcus mutans is the primary pathogen responsible for initiating dental caries and decay. The presence of sucrose, stimulates S. mutans to produce insoluble glucans to form oral biofilm also known as dental plaque to initiate caries lesion. The GtfB and LuxS genes of S. mutans are responsible for formation and maturation of biofilm. Lactobacillus species as probiotic can reduces the count of S. mutans. In this study effect of different Lactobacillus species against the formation of S. mutans biofilm was observed. Growing biofilm in the presence of sucrose was detected using 96 well microtiter plate crystal violet assay and biofilm formation by S. mutans in the presence of Lactobacillus was detected. Gene expression of biofilm forming genes (GtfB and LuxS) was quantified through Real-time PCR. All strains of Lactobacillus potently reduced the formation of S. mutans biofilm whereas Lactobacillus acidophilus reduced the genetic expression by 60-80%. Therefore, probiotic Lactobacillus species can be used as an alternative instead of antibiotics to decrease the chance of dental caries by reducing the count of S. mutans and their gene expression to maintain good oral health. PMID:25176247

  2. Inhibitory effect of Lactobacillus salivarius on Streptococcus mutans biofilm formation.

    PubMed

    Wu, C-C; Lin, C-T; Wu, C-Y; Peng, W-S; Lee, M-J; Tsai, Y-C

    2015-02-01

    Dental caries arises from an imbalance of metabolic activities in dental biofilms developed primarily by Streptococcus mutans. This study was conducted to isolate potential oral probiotics with antagonistic activities against S. mutans biofilm formation from Lactobacillus salivarius, frequently found in human saliva. We analysed 64 L. salivarius strains and found that two, K35 and K43, significantly inhibited S. mutans biofilm formation with inhibitory activities more pronounced than those of Lactobacillus rhamnosus GG (LGG), a prototypical probiotic that shows anti-caries activity. Scanning electron microscopy showed that co-culture of S. mutans with K35 or K43 resulted in significantly reduced amounts of attached bacteria and network-like structures, typically comprising exopolysaccharides. Spot assay for S. mutans indicated that K35 and K43 strains possessed a stronger bactericidal activity against S. mutans than LGG. Moreover, quantitative real-time polymerase chain reaction showed that the expression of genes encoding glucosyltransferases, gtfB, gtfC, and gtfD was reduced when S. mutans were co-cultured with K35 or K43. However, LGG activated the expression of gtfB and gtfC, but did not influence the expression of gtfD in the co-culture. A transwell-based biofilm assay indicated that these lactobacilli inhibited S. mutans biofilm formation in a contact-independent manner. In conclusion, we identified two L. salivarius strains with inhibitory activities on the growth and expression of S. mutans virulence genes to reduce its biofilm formation. This is not a general characteristic of the species, so presents a potential strategy for in vivo alteration of plaque biofilm and caries. PMID:24961744

  3. Molecule Targeting Glucosyltransferase Inhibits Streptococcus mutans Biofilm Formation and Virulence

    PubMed Central

    Ren, Zhi; Cui, Tao; Zeng, Jumei; Chen, Lulu; Zhang, Wenling; Xu, Xin; Cheng, Lei; Li, Mingyun; Li, Jiyao; Zhou, Xuedong

    2015-01-01

    Dental plaque biofilms are responsible for numerous chronic oral infections and cause a severe health burden. Many of these infections cannot be eliminated, as the bacteria in the biofilms are resistant to the host's immune defenses and antibiotics. There is a critical need to develop new strategies to control biofilm-based infections. Biofilm formation in Streptococcus mutans is promoted by major virulence factors known as glucosyltransferases (Gtfs), which synthesize adhesive extracellular polysaccharides (EPS). The current study was designed to identify novel molecules that target Gtfs, thereby inhibiting S. mutans biofilm formation and having the potential to prevent dental caries. Structure-based virtual screening of approximately 150,000 commercially available compounds against the crystal structure of the glucosyltransferase domain of the GtfC protein from S. mutans resulted in the identification of a quinoxaline derivative, 2-(4-methoxyphenyl)-N-(3-{[2-(4-methoxyphenyl)ethyl]imino}-1,4-dihydro-2-quinoxalinylidene)ethanamine, as a potential Gtf inhibitor. In vitro assays showed that the compound was capable of inhibiting EPS synthesis and biofilm formation in S. mutans by selectively antagonizing Gtfs instead of by killing the bacteria directly. Moreover, the in vivo anti-caries efficacy of the compound was evaluated in a rat model. We found that the compound significantly reduced the incidence and severity of smooth and sulcal-surface caries in vivo with a concomitant reduction in the percentage of S. mutans in the animals' dental plaque (P < 0.05). Taken together, these results represent the first description of a compound that targets Gtfs and that has the capacity to inhibit biofilm formation and the cariogenicity of S. mutans. PMID:26482298

  4. Molecule Targeting Glucosyltransferase Inhibits Streptococcus mutans Biofilm Formation and Virulence.

    PubMed

    Ren, Zhi; Cui, Tao; Zeng, Jumei; Chen, Lulu; Zhang, Wenling; Xu, Xin; Cheng, Lei; Li, Mingyun; Li, Jiyao; Zhou, Xuedong; Li, Yuqing

    2016-01-01

    Dental plaque biofilms are responsible for numerous chronic oral infections and cause a severe health burden. Many of these infections cannot be eliminated, as the bacteria in the biofilms are resistant to the host's immune defenses and antibiotics. There is a critical need to develop new strategies to control biofilm-based infections. Biofilm formation in Streptococcus mutans is promoted by major virulence factors known as glucosyltransferases (Gtfs), which synthesize adhesive extracellular polysaccharides (EPS). The current study was designed to identify novel molecules that target Gtfs, thereby inhibiting S. mutans biofilm formation and having the potential to prevent dental caries. Structure-based virtual screening of approximately 150,000 commercially available compounds against the crystal structure of the glucosyltransferase domain of the GtfC protein from S. mutans resulted in the identification of a quinoxaline derivative, 2-(4-methoxyphenyl)-N-(3-{[2-(4-methoxyphenyl)ethyl]imino}-1,4-dihydro-2-quinoxalinylidene)ethanamine, as a potential Gtf inhibitor. In vitro assays showed that the compound was capable of inhibiting EPS synthesis and biofilm formation in S. mutans by selectively antagonizing Gtfs instead of by killing the bacteria directly. Moreover, the in vivo anti-caries efficacy of the compound was evaluated in a rat model. We found that the compound significantly reduced the incidence and severity of smooth and sulcal-surface caries in vivo with a concomitant reduction in the percentage of S. mutans in the animals' dental plaque (P < 0.05). Taken together, these results represent the first description of a compound that targets Gtfs and that has the capacity to inhibit biofilm formation and the cariogenicity of S. mutans. PMID:26482298

  5. Essential oil of Curcuma longa inhibits Streptococcus mutans biofilm formation.

    PubMed

    Lee, Kwang-Hee; Kim, Beom-Su; Keum, Ki-Suk; Yu, Hyeon-Hee; Kim, Young-Hoi; Chang, Byoung-Soo; Ra, Ji-Young; Moon, Hae-Dalma; Seo, Bo-Ra; Choi, Na-Young; You, Yong-Ouk

    2011-01-01

    Curcuma longa (C. longa) has been used as a spice in foods and as an antimicrobial in Oriental medicine. In this study, we evaluated the inhibitory effects of an essential oil isolated from C. longa on the cariogenic properties of Streptococcus mutans (S. mutans), which is an important bacterium in dental plaque and dental caries formation. First, the inhibitory effects of C. longa essential oil on the growth and acid production of S. mutans were tested. Next, the effect of C. longa essential oil on adhesion to saliva-coated hydroxyapatite beads (S-HAs) was investigated. C. longa essential oil inhibited the growth and acid production of S. mutans at concentrations from 0.5 to 4 mg/mL. The essential oil also exhibited significant inhibition of S. mutans adherence to S-HAs at concentrations higher than 0.5 mg/mL. S. mutans biofilm formation was determined by scanning electron microscopy (SEM) and safranin staining. The essential oil of C. longa inhibited the formation of S. mutans biofilms at concentrations higher than 0.5 mg/mL. The components of C. longa essential oil were then analyzed by GC and GC-MS, and the major components were α-turmerone (35.59%), germacrone (19.02%), α-zingiberene (8.74%), αr-turmerone (6.31%), trans-β-elemenone (5.65%), curlone (5.45%), and β-sesquiphellandrene (4.73%). These results suggest that C. longa may inhibit the cariogenic properties of S. mutans. PMID:22416707

  6. Effect of Honey on Streptococcus mutans Growth and Biofilm Formation

    PubMed Central

    Li, Mingyun

    2012-01-01

    Because of the tradition of using honey as an antimicrobial medicament, we investigated the effect of natural honey (NH) on Streptococcus mutans growth, viability, and biofilm formation compared to that of an artificial honey (AH). AH contained the sugars at the concentrations reported for NH. NH and AH concentrations were obtained by serial dilution with tryptic soy broth (TSB). Several concentrations of NH and AH were tested for inhibition of bacterial growth, viability, and biofilm formation after inoculation with S. mutans UA159 in 96-well microtiter plates to obtain absorbance and CFU values. Overall, NH supported significantly less (P < 0.05) bacterial growth than AH at 25 and 12.5% concentrations. At 50 and 25% concentrations, both honey groups provided significantly less bacterial growth and biofilm formation than the TSB control. For bacterial viability, the results for all honey concentrations except 50% NH were not significantly different from those for the TSB control. NH was able to decrease the maximum velocity of S. mutans growth compared to AH. In summary, NH demonstrated more inhibition of bacterial growth, viability, and biofilm formation than AH. This study highlights the potential antibacterial properties of NH and could suggest that the antimicrobial mechanism of NH is not solely due to its high sugar content. PMID:22038612

  7. Fibrinogen-Induced Streptococcus mutans Biofilm Formation and Adherence to Endothelial Cells

    PubMed Central

    Lombardo Bedran, Telma Blanca; Azelmat, Jabrane; Palomari Spolidorio, Denise

    2013-01-01

    Streptococcus mutans, the predominant bacterial species associated with dental caries, can enter the bloodstream and cause infective endocarditis. The aim of this study was to investigate S. mutans biofilm formation and adherence to endothelial cells induced by human fibrinogen. The putative mechanism by which biofilm formation is induced as well as the impact of fibrinogen on S. mutans resistance to penicillin was also evaluated. Bovine plasma dose dependently induced biofilm formation by S. mutans. Of the various plasma proteins tested, only fibrinogen promoted the formation of biofilm in a dose-dependent manner. Scanning electron microscopy observations revealed the presence of complex aggregates of bacterial cells firmly attached to the polystyrene support. S. mutans in biofilms induced by the presence of fibrinogen was markedly resistant to the bactericidal effect of penicillin. Fibrinogen also significantly increased the adherence of S. mutans to endothelial cells. Neither S. mutans cells nor culture supernatants converted fibrinogen into fibrin. However, fibrinogen is specifically bound to the cell surface of S. mutans and may act as a bridging molecule to mediate biofilm formation. In conclusion, our study identified a new mechanism promoting S. mutans biofilm formation and adherence to endothelial cells which may contribute to infective endocarditis. PMID:24222906

  8. Effects of sub-minimum inhibitory concentrations of antimicrobial agents on Streptococcus mutans biofilm formation.

    PubMed

    Dong, Liping; Tong, Zhongchun; Linghu, Dake; Lin, Yuan; Tao, Rui; Liu, Jun; Tian, Yu; Ni, Longxing

    2012-05-01

    Many studies have demonstrated that sub-minimum inhibitory concentrations (sub-MICs) of antimicrobial agents can inhibit bacterial biofilm formation. However, the mechanisms by which antimicrobial agents at sub-MICs inhibit biofilm formation remain unclear. At present, most studies are focused on Gram-negative bacteria; however, the effects of sub-MICs of antimicrobial agents on Gram-positive bacteria may be more complex. Streptococcus mutans is a major cariogenic bacterium. In this study, the S. mutans growth curve as well as the expression of genes related to S. mutans biofilm formation were evaluated following treatment with 0.5× MIC of chlorhexidine (CHX), tea polyphenols and sodium fluoride (NaF), which are common anticaries agents. The BioFlux system was employed to generate a biofilm under a controlled flow. Morphological changes of the S. mutans biofilm were observed and analysed using field emission scanning electron microscopy and confocal laser scanning microscopy. The results indicated that these three common anticaries agents could significantly upregulate expression of the genes related to S. mutans biofilm formation, and S. mutans exhibited a dense biofilm with an extensive extracellular matrix following treatment with sub-MICs of NaF and CHX. These findings suggest that sub-MICs of anticaries agents favour S. mutans biofilm formation, which might encourage dental caries progression. PMID:22421330

  9. Streptococcus mutans Can Modulate Biofilm Formation and Attenuate the Virulence of Candida albicans

    PubMed Central

    Barbosa, Júnia Oliveira; Rossoni, Rodnei Dennis; Vilela, Simone Furgeri Godinho; de Alvarenga, Janaína Araújo; Velloso, Marisol dos Santos; Prata, Márcia Cristina de Azevedo; Jorge, Antonio Olavo Cardoso; Junqueira, Juliana Campos

    2016-01-01

    Streptococcus mutans and Candida albicans are found together in the oral biofilms on dental surfaces, but little is known about the ecological interactions between these species. Here, we studied the effects of S. mutans UA159 on the growth and pathogencity of C. albicans. Initially, the effects of S. mutans on the biofilm formation and morphogenesis of C. albicans were tested in vitro. Next, we investigate the influence of S. mutans on pathogenicity of C. albicans using in vivo host models, in which the experimental candidiasis was induced in G. mellonella larvae and analyzed by survival curves, C. albicans count in hemolymph, and quantification of hyphae in the host tissues. In all the tests, we evaluated the direct effects of S. mutans cells, as well as the indirect effects of the subproducts secreted by this microorganism using a bacterial culture filtrate. The in vitro analysis showed that S. mutans cells favored biofilm formation by C. albicans. However, a reduction in biofilm viable cells and inhibition of hyphal growth was observed when C. albicans was in contact with the S. mutans culture filtrate. In the in vivo study, injection of S. mutans cells or S. mutans culture filtrate into G. mellonella larvae infected with C. albicans increased the survival of these animals. Furthermore, a reduction in hyphal formation was observed in larval tissues when C. albicans was associated with S. mutans culture filtrate. These findings suggest that S. mutans can secrete subproducts capable to inhibit the biofilm formation, morphogenesis and pathogenicity of C. albicans, attenuating the experimental candidiasis in G. mellonella model. PMID:26934196

  10. Effect of LongZhang Gargle on Biofilm Formation and Acidogenicity of Streptococcus mutans In Vitro

    PubMed Central

    Yang, Yutao; Liu, Shiyu; He, Yuanli

    2016-01-01

    Streptococcus mutans, with the ability of high-rate acid production and strong biofilm formation, is considered the predominant bacterial species in the pathogenesis of human dental caries. Natural products which may be bioactive against S. mutans have become a hot spot to researches to control dental caries. LongZhang Gargle, completely made from Chinese herbs, was investigated for its effects on acid production and biofilm formation by S. mutans in this study. The results showed an antimicrobial activity of LongZhang Gargle against S. mutans planktonic growth at the minimum inhibitory concentration (MIC) of 16% and minimum bactericidal concentration (MBC) of 32%. Acid production was significantly inhibited at sub-MIC concentrations. Biofilm formation was also significantly disrupted, and 8% was the minimum concentration that resulted in at least 50% inhibition of biofilm formation (MBIC50). A scanning electron microscopy (SEM) showed an effective disruption of LongZhang Gargle on S. mutans biofilm integrity. In addition, a confocal laser scanning microscopy (CLSM) suggested that the extracellular polysaccharides (EPS) synthesis could be inhibited by LongZhang Gargle at a relatively low concentration. These findings suggest that LongZhang Gargle may be a promising natural anticariogenic agent in that it suppresses planktonic growth, acid production, and biofilm formation against S. mutans. PMID:27314029

  11. The Effect of Carbon Source and Fluoride Concentrations in the "Streptococcus Mutans" Biofilm Formation

    ERIC Educational Resources Information Center

    Paulino, Tony P.; Andrade, Ricardo O.; Bruschi-Thedei, Giuliana C. M.; Thedei, Geraldo, Jr.; Ciancaglini, Pietro

    2004-01-01

    The main objective of this class experiment is to show the influence of carbon source and of different fluoride concentrations on the biofilm formation by the bacterium "Streptococcus mutans." The observation of different biofilm morphology as a function of carbon source and fluoride concentration allows an interesting discussion regarding the…

  12. Genetic adaptation of Streptococcus mutans during biofilm formation on different types of surfaces

    PubMed Central

    2010-01-01

    Background Adhesion and successful colonization of bacteria onto solid surfaces play a key role in biofilm formation. The initial adhesion and the colonization of bacteria may differ between the various types of surfaces found in oral cavity. Therefore, it is conceivable that diverse biofilms are developed on those various surfaces. The aim of the study was to investigate the molecular modifications occurring during in vitro biofilm development of Streptococcus mutans UA159 on several different dental surfaces. Results Growth analysis of the immobilized bacterial populations generated on the different surfaces shows that the bacteria constructed a more confluent and thick biofilms on a hydroxyapatite surface compared to the other tested surfaces. Using DNA-microarray technology we identified the differentially expressed genes of S. mutans, reflecting the physiological state of biofilms formed on the different biomaterials tested. Eight selected genes were further analyzed by real time RT-PCR. To further determine the impact of the tested material surfaces on the physiology of the bacteria, we tested the secretion of AI-2 signal by S. mutans embedded on those biofilms. Comparative transcriptome analyses indicated on changes in the S. mutans genome in biofilms formed onto different types of surfaces and enabled us to identify genes most differentially expressed on those surfaces. In addition, the levels of autoinducer-2 in biofilms from the various tested surfaces were different. Conclusions Our results demonstrate that gene expression of S. mutans differs in biofilms formed on tested surfaces, which manifest the physiological state of bacteria influenced by the type of surface material they accumulate onto. Moreover, the stressful circumstances of adjustment to the surface may persist in the bacteria enhancing intercellular signaling and surface dependent biofilm formation. PMID:20167085

  13. Effect of Weissella cibaria isolates on the formation of Streptococcus mutans biofilm.

    PubMed

    Kang, M-S; Chung, J; Kim, S-M; Yang, K-H; Oh, J-S

    2006-01-01

    The objective of this study was to isolate and identify lactic acid bacteria able to inhibit the in vitro formation of Streptococcus mutans biofilm as well as the in vivo formation of oral biofilm. Two strains, CMS1 and CMS3, exhibiting profound inhibitory effects on the formation of S. mutans biofilm and the proliferation of S. mutans, were isolated from children's saliva and identified as Weissella cibaria by 16S rDNA sequencing. The water-soluble polymers produced from sucrose by the W. cibaria isolates also inhibited the formation of S. mutans biofilm. According to the results of thin-layer chromatographic analysis, the hydrolysates of water-soluble polymers produced by the isolates were identical to those of dextran, forming mostly alpha-(1-6) glucose linkages. In the clinical study, the subjects mouthrinsed with a solution containing W. cibaria CMS1 evidenced plaque index reduction of approximately 20.7% (p < 0.001). These results indicate that the W. cibaria isolates possess the ability to inhibit biofilm formation, both in vitro and in vivo. PMID:16946611

  14. Hydrophilicity of dentin bonding systems influences in vitro Streptococcus mutans biofilm formation

    PubMed Central

    Brambilla, Eugenio; Ionescu, Andrei; Mazzoni, Annalisa; Cadenaro, Milena; Gagliani, Massimo; Ferraroni, Monica; Tay, Franklin; Pashley, David; Breschi, Lorenzo

    2014-01-01

    Objectives To evaluate in vitro Streptococcus mutans (S. mutans) biofilm formation on the surface of five light-curing experimental dental bonding systems (DBS) with increasing hydrophilicity. The null hypothesis tested was that resin chemical composition and hydrophilicity does not affect S. mutans biofilm formation. Methods Five light-curing versions of experimental resin blends with increasing hydrophilicity were investigated (R1, R2, R3, R4 and R5). R1 and R2 contained ethoxylated BisGMA/TEGDMA or BisGMA/TEGDMA, respectively, and were very hydrophobic, were representative of pit-and-fissure bonding agents. R3 was representative of a typical two-step etch- and-rinse adhesive, while R4 and R5 were very hydrophilic resins analogous to self-etching adhesives. Twenty-eight disks were prepared for each resin blend. After a 24 h-incubation at 37 °C, a multilayer monospecific biofilm of S. mutans was obtained on the surface of each disk. The adherent biomass was determined using the MTT assay and evaluated morphologically with confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). Results R2 and R3 surfaces showed the highest biofilm formation while R1 and R4 showed a similar intermediate biofilm formation. R5 was more hydrophilic and acidic and was significantly less colonized than all the other resins. A significant quadratic relationship between biofilm formation and hydrophilicity of the resin blends was found. CLSM and SEM evaluation confirmed MTT assay results. Conclusions The null hypothesis was rejected since S. mutans biofilm formation was influenced by hydrophilicity, surface acidity and chemical composition of the experimental resins. Further studies using a bioreactor are needed to confirm the results and clarify the role of the single factors. PMID:24954666

  15. Levorotatory carbohydrates and xylitol subdue Streptococcus mutans and Candida albicans adhesion and biofilm formation.

    PubMed

    Brambilla, Eugenio; Ionescu, Andrei C; Cazzaniga, Gloria; Ottobelli, Marco; Samaranayake, Lakshman P

    2016-05-01

    Dietary carbohydrates and polyols affect the microbial colonization of oral surfaces by modulating adhesion and biofilm formation. The aim of this study was to evaluate the influence of a select group of l-carbohydrates and polyols on either Streptococcus mutans or Candida albicans adhesion and biofilm formation in vitro. S. mutans or C. albicans suspensions were inoculated on polystyrene substrata in the presence of Tryptic soy broth containing 5% of the following compounds: d-glucose, d-mannose, l-glucose, l-mannose, d- and l-glucose (raceme), d- and l-mannose (raceme), l-glucose and l-mannose, sorbitol, mannitol, and xylitol. Microbial adhesion (2 h) and biofilm formation (24 h) were evaluated using MTT-test and Scanning Electron Microscopy (SEM). Xylitol and l-carbohydrates induced the lowest adhesion and biofilm formation in both the tested species, while sorbitol and mannitol did not promote C. albicans biofilm formation. Higher adhesion and biofilm formation was noted in both organisms in the presence of d-carbohydrates relative to their l-carbohydrate counterparts. These results elucidate, hitherto undescribed, interactions of the individually tested strains with l- and d-carbohydrates, and how they impact fungal and bacterial colonization. In translational terms, our data raise the possibility of using l-form of carbohydrates and xylitol for dietary control of oral plaque biofilms. PMID:26456320

  16. Inhibition of Streptococcus mutans biofilm formation on composite resins containing ursolic acid

    PubMed Central

    Kim, Soohyeon; Song, Minju; Roh, Byoung-Duck; Park, Sung-Ho

    2013-01-01

    Objectives To evaluate the inhibitory effect of ursolic acid (UA)-containing composites on Streptococcus mutans (S. mutans) biofilm. Materials and Methods Composite resins with five different concentrations (0.04, 0.1, 0.2, 0.5, and 1.0 wt%) of UA (U6753, Sigma Aldrich) were prepared, and their flexural strengths were measured according to ISO 4049. To evaluate the effect of carbohydrate source on biofilm formation, either glucose or sucrose was used as a nutrient source, and to investigate the effect of saliva treatment, the specimen were treated with either unstimulated whole saliva or phosphate-buffered saline (PBS). For biofilm assay, composite disks were transferred to S. mutans suspension and incubated for 24 hr. Afterwards, the specimens were rinsed with PBS and sonicated. The colony forming units (CFU) of the disrupted biofilm cultures were enumerated. For growth inhibition test, the composites were placed on a polystyrene well cluster, and S. mutans suspension was inoculated. The optical density at 600 nm (OD600) was recorded by Infinite F200 pro apparatus (TECAN). One-way ANOVA and two-way ANOVA followed by Bonferroni correction were used for the data analyses. Results The flexural strength values did not show significant difference at any concentration (p > 0.01). In biofilm assay, the CFU score decreased as the concentration of UA increased. The influence of saliva pretreatment was conflicting. The sucrose groups exhibited higher CFU score than glucose group (p < 0.05). In bacterial growth inhibition test, all experimental groups containing UA resulted in complete inhibition. Conclusions Within the limitations of the experiments, UA included in the composite showed inhibitory effect on S. mutans biofilm formation and growth. PMID:23741708

  17. Inhibition of Streptococcus mutans biofilm formation by Streptococcus salivarius FruA.

    PubMed

    Ogawa, Ayako; Furukawa, Soichi; Fujita, Shuhei; Mitobe, Jiro; Kawarai, Taketo; Narisawa, Naoki; Sekizuka, Tsuyoshi; Kuroda, Makoto; Ochiai, Kuniyasu; Ogihara, Hirokazu; Kosono, Saori; Yoneda, Saori; Watanabe, Haruo; Morinaga, Yasushi; Uematsu, Hiroshi; Senpuku, Hidenobu

    2011-03-01

    The oral microbial flora consists of many beneficial species of bacteria that are associated with a healthy condition and control the progression of oral disease. Cooperative interactions between oral streptococci and the pathogens play important roles in the development of dental biofilms in the oral cavity. To determine the roles of oral streptococci in multispecies biofilm development and the effects of the streptococci in biofilm formation, the active substances inhibiting Streptococcus mutans biofilm formation were purified from Streptococcus salivarius ATCC 9759 and HT9R culture supernatants using ion exchange and gel filtration chromatography. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry analysis was performed, and the results were compared to databases. The S. salivarius HT9R genome sequence was determined and used to indentify candidate proteins for inhibition. The candidates inhibiting biofilms were identified as S. salivarius fructosyltransferase (FTF) and exo-beta-d-fructosidase (FruA). The activity of the inhibitors was elevated in the presence of sucrose, and the inhibitory effects were dependent on the sucrose concentration in the biofilm formation assay medium. Purified and commercial FruA from Aspergillus niger (31.6% identity and 59.6% similarity to the amino acid sequence of FruA from S. salivarius HT9R) completely inhibited S. mutans GS-5 biofilm formation on saliva-coated polystyrene and hydroxyapatite surfaces. Inhibition was induced by decreasing polysaccharide production, which is dependent on sucrose digestion rather than fructan digestion. The data indicate that S. salivarius produces large quantities of FruA and that FruA alone may play an important role in multispecies microbial interactions for sucrose-dependent biofilm formation in the oral cavity. PMID:21239559

  18. Inhibition of Streptococcus mutans Biofilm Formation by Streptococcus salivarius FruA▿

    PubMed Central

    Ogawa, Ayako; Furukawa, Soichi; Fujita, Shuhei; Mitobe, Jiro; Kawarai, Taketo; Narisawa, Naoki; Sekizuka, Tsuyoshi; Kuroda, Makoto; Ochiai, Kuniyasu; Ogihara, Hirokazu; Kosono, Saori; Yoneda, Saori; Watanabe, Haruo; Morinaga, Yasushi; Uematsu, Hiroshi; Senpuku, Hidenobu

    2011-01-01

    The oral microbial flora consists of many beneficial species of bacteria that are associated with a healthy condition and control the progression of oral disease. Cooperative interactions between oral streptococci and the pathogens play important roles in the development of dental biofilms in the oral cavity. To determine the roles of oral streptococci in multispecies biofilm development and the effects of the streptococci in biofilm formation, the active substances inhibiting Streptococcus mutans biofilm formation were purified from Streptococcus salivarius ATCC 9759 and HT9R culture supernatants using ion exchange and gel filtration chromatography. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry analysis was performed, and the results were compared to databases. The S. salivarius HT9R genome sequence was determined and used to indentify candidate proteins for inhibition. The candidates inhibiting biofilms were identified as S. salivarius fructosyltransferase (FTF) and exo-beta-d-fructosidase (FruA). The activity of the inhibitors was elevated in the presence of sucrose, and the inhibitory effects were dependent on the sucrose concentration in the biofilm formation assay medium. Purified and commercial FruA from Aspergillus niger (31.6% identity and 59.6% similarity to the amino acid sequence of FruA from S. salivarius HT9R) completely inhibited S. mutans GS-5 biofilm formation on saliva-coated polystyrene and hydroxyapatite surfaces. Inhibition was induced by decreasing polysaccharide production, which is dependent on sucrose digestion rather than fructan digestion. The data indicate that S. salivarius produces large quantities of FruA and that FruA alone may play an important role in multispecies microbial interactions for sucrose-dependent biofilm formation in the oral cavity. PMID:21239559

  19. Combinatorial Effects of Aromatic 1,3-Disubstituted Ureas and Fluoride on In vitro Inhibition of Streptococcus mutans Biofilm Formation

    PubMed Central

    Kaur, Gurmeet; Balamurugan, P.; Uma Maheswari, C.; Anitha, A.; Princy, S. Adline

    2016-01-01

    Dental caries occur as a result of disequilibrium between acid producing pathogenic bacteria and alkali generating commensal bacteria within a dental biofilm (dental plaque). Streptococcus mutans has been reported as a primary cariogenic pathogen associated with dental caries. Emergence of multidrug resistant as well as fluoride resistant strains of S. mutans due to over use of various antibiotics are a rising problem and prompted the researchers worldwide to search for alternative therapies. In this perspective, the present study was aimed to screen selective inhibitors against ComA, a bacteriocin associated ABC transporter, involved in the quorum sensing of S. mutans. In light of our present in silico findings, 1,3-disubstituted urea derivatives which had better affinity to ComA were chemically synthesized in the present study for in vitro evaluation of S. mutans biofilm inhibition. The results revealed that 1,3-disubstituted urea derivatives showed good biofilm inhibition. In addition, synthesized compounds exhibited potent synergy with a very low concentration of fluoride (31.25–62.5 ppm) in inhibiting the biofilm formation of S. mutans without affecting the bacterial growth. Further, the results were supported by confocal laser scanning microscopy. On the whole, from our experimental results we conclude that the combinatorial application of fluoride and disubstituted ureas has a potential synergistic effect which has a promising approach in combating multidrug resistant and fluoride resistant S. mutans in dental caries management. PMID:27375583

  20. Composition Analysis and Inhibitory Effect of Sterculia lychnophora against Biofilm Formation by Streptococcus mutans.

    PubMed

    Yang, Yang; Park, Bok-Im; Hwang, Eun-Hee; You, Yong-Ouk

    2016-01-01

    Pangdahai is a traditional Chinese drug, specifically described in the Chinese Pharmacopoeia as the seeds of Sterculia lychnophora Hance. Here, we separated S. lychnophora husk and kernel, analyzed the nutrient contents, and investigated the inhibitory effects of S. lychnophora ethanol extracts on cariogenic properties of Streptococcus mutans, important bacteria in dental caries and plaque formation. Ethanol extracts of S. lychnophora showed dose-dependent antibacterial activity against S. mutans with significant inhibition at concentrations higher than 0.01 mg/mL compared with the control group (p < 0.05). Furthermore, biofilm formation was decreased by S. lychnophora at concentrations > 0.03 mg/mL, while bacterial viability was decreased dose-dependently at high concentrations (0.04, 0.08, 0.16, and 0.32 mg/mL). Preliminary phytochemical analysis of the ethanol extract revealed a strong presence of alkaloid, phenolics, glycosides, and peptides while the presence of steroids, terpenoids, flavonoids, and organic acids was low. The S. lychnophora husk had higher moisture and ash content than the kernel, while the protein and fat content of the husk were lower (p < 0.05) than those of the kernel. These results indicate that S. lychnophora may have antibacterial effects against S. mutans, which are likely related to the alkaloid, phenolics, glycosides, and peptides, the major components of S. lychnophora. PMID:27190540

  1. Composition Analysis and Inhibitory Effect of Sterculia lychnophora against Biofilm Formation by Streptococcus mutans

    PubMed Central

    Yang, Yang; Park, Bok-Im; Hwang, Eun-Hee; You, Yong-Ouk

    2016-01-01

    Pangdahai is a traditional Chinese drug, specifically described in the Chinese Pharmacopoeia as the seeds of Sterculia lychnophora Hance. Here, we separated S. lychnophora husk and kernel, analyzed the nutrient contents, and investigated the inhibitory effects of S. lychnophora ethanol extracts on cariogenic properties of Streptococcus mutans, important bacteria in dental caries and plaque formation. Ethanol extracts of S. lychnophora showed dose-dependent antibacterial activity against S. mutans with significant inhibition at concentrations higher than 0.01 mg/mL compared with the control group (p < 0.05). Furthermore, biofilm formation was decreased by S. lychnophora at concentrations > 0.03 mg/mL, while bacterial viability was decreased dose-dependently at high concentrations (0.04, 0.08, 0.16, and 0.32 mg/mL). Preliminary phytochemical analysis of the ethanol extract revealed a strong presence of alkaloid, phenolics, glycosides, and peptides while the presence of steroids, terpenoids, flavonoids, and organic acids was low. The S. lychnophora husk had higher moisture and ash content than the kernel, while the protein and fat content of the husk were lower (p < 0.05) than those of the kernel. These results indicate that S. lychnophora may have antibacterial effects against S. mutans, which are likely related to the alkaloid, phenolics, glycosides, and peptides, the major components of S. lychnophora. PMID:27190540

  2. Deficiency of PdxR in Streptococcus mutans affects vitamin B6 metabolism, acid tolerance response and biofilm formation

    PubMed Central

    Liao, S.; Bitoun, J.P.; Nguyen, A.H.; Bozner, D.; Yao, X.; Wen, Z.T.

    2015-01-01

    Summary Streptococcus mutans, a key etiological agent of the human dental caries, lives primarily on the tooth surface in tenacious biofilms. The SMU864 locus, designated pdxR, is predicted to encode a member of the novel MocR/GabR family proteins, which are featured with a winged helix DNA-binding N-terminal domain and a C-terminal domain highly homologous to the pyridoxal phosphate-dependent aspartate aminotransferases. A pdxR-deficient mutant, TW296, was constructed using allelic exchange. PdxR deficiency in S. mutans had little effect on cell morphology and growth when grown in brain heart infusion. However, when compared with its parent strain, UA159, the PdxR-deficient mutant displayed major defects in acid tolerance response and formed significantly fewer biofilms (P < 0.01). When analyzed by realtime polymerase chain reaction, PdxR deficiency was found to drastically reduce expression of an apparent operon encoding a pyridoxal kinase (SMU865) and a pyridoxal permease (SMU866) of the salvage pathway of vitamin B6 biosynthesis. In addition, PdxR deficiency also altered the expression of genes for ClpL protease, glucosyl-transferase B and adhesin SpaP, which are known to play important roles in stress tolerance and biofilm formation. Consistently, PdxR-deficiency affected the growth of the deficient mutant when grown in defined medium with and without vitamin B6. Further studies revealed that although S. mutans is known to require vitamin B6 to grow in defined medium, B6 vitamers, especially pyridoxal, were strongly inhibitory at millimolar concentrations, against S. mutans growth and biofilm formation. Our results suggest that PdxR in S. mutans plays an important role in regulation of vitamin B6 metabolism, acid tolerance response and biofilm formation. PMID:25421565

  3. Deficiency of PdxR in Streptococcus mutans affects vitamin B6 metabolism, acid tolerance response and biofilm formation.

    PubMed

    Liao, S; Bitoun, J P; Nguyen, A H; Bozner, D; Yao, X; Wen, Z T

    2015-08-01

    Streptococcus mutans, a key etiological agent of the human dental caries, lives primarily on the tooth surface in tenacious biofilms. The SMU864 locus, designated pdxR, is predicted to encode a member of the novel MocR/GabR family proteins, which are featured with a winged helix DNA-binding N-terminal domain and a C-terminal domain highly homologous to the pyridoxal phosphate-dependent aspartate aminotransferases. A pdxR-deficient mutant, TW296, was constructed using allelic exchange. PdxR deficiency in S. mutans had little effect on cell morphology and growth when grown in brain heart infusion. However, when compared with its parent strain, UA159, the PdxR-deficient mutant displayed major defects in acid tolerance response and formed significantly fewer biofilms (P < 0.01). When analyzed by real-time polymerase chain reaction, PdxR deficiency was found to drastically reduce expression of an apparent operon encoding a pyridoxal kinase (SMU865) and a pyridoxal permease (SMU866) of the salvage pathway of vitamin B6 biosynthesis. In addition, PdxR deficiency also altered the expression of genes for ClpL protease, glucosyltransferase B and adhesin SpaP, which are known to play important roles in stress tolerance and biofilm formation. Consistently, PdxR-deficiency affected the growth of the deficient mutant when grown in defined medium with and without vitamin B6 . Further studies revealed that although S. mutans is known to require vitamin B6 to grow in defined medium, B6 vitamers, especially pyridoxal, were strongly inhibitory at millimolar concentrations, against S. mutans growth and biofilm formation. Our results suggest that PdxR in S. mutans plays an important role in regulation of vitamin B6 metabolism, acid tolerance response and biofilm formation. PMID:25421565

  4. The copYAZ Operon Functions in Copper Efflux, Biofilm Formation, Genetic Transformation, and Stress Tolerance in Streptococcus mutans

    PubMed Central

    Singh, Kamna; Senadheera, Dilani B.; Lévesque, Céline M.

    2015-01-01

    CopYAZ system in copper export and have further expanded knowledge on the importance of copper homeostasis and the CopYAZ system in modulating streptococcal physiology, including stress tolerance, membrane potential, genetic competence, and biofilm formation. IMPORTANCE S. mutans is best known for its role in the initiation and progression of human dental caries, one of the most common chronic diseases worldwide. S. mutans is also implicated in bacterial endocarditis, a life-threatening inflammation of the heart valve. The core virulence factors of S. mutans include its ability to produce and sustain acidic conditions and to form a polysaccharide-encased biofilm that provides protection against environmental insults. Here, we demonstrate that the addition of copper and/or deletion of copYAZ (the copper homeostasis system) have serious implications in modulating biofilm formation, stress tolerance, and genetic transformation in S. mutans. Manipulating the pathways affected by copper and the copYAZ system may help to develop potential therapeutics to prevent S. mutans infection in and beyond the oral cavity. PMID:26013484

  5. Zerovalent bismuth nanoparticles inhibit Streptococcus mutans growth and formation of biofilm

    PubMed Central

    Hernandez-Delgadillo, Rene; Velasco-Arias, Donaji; Diaz, David; Arevalo-Niño, Katiushka; Garza-Enriquez, Marianela; De la Garza-Ramos, Myriam A; Cabral-Romero, Claudio

    2012-01-01

    Background and methods Despite continuous efforts, the increasing prevalence of resistance among pathogenic bacteria to common antibiotics has become one of the most significant concerns in modern medicine. Nanostructured materials are used in many fields, including biological sciences and medicine. While some bismuth derivatives has been used in medicine to treat vomiting, nausea, diarrhea, and stomach pain, the biocidal activity of zerovalent bismuth nanoparticles has not yet been studied. The objective of this investigation was to analyze the antimicrobial activity of bismuth nanoparticles against oral bacteria and their antibiofilm capabilities. Results Our results showed that stable colloidal bismuth nanoparticles had 69% antimicrobial activity against Streptococcus mutans growth and achieved complete inhibition of biofilm formation. These results are similar to those obtained with chlorhexidine, the most commonly used oral antiseptic agent. The minimal inhibitory concentration of bismuth nanoparticles that interfered with S. mutans growth was 0.5 mM. Conclusion These results suggest that zerovalent bismuth nanoparticles could be an interesting antimicrobial agent to be incorporated into an oral antiseptic preparation. PMID:22619547

  6. Inhibitory Effects of Chrysanthemum boreale Essential Oil on Biofilm Formation and Virulence Factor Expression of Streptococcus mutans.

    PubMed

    Kim, Beom-Su; Park, Sun-Ju; Kim, Myung-Kon; Kim, Young-Hoi; Lee, Sang-Bong; Lee, Kwang-Hee; Choi, Na-Young; Lee, Young-Rae; Lee, Young-Eun; You, Yong-Ouk

    2015-01-01

    The aim of the study was to evaluate the antibacterial activity of essential oil extracted from Chrysanthemum boreale (C. boreale) on Streptococcus mutans (S. mutans). To investigate anticariogenic properties, and bacterial growth, acid production, biofilm formation, bacterial adherence of S. mutans were evaluated. Then gene expression of several virulence factors was also evaluated. C. boreale essential oil exhibited significant inhibition of bacterial growth, adherence capacity, and acid production of S. mutans at concentrations 0.1-0.5 mg/mL and 0.25-0.5 mg/mL, respectively. The safranin staining and scanning electron microscopy results showed that the biofilm formation was also inhibited. The result of live/dead staining showed the bactericidal effect. Furthermore, real-time PCR analysis showed that the gene expression of some virulence factors such as gtfB, gtfC, gtfD, gbpB, spaP, brpA, relA, and vicR of S. mutans was significantly decreased in a dose dependent manner. In GC and GC-MS analysis, seventy-two compounds were identified in the oil, representing 85.42% of the total oil. The major components were camphor (20.89%), β-caryophyllene (5.71%), α-thujone (5.46%), piperitone (5.27%), epi-sesquiphellandrene (5.16%), α-pinene (4.97%), 1,8-cineole (4.52%), β-pinene (4.45%), and camphene (4.19%). These results suggest that C. boreale essential oil may inhibit growth, adhesion, acid tolerance, and biofilm formation of S. mutans through the partial inhibition of several of these virulence factors. PMID:25763094

  7. Inhibitory Effects of Chrysanthemum boreale Essential Oil on Biofilm Formation and Virulence Factor Expression of Streptococcus mutans

    PubMed Central

    Kim, Beom-Su; Park, Sun-Ju; Kim, Myung-Kon; Kim, Young-Hoi; Lee, Sang-Bong; Lee, Kwang-Hee; Lee, Young-Rae; Lee, Young-Eun; You, Yong-Ouk

    2015-01-01

    The aim of the study was to evaluate the antibacterial activity of essential oil extracted from Chrysanthemum boreale (C. boreale) on Streptococcus mutans (S. mutans). To investigate anticariogenic properties, and bacterial growth, acid production, biofilm formation, bacterial adherence of S. mutans were evaluated. Then gene expression of several virulence factors was also evaluated. C. boreale essential oil exhibited significant inhibition of bacterial growth, adherence capacity, and acid production of S. mutans at concentrations 0.1–0.5 mg/mL and 0.25–0.5 mg/mL, respectively. The safranin staining and scanning electron microscopy results showed that the biofilm formation was also inhibited. The result of live/dead staining showed the bactericidal effect. Furthermore, real-time PCR analysis showed that the gene expression of some virulence factors such as gtfB, gtfC, gtfD, gbpB, spaP, brpA, relA, and vicR of S. mutans was significantly decreased in a dose dependent manner. In GC and GC-MS analysis, seventy-two compounds were identified in the oil, representing 85.42% of the total oil. The major components were camphor (20.89%), β-caryophyllene (5.71%), α-thujone (5.46%), piperitone (5.27%), epi-sesquiphellandrene (5.16%), α-pinene (4.97%), 1,8-cineole (4.52%), β-pinene (4.45%), and camphene (4.19%). These results suggest that C. boreale essential oil may inhibit growth, adhesion, acid tolerance, and biofilm formation of S. mutans through the partial inhibition of several of these virulence factors. PMID:25763094

  8. A Pleiotropic Regulator, Frp, Affects Exopolysaccharide Synthesis, Biofilm Formation, and Competence Development in Streptococcus mutans

    PubMed Central

    Wang, Bing; Kuramitsu, Howard K.

    2006-01-01

    Exopolysaccharide synthesis, biofilm formation, and competence are important physiologic functions and virulence factors for Streptococcus mutans. In this study, we report the role of Frp, a transcriptional regulator, on the regulation of these traits crucial to pathogenesis. An Frp-deficient mutant showed decreased transcription of several genes important in virulence, including those encoding fructosyltransferase (Ftf), glucosyltransferase B (GtfB), and GtfC, by reverse transcription and quantitative real-time PCR. Expression of Ftf was decreased in the frp mutant, as assessed by Western blotting as well as by the activity assays. Frp deficiency also inhibited the production of GtfB in the presence of glucose and sucrose as well as the production of GtfC in the presence of glucose. As a consequence of the effects on GtfB and -C, sucrose-induced biofilm formation was decreased in the frp mutant. The expression of competence mediated by the competence-signaling peptide (CSP) system, as assessed by comC gene transcription, was attenuated in the frp mutant. As a result, the transformation efficiency was decreased in the frp mutant but was partially restored by adding synthetic CSP. Transcription of the frp gene was significantly increased in the frp mutant under all conditions tested, indicating that frp transcription is autoregulated. Furthermore, complementation of the frp gene in the frp mutant restored transcription of the affected genes to levels similar to those in the wild-type strain. These results suggest that Frp is a novel pleiotropic effector of multiple cellular functions and is involved in the modulation of exopolysaccharide synthesis, sucrose-dependent biofilm formation, and competence development. PMID:16861645

  9. Action of silver nanoparticles towards biological systems: cytotoxicity evaluation using hen's egg test and inhibition of Streptococcus mutans biofilm formation.

    PubMed

    Freire, Priscila L L; Stamford, Thayza C M; Albuquerque, Allan J R; Sampaio, Fabio C; Cavalcante, Horacinna M M; Macedo, Rui O; Galembeck, André; Flores, Miguel A P; Rosenblatt, Aronita

    2015-02-01

    This study aimed to evaluate the cytotoxicity and bactericidal properties of four silver nanoparticle (AgNP) colloids and their ability to inhibit Streptococcus mutans biofilm formation on dental enamel. The cytotoxicity of AgNPs was evaluated based on signs of vascular change on the chorioallantoic membrane using the hen's egg test (HET-CAM). Bactericidal properties and inhibition of S. mutans biofilm formation were determined using a parallel-flow cell system and a dichromatic fluorescent stain. The percentage of viable cells was calculated from regression data generated from a viability standard. AgNP colloids proved to be non-irritating, as they were unable to promote vasoconstriction, haemorrhage or coagulation. AgNP colloids inhibited S. mutans biofilm formation on dental enamel, and cell viability measured by fluorescence was 0% for samples S1, S2, S3 and S4 and 36.5% for the positive control (diluted 30% silver diamine fluoride). AgNPs are new products with a low production cost because they have a lower concentration of silver, with low toxicity and an effective bactericidal effect against a cariogenic oral bacterium. Moreover, they do not promote colour change in dental enamel, which is an aesthetic advantage compared with traditional silver products. PMID:25455849

  10. Effects of Two Fluoride Varnishes and One Fluoride/Chlorhexidine Varnish on Streptococcus mutans and Streptococcus sobrinus Biofilm Formation in Vitro

    PubMed Central

    Pinar Erdem, Arzu; Sepet, Elif; Kulekci, Güven; Trosola, Sule Can; Guven, Yegane

    2012-01-01

    Aims: The aim of this study was to evaluate and to compare the effect of two fluoride varnishes and one fluoride/chlorhexidine varnish on Streptococcus mutans and Streptococcus sobrinus biofilm formation, in vitro. Study design: Standard acrylic discs were prepared and divided into groups based on the varnish applied to the disc surface: Fluor Protector, Bifluoride 12, and Fluor Protector + Cervitec (1:1). Untreated discs served as controls. In the study groups, biofilms of S. mutans and S. sobrinus were formed over 24 h, 48 h, and 5 days. The fluoride concentrations in the monospecies biofilms and viable counts of S. mutans and S. sobrinus were investigated. Results: In all study groups, a statistically significant increase in the viable number of S. mutans and S. sobrinus cells was observed between 24 h and 5 days. In both monospecies biofilms, the greatest antibacterial efficacy was detected in the Fluor Protector and Fluor Protector + Cervitec groups at 24 h. For all groups, the amount of fluoride released was highest during the first 24 h, followed by a significant decrease over the next 4 days. A negative correlation was detected between fluoride concentration and antibacterial effect in those groups with biofilms containing both species. Despite the release of high levels of fluoride, the greatest number of viable S. mutans and S. sobrinus cells was detected in the Bifluoride 12 group. Statistics: The data were analyzed using GraphPad Prism software (ver. 3). Conclusions: The Fluor Protector + Cervitec varnish exerted prolonged antibacterial effects on S. mutans and S. sobrinus biofilms compared to the other varnishes tested. PMID:22253559

  11. Inhibited biofilm formation and improved antibacterial activity of a novel nanoemulsion against cariogenic Streptococcus mutans in vitro and in vivo

    PubMed Central

    Li, Yun Fei; Sun, Hong Wu; Gao, Rong; Liu, Kai Yun; Zhang, Hua Qi; Fu, Qi Huan; Qing, Sheng Li; Guo, Gang; Zou, Quan Ming

    2015-01-01

    The aim of this study was to prepare a novel nanoemulsion loaded with poorly water-soluble chlorhexidine acetate (CNE) to improve its solubility, and specifically enhance the antimicrobial activity against Streptococcus mutans in vitro and in vivo. In this study, a novel CNE nanoemulsion with an average size of 63.13 nm and zeta potential of −67.13 mV comprising 0.5% CNE, 19.2% Tween 80, 4.8% propylene glycol, and 6% isopropyl myristate was prepared by the phase inversion method. Important characteristics such as the content, size, zeta potential, and pH value of CNE did not change markedly, stored at room temperature for 1 year. Also, compared with chlorhexidine acetate water solution (CHX), the release profile results show that the CNE has visibly delayed releasing effect in both phosphate-buffered saline and artificial saliva solutions (P<0.005). The minimum inhibitory concentration and minimum bactericidal concentration of CHX for S. mutans (both 0.8 μg/mL) are both two times those of CNE (0.4 μg/mL). Besides, CNE of 0.8 μg/mL exhibited fast-acting bactericidal efficacy against S. mutans, causing 95.07% death within 5 minutes, compared to CHX (73.33%) (P<0.01). We observed that 5 mg/mL and 2 mg/mL CNE were both superior to CHX, significantly reducing oral S. mutans numbers and reducing the severity of carious lesions in Sprague Dawley rats (P<0.05), in an in vivo test. CNE treatment at a concentration of 0.2 μg/mL inhibited biofilm formation more effectively than CHX, as indicated by the crystal violet staining method, scanning electron microscopy, and atomic force microscopy. The cell membrane of S. mutans was also severely disrupted by 0.2 μg/mL CNE, as indicated by transmission electron microscopy. These results demonstrated that CNE greatly improved the solubility and antimicrobial activity of this agent against S. mutans both in vitro and in vivo. This novel nanoemulsion is a promising medicine for preventing and curing dental caries. PMID:25624759

  12. Sonochemical coatings of ZnO and CuO nanoparticles inhibit Streptococcus mutans biofilm formation on teeth model.

    PubMed

    Eshed, Michal; Lellouche, Jonathan; Matalon, Shlomo; Gedanken, Aharon; Banin, Ehud

    2012-08-21

    Antibiotic resistance has prompted the search for new agents that can inhibit bacterial growth. We recently reported on the antibiofilm activities of nanosized ZnO and CuO nanoparticles (NPs) synthesized by using sonochemical irradiation. In this study, we examined the antibacterial activity of ZnO and CuO NPs in a powder form and also examined the antibiofilm behavior of teeth surfaces that were coated with ZnO and CuO NPs using sonochemistry. Free ZnO and CuO NPs inhibited biofilm formation of Streptococcus mutans . Furthermore, by using the sonochemical procedure, we were able to coat teeth surfaces that inhibited bacterial colonization. PMID:22830392

  13. CovR and VicRK regulate cell surface biogenesis genes required for biofilm formation in Streptococcus mutans.

    PubMed

    Stipp, Rafael N; Boisvert, Heike; Smith, Daniel J; Höfling, José F; Duncan, Margaret J; Mattos-Graner, Renata O

    2013-01-01

    The two-component system VicRK and the orphan regulator CovR of Streptococcus mutans co-regulate a group of virulence genes associated with the synthesis of and interaction with extracellular polysaccharides of the biofilm matrix. Knockout mutants of vicK and covR display abnormal cell division and morphology phenotypes, although the gene function defects involved are as yet unknown. Using transcriptomic comparisons between parent strain UA159 with vicK (UAvic) or covR (UAcov) deletion mutants together with electrophoretic motility shift assays (EMSA), we identified genes directly regulated by both VicR and CovR with putative functions in cell wall/surface biogenesis, including gbpB, wapE, smaA, SMU.2146c, and lysM. Deletion mutants of genes regulated by VicR and CovR (wapE, lysM, smaA), or regulated only by VicR (SMU.2146c) or CovR (epsC) promoted significant alterations in biofilm initiation, including increased fragility, defects in microcolony formation, and atypical cell morphology and/or chaining. Significant reductions in mureinolytic activity and/or increases in DNA release during growth were observed in knockout mutants of smaA, wapE, lysM, SMU.2146c and epsC, implying roles in cell wall biogenesis. WapE and lysM mutations also affected cell hydrophobicity and sensitivity to osmotic or oxidative stress. Finally, vicR, covR and VicRK/CovR-targets (gbpB, wapE, smaA, SMU.2146c, lysM, epsC) are up-regulated in UA159 during biofilm initiation, in a sucrose-dependent manner. These data support a model in which VicRK and CovR coordinate cell division and surface biogenesis with the extracellular synthesis of polysaccharides, a process apparently required for formation of structurally stable biofilms in the presence of sucrose. PMID:23554881

  14. CovR and VicRK Regulate Cell Surface Biogenesis Genes Required for Biofilm Formation in Streptococcus mutans

    PubMed Central

    Stipp, Rafael N.; Boisvert, Heike; Smith, Daniel J.; Höfling, José F.; Duncan, Margaret J.; Mattos-Graner, Renata O.

    2013-01-01

    The two-component system VicRK and the orphan regulator CovR of Streptococcus mutans co-regulate a group of virulence genes associated with the synthesis of and interaction with extracellular polysaccharides of the biofilm matrix. Knockout mutants of vicK and covR display abnormal cell division and morphology phenotypes, although the gene function defects involved are as yet unknown. Using transcriptomic comparisons between parent strain UA159 with vicK (UAvic) or covR (UAcov) deletion mutants together with electrophoretic motility shift assays (EMSA), we identified genes directly regulated by both VicR and CovR with putative functions in cell wall/surface biogenesis, including gbpB, wapE, smaA, SMU.2146c, and lysM. Deletion mutants of genes regulated by VicR and CovR (wapE, lysM, smaA), or regulated only by VicR (SMU.2146c) or CovR (epsC) promoted significant alterations in biofilm initiation, including increased fragility, defects in microcolony formation, and atypical cell morphology and/or chaining. Significant reductions in mureinolytic activity and/or increases in DNA release during growth were observed in knockout mutants of smaA, wapE, lysM, SMU.2146c and epsC, implying roles in cell wall biogenesis. WapE and lysM mutations also affected cell hydrophobicity and sensitivity to osmotic or oxidative stress. Finally, vicR, covR and VicRK/CovR-targets (gbpB, wapE, smaA, SMU.2146c, lysM, epsC) are up-regulated in UA159 during biofilm initiation, in a sucrose-dependent manner. These data support a model in which VicRK and CovR coordinate cell division and surface biogenesis with the extracellular synthesis of polysaccharides, a process apparently required for formation of structurally stable biofilms in the presence of sucrose. PMID:23554881

  15. Effects of combined oleic acid and fluoride at sub-MIC levels on EPS formation and viability of Streptococcus mutans UA159 biofilms.

    PubMed

    Cai, Jian-Na; Kim, Mi-A; Jung, Ji-Eun; Pandit, Santosh; Song, Kwang-Yeob; Jeon, Jae-Gyu

    2015-01-01

    Despite the widespread use of fluoride, dental caries, a biofilm-related disease, remains an important health problem. This study investigated whether oleic acid, a monounsaturated fatty acid, can enhance the effect of fluoride on extracellular polysaccharide (EPS) formation by Streptococcus mutans UA159 biofilms at sub-minimum inhibitory concentration levels, via microbiological and biochemical methods, confocal fluorescence microscopy, and real-time PCR. The combination of oleic acid with fluoride inhibited EPS formation more strongly than did fluoride or oleic acid alone. The superior inhibition of EPS formation was due to the combination of the inhibitory effects of oleic acid and fluoride against glucosyltransferases (GTFs) and GTF-related gene (gtfB, gtfC, and gtfD) expression, respectively. In addition, the combination of oleic acid with fluoride altered the bacterial biovolume of the biofilms without bactericidal activity. These results suggest that oleic acid may be useful for enhancing fluoride inhibition of EPS formation by S. mutans biofilms, without killing the bacterium. PMID:26293974

  16. High production of erythritol from Candida sorbosivorans SSE-24 and its inhibitory effect on biofilm formation of Streptococcus mutans.

    PubMed

    Saran, Saurabh; Mukherjee, Sanjana; Dalal, Jyotsana; Saxena, Rajendra Kumar

    2015-12-01

    Amongst different isolates screened for erythritol production, isolate no. SSE-24 was found to be the best erythritol producer and identified as Candida sorbosivorans SSE-24. Statistical optimization was used to determine the optimum level of the significant variables for maximum erythritol production. The interactive effects of glucose, inoculum level and yeast extract were determined to be significant. The optimum medium composition for erythritol production was 160 g/L glucose, 12 g/L yeast extract, 10% inoculum level and 0.35 g/L FeSO4⋅7H2O. The production of erythritol was successfully scaled up to a 30 L level, where 60.20 g/L of erythritol was produced, with a yield of 0.38 g/g. The fermentation broth was purified by activated charcoal followed by vacuum concentration, ion exchange chromatography and crystallization. Purity of erythritol was further determined by NMR. Significant inhibitory effect of erythritol on growth (>78%) and biofilm formation (40.2%) of Streptococcus mutans enhances the importance of this study. PMID:26363499

  17. Casein Phosphopeptide-Amorphous Calcium Phosphate Reduces Streptococcus mutans Biofilm Development on Glass Ionomer Cement and Disrupts Established Biofilms.

    PubMed

    Dashper, Stuart G; Catmull, Deanne V; Liu, Sze-Wei; Myroforidis, Helen; Zalizniak, Ilya; Palamara, Joseph E A; Huq, N Laila; Reynolds, Eric C

    2016-01-01

    Glass ionomer cements (GIC) are dental restorative materials that are suitable for modification to help prevent dental plaque (biofilm) formation. The aim of this study was to determine the effects of incorporating casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) into a GIC on the colonisation and establishment of Streptococcus mutans biofilms and the effects of aqueous CPP-ACP on established S mutans biofilms. S. mutans biofilms were either established in flow cells before a single ten min exposure to 1% w/v CPP-ACP treatment or cultured in static wells or flow cells with either GIC or GIC containing 3% w/w CPP-ACP as the substratum. The biofilms were then visualised using confocal laser scanning microscopy after BacLight LIVE/DEAD staining. A significant decrease in biovolume and average thickness of S. mutans biofilms was observed in both static and flow cell assays when 3% CPP-ACP was incorporated into the GIC substratum. A single ten min treatment with aqueous 1% CPP-ACP resulted in a 58% decrease in biofilm biomass and thickness of established S. mutans biofilms grown in a flow cell. The treatment also significantly altered the structure of these biofilms compared with controls. The incorporation of 3% CPP-ACP into GIC significantly reduced S. mutans biofilm development indicating another potential anticariogenic mechanism of this material. Additionally aqueous CPP-ACP disrupted established S. mutans biofilms. The use of CPP-ACP containing GIC combined with regular CPP-ACP treatment may lower S. mutans challenge. PMID:27589264

  18. The influence of Brazilian plant extracts on Streptococcus mutans biofilm

    PubMed Central

    BARNABÉ, Michele; SARACENI, Cíntia Helena Coury; DUTRA-CORREA, Maristela; SUFFREDINI, Ivana Barbosa

    2014-01-01

    Nineteen plant extracts obtained from plants from the Brazilian Amazon showed activity against planktonic Streptococcus mutans, an important bacterium involved in the first steps of biofilm formation and the subsequent initiation of several oral diseases. Objective Our goal was to verify whether plant extracts that showed activity against planktonic S. mutans could prevent the organization of or even disrupt a single-species biofilm made by the same bacteria. Material and Methods Plant extracts were tested on a single-bacteria biofilm prepared using the Zürich method. Each plant extract was tested at a concentration 5 times higher than its minimum inhibitory concentration (MIC). Discs of hydroxyapatite were submersed overnight in brain-heart infusion broth enriched with saccharose 5%, which provided sufficient time for biofilm formation. The discs were then submersed in extract solutions for one minute, three times per day, for two subsequent days. The discs were then washed with saline three times, at ten seconds each, after each treatment. Supports were allowed to remain in the enriched medium for one additional night. At the end of the process, the bacteria were removed from the discs by vortexing and were counted. Results Only two of 19 plant extracts showed activity in the present assay: EB1779, obtained from Dioscorea altissima, and EB1673, obtained from Annona hypoglauca. Although the antibacterial activity of the plant extracts was first observed against planktonic S. mutans, influence over biofilm formation was not necessarily observed in the biofilm model. The present results motivate us to find new natural products to be used in dentistry. PMID:25466471

  19. Exopolysaccharides produced by Streptococcus mutans glucosyltransferases modulate the establishment of microcolonies within multispecies biofilms.

    PubMed

    Koo, H; Xiao, J; Klein, M I; Jeon, J G

    2010-06-01

    Streptococcus mutans is a key contributor to the formation of the extracellular polysaccharide (EPS) matrix in dental biofilms. The exopolysaccharides, which are mostly glucans synthesized by streptococcal glucosyltransferases (Gtfs), provide binding sites that promote accumulation of microorganisms on the tooth surface and further establishment of pathogenic biofilms. This study explored (i) the role of S. mutans Gtfs in the development of the EPS matrix and microcolonies in biofilms, (ii) the influence of exopolysaccharides on formation of microcolonies, and (iii) establishment of S. mutans in a multispecies biofilm in vitro using a novel fluorescence labeling technique. Our data show that the ability of S. mutans strains defective in the gtfB gene or the gtfB and gtfC genes to form microcolonies on saliva-coated hydroxyapatite surfaces was markedly disrupted. However, deletion of both gtfB (associated with insoluble glucan synthesis) and gtfC (associated with insoluble and soluble glucan synthesis) is required for the maximum reduction in EPS matrix and biofilm formation. S. mutans grown with sucrose in the presence of Streptococcus oralis and Actinomyces naeslundii steadily formed exopolysaccharides, which allowed the initial clustering of bacterial cells and further development into highly structured microcolonies. Concomitantly, S. mutans became the major species in the mature biofilm. Neither the EPS matrix nor microcolonies were formed in the presence of glucose in the multispecies biofilm. Our data show that GtfB and GtfC are essential for establishment of the EPS matrix, but GtfB appears to be responsible for formation of microcolonies by S. mutans; these Gtf-mediated processes may enhance the competitiveness of S. mutans in the multispecies environment in biofilms on tooth surfaces. PMID:20233920

  20. Calcium fluoride nanoparticles induced suppression of Streptococcus mutans biofilm: an in vitro and in vivo approach.

    PubMed

    Kulshrestha, Shatavari; Khan, Shakir; Hasan, Sadaf; Khan, M Ehtisham; Misba, Lama; Khan, Asad U

    2016-02-01

    Biofilm formation on the tooth surface is the root cause of dental caries and periodontal diseases. Streptococcus mutans is known to produce biofilm which is one of the primary causes of dental caries. Acid production and acid tolerance along with exopolysaccharide (EPS) formation are major virulence factors of S. mutans biofilm. In the current study, calcium fluoride nanoparticles (CaF2-NPs) were evaluated for their effect on the biofilm forming ability of S. mutans in vivo and in vitro. The in vitro studies revealed 89 % and 90 % reduction in biofilm formation and EPS production, respectively. Moreover, acid production and acid tolerance abilities of S. mutans were also reduced considerably in the presence of CaF2-NPs. Confocal laser scanning microscopy and transmission electron microscopy images were in accordance with the other results indicating inhibition of biofilm without affecting bacterial viability. The qRT-PCR gene expression analysis showed significant downregulation of various virulence genes (vicR, gtfC, ftf, spaP, comDE) associated with biofilm formation. Furthermore, CaF2-NPs were found to substantially decrease the caries in treated rat groups as compared to the untreated groups in in vivo studies. Scanning electron micrographs of rat's teeth further validated our results. These findings suggest that the CaF2-NPs may be used as a potential antibiofilm applicant against S. mutans and may be applied as a topical agent to reduce dental caries. PMID:26610805

  1. Streptococcus oligofermentans Inhibits Streptococcus mutans in Biofilms at Both Neutral pH and Cariogenic Conditions

    PubMed Central

    Bao, Xudong; de Soet, Johannes Jacob; Tong, Huichun; Gao, Xuejun; He, Libang; van Loveren, Cor; Deng, Dong Mei

    2015-01-01

    Homeostasis of oral microbiota can be maintained through microbial interactions. Previous studies showed that Streptococcus oligofermentans, a non-mutans streptococci frequently isolated from caries-free subjects, inhibited the cariogenic Streptococcus mutans by the production of hydrogen peroxide (HP). Since pH is a critical factor in caries formation, we aimed to study the influence of pH on the competition between S. oligofermentans and S. mutans in biofilms. To this end, S. mutans and S. oligofermentans were inoculated alone or mixed at 1:1 ratio in buffered biofilm medium in a 96-well active attachment model. The single- and dual-species biofilms were grown under either constantly neutral pH or pH-cycling conditions. The latter includes two cycles of 8 h neutral pH and 16 h pH 5.5, used to mimic cariogenic condition. The 48 h biofilms were analysed for the viable cell counts, lactate and HP production. The last two measurements were carried out after incubating the 48 h biofilms in buffers supplemented with 1% glucose (pH 7.0) for 4 h. The results showed that S. oligofermentans inhibited the growth of S. mutans in dual-species biofilms under both tested pH conditions. The lactic acid production of dual-species biofilms was significantly lower than that of single-species S. mutans biofilms. Moreover, dual-species and single-species S. oligofermentans biofilms grown under pH-cycling conditions (with a 16 h low pH period) produced a significantly higher amount of HP than those grown under constantly neutral pH. In conclusion, S. oligofermentans inhibited S. mutans in biofilms not only under neutral pH, but also under pH-cycling conditions, likely through HP production. S. oligofermentans may be a compelling probiotic candidate against caries. PMID:26114758

  2. Streptococcus oligofermentans Inhibits Streptococcus mutans in Biofilms at Both Neutral pH and Cariogenic Conditions.

    PubMed

    Bao, Xudong; de Soet, Johannes Jacob; Tong, Huichun; Gao, Xuejun; He, Libang; van Loveren, Cor; Deng, Dong Mei

    2015-01-01

    Homeostasis of oral microbiota can be maintained through microbial interactions. Previous studies showed that Streptococcus oligofermentans, a non-mutans streptococci frequently isolated from caries-free subjects, inhibited the cariogenic Streptococcus mutans by the production of hydrogen peroxide (HP). Since pH is a critical factor in caries formation, we aimed to study the influence of pH on the competition between S. oligofermentans and S. mutans in biofilms. To this end, S. mutans and S. oligofermentans were inoculated alone or mixed at 1:1 ratio in buffered biofilm medium in a 96-well active attachment model. The single- and dual-species biofilms were grown under either constantly neutral pH or pH-cycling conditions. The latter includes two cycles of 8 h neutral pH and 16 h pH 5.5, used to mimic cariogenic condition. The 48 h biofilms were analysed for the viable cell counts, lactate and HP production. The last two measurements were carried out after incubating the 48 h biofilms in buffers supplemented with 1% glucose (pH 7.0) for 4 h. The results showed that S. oligofermentans inhibited the growth of S. mutans in dual-species biofilms under both tested pH conditions. The lactic acid production of dual-species biofilms was significantly lower than that of single-species S. mutans biofilms. Moreover, dual-species and single-species S. oligofermentans biofilms grown under pH-cycling conditions (with a 16 h low pH period) produced a significantly higher amount of HP than those grown under constantly neutral pH. In conclusion, S. oligofermentans inhibited S. mutans in biofilms not only under neutral pH, but also under pH-cycling conditions, likely through HP production. S. oligofermentans may be a compelling probiotic candidate against caries. PMID:26114758

  3. Hydroxychalcone inhibitors of Streptococcus mutans glucosyl transferases and biofilms as potential anticaries agents.

    PubMed

    Nijampatnam, Bhavitavya; Casals, Luke; Zheng, Ruowen; Wu, Hui; Velu, Sadanandan E

    2016-08-01

    Streptococcus mutans has been implicated as the major etiological agent in the initiation and the development of dental caries due to its robust capacity to form tenacious biofilms. Ideal therapeutics for this disease will aim to selectively inhibit the biofilm formation process while preserving the natural bacterial flora of the mouth. Several studies have demonstrated the efficacies of flavonols on S. mutans biofilms and have suggested the mechanism of action through their effect on S. mutans glucosyltransferases (Gtfs). These enzymes metabolize sucrose into water insoluble and soluble glucans, which are an integral measure of the dental caries pathogenesis. Numerous studies have shown that flavonols and polyphenols can inhibit Gtf and biofilm formation at millimolar concentrations. We have screened a group of 14 hydroxychalcones, synthetic precursors of flavonols, in an S. mutans biofilm assay. Several of these compounds emerged to be biofilm inhibitors at low micro-molar concentrations. Chalcones that contained a 3-OH group on ring A exhibited selectivity for biofilm inhibition. Moreover, we synthesized 6 additional analogs of the lead compound and evaluated their potential activity and selectivity against S. mutans biofilms. The most active compound identified from these studies had an IC50 value of 44μM against biofilm and MIC50 value of 468μM against growth displaying >10-fold selectivity inhibition towards biofilm. The lead compound displayed a dose dependent inhibition of S. mutans Gtfs. The lead compound also did not affect the growth of two commensal species (Streptococcus sanguinis and Streptococcus gordonii) at least up to 200μM, indicating that it can selectively inhibit cariogenic biofilms, while leaving commensal and/or beneficial microbes intact. Thus non-toxic compounds have the potential utility in public oral health regimes. PMID:27371109

  4. Photo Inactivation of Streptococcus mutans Biofilm by Violet-Blue light.

    PubMed

    Gomez, Grace F; Huang, Ruijie; MacPherson, Meoghan; Ferreira Zandona, Andrea G; Gregory, Richard L

    2016-09-01

    Among various preventive approaches, non-invasive phototherapy/photodynamic therapy is one of the methods used to control oral biofilm. Studies indicate that light at specific wavelengths has a potent antibacterial effect. The objective of this study was to determine the effectiveness of violet-blue light at 380-440 nm to inhibit biofilm formation of Streptococcus mutans or kill S. mutans. S. mutans UA159 biofilm cells were grown for 12-16 h in 96-well flat-bottom microtiter plates using tryptic soy broth (TSB) or TSB with 1 % sucrose (TSBS). Biofilm was irradiated with violet-blue light for 5 min. After exposure, plates were re-incubated at 37 °C for either 2 or 6 h to allow the bacteria to recover. A crystal violet biofilm assay was used to determine relative densities of the biofilm cells grown in TSB, but not in TSBS, exposed to violet-blue light. The results indicated a statistically significant (P < 0.05) decrease compared to the non-treated groups after the 2 or 6 h recovery period. Growth rates of planktonic and biofilm cells indicated a significant reduction in the growth rate of the violet-blue light-treated groups grown in TSB and TSBS. Biofilm viability assays confirmed a statistically significant difference between violet-blue light-treated and non-treated groups in TSB and TSBS. Visible violet-blue light of the electromagnetic spectrum has the ability to inhibit S. mutans growth and reduce the formation of S. mutans biofilm. This in vitro study demonstrated that violet-blue light has the capacity to inhibit S. mutans biofilm formation. Potential clinical applications of light therapy in the future remain bright in preventing the development and progression of dental caries. PMID:27278805

  5. Isolation of a Novel Phage with Activity against Streptococcus mutans Biofilms

    PubMed Central

    Dalmasso, Marion; de Haas, Eric; Neve, Horst; Strain, Ronan; Cousin, Fabien J.; Stockdale, Stephen R.; Ross, R. Paul; Hill, Colin

    2015-01-01

    Streptococcus mutans is one of the principal agents of caries formation mainly, because of its ability to form biofilms at the tooth surface. Bacteriophages (phages) are promising antimicrobial agents that could be used to prevent or treat caries formation by S. mutans. The aim of this study was to isolate new S. mutans phages and to characterize their antimicrobial properties. A new phage, ɸAPCM01, was isolated from a human saliva sample. Its genome was closely related to the only two other available S. mutans phage genomes, M102 and M102AD. ɸAPCM01 inhibited the growth of S. mutans strain DPC6143 within hours in broth and in artificial saliva at multiplicity of infections as low as 2.5x10-5. In the presence of phage ɸAPCM01 the metabolic activity of a S. mutans biofilm was reduced after 24 h of contact and did not increased again after 48 h, and the live cells in the biofilm decreased by at least 5 log cfu/ml. Despite its narrow host range, this newly isolated S. mutans phage exhibits promising antimicrobial properties. PMID:26398909

  6. Streptococcus mutans protein synthesis during mixed-species biofilm development by high-throughput quantitative proteomics.

    PubMed

    Klein, Marlise I; Xiao, Jin; Lu, Bingwen; Delahunty, Claire M; Yates, John R; Koo, Hyun

    2012-01-01

    Biofilms formed on tooth surfaces are comprised of mixed microbiota enmeshed in an extracellular matrix. Oral biofilms are constantly exposed to environmental changes, which influence the microbial composition, matrix formation and expression of virulence. Streptococcus mutans and sucrose are key modulators associated with the evolution of virulent-cariogenic biofilms. In this study, we used a high-throughput quantitative proteomics approach to examine how S. mutans produces relevant proteins that facilitate its establishment and optimal survival during mixed-species biofilms development induced by sucrose. Biofilms of S. mutans, alone or mixed with Actinomyces naeslundii and Streptococcus oralis, were initially formed onto saliva-coated hydroxyapatite surface under carbohydrate-limiting condition. Sucrose (1%, w/v) was then introduced to cause environmental changes, and to induce biofilm accumulation. Multidimensional protein identification technology (MudPIT) approach detected up to 60% of proteins encoded by S. mutans within biofilms. Specific proteins associated with exopolysaccharide matrix assembly, metabolic and stress adaptation processes were highly abundant as the biofilm transit from earlier to later developmental stages following sucrose introduction. Our results indicate that S. mutans within a mixed-species biofilm community increases the expression of specific genes associated with glucan synthesis and remodeling (gtfBC, dexA) and glucan-binding (gbpB) during this transition (P<0.05). Furthermore, S. mutans up-regulates specific adaptation mechanisms to cope with acidic environments (F1F0-ATPase system, fatty acid biosynthesis, branched chain amino acids metabolism), and molecular chaperones (GroEL). Interestingly, the protein levels and gene expression are in general augmented when S. mutans form mixed-species biofilms (vs. single-species biofilms) demonstrating fundamental differences in the matrix assembly, survival and biofilm maintenance in the

  7. Metabolic activity of Streptococcus mutans biofilms and gene expression during exposure to xylitol and sucrose.

    PubMed

    Decker, Eva-Maria; Klein, Christian; Schwindt, Dimitri; von Ohle, Christiane

    2014-12-01

    The objective of the study was to analyse Streptococcus mutans biofilms grown under different dietary conditions by using multifaceted methodological approaches to gain deeper insight into the cariogenic impact of carbohydrates. S. mutans biofilms were generated during a period of 24 h in the following media: Schaedler broth as a control medium containing endogenous glucose, Schaedler broth with an additional 5% sucrose, and Schaedler broth supplemented with 1% xylitol. The confocal laser scanning microscopy (CLSM)-based analyses of the microbial vitality, respiratory activity (5-cyano-2,3-ditolyl tetrazolium chloride, CTC) and production of extracellular polysaccharides (EPS) were performed separately in the inner, middle and outer biofilm layers. In addition to the microbiological sample testing, the glucose/sucrose consumption of the biofilm bacteria was quantified, and the expression of glucosyltransferases and other biofilm-associated genes was investigated. Xylitol exposure did not inhibit the viability of S. mutans biofilms, as monitored by the following experimental parameters: culture growth, vitality, CTC activity and EPS production. However, xylitol exposure caused a difference in gene expression compared to the control. GtfC was upregulated only in the presence of xylitol. Under xylitol exposure, gtfB was upregulated by a factor of 6, while under sucrose exposure, it was upregulated by a factor of three. Compared with glucose and xylitol, sucrose increased cell vitality in all biofilm layers. In all nutrient media, the intrinsic glucose was almost completely consumed by the cells of the S. mutans biofilm within 24 h. After 24 h of biofilm formation, the multiparametric measurements showed that xylitol in the presence of glucose caused predominantly genotypic differences but did not induce metabolic differences compared to the control. Thus, the availability of dietary carbohydrates in either a pure or combined form seems to affect the

  8. Evaluation of biofilm removal activity of Quercus infectoria galls against Streptococcus mutans

    PubMed Central

    Mohammadi-Sichani, Maryam; Karbasizadeh, Vajihe; Dokhaharani, Samaneh Chaharmiri

    2016-01-01

    Background: Dental caries is one of the most prevalent infectious diseases affecting humans of all ages. Streptococcus mutans has an important role in the development of dental caries by acid production. The purpose of this study was to evaluate the antibacterial and biofilm disinfective effects of the oak tree Quercus infectoria galls against S. mutans. Materials and Methods: The bacterial strain used in this study was S. mutans (ATCC: 35668). Two kinds of galls, Mazouj and Ghalghaf were examined. Galls were extracted by methanol, ethanol and acetone by Soxhlet apparatus, separately. Extracts were dissolved in sterile distilled water to a final concentration of 10.00, 5.00, 2.50, 1.25, 0.63, 0.31, and 0.16 mg/ml. Microdilution determined antibacterial activities. The biofilm removal activities of the extracts were examined using crystal violet-stained microtiter plate method. One-way ANOVA was used to compare biofilm formation in the presence or absence of the extracts. Results: The methanolic, ethanolic, and acetonic extracts of Q. infectoria galls showed the strong inhibitory effects on S. mutans (P < 0.05). The minimum inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) values for the Mazouj and Ghalghaf gall extracts against S. mutans were identical. The MIC values ranged from 160 μg/ml to 320 μg/ml, whereas the MBC values ranged from 320 μg/ml to 640 μg/ml. All extracts of Q. infectoria galls significantly (P < 0.05) reduced biofilm biomass of S. mutans at the concentrations higher than 9.8 μg/ml. Conclusion: Three different extracts of Q. infectoria galls were similar in their antibacterial activity against S. mutans. These extracts had the highest biofilm removal activities at 312.5 μg/ml concentration. The galls of Q. infectoria are potentially good sources of antibacterial and biofilm disinfection agent. PMID:26962315

  9. Apolar Bioactive Fraction of Melipona scutellaris Geopropolis on Streptococcus mutans Biofilm.

    PubMed

    da Cunha, Marcos Guilherme; Franchin, Marcelo; Galvão, Lívia Câmara de Carvalho; Bueno-Silva, Bruno; Ikegaki, Masaharu; de Alencar, Severino Matias; Rosalen, Pedro Luiz

    2013-01-01

    The aim of this study was to evaluate the influence of the bioactive nonpolar fraction of geopropolis on Streptococcus mutans biofilm. The ethanolic extract of Melipona scutellaris geopropolis was subjected to a liquid-liquid partition, thus obtaining the bioactive hexane fraction (HF) possessing antimicrobial activity. The effects of HF on S. mutans UA159 biofilms generated on saliva-coated hydroxyapatite discs were analyzed by inhibition of formation, killing assay, and glycolytic pH-drop assays. Furthermore, biofilms treated with vehicle control and HF were analyzed by scanning electron microscopy (SEM). HF at 250  μ g/mL and 400  μ g/mL caused 38% and 53% reduction in the biomass of biofilm, respectively, when compared to vehicle control (P < 0.05) subsequently observed at SEM images, and this reduction was noticed in the amounts of extracellular alkali-soluble glucans, intracellular iodophilic polysaccharides, and proteins. In addition, the S. mutans viability (killing assay) and acid production by glycolytic pH drop were not affected (P > 0.05). In conclusion, the bioactive HF of geopropolis was promising to control the S. mutans biofilm formation, without affecting the microbial population but interfering with its structure by reducing the biochemical content of biofilm matrix. PMID:23843868

  10. Apolar Bioactive Fraction of Melipona scutellaris Geopropolis on Streptococcus mutans Biofilm

    PubMed Central

    da Cunha, Marcos Guilherme; Galvão, Lívia Câmara de Carvalho; de Alencar, Severino Matias; Rosalen, Pedro Luiz

    2013-01-01

    The aim of this study was to evaluate the influence of the bioactive nonpolar fraction of geopropolis on Streptococcus mutans biofilm. The ethanolic extract of Melipona scutellaris geopropolis was subjected to a liquid-liquid partition, thus obtaining the bioactive hexane fraction (HF) possessing antimicrobial activity. The effects of HF on S. mutans UA159 biofilms generated on saliva-coated hydroxyapatite discs were analyzed by inhibition of formation, killing assay, and glycolytic pH-drop assays. Furthermore, biofilms treated with vehicle control and HF were analyzed by scanning electron microscopy (SEM). HF at 250 μg/mL and 400 μg/mL caused 38% and 53% reduction in the biomass of biofilm, respectively, when compared to vehicle control (P < 0.05) subsequently observed at SEM images, and this reduction was noticed in the amounts of extracellular alkali-soluble glucans, intracellular iodophilic polysaccharides, and proteins. In addition, the S. mutans viability (killing assay) and acid production by glycolytic pH drop were not affected (P > 0.05). In conclusion, the bioactive HF of geopropolis was promising to control the S. mutans biofilm formation, without affecting the microbial population but interfering with its structure by reducing the biochemical content of biofilm matrix. PMID:23843868

  11. Effect of fluoride on glucose incorporation and metabolism in biofilm cells of Streptococcus mutans.

    PubMed

    Balzar Ekenbäck, S; Linder, L E; Sund, M L; Lönnies, H

    2001-06-01

    The aim of this study was two-fold: firstly, to study the effect of high fluoride concentrations on carbohydrate metabolism in Streptococcus mutans present in biofilms on hydroxyapatite; and, secondly, to evaluate the effect of fluoride-bound hydroxyapatite on lactic acid formation in growing biofilms of Strep. mutans. Biofilms of a clinical strain of Strep. mutans on saliva-coated hydroxyapatite beads were incubated with sodium fluoride over a wide range of concentrations. At high fluoride concentrations (>10 mM) the incorporation of [14C]-labeled glucose decreased by 80-85%, at both pH 7.0 and 5.6. At lower fluoride concentrations, the effect of fluoride on the incorporation of labeled glucose was pH-dependent in both biofilm cells and in planktonic cells. At pH 7.0, fluoride at concentrations < 10 mM had little or no effect. Pretreatment of hydroxyapatite discs with fluoride varnish (Fluor Protector) or fluoride solutions caused a statistically significant reduction of lactic acid formation in associated, growing biofilms of Strep. mutans. Fluoride varnish and 0.2% (47.6 mM) sodium fluoride solution exhibited a statistically significant inhibitory effect on lactate production. PMID:11456349

  12. Pluronics-Formulated Farnesol Promotes Efficient Killing and Demonstrates Novel Interactions with Streptococcus mutans Biofilms.

    PubMed

    Mogen, Austin B; Chen, Fu; Ahn, Sang-Joon; Burne, Robert A; Wang, Dong; Rice, Kelly C

    2015-01-01

    Streptococcus mutans is the primary causative agent of dental caries, one of the most prevalent diseases in the United States. Previously published studies have shown that Pluronic-based tooth-binding micelles carrying hydrophobic antimicrobials are extremely effective at inhibiting S. mutans biofilm growth on hydroxyapatite (HA). Interestingly, these studies also demonstrated that non-binding micelles (NBM) carrying antimicrobial also had an inhibitory effect, leading to the hypothesis that the Pluronic micelles themselves may interact with the biofilm. To explore this potential interaction, three different S. mutans strains were each grown as biofilm in tissue culture plates, either untreated or supplemented with NBM alone (P85), NBM containing farnesol (P85F), or farnesol alone (F). In each tested S. mutans strain, biomass was significantly decreased (SNK test, p < 0.05) in the P85F and F biofilms relative to untreated biofilms. Furthermore, the P85F biofilms formed large towers containing dead cells that were not observed in the other treatment conditions. Tower formation appeared to be specific to formulated farnesol, as this phenomenon was not observed in S. mutans biofilms grown with NBM containing triclosan. Parallel CFU/ml determinations revealed that biofilm growth in the presence of P85F resulted in a 3-log reduction in viability, whereas F decreased viability by less than 1-log. Wild-type biofilms grown in the absence of sucrose or gtfBC mutant biofilms grown in the presence of sucrose did not form towers. However, increased cell killing with P85F was still observed, suggesting that cell killing is independent of tower formation. Finally, repeated treatment of pre-formed biofilms with P85F was able to elicit a 2-log reduction in viability, whereas parallel treatment with F alone only reduced viability by 0.5-log. Collectively, these results suggest that Pluronics-formulated farnesol induces alterations in biofilm architecture, presumably via interaction

  13. Pluronics-Formulated Farnesol Promotes Efficient Killing and Demonstrates Novel Interactions with Streptococcus mutans Biofilms

    PubMed Central

    Mogen, Austin B.; Chen, Fu; Ahn, Sang-Joon; Burne, Robert A.; Wang, Dong; Rice, Kelly C.

    2015-01-01

    Streptococcus mutans is the primary causative agent of dental caries, one of the most prevalent diseases in the United States. Previously published studies have shown that Pluronic-based tooth-binding micelles carrying hydrophobic antimicrobials are extremely effective at inhibiting S. mutans biofilm growth on hydroxyapatite (HA). Interestingly, these studies also demonstrated that non-binding micelles (NBM) carrying antimicrobial also had an inhibitory effect, leading to the hypothesis that the Pluronic micelles themselves may interact with the biofilm. To explore this potential interaction, three different S. mutans strains were each grown as biofilm in tissue culture plates, either untreated or supplemented with NBM alone (P85), NBM containing farnesol (P85F), or farnesol alone (F). In each tested S. mutans strain, biomass was significantly decreased (SNK test, p < 0.05) in the P85F and F biofilms relative to untreated biofilms. Furthermore, the P85F biofilms formed large towers containing dead cells that were not observed in the other treatment conditions. Tower formation appeared to be specific to formulated farnesol, as this phenomenon was not observed in S. mutans biofilms grown with NBM containing triclosan. Parallel CFU/ml determinations revealed that biofilm growth in the presence of P85F resulted in a 3-log reduction in viability, whereas F decreased viability by less than 1-log. Wild-type biofilms grown in the absence of sucrose or gtfBC mutant biofilms grown in the presence of sucrose did not form towers. However, increased cell killing with P85F was still observed, suggesting that cell killing is independent of tower formation. Finally, repeated treatment of pre-formed biofilms with P85F was able to elicit a 2-log reduction in viability, whereas parallel treatment with F alone only reduced viability by 0.5-log. Collectively, these results suggest that Pluronics-formulated farnesol induces alterations in biofilm architecture, presumably via interaction

  14. Dynamics of Streptococcus mutans transcriptome in response to starch and sucrose during biofilm development.

    PubMed

    Klein, Marlise I; DeBaz, Lena; Agidi, Senyo; Lee, Herbert; Xie, Gary; Lin, Amy H-M; Hamaker, Bruce R; Lemos, José A; Koo, Hyun

    2010-01-01

    The combination of sucrose and starch in the presence of surface-adsorbed salivary α-amylase and bacterial glucosyltransferases increase the formation of a structurally and metabolically distinctive biofilm by Streptococcus mutans. This host-pathogen-diet interaction may modulate the formation of pathogenic biofilms related to dental caries disease. We conducted a comprehensive study to further investigate the influence of the dietary carbohydrates on S. mutans-transcriptome at distinct stages of biofilm development using whole genomic profiling with a new computational tool (MDV) for data mining. S. mutans UA159 biofilms were formed on amylase-active saliva coated hydroxyapatite discs in the presence of various concentrations of sucrose alone (ranging from 0.25 to 5% w/v) or in combination with starch (0.5 to 1% w/v). Overall, the presence of sucrose and starch (suc+st) influenced the dynamics of S. mutans transcriptome (vs. sucrose alone), which may be associated with gradual digestion of starch by surface-adsorbed amylase. At 21 h of biofilm formation, most of the differentially expressed genes were related to sugar metabolism, such as upregulation of genes involved in maltose/maltotriose uptake and glycogen synthesis. In addition, the groEL/groES chaperones were induced in the suc+st-biofilm, indicating that presence of starch hydrolysates may cause environmental stress. In contrast, at 30 h of biofilm development, multiple genes associated with sugar uptake/transport (e.g. maltose), two-component systems, fermentation/glycolysis and iron transport were differentially expressed in suc+st-biofilms (vs. sucrose-biofilms). Interestingly, lytT (bacteria autolysis) was upregulated, which was correlated with presence of extracellular DNA in the matrix of suc+st-biofilms. Specific genes related to carbohydrate uptake and glycogen metabolism were detected in suc+st-biofilms in more than one time point, indicating an association between presence of starch hydrolysates

  15. Quantitative analyses of Streptococcus mutans biofilms with quartz crystal microbalance, microjet impingement and confocal microscopy.

    PubMed

    Kreth, J; Hagerman, E; Tam, K; Merritt, J; Wong, D T W; Wu, B M; Myung, N V; Shi, W; Qi, F

    2004-10-01

    Microbial biofilm formation can be influenced by many physiological and genetic factors. The conventional microtiter plate assay provides useful but limited information about biofilm formation. With the fast expansion of the biofilm research field, there are urgent needs for more informative techniques to quantify the major parameters of a biofilm, such as adhesive strength and total biomass. It would be even more ideal if these measurements could be conducted in a real-time, non-invasive manner. In this study, we used quartz crystal microbalance (QCM) and microjet impingement (MJI) to measure total biomass and adhesive strength, respectively, of S. mutans biofilms formed under different sucrose concentrations. In conjunction with confocal laser scanning microscopy (CLSM) and the COMSTAT software, we show that sucrose concentration affects the biofilm strength, total biomass, and architecture in both qualitative and quantitative manners. Our data correlate well with previous observations about the effect of sucrose on the adherence of S. mutans to the tooth surface, and demonstrate that QCM is a useful tool for studying the kinetics of biofilm formation in real time and that MJI is a sensitive, easy-to-use device to measure the adhesive strength of a biofilm. PMID:16429589

  16. The dlt genes play a role in antimicrobial tolerance of Streptococcus mutans biofilms.

    PubMed

    Nilsson, Martin; Rybtke, Morten; Givskov, Michael; Høiby, Niels; Twetman, Svante; Tolker-Nielsen, Tim

    2016-09-01

    Microbial biofilms are tolerant to antibiotic treatment and therefore cause problematic infections. Knowledge about the molecular mechanisms underlying biofilm-associated antimicrobial tolerance will aid the development of antibiofilm drugs. Screening of a Streptococcus mutans transposon mutant library for genes that are important for biofilm-associated antimicrobial tolerance provided evidence that the dlt genes play a role in the tolerance of S. mutans biofilms towards gentamicin. The minimum bactericidal concentration for biofilm cells (MBC-B) for a dltA transposon mutant was eight-fold lower than that of the wild-type. The minimum bactericidal concentration for planktonic cells (MBC-P) was only slightly reduced, indicating that the mechanism involved in the observed antimicrobial tolerance has a predominant role specifically in biofilms. Experiments with a knockout dltA mutant and complemented strain confirmed that the dlt genes in S. mutans play a role in biofilm-associated tolerance to gentamicin. Confocal laser scanning microscopy analyses of biofilms grown on glass slides showed that the dltA mutant produced roughly the same amount of biofilm as the wild-type, indicating that the reduced antimicrobial tolerance of the dltA mutant is not due to a defect in biofilm formation. The products of the dlt genes have been shown to mediate alanylation of teichoic acids, and in accordance the dltA mutant showed a more negatively charged surface than the wild-type, which likely is an important factor in the reduced tolerance of the dltA mutant biofilms towards the positively charged gentamicin. PMID:27502751

  17. Streptococcus mutans-derived extracellular matrix in cariogenic oral biofilms.

    PubMed

    Klein, Marlise I; Hwang, Geelsu; Santos, Paulo H S; Campanella, Osvaldo H; Koo, Hyun

    2015-01-01

    Biofilms are highly structured microbial communities that are enmeshed in a self-produced extracellular matrix. Within the complex oral microbiome, Streptococcus mutans is a major producer of extracellular polymeric substances including exopolysaccharides (EPS), eDNA, and lipoteichoic acid (LTA). EPS produced by S. mutans-derived exoenzymes promote local accumulation of microbes on the teeth, while forming a spatially heterogeneous and diffusion-limiting matrix that protects embedded bacteria. The EPS-rich matrix provides mechanical stability/cohesiveness and facilitates the creation of highly acidic microenvironments, which are critical for the pathogenesis of dental caries. In parallel, S. mutans also releases eDNA and LTA, which can contribute with matrix development. eDNA enhances EPS (glucan) synthesis locally, increasing the adhesion of S. mutans to saliva-coated apatitic surfaces and the assembly of highly cohesive biofilms. eDNA and other extracellular substances, acting in concert with EPS, may impact the functional properties of the matrix and the virulence of cariogenic biofilms. Enhanced understanding about the assembly principles of the matrix may lead to efficacious approaches to control biofilm-related diseases. PMID:25763359

  18. Streptococcus mutans-derived extracellular matrix in cariogenic oral biofilms

    PubMed Central

    Klein, Marlise I.; Hwang, Geelsu; Santos, Paulo H. S.; Campanella, Osvaldo H.; Koo, Hyun

    2015-01-01

    Biofilms are highly structured microbial communities that are enmeshed in a self-produced extracellular matrix. Within the complex oral microbiome, Streptococcus mutans is a major producer of extracellular polymeric substances including exopolysaccharides (EPS), eDNA, and lipoteichoic acid (LTA). EPS produced by S. mutans-derived exoenzymes promote local accumulation of microbes on the teeth, while forming a spatially heterogeneous and diffusion-limiting matrix that protects embedded bacteria. The EPS-rich matrix provides mechanical stability/cohesiveness and facilitates the creation of highly acidic microenvironments, which are critical for the pathogenesis of dental caries. In parallel, S. mutans also releases eDNA and LTA, which can contribute with matrix development. eDNA enhances EPS (glucan) synthesis locally, increasing the adhesion of S. mutans to saliva-coated apatitic surfaces and the assembly of highly cohesive biofilms. eDNA and other extracellular substances, acting in concert with EPS, may impact the functional properties of the matrix and the virulence of cariogenic biofilms. Enhanced understanding about the assembly principles of the matrix may lead to efficacious approaches to control biofilm-related diseases. PMID:25763359

  19. Influences of naturally occurring agents in combination with fluoride on gene expression and structural organization of Streptococcus mutans in biofilms

    PubMed Central

    2009-01-01

    Background The association of specific bioactive flavonoids and terpenoids with fluoride can modulate the development of cariogenic biofilms by simultaneously affecting the synthesis of exopolysaccharides (EPS) and acid production by Streptococcus mutans, which enhanced the cariostatic effectiveness of fluoride in vivo. In the present study, we further investigated whether the biological actions of combinations of myricetin (flavonoid), tt-farnesol (terpenoid) and fluoride can influence the expression of specific genes of S. mutans within biofilms and their structural organization using real-time PCR and confocal fluorescence microscopy. Results Twice-daily treatment (one-minute exposure) during biofilm formation affected the gene expression by S. mutans both at early (49-h) and later (97-h) stages of biofilm development. Biofilms treated with combination of agents displayed lower mRNA levels for gtfB and gtfD (associated with exopolysaccharides synthesis) and aguD (associated with S. mutans acid tolerance) than those treated with vehicle-control (p < 0.05). Furthermore, treatment with combination of agents markedly affected the structure-architecture of S. mutans biofilms by reducing the biovolume (biomass) and proportions of both EPS and bacterial cells across the biofilm depth, especially in the middle and outer layers (vs. vehicle-control, p < 0.05). The biofilms treated with combination of agents were also less acidogenic, and had reduced amounts of extracellular insoluble glucans and intracellular polysaccharides than vehicle-treated biofilms (p < 0.05). Conclusion The data show that the combination of naturally-occurring agents with fluoride effectively disrupted the expression of specific virulence genes, structural organization and accumulation of S. mutans biofilms, which may explain the enhanced cariostatic effect of our chemotherapeutic approach. PMID:19863808

  20. Thiazolidinedione-8 Alters Symbiotic Relationship in C. albicans-S. mutans Dual Species Biofilm

    PubMed Central

    Feldman, Mark; Ginsburg, Isaac; Al-Quntar, Abed; Steinberg, Doron

    2016-01-01

    The small molecule, thiazolidinedione-8 (S-8) was shown to impair biofilm formation of various microbial pathogens, including the fungus Candida albicans and Streptococcus mutans. Previously, we have evaluated the specific molecular mode of S-8 action against C. albicans biofilm-associated pathogenicity. In this study we investigated the influence of S-8 on dual species, C. albicans-S. mutans biofilm. We show that in the presence of S-8 a reduction of the co-species biofilm formation occurred with a major effect on C. albicans. Biofilm biomass and exopolysaccharide (EPS) production were significantly reduced by S-8. Moreover, the agent caused oxidative stress associated with a strong induction of reactive oxygen species and hydrogen peroxide uptake inhibition by a mixed biofilm. In addition, S-8 altered symbiotic relationship between these species by a complex mechanism. Streptococcal genes associated with quorum sensing (QS) (comDE and luxS), EPS production (gtfBCD and gbpB), as well as genes related to protection against oxidative stress (nox and sodA) were markedly upregulated by S-8. In contrast, fungal genes related to hyphae formation (hwp1), adhesion (als3), hydrophobicity (csh1), and oxidative stress response (sod1, sod2, and cat1) were downregulated in the presence of S-8. In addition, ywp1 gene associated with yeast form of C. albicans was induced by S-8, which is correlated with appearance of mostly yeast cells in S-8 treated dual species biofilms. We concluded that S-8 disturbs symbiotic balance between C. albicans and S. mutans in dual species biofilm. PMID:26904013

  1. Thiazolidinedione-8 Alters Symbiotic Relationship in C. albicans-S. mutans Dual Species Biofilm.

    PubMed

    Feldman, Mark; Ginsburg, Isaac; Al-Quntar, Abed; Steinberg, Doron

    2016-01-01

    The small molecule, thiazolidinedione-8 (S-8) was shown to impair biofilm formation of various microbial pathogens, including the fungus Candida albicans and Streptococcus mutans. Previously, we have evaluated the specific molecular mode of S-8 action against C. albicans biofilm-associated pathogenicity. In this study we investigated the influence of S-8 on dual species, C. albicans-S. mutans biofilm. We show that in the presence of S-8 a reduction of the co-species biofilm formation occurred with a major effect on C. albicans. Biofilm biomass and exopolysaccharide (EPS) production were significantly reduced by S-8. Moreover, the agent caused oxidative stress associated with a strong induction of reactive oxygen species and hydrogen peroxide uptake inhibition by a mixed biofilm. In addition, S-8 altered symbiotic relationship between these species by a complex mechanism. Streptococcal genes associated with quorum sensing (QS) (comDE and luxS), EPS production (gtfBCD and gbpB), as well as genes related to protection against oxidative stress (nox and sodA) were markedly upregulated by S-8. In contrast, fungal genes related to hyphae formation (hwp1), adhesion (als3), hydrophobicity (csh1), and oxidative stress response (sod1, sod2, and cat1) were downregulated in the presence of S-8. In addition, ywp1 gene associated with yeast form of C. albicans was induced by S-8, which is correlated with appearance of mostly yeast cells in S-8 treated dual species biofilms. We concluded that S-8 disturbs symbiotic balance between C. albicans and S. mutans in dual species biofilm. PMID:26904013

  2. Recovery of Acid Production in Streptococcus mutans Biofilms after Short-Term Fluoride Treatment.

    PubMed

    Dang, Minh-Huy; Jung, Ji-Eun; Lee, Dae-Woo; Song, Kwang-Yeob; Jeon, Jae-Gyu

    2016-01-01

    Fluoride is commonly used as an ingredient of topical oral hygiene measures. Despite the anti-acidogenic activities of fluoride against cariogenic biofilms, the recovery of the biofilms from fluoride damage is unclear. Herein, we investigated the recovery of acid production in Streptococcus mutans biofilms after short-term or during periodic 1-min fluoride treatments. For this study, 46-hour-old S. mutans biofilms were treated with fluoride (0-2,000 ppm F-) for 1-8 min and then incubated in saliva for 0-100 min. The 74-hour-old biofilms were also periodically treated with the fluoride concentration during biofilm formation (1 min/treatment). Changes in acidogenicity and viability were determined via pH drop and colony-forming unit assays, respectively. In this study, acid production after a 1-min fluoride treatment was recovered as saliva incubation time increased, which followed a linear pattern of concentration dependence (R = 0.99, R2 = 0.98). The recovery pattern was in a biphasic pattern, with an initial rapid rate followed by a second slow recovery. Furthermore, recovery from fluoride damage was retarded in a concentration-dependent manner as treatment time increased. In periodic 1-min fluoride treatments, acid production in the biofilms was not diminished during the non-fluoride treatment period; however, it was reduced in a concentration-dependent manner during the fluoride treatment period. The viability of the biofilm cells did not change, even at high fluoride concentrations. Collectively, our results suggest that brief fluoride treatment does not sustain anti-acidogenic activity against S. mutans in biofilms since the damage is recoverable with time. PMID:27355469

  3. Modulation of Biofilm Exopolysaccharides by the Streptococcus mutans vicX Gene

    PubMed Central

    Lei, Lei; Yang, Yingming; Mao, Mengying; Li, Hong; Li, Meng; Yang, Yan; Yin, Jiaxin; Hu, Tao

    2015-01-01

    The cariogenic pathogen Streptococcus mutans effectively utilizes dietary sucrose for the synthesis of exopolysaccharide, which act as a scaffold for its biofilm, thus contributing to its pathogenicity, environmental stress tolerance, and antimicrobial resistance. The two-component system VicRK of S. mutans regulates a group of virulence genes that are associated with biofilm matrix synthesis. Knockout of vicX affects biofilm formation, oxidative stress tolerance, and transformation of S. mutans. However, little is known regarding the vicX-modulated structural characteristics of the exopolysaccharides underlying the biofilm formation and the phenotypes of the vicX mutants. Here, we identified the role of vicX in the structural characteristics of the exopolysaccharide matrix and biofilm physiology. The vicX mutant (SmuvicX) biofilms seemingly exhibited “desertification” with architecturally impaired exopolysaccharide-enmeshed cell clusters, compared with the UA159 strain (S. mutans wild type strain). Concomitantly, SmuvicX showed a decrease in water-insoluble glucan (WIG) synthesis and in WIG/water-soluble glucan (WSG) ratio. Gel permeation chromatography (GPC) showed that the WIG isolated from the SmuvicX biofilms had a much lower molecular weight compared with the UA159 strain indicating differences in polysaccharide chain lengths. A monosaccharide composition analysis demonstrated the importance of the vicX gene in the glucose metabolism. We performed metabolite profiling via 1H nuclear magnetic resonance spectroscopy, which showed that several chemical shifts were absent in both WSG and WIG of SmuvicX biofilms compared with the UA159 strain. Thus, the modulation of structural characteristics of exopolysaccharide by vicX provides new insights into the interaction between the exopolysaccharide structure, gene functions, and cariogenicity. Our results suggest that vicX gene modulates the structural characteristics of exopolysaccharide associated with

  4. Growth of Streptococcus mutans in Biofilms Alters Peptide Signaling at the Sub-population Level

    PubMed Central

    Shields, Robert C.; Burne, Robert A.

    2016-01-01

    Streptococcus mutans activates multiple cellular processes in response to the formation of a complex between comX-inducing peptide (XIP) and the ComR transcriptional regulator. Bulk phase and microfluidic experiments previously revealed that ComR-dependent activation of comX is altered by pH and by carbohydrate source. Biofilm formation is a major factor in bacterial survival and virulence in the oral cavity. Here, we sought to determine the response of S. mutans biofilm cells to XIP during different stages of biofilm maturation. Using flow cytometry and confocal microscopy, we showed that exogenous addition of XIP to early biofilms resulted in robust comX activation. However, as the biofilms matured, increasing amounts of XIP were required to activate comX expression. Single-cell analysis demonstrated that the entire population was responding to XIP with activation of comX in early biofilms, but only a sub-population was responding in mature biofilms. The sub-population response of mature biofilms was retained when the cells were dispersed and then treated with XIP. The proportion and intensity of the bi-modal response of mature biofilm cells was altered in mutants lacking the Type II toxins MazF and RelE, or in a strain lacking the (p)ppGpp synthase/hydrolase RelA. Thus, competence signaling is markedly altered in cells growing in mature biofilms, and pathways that control cell death and growth/survival decisions modulate activation of comX expression in these sessile populations. PMID:27471495

  5. Effects of the natural compounds embelin and piperine on the biofilm-producing property of Streptococcus mutans

    PubMed Central

    Dwivedi, Deepak; Singh, Vinod

    2015-01-01

    We aimed to evaluate the effects of the natural compounds embelin and piperine on the biofilm-formation property of Streptococcus mutans. A total of 30 clinical isolates were identified as S. mutans and screened for biofilm formation using the microtiter plate method. The strongest biofilm producer (SM03) was used for identifying both minimum inhibitory concentration (MIC) and minimum biofilm inhibitory concentration (MBIC). We subsequently used this concentration against each of the strong biofilm producer isolates at A492 < 0.5 optical density (OD). Of the 30 isolates screened for biofilm formation, 18 isolates showed strong biofilm formation, 09 isolates showed moderate formation, and 03 isolates showed poor/nonbiofilm formation. The MIC of embelin for the strongest biofilm producer (SM03) was 0.55 ± 0.02, whereas that of piperine was 0.33 ± 0.02. The MBIC of embelin was 0.0620 ± 0.03, whereas that of piperine was 0.0407 ± 0.03, which was lower than that of embelin. At OD492 < 0.5, the MBIC of both compounds significantly inhibited biofilm formation of all the 18 strong biofilm-forming isolates. The results of this study demonstrate a significant antibiofilm effect of the natural compounds embelin and piperine, which can contribute towards the development of a database for novel drug candidates for treating oral infections caused by S. mutans. PMID:26870681

  6. Effects of the natural compounds embelin and piperine on the biofilm-producing property of Streptococcus mutans.

    PubMed

    Dwivedi, Deepak; Singh, Vinod

    2016-01-01

    We aimed to evaluate the effects of the natural compounds embelin and piperine on the biofilm-formation property of Streptococcus mutans. A total of 30 clinical isolates were identified as S. mutans and screened for biofilm formation using the microtiter plate method. The strongest biofilm producer (SM03) was used for identifying both minimum inhibitory concentration (MIC) and minimum biofilm inhibitory concentration (MBIC). We subsequently used this concentration against each of the strong biofilm producer isolates at A 492 < 0.5 optical density (OD). Of the 30 isolates screened for biofilm formation, 18 isolates showed strong biofilm formation, 09 isolates showed moderate formation, and 03 isolates showed poor/nonbiofilm formation. The MIC of embelin for the strongest biofilm producer (SM03) was 0.55 ± 0.02, whereas that of piperine was 0.33 ± 0.02. The MBIC of embelin was 0.0620 ± 0.03, whereas that of piperine was 0.0407 ± 0.03, which was lower than that of embelin. At OD492 < 0.5, the MBIC of both compounds significantly inhibited biofilm formation of all the 18 strong biofilm-forming isolates. The results of this study demonstrate a significant antibiofilm effect of the natural compounds embelin and piperine, which can contribute towards the development of a database for novel drug candidates for treating oral infections caused by S. mutans. PMID:26870681

  7. S. mutans biofilm model to evaluate antimicrobial substances and enamel demineralization.

    PubMed

    Ccahuana-Vásquez, Renzo Alberto; Cury, Jaime Aparecido

    2010-01-01

    The aim of this study was to validate a model of S. mutans biofilm formation, which simulated 'feast-famine' episodes of exposure to sucrose that occur in the oral cavity, showed dose-response susceptibility to antimicrobials and allowed the evaluation of substances with anticaries potential. S. mutans UA159 biofilms were grown for 5 days on bovine enamel slabs at 37 degrees C, 10% CO2. To validate the model, the biofilms were treated 2x/day with chlorhexidine digluconate (CHX) at 0.012, 0.024 and 0.12% (concentration with recognized anti-plaque effect) and 0.05% NaF (concentration with recognized anti-caries effect). CHX showed dose-response effect decreasing biomass, bacterial viability and enamel demineralization (p < 0.05). Whereas, 0.05% NaF did not show antimicrobial effect but had similar effect to that of 0.12% CHX decreasing enamel demineralization (p < 0.05). The model developed has potential to evaluate the effect of substances on biofilm growth and on enamel demineralization. PMID:20658029

  8. Glucan-Binding Proteins are Essential for Shaping Streptococcus mutans Biofilm Architecture

    PubMed Central

    Lynch, David J.; Fountain, Tracey L.; Mazurkiewicz, Joseph E.

    2006-01-01

    Glucan plays a central role in sucrose-dependent biofilm formation by the dental pathogen Streptococcus mutans. This organism synthesizes several proteins capable of binding glucan. These are divided into the glucosyltransferases (Gtfs) that catalyze the synthesis of glucan and the non-Gtf glucan-binding proteins (Gbps). The biological significance of the Gbps has not been thoroughly defined, but studies suggest these proteins influence virulence and play a role in maintaining biofilm architecture by linking bacteria and extracellular molecules of glucan. We engineered a panel of Gbp mutants, targeting GbpA, GbpC, and GbpD, in which each gene encoding a Gbp was deleted individually and in combination. These strains were then analyzed by confocal microscopy and the biofilm properties quantified by the biofilm quantification software COMSTAT. All biofilms produced by mutant strains lost significant depth, but the basis for the reduction in height depended on which particular Gbp was missing. The loss of the cell-bound GbpC appeared dominant as might be expected based on losing the principal receptor for glucan. The loss of an extracellular Gbp, either GbpA or GbpD, also profoundly changed the biofilm architecture, each in a unique manner. PMID:17214736

  9. Deletion of gtfC of Streptococcus mutans has no influence on the composition of a mixed-species in vitro biofilm model of supragingival plaque.

    PubMed

    Van Der Ploeg, Jan R; Guggenheim, Bernhard

    2004-10-01

    Glucosyltransferases from Streptococcus mutans are thought to play an important role in bacterial adherence to the tooth surface. The goal of the present study was to determine the effect of the deletion of the gtfC gene, which encodes a glucosyltransferase that catalyses primarily the formation of insoluble glucan (mutan), on colonization of S. mutans in a mixed-species biofilm model of supragingival plaque. A gtfC deletion mutant of S. mutans UA159 grew poorly in biofilms on a polystyrene surface in Todd-Hewitt medium containing sucrose, but biofilm formation in the semi-defined fluid universal medium (FUM) was not affected. The S. mutans gtfC mutant colonized with the same efficiency as the wild-type strain when grown together with five other species in a mixed-species biofilm on hydroxyapatite in a mixture of FUM and saliva with pulses of sucrose and showed the same ability to demineralize enamel in vitro. Colonization of mutant and wild-type strains was also equal in an association experiment in specific-pathogen-free rats. However, the gtfC mutant gave rise to more dentinal fissure lesions and smooth surface caries than the wild-type strain; this could be caused by a change in diffusion properties as a result of to the lack of mutan. PMID:15458503

  10. Antibacterial effect of dental adhesive containing dimethylaminododecyl methacrylate on the development of Streptococcus mutans biofilm.

    PubMed

    Wang, Suping; Zhang, Keke; Zhou, Xuedong; Xu, Ning; Xu, Hockin H K; Weir, Michael D; Ge, Yang; Wang, Shida; Li, Mingyun; Li, Yuqing; Xu, Xin; Cheng, Lei

    2014-01-01

    Antibacterial bonding agents and composites containing dimethylaminododecyl methacrylate (DMADDM) have been recently developed. The objectives of this study were to investigate the antibacterial effect of novel adhesives containing different mass fractions of DMADDM on Streptococcus mutans (S. mutans) biofilm at different developmental stages. Different mass fractions of DMADDM were incorporated into adhesives and S. mutans biofilm at different developmetal stages were analyzed by MTT assays, lactic acid measurement, confocal laser scanning microscopy and scanning electron microscopy observations. Exopolysaccharides (EPS) staining was used to analyze the inhibitory effect of DMADDM on the biofilm extracellular matrix. Dentin microtensile strengths were also measured. Cured adhesives containing DMADDM could greatly reduce metabolic activity and lactic acid production during the development of S. mutans biofilms (p < 0.05). In earlier stages of biofilm development, there were no significant differences of inhibitory effects between the 2.5% DMADDM and 5% DMADDM group. However, after 72 h, the anti-biofilm effects of adhesives containing 5% DMADDM were significantly stronger than any other group. Incorporation of DMADDM into adhesive did not adversely affect dentin bond strength. In conclusion, adhesives containing DMADDM inhibited the growth, lactic acid production and EPS metabolism of S. mutans biofilm at different stages, with no adverse effect on its dentin adhesive bond strength. The bonding agents have the potential to control dental biofilms and combat tooth decay, and DMADDM is promising for use in a wide range of dental adhesive systems and restoratives. PMID:25046750

  11. Antibacterial Effect of Dental Adhesive Containing Dimethylaminododecyl Methacrylate on the Development of Streptococcus mutans Biofilm

    PubMed Central

    Wang, Suping; Zhang, Keke; Zhou, Xuedong; Xu, Ning; Xu, Hockin H. K.; Weir, Michael D.; Ge, Yang; Wang, Shida; Li, Mingyun; Li, Yuqing; Xu, Xin; Cheng, Lei

    2014-01-01

    Antibacterial bonding agents and composites containing dimethylaminododecyl methacrylate (DMADDM) have been recently developed. The objectives of this study were to investigate the antibacterial effect of novel adhesives containing different mass fractions of DMADDM on Streptococcus mutans (S. mutans) biofilm at different developmental stages. Different mass fractions of DMADDM were incorporated into adhesives and S. mutans biofilm at different developmetal stages were analyzed by MTT assays, lactic acid measurement, confocal laser scanning microscopy and scanning electron microscopy observations. Exopolysaccharides (EPS) staining was used to analyze the inhibitory effect of DMADDM on the biofilm extracellular matrix. Dentin microtensile strengths were also measured. Cured adhesives containing DMADDM could greatly reduce metabolic activity and lactic acid production during the development of S. mutans biofilms (p < 0.05). In earlier stages of biofilm development, there were no significant differences of inhibitory effects between the 2.5% DMADDM and 5% DMADDM group. However, after 72 h, the anti-biofilm effects of adhesives containing 5% DMADDM were significantly stronger than any other group. Incorporation of DMADDM into adhesive did not adversely affect dentin bond strength. In conclusion, adhesives containing DMADDM inhibited the growth, lactic acid production and EPS metabolism of S. mutans biofilm at different stages, with no adverse effect on its dentin adhesive bond strength. The bonding agents have the potential to control dental biofilms and combat tooth decay, and DMADDM is promising for use in a wide range of dental adhesive systems and restoratives. PMID:25046750

  12. Antibacterial activity of Baccharis dracunculifolia in planktonic cultures and biofilms of Streptococcus mutans.

    PubMed

    Pereira, Cristiane A; Costa, Anna Carolina B Pereira; Liporoni, Priscila Christiane S; Rego, Marcos A; Jorge, Antonio Olavo C

    2016-01-01

    Streptococcus mutans is an important cariogenic microorganism, and alternative methods for its elimination are required. Different concentrations of Baccharis dracunculifolia essential oil (EO) were tested to determine its minimal inhibitory concentration (MIC) in planktonic cultures, and this concentration was used in S. mutans biofilms. Additionally, we assessed the effect of a 0.12% chlorhexidine (CHX) and saline solution in S. mutans biofilms. The biofilms were grown in discs of composite resin for 48h and exposed to B. dracunculifolia, CHX or saline solution for 5min. The viability of the biofilms was determined by counting the colony-forming units per milliliter (CFU/ml) in agar, which was statistically significant (P<0.05). The MIC of the B. dracunculifolia EO to planktonic growth of S. mutans was 6%. In biofilms of S. mutans clinical isolates, B. dracunculifolia EO (6%) and CHX resulted in reductions of 53.3-91.1% and 79.1-96.6%, respectively. For the biofilm formed by the S. mutans reference strain, the reductions achieved with B. dracunculifolia EO and CHX were, respectively, 39.3% and 88.1%. It was concluded that B. dracunculifolia EO showed antibacterial activity and was able to control this oral microorganism, which otherwise causes dental caries. PMID:26614752

  13. Antimicrobial and anti-biofilm effect of Bac8c on major bacteria associated with dental caries and Streptococcus mutans biofilms.

    PubMed

    Ding, Yonglin; Wang, Wei; Fan, Meng; Tong, Zhongchun; Kuang, Rong; Jiang, WenKai; Ni, Longxing

    2014-02-01

    Dental caries is a common oral bacterial infectious disease. Its prevention and treatment requires control of the causative pathogens within dental plaque, especially Streptococcus mutans (S. mutans). Antimicrobial peptides (AMPs), one of the promising substitutes for conventional antibiotics, have been widely tested and used for controlling bacterial infections. The present study focuses on evaluating the potential of the novel AMPs cyclic bactenecin and its derivatives against bacteria associated with dental caries. The results indicate that Bac8c displayed highest activity against the bacteria tested, whereas both cyclic and linear bactenecin had weak antimicrobial activity. The cytotoxicity assay showed that Bac8c did not cause detectable toxicity at concentrations of 32-128μg/ml for 5min or 32-64μg/ml for 60min. S. mutans and Lactobacillus fermenti treated with Bac8c showed variable effects on bacterial structure via scanning electron microscopy and transmission electron microscopy. There appeared to be a large amount of extracellular debris and obvious holes on the cell surface, as well as loss of cell wall and nucleoid condensation. The BioFlux system was employed to generate S. mutans biofilms under a controlled flow, which more closely resemble the formation process of natural biofilms. Bac8c remarkably reduced the viability of cells in biofilms formed in the BioFlux system. This phenomenon was further analyzed and verified by real-time PCR results of a significant suppression of the genes involved in S. mutans biofilm formation. Taken together, this study suggests that Bac8c has a potential clinical application in preventing and treating dental caries. PMID:24309076

  14. Effect of sodium fluoride, ampicillin, and chlorhexidine on Streptococcus mutans biofilm detachment.

    PubMed

    Liu, Jia; Ling, Jun-Qi; Zhang, Kai; Huo, Li-Jun; Ning, Yang

    2012-08-01

    We examined the effect of three clinically used antimicrobials on Streptococcus mutans UA159 biofilm detachment under flow conditions. Sodium fluoride (NaF) and chlorhexidine at MIC levels promoted biofilm detachment and inhibited detachment when concentrations were higher than the MIC and reduced detached-cell viability only at high concentrations. Ampicillin at all concentrations tested inhibited detachment and reduced the percentage of viable biofilm-detached cells. All the three antimicrobial treatments reduced biofilm live/dead cell ratios. PMID:22664966

  15. Effect of Sodium Fluoride, Ampicillin, and Chlorhexidine on Streptococcus mutans Biofilm Detachment

    PubMed Central

    Liu, Jia; Zhang, Kai; Huo, Li-Jun; Ning, Yang

    2012-01-01

    We examined the effect of three clinically used antimicrobials on Streptococcus mutans UA159 biofilm detachment under flow conditions. Sodium fluoride (NaF) and chlorhexidine at MIC levels promoted biofilm detachment and inhibited detachment when concentrations were higher than the MIC and reduced detached-cell viability only at high concentrations. Ampicillin at all concentrations tested inhibited detachment and reduced the percentage of viable biofilm-detached cells. All the three antimicrobial treatments reduced biofilm live/dead cell ratios. PMID:22664966

  16. Effect of anti-biofilm glass-ionomer cement on Streptococcus mutans biofilms.

    PubMed

    Wang, Su-Ping; Ge, Yang; Zhou, Xue-Dong; Xu, Hockin Hk; Weir, Michael D; Zhang, Ke-Ke; Wang, Hao-Hao; Hannig, Matthias; Rupf, Stefan; Li, Qian; Cheng, Lei

    2016-01-01

    Dental restorative materials with antimicrobial properties can inhibit bacterial colonization, which may result in a reduction of caries at tooth-filling interaction zones. This study aimed to develop antibacterial glass-ionomer cements (GIC) containing a quaternary ammonium monomer (dimethylaminododecyl methacrylate, DMADDM), and to investigate their effect on material performance and antibacterial properties. Different mass fractions (0, 1.1% and 2.2%) of DMADDM were incorporated into the GIC. The flexure strength, surface charge density, surface roughness and fluoride release were tested. A Streptococcus mutans biofilm model was used. Exopolysaccharides (EPS) staining was used to analyze the inhibitory effect of DMADDM on the biofilm matrix. In addition, biofilm metabolic activity, lactic acid metabolism and the expression of glucosyltransferase genes gtfB, gtfC and gtfD were measured. GIC containing 1.1% and 2.2% DMADDM had flexural strengths matching those of the commercial control (P>0.1). DMADDM was able to increase the surface charge density but reduced surface roughness (P<0.05). The incorporation of 1.1% and 2.2% DMADDM elevated the release of fluoride by the GIC in the first 2 days (P<0.05). The novel DMADDM-modified GIC significantly reduced biofilm metabolic activity (P<0.05) and decreased lactic acid production (P<0.05). The quantitative polymerase chain reaction (qPCR) results showed that the expression of gtfB, gtfC and gtfD decreased when mass fractions of DMADDM increased (P<0.05). EPS staining showed that both the bacteria and EPS in biofilm decreased in the DMADDM groups. The incorporation of DMADDM could modify the properties of GIC to influence the development of S. mutans biofilms. In this study, we investigated the interface properties of antibacterial materials for the first time. GIC containing DMADDM can improve material performance and antibacterial properties and may contribute to the better management of secondary caries. PMID:27357319

  17. Effect of anti-biofilm glass–ionomer cement on Streptococcus mutans biofilms

    PubMed Central

    Wang, Su-Ping; Ge, Yang; Zhou, Xue-Dong; Xu, Hockin HK; Weir, Michael D; Zhang, Ke-Ke; Wang, Hao-Hao; Hannig, Matthias; Rupf, Stefan; Li, Qian; Cheng, Lei

    2016-01-01

    Dental restorative materials with antimicrobial properties can inhibit bacterial colonization, which may result in a reduction of caries at tooth-filling interaction zones. This study aimed to develop antibacterial glass–ionomer cements (GIC) containing a quaternary ammonium monomer (dimethylaminododecyl methacrylate, DMADDM), and to investigate their effect on material performance and antibacterial properties. Different mass fractions (0, 1.1% and 2.2%) of DMADDM were incorporated into the GIC. The flexure strength, surface charge density, surface roughness and fluoride release were tested. A Streptococcus mutans biofilm model was used. Exopolysaccharides (EPS) staining was used to analyze the inhibitory effect of DMADDM on the biofilm matrix. In addition, biofilm metabolic activity, lactic acid metabolism and the expression of glucosyltransferase genes gtfB, gtfC and gtfD were measured. GIC containing 1.1% and 2.2% DMADDM had flexural strengths matching those of the commercial control (P>0.1). DMADDM was able to increase the surface charge density but reduced surface roughness (P<0.05). The incorporation of 1.1% and 2.2% DMADDM elevated the release of fluoride by the GIC in the first 2 days (P<0.05). The novel DMADDM-modified GIC significantly reduced biofilm metabolic activity (P<0.05) and decreased lactic acid production (P<0.05). The quantitative polymerase chain reaction (qPCR) results showed that the expression of gtfB, gtfC and gtfD decreased when mass fractions of DMADDM increased (P<0.05). EPS staining showed that both the bacteria and EPS in biofilm decreased in the DMADDM groups. The incorporation of DMADDM could modify the properties of GIC to influence the development of S. mutans biofilms. In this study, we investigated the interface properties of antibacterial materials for the first time. GIC containing DMADDM can improve material performance and antibacterial properties and may contribute to the better management of secondary caries. PMID

  18. Streptococcus mutans biofilm transient viscoelastic fluid behaviour during high-velocity microsprays.

    PubMed

    Fabbri, S; Johnston, D A; Rmaile, A; Gottenbos, B; De Jager, M; Aspiras, M; Starke, E M; Ward, M T; Stoodley, P

    2016-06-01

    Using high-speed imaging we assessed Streptococcus mutans biofilm-fluid interactions during exposure to a 60-ms microspray burst with a maximum exit velocity of 51m/s. S. mutans UA159 biofilms were grown for 72h on 10mm-length glass slides pre-conditioned with porcine gastric mucin. Biofilm stiffness was measured by performing uniaxial-compression tests. We developed an in-vitro interproximal model which allowed the parallel insertion of two biofilm-colonized slides separated by a distance of 1mm and enabled high-speed imaging of the removal process at the surface. S. mutans biofilms were exposed to either a water microspray or an air-only microburst. High-speed videos provided further insight into the mechanical behaviour of biofilms as complex liquids and into high-shear fluid-biofilm interaction. We documented biofilms extremely transient fluid behaviour when exposed to the high-velocity microsprays. The presence of time-dependent recoil and residual deformation confirmed the pivotal role of viscoelasticity in biofilm removal. The air-only microburst was effective enough to remove some of the biofilm but created a smaller clearance zone underlying the importance of water and the air-water interface of drops moving over the solid surface in the removal process. Confocal and COMSTAT analysis showed the high-velocity water microspray caused up to a 99.9% reduction in biofilm thickness, biomass and area coverage, within the impact area. PMID:26771168

  19. Atomic force microscopy study of the structure function relationships of the biofilm-forming bacterium Streptococcus mutans

    NASA Astrophysics Data System (ADS)

    Cross, Sarah E.; Kreth, Jens; Zhu, Lin; Qi, Fengxia; Pelling, Andrew E.; Shi, Wenyuan; Gimzewski, James K.

    2006-02-01

    Atomic force microscopy (AFM) has garnered much interest in recent years for its ability to probe the structure, function and cellular nanomechanics inherent to specific biological cells. In particular, we have used AFM to probe the important structure-function relationships of the bacterium Streptococcus mutans. S. mutans is the primary aetiological agent in human dental caries (tooth decay), and is of medical importance due to the virulence properties of these cells in biofilm initiation and formation, leading to increased tolerance to antibiotics. We have used AFM to characterize the unique surface structures of distinct mutants of S. mutans. These mutations are located in specific genes that encode surface proteins, thus using AFM we have resolved characteristic surface features for mutant strains compared to the wild type. Ultimately, our characterization of surface morphology has shown distinct differences in the local properties displayed by various S. mutans strains on the nanoscale, which is imperative for understanding the collective properties of these cells in biofilm formation.

  20. Biofilm formation by haloarchaea.

    PubMed

    Fröls, Sabrina; Dyall-Smith, Mike; Pfeifer, Felicitas

    2012-12-01

    A fluorescence-based live-cell adhesion assay was used to examine biofilm formation by 20 different haloarchaea, including species of Halobacterium, Haloferax and Halorubrum, as well as novel natural isolates from an Antarctic salt lake. Thirteen of the 20 tested strains significantly adhered (P-value  < 0.05) to a plastic surface. Examination of adherent cell layers on glass surfaces by differential interference contrast, fluorescence and confocal microscopy showed two types of biofilm structures. Carpet-like, multi-layered biofilms containing micro- and macrocolonies (up to 50 μm in height) were formed by strains of Halobacterium salinarum and the Antarctic isolate t-ADL strain DL24. The second type of biofilm, characterized by large aggregates of cells adhering to surfaces, was formed by Haloferax volcanii DSM 3757T and Halorubrum lacusprofundi DL28. Staining of the biofilms formed by the strongly adhesive haloarchaeal strains revealed the presence of extracellular polymers, such as eDNA and glycoconjugates, substances previously shown to stabilize bacterial biofilms. For Hbt. salinarum DSM 3754T and Hfx. volcanii DSM 3757T , cells adhered within 1 day of culture and remained viable for at least 2 months in mature biofilms. Adherent cells of Hbt. salinarum DSM 3754T showed several types of cellular appendages that could be involved in the initial attachment. Our results show that biofilm formation occurs in a surprisingly wide variety of haloarchaeal species. PMID:23057712

  1. Cyclic di-AMP mediates biofilm formation.

    PubMed

    Peng, Xian; Zhang, Yang; Bai, Guangchun; Zhou, Xuedong; Wu, Hui

    2016-03-01

    Cyclic di-AMP (c-di-AMP) is an emerging second messenger in bacteria. It has been shown to play important roles in bacterial fitness and virulence. However, transduction of c-di-AMP signaling in bacteria and the role of c-di-AMP in biofilm formation are not well understood. The level of c-di-AMP is modulated by activity of di-adenylyl cyclase that produces c-di-AMP and phosphodiesterase (PDE) that degrades c-di-AMP. In this study, we determined that increased c-di-AMP levels by deletion of the pdeA gene coding for a PDE promoted biofilm formation in Streptococcus mutans. Deletion of pdeA upregulated expression of gtfB, the gene coding for a major glucan producing enzyme. Inactivation of gtfB blocked the increased biofilm by the pdeA mutant. Two c-di-AMP binding proteins including CabPA (SMU_1562) and CabPB (SMU_1708) were identified. Interestingly, only CabPA deficiency inhibited both the increased biofilm formation and the upregulated expression of GtfB observed in the pdeA mutant. In addition, CabPA but not CabPB interacted with VicR, a known transcriptional factor that regulates expression of gtfB, suggesting that a signaling link between CabPA and GtfB through VicR. Increased biofilm by the pdeA deficiency also enhanced bacterial colonization of Drosophila in vivo. Taken together, our studies reveal a new role of c-di-AMP in mediating biofilm formation through a CabPA/VicR/GtfB signaling network in S. mutans. PMID:26564551

  2. Sustained effects of blue light on Streptococcus mutans in regrown biofilm.

    PubMed

    Cohen-Berneron, Julie; Steinberg, Doron; Featherstone, John D B; Feuerstein, Osnat

    2016-04-01

    In prior studies, exposure of Streptococcus mutans in biofilm to blue light using high fluences of up to 680 J/cm(2) did not interfere with bacterial capability to reform an initial biofilm; however, a delayed antibacterial effect was observed. Our aim was to determine the sustained effecttts of blue light-emitting diode (LED) curing light on the pathogenicity of the newly formed biofilm. S. mutans were grown to form biofilm that was exposed to blue light (wavelengths, 460-480 nm) for 1, 3, and 7 min (equivalent to 37, 112, and 262 J/cm(2), respectively). Then, bacteria were suspended and allowed to regrow into new biofilms. The regrown biofilms were assessed for bacterial quantification by optical density (OD) measurement and quantitative polymerase chain reaction (qPCR), bacterial viability and extracellular polysaccharide production by fluorescent staining using confocal scanning laser microscopy, acid production by bacteria (acidogenicity), and bacterial survival at low pH (aciduricity) using qPCR. Bacterial growth in the regrown biofilms was increased when samples were previously exposed to light; however, under the confocal microscopy, a higher proportion of dead bacteria and a reduction in polysaccharide production were observed. The acidogenicity from the regrown biofilm was lowered as fluences of light increased. The aciduricity of the regrown biofilm was decreased, meaning less growth of bacteria into biofilm in low pH with increasing fluences. Blue light has sustained effects on S. mutans bacteria grown into new biofilm. Although bacterial growth in biofilm increased, bacterial viability and virulence characteristics were impaired. The cariogenic potential over time of S. mutans previously exposed to blue light when grown on tooth surfaces is yet to be determined. PMID:26796707

  3. An In Vitro Study on the Effect of Free Amino Acids Alone or in Combination with Nisin on Biofilms as well as on Planktonic Bacteria of Streptococcus mutans

    PubMed Central

    Ling, Junqi; Jian, Yutao; Huang, Lijia; Deng, Dongmei

    2014-01-01

    Free D-amino acids (D-AAs) are one of the most striking features of the peptidoglycan composition in bacteria and play a key role in regulating and disassembling bacterial biofilms. Previous studies have indicated that the antimicrobial peptide nisin can inhibit the growth of the cariogenic bacteria Streptococcus mutans. The present study investigated the effect of free amino acids either alone or in combination with nisin on biofilm and on planktonic S. mutans bacteria. The results of the MIC and MBC analyses showed that D-cysteine (Cys), D- or L-aspartic acid (Asp), and D- or L-glutamic acid (Glu) significantly improve the antibacterial activity of nisin against S. mutans and that the mixture of D-Cys, D-Asp, and D-Glu (3D-AAs) and the mixture of L-Cys, L-Asp, and L-Glu (3L-AAs) at a concentration of 40 mM can prevent S. mutans growth. Crystal violet staining showed that the D- or L-enantiomers of Cys, Asp, and Glu at a concentration of 40 mM can inhibit the formation of S. mutans biofilms, and their mixture generated a stronger inhibition than the components alone. Furthermore, the mixture of the three D-AAs or L-AAs may improve the antibacterial activity of nisin against S. mutans biofilms. This study underscores the potential of free amino acids for the enhancement of the antibacterial activity of nisin and the inhibition of the cariogenic bacteria S. mutans and biofilms. PMID:24936873

  4. An in vitro study on the effect of free amino acids alone or in combination with nisin on biofilms as well as on planktonic bacteria of Streptococcus mutans.

    PubMed

    Tong, Zhongchun; Zhang, Luodan; Ling, Junqi; Jian, Yutao; Huang, Lijia; Deng, Dongmei

    2014-01-01

    Free D-amino acids (D-AAs) are one of the most striking features of the peptidoglycan composition in bacteria and play a key role in regulating and disassembling bacterial biofilms. Previous studies have indicated that the antimicrobial peptide nisin can inhibit the growth of the cariogenic bacteria Streptococcus mutans. The present study investigated the effect of free amino acids either alone or in combination with nisin on biofilm and on planktonic S. mutans bacteria. The results of the MIC and MBC analyses showed that D-cysteine (Cys), D- or L-aspartic acid (Asp), and D- or L-glutamic acid (Glu) significantly improve the antibacterial activity of nisin against S. mutans and that the mixture of D-Cys, D-Asp, and D-Glu (3D-AAs) and the mixture of L-Cys, L-Asp, and L-Glu (3L-AAs) at a concentration of 40 mM can prevent S. mutans growth. Crystal violet staining showed that the D- or L-enantiomers of Cys, Asp, and Glu at a concentration of 40 mM can inhibit the formation of S. mutans biofilms, and their mixture generated a stronger inhibition than the components alone. Furthermore, the mixture of the three D-AAs or L-AAs may improve the antibacterial activity of nisin against S. mutans biofilms. This study underscores the potential of free amino acids for the enhancement of the antibacterial activity of nisin and the inhibition of the cariogenic bacteria S. mutans and biofilms. PMID:24936873

  5. The impact of antimicrobial photodynamic therapy on Streptococcus mutans in an artificial biofilm model

    NASA Astrophysics Data System (ADS)

    Schneider, Martin; Kirfel, Gregor; Krause, Felix; Berthold, Michael; Brede, Olivier; Frentzen, Matthias; Braun, Andreas

    2010-02-01

    The aim of the study was to assess the impact of laser induced antimicrobial photodynamic therapy on the viability of Streptococcus mutans cells employing an aritificial biofilm model. Employing sterile chambered coverglasses, a salivary pellicle layer formation was induced in 19 chambers. Streptococcus mutans cells were inoculated in a sterile culture medium. Using a live/dead bacterial viability kit, bacteria with intact cell membranes stain fluorescent green. Test chambers containing each the pellicle layer and 0.5 ml of the bacterial culture were analyzed using a confocal laser scan microscope within a layer of 10 μm at intervals of 1 μm from the pellicle layer. A photosensitizer was added to the test chambers and irradiated with a diode laser (wavelength: 660 nm, output power: 100 mW, Helbo) for 2 min each. Comparing the baseline fluorescence (median: 13.8 [U], min: 3.7, max: 26.2) with the values after adding the photosensitizer (median: 3.7, min: 1.1, max: 9), a dilution caused decrease of fluorescence could be observed (p<0.05). After irradiation of the samples with a diode laser, an additional 48 percent decrease of fluorescence became evident (median: 2.2, min: 0.4, max: 3.4) (p<0.05). Comparing the samples with added photosensitizer but without laser irradiation at different times, no decrease of fluorescence could be measured (p>0.05). The present study indicates that antimicrobial photodynamic therapy can reduce living bacteria within a layer of 10 μm in an artificial biofilm model. Further studies have to evaluate the maximum biofilm thickness that still allows a toxic effect on microorganisms.

  6. Effects of simulated microgravity on Streptococcus mutans physiology and biofilm structure.

    PubMed

    Cheng, Xingqun; Xu, Xin; Chen, Jing; Zhou, Xuedong; Cheng, Lei; Li, Mingyun; Li, Jiyao; Wang, Renke; Jia, Wenxiang; Li, Yu-Qing

    2014-10-01

    Long-term spaceflights will eventually become an inevitable occurrence. Previous studies have indicated that oral infectious diseases, including dental caries, were more prevalent in astronauts due to the effect of microgravity. However, the impact of the space environment, especially the microgravity environment, on the virulence factors of Streptococcus mutans, a major caries-associated bacterium, is yet to be explored. In the present study, we investigated the impact of simulated microgravity on the physiology and biofilm structure of S. mutans. We also explored the dual-species interaction between S. mutans and Streptococcus sanguinis under a simulated microgravity condition. Results indicated that the simulated microgravity condition can enhance the acid tolerance ability, modify the biofilm architecture and extracellular polysaccharide distribution of S. mutans, and increase the proportion of S. mutans within a dual-species biofilm, probably through the regulation of various gene expressions. We hypothesize that the enhanced competitiveness of S. mutans under simulated microgravity may cause a multispecies micro-ecological imbalance, which would result in the initiation of dental caries. Our current findings are consistent with previous studies, which revealed a higher astronaut-associated incidence of caries. Further research is required to explore the detailed mechanisms. PMID:25109245

  7. α-Mangostin disrupts the development of Streptococcus mutans biofilms and facilitates its mechanical removal.

    PubMed

    Nguyen, Phuong Thi Mai; Falsetta, Megan L; Hwang, Geelsu; Gonzalez-Begne, Mireya; Koo, Hyun

    2014-01-01

    α-Mangostin (αMG) has been reported to be an effective antimicrobial agent against planktonic cells of Streptococcus mutans, a biofilm-forming and acid-producing cariogenic organism. However, its anti-biofilm activity remains to be determined. We examined whether αMG, a xanthone purified from Garcinia mangostana L grown in Vietnam, disrupts the development, acidogenicity, and/or the mechanical stability of S. mutans biofilms. Treatment regimens simulating those experienced clinically (twice-daily, 60 s exposure each) were used to assess the bioactivity of αMG using a saliva-coated hydroxyapatite (sHA) biofilm model. Topical applications of early-formed biofilms with αMG (150 µM) effectively reduced further biomass accumulation and disrupted the 3D architecture of S. mutans biofilms. Biofilms treated with αMG had lower amounts of extracellular insoluble and intracellular iodophilic polysaccharides (30-45%) than those treated with vehicle control (P<0.05), while the number of viable bacterial counts was unaffected. Furthermore, αMG treatments significantly compromised the mechanical stability of the biofilm, facilitating its removal from the sHA surface when subjected to a constant shear stress of 0.809 N/m2 (>3-fold biofilm detachment from sHA vs. vehicle-treated biofilms; P<0.05). Moreover, acid production by S. mutans biofilms was disrupted following αMG treatments (vs. vehicle-control, P<0.05). The activity of enzymes associated with glucan synthesis, acid production, and acid tolerance (glucosyltransferases B and C, phosphotransferase-PTS system, and F1F0-ATPase) were significantly inhibited by αMG. The expression of manL, encoding a key component of the mannose PTS, and gtfB were slightly repressed by αMG treatment (P<0.05), while the expression of atpD (encoding F-ATPase) and gtfC genes was unaffected. Hence, this study reveals that brief exposures to αMG can disrupt the development and structural integrity of S. mutans biofilms, at least in part

  8. α-Mangostin Disrupts the Development of Streptococcus mutans Biofilms and Facilitates Its Mechanical Removal

    PubMed Central

    Nguyen, Phuong Thi Mai; Falsetta, Megan L.; Hwang, Geelsu; Gonzalez-Begne, Mireya; Koo, Hyun

    2014-01-01

    α-Mangostin (αMG) has been reported to be an effective antimicrobial agent against planktonic cells of Streptococcus mutans, a biofilm-forming and acid-producing cariogenic organism. However, its anti-biofilm activity remains to be determined. We examined whether αMG, a xanthone purified from Garcinia mangostana L grown in Vietnam, disrupts the development, acidogenicity, and/or the mechanical stability of S. mutans biofilms. Treatment regimens simulating those experienced clinically (twice-daily, 60 s exposure each) were used to assess the bioactivity of αMG using a saliva-coated hydroxyapatite (sHA) biofilm model. Topical applications of early-formed biofilms with αMG (150 µM) effectively reduced further biomass accumulation and disrupted the 3D architecture of S. mutans biofilms. Biofilms treated with αMG had lower amounts of extracellular insoluble and intracellular iodophilic polysaccharides (30–45%) than those treated with vehicle control (P<0.05), while the number of viable bacterial counts was unaffected. Furthermore, αMG treatments significantly compromised the mechanical stability of the biofilm, facilitating its removal from the sHA surface when subjected to a constant shear stress of 0.809 N/m2 (>3-fold biofilm detachment from sHA vs. vehicle-treated biofilms; P<0.05). Moreover, acid production by S. mutans biofilms was disrupted following αMG treatments (vs. vehicle-control, P<0.05). The activity of enzymes associated with glucan synthesis, acid production, and acid tolerance (glucosyltransferases B and C, phosphotransferase-PTS system, and F1F0-ATPase) were significantly inhibited by αMG. The expression of manL, encoding a key component of the mannose PTS, and gtfB were slightly repressed by αMG treatment (P<0.05), while the expression of atpD (encoding F-ATPase) and gtfC genes was unaffected. Hence, this study reveals that brief exposures to αMG can disrupt the development and structural integrity of S. mutans biofilms, at least in part

  9. An analytical tool-box for comprehensive biochemical, structural and transcriptome evaluation of oral biofilms mediated by mutans streptococci.

    PubMed

    Klein, Marlise I; Xiao, Jin; Heydorn, Arne; Koo, Hyun

    2011-01-01

    Biofilms are highly dynamic, organized and structured communities of microbial cells enmeshed in an extracellular matrix of variable density and composition (1, 2). In general, biofilms develop from initial microbial attachment on a surface followed by formation of cell clusters (or microcolonies) and further development and stabilization of the microcolonies, which occur in a complex extracellular matrix. The majority of biofilm matrices harbor exopolysaccharides (EPS), and dental biofilms are no exception; especially those associated with caries disease, which are mostly mediated by mutans streptococci (3). The EPS are synthesized by microorganisms (S. mutans, a key contributor) by means of extracellular enzymes, such as glucosyltransferases using sucrose primarily as substrate (3). Studies of biofilms formed on tooth surfaces are particularly challenging owing to their constant exposure to environmental challenges associated with complex diet-host-microbial interactions occurring in the oral cavity. Better understanding of the dynamic changes of the structural organization and composition of the matrix, physiology and transcriptome/proteome profile of biofilm-cells in response to these complex interactions would further advance the current knowledge of how oral biofilms modulate pathogenicity. Therefore, we have developed an analytical tool-box to facilitate biofilm analysis at structural, biochemical and molecular levels by combining commonly available and novel techniques with custom-made software for data analysis. Standard analytical (colorimetric assays, RT-qPCR and microarrays) and novel fluorescence techniques (for simultaneous labeling of bacteria and EPS) were integrated with specific software for data analysis to address the complex nature of oral biofilm research. The tool-box is comprised of 4 distinct but interconnected steps (Figure 1): 1) Bioassays, 2) Raw Data Input, 3) Data Processing, and 4) Data Analysis. We used our in vitro biofilm model and

  10. Functional Relationship between Sucrose and a Cariogenic Biofilm Formation

    PubMed Central

    Cai, Jian-Na; Jung, Ji-Eun; Dang, Minh-Huy; Kim, Mi-Ah; Yi, Ho-Keun; Jeon, Jae-Gyu

    2016-01-01

    Sucrose is an important dietary factor in cariogenic biofilm formation and subsequent initiation of dental caries. This study investigated the functional relationships between sucrose concentration and Streptococcus mutans adherence and biofilm formation. Changes in morphological characteristics of the biofilms with increasing sucrose concentration were also evaluated. S. mutans biofilms were formed on saliva-coated hydroxyapatite discs in culture medium containing 0, 0.05, 0.1, 0.5, 1, 2, 5, 10, 20, or 40% (w/v) sucrose. The adherence (in 4-hour biofilms) and biofilm composition (in 46-hour biofilms) of the biofilms were analyzed using microbiological, biochemical, laser scanning confocal fluorescence microscopic, and scanning electron microscopic methods. To determine the relationships, 2nd order polynomial curve fitting was performed. In this study, the influence of sucrose on bacterial adhesion, biofilm composition (dry weight, bacterial counts, and water-insoluble extracellular polysaccharide (EPS) content), and acidogenicity followed a 2nd order polynomial curve with concentration dependence, and the maximum effective concentrations (MECs) of sucrose ranged from 0.45 to 2.4%. The bacterial and EPS bio-volume and thickness in the biofilms also gradually increased and then decreased as sucrose concentration increased. Furthermore, the size and shape of the micro-colonies of the biofilms depended on the sucrose concentration. Around the MECs, the micro-colonies were bigger and more homogeneous than those at 0 and 40%, and were surrounded by enough EPSs to support their structure. These results suggest that the relationship between sucrose concentration and cariogenic biofilm formation in the oral cavity could be described by a functional relationship. PMID:27275603

  11. The photodynamic therapy on Streptococcus mutans biofilms using erythrosine and dental halogen curing unit.

    PubMed

    Lee, Young-Ho; Park, Ho-Won; Lee, Ju-Hyun; Seo, Hyun-Woo; Lee, Si-Young

    2012-12-01

    The purpose of our study was to evaluate the effect of photodynamic therapy (PDT), using erythrosine as a photosensitizing agent and a dental halogen curing unit as a light source, on Streptococcus mutans in a biofilm phase. The S. mutans biofilms were formed in a 24-well cell culture cluster. Test groups consisted of biofilms divided into four groups: group 1: no photosensitizer or light irradiation treatment (control group); group 2: photosensitizer treatment alone; group 3: light irradiation alone; group 4: photosensitizer treatment and light irradiation. After treatments, the numbers of colony-forming unit (CFU) were counted and samples were examined by confocal laser scanning fluorescence microscopy (CLSM). Only group 4 (combined treatment) resulted in significant increases in cell death, with rates of 75% and 55% after 8 h of incubation, and 74% and 42% at 12 h, for biofilms formed in brain-heart infusion (BHI) broth supplemented with 0% or 0.1% sucrose, respectively. Therefore, PDT of S. mutans biofilms using a combination of erythrosine and a dental halogen curing unit, both widely used in dental clinics, resulted in a significant increase in cell death. The PDT effects are decreased in biofilms that form in the presence of sucrose. PMID:23222991

  12. The photodynamic therapy on Streptococcus mutans biofilms using erythrosine and dental halogen curing unit

    PubMed Central

    Lee, Young-Ho; Park, Ho-Won; Lee, Ju-Hyun; Seo, Hyun-Woo; Lee, Si-Young

    2012-01-01

    The purpose of our study was to evaluate the effect of photodynamic therapy (PDT), using erythrosine as a photosensitizing agent and a dental halogen curing unit as a light source, on Streptococcus mutans in a biofilm phase. The S. mutans biofilms were formed in a 24-well cell culture cluster. Test groups consisted of biofilms divided into four groups: group 1: no photosensitizer or light irradiation treatment (control group); group 2: photosensitizer treatment alone; group 3: light irradiation alone; group 4: photosensitizer treatment and light irradiation. After treatments, the numbers of colony-forming unit (CFU) were counted and samples were examined by confocal laser scanning fluorescence microscopy (CLSM). Only group 4 (combined treatment) resulted in significant increases in cell death, with rates of 75% and 55% after 8 h of incubation, and 74% and 42% at 12 h, for biofilms formed in brain–heart infusion (BHI) broth supplemented with 0% or 0.1% sucrose, respectively. Therefore, PDT of S. mutans biofilms using a combination of erythrosine and a dental halogen curing unit, both widely used in dental clinics, resulted in a significant increase in cell death. The PDT effects are decreased in biofilms that form in the presence of sucrose. PMID:23222991

  13. Oral Streptococci Biofilm Formation on Different Implant Surface Topographies

    PubMed Central

    Pita, Pedro Paulo Cardoso; Rodrigues, José Augusto; Ota-Tsuzuki, Claudia; Miato, Tatiane Ferreira; Zenobio, Elton G.; Giro, Gabriela; Figueiredo, Luciene C.; Gonçalves, Cristiane; Gehrke, Sergio A.; Cassoni, Alessandra; Shibli, Jamil Awad

    2015-01-01

    The establishment of the subgingival microbiota is dependent on successive colonization of the implant surface by bacterial species. Different implant surface topographies could influence the bacterial adsorption and therefore jeopardize the implant survival. This study evaluated the biofilm formation capacity of five oral streptococci species on two titanium surface topographies. In vitro biofilm formation was induced on 30 titanium discs divided in two groups: sandblasted acid-etched (SAE- n = 15) and as-machined (M- n = 15) surface. The specimens were immersed in sterilized whole human unstimulated saliva and then in fresh bacterial culture with five oral streptococci species: Streptococcus sanguinis, Streptococcus salivarius, Streptococcus mutans, Streptococcus sobrinus, and Streptococcus cricetus. The specimens were fixed and stained and the adsorbed dye was measured. Surface characterization was performed by atomic force and scanning electron microscopy. Surface and microbiologic data were analyzed by Student's t-test and two-way ANOVA, respectively (P < 0.05). S. cricetus, S. mutans, and S. sobrinus exhibited higher biofilm formation and no differences were observed between surfaces analyzed within each species (P > 0.05). S. sanguinis exhibited similar behavior to form biofilm on both implant surface topographies, while S. salivarius showed the lowest ability to form biofilm. It was concluded that biofilm formation on titanium surfaces depends on surface topography and species involved. PMID:26273590

  14. Oral Streptococci Biofilm Formation on Different Implant Surface Topographies.

    PubMed

    Pita, Pedro Paulo Cardoso; Rodrigues, José Augusto; Ota-Tsuzuki, Claudia; Miato, Tatiane Ferreira; Zenobio, Elton G; Giro, Gabriela; Figueiredo, Luciene C; Gonçalves, Cristiane; Gehrke, Sergio A; Cassoni, Alessandra; Shibli, Jamil Awad

    2015-01-01

    The establishment of the subgingival microbiota is dependent on successive colonization of the implant surface by bacterial species. Different implant surface topographies could influence the bacterial adsorption and therefore jeopardize the implant survival. This study evaluated the biofilm formation capacity of five oral streptococci species on two titanium surface topographies. In vitro biofilm formation was induced on 30 titanium discs divided in two groups: sandblasted acid-etched (SAE- n = 15) and as-machined (M- n = 15) surface. The specimens were immersed in sterilized whole human unstimulated saliva and then in fresh bacterial culture with five oral streptococci species: Streptococcus sanguinis, Streptococcus salivarius, Streptococcus mutans, Streptococcus sobrinus, and Streptococcus cricetus. The specimens were fixed and stained and the adsorbed dye was measured. Surface characterization was performed by atomic force and scanning electron microscopy. Surface and microbiologic data were analyzed by Student's t-test and two-way ANOVA, respectively (P < 0.05). S. cricetus, S. mutans, and S. sobrinus exhibited higher biofilm formation and no differences were observed between surfaces analyzed within each species (P > 0.05). S. sanguinis exhibited similar behavior to form biofilm on both implant surface topographies, while S. salivarius showed the lowest ability to form biofilm. It was concluded that biofilm formation on titanium surfaces depends on surface topography and species involved. PMID:26273590

  15. Residual Structure of Streptococcus mutans Biofilm following Complete Disinfection Favors Secondary Bacterial Adhesion and Biofilm Re-Development

    PubMed Central

    Ohsumi, Tatsuya; Takenaka, Shoji; Wakamatsu, Rika; Sakaue, Yuuki; Narisawa, Naoki; Senpuku, Hidenobu; Ohshima, Hayato; Terao, Yutaka; Okiji, Takashi

    2015-01-01

    Chemical disinfection of oral biofilms often leaves biofilm structures intact. This study aimed to examine whether the residual structure promotes secondary bacterial adhesion. Streptococcus mutans biofilms generated on resin-composite disks in a rotating disc reactor were disinfected completely with 70% isopropyl alcohol, and were again cultured in the same reactor after resupplying with the same bacterial solution. Specimens were subjected to fluorescence confocal laser scanning microscopy, viable cell counts and PCR-Invader assay in order to observe and quantify secondarily adhered cells. Fluorescence microscopic analysis, particularly after longitudinal cryosectioning, demonstrated stratified patterns of viable cells on the disinfected biofilm structure. Viable cell counts of test specimens were significantly higher than those of controls, and increased according to the amount of residual structure and culture period. Linear regression analysis exhibited a high correlation between viable and total cell counts. It was concluded that disinfected biofilm structures favored secondary bacterial adhesion. PMID:25635770

  16. In situ biosensing of the nanomechanical property and electrochemical spectroscopy of Streptococcus mutans-containing biofilms

    NASA Astrophysics Data System (ADS)

    Haochih Liu, Bernard; Li, Kun-Lin; Kang, Kai-Li; Huang, Wen-Ke; Liao, Jiunn-Der

    2013-07-01

    This work presents in situ biosensing approaches to study the nanomechanical and electrochemical behaviour of Streptococcus mutans biofilms under different cultivation conditions and microenvironments. The surface characteristics and sub-surface electrochemistry of the cell wall of S. mutans were measured by atomic force microscopy (AFM) based techniques to monitor the in situ biophysical status of biofilms under common anti-pathogenic procedures such as ultraviolet (UV) radiation and alcohol treatment. The AFM nanoindentation suggested a positive correlation between nanomechanical strength and the level of UV radiation of S. mutans; scanning impedance spectroscopy of dehydrated biofilms revealed reduced electrical resistance that is distinctive from that of living biofilms, which can be explained by the discharge of cytoplasm after alcohol treatment. Furthermore, the localized elastic moduli of four regions of the biofilm were studied: septum (Z-ring), cell wall, the interconnecting area between two cells and extracellular polymeric substance (EPS) area. The results indicated that cell walls exhibit the highest elastic modulus, followed by Z-ring, interconnect and EPS. Our approach provides an effective alternative for the characterization of the viability of living cells without the use of biochemical labelling tools such as fluorescence dyeing, and does not rely on surface binding or immobilization for detection. These AFM-based techniques can be very promising approaches when the conventional methods fall short.

  17. Inhibition of Streptococcus mutans biofilm accumulation and development of dental caries in vivo by 7-epiclusianone and fluoride

    PubMed Central

    Murata, Ramiro M.; Branco-de-Almeida, Luciana S.; Franco, Eliane M.; Yatsuda, Regiane; dos Santos, Marcelo H.; de Alencar, Severino M.; Koo, Hyun; Rosalen, Pedro L.

    2011-01-01

    7-Epiclusianone (7-epi), a novel naturally occurring compound isolated from Rheedia brasiliensis, effectively inhibits the synthesis of exopolymers and biofilm formation by Streptococcus mutans. In the present study, the ability of 7-epi, alone or in combination with fluoride (F), to disrupt biofilm development and pathogenicity of S. mutans in vivo was examined using a rodent model of dental caries. Treatment (twice-daily, 60s exposure) with 7-epi, alone or in combination with 125 ppm F, resulted in biofilms with less biomass and fewer insoluble glucans than did those treated with vehicle-control, and they also displayed significant cariostatic effects in vivo (p < 0.05). The combination 7-epi + 125 ppm F was as effective as 250 ppm F (positive-control) in reducing the development of both smooth- and sulcal-caries. No histopathological alterations were observed in the animals after the experimental period. The data show that 7-epiclusianone is a novel and effective antibiofilm/anticaries agent, which may enhance the cariostatic properties of fluoride. PMID:20938851

  18. Inhibition of Streptococcus mutans biofilm accumulation and development of dental caries in vivo by 7-epiclusianone and fluoride.

    PubMed

    Murata, Ramiro M; Branco-de-Almeida, Luciana S; Franco, Eliane M; Yatsuda, Regiane; dos Santos, Marcelo H; de Alencar, Severino M; Koo, Hyun; Rosalen, Pedro L

    2010-10-01

    7-Epiclusianone (7-epi), a novel naturally occurring compound isolated from Rheedia brasiliensis, effectively inhibits the synthesis of exopolymers and biofilm formation by Streptococcus mutans. In the present study, the ability of 7-epi, alone or in combination with fluoride (F), to disrupt biofilm development and pathogenicity of S. mutans in vivo was examined using a rodent model of dental caries. Treatment (twice-daily, 60s exposure) with 7-epi, alone or in combination with 125 ppm F, resulted in biofilms with less biomass and fewer insoluble glucans than did those treated with vehicle-control, and they also displayed significant cariostatic effects in vivo (p < 0.05). The combination 7-epi + 125 ppm F was as effective as 250 ppm F (positive-control) in reducing the development of both smooth- and sulcal-caries. No histopathological alterations were observed in the animals after the experimental period. The data show that 7-epiclusianone is a novel and effective antibiofilm/anticaries agent, which may enhance the cariostatic properties of fluoride. PMID:20938851

  19. Ent-trachyloban-19-oic acid isolated from Iostephane heterophylla as a promising antibacterial agent against Streptococcus mutans biofilms.

    PubMed

    Hernández, Dulce M; Díaz-Ruiz, Gloria; Rivero-Cruz, Blanca E; Bye, Robert A; Aguilar, María Isabel; Rivero-Cruz, J Fausto

    2012-04-01

    From the roots of Iostephane heterophylla, six known compounds, namely, ent-trachyloban-19-oic acid (1), the mixture of ent-kaur-16-en-19-oic acid (2) and ent-beyer-15-en-19-oic acid (3), xanthorrhizol (4), 16α-hydroxy-ent-kaurane (5) and 16α-hydroxy-ent-kaur-11-en-19-oic acid (6) were isolated using a bioassay-guided fractionation method. The known compounds (1-6) were identified by comparison of their spectroscopic data with reported values in the literature. In an attempt to increase the resultant antimicrobial activity of 1 and 4, a series of reactions was performed on ent-trachyloban-19-oic acid (1) and xanthorrhizol (4), to obtain derivatives 1a, 1b, and 4a-4d. All the isolated compounds (1-6) and the derivatives 1a, 1b, and 4a-4d were evaluated for their antimicrobial activity against two oral pathogens, Streptococcus mutans and Porphyromonas gingivalis associated with caries and periodontal disease, respectively. Compounds 1, 1b, 2+3, 4 and 4d inhibited the growth of S. mutans with concentrations ranging from 4.1 μg/mL to 70.5 μg/mL. No significant activity was found on P. gingivalis except for 4 with an MIC of 6.8 μg/mL. The ability of 1, 1b, 2+3, 4 and 4d to inhibit biofilm formation by S. mutans was evaluated. It was found that 1, 1b, 4 and 4d interfered with the establishment of S. mutans biofilms, inhibiting their development at 32.5, 125.0, 14.1 and 24.4 μg/mL, respectively. PMID:22245083

  20. Disinfection of Streptococcus mutans Biofilm by a Non-Thermal Atmospheric Plasma Brush

    NASA Astrophysics Data System (ADS)

    Hong, Qing; Dong, Xiaoqing; Chen, Meng; Xu, Yuanxi; Sun, Hongmin; Hong, Liang; Yu, Qingsong

    2015-09-01

    This study investigated the argon plasma treatment effect on disinfecting dental biofilm by using an atmospheric pressure plasma brush. S. mutans biofilms were developed for 3 days on the surfaces of hydroxyapatite discs, which were used to simulate human tooth enamel. After plasma treatment, cell viability in the S. mutans biofilms was characterized by using MTT assay and confocal laser scanning microscopy (CLSM). Compared with the untreated control group, about 90% and 95% bacterial reduction in the biofilms was observed after 1 and 5 min plasma treatment, respectively. Scanning electron microscopy examination indicated severe cell damages occurred on the top surface of the plasma treated biofilms. CLSM showed that plasma treatment was effective as deep as 20 μm into the biofilms. When combined with 0.2% chlorhexidine digluconate solution, the plasma treatment became more effective and over 96% bacterial reduction was observed with 1 min plasma treatment. These results indicate that plasma treatment is effective and promising in dental biofilm disinfection.

  1. Mutanase from Paenibacillus sp. MP-1 produced inductively by fungal α-1,3-glucan and its potential for the degradation of mutan and Streptococcus mutans biofilm

    PubMed Central

    Wiater, A.; Szczodrak, J.

    2010-01-01

    Laetiporus sulphureus is a source of α-1,3-glucan that can substitute for the commercially-unavailable streptococcal mutan used to induce microbial mutanases. The water-insoluble fraction of its fruiting bodies from 0.15 to 0.2% (w/v) induced mutanase activity in Paenibacillus sp. MP-1 at 0.35 μ ml−1. The mutanase extensively hydrolyzed streptococcal mutan, giving 23% of saccharification, and 83% of solubilization of glucan after 6 h. It also degraded α-1,3-polymers of biofilms, formed in vitro by Streptococcus mutans, even after only 3 min of contact. PMID:20623316

  2. Mutanase from Paenibacillus sp. MP-1 produced inductively by fungal α-1,3-glucan and its potential for the degradation of mutan and Streptococcus mutans biofilm.

    PubMed

    Pleszczyńska, M; Wiater, A; Szczodrak, J

    2010-11-01

    Laetiporus sulphureus is a source of α-1,3-glucan that can substitute for the commercially-unavailable streptococcal mutan used to induce microbial mutanases. The water-insoluble fraction of its fruiting bodies from 0.15 to 0.2% (w/v) induced mutanase activity in Paenibacillus sp. MP-1 at 0.35 μ ml(-1). The mutanase extensively hydrolyzed streptococcal mutan, giving 23% of saccharification, and 83% of solubilization of glucan after 6 h. It also degraded α-1,3-polymers of biofilms, formed in vitro by Streptococcus mutans, even after only 3 min of contact. PMID:20623316

  3. Disinfection of Streptococcus mutans biofilm by a non-thermal atmospheric plasma brush

    NASA Astrophysics Data System (ADS)

    Hong, Qing; Dong, Xiaoqing; Chen, Meng; Xu, Yuanxi; Sun, Hongmin; Hong, Liang; Wang, Yong; Yu, Qingsong

    2016-07-01

    This study investigated the argon plasma treatment effect on disinfecting dental biofilm by using an atmospheric pressure plasma brush. Streptococcus mutans biofilms were developed for 3 days on the surfaces of hydroxyapatite (HA) discs, which were used to simulate human tooth enamel. After plasma treatment, cell viability in the S. mutans biofilms was characterized by using 3-(4,5-dimethylazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and confocal laser scanning microscopy (CLSM). Compared with the untreated control group, about 90% bacterial reduction in the biofilms was observed after 1 min plasma treatment. Scanning electron microscopy (SEM) examination indicated severe cell damages occurred on the top surface of the plasma treated biofilms. Confocal laser scanning microscopy (CLSM) showed that plasma treatment was effective as deep as 20 µm into the biofilms. When combined with antibiotic treatment using 0.2% chlorhexidine digluconate solution, the plasma treatment became more effective and over 96% bacterial reduction was observed with 1 min plasma treatment.

  4. Zoocin A and lauricidin in combination reduce Streptococcus mutans growth in a multispecies biofilm.

    PubMed

    Lester, K; Simmonds, R S

    2012-01-01

    Dental caries is the most prevalent human infection. It is a multifactorial disease in which the microbial composition of dental plaque plays a major role in the development of clinical symptoms. The bacteria most often implicated in the development of caries are that group of streptococci referred to as the mutans streptococci, in particular Streptococcus mutans and Streptococcus sobrinus. One approach to the prevention of caries is to reduce the numbers of mutans streptococci in plaque to a level insufficient to support demineralization of the tooth. In this study, zoocin A, a peptidoglycan hydrolase, combined with lauricidin, a cell membrane active lipid, was shown over a 72 h period to selectively suppress the growth of S. mutans in a triple species biofilm. Growth of the non-target species Streptococcus oralis and Actinomyces viscosus was not inhibited. In treated systems the amount of extracellular polysaccharide matrix produced was much reduced as determined by use of fluorescein isothiocyanate conjugated wheat germ agglutinin. The pH of treated biofilms remained above neutral as opposed to a value of 4.3 in untreated controls. We conclude that use of antimicrobial compounds that specifically target cariogenic bacteria should be further explored. PMID:22508519

  5. Antimicrobial activity of alexidine, chlorhexidine and cetrimide against Streptococcus mutans biofilm

    PubMed Central

    2014-01-01

    Background The use of antimicrobial solutions has been recommended to disinfect demineralized dentin prior to placing the filling material. The aim of this study was to evaluate the ability of several antimicrobials in controlling Streptococcus mutans (SM) biofilm formed in dentin. Methods Antimicrobial activity of 0.2% and 2% chlorhexidine (CHX), 0.2% cetrimide (CTR) and 0.2%, 0.5%, 1% and 2% alexidine (ALX) was assayed on 1-week SM biofilm formed on standardized coronal dentin blocks. Results of SM biofilm antimicrobial activity by different protocols were expressed as the kill percentage of biofilm and the term “eradication” was used to denote the kill of 100% of the bacterial population. To compare the efficacies of the different protocols the Student t test was used, previously subjecting data to the Anscombe transformation. Results All ALX concentrations tested and 0.2% CTR achieved a kill percentage higher than 99%, followed by 2% CHX with percentages above 96% (no statistically significant difference among them). Whereas 2% ALX and 0.2% CTR respectively showed eradication in 10 and 9 of the twelve specimens, 0.2% CHX did not produce eradication in any case. Conclusions The present study shows that, when used for one minute, 2% and 1% alexidine, and 0.2% cetrimide, achieve eradication of Streptococcus mutans biofilm in most specimens when applied to a dentin-volumetric model. PMID:25139679

  6. Cross-feeding and interkingdom communication in dual-species biofilms of Streptococcus mutans and Candida albicans

    PubMed Central

    Sztajer, Helena; Szafranski, Szymon P; Tomasch, Jürgen; Reck, Michael; Nimtz, Manfred; Rohde, Manfred; Wagner-Döbler, Irene

    2014-01-01

    Polymicrobial biofilms are of large medical importance, but relatively little is known about the role of interspecies interactions for their physiology and virulence. Here, we studied two human pathogens co-occuring in the oral cavity, the opportunistic fungus Candida albicans and the caries-promoting bacterium Streptococcus mutans. Dual-species biofilms reached higher biomass and cell numbers than mono-species biofilms, and the production of extracellular polymeric substances (EPSs) by S. mutans was strongly suppressed, which was confirmed by scanning electron microscopy, gas chromatography–mass spectrometry and transcriptome analysis. To detect interkingdom communication, C. albicans was co-cultivated with a strain of S. mutans carrying a transcriptional fusion between a green fluorescent protein-encoding gene and the promoter for sigX, the alternative sigma factor of S. mutans, which is induced by quorum sensing signals. Strong induction of sigX was observed in dual-species biofilms, but not in single-species biofilms. Conditioned media from mixed biofilms but not from C. albicans or S. mutans cultivated alone activated sigX in the reporter strain. Deletion of comS encoding the synthesis of the sigX-inducing peptide precursor abolished this activity, whereas deletion of comC encoding the competence-stimulating peptide precursor had no effect. Transcriptome analysis of S. mutans confirmed induction of comS, sigX, bacteriocins and the downstream late competence genes, including fratricins, in dual-species biofilms. We show here for the first time the stimulation of the complete quorum sensing system of S. mutans by a species from another kingdom, namely the fungus C. albicans, resulting in fundamentally changed virulence properties of the caries pathogen. PMID:24824668

  7. Streptococcus mutans Extracellular DNA Is Upregulated during Growth in Biofilms, Actively Released via Membrane Vesicles, and Influenced by Components of the Protein Secretion Machinery

    PubMed Central

    Liao, Sumei; Klein, Marlise I.; Heim, Kyle P.; Fan, Yuwei; Bitoun, Jacob P.; Ahn, San-Joon; Burne, Robert A.; Koo, Hyun; Brady, L. Jeannine

    2014-01-01

    Streptococcus mutans, a major etiological agent of human dental caries, lives primarily on the tooth surface in biofilms. Limited information is available concerning the extracellular DNA (eDNA) as a scaffolding matrix in S. mutans biofilms. This study demonstrates that S. mutans produces eDNA by multiple avenues, including lysis-independent membrane vesicles. Unlike eDNAs from cell lysis that were abundant and mainly concentrated around broken cells or cell debris with floating open ends, eDNAs produced via the lysis-independent pathway appeared scattered but in a structured network under scanning electron microscopy. Compared to eDNA production of planktonic cultures, eDNA production in 5- and 24-h biofilms was increased by >3- and >1.6-fold, respectively. The addition of DNase I to growth medium significantly reduced biofilm formation. In an in vitro adherence assay, added chromosomal DNA alone had a limited effect on S. mutans adherence to saliva-coated hydroxylapatite beads, but in conjunction with glucans synthesized using purified glucosyltransferase B, the adherence was significantly enhanced. Deletion of sortase A, the transpeptidase that covalently couples multiple surface-associated proteins to the cell wall peptidoglycan, significantly reduced eDNA in both planktonic and biofilm cultures. Sortase A deficiency did not have a significant effect on membrane vesicle production; however, the protein profile of the mutant membrane vesicles was significantly altered, including reduction of adhesin P1 and glucan-binding proteins B and C. Relative to the wild type, deficiency of protein secretion and membrane protein insertion machinery components, including Ffh, YidC1, and YidC2, also caused significant reductions in eDNA. PMID:24748612

  8. Effects of xylitol on xylitol-sensitive versus xylitol-resistant Streptococcus mutans strains in a three-species in vitro biofilm.

    PubMed

    Marttinen, Aino M; Ruas-Madiedo, Patricia; Hidalgo-Cantabrana, Claudio; Saari, Markku A; Ihalin, Riikka A; Söderling, Eva M

    2012-09-01

    We studied the effects of xylitol on biofilms containing xylitol-resistant (Xr) and xylitol-sensitive (Xs) Streptococcus mutans, Actinomyces naeslundii and S. sanguinis. The biofilms were grown for 8 and 24 h on hydroxyapatite discs. The viable microorganisms were determined by plate culturing techniques and fluorescence in situ hybridization (FISH) was performed using a S. mutans-specific probe. Extracellular cell-bound polysaccharides (EPS) were determined by spectrofluorometry from single-species S. mutans biofilms. In the presence of 5 % xylitol, the counts of the Xs S. mutans decreased tenfold in the young (8 h) biofilm (p < 0.05) but no effect was seen in the mature (24 h) biofilm. No decrease was observed for the Xr strains, and FISH confirmed these results. No differences were detected in the EPS production of the Xs S. mutans grown with or without xylitol, nor between Xr and Xs S. mutans strains. Thus, it seems that xylitol did not affect the EPS synthesis of the S. mutans strains. Since the Xr S. mutans strains, not inhibited by xylitol, showed no xylitol-induced decrease in the biofilms, we conclude that growth inhibition could be responsible for the decrease of the counts of the Xs S. mutans strains in the clinically relevant young biofilms. PMID:22645015

  9. Biofilm formation in Streptococcus pneumoniae.

    PubMed

    Domenech, Mirian; García, Ernesto; Moscoso, Miriam

    2012-07-01

    Biofilm-grown bacteria are refractory to antimicrobial agents and show an increased capacity to evade the host immune system. In recent years, studies have begun on biofilm formation by Streptococcus pneumoniae, an important human pathogen, using a variety of in vitro model systems. The bacterial cells in these biofilms are held together by an extracellular matrix composed of DNA, proteins and, possibly, polysaccharide(s). Although neither the precise nature of these proteins nor the composition of the putative polysaccharide(s) is clear, it is known that choline-binding proteins are required for successful biofilm formation. Further, many genes appear to be involved, although the role of each appears to vary when biofilms are produced in batch or continuous culture. Prophylactic and therapeutic measures need to be developed to fight S. pneumoniae biofilm formation. However, much care needs to be taken when choosing strains for such studies because different S. pneumoniae isolates can show remarkable genomic differences. Multispecies and in vivo biofilm models must also be developed to provide a more complete understanding of biofilm formation and maintenance. PMID:21906265

  10. Biofilm Formation by Cryptococcus neoformans.

    PubMed

    Martinez, Luis R; Casadevall, Arturo

    2015-06-01

    The fungus Cryptococcus neoformans possesses a polysaccharide capsule and can form biofilms on medical devices. The increasing use of ventriculoperitoneal shunts to manage intracranial hypertension associated with cryptococcal meningoencephalitis highlights the importance of investigating the biofilm-forming properties of this organism. Like other microbe-forming biofilms, C. neoformans biofilms are resistant to antimicrobial agents and host defense mechanisms, causing significant morbidity and mortality. This chapter discusses the recent advances in the understanding of cryptococcal biofilms, including the role of its polysaccharide capsule in adherence, gene expression, and quorum sensing in biofilm formation. We describe novel strategies for the prevention or eradication of cryptococcal colonization of medical prosthetic devices. Finally, we provide fresh thoughts on the diverse but interesting directions of research in this field that may result in new insights into C. neoformans biology. PMID:26185073

  11. Tryptophan Inhibits Biofilm Formation by Pseudomonas aeruginosa

    PubMed Central

    Brandenburg, Kenneth S.; Rodriguez, Karien J.; McAnulty, Jonathan F.; Murphy, Christopher J.; Abbott, Nicholas L.; Schurr, Michael J.

    2013-01-01

    Biofilm formation by Pseudomonas aeruginosa has been implicated in the pathology of chronic wounds. Both the d and l isoforms of tryptophan inhibited P. aeruginosa biofilm formation on tissue culture plates, with an equimolar ratio of d and l isoforms producing the greatest inhibitory effect. Addition of d-/l-tryptophan to existing biofilms inhibited further biofilm growth and caused partial biofilm disassembly. Tryptophan significantly increased swimming motility, which may be responsible in part for diminished biofilm formation by P. aeruginosa. PMID:23318791

  12. Nanoscale characterization of effect of L-arginine on Streptococcus mutans biofilm adhesion by atomic force microscopy.

    PubMed

    Sharma, Shivani; Lavender, Stacey; Woo, JungReem; Guo, Lihong; Shi, Wenyuan; Kilpatrick-Liverman, LaTonya; Gimzewski, James K

    2014-07-01

    A major aetiological factor of dental caries is the pathology of the dental plaque biofilms. The amino acid L-arginine (Arg) is found naturally in saliva as a free molecule or as a part of salivary peptides and proteins. Plaque bacteria metabolize Arg to produce alkali and neutralize glycolytic acids, promoting a less cariogenous oral microbiome. Here, we explored an alternative and complementary mechanism of action of Arg using atomic force microscopy. The nanomechanical properties of Streptococcus mutans biofilm extracellular matrix were characterized under physiological buffer conditions. We report the effect of Arg on the adhesive behaviour and structural properties of extracellular polysaccharides in S. mutans biofilms. High-resolution imaging of biofilm surfaces can reveal additional structural information on bacterial cells embedded within the surrounding extracellular matrix. A dense extracellular matrix was observed in biofilms without Arg compared to those grown in the presence of Arg. S. mutans biofilms grown in the presence of Arg could influence the production and/or composition of extracellular membrane glucans and thereby affect their adhesion properties. Our results suggest that the presence of Arg in the oral cavity could influence the adhesion properties of S. mutans to the tooth surface. PMID:24763427

  13. Biofilm formation in Streptococcus pneumoniae

    PubMed Central

    Domenech, Mirian; García, Ernesto; Moscoso, Miriam

    2012-01-01

    Summary Biofilm‐grown bacteria are refractory to antimicrobial agents and show an increased capacity to evade the host immune system. In recent years, studies have begun on biofilm formation by Streptococcus pneumoniae, an important human pathogen, using a variety of in vitro model systems. The bacterial cells in these biofilms are held together by an extracellular matrix composed of DNA, proteins and, possibly, polysaccharide(s). Although neither the precise nature of these proteins nor the composition of the putative polysaccharide(s) is clear, it is known that choline‐binding proteins are required for successful biofilm formation. Further, many genes appear to be involved, although the role of each appears to vary when biofilms are produced in batch or continuous culture. Prophylactic and therapeutic measures need to be developed to fight S. pneumoniae biofilm formation. However, much care needs to be taken when choosing strains for such studies because different S. pneumoniae isolates can show remarkable genomic differences. Multispecies and in vivo biofilm models must also be developed to provide a more complete understanding of biofilm formation and maintenance. PMID:21906265

  14. Are self-ligating brackets related to less formation of Streptococcus mutans colonies? A systematic review

    PubMed Central

    do Nascimento, Leonard Euler Andrade Gomes; de Souza, Margareth Maria Gomes; Azevedo, Angela Rita Pontes; Maia, Lucianne Cople

    2014-01-01

    Objective To verify, by means of a systematic review, whether the design of brackets (conventional or self-ligating) influences adhesion and formation of Streptococcus mutans colonies. Methods Search strategy: four databases (Cochrane Central Register of Controlled Trials, Ovid ALL EMB Reviews, PubMed and BIREME) were selected to search relevant articles covering the period from January 1965 to December 2012. Selection Criteria: in first consensus by reading the title and abstract. The full text was obtained from publications that met the inclusion criteria. Data collection and analysis: Two reviewers independently extracted data using the keywords: conventional, self-ligating, biofilm, Streptococcus mutans, and systematic review; and independently evaluated the quality of the studies. In case of divergence, the technique of consensus was adopted. Results The search strategy resulted in 1,401 articles. The classification of scientific relevance revealed the high quality of the 6 eligible articles of which outcomes were not unanimous in reporting not only the influence of the design of the brackets (conventional or self-ligating) over adhesion and formation of colonies of Streptococcus mutans, but also that other factors such as the quality of the bracket type, the level of individual oral hygiene, bonding and age may have greater influence. Statistical analysis was not feasible because of the heterogeneous methodological design. Conclusions Within the limitations of this study, it was concluded that there is no evidence for a possible influence of the design of the brackets (conventional or self-ligating) over colony formation and adhesion of Streptococcus mutans. PMID:24713561

  15. The Effect of Essential Oils and Bioactive Fractions on Streptococcus mutans and Candida albicans Biofilms: A Confocal Analysis.

    PubMed

    Freires, Irlan Almeida; Bueno-Silva, Bruno; Galvão, Lívia Câmara de Carvalho; Duarte, Marta Cristina Teixeira; Sartoratto, Adilson; Figueira, Glyn Mara; de Alencar, Severino Matias; Rosalen, Pedro Luiz

    2015-01-01

    The essential oils (EO) and bioactive fractions (BF) from Aloysia gratissima, Baccharis dracunculifolia, Coriandrum sativum, Cyperus articulatus, and Lippia sidoides were proven to have strong antimicrobial activity on planktonic microorganisms; however, little is known about their effects on the morphology or viability of oral biofilms. Previously, we determined the EO/fractions with the best antimicrobial activity against Streptococcus mutans and Candida spp. In this report, we used a confocal analysis to investigate the effect of these EO and BF on the morphology of S. mutans biofilms (thickness, biovolume, and architecture) and on the metabolic viability of C. albicans biofilms. The analysis of intact treated S. mutans biofilms showed no statistical difference for thickness in all groups compared to the control. However, a significant reduction in the biovolume of extracellular polysaccharides and bacteria was observed for A. gratissima and L. sidoides groups, indicating that these BF disrupt biofilm integrity and may have created porosity in the biofilm. This phenomenon could potentially result in a weakened structure and affect biofilm dynamics. Finally, C. sativum EO drastically affected C. albicans viability when compared to the control. These results highlight the promising antimicrobial activity of these plant species and support future translational research on the treatment of dental caries and oral candidiasis. PMID:25821503

  16. Effects of low-level laser therapy combined with toluidine blue on polysaccharides and biofilm of Streptococcus mutans.

    PubMed

    de Sousa Farias, S S; Nemezio, M A; Corona, S A M; Aires, C P; Borsatto, M C

    2016-07-01

    The aim of this study was to evaluate the effect of a low-level laser therapy in combination with toluidine blue on polysaccharides and biofilm of Streptococcus mutans. S. mutans biofilms were formed on acrylic resin blocks. These biofilms were exposed eight times/day to 10 % sucrose, and two times/day, they were subjected to one of the following treatments: G1, 0.9 % NaCl as a negative control; G2, 0.12 % chlorhexidine digluconate (CHX) as a positive antibacterial control; and G3 and G4 antimicrobial photodynamic therapy (aPDT) combined with toluidine blue using dosages of 320 and 640 J/cm(2), respectively. The experiment was performed in triplicate. The biofilm formed on each block was collected for determination of the viable bacteria and concentration of insoluble extracellular polysaccharides (IEPS) and intracellular polysaccharides (IPS). CHX and aPDT treatments were able to inhibit bacterial growth in comparison with negative control (p < 0.05). The aPDT treatment reduced the number of viable bacteria formed in the S. mutans biofilm, in a dose-dependent manner (p < 0.05). The concentration of IEPS and IPS in the biofilms formed in presence of aPDT did not differ each other or in comparison to CHX (p > 0.05). The results suggest that low-level laser therapy presents effects on biofilm bacteria viability and in polysaccharides concentration. PMID:27147073

  17. The Effect of Essential Oils and Bioactive Fractions on Streptococcus mutans and Candida albicans Biofilms: A Confocal Analysis

    PubMed Central

    Freires, Irlan Almeida; Bueno-Silva, Bruno; Galvão, Lívia Câmara de Carvalho; Duarte, Marta Cristina Teixeira; Sartoratto, Adilson; Figueira, Glyn Mara; de Alencar, Severino Matias; Rosalen, Pedro Luiz

    2015-01-01

    The essential oils (EO) and bioactive fractions (BF) from Aloysia gratissima, Baccharis dracunculifolia, Coriandrum sativum, Cyperus articulatus, and Lippia sidoides were proven to have strong antimicrobial activity on planktonic microorganisms; however, little is known about their effects on the morphology or viability of oral biofilms. Previously, we determined the EO/fractions with the best antimicrobial activity against Streptococcus mutans and Candida spp. In this report, we used a confocal analysis to investigate the effect of these EO and BF on the morphology of S. mutans biofilms (thickness, biovolume, and architecture) and on the metabolic viability of C. albicans biofilms. The analysis of intact treated S. mutans biofilms showed no statistical difference for thickness in all groups compared to the control. However, a significant reduction in the biovolume of extracellular polysaccharides and bacteria was observed for A. gratissima and L. sidoides groups, indicating that these BF disrupt biofilm integrity and may have created porosity in the biofilm. This phenomenon could potentially result in a weakened structure and affect biofilm dynamics. Finally, C. sativum EO drastically affected C. albicans viability when compared to the control. These results highlight the promising antimicrobial activity of these plant species and support future translational research on the treatment of dental caries and oral candidiasis. PMID:25821503

  18. Bifidobacteria inhibit the growth of Porphyromonas gingivalis but not of Streptococcus mutans in an in vitro biofilm model.

    PubMed

    Jäsberg, Heli; Söderling, Eva; Endo, Akihito; Beighton, David; Haukioja, Anna

    2016-06-01

    There is growing interest in the use of probiotic bifidobacteria for enhancement of the therapy, and in the prevention, of oral microbial diseases. However, the results of clinical studies assessing the effects of bifidobacteria on the oral microbiota are controversial, and the mechanisms of actions of probiotics in the oral cavity remain largely unknown. In addition, very little is known about the role of commensal bifidobacteria in oral health. Our aim was to study the integration of the probiotic Bifidobacterium animalis subsp. lactis Bb12 and of oral Bifidobacterium dentium and Bifidobacterium longum isolates in supragingival and subgingival biofilm models and their effects on other bacteria in biofilms in vitro using two different in vitro biofilms and agar-overlay assays. All bifidobacteria integrated well into the subgingival biofilms composed of Porphyromonas gingivalis, Actinomyces naeslundii, and Fusobacterium nucleatum and decreased significantly only the number of P. gingivalis in the biofilms. The integration of bifidobacteria into the supragingival biofilms containing Streptococcus mutans and A. naeslundii was less efficient, and bifidobacteria did not affect the number of S. mutans in biofilms. Therefore, our results suggest that bifidobacteria may have a positive effect on subgingival biofilm and thereby potential in enhancing gingival health; however, their effect on supragingival biofilm may be limited. PMID:27061393

  19. Influence of the Culture Medium in Dose-Response Effect of the Chlorhexidine on Streptococcus mutans Biofilms

    PubMed Central

    de Queiroz, Vanessa Salvadego; Ccahuana-Vásquez, Renzo Alberto; Tedesco, Alcides Fabiano; Lyra, Luzia; Cury, Jaime Aparecido; Schreiber, Angélica Zaninelli

    2016-01-01

    The aim of this study was to evaluate the influence of culture medium on dose-response effect of chlorhexidine (CHX) on Streptococcus mutans UA159 biofilm and validate the use of the cation-adjusted-Müller-Hinton broth (MH) for the evaluation of antibacterial activity. Ultrafiltered Tryptone-Yeast Extract Broth (UTYEB) was compared against MH and MH with blood supplementation (MHS). For each medium, six groups (n = 4) were assessed: two negative control groups (baseline 48 and 120 h) and four experimental groups (0.0001, 0.001, 0.012, and 0.12% CHX). S. mutans biofilm grew on glass slides of each media containing 1% sucrose. After 48 h of growth, biofilms of baseline 48 h were collected and the other groups were treated for 1 min, twice a day, for 3 days, with their respective treatments. The media were changed daily and pH was measured. After 120 h, biofilms were collected and dry weight and viable microorganisms were determined. Results showed CHX dose-response effect being observed in all media for all the variables. However, MH and MHS showed higher sensitivity than UTYEB (p < 0.05). We can conclude that the culture medium does influence dose-response effect of CHX on Streptococcus mutans biofilm and that MH can be used for antibacterial activity. PMID:27293967

  20. Influence of the Culture Medium in Dose-Response Effect of the Chlorhexidine on Streptococcus mutans Biofilms.

    PubMed

    de Queiroz, Vanessa Salvadego; Ccahuana-Vásquez, Renzo Alberto; Tedesco, Alcides Fabiano; Lyra, Luzia; Cury, Jaime Aparecido; Schreiber, Angélica Zaninelli

    2016-01-01

    The aim of this study was to evaluate the influence of culture medium on dose-response effect of chlorhexidine (CHX) on Streptococcus mutans UA159 biofilm and validate the use of the cation-adjusted-Müller-Hinton broth (MH) for the evaluation of antibacterial activity. Ultrafiltered Tryptone-Yeast Extract Broth (UTYEB) was compared against MH and MH with blood supplementation (MHS). For each medium, six groups (n = 4) were assessed: two negative control groups (baseline 48 and 120 h) and four experimental groups (0.0001, 0.001, 0.012, and 0.12% CHX). S. mutans biofilm grew on glass slides of each media containing 1% sucrose. After 48 h of growth, biofilms of baseline 48 h were collected and the other groups were treated for 1 min, twice a day, for 3 days, with their respective treatments. The media were changed daily and pH was measured. After 120 h, biofilms were collected and dry weight and viable microorganisms were determined. Results showed CHX dose-response effect being observed in all media for all the variables. However, MH and MHS showed higher sensitivity than UTYEB (p < 0.05). We can conclude that the culture medium does influence dose-response effect of CHX on Streptococcus mutans biofilm and that MH can be used for antibacterial activity. PMID:27293967

  1. Effects of silver diamine fluoride on dentine carious lesions induced by Streptococcus mutans and Actinomyces naeslundii biofilms.

    PubMed

    Chu, Chun Hung; Mei, Lei; Seneviratne, Chaminda Jayampath; Lo, Edward Chin Man

    2012-01-01

    BACKGROUND. Silver diamine fluoride (SDF) has been shown to be a successful treatment for arresting caries. However, the mechanism of SDF is to be elucidated. AIM. To characterize the effects of SDF on dentine carious induced by Streptococcus mutans and Actinomyces naeslundii. DESIGN.  Thirty-two artificially demineralized human dentine blocks were inoculated: 16 with S. mutans and 16 with A. naeslundii. Either SDF or water was applied to eight blocks in each group. Biofilm morphology, microbial kinetics and viability were evaluated by scanning electron microscopy, colony forming units, and confocal microscopy. The crosssection of the dentine carious lesions were assessed by microhardness testing, scanning electron microscopy with energy-dispersive x-ray spectroscopy and Fourier transform infrared spectroscopy. RESULTS. Biofilm counts were reduced in SDF group than control (P < 0.01). Surfaces of carious lesions were harder after SDF application than after water application (P < 0.05), in S. mutans group, Ca and P weight percentage after SDF application than after water application (P < 0.05). Lesions showed a significantly reduced level of matrix to phosphate after SDF treatment (P < 0.05). CONCLUSION. Present study showed that SDF posses an anti-microbial activity against cariogenic biofilm of S. mutans or A. naeslundii formed on dentine surfaces. SDF slowed down demineralization of dentine. This dual activity could be the reason behind clinical success of SDF. PMID:21702854

  2. Deactivation of Streptococcus mutans Biofilms on a Tooth Surface Using He Dielectric Barrier Discharge at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Imola, Molnar; Judit, Papp; Alpar, Simon; Sorin, Dan Anghel

    2013-06-01

    This paper presents a study of the effect of the low temperature atmospheric helium dielectric barrier discharge (DBD) on the Streptococcus mutans biofilms formed on tooth surface. Pig jaws were also treated by plasma to detect if there is any harmful effect on the gingiva. The plasma was characterized by using optical emission spectroscopy. Experimental data indicated that the discharge is very effective in deactivating Streptococcus mutans biofilms. It can destroy them with an average decimal reduction time (D-time) of 19 s and about 98% of them were killed after a treatment time of 30 s. According to the survival curve kinetic an overall 32 s treatment time would be necessary to perform a complete sterilization. The experimental results presented in this study indicated that the helium dielectric barrier discharge, in plan-parallel electrode configuration, could be a very effective tool for deactivation of oral bacteria and might be a promising technique in various dental clinical applications.

  3. Natural biofilm formation with Legionella pneumophila.

    PubMed

    Portier, Emilie; Héchard, Yann

    2013-01-01

    Biofilm formation could be studied in various conditions. Most of the studies with Legionella pneumophila used monospecies biofilm in culture media. In some cases, it is important to study bacteria in conditions more close to environmental conditions. In this paper, we describe protocols to produce natural biofilms from river water that were spiked with L. pneumophila. PMID:23150397

  4. Boundaries for Biofilm Formation: Humidity and Temperature

    PubMed Central

    Else, Terry Ann; Pantle, Curtis R.; Amy, Penny S.

    2003-01-01

    Environmental conditions which define boundaries for biofilm production could provide useful ecological information for biofilm models. A practical use of defined conditions could be applied to the high-level nuclear waste repository at Yucca Mountain. Data for temperature and humidity conditions indicate that decreases in relative humidity or increased temperature severely affect biofilm formation on three candidate canister metals. PMID:12902302

  5. Anti-biofilm activity of α-mangostin isolated from Garcinia mangostana L.

    PubMed

    Nguyen, Phuong T M; Vo, Bac H; Tran, Nhung T; Van, Quyen D

    2015-11-01

    This study was carried out to further examine the anti-biofilm activity of α-mangostin (αMG) isolated from Garcinia mangostana L. grown in Vietnam, against a strongly biofilm producing Streptococcus mutans, a major causative agent of dental caries. The obtained data indicated that topical applications (twice-daily, 60 s exposure each) of 150 μM αMG during biofilm formation on the surfaces of hydroxyapatite disks (sHA) by S. mutans UA159 resulted in 30.7% reduction in biofilm accumulation after 68 h of growth. The treatment did not affect the viability of S. mutans cells in the biofilms. The surface activities of two key enzymes responsible for biofilm formation, i.e. the glycosyltransferases GtfB and GtfC, were reduced by 20 and 35%, respectively (vs. vehicle control, P < 0.05). Interestingly, αMG specifically targeted S. mutans in mixed biofilms, resulting in the decrease of the S. mutans population and total biofilm biomass. αMG was also found to accumulate within the biofilm of S. mutans up to 4.5 μg/biofilm, equal to a concentration of >10 μM/biofilm. In conclusion, this study confirmed anti-biofilm activity of αMG against S. mutans. A brief exposure to αMG may suppress biofilm formation by targeting key enzymes imvolved in biofilm formation. PMID:26618571

  6. Application of chimeric glucanase comprising mutanase and dextranase for prevention of dental biofilm formation.

    PubMed

    Otsuka, Ryoko; Imai, Susumu; Murata, Takatoshi; Nomura, Yoshiaki; Okamoto, Masaaki; Tsumori, Hideaki; Kakuta, Erika; Hanada, Nobuhiro; Momoi, Yasuko

    2015-01-01

    Water-insoluble glucan (WIG) produced by mutans streptococci, an important cariogenic pathogen, plays an important role in the formation of dental biofilm and adhesion of biofilm to tooth surfaces. Glucanohydrolases, such as mutanase (α-1,3-glucanase) and dextranase (α-1,6-glucanase), are able to hydrolyze WIG. The purposes of this study were to construct bi-functional chimeric glucanase, composed of mutanase and dextranase, and to examine the effects of this chimeric glucanase on the formation and decomposition of biofilm. The mutanase gene from Paenibacillus humicus NA1123 and the dextranase gene from Streptococcus mutans ATCC 25175 were cloned and ligated into a pE-SUMOstar Amp plasmid vector. The resultant his-tagged fusion chimeric glucanase was expressed in Escherichia coli BL21 (DE3) and partially purified. The effects of chimeric glucanase on the formation and decomposition of biofilm formed on a glass surface by Streptococcus sobrinus 6715 glucosyltransferases were then examined. This biofilm was fractionated into firmly adherent, loosely adherent, and non-adherent WIG fractions. Amounts of WIG in each fraction were determined by a phenol-sulfuric acid method, and reducing sugars were quantified by the Somogyi-Nelson method. Chimeric glucanase reduced the formation of the total amount of WIG in a dose-dependent manner, and significant reductions of WIG in the adherent fraction were observed. Moreover, the chimeric glucanase was able to decompose biofilm, being 4.1 times more effective at glucan inhibition of biofilm formation than a mixture of dextranase and mutanase. These results suggest that the chimeric glucanase is useful for prevention of dental biofilm formation. PMID:25411090

  7. Mutanase induction in Trichoderma harzianum by cell wall of Laetiporus sulphureus and its application for mutan removal from oral biofilms.

    PubMed

    Wiater, Adrian; Szczodrak, Janusz; Pleszczyńska, Małgorzata

    2008-07-01

    The cell wall material from fruiting bodies of Laetiporus sulphureus has been suggested as a new alternative to mutan for the mutanase induction in Trichoderma harzianum. Structural analyses revealed that the alkali-soluble wall fraction from this polypore fungus contained 56.3% of (1-->3)-linked alpha-glucans. When the strain T. harzianum F-340 was grown on a cell wall preparation from L. sulphureus, the maximal enzyme productivity obtained after 3 days of cultivation was 0.71 U/ml. This yield was about 1.8-fold higher than that achieved on mutan, known so far as the best, but expensive and inaccessible, inducer of mutanase production. Cell-wall-induced mutanase showed a high hydrolytic potential in reaction with a dextranase-pretreated mutan, where maximal degrees of saccharification and solubilization of this biopolymer (80% and 100%, respectively) were reached in 3 h at 45 degrees C. The mutanase preparation was also effective in degradation of streptococcal mutan and its removal from oral biofilms, especially in a mixture with dextranase. PMID:18667864

  8. Biochemical and molecular characterization of a novel type of Mutanase from Paenibacillus sp. strain RM1: identification of its mutan-binding domain, essential for degradation of Streptococcus mutans biofilms.

    PubMed

    Shimotsuura, Isao; Kigawa, Hiromitsu; Ohdera, Motoyasu; Kuramitsu, Howard K; Nakashima, Syozi

    2008-05-01

    A novel type of mutanase (termed mutanase RM1) was isolated from Paenibacillus sp. strain RM1. The purified enzyme specifically hydrolyzed alpha-1,3-glucan (mutan) and effectively degraded biofilms formed by Streptococcus mutans, a major etiologic agent in the progression of dental caries, even following brief incubation. The nucleotide sequence of the gene for this protein contains a 3,873-bp open reading frame encoding 1,291 amino acids with a calculated molecular mass of 135 kDa. The protein contains two major domains, the N-terminal domain (277 residues) and the C-terminal domain (937 residues), separated by a characteristic sequence composed of proline and threonine repeats. The characterization of the recombinant proteins for each domain which were expressed in Escherichia coli demonstrated that the N-terminal domain had strong mutan-binding activity but no mutanase activity whereas the C-terminal domain was responsible for mutanase activity but had mutan-binding activity significantly lower than that of the intact protein. Importantly, the biofilm-degrading activity observed with the intact protein was not exhibited by either domain alone or in combination with the other. Therefore, these results indicate that the structural integrity of mutanase RM1 containing the N-terminal mutan-binding domain is required for the biofilm-degrading activity. PMID:18326674

  9. Aspartate inhibits Staphylococcus aureus biofilm formation.

    PubMed

    Yang, Hang; Wang, Mengyue; Yu, Junping; Wei, Hongping

    2015-04-01

    Biofilm formation renders Staphylococcus aureus highly resistant to conventional antibiotics and host defenses. Four D-amino acids (D-Leu, D-Met, D-Trp and D-Tyr) have been reported to be able to inhibit biofilm formation and disassemble established S. aureus biofilms. We report here for the first time that both D- and L-isoforms of aspartate (Asp) inhibited S. aureus biofilm formation on tissue culture plates. Similar biofilm inhibition effects were also observed against other staphylococcal strains, including S. saprophyticus, S. equorum, S. chromogenes and S. haemolyticus. It was found that Asp at high concentrations (>10 mM) inhibited the growth of planktonic N315 cells, but at subinhibitory concentrations decreased the cellular metabolic activity without influencing cell growth. The decreased cellular metabolic activity might be the reason for the production of less protein and DNA in the matrix of the biofilms formed in the presence of Asp. However, varied inhibition efficacies of Asp were observed for biofilms formed by clinical staphylococcal isolates. There might be mechanisms other than decreasing the metabolic activity, e.g. the biofilm phenotypes, affecting biofilm formation in the presence of Asp. PMID:25687923

  10. Anti-biofilm and anti-adherence activities of sub fraction 18 of Melastoma malabathricum towards Streptococcus mutans

    NASA Astrophysics Data System (ADS)

    Rohazila M., H.; Nazlina, I.; Yaacob W., A.

    2014-09-01

    A study was carried out to isolate and identify the active compounds from Melastoma malabathricum stem bark that exhibit anti-biofilm and anti-adherence activities against Streptococcus mutans. Purification of the active compounds from the stem bark extract was performed via silica gel chromatography to produce 12 fractions. Further fractionation of fraction 9 by high performance liquid chromatography (HPLC) produced 21 sub fractions. All the sub fractions were subjected to thin layer chromatography (TLC) bioautography as preliminary screening to determine anti bacterial activity. TLC-bioautography showed that sub fraction 18 (SF18) demonstrated large inhibited zone against S. mutans. Gas chromatography mass spectrometry (GCMS) was used to identify the active compounds in SF18. Fraction SF18 revealed 27 compounds such as hexanoic acid, 8-methyl-1-undecene, propanenitrile, and 1-decene. Anti-biofilm and anti-adherence activities were determined using crystal violet and glass surface assays respectively. The concentrations that produced 50% reduction in anti-biofilm and anti-adherence activities were 1.88 mg/ml and 3.75 mg/ml respectively.

  11. Limonene inhibits streptococcal biofilm formation by targeting surface-associated virulence factors.

    PubMed

    Subramenium, Ganapathy Ashwinkumar; Vijayakumar, Karuppiah; Pandian, Shunmugiah Karutha

    2015-08-01

    The present study explores the efficacy of limonene, a cyclic terpene found in the rind of citrus fruits, for antibiofilm potential against species of the genus Streptococcus, which have been deeply studied worldwide owing to their multiple pathogenic efficacy. Limonene showed a concentration-dependent reduction in the biofilm formation of Streptococcus pyogenes (SF370), with minimal biofilm inhibitory concentration (MBIC) of 400 μg ml - 1. Limonene was found to possess about 75-95 % antibiofilm activity against all the pathogens tested, viz. Streptococcus pyogenes (SF370 and 5 clinical isolates), Streptococcus mutans (UA159) and Streptococcus mitis (ATCC 6249) at 400 μg ml - 1 concentration. Microscopic analysis of biofilm architecture revealed a quantitative breach in biofilm formation. Results of a surface-coating assay suggested that the possible mode of action of limonene could be by inhibiting bacterial adhesion to surfaces, thereby preventing the biofilm formation cascade. Susceptibility of limonene-treated Streptococcus pyogenes to healthy human blood goes in unison with gene expression studies in which the mga gene was found to be downregulated. Anti-cariogenic efficacy of limonene against Streptococcus mutans was confirmed, with inhibition of acid production and downregulation of the vicR gene. Downregulation of the covR, mga and vicR genes, which play a critical role in regulating surface-associated proteins in Streptococcus pyogenes and Streptococcus mutans, respectively, is yet further evidence to show that limonene targets surface-associated proteins. The results of physiological assays and gene expression studies clearly show that the surface-associated antagonistic mechanism of limonene also reduces surface-mediated virulence factors. PMID:26294065

  12. Biofilm Formation by Neisseria gonorrhoeae

    PubMed Central

    Greiner, L. L.; Edwards, J. L.; Shao, J.; Rabinak, C.; Entz, D.; Apicella, M. A.

    2005-01-01

    Studies were performed in continuous-flow chambers to determine whether Neisseria gonorrhoeae could form a biofilm. Under these growth conditions, N. gonorrhoeae formed a biofilm with or without the addition of 10 μM sodium nitrite to the perfusion medium. Microscopic analysis of a 4-day growth of N. gonorrhoeae strain 1291 revealed evidence of a biofilm with organisms embedded in matrix, which was interlaced with water channels. N. gonorrhoeae strains MS11 and FA1090 were found to also form biofilms under the same growth conditions. Cryofield emission scanning electron microscopy and transmission electron microscopy confirmed that organisms were embedded in a continuous matrix with membranous structures spanning the biofilm. These studies also demonstrated that N. gonorrhoeae has the capability to form a matrix in the presence and absence of CMP-N-acetylneuraminic acid (CMP-Neu5Ac). Studies with monoclonal antibody 6B4 and the lectins soy bean agglutinin and Maackia amurensis indicated that the predominate terminal sugars in the biofilm matrix formed a lactosamine when the biofilm was grown in the absence of CMP-Neu5Ac and sialyllactosamine in the presence of CMP-Neu5Ac. N. gonorrhoeae strain 1291 formed a biofilm on primary urethral epithelial cells and cervical cells in culture without loss of viability of the epithelial cell layer. Our studies demonstrated that N. gonorrhoeae can form biofilms in continuous-flow chambers and on living cells. Studies of these biofilms may have implications for understanding asymptomatic gonococcal infection. PMID:15784536

  13. Regulation of flagellar motility during biofilm formation

    PubMed Central

    Guttenplan, Sarah B.; Kearns, Daniel B.

    2013-01-01

    Many bacteria swim in liquid or swarm over solid surfaces by synthesizing rotary flagella. The same bacteria that are motile also commonly form non-motile multicellular aggregates held together by an extracellular matrix called biofilms. Biofilms are an important part of the lifestyle of pathogenic bacteria and it is assumed that there is a motility-to-biofilm transition wherein the inhibition of motility promotes biofilm formation. The transition is largely inferred from regulatory mutants that reveal the opposite regulation of the two phenotypes. Here we review the regulation of motility during biofilm formation in Bacillus, Pseudomonas, Vibrio, and Escherichia, and we conclude that the motility-to-biofilm transition, if necessary, likely involves two steps. In the short term, flagella are functionally regulated to either inhibit rotation or modulate the basal flagellar reversal frequency. Over the long term, flagellar gene transcription is inhibited and in the absence of de novo synthesis, flagella are likely diluted to extinction through growth. Both short term and long term control is likely important to the motility-to-biofilm transition to stabilize aggregates and optimize resource investment. We emphasize the newly discovered classes of flagellar functional regulators and speculate that others await discovery in the context of biofilm formation. PMID:23480406

  14. Spaceflight promotes biofilm formation by Pseudomonas aeruginosa.

    PubMed

    Kim, Wooseong; Tengra, Farah K; Young, Zachary; Shong, Jasmine; Marchand, Nicholas; Chan, Hon Kit; Pangule, Ravindra C; Parra, Macarena; Dordick, Jonathan S; Plawsky, Joel L; Collins, Cynthia H

    2013-01-01

    Understanding the effects of spaceflight on microbial communities is crucial for the success of long-term, manned space missions. Surface-associated bacterial communities, known as biofilms, were abundant on the Mir space station and continue to be a challenge on the International Space Station. The health and safety hazards linked to the development of biofilms are of particular concern due to the suppression of immune function observed during spaceflight. While planktonic cultures of microbes have indicated that spaceflight can lead to increases in growth and virulence, the effects of spaceflight on biofilm development and physiology remain unclear. To address this issue, Pseudomonas aeruginosa was cultured during two Space Shuttle Atlantis missions: STS-132 and STS-135, and the biofilms formed during spaceflight were characterized. Spaceflight was observed to increase the number of viable cells, biofilm biomass, and thickness relative to normal gravity controls. Moreover, the biofilms formed during spaceflight exhibited a column-and-canopy structure that has not been observed on Earth. The increase in the amount of biofilms and the formation of the novel architecture during spaceflight were observed to be independent of carbon source and phosphate concentrations in the media. However, flagella-driven motility was shown to be essential for the formation of this biofilm architecture during spaceflight. These findings represent the first evidence that spaceflight affects community-level behaviors of bacteria and highlight the importance of understanding how both harmful and beneficial human-microbe interactions may be altered during spaceflight. PMID:23658630

  15. Biofilm formation by Helicobacter pylori.

    PubMed

    Stark, R M; Gerwig, G J; Pitman, R S; Potts, L F; Williams, N A; Greenman, J; Weinzweig, I P; Hirst, T R; Millar, M R

    1999-02-01

    Helicobacter pylori NCTC 11637 produces a water-insoluble biofilm when grown under defined conditions with a high carbon:nitrogen ratio in continuous culture and in 10% strength Brucella broth supplemented with 3 g l-1 glucose. Biofilm accumulated at the air/liquid interface of the culture. Light microscopy of frozen sections of the biofilm material showed few bacterial cells in the mass of the biofilm. The material stained with periodic acid Schiff's reagent. Fucose, glucose, galactose, and glycero-manno-heptose, N-acetylglucosamine and N-acetylmuramic acid were identified in partially purified and in crude material, using gas chromatography and mass spectrometry. The sugar composition strongly indicates the presence of a polysaccharide as a component of the biofilm material. Antibodies (IgG) to partially purified material were found in both sero-positive and sero-negative individuals. Treatment of the biofilm material with periodic acid reduced or abolished immunoreactivity. Treatment with 5 mol l-1 urea at 100 degrees C and with phenol did not remove antigenic recognition by patient sera. The production of a water-insoluble biofilm by H. pylori may be important in enhancing resistance to host defence factors and antibiotics, and in microenvironmental pH homeostasis facilitating the growth and survival of H. pylori in vivo. PMID:10063642

  16. IMPACTS OF BIOFILM FORMATION ON CELLULOSE FERMENTATION

    SciTech Connect

    Leschine, Susan

    2009-10-31

    This project addressed four major areas of investigation: i) characterization of formation of Cellulomonas uda biofilms on cellulose; ii) characterization of Clostridium phytofermentans biofilm development; colonization of cellulose and its regulation; iii) characterization of Thermobifida fusca biofilm development; colonization of cellulose and its regulation; and iii) description of the architecture of mature C. uda, C. phytofermentans, and T. fusca biofilms. This research is aimed at advancing understanding of biofilm formation and other complex processes involved in the degradation of the abundant cellulosic biomass, and the biology of the microbes involved. Information obtained from these studies is invaluable in the development of practical applications, such as the single-step bioconversion of cellulose-containing residues to fuels and other bioproducts. Our results have clearly shown that cellulose-decomposing microbes rapidly colonize cellulose and form complex structures typical of biofilms. Furthermore, our observations suggest that, as cells multiply on nutritive surfaces during biofilms formation, dramatic cell morphological changes occur. We speculated that morphological changes, which involve a transition from rod-shaped cells to more rounded forms, might be more apparent in a filamentous microbe. In order to test this hypothesis, we included in our research a study of biofilm formation by T. fusca, a thermophilic cellulolytic actinomycete commonly found in compost. The cellulase system of T. fusca has been extensively detailed through the work of David Wilson and colleagues at Cornell, and also, genome sequence of a T. fusca strain has been determine by the DOE Joint Genome Institute. Thus, T. fusca is an excellent subject for studies of biofilm development and its potential impacts on cellulose degradation. We also completed a study of the chitinase system of C. uda. This work provided essential background information for understanding how C. uda

  17. Inhibitory effect of a bioactivity-guided fraction from Rheum undulatum on the acid production of Streptococcus mutans biofilms at sub-MIC levels.

    PubMed

    Kim, Jeong-Eun; Kim, Hye-Jin; Pandit, Santosh; Chang, Kee-Wan; Jeon, Jae-Gyu

    2011-04-01

    Rheum undulatum root has been used traditionally in Korea for the treatment of dental diseases. The purpose of this study was to separate a fraction from R. undulatum showing anti-acid production activity against Streptococcus mutans biofilms and identify the main components in that fraction. Methanol extract of R. undulatum root and its fractions were prepared. To select a fraction exhibiting anti-acid production activity, suspension glycolytic pH-drop assay was performed. Among the fractions tested, dichloromethane fraction exhibited the strongest activity in a dose-dependent manner. To examine the effect of the selected fraction on the anti-acid production of S. mutans biofilms, 74 h old S. mutans biofilms were used. The selected fraction reduced the initial rate of acid production of S. mutans biofilms at sub-minimum inhibitory concentration (MIC) levels. HPLC qualitative analysis of the selected fraction indicated that the presence of anthraquinone derivatives, such as aloe-emodin, emodin, chrysophanol and physcion, as main components. PMID:21059383

  18. Biological and Immunogenicity Property of IgY Anti S. mutans ComD

    PubMed Central

    Bachtiar, E.W.; Bachtiar, B.M.; Soejoedono, R.D.; Wibawan, I.W.; Afdhal, A.

    2016-01-01

    Objective: This study aims to elucidate the effect of IgY anti ComD on the biological properties of Streptococcus mutans. (S. mutans) ComD is an interspecies quorum-sensing signaling receptor that plays an important role in biofilm formation by S. mutans. Materials and Methodology: Egg yolk IgY was produced by the immunization of chickens with a DNA vaccine containing the ComD DNA coding region. We evaluated the effect of the antibody on biofilm formation by S. mutans isolated from subjects with or without dental caries. We also assessed the immunoreactivity of the antibody against all isolates, and analyzed the protein profile of S. mutans by SDS-PAGE. Results: The ComD antibody was successfully induced in the hens’ eggs. It inhibited biofilm formation by all S. mutans isolates. In addition, the expression of some protein bands was affected after exposure to the antibody. Conclusion: IgY anti-S. mutans ComD reduces biofilm formation by this bacterium and alters the protein profile of S. mutans. PMID:27386013

  19. Cadmium Modulates Biofilm Formation by Staphylococcus epidermidis

    PubMed Central

    Wu, Xueqing; Santos, Regiane R.; Fink-Gremmels, Johanna

    2015-01-01

    The aim of the study was to evaluate the effect of cadmium exposure on Staphylococcus epidermidis (ATCC 35984) biofilm formation. Bacteria were cultured in the absence or presence of different concentrations (0–50 µM) of cadmium. Biofilm formation and bacterial viability were assessed. Quantitative Real Time-PCR (qRT-PCR) was used to determine the mRNA expression of molecular markers of S. epidermidis biofilm formation and dispersion. S. epidermidis biofilm formation was stimulated (p < 0.001) by 1.56 and 3.13 µM cadmium. Confocal laser scanning microscopy (CLSM) analysis confirmed an increase in biofilm thickness (23 and 22 µm, versus 17.8 µm in the controls) after exposure to 1.56 or 3.13 µM cadmium, respectively. qRT-PCR was performed showing the up-regulation of atlE, embp, aap, icaA and icaB after exposure to 3.13 µM cadmium. Taken together, these findings show that cadmium at low, sub-toxic concentrations acts as inducer of S. epidermidis biofilm formation. PMID:25749322

  20. Fractal analysis of Xylella fastidiosa biofilm formation

    NASA Astrophysics Data System (ADS)

    Moreau, A. L. D.; Lorite, G. S.; Rodrigues, C. M.; Souza, A. A.; Cotta, M. A.

    2009-07-01

    We have investigated the growth process of Xylella fastidiosa biofilms inoculated on a glass. The size and the distance between biofilms were analyzed by optical images; a fractal analysis was carried out using scaling concepts and atomic force microscopy images. We observed that different biofilms show similar fractal characteristics, although morphological variations can be identified for different biofilm stages. Two types of structural patterns are suggested from the observed fractal dimensions Df. In the initial and final stages of biofilm formation, Df is 2.73±0.06 and 2.68±0.06, respectively, while in the maturation stage, Df=2.57±0.08. These values suggest that the biofilm growth can be understood as an Eden model in the former case, while diffusion-limited aggregation (DLA) seems to dominate the maturation stage. Changes in the correlation length parallel to the surface were also observed; these results were correlated with the biofilm matrix formation, which can hinder nutrient diffusion and thus create conditions to drive DLA growth.

  1. Relating the Surface Properties of Superparamagnetic Iron Oxide Nanoparticles (SPIONs) to Their Bactericidal Effect towards a Biofilm of Streptococcus mutans.

    PubMed

    Javanbakht, Taraneh; Laurent, Sophie; Stanicki, Dimitri; Wilkinson, Kevin J

    2016-01-01

    This study was designed to determine the effects of superparamagnetic iron oxide nanoparticles (SPIONs) on the biological activity of a bacterial biofilm (Streptococcus mutans). Our hypothesis was that the diffusion of the SPIONs into biofilms would depend on their surface properties, which in turn would largely be determined by their surface functionality. Bare, positively charged and negatively charged SPIONs, with hydrodynamic diameters of 14.6 ± 1.4 nm, 20.4 ± 1.3 nm and 21.2 ± 1.6 nm were evaluated. Time-of-flight secondary ion mass spectrometry (TOF-SIMS) and electrophoretic mobility (EPM) measurements were used to confirm that carboxylic functional groups predominated on the negatively charged SPIONS, whereas amine functional groups predominated on the positively charged particles. Transmission electron microscopy (TEM) showed the morphology and sizes of SPIONs. Scanning electron microscopy (SEM) and EPM measurements indicated that the surfaces of the SPIONs were covered with biomolecules following their incubation with the biofilm. Bare SPIONs killed bacteria less than the positively charged SPIONs at the highest exposure concentrations, but the toxicity of the bare and positively charged SPIONs was the same for lower SPION concentrations. The positively charged SPIONs were more effective in killing bacteria than the negatively charged ones. Nonetheless, electrophoretic mobilities of all three SPIONs (negative, bare and positively charged) became more negative following incubation with the (negatively-charged) biofilm. Therefore, while the surface charge of SPIONS was important in determining their biological activity, the initial surface charge was not constant in the presence of the biofilm, leading eventually to SPIONS with fairly similar surface charges in situ. The study nonetheless suggests that the surface characteristics of the SPIONS is an important parameter controlling the efficiency of antimicrobial agents. The analysis of the CFU/mL values

  2. Relating the Surface Properties of Superparamagnetic Iron Oxide Nanoparticles (SPIONs) to Their Bactericidal Effect towards a Biofilm of Streptococcus mutans

    PubMed Central

    Javanbakht, Taraneh; Laurent, Sophie; Stanicki, Dimitri; Wilkinson, Kevin J.

    2016-01-01

    This study was designed to determine the effects of superparamagnetic iron oxide nanoparticles (SPIONs) on the biological activity of a bacterial biofilm (Streptococcus mutans). Our hypothesis was that the diffusion of the SPIONs into biofilms would depend on their surface properties, which in turn would largely be determined by their surface functionality. Bare, positively charged and negatively charged SPIONs, with hydrodynamic diameters of 14.6 ± 1.4 nm, 20.4 ± 1.3 nm and 21.2 ± 1.6 nm were evaluated. Time-of-flight secondary ion mass spectrometry (TOF-SIMS) and electrophoretic mobility (EPM) measurements were used to confirm that carboxylic functional groups predominated on the negatively charged SPIONS, whereas amine functional groups predominated on the positively charged particles. Transmission electron microscopy (TEM) showed the morphology and sizes of SPIONs. Scanning electron microscopy (SEM) and EPM measurements indicated that the surfaces of the SPIONs were covered with biomolecules following their incubation with the biofilm. Bare SPIONs killed bacteria less than the positively charged SPIONs at the highest exposure concentrations, but the toxicity of the bare and positively charged SPIONs was the same for lower SPION concentrations. The positively charged SPIONs were more effective in killing bacteria than the negatively charged ones. Nonetheless, electrophoretic mobilities of all three SPIONs (negative, bare and positively charged) became more negative following incubation with the (negatively-charged) biofilm. Therefore, while the surface charge of SPIONS was important in determining their biological activity, the initial surface charge was not constant in the presence of the biofilm, leading eventually to SPIONS with fairly similar surface charges in situ. The study nonetheless suggests that the surface characteristics of the SPIONS is an important parameter controlling the efficiency of antimicrobial agents. The analysis of the CFU/mL values

  3. New small-molecule inhibitors of dihydrofolate reductase inhibit Streptococcus mutans.

    PubMed

    Zhang, Qiong; Nguyen, Thao; McMichael, Megan; Velu, Sadanandan E; Zou, Jing; Zhou, Xuedong; Wu, Hui

    2015-08-01

    Streptococcus mutans is a major aetiological agent of dental caries. Formation of biofilms is a key virulence factor of S. mutans. Drugs that inhibit S. mutans biofilms may have therapeutic potential. Dihydrofolate reductase (DHFR) plays a critical role in regulating the metabolism of folate. DHFR inhibitors are thus potent drugs and have been explored as anticancer and antimicrobial agents. In this study, a library of analogues based on a DHFR inhibitor, trimetrexate (TMQ), an FDA-approved drug, was screened and three new analogues that selectively inhibited S. mutans were identified. The most potent inhibitor had a 50% inhibitory concentration (IC50) of 454.0±10.2nM for the biofilm and 8.7±1.9nM for DHFR of S. mutans. In contrast, the IC50 of this compound for human DHFR was ca. 1000nM, a >100-fold decrease in its potency, demonstrating the high selectivity of the analogue. An analogue that exhibited the least potency for the S. mutans biofilm also had the lowest activity towards inhibiting S. mutans DHFR, further indicating that inhibition of biofilms is related to reduced DHFR activity. These data, along with docking of the most potent analogue to the modelled DHFR structure, suggested that the TMQ analogues indeed selectively inhibited S. mutans through targeting DHFR. These potent and selective small molecules are thus promising lead compounds to develop new effective therapeutics to prevent and treat dental caries. PMID:26022931

  4. Biofilm formation in attached microalgal reactors.

    PubMed

    Shen, Y; Zhu, W; Chen, C; Nie, Y; Lin, X

    2016-08-01

    The objective of this study was to investigate the fundamental question of biofilm formation. First, a drum biofilm reactor was introduced. The drums were coated with three porous substrates (cotton rope, canvas, and spandex), respectively. The relationships among the substrate, extracellular polymeric substances (EPS), and adhesion ratio were analyzed. Second, a plate biofilm reactor (PBR) was applied by replacing the drum with multiple parallel vertical plates to increase the surface area. The plates were coated with porous substrates on each side, and the nutrients were delivered to the cells by diffusion. The influence of nitrogen source and concentration on compositions of EPS and biofilm formation was analyzed using PBR under sunlight. The results indicated that both substrate and nitrogen were critical on the EPS compositions and biofilm formation. Under the optimal condition (glycine with concentration of 1 g l(-1) and substrate of canvas), the maximum biofilm productivity of 54.46 g m(-2) d(-1) with adhesion ratio of 84.4 % was achieved. PMID:27086137

  5. Influence of methylene blue-mediated photodynamic therapy on the resistance to detachment of streptococcus mutans biofilms from titanium substrata

    NASA Astrophysics Data System (ADS)

    Sharab, Lina Y.

    In dental settings, as well as in other natural systems, plaque-forming microorganisms develop biofilms in which the microbes become protected via their own phenotypic changes and their polymeric exudates from disinfection by washes and antibiotics. Photodynamic Therapy (PDT) is variably effective against these microorganisms, depending on such factors as whether the bacteria are Gram positive or Gram negative, plaque age and thickness, and internal biofilm oxygen concentration. This investigation applied a novel combination of PDT and water-jet impingement techniques to Streptococcus mutans (ATCC strain 27351)-formed biofilms on commercially pure titanium (cpTi) starting with three different phases (ages) of the bacteria, to examine whether the detachment shear stress --as a signature for the work required for removal of the biofilms- would be affected by prior PDT treatment independently from microbial viability. Biofilms were grown with sucrose addition to Brain Heart Infusion media, producing visible thick films and nearly invisible thin films (within the same piece) having the same numbers of culturable microorganisms, the thicker films having greater susceptibility to detachment by water--jet impingement. Colony-forming-unit (CFU) counts routinely correlated well with results from a spectrophotometric Alamar Blue (AB) assay. Use of Methylene Blue (MB) as a photosensitizer (PS) for PDT of biofilms did not interfere with the AB assay, but did mask AB reduction spectral changes when employed with planktonic organisms. It was discovered in this work that PD-treated microbial biofilms, independently from starting or PS-influenced microorganism viability, were significantly (p<0.05) and differentially more easily delaminated and ultimately removed from their substrata biomaterials by the hydrodynamic forces of water-jet impingement. Control biofilms of varying thickness, not receiving PDT treatment, required between 144 and 228 dynes/cm2 of shear stress to

  6. Implications of Biofilm Formation on Urological Devices

    NASA Astrophysics Data System (ADS)

    Cadieux, Peter A.; Wignall, Geoffrey R.; Carriveau, Rupp; Denstedt, John D.

    2008-09-01

    Despite millions of dollars and several decades of research targeted at their prevention and eradication, biofilm-associated infections remain the major cause of urological device failure. Numerous strategies have been aimed at improving device design, biomaterial composition, surface properties and drug delivery, but have been largely circumvented by microbes and their plethora of attachment, host evasion, antimicrobial resistance, and dissemination strategies. This is not entirely surprising since natural biofilm formation has been going on for millions of years and remains a major part of microorganism survival and evolution. Thus, the fact that biofilms develop on and in the biomaterials and tissues of humans is really an extension of this natural tendency and greatly explains why they are so difficult for us to combat. Firstly, biofilm structure and composition inherently provide a protective environment for microorganisms, shielding them from the shear stress of urine flow, immune cell attack and some antimicrobials. Secondly, many biofilm organisms enter a metabolically dormant state that renders them tolerant to those antibiotics and host factors able to penetrate the biofilm matrix. Lastly, the majority of organisms that cause biofilm-associated urinary tract infections originate from our own oral cavity, skin, gastrointestinal and urogenital tracts and therefore have already adapted to many of our host defenses. Ultimately, while biofilms continue to hold an advantage with respect to recurrent infections and biomaterial usage within the urinary tract, significant progress has been made in understanding these dynamic microbial communities and novel approaches offer promise for their prevention and eradication. These include novel device designs, antimicrobials, anti-adhesive coatings, biodegradable polymers and biofilm-disrupting compounds and therapies.

  7. Biofilm formation of Francisella noatunensis subsp. orientalis

    USGS Publications Warehouse

    Soto, Esteban; Halliday-Wimmonds, Iona; Kearney, Michael T; Hansen, John D.

    2015-01-01

    Francisella noatunensis subsp. orientalis (Fno) is an emergent fish pathogen in both marine and fresh water environments. The bacterium is suspected to persist in the environment even without the presence of a suitable fish host. In the present study, the influence of different abiotic factors such as salinity and temperature were used to study the biofilm formation of different isolates of Fno including intracellular growth loci C (iglC)and pathogenicity determinant protein A (pdpA) knockout strains. Finally, we compared the susceptibility of planktonic and biofilm to three disinfectants used in the aquaculture and ornamental fish industry, namely Virkon®, bleach and hydrogen peroxide. The data indicates that Fno is capable of producing biofilms within 24 h where both salinity as well as temperature plays a role in the growth and biofilm formation of Fno. Mutations in theiglC or pdpA, both known virulence factors, do not appear to affect the capacity of Fno to produce biofilms, and the minimum inhibitory concentration, and minimum biocidal concentration for the three disinfectants were lower than the minimum biofilm eradication concentration values. This information needs to be taken into account if trying to eradicate the pathogen from aquaculture facilities or aquariums.

  8. Biofilm formation of Francisella noatunensis subsp. orientalis.

    PubMed

    Soto, Esteban; Halliday-Simmonds, Iona; Francis, Stewart; Kearney, Michael T; Hansen, John D

    2015-12-31

    Francisella noatunensis subsp. orientalis (Fno) is an emergent fish pathogen in both marine and fresh water environments. The bacterium is suspected to persist in the environment even without the presence of a suitable fish host. In the present study, the influence of different abiotic factors such as salinity and temperature were used to study the biofilm formation of different isolates of Fno including intracellular growth loci C (iglC) and pathogenicity determinant protein A (pdpA) knockout strains. Finally, we compared the susceptibility of planktonic and biofilm to three disinfectants used in the aquaculture and ornamental fish industry, namely Virkon(®), bleach and hydrogen peroxide. The data indicates that Fno is capable of producing biofilms within 24 h where both salinity as well as temperature plays a role in the growth and biofilm formation of Fno. Mutations in the iglC or pdpA, both known virulence factors, do not appear to affect the capacity of Fno to produce biofilms, and the minimum inhibitory concentration, and minimum biocidal concentration for the three disinfectants were lower than the minimum biofilm eradication concentration values. This information needs to be taken into account if trying to eradicate the pathogen from aquaculture facilities or aquariums. PMID:26507830

  9. Actinomyces naeslundii in initial dental biofilm formation.

    PubMed

    Dige, I; Raarup, M K; Nyengaard, J R; Kilian, M; Nyvad, B

    2009-07-01

    The combined use of confocal laser scanning microscopy (CLSM) and fluorescent in situ hybridization (FISH) offers new opportunities for analysis of the spatial relationships and temporal changes of specific members of the microbiota of intact dental biofilms. The purpose of this study was to analyse the patterns of colonization and population dynamics of Actinomyces naeslundii compared to streptococci and other bacteria during the initial 48 h of biofilm formation in the oral cavity. Biofilms developed on standardized glass slabs mounted in intra-oral appliances worn by ten individuals for 6, 12, 24 and 48 h. The biofilms were subsequently labelled with probes against A. naeslundii (ACT476), streptococci (STR405) or all bacteria (EUB338), and were analysed by CLSM. Labelled bacteria were quantified by stereological tools. The results showed a notable increase in the number of streptococci and A. naeslundii over time, with a tendency towards a slower growth rate for A. naeslundii compared with streptococci. A. naeslundii was located mainly in the inner part of the multilayered biofilm, indicating that it is one of the species that attaches directly to the acquired pellicle. The participation of A. naeslundii in the initial stages of dental biofilm formation may have important ecological consequences. PMID:19406899

  10. Candida biofilm formation on voice prostheses.

    PubMed

    Talpaert, Moira J; Balfour, Alistair; Stevens, Sarah; Baker, Mark; Muhlschlegel, Fritz A; Gourlay, Campbell W

    2015-03-01

    Laryngopharyngeal malignancy is treated with radiotherapy and/or surgery. When total laryngectomy is required, major laryngeal functions (phonation, airway control, swallowing and coughing) are affected. The insertion of a silicone rubber voice prosthesis in a surgically created tracheoesophageal puncture is the most effective method for voice rehabilitation. Silicone, as is the case with other synthetic materials such as polymethylmethacrylate, polyurethane, polyvinyl chloride, polypropylene and polystyrene, has the propensity to become rapidly colonized by micro-organisms (mainly Candida albicans) forming a biofilm, which leads to the failure of the devices. Silicone is used within voice prosthetic devices because of its flexible properties, which are essential for valve function. Valve failure, as well as compromising speech, may result in aspiration pneumonia, and repeated valve replacement may lead to either tract stenosis or insufficiency. Prevention and control of biofilm formation are therefore crucial for the lifespan of the prosthesis and promotion of tracheoesophageal tissue and lung health. To date, the mechanisms of biofilm formation on voice prostheses are not fully understood. Further studies are therefore required to identify factors influencing Candida biofilm formation. This review describes the factors known to influence biofilm formation on voice prostheses and current strategies employed to prolong their life by interfering with microbial colonization. PMID:25106862

  11. Effect of antibacterial dental adhesive on multispecies biofilms formation.

    PubMed

    Zhang, K; Wang, S; Zhou, X; Xu, H H K; Weir, M D; Ge, Y; Li, M; Wang, S; Li, Y; Xu, X; Zheng, L; Cheng, L

    2015-04-01

    Antibacterial adhesives have favorable prospects to inhibit biofilms and secondary caries. The objectives of this study were to investigate the antibacterial effect of dental adhesives containing dimethylaminododecyl methacrylate (DMADDM) on different bacteria in controlled multispecies biofilms and its regulating effect on development of biofilm for the first time. Antibacterial material was synthesized, and Streptococcus mutans, Streptococcus gordonii, and Streptococcus sanguinis were chosen to form multispecies biofilms. Lactic acid assay and pH measurement were conducted to study the acid production of controlled multispecies biofilms. Anthrone method and exopolysaccharide (EPS):bacteria volume ratio measured by confocal laser scanning microscopy were performed to determine the EPS production of biofilms. The colony-forming unit counts, scanning electron microscope imaging, and dead:live volume ratio decided by confocal laser scanning microscopy were used to study the biomass change of controlled multispecies biofilms. The TaqMan real-time polymerase chain reaction and fluorescent in situ hybridization imaging were used to study the proportion change in multispecies biofilms of different groups. The results showed that DMADDM-containing adhesive groups slowed the pH drop and decreased the lactic acid production noticeably, especially lactic acid production in the 5% DMADDM group, which decreased 10- to 30-fold compared with control group (P < 0.05). EPS was reduced significantly in 5% DMADDM group (P < 0.05). The DMADDM groups reduced the colony-forming unit counts significantly (P < 0.05) and had higher dead:live volume ratio in biofilms compared with control group (P < 0.05). The proportion of S. mutans decreased steadily in DMADDM-containing groups and continually increased in control group, and the biofilm had a more healthy development tendency after the regulation of DMADDM. In conclusion, the adhesives containing DMADDM had remarkable antimicrobial

  12. Effect of Antibacterial Dental Adhesive on Multispecies Biofilms Formation

    PubMed Central

    Zhang, K.; Wang, S.; Zhou, X.; Xu, H.H.K.; Weir, M.D.; Ge, Y.; Li, M.; Wang, S.; Li, Y.; Xu, X.; Zheng, L.

    2015-01-01

    Antibacterial adhesives have favorable prospects to inhibit biofilms and secondary caries. The objectives of this study were to investigate the antibacterial effect of dental adhesives containing dimethylaminododecyl methacrylate (DMADDM) on different bacteria in controlled multispecies biofilms and its regulating effect on development of biofilm for the first time. Antibacterial material was synthesized, and Streptococcus mutans, Streptococcus gordonii, and Streptococcus sanguinis were chosen to form multispecies biofilms. Lactic acid assay and pH measurement were conducted to study the acid production of controlled multispecies biofilms. Anthrone method and exopolysaccharide (EPS):bacteria volume ratio measured by confocal laser scanning microscopy were performed to determine the EPS production of biofilms. The colony-forming unit counts, scanning electron microscope imaging, and dead:live volume ratio decided by confocal laser scanning microscopy were used to study the biomass change of controlled multispecies biofilms. The TaqMan real-time polymerase chain reaction and fluorescent in situ hybridization imaging were used to study the proportion change in multispecies biofilms of different groups. The results showed that DMADDM-containing adhesive groups slowed the pH drop and decreased the lactic acid production noticeably, especially lactic acid production in the 5% DMADDM group, which decreased 10- to 30-fold compared with control group (P < 0.05). EPS was reduced significantly in 5% DMADDM group (P < 0.05). The DMADDM groups reduced the colony-forming unit counts significantly (P < 0.05) and had higher dead:live volume ratio in biofilms compared with control group (P < 0.05). The proportion of S. mutans decreased steadily in DMADDM-containing groups and continually increased in control group, and the biofilm had a more healthy development tendency after the regulation of DMADDM. In conclusion, the adhesives containing DMADDM had remarkable antimicrobial

  13. Effect of Antimicrobial Denture Base Resin on Multi-Species Biofilm Formation.

    PubMed

    Zhang, Keke; Ren, Biao; Zhou, Xuedong; Xu, Hockin H K; Chen, Yu; Han, Qi; Li, Bolei; Weir, Michael D; Li, Mingyun; Feng, Mingye; Cheng, Lei

    2016-01-01

    Our aims of the research were to study the antimicrobial effect of dimethylaminododecyl methacrylate (DMADDM) modified denture base resin on multi-species biofilms and the biocompatibility of this modified dental material. Candida albicans (C. albicans), Streptococcus mutans (S. mutans), Streptococcus sanguinis (S. sanguinis), as well as Actinomyces naeslundii (A. naeslundii) were used for biofilm formation on denture base resin. Colony forming unit (CFU) counts, microbial viability staining, and 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) array were used to evaluate the antimicrobial effect of DMADDM. C. albicans staining and Real-time PCR were used to analyze the morphology and expression of virulence genes of C. albicans in biofilm. Lactate dehydrogenase (LDH) array and Real-time PCR were conducted to examine the results after biofilm co-cultured with epithelial cell. Hematoxylin and eosin (HE) staining followed by histological evaluation were used to study the biocompatibility of this modified material. We found that DMADDM containing groups reduced both biomass and metabolic activity of the biofilm significantly. DMADDM can also inhibit the virulence of C. albicans by means of inhibiting the hyphal development and downregulation of two virulence related genes. DMADDM significantly reduced the cell damage caused by multi-species biofilm according to the LDH activity and reduced the expression of IL-18 gene of the cells simultaneously. The in vivo histological evaluation proved that the addition of DMADDM less than 6.6% in denture material did not increase the inflammatory response (p > 0.05). Therefore, we proposed that the novel denture base resin containing DMADDM may be considered as a new promising therapeutic system against problems caused by microbes on denture base such as denture stomatitis. PMID:27367683

  14. Effect of Antimicrobial Denture Base Resin on Multi-Species Biofilm Formation

    PubMed Central

    Zhang, Keke; Ren, Biao; Zhou, Xuedong; Xu, Hockin H. K.; Chen, Yu; Han, Qi; Li, Bolei; Weir, Michael D.; Li, Mingyun; Feng, Mingye; Cheng, Lei

    2016-01-01

    Our aims of the research were to study the antimicrobial effect of dimethylaminododecyl methacrylate (DMADDM) modified denture base resin on multi-species biofilms and the biocompatibility of this modified dental material. Candida albicans (C. albicans), Streptococcus mutans (S. mutans), Streptococcus sanguinis (S. sanguinis), as well as Actinomyces naeslundii (A. naeslundii) were used for biofilm formation on denture base resin. Colony forming unit (CFU) counts, microbial viability staining, and 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) array were used to evaluate the antimicrobial effect of DMADDM. C. albicans staining and Real-time PCR were used to analyze the morphology and expression of virulence genes of C. albicans in biofilm. Lactate dehydrogenase (LDH) array and Real-time PCR were conducted to examine the results after biofilm co-cultured with epithelial cell. Hematoxylin and eosin (HE) staining followed by histological evaluation were used to study the biocompatibility of this modified material. We found that DMADDM containing groups reduced both biomass and metabolic activity of the biofilm significantly. DMADDM can also inhibit the virulence of C. albicans by means of inhibiting the hyphal development and downregulation of two virulence related genes. DMADDM significantly reduced the cell damage caused by multi-species biofilm according to the LDH activity and reduced the expression of IL-18 gene of the cells simultaneously. The in vivo histological evaluation proved that the addition of DMADDM less than 6.6% in denture material did not increase the inflammatory response (p > 0.05). Therefore, we proposed that the novel denture base resin containing DMADDM may be considered as a new promising therapeutic system against problems caused by microbes on denture base such as denture stomatitis. PMID:27367683

  15. Role of Multicellular Aggregates in Biofilm Formation

    PubMed Central

    Kragh, Kasper N.; Hutchison, Jaime B.; Melaugh, Gavin; Rodesney, Chris; Roberts, Aled E. L.; Irie, Yasuhiko; Jensen, Peter Ø.; Diggle, Stephen P.; Allen, Rosalind J.

    2016-01-01

    ABSTRACT In traditional models of in vitro biofilm development, individual bacterial cells seed a surface, multiply, and mature into multicellular, three-dimensional structures. Much research has been devoted to elucidating the mechanisms governing the initial attachment of single cells to surfaces. However, in natural environments and during infection, bacterial cells tend to clump as multicellular aggregates, and biofilms can also slough off aggregates as a part of the dispersal process. This makes it likely that biofilms are often seeded by aggregates and single cells, yet how these aggregates impact biofilm initiation and development is not known. Here we use a combination of experimental and computational approaches to determine the relative fitness of single cells and preformed aggregates during early development of Pseudomonas aeruginosa biofilms. We find that the relative fitness of aggregates depends markedly on the density of surrounding single cells, i.e., the level of competition for growth resources. When competition between aggregates and single cells is low, an aggregate has a growth disadvantage because the aggregate interior has poor access to growth resources. However, if competition is high, aggregates exhibit higher fitness, because extending vertically above the surface gives cells at the top of aggregates better access to growth resources. Other advantages of seeding by aggregates, such as earlier switching to a biofilm-like phenotype and enhanced resilience toward antibiotics and immune response, may add to this ecological benefit. Our findings suggest that current models of biofilm formation should be reconsidered to incorporate the role of aggregates in biofilm initiation. PMID:27006463

  16. Effect of Punica granatum on the virulence factors of cariogenic bacteria Streptococcus mutans.

    PubMed

    Gulube, Zandiswa; Patel, Mrudula

    2016-09-01

    Dental caries is caused by acids produced by biofilm-forming Streptococcus mutans from fermentable carbohydrates and bacterial byproducts. Control of these bacteria is important in the prevention of dental caries. This study investigated the effect of the fruit peel of Punica granatum on biofilm formation, acid and extracellular polysaccharides production (EPS) by S. mutans. Pomegranate fruit peels crude extracts were prepared. The Minimum bactericidal concentrations (MBC) were determined against S. mutans. At 3 sub-bactericidal concentrations, the effect on the acid production, biofilm formation and EPS production was determined. The results were analysed using Kruskal-Wallis and Wilcoxon Rank Sum Tests. The lowest MBC was 6.25 mg/mL. Punica granatum significantly inhibited acid production (p < 0.01). After 6 and 24 h, it significantly reduced biofilm-formation by 91% and 65% respectively (p < 0.01). The plant extract did not inhibit the production of soluble EPS in either the biofilm or the planktonic growth. However, it significantly reduced the insoluble EPS in the biofilm and the plantktonic (p = < 0.01) form of S. mutans. The crude extract of P. granatum killed cariogenic S. mutans at high concentrations. At sub-bactericidal concentrations, it reduced biofilm formation, acid and EPS production. This suggests that P. granatum extract has the potential to prevent dental caries. PMID:27354207

  17. L-Tryptophan prevents Escherichia coli biofilm formation and triggers biofilm degradation.

    PubMed

    Shimazaki, Junji; Furukawa, Soichi; Ogihara, Hirokazu; Morinaga, Yasushi

    2012-03-23

    The effect of deletion of trp operon and tna operon on the Escherichia coli biofilm formation was investigated in order to elucidate the role of L-tryptophan metabolism in biofilm formation. trp operon deletion mutants ΔtrpC, ΔtrpD and ΔtrpE deficient in L-tryptophan biosynthesis showed higher biofilm formation. In addition, ΔtnaC with increased L-tryptophan degradation activity showed higher biofilm formation. On the contrary, ΔtnaA deletion mutant which lost L-tryptophan degradation activity showed low biofilm formation. From these results, it was suggested that decrease of intracellular L-tryptophan level induced biofilm formation and increase of L-tryptophan repressed biofilm formation. So the effect of the addition of L-tryptophan to the medium on the E. coli biofilm formation was investigated. L-Tryptophan addition at starting culture decreased biofilm formation and furthermore L-tryptophan addition after 16 h culture induced the degradation of preformed biofilm. From the above results, it was suggested that maintenance of high intracellular L-tryptophan concentration prevents E. coli biofilm formation and elevation of intracellular L-tryptophan concentration triggers degradation of matured biofilm. PMID:22386992

  18. Regulation of the gtfBC and ftf genes of Streptococcus mutans in biofilms in response to pH and carbohydrate.

    PubMed

    Li, Y; Burne, R A

    2001-10-01

    Streptococcus mutans produces a number of extracellular sucrose-metabolizing enzymes that contribute to the ability of the organism to cause dental caries, including three glucosyltransferases, the products of the gtfB, gtfC and gtfD genes, and a fructosyltransferase, encoded by the ftf gene. To better understand the regulation of the expression of these genes under environmental conditions that more closely mimic those in dental plaque, two strains of S. mutans harbouring fusions of the gtfBC (SMS102) and ftf (SMS101) promoters to a chloramphenicol acetyltransferase (CAT) gene were examined in biofilms formed in vitro. The strains were grown in a Rototorque biofilm reactor in a tryptone-yeast extract-sucrose medium. CAT specific activity in biofilm cells was measured at quasi-steady state or following additions of 25 mM sucrose or glucose, with or without pH control. After approximately 10 generations of biofilm growth, the ftf and gtfBC genes of S. mutans were found to be expressed at levels different from those reported for planktonic cells growing under otherwise similar conditions. The expression of these genes was induced by the addition of sucrose to the quasi-steady-state cultures. Expression of the gtfBC genes was influenced by environmental pH, since CAT specific activities in quasi-steady-state biofilms of strain SMS102 grown without pH control were twice those produced by cells grown with pH control. Moreover, addition of glucose to quasi-steady-state biofilms resulted in increased expression of the gtfBC-cat fusion, although the magnitude of the induction was less than that seen with sucrose. The effect of pH on ftf expression was negligible. A modest and transient induction of ftf was observed in biofilms pulsed with excess glucose and the kinetics and level of induction of ftf by excess carbohydrate were dependent on the pH of the biofilms. This study demonstrates that the type and amount of carbohydrate and the environmental pH have a major

  19. In vivo biofilm formation on stainless steel bonded retainers during different oral health-care regimens.

    PubMed

    Jongsma, Marije A; van der Mei, Henny C; Atema-Smit, Jelly; Busscher, Henk J; Ren, Yijin

    2015-03-01

    Retention wires permanently bonded to the anterior teeth are used after orthodontic treatment to prevent the teeth from relapsing to pre-treatment positions. A disadvantage of bonded retainers is biofilm accumulation on the wires, which produces a higher incidence of gingival recession, increased pocket depth and bleeding on probing. This study compares in vivo biofilm formation on single-strand and multi-strand retention wires with different oral health-care regimens. Two-centimetre wires were placed in brackets that were bonded to the buccal side of the first molars and second premolars in the upper arches of 22 volunteers. Volunteers used a selected toothpaste with or without the additional use of a mouthrinse containing essential oils. Brushing was performed manually. Regimens were maintained for 1 week, after which the wires were removed and the oral biofilm was collected to quantify the number of organisms and their viability, determine the microbial composition and visualize the bacteria by electron microscopy. A 6-week washout period was employed between regimens. Biofilm formation was reduced on single-strand wires compared with multi-strand wires; bacteria were observed to adhere between the strands. The use of antibacterial toothpastes marginally reduced the amount of biofilm on both wire types, but significantly reduced the viability of the biofilm organisms. Additional use of the mouthrinse did not result in significant changes in biofilm amount or viability. However, major shifts in biofilm composition were induced by combining a stannous fluoride- or triclosan-containing toothpaste with the mouthrinse. These shifts can be tentatively attributed to small changes in bacterial cell surface hydrophobicity after the adsorption of the toothpaste components, which stimulate bacterial adhesion to the hydrophobic oil, as illustrated for a Streptococcus mutans strain. PMID:25572920

  20. In vivo biofilm formation on stainless steel bonded retainers during different oral health-care regimens

    PubMed Central

    Jongsma, Marije A; van der Mei, Henny C; Atema-Smit, Jelly; Busscher, Henk J; Ren, Yijin

    2015-01-01

    Retention wires permanently bonded to the anterior teeth are used after orthodontic treatment to prevent the teeth from relapsing to pre-treatment positions. A disadvantage of bonded retainers is biofilm accumulation on the wires, which produces a higher incidence of gingival recession, increased pocket depth and bleeding on probing. This study compares in vivo biofilm formation on single-strand and multi-strand retention wires with different oral health-care regimens. Two-centimetre wires were placed in brackets that were bonded to the buccal side of the first molars and second premolars in the upper arches of 22 volunteers. Volunteers used a selected toothpaste with or without the additional use of a mouthrinse containing essential oils. Brushing was performed manually. Regimens were maintained for 1 week, after which the wires were removed and the oral biofilm was collected to quantify the number of organisms and their viability, determine the microbial composition and visualize the bacteria by electron microscopy. A 6-week washout period was employed between regimens. Biofilm formation was reduced on single-strand wires compared with multi-strand wires; bacteria were observed to adhere between the strands. The use of antibacterial toothpastes marginally reduced the amount of biofilm on both wire types, but significantly reduced the viability of the biofilm organisms. Additional use of the mouthrinse did not result in significant changes in biofilm amount or viability. However, major shifts in biofilm composition were induced by combining a stannous fluoride- or triclosan-containing toothpaste with the mouthrinse. These shifts can be tentatively attributed to small changes in bacterial cell surface hydrophobicity after the adsorption of the toothpaste components, which stimulate bacterial adhesion to the hydrophobic oil, as illustrated for a Streptococcus mutans strain. PMID:25572920

  1. Interactions and transitions in biofilm formation

    NASA Astrophysics Data System (ADS)

    Gordon, Vernita; Colvin, Kelly; Conrad, Jacinta; Gibiansky, Maxsim; Jin, Fan; Parsek, Matthew; Wong, Gerard

    2010-10-01

    Biofilms are multicellular, interacting communities of intrinsically-unicellular organisms that grow on surfaces. As such, they are fascinating model systems for multicellularity. They are also of great practical importance, since biofilms damage a variety of industrial infrastructure and are the cause of most persistent, antibiotic-resistant infections. In natural settings, most bacteria are found in biofilms. To initiate a biofilm, planktonic, free-swimming bacteria attach to a surface and then undergo a series of phenotypic changes as that adhesion becomes irreversible and the surface is populated, first by discrete bacteria, and then bacteria growing in dense clusters, ``microcolonies.'' Both adhesion to a surface and adhesion to other cells are associated with adhesive properties of cell-produced extracellular polysaccharides (EPSs). Using laser tweezers to test cell aggregation and aggregate stability, in combination with gene expression assays and gene-knockouts, we show the importance of one EPS, pel, for early cell aggregation. We also use automated bacteria-identification and --tracking software algorithims to identify and quantify key transitions early in biofilm formation.

  2. Automatic quantification of early transition points in biofilm formation

    NASA Astrophysics Data System (ADS)

    Thatcher, Travis; Bienvenu, Samuel; Strain, Shinji; Gordon, Vernita

    2010-10-01

    Biofilms are multicellular, dynamic communities of interacting single-cell organisms, like bacteria. Biofilms are responsible for many infectious diseases as well as for significant damage in industrial settings, yet many aspects of biofilm formation are not well understood. Identifying and quantifying the interactions leading to biofilm formation will not only be important for understanding the basic science of these and other multicellular systems, but it will also be essential for designing targeted strategies to prevent or disrupt biofilms. In particular, it is not clear what physical interactions, and corresponding biological mechanisms, are responsible for the early steps in biofilm formation. Because of this, we are developing high-throughput software techniques to analyze micrograph movies of biofilm formation, from attachment to surfaces through the development of microcolonies. This work will focus on developing software tools to identify and quantify key steps in biofilm formation, first in non-chemotacting systems and later in chemotacting (and autotacting) systems.

  3. The Biofilm Inhibitor Carolacton Disturbs Membrane Integrity and Cell Division of Streptococcus mutans through the Serine/Threonine Protein Kinase PknB ▿ †

    PubMed Central

    Reck, Michael; Rutz, Katrin; Kunze, Brigitte; Tomasch, Jürgen; Surapaneni, Subhash Kumar; Schulz, Stefan; Wagner-Döbler, Irene

    2011-01-01

    Carolacton, a secondary metabolite isolated from the myxobacterium Sorangium cellulosum, disturbs Streptococcus mutans biofilm viability at nanomolar concentrations. Here we show that carolacton causes leakage of cytoplasmic content (DNA and proteins) in growing cells at low pH and provide quantitative data on the membrane damage. Furthermore, we demonstrate that the biofilm-specific activity of carolacton is due to the strong acidification occurring during biofilm growth. The chemical conversion of the ketocarbonic function of the molecule to a carolacton methylester did not impact its activity, indicating that carolacton is not functionally activated at low pH by a change of its net charge. A comparative time series microarray analysis identified the VicKRX and ComDE two-component signal transduction systems and genes involved in cell wall metabolism as playing essential roles in the response to carolacton treatment. A sensitivity testing of mutants with deletions of all 13 viable histidine kinases and the serine/threonine protein kinase PknB of S. mutans identified only the ΔpknB deletion mutant as being insensitive to carolacton treatment. A strong overlap between the regulon of PknB in S. mutans and the genes affected by carolacton treatment was found. The data suggest that carolacton acts by interfering with PknB-mediated signaling in growing cells. The resulting altered cell wall morphology causes membrane damage and cell death at low pH. PMID:21840978

  4. Streptococcus mutans copes with heat stress by multiple transcriptional regulons modulating virulence and energy metabolism

    PubMed Central

    Liu, Chengcheng; Niu, Yulong; Zhou, Xuedong; Zheng, Xin; Wang, Shida; Guo, Qiang; Li, Yuqing; Li, Mingyun; Li, Jiyao; Yang, Yi; Ding, Yi; Lamont, Richard J.; Xu, Xin

    2015-01-01

    Dental caries is closely associated with the virulence of Streptococcus mutans. The virulence expression of S. mutans is linked to its stress adaptation to the changes in the oral environment. In this work we used whole-genome microarrays to profile the dynamic transcriptomic responses of S. mutans during physiological heat stress. In addition, we evaluated the phenotypic changes, including, eDNA release, initial biofilm formation, extracellular polysaccharides generation, acid production/acid tolerance, and ATP turnover of S. mutans during heat stress. There were distinct patterns observed in the way that S. mutans responded to heat stress that included 66 transcription factors for the expression of functional genes being differentially expressed. Especially, response regulators of two component systems (TCSs), the repressors of heat shock proteins and regulators involved in sugar transporting and metabolism co-ordinated to enhance the cell’s survival and energy generation against heat stress in S. mutans. PMID:26251057

  5. Effects of patterned topography on biofilm formation

    NASA Astrophysics Data System (ADS)

    Vasudevan, Ravikumar

    2011-12-01

    Bacterial biofilms are a population of bacteria attached to each other and irreversibly to a surface, enclosed in a matrix of self-secreted polymers, among others polysaccharides, proteins, DNA. Biofilms cause persisting infections associated with implanted medical devices and hospital acquired (nosocomial) infections. Catheter-associated urinary tract infections (CAUTIs) are the most common type of nosocomial infections accounting for up to 40% of all hospital acquired infections. Several different strategies, including use of antibacterial agents and genetic cues, quorum sensing, have been adopted for inhibiting biofilm formation relevant to CAUTI surfaces. Each of these methods pertains to certain types of bacteria, processes and has shortcomings. Based on eukaryotic cell topography interaction studies and Ulva linza spore studies, topographical surfaces were suggested as a benign control method for biofilm formation. However, topographies tested so far have not included a systematic variation of size across basic topography shapes. In this study patterned topography was systematically varied in size and shape according to two approaches 1) confinement and 2) wetting. For the confinement approach, using scanning electron microscopy and confocal microscopy, orienting effects of tested topography based on staphylococcus aureus (s. aureus) (SH1000) and enterobacter cloacae (e. cloacae) (ATCC 700258) bacterial models were identified on features of up to 10 times the size of the bacterium. Psuedomonas aeruginosa (p. aeruginosa) (PAO1) did not show any orientational effects, under the test conditions. Another important factor in medical biofilms is the identification and quantification of phenotypic state which has not been discussed in the literature concerning bacteria topography characterizations. This was done based on antibiotic susceptibility evaluation and also based on gene expression analysis. Although orientational effects occur, phenotypically no difference

  6. Voice prostheses, microbial colonization and biofilm formation.

    PubMed

    Leonhard, Matthias; Schneider-Stickler, Berit

    2015-01-01

    Total laryngectomy is performed in advanced laryngeal and hypopharyngeal cancer stages and results in reduced quality of life due to the loss of voice and smell, permanent tracheostoma and occasionally dysphagia. Therefore, successful voice rehabilitation is highly beneficial for the patients' quality of life after surgery. Over the past decades, voice prostheses have evolved to the gold standard in rehabilitation and allow faster and superior voicing results after laryngectomy compared to esophageal speech. Polyspecies biofilm formation has become the limiting factor for device lifetimes and causes prosthesis dysfunction, leakage and in consequence pneumonia, if not replaced immediately. Although major improvements in prosthesis design have been made and scientific insight in the complexity of biofilm evolution and material interaction progresses, the microbial colonization continues to restrict device lifetimes, causing patient discomfort and elevated health costs. However, present scientific findings and advances in technology yield promising future approaches to improve the situation for laryngectomized patients. PMID:25366225

  7. Type IV pili promote early biofilm formation by Clostridium difficile.

    PubMed

    Maldarelli, Grace A; Piepenbrink, Kurt H; Scott, Alison J; Freiberg, Jeffrey A; Song, Yang; Achermann, Yvonne; Ernst, Robert K; Shirtliff, Mark E; Sundberg, Eric J; Donnenberg, Michael S; von Rosenvinge, Erik C

    2016-08-01

    Increasing morbidity and mortality from Clostridium difficile infection (CDI) present an enormous challenge to healthcare systems. Clostridium difficile express type IV pili (T4P), but their function remains unclear. Many chronic and recurrent bacterial infections result from biofilms, surface-associated bacterial communities embedded in an extracellular matrix. CDI may be biofilm mediated; T4P are important for biofilm formation in a number of organisms. We evaluate the role of T4P in C. difficile biofilm formation using RNA sequencing, mutagenesis and complementation of the gene encoding the major pilin pilA1, and microscopy. RNA sequencing demonstrates that, in comparison to other growth phenotypes, C. difficile growing in a biofilm has a distinct RNA expression profile, with significant differences in T4P gene expression. Microscopy of T4P-expressing and T4P-deficient strains suggests that T4P play an important role in early biofilm formation. A non-piliated pilA1 mutant forms an initial biofilm of significantly reduced mass and thickness in comparison to the wild type. Complementation of the pilA1 mutant strain leads to formation of a biofilm which resembles the wild-type biofilm. These findings suggest that T4P play an important role in early biofilm formation. Novel strategies for confronting biofilm infections are emerging; our data suggest that similar strategies should be investigated in CDI. PMID:27369898

  8. Chemically Specific Cellular Imaging of Biofilm Formation

    SciTech Connect

    Herberg, J L; Schaldach, C; Horn, J; Gjersing, E; Maxwell, R

    2006-02-09

    This document and the accompanying manuscripts summarize the technical accomplishments for our one-year LDRD-ER effort. Biofilm forming microbes have existed on this planet for billions of years and make up 60% of the biological mass on earth. Such microbes exhibit unique biochemical pathways during biofilm formation and play important roles in human health and the environment. Microbial biofilms have been directly implicated in, for example, product contamination, energy losses, and medical infection that cost the loss of human lives and billions of dollars. In no small part due to the lack of detailed understanding, biofilms unfortunately are resistant to control, inhibition, and destruction, either through treatment with antimicrobials or immunological defense mechanisms of the body. Current biofilm research has concentrated on the study of biofilms in the bulk. This is primarily due to the lack of analytical and physical tools to study biofilms non-destructively, in three dimensions, and on the micron or sub-micron scale. This has hindered the development of a clear understanding of either the early stage mechanisms of biofilm growth or the interactions of biofilms with their environment. Enzymatic studies have deduced a biochemical reaction that results in the oxidation of reduced sulfur species with the concomitant reduction of nitrate, a common groundwater pollutant, to dinitrogen gas by the bacterium, Thiobacillus denitrificans (TD). Because of its unique involvement in biologically relevant environmental pathways, TD is scheduled for genome sequencing in the near future by the DOE's Joint Genome Institute and is of interest to DOE's Genomes to Life Program. As our ecosystem is exposed to more and more nitrate contamination large scale livestock and agricultural practices, a further understanding of biofilm formation by organisms that could alleviate these problems is necessary in order to protect out biosphere. However, in order to study this complicated

  9. Caries arresting effect of silver diamine fluoride on dentine carious lesion with S. mutans and L. acidophilus dual-species cariogenic biofilm

    PubMed Central

    Mei, May L.; Low, Kan H.; Che, Ching M.; Lo, Edward CM.

    2013-01-01

    Objectives: This in vitro study investigated the effects of silver diamine fluoride (SDF) on dentine carious lesion with cariogenic biofilm. Study Design: Thirty human dentine blocks were inoculated with Streptococcus mutans and Lactobacillus acidophilus dual-species biofilm to create carious lesion. They were equally divided into test and control group to receive topical application of SDF and water. After incubation anaerobically using micro-well plate at 37oC for 7 days, the biofilms were evaluated for kinetics, morphology and viability by colony forming units (CFU), scanning electron microscopy (SEM), and confocal microscopy (CLSM), respectively. The carious lesion underwent crystal characteristics analysis, evaluation of the changes in chemical structure and density of collagen fibrils using x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and immune-labeling. Results: The log CFU of S. mutans and L. acidophilus in the test group was significantly lower than control group. SEM and CLSM showed confluent biofilm in control group, but not in test group. XRD showed the loss of crystallinity of dentine due to the dissolution of hydroxyapatite crystal structure in test group was less than control group. FTIR showed that log [Amide I: HPO42-] for test vs. control group was 0.31±0.10 vs. 0.57±0.13 (p<0.05). The gold-labeling density in test vs. control group was 8.54±2.44/µm2 vs. 12.91±4.24/µm2 (p=0.04). Conclusions: SDF had antimicrobial activity against the cariogenic biofilms and reduced demineralization of dentine. Key words:Caries, caries arrest, dentine, silver, silver diamine fluoride, fluoride, biofilm,cariogenic. PMID:23722131

  10. Organo-Selenium-containing Dental Sealant Inhibits Bacterial Biofilm

    PubMed Central

    Tran, P.; Hamood, A.; Mosley, T.; Gray, T.; Jarvis, C.; Webster, D.; Amaechi, B.; Enos, T.; Reid, T.

    2013-01-01

    Oral bacteria, including Streptococcus mutans and Streptococcus salivarius, contribute to tooth decay and plaque formation; therefore, it is essential to develop strategies to prevent dental caries and plaque formation. We recently showed that organo-selenium compounds covalently attached to different biomaterials inhibited bacterial biofilms. Our current study investigates the efficacy of an organo-selenium dental sealant (SeLECT-DefenseTM sealant) in inhibiting S. mutans and S. salivarius biofilm formation in vitro. The organo-selenium was synthesized and covalently attached to dental sealant material via standard polymer chemistry. By colony-forming unit (CFU) assay and confocal microscopy, SeLECT-DefenseTM sealant was found to completely inhibit the development of S. mutans and S. salivarius biofilms. To assess the durability of the anti-biofilm effect, we soaked the SeLECT-DefenseTM sealant in PBS for 2 mos at 37°C and found that the biofilm-inhibitory effect was not diminished after soaking. To determine if organo-selenium inhibits bacterial growth under the sealant, we placed SeLECT-Defense sealant over a lawn of S. mutans. In contrast to a control sealant, SeLECT-DefenseTM sealant completely inhibited the growth of S. mutans. These results suggest that the inhibitory effect of SeLECT-DefenseTM sealant against S. mutans and S. salivarius biofilms is very effective and durable. PMID:23475900

  11. Biofilm Formation As a Response to Ecological Competition

    PubMed Central

    Oliveira, Nuno M.; Martinez-Garcia, Esteban; Xavier, Joao; Durham, William M.; Kolter, Roberto; Kim, Wook; Foster, Kevin R.

    2015-01-01

    Bacteria form dense surface-associated communities known as biofilms that are central to their persistence and how they affect us. Biofilm formation is commonly viewed as a cooperative enterprise, where strains and species work together for a common goal. Here we explore an alternative model: biofilm formation is a response to ecological competition. We co-cultured a diverse collection of natural isolates of the opportunistic pathogen Pseudomonas aeruginosa and studied the effect on biofilm formation. We show that strain mixing reliably increases biofilm formation compared to unmixed conditions. Importantly, strain mixing leads to strong competition: one strain dominates and largely excludes the other from the biofilm. Furthermore, we show that pyocins, narrow-spectrum antibiotics made by other P. aeruginosa strains, can stimulate biofilm formation by increasing the attachment of cells. Side-by-side comparisons using microfluidic assays suggest that the increase in biofilm occurs due to a general response to cellular damage: a comparable biofilm response occurs for pyocins that disrupt membranes as for commercial antibiotics that damage DNA, inhibit protein synthesis or transcription. Our data show that bacteria increase biofilm formation in response to ecological competition that is detected by antibiotic stress. This is inconsistent with the idea that sub-lethal concentrations of antibiotics are cooperative signals that coordinate microbial communities, as is often concluded. Instead, our work is consistent with competition sensing where low-levels of antibiotics are used to detect and respond to the competing genotypes that produce them. PMID:26158271

  12. Biofilm Formation As a Response to Ecological Competition.

    PubMed

    Oliveira, Nuno M; Oliveria, Nuno M; Martinez-Garcia, Esteban; Xavier, Joao; Durham, William M; Kolter, Roberto; Kim, Wook; Foster, Kevin R

    2015-07-01

    Bacteria form dense surface-associated communities known as biofilms that are central to their persistence and how they affect us. Biofilm formation is commonly viewed as a cooperative enterprise, where strains and species work together for a common goal. Here we explore an alternative model: biofilm formation is a response to ecological competition. We co-cultured a diverse collection of natural isolates of the opportunistic pathogen Pseudomonas aeruginosa and studied the effect on biofilm formation. We show that strain mixing reliably increases biofilm formation compared to unmixed conditions. Importantly, strain mixing leads to strong competition: one strain dominates and largely excludes the other from the biofilm. Furthermore, we show that pyocins, narrow-spectrum antibiotics made by other P. aeruginosa strains, can stimulate biofilm formation by increasing the attachment of cells. Side-by-side comparisons using microfluidic assays suggest that the increase in biofilm occurs due to a general response to cellular damage: a comparable biofilm response occurs for pyocins that disrupt membranes as for commercial antibiotics that damage DNA, inhibit protein synthesis or transcription. Our data show that bacteria increase biofilm formation in response to ecological competition that is detected by antibiotic stress. This is inconsistent with the idea that sub-lethal concentrations of antibiotics are cooperative signals that coordinate microbial communities, as is often concluded. Instead, our work is consistent with competition sensing where low-levels of antibiotics are used to detect and respond to the competing genotypes that produce them. PMID:26158271

  13. Variation in Biofilm Formation among Strains of Listeria monocytogenes

    PubMed Central

    Borucki, Monica K.; Peppin, Jason D.; White, David; Loge, Frank; Call, Douglas R.

    2003-01-01

    Contamination of food by Listeria monocytogenes is thought to occur most frequently in food-processing environments where cells persist due to their ability to attach to stainless steel and other surfaces. Once attached these cells may produce multicellular biofilms that are resistant to disinfection and from which cells can become detached and contaminate food products. Because there is a correlation between virulence and serotype (and thus phylogenetic division) of L. monocytogenes, it is important to determine if there is a link between biofilm formation and disease incidence for L. monocytogenes. Eighty L. monocytogenes isolates were screened for biofilm formation to determine if there is a robust relationship between biofilm formation, phylogenic division, and persistence in the environment. Statistically significant differences were detected between phylogenetic divisions. Increased biofilm formation was observed in Division II strains (serotypes 1/2a and 1/2c), which are not normally associated with food-borne outbreaks. Differences in biofilm formation were also detected between persistent and nonpersistent strains isolated from bulk milk samples, with persistent strains showing increased biofilm formation relative to nonpersistent strains. There were no significant differences detected among serotypes. Exopolysaccharide production correlated with cell adherence for high-biofilm-producing strains. Scanning electron microscopy showed that a high-biofilm-forming strain produced a dense, three-dimensional structure, whereas a low-biofilm-forming strain produced a thin, patchy biofilm. These data are consistent with data on persistent strains forming biofilms but do not support a consistent relationship between enhanced biofilm formation and disease incidence. PMID:14660383

  14. Coexistence facilitates interspecific biofilm formation in complex microbial communities.

    PubMed

    Madsen, Jonas S; Røder, Henriette L; Russel, Jakob; Sørensen, Helle; Burmølle, Mette; Sørensen, Søren J

    2016-09-01

    Social interactions in which bacteria respond to one another by modifying their phenotype are central determinants of microbial communities. It is known that interspecific interactions influence the biofilm phenotype of bacteria; a phenotype that is central to the fitness of bacteria. However, the underlying role of fundamental ecological factors, specifically coexistence and phylogenetic history, in biofilm formation remains unclear. This study examines how social interactions affect biofilm formation in multi-species co-cultures from five diverse environments. We found prevalence of increased biofilm formation among co-cultured bacteria that have coexisted in their original environment. Conversely, when randomly co-culturing bacteria across these five consortia, we found less biofilm induction and a prevalence of biofilm reduction. Reduction in biofilm formation was even more predominant when co-culturing bacteria from environments where long-term coexistence was unlikely to have occurred. Phylogenetic diversity was not found to be a strong underlying factor but a relation between biofilm induction and phylogenetic history was found. The data indicates that biofilm reduction is typically correlated with an increase in planktonic cell numbers, thus implying a behavioral response rather than mere growth competition. Our findings suggest that an increase in biofilm formation is a common adaptive response to long-term coexistence. PMID:27119650

  15. Vaginal Lactobacillus: biofilm formation in vivo – clinical implications

    PubMed Central

    Ventolini, Gary

    2015-01-01

    Vaginal lactobacilli provide protection against intrusive pathogenic bacteria. Some Lactobacillus spp. produce in vitro a thick, protective biofilm. We report in vivo formation of biofilm by vaginal Lactobacillus jensenii. The biofilm formation was captured in fresh wet-mount microscopic samples from asymptomatic patients after treatment for recurrent bacterial vaginitis. In vivo documentation of biofilm formation is in our opinion noteworthy, and has significant clinical implications, among which are the possibility to isolate, grow, and therapeutically utilize lactobacilli to prevent recurrent vaginal infections and preterm labor associated with vaginal microbial pathogens. PMID:25733930

  16. Lactam inhibiting Streptococcus mutans growth on titanium.

    PubMed

    Xavier, J G; Geremias, T C; Montero, J F D; Vahey, B R; Benfatti, C A M; Souza, J C M; Magini, R S; Pimenta, A L

    2016-11-01

    The aim of this work was to analyze the activity of novel synthetic lactams on preventing biofilm formation on titanium surfaces. Titanium (Ti6Al4V) samples were exposed to Streptococcus mutans cultures in the presence or absence of a synthetic lactam. After 48h incubation, planktonic growth was determined by spectrophotometry. Biofilm was evaluated by crystal violet staining and colony forming units (CFU·ml(-)(1)), followed by scanning electron microscopy (SEM). Results showed that the average of adhered viable cells was approximately 1.5×10(2)CFU/ml in the presence of lactam and 4×10(2)CFU/ml in its absence. This novel compound was considerable active in reducing biofilm formation over titanium surfaces, indicating its potential for the development of antimicrobial drugs targeting the inhibition of the initial stages of bacterial biofilms on dental implants abutments. PMID:27524086

  17. Antibiofilm Activity of Chilean Propolis on Streptococcus mutans Is Influenced by the Year of Collection

    PubMed Central

    Veloz, Jorge Jesús; Saavedra, Nicolás; Lillo, Alexis; Alvear, Marysol; Barrientos, Leticia; Salazar, Luis A.

    2015-01-01

    The chemical composition of propolis varies according to factors that could have an influence on its biological properties. Polyphenols from propolis have demonstrated an inhibitory effect on Streptococcus mutans growth. However, it is not known if different years of propolis collection may affect its activity. We aimed to elucidate if the year of collection of propolis influences its activity on Streptococcus mutans. Polyphenol-rich extracts were prepared from propolis collected in three different years, characterized by LC-MS and quantified the content of total polyphenols and flavonoids groups. Finally, was evaluated the antibacterial effect on Streptococcus mutans and the biofilm formation. Qualitative differences were observed in total polyphenols, flavones, and flavonols and the chemical composition between the extracts, affecting the strength of inhibition of biofilm formation but not the antimicrobial assays. In conclusion, chemical composition of propolis depends on the year of collection and influences the strength of the inhibition of biofilm formation. PMID:26247015

  18. Prevention of Biofilm Formation and Removal of Existing Biofilms by Extracellular DNases of Campylobacter jejuni

    PubMed Central

    Brown, Helen L.; Reuter, Mark; Hanman, Kate; Betts, Roy P.; van Vliet, Arnoud H. M.

    2015-01-01

    The fastidious nature of the foodborne bacterial pathogen Campylobacter jejuni contrasts with its ability to survive in the food chain. The formation of biofilms, or the integration into existing biofilms by C. jejuni, is thought to contribute to food chain survival. As extracellular DNA (eDNA) has previously been proposed to play a role in C. jejuni biofilms, we have investigated the role of extracellular DNases (eDNases) produced by C. jejuni in biofilm formation. A search of 2791 C. jejuni genomes highlighted that almost half of C. jejuni genomes contains at least one eDNase gene, but only a minority of isolates contains two or three of these eDNase genes, such as C. jejuni strain RM1221 which contains the cje0256, cje0566 and cje1441 eDNase genes. Strain RM1221 did not form biofilms, whereas the eDNase-negative strains NCTC 11168 and 81116 did. Incubation of pre-formed biofilms of NCTC 11168 with live C. jejuni RM1221 or with spent medium from a RM1221 culture resulted in removal of the biofilm. Inactivation of the cje1441 eDNase gene in strain RM1221 restored biofilm formation, and made the mutant unable to degrade biofilms of strain NCTC 11168. Finally, C. jejuni strain RM1221 was able to degrade genomic DNA from C. jejuni NCTC 11168, 81116 and RM1221, whereas strain NCTC 11168 and the RM1221 cje1441 mutant were unable to do so. This was mirrored by an absence of eDNA in overnight cultures of C. jejuni RM1221. This suggests that the activity of eDNases in C. jejuni affects biofilm formation and is not conducive to a biofilm lifestyle. These eDNases do however have a potential role in controlling biofilm formation by C. jejuni strains in food chain relevant environments. PMID:25803828

  19. Deacylated lipopolysaccharides inhibit biofilm formation by Gram-negative bacteria.

    PubMed

    Lee, Kyung-Jo; Lee, Mi-Ae; Hwang, Won; Park, Hana; Lee, Kyu-Ho

    2016-08-01

    The extracellular polysaccharides of Vibrio vulnificus play different roles during biofilm development. Among them, the effect of lipopolysaccharide (LPS), which is crucial for bacterial adherence to surfaces during the initial stage of biofilm formation, on the formation process was examined using various types of LPS extracts. Exogenously added LPS strongly inhibited biofilm formation in a dose-dependent manner. In addition, the exogenous addition of a deacylated form of LPS (dLPS) also inhibited biofilm formation. However, an LPS fraction extracted from a mutant not able to produce O-antigen polysaccharides (O-Ag) did not have an inhibitory effect. Furthermore, biofilm formation by several Gram-negative bacteria was inhibited by dLPS addition. In contrast, biofilm formation by Gram-positive bacteria was not influenced by dLPS but was affected by lipoteichoic acid. Therefore, this study demonstrates that O-Ag in LPS is important for inhibiting biofilm formation and may serve an efficient anti-biofilm agent specific for Gram-negative bacteria. PMID:27294580

  20. Relationship between Antibiotic Resistance, Biofilm Formation, and Biofilm-Specific Resistance in Acinetobacter baumannii

    PubMed Central

    Qi, Lihua; Li, Hao; Zhang, Chuanfu; Liang, Beibei; Li, Jie; Wang, Ligui; Du, Xinying; Liu, Xuelin; Qiu, Shaofu; Song, Hongbin

    2016-01-01

    In this study, we aimed to examine the relationships between antibiotic resistance, biofilm formation, and biofilm-specific resistance in clinical isolates of Acinetobacter baumannii. The tested 272 isolates were collected from several hospitals in China during 2010–2013. Biofilm-forming capacities were evaluated using the crystal violet staining method. Antibiotic resistance/susceptibility profiles to 21 antibiotics were assessed using VITEK 2 system, broth microdilution method or the Kirby-Bauer disc diffusion method. The minimum inhibitory concentration (MIC) and minimum biofilm eradication concentration (MBEC) to cefotaxime, imipenem, and ciprofloxacin were evaluated using micro dilution assays. Genetic relatedness of the isolates was also analyzed by pulsed-field gel electrophoresis (PFGE) and plasmid profile. Among all the 272 isolates, 31 were multidrug-resistant (MDR), and 166 were extensively drug-resistant (XDR). PFGE typing revealed 167 pattern types and 103 clusters with a similarity of 80%. MDR and XDR isolates built up the main prevalent genotypes. Most of the non-MDR isolates were distributed in a scattered pattern. Additionally, 249 isolates exhibited biofilm formation, among which 63 were stronger biofilm formers than type strain ATCC19606. Population that exhibited more robust biofilm formation likely contained larger proportion of non-MDR isolates. Isolates with higher level of resistance tended to form weaker biofilms. The MBECs for cefotaxime, imipenem, and ciprofloxacin showed a positive correlation with corresponding MICs, while the enhancement in resistance occurred independent of the quantity of biofilm biomass produced. Results from this study imply that biofilm acts as a mechanism for bacteria to get a better survival, especially in isolates with resistance level not high enough. Moreover, even though biofilms formed by isolates with high level of resistance are always weak, they could still provide similar level of protection for the

  1. Relationship between Antibiotic Resistance, Biofilm Formation, and Biofilm-Specific Resistance in Acinetobacter baumannii.

    PubMed

    Qi, Lihua; Li, Hao; Zhang, Chuanfu; Liang, Beibei; Li, Jie; Wang, Ligui; Du, Xinying; Liu, Xuelin; Qiu, Shaofu; Song, Hongbin

    2016-01-01

    In this study, we aimed to examine the relationships between antibiotic resistance, biofilm formation, and biofilm-specific resistance in clinical isolates of Acinetobacter baumannii. The tested 272 isolates were collected from several hospitals in China during 2010-2013. Biofilm-forming capacities were evaluated using the crystal violet staining method. Antibiotic resistance/susceptibility profiles to 21 antibiotics were assessed using VITEK 2 system, broth microdilution method or the Kirby-Bauer disc diffusion method. The minimum inhibitory concentration (MIC) and minimum biofilm eradication concentration (MBEC) to cefotaxime, imipenem, and ciprofloxacin were evaluated using micro dilution assays. Genetic relatedness of the isolates was also analyzed by pulsed-field gel electrophoresis (PFGE) and plasmid profile. Among all the 272 isolates, 31 were multidrug-resistant (MDR), and 166 were extensively drug-resistant (XDR). PFGE typing revealed 167 pattern types and 103 clusters with a similarity of 80%. MDR and XDR isolates built up the main prevalent genotypes. Most of the non-MDR isolates were distributed in a scattered pattern. Additionally, 249 isolates exhibited biofilm formation, among which 63 were stronger biofilm formers than type strain ATCC19606. Population that exhibited more robust biofilm formation likely contained larger proportion of non-MDR isolates. Isolates with higher level of resistance tended to form weaker biofilms. The MBECs for cefotaxime, imipenem, and ciprofloxacin showed a positive correlation with corresponding MICs, while the enhancement in resistance occurred independent of the quantity of biofilm biomass produced. Results from this study imply that biofilm acts as a mechanism for bacteria to get a better survival, especially in isolates with resistance level not high enough. Moreover, even though biofilms formed by isolates with high level of resistance are always weak, they could still provide similar level of protection for the

  2. Direct Electrical Current Reduces Bacterial and Yeast Biofilm Formation

    PubMed Central

    Ruiz-Ruigomez, Maria; Badiola, Jon; Schmidt-Malan, Suzannah M.; Greenwood-Quaintance, Kerryl; Karau, Melissa J.; Brinkman, Cassandra L.; Mandrekar, Jayawant N.; Patel, Robin

    2016-01-01

    New strategies are needed for prevention of biofilm formation. We have previously shown that 24 hr of 2,000 µA of direct current (DC) reduces Staphylococcus epidermidis biofilm formation in vitro. Herein, we examined the effect of a lower amount of DC exposure on S. epidermidis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Propionibacterium acnes, and Candida albicans biofilm formation. 12 hr of 500 µA DC decreased S. epidermidis, S. aureus, E. coli, and P. aeruginosa biofilm formation on Teflon discs by 2, 1, 1, and 2 log10 cfu/cm2, respectively (p < 0.05). Reductions in S. epidermidis, S. aureus, and E. coli biofilm formation were observed with as few as 12 hr of 200 µA DC (2, 2 and 0.4 log10 cfu/cm2, resp.); a 1 log10 cfu/cm2 reduction in P. aeruginosa biofilm formation was observed at 36 hr. 24 hr of 500 µA DC decreased C. albicans biofilm formation on Teflon discs by 2 log10 cfu/cm2. No reduction in P. acnes biofilm formation was observed. 1 and 2 log10 cfu/cm2 reductions in E. coli and S. epidermidis biofilm formation on titanium discs, respectively, were observed with 12 hr of exposure to 500 µA. Electrical current is a potential strategy to reduce biofilm formation on medical biomaterials. PMID:27073807

  3. Biofilms

    PubMed Central

    van Hoek, Monique L

    2013-01-01

    Our understanding of the virulence and pathogenesis of Francisella spp. has significantly advanced in recent years, including a new understanding that this organism can form biofilms. What is known so far about Francisella spp. biofilms is summarized here and future research questions are suggested. The molecular basis of biofilm production has begun to be studied, especially the role of extracellular carbohydrates and capsule, quorum sensing and two-component signaling systems. Further work has explored the contribution of amoebae, pili, outer-membrane vesicles, chitinases, and small molecules such as c-di-GMP to Francisella spp. biofilm formation. A role for Francisella spp. biofilm in feeding mosquito larvae has been suggested. As no strong role in virulence has been found yet, Francisella spp. biofilm formation is most likely a key mechanism for environmental survival and persistence. The significance and importance of Francisella spp.’s biofilm phenotype as a critical aspect of its microbial physiology is being developed. Areas for further studies include the potential role of Francisella spp. biofilms in the infection of mammalian hosts and virulence regulation. PMID:24225421

  4. Decrease of Pseudomonas aeruginosa biofilm formation by food waste materials.

    PubMed

    Maderova, Zdenka; Horska, Katerina; Kim, Sang-Ryoung; Lee, Chung-Hak; Pospiskova, Kristyna; Safarikova, Mirka; Safarik, Ivo

    2016-01-01

    The formation of bacterial biofilm on various surfaces has significant negative economic effects. The aim of this study was to find a simple procedure to decrease the Pseudomonas aeruginosa biofilm formation in a water environment by using different food waste biological materials as signal molecule adsorbents. The selected biomaterials did not reduce the cell growth but affected biofilm formation. Promising biomaterials were magnetically modified in order to simplify manipulation and facilitate their magnetic separation. The best biocomposite, magnetically modified spent grain, exhibited substantial adsorption of signal molecules and decreased the biofilm formation. These results suggest that selected food waste materials and their magnetically responsive derivatives could be applied to solve biofilm problems in water environment. PMID:27148715

  5. Optimization of culture conditions for Gardnerella vaginalis biofilm formation.

    PubMed

    Machado, Daniela; Palmeira-de-Oliveira, Ana; Cerca, Nuno

    2015-11-01

    Bacterial vaginosis is the leading vaginal disorder in women in reproductive age. Although bacterial vaginosis is related with presence of a biofilm composed predominantly by Gardnerella vaginalis, there has not been a detailed information addressing the environmental conditions that influence the biofilm formation of this bacterial species. Here, we evaluated the influence of some common culture conditions on G. vaginalis biofilm formation, namely inoculum concentration, incubation period, feeding conditions and culture medium composition. Our results showed that culture conditions strongly influenced G. vaginalis biofilm formation and that biofilm formation was enhanced when starting the culture with a higher inoculum, using a fed-batch system and supplementing the growth medium with maltose. PMID:26381661

  6. Involvement of NADH Oxidase in Biofilm Formation in Streptococcus sanguinis

    PubMed Central

    Ge, Xiuchun; Shi, Xiaoli; Shi, Limei; Liu, Jinlin; Stone, Victoria; Kong, Fanxiang; Kitten, Todd; Xu, Ping

    2016-01-01

    Biofilms play important roles in microbial communities and are related to infectious diseases. Here, we report direct evidence that a bacterial nox gene encoding NADH oxidase is involved in biofilm formation. A dramatic reduction in biofilm formation was observed in a Streptococcus sanguinis nox mutant under anaerobic conditions without any decrease in growth. The membrane fluidity of the mutant bacterial cells was found to be decreased and the fatty acid composition altered, with increased palmitic acid and decreased stearic acid and vaccenic acid. Extracellular DNA of the mutant was reduced in abundance and bacterial competence was suppressed. Gene expression analysis in the mutant identified two genes with altered expression, gtfP and Idh, which were found to be related to biofilm formation through examination of their deletion mutants. NADH oxidase-related metabolic pathways were analyzed, further clarifying the function of this enzyme in biofilm formation. PMID:26950587

  7. Characterization of Mannheimia haemolytica biofilm formation in vitro.

    PubMed

    Boukahil, Ismail; Czuprynski, Charles J

    2015-01-30

    Mannheimia haemolytica is the primary bacterial agent in the bovine respiratory disease complex. It is thought that M. haemolytica colonizes the tonsillar crypts of cattle as a commensal and subsequently descends into the lungs to cause disease. Many bacterial species persist in the host as biofilms. There is limited information about the ability of M. haemolytica to form biofilms. The aim of this study was to develop an in vitro model for M. haemolytica biofilm formation. We found that M. haemolytica required at least 36 h to form robust biofilms on plastic in vitro when incubated in RPMI-1640 tissue culture medium at 37 °C, with maximal biofilm formation being evident at 48 h. Biofilm formation was inhibited by adding the monosaccharides d(+) galactose and d(+) mannose to the growth medium. Addition of antibodies to the M. haemolytica surface protein OmpA also reduced biofilm formation. Upon evaluating the macromolecules within the biofilm extracellular polymeric substance we found it contained 9.7 μg/cm(2) of protein, 0.81 μg/cm(2) of total carbohydrate, and 0.47 μg/cm(2) of extracellular DNA. Furthermore, proteinase K treatment significantly decreased biofilms (P<0.05) while α-amylase and micrococcal nuclease decreased biofilms to a lesser extent. M. haemolytica biofilm cells were more resistant than planktonic cells to the antibiotics florfenicol, gentamicin, and tulathromycin. These results provide evidence that M. haemolytica can form biofilms, which could contribute to its ability to persist as a commensal in the bovine upper respiratory tract. PMID:25480166

  8. Antimicrobial Activity of Essential Oils against Streptococcus mutans and their Antiproliferative Effects

    PubMed Central

    Galvão, Lívia Câmara de Carvalho; Furletti, Vivian Fernandes; Bersan, Salete Meyre Fernandes; da Cunha, Marcos Guilherme; Ruiz, Ana Lúcia Tasca Góis; de Carvalho, João Ernesto; Sartoratto, Adilson; Rehder, Vera Lúcia Garcia; Figueira, Glyn Mara; Teixeira Duarte, Marta Cristina; Ikegaki, Masarahu; de Alencar, Severino Matias; Rosalen, Pedro Luiz

    2012-01-01

    This study aimed to evaluate the activity of essential oils (EOs) against Streptococcus mutans biofilm by chemically characterizing their fractions responsible for biological and antiproliferative activity. Twenty EO were obtained by hydrodistillation and submitted to the antimicrobial assay (minimum inhibitory (MIC) and bactericidal (MBC) concentrations) against S. mutans UA159. Thin-layer chromatography and gas chromatography/mass spectrometry were used for phytochemical analyses. EOs were selected according to predetermined criteria and fractionated using dry column; the resulting fractions were assessed by MIC and MBC, selected as active fractions, and evaluated against S. mutans biofilm. Biofilms formed were examined using scanning electron microscopy. Selected EOs and their selected active fractions were evaluated for their antiproliferative activity against keratinocytes and seven human tumor cell lines. MIC and MBC values obtained for EO and their active fractions showed strong antimicrobial activity. Chemical analyses mainly showed the presence of terpenes. The selected active fractions inhibited S. mutans biofilm formation (P < 0.05) did not affect glycolytic pH drop and were inactive against keratinocytes, normal cell line. In conclusion, EO showed activity at low concentrations, and their selected active fractions were also effective against biofilm formed by S. mutans and human tumor cell lines. PMID:22685486

  9. Mathematical modeling of dormant cell formation in growing biofilm

    PubMed Central

    Chihara, Kotaro; Matsumoto, Shinya; Kagawa, Yuki; Tsuneda, Satoshi

    2015-01-01

    Understanding the dynamics of dormant cells in microbial biofilms, in which the bacteria are embedded in extracellular matrix, is important for developing successful antibiotic therapies against pathogenic bacteria. Although some of the molecular mechanisms leading to bacterial persistence have been speculated in planktonic bacterial cell, how dormant cells emerge in the biofilms of pathogenic bacteria such as Pseudomonas aeruginosa remains unclear. The present study proposes four hypotheses of dormant cell formation; stochastic process, nutrient-dependent, oxygen-dependent, and time-dependent processes. These hypotheses were implemented into a three-dimensional individual-based model of biofilm formation. Numerical simulations of the different mechanisms yielded qualitatively different spatiotemporal distributions of dormant cells in the growing biofilm. Based on these simulation results, we discuss what kinds of experimental studies are effective for discriminating dormant cell formation mechanisms in biofilms. PMID:26074911

  10. Influence of dynamic conditions on biofilm formation by staphylococci.

    PubMed

    Stepanović, S; Vuković, D; Jezek, P; Pavlović, M; Svabic-Vlahović, M

    2001-07-01

    The modified microtiter plate test was used to investigate biofilm formation by staphylococci under both static and dynamic conditions. The quantity of biofilm produced under static conditions was used as a reference. Dynamic conditions, which were achieved by incubating microtiter plates on a horizontal shaker with and without the presence of glass beads in wells, either reduced biofilm formation or left it unchanged. Dynamic conditions particularly affected the capacity of certain species to produce biofilm: these species included the causative agents of infections associated with a foreign body (Staphylococcus epidermidis, Staphylococcus aureus). On the basis of these results, dynamic conditions should be included as a parameter for evaluating biofilm formation by staphylococci in vitro. PMID:11561809

  11. The relationship between biofilm formations and capsule in Haemophilus influenzae.

    PubMed

    Qin, Liang; Kida, Yutaka; Ishiwada, Naruhiko; Ohkusu, Kiyofumi; Kaji, Chiharu; Sakai, Yoshiro; Watanabe, Kiwao; Furumoto, Akitsugu; Ichinose, Akitoyo; Watanabe, Hiroshi

    2014-03-01

    To evaluate the biofilm formation of non-typeable Haemophilus influenzae (NTHi) and H. influenzae type b (Hib) clinical isolates, we conducted the following study. Serotyping and polymerase chain reaction were performed to identify β-lactamase-negative ampicillin (ABPC)-susceptible (BLNAS), β-lactamase-negative ABPC-resistant (BLNAR), TEM-1 type β-lactamase-producing ABPC-resistant (BLPAR)-NTHi, and Hib. Biofilm formation was investigated by microtiter biofilm assay, as well as visually observation with a scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) in a continuous-flow chamber. As a result, totally 99 strains were investigated, and were classified into 4 groups which were 26 gBLNAS, 22 gBLNAR, 28 gBLPAR-NTHi and 23 Hib strains. The mean OD600 in the microtiter biofilm assay of gBLNAS, gBLNAR, gBLPAR-NTHi, and Hib strains were 0.57, 0.50, 0.34, and 0.08, respectively. NTHi strains were similar in terms of biofilm formations, which were observed by SEM and CLSM. Five Hib strains with the alternated type b cap loci showed significantly increased biofilm production than the other Hib strains. In conclusion, gBLNAS, gBLNAR, and gBLPAR-NTHi strains were more capable to produce biofilms compared to Hib strains. Our data suggested that resistant status may not be a key factor but capsule seemed to play an important role in H. influenzae biofilm formation. PMID:24560562

  12. Inhibition of Pseudomonas aeruginosa biofilm formation on wound dressings

    PubMed Central

    Brandenburg, Kenneth S.; Calderon, Diego F.; Kierski, Patricia R.; Brown, Amanda L.; Shah, Nihar M.; Abbott, Nicholas L.; Schurr, Michael J.; Murphy, Christopher J.; McAnulty, Jonathan F.; Czuprynski, Charles J.

    2016-01-01

    Chronic non-healing skin wounds often contain bacterial biofilms that prevent normal wound healing and closure and present challenges to the use of conventional wound dressings. We investigated inhibition of Pseudomonas aeruginosa biofilm formation, a common pathogen of chronic skin wounds, on a commercially available biological wound dressing. Building upon prior reports, we examined whether the amino acid tryptophan would inhibit P. aeruginosa biofilm formation on the 3-dimensional surface of the biological dressing. Bacterial biomass and biofilm polysaccharides were quantified using crystal violet staining or an enzyme linked lectin, respectively. Bacterial cells and biofilm matrix adherent to the wound dressing were visualized through scanning electron microscopy. D-/L-tryptophan inhibited P. aeruginosa biofilm formation on the wound dressing in a dose dependent manner and was not directly cytotoxic to immortalized human keratinocytes although there was some reduction in cellular metabolism or enzymatic activity. More importantly, D-/L-tryptophan did not impair wound healing in a splinted skin wound murine model. Furthermore, wound closure was improved when D-/L-tryptophan treated wound dressing with P. aeruginosa biofilms were compared with untreated dressings. These findings indicate that tryptophan may prove useful for integration into wound dressings to inhibit biofilm formation and promote wound healing. PMID:26342168

  13. Streptococcus pneumoniae biofilm formation and dispersion during colonization and disease

    PubMed Central

    Chao, Yashuan; Marks, Laura R.; Pettigrew, Melinda M.; Hakansson, Anders P.

    2015-01-01

    Streptococcus pneumoniae (the pneumococcus) is a common colonizer of the human nasopharynx. Despite a low rate of invasive disease, the high prevalence of colonization results in millions of infections and over one million deaths per year, mostly in individuals under the age of 5 and the elderly. Colonizing pneumococci form well-organized biofilm communities in the nasopharyngeal environment, but the specific role of biofilms and their interaction with the host during colonization and disease is not yet clear. Pneumococci in biofilms are highly resistant to antimicrobial agents and this phenotype can be recapitulated when pneumococci are grown on respiratory epithelial cells under conditions found in the nasopharyngeal environment. Pneumococcal biofilms display lower levels of virulence in vivo and provide an optimal environment for increased genetic exchange both in vitro and in vivo, with increased natural transformation seen during co-colonization with multiple strains. Biofilms have also been detected on mucosal surfaces during pneumonia and middle ear infection, although the role of these biofilms in the disease process is debated. Recent studies have shown that changes in the nasopharyngeal environment caused by concomitant virus infection, changes in the microflora, inflammation, or other host assaults trigger active release of pneumococci from biofilms. These dispersed bacteria have distinct phenotypic properties and transcriptional profiles different from both biofilm and broth-grown, planktonic bacteria, resulting in a significantly increased virulence in vivo. In this review we discuss the properties of pneumococcal biofilms, the role of biofilm formation during pneumococcal colonization, including their propensity for increased ability to exchange genetic material, as well as mechanisms involved in transition from asymptomatic biofilm colonization to dissemination and disease of otherwise sterile sites. Greater understanding of pneumococcal biofilm

  14. Streptococcus pneumoniae biofilm formation and dispersion during colonization and disease.

    PubMed

    Chao, Yashuan; Marks, Laura R; Pettigrew, Melinda M; Hakansson, Anders P

    2014-01-01

    Streptococcus pneumoniae (the pneumococcus) is a common colonizer of the human nasopharynx. Despite a low rate of invasive disease, the high prevalence of colonization results in millions of infections and over one million deaths per year, mostly in individuals under the age of 5 and the elderly. Colonizing pneumococci form well-organized biofilm communities in the nasopharyngeal environment, but the specific role of biofilms and their interaction with the host during colonization and disease is not yet clear. Pneumococci in biofilms are highly resistant to antimicrobial agents and this phenotype can be recapitulated when pneumococci are grown on respiratory epithelial cells under conditions found in the nasopharyngeal environment. Pneumococcal biofilms display lower levels of virulence in vivo and provide an optimal environment for increased genetic exchange both in vitro and in vivo, with increased natural transformation seen during co-colonization with multiple strains. Biofilms have also been detected on mucosal surfaces during pneumonia and middle ear infection, although the role of these biofilms in the disease process is debated. Recent studies have shown that changes in the nasopharyngeal environment caused by concomitant virus infection, changes in the microflora, inflammation, or other host assaults trigger active release of pneumococci from biofilms. These dispersed bacteria have distinct phenotypic properties and transcriptional profiles different from both biofilm and broth-grown, planktonic bacteria, resulting in a significantly increased virulence in vivo. In this review we discuss the properties of pneumococcal biofilms, the role of biofilm formation during pneumococcal colonization, including their propensity for increased ability to exchange genetic material, as well as mechanisms involved in transition from asymptomatic biofilm colonization to dissemination and disease of otherwise sterile sites. Greater understanding of pneumococcal biofilm

  15. Involvement of Iron in Biofilm Formation by Staphylococcus aureus

    PubMed Central

    Huang, Hsiu-Yun; Cheng, Yi-Ching

    2012-01-01

    Staphylococcus aureus is a human pathogen that forms biofilm on catheters and medical implants. The authors' earlier study established that 1,2,3,4,6-penta-O-galloyl-β-D-glucopyranose (PGG) inhibits biofilm formation by S. aureus by preventing the initial attachment of the cells to a solid surface and reducing the production of polysaccharide intercellular adhesin (PIA). Our cDNA microarray and MALDI-TOF mass spectrometric studies demonstrate that PGG treatment causes the expression of genes and proteins that are normally expressed under iron-limiting conditions. A chemical assay using ferrozine verifies that PGG is a strong iron chelator that depletes iron from the culture medium. This study finds that adding FeSO4 to a medium that contains PGG restores the biofilm formation and the production of PIA by S. aureus SA113. The requirement of iron for biofilm formation by S. aureus SA113 can also be verified using a semi-defined medium, BM, that contains an iron chelating agent, 2, 2′-dipyridyl (2-DP). Similar to the effect of PGG, the addition of 2-DP to BM medium inhibits biofilm formation and adding FeSO4 to BM medium that contains 2-DP restores biofilm formation. This study reveals an important mechanism of biofilm formation by S. aureus SA113. PMID:22479621

  16. Electron microscopic examination of wastewater biofilm formation and structural components.

    PubMed Central

    Eighmy, T T; Maratea, D; Bishop, P L

    1983-01-01

    This research documents in situ wastewater biofilm formation, structure, and physiochemical properties as revealed by scanning and transmission electron microscopy. Cationized ferritin was used to label anionic sites of the biofilm glycocalyx for viewing in thin section. Wastewater biofilm formation paralleled the processes involved in marine biofilm formation. Scanning electron microscopy revealed a dramatic increase in cell colonization and growth over a 144-h period. Constituents included a variety of actively dividing morphological types. Many of the colonizing bacteria were flagellated. Filaments were seen after primary colonization of the surface. Transmission electron microscopy revealed a dominant gram-negative cell wall structure in the biofilm constituents. At least three types of glycocalyces were observed. The predominant glycocalyx possessed interstices and was densely labeled with cationized ferritin. Two of the glycocalyces appeared to mediate biofilm adhesion to the substratum. The results suggest that the predominant glycocalyx of this thin wastewater biofilm serves, in part, to: (i) enclose the bacteria in a matrix and anchor the biofilm to the substratum and (ii) provide an extensive surface area with polyanionic properties. Images PMID:6881965

  17. Biofilm formation of mucosa-associated methanoarchaeal strains

    PubMed Central

    Bang, Corinna; Ehlers, Claudia; Orell, Alvaro; Prasse, Daniela; Spinner, Marlene; Gorb, Stanislav N.; Albers, Sonja-Verena; Schmitz, Ruth A.

    2014-01-01

    Although in nature most microorganisms are known to occur predominantly in consortia or biofilms, data on archaeal biofilm formation are in general scarce. Here, the ability of three methanoarchaeal strains, Methanobrevibacter smithii and Methanosphaera stadtmanae, which form part of the human gut microbiota, and the Methanosarcina mazei strain Gö1 to grow on different surfaces and form biofilms was investigated. All three strains adhered to the substrate mica and grew predominantly as bilayers on its surface as demonstrated by confocal laser scanning microscopy analyses, though the formation of multi-layered biofilms of Methanosphaera stadtmanae and Methanobrevibacter smithii was observed as well. Stable biofilm formation was further confirmed by scanning electron microscopy analysis. Methanosarcina mazei and Methanobrevibacter smithii also formed multi-layered biofilms in uncoated plastic μ-dishesTM, which were very similar in morphology and reached a height of up to 40 μm. In contrast, biofilms formed by Methanosphaera stadtmanae reached only a height of 2 μm. Staining with the two lectins ConA and IB4 indicated that all three strains produced relatively low amounts of extracellular polysaccharides most likely containing glucose, mannose, and galactose. Taken together, this study provides the first evidence that methanoarchaea can develop and form biofilms on different substrates and thus, will contribute to our knowledge on the appearance and physiological role of Methanobrevibacter smithii and Methanosphaera stadtmanae in the human intestine. PMID:25071757

  18. Transcriptional profiling of Legionella pneumophila biofilm cells and the influence of iron on biofilm formation.

    PubMed

    Hindré, Thomas; Brüggemann, Holger; Buchrieser, Carmen; Héchard, Yann

    2008-01-01

    In aquatic environments, biofilms constitute an ecological niche where Legionella pneumophila persists as sessile cells. However, very little information on the sessile mode of life of L. pneumophila is currently available. We report here the development of a model biofilm of L. pneumophila strain Lens and the first transcriptome analysis of L. pneumophila biofilm cells. Global gene expression analysis of sessile cells as compared to two distinct populations of planktonic cells revealed that a substantial proportion of L. pneumophila genes is differentially expressed, as 2.3 % of the 2932 predicted genes exhibited at least a twofold change in gene expression. Comparison with previous results defining the gene expression profile of replicative- and transmissive-phase Legionella suggests that sessile cells resemble bacteria in the replicative phase. Further analysis of the most strongly regulated genes in sessile cells identified two induced gene clusters. One contains genes that encode alkyl hydroperoxide reductases known to act against oxidative stress. The second encodes proteins similar to PvcA and PvcB that are involved in siderophore biosynthesis in Pseudomonas aeruginosa. Since iron has been reported to modify biofilm formation in other species, we further focused on iron control of gene expression and biofilm formation. Among the genes showing the greatest differences in expression between planktonic cells and biofilm, only pvcA and pvcB were regulated by iron concentration. A DeltapvcA L. pneumophila mutant showed no changes in biofilm formation compared to the wild-type, suggesting that the pvcA product is not mandatory for biofilm formation. However, biofilm formation by L. pneumophila wild-type and a DeltapvcA strain was clearly inhibited in iron-rich conditions. PMID:18174123

  19. Glycerol metabolism promotes biofilm formation by Pseudomonas aeruginosa.

    PubMed

    Scoffield, Jessica; Silo-Suh, Laura

    2016-08-01

    Pseudomonas aeruginosa causes persistent infections in the airways of cystic fibrosis (CF) patients. Airway sputum contains various host-derived nutrients that can be utilized by P. aeruginosa, including phosphotidylcholine, a major component of host cell membranes. Phosphotidylcholine can be degraded by P. aeruginosa to glycerol and fatty acids to increase the availability of glycerol in the CF lung. In this study, we explored the role that glycerol metabolism plays in biofilm formation by P. aeruginosa. We report that glycerol metabolism promotes biofilm formation by both a chronic CF isolate (FRD1) and a wound isolate (PAO1) of P. aeruginosa. Moreover, loss of the GlpR regulator, which represses the expression of genes involved in glycerol metabolism, enhances biofilm formation in FRD1 through the upregulation of Pel polysaccharide. Taken together, our results suggest that glycerol metabolism may be a key factor that contributes to P. aeruginosa persistence by promoting biofilm formation. PMID:27392247

  20. Spatial & Temporal Geophysical Monitoring of Microbial Growth and Biofilm Formation

    EPA Science Inventory

    Previous studies have examined the effect of biogenic gases and biomineralization on the acoustic properties of porous media. In this study, we investigated the spatiotemporal effect of microbial growth and biofilm formation on compressional waves and complex conductivity in sand...

  1. Cyclic diguanylate regulation of Bacillus cereus group biofilm formation.

    PubMed

    Fagerlund, Annette; Smith, Veronika; Røhr, Åsmund K; Lindbäck, Toril; Parmer, Marthe P; Andersson, K Kristoffer; Reubsaet, Leon; Økstad, Ole Andreas

    2016-08-01

    Biofilm formation can be considered a bacterial virulence mechanism. In a range of Gram-negatives, increased levels of the second messenger cyclic diguanylate (c-di-GMP) promotes biofilm formation and reduces motility. Other bacterial processes known to be regulated by c-di-GMP include cell division, differentiation and virulence. Among Gram-positive bacteria, where the function of c-di-GMP signalling is less well characterized, c-di-GMP was reported to regulate swarming motility in Bacillus subtilis while having very limited or no effect on biofilm formation. In contrast, we show that in the Bacillus cereus group c-di-GMP signalling is linked to biofilm formation, and to several other phenotypes important to the lifestyle of these bacteria. The Bacillus thuringiensis 407 genome encodes eleven predicted proteins containing domains (GGDEF/EAL) related to c-di-GMP synthesis or breakdown, ten of which are conserved through the majority of clades of the B. cereus group, including Bacillus anthracis. Several of the genes were shown to affect biofilm formation, motility, enterotoxin synthesis and/or sporulation. Among these, cdgF appeared to encode a master diguanylate cyclase essential for biofilm formation in an oxygenated environment. Only two cdg genes (cdgA, cdgJ) had orthologs in B. subtilis, highlighting differences in c-di-GMP signalling between B. subtilis and B. cereus group bacteria. PMID:27116468

  2. Printed paper-based arrays as substrates for biofilm formation

    PubMed Central

    2014-01-01

    The suitability of paper-based arrays for biofilm formation studies by Staphylococcus aureus is demonstrated. Laboratory-coated papers with different physicochemical properties were used as substrates. The array platform was fabricated by patterning the coated papers with vinyl-substituted polydimethylsiloxane (PDMS) -based ink. The affinity of bacteria onto the flexographically printed hydrophobic and smooth PDMS film was very low whereas bacterial adhesion and biofilm formation occurred preferentially on the unprinted areas, i.e. in the reaction arrays. The concentration of the attached bacteria was quantified by determining the viable colony forming unit (CFU/cm2) numbers. The distribution and the extent of surface coverage of the biofilms were determined by atomic force microscopy. In static conditions, the highest bacterial concentration and most highly organized biofilms were observed on substrates with high polarity. On a rough paper surface with low polarity, the biofilm formation was most hindered. Biofilms were effectively removed from a polar substrate upon exposure to (+)-dehydroabietic acid, an anti-biofilm compound. PMID:25006538

  3. Blocking of bacterial biofilm formation by a fish protein coating.

    PubMed

    Vejborg, Rebecca Munk; Klemm, Per

    2008-06-01

    Bacterial biofilm formation on inert surfaces is a significant health and economic problem in a wide range of environmental, industrial, and medical areas. Bacterial adhesion is generally a prerequisite for this colonization process and, thus, represents an attractive target for the development of biofilm-preventive measures. We have previously found that the preconditioning of several different inert materials with an aqueous fish muscle extract, composed primarily of fish muscle alpha-tropomyosin, significantly discourages bacterial attachment and adhesion to these surfaces. Here, this proteinaceous coating is characterized with regards to its biofilm-reducing properties by using a range of urinary tract infectious isolates with various pathogenic and adhesive properties. The antiadhesive coating significantly reduced or delayed biofilm formation by all these isolates under every condition examined. The biofilm-reducing activity did, however, vary depending on the substratum physicochemical characteristics and the environmental conditions studied. These data illustrate the importance of protein conditioning layers with respect to bacterial biofilm formation and suggest that antiadhesive proteins may offer an attractive measure for reducing or delaying biofilm-associated infections. PMID:18424549

  4. Characterization of Staphylococcus aureus Biofilm Formation in Urinary Tract Infection

    PubMed Central

    YOUSEFI, Masoud; POURMAND, Mohammad Reza; FALLAH, Fatemeh; HASHEMI, Ali; MASHHADI, Rahil; NAZARI-ALAM, Ali

    2016-01-01

    Background: The aim of this study was to investigate the antibiotic susceptibility pattern as well as the phenotypic and genotypic biofilm formation ability of Staphylococcus aureus isolates from patients with urinary tract infection (UTI). Methods: A total of 39 isolates of S. aureus were collected from patients with UTI. The antibiotic susceptibility patterns of the isolates were determined by the Kirby-Bauer disk-diffusion. We used the Modified Congo red agar (MCRA) and Microtiter plate methods to assess the ability of biofilm formation. All isolates were examined for determination of biofilm related genes, icaA, fnbA, clfA and bap using PCR method. Results: Linezolid, quinupristin/dalfopristin and chloramphenicol were the most effective agents against S. aureus isolates. Overall, 69.2% of S. aureus isolates were biofilm producers. Resistance to four antibiotics such as nitrofurantoin (71.4% vs. 28.6%, P=0.001), tetracycline (57.7% vs. 42.3%, P=0.028), erythromycin and ciprofloxacin (56% vs. 44%, P=0.017) was higher among biofilm producers than non-biofilm producers. The icaA, fnbA and clfA genes were present in all S. aureus isolates. However, bap gene was not detected in any of the isolates. Conclusion: Our findings reinforce the role of biofilm formation in resistance to antimicrobial agents. Trimethoprimsulfamethoxazole and doxycycline may be used as an effective treatment for UTI caused by biofilm producers S. aureus. Our results suggest that biofilm formation is not dependent to just icaA, fnbA, clfA and bap genes harbor in S. aureus strains. PMID:27252918

  5. Wild Mushroom Extracts as Inhibitors of Bacterial Biofilm Formation

    PubMed Central

    Alves, Maria José; Ferreira, Isabel C. F. R.; Lourenço, Inês; Costa, Eduardo; Martins, Anabela; Pintado, Manuela

    2014-01-01

    Microorganisms can colonize a wide variety of medical devices, putting patients in risk for local and systemic infectious complications, including local-site infections, catheter-related bloodstream infections, and endocarditis. These microorganisms are able to grow adhered to almost every surface, forming architecturally complex communities termed biofilms. The use of natural products has been extremely successful in the discovery of new medicine, and mushrooms could be a source of natural antimicrobials. The present study reports the capacity of wild mushroom extracts to inhibit in vitro biofilm formation by multi-resistant bacteria. Four Gram-negative bacteria biofilm producers (Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa, and Acinetobacter baumannii) isolated from urine were used to verify the activity of Russula delica, Fistulina hepatica, Mycena rosea, Leucopaxilus giganteus, and Lepista nuda extracts. The results obtained showed that all tested mushroom extracts presented some extent of inhibition of biofilm production. Pseudomonas aeruginosa was the microorganism with the highest capacity of biofilm production, being also the most susceptible to the extracts inhibition capacity (equal or higher than 50%). Among the five tested extracts against E. coli, Leucopaxillus giganteus (47.8%) and Mycenas rosea (44.8%) presented the highest inhibition of biofilm formation. The extracts exhibiting the highest inhibitory effect upon P. mirabilis biofilm formation were Sarcodon imbricatus (45.4%) and Russula delica (53.1%). Acinetobacter baumannii was the microorganism with the lowest susceptibility to mushroom extracts inhibitory effect on biofilm production (highest inhibition—almost 29%, by Russula delica extract). This is a pioneer study since, as far as we know, there are no reports on the inhibition of biofilm production by the studied mushroom extracts and in particular against multi-resistant clinical isolates; nevertheless, other studies are

  6. Effect of glucose on Listeria monocytogenes biofilm formation, and assessment of the biofilm's sanitation tolerance.

    PubMed

    Kyoui, Daisuke; Hirokawa, Eri; Takahashi, Hajime; Kuda, Takashi; Kimura, Bon

    2016-08-01

    Listeria monocytogenes is an important cause of human foodborne infections and its ability to form biofilms is a serious concern to the food industry. To reveal the effect of glucose conditions on biofilm formation of L. monocytogenes, 20 strains were investigated under three glucose conditions (0.1, 1.0, and 2.0% w v(-1)) by quantifying the number of cells in the biofilm and observing the biofilm structure after incubation for 24, 72, and 168 h. In addition, the biofilms were examined for their sensitivity to sodium hypochlorite. It was found that high concentrations of glucose reduced the number of viable cells in the biofilms and increased extracellular polymeric substance production. Moreover, biofilms formed at a glucose concentration of 1.0 or 2.0% were more resistant to sodium hypochlorite than those formed at a glucose concentration of 0.1%. This knowledge can be used to help design the most appropriate sanitation strategy. PMID:27353113

  7. Molecular mechanisms involved in Bacillus subtilis biofilm formation

    PubMed Central

    Mielich-Süss, Benjamin; Lopez, Daniel

    2014-01-01

    Summary Biofilms are the predominant lifestyle of bacteria in natural environments, and they severely impact our societies in many different fashions. Therefore, biofilm formation is a topic of growing interest in microbiology, and different bacterial models are currently studied to better understand the molecular strategies that bacteria undergo to build biofilms. Among those, biofilms of the soil-dwelling bacterium Bacillus subtilis are commonly used for this purpose. Bacillus subtilis biofilms show remarkable architectural features that are a consequence of sophisticated programs of cellular specialization and cell-cell communication within the community. Many laboratories are trying to unravel the biological role of the morphological features of biofilms, as well as exploring the molecular basis underlying cellular differentiation. In this review, we present a general perspective of the current state of knowledge of biofilm formation in B. subtilis. In particular, a special emphasis is placed on summarizing the most recent discoveries in the field and integrating them into the general view of these truly sophisticated microbial communities. PMID:24909922

  8. Biofilm formation by Escherichia coli in hypertonic sucrose media.

    PubMed

    Kawarai, Taketo; Furukawa, Soichi; Narisawa, Naoki; Hagiwara, Chisato; Ogihara, Hirokazu; Yamasaki, Makari

    2009-06-01

    High osmotic environments produced by NaCl or sucrose have been used as reliable and traditional methods of food preservation. We tested, Escherichia coli as an indicator of food-contaminating bacterium, to determine if it can form biofilm in a hyperosmotic environment. E. coli K-12 IAM1264 did not form biofilm in LB broth that contained 1 M NaCl. However, the bacterium formed biofilm in LB broth that contained 1 M sucrose, although the planktonic growth was greatly suppressed. The biofilm, formed on solid surfaces, such as titer-plate well walls and glass slides, solely around the air-liquid interface. Both biofilm forming cells and planktonic cells in the hypertonic medium adopted a characteristic, fat and filamentous morphology with no FtsZ rings, which are a prerequisite for septum formation. Biofilm forming cells were found to be alive based on propidium iodide staining. The presence of 1 M sucrose in the food environment is not sufficient to prevent biofilm formation by E. coli. PMID:19447340

  9. Fimbriae have distinguishable roles in Proteus mirabilis biofilm formation.

    PubMed

    Scavone, Paola; Iribarnegaray, Victoria; Caetano, Ana Laura; Schlapp, Geraldine; Härtel, Steffen; Zunino, Pablo

    2016-07-01

    Proteus mirabilis is one of the most common etiological agents of complicated urinary tract infections, especially those associated with catheterization. This is related to the ability of P. mirabilis to form biofilms on different surfaces. This pathogen encodes 17 putative fimbrial operons, the highest number found in any sequenced bacterial species so far. The present study analyzed the role of four P. mirabilis fimbriae (MR/P, UCA, ATF and PMF) in biofilm formation using isogenic mutants. Experimental approaches included migration over catheter, swimming and swarming motility, the semiquantitative assay based on adhesion and crystal violet staining, and biofilm development by immunofluorescence and confocal microscopy. Different assays were performed using LB or artificial urine. Results indicated that the different fimbriae contribute to the formation of a stable and functional biofilm. Fimbriae revealed particular associated roles. First, all the mutants showed a significantly reduced ability to migrate across urinary catheter sections but neither swimming nor swarming motility were affected. However, some mutants formed smaller biofilms compared with the wild type (MRP and ATF) while others formed significantly larger biofilms (UCA and PMF) showing different bioarchitecture features. It can be concluded that P. mirabilis fimbriae have distinguishable roles in the generation of biofilms, particularly in association with catheters. PMID:27091004

  10. Nanoscale Plasma Coating Inhibits Formation of Staphylococcus aureus Biofilm.

    PubMed

    Xu, Yuanxi; Jones, John E; Yu, Haiqing; Yu, Qingsong; Christensen, Gordon D; Chen, Meng; Sun, Hongmin

    2015-12-01

    Staphylococcus aureus commonly infects medical implants or devices, with devastating consequences for the patient. The infection begins with bacterial attachment to the device, followed by bacterial multiplication over the surface of the device, generating an adherent sheet of bacteria known as a biofilm. Biofilms resist antimicrobial therapy and promote persistent infection, making management difficult to futile. Infections might be prevented by engineering the surface of the device to discourage bacterial attachment and multiplication; however, progress in this area has been limited. We have developed a novel nanoscale plasma coating technology to inhibit the formation of Staphylococcus aureus biofilms. We used monomeric trimethylsilane (TMS) and oxygen to coat the surfaces of silicone rubber, a material often used in the fabrication of implantable medical devices. By quantitative and qualitative analysis, the TMS/O2 coating significantly decreased the in vitro formation of S. aureus biofilms; it also significantly decreased in vivo biofilm formation in a mouse model of foreign-body infection. Further analysis demonstrated TMS/O2 coating significantly changed the protein adsorption, which could lead to reduced bacterial adhesion and biofilm formation. These results suggest that TMS/O2 coating can be used to effectively prevent medical implant-related infections. PMID:26369955

  11. Biofilm formation-defective mutants in Pseudomonas putida.

    PubMed

    López-Sánchez, Aroa; Leal-Morales, Antonio; Jiménez-Díaz, Lorena; Platero, Ana I; Bardallo-Pérez, Juan; Díaz-Romero, Alberto; Acemel, Rafael D; Illán, Juan M; Jiménez-López, Julia; Govantes, Fernando

    2016-07-01

    Out of 8000 candidates from a genetic screening for Pseudomonas putida KT2442 mutants showing defects in biofilm formation, 40 independent mutants with diminished levels of biofilm were analyzed. Most of these mutants carried insertions in genes of the lap cluster, whose products are responsible for synthesis, export and degradation of the adhesin LapA. All mutants in this class were strongly defective in biofilm formation. Mutants in the flagellar regulatory genes fleQ and flhF showed similar defects to that of the lap mutants. On the contrary, transposon insertions in the flagellar structural genes fliP and flgG, that also impair flagellar motility, had a modest defect in biofilm formation. A mutation in gacS, encoding the sensor element of the GacS/GacA two-component system, also had a moderate effect on biofilm formation. Additional insertions targeted genes involved in cell envelope function: PP3222, encoding the permease element of an ABC-type transporter and tolB, encoding the periplasmic component of the Tol-OprL system required for outer membrane stability. Our results underscore the central role of LapA, suggest cross-regulation between motility and adhesion functions and provide insights on the role of cell envelope trafficking and maintenance for biofilm development in P. putida. PMID:27190143

  12. Nanoscale Plasma Coating Inhibits Formation of Staphylococcus aureus Biofilm

    PubMed Central

    Xu, Yuanxi; Jones, John E.; Yu, Haiqing; Yu, Qingsong; Christensen, Gordon D.

    2015-01-01

    Staphylococcus aureus commonly infects medical implants or devices, with devastating consequences for the patient. The infection begins with bacterial attachment to the device, followed by bacterial multiplication over the surface of the device, generating an adherent sheet of bacteria known as a biofilm. Biofilms resist antimicrobial therapy and promote persistent infection, making management difficult to futile. Infections might be prevented by engineering the surface of the device to discourage bacterial attachment and multiplication; however, progress in this area has been limited. We have developed a novel nanoscale plasma coating technology to inhibit the formation of Staphylococcus aureus biofilms. We used monomeric trimethylsilane (TMS) and oxygen to coat the surfaces of silicone rubber, a material often used in the fabrication of implantable medical devices. By quantitative and qualitative analysis, the TMS/O2 coating significantly decreased the in vitro formation of S. aureus biofilms; it also significantly decreased in vivo biofilm formation in a mouse model of foreign-body infection. Further analysis demonstrated TMS/O2 coating significantly changed the protein adsorption, which could lead to reduced bacterial adhesion and biofilm formation. These results suggest that TMS/O2 coating can be used to effectively prevent medical implant-related infections. PMID:26369955

  13. Regulation of ATP-dependent P-(Ser)-HPr formation in Streptococcus mutans and Streptococcus salivarius.

    PubMed Central

    Thevenot, T; Brochu, D; Vadeboncoeur, C; Hamilton, I R

    1995-01-01

    Sugar transport via the phosphoenolpyruvate (PEP) phosphotransferase system involves PEP-dependent phosphorylation of the general phosphotransferase system protein, HPr, at histidine 15. However, gram-positive bacteria can also carry out ATP-dependent phosphorylation of HPr at serine 46 by means of (Ser)HPr kinase. In this study, we demonstrate that (Ser)HPr kinase in crude preparations of Streptococcus mutans Ingbritt and Streptococcus salivarius ATCC 25975 is membrane associated, with pH optima of 7.0 and 7.5, respectively. The latter organism possessed 7- to 27-fold-higher activity than S. mutans NCTC 10449, GS-5, and Ingbritt strains. The enzyme in S. salivarius was activated by fructose-1,6-bisphosphate (FBP) twofold with 0.05 mM ATP, but this intermediate was slightly inhibitory with 1.0 mM ATP at FBP concentrations up to 10 mM. Similar inhibition was observed with the enzyme from S. mutans Ingbritt. A variety of other glycolytic intermediates had no effect on kinase activity under these conditions. The activity and regulation of (Ser)HPr kinase were assessed in vivo by monitoring P-(Ser)-HPr formation in steady-state cells of S. mutans Ingbritt grown in continuous culture with limiting glucose (10 and 50 mM) and with excess glucose (100 and 200 mM). All four forms of HPr [free HPr, P approximately (His)-HPr, P-(Ser)-HPr, and P approximately (His)-P-(Ser)-HPr] could be detected in the cells; however, significant differences in the intracellular levels of the forms were apparent during growth at different glucose concentrations. The total HPr pool increased with increasing concentrations of glucose in the medium, with significant increases in the P-(Ser)-HPr and P approximately HHis)-P-(Ser)-HPr concentrations. For example, while total PEP-dependent phosphorylation [P approximately(His)-HPr plus P approximately (His)-P-(Ser)-HPr] varied only from 21.5 to 52.5 microgram mg of cell protein (-1) in cells grown at the four glucose concentrations, the total ATP

  14. Proteome Analysis Identifies the Dpr Protein of Streptococcus mutans as an Important Factor in the Presence of Early Streptococcal Colonizers of Tooth Surfaces

    PubMed Central

    Yoshida, Akihiro; Niki, Mamiko; Yamamoto, Yuji; Yasunaga, Ai; Ansai, Toshihiro

    2015-01-01

    Oral streptococci are primary colonizers of tooth surfaces and Streptococcus mutans is the principal causative agent of dental caries in humans. A number of proteins are involved in the formation of monospecies biofilms by S. mutans. This study analyzed the protein expression profiles of S. mutans biofilms formed in the presence or absence of S. gordonii, a pioneer colonizer of the tooth surface, by two-dimensional gel electrophoresis (2-DE). After identifying S. mutans proteins by Mass spectrometric analysis, their expression in the presence of S. gordonii was analyzed. S. mutans was inoculated with or without S. gordonii DL1. The two species were compartmentalized using 0.2-μl Anopore membranes. The biofilms on polystyrene plates were harvested, and the solubilized proteins were separated by 2-DE. When S. mutans biofilms were formed in the presence of S. gordonii, the peroxide resistance protein Dpr of the former showed 4.3-fold increased expression compared to biofilms that developed in the absence of the pioneer colonizer. In addition, we performed a competition assay using S. mutans antioxidant protein mutants together with S. gordonii and other initial colonizers. Growth of the dpr-knockout S. mutans mutant was significantly inhibited by S. gordonii, as well as by S. sanguinis. Furthermore, a cell viability assay revealed that the viability of the dpr-defective mutant was significantly attenuated compared to the wild-type strain when co-cultured with S. gordonii. Therefore, these results suggest that Dpr might be one of the essential proteins for S. mutans survival on teeth in the presence of early colonizing oral streptococci. PMID:25816242

  15. Effect of Punica granatum L. Flower Water Extract on Five Common Oral Bacteria and Bacterial Biofilm Formation on Orthodontic Wire

    PubMed Central

    VAHID DASTJERDI, Elahe; ABDOLAZIMI, Zahra; GHAZANFARIAN, Marzieh; AMDJADI, Parisa; KAMALINEJAD, Mohammad; MAHBOUBI, Arash

    2014-01-01

    Background: Use of herbal extracts and essences as natural antibacterial compounds has become increasingly popular for the control of oral infectious diseases. Therefore, finding natural antimicrobial products with the lowest side effects seems necessary. The present study sought to assess the effect of Punica granatum L. water extract on five oral bacteria and bacterial biofilm formation on orthodontic wire. Methods: Antibacterial property of P. granatum L. water extract was primarily evaluated in brain heart infusion agar medium using well-plate method. The minimum inhibitory concentration and minimum bactericidal concentration were determined by macro-dilution method. The inhibitory effect on orthodontic wire bacterial biofilm formation was evaluated using viable cell count in biofilm medium. At the final phase, samples were fixed and analyzed by Scanning Electron Microscopy. Results: The growth inhibition zone diameter was proportional to the extract concentration. The water extract demonstrated the maximum antibacterial effect on Streptococcus sanguinis ATCC 10556 with a minimum inhibitory concentration of 6.25 mg/ml and maximum bactericidal effect on S. sanguinis ATCC 10556 and S. sobrinus ATCC 27607 with minimum bactericidal concentration of 25 mg/ml. The water extract decreased bacterial biofilm formation by S. sanguinis, S. sobrinus, S. salivarius, S. mutans ATCC 35608 and E. faecalis CIP 55142 by 93.7–100%, 40.6–99.9%, 85.2–86.5%, 66.4–84.4% and 35.5–56.3% respectively. Conclusion: Punica granatum L. water extract had significant antibacterial properties against 5 oral bacteria and prevented orthodontic wire bacterial biofilm formation. However, further investigations are required to generalize these results to the clinical setting. PMID:26171362

  16. Marine bacterial isolates inhibit biofilm formation and disrupt mature biofilms of Pseudomonas aeruginosa PAO1.

    PubMed

    Nithya, Chari; Begum, Mansur Farzana; Pandian, Shunmugiah Karutha

    2010-09-01

    According to the Centers for Disease Control and Prevention, biofilms cause 65% of infections in developed countries. Pseudomonas aeruginosa biofilm cause life threatening infections in cystic fibrosis infection and they are 1,000 times more tolerant to antibiotic than the planktonic cells. As quorum sensing, hydrophobicity index and extracellular polysaccharide play a crucial role in biofilm formation, extracts from 46 marine bacterial isolates were screened against these factors in P. aeruginosa. Eleven extracts showed antibiofilm activity. Extracts of S6-01 (Bacillus indicus = MTCC 5559) and S6-15 (Bacillus pumilus = MTCC 5560) inhibited the formation of PAO1 biofilm up to 95% in their Biofilm Inhibitory Concentration(BIC) of 50 and 60 microg/ml and 85% and 64% in the subinhibitory concentrations (1/4 and 1/8 of the BIC, respectively). Furthermore, the mature biofilm was disrupted to 70-74% in their BIC. The antibiofilm compound from S6-15 was partially purified using solvent extraction followed by TLC and silica column and further characterized by IR analysis. Current study for the first time reveals the antibiofilm and antiquorum-sensing activity of B. pumilus, B. indicus, Bacillus arsenicus, Halobacillus trueperi, Ferrimonas balearica, and Marinobacter hydrocarbonoclasticus from marine habitat. PMID:20665017

  17. DNase I and proteinase K impair Listeria monocytogenes biofilm formation and induce dispersal of pre-existing biofilms.

    PubMed

    Nguyen, Uyen T; Burrows, Lori L

    2014-09-18

    Current sanitation methods in the food industry are not always sufficient for prevention or dispersal of Listeria monocytogenes biofilms. Here, we determined if prevention of adherence or dispersal of existing biofilms could occur if biofilm matrix components were disrupted enzymatically. Addition of DNase during biofilm formation reduced attachment (<50% of control) to polystyrene. Treatment of established 72h biofilms with 100μg/ml of DNase for 24h induced incomplete biofilm dispersal, with <25% biofilm remaining compared to control. In contrast, addition of proteinase K completely inhibited biofilm formation, and 72h biofilms-including those grown under stimulatory conditions-were completely dispersed with 100μg/ml proteinase K. Generally-regarded-as-safe proteases bromelain and papain were less effective dispersants than proteinase K. In a time course assay, complete dispersal of L. monocytogenes biofilms from both polystyrene and type 304H food-grade stainless steel occurred within 5min at proteinase K concentrations above 25μg/ml. These data confirm that both DNA and proteins are required for L. monocytogenes biofilm development and maintenance, and that these components of the biofilm matrix can be targeted for effective prevention and removal of biofilms. PMID:25043896

  18. Biofilm Formation among Clinical and Food Isolates of Listeria monocytogenes

    PubMed Central

    Barbosa, Joana; Borges, Sandra; Camilo, Ruth; Magalhães, Rui; Ferreira, Vânia; Santos, Isabel; Silva, Joana; Almeida, Gonçalo; Teixeira, Paula

    2013-01-01

    Objective. A total of 725 Listeria monocytogenes isolates, 607 from various foods and 118 from clinical cases of listeriosis, were investigated concerning their ability to form biofilms, at 4°C during 5 days and at 37°C during 24 h. Methods. Biofilm production was carried out on polystyrene tissue culture plates. Five L. monocytogenes isolates were tested for biofilm formation after being exposed to acidic and osmotic stress conditions. Results. Significant differences (P < 0.01) between clinical and food isolates were observed. At 37°C for 24 h, most food isolates were classified as weak or moderate biofilm formers whereas all the clinical isolates were biofilm producers, although the majority were weak. At 4°C during 5 days, 65 and 59% isolates, from food and clinical cases, respectively, were classified as weak. After both sublethal stresses, at 37°C just one of the five isolates tested was shown to be more sensitive to subsequent acidic exposure. However, at 4°C both stresses did not confer either sensitivity or resistance. Conclusions. Significant differences between isolates origin, temperature, and sublethal acidic stress were observed concerning the ability to form biofilms. Strain, origin, and environmental conditions can determine the level of biofilm production by L. monocytogenes isolates. PMID:24489549

  19. Inhibition of Staphylococcal Biofilm Formation by Nitrite▿ †

    PubMed Central

    Schlag, Steffen; Nerz, Christiane; Birkenstock, Timo A.; Altenberend, Florian; Götz, Friedrich

    2007-01-01

    Several environmental stresses have been demonstrated to increase polysaccharide intercellular adhesin (PIA) synthesis and biofilm formation by the human pathogens Staphylococcus aureus and Staphylococcus epidermidis. In this study we characterized an adaptive response of S. aureus SA113 to nitrite-induced stress and show that it involves concomitant impairment of PIA synthesis and biofilm formation. Transcriptional analysis provided evidence that nitrite, either as the endogenous product of respiratory nitrate reduction or after external addition, causes repression of the icaADBC gene cluster, mediated likely by IcaR. Comparative microarray analysis revealed a global change in gene expression during growth in the presence of 5 mM sodium nitrite and indicated a response to oxidative and nitrosative stress. Many nitrite-induced genes are involved in DNA repair, detoxification of reactive oxygen and nitrogen species, and iron homeostasis. Moreover, preformed biofilms could be eradicated by the addition of nitrite, likely the result of the formation of toxic acidified nitrite derivatives. Nitrite-mediated inhibition of S. aureus biofilm formation was abrogated by the addition of nitric oxide (NO) scavengers, suggesting that NO is directly or indirectly involved. Nitrite also repressed biofilm formation of S. epidermidis RP62A. PMID:17720780

  20. Deacetylation of Fungal Exopolysaccharide Mediates Adhesion and Biofilm Formation

    PubMed Central

    Lee, Mark J.; Geller, Alexander M.; Bamford, Natalie C.; Liu, Hong; Gravelat, Fabrice N.; Snarr, Brendan D.; Le Mauff, François; Chabot, Joseé; Ralph, Benjamin; Ostapska, Hanna; Lehoux, Mélanie; Cerone, Robert P.; Baptista, Stephanie D.; Vinogradov, Evgeny; Filler, Scott G.; Howell, P. Lynne

    2016-01-01

    ABSTRACT The mold Aspergillus fumigatus causes invasive infection in immunocompromised patients. Recently, galactosaminogalactan (GAG), an exopolysaccharide composed of galactose and N-acetylgalactosamine (GalNAc), was identified as a virulence factor required for biofilm formation. The molecular mechanisms underlying GAG biosynthesis and GAG-mediated biofilm formation were unknown. We identified a cluster of five coregulated genes that were dysregulated in GAG-deficient mutants and whose gene products share functional similarity with proteins that mediate the synthesis of the bacterial biofilm exopolysaccharide poly-(β1-6)-N-acetyl-d-glucosamine (PNAG). Bioinformatic analyses suggested that the GAG cluster gene agd3 encodes a protein containing a deacetylase domain. Because deacetylation of N-acetylglucosamine residues is critical for the function of PNAG, we investigated the role of GAG deacetylation in fungal biofilm formation. Agd3 was found to mediate deacetylation of GalNAc residues within GAG and render the polysaccharide polycationic. As with PNAG, deacetylation is required for the adherence of GAG to hyphae and for biofilm formation. Growth of the Δagd3 mutant in the presence of culture supernatants of the GAG-deficient Δuge3 mutant rescued the biofilm defect of the Δagd3 mutant and restored the adhesive properties of GAG, suggesting that deacetylation is an extracellular process. The GAG biosynthetic gene cluster is present in the genomes of members of the Pezizomycotina subphylum of the Ascomycota including a number of plant-pathogenic fungi and a single basidiomycete species, Trichosporon asahii, likely a result of recent horizontal gene transfer. The current study demonstrates that the production of cationic, deacetylated exopolysaccharides is a strategy used by both fungi and bacteria for biofilm formation. PMID:27048799

  1. Virstatin inhibits biofilm formation and motility of Acinetobacter baumannii

    PubMed Central

    2014-01-01

    Background Acinetobacter baumannii has emerged as an opportunistic nosocomial pathogen causing infections worldwide. One reason for this emergence is due to its natural ability to survive in the hospital environment, which may be explained by its capacity to form biofilms. Cell surface appendages are important determinants of the A. baumannii biofilm formation and as such constitute interesting targets to prevent the development of biofilm-related infections. A chemical agent called virstatin was recently described to impair the virulence of Vibrio cholerae by preventing the expression of its virulence factor, the toxin coregulated pilus (type IV pilus). The objective of this work was to investigate the potential effect of virstatin on A. baumannii biofilms. Results After a dose–response experiment, we determined that 100 μM virstatin led to an important decrease (38%) of biofilms formed by A. baumannii ATCC17978 grown under static mode. We demonstrated that the production of biofilms grown under dynamic mode was also delayed and reduced. The biofilm susceptibility to virstatin was then tested for 40 clinical and reference A. baumannii strains. 70% of the strains were susceptible to virstatin (with a decrease of 10 to 65%) when biofilms grew in static mode, whereas 60% of strains respond to the treatment when their biofilms grew in dynamic mode. As expected, motility and atomic force microscopy experiments showed that virstatin acts on the A. baumannii pili biogenesis. Conclusions By its action on pili biogenesis, virstatin demonstrated a very promising antibiofilm activity affecting more than 70% of the A. baumannii clinical isolates. PMID:24621315

  2. Heparin-Binding Motifs and Biofilm Formation by Candida albicans

    PubMed Central

    Green, Julianne V.; Orsborn, Kris I.; Zhang, Minlu; Tan, Queenie K. G.; Greis, Kenneth D.; Porollo, Alexey; Andes, David R.; Long Lu, Jason; Hostetter, Margaret K.

    2013-01-01

    Candida albicans is a leading pathogen in infections of central venous catheters, which are frequently infused with heparin. Binding of C. albicans to medically relevant concentrations of soluble and plate-bound heparin was demonstrable by confocal microscopy and enzyme-linked immunosorbent assay (ELISA). A sequence-based search identified 34 C. albicans surface proteins containing ≥1 match to linear heparin-binding motifs. The virulence factor Int1 contained the most putative heparin-binding motifs (n = 5); peptides encompassing 2 of 5 motifs bound to heparin-Sepharose. Alanine substitution of lysine residues K805/K806 in 804QKKHQIHK811 (motif 1 of Int1) markedly attenuated biofilm formation in central venous catheters in rats, whereas alanine substitution of K1595/R1596 in 1593FKKRFFKL1600 (motif 4 of Int1) did not impair biofilm formation. Affinity-purified immunoglobulin G (IgG) recognizing motif 1 abolished biofilm formation in central venous catheters; preimmune IgG had no effect. After heparin treatment of C. albicans, soluble peptides from multiple C. albicans surface proteins were detected, such as Eno1, Pgk1, Tdh3, and Ssa1/2 but not Int1, suggesting that heparin changes candidal surface structures and may modify some antigens critical for immune recognition. These studies define a new mechanism of biofilm formation for C. albicans and a novel strategy for inhibiting catheter-associated biofilms. PMID:23904295

  3. Adhesion and formation of microbial biofilms in complex microfluidic devices

    SciTech Connect

    Kumar, Aloke; Karig, David K; Neethirajan, Suresh; Suresh, Anil K; Srijanto, Bernadeta R; Mukherjee, Partha P; Retterer, Scott T; Doktycz, Mitchel John

    2012-01-01

    Shewanella oneidensis is a metal reducing bacterium, which is of interest for bioremediation and clean energy applications. S. oneidensis biofilms play a critical role in several situations such as in microbial energy harvesting devices. Here, we use a microfluidic device to quantify the effects of hydrodynamics on the biofilm morphology of S. oneidensis. For different rates of fluid flow through a complex microfluidic device, we studied the spatiotemporal dynamics of biofilms, and we quantified several morphological features such as spatial distribution, cluster formation and surface coverage. We found that hydrodynamics resulted in significant differences in biofilm dynamics. The baffles in the device created regions of low and high flow in the same device. At higher flow rates, a nonuniform biofilm develops, due to unequal advection in different regions of the microchannel. However, at lower flow rates, a more uniform biofilm evolved. This depicts competition between adhesion events, growth and fluid advection. Atomic force microscopy (AFM) revealed that higher production of extra-cellular polymeric substances (EPS) occurred at higher flow velocities.

  4. Chemotaxis in P. Aeruginosa Biofilm Formation

    NASA Astrophysics Data System (ADS)

    Bienvenu, Samuel; Strain, Shinji; Thatcher, Travis; Gordon, Vernita

    2010-10-01

    Pseudomonas biofilms form infections in the lungs of Cystic Fibrosis (CF) patients that damage lung tissue and lead to death. Previous work shows chemotaxis is important for Pseudomonas in CF lungs. The work studied swimming bacteria at high concentrations. In contrast, medically relevant biofilms initiate from sparse populations of surface-bound bacteria. The recent development of software techniques for automated, high-throughput bacteria tracking leaves us well-poised to quantitatively study these chemotactic conditions. We will develop experimental systems for such studies, focusing on L-Arginine (an amino acid), D-Galactose (a sugar present in lungs), and succinate and glucose (carbon sources for bacteria). This suite of chemoattractants will allow us to study how chemoattractant characteristics--size and diffusion behavior--change bacterial response; the interaction of competing chemoattractants; and, differences in bacterial behaviors, like motility modes, in response to different types of chemoattractions and varying neighbor cell density.

  5. Lucilia sericata Chymotrypsin Disrupts Protein Adhesin-Mediated Staphylococcal Biofilm Formation

    PubMed Central

    Nigam, Yamni; Sawyer, James; Mack, Dietrich; Pritchard, David I.

    2013-01-01

    Staphylococcus aureus and Staphylococcus epidermidis biofilms cause chronic infections due to their ability to form biofilms. The excretions/secretions of Lucilia sericata larvae (maggots) have effective activity for debridement and disruption of bacterial biofilms. In this paper, we demonstrate how chymotrypsin derived from maggot excretions/secretions disrupts protein-dependent bacterial biofilm formation mechanisms. PMID:23220967

  6. Light therapy: complementary antibacterial treatment of oral biofilm.

    PubMed

    Feuerstein, O

    2012-09-01

    Conventional antibacterial treatment fails to eradicate biofilms associated with common infections of the oral cavity. Unlike chemical agents, which are less effective than anticipated, owing to diffusion limitations in biofilms, light is more effective on bacteria in biofilm than in suspension. Effectiveness depends also on the type and parameters of the light. We tested the phototoxic effects of non-coherent blue light (wavelengths, 400-500 nm) and CO(2) laser (wavelength, 10.6 μm), which have different mechanisms of action on the oral bacterium Streptoccocus mutans, in biofilm and on tooth enamel. Exposure of S. mutans in biofilm to blue light had a delayed effect on bacterial viability throughout the biofilm and a sustained antibacterial effect on biofilm newly formed by previously irradiated bacteria. A synergistic antibacterial effect between blue light and H(2)O(2) may enhance the phototoxic effect, which involves a photochemical mechanism mediated by reactive oxygen species (ROS) formation. The effect of CO(2) laser irradiation on the viability of S. mutans in biofilm on enamel samples appeared to be higher in the deep layers, due to heating of the enamel surface by the absorbed energy. Biofilms do not interfere with the chemical changes resulting from irradiation, which may increase the enamel's resistance to acid attack. PMID:22899690

  7. Novel Multiscale Modeling Tool Applied to Pseudomonas aeruginosa Biofilm Formation

    PubMed Central

    Biggs, Matthew B.; Papin, Jason A.

    2013-01-01

    Multiscale modeling is used to represent biological systems with increasing frequency and success. Multiscale models are often hybrids of different modeling frameworks and programming languages. We present the MATLAB-NetLogo extension (MatNet) as a novel tool for multiscale modeling. We demonstrate the utility of the tool with a multiscale model of Pseudomonas aeruginosa biofilm formation that incorporates both an agent-based model (ABM) and constraint-based metabolic modeling. The hybrid model correctly recapitulates oxygen-limited biofilm metabolic activity and predicts increased growth rate via anaerobic respiration with the addition of nitrate to the growth media. In addition, a genome-wide survey of metabolic mutants and biofilm formation exemplifies the powerful analyses that are enabled by this computational modeling tool. PMID:24147108

  8. Effects of Material Properties on Bacterial Adhesion and Biofilm Formation.

    PubMed

    Song, F; Koo, H; Ren, D

    2015-08-01

    Adhesion of microbes, such as bacteria and fungi, to surfaces and the subsequent formation of biofilms cause multidrug-tolerant infections in humans and fouling of medical devices. To address these challenges, it is important to understand how material properties affect microbe-surface interactions and engineer better nonfouling materials. Here we review the recent progresses in this field and discuss the main challenges and opportunities. In particular, we focus on bacterial biofilms and review the effects of surface energy, charge, topography, and stiffness of substratum material on bacterial adhesion. We summarize how these surface properties influence oral biofilm formation, and we discuss the important findings from nondental systems that have potential applications in dental medicine. PMID:26001706

  9. Optical reflectance assay for the detection of biofilm formation.

    PubMed

    Broschat, Shira L; Loge, Frank J; Peppin, Jason D; White, David; Call, Douglas R; Kuhn, Edward

    2005-01-01

    We describe the protocol for an inexpensive and nondestructive optical reflectance assay for the measurement of biofilm formation. Reflectance data are obtained using an Ocean Optics (Dunedin, Florida) USB 2000 spectrometer with a polychromatic light source. A fiber optic cable is used both for illumination and collection, and Ocean Optics OOIBase32 Platinum software is used for preliminary processing of the data. Differences in reflectance data collected at times ranging from 2 to 24 h distinguish between cell attachment and volume growth for two strains of Enterococci. Confocal scanning laser microscopy imaging is used to confirm these results. Phase contrast microscopy images are also obtained in conjunction with reflectance measurements for several different biofilm specimens. The experiments consider biofilm formation on glass and polystyrene substrata, but the method can be used for many other abiotic substrata of interest, both opaque and nonopaque. PMID:16178660

  10. Inactivation of the gbpA Gene of Streptococcus mutans Alters Structural and Functional Aspects of Plaque Biofilm Which Are Compensated by Recombination of the gtfB and gtfC Genes

    PubMed Central

    Hazlett, Karsten R. O.; Mazurkiewicz, Joseph E.; Banas, Jeffrey A.

    1999-01-01

    Inactivation of the gbpA gene of Streptococcus mutans increases virulence in a gnotobiotic rat model and also promotes in vivo accumulation of organisms in which gtfB and gtfC have recombined to reduce virulence (K. R. O. Hazlett, S. M. Michalek, and J. A. Banas, Infect. Immun. 66:2180–2185, 1998). These changes in virulence were hypothesized to result from changes in plaque structure. We have utilized an in vitro plaque model to test the hypothesis that the absence of GbpA alters S. mutans plaque structure and that the presence of gtfBC recombinant organisms within a gbpA background restores a wild-type (wt)-like plaque structure. When grown in the presence of sucrose within hydroxyapatite-coated wells, the wt S. mutans plaque consisted primarily of large aggregates which did not completely coat the hydroxyapatite surface, whereas the gbpA mutant plaque consisted of a uniform layer of smaller aggregates which almost entirely coated the hydroxyapatite. If 25% of the gbpA mutants used as inoculum were also gtfBC recombinants (gbpA/25%gtfBC), a wt-like plaque was formed. These changes in plaque structure correlated with differences in susceptibility to ampicillin; gbpA plaque organisms were more susceptible than organisms in either the wt or gbpA/25%gtfBC plaques. These data allow the conclusion that GbpA contributes to S. mutans plaque biofilm development. Since the changes in plaque structure detailed in this report correlate well with previously observed changes in virulence, it seems likely that S. mutans biofilm structure influences virulence. A potential model for this influence, which can account for the gtfBC recombination compensating gbpA inactivation, is that the ratio of glucan to glucan-binding protein is a critical factor in plaque development. PMID:10417155

  11. Bacterial adherence and biofilm formation on medical implants: a review.

    PubMed

    Veerachamy, Suganthan; Yarlagadda, Tejasri; Manivasagam, Geetha; Yarlagadda, Prasad Kdv

    2014-10-01

    Biofilms are a complex group of microbial cells that adhere to the exopolysaccharide matrix present on the surface of medical devices. Biofilm-associated infections in the medical devices pose a serious problem to the public health and adversely affect the function of the device. Medical implants used in oral and orthopedic surgery are fabricated using alloys such as stainless steel and titanium. The biological behavior, such as osseointegration and its antibacterial activity, essentially depends on both the chemical composition and the morphology of the surface of the device. Surface treatment of medical implants by various physical and chemical techniques are attempted in order to improve their surface properties so as to facilitate bio-integration and prevent bacterial adhesion. The potential source of infection of the surrounding tissue and antimicrobial strategies are from bacteria adherent to or in a biofilm on the implant which should prevent both biofilm formation and tissue colonization. This article provides an overview of bacterial biofilm formation and methods adopted for the inhibition of bacterial adhesion on medical implants. PMID:25406229

  12. Biofilm formation on the surface of ceramic tiles.

    PubMed

    Sessa, R; Di Pietro, M; Zamparelli, M; Schiavoni, G; Del Piano, M

    2000-10-01

    The aim of the study was to investigate the formation of biofilm on the surface of ceramic tiles, widely present in public and private buildings, using six parallel flow chambers. Our flow system was conceived and made to compare biofilm results by parallel distributed rectangular tiles. The tiles, divided into two identical A and B sections, were placed within the flow chambers. Biofilm formation was performed after 72 h and was quantified by viable counts of bacteria. Average viable counts ranged from 1.1x10(7) to 7.3x10(7) cfu cm(-2) and from 1.1x10(7) to 5.8x10(7) cfu cm(-2) respectively for biofilm A and B sections. As statistical analysis does not show significant differences, we can conclude that biofilms obtained were so similar to each other that they confirmed the system reproducibility. Our next step will be to use our system to study Legionella pneumophila and to evaluate the efficacy of antibacterial agents. PMID:11061629

  13. Nanocatalysts promote Streptococcus mutans biofilm matrix degradation and enhance bacterial killing to suppress dental caries in vivo.

    PubMed

    Gao, Lizeng; Liu, Yuan; Kim, Dongyeop; Li, Yong; Hwang, Geelsu; Naha, Pratap C; Cormode, David P; Koo, Hyun

    2016-09-01

    Dental biofilms (known as plaque) are notoriously difficult to remove or treat because the bacteria can be enmeshed in a protective extracellular matrix. It can also create highly acidic microenvironments that cause acid-dissolution of enamel-apatite on teeth, leading to the onset of dental caries. Current antimicrobial agents are incapable of disrupting the matrix and thereby fail to efficiently kill the microbes within plaque-biofilms. Here, we report a novel strategy to control plaque-biofilms using catalytic nanoparticles (CAT-NP) with peroxidase-like activity that trigger extracellular matrix degradation and cause bacterial death within acidic niches of caries-causing biofilm. CAT-NP containing biocompatible Fe3O4 were developed to catalyze H2O2 to generate free-radicals in situ that simultaneously degrade the biofilm matrix and rapidly kill the embedded bacteria with exceptional efficacy (>5-log reduction of cell-viability). Moreover, it displays an additional property of reducing apatite demineralization in acidic conditions. Using 1-min topical daily treatments akin to a clinical situation, we demonstrate that CAT-NP in combination with H2O2 effectively suppress the onset and severity of dental caries while sparing normal tissues in vivo. Our results reveal the potential to exploit nanocatalysts with enzyme-like activity as a potent alternative approach for treatment of a prevalent biofilm-associated oral disease. PMID:27294544

  14. Biofilm formation by strains of Leuconostoc citreum and L. mesenteroides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aims: To compare for the first time biofilm formation among strains of Leuconostoc citreum and L. mesenteroides that produce varying types of extracellular glucans. Methods and Results: Twelve strains of Leuconostoc sp. that produce extracellular glucans were compared for their capacity to produ...

  15. BACTERIAL BIOFILM FORMATION UNDER MICROGRAVITY CONDITIONS. (R825503)

    EPA Science Inventory

    Although biofilm formation is widely documented on Earth, it has not been demonstrated in the absence of gravity. To explore this possibility, Pseudomonas aeruginosa, suspended in sterile buffer, was flown in a commercial payload on space shuttle flight STS-95. During earth or...

  16. Effect of residual sanitizers on Salmonella enterica biofilm formation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Salmonella enterica are a diverse group of bacteria that represent a serious risk to public health. Bacterial attachment on food and contact surfaces can lead to biofilm formation, and once in this state, bacteria are more resistant to sanitization and may serve as a continuous contam...

  17. Visualizing biofilm formation in endotracheal tubes using endoscopic three-dimensional optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Heidari, Andrew E.; Moghaddam, Samer; Troung, Kimberly K.; Chou, Lidek; Genberg, Carl; Brenner, Matthew; Chen, Zhongping

    2015-12-01

    Biofilm formation has been linked to ventilator-associated pneumonia, which is a prevalent infection in hospital intensive care units. Currently, there is no rapid diagnostic tool to assess the degree of biofilm formation or cellular biofilm composition. Optical coherence tomography (OCT) is a minimally invasive, nonionizing imaging modality that can be used to provide high-resolution cross-sectional images. Biofilm deposited in critical care patients' endotracheal tubes was analyzed in vitro. This study demonstrates that OCT could potentially be used as a diagnostic tool to analyze and assess the degree of biofilm formation and extent of airway obstruction caused by biofilm in endotracheal tubes.

  18. Antibiotic Resistance Related to Biofilm Formation in Klebsiella pneumoniae

    PubMed Central

    Vuotto, Claudia; Longo, Francesca; Balice, Maria Pia; Donelli, Gianfranco; Varaldo, Pietro E.

    2014-01-01

    The Gram-negative opportunistic pathogen, Klebsiella pneumoniae, is responsible for causing a spectrum of community-acquired and nosocomial infections and typically infects patients with indwelling medical devices, especially urinary catheters, on which this microorganism is able to grow as a biofilm. The increasingly frequent acquisition of antibiotic resistance by K. pneumoniae strains has given rise to a global spread of this multidrug-resistant pathogen, mostly at the hospital level. This scenario is exacerbated when it is noted that intrinsic resistance to antimicrobial agents dramatically increases when K. pneumoniae strains grow as a biofilm. This review will summarize the findings about the antibiotic resistance related to biofilm formation in K. pneumoniae. PMID:25438022

  19. Identification and characterization of biofilm formation-defective mutants of Xanthomonas citri subsp. citri.

    PubMed

    Malamud, Florencia; Homem, Rafael Augusto; Conforte, Valeria Paola; Yaryura, Pablo Marcelo; Castagnaro, Atilio Pedro; Marano, María Rosa; do Amaral, Alexandre Morais; Vojnov, Adrián Alberto

    2013-09-01

    Xanthomonas citri subsp. citri (Xcc) develops a biofilm structure both in vitro and in vivo. Despite all the progress achieved by studies regarding biofilm formation, many of its mechanisms remain poorly understood. This work focuses on the identification of new genes involved in biofilm formation and how they are related to motility, virulence and chemotaxis in Xcc. A Tn5 library of approximately 6000 Xcc (strain 306) mutants was generated and screened to search for biofilm formation defective strains. We identified 23 genes not previously associated with biofilm formation. The analysis of the 23 mutants not only revealed the involvement of new genes in biofilm formation, but also reinforced the importance of exopolysaccharide production, motility and cell surface structures in this process. This collection of biofilm-defective mutants underscores the multifactorial genetic programme underlying the establishment of biofilm in Xcc. PMID:23813675

  20. Biofilm formation by Staphylococcus aureus isolates from skin and soft tissue infections.

    PubMed

    Kwiecinski, Jakub; Kahlmeter, Gunnar; Jin, Tao

    2015-05-01

    Many diseases caused by Staphylococcus aureus are associated with biofilm formation. However, the ability of S. aureus isolates from skin and soft tissue infections to form biofilms has not yet been investigated. We tested 160 isolates from patients with various skin infections for biofilm-forming capacity in different growth media. All the isolates formed biofilms, the extent of which depended on the type of growth medium. The thickest biofilms were formed when both plasma and glucose were present in the broth; in this case, S. aureus incorporated host fibrin into the biofilm's matrix. There were no differences in the biofilm formation between isolates from different types of skin infections, except for a particularly good biofilm formation by isolates from diabetic wounds and a weaker biofilm formation by isolates from impetigo. In conclusion, biofilm formation is a universal behavior of S. aureus isolates from skin infections. In some cases, such as in diabetic wounds, a particularly strong biofilm formation most likely contributes to the chronic and recurrent character of the infection. Additionally, as S. aureus apparently uses host fibrin as part of the biofilm structure, we suggest that plasma should be included more frequently in in vitro biofilm studies. PMID:25586078

  1. Patterns of biofilm formation in intermittent and permanent streams: analysis of biofilm structure and metabolism

    NASA Astrophysics Data System (ADS)

    Artigas, J.; Schwartz, T.; Kirchen, S.; Romaní, A. M.; Fund, K.; Obst, U.; Sabater, S.

    2009-04-01

    The development and functioning of benthic microbial communities in streams is largely dependent on the hydrological conditions. Climate change projections predict that the hydrological characteristics will probably be affected because of the rainfall regime. Hence, rivers from the Mediterranean region will become more similar to those draining arid or desert regions, while temperate streams will suffer of higher water flow fluctuations. In this study, we compared the process of biofilm formation between an intermittent (the Fuirosos, Mediterranean) and a permanent (the Walzbach, Central European) stream. Specifically, we analyzed the succession of bacterial and algal populations in the biofilm through bacterial rDNA sequences analysis (16S rDNA and 16S-23S intergenic sequence) and diatom taxa identification over a 60-days colonization experiment. Moreover, changes in biofilm structural (microbial biomass and extracellular polysaccharide content) and metabolic (extracellular enzyme activities) parameters were also analyzed. The successional patterns of microbial populations in the Fuirosos showed clear discontinutities coinciding with flood episodes while at the Walzbach the time sequence was more gradual. Although both study sites were forested, greater microbial biomass standing stock (algal and bacterial) and greater species biodiversity was detected during biofilm development at the Mediterranean site. The higher bacterial biodiversity may be related to the potential effect of flooding episodes in reducing biological interactions in complex microbial communities, such as the competitive exclusion of species. Moreover, the presence of rapid colonizing diatom species might be an adaptation to hydrological changes. In contrast, species competition could define the more stable environments, such as that observed in the Central European stream. Overall, the hystorical evolutionary pressure from the different bioclimatic regions could be also affecting the microbial

  2. Bismuth oxide aqueous colloidal nanoparticles inhibit Candida albicans growth and biofilm formation

    PubMed Central

    Hernandez-Delgadillo, Rene; Velasco-Arias, Donaji; Martinez-Sanmiguel, Juan Jose; Diaz, David; Zumeta-Dube, Inti; Arevalo-Niño, Katiushka; Cabral-Romero, Claudio

    2013-01-01

    Multiresistance among microorganisms to common antimicrobials has become one of the most significant concerns in modern medicine. Nanomaterials are a new alternative to successfully treat the multiresistant microorganisms. Nanostructured materials are used in many fields, including biological sciences and medicine. Recently, it was demonstrated that the bactericidal activity of zero-valent bismuth colloidal nanoparticles inhibited the growth of Streptococcus mutans; however the antimycotic potential of bismuth nanostructured derivatives has not yet been studied. The main objective of this investigation was to analyze the fungicidal activity of bismuth oxide nanoparticles against Candida albicans, and their antibiofilm capabilities. Our results showed that aqueous colloidal bismuth oxide nanoparticles displayed antimicrobial activity against C. albicans growth (reducing colony size by 85%) and a complete inhibition of biofilm formation. These results are better than those obtained with chlorhexidine, nystatin, and terbinafine, the most effective oral antiseptic and commercial antifungal agents. In this work, we also compared the antimycotic activities of bulk bismuth oxide and bismuth nitrate, the precursor metallic salt. These results suggest that bismuth oxide colloidal nanoparticles could be a very interesting candidate as a fungicidal agent to be incorporated into an oral antiseptic. Additionally, we determined the minimum inhibitory concentration for the synthesized aqueous colloidal Bi2O3 nanoparticles. PMID:23637533

  3. Studies on Biofilm Formation and Interactions of Salmonella enterica with Romaine-Lettuce Leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The association between biofilm formation and the interactions of Salmonella enterica serovars with cut-Romaine-lettuce leaves was investigated. Biofilm formation by 8 S. enterica serovars was tested on polystyrene microtiter plates in the presence of different growth media. Maximal biofilm mass was...

  4. Capillary isoelectric focusing--useful tool for detection of the biofilm formation in Staphylococcus epidermidis.

    PubMed

    Ruzicka, Filip; Horka, Marie; Hola, Veronika; Votava, Miroslav

    2007-03-01

    The biofilm formation is an important factor of S. epidermidis virulence. Biofilm-positive strains might be clinically more important than biofilm-negative ones. Unlike biofilm-negative staphylococci, biofilm-positive staphylococci are surrounded with an extracellular polysaccharide substance. The presence of this substance on the surface can affect physico-chemical properties of the bacterial cell, including surface charge. 73 S. epidermidis strains were examined for the presence of ica operon, for the ability to form biofilm by Christensen test tube method and for the production of slime by Congo red agar method. Isoelectric points (pI) of these strains were determined by means of Capillary Isoelectric Focusing. The biofilm negative strains focused near pI value 2.3, while the pI values of the biofilm positive strains were near 2.6. Isoelectric point is a useful criterion for the differentiation between biofilm-positive and biofilm-negative S. epidermidis strains. PMID:17157942

  5. The effect of berberine hydrochloride on Enterococcus faecalis biofilm formation and dispersion in vitro.

    PubMed

    Chen, Lihua; Bu, Qianqian; Xu, Huan; Liu, Yuan; She, Pengfei; Tan, Ruichen; Wu, Yong

    2016-01-01

    Enterococcus faecalis (E. faecalis) is one of the major causes of biofilm infections. Berberine hydrochloride (BBH) has diverse pharmacological effects; however, the effects and mechanisms of BBH on E. faecalis biofilm formation and dispersion have not been reported. In this study, 99 clinical isolates from the urine samples of patients with urinary tract infections (UTIs) were collected and identified. Ten strains of E. faecalis with biofilm formation ability were studied. BBH inhibited E. faecalis biofilm formation and promoted the biofilm dispersion of E. faecalis. In addition, sortase A and esp expression levels were elevated during early E. faecalis biofilm development, whereas BBH significantly reduced their expression levels. The results of this study indicated that BBH effectively prevents biofilm formation and promotes biofilm dispersion in E. faecalis, most likely by inhibiting the expressions of sortase A and esp. PMID:27242142

  6. Polyketide Glycosides from Bionectria ochroleuca Inhibit Candida albicans Biofilm Formation

    PubMed Central

    2015-01-01

    One of the challenges presented by Candida infections is that many of the isolates encountered in the clinic produce biofilms, which can decrease these pathogens’ susceptibilities to standard-of-care antibiotic therapies. Inhibitors of fungal biofilm formation offer a potential solution to counteracting some of the problems associated with Candida infections. A screening campaign utilizing samples from our fungal extract library revealed that a Bionectria ochroleuca isolate cultured on Cheerios breakfast cereal produced metabolites that blocked the in vitro formation of Candida albicans biofilms. A scale-up culture of the fungus was undertaken using mycobags (also known as mushroom bags or spawn bags), which afforded four known [TMC-151s C–F (1–4)] and three new [bionectriols B–D (5–7)] polyketide glycosides. All seven metabolites exhibited potent biofilm inhibition against C. albicans SC5314, as well as exerted synergistic antifungal activities in combination with amphotericin B. In this report, we describe the structure determination of the new metabolites, as well as compare the secondary metabolome profiles of fungi grown in flasks and mycobags. These studies demonstrate that mycobags offer a useful alternative to flask-based cultures for the preparative production of fungal secondary metabolites. PMID:25302529

  7. Biomolecular Mechanisms of Pseudomonas aeruginosa and Escherichia coli Biofilm Formation

    PubMed Central

    Laverty, Garry; Gorman, Sean P.; Gilmore, Brendan F.

    2014-01-01

    Pseudomonas aeruginosa and Escherichia coli are the most prevalent Gram-negative biofilm forming medical device associated pathogens, particularly with respect to catheter associated urinary tract infections. In a similar manner to Gram-positive bacteria, Gram-negative biofilm formation is fundamentally determined by a series of steps outlined more fully in this review, namely adhesion, cellular aggregation, and the production of an extracellular polymeric matrix. More specifically this review will explore the biosynthesis and role of pili and flagella in Gram-negative adhesion and accumulation on surfaces in Pseudomonas aeruginosa and Escherichia coli. The process of biofilm maturation is compared and contrasted in both species, namely the production of the exopolysaccharides via the polysaccharide synthesis locus (Psl), pellicle Formation (Pel) and alginic acid synthesis in Pseudomonas aeruginosa, and UDP-4-amino-4-deoxy-l-arabinose and colonic acid synthesis in Escherichia coli. An emphasis is placed on the importance of the LuxR homologue sdiA; the luxS/autoinducer-II; an autoinducer-III/epinephrine/norepinephrine and indole mediated Quorum sensing systems in enabling Gram-negative bacteria to adapt to their environments. The majority of Gram-negative biofilms consist of polysaccharides of a simple sugar structure (either homo- or heteropolysaccharides) that provide an optimum environment for the survival and maturation of bacteria, allowing them to display increased resistance to antibiotics and predation. PMID:25438014

  8. The SloR/Dlg Metalloregulator Modulates Streptococcus mutans Virulence Gene Expression

    PubMed Central

    Rolerson, Elizabeth; Swick, Adam; Newlon, Lindsay; Palmer, Cameron; Pan, Yong; Keeshan, Britton; Spatafora, Grace

    2006-01-01

    Metal ion availability in the human oral cavity plays a putative role in Streptococcus mutans virulence gene expression and in appropriate formation of the plaque biofilm. In this report, we present evidence that supports such a role for the DtxR-like SloR metalloregulator (called Dlg in our previous publications) in this oral pathogen. Specifically, the results of gel mobility shift assays revealed the sloABC, sloR, comDE, ropA, sod, and spaP promoters as targets of SloR binding. We confirmed differential expression of these genes in a GMS584 SloR-deficient mutant versus the UA159 wild-type progenitor by real-time semiquantitative reverse transcriptase PCR experiments. The results of additional expression studies support a role for SloR in S. mutans control of glucosyltransferases, glucan binding proteins, and genes relevant to antibiotic resistance. Phenotypic analysis of GMS584 revealed that it forms aberrant biofilms on an abiotic surface, is compromised for genetic competence, and demonstrates heightened incorporation of iron and manganese as well as resistance to oxidative stress compared to the wild type. Taken together, these findings support a role for SloR in S. mutans adherence, biofilm formation, genetic competence, metal ion homeostasis, oxidative stress tolerance, and antibiotic gene regulation, all of which contribute to S. mutans-induced disease. PMID:16816176

  9. The SloR/Dlg metalloregulator modulates Streptococcus mutans virulence gene expression.

    PubMed

    Rolerson, Elizabeth; Swick, Adam; Newlon, Lindsay; Palmer, Cameron; Pan, Yong; Keeshan, Britton; Spatafora, Grace

    2006-07-01

    Metal ion availability in the human oral cavity plays a putative role in Streptococcus mutans virulence gene expression and in appropriate formation of the plaque biofilm. In this report, we present evidence that supports such a role for the DtxR-like SloR metalloregulator (called Dlg in our previous publications) in this oral pathogen. Specifically, the results of gel mobility shift assays revealed the sloABC, sloR, comDE, ropA, sod, and spaP promoters as targets of SloR binding. We confirmed differential expression of these genes in a GMS584 SloR-deficient mutant versus the UA159 wild-type progenitor by real-time semiquantitative reverse transcriptase PCR experiments. The results of additional expression studies support a role for SloR in S. mutans control of glucosyltransferases, glucan binding proteins, and genes relevant to antibiotic resistance. Phenotypic analysis of GMS584 revealed that it forms aberrant biofilms on an abiotic surface, is compromised for genetic competence, and demonstrates heightened incorporation of iron and manganese as well as resistance to oxidative stress compared to the wild type. Taken together, these findings support a role for SloR in S. mutans adherence, biofilm formation, genetic competence, metal ion homeostasis, oxidative stress tolerance, and antibiotic gene regulation, all of which contribute to S. mutans-induced disease. PMID:16816176

  10. Biofilm formation by Bacillus subtilis: new insights into regulatory strategies and assembly mechanisms

    PubMed Central

    Cairns, Lynne S; Hobley, Laura; Stanley-Wall, Nicola R

    2014-01-01

    Biofilm formation is a social behaviour that generates favourable conditions for sustained survival in the natural environment. For the Gram-positive bacterium Bacillus subtilis the process involves the differentiation of cell fate within an isogenic population and the production of communal goods that form the biofilm matrix. Here we review recent progress in understanding the regulatory pathways that control biofilm formation and highlight developments in understanding the composition, function and structure of the biofilm matrix. PMID:24988880