Sample records for mutans biofilm formation

  1. Lactobacillus plantarum lipoteichoic acid inhibits biofilm formation of Streptococcus mutans

    PubMed Central

    Ahn, Ki Bum; Baik, Jung Eun; Park, Ok-Jin; Yun, Cheol-Heui

    2018-01-01

    Dental caries is a biofilm-dependent oral disease and Streptococcus mutans is the known primary etiologic agent of dental caries that initiates biofilm formation on tooth surfaces. Although some Lactobacillus strains inhibit biofilm formation of oral pathogenic bacteria, the molecular mechanisms by which lactobacilli inhibit bacterial biofilm formation are not clearly understood. In this study, we demonstrated that Lactobacillus plantarum lipoteichoic acid (Lp.LTA) inhibited the biofilm formation of S. mutans on polystyrene plates, hydroxyapatite discs, and dentin slices without affecting the bacterial growth. Lp.LTA interferes with sucrose decomposition of S. mutans required for the production of exopolysaccharide, which is a main component of biofilm. Lp.LTA also attenuated the biding of fluorescein isothiocyanate-conjugated dextran to S. mutans, which is known to have a high affinity to exopolysaccharide on S. mutans. Dealanylated Lp.LTA did not inhibit biofilm formation of S. mutans implying that D-alanine moieties in the Lp.LTA structure were crucial for inhibition. Collectively, these results suggest that Lp.LTA attenuates S. mutans biofilm formation and could be used to develop effective anticaries agents. PMID:29420616

  2. Kaffir lime leaves extract inhibits biofilm formation by Streptococcus mutans.

    PubMed

    Kooltheat, Nateelak; Kamuthachad, Ludthawun; Anthapanya, Methinee; Samakchan, Natthapon; Sranujit, Rungnapa Pankla; Potup, Pachuen; Ferrante, Antonio; Usuwanthim, Kanchana

    2016-04-01

    Although kaffir lime has been reported to exhibit antioxidant and antileukemic activity, little is known about the antimicrobial effect of kaffir lime extract. Because Streptococcus mutans has been known to cause biofilm formation, it has been considered the most important causative pathogen of dental caries. Thus, the effective control of its effects on the oral biofilm is the key to the prevention of dental caries. The aims of the present study were to investigate the effect of kaffir lime leaves extract on biofilm formation and its antibacterial activity on S. mutans. We examined the effect of kaffir lime leaves extract on growth and biofilm formation of S. mutans. For the investigation we used a kaffir lime extract with high phenolic content. The minimum inhibitory concentration of the extract was determined by broth microdilution assay. The inhibitory effect of the test substances on biofilm formation was also investigated by biofilm formation assay and qRT-PCR of biofilm formation-associated genes. Kaffir lime leaves extract inhibits the growth of S. mutans, corresponding to the activity of an antibiotic, ampicillin. Formation of biofilm by S. mutans was also inhibited by the extract. These results were confirmed by the down-regulation of genes associated with the biofilm formation. The findings highlight the ability of kaffir lime leaves extract to inhibit S. mutans activity, which may be beneficial in the prevention of biofilm formation on dental surface, reducing dental plaque and decreasing the chance of dental carries. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Inhibitory effect of Lactobacillus salivarius on Streptococcus mutans biofilm formation.

    PubMed

    Wu, C-C; Lin, C-T; Wu, C-Y; Peng, W-S; Lee, M-J; Tsai, Y-C

    2015-02-01

    Dental caries arises from an imbalance of metabolic activities in dental biofilms developed primarily by Streptococcus mutans. This study was conducted to isolate potential oral probiotics with antagonistic activities against S. mutans biofilm formation from Lactobacillus salivarius, frequently found in human saliva. We analysed 64 L. salivarius strains and found that two, K35 and K43, significantly inhibited S. mutans biofilm formation with inhibitory activities more pronounced than those of Lactobacillus rhamnosus GG (LGG), a prototypical probiotic that shows anti-caries activity. Scanning electron microscopy showed that co-culture of S. mutans with K35 or K43 resulted in significantly reduced amounts of attached bacteria and network-like structures, typically comprising exopolysaccharides. Spot assay for S. mutans indicated that K35 and K43 strains possessed a stronger bactericidal activity against S. mutans than LGG. Moreover, quantitative real-time polymerase chain reaction showed that the expression of genes encoding glucosyltransferases, gtfB, gtfC, and gtfD was reduced when S. mutans were co-cultured with K35 or K43. However, LGG activated the expression of gtfB and gtfC, but did not influence the expression of gtfD in the co-culture. A transwell-based biofilm assay indicated that these lactobacilli inhibited S. mutans biofilm formation in a contact-independent manner. In conclusion, we identified two L. salivarius strains with inhibitory activities on the growth and expression of S. mutans virulence genes to reduce its biofilm formation. This is not a general characteristic of the species, so presents a potential strategy for in vivo alteration of plaque biofilm and caries. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Probiotic lactobacilli interfere with Streptococcus mutans biofilm formation in vitro.

    PubMed

    Söderling, Eva M; Marttinen, Aino M; Haukioja, Anna L

    2011-02-01

    In clinical studies, probiotic bacteria have decreased the counts of salivary mutans streptococci (MS). We compared the effects of probiotic Lactobacillus strains on the biofilm formation of Streptococcus mutans. The bacterial strains used included four S. mutans strains (reference strains NCTC 10449 and Ingbritt and clinical isolates 2366 and 195) and probiotic strains Lactobacillus rhamnosus GG, L. plantarum 299v, and L. reuteri strains PTA 5289 and SD2112. The ability of MS to adhere and grow on a glass surface, reflecting biofilm formation, was studied in the presence of the lactobacilli (LB). The effect of LB culture supernatants on the viability of the MS was studied as well. All of the LB inhibited the biofilm formation of the clinical isolates of MS (P < 0.001). The biofilm formation of the reference strains of MS was also inhibited by the LB, but L. plantarum and L. reuteri PTA 5289 showed a weaker inhibition when compared to L. reuteri SD2112 and L. rhamnosus GG. Viable S. mutans cells could be detected in the biofilms and culture media only when the experiments were performed with the L. reuteri strains. The L. reuteri strains were less efficient in killing the MS also in the tests performed with the culture supernatants. The pHs of the supernatants of L. reuteri were higher compared to those of L. rhamnosus GG and L. plantarum; P < 0.001. In conclusion, our results demonstrated that four commonly used probiotics interfered with S. mutans biofilm formation in vitro, and that the antimicrobial activity against S. mutans was pH-dependent.

  5. SMU.940 regulates dextran-dependent aggregation and biofilm formation in Streptococcus mutans.

    PubMed

    Senpuku, Hidenobu; Yonezawa, Hideo; Yoneda, Saori; Suzuki, Itaru; Nagasawa, Ryo; Narisawa, Naoki

    2018-02-01

    The oral bacterium Streptococcus mutans is the principal agent in the development of dental caries. Biofilm formation by S. mutans requires bacterial attachment, aggregation, and glucan formation on the tooth surface under sucrose supplementation conditions. Our previous microarray analysis of clinical strains identified 74 genes in S. mutans that were related to biofilm morphology; however, the roles of almost all of these genes in biofilm formation are poorly understood. We investigated the effects of 21 genes randomly selected from our previous study regarding S. mutans biofilm formation, regulation by the complement pathway, and responses to competence-stimulating peptide. Eight competence-stimulating peptide-dependent genes were identified, and their roles in biofilm formation and aggregation were examined by mutational analyses of the S. mutansUA159 strain. Of these eight genes, the inactivation of the putative hemolysin III family SMU.940 gene of S. mutansUA159 promoted rapid dextran-dependent aggregation and biofilm formation in tryptic soy broth without dextrose (TSB) with 0.25% glucose and slightly reduced biofilm formation in TSB with 0.25% sucrose. The SMU.940 mutant showed higher expression of GbpC and gbpC gene than wild-type. GbpC is known to be involved in the dextran-dependent aggregation of S. mutans. An SMU.940-gbpC double mutant strain was constructed in the SMU.940 mutant background. The gbpC mutation completely abolished the dextran-dependent aggregation of the SMU.940 mutant. In addition, the aggregation of the mutant was abrogated by dextranase. These findings suggest that SMU.940 controls GbpC expression, and contributes to the regulation of dextran-dependent aggregation and biofilm formation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. D-Tagatose inhibits the growth and biofilm formation of Streptococcus mutans

    PubMed Central

    Hasibul, Khaleque; Nakayama-Imaohji, Haruyuki; Hashimoto, Masahito; Yamasaki, Hisashi; Ogawa, Takaaki; Waki, Junpei; Tada, Ayano; Yoneda, Saori; Tokuda, Masaaki; Miyake, Minoru; Kuwahara, Tomomi

    2018-01-01

    Dental caries is an important global health concern and Streptococcus mutans has been established as a major cariogenic bacterial species. Reports indicate that a rare sugar, D-tagatose, is not easily catabolized by pathogenic bacteria. In the present study, the inhibitory effects of D-tagatose on the growth and biofilm formation of S. mutans GS-5 were examined. Monitoring S. mutans growth over a 24 h period revealed that D-tagatose prolonged the lag phase without interfering with the final cell yield. This growth retardation was also observed in the presence of 1% sucrose, although it was abolished by the addition of D-fructose. S. mutans biofilm formation was significantly inhibited by growth in sucrose media supplemented with 1 and 4% D-tagatose compared with that in a culture containing sucrose alone, while S. mutans formed granular biofilms in the presence of this rare sugar. The inhibitory effect of D-tagatose on S. mutans biofilm formation was significantly more evident than that of xylitol. Growth in sucrose media supplemented with D-tagatose significantly decreased the expression of glucosyltransferase, exo-β-fructosidase and D-fructose-specific phosphotransferase genes but not the expression of fructosyltransferase compared with the culture containing sucrose only. The activity of cell-associated glucosyltransferase in S. mutans was inhibited by 4% D-tagatose. These results indicate that D-tagatose reduces water-insoluble glucan production from sucrose by inhibiting glucosyltransferase activities, which limits access to the free D-fructose released during this process and retards the growth of S. mutans. Therefore, foods and oral care products containing D-tagatose are anticipated to reduce the risk of caries by inhibiting S. mutans biofilm formation. PMID:29115611

  7. Effects of sub-minimum inhibitory concentrations of antimicrobial agents on Streptococcus mutans biofilm formation.

    PubMed

    Dong, Liping; Tong, Zhongchun; Linghu, Dake; Lin, Yuan; Tao, Rui; Liu, Jun; Tian, Yu; Ni, Longxing

    2012-05-01

    Many studies have demonstrated that sub-minimum inhibitory concentrations (sub-MICs) of antimicrobial agents can inhibit bacterial biofilm formation. However, the mechanisms by which antimicrobial agents at sub-MICs inhibit biofilm formation remain unclear. At present, most studies are focused on Gram-negative bacteria; however, the effects of sub-MICs of antimicrobial agents on Gram-positive bacteria may be more complex. Streptococcus mutans is a major cariogenic bacterium. In this study, the S. mutans growth curve as well as the expression of genes related to S. mutans biofilm formation were evaluated following treatment with 0.5× MIC of chlorhexidine (CHX), tea polyphenols and sodium fluoride (NaF), which are common anticaries agents. The BioFlux system was employed to generate a biofilm under a controlled flow. Morphological changes of the S. mutans biofilm were observed and analysed using field emission scanning electron microscopy and confocal laser scanning microscopy. The results indicated that these three common anticaries agents could significantly upregulate expression of the genes related to S. mutans biofilm formation, and S. mutans exhibited a dense biofilm with an extensive extracellular matrix following treatment with sub-MICs of NaF and CHX. These findings suggest that sub-MICs of anticaries agents favour S. mutans biofilm formation, which might encourage dental caries progression. Copyright © 2012 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  8. Streptococcus mutans Can Modulate Biofilm Formation and Attenuate the Virulence of Candida albicans

    PubMed Central

    Barbosa, Júnia Oliveira; Rossoni, Rodnei Dennis; Vilela, Simone Furgeri Godinho; de Alvarenga, Janaína Araújo; Velloso, Marisol dos Santos; Prata, Márcia Cristina de Azevedo; Jorge, Antonio Olavo Cardoso; Junqueira, Juliana Campos

    2016-01-01

    Streptococcus mutans and Candida albicans are found together in the oral biofilms on dental surfaces, but little is known about the ecological interactions between these species. Here, we studied the effects of S. mutans UA159 on the growth and pathogencity of C. albicans. Initially, the effects of S. mutans on the biofilm formation and morphogenesis of C. albicans were tested in vitro. Next, we investigate the influence of S. mutans on pathogenicity of C. albicans using in vivo host models, in which the experimental candidiasis was induced in G. mellonella larvae and analyzed by survival curves, C. albicans count in hemolymph, and quantification of hyphae in the host tissues. In all the tests, we evaluated the direct effects of S. mutans cells, as well as the indirect effects of the subproducts secreted by this microorganism using a bacterial culture filtrate. The in vitro analysis showed that S. mutans cells favored biofilm formation by C. albicans. However, a reduction in biofilm viable cells and inhibition of hyphal growth was observed when C. albicans was in contact with the S. mutans culture filtrate. In the in vivo study, injection of S. mutans cells or S. mutans culture filtrate into G. mellonella larvae infected with C. albicans increased the survival of these animals. Furthermore, a reduction in hyphal formation was observed in larval tissues when C. albicans was associated with S. mutans culture filtrate. These findings suggest that S. mutans can secrete subproducts capable to inhibit the biofilm formation, morphogenesis and pathogenicity of C. albicans, attenuating the experimental candidiasis in G. mellonella model. PMID:26934196

  9. Effect of Infant Formula on Streptococcus Mutans Biofilm Formation.

    PubMed

    Hinds, Laura M; Moser, Elizabeth A S; Eckert, George; Gregory, Richard L

    This study investigated the effect that infant formula had on biofilm growth of Streptococcus mutans. Specifically, it compared biofilm growth in media containing lactose-based and sucrose-based formulas. It also analyzed biofilm formation with formulas of varying iron content. Biofilm growth was tested with the specific infant formula components sucrose, lactose, and ferric chloride. The study was designed to determine if these types of infant formulas and components affected S. mutans biofilm formation differently. A 24-hour culture of S. mutans was treated with various concentrations of infant formula diluted in bacteriological media. To test for biofilm formation, S. mutans was cultured with and without the infant formula and formula components. The biofilms were washed, fixed, and stained with crystal violet. The absorbance was measured to evaluate biofilm growth and total absorbance. Sucrose-based formulas provided significant increases in biofilm growth when compared to lactose-based formulas at two dilutions (1:5, 1:20). Similac Sensitive RS (sucrose-based) at most dilutions provided the most significant increase in biofilm growth when compared to the control. Sucrose tested as an individual component provided more of a significant increase on biofilm growth than lactose or iron when compared to the control. A low iron formula provided a significant increase in biofilm growth at one dilution (1:5) when compared to formula containing a normal iron content. There was no significant difference in biofilm growth when comparing high iron formula to normal iron formula or low iron formula. There was no significant difference when comparing Similac PM 60/40 (low iron formula) to Similac PM 60/40 with additional ferric chloride. The results of this study demonstrated that sucrose-based formula provided more of a significant increase in biofilm growth compared to lactose-based formula. Sucrose alone provided a significant increase of biofilm growth at more dilutions

  10. Effects of Cola-Flavored Beverages and Caffeine on Streptococcus mutans Biofilm Formation and Metabolic Activity.

    PubMed

    Dotsey, Roger P; Moser, Elizabeth A S; Eckert, George J; Gregory, Richard L

    To examine the effects of cola-flavored beverages and caffeine on growth and metabolism of Streptococcus mutans biofilm. This study was designed to determine if carbonated beverages or caffeine can increase S. mutans growth and biofilm formation and metabolic activity in vitro, potentially leading to increased S. mutans-associated cariogenicity in children that consume them. Six different cola-flavored products, plus pure caffeine, and pure high fructose corn syrup (HFCS), at different concentrations similar to those in the beverages were tested. A 16-hour culture of S. mutans was treated with different dilutions in bacteriological media. To test for the effect on biofilm formation, the biofilm was stained with crystal violet. The absorbance was determined to evaluate biofilm growth. Biofilm metabolic activity was measured based on biofilm having the ability to reduce XTT to a water-soluble orange compound. The inclusion of HFCS in the beverages, as well as pure HFCS, significantly enhanced bacterial biofilm formation and metabolic activity. Pure caffeine and the presence of caffeine in beverages did not significantly increase biofilm formation, but pure caffeine significantly increased metabolism, and Diet Coke had significantly greater metabolic activity than Caffeine-Free Diet Coke. HFCS increases both the biofilm formation and metabolism of S. mutans, and caffeine in some cases increases metabolism of S. mutans.

  11. Effect of Human Milk and its Components on Streptococcus Mutans Biofilm Formation.

    PubMed

    Allison, L M; Walker, L A; Sanders, B J; Yang, Z; Eckert, G; Gregory, R L

    2015-01-01

    This study investigated the effects of human breast milk and its components on the nutritional aspect of the caries process due to Streptococcus mutans UA159 biofilm formation. Human breast milk was collected from 11 mothers during 3-9 months postpartum. To test for the effect on biofilm formation, a 16-hour culture of S. mutans was treated with dilutions of human breast milk and several major components of human breast milk, lactose, lactoferrin, IgA, and bovine casein in sterile 96-well flat bottom microtiter plates for 24 hours. The biofilms were fixed, washed, stained with crystal violet, and extracted. Absorbance was measured to evaluate biofilm growth mass. Dilutions 1:10-1:2,560 of the human breast milk samples increased biofilm formation by 1.5-3.8 fold compared to the control. Lactoferrin decreased biofilm formation significantly in all dilutions (average milk concentration of 3 mg/ml). Lactose had no effect at average breast milk concentrations (60 mg/ml) except at its lowest concentration (15 mg/ml) where it was increased. IgA significantly decreased biofilm formation at its highest concentration of 2,400 μg/ml (average milk concentration 600 μg/ml). Casein caused significantly increased biofilm formation at all concentrations tested above the average milk content (2.3 mg/ml). The results of this study demonstrate an increase in S. mutans biofilm formation by human breast milk 3-9 months post partum. Among its major components, only casein significantly increased biofilm formation among the concentrations analyzed. Lactose had no effect except at 15 mg/ml. Lactoferrin and IgA significantly decreased S. mutans biofilm formation at their highest concentrations. This information expands the current knowledge regarding the nutritional influence of breastfeeding and validates the necessity to begin an oral hygiene regimen once the first tooth erupts.

  12. Inhibiting effects of Streptococcus salivarius on competence-stimulating peptide-dependent biofilm formation by Streptococcus mutans.

    PubMed

    Tamura, S; Yonezawa, H; Motegi, M; Nakao, R; Yoneda, S; Watanabe, H; Yamazaki, T; Senpuku, H

    2009-04-01

    The effects of Streptococcus salivarius on the competence-stimulating peptide (CSP)-dependent biofilm formation by Streptococcus mutans were investigated. Biofilms were grown on 96-well microtiter plates coated with salivary components in tryptic soy broth without dextrose supplemented with 0.25% sucrose. Biofilm formations were stained using safranin and quantification of stained biofilms was performed by measuring absorbance at 492 nm. S. mutans formed substantial biofilms, whereas biofilms of S. salivarius were formed poorly in the medium conditions used. Furthermore, in combination cultures, S. salivarius strongly inhibited biofilm formation when cultured with S. mutans. This inhibition occurred in the early phase of biofilm formation and was dependent on inactivation of the CSP of S. mutans, which is associated with competence, biofilm formation, and antimicrobial activity of the bacterium, and is induced by expression of the comC gene. Comparisons between the S. mutans clinical strains FSC-3 and FSC-3DeltaglrA in separate dual-species cultures with S. salivarius indicated that the presence of the bacitracin transport ATP-binding protein gene glrA caused susceptibility to inhibition of S. mutans biofilm formation by S. salivarius, and was also associated with the regulation of CSP production by com gene-dependent quorum sensing systems. It is considered that regulation of CSP by glrA in S. mutans and CSP inactivation by S. salivarius are important functions for cell-to-cell communication between biofilm bacteria and oral streptococci such as S. salivarius. Our results provide useful information for understanding the ecosystem of oral streptococcal biofilms, as well as the competition between and coexistence of multiple species in the oral cavity.

  13. Hydrophilicity of dentin bonding systems influences in vitro Streptococcus mutans biofilm formation

    PubMed Central

    Brambilla, Eugenio; Ionescu, Andrei; Mazzoni, Annalisa; Cadenaro, Milena; Gagliani, Massimo; Ferraroni, Monica; Tay, Franklin; Pashley, David; Breschi, Lorenzo

    2014-01-01

    Objectives To evaluate in vitro Streptococcus mutans (S. mutans) biofilm formation on the surface of five light-curing experimental dental bonding systems (DBS) with increasing hydrophilicity. The null hypothesis tested was that resin chemical composition and hydrophilicity does not affect S. mutans biofilm formation. Methods Five light-curing versions of experimental resin blends with increasing hydrophilicity were investigated (R1, R2, R3, R4 and R5). R1 and R2 contained ethoxylated BisGMA/TEGDMA or BisGMA/TEGDMA, respectively, and were very hydrophobic, were representative of pit-and-fissure bonding agents. R3 was representative of a typical two-step etch- and-rinse adhesive, while R4 and R5 were very hydrophilic resins analogous to self-etching adhesives. Twenty-eight disks were prepared for each resin blend. After a 24 h-incubation at 37 °C, a multilayer monospecific biofilm of S. mutans was obtained on the surface of each disk. The adherent biomass was determined using the MTT assay and evaluated morphologically with confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). Results R2 and R3 surfaces showed the highest biofilm formation while R1 and R4 showed a similar intermediate biofilm formation. R5 was more hydrophilic and acidic and was significantly less colonized than all the other resins. A significant quadratic relationship between biofilm formation and hydrophilicity of the resin blends was found. CLSM and SEM evaluation confirmed MTT assay results. Conclusions The null hypothesis was rejected since S. mutans biofilm formation was influenced by hydrophilicity, surface acidity and chemical composition of the experimental resins. Further studies using a bioreactor are needed to confirm the results and clarify the role of the single factors. PMID:24954666

  14. Essential oil of Curcuma longa inhibits Streptococcus mutans biofilm formation.

    PubMed

    Lee, Kwang-Hee; Kim, Beom-Su; Keum, Ki-Suk; Yu, Hyeon-Hee; Kim, Young-Hoi; Chang, Byoung-Soo; Ra, Ji-Young; Moon, Hae-Dalma; Seo, Bo-Ra; Choi, Na-Young; You, Yong-Ouk

    2011-01-01

    Curcuma longa (C. longa) has been used as a spice in foods and as an antimicrobial in Oriental medicine. In this study, we evaluated the inhibitory effects of an essential oil isolated from C. longa on the cariogenic properties of Streptococcus mutans (S. mutans), which is an important bacterium in dental plaque and dental caries formation. First, the inhibitory effects of C. longa essential oil on the growth and acid production of S. mutans were tested. Next, the effect of C. longa essential oil on adhesion to saliva-coated hydroxyapatite beads (S-HAs) was investigated. C. longa essential oil inhibited the growth and acid production of S. mutans at concentrations from 0.5 to 4 mg/mL. The essential oil also exhibited significant inhibition of S. mutans adherence to S-HAs at concentrations higher than 0.5 mg/mL. S. mutans biofilm formation was determined by scanning electron microscopy (SEM) and safranin staining. The essential oil of C. longa inhibited the formation of S. mutans biofilms at concentrations higher than 0.5 mg/mL. The components of C. longa essential oil were then analyzed by GC and GC-MS, and the major components were α-turmerone (35.59%), germacrone (19.02%), α-zingiberene (8.74%), αr-turmerone (6.31%), trans-β-elemenone (5.65%), curlone (5.45%), and β-sesquiphellandrene (4.73%). These results suggest that C. longa may inhibit the cariogenic properties of S. mutans. © 2011 Institute of Food Technologists®

  15. In Vitro Effects of Sports and Energy Drinks on Streptococcus mutans Biofilm Formation and Metabolic Activity.

    PubMed

    Vinson, LaQuia A; Goodlett, Amy K; Huang, Ruijie; Eckert, George J; Gregory, Richard L

    2017-09-15

    Sports and energy drinks are being increasingly consumed and contain large amounts of sugars, which are known to increase Streptococcus mutans biofilm formation and metabolic activity. The purpose of this in vitro study was to investigate the effects of sports and energy drinks on S. mutans biofilm formation and metabolic activity. S. mutans UA159 was cultured with and without a dilution (1:3 ratio) of a variety of sports and energy drinks in bacterial media for 24 hours. The biofilm was washed, fixed, and stained. Biofilm growth was evaluated by reading absorbance of the crystal violet. Biofilm metabolic activity was measured by the biofilm-reducing XTT to a water-soluble orange compound. Gatorade Protein Recovery Shake and Starbucks Doubleshot Espresso Energy were found to significantly increase biofilm (30-fold and 22-fold, respectively) and metabolic activity (2-fold and 3-fold, respectively). However, most of the remaining drinks significantly inhibited biofilm growth and metabolic activity. Several sports and energy drinks, with sugars or sugar substitutes as their main ingredients inhibited S. mutans biofilm formation. Among the drinks evaluated, Gatorade Protein Recovery Chocolate Shake and Starbucks Doubleshot Energy appear to have cariogenic potential since they increased the biofilm formation and metabolic activity of S. mutans.

  16. Inhibition of Streptococcus mutans biofilm formation on composite resins containing ursolic acid

    PubMed Central

    Kim, Soohyeon; Song, Minju; Roh, Byoung-Duck; Park, Sung-Ho

    2013-01-01

    Objectives To evaluate the inhibitory effect of ursolic acid (UA)-containing composites on Streptococcus mutans (S. mutans) biofilm. Materials and Methods Composite resins with five different concentrations (0.04, 0.1, 0.2, 0.5, and 1.0 wt%) of UA (U6753, Sigma Aldrich) were prepared, and their flexural strengths were measured according to ISO 4049. To evaluate the effect of carbohydrate source on biofilm formation, either glucose or sucrose was used as a nutrient source, and to investigate the effect of saliva treatment, the specimen were treated with either unstimulated whole saliva or phosphate-buffered saline (PBS). For biofilm assay, composite disks were transferred to S. mutans suspension and incubated for 24 hr. Afterwards, the specimens were rinsed with PBS and sonicated. The colony forming units (CFU) of the disrupted biofilm cultures were enumerated. For growth inhibition test, the composites were placed on a polystyrene well cluster, and S. mutans suspension was inoculated. The optical density at 600 nm (OD600) was recorded by Infinite F200 pro apparatus (TECAN). One-way ANOVA and two-way ANOVA followed by Bonferroni correction were used for the data analyses. Results The flexural strength values did not show significant difference at any concentration (p > 0.01). In biofilm assay, the CFU score decreased as the concentration of UA increased. The influence of saliva pretreatment was conflicting. The sucrose groups exhibited higher CFU score than glucose group (p < 0.05). In bacterial growth inhibition test, all experimental groups containing UA resulted in complete inhibition. Conclusions Within the limitations of the experiments, UA included in the composite showed inhibitory effect on S. mutans biofilm formation and growth. PMID:23741708

  17. Inhibition of Streptococcus mutans biofilm formation, extracellular polysaccharide production, and virulence by an oxazole derivative.

    PubMed

    Chen, Lulu; Ren, Zhi; Zhou, Xuedong; Zeng, Jumei; Zou, Jing; Li, Yuqing

    2016-01-01

    Dental caries, a biofilm-related oral disease, is a result of disruption of the microbial ecological balance in the oral environment. Streptococcus mutans, which is one of the primary cariogenic bacteria, produces glucosyltransferases (Gtfs) that synthesize extracellular polysaccharides (EPSs). The EPSs, especially water-insoluble glucans, contribute to the formation of dental plaque, biofilm stability, and structural integrity, by allowing bacteria to adhere to tooth surfaces and supplying the bacteria with protection against noxious stimuli and other environmental attacks. The identification of novel alternatives that selectively inhibit cariogenic organisms without suppressing oral microbial residents is required. The goal of the current study is to investigate the influence of an oxazole derivative on S. mutans biofilm formation and the development of dental caries in rats, given that oxazole and its derivatives often exhibit extensive and pharmacologically important biological activities. Our data shows that one particular oxazole derivative, named 5H6, inhibited the formation of S. mutans biofilms and prevented synthesis of extracellular polysaccharides by antagonizing Gtfs in vitro, without affecting the growth of the bacteria. In addition, topical applications with the inhibitor resulted in diminished incidence and severity of both smooth and sulcal surface caries in vivo with a lower percentage of S. mutans in the animals' dental plaque compared to the control group (P < 0.05). Our results showed that this oxazole derivative has the capacity to inhibit biofilm formation and cariogenicity of S. mutans.

  18. Streptococcus gordonii LuxS/autoinducer-2 quorum-sensing system modulates the dual-species biofilm formation with Streptococcus mutans.

    PubMed

    Wang, Xiao; Li, Xiaolan; Ling, Junqi

    2017-07-01

    Dental plaques are mixed-species biofilms that are related to the development of dental caries. Streptococcus mutans (S. mutans) is an important cariogenic bacterium that forms mixed-species biofilms with Streptococcus gordonii (S. gordonii), an early colonizer of the tooth surface. The LuxS/autoinducer-2(AI-2) quorum sensing system is involved in the regulation of mixed-species biofilms, and AI-2 is proposed as a universal signal for the interaction between bacterial species. In this work, a S. gordonii luxS deficient strain was constructed to investigate the effect of the S. gordonii luxS gene on dual-species biofilm formed by S. mutans and S. gordonii. In addition, AI-2 was synthesized in vitro by incubating recombinant LuxS and Pfs enzymes of S. gordonii together. The effect of AI-2 on S. mutans single-species biofilm formation and cariogenic virulence gene expression were also assessed. The results showed that luxS disruption in S. gordonii altered dual-species biofilm formation, architecture, and composition, as well as the susceptibility to chlorhexidine. And the in vitro synthesized AI-2 had a concentration-dependent effect on S. mutans biofilm formation and virulence gene expression. These findings indicate that LuxS/AI-2 quorum-sensing system of S. gordonii plays a role in regulating the dual-species biofilm formation with S. mutans. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Clotrimazole and econazole inhibit Streptococcus mutans biofilm and virulence in vitro.

    PubMed

    Qiu, Wei; Ren, Biao; Dai, Huanqin; Zhang, Lixin; Zhang, Qiong; Zhou, Xuedong; Li, Yuqing

    2017-01-01

    The aim of this study was to determine the inhibitory effect of eight antifungal drugs on S. mutans growth, biofilm formation and virulence factors. The actions of antifungal drugs on S. mutans were determined by recovery plates and survival kinetic curves. Biofilms were observed by scanning electron microscopy and the viable cells were recovered on BHI plates, meanwhile biofilms were stained by BacLight live/dead kit to investigate the biofilm viability. Bacteria/extracellular polysaccharides staining assays were performed to determine the EPS production of S. mutans biofilms. Acidogenicity and acidurity of S. mutans were determined using pH drop and acid tolerance assays, and the expression of ldh gene was evaluated using qPCR. We found that clotrimazole (CTR) and econazole (ECO) showed antibacterial activities on S. mutans UA159 and S. mutans clinical isolates at 12.5 and 25mg/L, respectively. CTR and ECO could also inhibit S. mutans biofilm formation and reduce the viability of preformed biofilm. CTR and ECO affected the live/dead ratio and the EPS/bacteria ratio of S. mutans biofilms. CTR and ECO also inhibited the pH drop, lactate acid production, and acid tolerance. The abilities of CTR and ECO to inhibit S. mutans ldh expression were also confirmed. We found that two antifungal azoles, CTR and ECO, had the abilities to inhibit the growth and biofilm formation of S. mutans and more importantly, they could also inhibit the virulence factors of S. mutans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Trk2 Potassium Transport System in Streptococcus mutans and Its Role in Potassium Homeostasis, Biofilm Formation, and Stress Tolerance

    PubMed Central

    Binepal, Gursonika; Gill, Kamal; Crowley, Paula; Cordova, Martha; Brady, L. Jeannine; Senadheera, Dilani B.

    2016-01-01

    ABSTRACT Potassium (K+) is the most abundant cation in the fluids of dental biofilm. The biochemical and biophysical functions of K+ and a variety of K+ transport systems have been studied for most pathogenic bacteria but not for oral pathogens. In this study, we establish the modes of K+ acquisition in Streptococcus mutans and the importance of K+ homeostasis for its virulence attributes. The S. mutans genome harbors four putative K+ transport systems that included two Trk-like transporters (designated Trk1 and Trk2), one glutamate/K+ cotransporter (GlnQHMP), and a channel-like K+ transport system (Kch). Mutants lacking Trk2 had significantly impaired growth, acidogenicity, aciduricity, and biofilm formation. [K+] less than 5 mM eliminated biofilm formation in S. mutans. The functionality of the Trk2 system was confirmed by complementing an Escherichia coli TK2420 mutant strain, which resulted in significant K+ accumulation, improved growth, and survival under stress. Taken together, these results suggest that Trk2 is the main facet of the K+-dependent cellular response of S. mutans to environment stresses. IMPORTANCE Biofilm formation and stress tolerance are important virulence properties of caries-causing Streptococcus mutans. To limit these properties of this bacterium, it is imperative to understand its survival mechanisms. Potassium is the most abundant cation in dental plaque, the natural environment of S. mutans. K+ is known to function in stress tolerance, and bacteria have specialized mechanisms for its uptake. However, there are no reports to identify or characterize specific K+ transporters in S. mutans. We identified the most important system for K+ homeostasis and its role in the biofilm formation, stress tolerance, and growth. We also show the requirement of environmental K+ for the activity of biofilm-forming enzymes, which explains why such high levels of K+ would favor biofilm formation. PMID:26811321

  1. Inhibition of Steptococcus mutans biofilm formation by extracts of Tenacibaculum sp. 20J, a bacterium with wide-spectrum quorum quenching activity.

    PubMed

    Muras, Andrea; Mayer, Celia; Romero, Manuel; Camino, Tamara; Ferrer, Maria D; Mira, Alex; Otero, Ana

    2018-01-01

    Background : Previous studies have suggested the quorum sensing signal AI-2 as a potential target to prevent the biofilm formation by Streptococcus mutans , a pathogen involved in tooth decay. Objective : To obtain inhibition of biofilm formation by S. mutans by extracts obtained from the marine bacterium Tenacibaculum sp. 20J interfering with the AI-2 quorum sensing system. Design : The AI-2 inhibitory activity was tested with the biosensors Vibrio harveyi BB170 and JMH597. S. mutans ATCC25175 biofilm formation was monitored using impedance real-time measurements with the xCELLigence system®, confocal laser microscopy, and the crystal violet quantification method. Results : The addition of the cell extract from Tenacibaculum sp. 20J reduced biofilm formation in S. mutans ATCC25175 by 40-50% compared to the control without significantly affecting growth. A decrease of almost 40% was also observed in S. oralis DSM20627 and S. dentisani 7747 biofilms. Conclusions : The ability of Tenacibaculum sp. 20J to interfere with AI-2 and inhibit biofilm formation in S. mutans was demonstrated. The results indicate that the inhibition of quorum sensing processes may constitute a suitable strategy for inhibiting dental plaque formation, although additional experiments using mixed biofilm models would be required.

  2. Inhibition of Steptococcus mutans biofilm formation by extracts of Tenacibaculum sp. 20J, a bacterium with wide-spectrum quorum quenching activity

    PubMed Central

    Muras, Andrea; Mayer, Celia; Romero, Manuel; Camino, Tamara; Ferrer, Maria D.; Mira, Alex; Otero, Ana

    2018-01-01

    ABSTRACT Background: Previous studies have suggested the quorum sensing signal AI-2 as a potential target to prevent the biofilm formation by Streptococcus mutans, a pathogen involved in tooth decay. Objective: To obtain inhibition of biofilm formation by S. mutans by extracts obtained from the marine bacterium Tenacibaculum sp. 20J interfering with the AI-2 quorum sensing system. Design: The AI-2 inhibitory activity was tested with the biosensors Vibrio harveyi BB170 and JMH597. S. mutans ATCC25175 biofilm formation was monitored using impedance real-time measurements with the xCELLigence system®, confocal laser microscopy, and the crystal violet quantification method. Results: The addition of the cell extract from Tenacibaculum sp. 20J reduced biofilm formation in S. mutans ATCC25175 by 40–50% compared to the control without significantly affecting growth. A decrease of almost 40% was also observed in S. oralis DSM20627 and S. dentisani 7747 biofilms. Conclusions: The ability of Tenacibaculum sp. 20J to interfere with AI-2 and inhibit biofilm formation in S. mutans was demonstrated. The results indicate that the inhibition of quorum sensing processes may constitute a suitable strategy for inhibiting dental plaque formation, although additional experiments using mixed biofilm models would be required. PMID:29410771

  3. Anti-Biofilm Activity of a Self-Aggregating Peptide against Streptococcus mutans

    PubMed Central

    Ansari, Juliana M.; Abraham, Nabil M.; Massaro, Jenna; Murphy, Kelsey; Smith-Carpenter, Jillian; Fikrig, Erol

    2017-01-01

    Streptococcus mutans is the primary agent of dental cavities, in large part due to its ability to adhere to teeth and create a molecular scaffold of glucan polysaccharides on the tooth surface. Disrupting the architecture of S. mutans biofilms could help undermine the establishment of biofilm communities that cause cavities and tooth decay. Here we present a synthetic peptide P1, derived from a tick antifreeze protein, which significantly reduces S. mutans biofilm formation. Incubating cells with this peptide decreased biofilm biomass by approximately 75% in both a crystal violet microplate assay and an in vitro tooth model using saliva-coated hydroxyapatite discs. Bacteria treated with peptide P1 formed irregular biofilms with disconnected aggregates of cells and exopolymeric matrix that readily detached from surfaces. Peptide P1 can bind directly to S. mutans cells but does not possess bactericidal activity. Anti-biofilm activity was correlated with peptide aggregation and β-sheet formation in solution, and alternative synthetic peptides of different lengths or charge distribution did not inhibit biofilms. This anti-biofilm peptide interferes with S. mutans biofilm formation and architecture, and may have future applications in preventing bacterial buildup on teeth. PMID:28392782

  4. Levorotatory carbohydrates and xylitol subdue Streptococcus mutans and Candida albicans adhesion and biofilm formation.

    PubMed

    Brambilla, Eugenio; Ionescu, Andrei C; Cazzaniga, Gloria; Ottobelli, Marco; Samaranayake, Lakshman P

    2016-05-01

    Dietary carbohydrates and polyols affect the microbial colonization of oral surfaces by modulating adhesion and biofilm formation. The aim of this study was to evaluate the influence of a select group of l-carbohydrates and polyols on either Streptococcus mutans or Candida albicans adhesion and biofilm formation in vitro. S. mutans or C. albicans suspensions were inoculated on polystyrene substrata in the presence of Tryptic soy broth containing 5% of the following compounds: d-glucose, d-mannose, l-glucose, l-mannose, d- and l-glucose (raceme), d- and l-mannose (raceme), l-glucose and l-mannose, sorbitol, mannitol, and xylitol. Microbial adhesion (2 h) and biofilm formation (24 h) were evaluated using MTT-test and Scanning Electron Microscopy (SEM). Xylitol and l-carbohydrates induced the lowest adhesion and biofilm formation in both the tested species, while sorbitol and mannitol did not promote C. albicans biofilm formation. Higher adhesion and biofilm formation was noted in both organisms in the presence of d-carbohydrates relative to their l-carbohydrate counterparts. These results elucidate, hitherto undescribed, interactions of the individually tested strains with l- and d-carbohydrates, and how they impact fungal and bacterial colonization. In translational terms, our data raise the possibility of using l-form of carbohydrates and xylitol for dietary control of oral plaque biofilms. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Streptococcus mutans Displays Altered Stress Responses While Enhancing Biofilm Formation by Lactobacillus casei in Mixed-Species Consortium

    PubMed Central

    Wen, Zezhang T.; Liao, Sumei; Bitoun, Jacob P.; De, Arpan; Jorgensen, Ashton; Feng, Shihai; Xu, Xiaoming; Chain, Patrick S. G.; Caufield, Page W.; Koo, Hyun; Li, Yihong

    2017-01-01

    Like Streptococcus mutans, lactobacilli are commonly isolated from carious sites, although their exact role in caries development remains unclear. This study used mixed-species models to analyze biofilm formation by major groups of oral lactobacilli, including L. casei, L. fermentum, L. rhamnosus, L. salivarius ssp. salivarius, and L. gasseri. The results showed that lactobacilli did not form good biofilms when grown alone, although differences existed between different species. When grown together with S. mutans, biofilm formation by L. gasseri and L. rhamnosus was increased by 2-log (P < 0.001), while biofilms by L. fermentum reduced by >1-log (P < 0.001). L. casei enhanced biofilm formation by ~2-log when grown with S. mutans wild-type, but no such effects were observed with S. mutans deficient of glucosyltransferase GtfB and adhesin P1. Both S. mutans and L. casei in dual-species enhanced resistance to acid killing with increases of survival rate by >1-log (P < 0.001), but drastically reduced the survival rates following exposure to hydrogen peroxide (P < 0.001), as compared to the respective mono-species cultures. When analyzed by RNA-seq, more than 134 genes were identified in S. mutans in dual-species with L. casei as either up- or down-regulated when compared to those grown alone. The up-regulated genes include those for superoxide dismutase, NADH oxidase, and members of the mutanobactin biosynthesis cluster. Among the down-regulated genes were those for GtfB and alternative sigma factor SigX. These results further suggest that interactions between S. mutans and oral lactobacilli are species-specific and may have significant impact on cariogenic potential of the community. PMID:29326887

  6. Probiotic Lactobacillus sp. inhibit growth, biofilm formation and gene expression of caries-inducing Streptococcus mutans.

    PubMed

    Wasfi, Reham; Abd El-Rahman, Ola A; Zafer, Mai M; Ashour, Hossam M

    2018-03-01

    Streptococcus mutans contributes significantly to dental caries, which arises from homoeostasic imbalance between host and microbiota. We hypothesized that Lactobacillus sp. inhibits growth, biofilm formation and gene expression of Streptococcus mutans. Antibacterial (agar diffusion method) and antibiofilm (crystal violet assay) characteristics of probiotic Lactobacillus sp. against Streptococcus mutans (ATCC 25175) were evaluated. We investigated whether Lactobacillus casei (ATCC 393), Lactobacillus reuteri (ATCC 23272), Lactobacillus plantarum (ATCC 14917) or Lactobacillus salivarius (ATCC 11741) inhibit expression of Streptococcus mutans genes involved in biofilm formation, quorum sensing or stress survival using quantitative real-time polymerase chain reaction (qPCR). Growth changes (OD600) in the presence of pH-neutralized, catalase-treated or trypsin-treated Lactobacillus sp. supernatants were assessed to identify roles of organic acids, peroxides and bacteriocin. Susceptibility testing indicated antibacterial (pH-dependent) and antibiofilm activities of Lactobacillus sp. against Streptococcus mutans. Scanning electron microscopy revealed reduction in microcolony formation and exopolysaccharide structural changes. Of the oral normal flora, L. salivarius exhibited the highest antibiofilm and peroxide-dependent antimicrobial activities. All biofilm-forming cells treated with Lactobacillus sp. supernatants showed reduced expression of genes involved in exopolysaccharide production, acid tolerance and quorum sensing. Thus, Lactobacillus sp. can inhibit tooth decay by limiting growth and virulence properties of Streptococcus mutans. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  7. Photo Inactivation of Streptococcus mutans Biofilm by Violet-Blue light.

    PubMed

    Gomez, Grace F; Huang, Ruijie; MacPherson, Meoghan; Ferreira Zandona, Andrea G; Gregory, Richard L

    2016-09-01

    Among various preventive approaches, non-invasive phototherapy/photodynamic therapy is one of the methods used to control oral biofilm. Studies indicate that light at specific wavelengths has a potent antibacterial effect. The objective of this study was to determine the effectiveness of violet-blue light at 380-440 nm to inhibit biofilm formation of Streptococcus mutans or kill S. mutans. S. mutans UA159 biofilm cells were grown for 12-16 h in 96-well flat-bottom microtiter plates using tryptic soy broth (TSB) or TSB with 1 % sucrose (TSBS). Biofilm was irradiated with violet-blue light for 5 min. After exposure, plates were re-incubated at 37 °C for either 2 or 6 h to allow the bacteria to recover. A crystal violet biofilm assay was used to determine relative densities of the biofilm cells grown in TSB, but not in TSBS, exposed to violet-blue light. The results indicated a statistically significant (P < 0.05) decrease compared to the non-treated groups after the 2 or 6 h recovery period. Growth rates of planktonic and biofilm cells indicated a significant reduction in the growth rate of the violet-blue light-treated groups grown in TSB and TSBS. Biofilm viability assays confirmed a statistically significant difference between violet-blue light-treated and non-treated groups in TSB and TSBS. Visible violet-blue light of the electromagnetic spectrum has the ability to inhibit S. mutans growth and reduce the formation of S. mutans biofilm. This in vitro study demonstrated that violet-blue light has the capacity to inhibit S. mutans biofilm formation. Potential clinical applications of light therapy in the future remain bright in preventing the development and progression of dental caries.

  8. Withania somnifera attenuates acid production, acid tolerance and extra-cellular polysaccharide formation of Streptococcus mutans biofilms.

    PubMed

    Pandit, Santosh; Song, Kwang-Yeob; Jeon, Jae-Gyu

    2014-01-01

    Withania somnifera (Ashwagandha) is a plant of the Solanaceae family. It has been widely used as a remedy for a variety of ailments in India and Nepal. The plant has also been used as a controlling agent for dental diseases. The aim of the present study was to evaluate the activity of the methanol extract of W. somnifera against the physiological ability of cariogenic biofilms and to identify the components of the extract. To determine the activity of the extract, assays for sucrose-dependent bacterial adherence, glycolytic acid production, acid tolerance, and extracellular polysaccharide formation were performed using Streptococcus mutans biofilms. The viability change of S. mutans biofilms cells was also determined. A phytochemical analysis of the extract was performed using TLC and LC/MS/MS. The extract showed inhibitory effects on sucrose-dependent bacterial adherence (≥ 100 μg/ml), glycolytic acid production (≥ 300 μg/ml), acid tolerance (≥ 300 μg/ml), and extracellular polysaccharide formation (≥ 300 μg/ml) of S. mutans biofilms. However, the extract did not alter the viability of S. mutans biofilms cells in all concentrations tested. Based on the phytochemical analysis, the activity of the extract may be related to the presence of alkaloids, anthrones, coumarines, anthraquinones, terpenoids, flavonoids, and steroid lactones (withanolide A, withaferin A, withanolide B, withanoside IV, and 12-deoxy withastramonolide). These data indicate that W. somnifera may be a potential agent for restraining the physiological ability of cariogenic biofilms.

  9. Potential mechanisms for the effects of tea extracts on the attachment, biofilm formation and cell size of Streptococcus mutans.

    PubMed

    Wang, Yi; Lee, Sui M; Dykes, Gary A

    2013-01-01

    Tea can inhibit the attachment of Streptococcus mutans to surfaces and subsequent biofilm formation. Five commercial tea extracts were screened for their ability to inhibit attachment and biofilm formation by two strains of S. mutans on glass and hydroxyapatite surfaces. The mechanisms of these effects were investigated using scanning electron microscopy (SEM) and phytochemical screening. The results indicated that extracts of oolong tea most effectively inhibited attachment and extracts of pu-erh tea most effectively inhibited biofilm formation. SEM images showed that the S. mutans cells treated with extracts of oolong tea, or grown in medium containing extracts of pu-erh tea, were coated with tea components and were larger with more rounded shapes. The coatings on the cells consisted of flavonoids, tannins and indolic compounds. The ratio of tannins to simple phenolics in each of the coating samples was ∼3:1. This study suggests potential mechanisms by which tea components may inhibit the attachment and subsequent biofilm formation of S. mutans on tooth surfaces, such as modification of cell surface properties and blocking of the activity of proteins and the structures used by the bacteria to interact with surfaces.

  10. The Effect of Carbon Source and Fluoride Concentrations in the "Streptococcus Mutans" Biofilm Formation

    ERIC Educational Resources Information Center

    Paulino, Tony P.; Andrade, Ricardo O.; Bruschi-Thedei, Giuliana C. M.; Thedei, Geraldo, Jr.; Ciancaglini, Pietro

    2004-01-01

    The main objective of this class experiment is to show the influence of carbon source and of different fluoride concentrations on the biofilm formation by the bacterium "Streptococcus mutans." The observation of different biofilm morphology as a function of carbon source and fluoride concentration allows an interesting discussion regarding the…

  11. Identification of anti-biofilm components in Withania somnifera and their effect on virulence of Streptococcus mutans biofilms.

    PubMed

    Pandit, S; Cai, J N; Song, K Y; Jeon, J G

    2015-08-01

    The aim of this study was to identify components of the Withania somnifera that could show anti-virulence activity against Streptococcus mutans biofilms. The anti-acidogenic activity of fractions separated from W. somnifera was compared, and then the most active anti-acidogenic fraction was chemically characterized using gas chromatography-mass spectroscopy. The effect of the identified components on the acidogenicity, aciduricity and extracellular polymeric substances (EPS) formation of S. mutans UA159 biofilms was evaluated. The change in accumulation and acidogenicity of S. mutans UA159 biofilms by periodic treatments (10 min per treatment) with the identified components was also investigated. Of the fractions, n-hexane fraction showed the strongest anti-acidogenic activity and was mainly composed of palmitic, linoleic and oleic acids. Of the identified components, linoleic and oleic acids strongly affected the acid production rate, F-ATPase activity and EPS formation of the biofilms. Periodic treatment with linoleic and oleic acids during biofilm formation also inhibited the biofilm accumulation and acid production rate of the biofilms without killing the biofilm bacteria. These results suggest that linoleic and oleic acids may be effective agents for restraining virulence of S. mutans biofilms. Linoleic and oleic acids may be promising agents for controlling virulence of cariogenic biofilms and subsequent dental caries formation. © 2015 The Society for Applied Microbiology.

  12. Functional amyloid formation by Streptococcus mutans

    PubMed Central

    Oli, M. W.; Otoo, H. N.; Crowley, P. J.; Heim, K. P.; Nascimento, M. M.; Ramsook, C. B.; Lipke, P. N.

    2012-01-01

    Dental caries is a common infectious disease associated with acidogenic and aciduric bacteria, including Streptococcus mutans. Organisms that cause cavities form recalcitrant biofilms, generate acids from dietary sugars and tolerate acid end products. It has recently been recognized that micro-organisms can produce functional amyloids that are integral to biofilm development. We now show that the S. mutans cell-surface-localized adhesin P1 (antigen I/II, PAc) is an amyloid-forming protein. This conclusion is based on the defining properties of amyloids, including binding by the amyloidophilic dyes Congo red (CR) and Thioflavin T (ThT), visualization of amyloid fibres by transmission electron microscopy and the green birefringent properties of CR-stained protein aggregates when viewed under cross-polarized light. We provide evidence that amyloid is present in human dental plaque and is produced by both laboratory strains and clinical isolates of S. mutans. We provide further evidence that amyloid formation is not limited to P1, since bacterial colonies without this adhesin demonstrate residual green birefringence. However, S. mutans lacking sortase, the transpeptidase enzyme that mediates the covalent linkage of its substrates to the cell-wall peptidoglycan, including P1 and five other proteins, is not birefringent when stained with CR and does not form biofilms. Biofilm formation is inhibited when S. mutans is cultured in the presence of known inhibitors of amyloid fibrillization, including CR, Thioflavin S and epigallocatechin-3-gallate, which also inhibited ThT uptake by S. mutans extracellular proteins. Taken together, these results indicate that S. mutans is an amyloid-forming organism and suggest that amyloidogenesis contributes to biofilm formation by this oral microbe. PMID:23082034

  13. Raffinose Induces Biofilm Formation by Streptococcus mutans in Low Concentrations of Sucrose by Increasing Production of Extracellular DNA and Fructan.

    PubMed

    Nagasawa, Ryo; Sato, Tsutomu; Senpuku, Hidenobu

    2017-08-01

    Streptococcus mutans is the primary etiological agent of dental caries and causes tooth decay by forming a firmly attached biofilm on tooth surfaces. Biofilm formation is induced by the presence of sucrose, which is a substrate for the synthesis of extracellular polysaccharides but not in the presence of oligosaccharides. Nonetheless, in this study, we found that raffinose, which is an oligosaccharide with an intestinal regulatory function and antiallergic effect, induced biofilm formation by S. mutans in a mixed culture with sucrose, which was at concentrations less than those required to induce biofilm formation directly. We analyzed the possible mechanism behind the small requirement for sucrose for biofilm formation in the presence of raffinose. Our results suggested that sucrose contributed to an increase in bacterial cell surface hydrophobicity and biofilm formation. Next, we examined how the effects of raffinose interacted with the effects of sucrose for biofilm formation. We showed that the presence of raffinose induced fructan synthesis by fructosyltransferase and aggregated extracellular DNA (eDNA, which is probably genomic DNA released from dead cells) into the biofilm. eDNA seemed to be important for biofilm formation, because the degradation of DNA by DNase I resulted in a significant reduction in biofilm formation. When assessing the role of fructan in biofilm formation, we found that fructan enhanced eDNA-dependent cell aggregation. Therefore, our results show that raffinose and sucrose have cooperative effects and that this induction of biofilm formation depends on supportive elements that mainly consist of eDNA and fructan. IMPORTANCE The sucrose-dependent mechanism of biofilm formation in Streptococcus mutans has been studied extensively. Nonetheless, the effects of carbohydrates other than sucrose are inadequately understood. Our findings concerning raffinose advance the understanding of the mechanism underlying the joint effects of sucrose and

  14. Effects of oxygen on biofilm formation and the AtlA autolysin of Streptococcus mutans.

    PubMed

    Ahn, Sang-Joon; Burne, Robert A

    2007-09-01

    The Streptococcus mutans atlA gene encodes an autolysin required for biofilm maturation and biogenesis of a normal cell surface. We found that the capacity to form biofilms by S. mutans, one of the principal causative agents of dental caries, was dramatically impaired by growth of the organism in an aerated environment and that cells exposed to oxygen displayed marked changes in surface protein profiles. Inactivation of the atlA gene alleviated repression of biofilm formation in the presence of oxygen. Also, the formation of long chains, a characteristic of AtlA-deficient strains, was less evident in cells grown with aeration. The SMu0629 gene is immediately upstream of atlA and encodes a product that contains a C-X-X-C motif, a characteristic of thiol-disulfide oxidoreductases. Inactivation of SMu0629 significantly reduced the levels of AtlA protein and led to resistance to autolysis. The SMu0629 mutant also displayed an enhanced capacity to form biofilms in the presence of oxygen compared to that of the parental strain. The expression of SMu0629 was shown to be under the control of the VicRK two-component system, which influences oxidative stress tolerance in S. mutans. Disruption of vicK also led to inhibition of processing of AtlA, and the mutant was hyperresistant to autolysis. When grown under aerobic conditions, the vicK mutant also showed significantly increased biofilm formation compared to strain UA159. This study illustrates the central role of AtlA and VicK in orchestrating growth on surfaces and envelope biogenesis in response to redox conditions.

  15. Inhibitory Effects of Chrysanthemum boreale Essential Oil on Biofilm Formation and Virulence Factor Expression of Streptococcus mutans

    PubMed Central

    Kim, Beom-Su; Park, Sun-Ju; Kim, Myung-Kon; Kim, Young-Hoi; Lee, Sang-Bong; Lee, Kwang-Hee; Lee, Young-Rae; Lee, Young-Eun; You, Yong-Ouk

    2015-01-01

    The aim of the study was to evaluate the antibacterial activity of essential oil extracted from Chrysanthemum boreale (C. boreale) on Streptococcus mutans (S. mutans). To investigate anticariogenic properties, and bacterial growth, acid production, biofilm formation, bacterial adherence of S. mutans were evaluated. Then gene expression of several virulence factors was also evaluated. C. boreale essential oil exhibited significant inhibition of bacterial growth, adherence capacity, and acid production of S. mutans at concentrations 0.1–0.5 mg/mL and 0.25–0.5 mg/mL, respectively. The safranin staining and scanning electron microscopy results showed that the biofilm formation was also inhibited. The result of live/dead staining showed the bactericidal effect. Furthermore, real-time PCR analysis showed that the gene expression of some virulence factors such as gtfB, gtfC, gtfD, gbpB, spaP, brpA, relA, and vicR of S. mutans was significantly decreased in a dose dependent manner. In GC and GC-MS analysis, seventy-two compounds were identified in the oil, representing 85.42% of the total oil. The major components were camphor (20.89%), β-caryophyllene (5.71%), α-thujone (5.46%), piperitone (5.27%), epi-sesquiphellandrene (5.16%), α-pinene (4.97%), 1,8-cineole (4.52%), β-pinene (4.45%), and camphene (4.19%). These results suggest that C. boreale essential oil may inhibit growth, adhesion, acid tolerance, and biofilm formation of S. mutans through the partial inhibition of several of these virulence factors. PMID:25763094

  16. Mucin can enhance growth, biofilm formation, and survival of Streptococcus mutans.

    PubMed

    Mothey, Deepa; Buttaro, Bettina A; Piggot, Patrick J

    2014-01-01

    Streptococcus mutans is a member of the dental plaque and is the primary causative agent of dental caries. It can survive extended periods of starvation, which may occur in different niches within the oral cavity. We have found that mucin compensated for the absence of amino acids to promote exponential growth and biofilm formation of S. mutans in minimal medium supplemented with glucose and sucrose, respectively. Mucin extended survival in conditions where there was no net growth provided the operon encoding the pyruvate dehydrogenase complex was intact. Mucin extended survival in conditions of amino acid sufficiency provided the tagatose pathway for galactose utilization was intact, suggesting that S. mutans can scavenge sufficient galactose from mucin to enhance survival, although not to serve as a primary carbon and energy source. The results suggest that mucin has a metabolic role in promoting survival of S. mutans. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  17. Reduction of Streptococcus mutans adherence and dental biofilm formation by surface treatment with phosphorylated polyethylene glycol.

    PubMed

    Shimotoyodome, Akira; Koudate, Takashi; Kobayashi, Hisataka; Nakamura, Junji; Tokimitsu, Ichiro; Hase, Tadashi; Inoue, Takashi; Matsukubo, Takashi; Takaesu, Yoshinori

    2007-10-01

    Initial attachment of the cariogenic Streptococcus mutans onto dental enamel is largely promoted by the adsorption of specific salivary proteins on enamel surface. Some phosphorylated salivary proteins were found to reduce S. mutans adhesion by competitively inhibiting the adsorption of S. mutans-binding salivary glycoproteins to hydroxyapatite (HA). The aim of this study was to develop antiadherence compounds for preventing dental biofilm development. We synthesized phosphorylated polyethylene glycol (PEG) derivatives and examined the possibility of surface pretreatment with them for preventing S. mutans adhesion in vitro and dental biofilm formation in vivo. Pretreatment of the HA surface with methacryloyloxydecyl phosphate (MDP)-PEG prior to saliva incubation hydrophilized the surface and thereby reduced salivary protein adsorption and saliva-promoted bacterial attachment to HA. However, when MDP-PEG was added to the saliva-pretreated HA (S-HA) surface, its inhibitory effect on bacterial binding was completely diminished. S. mutans adhesion onto S-HA was successfully reduced by treatment of the surface with pyrophosphate (PP), which desorbs salivary components from S-HA. Treatment of S-HA surfaces with MDP-PEG plus PP completely inhibited saliva-promoted S. mutans adhesion even when followed by additional saliva treatment. Finally, mouthwash with MDP-PEG plus PP prevented de novo biofilm development after thorough teeth cleaning in humans compared to either water or PP alone. We conclude that MDP-PEG plus PP has the potential for use as an antiadherence agent that prevents dental biofilm development.

  18. Casein Phosphopeptide-Amorphous Calcium Phosphate Reduces Streptococcus mutans Biofilm Development on Glass Ionomer Cement and Disrupts Established Biofilms.

    PubMed

    Dashper, Stuart G; Catmull, Deanne V; Liu, Sze-Wei; Myroforidis, Helen; Zalizniak, Ilya; Palamara, Joseph E A; Huq, N Laila; Reynolds, Eric C

    2016-01-01

    Glass ionomer cements (GIC) are dental restorative materials that are suitable for modification to help prevent dental plaque (biofilm) formation. The aim of this study was to determine the effects of incorporating casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) into a GIC on the colonisation and establishment of Streptococcus mutans biofilms and the effects of aqueous CPP-ACP on established S mutans biofilms. S. mutans biofilms were either established in flow cells before a single ten min exposure to 1% w/v CPP-ACP treatment or cultured in static wells or flow cells with either GIC or GIC containing 3% w/w CPP-ACP as the substratum. The biofilms were then visualised using confocal laser scanning microscopy after BacLight LIVE/DEAD staining. A significant decrease in biovolume and average thickness of S. mutans biofilms was observed in both static and flow cell assays when 3% CPP-ACP was incorporated into the GIC substratum. A single ten min treatment with aqueous 1% CPP-ACP resulted in a 58% decrease in biofilm biomass and thickness of established S. mutans biofilms grown in a flow cell. The treatment also significantly altered the structure of these biofilms compared with controls. The incorporation of 3% CPP-ACP into GIC significantly reduced S. mutans biofilm development indicating another potential anticariogenic mechanism of this material. Additionally aqueous CPP-ACP disrupted established S. mutans biofilms. The use of CPP-ACP containing GIC combined with regular CPP-ACP treatment may lower S. mutans challenge.

  19. d-Alanine metabolism is essential for growth and biofilm formation of Streptococcus mutans.

    PubMed

    Qiu, W; Zheng, X; Wei, Y; Zhou, X; Zhang, K; Wang, S; Cheng, L; Li, Y; Ren, B; Xu, X; Li, Y; Li, M

    2016-10-01

    Part of the d-alanine (d-Ala) metabolic pathway in bacteria involves the conversion of l-alanine to d-Ala by alanine racemase and the formation of d-alanyl-d-alanine by d-alanine-d-alanine ligase, the product of which is involved in cell wall peptidoglycan synthesis. At present, drugs that target the metabolic pathway of d-Ala are already in clinical use - e.g. d-cycloserine (DCS) is used as an antibiotic against Mycobacterium tuberculosis. Streptococcus mutans is the main cariogenic bacterium in the oral cavity. Its d-Ala metabolism-associated enzymes alanine racemase and d-alanine-d-alanine ligase are encoded by the genes smu.1834 and smu.599, respectively, which may be potential targets for inhibitors. In this study, the addition of DCS blocked the d-Ala metabolic pathway in S. mutans, leading to bacterial cell wall defects, significant inhibition of bacterial growth and biofilm formation, and reductions in extracellular polysaccharide production and bacterial adhesion. However, the exogenous addition of d-Ala could reverse the inhibitory effect of DCS. Through the means of drug regulation, our study demonstrated, for the first time, the importance of d-Ala metabolism in the survival and biofilm formation of S. mutans. If the growth of S. mutans can be specifically inhibited by designing drugs that target d-Ala metabolism, then this may serve as a potential new treatment for dental caries. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Deficiency of PdxR in Streptococcus mutans affects vitamin B6 metabolism, acid tolerance response and biofilm formation.

    PubMed

    Liao, S; Bitoun, J P; Nguyen, A H; Bozner, D; Yao, X; Wen, Z T

    2015-08-01

    Streptococcus mutans, a key etiological agent of the human dental caries, lives primarily on the tooth surface in tenacious biofilms. The SMU864 locus, designated pdxR, is predicted to encode a member of the novel MocR/GabR family proteins, which are featured with a winged helix DNA-binding N-terminal domain and a C-terminal domain highly homologous to the pyridoxal phosphate-dependent aspartate aminotransferases. A pdxR-deficient mutant, TW296, was constructed using allelic exchange. PdxR deficiency in S. mutans had little effect on cell morphology and growth when grown in brain heart infusion. However, when compared with its parent strain, UA159, the PdxR-deficient mutant displayed major defects in acid tolerance response and formed significantly fewer biofilms (P < 0.01). When analyzed by real-time polymerase chain reaction, PdxR deficiency was found to drastically reduce expression of an apparent operon encoding a pyridoxal kinase (SMU865) and a pyridoxal permease (SMU866) of the salvage pathway of vitamin B6 biosynthesis. In addition, PdxR deficiency also altered the expression of genes for ClpL protease, glucosyltransferase B and adhesin SpaP, which are known to play important roles in stress tolerance and biofilm formation. Consistently, PdxR-deficiency affected the growth of the deficient mutant when grown in defined medium with and without vitamin B6 . Further studies revealed that although S. mutans is known to require vitamin B6 to grow in defined medium, B6 vitamers, especially pyridoxal, were strongly inhibitory at millimolar concentrations, against S. mutans growth and biofilm formation. Our results suggest that PdxR in S. mutans plays an important role in regulation of vitamin B6 metabolism, acid tolerance response and biofilm formation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Isolation of a Novel Phage with Activity against Streptococcus mutans Biofilms

    PubMed Central

    Dalmasso, Marion; de Haas, Eric; Neve, Horst; Strain, Ronan; Cousin, Fabien J.; Stockdale, Stephen R.; Ross, R. Paul; Hill, Colin

    2015-01-01

    Streptococcus mutans is one of the principal agents of caries formation mainly, because of its ability to form biofilms at the tooth surface. Bacteriophages (phages) are promising antimicrobial agents that could be used to prevent or treat caries formation by S. mutans. The aim of this study was to isolate new S. mutans phages and to characterize their antimicrobial properties. A new phage, ɸAPCM01, was isolated from a human saliva sample. Its genome was closely related to the only two other available S. mutans phage genomes, M102 and M102AD. ɸAPCM01 inhibited the growth of S. mutans strain DPC6143 within hours in broth and in artificial saliva at multiplicity of infections as low as 2.5x10-5. In the presence of phage ɸAPCM01 the metabolic activity of a S. mutans biofilm was reduced after 24 h of contact and did not increased again after 48 h, and the live cells in the biofilm decreased by at least 5 log cfu/ml. Despite its narrow host range, this newly isolated S. mutans phage exhibits promising antimicrobial properties. PMID:26398909

  2. Casein Phosphopeptide-Amorphous Calcium Phosphate Reduces Streptococcus mutans Biofilm Development on Glass Ionomer Cement and Disrupts Established Biofilms

    PubMed Central

    Liu, Sze-Wei; Myroforidis, Helen; Zalizniak, Ilya; Palamara, Joseph E. A.; Huq, N. Laila; Reynolds, Eric C.

    2016-01-01

    Glass ionomer cements (GIC) are dental restorative materials that are suitable for modification to help prevent dental plaque (biofilm) formation. The aim of this study was to determine the effects of incorporating casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) into a GIC on the colonisation and establishment of Streptococcus mutans biofilms and the effects of aqueous CPP-ACP on established S mutans biofilms. S. mutans biofilms were either established in flow cells before a single ten min exposure to 1% w/v CPP-ACP treatment or cultured in static wells or flow cells with either GIC or GIC containing 3% w/w CPP-ACP as the substratum. The biofilms were then visualised using confocal laser scanning microscopy after BacLight LIVE/DEAD staining. A significant decrease in biovolume and average thickness of S. mutans biofilms was observed in both static and flow cell assays when 3% CPP-ACP was incorporated into the GIC substratum. A single ten min treatment with aqueous 1% CPP-ACP resulted in a 58% decrease in biofilm biomass and thickness of established S. mutans biofilms grown in a flow cell. The treatment also significantly altered the structure of these biofilms compared with controls. The incorporation of 3% CPP-ACP into GIC significantly reduced S. mutans biofilm development indicating another potential anticariogenic mechanism of this material. Additionally aqueous CPP-ACP disrupted established S. mutans biofilms. The use of CPP-ACP containing GIC combined with regular CPP-ACP treatment may lower S. mutans challenge. PMID:27589264

  3. The copYAZ Operon Functions in Copper Efflux, Biofilm Formation, Genetic Transformation, and Stress Tolerance in Streptococcus mutans

    PubMed Central

    Singh, Kamna; Senadheera, Dilani B.; Lévesque, Céline M.

    2015-01-01

    CopYAZ system in copper export and have further expanded knowledge on the importance of copper homeostasis and the CopYAZ system in modulating streptococcal physiology, including stress tolerance, membrane potential, genetic competence, and biofilm formation. IMPORTANCE S. mutans is best known for its role in the initiation and progression of human dental caries, one of the most common chronic diseases worldwide. S. mutans is also implicated in bacterial endocarditis, a life-threatening inflammation of the heart valve. The core virulence factors of S. mutans include its ability to produce and sustain acidic conditions and to form a polysaccharide-encased biofilm that provides protection against environmental insults. Here, we demonstrate that the addition of copper and/or deletion of copYAZ (the copper homeostasis system) have serious implications in modulating biofilm formation, stress tolerance, and genetic transformation in S. mutans. Manipulating the pathways affected by copper and the copYAZ system may help to develop potential therapeutics to prevent S. mutans infection in and beyond the oral cavity. PMID:26013484

  4. Antiadherent activity of Schinus terebinthifolius and Croton urucurana extracts on in vitro biofilm formation of Candida albicans and Streptococcus mutans.

    PubMed

    Barbieri, Dicler S V; Tonial, Fabiana; Lopez, Patricia V A; Sales Maia, Beatriz H L N; Santos, Germana D; Ribas, Marina O; Glienke, Chirlei; Vicente, Vania A

    2014-09-01

    To evaluate the antiadherent property of crude, methanol and acetate methanol extract fractions from Schinus terebinthifolius and Croton urucurana in hydroalcoholic (HA) and dimethylsulfoxide (DMSO) solvents on in vitro biofilms formed by Streptococcus mutans and Candida albicans strains. The minimal concentration of adherence (MICA) was determined to evaluate the antiadherent potential of extracts on the in vitro biofilm formation. The extracts of plants were subjected to thin layer chromatography (TLC) in order to detect what class of compounds was responsible for the antiadherent activity. Data were estimated by analysis of variance (ANOVA) complemented by Tukey test level of significance set at 5%. Both plants demonstrated inhibition of S. mutans and C. albicans on in vitro biofilm formation. The biofilms of C. albicans were more efficiently inhibited by the S. terebinthifolius fraction of acetate-methanol and methanol in hydroalcoholic solvents (p<0.05). The S. mutans biofilms adherence was best inhibited by the S. terebinthifolius crude extract and its methanolic fraction, both in hydroalcoholic solvent (p<0.05). TLC of crude extracts and fractions of S. terebinthifolius detected the presence of several active compounds, including phenolic compounds, anthraquinones, terpenoids, and alkaloids. C. urucurana extracts confirmed activity for both microorganisms (p<0.05). However, higher concentrations were needed to achieve antiadherent activity, mainly to inhibit in vitro biofilm formation of C. albicans. The antiadherent potential of both plants on in vitro biofilms formed by C. albicans and S. mutans were confirmed, suggesting the importance of studies about these extracts for therapeutic prevention of oral diseases associated with oral biofilms. Copyright © 2014. Published by Elsevier Ltd.

  5. Relationship between Pyruvate Kinase Activity and Cariogenic Biofilm Formation in Streptococcus mutans Biotypes in Caries Patients

    PubMed Central

    Krzyściak, Wirginia; Papież, Monika; Jurczak, Anna; Kościelniak, Dorota; Vyhouskaya, Palina; Zagórska-Świeży, Katarzyna; Skalniak, Anna

    2017-01-01

    Streptococcus mutans (MS) and its biotype I are the strains most frequently found in dental plaque of young children. Our results indicate that in children pyruvate kinase (PK) activity increases significantly in dental plaque, and this corresponds with caries progression. The MS strains isolated in this study or their main glycolytic metabolism connected with PK enzymes might be useful risk factors for studying the pathogenesis and target points of novel therapies for dental caries. The relationship between PK activity, cariogenic biofilm formation and selected biotypes occurrence was studied. S. mutans dental plaque samples were collected from supragingival plaque of individual deciduous molars in 143 subjects. PK activity was measured at different time points during biofilm formation. Patients were divided into two groups: initial stage decay, and extensive decay. Non-parametric analysis of variance and analysis of covariance were used to determine the connections between S. mutans levels, PK activity and dental caries biotypes. A total of 143 strains were derived from subjects with caries. Biotyping data showed that 62, 23, 50, and 8 strains were classified as biotypes I, II, III, IV, respectively. PK activity in biotypes I, II, and IV was significantly higher in comparison to that in biotype III. The correlation between the level of S. mutans in dental plaque and PK activity was both statistically significant (p < 0.05) and positive. The greater the level of S. mutans in the biofilm (colony count and total biomass), the higher the PK activity; similarly, a low bacterial count correlated with low PK activity. PMID:28559883

  6. Apolar Bioactive Fraction of Melipona scutellaris Geopropolis on Streptococcus mutans Biofilm

    PubMed Central

    da Cunha, Marcos Guilherme; Galvão, Lívia Câmara de Carvalho; de Alencar, Severino Matias; Rosalen, Pedro Luiz

    2013-01-01

    The aim of this study was to evaluate the influence of the bioactive nonpolar fraction of geopropolis on Streptococcus mutans biofilm. The ethanolic extract of Melipona scutellaris geopropolis was subjected to a liquid-liquid partition, thus obtaining the bioactive hexane fraction (HF) possessing antimicrobial activity. The effects of HF on S. mutans UA159 biofilms generated on saliva-coated hydroxyapatite discs were analyzed by inhibition of formation, killing assay, and glycolytic pH-drop assays. Furthermore, biofilms treated with vehicle control and HF were analyzed by scanning electron microscopy (SEM). HF at 250 μg/mL and 400 μg/mL caused 38% and 53% reduction in the biomass of biofilm, respectively, when compared to vehicle control (P < 0.05) subsequently observed at SEM images, and this reduction was noticed in the amounts of extracellular alkali-soluble glucans, intracellular iodophilic polysaccharides, and proteins. In addition, the S. mutans viability (killing assay) and acid production by glycolytic pH drop were not affected (P > 0.05). In conclusion, the bioactive HF of geopropolis was promising to control the S. mutans biofilm formation, without affecting the microbial population but interfering with its structure by reducing the biochemical content of biofilm matrix. PMID:23843868

  7. Apolar Bioactive Fraction of Melipona scutellaris Geopropolis on Streptococcus mutans Biofilm.

    PubMed

    da Cunha, Marcos Guilherme; Franchin, Marcelo; Galvão, Lívia Câmara de Carvalho; Bueno-Silva, Bruno; Ikegaki, Masaharu; de Alencar, Severino Matias; Rosalen, Pedro Luiz

    2013-01-01

    The aim of this study was to evaluate the influence of the bioactive nonpolar fraction of geopropolis on Streptococcus mutans biofilm. The ethanolic extract of Melipona scutellaris geopropolis was subjected to a liquid-liquid partition, thus obtaining the bioactive hexane fraction (HF) possessing antimicrobial activity. The effects of HF on S. mutans UA159 biofilms generated on saliva-coated hydroxyapatite discs were analyzed by inhibition of formation, killing assay, and glycolytic pH-drop assays. Furthermore, biofilms treated with vehicle control and HF were analyzed by scanning electron microscopy (SEM). HF at 250  μ g/mL and 400  μ g/mL caused 38% and 53% reduction in the biomass of biofilm, respectively, when compared to vehicle control (P < 0.05) subsequently observed at SEM images, and this reduction was noticed in the amounts of extracellular alkali-soluble glucans, intracellular iodophilic polysaccharides, and proteins. In addition, the S. mutans viability (killing assay) and acid production by glycolytic pH drop were not affected (P > 0.05). In conclusion, the bioactive HF of geopropolis was promising to control the S. mutans biofilm formation, without affecting the microbial population but interfering with its structure by reducing the biochemical content of biofilm matrix.

  8. AtlA Mediates Extracellular DNA Release, Which Contributes to Streptococcus mutans Biofilm Formation in an Experimental Rat Model of Infective Endocarditis.

    PubMed

    Jung, Chiau-Jing; Hsu, Ron-Bin; Shun, Chia-Tung; Hsu, Chih-Chieh; Chia, Jean-San

    2017-09-01

    Host factors, such as platelets, have been shown to enhance biofilm formation by oral commensal streptococci, inducing infective endocarditis (IE), but how bacterial components contribute to biofilm formation in vivo is still not clear. We demonstrated previously that an isogenic mutant strain of Streptococcus mutans deficient in autolysin AtlA (Δ atlA ) showed a reduced ability to cause vegetation in a rat model of bacterial endocarditis. However, the role of AtlA in bacterial biofilm formation is unclear. In this study, confocal laser scanning microscopy analysis showed that extracellular DNA (eDNA) was embedded in S. mutans GS5 floes during biofilm formation on damaged heart valves, but an Δ atlA strain could not form bacterial aggregates. Semiquantification of eDNA by PCR with bacterial 16S rRNA primers demonstrated that the Δ atlA mutant strain produced dramatically less eDNA than the wild type. Similar results were observed with in vitro biofilm models. The addition of polyanethol sulfonate, a chemical lysis inhibitor, revealed that eDNA release mediated by bacterial cell lysis is required for biofilm initiation and maturation in the wild-type strain. Supplementation of cultures with calcium ions reduced wild-type growth but increased eDNA release and biofilm mass. The effect of calcium ions on biofilm formation was abolished in Δ atlA cultures and by the addition of polyanethol sulfonate. The VicK sensor, but not CiaH, was found to be required for the induction of eDNA release or the stimulation of biofilm formation by calcium ions. These data suggest that calcium ion-regulated AtlA maturation mediates the release of eDNA by S. mutans , which contributes to biofilm formation in infective endocarditis. Copyright © 2017 American Society for Microbiology.

  9. AtlA Mediates Extracellular DNA Release, Which Contributes to Streptococcus mutans Biofilm Formation in an Experimental Rat Model of Infective Endocarditis

    PubMed Central

    Hsu, Ron-Bin; Shun, Chia-Tung; Hsu, Chih-Chieh

    2017-01-01

    ABSTRACT Host factors, such as platelets, have been shown to enhance biofilm formation by oral commensal streptococci, inducing infective endocarditis (IE), but how bacterial components contribute to biofilm formation in vivo is still not clear. We demonstrated previously that an isogenic mutant strain of Streptococcus mutans deficient in autolysin AtlA (ΔatlA) showed a reduced ability to cause vegetation in a rat model of bacterial endocarditis. However, the role of AtlA in bacterial biofilm formation is unclear. In this study, confocal laser scanning microscopy analysis showed that extracellular DNA (eDNA) was embedded in S. mutans GS5 floes during biofilm formation on damaged heart valves, but an ΔatlA strain could not form bacterial aggregates. Semiquantification of eDNA by PCR with bacterial 16S rRNA primers demonstrated that the ΔatlA mutant strain produced dramatically less eDNA than the wild type. Similar results were observed with in vitro biofilm models. The addition of polyanethol sulfonate, a chemical lysis inhibitor, revealed that eDNA release mediated by bacterial cell lysis is required for biofilm initiation and maturation in the wild-type strain. Supplementation of cultures with calcium ions reduced wild-type growth but increased eDNA release and biofilm mass. The effect of calcium ions on biofilm formation was abolished in ΔatlA cultures and by the addition of polyanethol sulfonate. The VicK sensor, but not CiaH, was found to be required for the induction of eDNA release or the stimulation of biofilm formation by calcium ions. These data suggest that calcium ion-regulated AtlA maturation mediates the release of eDNA by S. mutans, which contributes to biofilm formation in infective endocarditis. PMID:28674029

  10. Effect of γ-lactones and γ-lactams compounds on Streptococcus mutans biofilms

    PubMed Central

    Sordi, Mariane Beatriz; Moreira, Thaís Altoé; Montero, Juan Felipe Dumes; Barbosa, Luis Cláudio; Benfatti, César Augusto Magalhães; Magini, Ricardo de Souza; Pimenta, Andréa de Lima

    2018-01-01

    Abstract Considering oral diseases, antibiofilm compounds can decrease the accumulation of pathogenic species such as Streptococcus mutans at micro-areas of teeth, dental restorations or implant-supported prostheses. Objective To assess the effect of thirteen different novel lactam-based compounds on the inhibition of S. mutans biofilm formation. Material and methods We synthesized compounds based on γ-lactones analogues from rubrolides by a mucochloric acid process and converted them into their corresponding γ-hydroxy-γ-lactams by a reaction with isobutylamine and propylamine. Compounds concentrations ranging from 0.17 up to 87.5 μg mL-1 were tested against S. mutans. We diluted the exponential cultures in TSB and incubated them (37°C) in the presence of different γ-lactones or γ-lactams dilutions. Afterwards, we measured the planktonic growth by optical density at 630 nm and therefore assessed the biofilm density by the crystal violet staining method. Results Twelve compounds were active against biofilm formation, showing no effect on bacterial viability. Only one compound was inactive against both planktonic and biofilm growth. The highest biofilm inhibition (inhibition rate above 60%) was obtained for two compounds while three other compounds revealed an inhibition rate above 40%. Conclusions Twelve of the thirteen compounds revealed effective inhibition of S. mutans biofilm formation, with eight of them showing a specific antibiofilm effect. PMID:29489934

  11. Hydroxychalcone inhibitors of Streptococcus mutans glucosyl transferases and biofilms as potential anticaries agents.

    PubMed

    Nijampatnam, Bhavitavya; Casals, Luke; Zheng, Ruowen; Wu, Hui; Velu, Sadanandan E

    2016-08-01

    Streptococcus mutans has been implicated as the major etiological agent in the initiation and the development of dental caries due to its robust capacity to form tenacious biofilms. Ideal therapeutics for this disease will aim to selectively inhibit the biofilm formation process while preserving the natural bacterial flora of the mouth. Several studies have demonstrated the efficacies of flavonols on S. mutans biofilms and have suggested the mechanism of action through their effect on S. mutans glucosyltransferases (Gtfs). These enzymes metabolize sucrose into water insoluble and soluble glucans, which are an integral measure of the dental caries pathogenesis. Numerous studies have shown that flavonols and polyphenols can inhibit Gtf and biofilm formation at millimolar concentrations. We have screened a group of 14 hydroxychalcones, synthetic precursors of flavonols, in an S. mutans biofilm assay. Several of these compounds emerged to be biofilm inhibitors at low micro-molar concentrations. Chalcones that contained a 3-OH group on ring A exhibited selectivity for biofilm inhibition. Moreover, we synthesized 6 additional analogs of the lead compound and evaluated their potential activity and selectivity against S. mutans biofilms. The most active compound identified from these studies had an IC50 value of 44μM against biofilm and MIC50 value of 468μM against growth displaying >10-fold selectivity inhibition towards biofilm. The lead compound displayed a dose dependent inhibition of S. mutans Gtfs. The lead compound also did not affect the growth of two commensal species (Streptococcus sanguinis and Streptococcus gordonii) at least up to 200μM, indicating that it can selectively inhibit cariogenic biofilms, while leaving commensal and/or beneficial microbes intact. Thus non-toxic compounds have the potential utility in public oral health regimes. Copyright © 2016. Published by Elsevier Ltd.

  12. Streptococcus mutans competence-stimulating peptide inhibits Candida albicans hypha formation.

    PubMed

    Jarosz, Lucja M; Deng, Dong Mei; van der Mei, Henny C; Crielaard, Wim; Krom, Bastiaan P

    2009-11-01

    The oral cavity is colonized by microorganisms growing in biofilms in which interspecies interactions take place. Streptococcus mutans grows in biofilms on enamel surfaces and is considered one of the main etiological agents of human dental caries. Candida albicans is also commonly found in the human oral cavity, where it interacts with S. mutans. C. albicans is a polymorphic fungus, and the yeast-to-hypha transition is involved in virulence and biofilm formation. The aim of this study was to investigate interkingdom communication between C. albicans and S. mutans based on the production of secreted molecules. S. mutans UA159 inhibited C. albicans germ tube (GT) formation in cocultures even when physically separated from C. albicans. Only S. mutans spent medium collected in the early exponential phase (4-h-old cultures) inhibited the GT formation of C. albicans. During this phase, S. mutans UA159 produces a quorum-sensing molecule, competence-stimulating peptide (CSP). The role of CSP in inhibiting GT formation was confirmed by using synthetic CSP and a comC deletion strain of S. mutans UA159, which lacks the ability to produce CSP. Other S. mutans strains and other Streptococcus spp. also inhibited GT formation but to different extents, possibly reflecting differences in CSP amino acid sequences among Streptococcus spp. or differences in CSP accumulation in the media. In conclusion, CSP, an S. mutans quorum-sensing molecule secreted during the early stages of growth, inhibits the C. albicans morphological switch.

  13. Influence of fluoride on the bacterial composition of a dual-species biofilm composed of Streptococcus mutans and Streptococcus oralis.

    PubMed

    Jung, Ji-Eun; Cai, Jian-Na; Cho, Sung-Dae; Song, Kwang-Yeob; Jeon, Jae-Gyu

    2016-10-01

    Despite the widespread use of fluoride for the prevention of dental caries, few studies have demonstrated the effects of fluoride on the bacterial composition of dental biofilms. This study investigated whether fluoride affects the proportion of Streptococcus mutans and S. oralis in mono- and dual-species biofilm models, via microbiological, biochemical, and confocal fluorescence microscope studies. Fluoride did not affect the bacterial count and bio-volume of S. mutans and S. oralis in mono-species biofilms, except for the 24-h-old S. mutans biofilms. However, fluoride reduced the proportion and bio-volume of S. mutans but did not decrease those of S. oralis during both S. oralis and S. mutans dual-species biofilm formation, which may be related to the decrease in extracellular polysaccharide formation by fluoride. These results suggest that fluoride may prevent the shift in the microbial proportion to cariogenic bacteria in dental biofilms, subsequently inhibiting the cariogenic bacteria dominant biofilm formation.

  14. Combinatorial Effects of Aromatic 1,3-Disubstituted Ureas and Fluoride on In vitro Inhibition of Streptococcus mutans Biofilm Formation.

    PubMed

    Kaur, Gurmeet; Balamurugan, P; Uma Maheswari, C; Anitha, A; Princy, S Adline

    2016-01-01

    Dental caries occur as a result of disequilibrium between acid producing pathogenic bacteria and alkali generating commensal bacteria within a dental biofilm (dental plaque). Streptococcus mutans has been reported as a primary cariogenic pathogen associated with dental caries. Emergence of multidrug resistant as well as fluoride resistant strains of S. mutans due to over use of various antibiotics are a rising problem and prompted the researchers worldwide to search for alternative therapies. In this perspective, the present study was aimed to screen selective inhibitors against ComA, a bacteriocin associated ABC transporter, involved in the quorum sensing of S. mutans. In light of our present in silico findings, 1,3-disubstituted urea derivatives which had better affinity to ComA were chemically synthesized in the present study for in vitro evaluation of S. mutans biofilm inhibition. The results revealed that 1,3-disubstituted urea derivatives showed good biofilm inhibition. In addition, synthesized compounds exhibited potent synergy with a very low concentration of fluoride (31.25-62.5 ppm) in inhibiting the biofilm formation of S. mutans without affecting the bacterial growth. Further, the results were supported by confocal laser scanning microscopy. On the whole, from our experimental results we conclude that the combinatorial application of fluoride and disubstituted ureas has a potential synergistic effect which has a promising approach in combating multidrug resistant and fluoride resistant S. mutans in dental caries management.

  15. Streptococcus mutans forms xylitol-resistant biofilm on excess adhesive flash in novel ex-vivo orthodontic bracket model.

    PubMed

    Ho, Cindy S F; Ming, Yue; Foong, Kelvin W C; Rosa, Vinicius; Thuyen, Truong; Seneviratne, Chaminda J

    2017-04-01

    During orthodontic bonding procedures, excess adhesive is invariably left on the tooth surface at the interface between the bracket and the enamel junction; it is called excess adhesive flash (EAF). We comparatively evaluated the biofilm formation of Streptococcus mutans on EAF produced by 2 adhesives and examined the therapeutic efficacy of xylitol on S mutans formed on EAF. First, we investigated the biofilm formation of S mutans on 3 orthodontic bracket types: stainless steel preadjusted edgewise, ceramic preadjusted edgewise, and stainless steel self-ligating. Subsequently, tooth-colored Transbond XT (3M Unitek, Monrovia, Calif) and green Grengloo (Ormco, Glendora, Calif) adhesives were used for bonding ceramic brackets to extracted teeth. S mutans biofilms on EAF produced by the adhesives were studied using the crystal violet assay and scanning electron microscopy. Surface roughness and surface energy of the EAF were examined. The therapeutic efficacies of different concentrations of xylitol were tested on S mutans biofilms. Significantly higher biofilms were formed on the ceramic preadjusted edgewise brackets (P = 0.003). Transbond XT had significantly higher S mutans biofilms compared with Grengloo surfaces (P = 0.007). There was no significant difference in surface roughness between Transbond XT and Grengloo surfaces (P >0.05). Surface energy of Transbond XT had a considerably smaller contact angle than did Grengloo, suggesting that Transbond XT is a more hydrophilic material. Xylitol at low concentrations had no significant effect on the reduction of S mutans biofilms on orthodontic adhesives (P = 0.016). Transbond XT orthodontic adhesive resulted in more S mutans biofilm compared with Grengloo adhesive on ceramic brackets. Surface energy seemed to play a more important role than surface roughness for the formation of S mutans biofilm on EAF. Xylitol does not appear to have a therapeutic effect on mature S mutans biofilm. Copyright © 2017 American

  16. Sucrose substitutes affect the cariogenic potential of Streptococcus mutans biofilms.

    PubMed

    Durso, S C; Vieira, L M; Cruz, J N S; Azevedo, C S; Rodrigues, P H; Simionato, M R L

    2014-01-01

    Streptococcus mutans is considered the primary etiologic agent of dental caries and contributes significantly to the virulence of dental plaque, especially in the presence of sucrose. To avoid the role of sucrose on the virulence factors of S. mutans, sugar substitutes are commonly consumed because they lead to lower or no production of acids and interfere with biofilm formation. This study aimed to investigate the contribution of sugar substitutes in the cariogenic potential of S. mutans biofilms. Thus, in the presence of sucrose, glucose, sucralose and sorbitol, the biofilm mass was quantified up to 96 h, the pH of the spent culture media was measured, the expression of biofilm-related genes was determined, and demineralization challenge experiments were conduct in enamel fragments. The presence of sugars or sugar substitutes profoundly affected the expression of spaP, gtfB, gtfC, gbpB, ftf, vicR and vicX in either biofilm or planktonic cells. The substitution of sucrose induced a down-regulation of most genes involved in sucrose-dependent colonization in biofilm cells. When the ratio between the expression of biofilm and planktonic cells was considered, most of those genes were down-regulated in biofilm cells in the presence of sugars and up-regulated in the presence of sugar substitutes. However, sucralose but not sorbitol fulfilled the purpose of reducing the cariogenic potential of the diet since it induced the biofilm formation with the lowest biomass, did not change the pH of the medium and led to the lowest lesion depth in the cariogenic challenge.

  17. Streptococcus mutans copper chaperone, CopZ, is critical for biofilm formation and competitiveness.

    PubMed

    Garcia, S S; Du, Q; Wu, H

    2016-12-01

    The oral cavity is a dynamic environment characterized by hundreds of bacterial species, saliva, and an influx of nutrients and metal ions such as copper. Although there is a physiologic level of copper in the saliva, the oral cavity is often challenged with an influx of copper ions. At high concentrations copper is toxic and must therefore be strictly regulated by pathogens for them to persist and cause disease. The cariogenic pathogen Streptococcus mutans manages excess copper using the copYAZ operon that encodes a negative DNA-binding repressor (CopY), the P1-ATPase copper exporter (CopA), and the copper chaperone (CopZ). These hypothetical roles of the copYAZ operon in regulation and copper transport to receptors led us to investigate their contribution to S. mutans virulence. Mutants defective in the copper chaperone CopZ, but not CopY or CopA, were impaired in biofilm formation and competitiveness against commensal streptococci. Characterization of the CopZ mutant biofilm revealed a decreased secretion of glucosyltransferases and reduced expression of mutacin genes. These data suggest that the function of copZ on biofilm and competitiveness is independent of copper resistance and CopZ is a global regulator for biofilm and other virulence factors. Further characterization of CopZ may lead to the identification of new biofilm pathways. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Effects of Two Fluoride Varnishes and One Fluoride/Chlorhexidine Varnish on Streptococcus mutans and Streptococcus sobrinus Biofilm Formation in Vitro

    PubMed Central

    Pinar Erdem, Arzu; Sepet, Elif; Kulekci, Güven; Trosola, Sule Can; Guven, Yegane

    2012-01-01

    Aims: The aim of this study was to evaluate and to compare the effect of two fluoride varnishes and one fluoride/chlorhexidine varnish on Streptococcus mutans and Streptococcus sobrinus biofilm formation, in vitro. Study design: Standard acrylic discs were prepared and divided into groups based on the varnish applied to the disc surface: Fluor Protector, Bifluoride 12, and Fluor Protector + Cervitec (1:1). Untreated discs served as controls. In the study groups, biofilms of S. mutans and S. sobrinus were formed over 24 h, 48 h, and 5 days. The fluoride concentrations in the monospecies biofilms and viable counts of S. mutans and S. sobrinus were investigated. Results: In all study groups, a statistically significant increase in the viable number of S. mutans and S. sobrinus cells was observed between 24 h and 5 days. In both monospecies biofilms, the greatest antibacterial efficacy was detected in the Fluor Protector and Fluor Protector + Cervitec groups at 24 h. For all groups, the amount of fluoride released was highest during the first 24 h, followed by a significant decrease over the next 4 days. A negative correlation was detected between fluoride concentration and antibacterial effect in those groups with biofilms containing both species. Despite the release of high levels of fluoride, the greatest number of viable S. mutans and S. sobrinus cells was detected in the Bifluoride 12 group. Statistics: The data were analyzed using GraphPad Prism software (ver. 3). Conclusions: The Fluor Protector + Cervitec varnish exerted prolonged antibacterial effects on S. mutans and S. sobrinus biofilms compared to the other varnishes tested. PMID:22253559

  19. The influence of Brazilian plant extracts on Streptococcus mutans biofilm.

    PubMed

    Barnabé, Michele; Saraceni, Cíntia Helena Coury; Dutra-Correa, Maristela; Suffredini, Ivana Barbosa

    2014-01-01

    Nineteen plant extracts obtained from plants from the Brazilian Amazon showed activity against planktonic Streptococcus mutans, an important bacterium involved in the first steps of biofilm formation and the subsequent initiation of several oral diseases. Our goal was to verify whether plant extracts that showed activity against planktonic S. mutans could prevent the organization of or even disrupt a single-species biofilm made by the same bacteria. Plant extracts were tested on a single-bacteria biofilm prepared using the Zürich method. Each plant extract was tested at a concentration 5 times higher than its minimum inhibitory concentration (MIC). Discs of hydroxyapatite were submersed overnight in brain-heart infusion broth enriched with saccharose 5%, which provided sufficient time for biofilm formation. The discs were then submersed in extract solutions for one minute, three times per day, for two subsequent days. The discs were then washed with saline three times, at ten seconds each, after each treatment. Supports were allowed to remain in the enriched medium for one additional night. At the end of the process, the bacteria were removed from the discs by vortexing and were counted. Only two of 19 plant extracts showed activity in the present assay: EB1779, obtained from Dioscorea altissima, and EB1673, obtained from Annona hypoglauca. Although the antibacterial activity of the plant extracts was first observed against planktonic S. mutans, influence over biofilm formation was not necessarily observed in the biofilm model. The present results motivate us to find new natural products to be used in dentistry.

  20. The influence of Brazilian plant extracts on Streptococcus mutans biofilm

    PubMed Central

    BARNABÉ, Michele; SARACENI, Cíntia Helena Coury; DUTRA-CORREA, Maristela; SUFFREDINI, Ivana Barbosa

    2014-01-01

    Nineteen plant extracts obtained from plants from the Brazilian Amazon showed activity against planktonic Streptococcus mutans, an important bacterium involved in the first steps of biofilm formation and the subsequent initiation of several oral diseases. Objective Our goal was to verify whether plant extracts that showed activity against planktonic S. mutans could prevent the organization of or even disrupt a single-species biofilm made by the same bacteria. Material and Methods Plant extracts were tested on a single-bacteria biofilm prepared using the Zürich method. Each plant extract was tested at a concentration 5 times higher than its minimum inhibitory concentration (MIC). Discs of hydroxyapatite were submersed overnight in brain-heart infusion broth enriched with saccharose 5%, which provided sufficient time for biofilm formation. The discs were then submersed in extract solutions for one minute, three times per day, for two subsequent days. The discs were then washed with saline three times, at ten seconds each, after each treatment. Supports were allowed to remain in the enriched medium for one additional night. At the end of the process, the bacteria were removed from the discs by vortexing and were counted. Results Only two of 19 plant extracts showed activity in the present assay: EB1779, obtained from Dioscorea altissima, and EB1673, obtained from Annona hypoglauca. Although the antibacterial activity of the plant extracts was first observed against planktonic S. mutans, influence over biofilm formation was not necessarily observed in the biofilm model. The present results motivate us to find new natural products to be used in dentistry. PMID:25466471

  1. Live and heat-killed Lactobacillus spp. interfere with Streptococcus mutans and Streptococcus oralis during biofilm development on titanium surface.

    PubMed

    Ciandrini, E; Campana, R; Baffone, W

    2017-06-01

    This research investigates the ability of live and heat-killed (HK) Lactic Acid Bacteria (LAB) to interfere with Streptococcus mutans ATCC 25175 and Streptococcus oralis ATCC 9811 during biofilm formation. Eight Lactobacillus spp. and two oral colonizers, pathogenic Streptococcus mutans and resident Streptococcus oralis, were characterized for their aggregation abilities, cell surface properties and biofilm formation ability on titanium surface. Then, the interference activity of selected live and HK Lactobacillus spp. during S. mutans and S. oralis biofilm development were performed. The cell-free culture supernatants (CFCS) anti-biofilm activity was also determined. LAB possess good abilities of auto-aggregation (from 14.19 to 28.97%) and of co-aggregation with S. oralis. The cell-surfaces characteristics were most pronounced in S. mutans and S. oralis, while the highest affinities to xylene and chloroform were observed in Lactobacillus rhamnosus ATCC 53103 (56.37%) and Lactobacillus paracasei B21060 (43.83%). S. mutans and S. oralis developed a biofilm on titanium surface, while LAB showed a limited or no ability to create biofilm. Live and HK L. rhamnosus ATCC 53103 and L. paracasei B21060 inhibited streptococci biofilm formation by competition and displacement mechanisms with no substantial differences. The CFCSs of both LAB strains, particularly the undiluted one of L. paracasei B21060, decreased S. mutans and S. oralis biofilm formation. This study evidenced the association of LAB aggregation abilities and cell-surface properties with the LAB-mediated inhibition of S. mutans and S. oralis biofilm formation. Lactobacilli showed different mechanisms of action and peculiar strain-specific characteristics, maintained also in the heat-killed LAB. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Polymicrobial biofilm formation by Candida albicans, Actinomyces naeslundii, and Streptococcus mutans is Candida albicans strain and medium dependent.

    PubMed

    Arzmi, Mohd Hafiz; Alnuaimi, Ali D; Dashper, Stuart; Cirillo, Nicola; Reynolds, Eric C; McCullough, Michael

    2016-11-01

    Oral biofilms comprise of extracellular polysaccharides and polymicrobial microorganisms. The objective of this study was to determine the effect of polymicrobial interactions of Candida albicans, Actinomyces naeslundii, and Streptococcus mutans on biofilm formation with the hypotheses that biofilm biomass and metabolic activity are both C. albicans strain and growth medium dependent. To study monospecific biofilms, C. albicans, A. naeslundii, and S. mutans were inoculated into artificial saliva medium (ASM) and RPMI-1640 in separate vials, whereas to study polymicrobial biofilm formation, the inoculum containing microorganisms was prepared in the same vial prior inoculation into a 96-well plate followed by 72 hours incubation. Finally, biofilm biomass and metabolic activity were measured using crystal violet and XTT assays, respectively. Our results showed variability of monospecies and polymicrobial biofilm biomass between C. albicans strains and growth medium. Based on cut-offs, out of 32, seven RPMI-grown biofilms had high biofilm biomass (HBB), whereas, in ASM-grown biofilms, 14 out of 32 were HBB. Of the 32 biofilms grown in RPMI-1640, 21 were high metabolic activity (HMA), whereas in ASM, there was no biofilm had HMA. Significant differences were observed between ASM and RPMI-grown biofilms with respect to metabolic activity (P <01). In conclusion, biofilm biomass and metabolic activity were both C. albicans strain and growth medium dependent. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Streptococcal adhesin SspA/B analogue peptide inhibits adherence and impacts biofilm formation of Streptococcus mutans

    PubMed Central

    Ito, Tatsuro; Ichinosawa, Takahiro; Shimizu, Takehiko

    2017-01-01

    Streptococcus mutans, the major causative agent of dental caries, adheres to tooth surfaces via the host salivary glycoprotein-340 (gp340). This adherence can be competitively inhibited by peptides derived from the SspA/B adhesins of Streptococcus gordonii, a human commensal microbe that competes for the same binding sites. Ssp(A4K-A11K), a double-lysine substituted SspA/B peptide analogue, has been shown to exhibit superior in vitro binding affinity for a gp340-derived peptide (SRCRP2), suggesting that Ssp(A4K-A11K) may be of clinical interest. In the present work, we tested the inhibitory effects of Ssp(A4K-A11K) on adherence and biofilm formation of S. mutans by reconstructing an artificial oral environment using saliva-coated polystyrene plates and hydroxyapatite disks. Bacterial adherence (adherence period: 1 h) was assessed by an enzyme-linked immunosorbent assay using biotinylated bacterial cells. Biofilm formation (periods: 8, 11, or 14 h) was assessed by staining and imaging of the sessile cells, or by recovering biofilm cells and plating for cell counts. The pH values of the culture media were measured as a biofilm acidogenicity indicator. Bactericidality was measured by loss of optical density during culturing in the presence of the peptide. We observed that 650 μM Ssp(A4K-A11K) significantly inhibited adherence of S. mutans to saliva-coated polystyrene; a similar effect was seen on bacterial affinity for SRCRP2. Ssp(A4K-A11K) had lesser effects on the adherence of commensal streptococci. Pretreatment of polystyrene and hydroxyapatite with 650 μM Ssp(A4K-A11K) significantly attenuated biofilm formation, whether tested with glucose- or sucrose-containing media. The SspA/B peptide’s activity did not reflect bactericidality. Strikingly, pH in Ssp-treated 8-h (6.8 ± 0.06) and 11-h (5.5 ± 0.06) biofilms showed higher values than the critical pH. Thus, Ssp(A4K-A11K) acts by inhibiting bacterial adherence and cariogrnic biofilm formation. We further

  4. Dynamics of Streptococcus mutans Transcriptome in Response to Starch and Sucrose during Biofilm Development

    PubMed Central

    Klein, Marlise I.; DeBaz, Lena; Agidi, Senyo; Lee, Herbert; Xie, Gary; Lin, Amy H.-M.; Hamaker, Bruce R.; Lemos, José A.; Koo, Hyun

    2010-01-01

    The combination of sucrose and starch in the presence of surface-adsorbed salivary α-amylase and bacterial glucosyltransferases increase the formation of a structurally and metabolically distinctive biofilm by Streptococcus mutans. This host-pathogen-diet interaction may modulate the formation of pathogenic biofilms related to dental caries disease. We conducted a comprehensive study to further investigate the influence of the dietary carbohydrates on S. mutans-transcriptome at distinct stages of biofilm development using whole genomic profiling with a new computational tool (MDV) for data mining. S. mutans UA159 biofilms were formed on amylase-active saliva coated hydroxyapatite discs in the presence of various concentrations of sucrose alone (ranging from 0.25 to 5% w/v) or in combination with starch (0.5 to 1% w/v). Overall, the presence of sucrose and starch (suc+st) influenced the dynamics of S. mutans transcriptome (vs. sucrose alone), which may be associated with gradual digestion of starch by surface-adsorbed amylase. At 21 h of biofilm formation, most of the differentially expressed genes were related to sugar metabolism, such as upregulation of genes involved in maltose/maltotriose uptake and glycogen synthesis. In addition, the groEL/groES chaperones were induced in the suc+st-biofilm, indicating that presence of starch hydrolysates may cause environmental stress. In contrast, at 30 h of biofilm development, multiple genes associated with sugar uptake/transport (e.g. maltose), two-component systems, fermentation/glycolysis and iron transport were differentially expressed in suc+st-biofilms (vs. sucrose-biofilms). Interestingly, lytT (bacteria autolysis) was upregulated, which was correlated with presence of extracellular DNA in the matrix of suc+st-biofilms. Specific genes related to carbohydrate uptake and glycogen metabolism were detected in suc+st-biofilms in more than one time point, indicating an association between presence of starch hydrolysates

  5. Effects of combined oleic acid and fluoride at sub-MIC levels on EPS formation and viability of Streptococcus mutans UA159 biofilms.

    PubMed

    Cai, Jian-Na; Kim, Mi-A; Jung, Ji-Eun; Pandit, Santosh; Song, Kwang-Yeob; Jeon, Jae-Gyu

    2015-01-01

    Despite the widespread use of fluoride, dental caries, a biofilm-related disease, remains an important health problem. This study investigated whether oleic acid, a monounsaturated fatty acid, can enhance the effect of fluoride on extracellular polysaccharide (EPS) formation by Streptococcus mutans UA159 biofilms at sub-minimum inhibitory concentration levels, via microbiological and biochemical methods, confocal fluorescence microscopy, and real-time PCR. The combination of oleic acid with fluoride inhibited EPS formation more strongly than did fluoride or oleic acid alone. The superior inhibition of EPS formation was due to the combination of the inhibitory effects of oleic acid and fluoride against glucosyltransferases (GTFs) and GTF-related gene (gtfB, gtfC, and gtfD) expression, respectively. In addition, the combination of oleic acid with fluoride altered the bacterial biovolume of the biofilms without bactericidal activity. These results suggest that oleic acid may be useful for enhancing fluoride inhibition of EPS formation by S. mutans biofilms, without killing the bacterium.

  6. Streptococcus mutans Protein Synthesis during Mixed-Species Biofilm Development by High-Throughput Quantitative Proteomics

    PubMed Central

    Klein, Marlise I.; Xiao, Jin; Lu, Bingwen; Delahunty, Claire M.; Yates, John R.; Koo, Hyun

    2012-01-01

    Biofilms formed on tooth surfaces are comprised of mixed microbiota enmeshed in an extracellular matrix. Oral biofilms are constantly exposed to environmental changes, which influence the microbial composition, matrix formation and expression of virulence. Streptococcus mutans and sucrose are key modulators associated with the evolution of virulent-cariogenic biofilms. In this study, we used a high-throughput quantitative proteomics approach to examine how S. mutans produces relevant proteins that facilitate its establishment and optimal survival during mixed-species biofilms development induced by sucrose. Biofilms of S. mutans, alone or mixed with Actinomyces naeslundii and Streptococcus oralis, were initially formed onto saliva-coated hydroxyapatite surface under carbohydrate-limiting condition. Sucrose (1%, w/v) was then introduced to cause environmental changes, and to induce biofilm accumulation. Multidimensional protein identification technology (MudPIT) approach detected up to 60% of proteins encoded by S. mutans within biofilms. Specific proteins associated with exopolysaccharide matrix assembly, metabolic and stress adaptation processes were highly abundant as the biofilm transit from earlier to later developmental stages following sucrose introduction. Our results indicate that S. mutans within a mixed-species biofilm community increases the expression of specific genes associated with glucan synthesis and remodeling (gtfBC, dexA) and glucan-binding (gbpB) during this transition (P<0.05). Furthermore, S. mutans up-regulates specific adaptation mechanisms to cope with acidic environments (F1F0-ATPase system, fatty acid biosynthesis, branched chain amino acids metabolism), and molecular chaperones (GroEL). Interestingly, the protein levels and gene expression are in general augmented when S. mutans form mixed-species biofilms (vs. single-species biofilms) demonstrating fundamental differences in the matrix assembly, survival and biofilm maintenance in the

  7. In-situ, time-lapse study of extracellular polymeric substance discharge in Streptococcus mutans biofilm.

    PubMed

    Liu, Bernard Haochih; Yu, Li-Chieh

    2017-02-01

    Streptococcus mutans is one of the main pathogens that cause tooth decay. By metabolizing carbohydrates, S. mutans emits extracellular polymeric substance (EPS) that adheres to the tooth surface and forms layers of biofilm. Periodontal disease occurs due to the low pH environment created by S. mutans biofilm, and such an acidic environment gradually erodes tooth enamel. Since the existence of EPS is essential in the formation of biofilm, the in-situ investigation of its generation and distribution in real time is the key to the control and suppression of S. mutans biofilm. Prior studies of the biofilm formation process by fluorescence microscope, scanning electron microscope, or spectroscope have roughly divided the mechanism into three stages: (1) initial attachment; (2) microcolonies; and (3) maturation. However, these analytical methods are incapable to observe real-time changes in different locations of the extracellular matrix, and to analyze mechanical properties for single bacteria in micro and nanoscale. Since atomic force microscopy (AFM) operates by precise control of tip-sample interaction forces in liquid and in air, living microorganisms can be analyzed under near-physiological conditions. Thus, analytical techniques based on AFM constitute powerful tools for the study of biological samples, both qualitatively and quantitatively. In this study, we used AFM to quantitatively track the changes of multiple nanomechanical properties of S. mutans, including dissipation energy, adhesion force, deformation, and elastic modulus at different metabolic stages. The data revealed that the bacterial extracellular matrix has a gradient distribution in stickiness, in which different stickiness indicates the variation of EPS compositions, freshness, and metabolic stages. In-situ, time-lapse AFM images showed the local generation and distribution of EPS at different times, in which the highest adhesion distributed along sides of the S. mutans cells. Through time

  8. A Nuclease from Streptococcus mutans Facilitates Biofilm Dispersal and Escape from Killing by Neutrophil Extracellular Traps

    PubMed Central

    Liu, Jia; Sun, Luping; Liu, Wei; Guo, Lihong; Liu, Zhaohui; Wei, Xi; Ling, Junqi

    2017-01-01

    Streptococcus mutans is the primary etiologic agent of dental caries and occasionally infective endocarditis, with the ability to form biofilms and disperse cells into distal sites to exacerbate and spread infection. In this study, we identified a nuclease (DeoC) as a S. mutans biofilm dispersal modulating factor through microarray analysis. In vitro assays revealed a dispersal defect of a deoC deletion mutant, and functional studies with purified protein were indicative of the biofilm dispersal activity of DeoC. Neutrophils are a key host response factor restraining bacterial spreading through the formation of neutrophil extracellular traps (NETs), which consist of a nuclear DNA backbone associated with antimicrobial peptides. Therefore, we hypothesized that the dispersed S. mutans might utilize DeoC to degrade NETs and escape killing by the immune system. It was found that S. mutans induced NET formation upon contact with neutrophils, while the presence of NETs in turn enhanced the deoC expression of S. mutans. Fluorescence microscopy inspection showed that deoC deletion resulted in a decreased NET degradation ability of S. mutans and enhanced susceptibility to neutrophil killing. Data obtained from this study assigned two important roles for DeoC in S. mutans: contributing to the spread of infection through mediating biofilm dispersal, and facilitating the escape of S. mutans from neutrophil killing through NET degradation. PMID:28401067

  9. A Nuclease from Streptococcus mutans Facilitates Biofilm Dispersal and Escape from Killing by Neutrophil Extracellular Traps.

    PubMed

    Liu, Jia; Sun, Luping; Liu, Wei; Guo, Lihong; Liu, Zhaohui; Wei, Xi; Ling, Junqi

    2017-01-01

    Streptococcus mutans is the primary etiologic agent of dental caries and occasionally infective endocarditis, with the ability to form biofilms and disperse cells into distal sites to exacerbate and spread infection. In this study, we identified a nuclease (DeoC) as a S. mutans biofilm dispersal modulating factor through microarray analysis. In vitro assays revealed a dispersal defect of a deoC deletion mutant, and functional studies with purified protein were indicative of the biofilm dispersal activity of DeoC. Neutrophils are a key host response factor restraining bacterial spreading through the formation of neutrophil extracellular traps (NETs), which consist of a nuclear DNA backbone associated with antimicrobial peptides. Therefore, we hypothesized that the dispersed S. mutans might utilize DeoC to degrade NETs and escape killing by the immune system. It was found that S. mutans induced NET formation upon contact with neutrophils, while the presence of NETs in turn enhanced the deoC expression of S. mutans . Fluorescence microscopy inspection showed that deoC deletion resulted in a decreased NET degradation ability of S. mutans and enhanced susceptibility to neutrophil killing. Data obtained from this study assigned two important roles for DeoC in S. mutans : contributing to the spread of infection through mediating biofilm dispersal, and facilitating the escape of S. mutans from neutrophil killing through NET degradation.

  10. Acidogenicity of dual-species biofilms of bifidobacteria and Streptococcus mutans.

    PubMed

    de Matos, Bruno Mello; Brighenti, Fernanda Lourenção; Do, Thuy; Beighton, David; Koga-Ito, Cristiane Yumi

    2017-06-01

    The aim of this study was to evaluate the acidogenicity of dual-species biofilms of bifidobacteria and Streptococcus mutans. The following strains were tested: Bifidobacterium dentium DSM20436, Parascardovia denticolens DSM10105, and Scardovia inopinata DSM10107. Streptococcus mutans UA159 and Lactobacillus acidophilus ATCC4356 were used as control. Bifidobacteria were studied planktonically as they were not able to form monospecies biofilm, they were grown in biofilms associated with S. mutans. Endogenous polysaccharide reserves of cultures at log phase were depleted. Standardized suspensions of the microorganisms were incubated in growth media supplemented with 10 mM glucose, lactose, raffinose, glucose, or xylitol. S. mutans biofilms were grown on glass cover slips for 24 h to which bifidobacteria were added. After 24 h, the dual-species biofilms were exposed to the same carbon sources, and after 3 h, the pH of spent culture media and concentrations of organic acids were measured. Statistical analyses were carried out using ANOVA and Tukey's test (α = 0.05). A higher pH drop was observed when S. mutans was associated with P. denticolens or S. inopinata, in either planktonic or biofilm cultures, than with S. mutans alone. Bifidobacteria showed a higher pH drop in the presence of raffinose than S. mutans or L. acidophilus. Dual-species biofilms of bifidobacteria and S. mutans produced more acid and greater pH drops than biofilms of S. mutans alone. New insights on the complex process of caries pathogenicity contribute to the establishment of preventive and therapeutic measures, in particular in specific cases, such as in early childhood caries.

  11. Inhibitory capacity of Rhus coriaria L. extract and its major component methyl gallate on Streptococcus mutans biofilm formation by optical profilometry: Potential applications for oral health.

    PubMed

    Kacergius, Tomas; Abu-Lafi, Saleh; Kirkliauskiene, Agne; Gabe, Vika; Adawi, Azmi; Rayan, Mahmoud; Qutob, Mutaz; Stukas, Rimantas; Utkus, Algirdas; Zeidan, Mouhammad; Rayan, Anwar

    2017-07-01

    Streptococcus mutans (S. mutans) bacterium is the most well recognized pathogen involved in pathogenesis of dental caries. Its virulence arises from its ability to produce a biofilm and acidogenicity, causing tooth decay. Discovery of natural products capable to inhibit biofilm formation is of high importance for developing health care products. To the best of our knowledge, in all previous scientific reports, a colorimetric assay was applied to test the effect of sumac and methyl gallate (MG) on S. mutans adherence. Quantitative assessment of the developed biofilm should be further performed by applying an optical profilometry assay, and by testing the effect on both surface roughness and thickness parameters of the biofilm. To the best of our knowledge, this is the first study to report the effect of sumac extract and its constituent MG on biofilm formation using an optical profilometry assay. Testing antibacterial activity of the sumac extract and its fractions revealed that MG is the most bioactive component against S. mutans bacteria. It reduced S. mutans biofilm biomass on the polystyrene surface by 68‑93%, whereas 1 mg/ml MG was able to decrease the biofilm roughness and thickness on the glass surface by 99%. MG also prevented a decrease in pH level by 97%. These bioactivities of MG occurred in a dose‑dependent manner and were significant vs. untreated bacteria. The findings are important for the development of novel pharmaceuticals and formulations of natural products and extracts that possess anti‑biofilm activities with primary applications for oral health, and in a broader context, for the treatment of various bacterial infections.

  12. Targeting of Streptococcus mutans Biofilms by a Novel Small Molecule Prevents Dental Caries and Preserves the Oral Microbiome.

    PubMed

    Garcia, S S; Blackledge, M S; Michalek, S; Su, L; Ptacek, T; Eipers, P; Morrow, C; Lefkowitz, E J; Melander, C; Wu, H

    2017-07-01

    Dental caries is a costly and prevalent disease characterized by the demineralization of the tooth's enamel. Disease outcome is influenced by host factors, dietary intake, cariogenic bacteria, and other microbes. The cariogenic bacterial species Streptococcus mutans metabolizes sucrose to initiate biofilm formation on the tooth surface and consequently produces lactic acid to degrade the tooth's enamel. Persistence of S. mutans biofilms in the oral cavity can lead to tooth decay. To date, no anticaries therapies that specifically target S. mutans biofilms but do not disturb the overall oral microbiome are available. We screened a library of 2-aminoimidazole antibiofilm compounds with a biofilm dispersion assay and identified a small molecule that specifically targets S. mutans biofilms. At 5 µM, the small molecule annotated 3F1 dispersed 50% of the established S. mutans biofilm but did not disperse biofilms formed by the commensal species Streptococcus sanguinis or Streptococcus gordonii. 3F1 dispersed S. mutans biofilms independently of biofilm-related factors such as antigen I/II and glucosyltransferases. 3F1 treatment effectively prevented dental caries by controlling S. mutans in a rat caries model without perturbing the oral microbiota. Our study demonstrates that selective targeting of S. mutans biofilms by 3F1 was able to effectively reduce dental caries in vivo without affecting the overall oral microbiota shaped by the intake of dietary sugars, suggesting that the pathogenic biofilm-specific treatment is a viable strategy for disease prevention.

  13. Effect of a Lactobacillus Salivarius Probiotic on a Double-Species Streptococcus Mutans and Candida Albicans Caries Biofilm.

    PubMed

    Krzyściak, Wirginia; Kościelniak, Dorota; Papież, Monika; Vyhouskaya, Palina; Zagórska-Świeży, Katarzyna; Kołodziej, Iwona; Bystrowska, Beata; Jurczak, Anna

    2017-11-14

    The aim of the study was to evaluate the anti-cariogenic effects of Lactobacillus salivarius by reducing pathogenic species and biofilm mass in a double-species biofilm model. Coexistence of S. mutans with C. albicans can cause dental caries progression or recurrence of the disease in the future. Fifty-nine children with diagnosed early childhood caries (ECC) were recruited onto the study. The condition of the children's dentition was defined according to the World Health Organization guidelines. The participants were divided into children with initial enamel demineralization and children showing dentin damage. The study was performed on the S. mutans and C. albicans clinical strains, isolated from dental plaque of patients with ECC. The effect of a probiotic containing Lactobacillus salivarius on the ability of S. mutans and C. albicans to produce a double-species biofilm was investigated in an in vitro model. The biomass of the formed/non-degraded biofilm was analyzed on the basis of its crystal violet staining. The number of colonies of S. mutans and C. albicans (CFU/mL, colony forming units/mL) forming the biofilm was determined. Microorganism morphology in the biofilm was evaluated using a scanning electron microscope (SEM). In vitro analysis demonstrated that the presence of S. mutans increased the number of C. albicans colonies (CFU/mL); the double-species biofilm mass and hyphal forms produced in it by the yeast. L. salivarius inhibited the cariogenic biofilm formation of C. albicans and S. mutans . Under the influence of the probiotic; the biofilm mass and the number of S. mutans ; C. albicans and S. mutans with C. albicans colonies in the biofilm was decreased. Moreover; it can be noted that after the addition of the probiotic; fungi did not form hyphae or germ tubes of pathogenic potential. These results suggest that L. salivarius can secrete intermediates capable of inhibiting the formation of cariogenic S. mutans and C. albicans biofilm; and may

  14. Streptococcus oligofermentans Inhibits Streptococcus mutans in Biofilms at Both Neutral pH and Cariogenic Conditions.

    PubMed

    Bao, Xudong; de Soet, Johannes Jacob; Tong, Huichun; Gao, Xuejun; He, Libang; van Loveren, Cor; Deng, Dong Mei

    2015-01-01

    Homeostasis of oral microbiota can be maintained through microbial interactions. Previous studies showed that Streptococcus oligofermentans, a non-mutans streptococci frequently isolated from caries-free subjects, inhibited the cariogenic Streptococcus mutans by the production of hydrogen peroxide (HP). Since pH is a critical factor in caries formation, we aimed to study the influence of pH on the competition between S. oligofermentans and S. mutans in biofilms. To this end, S. mutans and S. oligofermentans were inoculated alone or mixed at 1:1 ratio in buffered biofilm medium in a 96-well active attachment model. The single- and dual-species biofilms were grown under either constantly neutral pH or pH-cycling conditions. The latter includes two cycles of 8 h neutral pH and 16 h pH 5.5, used to mimic cariogenic condition. The 48 h biofilms were analysed for the viable cell counts, lactate and HP production. The last two measurements were carried out after incubating the 48 h biofilms in buffers supplemented with 1% glucose (pH 7.0) for 4 h. The results showed that S. oligofermentans inhibited the growth of S. mutans in dual-species biofilms under both tested pH conditions. The lactic acid production of dual-species biofilms was significantly lower than that of single-species S. mutans biofilms. Moreover, dual-species and single-species S. oligofermentans biofilms grown under pH-cycling conditions (with a 16 h low pH period) produced a significantly higher amount of HP than those grown under constantly neutral pH. In conclusion, S. oligofermentans inhibited S. mutans in biofilms not only under neutral pH, but also under pH-cycling conditions, likely through HP production. S. oligofermentans may be a compelling probiotic candidate against caries.

  15. Zerovalent bismuth nanoparticles inhibit Streptococcus mutans growth and formation of biofilm

    PubMed Central

    Hernandez-Delgadillo, Rene; Velasco-Arias, Donaji; Diaz, David; Arevalo-Niño, Katiushka; Garza-Enriquez, Marianela; De la Garza-Ramos, Myriam A; Cabral-Romero, Claudio

    2012-01-01

    Background and methods Despite continuous efforts, the increasing prevalence of resistance among pathogenic bacteria to common antibiotics has become one of the most significant concerns in modern medicine. Nanostructured materials are used in many fields, including biological sciences and medicine. While some bismuth derivatives has been used in medicine to treat vomiting, nausea, diarrhea, and stomach pain, the biocidal activity of zerovalent bismuth nanoparticles has not yet been studied. The objective of this investigation was to analyze the antimicrobial activity of bismuth nanoparticles against oral bacteria and their antibiofilm capabilities. Results Our results showed that stable colloidal bismuth nanoparticles had 69% antimicrobial activity against Streptococcus mutans growth and achieved complete inhibition of biofilm formation. These results are similar to those obtained with chlorhexidine, the most commonly used oral antiseptic agent. The minimal inhibitory concentration of bismuth nanoparticles that interfered with S. mutans growth was 0.5 mM. Conclusion These results suggest that zerovalent bismuth nanoparticles could be an interesting antimicrobial agent to be incorporated into an oral antiseptic preparation. PMID:22619547

  16. In vitro biofilm formation on resin-based composites after different finishing and polishing procedures.

    PubMed

    Cazzaniga, Gloria; Ottobelli, Marco; Ionescu, Andrei C; Paolone, Gaetano; Gherlone, Enrico; Ferracane, Jack L; Brambilla, Eugenio

    2017-12-01

    To evaluate the influence of surface treatments of different resin-based composites (RBCs) on S. mutans biofilm formation. 4 RBCs (microhybrid, nanohybrid, nanofilled, bulk-filled) and 6 finishing-polishing (F/P) procedures (open-air light-curing, light-curing against Mylar strip, aluminum oxide discs, one-step rubber point, diamond bur, multi-blade carbide bur) were evaluated. Surface roughness (SR) (n=5/group), gloss (n=5/group), scanning electron microscopy morphological analysis (SEM), energy-dispersive X-ray spectrometry (EDS) (n=3/group), and S. mutans biofilm formation (n=16/group) were assessed. EDS analysis was repeated after the biofilm assay. A morphological evaluation of S. mutans biofilm was also performed using confocal laser-scanning microscopy (CLSM) (n=2/group). The data were analyzed using Wilcoxon (SR, gloss) and two-way ANOVA with Tukey as post-hoc tests (EDS, biofilm formation). F/P procedures as well as RBCs significantly influenced SR and gloss. While F/P procedures did not significantly influence S. mutans biofilm formation, a significant influence of RBCs on the same parameter was found. Different RBCs showed different surface elemental composition. Both F/P procedures and S. mutans biofilm formation significantly modified this parameter. The tested F/P procedures significantly influenced RBCs surface properties but did not significantly affect S. mutans biofilm formation. The significant influence of the different RBCs tested on S. mutans biofilm formation suggests that material characteristics and composition play a greater role than SR. F/P procedures of RBCs may unexpectedly play a minor role compared to that of the restoration material itself in bacterial colonization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Anti-biofilm and bactericidal effects of magnolia bark-derived magnolol and honokiol on Streptococcus mutans.

    PubMed

    Sakaue, Yuuki; Domon, Hisanori; Oda, Masataka; Takenaka, Shoji; Kubo, Miwa; Fukuyama, Yoshiyasu; Okiji, Takashi; Terao, Yutaka

    2016-01-01

    Dental caries affects people of all ages and is a worldwide health concern. Streptococcus mutans is a major cariogenic bacterium because of its ability to form biofilm and induce an acidic environment. In this study, the antibacterial activities of magnolol and honokiol, the main constituents of the bark of magnolia plants, toward planktonic cell and biofilm of S. mutans were examined and compared with those of chlorhexidine. The minimal inhibitory concentrations of magnolol, honokiol and chlorhexidine for S. mutans were 10, 10 and 0.25 µg/mL, respectively. In addition, each agent showed bactericidal activity against S. mutans planktonic cells and inhibited biofilm formation in a dose- and time-dependent manner. Magnolol (50 µg/mL) had greater bactericidal activity against S. mutans biofilm than honokiol (50 µg/mL) and chlorhexidine (500 µg/mL) at 5 min after exposure, while all showed scant activity against biofilm at 30 s. Furthermore; chlorhexidine (0.5-500 µg/mL) exhibited high cellular toxicity for the gingival epithelial cell line Ca9-22 at 1 hr, whereas magnolol (50 µg/mL) and honokiol (50 µg/mL) did not. Thus; it was found that magnolol has antimicrobial activities against planktonic and biofilm cells of S. mutans. Magnolol may be a candidate for prevention and management of dental caries. © 2015 The Societies and John Wiley & Sons Australia, Ltd.

  18. Effect of high-fructose corn syrup on the acidogenicity, adherence and biofilm formation of Streptococcus mutans.

    PubMed

    Ma, R; Sun, M; Wang, S; Kang, Q; Huang, L; Li, T; Xia, W-W

    2013-06-01

    Although high-fructose corn syrup (HFCS) as a kind of sugar has been widely used in manufactured foods recently, there is little information available regarding its cariogenicity. The aim of this study was to evaluate the cariogenic potential of HFCS. Streptococcus mutans UA159 was inoculated into HFCS media and cultivated. The pH of each culture was measured to assess acidogenicity. Spectrophotometric turbidity was measured to determine the percentage of adherence. Confocal laser scanning microscopy and SYTO-9 staining were employed to observe biofilm formation. Sucrose media was used as a positive control. The ΔpH in HFCS media was significantly larger than that in sucrose media and the pH in HFCS media decreased faster (p < 0.05). The percentage of adherence of S. mutans in HFCS media was significantly lower than that in sucrose media (p < 0.05). The biofilm formed in sucrose media was significantly thicker than that in HFCS media (p < 0.05). The results of this study suggest that the cariogenicity of S. mutans in the presence of HFCS may differ compared to its cariogenicity in the presence of sucrose. Further in vivo studies need to be undertaken to resolve this uncertainty. © 2013 Australian Dental Association.

  19. Effect of the Biofilm Age and Starvation on Acid Tolerance of Biofilm Formed by Streptococcus mutans Isolated from Caries-Active and Caries-Free Adults.

    PubMed

    Jiang, Shan; Chen, Shuai; Zhang, Chengfei; Zhao, Xingfu; Huang, Xiaojing; Cai, Zhiyu

    2017-03-30

    Streptococcus mutans ( S. mutans ) is considered a leading cause of dental caries. The capability of S. mutans to tolerate low pH is essential for its cariogenicity. Aciduricity of S. mutans is linked to its adaptation to environmental stress in oral cavity. This study aimed to investigate the effect of biofilm age and starvation condition on acid tolerance of biofilm formed by S. mutans clinical isolates. S. mutans clinical strains isolated from caries-active (SM593) and caries-free (SM18) adults and a reference strain (ATCC25175) were used for biofilm formation. (1) Both young and mature biofilms were formed and then exposed to pH 3.0 for 30 min with (acid-adapted group) or without (non-adapted group) pre-exposure to pH 5.5 for three hours. (2) The mature biofilms were cultured with phosphate-buffered saline (PBS) (starved group) or TPY (polypeptone-yeast extract) medium (non-starved group) at pH 7.0 for 24 h and then immersed in medium of pH 3.0 for 30 min. Biofilms were analyzed through viability staining and confocal laser scanning microscopy. In all three strains, mature, acid-adapted and starved biofilms showed significantly less destructive structure and more viable bacteria after acid shock than young, non-adapted and non-starved biofilms, respectively (all p < 0.05). Furthermore, in each condition, SM593 biofilm was denser, with a significantly larger number of viable bacteria than that of SM18 and ATCC25175 (all p < 0.05). Findings demonstrated that mature, acid-adapted and starvation might protect biofilms of all three S. mutans strains against acid shock. Additionally, SM593 exhibited greater aciduricity compared to SM18 and ATCC25175, which indicated that the colonization of high cariogenicity of clinical strains may lead to high caries risk in individuals.

  20. A Eukaryotic-Type Serine/Threonine Protein Kinase Is Required for Biofilm Formation, Genetic Competence, and Acid Resistance in Streptococcus mutans

    PubMed Central

    Hussain, Haitham; Branny, Pavel; Allan, Elaine

    2006-01-01

    We report an operon encoding a eukaryotic-type serine/threonine protein kinase (STPK) and its cognate phosphatase (STPP) in Streptococcus mutans. Mutation of the gene encoding the STPK produced defects in biofilm formation, genetic competence, and acid resistance, determinants important in caries pathogenesis. PMID:16452447

  1. Streptococcus mutans-derived extracellular matrix in cariogenic oral biofilms.

    PubMed

    Klein, Marlise I; Hwang, Geelsu; Santos, Paulo H S; Campanella, Osvaldo H; Koo, Hyun

    2015-01-01

    Biofilms are highly structured microbial communities that are enmeshed in a self-produced extracellular matrix. Within the complex oral microbiome, Streptococcus mutans is a major producer of extracellular polymeric substances including exopolysaccharides (EPS), eDNA, and lipoteichoic acid (LTA). EPS produced by S. mutans-derived exoenzymes promote local accumulation of microbes on the teeth, while forming a spatially heterogeneous and diffusion-limiting matrix that protects embedded bacteria. The EPS-rich matrix provides mechanical stability/cohesiveness and facilitates the creation of highly acidic microenvironments, which are critical for the pathogenesis of dental caries. In parallel, S. mutans also releases eDNA and LTA, which can contribute with matrix development. eDNA enhances EPS (glucan) synthesis locally, increasing the adhesion of S. mutans to saliva-coated apatitic surfaces and the assembly of highly cohesive biofilms. eDNA and other extracellular substances, acting in concert with EPS, may impact the functional properties of the matrix and the virulence of cariogenic biofilms. Enhanced understanding about the assembly principles of the matrix may lead to efficacious approaches to control biofilm-related diseases.

  2. Streptococcus mutans-derived extracellular matrix in cariogenic oral biofilms

    PubMed Central

    Klein, Marlise I.; Hwang, Geelsu; Santos, Paulo H. S.; Campanella, Osvaldo H.; Koo, Hyun

    2015-01-01

    Biofilms are highly structured microbial communities that are enmeshed in a self-produced extracellular matrix. Within the complex oral microbiome, Streptococcus mutans is a major producer of extracellular polymeric substances including exopolysaccharides (EPS), eDNA, and lipoteichoic acid (LTA). EPS produced by S. mutans-derived exoenzymes promote local accumulation of microbes on the teeth, while forming a spatially heterogeneous and diffusion-limiting matrix that protects embedded bacteria. The EPS-rich matrix provides mechanical stability/cohesiveness and facilitates the creation of highly acidic microenvironments, which are critical for the pathogenesis of dental caries. In parallel, S. mutans also releases eDNA and LTA, which can contribute with matrix development. eDNA enhances EPS (glucan) synthesis locally, increasing the adhesion of S. mutans to saliva-coated apatitic surfaces and the assembly of highly cohesive biofilms. eDNA and other extracellular substances, acting in concert with EPS, may impact the functional properties of the matrix and the virulence of cariogenic biofilms. Enhanced understanding about the assembly principles of the matrix may lead to efficacious approaches to control biofilm-related diseases. PMID:25763359

  3. Metabolic activity of Streptococcus mutans biofilms and gene expression during exposure to xylitol and sucrose.

    PubMed

    Decker, Eva-Maria; Klein, Christian; Schwindt, Dimitri; von Ohle, Christiane

    2014-12-01

    The objective of the study was to analyse Streptococcus mutans biofilms grown under different dietary conditions by using multifaceted methodological approaches to gain deeper insight into the cariogenic impact of carbohydrates. S. mutans biofilms were generated during a period of 24 h in the following media: Schaedler broth as a control medium containing endogenous glucose, Schaedler broth with an additional 5% sucrose, and Schaedler broth supplemented with 1% xylitol. The confocal laser scanning microscopy (CLSM)-based analyses of the microbial vitality, respiratory activity (5-cyano-2,3-ditolyl tetrazolium chloride, CTC) and production of extracellular polysaccharides (EPS) were performed separately in the inner, middle and outer biofilm layers. In addition to the microbiological sample testing, the glucose/sucrose consumption of the biofilm bacteria was quantified, and the expression of glucosyltransferases and other biofilm-associated genes was investigated. Xylitol exposure did not inhibit the viability of S. mutans biofilms, as monitored by the following experimental parameters: culture growth, vitality, CTC activity and EPS production. However, xylitol exposure caused a difference in gene expression compared to the control. GtfC was upregulated only in the presence of xylitol. Under xylitol exposure, gtfB was upregulated by a factor of 6, while under sucrose exposure, it was upregulated by a factor of three. Compared with glucose and xylitol, sucrose increased cell vitality in all biofilm layers. In all nutrient media, the intrinsic glucose was almost completely consumed by the cells of the S. mutans biofilm within 24 h. After 24 h of biofilm formation, the multiparametric measurements showed that xylitol in the presence of glucose caused predominantly genotypic differences but did not induce metabolic differences compared to the control. Thus, the availability of dietary carbohydrates in either a pure or combined form seems to affect the

  4. Metabolic activity of Streptococcus mutans biofilms and gene expression during exposure to xylitol and sucrose

    PubMed Central

    Decker, Eva-Maria; Klein, Christian; Schwindt, Dimitri; von Ohle, Christiane

    2014-01-01

    The objective of the study was to analyse Streptococcus mutans biofilms grown under different dietary conditions by using multifaceted methodological approaches to gain deeper insight into the cariogenic impact of carbohydrates. S. mutans biofilms were generated during a period of 24 h in the following media: Schaedler broth as a control medium containing endogenous glucose, Schaedler broth with an additional 5% sucrose, and Schaedler broth supplemented with 1% xylitol. The confocal laser scanning microscopy (CLSM)-based analyses of the microbial vitality, respiratory activity (5-cyano-2,3-ditolyl tetrazolium chloride, CTC) and production of extracellular polysaccharides (EPS) were performed separately in the inner, middle and outer biofilm layers. In addition to the microbiological sample testing, the glucose/sucrose consumption of the biofilm bacteria was quantified, and the expression of glucosyltransferases and other biofilm-associated genes was investigated. Xylitol exposure did not inhibit the viability of S. mutans biofilms, as monitored by the following experimental parameters: culture growth, vitality, CTC activity and EPS production. However, xylitol exposure caused a difference in gene expression compared to the control. GtfC was upregulated only in the presence of xylitol. Under xylitol exposure, gtfB was upregulated by a factor of 6, while under sucrose exposure, it was upregulated by a factor of three. Compared with glucose and xylitol, sucrose increased cell vitality in all biofilm layers. In all nutrient media, the intrinsic glucose was almost completely consumed by the cells of the S. mutans biofilm within 24 h. After 24 h of biofilm formation, the multiparametric measurements showed that xylitol in the presence of glucose caused predominantly genotypic differences but did not induce metabolic differences compared to the control. Thus, the availability of dietary carbohydrates in either a pure or combined form seems to affect the

  5. Inactivation of a putative efflux pump (LmrB) in Streptococcus mutans results in altered biofilm structure and increased exopolysaccharide synthesis: implications for biofilm resistance.

    PubMed

    Liu, Jia; Zhang, Jianying; Guo, Lihong; Zhao, Wei; Hu, Xiaoli; Wei, Xi

    2017-07-01

    Efflux pumps are a mechanism associated with biofilm formation and resistance. There is limited information regarding efflux pumps in Streptococcus mutans, a major pathogen in dental caries. The aim of this study was to investigate potential roles of a putative efflux pump (LmrB) in S. mutans biofilm formation and susceptibility. Upon lmrB inactivation and antimicrobial exposure, the biofilm structure and expression of other efflux pumps were examined using confocal laser scanning microscopy (CLSM) and qRT-PCR. lmrB inactivation resulted in biofilm structural changes, increased EPS formation and EPS-related gene transcription (p < 0.05), but no improvement in susceptibility was observed. The expression of most efflux pump genes increased upon lmrB inactivation when exposed to antimicrobials (p < 0.05), suggesting a feedback mechanism that activated the transcription of other efflux pumps to compensate for the loss of lmrB. These observations imply that sole inactivation of lmrB is not an effective solution to control biofilms.

  6. The dlt genes play a role in antimicrobial tolerance of Streptococcus mutans biofilms.

    PubMed

    Nilsson, Martin; Rybtke, Morten; Givskov, Michael; Høiby, Niels; Twetman, Svante; Tolker-Nielsen, Tim

    2016-09-01

    Microbial biofilms are tolerant to antibiotic treatment and therefore cause problematic infections. Knowledge about the molecular mechanisms underlying biofilm-associated antimicrobial tolerance will aid the development of antibiofilm drugs. Screening of a Streptococcus mutans transposon mutant library for genes that are important for biofilm-associated antimicrobial tolerance provided evidence that the dlt genes play a role in the tolerance of S. mutans biofilms towards gentamicin. The minimum bactericidal concentration for biofilm cells (MBC-B) for a dltA transposon mutant was eight-fold lower than that of the wild-type. The minimum bactericidal concentration for planktonic cells (MBC-P) was only slightly reduced, indicating that the mechanism involved in the observed antimicrobial tolerance has a predominant role specifically in biofilms. Experiments with a knockout dltA mutant and complemented strain confirmed that the dlt genes in S. mutans play a role in biofilm-associated tolerance to gentamicin. Confocal laser scanning microscopy analyses of biofilms grown on glass slides showed that the dltA mutant produced roughly the same amount of biofilm as the wild-type, indicating that the reduced antimicrobial tolerance of the dltA mutant is not due to a defect in biofilm formation. The products of the dlt genes have been shown to mediate alanylation of teichoic acids, and in accordance the dltA mutant showed a more negatively charged surface than the wild-type, which likely is an important factor in the reduced tolerance of the dltA mutant biofilms towards the positively charged gentamicin. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  7. Atomic force microscopy study of the structure function relationships of the biofilm-forming bacterium Streptococcus mutans

    NASA Astrophysics Data System (ADS)

    Cross, Sarah E.; Kreth, Jens; Zhu, Lin; Qi, Fengxia; Pelling, Andrew E.; Shi, Wenyuan; Gimzewski, James K.

    2006-02-01

    Atomic force microscopy (AFM) has garnered much interest in recent years for its ability to probe the structure, function and cellular nanomechanics inherent to specific biological cells. In particular, we have used AFM to probe the important structure-function relationships of the bacterium Streptococcus mutans. S. mutans is the primary aetiological agent in human dental caries (tooth decay), and is of medical importance due to the virulence properties of these cells in biofilm initiation and formation, leading to increased tolerance to antibiotics. We have used AFM to characterize the unique surface structures of distinct mutants of S. mutans. These mutations are located in specific genes that encode surface proteins, thus using AFM we have resolved characteristic surface features for mutant strains compared to the wild type. Ultimately, our characterization of surface morphology has shown distinct differences in the local properties displayed by various S. mutans strains on the nanoscale, which is imperative for understanding the collective properties of these cells in biofilm formation.

  8. RNA-Seq Reveals Enhanced Sugar Metabolism in Streptococcus mutans Co-cultured with Candida albicans within Mixed-Species Biofilms

    PubMed Central

    He, Jinzhi; Kim, Dongyeop; Zhou, Xuedong; Ahn, Sang-Joon; Burne, Robert A.; Richards, Vincent P.; Koo, Hyun

    2017-01-01

    Early childhood caries (ECC), which can lead to rampant tooth-decay that is painful and costly to treat, is one of the most prevalent infectious diseases affecting children worldwide. Previous studies support that interactions between Streptococcus mutans and Candida albicans are associated with the pathogenesis of ECC. The presence of Candida enhances S. mutans growth, fitness and accumulation within biofilms in vitro, although the molecular basis for these behaviors is undefined. Using an established co-cultivation biofilm model and RNA-Seq, we investigated how C. albicans influences the transcriptome of S. mutans. The presence of C. albicans dramatically altered gene expression in S. mutans in the dual-species biofilm, resulting in 393 genes differentially expressed, compared to mono-species biofilms of S. mutans. By Gene Ontology analysis, the majority of up-regulated genes were related to carbohydrate transport and metabolic/catabolic processes. KEGG pathway impact analysis showed elevated pyruvate and galactose metabolism, suggesting that co-cultivation with C. albicans influences carbohydrate utilization by S. mutans. Analysis of metabolites confirmed the increases in carbohydrate metabolism, with elevated amounts of formate in the culture medium of co-cultured biofilms. Moreover, co-cultivation with C. albicans altered transcription of S. mutans signal transduction (comC and ciaRH) genes associated with fitness and virulence. Interestingly, the expression of genes for mutacins (bacteriocins) and CRISPR were down-regulated. Collectively, the data provide a comprehensive insight into S. mutans transcriptomic changes induced by C. albicans, and offer novel insights into how bacterial–fungal interactions may enhance the severity of dental caries. PMID:28642749

  9. Reduction of saliva-promoted adhesion of Streptococcus mutans MT8148 and dental biofilm development by tragacanth gum and yeast-derived phosphomannan.

    PubMed

    Shimotoyodome, A; Kobayashi, H; Nakamura, J; Tokimitsu, I; Hase, T; Inoue, T; Matsukubo, T; Takaesu, Y

    2006-01-01

    The aim of this study was to investigate materials which reduce saliva-promoted adhesion of Streptococcus mutans onto enamel surfaces, and their potential in preventing dental biofilm development. The effects of hydroxyapatite (HA) surface pretreatment with hydrophilic polysaccharides on saliva-promoted S. mutans adhesion in vitro and de novo dental biofilm deposition in vivo were examined. Saliva-promoted adhesion of S. mutans MT8148 was significantly reduced by pretreatment of the HA surface with tragacanth gum (TG) and yeast-derived phosphoglycans. Extracellular phosphomannan (PM) from Pichia capsulata NRRL Y-1842 and TG reduced biofilm development on lower incisors in plaque-susceptible rats when administered via drinking water at concentrations of 0.5% and 0.01%, respectively. The inhibitory effect of TG on de novo dental biofilm formation was also demonstrated when administered via mouthwash in humans. It is concluded that TG and yeast-derived PM have the potential for use as anti-adherent agents and are effective in reducing de novo dental biofilm formation.

  10. The antibacterial activity of chlorhexidine digluconate against Streptococcus mutans biofilms follows sigmoidal patterns.

    PubMed

    Lee, Dae-Woo; Jung, Ji-Eun; Yang, Yeon-Mi; Kim, Jae-Gon; Yi, Ho-Keun; Jeon, Jae-Gyu

    2016-10-01

    The aim of this study was to determine the pattern of the antibacterial activity of chlorhexidine digluconate (CHX) against mature Streptococcus mutans biofilms. Streptococcus mutans biofilms were formed on saliva-coated hydroxyapatite discs and then treated with 0-20% CHX, once, three times, or five times (1 min per treatment) during the period of mature biofilm formation (beyond 46 h). After the treatments, the colony-forming unit (CFU) counts of the treated biofilms were determined. The pH values of the spent culture medium were also determined to investigate the change in pH resulting from the antibacterial activity of CHX. The relationships between the concentration of CHX and the CFU counts and the concentration of CHX and culture medium pH, relative to the number of treatments performed, were evaluated using a sigmoidal curve-fitting procedure. The changes in CFU counts and culture medium pH followed sigmoidal curves and were dependent on the concentration of CHX (R 2 = 0.99). The sigmoidal curves were left-shifted with increasing number of treatments. Furthermore, the culture-medium pH of the treated biofilms increased as their CFU counts decreased. The lowest CHX concentration to increase culture-medium pH above the critical pH also decreased as the number of treatments increased. These results may provide fundamental information for selecting the appropriate CHX concentrations to treat S. mutans biofilms. © 2016 Eur J Oral Sci.

  11. Antibacterial activity of Baccharis dracunculifolia in planktonic cultures and biofilms of Streptococcus mutans.

    PubMed

    Pereira, Cristiane A; Costa, Anna Carolina B Pereira; Liporoni, Priscila Christiane S; Rego, Marcos A; Jorge, Antonio Olavo C

    2016-01-01

    Streptococcus mutans is an important cariogenic microorganism, and alternative methods for its elimination are required. Different concentrations of Baccharis dracunculifolia essential oil (EO) were tested to determine its minimal inhibitory concentration (MIC) in planktonic cultures, and this concentration was used in S. mutans biofilms. Additionally, we assessed the effect of a 0.12% chlorhexidine (CHX) and saline solution in S. mutans biofilms. The biofilms were grown in discs of composite resin for 48h and exposed to B. dracunculifolia, CHX or saline solution for 5min. The viability of the biofilms was determined by counting the colony-forming units per milliliter (CFU/ml) in agar, which was statistically significant (P<0.05). The MIC of the B. dracunculifolia EO to planktonic growth of S. mutans was 6%. In biofilms of S. mutans clinical isolates, B. dracunculifolia EO (6%) and CHX resulted in reductions of 53.3-91.1% and 79.1-96.6%, respectively. For the biofilm formed by the S. mutans reference strain, the reductions achieved with B. dracunculifolia EO and CHX were, respectively, 39.3% and 88.1%. It was concluded that B. dracunculifolia EO showed antibacterial activity and was able to control this oral microorganism, which otherwise causes dental caries. Copyright © 2015 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.

  12. Preventive effects of a phospholipid polymer coating on PMMA on biofilm formation by oral streptococci

    NASA Astrophysics Data System (ADS)

    Shibata, Yukie; Yamashita, Yoshihisa; Tsuru, Kanji; Ishihara, Kazuhiko; Fukazawa, Kyoko; Ishikawa, Kunio

    2016-12-01

    The regulation of biofilm formation on dental materials such as denture bases is key to oral health. Recently, a biocompatible phospholipid polymer, poly(2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate) (PMB) coating, was reported to inhibit sucrose-dependent biofilm formation by Streptococcus mutans, a cariogenic bacterium, on the surface of poly(methyl methacrylate) (PMMA) denture bases. However, S. mutans is a minor component of the oral microbiome and does not play an important role in biofilm formation in the absence of sucrose. Other, more predominant oral streptococci must play an indispensable role in sucrose-independent biofilm formation. In the present study, the effect of PMB coating on PMMA was evaluated using various oral streptococci that are known to be initial colonizers during biofilm formation on tooth surfaces. PMB coating on PMMA drastically reduced sucrose-dependent tight biofilm formation by two cariogenic bacteria (S. mutans and Streptococcus sobrinus), among seven tested oral streptococci, as described previously [N. Takahashi, F. Iwasa, Y. Inoue, H. Morisaki, K. Ishihara, K. Baba, J. Prosthet. Dent. 112 (2014) 194-203]. Streptococci other than S. mutans and S. sobrinus did not exhibit tight biofilm formation even in the presence of sucrose. On the other hand, all seven species of oral streptococci exhibited distinctly reduced glucose-dependent soft biofilm retention on PMB-coated PMMA. We conclude that PMB coating on PMMA surfaces inhibits biofilm attachment by initial colonizer oral streptococci, even in the absence of sucrose, indicating that PMB coating may help maintain clean conditions on PMMA surfaces in the oral cavity.

  13. DNA-microarrays identification of Streptococcus mutans genes associated with biofilm thickness

    PubMed Central

    Shemesh, Moshe; Tam, Avshalom; Kott-Gutkowski, Miriam; Feldman, Mark; Steinberg, Doron

    2008-01-01

    Background A biofilm is a complex community of microorganisms that develop on surfaces in diverse environments. The thickness of the biofilm plays a crucial role in the physiology of the immobilized bacteria. The most cariogenic bacteria, mutans streptococci, are common inhabitants of a dental biofilm community. In this study, DNA-microarray analysis was used to identify differentially expressed genes associated with the thickness of S. mutans biofilms. Results Comparative transcriptome analyses indicated that expression of 29 genes was differentially altered in 400- vs. 100-microns depth and 39 genes in 200- vs. 100-microns biofilms. Only 10 S. mutans genes showed differential expression in both 400- vs. 100-microns and 200- vs. 100-microns biofilms. All of these genes were upregulated. As sucrose is a predominant factor in oral biofilm development, its influence was evaluated on selected genes expression in the various depths of biofilms. The presence of sucrose did not noticeably change the regulation of these genes in 400- vs. 100-microns and/or 200- vs. 100-microns biofilms tested by real-time RT-PCR. Furthermore, we analyzed the expression profile of selected biofilm thickness associated genes in the luxS- mutant strain. The expression of those genes was not radically changed in the mutant strain compared to wild-type bacteria in planktonic condition. Only slight downregulation was recorded in SMU.2146c, SMU.574, SMU.609, and SMU.987 genes expression in luxS- bacteria in biofilm vs. planktonic environments. Conclusion These findings reveal genes associated with the thickness of biofilms of S. mutans. Expression of these genes is apparently not regulated directly by luxS and is not necessarily influenced by the presence of sucrose in the growth media. PMID:19114020

  14. Comparison of SEM and VPSEM imaging techniques with respect to Streptococcus mutans biofilm topography.

    PubMed

    Weber, Kathryn; Delben, Juliana; Bromage, Timothy G; Duarte, Simone

    2014-01-01

    The study compared images of mature Streptococcus mutans biofilms captured at increasing magnification to determine which microscopy method is most acceptable for imaging the biofilm topography and the extracellular polymeric substance (EPS). In vitro S. mutans biofilms were imaged using (1) scanning electron microscopy (SEM), which requires a dehydration process; (2) SEM and ruthenium red (SEM-RR), which has been shown to support the EPS of biofilms during the SEM dehydration; and (3) variable pressure scanning electron microscopy (VPSEM), which does not require the intensive dehydration process of SEM. The dehydration process and high chamber vacuum of both SEM techniques devastated the biofilm EPS, removed supporting structures, and caused cracking on the biofilm surface. The VPSEM offered the most comprehensive representation of the S. mutans biofilm morphology. VPSEM provides similar contrast and focus as the SEM, but the procedure is far less time-consuming, and the use of hazardous chemicals associated with SEM dehydration protocol is avoided with the VPSEM. The inaccurate representations of the biofilm EPS in SEM experimentation is a possible source of inaccurate data and impediments in the study of S. mutans biofilms. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  15. Effects of simulated microgravity on Streptococcus mutans physiology and biofilm structure.

    PubMed

    Cheng, Xingqun; Xu, Xin; Chen, Jing; Zhou, Xuedong; Cheng, Lei; Li, Mingyun; Li, Jiyao; Wang, Renke; Jia, Wenxiang; Li, Yu-Qing

    2014-10-01

    Long-term spaceflights will eventually become an inevitable occurrence. Previous studies have indicated that oral infectious diseases, including dental caries, were more prevalent in astronauts due to the effect of microgravity. However, the impact of the space environment, especially the microgravity environment, on the virulence factors of Streptococcus mutans, a major caries-associated bacterium, is yet to be explored. In the present study, we investigated the impact of simulated microgravity on the physiology and biofilm structure of S. mutans. We also explored the dual-species interaction between S. mutans and Streptococcus sanguinis under a simulated microgravity condition. Results indicated that the simulated microgravity condition can enhance the acid tolerance ability, modify the biofilm architecture and extracellular polysaccharide distribution of S. mutans, and increase the proportion of S. mutans within a dual-species biofilm, probably through the regulation of various gene expressions. We hypothesize that the enhanced competitiveness of S. mutans under simulated microgravity may cause a multispecies micro-ecological imbalance, which would result in the initiation of dental caries. Our current findings are consistent with previous studies, which revealed a higher astronaut-associated incidence of caries. Further research is required to explore the detailed mechanisms. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  16. High-Velocity Microsprays Enhance Antimicrobial Activity in Streptococcus mutans Biofilms.

    PubMed

    Fabbri, S; Johnston, D A; Rmaile, A; Gottenbos, B; De Jager, M; Aspiras, M; Starke, E M; Ward, M T; Stoodley, P

    2016-12-01

    Streptococcus mutans in dental plaque biofilms play a role in caries development. The biofilm's complex structure enhances the resistance to antimicrobial agents by limiting the transport of active agents inside the biofilm. The authors assessed the ability of high-velocity water microsprays to enhance delivery of antimicrobials into 3-d-old S. mutans biofilms. Biofilms were exposed to a 90° or 30° impact, first using a 1-µm tracer bead solution (10 9 beads/mL) and, second, a 0.2% chlorhexidine (CHX) or 0.085% cetylpyridinium chloride (CPC) solution. For comparison, a 30-s diffusive transport and simulated mouthwash were also performed. Confocal microscopy was used to determine number and relative bead penetration depth into the biofilm. Assessment of antimicrobial penetration was determined by calculating the killing depth detected by live/dead viability staining. The authors first demonstrated that the microspray was able to deliver significantly more microbeads deeper in the biofilm compared with diffusion and mouthwashing exposures. Next, these experiments revealed that the microspray yielded better antimicrobial penetration evidenced by deeper killing inside the biofilm and a wider killing zone around the zone of clearance than diffusion alone. Interestingly the 30° impact in the distal position delivered approximately 16 times more microbeads and yielded approximately 20% more bacteria killing (for both CHX and CPC) than the 90° impact. These data suggest that high-velocity water microsprays can be used as an effective mechanism to deliver microparticles and antimicrobials inside S. mutans biofilms. High shear stresses generated at the biofilm-burst interface might have enhanced bead and antimicrobial delivery inside the remaining biofilm by combining forced advection into the biofilm matrix and physical restructuring of the biofilm itself. Further, the impact angle has potential to be optimized both for biofilm removal and active agents' delivery inside

  17. Candida albicans mannans mediate Streptococcus mutans exoenzyme GtfB binding to modulate cross-kingdom biofilm development in vivo.

    PubMed

    Hwang, Geelsu; Liu, Yuan; Kim, Dongyeop; Li, Yong; Krysan, Damian J; Koo, Hyun

    2017-06-01

    Candida albicans is frequently detected with heavy infection by Streptococcus mutans in plaque-biofilms from children with early-childhood caries (ECC). This cross-kingdom biofilm contains an extensive matrix of extracellular α-glucans that is produced by an exoenzyme (GtfB) secreted by S. mutans. Here, we report that mannans located on the outer surface of C. albicans cell-wall mediates GtfB binding, enhancing glucan-matrix production and modulating bacterial-fungal association within biofilms formed in vivo. Using single-molecule atomic force microscopy, we determined that GtfB binds with remarkable affinity to mannans and to the C. albicans surface, forming a highly stable and strong bond (1-2 nN). However, GtfB binding properties to C. albicans was compromised in strains defective in O-mannan (pmt4ΔΔ) or N-mannan outer chain (och1ΔΔ). In particular, the binding strength of GtfB on och1ΔΔ strain was severely disrupted (>3-fold reduction vs. parental strain). In turn, the GtfB amount on the fungal surface was significantly reduced, and the ability of C. albicans mutant strains to develop mixed-species biofilms with S. mutans was impaired. This phenotype was independent of hyphae or established fungal-biofilm regulators (EFG1, BCR1). Notably, the mechanical stability of the defective biofilms was weakened, resulting in near complete biomass removal by shear forces. In addition, these in vitro findings were confirmed in vivo using a rodent biofilm model. Specifically, we observed that C. albicans och1ΔΔ was unable to form cross-kingdom biofilms on the tooth surface of rats co-infected with S. mutans. Likewise, co-infection with S. mutans defective in GtfB was also incapable of forming mixed-species biofilms. Taken together, the data support a mechanism whereby S. mutans-secreted GtfB binds to the mannan layer of C. albicans to promote extracellular matrix formation and their co-existence within biofilms. Enhanced understanding of GtfB-Candida interactions

  18. A novel Triclosan Methacrylate-based composite reduces the virulence of Streptococcus mutans biofilm

    PubMed Central

    2018-01-01

    The use of antimicrobial monomers, linked to the polymer chain of resin composites, is an interesting approach to circumvent the effects of bacteria on the dental and material surfaces. In addition, it can likely reduce the incidence of recurrent caries lesions. The aim of this study was to evaluate the effects of a novel Triclosan Methacrylate (TM) monomer, which was developed and incorporated into an experimental resin composite, on Streptococcus mutans (S. mutans) biofilms, focusing on the analyses of vicR, gtfD, gtfC, covR, and gbpB gene expression, cell viability and biofilm characteristics. The contact time between TM-composite and S. mutans down-regulated the gbpB and covR and up-regulated the gtfC gene expression, reduced cell viability and significantly decreased parameters of the structure and characteristics of S. mutans biofilm virulence. The presence of Triclosan Methacrylate monomer causes harmful effects at molecular and cellular levels in S. mutans, implying a reduction in the virulence of those microorganisms. PMID:29608622

  19. Cross-feeding and interkingdom communication in dual-species biofilms of Streptococcus mutans and Candida albicans

    PubMed Central

    Sztajer, Helena; Szafranski, Szymon P; Tomasch, Jürgen; Reck, Michael; Nimtz, Manfred; Rohde, Manfred; Wagner-Döbler, Irene

    2014-01-01

    Polymicrobial biofilms are of large medical importance, but relatively little is known about the role of interspecies interactions for their physiology and virulence. Here, we studied two human pathogens co-occuring in the oral cavity, the opportunistic fungus Candida albicans and the caries-promoting bacterium Streptococcus mutans. Dual-species biofilms reached higher biomass and cell numbers than mono-species biofilms, and the production of extracellular polymeric substances (EPSs) by S. mutans was strongly suppressed, which was confirmed by scanning electron microscopy, gas chromatography–mass spectrometry and transcriptome analysis. To detect interkingdom communication, C. albicans was co-cultivated with a strain of S. mutans carrying a transcriptional fusion between a green fluorescent protein-encoding gene and the promoter for sigX, the alternative sigma factor of S. mutans, which is induced by quorum sensing signals. Strong induction of sigX was observed in dual-species biofilms, but not in single-species biofilms. Conditioned media from mixed biofilms but not from C. albicans or S. mutans cultivated alone activated sigX in the reporter strain. Deletion of comS encoding the synthesis of the sigX-inducing peptide precursor abolished this activity, whereas deletion of comC encoding the competence-stimulating peptide precursor had no effect. Transcriptome analysis of S. mutans confirmed induction of comS, sigX, bacteriocins and the downstream late competence genes, including fratricins, in dual-species biofilms. We show here for the first time the stimulation of the complete quorum sensing system of S. mutans by a species from another kingdom, namely the fungus C. albicans, resulting in fundamentally changed virulence properties of the caries pathogen. PMID:24824668

  20. Effects of xylitol on xylitol-sensitive versus xylitol-resistant Streptococcus mutans strains in a three-species in vitro biofilm.

    PubMed

    Marttinen, Aino M; Ruas-Madiedo, Patricia; Hidalgo-Cantabrana, Claudio; Saari, Markku A; Ihalin, Riikka A; Söderling, Eva M

    2012-09-01

    We studied the effects of xylitol on biofilms containing xylitol-resistant (Xr) and xylitol-sensitive (Xs) Streptococcus mutans, Actinomyces naeslundii and S. sanguinis. The biofilms were grown for 8 and 24 h on hydroxyapatite discs. The viable microorganisms were determined by plate culturing techniques and fluorescence in situ hybridization (FISH) was performed using a S. mutans-specific probe. Extracellular cell-bound polysaccharides (EPS) were determined by spectrofluorometry from single-species S. mutans biofilms. In the presence of 5 % xylitol, the counts of the Xs S. mutans decreased tenfold in the young (8 h) biofilm (p < 0.05) but no effect was seen in the mature (24 h) biofilm. No decrease was observed for the Xr strains, and FISH confirmed these results. No differences were detected in the EPS production of the Xs S. mutans grown with or without xylitol, nor between Xr and Xs S. mutans strains. Thus, it seems that xylitol did not affect the EPS synthesis of the S. mutans strains. Since the Xr S. mutans strains, not inhibited by xylitol, showed no xylitol-induced decrease in the biofilms, we conclude that growth inhibition could be responsible for the decrease of the counts of the Xs S. mutans strains in the clinically relevant young biofilms.

  1. Antimicrobial action of chlorhexidine digluconate in self-ligating and conventional metal brackets infected with Streptococcus mutans biofilm

    PubMed Central

    Dias, Ana Paula; Paschoal, Marco Aurélio Benini; Diniz, Rafael Soares; Lage, Lucas Meneses; Gonçalves, Letícia Machado

    2018-01-01

    Objectives The objectives of this study were to assess the adherence of Streptococcus mutans biofilms grown over conventional ligature (CL) or self-ligating (SL) metal brackets and their bacterial viability after 0.12% chlorhexidine (CHX) digluconate treatment. Materials and methods The sample consisted of 48 metallic orthodontic brackets divided randomly into two groups: CL (n=24) and SL brackets (n=24). S. mutans biofilms were grown over the bracket surface (96 h) and treated with CHX (positive control) or 0.9% phosphate-buffered saline (PBS) (negative control) for 1 min each. Quantitative analysis was assessed by colony-forming units, and fluorescence microscopy was performed aiming to illustrate the outcomes. The tests were done in triplicate at three different times (n=9). Data were analyzed using ANOVA and Tukey test (P<0.05). Results There were significant differences in brackets’ biofilm formation, being CL largely colonized compared with SL, which was observed by colony-forming unit counting (P<0.05) and microcopy images. Significant reduction in the viability of S. mutans was found in both brackets treated with CHX compared to PBS (P<0.05). Conclusion The antimicrobial activities of CHX were similar for CL and SL brackets (P>0.05). In conclusion, a lower colonization was achieved in SL brackets and S. mutans biofilms were susceptible to CHX treatment to both studied brackets. PMID:29719422

  2. Antimicrobial action of chlorhexidine digluconate in self-ligating and conventional metal brackets infected with Streptococcus mutans biofilm.

    PubMed

    Dias, Ana Paula; Paschoal, Marco Aurélio Benini; Diniz, Rafael Soares; Lage, Lucas Meneses; Gonçalves, Letícia Machado

    2018-01-01

    The objectives of this study were to assess the adherence of Streptococcus mutans biofilms grown over conventional ligature (CL) or self-ligating (SL) metal brackets and their bacterial viability after 0.12% chlorhexidine (CHX) digluconate treatment. The sample consisted of 48 metallic orthodontic brackets divided randomly into two groups: CL (n=24) and SL brackets (n=24). S. mutans biofilms were grown over the bracket surface (96 h) and treated with CHX (positive control) or 0.9% phosphate-buffered saline (PBS) (negative control) for 1 min each. Quantitative analysis was assessed by colony-forming units, and fluorescence microscopy was performed aiming to illustrate the outcomes. The tests were done in triplicate at three different times (n=9). Data were analyzed using ANOVA and Tukey test ( P <0.05). There were significant differences in brackets' biofilm formation, being CL largely colonized compared with SL, which was observed by colony-forming unit counting ( P <0.05) and microcopy images. Significant reduction in the viability of S. mutans was found in both brackets treated with CHX compared to PBS ( P <0.05). The antimicrobial activities of CHX were similar for CL and SL brackets ( P >0.05). In conclusion, a lower colonization was achieved in SL brackets and S. mutans biofilms were susceptible to CHX treatment to both studied brackets.

  3. Nutritionally Variant Streptococci Interfere with Streptococcus mutans Adhesion Properties and Biofilm Formation.

    PubMed

    Angius, Fabrizio; Madeddu, Maria Antonietta; Pompei, Raffaello

    2015-04-01

    The bacterial species Streptococcus mutans is known as the main cause of dental caries in humans. Therefore, much effort has focused on preventing oral colonization by this strain or clearing it from oral tissues. The oral cavity is colonized by several bacterial species that constitute the commensal oral flora, but none of these is able to interfere with the cariogenic properties of S. mutans. This paper describes the interfering ability of some nutritionally variant streptococcal strains (NVS) with S. mutans adhesion to glass surfaces and also to hydroxylapatite. In mixed cultures, NVS induce a complete inhibition of S. mutans microcolony formation on cover glass slides. NVS can also block the adherence of radiolabeled S. mutans to hydroxylapatite in the presence of both saliva and sucrose. The analysis of the action mechanism of NVS demonstrated that NVS are more hydrophobic than S. mutans and adhere tightly to hard surfaces. In addition, a cell-free culture filtrate of NVS was also able to interfere with S. mutans adhesion to hydroxylapatite. Since NVS are known to secrete some important bacteriolytic enzymes, we conclude that NVS can be a natural antagonist to the cariogenic properties of S. mutans.

  4. Functional Relationship between Sucrose and a Cariogenic Biofilm Formation

    PubMed Central

    Cai, Jian-Na; Jung, Ji-Eun; Dang, Minh-Huy; Kim, Mi-Ah; Yi, Ho-Keun; Jeon, Jae-Gyu

    2016-01-01

    Sucrose is an important dietary factor in cariogenic biofilm formation and subsequent initiation of dental caries. This study investigated the functional relationships between sucrose concentration and Streptococcus mutans adherence and biofilm formation. Changes in morphological characteristics of the biofilms with increasing sucrose concentration were also evaluated. S. mutans biofilms were formed on saliva-coated hydroxyapatite discs in culture medium containing 0, 0.05, 0.1, 0.5, 1, 2, 5, 10, 20, or 40% (w/v) sucrose. The adherence (in 4-hour biofilms) and biofilm composition (in 46-hour biofilms) of the biofilms were analyzed using microbiological, biochemical, laser scanning confocal fluorescence microscopic, and scanning electron microscopic methods. To determine the relationships, 2nd order polynomial curve fitting was performed. In this study, the influence of sucrose on bacterial adhesion, biofilm composition (dry weight, bacterial counts, and water-insoluble extracellular polysaccharide (EPS) content), and acidogenicity followed a 2nd order polynomial curve with concentration dependence, and the maximum effective concentrations (MECs) of sucrose ranged from 0.45 to 2.4%. The bacterial and EPS bio-volume and thickness in the biofilms also gradually increased and then decreased as sucrose concentration increased. Furthermore, the size and shape of the micro-colonies of the biofilms depended on the sucrose concentration. Around the MECs, the micro-colonies were bigger and more homogeneous than those at 0 and 40%, and were surrounded by enough EPSs to support their structure. These results suggest that the relationship between sucrose concentration and cariogenic biofilm formation in the oral cavity could be described by a functional relationship. PMID:27275603

  5. Role of tyrosol on Candida albicans, Candida glabrata and Streptococcus mutans biofilms developed on different surfaces.

    PubMed

    Monteiro, Douglas Roberto; Arias, Laís Salomão; Fernandes, Renan Aparecido; Straioto, Fabiana Gouveia; Barros Barbosa, Débora; Pessan, Juliano Pelim; Delbem, Alberto Carlos Botazzo

    2017-02-01

    To assess the effect of tyrosol on the production of hydrolytic enzymes (by Candida biofilm cells) and acid (by Streptococcus mutans biofilms), as well as to quantify single and mixed biofilms of these species formed on acrylic resin (AR) and hydroxyapatite (HA). Candida and S. mutans biofilms were formed on AR and HA in the presence of tyrosol during 48 hours. Next, acid proteinase, phospholipase and hemolytic activities of Candida biofilm cells were determined, while acid production by S. mutans biofilms was assessed by pH determination. The effect of tyrosol on mature biofilms (96 hours) was evaluated through quantification of total biomass, metabolic activity, number of colony-forming units and composition of biofilms' extracellular matrix. Data were analyzed by one- and two-way ANOVA, followed by Tukey's and Holm-Sidak's tests (α = 0.05). Treatments with tyrosol were not able to significantly reduce hydrolytic enzymes and acid production by Candida and S. mutans. Tyrosol only significantly reduced the metabolic activity of single biofilms of Candida species. Tyrosol on its own had a limited efficacy against single and mixed-species oral biofilms. Its use as an alternative antimicrobial for topical therapies still demands more investigation.

  6. Symbiotic Relationship between Streptococcus mutans and Candida albicans Synergizes Virulence of Plaque Biofilms In Vivo

    PubMed Central

    Falsetta, Megan L.; Klein, Marlise I.; Colonne, Punsiri M.; Scott-Anne, Kathleen; Gregoire, Stacy; Pai, Chia-Hua; Gonzalez-Begne, Mireya; Watson, Gene; Krysan, Damian J.; Bowen, William H.

    2014-01-01

    Streptococcus mutans is often cited as the main bacterial pathogen in dental caries, particularly in early-childhood caries (ECC). S. mutans may not act alone; Candida albicans cells are frequently detected along with heavy infection by S. mutans in plaque biofilms from ECC-affected children. It remains to be elucidated whether this association is involved in the enhancement of biofilm virulence. We showed that the ability of these organisms together to form biofilms is enhanced in vitro and in vivo. The presence of C. albicans augments the production of exopolysaccharides (EPS), such that cospecies biofilms accrue more biomass and harbor more viable S. mutans cells than single-species biofilms. The resulting 3-dimensional biofilm architecture displays sizeable S. mutans microcolonies surrounded by fungal cells, which are enmeshed in a dense EPS-rich matrix. Using a rodent model, we explored the implications of this cross-kingdom interaction for the pathogenesis of dental caries. Coinfected animals displayed higher levels of infection and microbial carriage within plaque biofilms than animals infected with either species alone. Furthermore, coinfection synergistically enhanced biofilm virulence, leading to aggressive onset of the disease with rampant carious lesions. Our in vitro data also revealed that glucosyltransferase-derived EPS is a key mediator of cospecies biofilm development and that coexistence with C. albicans induces the expression of virulence genes in S. mutans (e.g., gtfB, fabM). We also found that Candida-derived β1,3-glucans contribute to the EPS matrix structure, while fungal mannan and β-glucan provide sites for GtfB binding and activity. Altogether, we demonstrate a novel mutualistic bacterium-fungus relationship that occurs at a clinically relevant site to amplify the severity of a ubiquitous infectious disease. PMID:24566629

  7. Antibacterial effect of dental adhesive containing dimethylaminododecyl methacrylate on the development of Streptococcus mutans biofilm.

    PubMed

    Wang, Suping; Zhang, Keke; Zhou, Xuedong; Xu, Ning; Xu, Hockin H K; Weir, Michael D; Ge, Yang; Wang, Shida; Li, Mingyun; Li, Yuqing; Xu, Xin; Cheng, Lei

    2014-07-18

    Antibacterial bonding agents and composites containing dimethylaminododecyl methacrylate (DMADDM) have been recently developed. The objectives of this study were to investigate the antibacterial effect of novel adhesives containing different mass fractions of DMADDM on Streptococcus mutans (S. mutans) biofilm at different developmental stages. Different mass fractions of DMADDM were incorporated into adhesives and S. mutans biofilm at different developmetal stages were analyzed by MTT assays, lactic acid measurement, confocal laser scanning microscopy and scanning electron microscopy observations. Exopolysaccharides (EPS) staining was used to analyze the inhibitory effect of DMADDM on the biofilm extracellular matrix. Dentin microtensile strengths were also measured. Cured adhesives containing DMADDM could greatly reduce metabolic activity and lactic acid production during the development of S. mutans biofilms (p < 0.05). In earlier stages of biofilm development, there were no significant differences of inhibitory effects between the 2.5% DMADDM and 5% DMADDM group. However, after 72 h, the anti-biofilm effects of adhesives containing 5% DMADDM were significantly stronger than any other group. Incorporation of DMADDM into adhesive did not adversely affect dentin bond strength. In conclusion, adhesives containing DMADDM inhibited the growth, lactic acid production and EPS metabolism of S. mutans biofilm at different stages, with no adverse effect on its dentin adhesive bond strength. The bonding agents have the potential to control dental biofilms and combat tooth decay, and DMADDM is promising for use in a wide range of dental adhesive systems and restoratives.

  8. A terpenoid isolated from sarang semut (Myrmecodia pendans) bulb and its potential for the inhibition and eradication of Streptococcus mutans biofilm.

    PubMed

    Gartika, Meirina; Pramesti, Hening T; Kurnia, Dikdik; Satari, Mieke H

    2018-05-09

    Dental caries remains a serious problem due to its detrimental effects on individual health and quality of life. The bulbs of Myrmecodia pendans (Merr & Perry), native plants of Papua, have been used as natural remedies for tumours, gout, diarrhoea, and fever. In this study, one of the active compounds of M. pendans was isolated, and its biological activity against the formation of Streptococcus mutans ATCC 25175 biofilm was tested. M. pendans was extracted with ethyl acetate using a Soxhlet apparatus. The extract was then separated, and chromatographic purification provided the isolated compound. The structure of the active compound was then characterized using UV, IR, NMR, and MS spectrometry. The obtained compound was added to S. mutans biofilms to determine the MBIC and MBEC values. The compound isolated from M. pendans was determined to be a labdane diterpene derivative with the formula C 31 H 50 O 3 . The MBIC value of the terpenoid towards the S. mutans biofilms was 50 ppm, and the MBEC value for the 1 min induction time was 40%. The terpenoid extracted from M. pendans has the potential to be developed into an antibacterial agent particularly for preventing the formation of biofilms.

  9. Deficiency of RgpG Causes Major Defects in Cell Division and Biofilm Formation, and Deficiency of LytR-CpsA-Psr Family Proteins Leads to Accumulation of Cell Wall Antigens in Culture Medium by Streptococcus mutans.

    PubMed

    De, Arpan; Liao, Sumei; Bitoun, Jacob P; Roth, Randy; Beatty, Wandy L; Wu, Hui; Wen, Zezhang T

    2017-09-01

    Streptococcus mutans is known to possess rhamnose-glucose polysaccharide (RGP), a major cell wall antigen. S. mutans strains deficient in rgpG , encoding the first enzyme of the RGP biosynthesis pathway, were constructed by allelic exchange. The rgpG deficiency had no effect on growth rate but caused major defects in cell division and altered cell morphology. Unlike the coccoid wild type, the rgpG mutant existed primarily in chains of swollen, "squarish" dividing cells. Deficiency of rgpG also causes significant reduction in biofilm formation ( P < 0.01). Double and triple mutants with deficiency in brpA and/or psr , genes coding for the LytR-CpsA-Psr family proteins BrpA and Psr, which were previously shown to play important roles in cell envelope biogenesis, were constructed using the rgpG mutant. There were no major differences in growth rates between the wild-type strain and the rgpG brpA and rgpG psr double mutants, but the growth rate of the rgpG brpA psr triple mutant was reduced drastically ( P < 0.001). Under transmission electron microscopy, both double mutants resembled the rgpG mutant, while the triple mutant existed as giant cells with multiple asymmetric septa. When analyzed by immunoblotting, the rgpG mutant displayed major reductions in cell wall antigens compared to the wild type, while little or no signal was detected with the double and triple mutants and the brpA and psr single mutants. These results suggest that RgpG in S. mutans plays a critical role in cell division and biofilm formation and that BrpA and Psr may be responsible for attachment of cell wall antigens to the cell envelope. IMPORTANCE Streptococcus mutans , a major etiological agent of human dental caries, produces rhamnose-glucose polysaccharide (RGP) as the major cell wall antigen. This study provides direct evidence that deficiency of RgpG, the first enzyme of the RGP biosynthesis pathway, caused major defects in cell division and morphology and reduced biofilm formation by S

  10. Development and characterization of p1025-loaded bioadhesive liquid-crystalline system for the prevention of Streptococcus mutans biofilms.

    PubMed

    Calixto, Giovana Maria Fioramonti; Duque, Cristiane; Aida, Kelly Limi; Dos Santos, Vanessa Rodrigues; Massunari, Loiane; Chorilli, Marlus

    2018-01-01

    Formation of a dental biofilm by Streptococcus mutans can cause dental caries, and remains a costly health problem worldwide. Recently, there has been a growing interest in the use of peptidic drugs, such as peptide p1025, analogous to the fragments 1025-1044 of S. mutans cellular adhesin, responsible for the adhesion and formation of dental biofilm. However, peptides have physicochemical characteristics that may affect their biological action, limiting their clinical performance. Therefore, drug-delivery systems, such as a bioadhesive liquid-crystalline system (LCS), may be attractive strategies for peptide delivery. Potentiation of the action of LCS can be achieved with the use of bioadhesive polymers to prolong their residence on the teeth. In line with this, three formulations - polyoxypropylene-(5)-polyoxyethylene-(20)-cetyl alcohol, oleic acid, and Carbopol C974P in different combinations (F1C, F2C, and F3C) were developed to observe the influence of water in the LCS, with the aim of achieving in situ gelling in the oral environment. These formulations were assessed by polarized light microscopy, small-angle X-ray scattering, rheological analysis, and in vitro bioadhesion analysis. Then, p1025 and a control (chlorhexidine) were incorporated into the aqueous phase of the formulation (F + p1025 and F + chlorhexidine), to determine their antibiofilm effect and toxicity on epithelial cells. Polarized light microscopy and small-angle X-ray scattering showed that F1C and F2C were LCS, whereas F3C was a microemulsion. F1C and F2C showed pseudoplastic behavior and F3C Newtonian behavior. F1C showed the highest elastic and bioadhesive characteristics compared to other formulations. Antibiofilm effects were observed for F + p1025 when applied in the surface-bound salivary phase. The p1025-loaded nanostructured LCS presented limited cytotoxicity and effectively reduced S. mutans biofilm formation, and could be a promising p1025-delivery strategy to prevent the formation

  11. Antimicrobial activity of hydroxyl radicals generated by hydrogen peroxide photolysis against Streptococcus mutans biofilm.

    PubMed

    Nakamura, Keisuke; Shirato, Midori; Kanno, Taro; Örtengren, Ulf; Lingström, Peter; Niwano, Yoshimi

    2016-10-01

    Prevention of dental caries with maximum conservation of intact tooth substance remains a challenge in dentistry. The present study aimed to evaluate the antimicrobial effect of H2O2 photolysis on Streptococcus mutans biofilm, which may be a novel antimicrobial chemotherapy for treating caries. S. mutans biofilm was grown on disk-shaped hydroxyapatite specimens. After 1-24 h of incubation, growth was assessed by confocal laser scanning microscopy and viable bacterial counting. Resistance to antibiotics (amoxicillin and erythromycin) was evaluated by comparing bactericidal effects on the biofilm with those on planktonic bacteria. To evaluate the effect of the antimicrobial technique, the biofilm was immersed in 3% H2O2 and was irradiated with an LED at 365 nm for 1 min. Viable bacterial counts in the biofilm were determined by colony counting. The thickness and surface coverage of S. mutans biofilm increased with time, whereas viable bacterial counts plateaued after 6 h. When 12- and 24-h-old biofilms were treated with the minimum concentration of antibiotics that killed viable planktonic bacteria with 3 log reduction, their viable counts were not significantly decreased, suggesting the biofilm acquired antibiotic resistance by increasing its thickness. By contrast, hydroxyl radicals generated by photolysis of 3% H2O2 effectively killed S. mutans in 24-h-old biofilm, with greater than 5 log reduction. The technique based on H2O2 photolysis is a potentially powerful adjunctive antimicrobial chemotherapy for caries treatment. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  12. Vizantin inhibits bacterial adhesion without affecting bacterial growth and causes Streptococcus mutans biofilm to detach by altering its internal architecture.

    PubMed

    Takenaka, Shoji; Oda, Masataka; Domon, Hisanori; Ohsumi, Tatsuya; Suzuki, Yuki; Ohshima, Hayato; Yamamoto, Hirofumi; Terao, Yutaka; Noiri, Yuichiro

    2016-11-11

    An ideal antibiofilm strategy is to control both in the quality and quantity of biofilm while maintaining the benefits derived from resident microflora. Vizantin, a recently developed immunostimulating compound, has also been found to have antibiofilm property. This study evaluated the influence on biofilm formation of Streptococcus mutans in the presence of sulfated vizantin and biofilm development following bacterial adhesion on a hydroxyapatite disc coated with sulfated vizantin. Supplementation with sulfated vizantin up to 50 μM did not affect either bacterial growth or biofilm formation, whereas 50 μM sulfated vizantin caused the biofilm to readily detach from the surface. Sulfated vizantin at the concentration of 50 μM upregulated the expression of the gtfB and gtfC genes, but downregulated the expression of the gtfD gene, suggesting altered architecture in the biofilm. Biofilm development on the surface coated with sulfated vizantin was inhibited depending on the concentration, suggesting prevention from bacterial adhesion. Among eight genes related to bacterial adherence in S. mutans, expression of gtfB and gtfC was significantly upregulated, whereas the expression of gtfD, GbpA and GbpC was downregulated according to the concentration of vizantin, especially with 50 μM vizantin by 0.8-, 0.4-, and 0.4-fold, respectively. These findings suggest that sulfated vizantin may cause structural degradation as a result of changing gene regulation related to bacterial adhesion and glucan production of S. mutans. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. α-Mangostin Disrupts the Development of Streptococcus mutans Biofilms and Facilitates Its Mechanical Removal

    PubMed Central

    Nguyen, Phuong Thi Mai; Falsetta, Megan L.; Hwang, Geelsu; Gonzalez-Begne, Mireya; Koo, Hyun

    2014-01-01

    α-Mangostin (αMG) has been reported to be an effective antimicrobial agent against planktonic cells of Streptococcus mutans, a biofilm-forming and acid-producing cariogenic organism. However, its anti-biofilm activity remains to be determined. We examined whether αMG, a xanthone purified from Garcinia mangostana L grown in Vietnam, disrupts the development, acidogenicity, and/or the mechanical stability of S. mutans biofilms. Treatment regimens simulating those experienced clinically (twice-daily, 60 s exposure each) were used to assess the bioactivity of αMG using a saliva-coated hydroxyapatite (sHA) biofilm model. Topical applications of early-formed biofilms with αMG (150 µM) effectively reduced further biomass accumulation and disrupted the 3D architecture of S. mutans biofilms. Biofilms treated with αMG had lower amounts of extracellular insoluble and intracellular iodophilic polysaccharides (30–45%) than those treated with vehicle control (P<0.05), while the number of viable bacterial counts was unaffected. Furthermore, αMG treatments significantly compromised the mechanical stability of the biofilm, facilitating its removal from the sHA surface when subjected to a constant shear stress of 0.809 N/m2 (>3-fold biofilm detachment from sHA vs. vehicle-treated biofilms; P<0.05). Moreover, acid production by S. mutans biofilms was disrupted following αMG treatments (vs. vehicle-control, P<0.05). The activity of enzymes associated with glucan synthesis, acid production, and acid tolerance (glucosyltransferases B and C, phosphotransferase-PTS system, and F1F0-ATPase) were significantly inhibited by αMG. The expression of manL, encoding a key component of the mannose PTS, and gtfB were slightly repressed by αMG treatment (P<0.05), while the expression of atpD (encoding F-ATPase) and gtfC genes was unaffected. Hence, this study reveals that brief exposures to αMG can disrupt the development and structural integrity of S. mutans biofilms, at least in part

  14. Disinfection of Streptococcus mutans Biofilm by a Non-Thermal Atmospheric Plasma Brush

    NASA Astrophysics Data System (ADS)

    Hong, Qing; Dong, Xiaoqing; Chen, Meng; Xu, Yuanxi; Sun, Hongmin; Hong, Liang; Yu, Qingsong

    2015-09-01

    This study investigated the argon plasma treatment effect on disinfecting dental biofilm by using an atmospheric pressure plasma brush. S. mutans biofilms were developed for 3 days on the surfaces of hydroxyapatite discs, which were used to simulate human tooth enamel. After plasma treatment, cell viability in the S. mutans biofilms was characterized by using MTT assay and confocal laser scanning microscopy (CLSM). Compared with the untreated control group, about 90% and 95% bacterial reduction in the biofilms was observed after 1 and 5 min plasma treatment, respectively. Scanning electron microscopy examination indicated severe cell damages occurred on the top surface of the plasma treated biofilms. CLSM showed that plasma treatment was effective as deep as 20 μm into the biofilms. When combined with 0.2% chlorhexidine digluconate solution, the plasma treatment became more effective and over 96% bacterial reduction was observed with 1 min plasma treatment. These results indicate that plasma treatment is effective and promising in dental biofilm disinfection.

  15. Functional amyloids in Streptococcus mutans, their use as targets of biofilm inhibition and initial characterization of SMU_63c

    PubMed Central

    Besingi, Richard N; Wenderska, Iwona B; Senadheera, Dilani B; Cvitkovitch, Dennis G; Long, Joanna R; Wen, Zezhang T

    2017-01-01

    Amyloids have been identified as functional components of the extracellular matrix of bacterial biofilms. Streptococcus mutans is an established aetiologic agent of dental caries and a biofilm dweller. In addition to the previously identified amyloidogenic adhesin P1 (also known as AgI/II, PAc), we show that the naturally occurring antigen A derivative of S. mutans wall-associated protein A (WapA) and the secreted protein SMU_63c can also form amyloid fibrils. P1, WapA and SMU_63c were found to significantly influence biofilm development and architecture, and all three proteins were shown by immunogold electron microscopy to reside within the fibrillar extracellular matrix of the biofilms. We also showed that SMU_63c functions as a negative regulator of biofilm cell density and genetic competence. In addition, the naturally occurring C-terminal cleavage product of P1, C123 (also known as AgII), was shown to represent the amyloidogenic moiety of this protein. Thus, P1 and WapA both represent sortase substrates that are processed to amyloidogenic truncation derivatives. Our current results suggest a novel mechanism by which certain cell surface adhesins are processed and contribute to the amyloidogenic capability of S. mutans. We further demonstrate that the polyphenolic small molecules tannic acid and epigallocatechin-3-gallate, and the benzoquinone derivative AA-861, which all inhibit amyloid fibrillization of C123 and antigen A in vitro, also inhibit S. mutans biofilm formation via P1- and WapA-dependent mechanisms, indicating that these proteins serve as therapeutic targets of anti-amyloid compounds. PMID:28141493

  16. Effect of anti-biofilm glass-ionomer cement on Streptococcus mutans biofilms.

    PubMed

    Wang, Su-Ping; Ge, Yang; Zhou, Xue-Dong; Xu, Hockin Hk; Weir, Michael D; Zhang, Ke-Ke; Wang, Hao-Hao; Hannig, Matthias; Rupf, Stefan; Li, Qian; Cheng, Lei

    2016-06-30

    Dental restorative materials with antimicrobial properties can inhibit bacterial colonization, which may result in a reduction of caries at tooth-filling interaction zones. This study aimed to develop antibacterial glass-ionomer cements (GIC) containing a quaternary ammonium monomer (dimethylaminododecyl methacrylate, DMADDM), and to investigate their effect on material performance and antibacterial properties. Different mass fractions (0, 1.1% and 2.2%) of DMADDM were incorporated into the GIC. The flexure strength, surface charge density, surface roughness and fluoride release were tested. A Streptococcus mutans biofilm model was used. Exopolysaccharides (EPS) staining was used to analyze the inhibitory effect of DMADDM on the biofilm matrix. In addition, biofilm metabolic activity, lactic acid metabolism and the expression of glucosyltransferase genes gtfB, gtfC and gtfD were measured. GIC containing 1.1% and 2.2% DMADDM had flexural strengths matching those of the commercial control (P>0.1). DMADDM was able to increase the surface charge density but reduced surface roughness (P<0.05). The incorporation of 1.1% and 2.2% DMADDM elevated the release of fluoride by the GIC in the first 2 days (P<0.05). The novel DMADDM-modified GIC significantly reduced biofilm metabolic activity (P<0.05) and decreased lactic acid production (P<0.05). The quantitative polymerase chain reaction (qPCR) results showed that the expression of gtfB, gtfC and gtfD decreased when mass fractions of DMADDM increased (P<0.05). EPS staining showed that both the bacteria and EPS in biofilm decreased in the DMADDM groups. The incorporation of DMADDM could modify the properties of GIC to influence the development of S. mutans biofilms. In this study, we investigated the interface properties of antibacterial materials for the first time. GIC containing DMADDM can improve material performance and antibacterial properties and may contribute to the better management of secondary caries.

  17. Isolation and purification of total RNA from Streptococcus mutans in suspension cultures and biofilms.

    PubMed

    Cury, Jaime Aparecido; Seils, Jennifer; Koo, Hyun

    2008-01-01

    The presence of extracellular polysaccharides matrix makes extraction and purification of RNA from Streptococcus mutans within biofilms challenging. In this study, several approaches to purify RNA extracted from S. mutans in suspension cultures and biofilms were examined. The combination of sonication (3 pulses of 30 s at 7 W), suspension in NAES buffer (50 mM sodium acetate buffer, 10 mM EDTA and 1% SDS; pH 5.0) and homogenization-mechanical cells disruption in NAES- acid phenol:chloroform, yielded 9.04 mg (or 0.52 mg) of crude preparation of RNA per 100 mg of total cell (or biofilm) dry-weight. The crude RNA preparations were subjected to various DNAse I treatments. The combination of DNAse I in silica-gel based column followed by recombinant DNase I in solution provided the best genomic DNA removal, resulting in 4.35 mg (or 0.06 mg) of purified RNA per 100 mg of total cell (or biofilm) dry-weight. The cDNAs generated from the purified RNA sample were efficiently amplified using gtfB S. mutans-specific primers. The results showed a method that yields high-quality RNA from both planktonic cells and biofilms of S. mutans in sufficient quantity and quality for real-time RT-PCR analyses.

  18. Disinfection of Streptococcus mutans biofilm by a non-thermal atmospheric plasma brush

    NASA Astrophysics Data System (ADS)

    Hong, Qing; Dong, Xiaoqing; Chen, Meng; Xu, Yuanxi; Sun, Hongmin; Hong, Liang; Wang, Yong; Yu, Qingsong

    2016-07-01

    This study investigated the argon plasma treatment effect on disinfecting dental biofilm by using an atmospheric pressure plasma brush. Streptococcus mutans biofilms were developed for 3 days on the surfaces of hydroxyapatite (HA) discs, which were used to simulate human tooth enamel. After plasma treatment, cell viability in the S. mutans biofilms was characterized by using 3-(4,5-dimethylazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and confocal laser scanning microscopy (CLSM). Compared with the untreated control group, about 90% bacterial reduction in the biofilms was observed after 1 min plasma treatment. Scanning electron microscopy (SEM) examination indicated severe cell damages occurred on the top surface of the plasma treated biofilms. Confocal laser scanning microscopy (CLSM) showed that plasma treatment was effective as deep as 20 µm into the biofilms. When combined with antibiotic treatment using 0.2% chlorhexidine digluconate solution, the plasma treatment became more effective and over 96% bacterial reduction was observed with 1 min plasma treatment.

  19. Effects of combined exogenous dextranase and sodium fluoride on Streptococcus mutans 25175 monospecies biofilms.

    PubMed

    Yang, Ying-Ming; Jiang, Dan; Qiu, Yuan-Xin; Fan, Rong; Zhang, Ru; Ning, Mei-Zhi; Shao, Mei-Ying; Zhang, Chao-Liang; Hong, Xiao; Hu, Tao

    2013-10-01

    To investigate the effects of exogenous dextranase and sodium fluoride on a S. mutans monospecies biofilm. S. mutans 25175 was grown in tryptone soya broth medium, and biofilm was formed on glass slides with 1.0% sucrose. Exogenous dextranase and sodium fluoride were added alone or together. The biofilm morphology was analyzed by confocal laser scanning microscopy. The effects of the drug on the adhesion and exopolysaccharide production by the biofilms were evaluated by scintillation counting and the anthrone method, respectively. In this study, we found that the structure of initial biofilm and mature biofilm were partly altered by dextranase and high concentrations of sodium fluoride separately. However, dextranase combined with a low concentration of sodium fluoride could clearly destroy the typical tree-like structure of the biofilm, and led to less bacterial adhesion than when the dextranase or fluoride were used alone (P < 0.05). The amounts of soluble and insoluble exopolysaccharide were significantly reduced by combining dextranase with a low concentration of sodium fluoride, much more than when they were used alone (P < 0.05). These data indicate that dextranase and a low concentration of sodium fluoride may have synergistic effects against S. mutans biofilm and suggest the application of a low concentration of sodium fluoride in anticaries treatment.

  20. Antibacterial activities of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) against planktonic and biofilm growing Streptococcus mutans.

    PubMed

    Sun, Mengjun; Dong, Jiachen; Xia, Yiru; Shu, Rong

    2017-06-01

    The aim of this study was to evaluate the potential antibacterial activities of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) against planktonic and biofilm modes of Streptococcus mutans (S. mutans). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined. The effects on planktonic growth and biofilm metabolic activity were evaluated by growth curve determination and MTT assay, respectively. Then, colony forming unit (CFU) counting, scanning electron microscopy (SEM) and real-time PCR were performed to further investigate the actions of DHA and EPA on exponential phase-S. mutans. Confocal laser scanning microscopy (CLSM) was used to detect the influences on mature biofilms. The MICs of DHA and EPA against S. mutans were 100 μM and 50 μM, respectively; the MBC of both compounds was 100 μM. In the presence of 12.5 μM-100 μM DHA or EPA, the planktonic growth and biofilm metabolic activity were reduced in varying degrees. For exponential-phase S. mutans, the viable counts, the bacterial membranes and the biofilm-associated gene expression were damaged by 100 μM DHA or EPA treatment. For 1-day-old biofilms, the thickness was decreased and the proportion of membrane-damaged bacteria was increased in the presence of 100 μM DHA or EPA. These results indicated that, DHA and EPA possessed antibacterial activities against planktonic and biofilm growing S. mutans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Effect of sonic vibration of an ultrasonic toothbrush on the removal of Streptococcus mutans biofilm from enamel surface.

    PubMed

    Hashizume, Lina Naomi; Dariva, Alessandra

    2015-12-01

    To evaluate in vitro the effect of sonic vibration of an ultrasonic toothbrush in the removal of Streptococcus mutans (S. mutans) biofilm from human enamel. S. mutans dental biofilm was formed in vitro on human enamel blocks coated by salivary pellicle. The blocks were incubated with a suspension of S. mutans at 37°C for 24 or 72 hours. The blocks were divided to one of three conditions according to the different toothbrush action modes: ultrasound plus sonic vibration (U+SV), ultrasound-only (U) and no ultrasound and no sonic vibration (control). Samples were exposed to each mode for 3 minutes with the toothbrush bristles placed 5 mm away from the enamel block surface. The samples were observed by scanning electron microscopy (SEM) and quantification of S. mutans was performed. U+SV showed lower bacterial counts compared to U and control on the 72 hour-biofilm (P < 0.05). The SEM analysis revealed that U+SV and U disrupted the S. mutans chains in the 24- and 72-hour biofilm.

  2. Effect of tt-farnesol and myricetin on in vitro biofilm formed by Streptococcus mutans and Candida albicans.

    PubMed

    Rocha, Guilherme Roncari; Florez Salamanca, Elkin Jahir; de Barros, Ana Letícia; Lobo, Carmélia Isabel Vitorino; Klein, Marlise Inêz

    2018-02-14

    Dental caries is considered a multifactorial disease, in which microorganisms play an important role. The diet is decisive in the biofilm formation because it provides the necessary resources for cellular growth and exopolysaccharides synthesis. Exopolysaccharides are the main components of the extracellular matrix (ECM). The ECM provides a 3D structure, support for the microorganisms and form diffusion-limited environments (acidic niches) that cause demineralization of the dental enamel. Streptococcus mutans is the main producer of exopolysaccharides. Candida albicans is detected together with S. mutans in biofilms associated with severe caries lesions. Thus, this study aimed to determine the effect of tt-farnesol and myricetin topical treatments on cariogenic biofilms formed by Streptococcus mutans and Candida albicans. In vitro dual-species biofilms were grown on saliva-coated hydroxyapatite discs, using tryptone-yeast extract broth with 1% sucrose (37 °C, 5% CO 2 ). Twice-daily topical treatments were performed with: vehicle (ethanol 15%, negative control), 2 mM myricetin, 4 mM tt-farnesol, myricetin + tt-farnesol, myricetin + tt-farnesol + fluoride (250 ppm), fluoride, and chlorhexidine digluconate (0.12%; positive control). After 67 h, biofilms were evaluated to determine biofilm biomass, microbial population, and water-soluble and -insoluble exopolysaccharides in the ECM. Only the positive control yielded a reduced quantity of biomass and microbial population, while tt-farnesol treatment was the least efficient in reducing C. albicans population. The combination therapy myricetin + farnesol + fluoride significantly reduced water-soluble exopolysaccharides in the ECM (vs. negative control; p < 0.05; ANOVA one-way, followed by Tukey's test), similarly to the positive control. Therefore, the combination therapy negatively influenced an important virulence trait of cariogenic biofilms. However, the concentrations of both myricetin and tt

  3. Anti-biofilm action of nitric oxide-releasing alkyl-modified poly(amidoamine) dendrimers against Streptococcus mutans.

    PubMed

    Backlund, Christopher J; Worley, Brittany V; Schoenfisch, Mark H

    2016-01-01

    The effect of nitric oxide (NO)-releasing dendrimer hydrophobicity on Streptococcus mutans killing and biofilm disruption was examined at pH 7.4 and 6.4, the latter relevant to dental caries. Generation 1 (G1) poly(amidoamine) (PAMAM) dendrimers were modified with alkyl epoxides to generate propyl-, butyl-, hexyl-, octyl-, and dodecyl-functionalized dendrimers. The resulting secondary amines were reacted with NO to form N-diazeniumdiolate NO donor-modified dendrimer scaffolds (total NO ∼1μmol/mg). The bactericidal action of the NO-releasing dendrimers against both planktonic and biofilm-based S. mutans proved greatest with increasing alkyl chain length and at lower pH. Improved bactericidal efficacy at pH 6.4 was attributed to increased scaffold surface charge that enhanced dendrimer-bacteria association and ensuing membrane damage. For shorter alkyl chain (i.e., propyl and butyl) dendrimer modifications, increased antibacterial action at pH 6.4 was due to faster NO-release kinetics from proton-labile N-diazeniumdiolate NO donors. Octyl- and dodecyl-modified PAMAM dendrimers proved most effective for eradicating S. mutans biofilms with NO release mitigating dendrimer scaffold cytotoxicity. We report the antibacterial and anti-biofilm efficacy of dual-action nitric oxide (NO)-releasing dendrimers against S. mutans, an etiological agent in dental caries. This work was undertaken to enhance the anti-biofilm action of these scaffolds by employing various alkyl chain modifications. Furthermore, we evaluated the ability of NO to eradicate cariogenic biofilms. We found that at the lower pH associated with dental caries (pH ∼6.4), NO has a more pronounced antibacterial effect for alkyl modifications less capable of biofilm penetration and membrane disruption. Of greatest significance, we introduce dendrimers as a new macromolecular antibacterial agent against the cariogenic bacteria S. mutans. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All

  4. Nanoscale characterization of effect of L-arginine on Streptococcus mutans biofilm adhesion by atomic force microscopy.

    PubMed

    Sharma, Shivani; Lavender, Stacey; Woo, JungReem; Guo, Lihong; Shi, Wenyuan; Kilpatrick-Liverman, LaTonya; Gimzewski, James K

    2014-07-01

    A major aetiological factor of dental caries is the pathology of the dental plaque biofilms. The amino acid L-arginine (Arg) is found naturally in saliva as a free molecule or as a part of salivary peptides and proteins. Plaque bacteria metabolize Arg to produce alkali and neutralize glycolytic acids, promoting a less cariogenous oral microbiome. Here, we explored an alternative and complementary mechanism of action of Arg using atomic force microscopy. The nanomechanical properties of Streptococcus mutans biofilm extracellular matrix were characterized under physiological buffer conditions. We report the effect of Arg on the adhesive behaviour and structural properties of extracellular polysaccharides in S. mutans biofilms. High-resolution imaging of biofilm surfaces can reveal additional structural information on bacterial cells embedded within the surrounding extracellular matrix. A dense extracellular matrix was observed in biofilms without Arg compared to those grown in the presence of Arg. S. mutans biofilms grown in the presence of Arg could influence the production and/or composition of extracellular membrane glucans and thereby affect their adhesion properties. Our results suggest that the presence of Arg in the oral cavity could influence the adhesion properties of S. mutans to the tooth surface. © 2014 The Authors.

  5. Limonene inhibits streptococcal biofilm formation by targeting surface-associated virulence factors.

    PubMed

    Subramenium, Ganapathy Ashwinkumar; Vijayakumar, Karuppiah; Pandian, Shunmugiah Karutha

    2015-08-01

    The present study explores the efficacy of limonene, a cyclic terpene found in the rind of citrus fruits, for antibiofilm potential against species of the genus Streptococcus, which have been deeply studied worldwide owing to their multiple pathogenic efficacy. Limonene showed a concentration-dependent reduction in the biofilm formation of Streptococcus pyogenes (SF370), with minimal biofilm inhibitory concentration (MBIC) of 400 μg ml - 1. Limonene was found to possess about 75-95 % antibiofilm activity against all the pathogens tested, viz. Streptococcus pyogenes (SF370 and 5 clinical isolates), Streptococcus mutans (UA159) and Streptococcus mitis (ATCC 6249) at 400 μg ml - 1 concentration. Microscopic analysis of biofilm architecture revealed a quantitative breach in biofilm formation. Results of a surface-coating assay suggested that the possible mode of action of limonene could be by inhibiting bacterial adhesion to surfaces, thereby preventing the biofilm formation cascade. Susceptibility of limonene-treated Streptococcus pyogenes to healthy human blood goes in unison with gene expression studies in which the mga gene was found to be downregulated. Anti-cariogenic efficacy of limonene against Streptococcus mutans was confirmed, with inhibition of acid production and downregulation of the vicR gene. Downregulation of the covR, mga and vicR genes, which play a critical role in regulating surface-associated proteins in Streptococcus pyogenes and Streptococcus mutans, respectively, is yet further evidence to show that limonene targets surface-associated proteins. The results of physiological assays and gene expression studies clearly show that the surface-associated antagonistic mechanism of limonene also reduces surface-mediated virulence factors.

  6. The photodynamic therapy on Streptococcus mutans biofilms using erythrosine and dental halogen curing unit

    PubMed Central

    Lee, Young-Ho; Park, Ho-Won; Lee, Ju-Hyun; Seo, Hyun-Woo; Lee, Si-Young

    2012-01-01

    The purpose of our study was to evaluate the effect of photodynamic therapy (PDT), using erythrosine as a photosensitizing agent and a dental halogen curing unit as a light source, on Streptococcus mutans in a biofilm phase. The S. mutans biofilms were formed in a 24-well cell culture cluster. Test groups consisted of biofilms divided into four groups: group 1: no photosensitizer or light irradiation treatment (control group); group 2: photosensitizer treatment alone; group 3: light irradiation alone; group 4: photosensitizer treatment and light irradiation. After treatments, the numbers of colony-forming unit (CFU) were counted and samples were examined by confocal laser scanning fluorescence microscopy (CLSM). Only group 4 (combined treatment) resulted in significant increases in cell death, with rates of 75% and 55% after 8 h of incubation, and 74% and 42% at 12 h, for biofilms formed in brain–heart infusion (BHI) broth supplemented with 0% or 0.1% sucrose, respectively. Therefore, PDT of S. mutans biofilms using a combination of erythrosine and a dental halogen curing unit, both widely used in dental clinics, resulted in a significant increase in cell death. The PDT effects are decreased in biofilms that form in the presence of sucrose. PMID:23222991

  7. Extracellular DNA and lipoteichoic acids interact with exopolysaccharides in the extracellular matrix of Streptococcus mutans biofilms

    PubMed Central

    Castillo Pedraza, Midian C.; Novais, Tatiana F.; Faustoferri, Roberta C.; Quivey, Robert G.; Terekhov, Anton; Hamaker, Bruce R.; Klein, Marlise I.

    2018-01-01

    Streptococcus mutans -derived exopolysaccharides are virulence determinants in the matrix of biofilms that cause caries. Extracellular DNA (eDNA) and lipoteichoic acid (LTA) are found in cariogenic biofilms, but their functions are unclear. Therefore, strains of S. mutans carrying single deletions that would modulate matrix components were used: eDNA – ΔlytS and ΔlytT; LTA – ΔdltA and ΔdltD; and insoluble exopolysaccharide – ΔgtfB. Single-species (parental strain S. mutans UA159 or individual mutant strains) and mixed-species (UA159 or mutant strain, Actinomyces naeslundii and Streptococcus gordonii) biofilms were evaluated. Distinct amounts of matrix components were detected, depending on the inactivated gene. eDNA was found to be cooperative with exopolysaccharide in early phases, while LTA played a larger role in the later phases of biofilm development. The architecture of mutant strains biofilms was distinct (vs UA159), demonstrating that eDNA and LTA influence exopolysaccharide distribution and microcolony organization. Thus, eDNA and LTA may shape exopolysaccharide structure, affecting strategies for controlling pathogenic biofilms. PMID:28946780

  8. Extracellular DNA and lipoteichoic acids interact with exopolysaccharides in the extracellular matrix of Streptococcus mutans biofilms.

    PubMed

    Castillo Pedraza, Midian C; Novais, Tatiana F; Faustoferri, Roberta C; Quivey, Robert G; Terekhov, Anton; Hamaker, Bruce R; Klein, Marlise I

    2017-10-01

    Streptococcus mutans-derived exopolysaccharides are virulence determinants in the matrix of biofilms that cause caries. Extracellular DNA (eDNA) and lipoteichoic acid (LTA) are found in cariogenic biofilms, but their functions are unclear. Therefore, strains of S. mutans carrying single deletions that would modulate matrix components were used: eDNA - ∆lytS and ∆lytT; LTA - ∆dltA and ∆dltD; and insoluble exopolysaccharide - ΔgtfB. Single-species (parental strain S. mutans UA159 or individual mutant strains) and mixed-species (UA159 or mutant strain, Actinomyces naeslundii and Streptococcus gordonii) biofilms were evaluated. Distinct amounts of matrix components were detected, depending on the inactivated gene. eDNA was found to be cooperative with exopolysaccharide in early phases, while LTA played a larger role in the later phases of biofilm development. The architecture of mutant strains biofilms was distinct (vs UA159), demonstrating that eDNA and LTA influence exopolysaccharide distribution and microcolony organization. Thus, eDNA and LTA may shape exopolysaccharide structure, affecting strategies for controlling pathogenic biofilms.

  9. Inhibitory effect of Ti-Ag alloy on artificial biofilm formation.

    PubMed

    Nakajo, Kazuko; Takahashi, Masatoshi; Kikuchi, Masafumi; Takada, Yukyo; Okuno, Osamu; Sasaki, Keiichi; Takahashi, Nobuhiro

    2014-01-01

    Titanium-silver (Ti-Ag) alloy has been improved for machinability and mechanical properties, but its anti-biofilm properties have not been elucidated yet. Thus, this study aimed to evaluate the effects of Ti-Ag alloy on biofilm formation and bacterial viability in comparison with pure Ti, pure Ag and silver-palladium (Ag-Pd) alloy. Biofilm formation on the metal plates was evaluated by growing Streptococcus mutans and Streptococcus sobrinus in the presence of metal plates. Bactericidal activity was evaluated using a film contact method. There were no significant differences in biofilm formation between pure Ti, pure Ag and Ag-Pd alloy, while biofilm amounts on Ti-20% Ag and Ti-25% Ag alloys were significantly lower (p<0.05). In addition, Ti-Ag alloys and pure Ti were not bactericidal, although pure Ag and Ag-Pd alloy killed bacteria. These results suggest that Ti-20% Ag and Ti-25% Ag alloys are suitable for dental material that suppresses biofilm formation without disturbing healthy oral microflora.

  10. Bacterial GtfB Augments Candida albicans Accumulation in Cross-Kingdom Biofilms.

    PubMed

    Ellepola, K; Liu, Y; Cao, T; Koo, H; Seneviratne, C J

    2017-09-01

    Streptococcus mutans is a biofilm-forming oral pathogen commonly associated with dental caries. Clinical studies have shown that S. mutans is often detected with Candida albicans in early childhood caries. Although the C. albicans presence has been shown to enhance bacterial accumulation in biofilms, the influence of S. mutans on fungal biology in this mixed-species relationship remains largely uncharacterized. Therefore, we aimed to investigate how the presence of S. mutans influences C. albicans biofilm development and coexistence. Using a newly established haploid biofilm model of C. albicans, we found that S. mutans augmented haploid C. albicans accumulation in mixed-species biofilms. Similarly, diploid C. albicans also showed enhanced biofilm formation in the presence of S. mutans. Surprisingly, the presence of S. mutans restored the biofilm-forming ability of C. albicans bcr1Δ mutant and bcr1Δ/Δ mutant, which is known to be severely defective in biofilm formation when grown as single species. Moreover, C. albicans hyphal growth factor HWP1 as well as ALS1 and ALS3, which are also involved in fungal biofilm formation, were upregulated in the presence of S. mutans. Subsequently, we found that S. mutans-derived glucosyltransferase B (GtfB) itself can promote C. albicans biofilm development. Interestingly, GtfB was able to increase the expression of HWP1, ALS1, and ALS3 genes in the C. albicans diploid wild-type SC5314 and bcr1Δ/Δ, leading to enhanced fungal biofilms. Hence, the present study demonstrates that a bacterial exoenzyme (GtfB) augments the C. albicans counterpart in mixed-species biofilms through a BCR1-independent mechanism. This novel finding may explain the mutualistic role of S. mutans and C. albicans in cariogenic biofilms.

  11. Effect of Punica granatum on the virulence factors of cariogenic bacteria Streptococcus mutans.

    PubMed

    Gulube, Zandiswa; Patel, Mrudula

    2016-09-01

    Dental caries is caused by acids produced by biofilm-forming Streptococcus mutans from fermentable carbohydrates and bacterial byproducts. Control of these bacteria is important in the prevention of dental caries. This study investigated the effect of the fruit peel of Punica granatum on biofilm formation, acid and extracellular polysaccharides production (EPS) by S. mutans. Pomegranate fruit peels crude extracts were prepared. The Minimum bactericidal concentrations (MBC) were determined against S. mutans. At 3 sub-bactericidal concentrations, the effect on the acid production, biofilm formation and EPS production was determined. The results were analysed using Kruskal-Wallis and Wilcoxon Rank Sum Tests. The lowest MBC was 6.25 mg/mL. Punica granatum significantly inhibited acid production (p < 0.01). After 6 and 24 h, it significantly reduced biofilm-formation by 91% and 65% respectively (p < 0.01). The plant extract did not inhibit the production of soluble EPS in either the biofilm or the planktonic growth. However, it significantly reduced the insoluble EPS in the biofilm and the plantktonic (p = < 0.01) form of S. mutans. The crude extract of P. granatum killed cariogenic S. mutans at high concentrations. At sub-bactericidal concentrations, it reduced biofilm formation, acid and EPS production. This suggests that P. granatum extract has the potential to prevent dental caries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Extracellular matrix influence in Streptococcus mutans gene expression in a cariogenic biofilm.

    PubMed

    Florez Salamanca, E J; Klein, M I

    2018-04-01

    Caries etiology is biofilm-diet-dependent. Biofilms are highly dynamic and structured microbial communities enmeshed in a three-dimensional extracellular matrix. The study evaluated the expression dynamics of Streptococcus mutans genes associated with exopolysaccharides (EPS) (gtfBCD, gbpB, dexA), lipoteichoic acids (LTA) (dltABCD, SMU_775c) and extracellular DNA (eDNA) (lytST, lrgAB, ccpA) during matrix development within a mixed-species biofilm of S. mutans, Actinomyces naeslundii and Streptococcus gordonii. Mixed-species biofilms using S. mutans strains UA159 or ΔgtfB formed on saliva-coated hydroxyapatite discs were submitted to a nutritional challenge (providing an abundance of sucrose and starch). Biofilms were removed at eight developmental stages for gene expression analysis by quantitative polymerase chain reaction. The pH of spent culture media remained acidic throughout the experimental periods, being lower after sucrose and starch exposure. All genes were expressed at all biofilm developmental phases. EPS- and LTA-associated genes had a similar expression profile for both biofilms, presenting lower levels of expression at 67, 91 and 115 hours and a peak of expression at 55 hours, but having distinct expression magnitudes, with lower values for ΔgtfB (eg, fold-difference of ~382 for gtfC and ~16 for dltB at 43 hours). The eDNA-associated genes presented different dynamics of expression between both strains. In UA159 biofilms lrgA and lrgB genes were highly expressed at 29 hours (which were ~13 and ~5.4 times vs ΔgtfB, respectively), whereas in ΔgtfB biofilms an inverse relationship between lytS and lrgA and lrgB expression was detected. Therefore, the deletion of gtfB influences dynamics and magnitude of expression of genes associated with matrix main components. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Bactericidal effect of the photocatalystic reaction of titanium dioxide using visible wavelengths on Streptococcus mutans biofilm.

    PubMed

    Kim, Chan-Hee; Lee, Eun-Song; Kang, Si-Mook; de Josselin de Jong, Elbert; Kim, Baek-Il

    2017-06-01

    The aim of this study was to determine the effect of titanium dioxide (TiO 2 ) photocatalysis induced by the application of clinically acceptable visible light at 405nm on the growth of Streptococcus mutans biofilms. S. mutans biofilms were grown on a hydroxyapatite (HA) disk and deposited in a rutile-type TiO 2 solution at a concentration of 0.1mg/mL. TiO 2 photocatalysis was measured for exposure to visible light (405nm) and ultraviolet (UV) light (254nm) produced by light-emitting diodes for 10, 20, 30, and 40min. After two treatments, the number of colonies formed in the final S. mutans biofilm on the HA disk were measured to confirm their viability, and the morphological changes of S. mutans were evaluated using scanning electronic microscopy. The bactericidal effects of 254- and 405-nm light resulted in > 5-log and 4-log reductions, respectively (p<0.05), after 20min of treatment and a>7-log reduction after 40min of treatment in both treatment groups relative to the control group. It was confirmed that the antibacterial effect could be shown by causing the photocatalytic reaction of TiO 2 in S. mutans biofilm even at the wavelength of visible light (405nm) as at the wavelength of ultraviolet light (254nm). Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Effect of the Probiotic Lactobacillus rhamnosus LB21 on the Cariogenicity of Streptococcus mutans UA159 in a Dual-Species Biofilm Model.

    PubMed

    Fernández, Constanza E; Giacaman, Rodrigo A; Tenuta, Livia M; Cury, Jaime A

    2015-01-01

    Despite promising results using probiotics, evidence of the preventive effect on enamel demineralization is insufficient and the cariogenic potential of probiotics is still controversial. Probiotics could affect biofilm formation and interfere with adherence, growth or coaggregation with Streptococcus mutans in biofilms. However, most of the studies have been conducted using planktonic bacteria. Hence, the aim of the study was to assess the effect of probiotic bacteria on the cariogenicity of S. mutans using an in vitro biofilm caries model on enamel. Single-species biofilms (S. mutans UA159, SM or Lactobacillus rhamnosus LB21, LB) or dual-species biofilms simultaneously inoculated (SM + LB) or LB inoculated 8 h after SM (SM x2192; LB) were grown for 96 h. Biofilms were formed on bovine enamel saliva-coated slabs of known surface hardness (SH) and immersed in culture media. Biofilms were exposed 8 times per day to 10% sucrose. Medium pH was monitored twice daily as a biofilm acidogenicity indicator. After 96 h, biofilms were collected to determine biomass and bacteria viability. Slab demineralization was calculated as percentage of SH loss (%SHL). Additionally, the model was tested with different concentrations of the initial inoculum (103, 106, 108 cells/ml) and different adhesion times (2 or 8 h). The dual-species biofilm revealed no LB effects on SM cariogenicity, without changes in acidogenicity or %SHL among groups (p > 0.05, n = 12). Lack of activity of LB on SM cariogenicity persisted even when 105 times higher concentration of the probiotic was tested. Coaggregation was not observed. In conclusion, findings suggest that LB does not reduce cariogenicity of SM in a validated experimental caries model. © 2015 S. Karger AG, Basel.

  15. Antimicrobial photodynamic therapy of S. mutans biofilms attached to relevant dental materials.

    PubMed

    Zoccolillo, Michelle L; Rogers, Stephen C; Mang, Thomas S

    2016-12-01

    Antimicrobial Photodynamic therapy (aPDT) has demonstrated efficacy in situations where conventional antibiotic therapies can be challenged such as biofilms, gram-negative bacteria, and antimicrobial resistant organisms. Surface characteristics can affect biofilm adherence and integrity and so may modify the effectiveness of aPDT. This study investigates the killing efficacy of aPDT on S. mutans biofilms grown on relevant dental substrata, examining the killing efficacy and specifically the effects of aPDT on the biofilm matrix architecture. S. mutans (NCTC 10449) was grown in 48 hours biofilms on different substrata, specifically glass, titanium, and denture acrylic. During aPDT assays, the biofilms were treated with a purpurin based sensitizer ([25 ug/ml] in DMSO) for 30 minutes, then exposed to a 664 nm diode laser at light doses of 15, 30, and 45 J/cm 2 . Colony forming unit assays were performed to determine survival following treatment. Controls for comparison in survival assays consisted of (No light/No PS; No light/PS; and No light/DMSO). MAIR-IR spectroscopy analysis was performed to investigate aPDT effects on biofilm composition before and after jet impingement. Survival was greatly reduced in the biofilm cultures following the aPDT assays. All light doses achieved a greater then 3-log inactivation on 48 hours biofilms grown on polished denture acrylic. The higher light doses (45 and 30 J) achieved greater than 3-log inactivation in 48 hours biofilms grown on glass. The higher light doses (30 and 45 J/cm 2 ) produced a 2-log inactivation in 48 hours biofilms grown on titanium. Multiple attenuated internal reflection infrared (MAIR-IR) spectroscopy data demonstrates enhanced loss of exopolysaccharide (EPS) and Amide in the aPDT treated biofilms following jet impingement. Antimicrobial PDT experiments using a purpurin based sensitizer and laser light doses of 15, 30, and 45 J/cm 2 , against S. mutans biofilm grown on different

  16. Saliva-promoted adhesion of Streptococcus mutans MT8148 associates with dental plaque and caries experience.

    PubMed

    Shimotoyodome, A; Kobayashi, H; Tokimitsu, I; Hase, T; Inoue, T; Matsukubo, T; Takaesu, Y

    2007-01-01

    Colonization of enamel surfaces by Streptococcus mutans is thought to be initiated by the attachment of bacteria to a saliva-derived conditioning film (acquired pellicle). However, the clinical relevance of the contribution of saliva-promoted S. mutans adhesion in biofilm formation has not yet been fully elucidated. The aim of this study was to correlate saliva-promoted S. mutans adhesion with biofilm formation in humans. We correlated all measurements of salivary factors and dental plaque formation in 70 healthy subjects. Dental plaque development after thorough professional teeth cleaning correlated positively with S. mutans adhesion onto saliva-coated hydroxyapatite pellets and the glycoprotein content of either parotid or whole saliva. Saliva-promoted S. mutans adhesion and glycoprotein content were also positively correlated with each other in parotid and whole saliva. By contrast, neither salivary mutans streptococci, Lactobacillus nor Candida correlated with biofilm formation. Parotid saliva-mediated S. mutans adhesion was significantly higher in 12 caries-experienced (CE) subjects than in 9 caries-inexperienced (CI) subjects. Salivary S. mutans adhesion was significantly less (p < 0.01) in the CI group than in the CE group. In conclusion, the present findings suggest the initial S. mutans adhesion, modulated by salivary protein adsorption onto the enamel surface, as a possible correlate of susceptibility to dental plaque and caries. Copyright 2007 S. Karger AG, Basel.

  17. Nicotine Enhances Interspecies Relationship between Streptococcus mutans and Candida albicans.

    PubMed

    Liu, Shiyu; Qiu, Wei; Zhang, Keke; Zhou, Xuedong; Ren, Biao; He, Jinzhi; Xu, Xin; Cheng, Lei; Li, Mingyun

    2017-01-01

    Streptococcus mutans and Candida albicans are common microorganisms in the human oral cavity. The synergistic relationship between these two species has been deeply explored in many studies. In the present study, the effect of alkaloid nicotine on the interspecies between S. mutans and C. albicans is explored. We developed a dual-species biofilm model and studied biofilm biomass, biofilm structure, synthesis of extracellular polysaccharides (EPS), and expression of glucosyltransferases (Gtfs). Biofilm formation and bacterial and fungal cell numbers in dual-species biofilms increased in the presence of nicotine. More C. albicans cells were present in the dual-species biofilms in the nicotine-treated groups as determined by scanning electron microscopy. The synthesis of EPS was increased by 1 mg/ml of nicotine as detected by confocal laser scanning microscopy. The result of qRT-PCR showed gtfs expression was upregulated when 1 mg/ml of nicotine was used. We speculate that nicotine promoted the growth of S. mutans , and more S. mutans cells attracted more C. albicans cells due to the interaction between two species. Since S. mutans and C. albicans are putative pathogens for dental caries, the enhancement of the synergistic relationship by nicotine may contribute to caries development in smokers.

  18. Corrosion of dental alloys in artificial saliva with Streptococcus mutans.

    PubMed

    Lu, Chunhui; Zheng, Yuanli; Zhong, Qun

    2017-01-01

    A comparative study of the corrosion resistance of CoCr and NiCr alloys in artificial saliva (AS) containing tryptic soy broth (Solution 1) and Streptococcus mutans (S. mutans) species (Solution 2) was performed by electrochemical methods, including open circuit potential measurements, impedance spectroscopy, and potentiodynamic polarization. The adherence of S. mutans to the NiCr and CoCr alloy surfaces immersed in Solution 2 for 24 h was verified by scanning electron microscopy, while the results of electrochemical impedance spectroscopy confirmed the importance of biofilm formation for the corrosion process. The R(QR) equivalent circuit was successfully used to fit the data obtained for the AS mixture without S. mutans, while the R(Q(R(QR))) circuit was found to be more suitable for describing the biofilm properties after treatment with the AS containing S. mutans species. In addition, a negative shift of the open circuit potential with immersion time was observed for all samples regardless of the solution type. Both alloys exhibited higher charge transfer resistance after treatment with Solution 2, and lower corrosion current densities were detected for all samples in the presence of S. mutans. The obtained results suggest that the biofilm formation observed after 24 h of exposure to S. mutans bacteria might enhance the corrosion resistance of the studied samples by creating physical barriers that prevented oxygen interactions with the metal surfaces.

  19. Corrosion of dental alloys in artificial saliva with Streptococcus mutans

    PubMed Central

    Lu, Chunhui; Zheng, Yuanli; Zhong, Qun

    2017-01-01

    A comparative study of the corrosion resistance of CoCr and NiCr alloys in artificial saliva (AS) containing tryptic soy broth (Solution 1) and Streptococcus mutans (S. mutans) species (Solution 2) was performed by electrochemical methods, including open circuit potential measurements, impedance spectroscopy, and potentiodynamic polarization. The adherence of S. mutans to the NiCr and CoCr alloy surfaces immersed in Solution 2 for 24 h was verified by scanning electron microscopy, while the results of electrochemical impedance spectroscopy confirmed the importance of biofilm formation for the corrosion process. The R(QR) equivalent circuit was successfully used to fit the data obtained for the AS mixture without S. mutans, while the R(Q(R(QR))) circuit was found to be more suitable for describing the biofilm properties after treatment with the AS containing S. mutans species. In addition, a negative shift of the open circuit potential with immersion time was observed for all samples regardless of the solution type. Both alloys exhibited higher charge transfer resistance after treatment with Solution 2, and lower corrosion current densities were detected for all samples in the presence of S. mutans. The obtained results suggest that the biofilm formation observed after 24 h of exposure to S. mutans bacteria might enhance the corrosion resistance of the studied samples by creating physical barriers that prevented oxygen interactions with the metal surfaces. PMID:28350880

  20. In situ biosensing of the nanomechanical property and electrochemical spectroscopy of Streptococcus mutans-containing biofilms

    NASA Astrophysics Data System (ADS)

    Haochih Liu, Bernard; Li, Kun-Lin; Kang, Kai-Li; Huang, Wen-Ke; Liao, Jiunn-Der

    2013-07-01

    This work presents in situ biosensing approaches to study the nanomechanical and electrochemical behaviour of Streptococcus mutans biofilms under different cultivation conditions and microenvironments. The surface characteristics and sub-surface electrochemistry of the cell wall of S. mutans were measured by atomic force microscopy (AFM) based techniques to monitor the in situ biophysical status of biofilms under common anti-pathogenic procedures such as ultraviolet (UV) radiation and alcohol treatment. The AFM nanoindentation suggested a positive correlation between nanomechanical strength and the level of UV radiation of S. mutans; scanning impedance spectroscopy of dehydrated biofilms revealed reduced electrical resistance that is distinctive from that of living biofilms, which can be explained by the discharge of cytoplasm after alcohol treatment. Furthermore, the localized elastic moduli of four regions of the biofilm were studied: septum (Z-ring), cell wall, the interconnecting area between two cells and extracellular polymeric substance (EPS) area. The results indicated that cell walls exhibit the highest elastic modulus, followed by Z-ring, interconnect and EPS. Our approach provides an effective alternative for the characterization of the viability of living cells without the use of biochemical labelling tools such as fluorescence dyeing, and does not rely on surface binding or immobilization for detection. These AFM-based techniques can be very promising approaches when the conventional methods fall short.

  1. The Effect of Essential Oils and Bioactive Fractions on Streptococcus mutans and Candida albicans Biofilms: A Confocal Analysis

    PubMed Central

    Freires, Irlan Almeida; Bueno-Silva, Bruno; Galvão, Lívia Câmara de Carvalho; Duarte, Marta Cristina Teixeira; Sartoratto, Adilson; Figueira, Glyn Mara; de Alencar, Severino Matias; Rosalen, Pedro Luiz

    2015-01-01

    The essential oils (EO) and bioactive fractions (BF) from Aloysia gratissima, Baccharis dracunculifolia, Coriandrum sativum, Cyperus articulatus, and Lippia sidoides were proven to have strong antimicrobial activity on planktonic microorganisms; however, little is known about their effects on the morphology or viability of oral biofilms. Previously, we determined the EO/fractions with the best antimicrobial activity against Streptococcus mutans and Candida spp. In this report, we used a confocal analysis to investigate the effect of these EO and BF on the morphology of S. mutans biofilms (thickness, biovolume, and architecture) and on the metabolic viability of C. albicans biofilms. The analysis of intact treated S. mutans biofilms showed no statistical difference for thickness in all groups compared to the control. However, a significant reduction in the biovolume of extracellular polysaccharides and bacteria was observed for A. gratissima and L. sidoides groups, indicating that these BF disrupt biofilm integrity and may have created porosity in the biofilm. This phenomenon could potentially result in a weakened structure and affect biofilm dynamics. Finally, C. sativum EO drastically affected C. albicans viability when compared to the control. These results highlight the promising antimicrobial activity of these plant species and support future translational research on the treatment of dental caries and oral candidiasis. PMID:25821503

  2. The effect of CPP-ACP-propolis chewing gum on calcium and phosphate ion release on caries-active subjects’ saliva and the formation of Streptococcus mutans biofilm

    NASA Astrophysics Data System (ADS)

    Hasnamudhia, F.; Bachtiar, E. W.; Sahlan, M.; Soekanto, S. A.

    2017-08-01

    The aim of this study was to analyze the effect of CPP-APP and propolis wax if they are combined in a chewing gum formulation, observed from the calcium and phosphate ion level released by CPP-ACP and the emphasis of Streptococcus mutans mass in the biofilm by propolis wax on caries-active subjects’ saliva. Chewing gum simulation was done in vitro on 25 caries-active subjects’ saliva using five concentrations of chewing gum (0% propolis + 0% CPP-ACP, 0% propolis + CPP-ACP, 2% propolis + CPP-ACP, 4% propolis + CPP-ACP, and 6% propolis + CPP-ACP) and was then tested using an atomic absorption spectrophotometer to analyze calcium ion levels, an ultraviolet-visible spectrophotometer to analyze phosphate ion levels, and a biofilm assay using crystal violet to analyze the decline in biofilm mass. After the chewing simulation, calcium ion levels on saliva+gum eluent increased significantly compared to the saliva control, with the highest calcium level released by CPP-ACP + 2% propolis chewing gum. There was an insignificant phosphate level change between the saliva control and saliva+gum eluent. There was also a significant decline of S. mutans biofilm mass in the saliva+gum eluent, mostly by the CPP-ACP chewing gum and CPP-ACP + 6% propolis. The CPP-ACP-propolis chewing gum simulation generated the largest increase in calcium and phosphate ion level and the largest decline in S. mutans biofilm mass.

  3. Streptococcus mutans Extracellular DNA Is Upregulated during Growth in Biofilms, Actively Released via Membrane Vesicles, and Influenced by Components of the Protein Secretion Machinery

    PubMed Central

    Liao, Sumei; Klein, Marlise I.; Heim, Kyle P.; Fan, Yuwei; Bitoun, Jacob P.; Ahn, San-Joon; Burne, Robert A.; Koo, Hyun; Brady, L. Jeannine

    2014-01-01

    Streptococcus mutans, a major etiological agent of human dental caries, lives primarily on the tooth surface in biofilms. Limited information is available concerning the extracellular DNA (eDNA) as a scaffolding matrix in S. mutans biofilms. This study demonstrates that S. mutans produces eDNA by multiple avenues, including lysis-independent membrane vesicles. Unlike eDNAs from cell lysis that were abundant and mainly concentrated around broken cells or cell debris with floating open ends, eDNAs produced via the lysis-independent pathway appeared scattered but in a structured network under scanning electron microscopy. Compared to eDNA production of planktonic cultures, eDNA production in 5- and 24-h biofilms was increased by >3- and >1.6-fold, respectively. The addition of DNase I to growth medium significantly reduced biofilm formation. In an in vitro adherence assay, added chromosomal DNA alone had a limited effect on S. mutans adherence to saliva-coated hydroxylapatite beads, but in conjunction with glucans synthesized using purified glucosyltransferase B, the adherence was significantly enhanced. Deletion of sortase A, the transpeptidase that covalently couples multiple surface-associated proteins to the cell wall peptidoglycan, significantly reduced eDNA in both planktonic and biofilm cultures. Sortase A deficiency did not have a significant effect on membrane vesicle production; however, the protein profile of the mutant membrane vesicles was significantly altered, including reduction of adhesin P1 and glucan-binding proteins B and C. Relative to the wild type, deficiency of protein secretion and membrane protein insertion machinery components, including Ffh, YidC1, and YidC2, also caused significant reductions in eDNA. PMID:24748612

  4. Influence of the Culture Medium in Dose-Response Effect of the Chlorhexidine on Streptococcus mutans Biofilms

    PubMed Central

    de Queiroz, Vanessa Salvadego; Ccahuana-Vásquez, Renzo Alberto; Tedesco, Alcides Fabiano; Lyra, Luzia; Cury, Jaime Aparecido; Schreiber, Angélica Zaninelli

    2016-01-01

    The aim of this study was to evaluate the influence of culture medium on dose-response effect of chlorhexidine (CHX) on Streptococcus mutans UA159 biofilm and validate the use of the cation-adjusted-Müller-Hinton broth (MH) for the evaluation of antibacterial activity. Ultrafiltered Tryptone-Yeast Extract Broth (UTYEB) was compared against MH and MH with blood supplementation (MHS). For each medium, six groups (n = 4) were assessed: two negative control groups (baseline 48 and 120 h) and four experimental groups (0.0001, 0.001, 0.012, and 0.12% CHX). S. mutans biofilm grew on glass slides of each media containing 1% sucrose. After 48 h of growth, biofilms of baseline 48 h were collected and the other groups were treated for 1 min, twice a day, for 3 days, with their respective treatments. The media were changed daily and pH was measured. After 120 h, biofilms were collected and dry weight and viable microorganisms were determined. Results showed CHX dose-response effect being observed in all media for all the variables. However, MH and MHS showed higher sensitivity than UTYEB (p < 0.05). We can conclude that the culture medium does influence dose-response effect of CHX on Streptococcus mutans biofilm and that MH can be used for antibacterial activity. PMID:27293967

  5. Antimicrobial effects of herbal extracts on Streptococcus mutans and normal oral streptococci.

    PubMed

    Lee, Sung-Hoon

    2013-08-01

    Streptococcus mutans is associated with dental caries. A cariogenic biofilm, in particular, has been studied extensively for its role in the formation of dental caries. Herbal extracts such as Cudrania tricuspidata, Sophora flavescens, Ginkgo biloba, and Betula Schmidtii have been used as a folk remedy for treating diseases. The purpose of this study was to evaluate and compare the antibacterial activity of herbal extracts against normal oral streptococci, planktonic and biofilm of S. mutans. Streptococcus gordonii, Streptococcus oralis, Streptococcus salivarius, Streptococcus sanguinis, and S. mutans were cultivated with brain heart infusion broth and susceptibility assay for the herbal extracts was performed according to the protocol of Clinical and Laboratory Standard Institute. Also, S. mutans biofilm was formed on a polystyrene 12-well plate and 8-well chamber glass slip using BHI broth containing 2% sucrose and 1% mannose after conditioning the plate and the glass slip with unstimulated saliva. The biofilm was treated with the herbal extracts in various concentrations and inoculated on Mitis-Salivarius bacitracin agar plate for enumeration of viable S. mutans by counting colony forming units. Planktonic S. mutans showed susceptibility to all of the extracts and S. mutans biofilm exhibited the highest level of sensitivity for the extracts of S. flavescens. The normal oral streptococci exhibited a weak susceptibility in comparison to S. mutans. S. oralis, however, was resistant to all of the extracts. In conclusion, the extract of S. flavescens may be a potential candidate for prevention and management of dental caries.

  6. Variation in Enamel Formation Genes Influences Enamel Demineralization In Vitro in a Streptococcus mutans Biofilm Model

    PubMed Central

    Pang, Liangyue; Zhi, Qinghui; Zhuang, Peilin; Yu, Lixia; Tao, Ye; Lin, Huancai

    2017-01-01

    Genetic studies have shown that variations in enamel formation genes are associated with caries susceptibility. The aim of this study was to test in vitro whether variants in these genes are associated with dental enamel demineralization in a Streptococcus mutans biofilm model. DNA and enamel samples were obtained from 213 individuals. DNA was extracted from saliva, and 16 single nucleotide polymorphisms were analyzed. The physical and chemical properties of sound enamel samples and the mineral loss and the lesion depth of the demineralized enamel samples under cariogenic challenge were analyzed. Microhardness, enamel chemicals, mineral loss and demineralization depth were compared between different genotypes at each single nucleotide polymorphism. The GG genotype of TUFT1 (rs17640579) and the GT genotype of MMP20 (rs1612069) exhibited increased microhardness (p = 0.044 and 0.016, respectively). The GG genotype of AMBN (rs7694409) had a higher magnesium level, while the CT genotype of TFIP11 (rs2097470) had a lower magnesium level (p = 0.044 and 0.046, respectively). The GT genotype of MMP20 (rs1612069) had a higher calcium level (p = 0.034). The GG genotype of AMBN (rs13115627), the AG genotype of ENAM (rs12640848) and the AA genotype of MMP20 (rs2292730) had a lower phosphorus level (p = 0.012, 0.006, and 0.023, respectively). The GG genotype of AMBN (rs13115627) was also associated with a higher calcium-phosphorus ratio (p = 0.034). Individuals with the CC genotype of TFIP11 (rs134143) exhibited significantly more mineral loss (p = 0.011) and a deeper lesions (p = 0.042). Individuals with the TT genotype of TFIP11 (rs2097470) had more mineral loss (p = 0.018). Individuals with the GG genotype of TUFT1 (rs17640579) exhibited a shallower demineralization depth (p = 0.047). Individuals with the GT genotype of MMP20 (rs1612069) exhibited a shallower demineralization depth (p = 0.042). Individuals with the GG genotype of ENAM (rs12640848) exhibited less mineral loss

  7. Effects of Lectins on initial attachment of cariogenic Streptococcus mutans.

    PubMed

    Ito, Takashi; Yoshida, Yasuhiro; Shiota, Yasuyoshi; Ito, Yuki; Yamamoto, Tadashi; Takashiba, Shogo

    2018-02-01

    Oral bacteria initiate biofilm formation by attaching to tooth surfaces via an interaction of a lectin-like bacterial protein with carbohydrate chains on the pellicle. This study aimed to find naturally derived lectins that inhibit the initial attachment of a cariogenic bacterial species, Streptococcus mutans (S. mutans), to carbohydrate chains in saliva in vitro. Seventy kinds of lectins were screened for candidate motifs that inhibit the attachment of S. mutans ATCC 25175 to a saliva-coated culture plate. The inhibitory effect of the lectins on attachment of the S. mutans to the plates was quantified by crystal violet staining, and the biofilm was observed under a scanning electron microscope (SEM). Surface plasmon resonance (SPR) analysis was performed to examine the binding of S. mutans to carbohydrate chains and the binding of candidate lectins to carbohydrate chains, respectively. Moreover, binding assay between the biotinylated-lectins and the saliva components was conducted to measure the lectin binding. Lectins recognizing a salivary carbohydrate chain, Galβ1-3GalNAc, inhibited the binding of S. mutans to the plate. In particular, Agaricus bisporus agglutinin (ABA) markedly inhibited the binding. This inhibition was confirmed by SEM observation. SPR analysis indicated that S. mutans strongly binds to Galβ1-3GalNAc, and ABA binds to Galβ1-3GalNAc. Finally, the biotinylated Galβ1-3GalNAc-binding lectins including ABA demonstrated marked binding to the saliva components. These results suggest that ABA lectin inhibited the attachment of S. mutans to Galβ1-3GalNAc in saliva and ABA can be useful as a potent inhibitor for initial attachment of oral bacteria and biofilm formation.

  8. Genetic and physiological effects of noncoherent visible light combined with hydrogen peroxide on Streptococcus mutans in biofilm.

    PubMed

    Steinberg, Doron; Moreinos, Daniel; Featherstone, John; Shemesh, Moshe; Feuerstein, Osnat

    2008-07-01

    Oral biofilms are associated with the most common infections of the oral cavity. Bacteria embedded in the biofilms are less sensitive to antibacterial agents than planktonic bacteria are. Recently, an antibacterial synergic effect of noncoherent blue light and hydrogen peroxide (H(2)O(2)) on planktonic Streptococcus mutans was demonstrated. In this study, we tested the effect of a combination of light and H(2)O(2) on the vitality and gene expression of S. mutans embedded in biofilm. Biofilms of S. mutans were exposed to visible light (wavelengths, 400 to 500 nm) for 30 or 60 s (equivalent to 34 or 68 J/cm(2)) in the presence of 3 to 300 mM H(2)O(2). The antibacterial effect was assessed by microbial counts of each treated sample compared with that of the control. The effect of light combined with H(2)O(2) on the different layers of the biofilm was evaluated by confocal laser scanning microscopy. Gene expression was determined by real-time reverse transcription-PCR. Our results show that noncoherent light, in combination with H(2)O(2), has a synergistic antibacterial effect through all of the layers of the biofilm. Furthermore, this treatment was more effective against bacteria in biofilm than against planktonic bacteria. The combined light and H(2)O(2) treatment up-regulated the expression of several genes such as gtfB, brp, smu630, and comDE but did not affect relA and ftf. The ability of noncoherent visible light in combination with H(2)O(2) to affect bacteria in deep layers of the biofilm suggests that this treatment may be applied in biofilm-related diseases as a minimally invasive antibacterial procedure.

  9. Effect of silver-loaded PMMA on Streptococcus mutans in a drip flow reactor.

    PubMed

    Williams, Dustin L; Epperson, Richard Tyler; DeGrauw, Jeffery P; Nielsen, Mattias B; Taylor, Nicholas B; Jolley, Ryan D

    2017-09-01

    Orthodontic retention has been proposed as a life-long commitment for patients who desire to maintain straight teeth. However, the presence of foreign material increases risk of bacterial colonization and caries formation, of which Streptococcus mutans is a key contributor. Multiple studies have assessed the ability of silver to be added to base plate material and resist attachment of S. mutans. However, it does not appear that long-term washout in connection with biofilm growth under physiologically relevant conditions has been taken into consideration. In this study, silver was added to base plate material and exposed to short- or long-term washout periods. Materials were then assessed for their ability to resist biofilm formation of S. mutans using a drip flow reactor that modeled the human oral environment. Data indicated that silver was able to resist biofilm formation following short-term washout, but long-term washout periods resulted in a lack of ability to resist biofilm formation. These data will be important for future development of base plate materials to achieve long-term antimicrobial efficacy to reduce risk of caries formation and benefit patients in the long term. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2632-2639, 2017. © 2017 Wiley Periodicals, Inc.

  10. Effect of Fluoride-Containing Toothpastes on Enamel Demineralization and Streptococcus mutans Biofilm Architecture.

    PubMed

    Fernández, Constanza E; Fontana, Margherita; Samarian, Derek; Cury, Jaime A; Rickard, Alexander H; González-Cabezas, Carlos

    This study aimed to explore the effect of fluoridated toothpastes on biofilm architecture and enamel demineralization in an in vitro biofilm model. Streptococcus mutans was grown on enamel and treated with slurries of commercial toothpastes, containing SnF2 or NaF. Water and chlorhexidine were used as negative and positive controls, respectively. The developed biofilms were imaged and enamel demineralization was measured. SnF2 and NaF toothpaste treatments significantly reduced enamel demineralization, but SnF2 toothpaste was more effective. Only SnF2 toothpaste and chlorhexidine treatments caused reductions on biofilm mass and thickness. In conclusion, this biofilm model was able to differentiate the effects of the SnF2 and NaF toothpastes on biofilm architecture and enamel demineralization. © 2016 S. Karger AG, Basel.

  11. Biology of Streptococcus mutans-Derived Glucosyltransferases: Role in Extracellular Matrix Formation of Cariogenic Biofilms

    PubMed Central

    Bowen, W.H.; Koo, H.

    2011-01-01

    The importance of Streptococcus mutans in the etiology and pathogenesis of dental caries is certainly controversial, in part because excessive attention is paid to the numbers of S. mutans and acid production while the matrix within dental plaque has been neglected. S. mutans does not always dominate within plaque; many organisms are equally acidogenic and aciduric. It is also recognized that glucosyltransferases from S. mutans (Gtfs) play critical roles in the development of virulent dental plaque. Gtfs adsorb to enamel synthesizing glucans in situ, providing sites for avid colonization by microorganisms and an insoluble matrix for plaque. Gtfs also adsorb to surfaces of other oral microorganisms converting them to glucan producers. S. mutans expresses 3 genetically distinct Gtfs; each appears to play a different but overlapping role in the formation of virulent plaque. GtfC is adsorbed to enamel within pellicle whereas GtfB binds avidly to bacteria promoting tight cell clustering, and enhancing cohesion of plaque. GtfD forms a soluble, readily metabolizable polysaccharide and acts as a primer for GtfB. The behavior of soluble Gtfs does not mirror that observed with surface-adsorbed enzymes. Furthermore, the structure of polysaccharide matrix changes over time as a result of the action of mutanases and dextranases within plaque. Gtfs at distinct loci offer chemotherapeutic targets to prevent caries. Nevertheless, agents that inhibit Gtfs in solution frequently have a reduced or no effect on adsorbed enzymes. Clearly, conformational changes and reactions of Gtfs on surfaces are complex and modulate the pathogenesis of dental caries in situ, deserving further investigation. PMID:21346355

  12. Influence of sucrose and xylitol on an early Streptococcus mutans biofilm in a dental simulator.

    PubMed

    Salli, K M; Forssten, S D; Lahtinen, S J; Ouwehand, A C

    2016-10-01

    In vitro methods to study dental biofilms are useful in finding ways to support a healthy microbial balance in the oral cavity. The effects of sucrose, xylitol, and their combination on three strains of Streptococcus mutans and one strain of Streptococcus sobrinus were studied using a dental simulator. A simulator was used to mimic the oral cavity environment. It provided a continuous-flow system using artificial saliva (AS), constant temperature, mixing, and hydroxyapatite (HA) surface in which the influence of xylitol was studied. The quantities of planktonic and adhered bacteria were measured by real-time qPCR. Compared against the untreated AS, adding 1% sucrose increased the bacterial colonization of HA (p<0.0001) whereas 2% xylitol decreased it (p<0.05), with the exception of clinical S. mutans isolate 117. The combination of xylitol and sucrose decreased the bacterial quantities within the AS and the colonization on the HA by clinical S. mutans isolate 2366 was reduced (p<0.05). Increasing the concentration (2%-5%) of xylitol caused a reduction in bacterial counts even in the presence of sucrose. The continuous-culture biofilm model showed that within a young biofilm, sucrose significantly promotes whereas xylitol reduces bacterial colonization and proliferation. The results indicate that xylitol affects the ability of certain S. mutans strains to adhere to the HA. Clinical studies have also shown that xylitol consumption decreases caries incidence and reduces the amount of plaque. This study contributes to the understanding of the mechanism behind these clinical observations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. The impact of antimicrobial photodynamic therapy on Streptococcus mutans in an artificial biofilm model

    NASA Astrophysics Data System (ADS)

    Schneider, Martin; Kirfel, Gregor; Krause, Felix; Berthold, Michael; Brede, Olivier; Frentzen, Matthias; Braun, Andreas

    2010-02-01

    The aim of the study was to assess the impact of laser induced antimicrobial photodynamic therapy on the viability of Streptococcus mutans cells employing an aritificial biofilm model. Employing sterile chambered coverglasses, a salivary pellicle layer formation was induced in 19 chambers. Streptococcus mutans cells were inoculated in a sterile culture medium. Using a live/dead bacterial viability kit, bacteria with intact cell membranes stain fluorescent green. Test chambers containing each the pellicle layer and 0.5 ml of the bacterial culture were analyzed using a confocal laser scan microscope within a layer of 10 μm at intervals of 1 μm from the pellicle layer. A photosensitizer was added to the test chambers and irradiated with a diode laser (wavelength: 660 nm, output power: 100 mW, Helbo) for 2 min each. Comparing the baseline fluorescence (median: 13.8 [U], min: 3.7, max: 26.2) with the values after adding the photosensitizer (median: 3.7, min: 1.1, max: 9), a dilution caused decrease of fluorescence could be observed (p<0.05). After irradiation of the samples with a diode laser, an additional 48 percent decrease of fluorescence became evident (median: 2.2, min: 0.4, max: 3.4) (p<0.05). Comparing the samples with added photosensitizer but without laser irradiation at different times, no decrease of fluorescence could be measured (p>0.05). The present study indicates that antimicrobial photodynamic therapy can reduce living bacteria within a layer of 10 μm in an artificial biofilm model. Further studies have to evaluate the maximum biofilm thickness that still allows a toxic effect on microorganisms.

  14. Antimicrobial and anti-biofilm activities of Lactobacillus kefiranofaciens DD2 against oral pathogens

    PubMed Central

    2018-01-01

    ABSTRACT Background: Streptococcus mutans and Streptococcus sobrinus are major causative bacterial pathogens of dental caries. Objective: We investigated the applicability of three Lactobacillus strains (L. kefiranofaciens DD2, DD5, and DD6) isolated from kefir and three commercial Lactobacillus strains (L. plantarum ATCC 10,012, L. johnsonii JCM 1022, and L. rhamnosus ATCC 7469) as potential oral probiotics with respect to their survivability in an experimental oral environment, antimicrobial activity, and anti-biofilm formation activity against S. mutans and S. sobrinus. Results: Strains DD2, ATCC 10012, ATCC 7469, and JCM 1022 had the best oral survivability, including aerotolerance and enzymatic resistance, and inhibited the growth and biofilm formation of S. mutans and S. sobrinus. In particular, DD2 suppressed all three classes of biofilm formation-associated genes: those associated with carbohydrate metabolism and those encoding regulatory biofilm and adhesion proteins. Conclusions: These results indicate that the novel kefir isolate L. kefiranofaciens DD2 effectively and directly inhibits S. mutans and S. sobrinus. PMID:29868163

  15. Antimicrobial and anti-biofilm activities of Lactobacillus kefiranofaciens DD2 against oral pathogens.

    PubMed

    Jeong, Dana; Kim, Dong-Hyeon; Song, Kwang-Young; Seo, Kun-Ho

    2018-01-01

    Background : Streptococcus mutans and Streptococcus sobrinus are major causative bacterial pathogens of dental caries. Objective : We investigated the applicability of three Lactobacillus strains ( L. kefiranofaciens DD2, DD5, and DD6) isolated from kefir and three commercial Lactobacillus strains ( L. plantarum ATCC 10,012, L. johnsonii JCM 1022, and L. rhamnosus ATCC 7469) as potential oral probiotics with respect to their survivability in an experimental oral environment, antimicrobial activity, and anti-biofilm formation activity against S. mutans and S. sobrinus . Results : Strains DD2, ATCC 10012, ATCC 7469, and JCM 1022 had the best oral survivability, including aerotolerance and enzymatic resistance, and inhibited the growth and biofilm formation of S. mutans and S. sobrinus . In particular, DD2 suppressed all three classes of biofilm formation-associated genes: those associated with carbohydrate metabolism and those encoding regulatory biofilm and adhesion proteins. Conclusions : These results indicate that the novel kefir isolate L. kefiranofaciens DD2 effectively and directly inhibits S. mutans and S. sobrinus .

  16. Sugar fatty acid esters inhibit biofilm formation by food-borne pathogenic bacteria

    PubMed Central

    Furukawa, Soichi; Akiyoshi, Yuko; O’Toole, George A.; Ogihara, Hirokazu; Morinaga, Yasushi

    2010-01-01

    Effects of food additives on biofilm formation by food-borne pathogenic bacteria were investigated. Thirty-three potential food additives and 3 related compounds were added to the culture medium at concentrations from 0.001 to 0.1% (w/w), followed by inoculation and cultivation of five biofilm-forming bacterial strains for the evaluation of biofilm formation. Among the tested food additives, 21 showed inhibitory effects of biofilm formation by Staphylococcus aureus and Escherichia coli, and in particular, sugar fatty acid esters showed significant anti-biofilm activity. Sugar fatty acid esters with long chain fatty acid residues (C14-16) exerted their inhibitory effect at the concentration of 0.001%(w/w), but bacterial growth was not affected at this low concentration. Activities of the sugar fatty acid esters positively correlated with the increase of the chain length of the fatty acid residues. Sugar fatty acid esters inhibited the initial attachment of the Staphylococcus aureus cells to the abiotic surface. Sugar fatty acid esters with long chain fatty acid residues (C14-16) also inhibited biofilm formation by Streptococcus mutans and Listeria monocytogenes at 0.01%(w/w), while the inhibition of biofilm formation by Pseudomonas aeruginosa required the addition of a far higher concentration (0.1%(w/w)) of the sugar fatty acid esters. PMID:20089325

  17. l-Arginine Modifies the Exopolysaccharide Matrix and Thwarts Streptococcus mutans Outgrowth within Mixed-Species Oral Biofilms.

    PubMed

    He, Jinzhi; Hwang, Geelsu; Liu, Yuan; Gao, Lizeng; Kilpatrick-Liverman, LaTonya; Santarpia, Peter; Zhou, Xuedong; Koo, Hyun

    2016-10-01

    l-Arginine, a ubiquitous amino acid in human saliva, serves as a substrate for alkali production by arginolytic bacteria. Recently, exogenous l-arginine has been shown to enhance the alkalinogenic potential of oral biofilm and destabilize its microbial community, which might help control dental caries. However, l-arginine exposure may inflict additional changes in the biofilm milieu when bacteria are growing under cariogenic conditions. Here, we investigated how exogenous l-arginine modulates biofilm development using a mixed-species model containing both cariogenic (Streptococcus mutans) and arginolytic (Streptococcus gordonii) bacteria in the presence of sucrose. We observed that 1.5% (wt/vol) l-arginine (also a clinically effective concentration) exposure suppressed the outgrowth of S. mutans, favored S. gordonii dominance, and maintained Actinomyces naeslundii growth within biofilms (versus vehicle control). In parallel, topical l-arginine treatments substantially reduced the amounts of insoluble exopolysaccharides (EPS) by >3-fold, which significantly altered the three-dimensional (3D) architecture of the biofilm. Intriguingly, l-arginine repressed S. mutans genes associated with insoluble EPS (gtfB) and bacteriocin (SMU.150) production, while spxB expression (H2O2 production) by S. gordonii increased sharply during biofilm development, which resulted in higher H2O2 levels in arginine-treated biofilms. These modifications resulted in a markedly defective EPS matrix and areas devoid of any bacterial clusters (microcolonies) on the apatitic surface, while the in situ pH values at the biofilm-apatite interface were nearly one unit higher in arginine-treated biofilms (versus the vehicle control). Our data reveal new biological properties of l-arginine that impact biofilm matrix assembly and the dynamic microbial interactions associated with pathogenic biofilm development, indicating the multiaction potency of this promising biofilm disruptor. Dental caries is one

  18. l-Arginine Modifies the Exopolysaccharide Matrix and Thwarts Streptococcus mutans Outgrowth within Mixed-Species Oral Biofilms

    PubMed Central

    He, Jinzhi; Hwang, Geelsu; Liu, Yuan; Gao, Lizeng; Kilpatrick-Liverman, LaTonya; Santarpia, Peter; Zhou, Xuedong

    2016-01-01

    ABSTRACT l-Arginine, a ubiquitous amino acid in human saliva, serves as a substrate for alkali production by arginolytic bacteria. Recently, exogenous l-arginine has been shown to enhance the alkalinogenic potential of oral biofilm and destabilize its microbial community, which might help control dental caries. However, l-arginine exposure may inflict additional changes in the biofilm milieu when bacteria are growing under cariogenic conditions. Here, we investigated how exogenous l-arginine modulates biofilm development using a mixed-species model containing both cariogenic (Streptococcus mutans) and arginolytic (Streptococcus gordonii) bacteria in the presence of sucrose. We observed that 1.5% (wt/vol) l-arginine (also a clinically effective concentration) exposure suppressed the outgrowth of S. mutans, favored S. gordonii dominance, and maintained Actinomyces naeslundii growth within biofilms (versus vehicle control). In parallel, topical l-arginine treatments substantially reduced the amounts of insoluble exopolysaccharides (EPS) by >3-fold, which significantly altered the three-dimensional (3D) architecture of the biofilm. Intriguingly, l-arginine repressed S. mutans genes associated with insoluble EPS (gtfB) and bacteriocin (SMU.150) production, while spxB expression (H2O2 production) by S. gordonii increased sharply during biofilm development, which resulted in higher H2O2 levels in arginine-treated biofilms. These modifications resulted in a markedly defective EPS matrix and areas devoid of any bacterial clusters (microcolonies) on the apatitic surface, while the in situ pH values at the biofilm-apatite interface were nearly one unit higher in arginine-treated biofilms (versus the vehicle control). Our data reveal new biological properties of l-arginine that impact biofilm matrix assembly and the dynamic microbial interactions associated with pathogenic biofilm development, indicating the multiaction potency of this promising biofilm disruptor. IMPORTANCE

  19. Genetic and Physiological Effects of Noncoherent Visible Light Combined with Hydrogen Peroxide on Streptococcus mutans in Biofilm

    PubMed Central

    Steinberg, Doron; Moreinos, Daniel; Featherstone, John; Shemesh, Moshe; Feuerstein, Osnat

    2008-01-01

    Oral biofilms are associated with the most common infections of the oral cavity. Bacteria embedded in the biofilms are less sensitive to antibacterial agents than planktonic bacteria are. Recently, an antibacterial synergic effect of noncoherent blue light and hydrogen peroxide (H2O2) on planktonic Streptococcus mutans was demonstrated. In this study, we tested the effect of a combination of light and H2O2 on the vitality and gene expression of S. mutans embedded in biofilm. Biofilms of S. mutans were exposed to visible light (wavelengths, 400 to 500 nm) for 30 or 60 s (equivalent to 34 or 68 J/cm2) in the presence of 3 to 300 mM H2O2. The antibacterial effect was assessed by microbial counts of each treated sample compared with that of the control. The effect of light combined with H2O2 on the different layers of the biofilm was evaluated by confocal laser scanning microscopy. Gene expression was determined by real-time reverse transcription-PCR. Our results show that noncoherent light, in combination with H2O2, has a synergistic antibacterial effect through all of the layers of the biofilm. Furthermore, this treatment was more effective against bacteria in biofilm than against planktonic bacteria. The combined light and H2O2 treatment up-regulated the expression of several genes such as gtfB, brp, smu630, and comDE but did not affect relA and ftf. The ability of noncoherent visible light in combination with H2O2 to affect bacteria in deep layers of the biofilm suggests that this treatment may be applied in biofilm-related diseases as a minimally invasive antibacterial procedure. PMID:18316516

  20. Adhesion and Early Colonization of S. Mutans on Lithium Disilicate Reinforced Glass-Ceramics, Monolithic Zirconia and Dual Cure Resin Cement.

    PubMed

    Viitaniemi, L; Abdulmajeed, A; Sulaiman, T; Söderling, E; Närhi, T

    2017-12-01

    Monolithic zirconia and glass ceramics are increasingly used in implant crowns. Limited data is available on bacterial adhesion and early biofilm formation on these materials. Four different materials were investigated: (1) Lithium disilicate glass-ceramics (LDS), (2) Fully stabilized zirconia (FSZ), (3) Partially stabilized zirconia (PSZ), and (4) Dual curing cement (DCC). The materials' surfaces were characterized with spinning disc confocal microscopy and by water contact angle and surface free energy (SFE) measurements. For the adhesion tests the materials were rolled in suspensions of Streptococcus mutans. Early biofilm formation was studied on the materials and allowing the biofilms to form for 24 h. S. mutans cell counts were determined by plate culturing. ANOVA and post-hoc Tukey's tests (p⟨0.05) were used for statistical evaluation. The LDS surfaces were clearly hydrophilic with the highest SFE value (p⟨0.001). For S. mutans adhesion, the ranking of the materials from lowest to highest was: LDS = FSZ ⟨ DCC ⟨ PSZ (p⟨0.05). No significant differences among the materials were noticed in biofilm formation. LDS has lower S.mutans adhesion than other materials examined in this study, but the difference was not reflected in early biofilm formation. Copyright© 2017 Dennis Barber Ltd.

  1. Triethylene Glycol Up-Regulates Virulence-Associated Genes and Proteins in Streptococcus mutans.

    PubMed

    Sadeghinejad, Lida; Cvitkovitch, Dennis G; Siqueira, Walter L; Santerre, J Paul; Finer, Yoav

    2016-01-01

    Triethylene glycol dimethacrylate (TEGDMA) is a diluent monomer used pervasively in dental composite resins. Through hydrolytic degradation of the composites in the oral cavity it yields a hydrophilic biodegradation product, triethylene glycol (TEG), which has been shown to promote the growth of Streptococcus mutans, a dominant cariogenic bacterium. Previously it was shown that TEG up-regulated gtfB, an important gene contributing to polysaccharide synthesis function in biofilms. However, molecular mechanisms related to TEG's effect on bacterial function remained poorly understood. In the present study, S. mutans UA159 was incubated with clinically relevant concentrations of TEG at pH 5.5 and 7.0. Quantitative real-time PCR, proteomics analysis, and glucosyltransferase enzyme (GTF) activity measurements were employed to identify the bacterial phenotypic response to TEG. A S. mutans vicK isogenic mutant (SMΔvicK1) and its associated complemented strain (SMΔvicK1C), an important regulatory gene for biofilm-associated genes, were used to determine if this signaling pathway was involved in modulation of the S. mutans virulence-associated genes. Extracted proteins from S. mutans biofilms grown in the presence and absence of TEG were subjected to mass spectrometry for protein identification, characterization and quantification. TEG up-regulated gtfB/C, gbpB, comC, comD and comE more significantly in biofilms at cariogenic pH (5.5) and defined concentrations. Differential response of the vicK knock-out (SMΔvicK1) and complemented strains (SMΔvicK1C) implicated this signalling pathway in TEG-modulated cellular responses. TEG resulted in increased GTF enzyme activity, responsible for synthesizing insoluble glucans involved in the formation of cariogenic biofilms. As well, TEG increased protein abundance related to biofilm formation, carbohydrate transport, acid tolerance, and stress-response. Proteomics data was consistent with gene expression findings for the selected

  2. Triethylene Glycol Up-Regulates Virulence-Associated Genes and Proteins in Streptococcus mutans

    PubMed Central

    Sadeghinejad, Lida; Cvitkovitch, Dennis G.; Siqueira, Walter L.; Santerre, J. Paul; Finer, Yoav

    2016-01-01

    Triethylene glycol dimethacrylate (TEGDMA) is a diluent monomer used pervasively in dental composite resins. Through hydrolytic degradation of the composites in the oral cavity it yields a hydrophilic biodegradation product, triethylene glycol (TEG), which has been shown to promote the growth of Streptococcus mutans, a dominant cariogenic bacterium. Previously it was shown that TEG up-regulated gtfB, an important gene contributing to polysaccharide synthesis function in biofilms. However, molecular mechanisms related to TEG’s effect on bacterial function remained poorly understood. In the present study, S. mutans UA159 was incubated with clinically relevant concentrations of TEG at pH 5.5 and 7.0. Quantitative real-time PCR, proteomics analysis, and glucosyltransferase enzyme (GTF) activity measurements were employed to identify the bacterial phenotypic response to TEG. A S. mutans vicK isogenic mutant (SMΔvicK1) and its associated complemented strain (SMΔvicK1C), an important regulatory gene for biofilm-associated genes, were used to determine if this signaling pathway was involved in modulation of the S. mutans virulence-associated genes. Extracted proteins from S. mutans biofilms grown in the presence and absence of TEG were subjected to mass spectrometry for protein identification, characterization and quantification. TEG up-regulated gtfB/C, gbpB, comC, comD and comE more significantly in biofilms at cariogenic pH (5.5) and defined concentrations. Differential response of the vicK knock-out (SMΔvicK1) and complemented strains (SMΔvicK1C) implicated this signalling pathway in TEG-modulated cellular responses. TEG resulted in increased GTF enzyme activity, responsible for synthesizing insoluble glucans involved in the formation of cariogenic biofilms. As well, TEG increased protein abundance related to biofilm formation, carbohydrate transport, acid tolerance, and stress-response. Proteomics data was consistent with gene expression findings for the

  3. Ozone Gas Effect on Mineral Content of Dentin exposed to Streptococcus mutans Biofilm: An Energy-dispersive X-ray Evaluation.

    PubMed

    Chaves, Rafaella M; Estrela, Carlos; Cardoso, Paula C; de Je Barata, Terezinha; de Souza, João B; de Torres, Érica M; Estrela, Cyntia Ra; Magalhães, Ana Pr; Lopes, Lawrence G

    2017-04-01

    This study aims to assess the effect of ozone gas on dentin exposed to Streptococcus mutans biofilm by evaluation of mineral content [log calcium-to-phosphorus (Ca/P)] using energy-dispersive X-ray (EDX) spectroscopy. Five human third molars were sectioned into four slices of dentin and distributed in four groups: I - control (no treatment); II - ozone therapy; III - biofilm development; IV - ozone therapy followed by biofilm development. Mineral content (log Ca/P) was evaluated by EDX. Data were analyzed by analysis of variance and Tukey's test (p < 0.05). Results showed that the mineral content of control group (I) was similar to ozone group (II), and was statistically higher than biofilm (III) and ozone + biofilm (IV). The lowest log Ca/P was determined in biofilm group (III). It can be concluded that ozone gas did not grant preventive effects of demineralization by S. mutans biofilm on dentin surface. Ozone gas therapy may be an alternative noninvasive treatment aiming to reduce the levels of caries-associated microorganisms. This therapy may, thereby, be an alternative and/or complementary treatment strategy in preventive dentistry.

  4. Influence of a Brazilian wild green propolis on the enamel mineral loss and Streptococcus mutans' count in dental biofilm.

    PubMed

    Cardoso, Julia Gabiroboertz; Iorio, Natalia Lopes Pontes; Rodrigues, Luís Fernando; Couri, Maria Luiza Barra; Farah, Adriana; Maia, Lucianne Cople; Antonio, Andréa Gonçalves

    2016-05-01

    This study investigated the anti-demineralizing and antibacterial effects of a propolis ethanolic extract (EEP) against Streptococcus mutans dental biofilm. Blocks of sound bovine enamel (n=24) were fixed on polystyrene plates. S. mutans inoculum (ATCC 25175) and culture media were added (48 h-37 °C) to form biofilm. Blocks with biofilm received daily treatment (30 μL/1 min), for 5 days, as following: G1 (EEP 33.3%); G2 (chlorhexidine digluconate 0.12%); G3 (ethanol 80%); and G4 (Milli-Q water). G5 and G6 were blocks without biofilm that received only EEP and Milli-Q water, respectively. Final surface hardness was evaluated and the percentage of hardness loss (%HL) was calculated. The EEP extract pH and total solids were determined. S. mutans count was expressed by log10 scale of Colony-Forming Units (CFU/mL). One way ANOVA was used to compare results which differed at a 95% significance level. G2 presented the lowest average %HL value (68.44% ± 12.98) (p=0.010), while G4 presented the highest (90.49% ± 5.38%HL) (p=0.007). G1 showed %HL (84.41% ± 2.77) similar to G3 (87.80% ± 6.89) (p=0.477). Groups G5 and G6 presented %HL=16.11% ± 7.92 and 20.55% ± 10.65; respectively (p=0.952). G1 and G4 differed as regards to S. mutans count: 7.26 ± 0.08 and 8.29 ± 0.17 CFU/mL, respectively (p=0.001). The lowest bacterial count was observed in chlorhexidine group (G2=6.79 ± 0.10 CFU/mL) (p=0.043). There was no difference between S. mutans count of G3 and G4 (p=0.435). The EEP showed pH 4.8 and total soluble solids content=25.9 Brix. The EEP seems to be a potent antibacterial substance against S. mutans dental biofilm, but presented no inhibitory action on the de-remineralization of caries process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. In silico analysis of the competition between Streptococcus sanguinis and Streptococcus mutans in the dental biofilm.

    PubMed

    Valdebenito, B; Tullume-Vergara, P O; González, W; Kreth, J; Giacaman, R A

    2018-04-01

    During dental caries, the dental biofilm modifies the composition of the hundreds of involved bacterial species. Changing environmental conditions influence competition. A pertinent model to exemplify the complex interplay of the microorganisms in the human dental biofilm is the competition between Streptococcus sanguinis and Streptococcus mutans. It has been reported that children and adults harbor greater numbers of S. sanguinis in the oral cavity, associated with caries-free teeth. Conversely, S. mutans is predominant in individuals with a high number of carious lesions. Competition between both microorganisms stems from the production of H 2 O 2 by S. sanguinis and mutacins, a type of bacteriocins, by S. mutans. There is limited evidence on how S. sanguinis survives its own H 2 O 2 levels, or if it has other mechanisms that might aid in the competition against S. mutans, nonetheless. We performed a genomic and metabolic pathway comparison, coupled with a comprehensive literature review, to better understand the competition between these two species. Results indicated that S. sanguinis can outcompete S. mutans by the production of an enzyme capable of metabolizing H 2 O 2 . S. mutans, however, lacks the enzyme and is susceptible to the peroxide from S. sanguinis. In addition, S. sanguinis can generate energy through gluconeogenesis and seems to have evolved different communication mechanisms, indicating that novel proteins may be responsible for intra-species communication. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Efficacy of red propolis hydro-alcoholic extract in controlling Streptococcus mutans biofilm build-up and dental enamel demineralization.

    PubMed

    Martins, Mariana Leonel; Leite, Karla Lorene de França; Pacheco-Filho, Edivaldo Ferreira; Pereira, Adriana Farah de Miranda; Romanos, Maria Teresa Villela; Maia, Lucianne Cople; Fonseca-Gonçalves, Andréa; Padilha, Wilton Wilney Nascimento; Cavalcanti, Yuri Wanderley

    2018-05-23

    The efficacy of a red propolis hydro-alcoholic extract (RP) in controlling Streptococcus mutans biofilm colonization was evaluated. The effect of RP on dental demineralization was also investigated. Chemical composition was determined by High Performance Liquid Chromatography (HPLC). Minimum Inhibitory and Bactericidal Concentration (MIC and MBC, respectively) were investigated against Streptococcus mutans (ATCC 25175). The cytotoxic potential of 3% RP in oral fibroblasts was observed after 1 and 3 min. Bovine dental enamel blocks (N = 24) were used for S. mutans biofilm formation (48 h), simulating 'feast or famine' episodes. Blocks/biofilms were exposed 2×/day, for 3 days, to a cariogenic challenge with sucrose 10% (5 min) and treated (1 min) with: 0.85% saline solution (negative control), 0.12% Chlorhexidine (CHX, positive control for biofilm colonization), 0.05% Sodium Fluoride (NaF, positive control to avoid demineralization) and 3% RP. Biofilms were assessed for viability (CFU/mL), and to observe the concentration of soluble and insoluble extracellular polysaccharides (SEPS and IEPS). Dental demineralization was assessed by the percentage of surface hardness loss (%SHL) and through polarized light microscopy (PLM). The RP presented 4.0 pH and ºBrix = 4.8. The p-coumaric acid (17.2 μg/mL) and luteolin (15.23 μg/mL) were the largest contents of phenolic acids and flavonoids, respectively. MIC and MBC of RP were 293 μg/mL and 1172 μg/mL, respectively. The 3% RP showed 43% of viably cells after 1 min. Lower number (p < 0.05) of viable bacteria (CFU/mL) was observed after CHX (1.8 × 10 5 ) followed by RP (1.8 × 10 7 ) treatments. The lowest concentration (μg/CFU) of SEPS (12.6) and IEPS (25.9) was observed in CHX (p < 0.05) followed by RP (17.1 and 54.3), and both differed from the negative control (34.4 and 63.9) (p < 0.05). Considering the %SHL, all groups differed statistically (p < 0.05) from the

  7. Effect of Lippia alba and Cymbopogon citratus essential oils on biofilms of Streptococcus mutans and cytotoxicity in CHO cells.

    PubMed

    Tofiño-Rivera, A; Ortega-Cuadros, M; Galvis-Pareja, D; Jiménez-Rios, H; Merini, L J; Martínez-Pabón, M C

    2016-12-24

    Caries is a public health problem, given that it prevails in 60 to 90% of the school-age global population. Multiple factors interact in its etiology, among them dental plaque is necessary to have lactic acid producing microorganisms like Streptococcus from he Mutans group. Existing prevention and treatment measures are not totally effective and generate adverse effects, which is why it is necessary to search for complementary strategies for their management. The study sought to evaluate the eradication capacity of Streptococcus mutans biofilms and the toxicity on eukaryotic cells of Lippia alba and Cymbopogon citratus essential oils. Essential oils were extracted from plant material through steam distillation and then its chemical composition was determined. The MBEC-high-throughput (MBEC-HTP) (Innovotech, Edmonton, Alberta, Canada) assay used to determine the eradication concentration of S. mutans ATCC 35668 strain biofilms. Cytotoxicity was evaluated on CHO cells through the MTT cell proliferation assay. The major components in both oils were Geraniol and Citral; in L. alba 18.9% and 15.9%, respectively, and in C. citratus 31.3% and 26.7%. The L. alba essential oils presented eradication activity against S. mutans biofilms of 95.8% in 0.01mg/dL concentration and C. citratus essential oils showed said eradication activity of 95.4% at 0.1, 0.01mg/dL concentrations and of 93.1% in the 0.001mg/dL concentration; none of the concentrations of both essential oils showed toxicity on CHO cells during 24h. The L. alba and C. citratus essential oils showed eradication activity against S. mutans biofilms and null cytotoxicity, evidencing the need to conduct further studies that can identify their active components and in order to guide a safe use in treating and preventing dental caries. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  8. [Effects of hydrogen peroxide-containing bleaching on the growth of Streptococcus mutans biofilm on enamel disc surface].

    PubMed

    Zheng, Chun-yan; Pan, Jie; Wang, Zu-hua; Wang, Yang

    2014-02-18

    To evaluate the effects of a commercial bleaching agent containing 35% (mass fraction) hydrogen peroxide on the growth of Streptococcus mutans biofilm on enamel disc surface. A total of 20 enamel disks were made from human extracted teeth and the enamel surfaces were kept intact. The discs were autocalved and randomly divided into two groups: bleaching group and control group. Each group contained 10 discs. For bleaching group, the enamel discs were whitened by commercial 35% hydrogen peroxide according to the instruction (Beyond(TM) Professional Dental Whitening Kit, Beyond Technology, TX,USA ); no treatment for control group. All the discs were kept in sterile human saliva for 3.5 hours, and then the mixture of brain heart infusion broth (BHI) medium and Streptococcus mutans were added. The discs and Streptococcus mutans were incubated together in BHI medium with 5% CO(2) (volume fraction), at 37 °C. After 3, 7, 14, 21 and 28 d's incubation, two discs of each group were taken out and the biofilms on the enamel surfaces were evaluated by using conventional bacteria counts and confocal laser scanning microscope (CLSM). The bacteria in the biofilm on one disc enamel surface were analyzed by plating on BHIS agar and the colony-forming units were counted. The biofilm on the other disc surface was stained using a two-colour fluorescent dye kit (Bacerial Viability Kit L-7012) for CLSM. The vital bacteria counts of vital cells in the 3, 7, and 14 d's biofilms of the bleaching group were significantly fewer than those of the control group. Especially in the 3 days' biofilm on the whitened surface, the vital bacteria counts [(3 595 ± 2 903) μm(2) vs. (89 155 ± 65 963) μm(2),t = 8.71,P = 0.00] and proportion of vital bacteria [(26.0% ± 16.4%) vs.(92.2% ± 10.9%), t = 19.93, P = 0.00] were significantly fewer than those of the control. While, for the 21d's biofilm, the vital bacteria counts and the percentage of the vital cells of the bleaching group were more than

  9. Soybean extracts facilitate bacterial agglutination and prevent biofilm formation on orthodontic wire.

    PubMed

    Lee, Heon-Jin; Kwon, Tae-Yub; Kim, Kyo-Han; Hong, Su-Hyung

    2014-01-01

    Soybean is an essential food ingredient that contains a class of organic compounds known as isoflavones. It is also well known that several plant agglutinins interfere with bacterial adherence to smooth surfaces. However, little is known about the effects of soybean extracts or genistein (a purified isoflavone from soybean) on bacterial biofilm formation. We evaluated the effects of soybean (Glycine max) extracts, including fermented soybean and genistein, on streptococcal agglutination and attachment onto stainless steel orthodontic wire. After cultivating streptococci in biofilm medium containing soybean extracts and orthodontic wire, the viable bacteria attached to the wire were counted. Phase-contrast microscopy and scanning electron microscopy (SEM) analyses were conducted to evaluate bacterial agglutination and attachment. Our study showed that soybean extracts induce agglutination between streptococci, which results in bacterial precipitation. Conversely, viable bacterial counting and SEM image analysis of Streptococcus mutans attached to the orthodontic wire show that bacterial attachment decreases significantly when soybean extracts were added. However, there was no significant change in pre-attached S. mutans biofilm in response to soybean. A possible explanation for these results is that increased agglutination of planktonic streptococci by soybean extracts results in inhibition of bacterial attachment onto the orthodontic wire.

  10. Chamaecyparis obtusa Suppresses Virulence Genes in Streptococcus mutans

    PubMed Central

    Kim, Eun-Hee; Kang, Sun-Young; Park, Bog-Im; Kim, Young-Hoi; Lee, Young-Rae; Hoe, Jin-Hee; Choi, Na-Young; Ra, Ji-Young; An, So-Youn; You, Yong-Ouk

    2016-01-01

    Chamaecyparis obtusa (C. obtusa) is known to have antimicrobial effects and has been used as a medicinal plant and in forest bathing. This study aimed to evaluate the anticariogenic activity of essential oil of C. obtusa on Streptococcus mutans, which is one of the most important bacterial causes of dental caries and dental biofilm formation. Essential oil from C. obtusa was extracted, and its effect on bacterial growth, acid production, and biofilm formation was evaluated. C. obtusa essential oil exhibited concentration-dependent inhibition of bacterial growth over 0.025 mg/mL, with 99% inhibition at a concentration of 0.2 mg/mL. The bacterial biofilm formation and acid production were also significantly inhibited at the concentration greater than 0.025 mg/mL. The result of LIVE/DEAD® BacLight™ Bacterial Viability Kit showed a concentration-dependent bactericidal effect on S. mutans and almost all bacteria were dead over 0.8 mg/mL. Real-time PCR analysis showed that gene expression of some virulence factors such as brpA, gbpB, gtfC, and gtfD was also inhibited. In GC and GC-MS analysis, the major components were found to be α-terpinene (40.60%), bornyl acetate (12.45%), α-pinene (11.38%), β-pinene (7.22%), β-phellandrene (3.45%), and α-terpinolene (3.40%). These results show that C. obtusa essential oil has anticariogenic effect on S. mutans. PMID:27293453

  11. Inhibiting effects of fructanase on competence-stimulating peptide-dependent quorum sensing system in Streptococcus mutans.

    PubMed

    Suzuki, Yusuke; Nagasawa, Ryo; Senpuku, Hidenobu

    2017-09-01

    Streptococcus mutans produces glucosyltransferases encoded by the gtfB and gtfC genes, which synthesize insoluble glucan, and both insoluble and soluble glucans by conversion of sucrose, and are known as principal agents to provide strong biofilm formation and demineralization on tooth surfaces. S. mutans possess a Com-dependent quorum sensing (QS) system, which is important for survival in severe conditions. The QS system is stimulated by the interaction between ComD {Receptor to competence-stimulating peptide (CSP)} encoded by the comD and CSP encoded by the comC, and importantly associated with bacteriocin production and genetic competence. Previously, we found enzyme fructanase (FruA) as a new inhibitor for the glucan-dependent biofilm formation. In the present study, inhibiting effects by FruA on glucan-independent biofilm formation of S. mutans UA159, UA159.gtfB - , UA159.gtfC - , and UA159.gtfBC - were observed in sucrose and no sucrose sugars-supplemented conditions using the plate assay. The reduction of UA159.comC - and UA159.comD - biofilm formation were also observed as compared with UA159 in same conditions. These results suggested that inhibitions of glucan-independent and Com-dependent biofilm formation were involved in the inhibiting mechanism by FruA. To more thoroughly investigate effects by FruA on the QS system, we examined on CSP-stimulated and Com-dependent bacteriocin production and genetic transformation. FruA inhibited bacteriocin production in collaboration with CSP and genetic transformation in bacterial cell conditions treated with FruA. Our findings show that FruA has multiple effects that inhibit survival functions of S. mutans, including biofilm formation and CSP-dependent QS responses, indicating its potential use as an agent for prevention of dental caries. Copyright © 2017 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  12. Identification of linoleic acid, a main component of the n-hexane fraction from Dryopteris crassirhizoma, as an anti-Streptococcus mutans biofilm agent.

    PubMed

    Jung, Ji-Eun; Pandit, Santosh; Jeon, Jae-Gyu

    2014-01-01

    Dryopteris crassirhizoma is a semi-evergreen plant. Previous studies have shown the potential of this plant as an agent for the control of cariogenic biofilms. In this study, the main antibacterial components of the plant were identified by correlating gas chromatography-mass spectrometry data with the antibacterial activity of chloroform and n-hexane fractions and then evaluating the activity of the most potent antibacterial component against Streptococcus mutans UA159 biofilms. The most potent antibacterial component was linoleic acid, a main component of the n-hexane fraction. Linoleic acid reduced viability in a dose dependent manner and reduced biofilm accumulation during initial and mature biofilm formation. Furthermore, when the biofilms were briefly treated with linoleic acid (10 min/treatment, a total of six times), the dry weight of the biofilms was significantly diminished. In addition, the anti-biofilm activity of the n-hexane fraction was similar to that of linoleic acid. These results suggest that the n-hexane fraction of D. crassirhizoma and linoleic acid may be useful for controlling cariogenic biofilms.

  13. Anti-biofilm and anti-adherence activities of sub fraction 18 of Melastoma malabathricum towards Streptococcus mutans

    NASA Astrophysics Data System (ADS)

    Rohazila M., H.; Nazlina, I.; Yaacob W., A.

    2014-09-01

    A study was carried out to isolate and identify the active compounds from Melastoma malabathricum stem bark that exhibit anti-biofilm and anti-adherence activities against Streptococcus mutans. Purification of the active compounds from the stem bark extract was performed via silica gel chromatography to produce 12 fractions. Further fractionation of fraction 9 by high performance liquid chromatography (HPLC) produced 21 sub fractions. All the sub fractions were subjected to thin layer chromatography (TLC) bioautography as preliminary screening to determine anti bacterial activity. TLC-bioautography showed that sub fraction 18 (SF18) demonstrated large inhibited zone against S. mutans. Gas chromatography mass spectrometry (GCMS) was used to identify the active compounds in SF18. Fraction SF18 revealed 27 compounds such as hexanoic acid, 8-methyl-1-undecene, propanenitrile, and 1-decene. Anti-biofilm and anti-adherence activities were determined using crystal violet and glass surface assays respectively. The concentrations that produced 50% reduction in anti-biofilm and anti-adherence activities were 1.88 mg/ml and 3.75 mg/ml respectively.

  14. Influence of Helicobacter pylori culture supernatant on the ecological balance of a dual-species oral biofilm.

    PubMed

    Zhang, Wenling; Deng, Xiaohong; Zhou, Xuedong; Hao, Yuqing; Li, Yuqing

    2018-01-01

    Dental caries is a chronic progressive disease occurring in the tooth hard tissue due to multiple factors, in which bacteria are the initial cause. Both Streptococcus mutans and Streptococcus sanguinis are main members of oral biofilm. Helicobacter pylori may also be detected in dental plaque, playing an important role in the development of dental caries. The aim of this study was to investigate the effect of H. pylori culture supernatant on S. mutans and S. sanguinis dual-species biofilm and to evaluate its potential ability on affecting dental health. The effect of H. pylori supernatant on single-species and dual-species biofilm was measured by colony forming units counting and fluorescence in situ hybridization (FISH) assay, respectively. The effect of H. pylori supernatant on S. mutans and S. sanguinis extracellular polysaccharides (EPS) production was measured by both confocal laser scanning microscopy observation and anthrone-sulfuric acid method. The effect of H. pylori supernatant on S. mutans gene expression was measured by quantitative real-time PCR (qRT-PCR) assays. H. pylori supernatant could inhibit both S. mutans and S. sanguinis biofilm formation and EPS production. S. sanguinis inhibition rate was significantly higher than that of S. mutans. Finally, S. mutans bacteriocin and acidogenicity related genes expression were affected by H. pylori culture supernatant. Our results showed that H. pylori could destroy the balance between S. mutans and S. sanguinis in oral biofilm, creating an advantageous environment for S. mutans, which became the dominant bacteria, promoting the formation and development of dental caries.

  15. Influence of Helicobacter pylori culture supernatant on the ecological balance of a dual-species oral biofilm

    PubMed Central

    Zhang, Wenling; Deng, Xiaohong; Zhou, Xuedong; Hao, Yuqing; Li, Yuqing

    2018-01-01

    Abstract Dental caries is a chronic progressive disease occurring in the tooth hard tissue due to multiple factors, in which bacteria are the initial cause. Both Streptococcus mutans and Streptococcus sanguinis are main members of oral biofilm. Helicobacter pylori may also be detected in dental plaque, playing an important role in the development of dental caries. Objective The aim of this study was to investigate the effect of H. pylori culture supernatant on S. mutans and S. sanguinis dual-species biofilm and to evaluate its potential ability on affecting dental health. Material and methods The effect of H. pylori supernatant on single-species and dual-species biofilm was measured by colony forming units counting and fluorescence in situ hybridization (FISH) assay, respectively. The effect of H. pylori supernatant on S. mutans and S. sanguinis extracellular polysaccharides (EPS) production was measured by both confocal laser scanning microscopy observation and anthrone-sulfuric acid method. The effect of H. pylori supernatant on S. mutans gene expression was measured by quantitative real-time PCR (qRT-PCR) assays. Results H. pylori supernatant could inhibit both S. mutans and S. sanguinis biofilm formation and EPS production. S. sanguinis inhibition rate was significantly higher than that of S. mutans. Finally, S. mutans bacteriocin and acidogenicity related genes expression were affected by H. pylori culture supernatant. Conclusion Our results showed that H. pylori could destroy the balance between S. mutans and S. sanguinis in oral biofilm, creating an advantageous environment for S. mutans, which became the dominant bacteria, promoting the formation and development of dental caries. PMID:29489935

  16. In vitro antibacterial effects of glass-ionomer cement containing ethanolic extract of propolis on Streptococcus mutans

    PubMed Central

    Topcuoglu, Nursen; Ozan, Fatih; Ozyurt, Mustafa; Kulekci, Guven

    2012-01-01

    Objective: The aim of this study was to evaluate the antibacterial property of glass-ionomer cement (GIC) containing propolis against Streptococcus mutans and its effect on the in vitro S. mutans biofilm formation. Methods: Ethanolic extract of propolis (EEP) was prepared at two concentrations as 25 and 50%. Three different experimental GIC disks were prepared using pure liquid and liquid solutions diluted with 25 and 50 percent of EEP concentrations. Minimum inhibitory concentration (MIC) of EEP on the growth of S. mutans ATCC 25175 was determined by using agar dilution method. Agar diffusion test and an in vitro S. mutans biofilm assay for GIC disks with and without EEP were performed. Results: MIC values of Turkish propolis for S. mutans ATCC 25175 was found as 25 μg/mL. Experimental GICs containing propolis exhibited inhibition zones and their dry biofilm weights were less than the pure GIC. The bacterial density was lower in the GIC containing 50% EEP. Conclusions: A distinct antibacterial and antibiofilm efficacy of propolis containing GIC on S. mutans has been observed. Although further research is needed to show clinical results, antibacterial GIC containing propolis would be a promising material for restoration. PMID:23077424

  17. The influence of oral Veillonella species on biofilms formed by Streptococcus species.

    PubMed

    Mashima, Izumi; Nakazawa, Futoshi

    2014-08-01

    Oral Veillonella, Veillonella atypica, Veillonella denticariosi, Veillonella dispar, Veillonella parvula, Veillonella rogosae, and Veillonella tobetsuensis are known as early colonizers in oral biofilm formation. To investigate the role of oral Veillonella, biofilms formed by the co-culture of Streptococcus gordonii, Streptococcus mutans, Streptococcus salivarius, or Streptococcus sanguinis, with oral Veillonella were examined at the species level. The amount of biofilm formed by S. mutans, S. gordonii, and S. salivarius in the presence of the six Veillonella species was greater than that formed in the control experiments, with the exception of S. mutans with V. dispar. In contrast, in the case of biofilm formation by S. sanguinis, the presence of Veillonella species reduced the amount of the biofilm, with the exception of V. parvula and V. dispar. The time-dependent changes in the amount of biofilm and the number of planktonic cells were grouped into four patterns over the 24 combinations. Only that of S. gordonii with V. tobetsuensis showed a unique pattern. These results indicate that the mode of action of this combination differed from that of the other combinations with respect to biofilm formation. It is possible that there may be several factors involved in the interaction between Streptococcus and Veillonella species. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Downregulation of GbpB, a Component of the VicRK Regulon, Affects Biofilm Formation and Cell Surface Characteristics of Streptococcus mutans▿ †

    PubMed Central

    Duque, Cristiane; Stipp, Rafael N.; Wang, Bing; Smith, Daniel J.; Höfling, José F.; Kuramitsu, Howard K.; Duncan, Margaret J.; Mattos-Graner, Renata O.

    2011-01-01

    The virulence of the dental caries pathogen Streptococcus mutans relies in part on the sucrose-dependent synthesis of and interaction with glucan, a major component of the extracellular matrix of tooth biofilms. However, the mechanisms by which secreted and/or cell-associated glucan-binding proteins (Gbps) produced by S. mutans participate in biofilm growth remain to be elucidated. In this study, we further investigate GbpB, an essential immunodominant protein with similarity to murein hydrolases. A conditional knockdown mutant that expressed gbpB antisense RNA under the control of a tetracycline-inducible promoter was constructed in strain UA159 (UACA2) and used to investigate the effects of GbpB depletion on biofilm formation and cell surface-associated characteristics. Additionally, regulation of gbpB by the two-component system VicRK was investigated, and phenotypic analysis of a vicK mutant (UAvicK) was performed. GbpB was directly regulated by VicR, and several phenotypic changes were comparable between UACA2 and UAvicK, although differences between these strains existed. It was established that GbpB depletion impaired initial phases of sucrose-dependent biofilm formation, while exogenous native GbpB partially restored the biofilm phenotype. Several cellular traits were significantly affected by GbpB depletion, including altered cell shape, decreased autolysis, increased cell hydrophobicity, and sensitivity to antibiotics and osmotic and oxidative stresses. These data provide the first experimental evidence for GbpB participation in sucrose-dependent biofilm formation and in cell surface properties. PMID:21078847

  19. Time-kill kinetic analysis of antimicrobial chemotherapy based on hydrogen peroxide photolysis against Streptococcus mutans biofilm.

    PubMed

    Shirato, Midori; Nakamura, Keisuke; Kanno, Taro; Lingström, Peter; Niwano, Yoshimi; Örtengren, Ulf

    2017-08-01

    A recently developed antimicrobial technique utilizing hydroxyl radicals generated by hydrogen peroxide (H 2 O 2 ) photolysis represents a promising new therapy for preventing and treating dental caries. The present study compared the antimicrobial time-kill kinetics of H 2 O 2 photolysis, conventional antiseptics, and antimicrobial photodynamic therapy (aPDT) against biofilm-forming Streptococcus mutans (cariogenic bacteria) grown on hydroxyapatite disks. H 2 O 2 photolysis was performed by irradiating the biofilm immersed in 3% H 2 O 2 with 365-nm light-emitting diode (LED) light at an irradiance of 1000mW/cm 2 for up to 1.5min. Antiseptic treatments consisted of 0.2% chlorhexidine gluconate, 0.5% povidone-iodine, and 3% H 2 O 2 . The biofilm was immersed in each antiseptic for up to 4min. aPDT was performed by irradiating the biofilm immersed in 100μM methylene blue or toluidine blue O with 655-nm laser light at 1000mW/cm 2 for up to 4min. Based on the time-kill assay, the decimal reduction value (D-value) of each treatment was determined. With a D-value of 0.06min, H 2 O 2 photolysis exhibited the highest bactericidal effect against biofilm-forming S. mutans. In contrast, antiseptics and aPDT exerted a slower bactericidal effect, with D-values of 0.9-2.7min. In conclusion, the antimicrobial technique based on H 2 O 2 photolysis using 365-nm LED represents a strong adjunctive chemotherapy for dental caries treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Bisphosphonates enhance bacterial adhesion and biofilm formation on bone hydroxyapatite.

    PubMed

    Kos, Marcin; Junka, Adam; Smutnicka, Danuta; Szymczyk, Patrycja; Gluza, Karolina; Bartoszewicz, Marzenna

    2015-07-01

    Because of the suspicion that bisphosphonates enhance bacterial colonization, this study evaluated adhesion and biofilm formation by Streptococcus mutans 25175, Staphylococcus aureus 6538, and Pseudomonas aeruginosa 14454 reference strains on hydroxyapatite coated with clodronate, pamidronate, or zoledronate. Bacterial strains were cultured on bisphosphonate-coated and noncoated hydroxyapatite discs. After incubation, nonadhered bacteria were removed by centrifugation. Biofilm formation was confirmed by scanning electron microscopy. Bacterial colonization was estimated using quantitative cultures compared by means with Kruskal-Wallis and post-hoc Student-Newman-Keuls tests. Modeling of the interactions between bisphosphonates and hydroxyapatite was performed using the Density Functional Theory method. Bacterial colonization of the hydroxyapatite discs was significantly higher for all tested strains in the presence of bisphosphonates vs. Adherence in the presence of pamidronate was higher than with other bisphosphonates. Density Functional Theory analysis showed that the protonated amine group of pamidronate, which are not present in clodronate or zoledronate, forms two additional hydrogen bonds with hydroxyapatite. Moreover, the reactive cationic amino group of pamidronate may attract bacteria by direct electrostatic interaction. Increased bacterial adhesion and biofilm formation can promote osteomyelitis, cause failure of dental implants or bisphosphonate-coated joint prostheses, and complicate bone surgery in patients on bisphosphonates. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  1. Deactivation of Streptococcus mutans Biofilms on a Tooth Surface Using He Dielectric Barrier Discharge at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Imola, Molnar; Judit, Papp; Alpar, Simon; Sorin, Dan Anghel

    2013-06-01

    This paper presents a study of the effect of the low temperature atmospheric helium dielectric barrier discharge (DBD) on the Streptococcus mutans biofilms formed on tooth surface. Pig jaws were also treated by plasma to detect if there is any harmful effect on the gingiva. The plasma was characterized by using optical emission spectroscopy. Experimental data indicated that the discharge is very effective in deactivating Streptococcus mutans biofilms. It can destroy them with an average decimal reduction time (D-time) of 19 s and about 98% of them were killed after a treatment time of 30 s. According to the survival curve kinetic an overall 32 s treatment time would be necessary to perform a complete sterilization. The experimental results presented in this study indicated that the helium dielectric barrier discharge, in plan-parallel electrode configuration, could be a very effective tool for deactivation of oral bacteria and might be a promising technique in various dental clinical applications.

  2. Inactivation of glutamate racemase (MurI) eliminates virulence in Streptococcus mutans.

    PubMed

    Zhang, Jianying; Liu, Jia; Ling, Junqi; Tong, Zhongchun; Fu, Yun; Liang, Min

    2016-01-01

    Inhibition of enzymes required for bacterial cell wall synthesis is often lethal or leads to virulence defects. Glutamate racemase (MurI), an essential enzyme in peptidoglycan biosynthesis, has been an attractive target for therapeutic interventions. Streptococcus mutans, one of the many etiological factors of dental caries, possesses a series of virulence factors associated with cariogenicity. However, little is known regarding the mechanism by which MurI influences pathogenesis of S. mutans. In this work, a stable mutant of S. mutans deficient in glutamate racemase (S. mutans FW1718) was constructed to investigate the impact of murI inactivation on cariogenic virulence in S. mutans UA159. Microscopy revealed that the murI mutant exhibited an enlarged cell size, longer cell chains, diminished cell⬜cell aggregation, and altered cell surface ultrastructure compared with the wild-type. Characterization of this mutant revealed that murI deficiency weakened acidogenicity, aciduricity, and biofilm formation ability of S. mutans (P<0.05). Real-time quantitative polymerase chain reaction (qRT-PCR) analysis demonstrated that the deletion of murI reduced the expression of the acidogenesis-related gene ldh by 44-fold (P<0.0001). The expression levels of the gene coding for surface protein antigen P (spaP) and the acid-tolerance related gene (atpD) were down-regulated by 99% (P<0.0001). Expression of comE, comD, gtfB and gtfC, genes related to biofilm formation, were down-regulated 8-, 43-, 85- and 298-fold in the murI mutant compared with the wild-type (P<0.0001), respectively. Taken together, the current study provides the first evidence that MurI deficiency adversely affects S. mutans virulence properties, making MurI a potential target for controlling dental caries. Copyright © 2016 Elsevier GmbH. All rights reserved.

  3. Characterization of the clustered regularly interspaced short palindromic repeats sites in Streptococcus mutans isolated from early childhood caries patients.

    PubMed

    Chen, Jing; Li, Tiancheng; Zhou, Xuedong; Cheng, Lei; Huo, Yuanyuan; Zou, Jing; Li, Yuqing

    2017-11-01

    The aim of this study was to analyze the characteristics of the clustered regularly interspaced short palindromic repeats (CRISPR) sites in 45 clinical Streptococcus mutans strains and their relationship to the clinical manifestations of early childhood caries (ECC). Forty-five S. mutans strains were isolated from the plaque samples taken from sixty-three children. CRISPR sites were sequenced and BLAST was used to compare these sites to those in the CRISPRTarget database. The association between the distribution of CRISPR sites and the manifestation of caries was analyzed by Chi-Square test. Further, biofilm formation (by crystal violet staining) and the synthesis of polysaccharide (by anthrone-sulfuric method) of all clinical isolated S. mutans strains with both CRISPR sites and no CRISPR site were comapared. Finally, acidogenicity and acidurity of two typical strains were determined using pH drop and acid tolerance assays. Biofilm formation and EPS synthesis by two typical strains were compared by 3D CLSM (Confocal Laser Scanning Microscope) assays and the expression of gtf genes were evaluated using qPCR. We found that most of the spacers in the clinical S. mutans strains were derived from Streptococcus phages APCM01 and M102. The number of CRISPR sites in these strains was associated with the clinical manifestations of ECC. Moreover, we found that the biofilm formation and EPS synthesis ability of the S. mutans strains with both CRISPR sites was significant improved. An association was found between the distribution of CRISPR sites and the clinical manifestations of caries. The CRISPR sites might contribute to the cariogenic potential of S. mutans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Identification and characterization of an autolysin-encoding gene of Streptococcus mutans.

    PubMed

    Shibata, Yukie; Kawada, Miki; Nakano, Yoshio; Toyoshima, Kuniaki; Yamashita, Yoshihisa

    2005-06-01

    We identified a gene (atlA) encoding autolytic activity from Streptococcus mutans Xc. The AtlA protein predicted to be encoded by atlA is composed of 979 amino acids with a molecular weight of 107,279 and has a conserved beta-1,4-N-acetylmuramidase (lysozyme) domain in the C-terminal portion. Sodium dodecyl sulfate extracts of strain Xc showed two major bacteriolytic bands with molecular masses of 107 and 79 kDa, both of which were absent from a mutant with inactivated atlA. Western blot analysis revealed that the 79-kDa band was derived from the 107-kDa peptide by cleavage of its N-terminal portion. The inactivation of atlA resulted in a marked decrease in autolysis and the formation of very long chains of cells compared to the case for the parent strain. Although both the parent and mutant strains formed biofilms in the presence of sucrose, the biofilms formed by the mutant had a sponge-like architecture with large gaps and contained 30% less biomass than those formed by the parent strain. Furthermore, strain Xc formed glucose-dependent, loose biofilms in the absence of sucrose, but the mutant lost this ability. These results suggest that AtlA may play an important role in biofilm formation by S. mutans. The antibody produced against the C-terminal peptide containing the beta-1,4-N-acetylmuramidase domain drastically inhibited the autolytic activity of strain Xc. This inhibition was specific among the oral streptococci to S. mutans. These results indicate that the catalytic domain of AtlA is located at the C terminus, suggesting that further characterization of this domain may provide a means to control cariogenic dental plaque formation.

  5. Influence of matrix and filler fraction on biofilm formation on the surface of experimental resin-based composites.

    PubMed

    Ionescu, Andrei; Brambilla, Eugenio; Wastl, Daniel S; Giessibl, Franz J; Cazzaniga, Gloria; Schneider-Feyrer, Sibylle; Hahnel, Sebastian

    2015-01-01

    The aim of this study was to investigate the impact of resin matrix chemistry and filler fraction on biofilm formation on the surface of experimental resin-based composites (RBCs). Specimens were prepared from eight experimental RBC formulations differing in resin matrix blend (BisGMA/TEGDMA in a 7:3 wt% ratio or UDMA/aliphatic dimethacrylate in a 1:1 wt% ratio) and filler fraction (no fillers; 65 wt% dental glass with an average diameter of 7 or 0.7 µm or 65 wt% SiO2 with an average diameter of 20 nm). Surface roughness, surface free energy, and chemical surface composition were determined; surface topography was visualized using atomic force microscopy. Biofilm formation was simulated under continuous flow conditions for a 48 h period using a monospecies Streptococcus mutans and a multispecies biofilm model. In the monospecies biofilm model, the impact of the filler fraction overruled the influence of the resin matrix, indicating lowest biofilm formation on RBCs with nano-scaled filler particles and those manufactured from the neat resin blends. The multispecies model suggested a more pronounced effect of the resin matrix blend, as significantly higher biofilm formation was identified on RBCs with a UDMA/dimethacrylate matrix blend than on those including a BisGMA/TEGDMA matrix blend but analogous filler fractions. Although significant differences in surface properties between the various materials were identified, correlations between the surface properties and biofilm formation were poor, which highlights the relevance of surface topography and chemistry. These results may help to tailor novel RBC formulations which feature reduced biofilm formation on their surface.

  6. Proteome Analysis Identifies the Dpr Protein of Streptococcus mutans as an Important Factor in the Presence of Early Streptococcal Colonizers of Tooth Surfaces

    PubMed Central

    Yoshida, Akihiro; Niki, Mamiko; Yamamoto, Yuji; Yasunaga, Ai; Ansai, Toshihiro

    2015-01-01

    Oral streptococci are primary colonizers of tooth surfaces and Streptococcus mutans is the principal causative agent of dental caries in humans. A number of proteins are involved in the formation of monospecies biofilms by S. mutans. This study analyzed the protein expression profiles of S. mutans biofilms formed in the presence or absence of S. gordonii, a pioneer colonizer of the tooth surface, by two-dimensional gel electrophoresis (2-DE). After identifying S. mutans proteins by Mass spectrometric analysis, their expression in the presence of S. gordonii was analyzed. S. mutans was inoculated with or without S. gordonii DL1. The two species were compartmentalized using 0.2-μl Anopore membranes. The biofilms on polystyrene plates were harvested, and the solubilized proteins were separated by 2-DE. When S. mutans biofilms were formed in the presence of S. gordonii, the peroxide resistance protein Dpr of the former showed 4.3-fold increased expression compared to biofilms that developed in the absence of the pioneer colonizer. In addition, we performed a competition assay using S. mutans antioxidant protein mutants together with S. gordonii and other initial colonizers. Growth of the dpr-knockout S. mutans mutant was significantly inhibited by S. gordonii, as well as by S. sanguinis. Furthermore, a cell viability assay revealed that the viability of the dpr-defective mutant was significantly attenuated compared to the wild-type strain when co-cultured with S. gordonii. Therefore, these results suggest that Dpr might be one of the essential proteins for S. mutans survival on teeth in the presence of early colonizing oral streptococci. PMID:25816242

  7. The synthetic human beta-defensin-3 C15 peptide exhibits antimicrobial activity against Streptococcus mutans, both alone and in combination with dental disinfectants.

    PubMed

    Ahn, Ki Bum; Kim, A Reum; Kum, Kee-Yeon; Yun, Cheol-Heui; Han, Seung Hyun

    2017-10-01

    Streptococcus mutans is a major etiologic agent of human dental caries that forms biofilms on hard tissues in the human oral cavity, such as tooth and dentinal surfaces. Human β-defensin-3 (HBD3) is a 45-amino-acid natural antimicrobial peptide that has broad spectrum antimicrobial activity against bacteria and fungi. A synthetic peptide consisting of the C-terminal 15 amino acids of HBD3 (HBD3-C15) was recently shown to be sufficient for its antimicrobial activity. Thus, clinical applications of this peptide have garnered attention. In this study, we investigated whether HBD3-C15 inhibits the growth of the representative cariogenic pathogen Streptococcus mutans and its biofilm formation. HBD3-C15 inhibited bacterial growth, exhibited bactericidal activity, and attenuated bacterial biofilm formation in a dose-dependent manner. HBD3-C15 potentiated the bactericidal and anti-biofilm activity of calcium hydroxide (CH) and chlorhexidine digluconate (CHX), which are representative disinfectants used in dental clinics, against S. mutans. Moreover, HBD3-C15 showed antimicrobial activity by inhibiting biofilm formation by S. mutans and other dentinophilic bacteria such as Enterococcus faecalis and Streptococcus gordonii, which are associated with dental caries and endodontic infection, on human dentin slices. These effects were observed for HBD3-C15 alone and for HBD3-C15 in combination with CH or CHX. Therefore, we suggest that HBD3-C15 is a potential alternative or additive disinfectant that can be used for the treatment of oral infectious diseases, including dental caries and endodontic infections.

  8. Effect of antibacterial dental adhesive on multispecies biofilms formation.

    PubMed

    Zhang, K; Wang, S; Zhou, X; Xu, H H K; Weir, M D; Ge, Y; Li, M; Wang, S; Li, Y; Xu, X; Zheng, L; Cheng, L

    2015-04-01

    Antibacterial adhesives have favorable prospects to inhibit biofilms and secondary caries. The objectives of this study were to investigate the antibacterial effect of dental adhesives containing dimethylaminododecyl methacrylate (DMADDM) on different bacteria in controlled multispecies biofilms and its regulating effect on development of biofilm for the first time. Antibacterial material was synthesized, and Streptococcus mutans, Streptococcus gordonii, and Streptococcus sanguinis were chosen to form multispecies biofilms. Lactic acid assay and pH measurement were conducted to study the acid production of controlled multispecies biofilms. Anthrone method and exopolysaccharide (EPS):bacteria volume ratio measured by confocal laser scanning microscopy were performed to determine the EPS production of biofilms. The colony-forming unit counts, scanning electron microscope imaging, and dead:live volume ratio decided by confocal laser scanning microscopy were used to study the biomass change of controlled multispecies biofilms. The TaqMan real-time polymerase chain reaction and fluorescent in situ hybridization imaging were used to study the proportion change in multispecies biofilms of different groups. The results showed that DMADDM-containing adhesive groups slowed the pH drop and decreased the lactic acid production noticeably, especially lactic acid production in the 5% DMADDM group, which decreased 10- to 30-fold compared with control group (P < 0.05). EPS was reduced significantly in 5% DMADDM group (P < 0.05). The DMADDM groups reduced the colony-forming unit counts significantly (P < 0.05) and had higher dead:live volume ratio in biofilms compared with control group (P < 0.05). The proportion of S. mutans decreased steadily in DMADDM-containing groups and continually increased in control group, and the biofilm had a more healthy development tendency after the regulation of DMADDM. In conclusion, the adhesives containing DMADDM had remarkable antimicrobial

  9. Synergistic inhibition of Streptococcal biofilm by ribose and xylitol.

    PubMed

    Lee, Heon-Jin; Kim, Se Chul; Kim, Jinkyung; Do, Aejin; Han, Se Yeong; Lee, Bhumgey David; Lee, Hyun Ho; Lee, Min Chan; Lee, So Hui; Oh, Taejun; Park, Sangbin; Hong, Su-Hyung

    2015-02-01

    Streptococcus mutans and Streptococcus sobrinus are the major causative agents of human dental caries. Therefore, the removal or inhibition of these streptococcal biofilms is essential for dental caries prevention. In the present study, we evaluated the effects of ribose treatment alone or in combination with xylitol on streptococcal biofilm formation for both species. Furthermore, we examined the expression of genes responsible for dextran-dependent aggregation (DDAG). In addition, we investigated whether ribose affects the biofilm formation of xylitol-insensitive streptococci, which results from long-term exposure to xylitol. The viability of streptococci biofilms formed in a 24-well polystyrene plate was quantified by fluorescent staining with the LIVE/DEAD bacterial viability and counting kit, which was followed by fluorescence activated cell sorting analysis. The effects of ribose and/or xylitol on the mRNA expression of DDAG-responsible genes, gbpC and dblB, was evaluated by RT-qPCR. Our data showed that ribose and other pentose molecules significantly inhibited streptococcal biofilm formation and the expression of DDAG-responsible genes. In addition, co-treatment with ribose and xylitol decreased streptococcal biofilm formation to a further extent than ribose or xylitol treatment alone in both streptococcal species. Furthermore, ribose attenuated the increase of xylitol-insensitive streptococcal biofilm, which results in the reduced difference of biofilm formation between S. mutans that are sensitive and insensitive to xylitol. These data suggest that pentose may be used as an additive for teeth-protective materials or in sweets. Furthermore, ribose co-treatment with xylitol might help to increase the anti-cariogenic efficacy of xylitol. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Pleiotropic Regulation of Virulence Genes in Streptococcus mutans by the Conserved Small Protein SprV.

    PubMed

    Shankar, Manoharan; Hossain, Mohammad S; Biswas, Indranil

    2017-04-15

    Streptococcus mutans , an oral pathogen associated with dental caries, colonizes tooth surfaces as polymicrobial biofilms known as dental plaque. S. mutans expresses several virulence factors that allow the organism to tolerate environmental fluctuations and compete with other microorganisms. We recently identified a small hypothetical protein (90 amino acids) essential for the normal growth of the bacterium. Inactivation of the gene, SMU.2137, encoding this protein caused a significant growth defect and loss of various virulence-associated functions. An S. mutans strain lacking this gene was more sensitive to acid, temperature, osmotic, oxidative, and DNA damage-inducing stresses. In addition, we observed an altered protein profile and defects in biofilm formation, bacteriocin production, and natural competence development, possibly due to the fitness defect associated with SMU.2137 deletion. Transcriptome sequencing revealed that nearly 20% of the S. mutans genes were differentially expressed upon SMU.2137 deletion, thereby suggesting a pleiotropic effect. Therefore, we have renamed this hitherto uncharacterized gene as sprV ( s treptococcal p leiotropic r egulator of v irulence). The transcript levels of several relevant genes in the sprV mutant corroborated the phenotypes observed upon sprV deletion. Owing to its highly conserved nature, inactivation of the sprV ortholog in Streptococcus gordonii also resulted in poor growth and defective UV tolerance and competence development as in the case of S. mutans Our experiments suggest that SprV is functionally distinct from its homologs identified by structure and sequence homology. Nonetheless, our current work is aimed at understanding the importance of SprV in the S. mutans biology. IMPORTANCE Streptococcus mutans employs several virulence factors and stress resistance mechanisms to colonize tooth surfaces and cause dental caries. Bacterial pathogenesis is generally controlled by regulators of fitness that are

  11. Pleiotropic Regulation of Virulence Genes in Streptococcus mutans by the Conserved Small Protein SprV

    PubMed Central

    Shankar, Manoharan; Hossain, Mohammad S.

    2017-01-01

    ABSTRACT Streptococcus mutans, an oral pathogen associated with dental caries, colonizes tooth surfaces as polymicrobial biofilms known as dental plaque. S. mutans expresses several virulence factors that allow the organism to tolerate environmental fluctuations and compete with other microorganisms. We recently identified a small hypothetical protein (90 amino acids) essential for the normal growth of the bacterium. Inactivation of the gene, SMU.2137, encoding this protein caused a significant growth defect and loss of various virulence-associated functions. An S. mutans strain lacking this gene was more sensitive to acid, temperature, osmotic, oxidative, and DNA damage-inducing stresses. In addition, we observed an altered protein profile and defects in biofilm formation, bacteriocin production, and natural competence development, possibly due to the fitness defect associated with SMU.2137 deletion. Transcriptome sequencing revealed that nearly 20% of the S. mutans genes were differentially expressed upon SMU.2137 deletion, thereby suggesting a pleiotropic effect. Therefore, we have renamed this hitherto uncharacterized gene as sprV (streptococcal pleiotropic regulator of virulence). The transcript levels of several relevant genes in the sprV mutant corroborated the phenotypes observed upon sprV deletion. Owing to its highly conserved nature, inactivation of the sprV ortholog in Streptococcus gordonii also resulted in poor growth and defective UV tolerance and competence development as in the case of S. mutans. Our experiments suggest that SprV is functionally distinct from its homologs identified by structure and sequence homology. Nonetheless, our current work is aimed at understanding the importance of SprV in the S. mutans biology. IMPORTANCE Streptococcus mutans employs several virulence factors and stress resistance mechanisms to colonize tooth surfaces and cause dental caries. Bacterial pathogenesis is generally controlled by regulators of fitness that are

  12. Identification and functional analysis of an ammonium transporter in Streptococcus mutans.

    PubMed

    Ardin, Arifah Chieko; Fujita, Kazuyo; Nagayama, Kayoko; Takashima, Yukiko; Nomura, Ryota; Nakano, Kazuhiko; Ooshima, Takashi; Matsumoto-Nakano, Michiyo

    2014-01-01

    Streptococcus mutans, a Gram-positive bacterium, is considered to be a major etiologic agent of human dental caries and reported to form biofilms known as dental plaque on tooth surfaces. This organism is also known to possess a large number of transport proteins in the cell membrane for export and import of molecules. Nitrogen is an essential nutrient for Gram-positive bacteria, though alternative sources such as ammonium can also be utilized. In order to obtain nitrogen for macromolecular synthesis, nitrogen-containing compounds must be transported into the cell. However, the ammonium transporter in S. mutans remains to be characterized. The present study focused on characterizing the ammonium transporter gene of S. mutans and its operon, while related regulatory genes were also analyzed. The SMU.1658 gene corresponding to nrgA in S. mutans is homologous to the ammonium transporter gene in Bacillus subtilis and SMU.1657, located upstream of the nrgA gene and predicted to be glnB, is a member of the PII protein family. Using a nrgA-deficient mutant strain (NRGD), we examined bacterial growth in the presence of ammonium, calcium chloride, and manganese sulfate. Fluorescent efflux assays were also performed to reveal export molecules associated with the ammonium transporter. The growth rate of NRGD was lower, while its fluorescent intensity was much higher as compared to the parental strain. In addition, confocal laser scanning microscopy revealed that the structure of biofilms formed by NRGD was drastically different than that of the parental strain. Furthermore, transcriptional analysis showed that the nrgA gene was co-transcribed with the glnB gene. These results suggest that the nrgA gene in S. mutans is essential for export of molecules and biofilm formation.

  13. Identification and Functional Analysis of an Ammonium Transporter in Streptococcus mutans

    PubMed Central

    Ardin, Arifah Chieko; Fujita, Kazuyo; Nagayama, Kayoko; Takashima, Yukiko; Nomura, Ryota; Nakano, Kazuhiko; Ooshima, Takashi; Matsumoto-Nakano, Michiyo

    2014-01-01

    Streptococcus mutans, a Gram-positive bacterium, is considered to be a major etiologic agent of human dental caries and reported to form biofilms known as dental plaque on tooth surfaces. This organism is also known to possess a large number of transport proteins in the cell membrane for export and import of molecules. Nitrogen is an essential nutrient for Gram-positive bacteria, though alternative sources such as ammonium can also be utilized. In order to obtain nitrogen for macromolecular synthesis, nitrogen-containing compounds must be transported into the cell. However, the ammonium transporter in S. mutans remains to be characterized. The present study focused on characterizing the ammonium transporter gene of S. mutans and its operon, while related regulatory genes were also analyzed. The SMU.1658 gene corresponding to nrgA in S. mutans is homologous to the ammonium transporter gene in Bacillus subtilis and SMU.1657, located upstream of the nrgA gene and predicted to be glnB, is a member of the PII protein family. Using a nrgA-deficient mutant strain (NRGD), we examined bacterial growth in the presence of ammonium, calcium chloride, and manganese sulfate. Fluorescent efflux assays were also performed to reveal export molecules associated with the ammonium transporter. The growth rate of NRGD was lower, while its fluorescent intensity was much higher as compared to the parental strain. In addition, confocal laser scanning microscopy revealed that the structure of biofilms formed by NRGD was drastically different than that of the parental strain. Furthermore, transcriptional analysis showed that the nrgA gene was co-transcribed with the glnB gene. These results suggest that the nrgA gene in S. mutans is essential for export of molecules and biofilm formation. PMID:25229891

  14. Antibiofilm Activities of a Novel Chimeolysin against Streptococcus mutans under Physiological and Cariogenic Conditions

    PubMed Central

    Yang, Hang; Bi, Yongli; Shang, Xiaoran; Wang, Mengyue; Linden, Sara B.; Li, Yunpeng

    2016-01-01

    Streptococcus mutans often survives as a biofilm on the tooth surface and contributes to the development of dental caries. We investigated the efficacy of ClyR, an engineered chimeolysin, against S. mutans biofilms under physiological and cariogenic conditions. Susceptibility tests showed that ClyR was active against all clinical S. mutans isolates tested as well as S. mutans biofilms that displayed resistance to penicillin. The S. mutans biofilms that formed on hydroxyapatite discs under physiological sugar conditions and cariogenic conditions were reduced ∼2 logs and 3 logs after treatment with 100 μg/ml ClyR, respectively. In comparison, only a 1-log reduction was observed in the chlorhexidine gluconate (ChX)-treated group, and no killing effect was observed in the NaF-treated group. A mouse dental colonization model showed that repeated use of ClyR for 3 weeks (5 μg/day) reduced the number of colonized S. mutans cells in the dental plaques significantly (P < 0.05) and had no harmful effects on the mice. Furthermore, toxicity was not noted at concentrations exceeding those used for the in vitro and in vivo studies, and ClyR-specific antibodies could not be detected in mouse saliva after repeated use of ClyR in the oral cavity. Our data collectively demonstrate that ClyR is active against S. mutans biofilms both in vitro and in vivo, thus representing a preventative or therapeutic agent for use against dental caries. PMID:27736755

  15. Efficacy of photodynamic therapy against Streptococcus mutans biofilm: Role of singlet oxygen.

    PubMed

    Misba, Lama; Zaidi, Sahar; Khan, Asad U

    2018-06-01

    In photodynamic therapy (PDT), killing is entirely based on the ROS generation and among different types of ROS generated during PDT, singlet oxygen is considered as the most potential as illustrated in many studies and therefore it is predominantly responsible for photodamage and cytotoxic reactions. The aim of this study was to check whether singlet oxygen (Type II photochemistry) is more potential than free radicals (Type I photochemistry) against Streptococcus mutans biofilm. We have taken two phenothiazinium dyes i.e. toluidine blue O (TBO) and new methylene blue (NMB). TBO was found to have better antibacterial as well as antibiofilm effect than NMB. Antibacterial effect was evaluated by colony forming unit while antibiofilm action by crystal violet and congo red binding assays. We have also evaluated the disruption of preformed biofilm by biofilm reduction assay, confocal laser electron and scanning electron microscopy. More singlet oxygen production was detected in case of TBO than NMB while more Free radical (HO) was produced by NMB than TBO. TBO showed better antibacterial as well as antibiofilm effect than NMB so; we conclude that potency of a photosensitizer is correlated with the capability to produce singlet oxygen. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Propolis Extracted from the Stingless Bee Trigona sirindhornae Inhibited S. mutans Activity In Vitro.

    PubMed

    Utispan, Kusumawadee; Chitkul, Bordin; Monthanapisut, Paopanga; Meesuk, Ladda; Pugdee, Kamolparn; Koontongkaew, Sittichai

    The aim of this study was to determine the antimicrobial effects of propolis extracted from an endemic species of stingless bee, T. sirindhornae, on the cariogenic bacterium Streptococcus mutans. Dichloromethane extracts (DME) of propolis (DMEP) were prepared and analysed by reverse-phase high-performance liquid chromatography. The antibacterial growth and antibiofilm formation effects of DMEP on S. mutans were compared with those of apigenin, a commercial propolis product. The effects of DMEP and apigenin on glucosyltransferase (gtf) B expression in S. mutans were investigated using real-time polymerase chain reaction. Chlorhexidine (CHX) was used as a positive control in the experiments. Apigenin, pinocembrin, p-coumaric acid, and caffeic acid were not detected in the propolis extracts. DMEP and apigenin significantly inhibited S. mutans growth (IC50 = 43.5 and 17.36 mg/ml, respectively). DMEP and apigenin also exhibited antiadherence effects on S. mutans as shown by reduced biofilm formation. Furthermore, a significant inhibition in gtfB expression was observed in DMEP and apigenin treated S. mutans. Propolis produced by T. sirindhornae demonstrated antibacterial and antibiofilm effects, and reduced gtfB expression in S. mutans. The antibacterial activities of propolis observed were not due to apigenin, pinocembrin, p-coumaric acid, or caffeic acid.

  17. Microbial biofilms are able to destroy hydroxyapatite in the absence of host immunity in vitro.

    PubMed

    Junka, Adam Feliks; Szymczyk, Patrycja; Smutnicka, Danuta; Kos, Marcin; Smolina, Iryna; Bartoszewicz, Marzenna; Chlebus, Edward; Turniak, Michal; Sedghizadeh, Parish P

    2015-03-01

    It is widely thought that inflammation and osteoclastogenesis result in hydroxyapatite (HA) resorption and sequestrum formation during osseous infections, and microbial biofilm pathogens induce the inflammatory destruction of HA. We hypothesized that biofilms associated with infectious bone disease can directly resorb HA in the absence of host inflammation or osteoclastogenesis. Therefore we developed an in vitro model to test this hypothesis. Customized HA discs were manufactured as a substrate for growing clinically relevant biofilm pathogens. Single-species biofilms of Streptococcus mutans, Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans and mixed-species biofilms of C albicans plus S mutans were incubated on HA discs for 72 hours to grow mature biofilms. Three different non-biofilm control groups also were established for testing. HA discs were then evaluated by means of scanning electron microscopy, micro-computed tomography metrotomography, x-ray spectroscopy, and confocal microscopy with planimetric analysis. In addition, quantitative cultures and pH assessment were performed. Analysis of variance was used to test for significance between treatment and control groups. All investigated biofilms were able to cause significant (P < .05) and morphologically characteristic alterations in HA structure as compared with controls. The highest number of alterations observed was caused by mixed biofilms of C albicans plus S mutans. S mutans biofilm incubated in medium with additional sucrose content was the most detrimental to HA surfaces among single-species biofilms. Our findings suggest that direct microbial resorption of bone is possible in addition to immune-mediated destruction, which has important translational implications for the pathogenesis of chronic bone infections and for targeted antimicrobial therapeutics. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. All rights reserved.

  18. Specific binding of a naturally occurring amyloidogenic fragment of Streptococcus mutans adhesin P1 to intact P1 on the cell surface characterized by solid state NMR spectroscopy

    PubMed Central

    Tang, Wenxing; Bhatt, Avni; Smith, Adam N.; Crowley, Paula J.; Brady, L. Jeannine; Long, Joanna R.

    2016-01-01

    The P1 adhesin (aka Antigen I/II or PAc) of the cariogenic bacterium Streptococcus mutans is a cell surface-localized protein involved in sucrose-independent adhesion and colonization of the tooth surface. The immunoreactive and adhesive properties of S. mutans suggest an unusual functional quaternary ultrastructure comprised of intact P1 covalently attached to the cell wall and interacting with non-covalently associated proteolytic fragments thereof, particularly the ~57-kDa C-terminal fragment C123 previously identified as Antigen II. S. mutans is capable of amyloid formation when grown in a biofilm and P1 is among its amyloidogenic proteins. The C123 fragment of P1 readily forms amyloid fibers in vitro suggesting it may play a role in the formation of functional amyloid during biofilm development. Using wild-type and P1-deficient strains of S. mutans, we demonstrate that solid state NMR (ssNMR) spectroscopy can be used to 1) globally characterize cell walls isolated from a Gram-positive bacterium and 2) characterize the specific binding of heterologously expressed, isotopically-enriched C123 to cell wall-anchored P1. Our results lay the groundwork for future high-resolution characterization of the C123/P1 ultrastructure and subsequent steps in biofilm formation via ssNMR spectroscopy, and they support an emerging model of S. mutans colonization whereby quaternary P1-C123 interactions confer adhesive properties important to binding to immobilized human salivary agglutinin. PMID:26837620

  19. Specific binding of a naturally occurring amyloidogenic fragment of Streptococcus mutans adhesin P1 to intact P1 on the cell surface characterized by solid state NMR spectroscopy.

    PubMed

    Tang, Wenxing; Bhatt, Avni; Smith, Adam N; Crowley, Paula J; Brady, L Jeannine; Long, Joanna R

    2016-02-01

    The P1 adhesin (aka Antigen I/II or PAc) of the cariogenic bacterium Streptococcus mutans is a cell surface-localized protein involved in sucrose-independent adhesion and colonization of the tooth surface. The immunoreactive and adhesive properties of S. mutans suggest an unusual functional quaternary ultrastructure comprised of intact P1 covalently attached to the cell wall and interacting with non-covalently associated proteolytic fragments thereof, particularly the ~57-kDa C-terminal fragment C123 previously identified as Antigen II. S. mutans is capable of amyloid formation when grown in a biofilm and P1 is among its amyloidogenic proteins. The C123 fragment of P1 readily forms amyloid fibers in vitro suggesting it may play a role in the formation of functional amyloid during biofilm development. Using wild-type and P1-deficient strains of S. mutans, we demonstrate that solid state NMR (ssNMR) spectroscopy can be used to (1) globally characterize cell walls isolated from a Gram-positive bacterium and (2) characterize the specific binding of heterologously expressed, isotopically-enriched C123 to cell wall-anchored P1. Our results lay the groundwork for future high-resolution characterization of the C123/P1 ultrastructure and subsequent steps in biofilm formation via ssNMR spectroscopy, and they support an emerging model of S. mutans colonization whereby quaternary P1-C123 interactions confer adhesive properties important to binding to immobilized human salivary agglutinin.

  20. Antibiofilm Activities of a Novel Chimeolysin against Streptococcus mutans under Physiological and Cariogenic Conditions.

    PubMed

    Yang, Hang; Bi, Yongli; Shang, Xiaoran; Wang, Mengyue; Linden, Sara B; Li, Yunpeng; Li, Yuhong; Nelson, Daniel C; Wei, Hongping

    2016-12-01

    Streptococcus mutans often survives as a biofilm on the tooth surface and contributes to the development of dental caries. We investigated the efficacy of ClyR, an engineered chimeolysin, against S. mutans biofilms under physiological and cariogenic conditions. Susceptibility tests showed that ClyR was active against all clinical S. mutans isolates tested as well as S. mutans biofilms that displayed resistance to penicillin. The S. mutans biofilms that formed on hydroxyapatite discs under physiological sugar conditions and cariogenic conditions were reduced ∼2 logs and 3 logs after treatment with 100 μg/ml ClyR, respectively. In comparison, only a 1-log reduction was observed in the chlorhexidine gluconate (ChX)-treated group, and no killing effect was observed in the NaF-treated group. A mouse dental colonization model showed that repeated use of ClyR for 3 weeks (5 μg/day) reduced the number of colonized S. mutans cells in the dental plaques significantly (P < 0.05) and had no harmful effects on the mice. Furthermore, toxicity was not noted at concentrations exceeding those used for the in vitro and in vivo studies, and ClyR-specific antibodies could not be detected in mouse saliva after repeated use of ClyR in the oral cavity. Our data collectively demonstrate that ClyR is active against S. mutans biofilms both in vitro and in vivo, thus representing a preventative or therapeutic agent for use against dental caries. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  1. Enhanced adhesion of Streptococcus mutans to hydroxyapatite after exposure to saliva.

    PubMed

    Spengler, Christian; Thewes, Nicolas; Nolle, Friederike; Faidt, Thomas; Umanskaya, Natalia; Hannig, Matthias; Bischoff, Markus; Jacobs, Karin

    2017-07-01

    Streptococcus mutans cells form robust biofilms on human teeth and are strongly related to caries incidents. Hence, understanding the adhesion of S. mutans in the human oral cavity is of major interest for preventive dentistry. In this study, we report on atomic force microscopy-based single-cell force spectroscopy measurements of S. mutans cells to hydroxyapatite surfaces. We observe for almost all measurements a significant difference in adhesion strength for S. mutans as well as for Staphylococcus carnosus cells. However, the increase in adhesion strength after saliva exposure is much higher for S. mutans cells compared to S. carnosus cells. Our results demonstrate that S. mutans cells are well adapted to their natural environment, the oral cavity. This ability promotes the biofilm-forming capability of that species and hence the production of caries-provoking acids. In consequence, understanding the fundamentals of this mechanism may pave a way towards more effective caries-reducing techniques. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Environmental factors that shape biofilm formation.

    PubMed

    Toyofuku, Masanori; Inaba, Tomohiro; Kiyokawa, Tatsunori; Obana, Nozomu; Yawata, Yutaka; Nomura, Nobuhiko

    2016-01-01

    Cells respond to the environment and alter gene expression. Recent studies have revealed the social aspects of bacterial life, such as biofilm formation. Biofilm formation is largely affected by the environment, and the mechanisms by which the gene expression of individual cells affects biofilm development have attracted interest. Environmental factors determine the cell's decision to form or leave a biofilm. In addition, the biofilm structure largely depends on the environment, implying that biofilms are shaped to adapt to local conditions. Second messengers such as cAMP and c-di-GMP are key factors that link environmental factors with gene regulation. Cell-to-cell communication is also an important factor in shaping the biofilm. In this short review, we will introduce the basics of biofilm formation and further discuss environmental factors that shape biofilm formation. Finally, the state-of-the-art tools that allow us investigate biofilms under various conditions are discussed.

  3. Antibacterial and Antibiofilm Activities of a Novel Synthetic Cyclic Lipopeptide against Cariogenic Streptococcus mutans UA159

    PubMed Central

    Min, Kyung R.; Galvis, Adriana; Williams, Brandon; Rayala, Ramanjaneyulu; Cudic, Predrag

    2017-01-01

    ABSTRACT Despite continuous efforts to control cariogenic dental biofilms, very few effective antimicrobial treatments exist. In this study, we characterized the activity of the novel synthetic cyclic lipopeptide 4 (CLP-4), derived from fusaricidin, against the cariogenic pathogen Streptococcus mutans UA159. We determined CLP-4's MIC, minimum bactericidal concentration (MBC), and spontaneous resistance frequency, and we performed time-kill assays. Additionally, we assessed CLP-4's potential to inhibit biofilm formation and eradicate preformed biofilms. Our results demonstrate that CLP-4 has strong antibacterial activity in vitro and is a potent bactericidal agent with low spontaneous resistance frequency. At a low concentration of 5 μg/ml, CLP-4 completely inhibited S. mutans UA159 biofilm formation, and at 50 μg/ml, it reduced the viability of established biofilms by >99.99%. We also assessed CLP-4's cytotoxicity and stability against proteolytic digestion. CLP-4 withstood trypsin or chymotrypsin digestion even after treatment for 24 h, and our toxicity studies showed that CLP-4 effective concentrations had negligible effects on hemolysis and the viability of human oral fibroblasts. In summary, our findings showed that CLP-4 is a potent antibacterial and antibiofilm agent with remarkable stability and low nonspecific cytotoxicity. Hence, CLP-4 is a promising novel antimicrobial peptide with potential for clinical application in the prevention and treatment of dental caries. PMID:28533236

  4. Maggot excretions inhibit biofilm formation on biomaterials.

    PubMed

    Cazander, Gwendolyn; van de Veerdonk, Mariëlle C; Vandenbroucke-Grauls, Christina M J E; Schreurs, Marco W J; Jukema, Gerrolt N

    2010-10-01

    Biofilm-associated infections in trauma surgery are difficult to treat with conventional therapies. Therefore, it is important to develop new treatment modalities. Maggots in captured bags, which are permeable for larval excretions/secretions, aid in healing severe, infected wounds, suspect for biofilm formation. Therefore we presumed maggot excretions/secretions would reduce biofilm formation. We studied biofilm formation of Staphylococcus aureus, Staphylococcus epidermidis, Klebsiella oxytoca, Enterococcus faecalis, and Enterobacter cloacae on polyethylene, titanium, and stainless steel. We compared the quantities of biofilm formation between the bacterial species on the various biomaterials and the quantity of biofilm formation after various incubation times. Maggot excretions/secretions were added to existing biofilms to examine their effect. Comb-like models of the biomaterials, made to fit in a 96-well microtiter plate, were incubated with bacterial suspension. The formed biofilms were stained in crystal violet, which was eluted in ethanol. The optical density (at 595 nm) of the eluate was determined to quantify biofilm formation. Maggot excretions/secretions were pipetted in different concentrations to (nonstained) 7-day-old biofilms, incubated 24 hours, and finally measured. The strongest biofilms were formed by S. aureus and S. epidermidis on polyethylene and the weakest on titanium. The highest quantity of biofilm formation was reached within 7 days for both bacteria. The presence of excretions/secretions reduced biofilm formation on all biomaterials. A maximum of 92% of biofilm reduction was measured. Our observations suggest maggot excretions/secretions decrease biofilm formation and could provide a new treatment for biofilm formation on infected biomaterials.

  5. Cariogenic properties of Streptococcus mutans clinical isolates with sortase defects.

    PubMed

    Lapirattanakul, Jinthana; Takashima, Yukiko; Tantivitayakul, Pornpen; Maudcheingka, Thaniya; Leelataweewud, Pattarawadee; Nakano, Kazuhiko; Matsumoto-Nakano, Michiyo

    2017-09-01

    In Streptococcus mutans, a Gram-positive pathogen of dental caries, several surface proteins are anchored by the activity of sortase enzyme. Although various reports have shown that constructed S. mutans mutants deficient of sortase as well as laboratory reference strains with a sortase gene mutation have low cariogenic potential, no known studies have investigated clinical isolates with sortase defects. Here, we examined the cariogenic properties of S. mutans clinical isolates with sortase defects as well as caries status in humans harboring such defective isolates. Sortase-defective clinical isolates were evaluated for biofilm formation, sucrose-dependent adhesion, stress-induced dextran-dependent aggregation, acid production, and acid tolerance. Additionally, caries indices of subjects possessing such defective isolates were determined. Our in vitro results indicated that biofilm with a lower quantity was formed by sortase-defective as compared to non-defective isolates. Moreover, impairments of sucrose-dependent adhesion and stress-induced dextran-dependent aggregation were found among the isolates with defects, whereas no alterations were seen in regard to acid production or tolerance. Furthermore, glucan-binding protein C, a surface protein anchored by sortase activity, was predominantly detected in culture supernatants of all sortase-defective S. mutans isolates. Although the sortase-defective isolates showed lower cariogenic potential because of a reduction in some cariogenic properties, deft/DMFT indices revealed that all subjects harboring those isolates had caries experience. Our findings suggest the impairment of cariogenic properties in S. mutans clinical isolates with sortase defects, though the detection of these defective isolates seemed not to imply low caries risk in the subjects harboring them. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Antibiofilm efficacy of green synthesized graphene oxide-silver nanocomposite using Lagerstroemia speciosa floral extract: A comparative study on inhibition of gram-positive and gram-negative biofilms.

    PubMed

    Kulshrestha, Shatavari; Qayyum, Shariq; Khan, Asad U

    2017-02-01

    Biofilm architecture provides bacteria with enhanced antibiotic resistance, thus raising the need to search for alternative therapies that can inhibit the bacterial colonization. In the present study, we synthesized graphene oxide-silver nanocomposite (GO-Ag) by non-toxic and eco-friendly route using a floral extract of Legistromia speciosa (L.) Pers. The gas chromatography-mass spectrometry (GC-MS) analysis of plant extract revealed the presence of compounds which can simultaneously act as reducing and capping agents. The sub-inhibitory concentrations of synthesized GO-Ag reduced the biofilm formation in both gram-negative (E. cloacae) and gram-positive (S. mutans) bacterial models. Growth curve assay, membrane integrity assay, scanning electron microscopy (SEM) and confocal scanning laser microscopy (CSLM) revealed different mechanisms of biofilm inhibition in E. cloacae and S. mutans. Moreover, quantitative RT-PCR (qRT-PCR) results suggested GO-Ag is acting on S. mutans biofilm formation cascade. Biofilm inhibitory concentrations GO-Ag were also found to be non-toxic against HEK-293 (human embryonic kidney cell line). The whole study highlights the therapeutic potential of GO-Ag to restrain the onset of biofilm formation in bacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Silver nanoparticles with antimicrobial activities against Streptococcus mutans and their cytotoxic effect.

    PubMed

    Pérez-Díaz, Mario Alberto; Boegli, Laura; James, Garth; Velasquillo, Cristina; Sánchez-Sánchez, Roberto; Martínez-Martínez, Rita-Elizabeth; Martínez-Castañón, Gabriel Alejandro; Martinez-Gutierrez, Fidel

    2015-10-01

    Microbial resistance represents a challenge for the scientific community to develop new bioactive compounds. The goal of this research was to evaluate the antimicrobial activity of silver nanoparticles (AgNPs) against a clinical isolate of Streptococcus mutans, antibiofilm activity against mature S. mutans biofilms and the compatibility with human fibroblasts. The antimicrobial activity of AgNPs against the planktonic clinical isolate was size and concentration dependent, with smaller AgNPs having a lower minimum inhibitory concentration. A reduction of 2.3 log in the number of colony-forming units of S. mutans was observed when biofilms grown in a CDC reactor were exposed to 100 ppm of AgNPs of 9.5±1.1 nm. However, AgNPs at high concentrations (>10 ppm) showed a cytotoxic effect upon human dermal fibroblasts. AgNPs effectively inhibited the growth of a planktonic S. mutans clinical isolate and killed established S. mutans biofilms, which suggests that AgNPs could be used for prevention and treatment of dental caries. Further research and development are necessary to translate this technology into therapeutic and preventive strategies. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Streptococcus mutans SpaP binds to RadD of Fusobacterium nucleatum ssp. polymorphum.

    PubMed

    Guo, Lihong; Shokeen, Bhumika; He, Xuesong; Shi, Wenyuan; Lux, Renate

    2017-10-01

    Adhesin-mediated bacterial interspecies interactions are important elements in oral biofilm formation. They often occur on a species-specific level, which could determine health or disease association of a biofilm community. Among the key players involved in these processes are the ubiquitous fusobacteria that have been recognized for their ability to interact with numerous different binding partners. Fusobacterial interactions with Streptococcus mutans, an important oral cariogenic pathogen, have previously been described but most studies focused on binding to non-mutans streptococci and specific cognate adhesin pairs remain to be identified. Here, we demonstrated differential binding of oral fusobacteria to S. mutans. Screening of existing mutant derivatives indicated SpaP as the major S. mutans adhesin specific for binding to Fusobacterium nucleatum ssp. polymorphum but none of the other oral fusobacteria tested. We inactivated RadD, a known adhesin of F. nucleatum ssp. nucleatum for interaction with a number of gram-positive species, in F. nucleatum ssp. polymorphum and used a Lactococcus lactis heterologous SpaP expression system to demonstrate SpaP interaction with RadD of F. nucleatum ssp. polymorphum. This is a novel function for SpaP, which has mainly been characterized as an adhesin for binding to host proteins including salivary glycoproteins. In conclusion, we describe an additional role for SpaP as adhesin in interspecies adherence with RadD-SpaP as the interacting adhesin pair for binding between S. mutans and F. nucleatum ssp. polymorphum. Furthermore, S. mutans attachment to oral fusobacteria appears to involve species- and subspecies-dependent adhesin interactions. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. In vivo biofilm formation on stainless steel bonded retainers during different oral health-care regimens.

    PubMed

    Jongsma, Marije A; van der Mei, Henny C; Atema-Smit, Jelly; Busscher, Henk J; Ren, Yijin

    2015-03-23

    Retention wires permanently bonded to the anterior teeth are used after orthodontic treatment to prevent the teeth from relapsing to pre-treatment positions. A disadvantage of bonded retainers is biofilm accumulation on the wires, which produces a higher incidence of gingival recession, increased pocket depth and bleeding on probing. This study compares in vivo biofilm formation on single-strand and multi-strand retention wires with different oral health-care regimens. Two-centimetre wires were placed in brackets that were bonded to the buccal side of the first molars and second premolars in the upper arches of 22 volunteers. Volunteers used a selected toothpaste with or without the additional use of a mouthrinse containing essential oils. Brushing was performed manually. Regimens were maintained for 1 week, after which the wires were removed and the oral biofilm was collected to quantify the number of organisms and their viability, determine the microbial composition and visualize the bacteria by electron microscopy. A 6-week washout period was employed between regimens. Biofilm formation was reduced on single-strand wires compared with multi-strand wires; bacteria were observed to adhere between the strands. The use of antibacterial toothpastes marginally reduced the amount of biofilm on both wire types, but significantly reduced the viability of the biofilm organisms. Additional use of the mouthrinse did not result in significant changes in biofilm amount or viability. However, major shifts in biofilm composition were induced by combining a stannous fluoride- or triclosan-containing toothpaste with the mouthrinse. These shifts can be tentatively attributed to small changes in bacterial cell surface hydrophobicity after the adsorption of the toothpaste components, which stimulate bacterial adhesion to the hydrophobic oil, as illustrated for a Streptococcus mutans strain.

  10. In vivo biofilm formation on stainless steel bonded retainers during different oral health-care regimens

    PubMed Central

    Jongsma, Marije A; van der Mei, Henny C; Atema-Smit, Jelly; Busscher, Henk J; Ren, Yijin

    2015-01-01

    Retention wires permanently bonded to the anterior teeth are used after orthodontic treatment to prevent the teeth from relapsing to pre-treatment positions. A disadvantage of bonded retainers is biofilm accumulation on the wires, which produces a higher incidence of gingival recession, increased pocket depth and bleeding on probing. This study compares in vivo biofilm formation on single-strand and multi-strand retention wires with different oral health-care regimens. Two-centimetre wires were placed in brackets that were bonded to the buccal side of the first molars and second premolars in the upper arches of 22 volunteers. Volunteers used a selected toothpaste with or without the additional use of a mouthrinse containing essential oils. Brushing was performed manually. Regimens were maintained for 1 week, after which the wires were removed and the oral biofilm was collected to quantify the number of organisms and their viability, determine the microbial composition and visualize the bacteria by electron microscopy. A 6-week washout period was employed between regimens. Biofilm formation was reduced on single-strand wires compared with multi-strand wires; bacteria were observed to adhere between the strands. The use of antibacterial toothpastes marginally reduced the amount of biofilm on both wire types, but significantly reduced the viability of the biofilm organisms. Additional use of the mouthrinse did not result in significant changes in biofilm amount or viability. However, major shifts in biofilm composition were induced by combining a stannous fluoride- or triclosan-containing toothpaste with the mouthrinse. These shifts can be tentatively attributed to small changes in bacterial cell surface hydrophobicity after the adsorption of the toothpaste components, which stimulate bacterial adhesion to the hydrophobic oil, as illustrated for a Streptococcus mutans strain. PMID:25572920

  11. Biofilm formation by Staphylococcus haemolyticus.

    PubMed

    Fredheim, Elizabeth Gladys Aarag; Klingenberg, Claus; Rohde, Holger; Frankenberger, Stephanie; Gaustad, Peter; Flaegstad, Trond; Sollid, Johanna Ericson

    2009-04-01

    Infections due to coagulase-negative staphylococci (CoNS) most frequently occur after the implantation of medical devices and are attributed to the biofilm-forming potential of CoNS. Staphylococcus haemolyticus is the second most frequently isolated CoNS from patients with hospital-acquired infections. There is only limited knowledge of the nature of S. haemolyticus biofilms. The aim of this study was to characterize S. haemolyticus biofilm formation. We analyzed the biofilm-forming capacities of 72 clinical S. haemolyticus isolates. A detachment assay with NaIO(4), proteinase K, or DNase was used to determine the main biofilm components. Biofilm-associated genes, including the ica operon, were analyzed by PCR, and the gene products were sequenced. Confocal laser scanning microscopy (CLSM) was used to elucidate the biofilm structure. Fifty-three isolates (74%) produced biofilms after growth in Trypticase soy broth (TSB) with glucose, but only 22 (31%) produced biofilms after growth in TSB with NaCl. It was necessary to dissolve the biofilm in ethanol-acetone to measure the optical density of the full biofilm mass. DNase, proteinase K, and NaIO(4) caused biofilm detachment for 100%, 98%, and 38% of the isolates, respectively. icaRADBC and polysaccharide intercellular adhesin (PIA) production were found in only two isolates. CLSM indicated that the biofilm structure of S. haemolyticus clearly differs from that of S. epidermidis. We conclude that biofilm formation is a common phenotype in clinical S. haemolyticus isolates. In contrast to S. epidermidis, proteins and extracellular DNA are of functional relevance for biofilm accumulation, whereas PIA plays only a minor role. The induction of biofilm formation and determination of the biofilm mass also needed to be optimized for S. haemolyticus.

  12. Interactions between oral bacteria: inhibition of Streptococcus mutans bacteriocin production by Streptococcus gordonii.

    PubMed

    Wang, Bing-Yan; Kuramitsu, Howard K

    2005-01-01

    Streptococcus mutans has been recognized as an important etiological agent in human dental caries. Some strains of S. mutans also produce bacteriocins. In this study, we sought to demonstrate that bacteriocin production by S. mutans strains GS5 and BM71 was mediated by quorum sensing, which is dependent on a competence-stimulating peptide (CSP) signaling system encoded by the com genes. We also demonstrated that interactions with some other oral streptococci interfered with S. mutans bacteriocin production both in broth and in biofilms. The inhibition of S. mutans bacteriocin production by oral bacteria was stronger in biofilms than in broth. Using transposon Tn916 mutagenesis, we identified a gene (sgc; named for Streptococcus gordonii challisin) responsible for the inhibition of S. mutans bacteriocin production by S. gordonii Challis. Interruption of the sgc gene in S. gordonii Challis resulted in attenuated inhibition of S. mutans bacteriocin production. The supernatant fluids from the sgc mutant did not inactivate the exogenous S. mutans CSP as did those from the parent strain Challis. S. gordonii Challis did not inactivate bacteriocin produced by S. mutans GS5. Because S. mutans uses quorum sensing to regulate virulence, strategies designed to interfere with these signaling systems may have broad applicability for biological control of this caries-causing organism.

  13. Acoustic vibration can enhance bacterial biofilm formation.

    PubMed

    Murphy, Mark F; Edwards, Thomas; Hobbs, Glyn; Shepherd, Joanna; Bezombes, Frederic

    2016-12-01

    This paper explores the use of low-frequency-low-amplitude acoustic vibration on biofilm formation. Biofilm development is thought to be governed by a diverse range of environmental signals and much effort has gone into researching the effects of environmental factors including; nutrient availability, pH and temperature on the growth of biofilms. Many biofilm-forming organisms have evolved to thrive in mechanically challenging environments, for example soil yet, the effects of the physical environment on biofilm formation has been largely ignored. Exposure of Pseudomonas aeruginosa to vibration at 100, 800 and 1600 Hz for 48 h, resulted in a significant increase in biofilm formation compared with the control, with the greatest growth seen at 800 Hz vibration. The results also show that this increase in biofilm formation is accompanied with an increase in P. aeruginosa cell number. Acoustic vibration was also found to regulate the spatial distribution of biofilm formation in a frequency-dependent manner. Exposure of Staphylococcus aureus to acoustic vibration also resulted in enhanced biofilm formation with the greatest level of biofilm being formed following 48 h exposure at 1600 Hz. These results show that acoustic vibration can be used to control biofilm formation and therefore presents a novel and potentially cost effective means to manipulate the development and yield of biofilms in a range of important industrial and medical processes. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Effects of amine fluoride on biofilm growth and salivary pellicles.

    PubMed

    van der Mei, H C; Engels, E; de Vries, J; Busscher, H J

    2008-01-01

    The amine fluoride (AmF) N'-octadecyl-trimethylene-diamine-N,N,N'-tris(2-ethanol)-dihydro-fluoride is a cationic antimicrobial which can have beneficial effects on plaque formation. Here, we determine changes in pellicle and bacterial cell surface properties of the strains Actinomyces naeslundii HM1, Streptococcus mutans NS, S.mutans ATCC 700610, S. sobrinus HG1025 and S. oralis HM1 upon adsorption of this AmF and accompanying effects on bacterial adhesion and biofilm growth. In vitro pellicles had a zeta potential of -12 mV that became less negative upon adsorption of AmF. The chemical functionalities in which carbon and oxygen were involved changed after AmF adsorption and AmF-treated pellicles had a greater surface roughness than untreated pellicles. Water contact angles in vitro decreased from 56 to 45 degrees upon AmF treatment, which corresponded with water contact angles (44 degrees ) measured intraorally on the front incisors of volunteers immediately after using an AmF-containing toothpaste. All bacterial strains were negatively charged and their isoelectric points (IEP) increased upon AmF adsorption. Minimal inhibitory concentrations were smallest for strains exhibiting the largest increase in IEP. Adhesion to salivary pellicles and biofilm growth of the mutans streptococcal strains were significantly reduced after AmF treatment, but not of A. naeslundii or S. oralis. However, regardless of the strain involved, biofilm viability decreased significantly after AmF treatment. The electrostatic interaction between cationic AmF and negatively charged bacterial cell surfaces is pivotal in establishing reduced biofilm formation by AmF through a combination of effects on initial adhesion and killing. The major effect of AmF treatment, however, was a reduction brought about in biofilm viability.

  15. The whole is greater than the sum of its parts: dental plaque bacterial interactions can affect the virulence properties of cariogenic Streptococcus mutans.

    PubMed

    Kuramitsu, Howard K; Wang, Bing-Yan

    2011-06-01

    It has been well established that dental caries results from the accumulation of dental plaque on tooth surfaces. Several decades of in vitro and as well as clinical studies have identified Streptococcus mutans as an important etiological agent in carious lesion formation. In addition, a variety of approaches have suggested that interactions between the bacterial components of biofilms can influence the properties of such polymicrobial structures. Therefore, it is likely that the mere presence of S. mutans in dental plaque does not alone account for the cariogenic potential of such biofilms. Recent studies have indicated that several bacteria commonly found in dental plaque can influence either the viability and/or virulence properties of S. mutans. This review will summarize some of the more recent findings in this regard as well as their implications for the development of novel anti-caries strategies.

  16. Live-cell and super-resolution imaging reveal that the distribution of wall-associated protein A is correlated with the cell chain integrity of Streptococcus mutans.

    PubMed

    Li, Y; Liu, Z; Zhang, Y; Su, Q P; Xue, B; Shao, S; Zhu, Y; Xu, X; Wei, S; Sun, Y

    2015-10-01

    Streptococcus mutans is a primary pathogen responsible for dental caries. It has an outstanding ability to form biofilm, which is vital for virulence. Previous studies have shown that knockout of Wall-associated protein A (WapA) affects cell chain and biofilm formation of S. mutans. As a surface protein, the distribution of WapA remains unknown, but it is important to understand the mechanism underlying the function of WapA. This study applied the fluorescence protein mCherry as a reporter gene to characterize the dynamic distribution of WapA in S. mutans via time-lapse and super-resolution fluorescence imaging. The results revealed interesting subcellular distribution patterns of WapA in single, dividing and long chains of S. mutans cells. It appears at the middle of the cell and moves to the poles as the cell grows and divides. In a cell chain, after each round of cell division, such dynamic relocation results in WapA distribution at the previous cell division sites, resulting in a pattern where WapA is located at the boundary of two adjacent cell pairs. This WapA distribution pattern corresponds to the breaking segmentation of wapA deletion cell chains. The dynamic relocation of WapA through the cell cycle increases our understanding of the mechanism of WapA in maintaining cell chain integrity and biofilm formation. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Antibacterial effect of copper-bearing titanium alloy (Ti-Cu) against Streptococcus mutans and Porphyromonas gingivalis

    NASA Astrophysics Data System (ADS)

    Liu, Rui; Memarzadeh, Kaveh; Chang, Bei; Zhang, Yumei; Ma, Zheng; Allaker, Robert P.; Ren, Ling; Yang, Ke

    2016-07-01

    Formation of bacterial biofilms on dental implant material surfaces (titanium) may lead to the development of peri-implant diseases influencing the long term success of dental implants. In this study, a novel Cu-bearing titanium alloy (Ti-Cu) was designed and fabricated in order to efficiently kill bacteria and discourage formation of biofilms, and then inhibit bacterial infection and prevent implant failure, in comparison with pure Ti. Results from biofilm based gene expression studies, biofilm growth observation, bacterial viability measurements and morphological examination of bacteria, revealed antimicrobial/antibiofilm activities of Ti-Cu alloy against the oral specific bacterial species, Streptococcus mutans and Porphyromonas gingivalis. Proliferation and adhesion assays with mesenchymal stem cells, and measurement of the mean daily amount of Cu ion release demonstrated Ti-Cu alloy to be biocompatible. In conclusion, Ti-Cu alloy is a promising dental implant material with antimicrobial/antibiofilm activities and acceptable biocompatibility.

  18. Biofilms inducing ultra-low friction on titanium.

    PubMed

    Souza, J C M; Henriques, M; Oliveira, R; Teughels, W; Celis, J-P; Rocha, L A

    2010-12-01

    Biofilm formation is widely reported in the literature as a problem in the healthcare, environmental, and industrial sectors. However, the role of biofilms in sliding contacts remains unclear. Friction during sliding was analyzed for titanium covered with mixed biofilms consisting of Streptococcus mutans and Candida albicans. The morphology of biofilms on titanium surfaces was evaluated before, during, and after sliding tests. Very low friction was recorded on titanium immersed in artificial saliva and sliding against alumina in the presence of biofilms. The complex structure of biofilms, which consist of microbial cells and their hydrated exopolymeric matrix, acts like a lubricant. A low friction in sliding contacts may have major significance in the medical field. The composition and structure of biofilms are shown to be key factors for an understanding of friction behavior of dental implant connections and prosthetic joints. For instance, a loss of mechanical integrity of dental implant internal connections may occur as a consequence of the decrease in friction caused by biofilm formation. Consequently, the study of the exopolymeric matrix can be important for the development of high-performance novel joint-based systems for medical and other engineering applications.

  19. Antimicrobial peptide GH12 suppresses cariogenic virulence factors of Streptococcus mutans

    PubMed Central

    Wang, Yufei; Wang, Xiuqing; Jiang, Wentao; Wang, Kun; Luo, Junyuan; Li, Wei; Zhou, Xuedong; Zhang, Linglin

    2018-01-01

    ABSTRACT Cariogenic virulence factors of Streptococcus mutans include acidogenicity, aciduricity, and extracellular polysaccharides (EPS) synthesis. The de novo designed antimicrobial peptide GH12 has shown bactericidal effects on S. mutans, but its interaction with virulence and regulatory systems of S. mutans remains to be elucidated. The objectives were to investigate the effects of GH12 on virulence factors of S. mutans, and further explore the function mechanisms at enzymatic and transcriptional levels. To avoid decrease in bacterial viability, we limited GH12 to subinhibitory levels. We evaluated effects of GH12 on acidogenicity of S. mutans by pH drop, lactic acid measurement and lactate dehydrogenase (LDH) assay, on aciduricity through survival rate at pH 5.0 and F1F0-ATPase assay, and on EPS synthesis using quantitative measurement, morphology observation, vertical distribution analyses and biomass calculation. Afterwards, we conducted quantitative real-time PCR to acquire the expression profile of related genes. GH12 at 1/2 MIC (4 mg/L) inhibited acid production, survival rate, EPS synthesis, and biofilm formation. The enzymatic activity of LDH and F1F0-ATPase was inhibited, and ldh, gtfBCD, vicR, liaR, and comDE genes were significantly downregulated. In conclusion, GH12 inhibited virulence factors of S. mutans, through reducing the activity of related enzymes, downregulating virulence genes, and inactivating specific regulatory systems. PMID:29503706

  20. The effect of a probiotic strain (Lactobacillus acidophilus) on the plaque formation of oral Streptococci.

    PubMed

    Tahmourespour, Arezoo; Kermanshahi, Rooha Kasra

    2011-02-01

    The objective of this study was to investigate the ability of biofilm formation among mutans and non mutans oral streptococci and to determine the effect of Lactobacillus acidophilus DSM 20079 as a probiotic strain on the adhesion of selected streptococcal strains on the surfaces. The sample comprised 40 isolates of oral streptococci from dental plaque and caries of volunteer persons. Streptococcus mutans ATCC35668 (no24) was as an standard strain. The probiotic strain was Lactobacillus acidophilus DSM 20079. The ability of biofilm formation was investigated with colorimetric method and the strongest isolates were selected. Then the effect of probiotic strain on the adhesion of streptococci isolates was determined in polystyrene microtiter plate simultaneously and 30 minutes before streptococci entrance to the system. The results showed that 42% of mutans streptococci were strongly adherent (SA) and in non mutans streptococci, only 23.5% of isolates were found strongly adherent. The strong biofilm forming bacterium isolated was Streptococcus mutans strain22. In the next step, in the presence of probiotic strain the streptococcal adhesion were reduced, and this reduction was non significantly stronger if the probiotic strain was inoculated to the system before the oral bacteria. The Lactobacillus acidophilus had more effect on adherence of mutans streptococci than non mutans streptococci with significant difference (p < 0.05). Adhesion reduction is likely due to bacterial interactions and colonization of adhesion sites with probiotic strain before the presence of streptococci. Adhesion reduction can be an effective way on decreasing cariogenic potential of oral streptococci.

  1. Monitoring in Real Time the Formation and Removal of Biofilms from Clinical Related Pathogens Using an Impedance-Based Technology

    PubMed Central

    Gutiérrez, Diana; Hidalgo-Cantabrana, Claudio; Rodríguez, Ana; García, Pilar

    2016-01-01

    Bacteria found in diverse ecosystems grow in a community of aggregated cells that favors their survival and colonization. Different extracellular polymeric substances are used to entrap this multispecies community forming a biofilm, which can be associated to biotic and abiotic surfaces. This widespread and successful way of bacterial life, however, can lead to negative effects for human activity since many pathogen and spoiling bacteria form biofilms which are not easy to eradicate. Therefore, the search for novel anti-biofilm bio-active molecules is a very active research area for which simple, reliable, and fast screening methods are demanded. In this work we have successfully validated an impedance-based method, initially developed for the study of adherent eukaryotic cells, to monitor the formation of single-species biofilms of three model bacteria in real time. The xCelligence real time cell analyzer (RTCA) equipment uses specific microtiter E-plates coated with gold-microelectrodes that detect the attachment of adherent cells, thus modifying the impedance signal. In the current study, this technology allowed the distinction between biofilm-producers and non-producers of Staphylococcus aureus and Staphylococcus epidermidis, as well as the formation of Streptococcus mutans biofilms only when sucrose was present in the culture medium. Besides, different impedance values permitted discrimination among the biofilm-producing strains tested regardless of the nature of the polymeric biofilm matrix. Finally, we have continuously monitored the inhibition of staphylococcal biofilm formation by the bacteriophage phi-IPLA7 and the bacteriophage-encoded endolysin LysH5, as well as the removal of a preformed biofilm by this last antimicrobial treatment. Results observed with the impedance-based method showed high correlation with those obtained with standard approaches, such as crystal violet staining and bacteria enumeration, as well as with those obtained upon other

  2. Monitoring in Real Time the Formation and Removal of Biofilms from Clinical Related Pathogens Using an Impedance-Based Technology.

    PubMed

    Gutiérrez, Diana; Hidalgo-Cantabrana, Claudio; Rodríguez, Ana; García, Pilar; Ruas-Madiedo, Patricia

    2016-01-01

    Bacteria found in diverse ecosystems grow in a community of aggregated cells that favors their survival and colonization. Different extracellular polymeric substances are used to entrap this multispecies community forming a biofilm, which can be associated to biotic and abiotic surfaces. This widespread and successful way of bacterial life, however, can lead to negative effects for human activity since many pathogen and spoiling bacteria form biofilms which are not easy to eradicate. Therefore, the search for novel anti-biofilm bio-active molecules is a very active research area for which simple, reliable, and fast screening methods are demanded. In this work we have successfully validated an impedance-based method, initially developed for the study of adherent eukaryotic cells, to monitor the formation of single-species biofilms of three model bacteria in real time. The xCelligence real time cell analyzer (RTCA) equipment uses specific microtiter E-plates coated with gold-microelectrodes that detect the attachment of adherent cells, thus modifying the impedance signal. In the current study, this technology allowed the distinction between biofilm-producers and non-producers of Staphylococcus aureus and Staphylococcus epidermidis, as well as the formation of Streptococcus mutans biofilms only when sucrose was present in the culture medium. Besides, different impedance values permitted discrimination among the biofilm-producing strains tested regardless of the nature of the polymeric biofilm matrix. Finally, we have continuously monitored the inhibition of staphylococcal biofilm formation by the bacteriophage phi-IPLA7 and the bacteriophage-encoded endolysin LysH5, as well as the removal of a preformed biofilm by this last antimicrobial treatment. Results observed with the impedance-based method showed high correlation with those obtained with standard approaches, such as crystal violet staining and bacteria enumeration, as well as with those obtained upon other

  3. The exopolysaccharide matrix: a virulence determinant of cariogenic biofilm.

    PubMed

    Koo, H; Falsetta, M L; Klein, M I

    2013-12-01

    Many infectious diseases in humans are caused or exacerbated by biofilms. Dental caries is a prime example of a biofilm-dependent disease, resulting from interactions of microorganisms, host factors, and diet (sugars), which modulate the dynamic formation of biofilms on tooth surfaces. All biofilms have a microbial-derived extracellular matrix as an essential constituent. The exopolysaccharides formed through interactions between sucrose- (and starch-) and Streptococcus mutans-derived exoenzymes present in the pellicle and on microbial surfaces (including non-mutans) provide binding sites for cariogenic and other organisms. The polymers formed in situ enmesh the microorganisms while forming a matrix facilitating the assembly of three-dimensional (3D) multicellular structures that encompass a series of microenvironments and are firmly attached to teeth. The metabolic activity of microbes embedded in this exopolysaccharide-rich and diffusion-limiting matrix leads to acidification of the milieu and, eventually, acid-dissolution of enamel. Here, we discuss recent advances concerning spatio-temporal development of the exopolysaccharide matrix and its essential role in the pathogenesis of dental caries. We focus on how the matrix serves as a 3D scaffold for biofilm assembly while creating spatial heterogeneities and low-pH microenvironments/niches. Further understanding on how the matrix modulates microbial activity and virulence expression could lead to new approaches to control cariogenic biofilms.

  4. Novel approaches to mitigating bacterial biofilm formation and intercellular communication

    NASA Astrophysics Data System (ADS)

    Kasper, Stephen H.

    Long thought of as solitary single-cell organisms, it is now widely accepted that bacteria can act and cooperate as social organisms. Phenomena such as biofilm formation and quorum sensing (QS) are two intimately intertwined cooperative behaviors that significantly contribute to the pathogenesis of many bacteria. Biofilms are surface associated communities of bacteria encased in a secreted extracellular matrix, which provides several advantages over an individualized lifestyle, such as increased protection from antimicrobial agents as well as enhanced opportunity for the exchange of genetic material. Bacterial QS is a system of population-based communication through the production, sensing, and response to chemical signals, often controlling the expression of diverse virulence factors (e.g. toxins, proteases). Biofilm formation and QS are cooperative processes that are often leveraged as bacteria coordinate infection processes, and can therefore be novel targets for anti-infective treatments that differ from conventional antibiotic treatment. Our lab has previously identified a novel class of small molecules that inhibit biofilm formation and disrupt QS by the pathogenic bacterium Pseudomonas aeruginosa. These organosulfur-based compounds are either natural products or related derivatives of the tropical plant Petiveria alliacea. Because oral biofilm (e.g. dental plaque) is a major conduit of oral and systemic disease, and is also a site for horizontal transfer for genes encoding antibiotic resistance, there exists a need for novel strategies for inhibiting oral biofilm development. Therefore, a small library (˜50 compounds) of structural derivatives was developed and screened for their ability to inhibit biofilm formation by multiple orally associated bacteria. The screening effort uncovered several related compounds that inhibited oral biofilm development. To determine how natural product-based organosulfur compounds could be inducing QS inhibitory effects, an

  5. Efflux inhibitor suppresses Streptococcus mutans virulence properties.

    PubMed

    Zeng, Huihui; Liu, Jia; Ling, Junqi

    2017-04-01

    It is well established that efflux pumps play important roles in bacterial pathogenicity and efflux inhibitors (EIs) have been proved to be effective in suppressing bacterial virulence properties. However, little is known regarding the EI of Streptococcus mutans, a well-known caries-inducing bacterium. In this study, we identified the EI of S. mutans through ethidium bromide efflux assay and investigated how EI affected S. mutans virulence regarding the cariogenicity and stress response. Results indicated that reserpine, the identified EI, suppressed acid tolerance, mutacin production and transformation efficiency of S. mutans, and modified biofilm architecture and extracellular polysaccharide distribution. Suppressed glycosyltransferase activity was also noted after reserpine exposure. The data from quantitative real-time-PCR demonstrated that reserpine significantly altered the expression profile of quorum-sensing and virulence-associated genes. These findings suggest that reserpine represents a promising adjunct anticariogenic agent in that it suppresses virulence properties of S. mutans. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Effects of 7-Epiclusianone on Streptococcus mutans and Caries Development in Rats

    PubMed Central

    Branco-de-Almeida, Luciana Salles; Murata, Ramiro Mendonça; Franco, Eliane Melo; dos Santos, Marcelo Henrique; de Alencar, Severino Matias; Koo, Hyun; Rosalen, Pedro Luiz

    2011-01-01

    The aim of this study was to evaluate the effects of 7-epiclusianone (7-epi) on specific virulence attributes of Streptococcus mutans in vitro and on development of dental caries in vivo. 7-Epi was obtained and purified from fruits of Rheedia brasiliensis. We investigated its influence on surface-adsorbed glucosyltransferase (Gtf) B activity, acid production, and viability of S. mutans in biofilms, as well as on caries development using a rodent model. 7-Epi (100 μg/mL) significantly reduced the activity of surface-adsorbed GtfB (up to 48.0 ± 1.8 of inhibition at 100 μg/mL) and glycolytic pH-drop by S. mutans in biofilms (125 and 250 μg/mL) (vs. vehicle control, p < 0.05). In contrast, the test compound did not significantly affect the bacterial viability when compared to vehicle control (15% ethanol, p > 0.05). Wistar rats treated topically with 7-epi (twice daily, 60-s exposure) showed significantly smaller number of and less severe smooth- and sulcal-surface carious lesions (p < 0.05), without reducing the S. mutans viable population from the animals’ dental biofilms. In conclusion, the natural compound 7-epiclusianone may be a potentially novel pharmacological agent to prevent and control dental caries disease. PMID:20665370

  7. IMPACTS OF BIOFILM FORMATION ON CELLULOSE FERMENTATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leschine, Susan

    2009-10-31

    This project addressed four major areas of investigation: i) characterization of formation of Cellulomonas uda biofilms on cellulose; ii) characterization of Clostridium phytofermentans biofilm development; colonization of cellulose and its regulation; iii) characterization of Thermobifida fusca biofilm development; colonization of cellulose and its regulation; and iii) description of the architecture of mature C. uda, C. phytofermentans, and T. fusca biofilms. This research is aimed at advancing understanding of biofilm formation and other complex processes involved in the degradation of the abundant cellulosic biomass, and the biology of the microbes involved. Information obtained from these studies is invaluable in the developmentmore » of practical applications, such as the single-step bioconversion of cellulose-containing residues to fuels and other bioproducts. Our results have clearly shown that cellulose-decomposing microbes rapidly colonize cellulose and form complex structures typical of biofilms. Furthermore, our observations suggest that, as cells multiply on nutritive surfaces during biofilms formation, dramatic cell morphological changes occur. We speculated that morphological changes, which involve a transition from rod-shaped cells to more rounded forms, might be more apparent in a filamentous microbe. In order to test this hypothesis, we included in our research a study of biofilm formation by T. fusca, a thermophilic cellulolytic actinomycete commonly found in compost. The cellulase system of T. fusca has been extensively detailed through the work of David Wilson and colleagues at Cornell, and also, genome sequence of a T. fusca strain has been determine by the DOE Joint Genome Institute. Thus, T. fusca is an excellent subject for studies of biofilm development and its potential impacts on cellulose degradation. We also completed a study of the chitinase system of C. uda. This work provided essential background information for understanding how

  8. Effect of Punica granatum L. Flower Water Extract on Five Common Oral Bacteria and Bacterial Biofilm Formation on Orthodontic Wire

    PubMed Central

    VAHID DASTJERDI, Elahe; ABDOLAZIMI, Zahra; GHAZANFARIAN, Marzieh; AMDJADI, Parisa; KAMALINEJAD, Mohammad; MAHBOUBI, Arash

    2014-01-01

    Background: Use of herbal extracts and essences as natural antibacterial compounds has become increasingly popular for the control of oral infectious diseases. Therefore, finding natural antimicrobial products with the lowest side effects seems necessary. The present study sought to assess the effect of Punica granatum L. water extract on five oral bacteria and bacterial biofilm formation on orthodontic wire. Methods: Antibacterial property of P. granatum L. water extract was primarily evaluated in brain heart infusion agar medium using well-plate method. The minimum inhibitory concentration and minimum bactericidal concentration were determined by macro-dilution method. The inhibitory effect on orthodontic wire bacterial biofilm formation was evaluated using viable cell count in biofilm medium. At the final phase, samples were fixed and analyzed by Scanning Electron Microscopy. Results: The growth inhibition zone diameter was proportional to the extract concentration. The water extract demonstrated the maximum antibacterial effect on Streptococcus sanguinis ATCC 10556 with a minimum inhibitory concentration of 6.25 mg/ml and maximum bactericidal effect on S. sanguinis ATCC 10556 and S. sobrinus ATCC 27607 with minimum bactericidal concentration of 25 mg/ml. The water extract decreased bacterial biofilm formation by S. sanguinis, S. sobrinus, S. salivarius, S. mutans ATCC 35608 and E. faecalis CIP 55142 by 93.7–100%, 40.6–99.9%, 85.2–86.5%, 66.4–84.4% and 35.5–56.3% respectively. Conclusion: Punica granatum L. water extract had significant antibacterial properties against 5 oral bacteria and prevented orthodontic wire bacterial biofilm formation. However, further investigations are required to generalize these results to the clinical setting. PMID:26171362

  9. Capillary-tube-based micro-plasma system for disinfecting dental biofilm.

    PubMed

    Huang, Wen-Ke; Weng, Chih-Chiang; Liao, Jiunn-Der; Wang, Yi-Cheng; Chuang, Shu-Fen

    2013-05-01

    A low-temperature low-energy capillary-tube-based argon micro-plasma system was applied to disinfect Streptococcus mutans-containing biofilm. The micro-plasma system uses a hollow inner electrode that is ignited by a radio-frequency power supply with a matching network. The energy content was analyzed using optical emission spectroscopy. The micro-plasma-induced effect on a biofilm cultured for 24 or 48 h with a working distance of ≈3 mm at low temperature was evaluated. The morphologies of the treated live/dead bacteria and the produced polysaccharides after micro-plasma treatment were examined. Scanning electron microscopy images and staining results show that most of the S. mutans on the treated biofilm were acutely damaged within a micro-plasma treatment time of 300 s. The number of living bacteria underneath the treated biofilm greatly decreased with treatment time. The proposed micro-plasma system can thus disinfect S. mutans on/in biofilms.

  10. Effect of Silver Nitrate and Sodium Fluoride with Tri-Calcium Phosphate on Streptococcus mutans and Demineralised Dentine.

    PubMed

    Yu, Ollie Yiru; Zhao, Irene Shuping; Mei, May Lei; Lo, Edward Chin-Man; Chu, Chun-Hung

    2018-04-25

    This study investigated the effect of 25% silver nitrate (AgNO₃) and 5% sodium fluoride (NaF) varnish with functionalized tri-calcium phosphate (fTCP) on a Streptococcus mutans ( S. mutans ) biofilm and dentine caries lesion. Demineralised dentine specimens were treated with 25% AgNO₃ and 5% NaF + fTCP (Group 1), 25% AgNO₃ and 5% NaF (Group 2), 25% AgNO₃ (Group 3), or water (Group 4). The specimens were subjected to a S. mutans biofilm challenge after treatment. The biofilm was then studied via scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), and colony forming units (CFU). The specimens were assessed by micro-computed tomography, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). SEM and CLSM revealed less biofilm in Groups 1 to 3. The log 10 CFU of Groups 1 to 4 were 4.5 ± 0.7, 4.4 ± 0.9, 4.4 ± 0.9, and 6.7 ± 1.0, respectively (Groups 1, 2, 3 < 4, p < 0.001). The lesion depths of Groups 1 to 4 were 212.6 ± 20.1 µm, 280.8 ± 51.6 µm, 402.5 ± 61.7 µm, and 497.4 ± 67.2 µm, respectively (Groups 1 < 2 < 3 < 4, p < 0.001). XRD demonstrated silver chloride formation in Groups 1, 2, and 3. FTIR found the amide I: HPO₄ 2− values of the four groups were 0.22 ± 0.05, 0.25 ± 0.05, 0.41 ± 0.12, and 0.64 ± 0.14, respectively (Groups 1, 2 < 3 < 4; p < 0.001). In conclusion, this study revealed that AgNO₃ and NaF + fTCP reduced the damage of dentine caries by cariogenic biofilm.

  11. Specific plant induced biofilm formation in Methylobacterium species.

    PubMed

    Rossetto, Priscilla B; Dourado, Manuella N; Quecine, Maria C; Andreote, Fernando D; Araújo, Welington L; Azevedo, João L; Pizzirani-Kleiner, Aline A

    2011-07-01

    Two endophytic strains of Methylobacterium spp. were used to evaluate biofilm formation on sugarcane roots and on inert wooden sticks. Results show that biofilm formation is variable and that plant surface and possibly root exudates have a role in Methylobacterium spp. host recognition, biofilm formation and successful colonization as endophytes.

  12. Interactions between Lactobacillus rhamnosus GG and oral micro-organisms in an in vitro biofilm model.

    PubMed

    Jiang, Qingru; Stamatova, Iva; Kainulainen, Veera; Korpela, Riitta; Meurman, Jukka H

    2016-07-12

    Probiotics have shown favourable properties in maintaining oral health. By interacting with oral microbial communities, these species could contribute to healthier microbial equilibrium. This study aimed to investigate in vitro the ability of probiotic Lactobacillus rhamnosus GG (L.GG) to integrate in oral biofilm and affect its species composition. Five oral strains, Streptococcus mutans, Streptococcus sanguinis, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum and Candida albicans were involved. The group setup included 6 mono-species groups, 3 dual-species groups (L.GG + S. mutans/S. sanguinis/C. albicans), and 4 multi-species groups (4/5 species and 4/5 species + L.GG, 4 species were all the tested strains except S. mutans). Cell suspensions of six strains were pooled according to the group setup. Biofilms were grown on saliva-coated hydroxyapatite (HA) discs at 37 °C in anaerobic conditions for 64.5 h. Biofilm medium was added and refreshed at 0, 16.5, and 40.5 h. The pH of spent media was measured. Viable cells of the 16.5 h and 64.5 h biofilms were counted. 64.5 h biofilms were stained and scanned with confocal laser scanning microscopy. Our results showed that L.GG and S. mutans demonstrated stronger adhesion ability than the other strains to saliva-coated HA discs. L.GG, C. albicans, S. mutans and F. nucleatum, with poor ability to grow in mono-species biofilms demonstrated better abilities of adhesion and reproduction in dual- and/or multi-species biofilms. L.GG slightly suppressed the growth of C. albicans in all groups, markedly weakened the growth of S. sanguinis and F. nucleatum in 4sp + L.GG group, and slightly reduced the adhesion of S. mutans in L.GG+ S. mutans group. To conclude, in this in vitro model L.GG successfully integrated in all oral biofilms, and reduced the counts of S. sanguinis and C. albicans and lowered the biofilm-forming ability of F. nucleatum, but only slightly reduced the adhesion of S. mutans

  13. Specific plant induced biofilm formation in Methylobacterium species

    PubMed Central

    Rossetto, Priscilla B.; Dourado, Manuella N.; Quecine, Maria C.; Andreote, Fernando D.; Araújo, Welington L.; Azevedo, João L.; Pizzirani-Kleiner, Aline A.

    2011-01-01

    Two endophytic strains of Methylobacterium spp. were used to evaluate biofilm formation on sugarcane roots and on inert wooden sticks. Results show that biofilm formation is variable and that plant surface and possibly root exudates have a role in Methylobacterium spp. host recognition, biofilm formation and successful colonization as endophytes. PMID:24031703

  14. Sexual Biofilm Formation in Candida tropicalis Opaque Cells

    PubMed Central

    Jones, Stephen K.; Hirakawa, Matthew P.; Bennett, Richard J.

    2014-01-01

    Summary Candida albicans and Candida tropicalis are opportunistic fungal pathogens that can transition between white and opaque phenotypic states. White and opaque cells differ both morphologically and in their responses to environmental signals. In C. albicans, opaque cells respond to sexual pheromones by undergoing conjugation, while white cells are induced by pheromones to form sexual biofilms. Here, we show that sexual biofilm formation also occurs in C. tropicalis but, unlike C. albicans, biofilms are formed exclusively by opaque cells. C. tropicalis biofilm formation was dependent on the pheromone receptors Ste2 and Ste3, confirming the role of pheromone signaling in sexual biofilm development. Structural analysis of C. tropicalis sexual biofilms revealed stratified communities consisting of a basal layer of yeast cells and an upper layer of filamentous cells, together with an extracellular matrix. Transcriptional profiling showed that genes involved in pheromone signaling and conjugation were upregulated in sexual biofilms. Furthermore, FGR23, which encodes an agglutinin-like protein, was found to enhance both mating and sexual biofilm formation. Together, these studies reveal that C. tropicalis opaque cells form sexual biofilms with a complex architecture, and suggest a conserved role for sexual agglutinins in mediating mating, cell cohesion and biofilm formation. PMID:24612417

  15. Catabolite Repression of Escherichia coli Biofilm Formation

    PubMed Central

    Jackson, Debra W.; Simecka, Jerry W.; Romeo, Tony

    2002-01-01

    Biofilm formation was repressed by glucose in several species of Enterobacteriaceae. In Escherichia coli, this effect was mediated at least in part by cyclic AMP (cAMP)-cAMP receptor protein. A temporal role for cAMP in biofilm development was indicated by the finding that glucose addition after ∼24 h failed to repress and generally activated biofilm formation. PMID:12029060

  16. Biofilm formation affects surface properties of novel bioactive glass-containing composites.

    PubMed

    Hyun, Hong-Keun; Salehi, Satin; Ferracane, Jack L

    2015-12-01

    This study investigated the effects of bacterial biofilm on the surface properties of novel bioactive glass (BAG)-containing composites of different initial surface roughness. BAG (65 mol% Si; 4% P; 31% Ca) and BAG-F (61% Si; 31% Ca; 4% P; 3% F; 1% B) were synthesized by the sol-gel method and micronized (size ∼0.1-10 μm). Composites with 72wt% total filler load were prepared by replacing 15% of the silanized Sr glass with BAG, BAG-F, or silanized silica. Specimens (n=10/group) were light-cured and divided into 4 subgroups of different surface roughness by wet polishing with 600 and then up to 1200, 2400, or 4000 grit SiC. Surface roughness (SR), gloss, and Knoop microhardness were measured before and after incubating in media with or without a Streptococcus mutans (UA 159) biofilm for 2 weeks. Results were analyzed with ANOVA/Tukey's test (α=0.05). The SR of the BAG-containing composites with the smoothest surfaces (2400/4000 grit) increased in media or bacteria; the SR of the roughest composites (600 grit) decreased. The gloss of the smoothest BAG-containing composites decreased in bacteria and media-only, but more in media-alone. The microhardness of all of the composites decreased with exposure to media or bacteria, with BAG-containing composites affected more than the control. Exposure to bacterial biofilm and its media produced enhanced roughness and reduced gloss and surface microhardness of highly polished dental composites containing a bioactive glass additive, which could affect further biofilm formation, as well as the esthetics, of restorations made from such a material. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  17. Matrix exopolysaccharides; the sticky side of biofilm formation.

    PubMed

    Maunders, Eve; Welch, Martin

    2017-07-06

    The Gram-negative pathogen Pseudomonas aeruginosa is found ubiquitously within the environment and is recognised as an opportunistic human pathogen that commonly infects burn wounds and immunocompromised individuals, or patients suffering from the autosomal recessive disorder cystic fibrosis (CF). During chronic infection, P. aeruginosa is thought to form structured aggregates known as biofilms characterised by a self-produced matrix which encases the bacteria, protecting them from antimicrobial attack and the host immune response. In many cases, antibiotics are ineffective at eradicating P. aeruginosa from chronically infected CF airways. Cyclic-di-GMP has been identified as a key regulator of biofilm formation; however, the way in which its effector proteins elicit a change in biofilm formation remains unclear. Identifying regulators of biofilm formation is a key theme of current research and understanding the factors that activate biofilm formation may help to expose potential new drug targets that slow the onset of chronic infection. This minireview outlines the contribution made by exopolysaccharides to biofilm formation, and describes the current understanding of biofilm regulation in P. aeruginosa with a particular focus on CF airway-associated infections. © FEMS 2017.

  18. Inhibitory effects of Oenothera biennis (evening primrose) seed extract on Streptococcus mutans and S. mutans-induced dental caries in rats.

    PubMed

    Matsumoto-Nakano, M; Nagayama, K; Kitagori, H; Fujita, K; Inagaki, S; Takashima, Y; Tamesada, M; Kawabata, S; Ooshima, T

    2011-01-01

    Oenothera biennis (evening primrose) seed extract (OBSE) is known to contain polyphenols, which may possess antioxidant activities. Polyphenols extracted from several plants are reported to exhibit cariostatic activities by inhibiting mutans streptococcus growth and glucosyltransferase activities. The purpose of the present study was to examine the inhibitory effects of OBSE on the development of dental caries, both in vitro and in vivo. OBSE was investigated for its inhibitory effects on cellular aggregation, hydrophobicity, sucrose-dependent adherence and insoluble glucan synthesis. Furthermore, biofilm formation was examined in the presence of OBSE, using confocal microscopic imaging. An animal experiment was also performed to examine the in vivo effects. OBSE induced a strong aggregation of Streptococcus mutans MT8148 cells, while cell surface hydrophobicity was decreased by approximately 90% at a concentration of 0.25 mg/ml. The sucrose-dependent adherence of the MT8148 cells was also reduced by addition of OBSE, with a reduction rate of 73% seen at a concentration of 1.00 mg/ml. Additionally, confocal microscopic observations revealed the biofilm development phase to be remarkably changed in the presence of OBSE. Furthermore, insoluble glucan synthesis was significantly reduced when OBSE was present at concentrations greater than 0.03 mg/ml. In an animal experiment, the caries scores in rats given OBSE (0.05 mg/ml in drinking water) were significantly lower than those in rats given water without OBSE. Our results indicate that OBSE has inhibitory activity on dental caries. 2011 S. Karger AG, Basel.

  19. Synergistic biofilm formation by Treponema denticola and Porphyromonas gingivalis.

    PubMed

    Yamada, Mitsunori; Ikegami, Akihiko; Kuramitsu, Howard K

    2005-09-15

    Biofilm formation is an important step in the etiology of periodontal diseases. In this study, in vitro biofilm formation by Treponema denticola and Porphyromonas gingivalis 381 displayed synergistic effects. Confocal microscopy demonstrated that P. gingivalis attaches to the substratum first as a primary colonizer followed by coaggregation with T. denticola to form a mixed biofilm. The T. denticola flagella mutant as well as the cytoplasmic filament mutant were shown to be essential for biofilm formation as well as coaggregation with P. gingivalis. The major fimbriae and Arg-gingipain B of P. gingivalis also play important roles in biofilm formation with T. denticola.

  20. Biofilm Formation by Cryptococcus neoformans.

    PubMed

    Martinez, Luis R; Casadevall, Arturo

    2015-06-01

    The fungus Cryptococcus neoformans possesses a polysaccharide capsule and can form biofilms on medical devices. The increasing use of ventriculoperitoneal shunts to manage intracranial hypertension associated with cryptococcal meningoencephalitis highlights the importance of investigating the biofilm-forming properties of this organism. Like other microbe-forming biofilms, C. neoformans biofilms are resistant to antimicrobial agents and host defense mechanisms, causing significant morbidity and mortality. This chapter discusses the recent advances in the understanding of cryptococcal biofilms, including the role of its polysaccharide capsule in adherence, gene expression, and quorum sensing in biofilm formation. We describe novel strategies for the prevention or eradication of cryptococcal colonization of medical prosthetic devices. Finally, we provide fresh thoughts on the diverse but interesting directions of research in this field that may result in new insights into C. neoformans biology.

  1. Biofilm Formation Characteristics of Pseudomonas lundensis Isolated from Meat.

    PubMed

    Liu, Yong-Ji; Xie, Jing; Zhao, Li-Jun; Qian, Yun-Fang; Zhao, Yong; Liu, Xiao

    2015-12-01

    Biofilms formations of spoilage and pathogenic bacteria on food or food contact surfaces have attracted increasing attention. These events may lead to a higher risk of food spoilage and foodborne disease transmission. While Pseudomonas lundensis is one of the most important bacteria that cause spoilage in chilled meat, its capability for biofilm formation has been seldom reported. Here, we investigated biofilm formation characteristics of P. lundensis mainly by using crystal violet staining, and confocal laser scanning microscopy (CLSM). The swarming and swimming motility, biofilm formation in different temperatures (30, 10, and 4 °C) and the protease activity of the target strain were also assessed. The results showed that P. lundensis showed a typical surface-associated motility and was quite capable of forming biofilms in different temperatures (30, 10, and 4 °C). The strain began to adhere to the contact surfaces and form biofilms early in the 4 to 6 h. The biofilms began to be formed in massive amounts after 12 h at 30 °C, and the extracellular polysaccharides increased as the biofilm structure developed. Compared with at 30 °C, more biofilms were formed at 4 and 10 °C even by a low bacterial density. The protease activity in the biofilm was significantly correlated with the biofilm formation. Moreover, the protease activity in biofilm was significantly higher than that of the corresponding planktonic cultures after cultured 12 h at 30 °C. © 2015 Institute of Food Technologists®

  2. Biofilm formation by pathogenic Prototheca algae.

    PubMed

    Kwiecinski, J

    2015-12-01

    Prototheca microalgae are the only plants known to cause infections in humans and animals. The mechanisms of Prototheca infections are poorly understood, and no good treatments are available. Biofilms-surface-attached, three-dimensional microbial communities contributing to chronic infections-are formed by many pathogenic bacteria and fungi, but it is not known if Prototheca algae also have this ability. This study shows that various Prototheca species form biofilms composed of surface-attached cells in all growth phases, linked together by matrix containing DNA and polysaccharides. Biofilm formation was modulated by the presence of host plasma or milk. Compared to planktonic cells, Prototheca biofilms caused decreased release of IL-6 by mononuclear immune cells and responded differently to treatment with antimicrobials. Prototheca biofilms possibly contribute to chronic and hard-to-treat character of those algal infections. Prototheca algae are the only existing pathogenic plants. Almost nothing is known about mechanisms of Prototheca infections. This study identifies that, similar to pathogenic bacteria and fungi, Prototheca algae can form biofilms. These biofilms induce reduced immune cell activation relative to planktonic cells, and are also less susceptible to antimicrobials. Biofilm formation by Prototheca could be the first in vitro correlate of pathogenicity, opening a new research field for this pathogen. © 2015 The Society for Applied Microbiology.

  3. Cytotoxicity of novel fluoride solutions and their influence on mineral loss from enamel exposed to a Streptococcus mutans biofilm.

    PubMed

    Vieira, Thiago Isidro; Câmara, João Victor Frazão; Cardoso, Júlia Gabiroboertz; Alexandria, Adílis Kalina; Pintor, Andréa Vaz Braga; Villaça, Jaqueline Correia; Cabral, Lúcio Mendes; Romanos, Maria Teresa Villela; Fonseca-Gonçalves, Andrea; Valença, Ana Maria Gondim; Maia, Lucianne Cople

    2018-07-01

    This study evaluated the cytotoxicity, antimicrobial activity and in vitro influence of new fluoridated nanocomplexes on dental demineralization. The nanocomplexes hydroxypropyl-β-cyclodextrin with 1% titanium tetrafluoride (TiF 4 ) and γ-cyclodextrin with TiF 4 were compared to a positive control (TiF 4 ), a blank control (without treatment) and negative controls (hydroxypropyl-β-cyclodextrin, γ-cyclodextrin, deionized water), following 12- and 72-hour complexation periods. The cytotoxicity was assessed using the neutral red dye uptake assay at T1-15 min, T2-30 min and T3-24 h. A minimum bactericidal concentration (MBC) against Streptococcus mutans (ATCC 25175) was performed. Enamel blocks were exposed to an S. mutans biofilm, and the percentage of surface microhardness loss was obtained. Biocompatibility and microhardness data were analysed using ANOVA/Tukey tests (p < 0.05). At T1, the cell viability results of the nanocomplexes were similar to that of the blank control. At T2 and T3, the 72 h nanocomplexes demonstrated cell viability results similar to that of the blank, while the 12 h solutions showed results different from that of the blank (p < 0.05). All fluoridated nanocompounds inhibited S. mutans (MBC = 0.25%), while the MBC of TiF 4 alone was 0.13%. All fluoridated compounds presented a percentage of surface microhardness loss lower than that of deionized water (p < 0.05). The new fluoridated nanocomplexes did not induce critical cytotoxic effects during the experimental periods, whilst they did show bactericidal potential against S. mutans and inhibited enamel mineral loss. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Betulin inhibits cariogenic properties of Streptococcus mutans by targeting vicRK and gtf genes.

    PubMed

    Viszwapriya, Dharmaprakash; Subramenium, Ganapathy Ashwinkumar; Radhika, Solai; Pandian, Shunmugiah Karutha

    2017-01-01

    Streptococcus mutans, a multivirulent pathogen is considered the primary etiological agent in dental caries. Development of antibiotic resistance in the pathogen has created a need for novel antagonistic agents which can control the virulence of the organism and reduce resistance development. The present study demonstrates the in vitro anti-virulence potential of betulin (lup-20(29)-ene-3β,28-diol), an abundantly available plant triterpenoid against S. mutans UA159. Betulin exhibited significant dose dependent antibiofilm activity without affecting bacterial viability. At 240 µg/ml (biofilm inhibitory concentration), betulin inhibited biofilm formation and adherence to smooth glass surfaces by 93 and 71 % respectively. It reduced water insoluble glucan synthesis by 89 %, in conjunction with down regulation of gtfBC genes. Microscopic analysis confirmed the disruption in biofilm architecture and decreased exopolysaccharide production. Acidogenicity and aciduricity, key virulence factors responsible for carious lesions, were also notably affected. The induced auto-aggregation of cells upon treatment could be due to the down regulation of vicK. Results of gene expression analysis demonstrated significant down-regulation of virulence genes upon betulin treatment. Furthermore, the nontoxic effect of betulin on peripheral blood mononuclear cells even after 72 h treatment makes it a strong candidate for assessing its suitability to be used as a therapeutic agent.

  5. Prevention of biofilm formation and removal of existing biofilms by extracellular DNases of Campylobacter jejuni.

    PubMed

    Brown, Helen L; Reuter, Mark; Hanman, Kate; Betts, Roy P; van Vliet, Arnoud H M

    2015-01-01

    The fastidious nature of the foodborne bacterial pathogen Campylobacter jejuni contrasts with its ability to survive in the food chain. The formation of biofilms, or the integration into existing biofilms by C. jejuni, is thought to contribute to food chain survival. As extracellular DNA (eDNA) has previously been proposed to play a role in C. jejuni biofilms, we have investigated the role of extracellular DNases (eDNases) produced by C. jejuni in biofilm formation. A search of 2791 C. jejuni genomes highlighted that almost half of C. jejuni genomes contains at least one eDNase gene, but only a minority of isolates contains two or three of these eDNase genes, such as C. jejuni strain RM1221 which contains the cje0256, cje0566 and cje1441 eDNase genes. Strain RM1221 did not form biofilms, whereas the eDNase-negative strains NCTC 11168 and 81116 did. Incubation of pre-formed biofilms of NCTC 11168 with live C. jejuni RM1221 or with spent medium from a RM1221 culture resulted in removal of the biofilm. Inactivation of the cje1441 eDNase gene in strain RM1221 restored biofilm formation, and made the mutant unable to degrade biofilms of strain NCTC 11168. Finally, C. jejuni strain RM1221 was able to degrade genomic DNA from C. jejuni NCTC 11168, 81116 and RM1221, whereas strain NCTC 11168 and the RM1221 cje1441 mutant were unable to do so. This was mirrored by an absence of eDNA in overnight cultures of C. jejuni RM1221. This suggests that the activity of eDNases in C. jejuni affects biofilm formation and is not conducive to a biofilm lifestyle. These eDNases do however have a potential role in controlling biofilm formation by C. jejuni strains in food chain relevant environments.

  6. Streptococcus mutans clonal variation revealed by multilocus sequence typing.

    PubMed

    Nakano, Kazuhiko; Lapirattanakul, Jinthana; Nomura, Ryota; Nemoto, Hirotoshi; Alaluusua, Satu; Grönroos, Lisa; Vaara, Martti; Hamada, Shigeyuki; Ooshima, Takashi; Nakagawa, Ichiro

    2007-08-01

    Streptococcus mutans is the major pathogen of dental caries, a biofilm-dependent infectious disease, and occasionally causes infective endocarditis. S. mutans strains have been classified into four serotypes (c, e, f, and k). However, little is known about the S. mutans population, including the clonal relationships among strains of S. mutans, in relation to the particular clones that cause systemic diseases. To address this issue, we have developed a multilocus sequence typing (MLST) scheme for S. mutans. Eight housekeeping gene fragments were sequenced from each of 102 S. mutans isolates collected from the four serotypes in Japan and Finland. Between 14 and 23 alleles per locus were identified, allowing us theoretically to distinguish more than 1.2 x 10(10) sequence types. We identified 92 sequence types in these 102 isolates, indicating that S. mutans contains a diverse population. Whereas serotype c strains were widely distributed in the dendrogram, serotype e, f, and k strains were differentiated into clonal complexes. Therefore, we conclude that the ancestral strain of S. mutans was serotype c. No geographic specificity was identified. However, the distribution of the collagen-binding protein gene (cnm) and direct evidence of mother-to-child transmission were clearly evident. In conclusion, the superior discriminatory capacity of this MLST scheme for S. mutans may have important practical implications.

  7. Flagellar motility is critical for Listeria monocytogenes biofilm formation.

    PubMed

    Lemon, Katherine P; Higgins, Darren E; Kolter, Roberto

    2007-06-01

    The food-borne pathogen Listeria monocytogenes attaches to environmental surfaces and forms biofilms that can be a source of food contamination, yet little is known about the molecular mechanisms of its biofilm development. We observed that nonmotile mutants were defective in biofilm formation. To investigate how flagella might function during biofilm formation, we compared the wild type with flagellum-minus and paralyzed-flagellum mutants. Both nonmotile mutants were defective in biofilm development, presumably at an early stage, as they were also defective in attachment to glass during the first few hours of surface exposure. This attachment defect could be significantly overcome by providing exogenous movement toward the surface via centrifugation. However, this centrifugation did not restore mature biofilm formation. Our results indicate that it is flagellum-mediated motility that is critical for both initial surface attachment and subsequent biofilm formation. Also, any role for L. monocytogenes flagella as adhesins on abiotic surfaces appears to be either minimal or motility dependent under the conditions we examined.

  8. Cariogenicity induced by commercial carbonated beverages in an experimental biofilm-caries model

    PubMed Central

    Giacaman, Rodrigo A.; Pailahual, Vanesa; Díaz-Garrido, Natalia

    2018-01-01

    Objectives: Frequent consumption of sugars-containing carbonated beverages has been associated with caries, but the consequences on the dental biofilm remain unclear. The aim was to evaluate the effect of commercial carbonated beverages and their sugar-free version on enamel and dentine demineralization and on the cariogenic properties of Streptococcus mutans biofilms. Materials and Methods: Biofilms of S. mutans UA159 were grown on enamel and dentin slabs and exposed 3 times/day for 5 min, to a commercial cola or orange-flavored carbonated beverage or to their sugar-free version. Biofilms/slabs were recovered to assess biomass, viable microorganisms, protein content and polysaccharides. Demineralization was estimated by the variation of Knoop surface microhardness. Results: Exposures to the biofilm with sugars-containing carbonated beverages resulted in similar biomass, viable microorganisms, proteins, and polysaccharides than sucrose (P < 0.05). The sugar-free cola and orange-flavored drink showed lower effect on the biofilm, as compared with sucrose or their sugared version (P < 0.05). All of the products tested, included the sugar-free, showed higher demineralization than the negative control (P < 0.05). Conclusions: Sugars-containing carbonated beverages enhance cariogenic activity of S. mutans biofilms, comparable with sucrose. Sugar-free carbonated beverages also have a high demineralizing potential, without affecting biofilm properties. PMID:29657522

  9. Animal models to investigate fungal biofilm formation.

    PubMed

    Chandra, Jyotsna; Pearlman, Eric; Ghannoum, Mahmoud A

    2014-01-01

    Microbial biofilms play an essential role in several infectious diseases and are defined as extensive communities of sessile organisms irreversibly associated with a surface, encased within a polysaccharide-rich extracellular matrix (ECM), and exhibiting enhanced resistance to antimicrobial drugs. Forming a biofilm provides the microbes protection from environmental stresses due to contaminants, nutritional depletion, or imbalances, but is dangerous to human health due to their inherent robustness and elevated resistance.The use of indwelling medical devices (e.g., central venous catheters, CVCs) in current therapeutic practice is associated with 80-90 % of hospital-acquired bloodstream and deep tissue infections. Most cases of catheter-related bloodstream infections (CRBSIs) involve colonization of microorganisms on catheter surfaces where they form a biofilm. Additionally, Fusarium solani and F. oxysporum were the causative organisms of the 2005/2006 outbreak of contact lens-associated fungal keratitis in the United States, Europe, the UK, and Singapore, and these infections involved formation of biofilms on contact lens. Fungal biofilm formation is studied using a number of techniques, involving the use of a wide variety of substrates and growth conditions. In vitro techniques involving the use of confocal scanning laser/scanning electron microscopy, metabolic activity assay, dry weight measurements, and antifungal susceptibility assays are increasingly used by investigators to quantify and evaluate biofilm morphology. However, there are not many in vivo models used to validate biofilm-associated infections. In this protocol, we describe a clinically relevant rabbit model of C. albicans biofilm-associated catheter infection to evaluate the morphology, topography, and architecture of fungal biofilms. We also describe a murine model of contact lens-associated Fusarium keratitis.Evaluation of the formation of fungal biofilms on catheters in vivo, their analysis

  10. Role of Glucosyltransferase B in Interactions of Candida albicans with Streptococcus mutans and with an Experimental Pellicle on Hydroxyapatite Surfaces ▿ †

    PubMed Central

    Gregoire, S.; Xiao, J.; Silva, B. B.; Gonzalez, I.; Agidi, P. S.; Klein, M. I.; Ambatipudi, K. S.; Rosalen, P. L.; Bauserman, R.; Waugh, R. E.; Koo, H.

    2011-01-01

    Candida albicans and mutans streptococci are frequently detected in dental plaque biofilms from toddlers afflicted with early childhood caries. Glucosyltransferases (Gtfs) secreted by Streptococcus mutans bind to saliva-coated apatite (sHA) and to bacterial surfaces, synthesizing exopolymers in situ, which promote cell clustering and adherence to tooth enamel. We investigated the potential role Gtfs may play in mediating the interactions between C. albicans SC5314 and S. mutans UA159, both with each other and with the sHA surface. GtfB adhered effectively to the C. albicans yeast cell surface in an enzymatically active form, as determined by scintillation spectroscopy and fluorescence imaging. The glucans formed on the yeast cell surface were more susceptible to dextranase than those synthesized in solution or on sHA and bacterial cell surfaces (P < 0.05), indicating an elevated α-1,6-linked glucose content. Fluorescence imaging revealed that larger numbers of S. mutans cells bound to C. albicans cells with glucans present on their surface than to yeast cells without surface glucans (uncoated). The glucans formed in situ also enhanced C. albicans interactions with sHA, as determined by a novel single-cell micromechanical method. Furthermore, the presence of glucan-coated yeast cells significantly increased the accumulation of S. mutans on the sHA surface (versus S. mutans incubated alone or mixed with uncoated C. albicans; P < 0.05). These data reveal a novel cross-kingdom interaction that is mediated by bacterial GtfB, which readily attaches to the yeast cell surface. Surface-bound GtfB promotes the formation of a glucan-rich matrix in situ and may enhance the accumulation of S. mutans on the tooth enamel surface, thereby modulating the development of virulent biofilms. PMID:21803906

  11. Fractal analysis of Xylella fastidiosa biofilm formation

    NASA Astrophysics Data System (ADS)

    Moreau, A. L. D.; Lorite, G. S.; Rodrigues, C. M.; Souza, A. A.; Cotta, M. A.

    2009-07-01

    We have investigated the growth process of Xylella fastidiosa biofilms inoculated on a glass. The size and the distance between biofilms were analyzed by optical images; a fractal analysis was carried out using scaling concepts and atomic force microscopy images. We observed that different biofilms show similar fractal characteristics, although morphological variations can be identified for different biofilm stages. Two types of structural patterns are suggested from the observed fractal dimensions Df. In the initial and final stages of biofilm formation, Df is 2.73±0.06 and 2.68±0.06, respectively, while in the maturation stage, Df=2.57±0.08. These values suggest that the biofilm growth can be understood as an Eden model in the former case, while diffusion-limited aggregation (DLA) seems to dominate the maturation stage. Changes in the correlation length parallel to the surface were also observed; these results were correlated with the biofilm matrix formation, which can hinder nutrient diffusion and thus create conditions to drive DLA growth.

  12. Investigating Microbial Biofilm Formations on Crustal Rock Substrates

    NASA Astrophysics Data System (ADS)

    Weiser, M.; D'Angelo, T.; Carr, S. A.; Orcutt, B.

    2017-12-01

    Ocean crust hosts microbial life that, in some cases, alter the component rocks as a means of obtaining energy. Variations in crust lithology, included trace metal and mineral content, as well as the chemistry of the fluids circulating through them, provide substrates for some microbes to metabolize, leading to formation of biofilm community structures. Microbes have different parameters for the situations in which they will form biofilms, but they must have some source of energy in excess at the site of biofilm formation for them to become stationary and form the carbohydrate-rich structures connecting the cells to one another and the substrate. Generally, the requirements for microbes to form biofilms on crustal minerals are unclear. We designed two experiments to test (1) mineral preference and biofilm formation rates by natural seawater microbial communities, and (2) biofilm development as a function of phosphate availability for an organism isolated from subseafloor ocean crust. In Experiment 1, we observed that phyric basalt groundmass is preferentially colonized over aphyric basalt or metal sulfides in a shallow water and oxic seawater environment. In experiment 2, tests of the anaerobic heterotroph Thalassospira bacteria isolated from oceanic crustal fluids showed that they preferentially form biofilms, lose motility, and increase exponentially in number over time in higher-PO4 treatments (50 micromolar), including with phosphate-doped basalts, than in treatments with low phosphate concentrations (0.5 micromolar) often found in crustal fluids. These observations suggest phosphate as a main driver of biofilm formation in subsurface crust. Overall, these data suggest that the drivers of microbial biofilm formation on crustal substrates are selective to the substrate conditions, which has important implications for estimating the global biomass of life harbored in oceanic crust.

  13. Antigen I/II encoded by integrative and conjugative elements of Streptococcus agalactiae and role in biofilm formation.

    PubMed

    Chuzeville, Sarah; Dramsi, Shaynoor; Madec, Jean-Yves; Haenni, Marisa; Payot, Sophie

    2015-11-01

    Streptococcus agalactiae (i.e. Group B streptococcus, GBS) is a major human and animal pathogen. Genes encoding putative surface proteins and in particular an antigen I/II have been identified on Integrative and Conjugative Elements (ICEs) found in GBS. Antigens I/II are multimodal adhesins promoting colonization of the oral cavity by streptococci such as Streptococcus gordonii and Streptococcus mutans. The prevalence and diversity of antigens I/II in GBS were studied by a bioinformatic analysis. It revealed that antigens I/II, which are acquired by horizontal transfer via ICEs, exhibit diversity and are widespread in GBS, in particular in the serotype Ia/ST23 invasive strains. This study aimed at characterizing the impact on GBS biology of proteins encoded by a previously characterized ICE of S. agalactiae (ICE_515_tRNA(Lys)). The production and surface exposition of the antigen I/II encoded by this ICE was examined using RT-PCR and immunoblotting experiments. Surface proteins of ICE_515_tRNA(Lys) were found to contribute to GBS biofilm formation and to fibrinogen binding. Contribution of antigen I/II encoded by SAL_2056 to biofilm formation was also demonstrated. These results highlight the potential for ICEs to spread microbial adhesins between species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Effect of alkylphospholipids on Candida albicans biofilm formation and maturation.

    PubMed

    Vila, Taissa V M; Ishida, Kelly; de Souza, Wanderley; Prousis, Kyriakos; Calogeropoulou, Theodora; Rozental, Sonia

    2013-01-01

    The aim of this study was to evaluate miltefosine and four synthetic compounds (TCAN26, TC19, TC106 and TC117) for their in vitro inhibitory activity against Candida albicans planktonic and biofilm cells and investigate whether these compounds are able to inhibit the biofilm formation and to reduce the viability of mature C. albicans biofilm cells. The XTT reduction assay and transmission and scanning electron microscopy were employed to determine the inhibitory effects of the test compounds in comparison with amphotericin B and fluconazole against both planktonic cells and sessile cells in biofilms. C. albicans planktonic cells were susceptible to miltefosine, TCAN26 and TC19, all alkylphospholipid compounds. Miltefosine and TCAN26 present a fungicidal activity with similar values of MIC and minimum fungicidal concentration (MFC), ranging from 2 to 8 mg/L. Cell treatment with sub-inhibitory concentrations of alkylphospholipids induced several ultrastructural alterations. In relation to biofilms, miltefosine reduced formation (38%-71%) and mature biofilms viability (32%-44%), at concentrations of 64 mg/L. TCAN26 also reduced biofilm formation (24%-30%) and mature biofilm viability (15%-20%), at concentrations of 64 mg/L. Although amphotericin B reduced biofilm formation similarly to miltefosine (51%-74%), its activity was lower on mature biofilms (24%-30%). Miltefosine antibiofilm activity was significantly higher than amphotericin B, on both formation and mature biofilms (P<0.05 and P<0.0001, respectively). Fluconazole was the least effective compound tested. Promising antibiofilm activity was displayed by miltefosine and other alkylphosphocholine compounds, which could be considered a putative option for future treatment of candidaemia associated with biofilm formation, although further evaluation in in vivo systems is required.

  15. Alpha-Toxin Contributes to Biofilm Formation among Staphylococcus aureus Wound Isolates

    PubMed Central

    Anderson, Michele J.; Schaaf, Emily; Wallis, Heidi W.; Johnson, James R.; Tkaczyk, Christine; Sellman, Bret R.; Sun, Jisun; Peterson, Marnie L.

    2018-01-01

    Biofilms complicate treatment of Staphylococcus aureus (SA) wound infections. Previously, we determined alpha-toxin (AT)-promoted SA biofilm formation on mucosal tissue. Therefore, we evaluated SA wound isolates for AT production and biofilm formation on epithelium and assessed the role of AT in biofilm formation. Thirty-eight wound isolates were molecularly typed by pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (ST), and spa typing. We measured biofilm formation of these SA isolates in vitro and ex vivo and quantified ex vivo AT production. We also investigated the effect of an anti-AT monoclonal antibody (MEDI4893*) on ex vivo biofilm formation by methicillin-resistant SA (USA 300 LAC) and tested whether purified AT rescued the biofilm defect of hla mutant SA strains. The predominant PFGE/ST combinations were USA100/ST5 (50%) and USA300/ST8 (33%) for methicillin-resistant SA (MRSA, n = 18), and USA200/ST30 (20%) for methicillin-susceptible SA (MSSA, n = 20). Ex vivo AT production correlated significantly with ex vivo SA wound isolate biofilm formation. Anti-alpha-toxin monoclonal antibody (MEDI4893*) prevented ex vivo biofilm formation by MRSA USA300 strain LAC. Wild-type AT rescued the ex vivo biofilm defect of non-AT producing SA strains. These findings provide evidence that AT plays a role in SA biofilm formation on epithelial surfaces and suggest that neutralization of AT may be useful in preventing and treating SA infections. PMID:29659477

  16. Characterization of the effect of serum and chelating agents on Staphylococcus aureus biofilm formation; chelating agents augment biofilm formation through clumping factor B

    NASA Astrophysics Data System (ADS)

    Abraham, Nabil Mathew

    Staphylococcus aureus is the causative agent of a diverse array of acute and chronic infections, and some these infections, including infective endocarditis, joint infections, and medical device-associated bloodstream infections, depend upon its capacity to form tenacious biofilms on surfaces. Inserted medical devices such as intravenous catheters, pacemakers, and artificial heart valves save lives, but unfortunately, they can also serve as a substrate on which S. aureus can form a biofilm, attributing S. aureus as a leading cause of medical device-related infections. The major aim of this work was take compounds to which S. aureus would be exposed during infection and to investigate their effects on its capacity to form a biofilm. More specifically, the project investigated the effects of serum, and thereafter of catheter lock solutions on biofilm formation by S. aureus. Pre-coating polystyrene with serum is frequently used as a method to augment biofilm formation. The effect of pre-coating with serum is due to the deposition of extracellular matrix components onto the polystyrene, which are then recognized by MSCRAMMs. We therefore hypothesized that the major component of blood, serum, would induce biofilm formation. Surprisingly, serum actually inhibited biofilm formation. The inhibitory activity was due to a small molecular weight, heat-stable, non-proteinaceous component/s of serum. Serum-mediated inhibition of biofilm formation may represent a previously uncharacterized aspect of host innate immunity that targets the expression of a key bacterial virulence factor: the ability to establish a resistant biofilm. Metal ion chelators like sodium citrate are frequently chosen to lock intravenous catheters because they are regarded as potent inhibitors of bacterial biofilm formation and viability. We found that, while chelating compounds abolished biofilm formation in most strains of S. aureus, they actually augmented the phenotype in a subset of strains. We

  17. Patterned biofilm formation reveals a mechanism for structural heterogeneity in bacterial biofilms.

    PubMed

    Gu, Huan; Hou, Shuyu; Yongyat, Chanokpon; De Tore, Suzanne; Ren, Dacheng

    2013-09-03

    Bacterial biofilms are ubiquitous and are the major cause of chronic infections in humans and persistent biofouling in industry. Despite the significance of bacterial biofilms, the mechanism of biofilm formation and associated drug tolerance is still not fully understood. A major challenge in biofilm research is the intrinsic heterogeneity in the biofilm structure, which leads to temporal and spatial variation in cell density and gene expression. To understand and control such structural heterogeneity, surfaces with patterned functional alkanthiols were used in this study to obtain Escherichia coli cell clusters with systematically varied cluster size and distance between clusters. The results from quantitative imaging analysis revealed an interesting phenomenon in which multicellular connections can be formed between cell clusters depending on the size of interacting clusters and the distance between them. In addition, significant differences in patterned biofilm formation were observed between wild-type E. coli RP437 and some of its isogenic mutants, indicating that certain cellular and genetic factors are involved in interactions among cell clusters. In particular, autoinducer-2-mediated quorum sensing was found to be important. Collectively, these results provide missing information that links cell-to-cell signaling and interaction among cell clusters to the structural organization of bacterial biofilms.

  18. Ginger Extract Inhibits Biofilm Formation by Pseudomonas aeruginosa PA14

    PubMed Central

    Kim, Han-Shin; Park, Hee-Deung

    2013-01-01

    Bacterial biofilm formation can cause serious problems in clinical and industrial settings, which drives the development or screening of biofilm inhibitors. Some biofilm inhibitors have been screened from natural products or modified from natural compounds. Ginger has been used as a medicinal herb to treat infectious diseases for thousands of years, which leads to the hypothesis that it may contain chemicals inhibiting biofilm formation. To test this hypothesis, we evaluated ginger’s ability to inhibit Pseudomonas aeruginosa PA14 biofilm formation. A static biofilm assay demonstrated that biofilm development was reduced by 39–56% when ginger extract was added to the culture. In addition, various phenotypes were altered after ginger addition of PA14. Ginger extract decreased production of extracellular polymeric substances. This finding was confirmed by chemical analysis and confocal laser scanning microscopy. Furthermore, ginger extract formed noticeably less rugose colonies on agar plates containing Congo red and facilitated swarming motility on soft agar plates. The inhibition of biofilm formation and the altered phenotypes appear to be linked to a reduced level of a second messenger, bis-(3′-5′)-cyclic dimeric guanosine monophosphate. Importantly, ginger extract inhibited biofilm formation in both Gram-positive and Gram-negative bacteria. Also, surface biofilm cells formed with ginger extract detached more easily with surfactant than did those without ginger extract. Taken together, these findings provide a foundation for the possible discovery of a broad spectrum biofilm inhibitor. PMID:24086697

  19. Identification and functional analysis of the L-ascorbate-specific enzyme II complex of the phosphotransferase system in Streptococcus mutans.

    PubMed

    Wu, Xinyu; Hou, Jin; Chen, Xiaodan; Chen, Xuan; Zhao, Wanghong

    2016-03-22

    Streptococcus mutans is the primary etiological agent of human dental caries. It can metabolize a wide variety of carbohydrates and produce large amounts of organic acids that cause enamel demineralization. Phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS) plays an important role in carbohydrates uptake of S. mutans. The ptxA and ptxB genes in S. mutans encode putative enzyme IIA and enzyme IIB of the L-ascorbate-specific PTS. The aim of this study was to analyze the function of these proteins and understand the transcriptional regulatory mechanism. ptxA (-), ptxB (-), as well as ptxA (-) , ptxB (-) double-deletion mutants all had more extended lag phase and lower growth yield than wild-type strain UA159 when grown in the medium using L-ascorbate as the sole carbon source. Acid production and acid killing assays showed that the absence of the ptxA and ptxB genes resulted in a reduction in the capacity for acidogenesis, and all three mutant strains did not survive an acid shock. According to biofilm and extracellular polysaccharides (EPS) formation analysis, all the mutant strains formed much less prolific biofilms with small amounts of EPS than wild-type UA159 when using L-ascorbate as the sole carbon source. Moreover, PCR analysis and quantitative real-time PCR revealed that sgaT, ptxA, ptxB, SMU.273, SMU.274 and SMU.275 appear to be parts of the same operon. The transcription levels of these genes were all elevated in the presence of L-ascorbate, and the expression of ptxA gene decreased significantly once ptxB gene was knockout. The ptxA and ptxB genes are involved in the growth, aciduricity, acidogenesis, and formation of biofilms and EPS of S. mutans when L-ascorbate is the sole carbon source. In addition, the expression of ptxA is regulated by ptxB. ptxA, ptxB, and the upstream gene sgaT, the downstream genes SMU.273, SMU.274 and SMU.275 appear to be parts of the same operon, and L-ascorbate is a potential inducer of the operon.

  20. Cymbopogon citratus essential oil: effect on polymicrobial caries-related biofilm with low cytotoxicity.

    PubMed

    Oliveira, Maria Alcionéia Carvalho de; Borges, Aline Chiodi; Brighenti, Fernanda Lourenção; Salvador, Marcos José; Gontijo, Aline Vidal Lacerda; Koga-Ito, Cristiane Yumi

    2017-11-06

    The objective of this study was to evaluate the effects of Cymbopogon citratus essential oil and its main compound (citral) against primary dental colonizers and caries-related species. Chemical characterization of the essential oil was performed by gas chromatography/mass spectroscopy (GC/MS), and the main compound was determined. Antimicrobial activity was tested against Actinomyces naeslundii, Lactobacillus acidophilus, S. gordonii, S. mitis, S. mutans, S. sanguinis and S. sobrinus. Minimum inhibitory and bactericide concentrations were determined by broth microdilution assay for streptococci and lactobacilli reference, and for clinical strains. The effect of the essential oil on bacterial adhesion and biofilm formation/disruption was investigated. Negative (without treatment) and positive controls (chlorhexidine) were used. The effect of citral on preformed biofilm was also tested using the same methodology. Monospecies and microcosm biofilms were tested. ANOVA or Kruskal-Wallis tests were used (α=0.05). Cytotoxicity of the essential oil to human keratinocytes was performed by MTT assay. GC/MS demonstrated one major component (citral). The essential oil showed an inhibitory effect on all tested bacterial species, including S. mutans and L. acidophilus. Essential oil of C. citratus (10X MIC) reduced the number of viable cells of lactobacilli and streptococci biofilms (p < 0.05). The essential oil inhibited adhesion of caries-related polymicrobial biofilm to dental enamel (p < 0.01). Citral significantly reduced the number of viable cells of streptococci biofilm (p < 0.001). The essential oil showed low cytotoxicity to human keratinocytes. Based on these findings, this study can contribute to the development of new formulations for products like mouthwash, against dental biofilms.

  1. Characterization of biofilm formation by clinical isolates of Mycobacterium avium.

    PubMed

    Carter, George; Wu, Martin; Drummond, Daryl C; Bermudez, Luiz E

    2003-09-01

    Mycobacterium avium is an environmental organism encountered in natural and urban water sources as well as soil. M. avium biofilm has recently been identified on sauna walls and in city water pipes and might have a role in the survival of virulent strains in the environment and in the host. To characterize the M. avium biofilm, an in vitro model was adapted wherein biofilm develops on a PVC surface. Biofilm was detected by staining with crystal violet and visualization by optical microscopy and quantified by A(570). M. avium strains MAC 101, MAC 100, MAC 104, MAC 109, MAC A5 and MAC 5501 (all isolated from the blood of AIDS patients) were used in the assays. Biofilm formation was dependent on the presence of Ca(2+), Mg(2+) or Zn(2+) ions in the water, with the maximal effect seen at a concentration of 1 micro M. The presence of 2 % glucose and peptone as sources of carbon increased the formation of biofilm, while this was partially inhibited by humic acid. Since sliding motility has been associated with the amount of glycopeptidolipid (GPL), TLC was used to determine the presence of GPL. The supernatant of a biofilm-forming culture induced formation of a stable biofilm and amikacin blocked the establishment of biofilm by M. avium strains at subinhibitory concentrations. Bacteria in the biofilm were more resistant to chlorine as well as to exposure to potassium monopersulfate and chloroheximide acetate than were planktonic bacteria. Identification of M. avium genes involved in biofilm formation and further studies of the effect of antimicrobials on the establishment of biofilm may identify approaches for inhibiting M. avium biofilm formation and colonization.

  2. Involvement of signal peptidase I in Streptococcus sanguinis biofilm formation

    PubMed Central

    Ge, Xiuchun; Stone, Victoria; Zhu, Bin; Kitten, Todd

    2017-01-01

    Biofilm accounts for 65–80 % of microbial infections in humans. Considerable evidence links biofilm formation by oral microbiota to oral disease and consequently systemic infections. Streptococcus sanguinis, a Gram-positive bacterium, is one of the most abundant species of the oral microbiota and it contributes to biofilm development in the oral cavity. Due to its altered biofilm formation, we investigated a biofilm mutant, ΔSSA_0351, that is deficient in type I signal peptidase (SPase) in this study. Although the growth curve of the ΔSSA_0351 mutant showed no significant difference from that of the wild-type strain SK36, biofilm assays using both microtitre plate assay and confocal laser scanning microscopy (CLSM) confirmed a sharp reduction in biofilm formation in the mutant compared to the wild-type strain and the paralogous mutant ΔSSA_0849. Scanning electron microscopy (SEM) revealed remarkable differences in the cell surface morphologies and chain length of the ΔSSA_0351 mutant compared with those of the wild-type strain. Transcriptomic and proteomic assays using RNA sequencing and mass spectrometry, respectively, were conducted on the ΔSSA_0351 mutant to evaluate the functional impact of SPase on biofilm formation. Subsequently, bioinformatics analysis revealed a number of proteins that were differentially regulated in the ΔSSA_0351 mutant, narrowing down the list of SPase substrates involved in biofilm formation to lactate dehydrogenase (SSA_1221) and a short-chain dehydrogenase (SSA_0291). With further experimentation, this list defined the link between SSA_0351-encoded SPase, cell wall biosynthesis and biofilm formation. PMID:28869408

  3. Molecular mechanisms involved in Bacillus subtilis biofilm formation

    PubMed Central

    Mielich-Süss, Benjamin; Lopez, Daniel

    2014-01-01

    Summary Biofilms are the predominant lifestyle of bacteria in natural environments, and they severely impact our societies in many different fashions. Therefore, biofilm formation is a topic of growing interest in microbiology, and different bacterial models are currently studied to better understand the molecular strategies that bacteria undergo to build biofilms. Among those, biofilms of the soil-dwelling bacterium Bacillus subtilis are commonly used for this purpose. Bacillus subtilis biofilms show remarkable architectural features that are a consequence of sophisticated programs of cellular specialization and cell-cell communication within the community. Many laboratories are trying to unravel the biological role of the morphological features of biofilms, as well as exploring the molecular basis underlying cellular differentiation. In this review, we present a general perspective of the current state of knowledge of biofilm formation in B. subtilis. In particular, a special emphasis is placed on summarizing the most recent discoveries in the field and integrating them into the general view of these truly sophisticated microbial communities. PMID:24909922

  4. Boundaries for biofilm formation: humidity and temperature.

    PubMed

    Else, Terry Ann; Pantle, Curtis R; Amy, Penny S

    2003-08-01

    Environmental conditions which define boundaries for biofilm production could provide useful ecological information for biofilm models. A practical use of defined conditions could be applied to the high-level nuclear waste repository at Yucca Mountain. Data for temperature and humidity conditions indicate that decreases in relative humidity or increased temperature severely affect biofilm formation on three candidate canister metals.

  5. Motility of Pseudomonas aeruginosa contributes to SOS-inducible biofilm formation.

    PubMed

    Chellappa, Shakinah T; Maredia, Reshma; Phipps, Kara; Haskins, William E; Weitao, Tao

    2013-12-01

    DNA-damaging antibiotics such as ciprofloxacin induce biofilm formation and the SOS response through autocleavage of SOS-repressor LexA in Pseudomonas aeruginosa. However, the biofilm-SOS connection remains poorly understood. It was investigated with 96-well and lipid biofilm assays. The effects of ciprofloxacin were examined on biofilm stimulation of the SOS mutant and wild-type strains. The stimulation observed in the wild-type in which SOS was induced was reduced in the mutant in which LexA was made non-cleavable (LexAN) and thus SOS non-inducible. Therefore, the stimulation appeared to involve SOS. The possible mechanisms of inducible biofilm formation were explored by subproteomic analysis of outer membrane fractions extracted from biofilms. The data predicted an inhibitory role of LexA in flagellum function. This premise was tested first by functional and morphological analyses of flagellum-based motility. The flagellum swimming motility decreased in the LexAN strain treated with ciprofloxacin. Second, the motility-biofilm assay was performed, which tested cell migration and biofilm formation. The results showed that wild-type biofilm increased significantly over the LexAN. These results suggest that LexA repression of motility, which is the initial event in biofilm development, contributes to repression of SOS-inducible biofilm formation. Copyright © 2013 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  6. Denitrification-derived nitric oxide modulates biofilm formation in Azospirillum brasilense.

    PubMed

    Arruebarrena Di Palma, Andrés; Pereyra, Cintia M; Moreno Ramirez, Lizbeth; Xiqui Vázquez, María L; Baca, Beatriz E; Pereyra, María A; Lamattina, Lorenzo; Creus, Cecilia M

    2013-01-01

    Azospirillum brasilense is a rhizobacterium that provides beneficial effects on plants when they colonize roots. The formation of complex bacterial communities known as biofilms begins with the interaction of planktonic cells with surfaces in response to appropriate signals. Nitric oxide (NO) is a signaling molecule implicated in numerous processes in bacteria, including biofilm formation or dispersion, depending on genera and lifestyle. Azospirillum brasilense Sp245 produces NO by denitrification having a role in root growth promotion. We analyzed the role of endogenously produced NO on biofilm formation in A. brasilense Sp245 and in a periplasmic nitrate reductase mutant (napA::Tn5; Faj164) affected in NO production. Cells were statically grown in media with nitrate or ammonium as nitrogen sources and examined for biofilm formation using crystal violet and by confocal laser microscopy. Both strains formed biofilms, but the mutant produced less than half compared with the wild type in nitrate medium showing impaired nitrite production in this condition. NO measurements in biofilm confirmed lower values in the mutant strain. The addition of a NO donor showed that NO influences biofilm formation in a dose-dependent manner and reverses the mutant phenotype, indicating that Nap positively regulates the formation of biofilm in A. brasilense Sp245. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  7. Targeted Killing of Streptococcus mutans by a Pheromone-Guided “Smart” Antimicrobial Peptide

    PubMed Central

    Eckert, Randal ; He, Jian; Yarbrough, Daniel K.; Qi, Fengxia; Anderson, Maxwell H.; Shi, Wenyuan

    2006-01-01

    Within the repertoire of antibiotics available to a prescribing clinician, the majority affect a broad range of microorganisms, including the normal flora. The ecological disruption resulting from antibiotic treatment frequently results in secondary infections or other negative clinical consequences. To address this problem, our laboratory has recently developed a new class of pathogen-selective molecules, called specifically (or selectively) targeted antimicrobial peptides (STAMPs), based on the fusion of a species-specific targeting peptide domain with a wide-spectrum antimicrobial peptide domain. In the current study, we focused on achieving targeted killing of Streptococcus mutans, a cavity-causing bacterium that resides in a multispecies microbial community (dental plaque). In particular, we explored the possibility of utilizing a pheromone produced by S. mutans, namely, the competence stimulating peptide (CSP), as a STAMP targeting domain to mediate S. mutans-specific delivery of an antimicrobial peptide domain. We discovered that STAMPs constructed with peptides derived from CSP were potent against S. mutans grown in liquid or biofilm states but did not affect other oral streptococci tested. Further studies showed that an 8-amino-acid region within the CSP sequence is sufficient for targeted delivery of the antimicrobial peptide domain to S. mutans. The STAMPs presented here are capable of eliminating S. mutans from multispecies biofilms without affecting closely related noncariogenic oral streptococci, indicating the potential of these molecules to be developed into “probiotic” antibiotics which could selectively eliminate pathogens while preserving the protective benefits of a healthy normal flora. PMID:17060534

  8. Effect of Psidium cattleianum leaf extract on Streptococcus mutans viability, protein expression and acid production.

    PubMed

    Brighenti, F L; Luppens, S B I; Delbem, A C B; Deng, D M; Hoogenkamp, M A; Gaetti-Jardim, E; Dekker, H L; Crielaard, W; ten Cate, J M

    2008-01-01

    Plants naturally produce secondary metabolites that can be used as antimicrobials. The aim of this study was to assess the effects of Psidium cattleianum leaf extract on Streptococcus mutans. The extract (100%) was obtained by decoction of 100 g of leaves in 600 ml of deionized water. To assess killing, S. mutans biofilms were treated with water (negative control) or various extract dilutions [100, 50, 25% (v/v) in water] for 5 or 60 min. To evaluate the effect on protein expression, biofilms were exposed to water or 1.6% (v/v) extract for 120 min, proteins were extracted and submitted to 2-dimensional difference gel electrophoresis. Differentially expressed proteins were identified by mass spectrometry. The effect of 1.6% (v/v) extract on acid production was determined by pH measurements and compared to a water control. Viability was similar after 5 min of treatment with the 100% extract or 60 min with the 50% extract (about 0.03% survival). There were no differences in viability between the biofilms exposed to the 25 or 50% extract after 60 min of treatment (about 0.02% survival). Treatment with the 1.6% extract significantly changed protein expression. The abundance of 24 spots was decreased compared to water (p < 0.05). The extract significantly inhibited acid production (p < 0.05). It is concluded that P. cattleianum leaf extract kills S. mutans grown in biofilms when applied at high concentrations. At low concentrations it inhibits S. mutans acid production and reduces the expression of proteins involved in general metabolism, glycolysis and lactic acid production. (c) 2008 S. Karger AG, Basel

  9. Biofilm extracellular polysaccharides degradation during starvation and enamel demineralization

    PubMed Central

    Costa Oliveira, Bárbara Emanoele; Cury, Jaime Aparecido

    2017-01-01

    This study was conducted to evaluate if extracellular polysaccharides (EPS) are used by Streptococcus mutans (Sm) biofilm during night starvation, contributing to enamel demineralization increasing occurred during daily sugar exposure. Sm biofilms were formed during 5 days on bovine enamel slabs of known surface hardness (SH). The biofilms were exposed to sucrose 10% or glucose + fructose 10.5% (carbohydrates that differ on EPS formation), 8x/day but were maintained in starvation during the night. Biofilm samples were harvested during two moments, on the end of the 4th day and in the morning of the 5th day, conditions of sugar abundance and starvation, respectively. The slabs were also collected to evaluate the percentage of surface hardness loss (%SHL). The biofilms were analyzed for EPS soluble and insoluble and intracellular polysaccharides (IPS), viable bacteria (CFU), biofilm architecture and biomass. pH, calcium and acid concentration were determined in the culture medium. The data were analyzed by two-way ANOVA followed by Tukey’s test or Student's t-test. The effect of the factor carbohydrate treatment for polysaccharide analysis was significant (p < 0.05) but not the harvest moment (p > 0.05). Larger amounts of soluble and insoluble EPS and IPS were formed in the sucrose group when compared to glucose + fructose group (p < 0.05), but they were not metabolized during starvation time (S-EPS, p = 0.93; I-EPS, p = 0.11; and IPS = 0.96). Greater enamel %SHL was also found for the sucrose group (p < 0.05) but the demineralization did not increase during starvation (p = 0.09). In conclusion, the findings suggest that EPS metabolization by S. mutans during night starvation do not contribute to increase enamel demineralization occurred during the daily abundance of sugar. PMID:28715508

  10. Effect of berberine on Staphylococcus epidermidis biofilm formation.

    PubMed

    Wang, Xiaoqing; Yao, Xiao; Zhu, Zhen'an; Tang, Tingting; Dai, Kerong; Sadovskaya, Irina; Flahaut, Sigrid; Jabbouri, Said

    2009-07-01

    Staphylococcus epidermidis is one of the main causes of medical device-related infections owing to its adhesion and biofilm-forming abilities on biomaterial surfaces. Berberine is an isoquinoline-type alkaloid isolated from Coptidis rhizoma (huang lian in Chinese) and other herbs with many activities against various disorders. Although the inhibitory effects of berberine on planktonic bacteria have been investigated in a few studies, the capacity of berberine to inhibit biofilm formation has not been reported to date. In this study, we observed that berberine is bacteriostatic for S. epidermidis and that sub-minimal inhibitory concentrations of berberine blocked the formation of S.epidermidis biofilm. Using viability assays and berberine uptake testing, berberine at a concentration of 15-30mug/mL was shown to inhibit bacterial metabolism. Data from this study also indicated that modest concentrations of berberine (30-45mug/mL) were sufficient to exhibit an antibacterial effect and to inhibit biofilm formation significantly, as shown by the tissue culture plate (TCP) method, confocal laser scanning microscopy and scanning electron microscopy for both S. epidermidis ATCC 35984 and a clinical isolate strain SE243. Although the mechanisms of bacterial killing and inhibition of biofilm formation are not fully understood, data from this investigation indicated a potential application for berberine as an adjuvant therapeutic agent for the prevention of biofilm-related infections.

  11. Boundaries for Biofilm Formation: Humidity and Temperature

    PubMed Central

    Else, Terry Ann; Pantle, Curtis R.; Amy, Penny S.

    2003-01-01

    Environmental conditions which define boundaries for biofilm production could provide useful ecological information for biofilm models. A practical use of defined conditions could be applied to the high-level nuclear waste repository at Yucca Mountain. Data for temperature and humidity conditions indicate that decreases in relative humidity or increased temperature severely affect biofilm formation on three candidate canister metals. PMID:12902302

  12. Inhibitory Effect of Sophorolipid on Candida albicans Biofilm Formation and Hyphal Growth

    PubMed Central

    Haque, Farazul; Alfatah, Md.; Ganesan, K.; Bhattacharyya, Mani Shankar

    2016-01-01

    Candida albicans causes superficial and life-threatening systemic infections. These are difficult to treat often due to drug resistance, particularly because C. albicans biofilms are inherently resistant to most antifungals. Sophorolipid (SL), a glycolipid biosurfactant, has been shown to have antimicrobial and anticancer properties. In this study, we investigated the effect of SL on C. albicans biofilm formation and preformed biofilms. SL was found to inhibit C. albicans biofilm formation as well as reduce the viability of preformed biofilms. Moreover, SL, when used along with amphotericin B (AmB) or fluconazole (FLZ), was found to act synergistically against biofilm formation and preformed biofilms. Effect of SL on C. albicans biofilm formation was further visualized by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM), which revealed absence of hyphae, typical biofilm architecture and alteration in the morphology of biofilm cells. We also found that SL downregulates the expression of hypha specific genes HWP1, ALS1, ALS3, ECE1 and SAP4, which possibly explains the inhibitory effect of SL on hyphae and biofilm formation. PMID:27030404

  13. Alternative sweeteners influence the biomass of oral biofilm.

    PubMed

    Abdul Razak, Fathilah; Baharuddin, Baizatul Amirah; Akbar, Elisya Farha Mohd; Norizan, Amira Hanim; Ibrahim, Nur Fazilah; Musa, Md Yusoff

    2017-08-01

    Compact-structured oral biofilm accumulates acids that upon prolonged exposure to tooth surface, causes demineralisation of enamel. This study aimed to assess the effect of alternative sweeteners Equal Stevia ® , Tropicana Slim ® , Pal Sweet ® and xylitol on the matrix-forming activity of plaque biofilm at both the early and established stages of formation. Saliva-coated glass beads (sGB) were used as substratum for the adhesion of a mixed-bacterial suspension of Streptococcus mutans, Streptococcus sanguinis and Streptococcus mitis. Biofilms formed on sGB at 3h and 24h represented the early and established-plaque models. The biofilms were exposed to three doses of the sweeteners (10%), introduced at three intervals to simulate the exposure of dental plaque to sugar during three consecutive food intakes. The treated sGB were (i) examined under the SEM and (ii) collected for turbidity reading. The absorbance indicated the amount of plaque mass produced. Analysis was performed comparative to sucrose as control. Higher rate of bacterial adherence was determined during the early compared to established phases of formation. Comparative to the sweeteners, sucrose showed a 40% increase in bacterial adherence and produced 70% more plaque-mass. Bacterial counts and SEM micrographs exhibited absence of matrix in all the sweetener-treated biofilms at the early phase of formation. At the established phase, presence of matrix was detected but at significantly lower degree compared to sucrose (p<0.05). Alternatives sweeteners promoted the formation of oral biofilm with lighter mass and lower bacterial adherence. Hence, suggesting alternative sweeteners as potential antiplaque agents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Inhibition on Candida albicans biofilm formation using divalent cation chelators (EDTA).

    PubMed

    Ramage, Gordon; Wickes, Brian L; López-Ribot, José L

    2007-12-01

    Candida albicans can readily form biofilms on both inanimate and biological surfaces. In this study we investigated a means of inhibiting biofilm formation using EDTA (Ethylenediaminetetra-acetic acid), a divalent cation chelating agent, which has been shown to affect C. albicans filamentation. Candida albicans biofilms were formed in 96-well microtitre plates. Cells were allowed to adhere for 1, 2, and 4 h at 37 degrees C, washed in PBS, and then treated with different concentrations of EDTA (0, 2.5, 25, and 250 mM). EDTA was also added to the standardized suspension prior to adding to the microtiter plate and to a preformed 24 h biofilm. All plates were then incubated at 37 degrees C for an additional 24 h to allow for biofilm formation. The extent and characteristics of biofilm formation were then microscopically assessed and with a semi-quantitative colorimetric technique based on the use of an XTT-reduction assay. Northern blot analysis of the hyphal wall protein (HWP1) expression was also monitored in planktonic and biofilm cells treated with EDTA. Microscopic analysis and colorimetric readings revealed that filamentation and biofilm formation were inhibited by EDTA in a concentration dependent manner. However, preformed biofilms were minimally affected by EDTA (maximum of 31% reduction at 250 mM). The HWP1 gene expression was reduced in EDTA-treated planktonic and biofilm samples. These results indicate that EDTA inhibits C. albicans biofilm formation are most likely through its inhibitory effect on filamentation and indicates the potential therapeutic effects of EDTA. This compound may serve a non-toxic means of preventing biofilm formation on infections with a C. albicans biofilm etiology.

  15. Neutrophil extracellular trap formation in supragingival biofilms.

    PubMed

    Hirschfeld, Josefine; Dommisch, Henrik; Skora, Philipp; Horvath, Gabor; Latz, Eicke; Hoerauf, Achim; Waller, Tobias; Kawai, Toshihisa; Jepsen, Søren; Deschner, James; Bekeredjian-Ding, Isabelle

    2015-01-01

    Oral biofilms are the causative agents of the highly prevalent oral diseases periodontitis and caries. Additionally, the host immune response is thought to play a critical role in disease onset. Neutrophils are known to be a key host response factor to bacterial challenge on host surfaces. Release of neutrophil extracellular traps (NETs) as a novel antimicrobial defense strategy has gained increasing attention in the past years. Here, we investigated the influx of neutrophils into the dental plaque and the ability of oral bacteria to trigger intra-biofilm release of NETs and intracellular proteins. Supragingival biofilms and whole saliva were sampled from systemically healthy subjects participating in an experimental gingivitis study. Biofilms were analysed by immunofluorescence followed by confocal and fluorescence microscopy. Moreover, concentrations of cytokines and immune-associated proteins in biofilm suspensions and saliva were assessed by ELISA. Neutrophils obtained from blood were stimulated with twelve bacterial species isolated from cultured biofilms or with lipopolysaccharide to monitor NET formation. Neutrophils, NETs, neutrophil-associated proteins (myeloperoxidase, elastase-2, cathepsin G, cathelicidin LL-37), interleukin-8, interleukin-1β and tumor necrosis factor were detected within plaque samples and saliva. All tested bacterial species as well as the polymicrobial samples isolated from the plaque of each donor induced release of NETs and interleukin-8. The degree of NET formation varied among different subjects and did not correlate with plaque scores or clinical signs of local inflammation. Our findings indicate that neutrophils are attracted towards dental biofilms, in which they become incorporated and where they are stimulated by microbes to release NETs and immunostimulatory proteins. Thus, neutrophils and NETs may be involved in host biofilm control, although their specific role needs to be further elucidated. Moreover, inter

  16. PqsA Promotes Pyoverdine Production via Biofilm Formation

    PubMed Central

    Turner, Kelly E.

    2017-01-01

    Biofilms create an impermeable barrier against antimicrobial treatment and immune cell access, severely complicating treatment and clearance of nosocomial Pseudomonas aeruginosa infections. We recently reported that biofilm also contributes to pathogen virulence by regulating the production of the siderophore pyoverdine. In this study, we investigated the role of PqsA, a key cell-signaling protein, in this regulatory pathway. We demonstrate that PqsA promotes pyoverdine production in a biofilm-dependent manner. Under nutritionally deficient conditions, where biofilm and pyoverdine are decoupled, PqsA is dispensable for pyoverdine production. Interestingly, although PqsA-dependent pyoverdine production does not rely upon Pseudomonas quinolone signal (PQS) biosynthesis, exogenous PQS can also trigger biofilm-independent production of pyoverdine. Adding PQS rapidly induced planktonic cell aggregation. Moreover, these clumps of cells exhibit strong expression of pyoverdine biosynthetic genes and show substantial production of this siderophore. Finally, we surveyed the relationship between biofilm formation and pyoverdine production in various clinical and environmental isolates of P. aeruginosa to evaluate the clinical significance of targeting biofilm during infections. Our findings implicate PqsA in P. aeruginosa virulence by regulating biofilm formation and pyoverdine production. PMID:29295589

  17. Characterization of biosurfactants produced by Lactobacillus spp. and their activity against oral streptococci biofilm.

    PubMed

    Ciandrini, Eleonora; Campana, Raffaella; Casettari, Luca; Perinelli, Diego R; Fagioli, Laura; Manti, Anita; Palmieri, Giovanni Filippo; Papa, Stefano; Baffone, Wally

    2016-08-01

    Lactic acid bacteria (LAB) can interfere with pathogens through different mechanisms; one is the production of biosurfactants, a group of surface-active molecules, which inhibit the growth of potential pathogens. In the present study, biosurfactants produced by Lactobacillus reuteri DSM 17938, Lactobacillus acidophilus DDS-1, Lactobacillus rhamnosus ATCC 53103, and Lactobacillus paracasei B21060 were dialyzed (1 and 6 kDa) and characterized in term of reduction of surface tension and emulsifying activity. Then, aliquots of the different dialyzed biosurfactants were added to Streptococcus mutans ATCC 25175 and Streptococcus oralis ATCC 9811 in the culture medium during the formation of biofilm on titanium surface and the efficacy was determined by agar plate count, biomass analyses, and flow cytometry. Dialyzed biosurfactants showed abilities to reduce surface tension and to emulsifying paraffin oil. Moreover, they significantly inhibited the adhesion and biofilm formation on titanium surface of S. mutans and S. oralis in a dose-dependent way, as demonstrated by the remarkable decrease of cfu/ml values and biomass production. The antimicrobial properties observed for dialyzed biosurfactants produced by the tested lactobacilli opens future prospects for their use against microorganisms responsible of oral diseases.

  18. Influence of resin-modified glass ionomer and topical fluoride on levels of Streptococcus mutans in saliva and biofilm adjacent to metallic brackets

    PubMed Central

    ANDRUCIOLI, Marcela Cristina Damião; FARIA, Gisele; NELSON-FILHO, Paulo; ROMANO, Fábio Lourenço; MATSUMOTO, Mírian Aiko Nakane

    2017-01-01

    Abstract Decalcification of enamel during fixed orthodontic appliance treatment remains a problem. White spot lesions are observed in nearly 50% of patients undergoing orthodontic treatment. The use of fluoride-containing orthodontic materials has shown inconclusive results on their ability to reduce decalcification. The aims of this investigation were to compare the levels of Streptococcus mutans (SM) in saliva and biofilm adjacent to orthodontic brackets retained with a resin-modified glass ionomer cement (RMGIC) (Fuji ORTHO LC) and a light cured composite resin (Transbond XT), and to analyze the influence of topical application of the 1.23% acidulated phosphate fluoride (APF) on SM counts. In a parallel study design, two groups (n=14/15) were used with random allocation and high salivary SM counts before treatment. Biofilm was collected from areas adjacent to the brackets on teeth 13, 22, 33, and 41. Both saliva and biofilm were collected on the 7th, 21st, 35th, and 49th days after appliance placement. Topical fluoride application was carried out on the 35th day. Bonding with RMGIC did not alter SM counts in saliva or biofilm adjacent to the brackets. On the other hand, the biofilm adjacent to brackets retained with composite resin showed a significant increase in SM counts along the trial period. Topical application of 1.23% APF did not reduce salivary or biofilm SM counts regardless of the bonding material. In conclusion, fluoride topical application did not show efficacy in reducing SM. The use of RMGIC as bonding materials allowed a better control of SM cfu counts in dental biofilm hindering the significant increase of these microorganisms along the trial period, which was observed in the biofilm adjacent to the composite material. PMID:28403360

  19. Influence of resin-modified glass ionomer and topical fluoride on levels of Streptococcus mutans in saliva and biofilm adjacent to metallic brackets.

    PubMed

    Andrucioli, Marcela Cristina Damião; Faria, Gisele; Nelson-Filho, Paulo; Romano, Fábio Lourenço; Matsumoto, Mírian Aiko Nakane

    2017-01-01

    Decalcification of enamel during fixed orthodontic appliance treatment remains a problem. White spot lesions are observed in nearly 50% of patients undergoing orthodontic treatment. The use of fluoride-containing orthodontic materials has shown inconclusive results on their ability to reduce decalcification. The aims of this investigation were to compare the levels of Streptococcus mutans (SM) in saliva and biofilm adjacent to orthodontic brackets retained with a resin-modified glass ionomer cement (RMGIC) (Fuji ORTHO LC) and a light cured composite resin (Transbond XT), and to analyze the influence of topical application of the 1.23% acidulated phosphate fluoride (APF) on SM counts. In a parallel study design, two groups (n=14/15) were used with random allocation and high salivary SM counts before treatment. Biofilm was collected from areas adjacent to the brackets on teeth 13, 22, 33, and 41. Both saliva and biofilm were collected on the 7th, 21st, 35th, and 49th days after appliance placement. Topical fluoride application was carried out on the 35th day. Bonding with RMGIC did not alter SM counts in saliva or biofilm adjacent to the brackets. On the other hand, the biofilm adjacent to brackets retained with composite resin showed a significant increase in SM counts along the trial period. Topical application of 1.23% APF did not reduce salivary or biofilm SM counts regardless of the bonding material. In conclusion, fluoride topical application did not show efficacy in reducing SM. The use of RMGIC as bonding materials allowed a better control of SM cfu counts in dental biofilm hindering the significant increase of these microorganisms along the trial period, which was observed in the biofilm adjacent to the composite material.

  20. Variability in biofilm formation correlates with hydrophobicity and quorum sensing among Vibrio parahaemolyticus isolates from food contact surfaces and the distribution of the genes involved in biofilm formation.

    PubMed

    Mizan, Md Furkanur Rahaman; Jahid, Iqbal Kabir; Kim, Minhui; Lee, Ki-Hoon; Kim, Tae Jo; Ha, Sang-Do

    2016-01-01

    Vibrio parahaemolyticus is one of the leading foodborne pathogens causing seafood contamination. Here, 22 V. parahaemolyticus strains were analyzed for biofilm formation to determine whether there is a correlation between biofilm formation and quorum sensing (QS), swimming motility, or hydrophobicity. The results indicate that the biofilm formation ability of V. parahaemolyticus is positively correlated with cell surface hydrophobicity, autoinducer (AI-2) production, and protease activity. Field emission scanning electron microscopy (FESEM) showed that strong-biofilm-forming strains established thick 3-D structures, whereas poor-biofilm-forming strains produced thin inconsistent biofilms. In addition, the distribution of the genes encoding pandemic clone factors, type VI secretion systems (T6SS), biofilm functions, and the type I pilus in the V. parahaemolyticus seafood isolates were examined. Biofilm-associated genes were present in almost all the strains, irrespective of other phenotypes. These results indicate that biofilm formation on/in seafood may constitute a major factor in the dissemination of V. parahaemolyticus and the ensuing diseases.

  1. A transposon mutant library of Bacillus cereus ATCC 10987 reveals novel genes required for biofilm formation and implicates motility as an important factor for pellicle-biofilm formation.

    PubMed

    Okshevsky, Mira; Louw, Matilde Greve; Lamela, Elena Otero; Nilsson, Martin; Tolker-Nielsen, Tim; Meyer, Rikke Louise

    2018-04-01

    Bacillus cereus is one of the most common opportunistic pathogens causing foodborne illness, as well as a common source of contamination in the dairy industry. B. cereus can form robust biofilms on food processing surfaces, resulting in food contamination due to shedding of cells and spores. Despite the medical and industrial relevance of this species, the genetic basis of biofilm formation in B. cereus is not well studied. In order to identify genes required for biofilm formation in this bacterium, we created a library of 5000 +  transposon mutants of the biofilm-forming strain B. cereusATCC 10987, using an unbiased mariner transposon approach. The mutant library was screened for the ability to form a pellicle biofilm at the air-media interface, as well as a submerged biofilm at the solid-media interface. A total of 91 genes were identified as essential for biofilm formation. These genes encode functions such as chemotaxis, amino acid metabolism and cellular repair mechanisms, and include numerous genes not previously known to be required for biofilm formation. Although the majority of disrupted genes are not directly responsible for motility, further investigations revealed that the vast majority of the biofilm-deficient mutants were also motility impaired. This observation implicates motility as a pivotal factor in the formation of a biofilm by B. cereus. These results expand our knowledge of the fundamental molecular mechanisms of biofilm formation by B. cereus. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  2. Novel Antibiofilm Chemotherapy Targets Exopolysaccharide Synthesis and Stress Tolerance in Streptococcus mutans To Modulate Virulence Expression In Vivo

    PubMed Central

    Falsetta, Megan L.; Klein, Marlise I.; Lemos, José A.; Silva, Bruno B.; Agidi, Senyo; Scott-Anne, Kathy K.

    2012-01-01

    Fluoride is the mainstay of dental caries prevention, and yet current applications offer incomplete protection and may not effectively address the infectious character of the disease. Therefore, we evaluated the effectiveness of a novel combination therapy (CT; 2 mM myricetin, 4 mM tt-farnesol, 250 ppm of fluoride) that supplements fluoride with naturally occurring, food-derived, antibiofilm compounds. Treatment regimens simulating those experienced clinically (twice daily for ≤60 s) were used both in vitro over a saliva-coated hydroxyapatite biofilm model and in vivo with a rodent model of dental caries. The effectiveness of CT was evaluated based on the incidence and severity of carious lesions (compared to fluoride or vehicle control). We found that CT was superior to fluoride (positive control, P < 0.05); topical applications dramatically reduced caries development in Sprague-Dawley rats, all without altering the Streptococcus mutans or total populations within the plaque. We subsequently identified the underlying mechanisms through which applications of CT modulate biofilm virulence. CT targets expression of key Streptococcus mutans genes during biofilm formation in vitro and in vivo. These are associated with exopolysaccharide matrix synthesis (gtfB) and the ability to tolerate exogenous stress (e.g., sloA), which are essential for cariogenic biofilm assembly. We also identified a unique gene (SMU.940) that was severely repressed and may represent a potentially novel target; its inactivation disrupted exopolysaccharide accumulation and matrix development. Altogether, CT may be clinically more effective than current anticaries modalities, targeting expression of bacterial virulence associated with pathogenesis of the disease. These observations may have relevance for development of enhanced therapies against other biofilm-dependent infections. PMID:22985885

  3. Biofilm formation ability of Salmonella enterica serovar Typhimurium acrAB mutants.

    PubMed

    Schlisselberg, Dov B; Kler, Edna; Kisluk, Guy; Shachar, Dina; Yaron, Sima

    2015-10-01

    Recent studies offer contradictory findings about the role of multidrug efflux pumps in bacterial biofilm development. Thus, the aim of this study was to investigate the involvement of the AcrAB efflux pump in biofilm formation by investigating the ability of AcrB and AcrAB null mutants of Salmonella enterica serovar Typhimurium to produce biofilms. Three models were used to compare the ability of S. Typhimurium wild-type and its mutants to form biofilms: formation of biofilm on polystyrene surfaces; production of biofilm (mat model) on the air/liquid interface; and expression of curli and cellulose on Congo red-supplemented agar plates. All three investigated genotypes formed biofilms with similar characteristics. However, upon exposure to chloramphenicol, formation of biofilms on solid surfaces as well as the production of curli were either reduced or were delayed more significantly in both mutants, whilst there was no visible effect on pellicle formation. It can be concluded that when no selective pressure is applied, S. Typhimurium is able to produce biofilms even when the AcrAB efflux pumps are inactivated, implying that the use of efflux pump inhibitors to prevent biofilm formation is not a general solution and that combined treatments might be more efficient. Other factors that affect the ability to produce biofilms depending on efflux pump activity are yet to be identified. Copyright © 2015 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  4. Investigating the link between imipenem resistance and biofilm formation by Pseudomonas aeruginosa.

    PubMed

    Musafer, Hadeel K; Kuchma, Sherry L; Naimie, Amanda A; Schwartzman, Joseph D; Al-Mathkhury, Harith J Fahad; O'Toole, George A

    2014-07-01

    Pseudomonas aeruginosa, a ubiquitous environmental organism, is a difficult-to-treat opportunistic pathogen due to its broad-spectrum antibiotic resistance and its ability to form biofilms. In this study, we investigate the link between resistance to a clinically important antibiotic, imipenem, and biofilm formation. First, we observed that the laboratory strain P. aeruginosa PAO1 carrying a mutation in the oprD gene, which confers resistance to imipenem, showed a modest reduction in biofilm formation. We also observed an inverse relationship between imipenem resistance and biofilm formation for imipenem-resistant strains selected in vitro, as well as for clinical isolates. We identified two clinical isolates of P. aeruginosa from the sputum of cystic fibrosis patients that formed robust biofilms, but were sensitive to imipenem (MIC ≤ 2 μg/ml). To test the hypothesis that there is a general link between imipenem resistance and biofilm formation, we performed transposon mutagenesis of these two clinical strains to identify mutants defective in biofilm formation, and then tested these mutants for imipenem resistance. Analysis of the transposon mutants revealed a role for previously described biofilm factors in these clinical isolates of P. aeruginosa, including mutations in the pilY1, pilX, pilW, algC, and pslI genes, but none of the biofilm-deficient mutants became imipenem resistant (MIC ≥ 8 μg/ml), arguing against a general link between biofilm formation and resistance to imipenem. Thus, assessing biofilm formation capabilities of environmental isolates is unlikely to serve as a good predictor of imipenem resistance. We also discuss our findings in light of the limited literature addressing planktonic antibiotic resistance factors that impact biofilm formation.

  5. Influence of methylene blue-mediated photodynamic therapy on the resistance to detachment of streptococcus mutans biofilms from titanium substrata

    NASA Astrophysics Data System (ADS)

    Sharab, Lina Y.

    In dental settings, as well as in other natural systems, plaque-forming microorganisms develop biofilms in which the microbes become protected via their own phenotypic changes and their polymeric exudates from disinfection by washes and antibiotics. Photodynamic Therapy (PDT) is variably effective against these microorganisms, depending on such factors as whether the bacteria are Gram positive or Gram negative, plaque age and thickness, and internal biofilm oxygen concentration. This investigation applied a novel combination of PDT and water-jet impingement techniques to Streptococcus mutans (ATCC strain 27351)-formed biofilms on commercially pure titanium (cpTi) starting with three different phases (ages) of the bacteria, to examine whether the detachment shear stress --as a signature for the work required for removal of the biofilms- would be affected by prior PDT treatment independently from microbial viability. Biofilms were grown with sucrose addition to Brain Heart Infusion media, producing visible thick films and nearly invisible thin films (within the same piece) having the same numbers of culturable microorganisms, the thicker films having greater susceptibility to detachment by water--jet impingement. Colony-forming-unit (CFU) counts routinely correlated well with results from a spectrophotometric Alamar Blue (AB) assay. Use of Methylene Blue (MB) as a photosensitizer (PS) for PDT of biofilms did not interfere with the AB assay, but did mask AB reduction spectral changes when employed with planktonic organisms. It was discovered in this work that PD-treated microbial biofilms, independently from starting or PS-influenced microorganism viability, were significantly (p<0.05) and differentially more easily delaminated and ultimately removed from their substrata biomaterials by the hydrodynamic forces of water-jet impingement. Control biofilms of varying thickness, not receiving PDT treatment, required between 144 and 228 dynes/cm2 of shear stress to

  6. A Highly Arginolytic Streptococcus Species That Potently Antagonizes Streptococcus mutans

    PubMed Central

    Huang, Xuelian; Palmer, Sara R.; Ahn, Sang-Joon; Richards, Vincent P.; Williams, Matthew L.; Nascimento, Marcelle M.

    2016-01-01

    The ability of certain oral biofilm bacteria to moderate pH through arginine metabolism by the arginine deiminase system (ADS) is a deterrent to the development of dental caries. Here, we characterize a novel Streptococcus strain, designated strain A12, isolated from supragingival dental plaque of a caries-free individual. A12 not only expressed the ADS pathway at high levels under a variety of conditions but also effectively inhibited growth and two intercellular signaling pathways of the dental caries pathogen Streptococcus mutans. A12 produced copious amounts of H2O2 via the pyruvate oxidase enzyme that were sufficient to arrest the growth of S. mutans. A12 also produced a protease similar to challisin (Sgc) of Streptococcus gordonii that was able to block the competence-stimulating peptide (CSP)–ComDE signaling system, which is essential for bacteriocin production by S. mutans. Wild-type A12, but not an sgc mutant derivative, could protect the sensitive indicator strain Streptococcus sanguinis SK150 from killing by the bacteriocins of S. mutans. A12, but not S. gordonii, could also block the XIP (comX-inducing peptide) signaling pathway, which is the proximal regulator of genetic competence in S. mutans, but Sgc was not required for this activity. The complete genome sequence of A12 was determined, and phylogenomic analyses compared A12 to streptococcal reference genomes. A12 was most similar to Streptococcus australis and Streptococcus parasanguinis but sufficiently different that it may represent a new species. A12-like organisms may play crucial roles in the promotion of stable, health-associated oral biofilm communities by moderating plaque pH and interfering with the growth and virulence of caries pathogens. PMID:26826230

  7. A Highly Arginolytic Streptococcus Species That Potently Antagonizes Streptococcus mutans.

    PubMed

    Huang, Xuelian; Palmer, Sara R; Ahn, Sang-Joon; Richards, Vincent P; Williams, Matthew L; Nascimento, Marcelle M; Burne, Robert A

    2016-01-29

    The ability of certain oral biofilm bacteria to moderate pH through arginine metabolism by the arginine deiminase system (ADS) is a deterrent to the development of dental caries. Here, we characterize a novel Streptococcus strain, designated strain A12, isolated from supragingival dental plaque of a caries-free individual. A12 not only expressed the ADS pathway at high levels under a variety of conditions but also effectively inhibited growth and two intercellular signaling pathways of the dental caries pathogen Streptococcus mutans. A12 produced copious amounts of H2O2 via the pyruvate oxidase enzyme that were sufficient to arrest the growth of S. mutans. A12 also produced a protease similar to challisin (Sgc) of Streptococcus gordonii that was able to block the competence-stimulating peptide (CSP)-ComDE signaling system, which is essential for bacteriocin production by S. mutans. Wild-type A12, but not an sgc mutant derivative, could protect the sensitive indicator strain Streptococcus sanguinis SK150 from killing by the bacteriocins of S. mutans. A12, but not S. gordonii, could also block the XIP (comX-inducing peptide) signaling pathway, which is the proximal regulator of genetic competence in S. mutans, but Sgc was not required for this activity. The complete genome sequence of A12 was determined, and phylogenomic analyses compared A12 to streptococcal reference genomes. A12 was most similar to Streptococcus australis and Streptococcus parasanguinis but sufficiently different that it may represent a new species. A12-like organisms may play crucial roles in the promotion of stable, health-associated oral biofilm communities by moderating plaque pH and interfering with the growth and virulence of caries pathogens. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  8. [Detection of biofilm formation by selected pathogens relevant to the food industry].

    PubMed

    Šilhová-Hrušková, L; Moťková, P; Šilha, D; Vytřasová, J

    2015-09-01

    Detection of biofilm formation by microbial pathogens relevant to the food industry and comparison of biofilm formation under different conditions of culture. The following microorganisms were selected for the study: Staphylococcus aureus, Listeria innocua, Listeria ivanovii, Cronobacter sakazakii, Cronobacter muytjensii, Arcobacter butzleri, Arcobacter cryaerophilus, Campylobacter jejuni, and Campylobacter coli. To detect biofilm formation the microtiter plate assay, as described by Christensen and culture on stainless steel coupons were used. The biofilm forming capacity was confirmed in all microorganisms tested, both on the microtiter plates and stainless steel coupons. Biofilm formation was influenced by the culture medium, material used, and culture duration as well as by the test microorganism. It was found that different species and strains of the same genus differ in biofilm formation. Differences were also found between the collection strains and isolates from the environment. Some bacteria tended to form biofilm more readily on the surface of the polyethylene microtiter plates and less readily on stainless steel coupons while others appeared to have an opposite tendency. Some pathogens were able to increase the planktonic cell density in the initial suspension even by three orders of magnitude within 72 hours while producing plenty of biofilm. The study of biofilm formation by high risk pathogens is of utmost importance, not only to the food industry. From the obtained results, it is evident that bacterial biofilms form rapidly (within 24 hours in the present study). Due to their architecture, these biofilms are difficult to eradicate, and therefore, it is crucial to prevent biofilm formation.

  9. Influence of biofilm formation on the optical properties of novel bioactive glass-containing composites

    PubMed Central

    Hyun, Hong-Keun; Ferracane, Jack L.

    2016-01-01

    Objective Bioactive glass (BAG) has been suggested as a possible additive for dental restorative materials because of its antimicrobial effect and potential for promoting apatite formation in body fluids. The purpose of this study was to investigate the effects of bacterial biofilm on the change of colorimetric value and translucency of novel BAG-containing composites having different initial surface roughness. Methods Composites with 72 wt% total filler load were prepared by replacing 15% of the silanized Sr glass with BAG (65 mole% Si; 4% P; 31% Ca), BAG-F (61% Si; 31% Ca; 4% P; 3% F; 1% B), or silanized silica. Light-cured discs of 2-mm thickness (n=10/group) were divided into 4 different surface roughness subgroups produced by wet polishing with 600 and then up to 1200, 2400, or 4000 grit SiC. CIE L*a*b* were measured and the color difference and translucency parameter (TP) were calculated before and after incubating in media with or without a S. mutans (UA 159) biofilm for 2 wks (no agitation). Results were analyzed using ANOVA/Tukey's test (α = 0.05). Results All the color differences for BAG and BAG-F composite showed significant decreases with bacterial biofilm compared to media-only. The mean TP (SD) of BAG and BAG-F composite before aging [10.0 (2.8) and 8.5 (1.4)] was higher than that of the control composite [4.9 (0.8)], while the change in TP with aging was greater compared to the control with or without bacteria. BAG-F composites with the smoothest surfaces showed a greater decrease in TP under bacterial biofilm compared to the BAG composite. Significance Highly polished dental composites containing bioactive glass additives may become slightly rougher and show reduced translucency when exposed to bacterial biofilms, but do not discolor any more than control composites that do not contain the BAG. PMID:27394086

  10. Biofilm formation of Francisella noatunensis subsp. orientalis

    USGS Publications Warehouse

    Soto, Esteban; Halliday-Wimmonds, Iona; Francis , Stewart; Kearney, Michael T.; Hansen, John D.

    2015-01-01

    Francisella noatunensis subsp. orientalis (Fno) is an emergent fish pathogen in both marine and fresh water environments. The bacterium is suspected to persist in the environment even without the presence of a suitable fish host. In the present study, the influence of different abiotic factors such as salinity and temperature were used to study the biofilm formation of different isolates of Fno including intracellular growth loci C (iglC)and pathogenicity determinant protein A (pdpA) knockout strains. Finally, we compared the susceptibility of planktonic and biofilm to three disinfectants used in the aquaculture and ornamental fish industry, namely Virkon®, bleach and hydrogen peroxide. The data indicates that Fno is capable of producing biofilms within 24 h where both salinity as well as temperature plays a role in the growth and biofilm formation of Fno. Mutations in theiglC or pdpA, both known virulence factors, do not appear to affect the capacity of Fno to produce biofilms, and the minimum inhibitory concentration, and minimum biocidal concentration for the three disinfectants were lower than the minimum biofilm eradication concentration values. This information needs to be taken into account if trying to eradicate the pathogen from aquaculture facilities or aquariums.

  11. Involvement of NADH Oxidase in Biofilm Formation in Streptococcus sanguinis

    PubMed Central

    Ge, Xiuchun; Shi, Xiaoli; Shi, Limei; Liu, Jinlin; Stone, Victoria; Kong, Fanxiang; Kitten, Todd; Xu, Ping

    2016-01-01

    Biofilms play important roles in microbial communities and are related to infectious diseases. Here, we report direct evidence that a bacterial nox gene encoding NADH oxidase is involved in biofilm formation. A dramatic reduction in biofilm formation was observed in a Streptococcus sanguinis nox mutant under anaerobic conditions without any decrease in growth. The membrane fluidity of the mutant bacterial cells was found to be decreased and the fatty acid composition altered, with increased palmitic acid and decreased stearic acid and vaccenic acid. Extracellular DNA of the mutant was reduced in abundance and bacterial competence was suppressed. Gene expression analysis in the mutant identified two genes with altered expression, gtfP and Idh, which were found to be related to biofilm formation through examination of their deletion mutants. NADH oxidase-related metabolic pathways were analyzed, further clarifying the function of this enzyme in biofilm formation. PMID:26950587

  12. Thiol reductive stress induces cellulose-anchored biofilm formation in Mycobacterium tuberculosis

    PubMed Central

    Trivedi, Abhishek; Mavi, Parminder Singh; Bhatt, Deepak; Kumar, Ashwani

    2016-01-01

    Mycobacterium tuberculosis (Mtb) forms biofilms harbouring antibiotic-tolerant bacilli in vitro, but the factors that induce biofilm formation and the nature of the extracellular material that holds the cells together are poorly understood. Here we show that intracellular thiol reductive stress (TRS) induces formation of Mtb biofilms in vitro, which harbour drug-tolerant but metabolically active bacteria with unchanged levels of ATP/ADP, NAD+/NADH and NADP+/NADPH. The development of these biofilms requires DNA, RNA and protein synthesis. Transcriptional analysis suggests that Mtb modulates only ∼7% of its genes for survival in biofilms. In addition to proteins, lipids and DNA, the extracellular material in these biofilms is primarily composed of polysaccharides, with cellulose being a key component. Our results contribute to a better understanding of the mechanisms underlying Mtb biofilm formation, although the clinical relevance of Mtb biofilms in human tuberculosis remains unclear. PMID:27109928

  13. Thiol reductive stress induces cellulose-anchored biofilm formation in Mycobacterium tuberculosis.

    PubMed

    Trivedi, Abhishek; Mavi, Parminder Singh; Bhatt, Deepak; Kumar, Ashwani

    2016-04-25

    Mycobacterium tuberculosis (Mtb) forms biofilms harbouring antibiotic-tolerant bacilli in vitro, but the factors that induce biofilm formation and the nature of the extracellular material that holds the cells together are poorly understood. Here we show that intracellular thiol reductive stress (TRS) induces formation of Mtb biofilms in vitro, which harbour drug-tolerant but metabolically active bacteria with unchanged levels of ATP/ADP, NAD(+)/NADH and NADP(+)/NADPH. The development of these biofilms requires DNA, RNA and protein synthesis. Transcriptional analysis suggests that Mtb modulates only ∼7% of its genes for survival in biofilms. In addition to proteins, lipids and DNA, the extracellular material in these biofilms is primarily composed of polysaccharides, with cellulose being a key component. Our results contribute to a better understanding of the mechanisms underlying Mtb biofilm formation, although the clinical relevance of Mtb biofilms in human tuberculosis remains unclear.

  14. Capsular Polysaccharide Interferes with Biofilm Formation by Pasteurella multocida Serogroup A

    PubMed Central

    Petruzzi, Briana; Briggs, Robert E.; Swords, W. Edward; De Castro, Cristina; Molinaro, Antonio

    2017-01-01

    ABSTRACT Pasteurella multocida is an important multihost animal and zoonotic pathogen that is capable of causing respiratory and multisystemic diseases, bacteremia, and bite wound infections. The glycosaminoglycan capsule of P. multocida is an essential virulence factor that protects the bacterium from host defenses. However, chronic infections (such as swine atrophic rhinitis and the carrier state in birds and other animals) may be associated with biofilm formation, which has not been characterized in P. multocida. Biofilm formation by clinical isolates was inversely related to capsule production and was confirmed with capsule-deficient mutants of highly encapsulated strains. Capsule-deficient mutants formed biofilms with a larger biomass that was thicker and smoother than the biofilm of encapsulated strains. Passage of a highly encapsulated, poor-biofilm-forming strain under conditions that favored biofilm formation resulted in the production of less capsular polysaccharide and a more robust biofilm, as did addition of hyaluronidase to the growth medium of all of the strains tested. The matrix material of the biofilm was composed predominately of a glycogen exopolysaccharide (EPS), as determined by gas chromatography-mass spectrometry, nuclear magnetic resonance, and enzymatic digestion. However, a putative glycogen synthesis locus was not differentially regulated when the bacteria were grown as a biofilm or planktonically, as determined by quantitative reverse transcriptase PCR. Therefore, the negatively charged capsule may interfere with biofilm formation by blocking adherence to a surface or by preventing the EPS matrix from encasing large numbers of bacterial cells. This is the first detailed description of biofilm formation and a glycogen EPS by P. multocida. PMID:29162713

  15. Biofilm Formation and β-Lactamase Production in Burn Isolates of Pseudomonas aeruginosa

    PubMed Central

    Heydari, Samira; Eftekhar, Fereshteh

    2015-01-01

    Background: Pseudomonas aeruginosa is an important nosocomial pathogen characterized by its innate resistance to multiple antimicrobial agents. Plasmid-mediated drug resistance also occurs by the production of extended-spectrum β-lactamases (ESBL), metallo β-lactamases (MBL), and AmpC β-lactamases. Another important factor for establishment of chronic infections by P. aeruginosa is biofilm formation mediated by the psl gene cluster. Objectives: The aim of this study was to evaluate biofilm formation and presence of the pslA gene in burn isolates of P. aeruginosa as well as the association of antibiotic resistance, MBL, ESBL and AmpC β-lactamase production with biofilm formation among the isolates. Materials and Methods: Sixty-two burn isolates of P. aeruginosa were obtained from Shahid Motahari Hospital in Tehran from August to October 2011. Antibiotic susceptibility was determined by the disc diffusion assay. MBL, AmpC and ESBL production were screened using the double disc synergy test, AmpC disc test and combined disc diffusion assay, respectively. The potential to form biofilm was measured using the microtiter plate assay and pslA gene was detected using specific primers and PCR. Results: Biofilm formation was observed in 43.5% of the isolates, of which 66.7% produced strong and 33.3% formed weak biofilms. All biofilm-positive and 14.2% of biofilm-negative isolates harbored the pslA gene. MBL, AmpC and ESBL production were significantly higher in the biofilm-positive isolates (70.3%, 62.9% and 33.3%, respectively) compared to the biofilm-negative strains (31.4%, 34.2% and 20%, respectively). Overall, 19 isolates (30.6%) co-produced MBL and AmpC, among which the majority were biofilm-positive (63.1%). Finally, four isolates (6.4%) had all three enzymes, of which 3 (75%) produced biofilm. Conclusions: Biofilm formation (both strong and weak) strongly correlated with pslA gene carriage. Biofilm formation also correlated with MBL and AmpC

  16. Biofilm Formation and β-Lactamase Production in Burn Isolates of Pseudomonas aeruginosa.

    PubMed

    Heydari, Samira; Eftekhar, Fereshteh

    2015-03-01

    Pseudomonas aeruginosa is an important nosocomial pathogen characterized by its innate resistance to multiple antimicrobial agents. Plasmid-mediated drug resistance also occurs by the production of extended-spectrum β-lactamases (ESBL), metallo β-lactamases (MBL), and AmpC β-lactamases. Another important factor for establishment of chronic infections by P. aeruginosa is biofilm formation mediated by the psl gene cluster. The aim of this study was to evaluate biofilm formation and presence of the pslA gene in burn isolates of P. aeruginosa as well as the association of antibiotic resistance, MBL, ESBL and AmpC β-lactamase production with biofilm formation among the isolates. Sixty-two burn isolates of P. aeruginosa were obtained from Shahid Motahari Hospital in Tehran from August to October 2011. Antibiotic susceptibility was determined by the disc diffusion assay. MBL, AmpC and ESBL production were screened using the double disc synergy test, AmpC disc test and combined disc diffusion assay, respectively. The potential to form biofilm was measured using the microtiter plate assay and pslA gene was detected using specific primers and PCR. Biofilm formation was observed in 43.5% of the isolates, of which 66.7% produced strong and 33.3% formed weak biofilms. All biofilm-positive and 14.2% of biofilm-negative isolates harbored the pslA gene. MBL, AmpC and ESBL production were significantly higher in the biofilm-positive isolates (70.3%, 62.9% and 33.3%, respectively) compared to the biofilm-negative strains (31.4%, 34.2% and 20%, respectively). Overall, 19 isolates (30.6%) co-produced MBL and AmpC, among which the majority were biofilm-positive (63.1%). Finally, four isolates (6.4%) had all three enzymes, of which 3 (75%) produced biofilm. Biofilm formation (both strong and weak) strongly correlated with pslA gene carriage. Biofilm formation also correlated with MBL and AmpC β-lactamase production. More importantly, multiple-β-lactamase phenotype was associated

  17. Gentamicin induces efaA expression and biofilm formation in Enterococcus faecalis.

    PubMed

    Kafil, Hossein Samadi; Mobarez, Ashraf Mohabati; Moghadam, Mehdi Forouzandeh; Hashemi, Zahra Sadat; Yousefi, Mehdi

    2016-03-01

    Enterococci have been ranked among the leading causes of nosocomial bacteremia and urinary tract infection. This study aimed to investigate the effect of ampicillin, vancomycin, gentamicin and ceftizoxime on biofilm formation and gene expression of colonization factors on Enterococcus faecalis. Twelve clinical isolates of E. faecalis were used to investigate the effect of antibiotics on biofilm formation and gene expression of efaA, asa1, ebpA, esp and ace. Flow system assay and Microtiter plates were used for biofilm assay. Two hundred clinical isolates were used for confirming the effect of antibiotics on biofilm formation. Ampicillin, vancomycin and ceftizoxime did not have any significant effect on biofilm formation, but gentamicin induced biofilm formation in 89% of isolates. In twelve selected isolate gentamicin increased expression of esp (+50.9%) and efaA (+33.9%) genes and reduced or maintained expression of others (asa1:-47.4%, ebpA: 0, ace:-19.2%). Vancomycin increased expression of esp (+89.1%) but reduced the others (asa1: -34.9%, ebpA:-11%, ace:-30%, efaA:-60%). Ceftizoxime increased slightly ebpA (+19.7%) and reduced others (asa1:-66.2%, esp:-35%, ace:-28.1%, efaA:-38.4%). and ampicillin strongly increased expression of ace (+231%), esp (+131%) and ebpA (+83%) but reduced others (asa1:-85.5%, efaA:-47.4%). The findings of the present study showed that antibiotics may have a role in biofilm formation and sustainability of enterococci, especially in case of gentamicin. efaA gene may have an important role, especially in antibiotic induced biofilm formation by gentamicin. Experiments with efaA mutants are needed to investigate the exact effect of efaA on biofilm formation with antibiotic induced cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Thiol reductive stress induces cellulose-anchored biofilm formation in Mycobacterium tuberculosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trivedi, Abhishek; Mavi, Parminder Singh; Bhatt, Deepak

    Mycobacterium tuberculosis (Mtb) forms biofilms harbouring antibiotic-tolerant bacilli in vitro, but the factors that induce biofilm formation and the nature of the extracellular material that holds the cells together are poorly understood. Here we show that intracellular thiol reductive stress (TRS) induces formation of Mtb biofilms in vitro, which harbour drug-tolerant but metabolically active bacteria with unchanged levels of ATP/ADP, NAD +/NADH and NADP +/NADPH. The development of these biofilms requires DNA, RNA and protein synthesis. Transcriptional analysis suggests that Mtb modulates only similar to 7% of its genes for survival in biofilms. In addition to proteins, lipids and DNA,more » the extracellular material in these biofilms is primarily composed of polysaccharides, with cellulose being a key component. Lastly, our results contribute to a better understanding of the mechanisms underlying Mtb biofilm formation, although the clinical relevance of Mtb biofilms in human tuberculosis remains unclear.« less

  19. The role of Proteus mirabilis cell wall features in biofilm formation.

    PubMed

    Czerwonka, Grzegorz; Guzy, Anna; Kałuża, Klaudia; Grosicka, Michalina; Dańczuk, Magdalena; Lechowicz, Łukasz; Gmiter, Dawid; Kowalczyk, Paweł; Kaca, Wiesław

    2016-11-01

    Biofilms formed by Proteus mirabilis strains are a serious medical problem, especially in the case of urinary tract infections. Early stages of biofilm formation, such as reversible and irreversible adhesion, are essential for bacteria to form biofilm and avoid eradication by antibiotic therapy. Adhesion to solid surfaces is a complex process where numerous factors play a role, where hydrophobic and electrostatic interactions with solid surface seem to be substantial. Cell surface hydrophobicity and electrokinetic potential of bacterial cells depend on their surface composition and structure, where lipopolysaccharide, in Gram-negative bacteria, is prevailing. Our studies focused on clinical and laboratory P. mirabilis strains, where laboratory strains have determined LPS structures. Adherence and biofilm formation tests revealed significant differences between strains adhered in early stages of biofilm formation. Amounts of formed biofilm were expressed by the absorption of crystal violet. Higher biofilm amounts were formed by the strains with more negative values of zeta potential. In contrast, high cell surface hydrophobicity correlated with low biofilm amount.

  20. Thiol reductive stress induces cellulose-anchored biofilm formation in Mycobacterium tuberculosis

    DOE PAGES

    Trivedi, Abhishek; Mavi, Parminder Singh; Bhatt, Deepak; ...

    2016-04-25

    Mycobacterium tuberculosis (Mtb) forms biofilms harbouring antibiotic-tolerant bacilli in vitro, but the factors that induce biofilm formation and the nature of the extracellular material that holds the cells together are poorly understood. Here we show that intracellular thiol reductive stress (TRS) induces formation of Mtb biofilms in vitro, which harbour drug-tolerant but metabolically active bacteria with unchanged levels of ATP/ADP, NAD +/NADH and NADP +/NADPH. The development of these biofilms requires DNA, RNA and protein synthesis. Transcriptional analysis suggests that Mtb modulates only similar to 7% of its genes for survival in biofilms. In addition to proteins, lipids and DNA,more » the extracellular material in these biofilms is primarily composed of polysaccharides, with cellulose being a key component. Lastly, our results contribute to a better understanding of the mechanisms underlying Mtb biofilm formation, although the clinical relevance of Mtb biofilms in human tuberculosis remains unclear.« less

  1. Adaptation to copper stress influences biofilm formation in Alteromonas macleodii.

    PubMed

    Cusick, Kathleen D; Dale, Jason R; Fitzgerald, Lisa A; Little, Brenda J; Biffinger, Justin C

    2017-07-01

    An Alteromonas macleodii strain was isolated from copper-containing coupons incubated in surface seawater (Key West, FL, USA). In addition to the original isolate, a copper-adapted mutant was created and maintained with 0.78 mM Cu 2+ . Biofilm formation was compared between the two strains under copper-amended and low-nutrient conditions. Biofilm formation was significantly increased in the original isolate under copper amendment, while biofilm formation was significantly higher in the mutant under low-nutrient conditions. Biofilm expression profiles of diguanylate cyclase (DGC) genes, as well as genes involved in secretion, differed between the strains. Comparative genomic analysis demonstrated that both strains possessed a large number of gene attachment harboring cyclic di-GMP synthesis and/or degradation domains. One of the DGC genes, induced at very high levels in the mutant, possessed a degradation domain in the original isolate that was lacking in the mutant. The genetic and transcriptional mechanisms contributing to biofilm formation are discussed.

  2. Assessment of cervical demineralization induced by Streptococcus mutans using swept-source optical coherence tomography

    PubMed Central

    Tezuka, Hiroki; Shimada, Yasushi; Matin, Khairul; Ikeda, Masaomi; Sadr, Alireza; Sumi, Yasunori; Tagami, Junji

    2016-01-01

    Abstract. Exposed root surfaces due to gingival recession are subject to biofilm stagnation that can result in caries formation. Cervical enamel and dentin demineralization induced by a cariogenic biofilm was evaluated using swept-source optical coherence tomography (SS-OCT). The cementoenamel junction (CEJ) sections of extracted human teeth were subjected to demineralization for 1, 2, or 3 weeks. A suspension of Streptococcus mutans was applied to form a cariogenic biofilm using an oral biofilm reactor. After incubation, demineralization was observed by SS-OCT. For the analysis of SS-OCT signal, the value of the area under the curve (AUC) of the signal profile was measured. Statistical analyses were performed with 95% level of confidence. Cervical demineralization was displayed as a bright zone in SS-OCT. The demineralization depth of dentin was significantly deeper than that of enamel (p<0.05). Enamel near the CEJ demonstrated a significant increase of AUC over the other enamel region after the demineralization. The gaps along the dentinoenamel junction were additionally observed in SS-OCT. SS-OCT was capable of monitoring the cervical demineralization induced by a cariogenic biofilm and is considered to be a promising modality for the diagnosis of cervical demineralization. PMID:27014718

  3. Biofilm Formation by Helicobacter pylori and Its Involvement for Antibiotic Resistance

    PubMed Central

    Yonezawa, Hideo; Osaki, Takako

    2015-01-01

    Bacterial biofilms are communities of microorganisms attached to a surface. Biofilm formation is critical not only for environmental survival but also for successful infection. Helicobacter pylori is one of the most common causes of bacterial infection in humans. Some studies demonstrated that this microorganism has biofilm forming ability in the environment and on human gastric mucosa epithelium as well as on in vitro abiotic surfaces. In the environment, H. pylori could be embedded in drinking water biofilms through water distribution system in developed and developing countries so that the drinking water may serve as a reservoir for H. pylori infection. In the human stomach, H. pylori forms biofilms on the surface of gastric mucosa, suggesting one possible explanation for eradication therapy failure. Finally, based on the results of in vitro analyses, H. pylori biofilm formation can decrease susceptibility to antibiotics and H. pylori antibiotic resistance mutations are more frequently generated in biofilms than in planktonic cells. These observations indicated that H. pylori biofilm formation may play an important role in preventing and controlling H. pylori infections. Therefore, investigation of H. pylori biofilm formation could be effective in elucidating the detailed mechanisms of infection and colonization by this microorganism. PMID:26078970

  4. Effects of short-chain fatty acids on Actinomyces naeslundii biofilm formation.

    PubMed

    Yoneda, S; Kawarai, T; Narisawa, N; Tuna, E B; Sato, N; Tsugane, T; Saeki, Y; Ochiai, K; Senpuku, H

    2013-10-01

    Actinomyces naeslundii is an early colonizer and has important roles in the development of the oral biofilm. Short-chain fatty acids (SCFA) are secreted extracellularly as a product of metabolism by gram-negative anaerobes, e.g. Porphyromonas gingivalis and Fusobacterium nucleatum; and the SCFA may affect biofilm development with interaction between A. naeslundii and gram-negative bacteria. Our aim was to investigate the effects of SCFA on biofilm formation by A. naeslundii and to determine the mechanism. We used the biofilm formation assay in 96-well microtiter plates in tryptic soy broth without dextrose and with 0.25% sucrose using safranin stain of the biofilm monitoring 492 nm absorbance. To determine the mechanism by SCFA, the production of chaperones and stress-response proteins (GrpE and GroEL) in biofilm formation was examined using Western blot fluorescence activity with GrpE and GroEL antibodies. Adding butyric acid (6.25 mm) 0, 6 and 10 h after beginning culture significantly increased biofilm formation by A. naeslundii, and upregulation was observed at 16 h. Upregulation was also observed using appropriate concentrations of other SCFA. In the upregulated biofilm, production of GrpE and GroEL was higher where membrane-damaged or dead cells were also observed. The upregulated biofilm was significantly reduced by addition of anti-GroEL antibody. The data suggest biofilm formation by A. naeslundii was upregulated dependent on the production of stress proteins, and addition of SCFA increased membrane-damaged or dead cells. Production of GroEL may physically play an important role in biofilm development. 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd

  5. Influence of culture conditions for clinically isolated non-albicans Candida biofilm formation.

    PubMed

    Tan, Yulong; Leonhard, Matthias; Ma, Su; Schneider-Stickler, Berit

    2016-11-01

    Non-albicans Candida species have been isolated in increasing numbers in patients. Moreover, they are adept at forming biofilms. This study analyzed biofilm formation of clinically isolated non-albicans Candida, including Candida tropicalis, Candida krusei and Candida parapsilosis under the influence of different growth media (RPMI 1640, YPD and BHI) and several culture variables (inoculum concentration, incubation period and feeding conditions). The results showed that culture conditions strongly influenced non-albicans Candida species biofilm formation. YPD and BHI resulted in larger amount of biofilm formation with higher metabolic activity of biofilms. Furthermore, the growth media seems to have varying effects on adhesion and biofilm development. Growth conditions may also influence biofilm formation, which was enhanced when starting the culture with a larger inoculum, longer incubation period and using a fed-batch system. Therefore, the potential influences of external environmental factors should be considered when studying the non-albicans Candida biofilms in vitro. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Marine Sponge-Derived Streptomyces sp. SBT343 Extract Inhibits Staphylococcal Biofilm Formation

    PubMed Central

    Balasubramanian, Srikkanth; Othman, Eman M.; Kampik, Daniel; Stopper, Helga; Hentschel, Ute; Ziebuhr, Wilma; Oelschlaeger, Tobias A.; Abdelmohsen, Usama R.

    2017-01-01

    Staphylococcus epidermidis and Staphylococcus aureus are opportunistic pathogens that cause nosocomial and chronic biofilm-associated infections. Indwelling medical devices and contact lenses are ideal ecological niches for formation of staphylococcal biofilms. Bacteria within biofilms are known to display reduced susceptibilities to antimicrobials and are protected from the host immune system. High rates of acquired antibiotic resistances in staphylococci and other biofilm-forming bacteria further hamper treatment options and highlight the need for new anti-biofilm strategies. Here, we aimed to evaluate the potential of marine sponge-derived actinomycetes in inhibiting biofilm formation of several strains of S. epidermidis, S. aureus, and Pseudomonas aeruginosa. Results from in vitro biofilm-formation assays, as well as scanning electron and confocal microscopy, revealed that an organic extract derived from the marine sponge-associated bacterium Streptomyces sp. SBT343 significantly inhibited staphylococcal biofilm formation on polystyrene, glass and contact lens surfaces, without affecting bacterial growth. The extract also displayed similar antagonistic effects towards the biofilm formation of other S. epidermidis and S. aureus strains tested but had no inhibitory effects towards Pseudomonas biofilms. Interestingly the extract, at lower effective concentrations, did not exhibit cytotoxic effects on mouse fibroblast, macrophage and human corneal epithelial cell lines. Chemical analysis by High Resolution Fourier Transform Mass Spectrometry (HRMS) of the Streptomyces sp. SBT343 extract proportion revealed its chemical richness and complexity. Preliminary physico-chemical characterization of the extract highlighted the heat-stable and non-proteinaceous nature of the active component(s). The combined data suggest that the Streptomyces sp. SBT343 extract selectively inhibits staphylococcal biofilm formation without interfering with bacterial cell viability. Due to

  7. DNase I and proteinase K impair Listeria monocytogenes biofilm formation and induce dispersal of pre-existing biofilms.

    PubMed

    Nguyen, Uyen T; Burrows, Lori L

    2014-09-18

    Current sanitation methods in the food industry are not always sufficient for prevention or dispersal of Listeria monocytogenes biofilms. Here, we determined if prevention of adherence or dispersal of existing biofilms could occur if biofilm matrix components were disrupted enzymatically. Addition of DNase during biofilm formation reduced attachment (<50% of control) to polystyrene. Treatment of established 72h biofilms with 100μg/ml of DNase for 24h induced incomplete biofilm dispersal, with <25% biofilm remaining compared to control. In contrast, addition of proteinase K completely inhibited biofilm formation, and 72h biofilms-including those grown under stimulatory conditions-were completely dispersed with 100μg/ml proteinase K. Generally-regarded-as-safe proteases bromelain and papain were less effective dispersants than proteinase K. In a time course assay, complete dispersal of L. monocytogenes biofilms from both polystyrene and type 304H food-grade stainless steel occurred within 5min at proteinase K concentrations above 25μg/ml. These data confirm that both DNA and proteins are required for L. monocytogenes biofilm development and maintenance, and that these components of the biofilm matrix can be targeted for effective prevention and removal of biofilms. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Increased Zinc Availability Enhances Initial Aggregation and Biofilm Formation of Streptococcus pneumoniae

    PubMed Central

    Brown, Lindsey R.; Caulkins, Rachel C.; Schartel, Tyler E.; Rosch, Jason W.; Honsa, Erin S.; Schultz-Cherry, Stacey; Meliopoulos, Victoria A.; Cherry, Sean; Thornton, Justin A.

    2017-01-01

    Bacteria growing within biofilms are protected from antibiotics and the immune system. Within these structures, horizontal transfer of genes encoding virulence factors, and promoting antibiotic resistance occurs, making biofilms an extremely important aspect of pneumococcal colonization and persistence. Identifying environmental cues that contribute to the formation of biofilms is critical to understanding pneumococcal colonization and infection. Iron has been shown to be essential for the formation of pneumococcal biofilms; however, the role of other physiologically important metals such as copper, zinc, and manganese has been largely neglected. In this study, we investigated the effect of metals on pneumococcal aggregation and early biofilm formation. Our results show that biofilms increase as zinc concentrations increase. The effect was found to be zinc-specific, as altering copper and manganese concentrations did not affect biofilm formation. Scanning electron microscopy analysis revealed structural differences between biofilms grown in varying concentrations of zinc. Analysis of biofilm formation in a mutant strain lacking the peroxide-generating enzyme pyruvate oxidase, SpxB, revealed that zinc does not protect against pneumococcal H2O2. Further, analysis of a mutant strain lacking the major autolysin, LytA, indicated the role of zinc as a negative regulator of LytA-dependent autolysis, which could affect biofilm formation. Additionally, analysis of cell-cell aggregation via plating and microscopy revealed that high concentrations of zinc contribute to intercellular interaction of pneumococci. The findings from this study demonstrate that metal availability contributes to the ability of pneumococci to form aggregates and subsequently, biofilms. PMID:28638805

  9. Increased Zinc Availability Enhances Initial Aggregation and Biofilm Formation of Streptococcus pneumoniae.

    PubMed

    Brown, Lindsey R; Caulkins, Rachel C; Schartel, Tyler E; Rosch, Jason W; Honsa, Erin S; Schultz-Cherry, Stacey; Meliopoulos, Victoria A; Cherry, Sean; Thornton, Justin A

    2017-01-01

    Bacteria growing within biofilms are protected from antibiotics and the immune system. Within these structures, horizontal transfer of genes encoding virulence factors, and promoting antibiotic resistance occurs, making biofilms an extremely important aspect of pneumococcal colonization and persistence. Identifying environmental cues that contribute to the formation of biofilms is critical to understanding pneumococcal colonization and infection. Iron has been shown to be essential for the formation of pneumococcal biofilms; however, the role of other physiologically important metals such as copper, zinc, and manganese has been largely neglected. In this study, we investigated the effect of metals on pneumococcal aggregation and early biofilm formation. Our results show that biofilms increase as zinc concentrations increase. The effect was found to be zinc-specific, as altering copper and manganese concentrations did not affect biofilm formation. Scanning electron microscopy analysis revealed structural differences between biofilms grown in varying concentrations of zinc. Analysis of biofilm formation in a mutant strain lacking the peroxide-generating enzyme pyruvate oxidase, SpxB, revealed that zinc does not protect against pneumococcal H 2 O 2 . Further, analysis of a mutant strain lacking the major autolysin, LytA, indicated the role of zinc as a negative regulator of LytA-dependent autolysis, which could affect biofilm formation. Additionally, analysis of cell-cell aggregation via plating and microscopy revealed that high concentrations of zinc contribute to intercellular interaction of pneumococci. The findings from this study demonstrate that metal availability contributes to the ability of pneumococci to form aggregates and subsequently, biofilms.

  10. Dynamics of biofilm formation during anaerobic digestion of organic waste.

    PubMed

    Langer, Susanne; Schropp, Daniel; Bengelsdorf, Frank R; Othman, Maazuza; Kazda, Marian

    2014-10-01

    Biofilm-based reactors are effectively used for wastewater treatment but are not common in biogas production. This study investigated biofilm dynamics on biofilm carriers incubated in batch biogas reactors at high and low organic loading rates for sludge from meat industry dissolved air flotation units. Biofilm formation and dynamics were studied using various microscopic techniques. Resulting micrographs were analysed for total cell numbers, thickness of biofilms, biofilm-covered surface area, and the area covered by extracellular polymeric substances (EPS). Cell numbers within biofilms (10(11) cells ml(-1)) were up to one order of magnitude higher compared to the numbers of cells in the fluid reactor content. Further, biofilm formation and structure mainly correlated with the numbers of microorganisms present in the fluid reactor content and the organic loading. At high organic loading (45 kg VS m(-3)), the thickness of the continuous biofilm layer ranged from 5 to 160 μm with an average of 51 μm and a median of 26 μm. Conversely, at lower organic loading (15 kg VS m(-3)), only microcolonies were detectable. Those microcolonies increased in their frequency of occurrence during ongoing fermentation. Independently from the organic loading rate, biofilms were embedded completely in EPS within seven days. The maturation and maintenance of biofilms changed during the batch fermentation due to decreasing substrate availability. Concomitant, detachment of microorganisms within biofilms was observed simultaneously with the decrease of biogas formation. This study demonstrates that biofilms of high cell densities can enhance digestion of organic waste and have positive effects on biogas production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. The virulence regulator PrfA promotes biofilm formation by Listeria monocytogenes.

    PubMed

    Lemon, Katherine P; Freitag, Nancy E; Kolter, Roberto

    2010-08-01

    Listeria monocytogenes is a food-borne facultative intracellular pathogen. It is widespread in the environment and has several distinct life-styles. The key transcriptional activator PrfA positively regulates L. monocytogenes virulence genes to mediate the transition from extracellular, flagellum-propelled cell to intracellular pathogen. Here we report the first evidence that PrfA also has a significant positive impact on extracellular biofilm formation. Mutants lacking prfA were defective in surface-adhered biofilm formation. The DeltaprfA mutant exhibited wild-type flagellar motility, and its biofilm defect occurred after initial surface adhesion. We also observed that mutations that led to the constitutive expression of PrfA-dependent virulence genes had a minimal impact on biofilm formation. Furthermore, biofilm development was enhanced in a mutant encoding a PrfA protein variant unable to fully transition from the extracellular form to the virulent, intracellular activity conformation. These results indicate that PrfA positively regulates biofilm formation and suggest that PrfA has a global role in modulating the life-style of L. monocytogenes. The requirement of PrfA for optimal biofilm formation may provide selective pressure to maintain this critical virulence regulator when L. monocytogenes is outside host cells in the environment.

  12. Cytotoxicity and the effect of cationic peptide fragments against cariogenic bacteria under planktonic and biofilm conditions.

    PubMed

    Kreling, Paula Fernanda; Aida, Kelly Limi; Massunari, Loiane; Caiaffa, Karina Sampaio; Percinoto, Célio; Bedran, Telma Blanca Lombardo; Spolidorio, Denise Madalena Palomari; Abuna, Gabriel Flores; Cilli, Eduardo Maffud; Duque, Cristiane

    2016-10-01

    This study evaluated the cytotoxicity and effect of fragments derived from three oral cationic peptides (CP): LL-37, D6-17 and D1-23 against cariogenic bacteria under planktonic and biofilm conditions. For cytotoxicity analysis, two epithelial cell lines were used. The minimum inhibitory concentration and the minimal bactericidal concentration were determined for the CP fragments and the control (chlorhexidine-CHX) against cariogenic bacteria. The fractional inhibitory concentration was obtained for the combinations of CP fragments on Streptococcus mutans. Biofilm assays were conducted with the best antimicrobial CP fragment against S. mutans. The results indicated that D6-17 was not cytotoxic. D1-23, LL-37 and CHX were not cytotoxic in low concentrations. D1-23 presented the best bactericidal activity against S. mutans, S. mitis and S. salivarius. Combinations of CP fragments did not show a synergic effect. D1-23 presented a higher activity against S. mutans biofilm than CHX. It was concluded that D1-23 showed a substantial effect against cariogenic bacteria and low cytotoxicity.

  13. Baccharis dracunculifolia-based mouthrinse alters the exopolysaccharide structure in cariogenic biofilms.

    PubMed

    Aires, Carolina P; Sassaki, Guilherme L; Santana-Filho, Arquimedes P; Spadaro, Augusto C C; Cury, Jaime A

    2016-03-01

    Baccharis dracunculifolia is a native plant from Brazil with antimicrobial activity. The purpose of this study was to investigate whether a B. dracunculifolia-based mouthrinse (Bd) changes the structure of insoluble exopolysaccharides (IEPS) in Streptococcus mutans UA159 cariogenic biofilm. Biofilms were grown on glass slides and treated with Bd, its vehicle (VC), chlorhexidine digluconate (CHX), or saline solution (NaCl). Among the treatments, only CHX significantly reduced the biofilm biomass and bacterial viability (p<0.05). Gas chromatography-mass spectrometry and nuclear magnetic resonance analyses revealed that IEPS from the four biofilm samples were α- glucans containing different proportions of (1→6) and (1→3) glycosidic linkages. The structural differences among the four IEPS were compared by principal component analysis (PCA). PCA analysis indicated that IEPS from VC- and NaCl-treated biofilms were structurally similar to each other. Compared with the control, IEPS from Bd- and CHX-treated biofilms were structurally different and had distinct chemical profiles. In summary, the fact that Bd changed the IEPS chemical composition indicates that this mouthrinse may affect the cariogenic properties of the S. mutans biofilm formed. Copyright © 2015. Published by Elsevier B.V.

  14. Chicken Juice Enhances Surface Attachment and Biofilm Formation of Campylobacter jejuni

    PubMed Central

    Brown, Helen L.; Reuter, Mark; Salt, Louise J.; Cross, Kathryn L.; Betts, Roy P.

    2014-01-01

    The bacterial pathogen Campylobacter jejuni is primarily transmitted via the consumption of contaminated foodstuffs, especially poultry meat. In food processing environments, C. jejuni is required to survive a multitude of stresses and requires the use of specific survival mechanisms, such as biofilms. An initial step in biofilm formation is bacterial attachment to a surface. Here, we investigated the effects of a chicken meat exudate (chicken juice) on C. jejuni surface attachment and biofilm formation. Supplementation of brucella broth with ≥5% chicken juice resulted in increased biofilm formation on glass, polystyrene, and stainless steel surfaces with four C. jejuni isolates and one C. coli isolate in both microaerobic and aerobic conditions. When incubated with chicken juice, C. jejuni was both able to grow and form biofilms in static cultures in aerobic conditions. Electron microscopy showed that C. jejuni cells were associated with chicken juice particulates attached to the abiotic surface rather than the surface itself. This suggests that chicken juice contributes to C. jejuni biofilm formation by covering and conditioning the abiotic surface and is a source of nutrients. Chicken juice was able to complement the reduction in biofilm formation of an aflagellated mutant of C. jejuni, indicating that chicken juice may support food chain transmission of isolates with lowered motility. We provide here a useful model for studying the interaction of C. jejuni biofilms in food chain-relevant conditions and also show a possible mechanism for C. jejuni cell attachment and biofilm initiation on abiotic surfaces within the food chain. PMID:25192991

  15. Biofilm formation - What we can learn from recent developments.

    PubMed

    Bjarnsholt, Thomas; Buhlin, Kåre; Dufrêne, Yves F; Gomelsky, Mark; Moroni, Anna; Ramstedt, Madeleine; Rumbaugh, Kendra P; Schulte, Tim; Sun, Lei; Åkerlund, Börje; Römling, Ute

    2018-06-01

    Although biofilms have been observed early in the history of microbial research, their impact has only recently been fully recognized. Biofilm infections, which contribute to up to 80% of human microbial infections, are associated with common human disorders, such as diabetes mellitus and poor dental hygiene, but also with medical implants. The associated chronic infections such as wound infections, dental caries and periodontitis significantly enhance morbidity, affect quality of life and can result in contraction of follow-up diseases such as cancer. Biofilm infections remain challenging to treat and antibiotic monotherapy is often insufficient, although some rediscovered traditional compounds have shown surprising efficiency. Innovative anti-biofilm strategies include application of anti-biofilm small molecules, intrinsic or external stimulation of production of reactive molecules, utilization of materials with antimicrobial properties and dispersion of biofilms by digestion of the extracellular matrix, also in combination with physical biofilm breakdown. Although basic principles of biofilm formation have been deciphered, the molecular understanding of the formation and structural organization of various types of biofilms has just begun to emerge. Basic studies of biofilm physiology have also resulted in an unexpected discovery of cyclic dinucleotide second messengers that are involved in interkingdom crosstalk via specific mammalian receptors. These findings even open up new venues for exploring novel anti-biofilm strategies. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. Extracellular DNA facilitates the formation of functional amyloids in Staphylococcus aureus biofilms.

    PubMed

    Schwartz, Kelly; Ganesan, Mahesh; Payne, David E; Solomon, Michael J; Boles, Blaise R

    2016-01-01

    Persistent staphylococcal infections often involve surface-associated communities called biofilms. Staphylococcus aureus biofilm development is mediated by the co-ordinated production of the biofilm matrix, which can be composed of polysaccharides, extracellular DNA (eDNA) and proteins including amyloid fibers. The nature of the interactions between matrix components, and how these interactions contribute to the formation of matrix, remain unclear. Here we show that the presence of eDNA in S. aureus biofilms promotes the formation of amyloid fibers. Conditions or mutants that do not generate eDNA result in lack of amyloids during biofilm growth despite the amyloidogeneic subunits, phenol soluble modulin peptides, being produced. In vitro studies revealed that the presence of DNA promotes amyloid formation by PSM peptides. Thus, this work exposes a previously unacknowledged interaction between biofilm matrix components that furthers our understanding of functional amyloid formation and S. aureus biofilm biology. © 2015 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.

  17. Comparison of four different methods for detection of biofilm formation by uropathogens.

    PubMed

    Panda, Pragyan Swagatika; Chaudhary, Uma; Dube, Surya K

    2016-01-01

    Urinary tract infection (UTI) is one of the most common infectious diseases encountered in clinical practice. Emerging resistance of the uropathogens to the antimicrobial agents due to biofilm formation is a matter of concern while treating symptomatic UTI. However, studies comparing different methods for detection of biofilm by uropathogens are scarce. To compare four different methods for detection of biofilm formation by uropathogens. Prospective observational study conducted in a tertiary care hospital. Totally 300 isolates from urinary samples were analyzed for biofilm formation by four methods, that is, tissue culture plate (TCP) method, tube method (TM), Congo Red Agar (CRA) method and modified CRA (MCRA) method. Chi-square test was applied when two or more set of variables were compared. P < 0.05 considered as statistically significant. Considering TCP to be a gold standard method for our study we calculated other statistical parameters. The rate of biofilm detection was 45.6%, 39.3% and 11% each by TCP, TM, CRA and MCRA methods, respectively. The difference between TCP and only CRA/MCRA was significant, but not that between TCP and TM. There was no difference in the rate of biofilm detection between CRA and MCRA in other isolates, but MCRA is superior to CRA for detection of the staphylococcal biofilm formation. TCP method is the ideal method for detection of bacterial biofilm formation by uropathogens. MCRA method is superior only to CRA for detection of staphylococcal biofilm formation.

  18. Biofilm formation in an ice cream plant.

    PubMed

    Gunduz, Gulten Tiryaki; Tuncel, Gunnur

    2006-01-01

    The sites of biofilm formation in an ice cream plant were investigated by sampling both the production line and the environment. Experiments were carried out twice within a 20-day period. First, stainless steel coupons were fixed to surfaces adjacent to food contact surfaces, the floor drains and the doormat. They were taken for the analysis of biofilm at three different production stages. Then, biofilm forming bacteria were enumerated and also presence of Listeria monocytogenes was monitored. Biofilm forming isolates were selected on the basis of colony morphology and Gram's reaction; Gram negative cocci and rod, Gram positive cocci and spore forming isolates were identified. Most of the biofilm formations were seen on the conveyor belt of a packaging machine 8 h after the beginning of the production, 6.5 x 10(3) cfu cm(-2). Most of the Gram negative bacteria identified belong to Enterobacteriaceae family such as Proteus, Enterobacter, Citrobacter, Shigella, Escherichia, Edwardsiella. The other Gram negative microflora included Aeromonas, Plesiomonas, Moraxella, Pseudomonas or Alcaligenes spp. were also isolated. Gram positive microflora of the ice cream plant included Staphyloccus, Bacillus, Listeria and lactic acid bacteria such as Streptococcus, Leuconostoc or Pediococcus spp. The results from this study highlighted the problems of spread of pathogens like Listeria and Shigella and spoilage bacteria. In the development of cleaning and disinfection procedures in ice cream plants, an awareness of these biofilm-forming bacteria is essential for the ice cream plants.

  19. The relationship between biofilm formations and capsule in Haemophilus influenzae.

    PubMed

    Qin, Liang; Kida, Yutaka; Ishiwada, Naruhiko; Ohkusu, Kiyofumi; Kaji, Chiharu; Sakai, Yoshiro; Watanabe, Kiwao; Furumoto, Akitsugu; Ichinose, Akitoyo; Watanabe, Hiroshi

    2014-03-01

    To evaluate the biofilm formation of non-typeable Haemophilus influenzae (NTHi) and H. influenzae type b (Hib) clinical isolates, we conducted the following study. Serotyping and polymerase chain reaction were performed to identify β-lactamase-negative ampicillin (ABPC)-susceptible (BLNAS), β-lactamase-negative ABPC-resistant (BLNAR), TEM-1 type β-lactamase-producing ABPC-resistant (BLPAR)-NTHi, and Hib. Biofilm formation was investigated by microtiter biofilm assay, as well as visually observation with a scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) in a continuous-flow chamber. As a result, totally 99 strains were investigated, and were classified into 4 groups which were 26 gBLNAS, 22 gBLNAR, 28 gBLPAR-NTHi and 23 Hib strains. The mean OD600 in the microtiter biofilm assay of gBLNAS, gBLNAR, gBLPAR-NTHi, and Hib strains were 0.57, 0.50, 0.34, and 0.08, respectively. NTHi strains were similar in terms of biofilm formations, which were observed by SEM and CLSM. Five Hib strains with the alternated type b cap loci showed significantly increased biofilm production than the other Hib strains. In conclusion, gBLNAS, gBLNAR, and gBLPAR-NTHi strains were more capable to produce biofilms compared to Hib strains. Our data suggested that resistant status may not be a key factor but capsule seemed to play an important role in H. influenzae biofilm formation. Copyright © 2013 Japanese Society of Chemotherapy and the Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  20. [Investigation of biofilm formation properties of staphylococcus isolates].

    PubMed

    Öcal, Duygu Nilüfer; Dolapçı, İştar; Karahan, Zeynep Ceren; Tekeli, Alper

    2017-01-01

    Biofilm production is an important virulence factor which allows staphylococci to adhere to medical devices. The principal component of biofilm is a "polysaccharide intercellular adhesin (PIA)" which is composed of a beta-1,6-N-acetylglucosamine polymer synthesized by an enzyme (N-acetylglucosamine transferase) encoded by the ica operon found on the bacterial chromosome. This operon is composed of four genes (A, B, C, and D), and a transposable element IS256. In this study, we aimed to determine the biofilm production characteristics of invasive/non-invasive staphylococcus isolates and different staphylococcus species. Biofilm production of 166 staphylococci was phenotypically investigated on Congo Red Agar (CRA); the presence of icaA, icaD and IS256 genes were investigated by polymerase chain reaction (PCR). 74 of the isolates (44.6%) were identified as methicillin resistant Staphylococcus aureus (MRSA), 25 (15.1%) as methicillin sensitive S.aureus (MSSA), 25 (37.3%) as Staphylococcus hominis, 20 (12%) as S.epidermidis, ten (15%) as Staphylococcus haemolyticus, nine (13.4%) as Staphylococcus capitis, two (3%) Staphylococcus saprophyticus and one (1.5%) as Staphylococcus warnerii. Of the MRSA strains, 52 were isolated from blood and 22 from nose; all MSSA strains were isolated from nose cultures. Coagulase-negative staphylococci (CoNS) strains were composed of invasive and non-invasive strains isolated from nose, catheter tip and blood cultures from patients with catheter. Production with CRA method was found to be statistically significant in invasive isolates (p< 0.001). It is concluded that; as the biofilm formation capacity of invasive isolates can cause refractory infections and the importance of carriage and hospital infections of these bacteria, it is important to prevent the spread of these isolates. A combination of phenotypic and genotypic tests is recommended for the investigation of biofilm formation in staphylococci. 40.3% of the CoNS isolates, and 85

  1. Streptococcus sanguinis biofilm formation & interaction with oral pathogens.

    PubMed

    Zhu, Bin; Macleod, Lorna C; Kitten, Todd; Xu, Ping

    2018-06-08

    Caries and periodontitis are the two most common human dental diseases and are caused by dysbiosis of oral flora. Although commensal microorganisms have been demonstrated to protect against pathogens and promote oral health, most previous studies have addressed pathogenesis rather than commensalism. Streptococcus sanguinis is a commensal bacterium that is abundant in the oral biofilm and whose presence is correlated with health. Here, we focus on the mechanism of biofilm formation in S. sanguinis and the interaction of S. sanguinis with caries- and periodontitis-associated pathogens. In addition, since S. sanguinis is well known as a cause of infective endocarditis, we discuss the relationship between S. sanguinis biofilm formation and its pathogenicity in endocarditis.

  2. Rhodomyrtone inhibits lipase production, biofilm formation, and disorganizes established biofilm in Propionibacterium acnes.

    PubMed

    Wunnoo, Suttiwan; Saising, Jongkon; Voravuthikunchai, Supayang Piyawan

    2017-02-01

    Virulence enzymes and biofilm a play crucial role in the pathogenesis of Propionibacterium acnes, a major causative agent of acne vulgaris. In the present study, the effects of rhodomyrtone, a pure compound identified from Rhodomyrtus tomentosa (Aiton) Hassk. leaves extract against enzyme production and biofilm formation production by 5 clinical isolates and a reference strain were evaluated. The degree of hydrolysis by both lipase and protease enzymes significantly decreased upon treatment with the compound at 0.125-0.25 μg/mL (p < 0.05). Lipolytic zones significantly reduced in all isolates while decrease in proteolytic activities was found only in 50% of the isolates. Rhodomyrtone at 1/16MIC and 1/8MIC caused significant reduction in biofilm formation of the clinical isolates (p < 0.05). Percentage viability of P. acnes within mature biofilm upon treated with the compound at 4MIC and 8MIC ranged between 40% and 85%. Pronounced properties of rhodomyrtone suggest a path towards developing a novel anti-acne agent. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Emergent pattern formation in an interstitial biofilm

    NASA Astrophysics Data System (ADS)

    Zachreson, Cameron; Wolff, Christian; Whitchurch, Cynthia B.; Toth, Milos

    2017-01-01

    Collective behavior of bacterial colonies plays critical roles in adaptability, survivability, biofilm expansion and infection. We employ an individual-based model of an interstitial biofilm to study emergent pattern formation based on the assumptions that rod-shaped bacteria furrow through a viscous environment and excrete extracellular polymeric substances which bias their rate of motion. Because the bacteria furrow through their environment, the substratum stiffness is a key control parameter behind the formation of distinct morphological patterns. By systematically varying this property (which we quantify with a stiffness coefficient γ ), we show that subtle changes in the substratum stiffness can give rise to a stable state characterized by a high degree of local order and long-range pattern formation. The ordered state exhibits characteristics typically associated with bacterial fitness advantages, even though it is induced by changes in environmental conditions rather than changes in biological parameters. Our findings are applicable to a broad range of biofilms and provide insights into the relationship between bacterial movement and their environment, and basic mechanisms behind self-organization of biophysical systems.

  4. Topical antibiotic treatment reduces tympanostomy tube biofilm formation.

    PubMed

    Thomas, Robert G; Ojano-Dirain, Carolyn; Antonelli, Patrick J

    2011-05-01

    Single doses of different ototopical antibiotic preparations (OAPs) have been shown to have an unequal reduction of post tympanostomy tube otorrhea (PTTO). Microbial biofilm formation on the tympanostomy tube (TT) has been implicated as one cause of PTTO. The goal of this study was to determine if TT exposure to a single dose of OAP reduces biofilm formation by Pseudomonas aeruginosa. Prospective and controlled. Fluoroplastic TTs were briefly exposed to plasma, followed by one of three OAPs (ofloxacin, neomycin/polymyxin B/hydrocortisone, or ciprofloxacin/dexamethasone) or saline (20 TT per group). TTs were placed in growth media with P. aeruginosa and incubated for 4 days, during which total bacterial growth was monitored by media turbidity. At 4 days, planktonic organisms were killed and biofilm development was measured with microbial counts. Bacterial growth was significantly delayed by OAPs, with the least growth seen with ciprofloxacin/dexamethasone followed by ofloxacin and neomycin/polymyxin B/hydrocortisone (P ≤ .0001). At day 4, bacterial growth was less with ciprofloxacin/dexamethasone than ofloxacin and neomycin/polymyxin B/hydrocortisone (P < .05). After 4 days, biofilm counts were lower on OAP-treated than saline-treated TTs (P = .0015) with both ciprofloxacin/dexamethasone and ofloxacin significantly less than saline (P < .05). Biofilm counts were not significantly different between OAPs (P > .05). Treatment of TTs with ototopical antibiotic preparations reduces P. aeruginosa growth and biofilm formation in vitro. This may, in part, explain the reduction of PTTO rates observed with single doses of OAPs. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.

  5. Integration host factor is important for biofilm formation by Salmonella enterica Enteritidis.

    PubMed

    Leite, Bruna; Werle, Catierine Hirsch; Carmo, Camila Pinheiro do; Nóbrega, Diego Borin; Milanez, Guilherme Paier; Culler, Hebert Fabricio; Sircili, Marcelo Palma; Alvarez-Martinez, Cristina E; Brocchi, Marcelo

    2017-08-31

    Salmonella enterica Enteritidis forms biofilms and survives in agricultural environments, infecting poultry and eggs. Bacteria in biofilms are difficult to eradicate compared to planktonic cells, causing serious problems in industry and public health. In this study, we evaluated the role of ihfA and ihfB in biofilm formation by S. enterica Enteritidis by employing different microbiology techniques. Our data indicate that ihf mutant strains are impaired in biofilm formation, showing a reduction in matrix formation and a decrease in viability and metabolic activity. Phenotypic analysis also showed that deletion of ihf causes a deficiency in curli fimbriae expression, cellulose production and pellicle formation. These results show that integration host factor has an important regulatory role in biofilm formation by S. enterica Enteritidis. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Wild Mushroom Extracts as Inhibitors of Bacterial Biofilm Formation

    PubMed Central

    Alves, Maria José; Ferreira, Isabel C. F. R.; Lourenço, Inês; Costa, Eduardo; Martins, Anabela; Pintado, Manuela

    2014-01-01

    Microorganisms can colonize a wide variety of medical devices, putting patients in risk for local and systemic infectious complications, including local-site infections, catheter-related bloodstream infections, and endocarditis. These microorganisms are able to grow adhered to almost every surface, forming architecturally complex communities termed biofilms. The use of natural products has been extremely successful in the discovery of new medicine, and mushrooms could be a source of natural antimicrobials. The present study reports the capacity of wild mushroom extracts to inhibit in vitro biofilm formation by multi-resistant bacteria. Four Gram-negative bacteria biofilm producers (Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa, and Acinetobacter baumannii) isolated from urine were used to verify the activity of Russula delica, Fistulina hepatica, Mycena rosea, Leucopaxilus giganteus, and Lepista nuda extracts. The results obtained showed that all tested mushroom extracts presented some extent of inhibition of biofilm production. Pseudomonas aeruginosa was the microorganism with the highest capacity of biofilm production, being also the most susceptible to the extracts inhibition capacity (equal or higher than 50%). Among the five tested extracts against E. coli, Leucopaxillus giganteus (47.8%) and Mycenas rosea (44.8%) presented the highest inhibition of biofilm formation. The extracts exhibiting the highest inhibitory effect upon P. mirabilis biofilm formation were Sarcodon imbricatus (45.4%) and Russula delica (53.1%). Acinetobacter baumannii was the microorganism with the lowest susceptibility to mushroom extracts inhibitory effect on biofilm production (highest inhibition—almost 29%, by Russula delica extract). This is a pioneer study since, as far as we know, there are no reports on the inhibition of biofilm production by the studied mushroom extracts and in particular against multi-resistant clinical isolates; nevertheless, other studies are

  7. Cranberry Flavonoids Modulate Cariogenic Properties of Mixed-Species Biofilm through Exopolysaccharides-Matrix Disruption.

    PubMed

    Kim, Dongyeop; Hwang, Geelsu; Liu, Yuan; Wang, Yifei; Singh, Ajay P; Vorsa, Nicholi; Koo, Hyun

    2015-01-01

    The exopolysaccharides (EPS) produced by Streptococcus mutans-derived glucosyltransferases (Gtfs) are essential virulence factors associated with the initiation of cariogenic biofilms. EPS forms the core of the biofilm matrix-scaffold, providing mechanical stability while facilitating the creation of localized acidic microenvironments. Cranberry flavonoids, such as A-type proanthocyanidins (PACs) and myricetin, have been shown to inhibit the activity of Gtfs and EPS-mediated bacterial adhesion without killing the organisms. Here, we investigated whether a combination of cranberry flavonoids disrupts EPS accumulation and S. mutans survival using a mixed-species biofilm model under cariogenic conditions. We also assessed the impact of cranberry flavonoids on mechanical stability and the in situ pH at the biofilm-apatite interface. Topical application of an optimized combination of PACs oligomers (100-300 μM) with myricetin (2 mM) twice daily was used to simulate treatment regimen experienced clinically. Treatments with cranberry flavonoids effectively reduced the insoluble EPS content (>80% reduction vs. vehicle-control; p<0.001), while hindering S. mutans outgrowth within mixed-species biofilms. As a result, the 3D architecture of cranberry-treated biofilms was severely compromised, showing a defective EPS-matrix and failure to develop microcolonies on the saliva-coated hydroxyapatite (sHA) surface. Furthermore, topical applications of cranberry flavonoids significantly weaken the mechanical stability of the biofilms; nearly 90% of the biofilm was removed from sHA surface after exposure to a shear stress of 0.449 N/m2 (vs. 36% removal in vehicle-treated biofilms). Importantly, in situ pH measurements in cranberry-treated biofilms showed significantly higher pH values (5.2 ± 0.1) at the biofilm-apatite interface vs. vehicle-treated biofilms (4.6 ± 0.1). Altogether, the data provide important insights on how cranberry flavonoids treatments modulate virulence

  8. TetR Family Regulator brpT Modulates Biofilm Formation in Streptococcus sanguinis

    PubMed Central

    Ge, Xiuchun; Tang, Madison; Elrami, Fadi

    2017-01-01

    Biofilms are a key component in bacterial communities providing protection and contributing to infectious diseases. However, mechanisms involved in S. sanguinis biofilm formation have not been clearly elucidated. Here, we report the identification of a novel S. sanguinis TetR repressor, brpT (Biofilm Regulatory Protein TetR), involved in biofilm formation. Deletion of brpT resulted in a significant increase in biofilm formation. Interestingly, the mutant accumulated more water soluble and water insoluble glucans in its biofilm compared to the wild-type and the complemented mutant. The brpT mutation led to an altered biofilm morphology and structure exhibiting a rougher appearance, uneven distribution with more filaments bound to the chains. RNA-sequencing revealed that gtfP, the only glucosyltransferase present in S. sanguinis, was significantly up-regulated. In agreement with these findings, we independently observed that deletion of gtfP in S. sanguinis led to reduced biofilm and low levels of water soluble and insoluble glucans. These results suggest that brpT is involved in the regulation of the gtfP-mediated exopolysaccharide synthesis and controls S. sanguinis biofilm formation. The deletion of brpT may have a potential therapeutic application in regulating S. sanguinis colonization in the oral cavity and the prevention of dental caries. PMID:28046010

  9. Prevention of Propionibacterium acnes biofilm formation in prosthetic infections in vitro.

    PubMed

    Howlin, Robert P; Winnard, Christopher; Angus, Elizabeth M; Frapwell, Connor J; Webb, Jeremy S; Cooper, John J; Aiken, Sean S; Bishop, Julie Y; Stoodley, Paul

    2017-04-01

    The role of Propionibacterium acnes in shoulder arthroplasty and broadly in orthopedic prosthetic infections has historically been underestimated, with biofilm formation identified as a key virulence factor attributed to invasive isolates. With an often indolent clinical course, P acnes infection can be difficult to detect and treat. This study investigates absorbable cements loaded with a broad-spectrum antibiotic combination as an effective preventive strategy to combat P acnes biofilms. P acnes biofilm formation on an unloaded synthetic calcium sulfate (CaSO 4 ) bone void filler cement bead was evaluated by scanning electron microscopy over a period of 14 days. Beads loaded with tobramycin alone or vancomycin alone (as comparative controls) and beads loaded with a vancomycin-tobramycin dual treatment were assessed for their ability to eradicate planktonic P acnes, prevent biofilm formation, and eradicate preformed biofilms using a combination of viable-cell counts, confocal microscopy, and scanning electron microscopy. P acnes surface colonization and biofilm formation on unloaded CaSO 4 beads was slow. Beads loaded with antibiotics were able to kill planktonic cultures of 10 6  colony-forming units/mL, prevent bacterial colonization, and significantly reduce biofilm formation over periods of weeks. Complete eradication of established biofilms was achieved with a contact time of 1 week. This study demonstrates that antibiotic-loaded CaSO 4 beads may represent an effective antibacterial and antibiofilm strategy to combat prosthetic infections in which P acnes is involved. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  10. Evaluation of Various Metallic Coatings on Steel to Mitigate Biofilm Formation

    PubMed Central

    Kanematsu, Hideyuki; Ikigai, Hajime; Yoshitake, Michiko

    2009-01-01

    In marine environments and water systems, it is easy for many structures to form biofilms on their surfaces and to be deteriorated due to the corrosion caused by biofilm formation by bacteria. The authors have investigated the antibacterial effects of metallic elements in practical steels so far to solve food-related problems, using Escherichia coli and Staphylococcus aureus. However, from the viewpoint of material deterioration caused by bacteria and their antifouling measures, we should consider the biofilm behavior as aggregate rather than individual bacterium. Therefore, we picked up Pseudomonas aeruginosa and Pseudoalteromonas carageenovara in this study, since they easily form biofilms in estuarine and marine environments. We investigated what kind of metallic elements could inhibit the biofilm formation at first and then discussed how the thin films of those inhibitory elements on steels could affect biofilm formation. The information would lead to the establishment of effective antifouling measures against corrosion in estuarine and marine environments. PMID:19333421

  11. Evaluation of various metallic coatings on steel to mitigate biofilm formation.

    PubMed

    Kanematsu, Hideyuki; Ikigai, Hajime; Yoshitake, Michiko

    2009-02-01

    In marine environments and water systems, it is easy for many structures to form biofilms on their surfaces and to be deteriorated due to the corrosion caused by biofilm formation by bacteria. The authors have investigated the antibacterial effects of metallic elements in practical steels so far to solve food-related problems, using Escherichia coli and Staphylococcus aureus. However, from the viewpoint of material deterioration caused by bacteria and their antifouling measures, we should consider the biofilm behavior as aggregate rather than individual bacterium. Therefore, we picked up Pseudomonas aeruginosa and Pseudoalteromonas carageenovara in this study, since they easily form biofilms in estuarine and marine environments. We investigated what kind of metallic elements could inhibit the biofilm formation at first and then discussed how the thin films of those inhibitory elements on steels could affect biofilm formation. The information would lead to the establishment of effective antifouling measures against corrosion in estuarine and marine environments.

  12. Biofilm Formation of Staphylococcus aureus on Various Surfaces and Their Resistance to Chlorine Sanitizer.

    PubMed

    Lee, Jung-Su; Bae, Young-Min; Lee, Sook-Young; Lee, Sun-Young

    2015-10-01

    This study investigated the effect of material types (polystyrene, polypropylene, glass, and stainless steel) and glucose addition on Staphylococcus aureus biofilm formation, and the relationship between biofilm formation measured by crystal violet (CV) staining and the number of biofilm cells determined by cell counts was studied. We also evaluated the efficacy of chlorine sanitizer on inhibiting various different types of S. aureus biofilms on the surface of stainless steel. Levels of biofilm formation of S. aureus were higher on hydrophilic surfaces (glass and stainless steel) than on hydrophobic surfaces (polypropylene and polystyrene). With the exception of biofilm formed on glass, the addition of glucose in broth significantly increased the biofilm formation of S. aureus on all surfaces and for all tested strains (P ≤ 0.05). The number of biofilm cells was not correlated with the biomass of the biofilms determined using the CV staining method. The efficacy of chlorine sanitizer against biofilm of S. aureus was not significantly different depending on types of biofilm (P > 0.05). Therefore, further studies are needed in order to determine an accurate method quantifying levels of bacterial biofilm and to evaluate the resistance of bacterial biofilm on the material surface. Biofilm formation of Staphylococcus aureus on the surface was different depending on the surface characteristics and S. aureus strains. There was low correlation between crystal violet staining method and viable counts technique for measuring levels of biofilm formation of S. aureus on the surfaces. These results could provide helpful information for finding and understanding the quantification method and resistance of bacterial biofilm on the surface. © 2015 Institute of Food Technologists®

  13. Butyric acid released during milk lipolysis triggers biofilm formation of Bacillus species.

    PubMed

    Pasvolsky, Ronit; Zakin, Varda; Ostrova, Ievgeniia; Shemesh, Moshe

    2014-07-02

    Bacillus species form biofilms within milking pipelines and on surfaces of equipment in the dairy industry which represent a continuous hygiene problem and can lead to serious economic losses due to food spoilage and equipment impairment. Although much is known about the mechanism by which the model organism Bacillus subtilis forms biofilms in laboratory mediums in vitro, little is known of how these biofilms are formed in natural environments such as milk. Besides, little is known of the signaling pathways leading to biofilm formation in other Bacillus species, such as Bacillus cereus and Bacillus licheniformis, both of which are known to contaminate milk. In this study, we report that milk triggers the formation of biofilm-related structures, termed bundles. We show this to be a conserved phenomenon among all Bacillus members tested. Moreover, we demonstrate that the tasA gene, which encodes a major portion of the matrix which holds the biofilm together, is vital for this process. Furthermore, we show that the free fatty acid (FFA) - butyric acid (BA), which is released during lipolysis of milk fat and demonstrates antimicrobial activity, is the potent trigger for biofilm bundle formation. We finally show that BA-triggered biofilm bundle formation is mediated by the histidine kinase, KinD. Taken together, these observations indicate that BA, which is a major FFA within milk triggers biofilm formation in a conserved mechanism among members of the Bacillus genus. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Streptococcus suis Serotype 2 Biofilms Inhibit the Formation of Neutrophil Extracellular Traps.

    PubMed

    Ma, Fang; Yi, Li; Yu, Ningwei; Wang, Guangyu; Ma, Zhe; Lin, Huixing; Fan, Hongjie

    2017-01-01

    Invasive infections caused by Streptococcus suis serotype 2 (SS2) has emerged as a clinical problem in recent years. Neutrophil extracellular traps (NETs) are an important mechanism for the trapping and killing of pathogens that are resistant to phagocytosis. Biofilm formation can protect bacteria from being killed by phagocytes. Until now, there have only been a few studies that focused on the interactions between bacterial biofilms and NETs. SS2 in both a biofilm state and a planktonic cell state were incubated with phagocytes and NETs, and bacterial survival was assessed. DNase I and cytochalasin B were used to degrade NET DNA or suppress phagocytosis, respectively. Extracellular DNA was stained with impermeable fluorescent dye to quantify NET formation. Biofilm formation increased up to 6-fold in the presence of neutrophils, and biofilms were identified in murine tissue. Both planktonic and biofilm cells induced neutrophils chemotaxis to the infection site, with neutrophils increasing by 85.1 and 73.8%, respectively. The bacteria in biofilms were not phagocytized. The bactericidal efficacy of NETs on the biofilms and planktonic cells were equal; however, the biofilm extracellular matrix can inhibit NET release. Although biofilms inhibit NETs release, NETs appear to be an important mechanism to eliminate SS2 biofilms. This knowledge advances the understanding of biofilms and may aid in the development of treatments for persistent infections with a biofilm component.

  15. AzaSite® inhibits Staphylococcus aureus and coagulase-negative Staphylococcus biofilm formation in vitro.

    PubMed

    Wu, Eric C; Kowalski, Regis P; Romanowski, Eric G; Mah, Francis S; Gordon, Y Jerold; Shanks, Robert M Q

    2010-12-01

    The aim of this study was to analyze the effect of azithromycin (AZM) 1% ophthalmic solution in DuraSite® (AzaSite®) on biofilm formation by Staphylococcus aureus and coagulase-negative staphylococci in vitro. Susceptible and resistant clinical strains (n = 8) of S. aureus and coagulase-negative staphylococci were challenged with serial dilutions of AzaSite® and its components: AZM, benzalkonium chloride (BAK), and the DuraSite drug delivery vehicle. After 20 h of incubation, bacterial growth was quantified using a spectrophotometer (A = 600 nm). Plates were stained with crystal violet and biofilm formation was quantified spectrophotometrically at A = 590 nm. AzaSite® and AZM inhibited bacterial growth (P < 0.05) and biofilm formation (P < 0.05) in AZM-susceptible strains at all studied dilutions. AZM-resistant strains treated with AzaSite® exhibited a significant reduction in biofilm formation (P < 0.05) at subinhibitory concentrations (1.25%-5%). AZM had no effect on bacterial growth in resistant strains but conferred a small reduction in biofilm formation at concentrations from 1.25 to 10 mg/mL in most strains. DuraSite® inhibited biofilm formation at concentrations between 10% and 2.5% in all studied strains (P < 0.05), without affecting bacterial growth. BAK inhibited bacterial growth and biofilm formation in all strains between concentrations of 0.042 and 0.375 mg/mL (P < 0.05). AzaSite®, AZM, or BAK prevented biofilm formation by inhibiting growth of AZM-susceptible strains. AzaSite®, AZM, and DuraSite® also reduced biofilm formation at subinhibitory concentrations for growth. Our data indicate that AZM has a moderate inhibitory effect on biofilm formation, whereas DuraSite® appears to play a greater role in the inhibition of staphylococcal biofilm formation by AzaSite®.

  16. Oxidative Stressors Modify the Response of Streptococcus mutans to Its Competence Signal Peptides

    PubMed Central

    De Furio, Matthew; Ahn, Sang Joon

    2017-01-01

    ABSTRACT The dental caries pathogen Streptococcus mutans is continually exposed to several types of stress in the oral biofilm environment. Oxidative stress generated by reactive oxygen species has a major impact on the establishment, persistence, and virulence of S. mutans. Here, we combined fluorescent reporter-promoter fusions with single-cell imaging to study the effects of reactive oxygen species on activation of genetic competence in S. mutans. Exposure to paraquat, which generates superoxide anion, produced a qualitatively different effect on activation of expression of the gene for the master competence regulator, ComX, than did treatment with hydrogen peroxide (H2O2), which can yield hydroxyl radical. Paraquat suppressed peptide-mediated induction of comX in a progressive and cumulative fashion, whereas the response to H2O2 displayed a strong threshold behavior. Low concentrations of H2O2 had little effect on induction of comX or the bacteriocin gene cipB, but expression of these genes declined sharply if extracellular H2O2 exceeded a threshold concentration. These effects were not due to decreased reporter gene fluorescence. Two different threshold concentrations were observed in the response to H2O2, depending on the gene promoter that was analyzed and the pathway by which the competence regulon was stimulated. The results show that paraquat and H2O2 affect the S. mutans competence signaling pathway differently, and that some portions of the competence signaling pathway are more sensitive to oxidative stress than others. IMPORTANCE Streptococcus mutans inhabits the oral biofilm, where it plays an important role in the development of dental caries. Environmental stresses such as oxidative stress influence the growth of S. mutans and its important virulence-associated behaviors, such as genetic competence. S. mutans competence development is a complex behavior that involves two different signaling peptides and can exhibit cell-to-cell heterogeneity

  17. Oxidative Stressors Modify the Response of Streptococcus mutans to Its Competence Signal Peptides.

    PubMed

    De Furio, Matthew; Ahn, Sang Joon; Burne, Robert A; Hagen, Stephen J

    2017-11-15

    The dental caries pathogen Streptococcus mutans is continually exposed to several types of stress in the oral biofilm environment. Oxidative stress generated by reactive oxygen species has a major impact on the establishment, persistence, and virulence of S. mutans Here, we combined fluorescent reporter-promoter fusions with single-cell imaging to study the effects of reactive oxygen species on activation of genetic competence in S. mutans Exposure to paraquat, which generates superoxide anion, produced a qualitatively different effect on activation of expression of the gene for the master competence regulator, ComX, than did treatment with hydrogen peroxide (H 2 O 2 ), which can yield hydroxyl radical. Paraquat suppressed peptide-mediated induction of comX in a progressive and cumulative fashion, whereas the response to H 2 O 2 displayed a strong threshold behavior. Low concentrations of H 2 O 2 had little effect on induction of comX or the bacteriocin gene cipB , but expression of these genes declined sharply if extracellular H 2 O 2 exceeded a threshold concentration. These effects were not due to decreased reporter gene fluorescence. Two different threshold concentrations were observed in the response to H 2 O 2 , depending on the gene promoter that was analyzed and the pathway by which the competence regulon was stimulated. The results show that paraquat and H 2 O 2 affect the S. mutans competence signaling pathway differently, and that some portions of the competence signaling pathway are more sensitive to oxidative stress than others. IMPORTANCE Streptococcus mutans inhabits the oral biofilm, where it plays an important role in the development of dental caries. Environmental stresses such as oxidative stress influence the growth of S. mutans and its important virulence-associated behaviors, such as genetic competence. S. mutans competence development is a complex behavior that involves two different signaling peptides and can exhibit cell

  18. Visualizing biofilm formation in endotracheal tubes using endoscopic three-dimensional optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Heidari, Andrew E.; Moghaddam, Samer; Troung, Kimberly K.; Chou, Lidek; Genberg, Carl; Brenner, Matthew; Chen, Zhongping

    2015-12-01

    Biofilm formation has been linked to ventilator-associated pneumonia, which is a prevalent infection in hospital intensive care units. Currently, there is no rapid diagnostic tool to assess the degree of biofilm formation or cellular biofilm composition. Optical coherence tomography (OCT) is a minimally invasive, nonionizing imaging modality that can be used to provide high-resolution cross-sectional images. Biofilm deposited in critical care patients' endotracheal tubes was analyzed in vitro. This study demonstrates that OCT could potentially be used as a diagnostic tool to analyze and assess the degree of biofilm formation and extent of airway obstruction caused by biofilm in endotracheal tubes.

  19. Glucan Binding Protein C of Streptococcus mutans Mediates both Sucrose-Independent and Sucrose-Dependent Adherence.

    PubMed

    Mieher, Joshua L; Larson, Matthew R; Schormann, Norbert; Purushotham, Sangeetha; Wu, Ren; Rajashankar, Kanagalaghatta R; Wu, Hui; Deivanayagam, Champion

    2018-07-01

    The high-resolution structure of glucan binding protein C (GbpC) at 1.14 Å, a sucrose-dependent virulence factor of the dental caries pathogen Streptococcus mutans , has been determined. GbpC shares not only structural similarities with the V regions of AgI/II and SspB but also functional adherence to salivary agglutinin (SAG) and its scavenger receptor cysteine-rich domains (SRCRs). This is not only a newly identified function for GbpC but also an additional fail-safe binding mechanism for S. mutans Despite the structural similarities with S. mutans antigen I/II (AgI/II) and SspB of Streptococcus gordonii , GbpC remains unique among these surface proteins in its propensity to adhere to dextran/glucans. The complex crystal structure of GbpC with dextrose (β-d-glucose; Protein Data Bank ligand BGC) highlights exclusive structural features that facilitate this interaction with dextran. Targeted deletion mutant studies on GbpC's divergent loop region in the vicinity of a highly conserved calcium binding site confirm its role in biofilm formation. Finally, we present a model for adherence to dextran. The structure of GbpC highlights how artfully microbes have engineered the lectin-like folds to broaden their functional adherence repertoire. Copyright © 2018 American Society for Microbiology.

  20. Inhibition of biofilm formation in Bacillus subtilis by new halogenated furanones.

    PubMed

    Kayumov, Airat R; Khakimullina, Elvina N; Sharafutdinov, Irshad S; Trizna, Elena Y; Latypova, Lilia Z; Thi Lien, Hoang; Margulis, Anna B; Bogachev, Mikhail I; Kurbangalieva, Almira R

    2015-05-01

    Gram-positive bacteria can cause various infections including hospital-acquired infections. While in the biofilm, the resistance of bacteria to both antibiotics and the human immune system is increased causing difficulties in the treatment. Bacillus subtilis, a non-pathogenic Gram-positive bacterium, is widely used as a model organism for studying biofilm formation. Here we investigated the effect of novel synthesized chloro- and bromo-containing 2(5H)-furanones on biofilm formation by B. subtilis. Mucobromic acid (3,4-dibromo-5-hydroxy-2(5H)-furanone) and the two derivatives of mucochloric acid (3,4-dichloro-5-hydroxy-2(5H)-furanone)-F8 and F12-were found to inhibit the growth and to efficiently prevent biofilm formation by B. subtilis. Along with the low production of polysaccharide matrix and repression of the eps operon, strong repression of biofilm-related yqxM also occurred in the presence of furanones. Therefore, our data confirm that furanones affect significantly the regulatory pathway(s) leading to biofilm formation. We propose that the global regulator, Spo0A, is one of the potential putative cellular targets for these compounds.

  1. Modeling and predicting the biofilm formation of Salmonella Virchow with respect to temperature and pH.

    PubMed

    Ariafar, M Nima; Buzrul, Sencer; Akçelik, Nefise

    2016-03-01

    Biofilm formation of Salmonella Virchow was monitored with respect to time at three different temperature (20, 25 and 27.5 °C) and pH (5.2, 5.9 and 6.6) values. As the temperature increased at a constant pH level, biofilm formation decreased while as the pH level increased at a constant temperature, biofilm formation increased. Modified Gompertz equation with high adjusted determination coefficient (Radj(2)) and low mean square error (MSE) values produced reasonable fits for the biofilm formation under all conditions. Parameters of the modified Gompertz equation could be described in terms of temperature and pH by use of a second order polynomial function. In general, as temperature increased maximum biofilm quantity, maximum biofilm formation rate and time of acceleration of biofilm formation decreased; whereas, as pH increased; maximum biofilm quantity, maximum biofilm formation rate and time of acceleration of biofilm formation increased. Two temperature (23 and 26 °C) and pH (5.3 and 6.3) values were used up to 24 h to predict the biofilm formation of S. Virchow. Although the predictions did not perfectly match with the data, reasonable estimates were obtained. In principle, modeling and predicting the biofilm formation of different microorganisms on different surfaces under various conditions could be possible.

  2. Adhesion, biofilm formation, cell surface hydrophobicity, and antifungal planktonic susceptibility: relationship among Candida spp.

    PubMed

    Silva-Dias, Ana; Miranda, Isabel M; Branco, Joana; Monteiro-Soares, Matilde; Pina-Vaz, Cidália; Rodrigues, Acácio G

    2015-01-01

    We have performed the characterization of the adhesion profile, biofilm formation, cell surface hydrophobicity (CSH) and antifungal susceptibility of 184 Candida clinical isolates obtained from different human reservoirs. Adhesion was quantified using a flow cytometric assay and biofilm formation was evaluated using two methodologies: XTT and crystal violet assay. CSH was quantified with the microbial adhesion to hydrocarbons test while planktonic susceptibility was assessed accordingly the CLSI protocol for yeast M27-A3 S4. Yeast cells of non-albicans species exhibit increased ability to adhere and form biofilm. However, the correlation between adhesion and biofilm formation varied according to species and also with the methodology used for biofilm assessment. No association was found between strain's site of isolation or planktonic antifungal susceptibility and adhesion or biofilm formation. Finally CSH seemed to be a good predictor for biofilm formation but not for adhesion. Despite the marked variability registered intra and inter species, C. tropicalis and C. parapsilosis were the species exhibiting high adhesion profile. C. tropicalis, C. guilliermondii, and C. krusei revealed higher biofilm formation values in terms of biomass. C. parapsilosis was the species with lower biofilm metabolic activity.

  3. Adhesion, biofilm formation, cell surface hydrophobicity, and antifungal planktonic susceptibility: relationship among Candida spp.

    PubMed Central

    Silva-Dias, Ana; Miranda, Isabel M.; Branco, Joana; Monteiro-Soares, Matilde; Pina-Vaz, Cidália; Rodrigues, Acácio G.

    2015-01-01

    We have performed the characterization of the adhesion profile, biofilm formation, cell surface hydrophobicity (CSH) and antifungal susceptibility of 184 Candida clinical isolates obtained from different human reservoirs. Adhesion was quantified using a flow cytometric assay and biofilm formation was evaluated using two methodologies: XTT and crystal violet assay. CSH was quantified with the microbial adhesion to hydrocarbons test while planktonic susceptibility was assessed accordingly the CLSI protocol for yeast M27-A3 S4. Yeast cells of non-albicans species exhibit increased ability to adhere and form biofilm. However, the correlation between adhesion and biofilm formation varied according to species and also with the methodology used for biofilm assessment. No association was found between strain's site of isolation or planktonic antifungal susceptibility and adhesion or biofilm formation. Finally CSH seemed to be a good predictor for biofilm formation but not for adhesion. Despite the marked variability registered intra and inter species, C. tropicalis and C. parapsilosis were the species exhibiting high adhesion profile. C. tropicalis, C. guilliermondii, and C. krusei revealed higher biofilm formation values in terms of biomass. C. parapsilosis was the species with lower biofilm metabolic activity. PMID:25814989

  4. [Construction of a low-pH-sensing system in Streptococcus mutans].

    PubMed

    Di, Kang; Yuqing, Li; Xuedong, Zhou

    2017-06-01

    To construct a low-pH-sensing system in Streptococcus mutans (S. mutans) and to visually detect the pH in situ. Promoter of ureaseⅠ(PureⅠ) and green fluorescence protein (gfp) DNA fragments were amplified by polymerase chain reaction (PCR) from the genome of Streptococcus salivarius 57.I and S. mutans containing the gfp fragment. The two amplified DNA fragments were ligated together and further integrated into pDL278 to construct the recombinant plasmid pDL278-pureⅠ-gfp. This recombinant plasmid was then transformed into S. mutans UA159 cells. Subsequently, the intensity of the optical density per unit area of the low-pH-sensing system was measured and compared under different pH conditions and different processing times. PureⅠ and gfp DNA fragments were amplified successfully with the correct molecule sizes (450 and 717 bp, respectively). The recombinant plasmid pDL278-pureⅠ-gfp was constructed and further verified by PCR and sequencing. The intensity of the optical density per unit area of the low-pH-sensing system increased with decreasing pH and increasing processing time. A low-pH-sensing system was constructed successfully in S. mutans. Our research verified that pureⅠ of Streptococcus salivarius can function well in S. mutans as an acid induced promoter, and provided a new method of detecting the pH of plaque biofilms in situ.

  5. Factors Mediating Environmental Biofilm Formation by Legionella pneumophila.

    PubMed

    Abu Khweek, Arwa; Amer, Amal O

    2018-01-01

    Legionella pneumophila ( L. pneumophila ) is an opportunistic waterborne pathogen and the causative agent for Legionnaires' disease, which is transmitted to humans via inhalation of contaminated water droplets. The bacterium is able to colonize a variety of man-made water systems such as cooling towers, spas, and dental lines and is widely distributed in multiple niches, including several species of protozoa In addition to survival in planktonic phase, L. pneumophila is able to survive and persist within multi-species biofilms that cover surfaces within water systems. Biofilm formation by L. pneumophila is advantageous for the pathogen as it leads to persistence, spread, resistance to treatments and an increase in virulence of this bacterium. Furthermore, Legionellosis outbreaks have been associated with the presence of L. pneumophila in biofilms, even after the extensive chemical and physical treatments. In the microbial consortium-containing L. pneumophila among other organisms, several factors either positively or negatively regulate the presence and persistence of L. pneumophila in this bacterial community. Biofilm-forming L. pneumophila is of a major importance to public health and have impact on the medical and industrial sectors. Indeed, prevention and removal protocols of L. pneumophila as well as diagnosis and hospitalization of patients infected with this bacteria cost governments billions of dollars. Therefore, understanding the biological and environmental factors that contribute to persistence and physiological adaptation in biofilms can be detrimental to eradicate and prevent the transmission of L. pneumophila . In this review, we focus on various factors that contribute to persistence of L. pneumophila within the biofilm consortium, the advantages that the bacteria gain from surviving in biofilms, genes and gene regulation during biofilm formation and finally challenges related to biofilm resistance to biocides and anti-Legionella treatments.

  6. Orthodontic treatment with fixed appliances and biofilm formation--a potential public health threat?

    PubMed

    Ren, Yijin; Jongsma, Marije A; Mei, Li; van der Mei, Henny C; Busscher, Henk J

    2014-09-01

    Orthodontic treatment is highly popular for restoring functional and facial esthetics in juveniles and adults. As a downside, prevalence of biofilm-related complications is high. Objectives of this review are to (1) identify special features of biofilm formation in orthodontic patients and (2) emphasize the need for strong concerted action to prevent biofilm-related complications during orthodontic treatment. Literature on biofilm formation in the oral cavity is reviewed to identify special features of biofilm formation in orthodontic patients. Estimates are made of juvenile and adult orthodontic patient population sizes, and biofilm-related complication rates are used to indicate the costs and clinical workload resulting from biofilm-related complications. Biofilm formation in orthodontic patients is governed by similar mechanisms as common in the oral cavity. However, orthodontic appliances hamper the maintenance of oral hygiene and provide numerous additional surfaces, with properties alien to the oral cavity, to which bacteria can adhere and form a biofilm. Biofilm formation may lead to gingivitis and white spot lesions, compromising facial esthetics. Whereas gingivitis after orthodontic treatment is often transient, white spot lesions may turn into cavities requiring professional restoration. Complications requiring professional care develop in 15 % of all orthodontic patients, implying an annual cost of over US$500,000,000 and a workload of 1,000 full-time dentists in the USA alone. Improved preventive measures and antimicrobial materials are urgently required to prevent biofilm-related complications of orthodontic treatment from overshadowing its functional and esthetic advantages. High treatment demand and occurrence of biofilm-related complications requiring professional care make orthodontic treatment a potential public health threat.

  7. Dissecting the regulation of bile-induced biofilm formation in Staphylococcus aureus.

    PubMed

    Ulluwishewa, Dulantha; Wang, Liang; Pereira, Callen; Flynn, Stephanie; Cain, Elizabeth; Stick, Stephen; Reen, F Jerry; Ramsay, Joshua P; O'Gara, Fergal

    2016-08-01

    Aspiration of bile into the cystic fibrosis (CF) lung has emerged as a prognostic factor for reduced microbial lung biodiversity and the establishment of often fatal, chronic pathogen infections. Staphylococcus aureus is one of the earliest pathogens detected in the lungs of children with CF, and once established as a chronic infection, strategies for its eradication become limited. Several lung pathogens are stimulated to produce biofilms in vitro in the presence of bile. In this study, we further investigated the effects of bile on S. aureus biofilm formation. Most clinical S. aureus strains and the laboratory strain RN4220 were stimulated to form biofilms with sub-inhibitory concentrations of bovine bile. Additionally, we observed bile-induced sensitivity to aminoglycosides, which we exploited in a bursa aurealis transposon screen to isolate mutants reduced in aminoglycoside sensitivity and augmented in bile-induced biofilm formation. We identified five mutants that exhibited hypersensitivity to bile with respect to bile-induced biofilm formation, three of which carried transposon insertions within gene clusters involved in wall teichoic acid (WTA) biosynthesis or transport. Strain TM4 carried an insertion between the divergently oriented tagH and tagG genes, which encode the putative WTA membrane translocation apparatus. Ectopic expression of tagG in TM4 restored a wild-type bile-induced biofilm response, suggesting that reduced translocation of WTA in TM4 induced sensitivity to bile and enhanced the bile-induced biofilm formation response. We propose that WTA may be important for protecting S. aureus against exposure to bile and that bile-induced biofilm formation may be an evolved response to protect cells from bile-induced cell lysis.

  8. ArcR modulates biofilm formation in the dental plaque colonizer Streptococcus gordonii.

    PubMed

    Robinson, J C; Rostami, N; Casement, J; Vollmer, W; Rickard, A H; Jakubovics, N S

    2018-04-01

    Biofilm formation and cell-cell sensing by the pioneer dental plaque colonizer Streptococcus gordonii are dependent upon arginine. This study aimed to identify genetic factors linking arginine-dependent responses and biofilm formation in S. gordonii. Isogenic mutants disrupted in genes required for the biosynthesis or catabolism of arginine, or for arginine-dependent gene regulation, were screened for their ability to form biofilms in a static culture model. Biofilm formation by a knockout mutant of arcR, encoding an arginine-dependent regulator of transcription, was reduced to < 50% that of the wild-type whereas other strains were unaffected. Complementation of S. gordonii ∆arcR with a plasmid-borne copy of arcR restored the ability to develop biofilms. By DNA microarray analysis, 25 genes were differentially regulated in S. gordonii ∆arcR compared with wild-type under arginine-replete conditions including eight genes encoding components of phosphotransferase systems for sugar uptake. By contrast, disruption of argR or ahrC genes, which encode paralogous arginine-dependent regulators, each resulted in significant changes in the expression of more than 100 genes. Disruption of a gene encoding a putative extracellular protein that was strongly regulated in S. gordonii ∆arcR had a minor impact on biofilm formation. We hypothesize that genes regulated by ArcR form a critical pathway linking arginine sensing to biofilm formation in S. gordonii. Further elucidation of this pathway may provide new targets for the control of dental plaque formation by inhibiting biofilm formation by a key pioneer colonizer of tooth surfaces. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Synergistic Effects of Nonthermal Plasma and Disinfecting Agents against Dental Biofilms In Vitro

    PubMed Central

    Koban, Ina; Geisel, Marie Henrike; Holtfreter, Birte; Jablonowski, Lukasz; Hübner, Nils-Olaf; Matthes, Rutger; Masur, Kai; Weltmann, Klaus-Dieter; Kramer, Axel; Kocher, Thomas

    2013-01-01

    Aim. Dental biofilms play a major role in the pathogenesis of many dental diseases. In this study, we evaluated the synergistic effect of atmospheric pressure plasma and different agents in dentistry on the reduction of biofilms. Methods and Results. We used monospecies (S. mutans) and multispecies dental biofilm models grown on titanium discs in vitro. After treatment with one of the agents, the biofilms were treated with plasma. Efficacy of treatment was determined by the number of colony forming units (CFU) and by live-dead staining. For S. mutans biofilms no colonies could be detected after treatment with NaOCl or H2O2. For multispecies biofilms the combination with plasma achieved a higher CFU reduction than each agent alone. We found an additive antimicrobial effect between argon plasma and agents irrespective of the treatment order with cultivation technique. For EDTA and octenidine, antimicrobial efficacy assessed by live-dead staining differed significantly between the two treatment orders (P < 0.05). Conclusions. The effective treatment of dental biofilms on titanium discs with atmospheric pressure plasma could be increased by adding agents in vitro. PMID:24159388

  10. [Formation of microbial biofilms in causative agents of acute and chronic pyelonephritis].

    PubMed

    Lagun, L V; Atanasova, Iu V; Tapal'skiĭ, D V

    2013-01-01

    Study the intensity of formation of microbial biofilms by Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus strains isolated during various forms of pyelonephritis. 150 clinical isolates of microorganisms isolated from urine ofpatientswith acute and chronic pyelonephritiswere included into the study. Determination of intensity of film-formation was carried out by staining of the formed biofilms by crystal violet with consequent extraction of the dye and measurement of its concentration in washout solution. Among causative agents ofpyelonephritis P. aeruginosa isolates had the maximum film-forming ability. The intensity of biofilm formation of these isolates was 2-3 time higher than staphylococcus and enterobacteria strains. Strains isolated from patients with chronic pyelonephritis by ability to form biofilms significantly surpassed strains isolated from acute pyelonephritis patients. A higher ability to form microbial biofilms for microorganisms--causative agents of pyelonephritis progressing against the background ofurolithiasis was noted. The ability to form biofilms is determined by both causative agent species and character of the infectious process in which this microorganism participates. Intensive formation of biofilms by E. coli, P. aeruginosa, K. pneumoniae, S. aureus clinical isolates may be an important factor of chronization of urinary tract infections.

  11. Effect of polymyxin resistance (pmr) on biofilm formation of Cronobacter sakazakii.

    PubMed

    Bao, Xuerui; Jia, Xiangyin; Chen, Lequn; Peters, Brian M; Lin, Chii-Wann; Chen, Dingqiang; Li, Lin; Li, Bing; Li, Yanyan; Xu, Zhenbo; Shirtliff, Mark E

    2017-05-01

    Cronobacter sakazakii (C.sakazakii) has been identified as a wide-spread conditioned pathogen associated with series of serious illnesses, such as neonatal meningitis, enterocolitis, bacteremia or sepsis. As food safety is concerned, microbial biofilm has been considered to be a potential source of food contamination. The current study aims to investigate the ability of biofilm formation of two C. sakazakii strains (wild type BAA 894 and pmrA mutant). Crystal violet (CV), XTT (2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino carbonyl)-2H-(tetrazolium hydroxide)] assays, and scanning electron microscopy (SEM) are performed on different time points during biofilm formation of C. sakazakii strains. Furthermore, RNA-seq strategy is utilized and the transcriptome data is analyzed to study the expression of genes related to biofilm formation along with whole genome sequencing. For biomass, in the first 24 h, pmrA mutant produced approximately 5 times than wildtype. However, the wild type exhibited more biomass than pmrA mutant during the post maturation stage (7-14 d). In addition, the wildtype showed higher viability than pmrA mutant during the whole biofilm formation. This study represents the first evidence on the biofilm formation of C. sakazakii pmrA mutant, which may further aid in the prevention and control for the food contamination caused by C. sakazakii. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Fibrinogen induces biofilm formation by Streptococcus suis and enhances its antibiotic resistance.

    PubMed

    Bonifait, Laetitia; Grignon, Louis; Grenier, Daniel

    2008-08-01

    In this study, we showed that supplementing the culture medium with fibrinogen induced biofilm formation by Streptococcus suis in a dose-dependent manner. Biofilm-grown S. suis cells were much more resistant to penicillin G than planktonic cells. S. suis bound fibrinogen to its surface, a property that likely contributes to biofilm formation.

  13. Characterisation of a sucrose-independent in vitro biofilm model of supragingival plaque.

    PubMed

    Tsutsumi, K; Maruyama, M; Uchiyama, A; Shibasaki, K

    2018-04-01

    Sugar consumption has been decreasing in Japan, suggesting higher rates of sucrose-independent supragingival plaque formation. For developing an in vitro biofilm model of sucrose-independent supragingival plaque, this study aimed to investigate the compositions and functions on contributing to cariogenicity in comparison with sucrose-dependent biofilm. An in vitro multispecies biofilm containing Actinomyces naeslundii, Streptococcus gordonii, S. mutans, Veillonella parvula and Fusobacterium nucleatum was formed on 24-well plates in the absence or presence of 1% sucrose. Compositions were assessed by plate culture, scanning electron microscopy and confocal laser scanning microscopy after fluorescent in situ hybridisation or labelling of extracellular polymeric substances (EPS). Functions were assessed by acidogenicity, adherence strength and sensitivities to anticaries agents. Although both biofilms exhibited a Streptococcus predominant bacterial composition, there were differences in bacterial and EPS compositions; in particular, little glucan EPS was observed in sucrose-independent biofilm. Compared with sucrose-dependent biofilm, acidogenicity, adherence strength and antimicrobial resistance of sucrose-independent biofilm were only slightly lower. However, dextranase degradation was substantially lower in sucrose-independent biofilm. Our findings suggest that sucrose-independent biofilm may have cariogenicity as with sucrose-dependent biofilm. These in vitro models can help further elucidate plaque-induced caries aetiology and develop new anticaries agents. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. All rights reserved.

  14. Biofilm formation by Staphylococcus hominis strains isolated from human clinical specimens.

    PubMed

    Szczuka, Ewa; Telega, Kinga; Kaznowski, Adam

    2015-01-01

    Staphylococcus hominis is the third species of coagulase-negative staphylococci (CoNS) most frequently isolated from specimens of patients with hospital-acquired infections. Many infections caused by CoNS appeared to be associated with biofilms. Nevertheless, the knowledge of the ability of S. hominis to form a biofilm is limited. The aim of this study was to analyze the formation of the biofilm by 56 S. hominis strains isolated from clinical cases. The biofilm three-dimensional structure was reconstructed by confocal laser scanning microscopy. We found that most of S. hominis strains carried icaADBC genes encoding polysaccharide intercellular adhesin (PIA), which plays a crucial role in the formation of biofilms in staphylococci strains. However, only a half of the ica-positive strains had an ability to form a biofilm in vitro. In this study, we also accessed the sensitivity of biofilms of S. hominis strains to sodium metaperiodate, proteinase K and DNase. We found that polysaccharides and proteins are the major components of the extracellular matrix of the biofilm formed by S. hominis. DNase did not have a significant effect on biofilms, which suggested that nucleic acid plays a minor role in the mature biofilm.

  15. Biofilm formation in geometries with different surface curvature and oxygen availability

    NASA Astrophysics Data System (ADS)

    Chang, Ya-Wen; Fragkopoulos, Alexandros A.; Marquez, Samantha M.; Kim, Harold D.; Angelini, Thomas E.; Fernández-Nieves, Alberto

    2015-03-01

    Bacteria in the natural environment exist as interface-associated colonies known as biofilms . Complex mechanisms are often involved in biofilm formation and development. Despite the understanding of the molecular mechanisms involved in biofilm formation, it remains unclear how physical effects in standing cultures influence biofilm development. The topology of the solid interface has been suggested as one of the physical cues influencing bacteria-surface interactions and biofilm development. Using the model organism Bacillus subtilis, we study the transformation of swimming bacteria in liquid culture into robust biofilms in a range of confinement geometries (planar, spherical and toroidal) and interfaces (air/water, silicone/water, and silicone elastomer/water). We find that B. subtilis form submerged biofilms at both solid and liquid interfaces in addition to air-water pellicles. When confined, bacteria grow on curved surfaces of both positive and negative Gaussian curvature. However, the confinement geometry does affect the resulting biofilm roughness and relative coverage. We also find that the biofilm location is governed by oxygen availability as well as by gravitational effects; these compete with each other in some situations. Overall, our results demonstrate that confinement geometry is an effective way to control oxygen availability and subsequently biofilm growth.

  16. Fibrinogen Induces Biofilm Formation by Streptococcus suis and Enhances Its Antibiotic Resistance▿

    PubMed Central

    Bonifait, Laetitia; Grignon, Louis; Grenier, Daniel

    2008-01-01

    In this study, we showed that supplementing the culture medium with fibrinogen induced biofilm formation by Streptococcus suis in a dose-dependent manner. Biofilm-grown S. suis cells were much more resistant to penicillin G than planktonic cells. S. suis bound fibrinogen to its surface, a property that likely contributes to biofilm formation. PMID:18539785

  17. Effect of microbubbled water on the removal of a biofilm attached to orthodontic appliances--an in vitro study.

    PubMed

    Mukumoto, Mio; Ohshima, Tomoko; Ozaki, Miwa; Konishi, Hirokazu; Maeda, Nobuko; Nakamura, Yoshiki

    2012-01-01

    Orthodontic appliances often cause oral diseases such as dental caries and gingivitis due to the attachment of an oral biofilm. However, there are few reliable methods to remove the biofilm from the orthodontic appliances. The aim of this study was to investigate the effects of microbubbled water on the removal of biofilms made with Streptococcus mutans or Candida albicans on orthodontic appliances. The orthodontic appliances with biofilm were immersed with microbubbled water and the remaining biofilm on the appliances was detected and measured using a micro-plate reader and an absorbance meter. The microbubbled water had a sufficient effect on the removal of biofilm from orthodontic appliances. The effects of microbubbled water were significantly higher than those of tap water (S. mutans: p<0.05, C. albicans: p<0.01). The results of this study suggest that microbubbled water is effective in the removal of biofilm from the mouth of orthodontic patients.

  18. The influence of dissolved oxygen level and medium on biofilm formation by Campylobacter jejuni.

    PubMed

    Teh, Amy Huei Teen; Lee, Sui Mae; Dykes, Gary A

    2017-02-01

    Campylobacter jejuni survival in aerobic environments has been suggested to be mediated by biofilm formation. Biofilm formation by eight C. jejuni strains under both aerobic and microaerobic conditions in different broths (Mueller-Hinton (MH), Bolton and Brucella) was quantified. The dissolved oxygen (DO) content of the broths under both incubation atmospheres was determined. Biofilm formation for all strains was highest in MH broth under both incubation atmospheres. Four strains had lower biofilm formation in MH under aerobic as compared to microaerobic incubation, while biofilm formation by the other four strains did not differ under the 2 atm. Two strains had higher biofilm formation under aerobic as compared to microaerobic atmospheres in Bolton broth. Biofilm formation by all other strains in Bolton, and all strains in Brucella broth, did not differ under the 2 atm. Under aerobic incubation DO levels in MH > Brucella > Bolton broth. Under microaerobic conditions levels in MH = Brucella > Bolton broth. Levels of DO in MH and Brucella broth were lower under microaerobic conditions but those of Bolton did not differ under the 2 atm. Experimental conditions and especially the DO of broth media confound previous conclusions drawn about aerobic biofilm formation by C. jejuni. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Cranberry-derived proanthocyanidins prevent formation of Candida albicans biofilms in artificial urine through biofilm- and adherence-specific mechanisms

    PubMed Central

    Rane, Hallie S.; Bernardo, Stella M.; Howell, Amy B.; Lee, Samuel A.

    2014-01-01

    Objectives Candida albicans is a common cause of nosocomial urinary tract infections (UTIs) and is responsible for increased morbidity and healthcare costs. Moreover, the US Centers for Medicare & Medicaid Services no longer reimburse for hospital-acquired catheter-associated UTIs. Thus, development of specific approaches for the prevention of Candida urinary infections is needed. Cranberry juice-derived proanthocyanidins (PACs) have efficacy in the prevention of bacterial UTIs, partially due to anti-adherence properties, but there are limited data on their use for the prevention and/or treatment of Candida UTIs. Therefore, we sought to systematically assess the in vitro effect of cranberry-derived PACs on C. albicans biofilm formation in artificial urine. Methods C. albicans biofilms in artificial urine were coincubated with cranberry PACs at serially increasing concentrations and biofilm metabolic activity was assessed using the XTT assay in static microplate and silicone disc models. Results Cranberry PAC concentrations of ≥16 mg/L significantly reduced biofilm formation in all C. albicans strains tested, with a paradoxical effect observed at high concentrations in two clinical isolates. Further, cranberry PACs were additive in combination with traditional antifungals. Cranberry PACs reduced C. albicans adherence to both polystyrene and silicone. Supplementation of the medium with iron reduced the efficacy of cranberry PACs against biofilms. Conclusions These findings indicate that cranberry PACs have excellent in vitro activity against C. albicans biofilm formation in artificial urine. We present preliminary evidence that cranberry PAC activity against C. albicans biofilm formation is due to anti-adherence properties and/or iron chelation. PMID:24114570

  20. Cranberry-derived proanthocyanidins prevent formation of Candida albicans biofilms in artificial urine through biofilm- and adherence-specific mechanisms.

    PubMed

    Rane, Hallie S; Bernardo, Stella M; Howell, Amy B; Lee, Samuel A

    2014-02-01

    Candida albicans is a common cause of nosocomial urinary tract infections (UTIs) and is responsible for increased morbidity and healthcare costs. Moreover, the US Centers for Medicare & Medicaid Services no longer reimburse for hospital-acquired catheter-associated UTIs. Thus, development of specific approaches for the prevention of Candida urinary infections is needed. Cranberry juice-derived proanthocyanidins (PACs) have efficacy in the prevention of bacterial UTIs, partially due to anti-adherence properties, but there are limited data on their use for the prevention and/or treatment of Candida UTIs. Therefore, we sought to systematically assess the in vitro effect of cranberry-derived PACs on C. albicans biofilm formation in artificial urine. C. albicans biofilms in artificial urine were coincubated with cranberry PACs at serially increasing concentrations and biofilm metabolic activity was assessed using the XTT assay in static microplate and silicone disc models. Cranberry PAC concentrations of ≥16 mg/L significantly reduced biofilm formation in all C. albicans strains tested, with a paradoxical effect observed at high concentrations in two clinical isolates. Further, cranberry PACs were additive in combination with traditional antifungals. Cranberry PACs reduced C. albicans adherence to both polystyrene and silicone. Supplementation of the medium with iron reduced the efficacy of cranberry PACs against biofilms. These findings indicate that cranberry PACs have excellent in vitro activity against C. albicans biofilm formation in artificial urine. We present preliminary evidence that cranberry PAC activity against C. albicans biofilm formation is due to anti-adherence properties and/or iron chelation.

  1. Effect of Photodynamic Antimicrobial Chemotherapy on Mono- and Multi-Species Cariogenic Biofilms: A Literature Review

    PubMed Central

    de Freitas, Maria Tayara Marques; Soares, Talyta Teixeira; Aragão, Maria Gerusa Brito; Lima, Ramille Araújo; Duarte, Simone

    2017-01-01

    Abstract Objective: The aim of this literature review is to study the effect of photodynamic antimicrobial chemotherapy (PACT) on mono- and multi-species cariogenic biofilms. Methods: To this purpose, the database, PubMed, was searched using the descriptors, photodynamic therapy, antimicrobial photodynamic chemotherapy, and photoinactivation, associated with the mandatory presence of the word biofilm. A total of 98 references published from 2003 to 2016 were selected. Moreover, literature reviews (15), investigations that did not have biofilms related to dental caries (65), and those that did not have Streptococcus mutans count as an outcome (7) were excluded, yielding a final amount of 11 publications. Results: The results revealed that Toluidine Blue O was the most used photosensitizer. Among the sources of light, light-emitting diode was the choice, and the biofilm models varied between in vitro and in situ. Multi-species biofilms were more resistant to the antimicrobial effects of PACT due to the thickness and complexity they have, which impede the penetration of the photosensitizer. This fact may also be associated with the type of photosensitizer used as well as with the light exposure time since the antimicrobial effect seems to be dose dependent. Despite this, in all the included publications, the therapy was effective in reducing S. mutans count. Conclusions: This review demonstrated that under different conditions, PACT is effective in reducing S. mutans count in monospecies biofilms. Multi-species biofilms were more resistant to the antimicrobial action of the therapy, possibly due to their thickness and complexity. PMID:28121497

  2. Fimbriae have distinguishable roles in Proteus mirabilis biofilm formation.

    PubMed

    Scavone, Paola; Iribarnegaray, Victoria; Caetano, Ana Laura; Schlapp, Geraldine; Härtel, Steffen; Zunino, Pablo

    2016-07-01

    Proteus mirabilis is one of the most common etiological agents of complicated urinary tract infections, especially those associated with catheterization. This is related to the ability of P. mirabilis to form biofilms on different surfaces. This pathogen encodes 17 putative fimbrial operons, the highest number found in any sequenced bacterial species so far. The present study analyzed the role of four P. mirabilis fimbriae (MR/P, UCA, ATF and PMF) in biofilm formation using isogenic mutants. Experimental approaches included migration over catheter, swimming and swarming motility, the semiquantitative assay based on adhesion and crystal violet staining, and biofilm development by immunofluorescence and confocal microscopy. Different assays were performed using LB or artificial urine. Results indicated that the different fimbriae contribute to the formation of a stable and functional biofilm. Fimbriae revealed particular associated roles. First, all the mutants showed a significantly reduced ability to migrate across urinary catheter sections but neither swimming nor swarming motility were affected. However, some mutants formed smaller biofilms compared with the wild type (MRP and ATF) while others formed significantly larger biofilms (UCA and PMF) showing different bioarchitecture features. It can be concluded that P. mirabilis fimbriae have distinguishable roles in the generation of biofilms, particularly in association with catheters. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Confocal Raman microscopy for identification of bacterial species in biofilms

    NASA Astrophysics Data System (ADS)

    Beier, Brooke D.; Quivey, Robert G.; Berger, Andrew J.

    2011-03-01

    Implemented through a confocal microscope, Raman spectroscopy has been used to distinguish between biofilm samples of two common oral bacteria species, Streptococcus sanguinis and mutans, which are associated with healthy and cariogenic plaque, respectively. Biofilms of these species are studied as a model of dental plaque. A prediction model has been calibrated and validated using pure biofilms. This model has been used to identify the species of transferred and dehydrated samples (much like a plaque scraping) as well as hydrated biofilms in situ. Preliminary results of confocal Raman mapping of species in an intact two-species biofilm will be shown.

  4. Reciprocal interaction between dental alloy biocorrosion and Streptococcus mutans virulent gene expression.

    PubMed

    Zhang, Songmei; Qiu, Jing; Ren, Yanfang; Yu, Weiqiang; Zhang, Fuqiang; Liu, Xiuxin

    2016-04-01

    Corrosion of dental alloys is a major concern in dental restorations. Streptococcus mutans reduces the pH in oral cavity and induces demineralization of the enamel as well as corrosion of restorative dental materials. The rough surfaces of dental alloys induced by corrosion enhance the subsequent accumulation of plaque. In this study, the corrosion process of nickel-chromium (Ni-Cr) and cobalt-chromium (Co-Cr) alloys in a nutrient-rich medium containing S. mutans was studied using inductively coupled plasma atomic emission spectrometry (ICP-AES), X-ray photoelectron spectroscopy (XPS) and electrochemical corrosion test. Our results showed that the release of Ni and Co ions increased, particularly after incubation for 3 days. The electrochemical corrosion results showed a significant decrease in the corrosion resistance (Rp) value after the alloys were immersed in the media containing S. mutans for 3 days. Correspondingly, XPS revealed a reduction in the relative dominance of Ni, Co, and Cr in the surface oxides after the alloys were immersed in the S. mutans culture. After removal of the biofilm, the pre-corroded alloys were re-incubated in S. mutans medium, and the expressions of genes associated with the adhesion and acidogenesis of S. mutans, including gtfBCD, gbpB, fif and ldh, were evaluated by detecting the mRNA levels using real-time reverse transcription polymerase chain reaction (RT-PCR). We found that the gtfBCD, gbpB, ftf and Idh expression of S. mutans were noticeably increased after incubation with pre-corroded alloys for 24 h. This study demonstrated that S. mutans enhanced the corrosion behavior of the dental alloys, on the other hand, the presence of corroded alloy surfaces up-regulated the virulent gene expression in S. mutans. Compared with smooth surfaces, the rough corroded surfaces of dental alloys accelerated the bacteria-adhesion and corrosion process by changing the virulence gene expression of S. mutans.

  5. In vivo biofilm formation on different dental ceramics.

    PubMed

    Bremer, Felicia; Grade, Sebastian; Kohorst, Philipp; Stiesch, Meike

    2011-01-01

    To investigate the formation of oral biofilm on various dental ceramics in vivo. Five different ceramic materials were included: a veneering glass- ceramic, a lithium disilicate glass-ceramic, a yttrium-stabilized zirconia (Y-TZP), a hot isostatically pressed (HIP) Y-TZP ceramic, and an HIP Y-TZP ceramic with 25% alumina. Test specimens were attached to individually designed acrylic appliances; five volunteers wore these appliances for 24 hours in the maxillary arch. After intraoral exposure, the samples were removed from the appliances and the adhering biofilms vitally stained. Then, the two-dimensional surface coating and thickness of the adhering biofilm were determined by confocal laser scanning microscopy. Statistical analysis was performed using one-way ANOVA with the level of significance set at .05. Significant differences (P < .001) in the bacterial surface coating and in the thickness of the biofilm were found between the various ceramic materials. The lowest surface coating (19.0%) and biofilm thickness (1.9 Μm) were determined on the HIP Y-TZP ceramic; the highest mean values were identified with the lithium disilicate glass-ceramic (46.8%, 12.6 Μm). Biofilm formation on various types of dental ceramics differed significantly; in particular, zirconia exhibited low plaque accumulation. In addition to its high strength, low plaque accumulation makes zirconia a promising material for various indications (including implant abutments and telescopic crowns) that previously were met only with metal-based materials.

  6. Genotypic and Phenotypic Characteristics Associated with Biofilm Formation by Human Clinical Escherichia coli Isolates of Different Pathotypes

    PubMed Central

    Schiebel, Juliane; Böhm, Alexander; Nitschke, Jörg; Burdukiewicz, Michał; Weinreich, Jörg; Ali, Aamir; Roggenbuck, Dirk; Rödiger, Stefan

    2017-01-01

    ABSTRACT Bacterial biofilm formation is a widespread phenomenon and a complex process requiring a set of genes facilitating the initial adhesion, maturation, and production of the extracellular polymeric matrix and subsequent dispersal of bacteria. Most studies on Escherichia coli biofilm formation have investigated nonpathogenic E. coli K-12 strains. Due to the extensive focus on laboratory strains in most studies, there is poor information regarding biofilm formation by pathogenic E. coli isolates. In this study, we genotypically and phenotypically characterized 187 human clinical E. coli isolates representing various pathotypes (e.g., uropathogenic, enteropathogenic, and enteroaggregative E. coli). We investigated the presence of biofilm-associated genes (“genotype”) and phenotypically analyzed the isolates for motility and curli and cellulose production (“phenotype”). We developed a new screening method to examine the in vitro biofilm formation ability. In summary, we found a high prevalence of biofilm-associated genes. However, we could not detect a biofilm-associated gene or specific phenotype correlating with the biofilm formation ability. In contrast, we did identify an association of increased biofilm formation with a specific E. coli pathotype. Enteroaggregative E. coli (EAEC) was found to exhibit the highest capacity for biofilm formation. Using our image-based technology for the screening of biofilm formation, we demonstrated the characteristic biofilm formation pattern of EAEC, consisting of thick bacterial aggregates. In summary, our results highlight the fact that biofilm-promoting factors shown to be critical for biofilm formation in nonpathogenic strains do not reflect their impact in clinical isolates and that the ability of biofilm formation is a defined characteristic of EAEC. IMPORTANCE Bacterial biofilms are ubiquitous and consist of sessile bacterial cells surrounded by a self-produced extracellular polymeric matrix. They cause

  7. Genotypic and Phenotypic Characteristics Associated with Biofilm Formation by Human Clinical Escherichia coli Isolates of Different Pathotypes.

    PubMed

    Schiebel, Juliane; Böhm, Alexander; Nitschke, Jörg; Burdukiewicz, Michał; Weinreich, Jörg; Ali, Aamir; Roggenbuck, Dirk; Rödiger, Stefan; Schierack, Peter

    2017-12-15

    Bacterial biofilm formation is a widespread phenomenon and a complex process requiring a set of genes facilitating the initial adhesion, maturation, and production of the extracellular polymeric matrix and subsequent dispersal of bacteria. Most studies on Escherichia coli biofilm formation have investigated nonpathogenic E. coli K-12 strains. Due to the extensive focus on laboratory strains in most studies, there is poor information regarding biofilm formation by pathogenic E. coli isolates. In this study, we genotypically and phenotypically characterized 187 human clinical E. coli isolates representing various pathotypes (e.g., uropathogenic, enteropathogenic, and enteroaggregative E. coli ). We investigated the presence of biofilm-associated genes ("genotype") and phenotypically analyzed the isolates for motility and curli and cellulose production ("phenotype"). We developed a new screening method to examine the in vitro biofilm formation ability. In summary, we found a high prevalence of biofilm-associated genes. However, we could not detect a biofilm-associated gene or specific phenotype correlating with the biofilm formation ability. In contrast, we did identify an association of increased biofilm formation with a specific E. coli pathotype. Enteroaggregative E. coli (EAEC) was found to exhibit the highest capacity for biofilm formation. Using our image-based technology for the screening of biofilm formation, we demonstrated the characteristic biofilm formation pattern of EAEC, consisting of thick bacterial aggregates. In summary, our results highlight the fact that biofilm-promoting factors shown to be critical for biofilm formation in nonpathogenic strains do not reflect their impact in clinical isolates and that the ability of biofilm formation is a defined characteristic of EAEC. IMPORTANCE Bacterial biofilms are ubiquitous and consist of sessile bacterial cells surrounded by a self-produced extracellular polymeric matrix. They cause chronic and device

  8. Regulation of Bacteriocin Production and Cell Death by the VicRK Signaling System in Streptococcus mutans

    PubMed Central

    Senadheera, D. B.; Cordova, M.; Ayala, E. A.; Chávez de Paz, L. E.; Singh, K.; Downey, J. S.; Svensäter, G.; Goodman, S. D.

    2012-01-01

    The VicRK two-component signaling system modulates biofilm formation, genetic competence, and stress tolerance in Streptococcus mutans. We show here that the VicRK modulates bacteriocin production and cell viability, in part by direct modulation of competence-stimulating peptide (CSP) production in S. mutans. Global transcriptome and real-time transcriptional analysis of the VicK-deficient mutant (SmuvicK) revealed significant modulation of several bacteriocin-related loci, including nlmAB, nlmC, and nlmD (P < 0.001), suggesting a role for the VicRK in producing mutacins IV, V, and VI. Bacteriocin overlay assays revealed an altered ability of the vic mutants to kill related species. Since a well-conserved VicR binding site (TGTWAH-N5-TGTWAH) was identified within the comC coding region, we confirmed VicR binding to this sequence using DNA footprinting. Overexpression of the vic operon caused growth-phase-dependent repression of comC, comDE, and comX. In the vic mutants, transcription of nlmC/cipB encoding mutacin V, previously linked to CSP-dependent cell lysis, as well as expression of its putative immunity factor encoded by immB, were significantly affected relative to the wild type (P < 0.05). In contrast to previous reports that proposed a hyper-resistant phenotype for the VicK mutant in cell viability, the release of extracellular genomic DNA was significantly enhanced in SmuvicK (P < 0.05), likely as a result of increased autolysis compared with the parent. The drastic influence of VicRK on cell viability was also demonstrated using vic mutant biofilms. Taken together, we have identified a novel regulatory link between the VicRK and ComDE systems to modulate bacteriocin production and cell viability of S. mutans. PMID:22228735

  9. Structural basis of host recognition and biofilm formation by Salmonella Saf pili

    PubMed Central

    2017-01-01

    Pili are critical in host recognition, colonization and biofilm formation during bacterial infection. Here, we report the crystal structures of SafD-dsc and SafD-SafA-SafA (SafDAA-dsc) in Saf pili. Cell adherence assays show that SafD and SafA are both required for host recognition, suggesting a poly-adhesive mechanism for Saf pili. Moreover, the SafDAA-dsc structure, as well as SAXS characterization, reveals an unexpected inter-molecular oligomerization, prompting the investigation of Saf-driven self-association in biofilm formation. The bead/cell aggregation and biofilm formation assays are used to demonstrate the novel function of Saf pili. Structure-based mutants targeting the inter-molecular hydrogen bonds and complementary architecture/surfaces in SafDAA-dsc dimers significantly impaired the Saf self-association activity and biofilm formation. In summary, our results identify two novel functions of Saf pili: the poly-adhesive and self-associating activities. More importantly, Saf-Saf structures and functional characterizations help to define a pili-mediated inter-cellular oligomerizaiton mechanism for bacterial aggregation, colonization and ultimate biofilm formation. PMID:29125121

  10. Unintended Laboratory-Driven Evolution Reveals Genetic Requirements for Biofilm Formation by Desulfovibrio vulgaris Hildenborough

    DOE PAGES

    De León, Kara B.; Zane, Grant M.; Trotter, Valentine V.; ...

    2017-10-17

    Biofilms of sulfate-reducing bacteria (SRB) are of particular interest as members of this group are culprits in corrosion of industrial metal and concrete pipelines as well as being key players in subsurface metal cycling. Yet the mechanism of biofilm formation by these bacteria has not been determined. Here in this paper, we show that two supposedly identical wild-type cultures of the SRBDesulfovibrio vulgarisHildenborough maintained in different laboratories have diverged in biofilm formation. From genome resequencing and subsequent mutant analyses, we discovered that a single nucleotide change within DVU1017, the ABC transporter of a type I secretion system (T1SS), was sufficientmore » to eliminate biofilm formation inD. vulgarisHildenborough. Two T1SS cargo proteins were identified as likely biofilm structural proteins, and the presence of at least one (with either being sufficient) was shown to be required for biofilm formation. Antibodies specific to these biofilm structural proteins confirmed that DVU1017, and thus the T1SS, is essential for localization of these adhesion proteins on the cell surface. We propose that DVU1017 is a member of the lapB category of microbial surface proteins because of its phenotypic similarity to the adhesin export system described for biofilm formation in the environmental pseudomonads. These findings have led to the identification of two functions required for biofilm formation in D. vulgaris Hildenborough and focus attention on the importance of monitoring laboratory-driven evolution, as phenotypes as fundamental as biofilm formation can be altered. The growth of bacteria attached to a surface (i.e., biofilm), specifically biofilms of sulfate-reducing bacteria, has a profound impact on the economy of developed nations due to steel and concrete corrosion in industrial pipelines and processing facilities. Furthermore, the presence of sulfate-reducing bacteria in oil wells causes oil souring from sulfide production

  11. Unintended Laboratory-Driven Evolution Reveals Genetic Requirements for Biofilm Formation by Desulfovibrio vulgaris Hildenborough

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De León, Kara B.; Zane, Grant M.; Trotter, Valentine V.

    Biofilms of sulfate-reducing bacteria (SRB) are of particular interest as members of this group are culprits in corrosion of industrial metal and concrete pipelines as well as being key players in subsurface metal cycling. Yet the mechanism of biofilm formation by these bacteria has not been determined. Here in this paper, we show that two supposedly identical wild-type cultures of the SRBDesulfovibrio vulgarisHildenborough maintained in different laboratories have diverged in biofilm formation. From genome resequencing and subsequent mutant analyses, we discovered that a single nucleotide change within DVU1017, the ABC transporter of a type I secretion system (T1SS), was sufficientmore » to eliminate biofilm formation inD. vulgarisHildenborough. Two T1SS cargo proteins were identified as likely biofilm structural proteins, and the presence of at least one (with either being sufficient) was shown to be required for biofilm formation. Antibodies specific to these biofilm structural proteins confirmed that DVU1017, and thus the T1SS, is essential for localization of these adhesion proteins on the cell surface. We propose that DVU1017 is a member of the lapB category of microbial surface proteins because of its phenotypic similarity to the adhesin export system described for biofilm formation in the environmental pseudomonads. These findings have led to the identification of two functions required for biofilm formation in D. vulgaris Hildenborough and focus attention on the importance of monitoring laboratory-driven evolution, as phenotypes as fundamental as biofilm formation can be altered. The growth of bacteria attached to a surface (i.e., biofilm), specifically biofilms of sulfate-reducing bacteria, has a profound impact on the economy of developed nations due to steel and concrete corrosion in industrial pipelines and processing facilities. Furthermore, the presence of sulfate-reducing bacteria in oil wells causes oil souring from sulfide production

  12. RgpF Is Required for Maintenance of Stress Tolerance and Virulence in Streptococcus mutans.

    PubMed

    Kovacs, C J; Faustoferri, R C; Quivey, R G

    2017-12-15

    Bacterial cell wall dynamics have been implicated as important determinants of cellular physiology, stress tolerance, and virulence. In Streptococcus mutans , the cell wall is composed primarily of a rhamnose-glucose polysaccharide (RGP) linked to the peptidoglycan. Despite extensive studies describing its formation and composition, the potential roles for RGP in S. mutans biology have not been well investigated. The present study characterizes the impact of RGP disruption as a result of the deletion of rgpF , the gene encoding a rhamnosyltransferase involved in the construction of the core polyrhamnose backbone of RGP. The Δ rgpF mutant strain displayed an overall reduced fitness compared to the wild type, with heightened sensitivities to various stress-inducing culture conditions and an inability to tolerate acid challenge. The loss of rgpF caused a perturbation of membrane-associated functions known to be critical for aciduricity, a hallmark of S. mutans acid tolerance. The proton gradient across the membrane was disrupted, and the Δ rgpF mutant strain was unable to induce activity of the F 1 F o ATPase in cultures grown under low-pH conditions. Further, the virulence potential of S. mutans was also drastically reduced following the deletion of rgpF The Δ rgpF mutant strain produced significantly less robust biofilms, indicating an impairment in its ability to adhere to hydroxyapatite surfaces. Additionally, the Δ rgpF mutant lost competitive fitness against oral peroxigenic streptococci, and it displayed significantly attenuated virulence in an in vivo Galleria mellonella infection model. Collectively, these results highlight a critical function of the RGP in the maintenance of overall stress tolerance and virulence traits in S. mutans IMPORTANCE The cell wall of Streptococcus mutans , the bacterium most commonly associated with tooth decay, is abundant in rhamnose-glucose polysaccharides (RGP). While these structures are antigenically distinct to S. mutans

  13. RgpF Is Required for Maintenance of Stress Tolerance and Virulence in Streptococcus mutans

    PubMed Central

    Kovacs, C. J.; Faustoferri, R. C.

    2017-01-01

    ABSTRACT Bacterial cell wall dynamics have been implicated as important determinants of cellular physiology, stress tolerance, and virulence. In Streptococcus mutans, the cell wall is composed primarily of a rhamnose-glucose polysaccharide (RGP) linked to the peptidoglycan. Despite extensive studies describing its formation and composition, the potential roles for RGP in S. mutans biology have not been well investigated. The present study characterizes the impact of RGP disruption as a result of the deletion of rgpF, the gene encoding a rhamnosyltransferase involved in the construction of the core polyrhamnose backbone of RGP. The ΔrgpF mutant strain displayed an overall reduced fitness compared to the wild type, with heightened sensitivities to various stress-inducing culture conditions and an inability to tolerate acid challenge. The loss of rgpF caused a perturbation of membrane-associated functions known to be critical for aciduricity, a hallmark of S. mutans acid tolerance. The proton gradient across the membrane was disrupted, and the ΔrgpF mutant strain was unable to induce activity of the F1Fo ATPase in cultures grown under low-pH conditions. Further, the virulence potential of S. mutans was also drastically reduced following the deletion of rgpF. The ΔrgpF mutant strain produced significantly less robust biofilms, indicating an impairment in its ability to adhere to hydroxyapatite surfaces. Additionally, the ΔrgpF mutant lost competitive fitness against oral peroxigenic streptococci, and it displayed significantly attenuated virulence in an in vivo Galleria mellonella infection model. Collectively, these results highlight a critical function of the RGP in the maintenance of overall stress tolerance and virulence traits in S. mutans. IMPORTANCE The cell wall of Streptococcus mutans, the bacterium most commonly associated with tooth decay, is abundant in rhamnose-glucose polysaccharides (RGP). While these structures are antigenically distinct to S

  14. Calcium increases Xylella fastidiosa surface attachment, biofilm formation, and twitching motility.

    PubMed

    Cruz, Luisa F; Cobine, Paul A; De La Fuente, Leonardo

    2012-03-01

    Xylella fastidiosa is a plant-pathogenic bacterium that forms biofilms inside xylem vessels, a process thought to be influenced by the chemical composition of xylem sap. In this work, the effect of calcium on the production of X. fastidiosa biofilm and movement was analyzed under in vitro conditions. After a dose-response study with 96-well plates using eight metals, the strongest increase of biofilm formation was observed when medium was supplemented with at least 1.0 mM CaCl(2). The removal of Ca by extracellular (EGTA, 1.5 mM) and intracellular [1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester (BAPTA/AM), 75 μM] chelators reduced biofilm formation without compromising planktonic growth. The concentration of Ca influenced the force of adhesion to the substrate, biofilm thickness, cell-to-cell aggregation, and twitching motility, as shown by assays with microfluidic chambers and other assays. The effect of Ca on attachment was lost when cells were treated with tetracycline, suggesting that Ca has a metabolic or regulatory role in cell adhesion. A double mutant (fimA pilO) lacking type I and type IV pili did not improve biofilm formation or attachment when Ca was added to the medium, while single mutants of type I (fimA) or type IV (pilB) pili formed more biofilm under conditions of higher Ca concentrations. The concentration of Ca in the medium did not significantly influence the levels of exopolysaccharide produced. Our findings indicate that the role of Ca in biofilm formation may be related to the initial surface and cell-to-cell attachment and colonization stages of biofilm establishment, which rely on critical functions by fimbrial structures.

  15. Calcium Increases Xylella fastidiosa Surface Attachment, Biofilm Formation, and Twitching Motility

    PubMed Central

    Cruz, Luisa F.; Cobine, Paul A.

    2012-01-01

    Xylella fastidiosa is a plant-pathogenic bacterium that forms biofilms inside xylem vessels, a process thought to be influenced by the chemical composition of xylem sap. In this work, the effect of calcium on the production of X. fastidiosa biofilm and movement was analyzed under in vitro conditions. After a dose-response study with 96-well plates using eight metals, the strongest increase of biofilm formation was observed when medium was supplemented with at least 1.0 mM CaCl2. The removal of Ca by extracellular (EGTA, 1.5 mM) and intracellular [1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid acetoxymethyl ester (BAPTA/AM), 75 μM] chelators reduced biofilm formation without compromising planktonic growth. The concentration of Ca influenced the force of adhesion to the substrate, biofilm thickness, cell-to-cell aggregation, and twitching motility, as shown by assays with microfluidic chambers and other assays. The effect of Ca on attachment was lost when cells were treated with tetracycline, suggesting that Ca has a metabolic or regulatory role in cell adhesion. A double mutant (fimA pilO) lacking type I and type IV pili did not improve biofilm formation or attachment when Ca was added to the medium, while single mutants of type I (fimA) or type IV (pilB) pili formed more biofilm under conditions of higher Ca concentrations. The concentration of Ca in the medium did not significantly influence the levels of exopolysaccharide produced. Our findings indicate that the role of Ca in biofilm formation may be related to the initial surface and cell-to-cell attachment and colonization stages of biofilm establishment, which rely on critical functions by fimbrial structures. PMID:22194297

  16. Filaments in curved streamlines: rapid formation of Staphylococcus aureus biofilm streamers

    NASA Astrophysics Data System (ADS)

    Kim, Minyoung Kevin; Drescher, Knut; Pak, On Shun; Bassler, Bonnie L.; Stone, Howard A.

    2014-06-01

    Biofilms are surface-associated conglomerates of bacteria that are highly resistant to antibiotics. These bacterial communities can cause chronic infections in humans by colonizing, for example, medical implants, heart valves, or lungs. Staphylococcus aureus, a notorious human pathogen, causes some of the most common biofilm-related infections. Despite the clinical importance of S. aureus biofilms, it remains mostly unknown how physical effects, in particular flow, and surface structure influence biofilm dynamics. Here we use model microfluidic systems to investigate how environmental factors, such as surface geometry, surface chemistry, and fluid flow affect biofilm development of S. aureus. We discovered that S. aureus rapidly forms flow-induced, filamentous biofilm streamers, and furthermore if surfaces are coated with human blood plasma, streamers appear within minutes and clog the channels more rapidly than if the channels are uncoated. To understand how biofilm streamer filaments reorient in flows with curved streamlines to bridge the distances between corners, we developed a mathematical model based on resistive force theory of slender filaments. Understanding physical aspects of biofilm formation of S. aureus may lead to new approaches for interrupting biofilm formation of this pathogen.

  17. Filaments in curved flow: Rapid formation of Staphylococcus aureus biofilm streamers

    NASA Astrophysics Data System (ADS)

    Kim, Min Young; Drescher, Knut; Pak, On Shun; Bassler, Bonnie L.; Stone, Howard A.

    2014-03-01

    Biofilms are surface-associated conglomerates of bacteria that are highly resistant to antibiotics. These bacterial communities can cause chronic infections in humans by colonizing, for example, medical implants, heart valves, or lungs. Staphylococcus aureus, a notorious human pathogen, causes some of the most common biofilm-related infections. Despite the clinical importance of S. aureus biofilms, it remains mostly unknown how physical effects, in particular flow, and surface structure influence biofilm dynamics. Here we use model microfluidic systems to investigate how environmental factors, such as surface geometry, surface chemistry, and fluid flow affect biofilm development in S. aureus.We discovered that S. aureus rapidly forms flow-induced, filamentous biofilm streamers, and furthermore if surfaces are coated with human blood plasma, streamers appear within minutes and clog the channels more rapidly than if the channels are uncoated. To understand how biofilm streamer filaments reorient in curved flow to bridge the distances between corners, we developed a mathematical model based on resistive force theory and slender filaments. Understanding physical aspects of biofilm formation in S. aureus may lead to new approaches for interrupting biofilm formation of this pathogen.

  18. The Effect of Cryopreserved Human Placental Tissues on Biofilm Formation of Wound-Associated Pathogens.

    PubMed

    Mao, Yong; Singh-Varma, Anya; Hoffman, Tyler; Dhall, Sandeep; Danilkovitch, Alla; Kohn, Joachim

    2018-01-08

    Biofilm, a community of bacteria, is tolerant to antimicrobial agents and ubiquitous in chronic wounds. In a chronic DFU (Diabetic Foot Ulcers) clinical trial, the use of a human cryopreserved viable amniotic membrane (CVAM) resulted in a high rate of wound closure and reduction of wound-related infections. Our previous study demonstrated that CVAM possesses intrinsic antimicrobial activity against a spectrum of wound-associated bacteria under planktonic culture conditions. In this study, we evaluated the effect of CVAM and cryopreserved viable umbilical tissue (CVUT) on biofilm formation of S. aureus and P. aeruginosa , the two most prominent pathogens associated with chronic wounds. Firstly, we showed that, like CVAM, CVUT released antibacterial activity against multiple bacterial pathogens and the devitalization of CVUT reduced its antibacterial activity. The biofilm formation was then measured using a high throughput method and an ex vivo porcine dermal tissue model. We demonstrate that the formation of biofilm was significantly reduced in the presence of CVAM- or CVUT-derived conditioned media compared to control assay medium. The formation of P. aeruginosa biofilm on CVAM-conditioned medium saturated porcine dermal tissues was reduced 97% compared with the biofilm formation on the control medium saturated dermal tissues. The formation of S. auerus biofilm on CVUT-conditioned medium saturated dermal tissues was reduced 72% compared with the biofilm formation on the control tissues. This study is the first to show that human cryopreserved viable placental tissues release factors that inhibit biofilm formation. Our results provide an explanation for the in vivo observation of their ability to support wound healing.

  19. Antibacterial and Antibiofilm Activities of Makaluvamine Analogs

    PubMed Central

    Nijampatnam, Bhavitavya; Nadkarni, Dwayaja H.; Wu, Hui; Velu, Sadanandan E.

    2014-01-01

    Streptococcus mutans is a key etiological agent in the formation of dental caries. The major virulence factor is its ability to form biofilms. Inhibition of S. mutans biofilms offers therapeutic prospects for the treatment and the prevention of dental caries. In this study, 14 analogs of makaluvamine, a marine alkaloid, were evaluated for their antibacterial activity against S. mutans and for their ability to inhibit S. mutans biofilm formation. All analogs contained the tricyclic pyrroloiminoquinone core of makaluvamines. The structural variations of the analogs are on the amino substituents at the 7-position of the ring and the inclusion of a tosyl group on the pyrrole ring N of the makaluvamine core. The makaluvamine analogs displayed biofilm inhibition with IC50 values ranging from 0.4 μM to 88 μM. Further, the observed bactericidal activity of the majority of the analogs was found to be consistent with the anti-biofilm activity, leading to the conclusion that the anti-biofilm activity of these analogs stems from their ability to kill S. mutans. However, three of the most potent N-tosyl analogs showed biofilm IC50 values at least an order of magnitude lower than that of bactericidal activity, indicating that the biofilm activity of these analogs is more selective and perhaps independent of bactericidal activity. PMID:25767719

  20. Brief ultrasonication improves detection of biofilm-formative bacteria around a metal implant.

    PubMed

    Kobayashi, Naomi; Bauer, Thomas W; Tuohy, Marion J; Fujishiro, Takaaki; Procop, Gary W

    2007-04-01

    Biofilms are complex microenvironments produced by microorganisms on surfaces. Ultrasonication disrupts biofilms and may make the microorganism or its DNA available for detection. We determined whether ultrasonication could affect our ability to detect bacteria adherent to a metal substrate. A biofilm-formative Staphylococcus aureus strain was used for an in vitro implant infection model (biofilm-formative condition). We used quantitative culture and real time-polymerase chain reaction to determine the influence of different durations of ultrasound on bacterial adherence and viability. Sonication for 1 minute increased the yield of bacteria. Sonication longer than 5 minutes led to fewer bacterial colonies by conventional culture but not by polymerase chain reaction. This suggests short periods of sonication help release bacteria from the metal substrate by disrupting the biofilm, but longer periods of sonication lyse bacteria prohibiting their detection in microbiologic cultures. A relatively short duration of sonication may be desirable for maximizing detection of biofilm-formative bacteria around implants by culture or polymerase chain reaction.

  1. Effects of meat juice on biofilm formation of Campylobacter and Salmonella.

    PubMed

    Li, Jiaqi; Feng, Jinsong; Ma, Lina; de la Fuente Núñez, César; Gölz, Greta; Lu, Xiaonan

    2017-07-17

    Campylobacter and Salmonella are leading causes of foodborne illnesses worldwide, vastly harboured by raw meat as their common food reservoir. Both microbes are prevalent in meat processing environments in the form of biofilms that contribute to cross-contamination and foodborne infection. This study applied raw meat juice (chicken juice and pork juice) as a minimally processed food model to study its effects on bacterial biofilm formation. Meat juice was collected during the freeze-thaw process of raw meat and sterilized by filtration. In 96-well polystyrene plates and glass chambers, supplementation of over 25% meat juice (v/v) in laboratory media led to an increase in biofilm formation of Campylobacter and Salmonella. During the initial attachment stage of biofilm development, more bacterial cells were present on surfaces treated with meat juice residues compared to control surfaces. Meat juice particulates on abiotic surfaces facilitated biofilm formation of Campylobacter and Salmonella under both static and flow conditions, with the latter being assessed using a microfluidic platform. Further, the deficiency in biofilm formation of selected Campylobacter and Salmonella mutant strains was restored in the presence of meat juice particulates. These results suggested that meat juice residues on the abiotic surfaces might act as a surface conditioner to support initial attachment and biofilm formation of Campylobacter and Salmonella. This study sheds light on a possible survival mechanism of Campylobacter and Salmonella in meat processing environments, and indicates that thorough cleaning of meat residues during meat production and handling is critical to reduce the bacterial load of Campylobacter and Salmonella. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Biofilm formation by Listeria monocytogenes on stainless steel surface and biotransfer potential.

    PubMed

    de Oliveira, Maíra Maciel Mattos; Brugnera, Danilo Florisvaldo; Alves, Eduardo; Piccoli, Roberta Hilsdorf

    2010-01-01

    An experimental model was proposed to study biofilm formation by Listeria monocytogenes ATCC 19117 on AISI 304 (#4) stainless steel surface and biotransfer potential during this process. In this model, biofilm formation was conducted on the surface of stainless steel coupons, set on a stainless steel base with 4 divisions, each one supporting 21 coupons. Trypic Soy Broth was used as bacterial growth substrate, with incubation at 37 °C and stirring of 50 rpm. The number of adhered cells was determined after 3, 48, 96, 144, 192 and 240 hours of biofilm formation and biotransfer potential from 96 hours. Stainless steel coupons were submitted to Scanning Electron Microscopy (SEM) after 3, 144 and 240 hours. Based on the number of adhered cells and SEM, it was observed that L. monocytogenes adhered rapidly to the stainless steel surface, with mature biofilm being formed after 240 hours. The biotransfer potential of bacterium to substrate occurred at all the stages analyzed. The rapid capacity of adhesion to surface, combined with biotransfer potential throughout the biofilm formation stages, make L. monocytogenes a potential risk to the food industry. Both the experimental model developed and the methodology used were efficient in the study of biofilm formation by L. monocytogenes on stainless steel surface and biotransfer potential.

  3. Spermidine promotes Bacillus subtilis biofilm formation by activating expression of the matrix regulator slrR.

    PubMed

    Hobley, Laura; Li, Bin; Wood, Jennifer L; Kim, Sok Ho; Naidoo, Jacinth; Ferreira, Ana Sofia; Khomutov, Maxim; Khomutov, Alexey; Stanley-Wall, Nicola R; Michael, Anthony J

    2017-07-21

    Ubiquitous polyamine spermidine is not required for normal planktonic growth of Bacillus subtilis but is essential for robust biofilm formation. However, the structural features of spermidine required for B. subtilis biofilm formation are unknown and so are the molecular mechanisms of spermidine-stimulated biofilm development. We report here that in a spermidine-deficient B. subtilis mutant, the structural analogue norspermidine, but not homospermidine, restored biofilm formation. Intracellular biosynthesis of another spermidine analogue, aminopropylcadaverine, from exogenously supplied homoagmatine also restored biofilm formation. The differential ability of C-methylated spermidine analogues to functionally replace spermidine in biofilm formation indicated that the aminopropyl moiety of spermidine is more sensitive to C -methylation, which it is essential for biofilm formation, but that the length and symmetry of the molecule is not critical. Transcriptomic analysis of a spermidine-depleted B. subtilis speD mutant uncovered a nitrogen-, methionine-, and S -adenosylmethionine-sufficiency response, resulting in repression of gene expression related to purine catabolism, methionine and S -adenosylmethionine biosynthesis and methionine salvage, and signs of altered membrane status. Consistent with the spermidine requirement in biofilm formation, single-cell analysis of this mutant indicated reduced expression of the operons for production of the exopolysaccharide and TasA protein biofilm matrix components and SinR antagonist slrR Deletion of sinR or ectopic expression of slrR in the spermidine-deficient Δ speD background restored biofilm formation, indicating that spermidine is required for expression of the biofilm regulator slrR Our results indicate that spermidine functions in biofilm development by activating transcription of the biofilm matrix exopolysaccharide and TasA operons through the regulator slrR . © 2017 by The American Society for Biochemistry and

  4. Impaired respiration elicits SrrAB-dependent programmed cell lysis and biofilm formation in Staphylococcus aureus

    PubMed Central

    Mashruwala, Ameya A; van de Guchte, Adriana; Boyd, Jeffrey M

    2017-01-01

    Biofilms are communities of microorganisms attached to a surface or each other. Biofilm-associated cells are the etiologic agents of recurrent Staphylococcus aureus infections. Infected human tissues are hypoxic or anoxic. S. aureus increases biofilm formation in response to hypoxia, but how this occurs is unknown. In the current study we report that oxygen influences biofilm formation in its capacity as a terminal electron acceptor for cellular respiration. Genetic, physiological, or chemical inhibition of respiratory processes elicited increased biofilm formation. Impaired respiration led to increased cell lysis via divergent regulation of two processes: increased expression of the AtlA murein hydrolase and decreased expression of wall-teichoic acids. The AltA-dependent release of cytosolic DNA contributed to increased biofilm formation. Further, cell lysis and biofilm formation were governed by the SrrAB two-component regulatory system. Data presented support a model wherein SrrAB-dependent biofilm formation occurs in response to the accumulation of reduced menaquinone. DOI: http://dx.doi.org/10.7554/eLife.23845.001 PMID:28221135

  5. Salmonella Extracellular Matrix Components Influence Biofilm Formation and Gallbladder Colonization.

    PubMed

    Adcox, Haley E; Vasicek, Erin M; Dwivedi, Varun; Hoang, Ky V; Turner, Joanne; Gunn, John S

    2016-11-01

    Salmonella enterica serovar Typhi, the causative agent of typhoid fever in humans, forms biofilms encapsulated by an extracellular matrix (ECM). Biofilms facilitate colonization and persistent infection in gallbladders of humans and mouse models of chronic carriage. Individual roles of matrix components have not been completely elucidated in vitro or in vivo To examine individual functions, strains of Salmonella enterica serovar Typhimurium, the murine model of S Typhi, in which various ECM genes were deleted or added, were created to examine biofilm formation, colonization, and persistence in the gallbladder. Studies show that curli contributes most significantly to biofilm formation. Expression of Vi antigen decreased biofilm formation in vitro and virulence and bacterial survival in vivo without altering the examined gallbladder pro- or anti-inflammatory cytokines. Oppositely, loss of all ECM components (ΔwcaM ΔcsgA ΔyihO ΔbcsE) increased virulence and bacterial survival in vivo and reduced gallbladder interleukin-10 (IL-10) levels. Colanic acid and curli mutants had the largest defects in biofilm-forming ability and contributed most significantly to the virulence increase of the ΔwcaM ΔcsgA ΔyihO ΔbcsE mutant strain. While the ΔwcaM ΔcsgA ΔyihO ΔbcsE mutant was not altered in resistance to complement or growth in macrophages, it attached and invaded macrophages better than the wild-type (WT) strain. These data suggest that ECM components have various levels of importance in biofilm formation and gallbladder colonization and that the ECM diminishes disseminated disease in our model, perhaps by reducing cell attachment/invasion and dampening inflammation by maintaining/inducing IL-10 production. Understanding how ECM components aid acute disease and persistence could lead to improvements in therapeutic treatment of typhoid fever patients. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. Bacterial and fungal biofilm formation on anodized titanium alloys with fluorine.

    PubMed

    Perez-Jorge, Concepcion; Arenas, Maria-Angeles; Conde, Ana; Hernández-Lopez, Juan-Manuel; de Damborenea, Juan-Jose; Fisher, Steve; Hunt, Alessandra M Agostinho; Esteban, Jaime; James, Garth

    2017-01-01

    Orthopaedic device-related infections are closely linked to biofilm formation on the surfaces of these devices. Several modified titanium (Ti-6Al-4V) surfaces doped with fluorine were studied in order to evaluate the influence of these modifications on biofilm formation by Gram-positive and Gram-negative bacteria as well as a yeast. The biofilm studies were performed according to the standard test method approved by ASTM (Designation: E2196-12) using the Rotating Disk Reactor. Four types of Ti-6Al-4V samples were tested; chemically polished (CP), two types of nanostructures containing fluorine, nanoporous (NP) and nanotubular (NT), and non-nanostructured fluorine containing samples (fluoride barrier layers, FBL). Different species of Gram-positive cocci, (Staphylococcus aureus and epidermidis), Gram-negative rods (Escherichia coli, Pseudomonas aeruginosa), and a yeast (Candida albicans) were studied. For one of the Gram-positive (S. epidermidis) and one of the Gram-negative (E. coli) species a statistically-significant decrease in biofilm accumulation for NP and NT samples was found when compared with the biofilm accumulation on CP samples. The results suggest an effect of the modified materials on the biofilm formation.

  7. Calcium-Phosphate-Osteopontin Particles Reduce Biofilm Formation and pH Drops in in situ Grown Dental Biofilms.

    PubMed

    Schlafer, Sebastian; Ibsen, Casper J S; Birkedal, Henrik; Nyvad, Bente

    2017-01-01

    This 2-period crossover study investigated the effect of calcium-phosphate-osteopontin particles on biofilm formation and pH in 48-h biofilms grown in situ. Bovine milk osteopontin is a highly phosphorylated glycoprotein that has been shown to interfere with bacterial adhesion to salivary-coated surfaces. Calcium-phosphate-osteopontin particles have been shown to reduce biofilm formation and pH drops in a 5-species laboratory model of dental biofilm without affecting bacterial viability. Here, smooth surface biofilms from 10 individuals were treated ex vivo 6 times/day for 30 min with either calcium-phosphate-osteopontin particles or sterile saline. After growth, the amount of biofilm formed was determined by confocal microscopy, and pH drops upon exposure to glucose were monitored using confocal-microscopy-based pH ratiometry. A total of 160 biofilms were analysed. No adverse effects of repeated ex vivo treatment with calcium-phosphate-osteopontin particles were observed. Particle treatment resulted in a 32% lower amount of biofilm formed (p < 0.05), but large inter-individual differences could be observed. Biofilm pH was significantly higher upon particle treatment, both shortly after the addition of glucose and after 30 min of incubation with glucose (p < 0.05). Calcium-phosphate-osteopontin particles may represent a new therapeutic approach to caries control and aim at directly targeting virulence factors involved in the caries process. Further studies are required to determine the effect of particle treatment on more acidogenic/aciduric biofilms as well as the remineralizing potential of the particles. © 2016 S. Karger AG, Basel.

  8. New insights on molecular regulation of biofilm formation in plant-associated bacteria.

    PubMed

    Castiblanco, Luisa F; Sundin, George W

    2016-04-01

    Biofilms are complex bacterial assemblages with a defined three-dimensional architecture, attached to solid surfaces, and surrounded by a self-produced matrix generally composed of exopolysaccharides, proteins, lipids and extracellular DNA. Biofilm formation has evolved as an adaptive strategy of bacteria to cope with harsh environmental conditions as well as to establish antagonistic or beneficial interactions with their host. Plant-associated bacteria attach and form biofilms on different tissues including leaves, stems, vasculature, seeds and roots. In this review, we examine the formation of biofilms from the plant-associated bacterial perspective and detail the recently-described mechanisms of genetic regulation used by these organisms to orchestrate biofilm formation on plant surfaces. In addition, we describe plant host signals that bacterial pathogens recognize to activate the transition from a planktonic lifestyle to multicellular behavior. © 2015 Institute of Botany, Chinese Academy of Sciences.

  9. Modelling biofilm-induced formation damage and biocide treatment in subsurface geosystems

    PubMed Central

    Ezeuko, C C; Sen, A; Gates, I D

    2013-01-01

    Biofilm growth in subsurface porous media, and its treatment with biocides (antimicrobial agents), involves a complex interaction of biogeochemical processes which provide non-trivial mathematical modelling challenges. Although there are literature reports of mathematical models to evaluate biofilm tolerance to biocides, none of these models have investigated biocide treatment of biofilms growing in interconnected porous media with flow. In this paper, we present a numerical investigation using a pore network model of biofilm growth, formation damage and biocide treatment. The model includes three phases (aqueous, adsorbed biofilm, and solid matrix), a single growth-limiting nutrient and a single biocide dissolved in the water. Biofilm is assumed to contain a single species of microbe, in which each cell can be a viable persister, a viable non-persister, or non-viable (dead). Persisters describe small subpopulation of cells which are tolerant to biocide treatment. Biofilm tolerance to biocide treatment is regulated by persister cells and includes ‘innate’ and ‘biocide-induced’ factors. Simulations demonstrate that biofilm tolerance to biocides can increase with biofilm maturity, and that biocide treatment alone does not reverse biofilm-induced formation damage. Also, a successful application of biological permeability conformance treatment involving geologic layers with flow communication is more complicated than simply engineering the attachment of biofilm-forming cells at desired sites. PMID:23164434

  10. Genomewide screening for genes involved in biofilm formation and miconazole susceptibility in Saccharomyces cerevisiae.

    PubMed

    Vandenbosch, Davy; De Canck, Evelien; Dhondt, Inne; Rigole, Petra; Nelis, Hans J; Coenye, Tom

    2013-12-01

    Infections related to fungal biofilms are difficult to treat due to the reduced susceptibility of sessile cells to most antifungal agents. Previous research has shown that 1-10% of sessile Candida cells survive treatment with high doses of miconazole (a fungicidal imidazole). The aim of this study was to identify genes involved in fungal biofilm formation and to unravel the mechanisms of resistance of these biofilms to miconazole. To this end, a screening of a Saccharomyces cerevisiae deletion mutant bank was carried out. Our results revealed that genes involved in peroxisomal transport and the biogenesis of the respiratory chain complex IV play an essential role in biofilm formation. On the other hand, genes involved in transcription and peroxisomal and mitochondrial organization seem to highly influence the susceptibility to miconazole of yeast biofilms. Additionally, our data confirm previous findings on genes involved in biofilm formation and in general stress responses. Our data suggest the involvement of peroxisomes in biofilm formation and miconazole resistance in fungal biofilms. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  11. Effects of Total Alkaloids of Sophora alopecuroides on Biofilm Formation in Staphylococcus epidermidis

    PubMed Central

    Li, Xue; Guan, Cuiping; He, Yulong; Wang, Yujiong

    2016-01-01

    Staphylococcus epidermidis (S. epidermidis) is an opportunistic pathogen with low pathogenicity and a cause of the repeated outbreak of bovine mastitis in veterinary clinical settings. In this report, a biofilm model of S. epidermidis was generated and the minimal inhibitory concentration (MIC) and sub-MIC (SMIC) on bacterial cultures were assessed for the following agents: total alkaloids of Sophora alopecuroides (TASA), ciprofloxacin (CIP), and erythromycin (ERY). The formation and characteristic parameters of biofilm were analyzed in terms of XTT assay, silver staining, and confocal laser scanning microscope (CLSM). Results showed that a sub-MIC of TASA could inhibit 50% biofilm of bacterial activity, while 250-fold MIC of CIP and ERY MICs only inhibited 50% and 47% of biofilm formation, respectively. All three agents could inhibit the biofilm formation at an early stage, but TASA showed a better inhibitory effect on the late stage of biofilm thickening. A morphological analysis using CLSM further confirmed the destruction of biofilm by these agents. These results thus suggest that TASA has an inhibitory effect on biofilm formation of clinic S. epidermidis, which may be a potential agent warranted for further study on the treatment prevention of infection related to S. epidermidis in veterinary clinic. PMID:27413745

  12. Tooth enamel surface micro-hardness with dual species Streptococcus biofilm after exposure to Java turmeric (Curcuma xanthorrhiza Roxb.) extract

    NASA Astrophysics Data System (ADS)

    Isjwara, F. R. G.; Hasanah, S. N.; Utami, Sri; Suniarti, D. F.

    2017-08-01

    Streptococcus biofilm on tooth surfaces can decrease mouth environment pH, thus causing enamel demineralization that can lead to dental caries. Java Turmeric extract has excellent antibacterial effects and can maintain S. mutans biofilm pH at neutral levels for 4 hours. To analyze the effect of Java Turmeric extract on tooth enamel micro-hardness, the Java Turmeric extract was added on enamel tooth samples with Streptococcus dual species biofilm (S. sanguinis and S. mutans). The micro-hardness of enamel was measured by Knoop Hardness Tester. Results showed that Curcuma xanthorrhiza Roxb. could not maintain tooth enamel surface micro-hardness. It is concluded that Java Turmeric extract ethanol could not inhibit the hardness of enamel with Streptococcus dual species biofilm.

  13. Bismuth oxide aqueous colloidal nanoparticles inhibit Candida albicans growth and biofilm formation

    PubMed Central

    Hernandez-Delgadillo, Rene; Velasco-Arias, Donaji; Martinez-Sanmiguel, Juan Jose; Diaz, David; Zumeta-Dube, Inti; Arevalo-Niño, Katiushka; Cabral-Romero, Claudio

    2013-01-01

    Multiresistance among microorganisms to common antimicrobials has become one of the most significant concerns in modern medicine. Nanomaterials are a new alternative to successfully treat the multiresistant microorganisms. Nanostructured materials are used in many fields, including biological sciences and medicine. Recently, it was demonstrated that the bactericidal activity of zero-valent bismuth colloidal nanoparticles inhibited the growth of Streptococcus mutans; however the antimycotic potential of bismuth nanostructured derivatives has not yet been studied. The main objective of this investigation was to analyze the fungicidal activity of bismuth oxide nanoparticles against Candida albicans, and their antibiofilm capabilities. Our results showed that aqueous colloidal bismuth oxide nanoparticles displayed antimicrobial activity against C. albicans growth (reducing colony size by 85%) and a complete inhibition of biofilm formation. These results are better than those obtained with chlorhexidine, nystatin, and terbinafine, the most effective oral antiseptic and commercial antifungal agents. In this work, we also compared the antimycotic activities of bulk bismuth oxide and bismuth nitrate, the precursor metallic salt. These results suggest that bismuth oxide colloidal nanoparticles could be a very interesting candidate as a fungicidal agent to be incorporated into an oral antiseptic. Additionally, we determined the minimum inhibitory concentration for the synthesized aqueous colloidal Bi2O3 nanoparticles. PMID:23637533

  14. Evaluation of intraspecies interactions in biofilm formation by Methylobacterium species isolated from pink-pigmented household biofilms.

    PubMed

    Xu, Fang-Fang; Morohoshi, Tomohiro; Wang, Wen-Zhao; Yamaguchi, Yuka; Liang, Yan; Ikeda, Tsukasa

    2014-01-01

    Concern regarding household biofilms has grown due to their widespread existence and potential to threaten human health by serving as pathogen reservoirs. Previous studies identified Methylobacterium as one of the dominant genera found in household biofilms. In the present study, we examined the mechanisms underlying biofilm formation by using the bacterial consortium found in household pink slime. A clone library analysis revealed that Methylobacterium was the predominant genus in household pink slime. In addition, 16 out of 21 pink-pigmented bacterial isolates were assigned to the genus Methylobacterium. Although all of the Methylobacterium isolates formed low-level biofilms, the amount of the biofilms formed by Methylobacterium sp. P-1M and P-18S was significantly increased by co-culturing with other Methylobacterium strains that belonged to a specific phylogenetic group. The single-species biofilm was easily washed from the glass surface, whereas the dual-species biofilm strongly adhered after washing. A confocal laser scanning microscopy analysis showed that the dual-species biofilms were significantly thicker and tighter than the single-species biofilms.

  15. Evaluation of Intraspecies Interactions in Biofilm Formation by Methylobacterium Species Isolated from Pink-Pigmented Household Biofilms

    PubMed Central

    Xu, Fang-Fang; Morohoshi, Tomohiro; Wang, Wen-Zhao; Yamaguchi, Yuka; Liang, Yan; Ikeda, Tsukasa

    2014-01-01

    Concern regarding household biofilms has grown due to their widespread existence and potential to threaten human health by serving as pathogen reservoirs. Previous studies identified Methylobacterium as one of the dominant genera found in household biofilms. In the present study, we examined the mechanisms underlying biofilm formation by using the bacterial consortium found in household pink slime. A clone library analysis revealed that Methylobacterium was the predominant genus in household pink slime. In addition, 16 out of 21 pink-pigmented bacterial isolates were assigned to the genus Methylobacterium. Although all of the Methylobacterium isolates formed low-level biofilms, the amount of the biofilms formed by Methylobacterium sp. P-1M and P-18S was significantly increased by co-culturing with other Methylobacterium strains that belonged to a specific phylogenetic group. The single-species biofilm was easily washed from the glass surface, whereas the dual-species biofilm strongly adhered after washing. A confocal laser scanning microscopy analysis showed that the dual-species biofilms were significantly thicker and tighter than the single-species biofilms. PMID:25381715

  16. Factors Influencing Biofilm Formation in Streams: Bacterial Colonization, Detachment and Transport

    NASA Astrophysics Data System (ADS)

    Leff, L.

    2005-05-01

    Surfaces in aquatic systems develop biofilms containing microorganisms embedded in complex extracellular matrices. Properties of the surface, water, and colonizing organisms impact biofilm formation. Biofilm features, physical disturbance, and interactions between macro- and microscopic organisms, in turn, influence detachment. In spite of the importance of biofilms, much remains unknown about factors controlling biofilms in streams and other natural environments. Experiments were conducted in the laboratory and field to examine factors influencing surface colonization, and subsequent biofilm formation, and detachment. Microscopy methods, fluorescent in situ hybridization and confocal laser microscopy, were used to examine responses, including abundance of different taxa and biofilm depth. From these experiments, we determined that different taxa differ in their colonization ability based on properties like extracellular polysaccharide production and surface features, like hydrophobicity and that water chemistry, such as magnesium concentration, plays an important role. Moreover, detachment varies among taxa and with environmental conditions and may be enhanced by activities of macrofauna. Variation in detachment, in turn, influences bacterial transport and subsequent re-attachment. Overall, examination of attachment, detachment, and interactions in biofilms allows us to begin to understand how environmental conditions may impact the function of these communities in aquatic systems.

  17. Actinomyces naeslundii GroEL-dependent initial attachment and biofilm formation in a flow cell system.

    PubMed

    Arai, Toshiaki; Ochiai, Kuniyasu; Senpuku, Hidenobu

    2015-02-01

    Actinomyces naeslundii is an early colonizer with important roles in the development of the oral biofilm. The effects of butyric acid, one of short chain fatty acids in A. naeslundii biofilm formation was observed using a flow cell system with Tryptic soy broth without dextrose and with 0.25% sucrose (TSB sucrose). Significant biofilms were established involving live and dead cells in TSB sucrose with 60mM butyric acid but not in concentrations of 6, 30, 40, and 50mM. Biofilm formation failed in 60mM sodium butyrate but biofilm level in 60mM sodium butyrate (pH4.7) adjusted with hydrochloric acid as 60mM butyric media (pH4.7) was similar to biofilm levels in 60mM butyric acid. Therefore, butyric acid and low pH are required for significant biofilm formation in the flow cell. To determine the mechanism of biofilm formation, we investigated initial A. naeslundii colonization in various conditions and effects of anti-GroEL antibody. The initial colonization was observed in the 60mM butyric acid condition and anti-GroEL antibody inhibited the initial colonization. In conclusion, we established a new biofilm formation model in which butyric acid induces GroEL-dependent initial colonization of A. naeslundii resulting in significant biofilm formation in a flow system. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Exopolysaccharide Biosynthesis Enables Mature Biofilm Formation on Abiotic Surfaces by Herbaspirillum seropedicae

    PubMed Central

    Balsanelli, Eduardo; de Baura, Válter Antonio; Pedrosa, Fábio de Oliveira; de Souza, Emanuel Maltempi; Monteiro, Rose Adele

    2014-01-01

    H. seropedicae associates endophytically and epiphytically with important poaceous crops and is capable of promoting their growth. The molecular mechanisms involved in plant colonization by this microrganism are not fully understood. Exopolysaccharides (EPS) are usually necessary for bacterial attachment to solid surfaces, to other bacteria, and to form biofilms. The role of H. seropedicae SmR1 exopolysaccharide in biofilm formation on both inert and plant substrates was assessed by characterization of a mutant in the espB gene which codes for a glucosyltransferase. The mutant strain was severely affected in EPS production and biofilm formation on glass wool. In contrast, the plant colonization capacity of the mutant strain was not altered when compared to the parental strain. The requirement of EPS for biofilm formation on inert surface was reinforced by the induction of eps genes in biofilms grown on glass and polypropylene. On the other hand, a strong repression of eps genes was observed in H. seropedicae cells adhered to maize roots. Our data suggest that H. seropedicae EPS is a structural component of mature biofilms, but this development stage of biofilm is not achieved during plant colonization. PMID:25310013

  19. Exopolysaccharide biosynthesis enables mature biofilm formation on abiotic surfaces by Herbaspirillum seropedicae.

    PubMed

    Balsanelli, Eduardo; de Baura, Válter Antonio; Pedrosa, Fábio de Oliveira; de Souza, Emanuel Maltempi; Monteiro, Rose Adele

    2014-01-01

    H. seropedicae associates endophytically and epiphytically with important poaceous crops and is capable of promoting their growth. The molecular mechanisms involved in plant colonization by this microrganism are not fully understood. Exopolysaccharides (EPS) are usually necessary for bacterial attachment to solid surfaces, to other bacteria, and to form biofilms. The role of H. seropedicae SmR1 exopolysaccharide in biofilm formation on both inert and plant substrates was assessed by characterization of a mutant in the espB gene which codes for a glucosyltransferase. The mutant strain was severely affected in EPS production and biofilm formation on glass wool. In contrast, the plant colonization capacity of the mutant strain was not altered when compared to the parental strain. The requirement of EPS for biofilm formation on inert surface was reinforced by the induction of eps genes in biofilms grown on glass and polypropylene. On the other hand, a strong repression of eps genes was observed in H. seropedicae cells adhered to maize roots. Our data suggest that H. seropedicae EPS is a structural component of mature biofilms, but this development stage of biofilm is not achieved during plant colonization.

  20. Impact of Salt and Nutrient Content on Biofilm Formation by Vibrio fischeri.

    PubMed

    Marsden, Anne E; Grudzinski, Kevin; Ondrey, Jakob M; DeLoney-Marino, Cindy R; Visick, Karen L

    2017-01-01

    Vibrio fischeri, a marine bacterium and symbiont of the Hawaiian bobtail squid Euprymna scolopes, depends on biofilm formation for successful colonization of the squid's symbiotic light organ. Here, we investigated if culture conditions, such as nutrient and salt availability, affect biofilm formation by V. fischeri by testing the formation of wrinkled colonies on solid media. We found that V. fischeri forms colonies with more substantial wrinkling when grown on the nutrient-dense LBS medium containing NaCl relative to those formed on the more nutrient-poor, seawater-salt containing SWT medium. The presence of both tryptone and yeast extract was necessary for the production of "normal" wrinkled colonies; when grown on tryptone alone, the colonies displayed a divoting phenotype and were attached to the agar surface. We also found that the type and concentration of specific seawater salts influenced the timing of biofilm formation. Of the conditions assayed, wrinkled colony formation occurred earliest in LBS(-Tris) media containing 425 mM NaCl, 35 mM MgSO4, and 5 mM CaCl2. Pellicle formation, another measure of biofilm development, was also enhanced in these growth conditions. Therefore, both nutrient and salt availability contribute to V. fischeri biofilm formation. While growth was unaffected, these optimized conditions resulted in increased syp locus expression as measured by a PsypA-lacZ transcriptional reporter. We anticipate these studies will help us understand how the natural environment of V. fischeri affects its ability to form biofilms and, ultimately, colonize E. scolopes.

  1. Aminoglycoside inhibition of Staphylococcus aureus biofilm formation is nutrient dependent

    PubMed Central

    Hess, Donavon J.; Wells, Carol L.

    2014-01-01

    Biofilms represent microbial communities, encased in a self-produced matrix or extracellular polymeric substance. Microbial biofilms are likely responsible for a large proportion of clinically significant infections and the multicellular nature of biofilm existence has been repeatedly associated with antibiotic resistance. Classical in vitro antibiotic-susceptibility testing utilizes artificial growth media and planktonic microbes, but this method may not account for the variability inherent in environments subject to biofilm growth in vivo. Experiments were designed to test the hypothesis that nutrient concentration can modulate the antibiotic susceptibility of Staphylococcus aureus biofilms. Developing S. aureus biofilms initiated on surgical sutures, and in selected experiments planktonic cultures, were incubated for 16 h in 66 % tryptic soy broth, 0.2 % glucose (1× TSBg), supplemented with bactericidal concentrations of gentamicin, streptomycin, ampicillin or vancomycin. In parallel experiments, antibiotics were added to growth medium diluted one-third (1/3× TSBg) or concentrated threefold (3× TSBg). Following incubation, viable bacteria were enumerated from planktonic cultures or suture sonicates, and biofilm biomass was assayed using spectrophotometry. Interestingly, bactericidal concentrations of gentamicin (5 µg gentamicin ml−1) and streptomycin (32 µg streptomycin ml−1) inhibited biofilm formation in samples incubated in 1/3× or 1× TSBg, but not in samples incubated in 3× TSBg. The nutrient dependence of aminoglycoside susceptibility is not only associated with biofilm formation, as planktonic cultures incubated in 3× TSBg in the presence of gentamicin also showed antibiotic resistance. These findings appeared specific for aminoglycosides because biofilm formation was inhibited in all three growth media supplemented with bactericidal concentrations of the cell wall-active antibiotics, ampicillin and vancomycin. Additional experiments

  2. Implications of Biofilm Formation on Urological Devices

    NASA Astrophysics Data System (ADS)

    Cadieux, Peter A.; Wignall, Geoffrey R.; Carriveau, Rupp; Denstedt, John D.

    2008-09-01

    Despite millions of dollars and several decades of research targeted at their prevention and eradication, biofilm-associated infections remain the major cause of urological device failure. Numerous strategies have been aimed at improving device design, biomaterial composition, surface properties and drug delivery, but have been largely circumvented by microbes and their plethora of attachment, host evasion, antimicrobial resistance, and dissemination strategies. This is not entirely surprising since natural biofilm formation has been going on for millions of years and remains a major part of microorganism survival and evolution. Thus, the fact that biofilms develop on and in the biomaterials and tissues of humans is really an extension of this natural tendency and greatly explains why they are so difficult for us to combat. Firstly, biofilm structure and composition inherently provide a protective environment for microorganisms, shielding them from the shear stress of urine flow, immune cell attack and some antimicrobials. Secondly, many biofilm organisms enter a metabolically dormant state that renders them tolerant to those antibiotics and host factors able to penetrate the biofilm matrix. Lastly, the majority of organisms that cause biofilm-associated urinary tract infections originate from our own oral cavity, skin, gastrointestinal and urogenital tracts and therefore have already adapted to many of our host defenses. Ultimately, while biofilms continue to hold an advantage with respect to recurrent infections and biomaterial usage within the urinary tract, significant progress has been made in understanding these dynamic microbial communities and novel approaches offer promise for their prevention and eradication. These include novel device designs, antimicrobials, anti-adhesive coatings, biodegradable polymers and biofilm-disrupting compounds and therapies.

  3. Biofilm Formation by Otopathogenic Strains of P. aeruginosa is not Consistently Inhibited by EDTA

    PubMed Central

    Zenga, Joseph; Gagnon, Patricia M.; Vogel, Joseph; Chole, Richard A.

    2012-01-01

    Hypothesis Biofilm formation in otopathogenic of P. aeruginosa (OPPA) strains is inhibited by ethylenediaminetetraacetic acid (EDTA). Background EDTA, a widely used chelating agent, has been shown to inhibit biofilm formation in a number of bacteria. Since EDTA may be a well-tolerated reagent to inhibit biofilm formation in cases of suppurative otitis media, we asked if it might be effective in all OPPA strains isolated from chronically infected cholesteatomas. Methods OPPA strains were isolated from patients with infected cholesteatomas. These strains were grown into log phase then were placed in minimal media with varying concentrations of EDTA, and incubated for varying periods. Biofilm production was measured colorimetrically by staining with crystal violet. Results Without added EDTA, most otopathogenic PA exhibited a distinct, but varying, time-course of biofilm formation and dissolution with peak production at 12–18 hours. Addition of 1 mM EDTA resulted in a delay in the time to peak biofilm formation for most strains, although the amount of biofilm was not decreased. In contrast, some strains showed greater biofilm production with 1 mM EDTA compared to the untreated bacteria. Addition of 10 mM EDTA resulted in a similar effect. Some strains increased biofilm production over controls. Moreover, EDTA inhibited planktonic growth of all OPPA strains at the concentrations studied. Conclusion Our hypothesis was disproven: EDTA tends to delay biofilm development while it consistently inhibits planktonic growth. Since EDTA does not cause suppression of biofilm production in all isolates of OPPA, usefulness as an antimicrobial is questioned. PMID:22772018

  4. Antimicrobial Efficacy of Salvadora persica Extracts on a Monospecies Biofilm on Orthodontic Brackets In Vitro.

    PubMed

    Halawany, Hassan S; Abraham, Nimmi B; Siddiqui, Yunus M; Balto, Hanan A; Jacob, Vimal

    2016-01-01

    The oral cavity is a rich ecosystem with a plethora of microorganisms, and different components of fixed orthodontic appliances may contribute to a shift in the balance of oral ecology. The purpose of this study was to investigate the antimicrobial potential of hexane and ethanol extracts of Salvadora persica on a monospecies biofilm model established on orthodontic brackets in vitro. Streptococcus mutans biofilm was formed on mini diamond orthodontic brackets following three days of anaerobic incubation at 37˚C. The bacterial cell viability of this biofilm was measured after their exposure to saline, hexane extract of S. persica, ethanol extract of S. persica and 0.2% chlorhexidine using 3-(4, 5-dimethylthiazol- 2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulphophenyl)-2H-tetrazolium (MTS) assay. On half of the brackets, the colony forming units (CFU) were counted. Both experiments were performed in triplicate. The absorbance values obtained from the MTS reduction assay after exposure to the different test agents showed a decline in the bacterial cell viability of the S. mutans biofilm as follows: chlorhexidine (+)0.05). The CFU counts of S. mutans obtained from chlorhexidine exposure were lower than from hexane and ethanol extracts. S. persica extracts were found to have antimicrobial effects on S. mutans biofilm established in vitro on orthodontic brackets suggestive of its potential use as an oral antimicrobial agent for orthodontic patients.

  5. Environmental Stress-Induced Bacterial Lysis and Extracellular DNA Release Contribute to Campylobacter jejuni Biofilm Formation.

    PubMed

    Feng, Jinsong; Ma, Lina; Nie, Jiatong; Konkel, Michael E; Lu, Xiaonan

    2018-03-01

    Campylobacter jejuni is a microaerophilic bacterium and is believed to persist in a biofilm to antagonize environmental stress. This study investigated the influence of environmental conditions on the formation of C. jejuni biofilm. We report an extracellular DNA (eDNA)-mediated mechanism of biofilm formation in response to aerobic and starvation stress. The eDNA was determined to represent a major form of constitutional material of C. jejuni biofilms and to be closely associated with bacterial lysis. Deletion mutation of the stress response genes spoT and recA enhanced the aerobic influence by stimulating lysis and increasing eDNA release. Flagella were also involved in biofilm formation but mainly contributed to attachment rather than induction of lysis. The addition of genomic DNA from either Campylobacter or Salmonella resulted in a concentration-dependent stimulation effect on biofilm formation, but the effect was not due to forming a precoating DNA layer. Enzymatic degradation of DNA by DNase I disrupted C. jejuni biofilm. In a dual-species biofilm, eDNA allocated Campylobacter and Salmonella at distinct spatial locations that protect Campylobacter from oxygen stress. Our findings demonstrated an essential role and multiple functions of eDNA in biofilm formation of C. jejuni , including facilitating initial attachment, establishing and maintaining biofilm, and allocating bacterial cells. IMPORTANCE Campylobacter jejuni is a major cause of foodborne illness worldwide. In the natural environment, the growth of C. jejuni is greatly inhibited by various forms of environmental stress, such as aerobic stress and starvation stress. Biofilm formation can facilitate the distribution of C. jejuni by enabling the survival of this fragile microorganism under unfavorable conditions. However, the mechanism of C. jejuni biofilm formation in response to environmental stress has been investigated only partially. The significance of our research is in identifying extracellular

  6. Alanine racemase is essential for the growth and interspecies competitiveness of Streptococcus mutans.

    PubMed

    Wei, Yuan; Qiu, Wei; Zhou, Xue-Dong; Zheng, Xin; Zhang, Ke-Ke; Wang, Shi-Da; Li, Yu-Qing; Cheng, Lei; Li, Ji-Yao; Xu, Xin; Li, Ming-Yun

    2016-12-16

    D-alanine (D-Ala) is an essential amino acid that has a key role in bacterial cell wall synthesis. Alanine racemase (Alr) is a unique enzyme that interconverts L-alanine and D-alanine in most bacteria, making this enzyme a potential target for antimicrobial drug development. Streptococcus mutans is a major causative factor of dental caries. The factors involved in the survival, virulence and interspecies interactions of S. mutans could be exploited as potential targets for caries control. The current study aimed to investigate the physiological role of Alr in S. mutans. We constructed alr mutant strain of S. mutans and evaluated its phenotypic traits and interspecies competitiveness compared with the wild-type strain. We found that alr deletion was lethal to S. mutans. A minimal supplement of D-Ala (150 μg·mL -1 ) was required for the optimal growth of the alr mutant. The depletion of D-alanine in the growth medium resulted in cell wall perforation and cell lysis in the alr mutant strain. We also determined the compromised competitiveness of the alr mutant strain relative to the wild-type S. mutans against other oral streptococci (S. sanguinis or S. gordonii), demonstrated using either conditioned medium assays or dual-species fluorescent in situ hybridization analysis. Given the importance and necessity of alr to the growth and competitiveness of S. mutans, Alr may represent a promising target to modulate the cariogenicity of oral biofilms and to benefit the management of dental caries.

  7. Role of Multicellular Aggregates in Biofilm Formation

    PubMed Central

    Kragh, Kasper N.; Hutchison, Jaime B.; Melaugh, Gavin; Rodesney, Chris; Roberts, Aled E. L.; Irie, Yasuhiko; Jensen, Peter Ø.; Diggle, Stephen P.; Allen, Rosalind J.

    2016-01-01

    ABSTRACT In traditional models of in vitro biofilm development, individual bacterial cells seed a surface, multiply, and mature into multicellular, three-dimensional structures. Much research has been devoted to elucidating the mechanisms governing the initial attachment of single cells to surfaces. However, in natural environments and during infection, bacterial cells tend to clump as multicellular aggregates, and biofilms can also slough off aggregates as a part of the dispersal process. This makes it likely that biofilms are often seeded by aggregates and single cells, yet how these aggregates impact biofilm initiation and development is not known. Here we use a combination of experimental and computational approaches to determine the relative fitness of single cells and preformed aggregates during early development of Pseudomonas aeruginosa biofilms. We find that the relative fitness of aggregates depends markedly on the density of surrounding single cells, i.e., the level of competition for growth resources. When competition between aggregates and single cells is low, an aggregate has a growth disadvantage because the aggregate interior has poor access to growth resources. However, if competition is high, aggregates exhibit higher fitness, because extending vertically above the surface gives cells at the top of aggregates better access to growth resources. Other advantages of seeding by aggregates, such as earlier switching to a biofilm-like phenotype and enhanced resilience toward antibiotics and immune response, may add to this ecological benefit. Our findings suggest that current models of biofilm formation should be reconsidered to incorporate the role of aggregates in biofilm initiation. PMID:27006463

  8. Interplay between Antibiotic Efficacy and Drug-Induced Lysis Underlies Enhanced Biofilm Formation at Subinhibitory Drug Concentrations

    PubMed Central

    Yu, Wen; Hallinen, Kelsey M.

    2017-01-01

    ABSTRACT Subinhibitory concentrations of antibiotics have been shown to enhance biofilm formation in multiple bacterial species. While antibiotic exposure has been associated with modulated expression of many biofilm-related genes, the mechanisms of drug-induced biofilm formation remain a focus of ongoing research efforts and may vary significantly across species. In this work, we investigate antibiotic-induced biofilm formation in Enterococcus faecalis, a leading cause of nosocomial infections. We show that biofilm formation is enhanced by subinhibitory concentrations of cell wall synthesis inhibitors but not by inhibitors of protein, DNA, folic acid, or RNA synthesis. Furthermore, enhanced biofilm is associated with increased cell lysis, increases in extracellular DNA (eDNA) levels, and increases in the density of living cells in the biofilm. In addition, we observe similar enhancement of biofilm formation when cells are treated with nonantibiotic surfactants that induce cell lysis. These findings suggest that antibiotic-induced biofilm formation is governed by a trade-off between drug toxicity and the beneficial effects of cell lysis. To understand this trade-off, we developed a simple mathematical model that predicts changes in antibiotic-induced biofilm formation due to external perturbations, and we verified these predictions experimentally. Specifically, we demonstrate that perturbations that reduce eDNA (DNase treatment) or decrease the number of living cells in the planktonic phase (a second antibiotic) decrease biofilm induction, while chemical inhibitors of cell lysis increase relative biofilm induction and shift the peak to higher antibiotic concentrations. Overall, our results offer experimental evidence linking cell wall synthesis inhibitors, cell lysis, increased eDNA levels, and biofilm formation in E. faecalis while also providing a predictive quantitative model that sheds light on the interplay between cell lysis and antibiotic efficacy in

  9. Biofilm Formation and Dispersal under the Influence of the Global Regulator CsrA of Escherichia coli

    PubMed Central

    Jackson, Debra W.; Suzuki, Kazushi; Oakford, Lawrence; Simecka, Jerry W.; Hart, Mark E.; Romeo, Tony

    2002-01-01

    The predominant mode of growth of bacteria in the environment is within sessile, matrix-enclosed communities known as biofilms. Biofilms often complicate chronic and difficult-to-treat infections by protecting bacteria from the immune system, decreasing antibiotic efficacy, and dispersing planktonic cells to distant body sites. While the biology of bacterial biofilms has become a major focus of microbial research, the regulatory mechanisms of biofilm development remain poorly defined and those of dispersal are unknown. Here we establish that the RNA binding global regulatory protein CsrA (carbon storage regulator) of Escherichia coli K-12 serves as both a repressor of biofilm formation and an activator of biofilm dispersal under a variety of culture conditions. Ectopic expression of the E. coli K-12 csrA gene repressed biofilm formation by related bacterial pathogens. A csrA knockout mutation enhanced biofilm formation in E. coli strains that were defective for extracellular, surface, or regulatory factors previously implicated in biofilm formation. In contrast, this csrA mutation did not affect biofilm formation by a glgA (glycogen synthase) knockout mutant. Complementation studies with glg genes provided further genetic evidence that the effects of CsrA on biofilm formation are mediated largely through the regulation of intracellular glycogen biosynthesis and catabolism. Finally, the expression of a chromosomally encoded csrA′-′lacZ translational fusion was dynamically regulated during biofilm formation in a pattern consistent with its role as a repressor. We propose that global regulation of central carbon flux by CsrA is an extremely important feature of E. coli biofilm development. PMID:11741870

  10. Cigarette smoke increases Staphylococcus aureus biofilm formation via oxidative stress.

    PubMed

    Kulkarni, Ritwij; Antala, Swati; Wang, Alice; Amaral, Fábio E; Rampersaud, Ryan; Larussa, Samuel J; Planet, Paul J; Ratner, Adam J

    2012-11-01

    The strong epidemiological association between cigarette smoke (CS) exposure and respiratory tract infections is conventionally attributed to immunosuppressive and irritant effects of CS on human cells. Since pathogenic bacteria such as Staphylococcus aureus are members of the normal microbiota and reside in close proximity to human nasopharyngeal cells, we hypothesized that bioactive components of CS might affect these organisms and potentiate their virulence. Using Staphylococcus aureus as a model organism, we observed that the presence of CS increased both biofilm formation and host cell adherence. Analysis of putative molecular pathways revealed that CS exposure decreased expression of the quorum-sensing agr system, which is involved in biofilm dispersal, and increased transcription of biofilm inducers such as sarA and rbf. CS contains bioactive compounds, including free radicals and reactive oxygen species, and we observed transcriptional induction of bacterial oxidoreductases, including superoxide dismutase, following exposure. Moreover, pretreatment of CS with an antioxidant abrogated CS-mediated enhancement of biofilms. Exposure of bacteria to hydrogen peroxide alone increased biofilm formation. These observations are consistent with the hypothesis that CS induces staphylococcal biofilm formation in an oxidant-dependent manner. CS treatment induced transcription of fnbA (encoding fibronectin binding protein A), leading to increased binding of CS-treated staphylococci to immobilized fibronectin and increased adherence to human cells. These observations indicate that the bioactive effects of CS may extend to the resident microbiota of the nasopharynx, with implications for the pathogenesis of respiratory infection in CS-exposed humans.

  11. Comparative in vitro investigation of the cariogenic potential of bifidobacteria.

    PubMed

    Valdez, Remberto Marcelo Argandoña; Dos Santos, Vanessa Rodrigues; Caiaffa, Karina Sampaio; Danelon, Marcelle; Arthur, Rodrigo Alex; Negrini, Thais de Cássia; Delbem, Alberto Carlos Botazzo; Duque, Cristiane

    2016-11-01

    This study aimed to assess the in vitro cariogenic potential of some Bifidobacterium species in comparison with caries-associated bacteria. Bifidobacterium lactis, Bifidobacterium longum, Bifidobacterium animalis, Bifidobacterium dentium, Lactobacillus acidophilus, Lactobacillus casei, Actinomyces israelii, Streptococcus sobrinus and Streptococcus mutans were tested for acidogenicity and aciduricity by measuring the pH of the cultures after growth in glucose and bacterial growth after exposure to acid solutions. Biofilm biomass was determined for each species either alone or associated with S. mutans or S. mutans/S. sobrinus. Enamel hardness was analyzed before and after 7-days biofilm formation using bacterial combinations. B. animalis and B. longum were the most acidogenic and aciduric strains, comparable to caries-associated bacteria, such as S. mutans and L. casei. All species had a significantly increased biofilm when combined either with S. mutans or with S. mutans/S. sobrinus. The greatest enamel surface loss was produced when B. longum or B. animalis were inoculated with S. mutans, similar to L. casei and S. sobrinus. All strains induced similar enamel demineralization when combined with S. mutans/S. sobrinus, except by B. lactis. The ability to produce acidic environments and to enhance biofilm formation leading to increased demineralization may mean that Bifidobacterium species, especially B. animalis and B. longum, are potentially cariogenic. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. The Yin and Yang of SagS: Distinct Residues in the HmsP Domain of SagS Independently Regulate Biofilm Formation and Biofilm Drug Tolerance

    PubMed Central

    Dingemans, Jozef; Poudyal, Bandita

    2018-01-01

    ABSTRACT The formation of inherently drug-tolerant biofilms by the opportunistic pathogen Pseudomonas aeruginosa requires the sensor-regulator hybrid SagS, with ΔsagS biofilms being unstructured and exhibiting increased antimicrobial susceptibility. Recent findings indicated SagS to function as a switch to control biofilm formation and drug tolerance independently. Moreover, findings suggested the periplasmic sensory HmsP domain of SagS is likely to be the control point in the regulation of biofilm formation and biofilm cells transitioning to a drug-tolerant state. We thus asked whether specific amino acid residues present in the HmsP domain contribute to the switch function of SagS. HmsP domain residues were therefore subjected to alanine replacement mutagenesis to identify substitutions that block the sensory function(s) of SagS, which is apparent by attached cells being unable to develop mature biofilms and/or prevent transition to an antimicrobial-resistant state. Mutant analyses revealed 32 residues that only contribute to blocking one sensory function. Moreover, amino acid residues affecting attachment and subsequent biofilm formation but not biofilm tolerance also impaired histidine kinase signaling via BfiS. In contrast, residues affecting biofilm drug tolerance but not attachment and subsequent biofilm formation negatively impacted BrlR transcription factor levels. Structure prediction suggested the two sets of residues affecting sensory functions are located in distinct areas that were previously described as being involved in ligand binding interactions. Taken together, these studies identify the molecular basis for the dual regulatory function of SagS. IMPORTANCE The membrane-bound sensory protein SagS plays a pivotal role in P. aeruginosa biofilm formation and biofilm cells gaining their heightened resistance to antimicrobial agents, with SagS being the control point at which both pathways diverge. Here, we demonstrate for the first time that the two

  13. Biofilm formation is not associated with worse outcome in Acinetobacter baumannii bacteraemic pneumonia.

    PubMed

    Wang, Yung-Chih; Huang, Tzu-Wen; Yang, Ya-Sung; Kuo, Shu-Chen; Chen, Chung-Ting; Liu, Chang-Pan; Liu, Yuag-Meng; Chen, Te-Li; Chang, Feng-Yee; Wu, Shih-Hsiung; How, Chorng-Kuang; Lee, Yi-Tzu

    2018-05-08

    The effect of biofilm formation on bacteraemic pneumonia caused by A. baumannii is unknown. We conducted a 4-year multi-center retrospective study to analyze 71 and 202 patients with A. baumannii bacteraemic pneumonia caused by biofilm-forming and non-biofilm-forming isolates, respectively. The clinical features and outcomes of patients were investigated. Biofilm formation was determined by a microtitre plate assay. The antimicrobial susceptibilities of biofilm-associated cells were assessed using the minimum biofilm eradication concentration (MBEC) assay. Whole-genome sequencing was conducted to identify biofilm-associated genes and their promoters. Quantitative reverse transcription polymerase chain reaction was performed to confirm the expression difference of biofilm-associated genes. There was no significant difference in the clinical characteristics or the outcomes between patients infected with biofilm-forming and non-biofilm-forming strains. Compared with non-biofilm-forming isolates, biofilm-forming isolates exhibited lower resistance to most antimicrobials tested, including imipenem, meropenem, ceftazidime, ciprofloxacin and gentamicin; however, the MBEC assay confirmed the increased antibiotic resistance of the biofilm-embedded bacteria. Biofilm-associated genes and their promoters were detected in most isolates, including the non-biofilm-forming strains. Biofilm-forming isolates showed higher levels of expression of the biofilm-associated genes than non-biofilm-forming isolates. The biofilm-forming ability of A. baumannii isolates might not be associated with worse outcomes in patients with bacteraemic pneumonia.

  14. Relative Abundances of Candida albicans and Candida glabrata in In Vitro Coculture Biofilms Impact Biofilm Structure and Formation.

    PubMed

    Olson, Michelle L; Jayaraman, Arul; Kao, Katy C

    2018-04-15

    Candida is a member of the normal human microbiota and often resides on mucosal surfaces such as the oral cavity or the gastrointestinal tract. In addition to their commensality, Candida species can opportunistically become pathogenic if the host microbiota is disrupted or if the host immune system becomes compromised. An important factor for Candida pathogenesis is its ability to form biofilm communities. The two most medically important species- Candida albicans and Candida glabrata -are often coisolated from infection sites, suggesting the importance of Candida coculture biofilms. In this work, we report that biofilm formation of the coculture population depends on the relative ratio of starting cell concentrations of C. albicans and C. glabrata When using a starting ratio of C. albicans to C. glabrata of 1:3, ∼6.5- and ∼2.5-fold increases in biofilm biomass were observed relative to those of a C. albicans monoculture and a C. albicans / C. glabrata ratio of 1:1, respectively. Confocal microscopy analysis revealed the heterogeneity and complex structures composed of long C. albicans hyphae and C. glabrata cell clusters in the coculture biofilms, and reverse transcription-quantitative PCR (qRT-PCR) studies showed increases in the relative expression of the HWP1 and ALS3 adhesion genes in the C. albicans / C. glabrata 1:3 biofilm compared to that in the C. albicans monoculture biofilm. Additionally, only the 1:3 C. albicans / C. glabrata biofilm demonstrated an increased resistance to the antifungal drug caspofungin. Overall, the results suggest that interspecific interactions between these two fungal pathogens increase biofilm formation and virulence-related gene expression in a coculture composition-dependent manner. IMPORTANCE Candida albicans and Candida glabrata are often coisolated during infection, and the occurrence of coisolation increases with increasing inflammation, suggesting possible synergistic interactions between the two Candida species in

  15. Effects of ceftazidime and ciprofloxacin on biofilm formation in Proteus mirabilis rods.

    PubMed

    Kwiecińska-Piróg, Joanna; Bogiel, Tomasz; Gospodarek, Eugenia

    2013-10-01

    Proteus mirabilis rods are one of the most commonly isolated species of the Proteus genus from human infections, mainly those from the urinary tract and wounds. They are often related to biofilm structure formation. The bacterial cells of the biofilm are less susceptible to routinely used antimicrobials, making the treatment more difficult. The aim of this study was to evaluate quantitatively the influence of ceftazidime and ciprofloxacin on biofilm formation on the polyvinyl chloride surface by 42 P. mirabilis strains isolated from urine, purulence, wound swab and bedsore samples. It has been shown that ceftazidime and ciprofloxacin at concentrations equal to 1/4, 1/2 and 1 times their MIC values for particular Proteus spp. strains decrease their ability to form biofilms. Moreover, ciprofloxacin at concentrations equal to 1/4, 1/2 and 1 times their MIC values for particular P. mirabilis strains reduces biofilm formation more efficiently than ceftazidime at the corresponding concentration values.

  16. Nonleachable Imidazolium-Incorporated Composite for Disruption of Bacterial Clustering, Exopolysaccharide-Matrix Assembly, and Enhanced Biofilm Removal.

    PubMed

    Hwang, Geelsu; Koltisko, Bernard; Jin, Xiaoming; Koo, Hyun

    2017-11-08

    Surface-grown bacteria and production of an extracellular polymeric matrix modulate the assembly of highly cohesive and firmly attached biofilms, making them difficult to remove from solid surfaces. Inhibition of cell growth and inactivation of matrix-producing bacteria can impair biofilm formation and facilitate removal. Here, we developed a novel nonleachable antibacterial composite with potent antibiofilm activity by directly incorporating polymerizable imidazolium-containing resin (antibacterial resin with carbonate linkage; ABR-C) into a methacrylate-based scaffold (ABR-modified composite; ABR-MC) using an efficient yet simplified chemistry. Low-dose inclusion of imidazolium moiety (∼2 wt %) resulted in bioactivity with minimal cytotoxicity without compromising mechanical integrity of the restorative material. The antibiofilm properties of ABR-MC were assessed using an exopolysaccharide-matrix-producing (EPS-matrix-producing) oral pathogen (Streptococcus mutans) in an experimental biofilm model. Using high-resolution confocal fluorescence imaging and biophysical methods, we observed remarkable disruption of bacterial accumulation and defective 3D matrix structure on the surface of ABR-MC. Specifically, the antibacterial composite impaired the ability of S. mutans to form organized bacterial clusters on the surface, resulting in altered biofilm architecture with sparse cell accumulation and reduced amounts of EPS matrix (versus control composite). Biofilm topology analyses on the control composite revealed a highly organized and weblike EPS structure that tethers the bacterial clusters to each other and to the surface, forming a highly cohesive unit. In contrast, such a structured matrix was absent on the surface of ABR-MC with mostly sparse and amorphous EPS, indicating disruption in the biofilm physical stability. Consistent with lack of structural organization, the defective biofilm on the surface of ABR-MC was readily detached when subjected to low shear

  17. Control of Glucose- and NaCl-Induced Biofilm Formation by rbf in Staphylococcus aureus

    PubMed Central

    Lim, Yong; Jana, Malabendu; Luong, Thanh T.; Lee, Chia Y.

    2004-01-01

    Both Staphylococcus aureus and S. epidermidis are capable of forming biofilm on biomaterials. We used Tn917 mutagenesis to identify a gene, rbf, affecting biofilm formation in S. aureus NCTC8325-4. Sequencing revealed that Rbf contained a consensus region signature of the AraC/XylS family of regulators, suggesting that Rbf is a transcriptional regulator. Insertional duplication inactivation of the rbf gene confirmed that the gene was involved in biofilm formation on polystyrene and glass. Phenotypic analysis of the wild type and the mutant suggested that the rbf gene mediates the biofilm formation of S. aureus at the multicellular aggregation stage rather than at initial attachment. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis demonstrated that the mutation resulted in the loss of an ∼190-kDa protein. Biofilm production by the mutant could be restored by complementation with a 2.5-kb DNA fragment containing the rbf gene. The rbf-specific mutation affected the induction of biofilm formation by glucose and a high concentration of NaCl but not by ethanol. The mutation did not affect the transcription of the ica genes previously shown to be required for biofilm formation. Taken together, our results suggest that the rbf gene is involved in the regulation of the multicellular aggregation step of S. aureus biofilm formation in response to glucose and salt and that this regulation may be mediated through the 190-kDa protein. PMID:14729698

  18. [Effects of Nd: YAG laser irradiation on the root surfaces and adhesion of Streptococcus mutans].

    PubMed

    Yuanhong, Li; Zhongcheng, Li; Mengqi, Luo; Daonan, Shen; Shu, Zhang; Shu, Meng

    2016-12-01

    This study aimed to evaluate the effects of treatment with different powers of Nd: YAG laser irradiation on root surfaces and Streptococcus mutans (S. mutans) adhesion. Extracted teeth because of severe periodontal disease were divided into the following four groups: control group, laser group 1, laser group 2, and laser group 3. After scaling and root planning, laser group 1, laser group 2, and laser group 3 were separately treated with Nd: YAG laser irradiation (4/6/8 W, 60 s); however, the control group did not receive the treatment. Scanning electron microscopy (SEM) was used to determine the morphology. S. mutans were cultured with root slices from each group. Colony forming unit per mL (CFU·mL⁻¹) was used to count and compare the amounts of bacteria adhesion among groups. SEM was used to observe the difference of bacteria adhesion to root surfaces between control group (scaling) and laser group 2 (6 W, 60 s), thereby indicating the different bacteria adhesions because of different treatments. Morphology alterations indicated that root surfaces in control group contain obvious smear layer, debris, and biofilm; whereas the root surfaces in laser group contain more cracks with less smear layer and debris. The bacteria counting indicated that S. mutans adhesion to laser group was weaker than that of control group (P<0.05). No statistical significance among the laser groups (P>0.05) was observed. Morphology alterations also verified that S. mutans adhesion to laser group 2 (6 W, 60 s) was weaker than that of control group (scaling). This study demonstrated that Nd: YAG laser irradiation treatment after scaling can reduce smear layer, debris, and biofilm on the root surfaces as compared with conventional scaling. The laser treatment reduces the adhesion of S. mutans as well. However, Nd: YAG laser irradiation can cause cracks on the root surfaces. In this experiment, the optimum laser power of 6 W can thoroughly remove the smear layer and debris, as well as

  19. Bacterial adherence and biofilm formation on medical implants: a review.

    PubMed

    Veerachamy, Suganthan; Yarlagadda, Tejasri; Manivasagam, Geetha; Yarlagadda, Prasad Kdv

    2014-10-01

    Biofilms are a complex group of microbial cells that adhere to the exopolysaccharide matrix present on the surface of medical devices. Biofilm-associated infections in the medical devices pose a serious problem to the public health and adversely affect the function of the device. Medical implants used in oral and orthopedic surgery are fabricated using alloys such as stainless steel and titanium. The biological behavior, such as osseointegration and its antibacterial activity, essentially depends on both the chemical composition and the morphology of the surface of the device. Surface treatment of medical implants by various physical and chemical techniques are attempted in order to improve their surface properties so as to facilitate bio-integration and prevent bacterial adhesion. The potential source of infection of the surrounding tissue and antimicrobial strategies are from bacteria adherent to or in a biofilm on the implant which should prevent both biofilm formation and tissue colonization. This article provides an overview of bacterial biofilm formation and methods adopted for the inhibition of bacterial adhesion on medical implants. © IMechE 2014.

  20. Consumption of apple-boysenberry beverage decreases salivary Actinomyces naeslundii and their adhesion in a multi-species biofilm model.

    PubMed

    Parkar, S G; Eady, S; Cabecinha, M; Skinner, M A

    2017-04-26

    We hypothesised that consumption of beverage rich in both fibre and polyphenols, rather than each bioactive alone, will modulate populations of selected salivary bacteria, and their adhesion characteristics and that some of these effects may be due to the anti-microbial activity of the beverage bioactives. We investigated the effect of 4 weeks' consumption of beverages, rich in apple fibre, boysenberry polyphenols, or both on salivary bacteria in healthy subjects. In this placebo-controlled crossover study, saliva samples were collected at the beginning and end of each treatment period, and used for qPCR quantitation of Lactobacillus spp., Actinomyces naeslundii and Streptococcus mutans. The counts of salivary A. naeslundii decreased after the consumption of the apple-boysenberry beverage (P<0.05, Student's t-test). We also examined the effect of the subjects' saliva on bacterial adhesion using a mixed species biofilm model. The salivary pellicles prepared before and after each treatment were inoculated with laboratory strains of A. naeslundii, Lactobacillus rhamnosus and S. mutans and tested for biofilm formation. The post appleboysenberry beverage salivary pellicle significantly decreased the adhesion of A. naeslundii at the end of both 3 and 24 h, in the in vitro biofilm. A 1/16 dilution of the apple-boysenberry beverage itself decreased the proliferation of test strains of A. naeslundii and S. mutans by 51 and 55%, respectively (P<0.005), indicating the antimicrobial activity of its bioactives. This study demonstrated that consumption of apple-boysenberry beverage, rather than apple or the boysenberry beverage alone or the placebo, decreased salivary A. naeslundii and their adhesion under laboratory conditions. These changes are factors that influence oral microecology and potentially oral health.

  1. Genetic variability of mutans streptococci revealed by wide whole-genome sequencing

    PubMed Central

    2013-01-01

    Background Mutans streptococci are a group of bacteria significantly contributing to tooth decay. Their genetic variability is however still not well understood. Results Genomes of 6 clinical S. mutans isolates of different origins, one isolate of S. sobrinus (DSM 20742) and one isolate of S. ratti (DSM 20564) were sequenced and comparatively analyzed. Genome alignment revealed a mosaic-like structure of genome arrangement. Genes related to pathogenicity are found to have high variations among the strains, whereas genes for oxidative stress resistance are well conserved, indicating the importance of this trait in the dental biofilm community. Analysis of genome-scale metabolic networks revealed significant differences in 42 pathways. A striking dissimilarity is the unique presence of two lactate oxidases in S. sobrinus DSM 20742, probably indicating an unusual capability of this strain in producing H2O2 and expanding its ecological niche. In addition, lactate oxidases may form with other enzymes a novel energetic pathway in S. sobrinus DSM 20742 that can remedy its deficiency in citrate utilization pathway. Using 67 S. mutans genomes currently available including the strains sequenced in this study, we estimates the theoretical core genome size of S. mutans, and performed modeling of S. mutans pan-genome by applying different fitting models. An “open” pan-genome was inferred. Conclusions The comparative genome analyses revealed diversities in the mutans streptococci group, especially with respect to the virulence related genes and metabolic pathways. The results are helpful for better understanding the evolution and adaptive mechanisms of these oral pathogen microorganisms and for combating them. PMID:23805886

  2. Biofilm Formation Derived from Ambient Air and the Characteristics of Apparatus

    NASA Astrophysics Data System (ADS)

    Kanematsu, H.; Kougo, H.; Kuroda, D.; Itho, H.; Ogino, Y.; Yamamoto, Y.

    2013-04-01

    Biofilm is a kind of thin film on solidified matters, being derived from bacteria. Generally, planktonic bacteria float in aqueous environments, soil or air, most of which can be regarded as oligotrophic environments. Since they have to survive by instinct, they seek for nutrients that would exist on materials surfaces as organic matters. Therefore, bacteria attach materials surfaces reversibly. The attachment and detachment repeat for a while and finally, they attach on them irreversibly and the number of bacteria on them increases. At a threshold number, bacteria produce polymeric matters at the same time by quorum sensing mechanism and the biofilm produces on material surfaces. The biofilm produced in that way generally contains water (more than 80%), EPS (Exopolymeric Substance) and bacteria themselves. And they might bring about many industrial problems, fouling, corrosion etc. Therefore, it is very important for us to control and prevent the biofilm formation properly. However, it is generally very hard to produce biofilm experimentally and constantly in ambient atmosphere on labo scale. The authors invented an apparatus where biofilm could form on specimen's surfaces from house germs in the ambient air. In this experiment, we investigated the basic characteristics of the apparatus, reproducibility, the change of biofilm with experimental time, the quality change of water for biofilm formation and their significance for biofilm research.

  3. Evidence for inter- and intraspecies biofilm formation variability among a small group of coagulase-negative staphylococci.

    PubMed

    Oliveira, Fernando; Lima, Cláudia Afonso; Brás, Susana; França, Ângela; Cerca, Nuno

    2015-10-01

    Coagulase-negative staphylococci (CoNS) are common bacterial colonizers of the human skin. They are often involved in nosocomial infections due to biofilm formation in indwelling medical devices. While biofilm formation has been extensively studied in Staphylococcus epidermidis, little is known regarding other CoNS species. Here, biofilms from six different CoNS species were characterized in terms of biofilm composition and architecture. Interestingly, the ability to form a thick biofilm was not associated with any particular species, and high variability on biofilm accumulation was found within the same species. Cell viability assays also revealed different proportions of live and dead cells within biofilms formed by different species, although this parameter was particularly similar at the intraspecies level. On the other hand, biofilm disruption assays demonstrated important inter- and intraspecies differences regarding extracellular matrix composition. Lastly, confocal laser scanning microscopy experiments confirmed this variability, highlighting important differences and common features of CoNS biofilms. We hypothesized that the biofilm formation heterogeneity observed was rather associated with biofilm matrix composition than with cells themselves. Additionally, our results indicate that polysaccharides, DNA and proteins are fundamental pieces in the process of CoNS biofilm formation. © FEMS 2015. All rights reserved.

  4. Killing activity of LFchimera on periodontopathic bacteria and multispecies oral biofilm formation in vitro.

    PubMed

    Ruangcharoen, Sopita; Suwannarong, Waraporn; Lachica, Marie Rossini Carmela T; Bolscher, Jan G M; Nazmi, Kamran; Khunkitti, Watcharee; Taweechaisupapong, Suwimol

    2017-08-19

    Lactoferrin chimera (LFchimera), a heterodimeric peptide containing lactoferrampin (LFampin265-284) and a part of lactoferricin (LFcin17-30), possesses a broad spectrum of antimicrobial activity. However, there is no report on the inhibitory effects of LFchimera against multispecies oral biofilms. This study aimed to determine the effects of LFchimera in comparison to chlorhexidine digluconate (CHX) and minocycline hydrochloride (MH), on in vitro multispecies biofilms derived from subgingival plaque of periodontitis patients harboring Aggregatibacter actinomycetemcomitans. First the effects of LFchimera against planktonic and an 1-day old biofilm of the periodontopathic bacteria, A. actinomycetemcomitans ATCC 43718 were established. Then, the effects on biofilm formation and bacterial viability in the multispecies biofilm were determined by crystal violet staining and LIVE/DEAD BacLight Bacterial Viability kit, respectively. The results revealed that a significant reduction (P < 0.05) in biofilm formation occurred after 15 min exposure to 20 µM of LFchimera or CHX compared to control. In contrast, MH at concentration up to 100 µM did not inhibit biofilm formation. The ratio of live/dead bacteria in biofilm was also significantly lower after 15 min exposure to 20 µM of LFchimera compared to control and 20-50 µM of CHX and MH. Altogether, the results obtained indicate that LFchimera is able to inhibit in vitro subgingival biofilm formation and reduce viability of multispecies bacteria in biofilm better than CHX and MH.

  5. Inhibition of quorum-sensing-mediated biofilm formation in Cronobacter sakazakii strains.

    PubMed

    Singh, Niharika; Patil, Amrita; Prabhune, Asmita; Goel, Gunjan

    2016-09-01

    The present study investigated plant extracts for their anti-quorum-sensing (QS) potential to inhibit the biofilm formation in Cronobacter sakazakii strains. The bioassay based on loss of pigment production by Chromobacterium violaceum 026 and Agrobacterium tumefaciens NTL4(pZLR4) was used for initial screening of the extracts. Further, the effect of extracts on the inhibition of QS-mediated biofilm in C. sakazakii isolates was evaluated using standard crystal violet assay. The effect on biofilm texture was studied using SYTO9 staining and light and scanning electron microscopy. Among the tested extracts, Piper nigrum and Cinnamomum verum at 100 ppm resulted in 78 and 68 % reduction in the production of violacein as well as blue-green colour in both biosensor strains. A higher inhibitory activity (>50 %) on biofilm formation in C. sakazakii was observed for Pip. nigrum and Cin. verum, whereas the other extracts possessed moderate (25-50 %) and minimal (<25 %) inhibitory activities. Further, the fluorescent and scanning electron microscopic images indicated a major disruption in the architecture of biofilms of tested strains by Pip. nigrum. This study points to the possibility of using Pip. nigrum and Cin. verum as inhibitor of QS-mediated biofilm formation by C. sakazakii that could be further explored for novel bioactive molecules to limit the emerging infections of C. sakazakii.

  6. SaeRS Is Responsive to Cellular Respiratory Status and Regulates Fermentative Biofilm Formation in Staphylococcus aureus.

    PubMed

    Mashruwala, Ameya A; Gries, Casey M; Scherr, Tyler D; Kielian, Tammy; Boyd, Jeffrey M

    2017-08-01

    Biofilms are multicellular communities of microorganisms living as a quorum rather than as individual cells. The bacterial human pathogen Staphylococcus aureus uses oxygen as a terminal electron acceptor during respiration. Infected human tissues are hypoxic or anoxic. We recently reported that impaired respiration elicits a p rogrammed c ell l ysis (PCL) phenomenon in S. aureus leading to the release of cellular polymers that are utilized to form biofilms. PCL is dependent upon the AtlA murein hydrolase and is regulated, in part, by the SrrAB two-component regulatory system (TCRS). In the current study, we report that the SaeRS TCRS also governs fermentative biofilm formation by positively influencing AtlA activity. The SaeRS-modulated factor fibronectin-binding protein A (FnBPA) also contributed to the fermentative biofilm formation phenotype. SaeRS-dependent biofilm formation occurred in response to changes in cellular respiratory status. Genetic evidence presented suggests that a high cellular titer of phosphorylated SaeR is required for biofilm formation. Epistasis analyses found that SaeRS and SrrAB influence biofilm formation independently of one another. Analyses using a mouse model of orthopedic implant-associated biofilm formation found that both SaeRS and SrrAB govern host colonization. Of these two TCRSs, SrrAB was the dominant system driving biofilm formation in vivo We propose a model wherein impaired cellular respiration stimulates SaeRS via an as yet undefined signal molecule(s), resulting in increasing expression of AtlA and FnBPA and biofilm formation. Copyright © 2017 American Society for Microbiology.

  7. Screening of biofilm formation by beneficial vaginal lactobacilli and influence of culture media components.

    PubMed

    Terraf, M C Leccese; Juárez Tomás, M S; Nader-Macías, M E F; Silva, C

    2012-12-01

    To assess the ability of vaginal lactobacilli to form biofilm under different culture conditions and to determine the relationship between their growth and the capability of biofilm formation by selected strains. Fifteen Lactobacillus strains from human vagina were tested for biofilm formation by crystal violet staining. Only Lactobacillus rhamnosus Centro de Referencia para Lactobacilos Culture Collection (CRL) 1332, Lact. reuteri CRL 1324 and Lact. delbrueckii CRL 1510 were able to grow and form biofilm in culture media without Tween 80. However, Lact. gasseri CRL 1263 (a non-biofilm-forming strain) did not grow in these media. Scanning electron microscopy showed that Lact. rhamnosus CRL 1332 and Lact. reuteri CRL 1324 formed a highly structured biofilm, but only Lact. reuteri CRL 1324 showed a high amount of extracellular material in medium without Tween. Biofilm formation was significantly influenced by the strain, culture medium, inoculum concentration, microbial growth and chemical nature of the support used for the assay. The results allow the selection of biofilm-forming vaginal Lactobacillus strains and the conditions and factors that affect this phenomenon. © 2012 The Society for Applied Microbiology.

  8. Influence of isolate origin and presence of various genes on biofilm formation by Enterococcus faecium.

    PubMed

    Almohamad, Sam; Somarajan, Sudha R; Singh, Kavindra V; Nallapareddy, Sreedhar R; Murray, Barbara E

    2014-04-01

    Enterococcus faecium, a major cause of nosocomial infections, is often isolated from conditions where biofilm is considered to be important in the establishment of infections. We investigated biofilm formation among E. faecium isolates from diverse sources and found that the occurrence and amount of biofilm formation were significantly greater in clinical isolates than fecal isolates from community volunteers. We also found that the presence of the empfm (E. faecium pilus) operon was associated with the amount of biofilm formation. Furthermore, we analyzed the possible association between the distribution of 16 putative virulence genes and the occurrence of biofilm production. Even though the prevalence of these virulence genes was significantly higher in clinical isolates, we did not observe any correlation with the occurrence of biofilm formation. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  9. Characterisation of biofilm formation by a Streptococcus suis meningitis isolate.

    PubMed

    Grenier, Daniel; Grignon, Louis; Gottschalk, Marcelo

    2009-02-01

    Biofilm formation by a strain of Streptococcus suis serotype 2 isolated from a case of meningitis in pigs was characterised. Using a polystyrene microtitre plate assay, S. suis 95-8242 produced a dense biofilm when glucose, fructose or sucrose was used as the carbohydrate source, whereas no biofilm formed in the presence of lactose. Polysaccharide production by the biofilm-forming strain was demonstrated by the Congo red agar assay. Transmission electron microscopy revealed that bacterial cells were surrounded by a thick layer of polycationic ferritin-labelled material. S. suis 95-8242 was more resistant to both penicillin G and ampicillin in biofilms than in planktonic cultures on the basis of minimal inhibitory and minimal bactericidal concentrations.

  10. Different sensitivity levels to norspermidine on biofilm formation in clinical and commensal Staphylococcus epidermidis strains.

    PubMed

    Ramón-Peréz, Miriam L; Díaz-Cedillo, Francisco; Contreras-Rodríguez, Araceli; Betanzos-Cabrera, Gabriel; Peralta, Humberto; Rodríguez-Martínez, Sandra; Cancino-Diaz, Mario E; Jan-Roblero, Janet; Cancino Diaz, Juan C

    2015-02-01

    Biofilm formation on medical and surgical devices is the main virulence factor of Staphylococcus epidermidis. A recent study has shown that norspermidine inhibits and disassembles the biofilm in the wild-type Bacillus subtilis NCBI3610 strain. In this study, the effect of norspermidine on S. epidermidis biofilm formation of clinical or commensal strains was tested. Biofilm producing strains of S. epidermidis were isolated from healthy skin (HS; n = 3), healthy conjunctiva (HC; n = 9) and ocular infection (OI; n = 19). All strains were treated with different concentrations of norspermidine, spermidine, putrescine, and cadaverine (1, 10, 25, 50 and 100 μM), and the biofilm formation was tested on microtiter plate. Besides, cell-free supernatants of S. epidermidis growth at 4 h and 40 h were analyzed by gas chromatography coupled to mass spectrometry (GC-MS) to detect norspermidine. Results showed that norspermidine at 25 μM and 100 μM prevented the biofilm formation in 45.16% (14/31) and 16.13% (5/31), respectively; only in one isolate from OI, norspermidine did not have effect. Other polyamines as spermidine, putrescine and cadaverine did not have effect on the biofilm formation of the strains tested. Norspermidine was also capable to disassemble a biofilm already formed. Norspermidine was detected in the 40 h cell-free supernatant of S. epidermidis by GC-MS. Norspermidine inhibited the biofilm development of S. epidermidis on the surface of contact lens. In this work, it was demonstrated that S. epidermidis produces and releases norspermidine causing an inhibitory effect on biofilm formation. Moreover, this is the first time showing that clinical S. epidermidis strains have different sensitivity to norspermidine, which suggest that the composition and structure of the biofilms is varied. We propose that norspermidine could potentially be used in the pre-treating of medical and surgical devices to inhibit the biofilm formation. Copyright

  11. Lack of the Delta Subunit of RNA Polymerase Increases Virulence Related Traits of Streptococcus mutans

    PubMed Central

    Xue, Xiaoli; Sztajer, Helena; Buddruhs, Nora; Petersen, Jörn; Rohde, Manfred; Talay, Susanne R.; Wagner-Döbler, Irene

    2011-01-01

    The delta subunit of the RNA polymerase, RpoE, maintains the transcriptional specificity in Gram-positive bacteria. Lack of RpoE results in massive changes in the transcriptome of the human dental caries pathogen Streptococcus mutans. In this study, we analyzed traits of the ΔrpoE mutant which are important for biofilm formation and interaction with oral microorganisms and human cells and performed a global phenotypic analysis of its physiological functions. The ΔrpoE mutant showed higher self-aggregation compared to the wild type and coaggregated with other oral bacteria and Candida albicans. It formed a biofilm with a different matrix structure and an altered surface attachment. The amount of the cell surface antigens I/II SpaP and the glucosyltransferase GtfB was reduced. The ΔrpoE mutant displayed significantly stronger adhesion to human extracellular matrix components, especially to fibronectin, than the wild type. Its adhesion to human epithelial cells HEp-2 was reduced, probably due to the highly aggregated cell mass. The analysis of 1248 physiological traits using phenotype microarrays showed that the ΔrpoE mutant metabolized a wider spectrum of carbon sources than the wild type and had acquired resistance to antibiotics and inhibitory compounds with various modes of action. The reduced antigenicity, increased aggregation, adherence to fibronection, broader substrate spectrum and increased resistance to antibiotics of the ΔrpoE mutant reveal the physiological potential of S. mutans and show that some of its virulence related traits are increased. PMID:21625504

  12. Identification of Streptococcus sanguinis Genes Required for Biofilm Formation and Examination of Their Role in Endocarditis Virulence▿

    PubMed Central

    Ge, Xiuchun; Kitten, Todd; Chen, Zhenming; Lee, Sehmi P.; Munro, Cindy L.; Xu, Ping

    2008-01-01

    Streptococcus sanguinis is one of the pioneers in the bacterial colonization of teeth and is one of the most abundant species in the oral biofilm called dental plaque. S. sanguinis is also the most common viridans group streptococcal species implicated in infective endocarditis. To investigate the association of biofilm and endocarditis, we established a biofilm assay and examined biofilm formation with a signature-tagged mutagenesis library of S. sanguinis. Four genes that have not previously been associated with biofilm formation in any other bacterium, purB, purL, thrB, and pyrE, were putatively identified as contributing to in vitro biofilm formation in S. sanguinis. By examining 800 mutants for attenuation in the rabbit endocarditis model and for reduction in biofilm formation in vitro, we found some mutants that were both biofilm defective and attenuated for endocarditis. However, we also identified mutants with only reduced biofilm formation or with only attenuation in the endocarditis model. This result indicates that the ability to form biofilms in vitro is not associated with endocarditis virulence in vivo in S. sanguinis. PMID:18390999

  13. Identification of Streptococcus sanguinis genes required for biofilm formation and examination of their role in endocarditis virulence.

    PubMed

    Ge, Xiuchun; Kitten, Todd; Chen, Zhenming; Lee, Sehmi P; Munro, Cindy L; Xu, Ping

    2008-06-01

    Streptococcus sanguinis is one of the pioneers in the bacterial colonization of teeth and is one of the most abundant species in the oral biofilm called dental plaque. S. sanguinis is also the most common viridans group streptococcal species implicated in infective endocarditis. To investigate the association of biofilm and endocarditis, we established a biofilm assay and examined biofilm formation with a signature-tagged mutagenesis library of S. sanguinis. Four genes that have not previously been associated with biofilm formation in any other bacterium, purB, purL, thrB, and pyrE, were putatively identified as contributing to in vitro biofilm formation in S. sanguinis. By examining 800 mutants for attenuation in the rabbit endocarditis model and for reduction in biofilm formation in vitro, we found some mutants that were both biofilm defective and attenuated for endocarditis. However, we also identified mutants with only reduced biofilm formation or with only attenuation in the endocarditis model. This result indicates that the ability to form biofilms in vitro is not associated with endocarditis virulence in vivo in S. sanguinis.

  14. Helicobacter pylori Biofilm Formation and Its Potential Role in Pathogenesis.

    PubMed

    Hathroubi, Skander; Servetas, Stephanie L; Windham, Ian; Merrell, D Scott; Ottemann, Karen M

    2018-06-01

    Despite decades of effort, Helicobacter pylori infections remain difficult to treat. Over half of the world's population is infected by H. pylori , which is a major cause of duodenal and gastric ulcers as well as gastric cancer. During chronic infection, H. pylori localizes within the gastric mucosal layer, including deep within invaginations called glands; thanks to its impressive ability to survive despite the harsh acidic environment, it can persist for the host's lifetime. This ability to survive and persist in the stomach is associated with urease production, chemotactic motility, and the ability to adapt to the fluctuating environment. Additionally, biofilm formation has recently been suggested to play a role in colonization. Biofilms are surface-associated communities of bacteria that are embedded in a hydrated matrix of extracellular polymeric substances. Biofilms pose a substantial health risk and are key contributors to many chronic and recurrent infections. This link between biofilm-associated bacteria and chronic infections likely results from an increased tolerance to conventional antibiotic treatments as well as immune system action. The role of this biofilm mode in antimicrobial treatment failure and H. pylori survival has yet to be determined. Furthermore, relatively little is known about the H. pylori biofilm structure or the genes associated with this mode of growth. In this review, therefore, we aim to highlight recent findings concerning H. pylori biofilms and the molecular mechanism of their formation. Additionally, we discuss the potential roles of biofilms in the failure of antibiotic treatment and in infection recurrence. Copyright © 2018 American Society for Microbiology.

  15. Effects of Benzalkonium Chloride on Planktonic Growth and Biofilm Formation by Animal Bacterial Pathogens

    PubMed Central

    Ebrahimi, Azizollah; Hemati, Majid; Shabanpour, Ziba; Habibian Dehkordi, Saeed; Bahadoran, Shahab; Lotfalian, Sharareh; Khubani, Shahin

    2015-01-01

    Background: Resistance toward quaternary ammonium compounds (QACs) is widespread among a diverse range of microorganisms and is facilitated by several mechanisms such as biofilm formation. Objectives: In this study, the effects of benzalkonium chloride on planktonic growth and biofilm formation by some field isolates of animal bacterial pathogens were investigated. Materials and Methods: Forty clinical isolates of Escherichia coli, Salmonella serotypes, Staphylococcus aureus and Streptococcus agalactiae (10 isolates of each) were examined for effects of benzalkonium chloride on biofilm formation and planktonic growth using microtiter plates. For all the examined strains in the presence of benzalkonium chloride, biofilm development and planktonic growth were affected at the same concentrations of disinfectant. Results: The means of strains growth increase after the minimal inhibitory concentration (MIC) were significant in all the bacteria (except for E. coli in 1/32 and S. agalactiae in of 1/8 MIC). Biofilm formation increased with decrease of antiseptics concentration; a significant increase was found in all the samples. The most turbidity related to S. aureus and the least to Salmonella. Conclusions: Bacterial resistance against quaternary ammonium compounds is increasing which can increase the bacterial biofilm formation. PMID:25793094

  16. Bile Salt-induced Biofilm Formation in Enteric Pathogens: Techniques for Identification and Quantification.

    PubMed

    Nickerson, Kourtney P; Faherty, Christina S

    2018-05-06

    Biofilm formation is a dynamic, multistage process that occurs in bacteria under harsh environmental conditions or times of stress. For enteric pathogens, a significant stress response is induced during gastrointestinal transit and upon bile exposure, a normal component of human digestion. To overcome the bactericidal effects of bile, many enteric pathogens form a biofilm hypothesized to permit survival when transiting through the small intestine. Here we present methodologies to define biofilm formation through solid-phase adherence assays as well as extracellular polymeric substance (EPS) matrix detection and visualization. Furthermore, biofilm dispersion assessment is presented to mimic the analysis of events triggering release of bacteria during the infection process. Crystal violet staining is used to detect adherent bacteria in a high-throughput 96-well plate adherence assay. EPS production assessment is determined by two assays, namely microscopy staining of the EPS matrix and semi-quantitative analysis with a fluorescently-conjugated polysaccharide binding lectin. Finally, biofilm dispersion is measured through colony counts and plating. Positive data from multiple assays support the characterization of biofilms and can be utilized to identify bile salt-induced biofilm formation in other bacterial strains.

  17. Insights into Clostridium phytofermentans biofilm formation: aggregation, microcolony development and the role of extracellular DNA.

    PubMed

    Zuroff, Trevor R; Gu, Weimin; Fore, Rachel L; Leschine, Susan B; Curtis, Wayne R

    2014-06-01

    Biofilm formation is a critical component to the lifestyle of many naturally occurring cellulose-degrading microbes. In this work, cellular aggregation and biofilm formation of Clostridium phytofermentans, a cellulolytic anaerobic bacterium, was investigated using a combination of microscopy and analytical techniques. Aggregates included thread-like linkages and a DNA/protein-rich extracellular matrix when grown on soluble cellobiose. Similar dense biofilms formed on the surface of the model cellulosic substrate Whatman no. 1 filter paper. Following initially dispersed attachment, microcolonies of ~500 µm diameter formed on the filter paper after 6 days. Enzymic treatment of both the biofilm and cellular aggregates with DNase and proteinase resulted in significant loss of rigidity, pointing to the key role of extracellular DNA and proteins in the biofilm structure. A high-throughput biofilm assay was adapted for studying potential regulators of biofilm formation. Various media manipulations were shown to greatly impact biofilm formation, including repression in the presence of glucose but not the β(1→4)-linked disaccharide cellobiose, implicating a balance of hydrolytic activity and assimilation to maintain biofilm integrity. Using the microtitre plate biofilm assay, DNase and proteinase dispersed ~60 and 30 % of mature biofilms, respectively, whilst RNase had no impact. This work suggests that Clostridium phytofermentans has evolved a DNA/protein-rich biofilm matrix complementing its cellulolytic nature. These insights add to our current understanding of natural ecosystems as well as strategies for efficient bioprocess design. © 2014 The Authors.

  18. A Bacillus subtilis Sensor Kinase Involved in Triggering Biofilm Formation on the Roots of Tomato Plants

    PubMed Central

    Chen, Yun; Cao, Shugeng; Chai, Yunrong; Clardy, Jon; Kolter, Roberto; Guo, Jian-hua; Losick, Richard

    2012-01-01

    SUMMARY The soil bacterium Bacillus subtilis is widely used in agriculture as a biocontrol agent able to protect plants from a variety of pathogens. Protection is thought to involve the formation of bacterial communities - biofilms - on the roots of the plants. Here we used confocal microscopy to visualize biofilms on the surface of the roots of tomato seedlings and demonstrated that biofilm formation requires genes governing the production of the extracellular matrix that holds cells together. We further show that biofilm formation was dependent on the sensor histidine kinase KinD and in particular on an extracellular CACHE domain implicated in small molecule sensing. Finally, we report that exudates of tomato roots strongly stimulated biofilm formation ex planta and that an abundant small molecule in the exudates, l-malic acid, was able to stimulate biofilm formation at high concentrations in a manner that depended on the KinD CACHE domain. We propose that small signaling molecules released by the roots of tomato plants are directly or indirectly recognized by KinD, triggering biofilm formation. PMID:22716461

  19. Antibacterial and anti-adherence effects of a plant extract mixture (PEM) and its individual constituent extracts (Psidium sp., Mangifera sp., and Mentha sp.) on single- and dual-species biofilms.

    PubMed

    Shafiei, Zaleha; Haji Abdul Rahim, Zubaidah; Philip, Koshy; Thurairajah, Nalina

    2016-01-01

    Plant extracts mixture (PEM) and its individual constituent plant extracts( Psidium sp., Mangifera sp., Mentha sp.) are known to have an anti-adhering effect towards oral bacteria in the single-species biofilm. To date, the adhering ability of the early and late plaque colonisers ( Streptococcus sanguinis and Streptococcus mutans ) to PEM-treated experimental pellicle have not been investigated in dual-species biofilms. Fresh leaves of these plants were used in the preparation of the respective aqueous extract decoctions. The minimum inhibitory concentration (MIC) of the extracts towards S. sanguinis ATCC BAA-1455 and S. mutans ATCC 25175 was determined using a two-fold serial microdilution method. The sum of fractional inhibitory concentration (ΣFIC) index of PEM and its constituent plant extracts was calculated using the MIC values of the plants. The minimum bactericidal concentration (MBC) of the plant extracts was also determined. The anti-adherence effect of the plant extracts (individually and mixed) was carried out by developing simulated S. sanguinis and S. mutans respectively in single- and dual-species of biofilms in the Nordini's Artificial Mouth (NAM) model system in which the experimental pellicle was pretreated with the plant extract before bacterial inoculation. The bacterial population in the respective biofilms was quantified using ten-fold serial dilutions method and expressed as colony forming unit per ml (CFU/ml). The bacterial population was also viewed using Scanning Electron Microscope (SEM). All experiments were done in triplicate. The PEM compared with its respective constituent plants showed the lowest MIC towards S. sanguinis (3.81 mg/ml) and S. mutans (1.91 mg/ml) and exhibited a synergistic effect. The Psidium sp. (15.24 mg/ml) and, PEM and Psidium sp. (30.48 mg/ml) showed the lowest MBC towards S. sanguinis and S. mutans respectively. The anti-adherence effect of the PEM and its respective constituent plants (except Psidium sp.) was

  20. Antibacterial and anti-adherence effects of a plant extract mixture (PEM) and its individual constituent extracts (Psidium sp., Mangifera sp., and Mentha sp.) on single- and dual-species biofilms

    PubMed Central

    Shafiei, Zaleha; Haji Abdul Rahim, Zubaidah; Thurairajah, Nalina

    2016-01-01

    Background Plant extracts mixture (PEM) and its individual constituent plant extracts(Psidium sp., Mangifera sp., Mentha sp.) are known to have an anti-adhering effect towards oral bacteria in the single-species biofilm. To date, the adhering ability of the early and late plaque colonisers (Streptococcus sanguinis and Streptococcus mutans) to PEM-treated experimental pellicle have not been investigated in dual-species biofilms. Methods Fresh leaves of these plants were used in the preparation of the respective aqueous extract decoctions. The minimum inhibitory concentration (MIC) of the extracts towards S. sanguinis ATCC BAA-1455 and S. mutans ATCC 25175 was determined using a two-fold serial microdilution method. The sum of fractional inhibitory concentration (ΣFIC) index of PEM and its constituent plant extracts was calculated using the MIC values of the plants. The minimum bactericidal concentration (MBC) of the plant extracts was also determined. The anti-adherence effect of the plant extracts (individually and mixed) was carried out by developing simulated S. sanguinis and S. mutans respectively in single- and dual-species of biofilms in the Nordini’s Artificial Mouth (NAM) model system in which the experimental pellicle was pretreated with the plant extract before bacterial inoculation. The bacterial population in the respective biofilms was quantified using ten-fold serial dilutions method and expressed as colony forming unit per ml (CFU/ml). The bacterial population was also viewed using Scanning Electron Microscope (SEM). All experiments were done in triplicate. Results The PEM compared with its respective constituent plants showed the lowest MIC towards S. sanguinis (3.81 mg/ml) and S. mutans (1.91 mg/ml) and exhibited a synergistic effect. The Psidium sp. (15.24 mg/ml) and, PEM and Psidium sp. (30.48 mg/ml) showed the lowest MBC towards S. sanguinis and S. mutans respectively. The anti-adherence effect of the PEM and its respective constituent plants

  1. Disinfection byproduct formation from chlorination of pure bacterial cells and pipeline biofilms.

    PubMed

    Wang, Jun-Jian; Liu, Xin; Ng, Tsz Wai; Xiao, Jie-Wen; Chow, Alex T; Wong, Po Keung

    2013-05-15

    Disinfection byproduct (DBP) formation is commonly attributed to the reaction between natural organic matters and disinfectants, yet few have considered the contribution from disinfecting bacterial materials - the essential process of water disinfection. Here, we explored the DBP formation from chlorination and chloramination of Escherichia coli and found that most selected DBPs were detectable, including trihalomethanes, haloacetonitriles, chloral hydrate, chloropicrin, and 1,1,1-trichloro-2-propanone. A positive correlation (P = 0.08-0.09) between DBP formation and the log reduction of E. coli implied that breaking down of bacterial cells released precursors for DBP formation. As Pseudomonas aeruginosa is a dominant bacterial species in pipeline biofilms, the DBP formation potentials (DBPFPs) from its planktonic cells and biofilms were characterized. Planktonic cells formed 7-11 times greater trihalomethanes per carbon of those from biofilms but significantly lower (P < 0.05) chloral hydrate, highlighting the bacterial phenotype's impact on the bacteria-derived DBPFP. Pipe material appeared to affect the DBPFP of bacteria, with 4-28% lower bromine incorporation factor for biofilms on polyvinyl chloride compared to that on galvanized zinc. This study revealed both the in situ disinfection of bacterial planktonic cells in source water and ex situ reaction between biofilms and residual chlorine in pipeline networks as hitherto unknown DBP sources in drinking water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Effects of Material Properties on Bacterial Adhesion and Biofilm Formation.

    PubMed

    Song, F; Koo, H; Ren, D

    2015-08-01

    Adhesion of microbes, such as bacteria and fungi, to surfaces and the subsequent formation of biofilms cause multidrug-tolerant infections in humans and fouling of medical devices. To address these challenges, it is important to understand how material properties affect microbe-surface interactions and engineer better nonfouling materials. Here we review the recent progresses in this field and discuss the main challenges and opportunities. In particular, we focus on bacterial biofilms and review the effects of surface energy, charge, topography, and stiffness of substratum material on bacterial adhesion. We summarize how these surface properties influence oral biofilm formation, and we discuss the important findings from nondental systems that have potential applications in dental medicine. © International & American Associations for Dental Research 2015.

  3. Novel Multiscale Modeling Tool Applied to Pseudomonas aeruginosa Biofilm Formation

    PubMed Central

    Biggs, Matthew B.; Papin, Jason A.

    2013-01-01

    Multiscale modeling is used to represent biological systems with increasing frequency and success. Multiscale models are often hybrids of different modeling frameworks and programming languages. We present the MATLAB-NetLogo extension (MatNet) as a novel tool for multiscale modeling. We demonstrate the utility of the tool with a multiscale model of Pseudomonas aeruginosa biofilm formation that incorporates both an agent-based model (ABM) and constraint-based metabolic modeling. The hybrid model correctly recapitulates oxygen-limited biofilm metabolic activity and predicts increased growth rate via anaerobic respiration with the addition of nitrate to the growth media. In addition, a genome-wide survey of metabolic mutants and biofilm formation exemplifies the powerful analyses that are enabled by this computational modeling tool. PMID:24147108

  4. Novel multiscale modeling tool applied to Pseudomonas aeruginosa biofilm formation.

    PubMed

    Biggs, Matthew B; Papin, Jason A

    2013-01-01

    Multiscale modeling is used to represent biological systems with increasing frequency and success. Multiscale models are often hybrids of different modeling frameworks and programming languages. We present the MATLAB-NetLogo extension (MatNet) as a novel tool for multiscale modeling. We demonstrate the utility of the tool with a multiscale model of Pseudomonas aeruginosa biofilm formation that incorporates both an agent-based model (ABM) and constraint-based metabolic modeling. The hybrid model correctly recapitulates oxygen-limited biofilm metabolic activity and predicts increased growth rate via anaerobic respiration with the addition of nitrate to the growth media. In addition, a genome-wide survey of metabolic mutants and biofilm formation exemplifies the powerful analyses that are enabled by this computational modeling tool.

  5. Biofilm formation by Salmonella spp. in catfish mucus extract under industrial conditions.

    PubMed

    Dhowlaghar, Nitin; De Abrew Abeysundara, Piumi; Nannapaneni, Ramakrishna; Schilling, Mark W; Chang, Sam; Cheng, Wen-Hsing; Sharma, Chander S

    2018-04-01

    The objective of this study was to determine the effect of strain and temperature on the growth and biofilm formation of Salmonella spp. in high and low concentrations of catfish mucus extract on different food-contact surfaces at 22 °C and 10 °C. The second objective of this study was to evaluate the efficacy of disinfectants at recommended concentrations and contact times for removing Salmonella biofilms cells on a stainless steel surface containing catfish mucus extract. Growth and biofilm formation of all Salmonella strains increased with higher concentrations of catfish mucus extract at both 10 °C and 22 °C. In 15 μg/ml of catfish mucus extract inoculated with 3 log CFU/ml, the biofilm levels of Salmonella on stainless steel surface reached to 3.5 log CFU/cm 2 at 10 °C or 5.5 log CFU/cm 2 at 22 °C in 7 days. In 375 μg/ml of catfish mucus extract inoculated with 3 log CFU/ml, the biofilm levels of Salmonella on the stainless steel surface reached 4.5 log CFU/cm 2 at 10 °C and 6.5 log CFU/cm 2 at 22 °C in 7 days. No differences were observed between Salmonella strains tested for biofilm formation in catfish mucus extract on the stainless steel surface. The biofilm formation by Salmonella Blockley (7175) in catfish mucus extract was less (P < 0.05) on buna-N rubber when compared to stainless steel, polyethylene and polyurethane surfaces. Salmonella biofilm cells were not detectable on the stainless steel surface after treatment with a mixture of disinfectants but were still present when single compound disinfectants were used. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Using micro-patterned surfaces to inhibit settlement and biofilm formation by Bacillus subtilis.

    PubMed

    Chang, Siyuan; Chen, Xiaodong; Jiang, Shuo; Chen, Jinchun; Shi, Lin

    2017-07-01

    Biofilm is a biological complex caused by bacteria attachment to the substrates and their subsequent reproduction and secretion. This phenomenon reduces heat transfer efficiency and causes significant losses in treated sewage heat-recovering systems. This paper describes a physical approach to inhibit bacteria settlement and biofilm formation by Bacillus subtilis, which is the dominant species in treated sewage. Here, micro-patterned surfaces with different characteristics (stripe and cube) and dimensions (1-100 μm) were fabricated as surfaces of interest. Model sewage was prepared and a rotating coupon device was used to form the biofilms. Precision balance, scanning electron microscopy, and confocal laser scanning microscopy (CLSM) were employed to investigate the inhibitory effects and the mechanisms of the biofilm-surface interactions. The results have shown that surfaces with small pattern sizes (1 and 2 μm) all reduced biofilm formation significantly. Interestingly, the CLSM images showed that the surfaces do not play a role in "killing" the bacteria. These findings are useful for future development of new process surfaces on which bacteria settlement and biofilm formation can be inhibited or minimized.

  7. Cross-regulation by CrcZ RNA controls anoxic biofilm formation in Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Pusic, Petra; Tata, Muralidhar; Wolfinger, Michael T.; Sonnleitner, Elisabeth; Häussler, Susanne; Bläsi, Udo

    2016-12-01

    Pseudomonas aeruginosa (PA) can thrive in anaerobic biofilms in the lungs of cystic fibrosis (CF) patients. Here, we show that CrcZ is the most abundant PA14 RNA bound to the global regulator Hfq in anoxic biofilms grown in cystic fibrosis sputum medium. Hfq was crucial for anoxic biofilm formation. This observation complied with an RNAseq based transcriptome analysis and follow up studies that implicated Hfq in regulation of a central step preceding denitrification. CrcZ is known to act as a decoy that sequesters Hfq during relief of carbon catabolite repression, which in turn alleviates Hfq-mediated translational repression of catabolic genes. We therefore inferred that CrcZ indirectly impacts on biofilm formation by competing for Hfq. This hypothesis was supported by the findings that over-production of CrcZ mirrored the biofilm phenotype of the hfq deletion mutant, and that deletion of the crcZ gene augmented biofilm formation. To our knowledge, this is the first example where competition for Hfq by CrcZ cross-regulates an Hfq-dependent physiological process unrelated to carbon metabolism.

  8. Potential effect of cationic liposomes on interactions with oral bacterial cells and biofilms.

    PubMed

    Sugano, Marika; Morisaki, Hirobumi; Negishi, Yoichi; Endo-Takahashi, Yoko; Kuwata, Hirotaka; Miyazaki, Takashi; Yamamoto, Matsuo

    2016-01-01

    Although oral infectious diseases have been attributed to bacteria, drug treatments remain ineffective because bacteria and their products exist as biofilms. Cationic liposomes have been suggested to electrostatically interact with the negative charge on the bacterial surface, thereby improving the effects of conventional drug therapies. However, the electrostatic interaction between oral bacteria and cationic liposomes has not yet been examined in detail. The aim of the present study was to examine the behavior of cationic liposomes and Streptococcus mutans in planktonic cells and biofilms. Liposomes with or without cationic lipid were prepared using a reverse-phase evaporation method. The zeta potentials of conventional liposomes (without cationic lipid) and cationic liposomes were -13 and 8 mV, respectively, and both had a mean particle size of approximately 180 nm. We first assessed the interaction between liposomes and planktonic bacterial cells with a flow cytometer. We then used a surface plasmon resonance method to examine the binding of liposomes to biofilms. We confirmed the binding behavior of liposomes with biofilms using confocal laser scanning microscopy. The interactions between cationic liposomes and S. mutans cells and biofilms were stronger than those of conventional liposomes. Microscopic observations revealed that many cationic liposomes interacted with the bacterial mass and penetrated the deep layers of biofilms. In this study, we demonstrated that cationic liposomes had higher affinity not only to oral bacterial cells, but also biofilms than conventional liposomes. This electrostatic interaction may be useful as a potential drug delivery system to biofilms.

  9. Effect of proteases on biofilm formation of the plastic-degrading actinomycete Rhodococcus ruber C208.

    PubMed

    Gilan, Irit; Sivan, Alex

    2013-05-01

    In most habitats, the vast majority of microbial populations form biofilms on solid surfaces, whether natural or artificial. These biofilms provide either increased physical support and/or a source of nutrients. Further modifications and development of biofilms are regulated by signal molecules secreted by the cells. Because synthetic polymers are not soluble in aqueous solutions, biofilm-producing bacteria may biodegrade such materials more efficiently than planktonic strains. Bacterial biofilms comprise bacterial cells embedded in self-secreted extracellular polymeric substances (EPS). Revealing the roles of each component of the EPS will enable further insight into biofilm development and the EPS structure-function relationship. A strain of Rhodococcus ruber (C208) displayed high hydrophobicity and formed a dense biofilm on the surface of polyethylene films while utilizing the polyolefin as carbon and energy sources. This study investigated the effects of several proteases on C208 biofilm formation and stability. The proteolysis of C208 biofilm gave conflicting results. Trypsin significantly reduced biofilm formation, and the resultant biofilm appeared monolayered. In contrast, proteinase K enhanced biofilm formation, which was robust and multilayered. Presumably, proteinase K degraded self-secreted proteases or quorum-sensing peptides, which may be involved in biofilm detachment processes, leading to a multilayered, nondispersed biofilm. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  10. Ascorbic acid augments colony spreading by reducing biofilm formation of methicillin-resistant Staphylococcus aureus.

    PubMed

    Ali Mirani, Zulfiqar; Khan, Muhammad Naseem; Siddiqui, Anila; Khan, Fouzia; Aziz, Mubashir; Naz, Shagufta; Ahmed, Ayaz; Khan, Seema Ismat

    2018-02-01

    Staphylococcus aureus is a Gram-positive pathogen, well known for its resistance and versatile lifestyle. Under unfavourable conditions, it adapts biofilm mode of growth. For staphylococcal biofilm formation, production of extracellular polymeric substances (EPS) is a pre-requisite, which is regulated by ica operon-encoded enzymes. This study was designed to know the impact of ascorbic acid on biofilm formation and colony spreading processes of S. aureus and MRSA. The isolates of methicillin-resistant S. aureus (MRSA) used in present study, were recovered from different food samples. Various selective and differential media were used for identification and confirmation of S. aureus . Agar dilution method was used for determination of oxacillin and ascorbic acid resistance level. MRSA isolates were re-confirmed by E-test and by amplification of mecA gene. Tube methods and Congo-Red agar were used to study biofilm formation processes. Gene expression studies were carried on real-time reverse transcriptase-polymerase chain reaction (RT-PCR). The results revealed the presence of mecA gene belonging to SCC mecA type IV along with agr type II in the isolates. In vitro studies showed the sub-inhibitory concentration of oxacillin induced biofilm production. However, addition of sub-inhibitory dose of ascorbic acid was found to inhibit EPS production, biofilm formation and augment colony spreading on soft agar plates. The inhibition of biofilm formation and augmentation of colony spreading observed with ascorbic acid alone or in combination with oxacillin. Moreover, gene expression studies showed that ascorbic acid increases agr expression and decreases icaA gene expression. The present study concluded that ascorbic acid inhibits biofilm formation, promotes colony spreading and increases agr gene expression in MRSA.

  11. Mathematical modelling of CRISPR-Cas system effects on biofilm formation.

    PubMed

    Ali, Qasim; Wahl, Lindi M

    2017-08-01

    Clustered regularly interspaced short palindromic repeats (CRISPR), linked with CRISPR associated (Cas) genes, can confer adaptive immunity to bacteria, against bacteriophage infections. Thus from a therapeutic standpoint, CRISPR immunity increases biofilm resistance to phage therapy. Recently, however, CRISPR-Cas genes have been implicated in reducing biofilm formation in lysogenized cells. Thus CRISPR immunity can have complex effects on phage-host-lysogen interactions, particularly in a biofilm. In this contribution, we develop and analyse a series of dynamical systems to elucidate and disentangle these interactions. Two competition models are used to study the effects of lysogens (first model) and CRISPR-immune bacteria (second model) in the biofilm. In the third model, the effect of delivering lysogens to a CRISPR-immune biofilm is investigated. Using standard analyses of equilibria, stability and bifurcations, our models predict that lysogens may be able to displace CRISPR-immune bacteria in a biofilm, and thus suggest strategies to eliminate phage-resistant biofilms.

  12. Treatment of Oral Biofilms by a D-Enantiomeric Peptide.

    PubMed

    Zhang, Tian; Wang, Zhejun; Hancock, Robert E W; de la Fuente-Núñez, César; Haapasalo, Markus

    2016-01-01

    Almost all dental diseases are caused by biofilms that consist of multispecies communities. DJK-5, which is a short D-enantiomeric, protease-resistant peptide with broad-spectrum anti-biofilm activity, was tested for its effect on oral multispecies biofilms. Peptide DJK-5 at 10 μg/mL effectively prevented the growth of these microbes in culture media in a time-dependent manner. In addition to the prevention of growth, peptide DJK-5 completely killed both Streptococcus mutans and Enterococcus faecalis suspended from biofilms after 30 minutes of incubation in liquid culture media. DJK-5 also led to the effective killing of microbes in plaque biofilm. The proportion of bacterial cells killed by 10 μg/mL of DJK-5 was similar after 1 and 3 days, both exceeding 85%. DJK-5 was able to significantly prevent biofilm formation over 3 days (P = 0.000). After 72 hours of exposure, DJK-5 significantly reduced and almost completely prevented plaque biofilm production by more than 90% of biovolume compared to untreated controls (P = 0.000). The proportion of dead biofilm bacteria at the 10 μg/mL DJK-5 concentration was similar for 1- and 3-day-old biofilms, whereby >86% of the bacteria were killed. DJK-5 was also able to kill >79% and >85% of bacteria, respectively, after one-time and three brief treatments of 3-day-old biofilms. The combination of DJK-5 and chlorhexidine showed the best bacterial killing among all treatments, with ~83% and >88% of bacterial cells killed after 1 and 3 minutes, respectively. No significant difference was found in the percentage of biofilm killing amongst three donor plaque samples after DJK-5 treatment. In particular, DJK-5 showed strong performance in inhibiting biofilm development and eradicating pre-formed oral biofilms compared to L-enantiomeric peptide 1018. DJK-5 was very effective against oral biofilms when used alone or combined with chlorhexidine, and may be a promising agent for use in oral anti-biofilm strategies in the future.

  13. Inhibition of Pseudomonas aeruginosa biofilm formation by 2,2'-bipyridyl, lipoic, kojic and picolinic acids.

    PubMed

    Çevik, Kübra; Ulusoy, Seyhan

    2015-08-01

    The inhibitory effects of iron chelators, and FeCl3 chelation on biofilm formation and swarming motility were investigated against an opportunistic human pathogen Pseudomonas aeruginosa. The inhibitory activity of 2,2'-bipyridyl, lipoic acid, kojic acid and picolinic acid on biofilm formation of P. aeruginosa strain PAO1 and three clinical isolates (P. aeruginosa PAK01, P. aeruginosa PAK02 and P. aeruginosa PAK03) were investigated, based on crystal violet assay, and swarming motility test. The kojic, lipoic and picolinic acid inhibited biofilm formation by 5-33% in all tested P. aeruginosa isolates. When chelated iron was added, biofilm inhibition rates were determined to be 39-57%. Among the tested chelators against P. aeruginosa, lipoic acid (84%) and kojic acid (68%) presented the highest inhibition of swarming motility. This is the first study to report the inhibitory effect of lipoic acid on biofilm formation and swarming motility of P. aeruginosa. It is considered that lipoic and picolinic acids can serve as alternatives for the treatment of the P. aeruginosa infections by inhibiting biofilm formation.

  14. Susceptibility of Porphyromonas gingivalis and Streptococcus mutans to Antibacterial Effect from Mammea americana

    PubMed Central

    Herrera Herrera, Alejandra; Franco Ospina, Luis; Fang, Luis; Díaz Caballero, Antonio

    2014-01-01

    The development of periodontal disease and dental caries is influenced by several factors, such as microorganisms of bacterial biofilm or commensal bacteria in the mouth. These microorganisms trigger inflammatory and immune responses in the host. Currently, medicinal plants are treatment options for these oral diseases. Mammea americana extracts have reported antimicrobial effects against several microorganisms. Nevertheless, this effect is unknown against oral bacteria. Therefore, the aim of this study was to evaluate the antibacterial effect of M. americana extract against Porphyromonas gingivalis and Streptococcus mutans. For this, an experimental study was conducted. Ethanolic extract was obtained from seeds of M. americana (one oil phase and one ethanolic phase). The strains of Porphyromonas gingivalis ATCC 33277 and Streptococcus mutans ATCC 25175 were exposed to this extract to evaluate its antibacterial effect. Antibacterial activity was observed with the two phases of M. americana extract on P. gingivalis and S. mutans with lower MICs (minimum inhibitory concentration). Also, bactericidal and bacteriostatic activity was detected against S. mutans, depending on the concentration of the extract, while on M. americana extract presented only bacteriostatic activity against P. gingivalis. These findings provide important and promising information allowing for further exploration in the future. PMID:24864137

  15. Effect of the luxS gene on biofilm formation and antibiotic resistance by Salmonella serovar Dublin.

    PubMed

    Ju, Xiangyu; Li, Junjie; Zhu, Mengjiao; Lu, Zhaoxin; Lv, Fengxia; Zhu, Xiaoyu; Bie, Xiaomei

    2018-05-01

    Biofilms are communities of bacterial cells that serve to protect them from external adverse influences and enhance bacterial resistance to antibiotics and sanitizers. Here, we studied the regulatory effects of glucose and sodium chloride on biofilm formation in Salmonella serovar Dublin (S. Dublin). To analyze expression levels of the quorum sensing gene luxS, we created a luxS knockout mutant. Also, antimicrobial resistance, hydrophobicity and autoinducer-2 (AI-2) activity of both the wild-type (WT) and the mutant strain were investigated. Our results revealed that glucose was not essential for S. Dublin biofilm formation but had an inhibitory effect on biofilm formation when the concentration was over 0.1%. NaCl was found to be indispensable in forming biofilm, and it also exerted an inhibitory effect at high concentrations (>1.0%). Both the WT and the mutant strains displayed significant MIC growth after biofilm formation. An increase of up to 32,768 times in the resistance of S. Dublin in biofilm phonotype against antibiotic (ampicillin) compared to its planktonic phonotype was observed. However, S. Dublin luxS knockout mutant only showed slight differences compared to the WT strain in the antimicrobial tests although it displayed better biofilm-forming capacity than the WT strain. The mutant strain also exhibited higher hydrophobicity than the WT strain, which was a feature related to biofilm formation. The production of the quorum sensing autoinducer-2 (AI-2) was significantly lower in the mutant strain than in the WT strain since the LuxS enzyme, encoded by the luxS gene, plays an essential role in AI-2 synthesis. However, the limited biofilm-forming ability in the WT strain indicated AI-2 was not directly related to S. Dublin biofilm formation. Furthermore, gene expression analysis of the WT and mutant strains revealed upregulation of genes related to biofilm stress response and enhanced resistance in the luxS mutant strain, which may provide evidence for

  16. Biofilm formation in Haemophilus parasuis: relationship with antibiotic resistance, serotype and genetic typing.

    PubMed

    Zhang, Jianmin; Xu, Chenggang; Shen, Haiyan; Li, Jingyi; Guo, Lili; Cao, Guojie; Feng, Saixiang; Liao, Ming

    2014-10-01

    Biofilms are surface-associated microbial communities, which are encased in self-synthesized extracellular environment. Biofilm formation may trigger drug resistance and inflammation, resulting in persistent infections. Haemophilus parasuis is the etiological agent of a systemic disease, Glässer's disease, characterized by fibrinous polyserositis, arthritis and meningitis in pigs. The purpose of this study was to examine the correlation between biofilm and antibiotic resistance among the clinical isolates of H. parasuis. In the present study, we tested biofilm-forming ability of 110 H. parasuis isolates from various farms using polystyrene microtiter plate assays. Seventy-three isolates of H. parasuis (66.4%) showed biofilm formation and most of them performed weak biofilm-forming ability (38/73). All isolates were tested for antimicrobial susceptibility to 18 antimicrobial agents by the broth microdilution method. H. parasuis isolates showed very high resistance (>90%) to sulfanilamide, nalidixic acid, and trimethoprim. Resistance to eight antibiotics such as penicillin (41.1% vs 8.1%), ampicillin (31.5% vs 8.1%), amoxicillin (28.8% vs 5.4%), gentamicin (46.6% vs 24.3%), cefazolin (19.2% vs 2.7%), doxycycline (19.2% vs 8.1%), cefotaxime (11% vs 2.7%), and cefaclor (13.7% vs 5.4%) was comparatively higher among biofilm producers than non-biofilm producers. Pulsed-field gel electrophoresis (PFGE) analyses could distinguish various isolates. Our data indicated that H. parasuis field isolates were able to form biofilms in vitro. In addition, biofilm positive strains had positive correlation with resistance to β-lactams antibiotics. Thus, biofilm formation may play important roles during H. parasuis infections. Copyright © 2014. Published by Elsevier Ltd.

  17. Acinetobacter baumannii Biofilm Formation in Human Serum and Disruption by Gallium

    PubMed Central

    Runci, Federica; Bonchi, Carlo; Frangipani, Emanuela; Visaggio, Daniela

    2016-01-01

    ABSTRACT Biofilm-associated infections caused by Acinetobacter baumannii are extremely recalcitrant to antibiotic treatment. We report that A. baumannii develops a mature biofilm when grown in complement-free human serum (HS). We demonstrate that 16 μM gallium nitrate (GaN) drastically reduces A. baumannii growth and biofilm formation in HS, whereas 64 μM GaN causes massive disruption of preformed A. baumannii biofilm. These findings pave the way to the repurposing of GaN as an antibiofilm agent for A. baumannii. PMID:27799219

  18. Controlling biofilm formation, prophage excision and cell death by rewiring global regulator H‐NS of Escherichia coli

    PubMed Central

    Hong, Seok Hoon; Wang, Xiaoxue; Wood, Thomas K.

    2010-01-01

    Summary The global regulator H‐NS of Escherichia coli controls genes related to stress response, biofilm formation and virulence by recognizing curved DNA and by silencing acquired genes. Here, we rewired H‐NS to control biofilm formation using protein engineering; H‐NS variant K57N was obtained that reduces biofilm formation 10‐fold compared with wild‐type H‐NS (wild‐type H‐NS increases biofilm formation whereas H‐NS K57N reduces it). Whole‐transcriptome analysis revealed that H‐NS K57N represses biofilm formation through its interaction with the nucleoid‐associated proteins Cnu and StpA and in the absence of these proteins, H‐NS K57N was unable to reduce biofilm formation. Significantly, H‐NS K57N enhanced the excision of defective prophage Rac while wild‐type H‐NS represses excision, and H‐NS controlled only Rac excision among the nine resident E. coli K‐12 prophages. Rac prophage excision not only led to the change in biofilm formation but also resulted in cell lysis through the expression of toxin HokD. Hence, the H‐NS regulatory system may be evolved through a single‐amino‐acid change in its N‐terminal oligomerization domain to control biofilm formation, prophage excision and apoptosis. PMID:21255333

  19. Influence of glucose concentrations on biofilm formation, motility, exoprotease production, and quorum sensing in Aeromonas hydrophila.

    PubMed

    Jahid, Iqbal Kabir; Lee, Na-Young; Kim, Anna; Ha, Sang-Do

    2013-02-01

    Aeromonas hydrophila recently has received increased attention because it is opportunistic and a primary human pathogen. A. hydrophila biofilm formation and its control are a major concern for food safety because biofilms are related to virulence. Therefore, we investigated biofilm formation, motility inhibition, quorum sensing, and exoprotease production of this opportunistic pathogen in response to various glucose concentrations from 0.05 to 2.5% (wt/vol). More than 0.05% glucose significantly impaired (P < 0.05) quorum sensing, biofilm formation, protease production, and swarming and swimming motility, whereas bacteria treated with 0.05% glucose had activity similar to that of the control (0% glucose). A stage shift biofilm assay revealed that the addition of glucose (2.5%) inhibited initial biofilm formation but not later stages. However, addition of quorum sensing molecules N-3-butanoyl-DL-homoserine lactone and N-3-hexanoyl homoserine lactone partially restored protease production, indicating that quorum sensing is controlled by glucose concentrations. Thus, glucose present in food or added as a preservative could regulate acyl-homoserine lactone quorum sensing molecules, which mediate biofilm formation and virulence in A. hydrophila.

  20. Phenotypic and genotypic study of biofilm formation in Enterococci isolated from urinary tract infections.

    PubMed

    Fallah, F; Yousefi, M; Pourmand, M R; Hashemi, A; Nazari Alam, A; Afshar, D

    2017-07-01

    Urinary tract infection (UTI) is one of the most frequent types of nosocomial and community acquired infections in humans. Management of multidrug-resistant Enterococci UTI due to the limited therapeutic options is a great challenge for physicians and clinical microbiologists. The role of bacterial biofilms in recurrent urinary tract infections and antimicrobial resistance has great importance for public health. The aim of this study was to investigate the antibiotic susceptibility pattern as well as the phenotypic and genotypic biofilm formation ability of Enterococci isolates from patients with UTI. A total of 57 isolates of Enterococci were collected from patients with UTI. Enterococcus species were identified using conventional microbiological methods. The antibiotic susceptibility patterns of the isolates were determined by the Kirby-Bauer disk-diffusion. The Modified Congo red agar (MCRA) and Microtiter plate methods used to assess the ability of biofilm formation. All enterococcal isolates were examined for determination of biofilm-related genes, esp, asa1 and ebpR using PCR method. Of 57 enterococcal isolates, 85.9% were recognized as E. faecalis and 14.1% of them were E. faecium. According to our results, linezolid, chloramphenicol and nitrofurantoin were the most effective agents against Enterococcus species. Overall, 26.5% of E. faecalis and 75% of E. faecium isolates were biofilm producers, respectively. Resistance to some antibiotics including penicillin G, ampicillin, vancomycin, nitrofurantoin and chloramphenicol, and ciprofloxacin was significantly higher among biofilm producers than non-biofilm producers Enterococci. The esp, asa1 and ebpR genes were present in 84.2%, 91.2% and 100% isolates. In this study, there was not a significant relationship between presence of these genes and biofilm formation. Our findings reinforce the role of biofilm formation in resistance to antimicrobial agents. Quinupristin/dalfopristin, tetracycline and rifampin

  1. Biofilm formation by virulent and non-virulent strains of Haemophilus parasuis.

    PubMed

    Bello-Ortí, Bernardo; Deslandes, Vincent; Tremblay, Yannick D N; Labrie, Josée; Howell, Kate J; Tucker, Alexander W; Maskell, Duncan J; Aragon, Virginia; Jacques, Mario

    2014-11-27

    Haemophilus parasuis is a commensal bacterium of the upper respiratory tract of healthy pigs. It is also the etiological agent of Glässer's disease, a systemic disease characterized by polyarthritis, fibrinous polyserositis and meningitis, which causes high morbidity and mortality in piglets. The aim of this study was to evaluate biofilm formation by well-characterized virulent and non-virulent strains of H. parasuis. We observed that non-virulent strains isolated from the nasal cavities of healthy pigs formed significantly (p < 0.05) more biofilms than virulent strains isolated from lesions of pigs with Glässer's disease. These differences were observed when biofilms were formed in microtiter plates under static conditions or formed in the presence of shear force in a drip-flow apparatus or a microfluidic system. Confocal laser scanning microscopy using different fluorescent probes on a representative subset of strains indicated that the biofilm matrix contains poly-N-acetylglucosamine, proteins and eDNA. The biofilm matrix was highly sensitive to degradation by proteinase K. Comparison of transcriptional profiles of biofilm and planktonic cells of the non-virulent H. parasuis F9 strain revealed a significant number of up-regulated membrane-related genes in biofilms, and genes previously identified in Actinobacillus pleuropneumoniae biofilms. Our data indicate that non-virulent strains of H. parasuis have the ability to form robust biofilms in contrast to virulent, systemic strains. Biofilm formation might therefore allow the non-virulent strains to colonize and persist in the upper respiratory tract of pigs. Conversely, the planktonic state of the virulent strains might allow them to disseminate within the host.

  2. Phenotypic and genotypic characterization of biofilm formation in Staphylococcus haemolyticus.

    PubMed

    Barros, Elaine M; Lemos, Moara; Souto-Padrón, Thais; Giambiagi-deMarval, Marcia

    2015-06-01

    Staphylococcus haemolyticus is one of the most frequently isolated coagulase-negative staphylococci. The ability to produce biofilm has contributed to its emergence as a nosocomial pathogen. In this study, some growth conditions were tested to determine their influence on biofilm formation. Brain-heart infusion (BHI) broth containing glucose was used to screen 64 clinical strains. A strong biofilm producer strain showed cells surrounded by a thick layer of extracellular matrix. The presence of atlE, fbp, bap, and icaA genes was analyzed. We concluded that S. haemolyticus biofilm production can be increased with cells grown in BHI, and highlighted that it could be an ica-independent process.

  3. Inhibition of biofilm formation by T7 bacteriophages producing quorum-quenching enzymes.

    PubMed

    Pei, Ruoting; Lamas-Samanamud, Gisella R

    2014-09-01

    Bacterial growth in biofilms is the major cause of recalcitrant biofouling in industrial processes and of persistent infections in clinical settings. The use of bacteriophage treatment to lyse bacteria in biofilms has attracted growing interest. In particular, many natural or engineered phages produce depolymerases to degrade polysaccharides in the biofilm matrix and allow access to host bacteria. However, the phage-produced depolymerases are highly specific for only the host-derived polysaccharides and may have limited effects on natural multispecies biofilms. In this study, an engineered T7 bacteriophage was constructed to encode a lactonase enzyme with broad-range activity for quenching of quorum sensing, a form of bacterial cell-cell communication via small chemical molecules (acyl homoserine lactones [AHLs]) that is necessary for biofilm formation. Our results demonstrated that the engineered T7 phage expressed the AiiA lactonase to effectively degrade AHLs from many bacteria. Addition of the engineered T7 phage to mixed-species biofilms containing Pseudomonas aeruginosa and Escherichia coli resulted in inhibition of biofilm formation. Such quorum-quenching phages that can lyse host bacteria and express quorum-quenching enzymes to affect diverse bacteria in biofilm communities may become novel antifouling and antibiofilm agents in industrial and clinical settings. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  4. Inhibition of Biofilm Formation by T7 Bacteriophages Producing Quorum-Quenching Enzymes

    PubMed Central

    Lamas-Samanamud, Gisella R.

    2014-01-01

    Bacterial growth in biofilms is the major cause of recalcitrant biofouling in industrial processes and of persistent infections in clinical settings. The use of bacteriophage treatment to lyse bacteria in biofilms has attracted growing interest. In particular, many natural or engineered phages produce depolymerases to degrade polysaccharides in the biofilm matrix and allow access to host bacteria. However, the phage-produced depolymerases are highly specific for only the host-derived polysaccharides and may have limited effects on natural multispecies biofilms. In this study, an engineered T7 bacteriophage was constructed to encode a lactonase enzyme with broad-range activity for quenching of quorum sensing, a form of bacterial cell-cell communication via small chemical molecules (acyl homoserine lactones [AHLs]) that is necessary for biofilm formation. Our results demonstrated that the engineered T7 phage expressed the AiiA lactonase to effectively degrade AHLs from many bacteria. Addition of the engineered T7 phage to mixed-species biofilms containing Pseudomonas aeruginosa and Escherichia coli resulted in inhibition of biofilm formation. Such quorum-quenching phages that can lyse host bacteria and express quorum-quenching enzymes to affect diverse bacteria in biofilm communities may become novel antifouling and antibiofilm agents in industrial and clinical settings. PMID:24951790

  5. Spore Formation and Toxin Production in Clostridium difficile Biofilms

    PubMed Central

    Semenyuk, Ekaterina G.; Laning, Michelle L.; Foley, Jennifer; Johnston, Pehga F.; Knight, Katherine L.; Gerding, Dale N.; Driks, Adam

    2014-01-01

    The ability to grow as a biofilm can facilitate survival of bacteria in the environment and promote infection. To better characterize biofilm formation in the pathogen Clostridium difficile, we established a colony biofilm culture method for this organism on a polycarbonate filter, and analyzed the matrix and the cells in biofilms from a variety of clinical isolates over several days of biofilm culture. We found that biofilms readily formed in all strains analyzed, and that spores were abundant within about 6 days. We also found that extracellular DNA (eDNA), polysaccharide and protein was readily detected in the matrix of all strains, including the major toxins A and/or B, in toxigenic strains. All the strains we analyzed formed spores. Apart from strains 630 and VPI10463, which sporulated in the biofilm at relatively low frequencies, the frequencies of biofilm sporulation varied between 46 and 65%, suggesting that variations in sporulation levels among strains is unlikely to be a major factor in variation in the severity of disease. Spores in biofilms also had reduced germination efficiency compared to spores obtained by a conventional sporulation protocol. Transmission electron microscopy revealed that in 3 day-old biofilms, the outermost structure of the spore is a lightly staining coat. However, after 6 days, material that resembles cell debris in the matrix surrounds the spore, and darkly staining granules are closely associated with the spores surface. In 14 day-old biofilms, relatively few spores are surrounded by the apparent cell debris, and the surface-associated granules are present at higher density at the coat surface. Finally, we showed that biofilm cells possess 100-fold greater resistance to the antibiotic metronidazole then do cells cultured in liquid media. Taken together, our data suggest that C. difficile cells and spores in biofilms have specialized properties that may facilitate infection. PMID:24498186

  6. Spore formation and toxin production in Clostridium difficile biofilms.

    PubMed

    Semenyuk, Ekaterina G; Laning, Michelle L; Foley, Jennifer; Johnston, Pehga F; Knight, Katherine L; Gerding, Dale N; Driks, Adam

    2014-01-01

    The ability to grow as a biofilm can facilitate survival of bacteria in the environment and promote infection. To better characterize biofilm formation in the pathogen Clostridium difficile, we established a colony biofilm culture method for this organism on a polycarbonate filter, and analyzed the matrix and the cells in biofilms from a variety of clinical isolates over several days of biofilm culture. We found that biofilms readily formed in all strains analyzed, and that spores were abundant within about 6 days. We also found that extracellular DNA (eDNA), polysaccharide and protein was readily detected in the matrix of all strains, including the major toxins A and/or B, in toxigenic strains. All the strains we analyzed formed spores. Apart from strains 630 and VPI10463, which sporulated in the biofilm at relatively low frequencies, the frequencies of biofilm sporulation varied between 46 and 65%, suggesting that variations in sporulation levels among strains is unlikely to be a major factor in variation in the severity of disease. Spores in biofilms also had reduced germination efficiency compared to spores obtained by a conventional sporulation protocol. Transmission electron microscopy revealed that in 3 day-old biofilms, the outermost structure of the spore is a lightly staining coat. However, after 6 days, material that resembles cell debris in the matrix surrounds the spore, and darkly staining granules are closely associated with the spores surface. In 14 day-old biofilms, relatively few spores are surrounded by the apparent cell debris, and the surface-associated granules are present at higher density at the coat surface. Finally, we showed that biofilm cells possess 100-fold greater resistance to the antibiotic metronidazole then do cells cultured in liquid media. Taken together, our data suggest that C. difficile cells and spores in biofilms have specialized properties that may facilitate infection.

  7. Staphylococcus epidermidis and Staphylococcus haemolyticus: detection of biofilm genes and biofilm formation in blood culture isolates from patients in a Brazilian teaching hospital.

    PubMed

    Pinheiro, Luiza; Brito, Carla Ivo; Oliveira, Adilson de; Pereira, Valéria Cataneli; Cunha, Maria de Lourdes Ribeiro de Souza da

    2016-09-01

    Infections with coagulase-negative staphylococci are often related to biofilm formation. This study aimed to detect biofilm formation and biofilm-associated genes in blood culture isolates of Staphylococcus epidermidis and S. haemolyticus. Half (50.6%) of the 85 S. epidermidis isolates carried the icaAD genes and 15.3% the bhp gene, while these numbers were 42.9% and 0 for S. haemolyticus, respectively. According to the plate test, 30 S. epidermidis isolates were biofilm producers and 40% of them were strongly adherent, while only one (6%) of the 17 S. haemolyticus biofilm-producing isolates exhibited a strongly adherent biofilm. The concomitant presence of icaA and icaD was significantly associated with the plate and tube test results (P ≤ 0.0004). The higher frequency of icaA in S. epidermidis and of icaD in S. haemolyticus is correlated with the higher biofilm-producing capacity of the former since, in contrast to IcaD, IcaA activity is sufficient to produce small amounts of polysaccharide. Although this study emphasizes the importance of icaAD and bhp for biofilm formation in S. epidermidis, other mechanisms seem to be involved in S. haemolyticus. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Bacterial biofilm formation on the hyphae of ectomycorrhizal fungi: a widespread ability under controls?

    PubMed

    Guennoc, Cora Miquel; Rose, Christophe; Labbé, Jessy; Deveau, Aurélie

    2018-05-17

    Ectomycorrhizal (ECM) fungi establish symbiosis with roots of most trees of boreal and temperate ecosystems and are major drivers of nutrient fluxes between trees and the soil. ECM fungi constantly interact with bacteria all along their life cycle and the extended networks of hyphae provide a habitat for complex bacterial communities. Despite the important effects these bacteria can have on the growth and activities of ECM fungi, little is known about the mechanisms by which these microorganisms interact. Here we investigated the ability of bacteria to form biofilm on the hyphae of the ECM fungus Laccaria bicolor. We showed that the ability to form biofilms on the hyphae of the ECM fungus is widely shared among soil bacteria. Conversely, some fungi, belonging to the Ascomycete class, did not allow for the formation of bacterial biofilms on their surfaces. The formation of biofilms was also modulated by the presence of tree roots and ectomycorrhizae, suggesting that biofilm formation does not occur randomly in soil but that it is regulated by several biotic factors. In addition, our study demonstrated that the formation of bacterial biofilm on fungal hyphae relies on the production of networks of filaments made of extracellular DNA.

  9. Acinetobacter baumannii Biofilm Formation in Human Serum and Disruption by Gallium.

    PubMed

    Runci, Federica; Bonchi, Carlo; Frangipani, Emanuela; Visaggio, Daniela; Visca, Paolo

    2017-01-01

    Biofilm-associated infections caused by Acinetobacter baumannii are extremely recalcitrant to antibiotic treatment. We report that A. baumannii develops a mature biofilm when grown in complement-free human serum (HS). We demonstrate that 16 μM gallium nitrate (GaN) drastically reduces A. baumannii growth and biofilm formation in HS, whereas 64 μM GaN causes massive disruption of preformed A. baumannii biofilm. These findings pave the way to the repurposing of GaN as an antibiofilm agent for A. baumannii. Copyright © 2016 American Society for Microbiology.

  10. Multiple Vibrio fischeri genes are involved in biofilm formation and host colonization

    PubMed Central

    Chavez-Dozal, Alba; Hogan, David; Gorman, Clayton; Quintanal-Villalonga, Alvaro; Nishiguchi, Michele K.

    2012-01-01

    Biofilms are increasingly recognized as the predominant form for survival in the environment for most bacteria. The successful colonization of Vibrio fischeri in its squid host Euprymna tasmanica, involves complex microbe-host interactions mediated by specific genes that are essential for biofilm formation and colonization. In the present investigation, structural and regulatory genes were selected to study their role in biofilm formation and host colonization. We have mutated several genes (pilT, pilU, flgF, motY, ibpA and mifB) by an insertional inactivation strategy. Results demonstrate that structural genes responsible for synthesis of type IV pili and flagella are crucial for biofilm formation and host infection. Moreover, regulatory genes affect colony aggregation by various mechanisms including alteration of synthesis of transcriptional factors and regulation of extracellular polysaccharide production. These results reflect the significance of how genetic alterations influence communal behavior, which is important in understanding symbiotic relationships. PMID:22486781

  11. Air-liquid biofilm formation is dependent on ammonium depletion in a Saccharomyces cerevisiae flor strain.

    PubMed

    Zara, Giacomo; Budroni, Marilena; Mannazzu, Ilaria; Zara, Severino

    2011-12-01

    Air-liquid biofilm formation appears to be an adaptive mechanism that promotes foraging of Saccharomyces cerevisiae flor strains in response to nutrient starvation. The FLO11 gene plays a central role in this phenotype as its expression allows yeast cells to rise to the liquid surface. Here, we investigated the role of ammonium depletion in air-liquid biofilm formation and FLO11 expression in a S. cerevisiae flor strain. The data obtained show that increasing ammonium concentrations from 0 to 450 m m reduce air-liquid biofilm in terms of biomass and velum formation and correlate with a reduction of FLO11 expression. Rapamycin inhibition of the TOR pathway and deletion of RAS2 gene significantly reduced biofilm formation and FLO11 expression. Taken together, these data suggest that ammonium depletion is a key factor in the induction of air-liquid biofilm formation and FLO11 expression in S. cerevisiae flor strains. Copyright © 2011 John Wiley & Sons, Ltd.

  12. Biofilm formation by environmental isolates of Salmonella and their sensitivity to natural antimicrobials

    USDA-ARS?s Scientific Manuscript database

    We evaluated 15 Salmonella isolates; S. Derby (2), S. Infantis (4), and S. Typhimurium (9) from conventional swine farm environment (soil and lagoon) for biofilm formation. Biofilm forming ability was determined by 96-well microtitre plate Crystal-Violet and Minimum Biofilm Eradication Concentration...

  13. Influence of l-amino acids on aggregation and biofilm formation in Azotobacter chroococcum and Trichoderma viride.

    PubMed

    Velmourougane, K; Prasanna, R

    2017-10-01

    The effects of l-amino acids on growth and biofilm formation in Azotobacter chroococcum (Az) and Trichoderma viride (Tv) as single (Az, Tv) and staggered inoculated cultures (Az-Tv, Tv-Az) were investigated. A preliminary study using a set of 20 l-amino acids, identified 6 amino acids (l-Glu, l-Gln, l-His, l-Ser, l-Thr and l-Trp) which significantly enhanced growth and biofilm formation. Supplementation of these amino acids at different concentrations revealed that 40 mmol l -1 was most effective. l-Glu and l-Gln favoured planktonic growth in both single and in staggered inoculated cultures, while l-Trp and l-Thr, enhanced aggregation and biofilm formation. Addition of l-Glu or l-Gln increased carbohydrate content and planktonic population. Principal component analysis revealed the significant role of proteins in growth and biofilm formation, particularly with supplementation of l-Trp, l-Thr and l-Ser. Azotobacter was found to function better as biofilm under staggered inoculated culture with Trichoderma. The results illustrate that amino acids play crucial roles in microbial biofilm formation, by influencing growth, aggregation and carbohydrates synthesized. The differential and specific roles of amino acids on biofilm formation are of significance for agriculturally important micro-organisms that grow as biofilms, colonize and benefit the plants more effectively. © 2017 The Society for Applied Microbiology.

  14. Transcriptional Profiling of the Oral Pathogen Streptococcus mutans in Response to Competence Signaling Peptide XIP.

    PubMed

    Wenderska, Iwona B; Latos, Andrew; Pruitt, Benjamin; Palmer, Sara; Spatafora, Grace; Senadheera, Dilani B; Cvitkovitch, Dennis G

    2017-01-01

    In the cariogenic Streptococcus mutans , competence development is regulated by the ComRS signaling system comprised of the ComR regulator and the ComS prepeptide to the competence signaling peptide XIP (ComX-inducing peptide). Aside from competence development, XIP signaling has been demonstrated to regulate cell lysis, and recently, the expression of bacteriocins, small antimicrobial peptides used by bacteria to inhibit closely related species. Our study further explores the effect of XIP signaling on the S. mutans transcriptome. RNA sequencing revealed that XIP induction resulted in a global change in gene expression that was consistent with a stress response. An increase in several membrane-bound regulators, including HdrRM and BrsRM, involved in bacteriocin production, and the VicRKX system, involved in acid tolerance and biofilm formation, was observed. Furthermore, global changes in gene expression corresponded to changes observed during the stringent response to amino acid starvation. Effects were also observed on genes involved in sugar transport and carbon catabolite repression and included the levQRST and levDEFG operons. Finally, our work identified a novel heat shock-responsive intergenic region, encoding a small RNA, with a potential role in competence shutoff. IMPORTANCE Genetic competence provides bacteria with an opportunity to increase genetic diversity or acquire novel traits conferring a survival advantage. In the cariogenic pathogen Streptococcus mutans , DNA transformation is regulated by the competence stimulating peptide XIP (ComX-inducing peptide). The present study utilizes high-throughput RNA sequencing (RNAseq) to provide a greater understanding of how global gene expression patterns change in response to XIP. Overall, our work demonstrates that in S. mutans , XIP signaling induces a response that resembles the stringent response to amino acid starvation. We further identify a novel heat shock-responsive intergenic region with a

  15. Mechanisms of nitrous oxide (N2 O) formation and reduction in denitrifying biofilms.

    PubMed

    Sabba, Fabrizio; Picioreanu, Cristian; Nerenberg, Robert

    2017-12-01

    Nitrous oxide (N 2 O) is a potent greenhouse gas that can be formed in wastewater treatment processes by ammonium oxidizing and denitrifying microorganisms. While N 2 O emissions from suspended growth systems have been extensively studied, and some recent studies have addressed emissions from nitrifying biofilms, much less is known about N 2 O emissions from denitrifying biofilm processes. This research used modeling to evaluate the mechanisms of N 2 O formation and reduction in denitrifying biofilms. The kinetic model included formation and consumption of key denitrification species, including nitrate (NO3-), nitrite (NO2-), nitric oxide (NO), and N 2 O. The model showed that, in presence of excess of electron donor, denitrifying biofilms have two distinct layers of activity: an outer layer where there is net production of N 2 O and an inner layer where there is net consumption. The presence of oxygen (O 2 ) had an important effect on N 2 O emission from suspended growth systems, but a smaller effect on biofilm systems. The effects of NO3- and O 2 differed significantly based on the biofilm thickness. Overall, the effects of biofilm thickness and bulk substrate concentrations on N 2 O emissions are complex and not always intuitive. A key mechanism for denitrifying biofilms is the diffusion of N 2 O and other intermediates from one zone of the biofilm to another. This leads to zones of N 2 O formation or consumption transformations that would not exist in suspended growth systems. © 2017 Wiley Periodicals, Inc.

  16. Shewanella putrefaciens Adhesion and Biofilm Formation on Food Processing Surfaces

    PubMed Central

    Bagge, Dorthe; Hjelm, Mette; Johansen, Charlotte; Huber, Ingrid; Gram, Lone

    2001-01-01

    Laboratory model systems were developed for studying Shewanella putrefaciens adhesion and biofilm formation under batch and flow conditions. S. putrefaciens plays a major role in food spoilage and may cause microbially induced corrosion on steel surfaces. S. putrefaciens bacteria suspended in buffer adhered readily to stainless steel surfaces. Maximum numbers of adherent bacteria per square centimeter were reached in 8 h at 25°C and reflected the cell density in suspension. Numbers of adhering bacteria from a suspension containing 108 CFU/ml were much lower in a laminar flow system (modified Robbins device) (reaching 102 CFU/cm2) than in a batch system (reaching 107 CFU/cm2), and maximum numbers were reached after 24 h. When nutrients were supplied, S. putrefaciens grew in biofilms with layers of bacteria. The rate of biofilm formation and the thickness of the film were not dependent on the availability of carbohydrate (lactate or glucose) or on iron starvation. The number of S. putrefaciens bacteria on the surface was partly influenced by the presence of other bacteria (Pseudomonas fluorescens) which reduced the numbers of S. putrefaciens bacteria in the biofilm. Numbers of bacteria on the surface must be quantified to evaluate the influence of environmental factors on adhesion and biofilm formation. We used a combination of fluorescence microscopy (4′,6′-diamidino-2-phenylindole staining and in situ hybridization, for mixed-culture studies), ultrasonic removal of bacteria from surfaces, and indirect conductometry and found this combination sufficient to quantify bacteria on surfaces. PMID:11319118

  17. Effects of oakmoss and its components on biofilm formation of Legionella pneumophila.

    PubMed

    Nomura, Harue; Isshiki, Yasunori; Sakuda, Keisuke; Sakuma, Katsuya; Kondo, Seiichi

    2013-01-01

    Oakmoss and its components are known as antibacterial agents, specifically against Legionella pneumophila. In the present study, we investigated the effects of oakmoss and its components (phenol, didepside and isochromen derivatives) on L. pneumophila biofilm formation, with particular reference to the bactericidal activity (minimum bactericidal concentration; MBC) of these components against the bacterial cells in the biofilm. Of the 20 compounds tested, two didepside derivatives and four phenol derivatives reduced biofilm formation by more than 50% of that observed for the control at their respective minimum inhibitory concentrations (1/2×MIC). The inhibitory activities of these compounds were either equivalent to or greater than that of the clarithromycin reference. Isochromen derivatives had no effect on biofilm formation. Analysis of bactericidal activity of didepside and isochromen derivatives revealed that three of four didepside derivatives and one of four isochromen derivatives exhibited high bactericidal activity (MBC: 32.0-74.7 µg/mL) against the L. pneumophila in the biofilm after 24 h or 48 h of co-incubation; the antibacterial activities of these compounds were almost equivalent to clarithromycin and chlorhexidine gluconate (MBC: 42.7-64.0 µg/mL) that were used as references. Thus, based on their anti-biofilm forming and bactericidal activities, didepside derivatives are considered to be good candidates for disinfectants against L. pneumophila.

  18. Biofilm Formation by Clostridium ljungdahlii Is Induced by Sodium Chloride Stress: Experimental Evaluation and Transcriptome Analysis.

    PubMed

    Philips, Jo; Rabaey, Korneel; Lovley, Derek R; Vargas, Madeline

    2017-01-01

    The acetogen Clostridium ljungdahlii is capable of syngas fermentation and microbial electrosynthesis. Biofilm formation could benefit both these applications, but was not yet reported for C. ljungdahlii. Biofilm formation does not occur under standard growth conditions, but attachment or aggregation could be induced by different stresses. The strongest biofilm formation was observed with the addition of sodium chloride. After 3 days of incubation, the biomass volume attached to a plastic surface was 20 times higher with than without the addition of 200 mM NaCl to the medium. The addition of NaCl also resulted in biofilm formation on glass, graphite and glassy carbon, the latter two being often used electrode materials for microbial electrosynthesis. Biofilms were composed of extracellular proteins, polysaccharides, as well as DNA, while pilus-like appendages were observed with, but not without, the addition of NaCl. A transcriptome analysis comparing planktonic (no NaCl) and biofilm (NaCl addition) cells showed that C. ljungdahlii coped with the salt stress by the upregulation of the general stress response, Na+ export and osmoprotectant accumulation. A potential role for poly-N-acetylglucosamines and D-alanine in biofilm formation was found. Flagellar motility was downregulated, while putative type IV pili biosynthesis genes were not expressed. Moreover, the gene expression analysis suggested the involvement of the transcriptional regulators LexA, Spo0A and CcpA in stress response and biofilm formation. This study showed that NaCl addition might be a valuable strategy to induce biofilm formation by C. ljungdahlii, which can improve the efficacy of syngas fermentation and microbial electrosynthesis applications.

  19. Biofilm Formation by Clostridium ljungdahlii Is Induced by Sodium Chloride Stress: Experimental Evaluation and Transcriptome Analysis

    PubMed Central

    Rabaey, Korneel; Lovley, Derek R.; Vargas, Madeline

    2017-01-01

    The acetogen Clostridium ljungdahlii is capable of syngas fermentation and microbial electrosynthesis. Biofilm formation could benefit both these applications, but was not yet reported for C. ljungdahlii. Biofilm formation does not occur under standard growth conditions, but attachment or aggregation could be induced by different stresses. The strongest biofilm formation was observed with the addition of sodium chloride. After 3 days of incubation, the biomass volume attached to a plastic surface was 20 times higher with than without the addition of 200 mM NaCl to the medium. The addition of NaCl also resulted in biofilm formation on glass, graphite and glassy carbon, the latter two being often used electrode materials for microbial electrosynthesis. Biofilms were composed of extracellular proteins, polysaccharides, as well as DNA, while pilus-like appendages were observed with, but not without, the addition of NaCl. A transcriptome analysis comparing planktonic (no NaCl) and biofilm (NaCl addition) cells showed that C. ljungdahlii coped with the salt stress by the upregulation of the general stress response, Na+ export and osmoprotectant accumulation. A potential role for poly-N-acetylglucosamines and D-alanine in biofilm formation was found. Flagellar motility was downregulated, while putative type IV pili biosynthesis genes were not expressed. Moreover, the gene expression analysis suggested the involvement of the transcriptional regulators LexA, Spo0A and CcpA in stress response and biofilm formation. This study showed that NaCl addition might be a valuable strategy to induce biofilm formation by C. ljungdahlii, which can improve the efficacy of syngas fermentation and microbial electrosynthesis applications. PMID:28118386

  20. Ethanol-independent biofilm formation by a flor wine yeast strain of Saccharomyces cerevisiae.

    PubMed

    Zara, Severino; Gross, Michael K; Zara, Giacomo; Budroni, Marilena; Bakalinsky, Alan T

    2010-06-01

    Flor strains of Saccharomyces cerevisiae form a biofilm on the surface of wine at the end of fermentation, when sugar is depleted and growth on ethanol becomes dependent on oxygen. Here, we report greater biofilm formation on glycerol and ethyl acetate and inconsistent formation on succinic, lactic, and acetic acids.

  1. Biofilm formation and multidrug-resistant Aeromonas spp. from wild animals.

    PubMed

    Dias, Carla; Borges, Anabela; Saavedra, Maria José; Simões, Manuel

    2018-03-01

    The 'One Health' concept recognises that the health of humans, animals and the environment are interconnected. Therefore, knowledge on the behaviour of micro-organisms from the most diverse environmental niches is important to prevent the emergence and dissemination of antimicrobial resistance. Wild animals are known to carry antimicrobial-resistant micro-organisms with potential public health impact. However, no data are available on the behaviour of sessile bacteria from wild animals, although antimicrobial resistance is amplified in biofilms. This study characterised the ciprofloxacin susceptibility and the adhesion and biofilm formation abilities of 14 distinct Aeromonas spp. (8 Aeromonas salmonicida, 3 Aeromonas eucrenophila, 2 Aeromonas bestiarum and 1 Aeromonas veronii) isolated from wild animals and already characterised as resistant to β-lactam antibiotics. The ciprofloxacin MIC was determined according to CLSI guidelines. A biofilm formation assay was performed by a modified microtitre plate method. Bacterial surface hydrophobicity was assessed by sessile drop contact angle measurement. All Aeromonas spp. strains were resistant to ciprofloxacin (MICs of 6-60μg/mL) and had hydrophilic surfaces (range 2-37mJ/m 2 ). These strains were able to adhere and form biofilms with distinct magnitudes. Biofilm exposure to 10×MIC of ciprofloxacin only caused low to moderate biofilm removal. This study shows that the strains tested are of potential public health concern and emphasises that wild animals are potential reservoirs of multidrug-resistant strains. In fact, Aeromonas spp. are consistently considered opportunistic pathogens. Moreover, bacterial ability to form biofilms increases antimicrobial resistance and the propensity to cause persistent infections. Copyright © 2017 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.

  2. Involvement of T6 pili in biofilm formation by serotype M6 Streptococcus pyogenes.

    PubMed

    Kimura, Keiji Richard; Nakata, Masanobu; Sumitomo, Tomoko; Kreikemeyer, Bernd; Podbielski, Andreas; Terao, Yutaka; Kawabata, Shigetada

    2012-02-01

    The group A streptococcus (GAS) Streptococcus pyogenes is known to cause self-limiting purulent infections in humans. The role of GAS pili in host cell adhesion and biofilm formation is likely fundamental in early colonization. Pilus genes are found in the FCT (fibronectin-binding protein, collagen-binding protein, and trypsin-resistant antigen) genomic region, which has been classified into nine subtypes based on the diversity of gene content and nucleotide sequence. Several epidemiological studies have indicated that FCT type 1 strains, including serotype M6, produce large amounts of monospecies biofilm in vitro. We examined the direct involvement of pili in biofilm formation by serotype M6 clinical isolates. In the majority of tested strains, deletion of the tee6 gene encoding pilus shaft protein T6 compromised the ability to form biofilm on an abiotic surface. Deletion of the fctX and srtB genes, which encode pilus ancillary protein and class C pilus-associated sortase, respectively, also decreased biofilm formation by a representative strain. Unexpectedly, these mutant strains showed increased bacterial aggregation compared with that of the wild-type strain. When the entire FCT type 1 pilus region was ectopically expressed in serotype M1 strain SF370, biofilm formation was promoted and autoaggregation was inhibited. These findings indicate that assembled FCT type 1 pili contribute to biofilm formation and also function as attenuators of bacterial aggregation. Taken together, our results show the potential role of FCT type 1 pili in the pathogenesis of GAS infections.

  3. Involvement of T6 Pili in Biofilm Formation by Serotype M6 Streptococcus pyogenes

    PubMed Central

    Kimura, Keiji Richard; Nakata, Masanobu; Sumitomo, Tomoko; Kreikemeyer, Bernd; Podbielski, Andreas; Terao, Yutaka

    2012-01-01

    The group A streptococcus (GAS) Streptococcus pyogenes is known to cause self-limiting purulent infections in humans. The role of GAS pili in host cell adhesion and biofilm formation is likely fundamental in early colonization. Pilus genes are found in the FCT (fibronectin-binding protein, collagen-binding protein, and trypsin-resistant antigen) genomic region, which has been classified into nine subtypes based on the diversity of gene content and nucleotide sequence. Several epidemiological studies have indicated that FCT type 1 strains, including serotype M6, produce large amounts of monospecies biofilm in vitro. We examined the direct involvement of pili in biofilm formation by serotype M6 clinical isolates. In the majority of tested strains, deletion of the tee6 gene encoding pilus shaft protein T6 compromised the ability to form biofilm on an abiotic surface. Deletion of the fctX and srtB genes, which encode pilus ancillary protein and class C pilus-associated sortase, respectively, also decreased biofilm formation by a representative strain. Unexpectedly, these mutant strains showed increased bacterial aggregation compared with that of the wild-type strain. When the entire FCT type 1 pilus region was ectopically expressed in serotype M1 strain SF370, biofilm formation was promoted and autoaggregation was inhibited. These findings indicate that assembled FCT type 1 pili contribute to biofilm formation and also function as attenuators of bacterial aggregation. Taken together, our results show the potential role of FCT type 1 pili in the pathogenesis of GAS infections. PMID:22155780

  4. The Natural Antimicrobial Carvacrol Inhibits Quorum Sensing in Chromobacterium violaceum and Reduces Bacterial Biofilm Formation at Sub-Lethal Concentrations

    PubMed Central

    Burt, Sara A.; Ojo-Fakunle, Victoria T. A.; Woertman, Jenifer; Veldhuizen, Edwin J. A.

    2014-01-01

    The formation of biofilm by bacteria confers resistance to biocides and presents problems in medical and veterinary clinical settings. Here we report the effect of carvacrol, one of the major antimicrobial components of oregano oil, on the formation of biofilms and its activity on existing biofilms. Assays were carried out in polystyrene microplates to observe (a) the effect of 0–0.8 mM carvacrol on the formation of biofilms by selected bacterial pathogens over 24 h and (b) the effect of 0–8 mM carvacrol on the stability of pre-formed biofilms. Carvacrol was able to inhibit the formation of biofilms of Chromobacterium violaceum ATCC 12472, Salmonella enterica subsp. Typhimurium DT104, and Staphylococcus aureus 0074, while it showed no effect on formation of Pseudomonas aeruginosa (field isolate) biofilms. This inhibitory effect of carvacrol was observed at sub-lethal concentrations (<0.5 mM) where no effect was seen on total bacterial numbers, indicating that carvacrol's bactericidal effect was not causing the observed inhibition of biofilm formation. In contrast, carvacrol had (up to 8 mM) very little or no activity against existing biofilms of the bacteria described, showing that formation of the biofilm also confers protection against this compound. Since quorum sensing is an essential part of biofilm formation, the effect of carvacrol on quorum sensing of C. violaceum was also studied. Sub-MIC concentrations of carvacrol reduced expression of cviI (a gene coding for the N-acyl-L-homoserine lactone synthase), production of violacein (pigmentation) and chitinase activity (both regulated by quorum sensing) at concentrations coinciding with carvacrol's inhibiting effect on biofilm formation. These results indicate that carvacrol's activity in inhibition of biofilm formation may be related to the disruption of quorum sensing. PMID:24691035

  5. Presence of Extracellular DNA during Biofilm Formation by Xanthomonas citri subsp. citri Strains with Different Host Range.

    PubMed

    Sena-Vélez, Marta; Redondo, Cristina; Graham, James H; Cubero, Jaime

    2016-01-01

    Xanthomonas citri subsp. citri (Xcc) A strain causes citrus bacterial canker, a serious leaf, fruit and stem spotting disease of several Citrus species. X. alfalfae subsp. citrumelonis (Xac) is the cause of citrus bacterial spot, a minor disease of citrus nursery plants and X. campestris pv. campestris (Xc) is a systemic pathogen that causes black rot of cabbage. Xanthomonas spp. form biofilms in planta that facilitate the host infection process. Herein, the role of extracellular DNA (eDNA) was evaluated in the formation and stabilization of the biofilm matrix at different stages of biofilm development. Fluorescence and light microscopy, as well as DNAse treatments, were used to determine the presence of eDNA in biofilms and bacterial cultures. DNAse treatments of Xcc strains and Xac reduced biofilm formation at the initial stage of development, as well as disrupted preformed biofilm. By comparison, no significant effect of the DNAse was detected for biofilm formation by Xc. DNAse effects on biofilm formation or disruption varied among Xcc strains and Xanthomonas species which suggest different roles for eDNA. Variation in the structure of fibers containing eDNA in biofilms, bacterial cultures, and in twitching motility was also visualized by microscopy. The proposed roles for eDNA are as an adhesin in the early stages of biofilm formation, as an structural component of mature bacterial aggregates, and twitching motility structures.

  6. Alpha-Toxin Promotes Staphylococcus aureus Mucosal Biofilm Formation

    PubMed Central

    Anderson, Michele J.; Lin, Ying-Chi; Gillman, Aaron N.; Parks, Patrick J.; Schlievert, Patrick M.; Peterson, Marnie L.

    2012-01-01

    Staphylococcus aureus causes many diseases in humans, ranging from mild skin infections to serious, life-threatening, superantigen-mediated Toxic Shock Syndrome (TSS). S. aureus may be asymptomatically carried in the anterior nares or vagina or on the skin, serving as a reservoir for infection. Pulsed-field gel electrophoresis clonal type USA200 is the most widely disseminated colonizer and the leading cause of TSS. The cytolysin α-toxin (also known as α-hemolysin or Hla) is the major epithelial proinflammatory exotoxin produced by TSS S. aureus USA200 isolates. The current study aims to characterize the differences between TSS USA200 strains [high (hla+) and low (hla−) α-toxin producers] in their ability to disrupt vaginal mucosal tissue and to characterize the subsequent infection. Tissue viability post-infection and biofilm formation of TSS USA200 isolates CDC587 and MN8, which contain the α-toxin pseudogene (hla−), MNPE (hla+), and MNPE isogenic hla knockout (hlaKO), were observed via LIVE/DEAD® staining and confocal microscopy. All TSS strains grew to similar bacterial densities (1–5 × 108 CFU) on the mucosa and were proinflammatory over 3 days. However, MNPE formed biofilms with significant reductions in the mucosal viability whereas neither CDC587 (hla−), MN8 (hla−), nor MNPE hlaKO formed biofilms. The latter strains were also less cytotoxic than wild-type MNPE. The addition of exogenous, purified α-toxin to MNPE hlaKO restored the biofilm phenotype. We speculate that α-toxin affects S. aureus phenotypic growth on vaginal mucosa by promoting tissue disruption and biofilm formation. Further, α-toxin mutants (hla−) are not benign colonizers, but rather form a different type of infection, which we have termed high density pathogenic variants (HDPV). PMID:22919655

  7. Ethanol-Independent Biofilm Formation by a Flor Wine Yeast Strain of Saccharomyces cerevisiae▿

    PubMed Central

    Zara, Severino; Gross, Michael K.; Zara, Giacomo; Budroni, Marilena; Bakalinsky, Alan T.

    2010-01-01

    Flor strains of Saccharomyces cerevisiae form a biofilm on the surface of wine at the end of fermentation, when sugar is depleted and growth on ethanol becomes dependent on oxygen. Here, we report greater biofilm formation on glycerol and ethyl acetate and inconsistent formation on succinic, lactic, and acetic acids. PMID:20435772

  8. Physicochemical changes of microbe and solid surface properties during biofilm formation

    NASA Astrophysics Data System (ADS)

    Sfaelou, Stavroula; Vakros, John; Manariotis, Ioannis D.; Karapanagioti, Hrissi K.

    2013-04-01

    Cell immobilization is a promising biotechnology process. For example, entrapment of bacteria cells on synthetic polymeric matrices such as biocarriers is widely used for wastewater treatment because they have strong mechanical strength and durability in contrast to natural polymers. This method is based on the formation of biofilm on the surface of the used carriers and combines two different processes; attached and suspended biomass in a hybrid system. Previous studies have shown that immobilized cell systems have the potential to degrade toxic chemicals faster than conventional wastewater treatment systems because high densities of specialized microorganisms are used in immobilized cell systems. The present study elucidates the surface charge and properties of activated sludge and their role in the formation of biofilm. This information can be used for the optimization of the formation of biofilms as well as for the study of the transport of microorganisms in different environments. The two types of biocarriers that were used in this study are polyvinyl alcohol (PVA)-gel beads and Moving Bed Biofilm Reactor (MBBR) carriers. The sludge samples that were investigated were taken from the aeration tank of the wastewater treatment plant of University of Patras (Greece). Measurements of the surface charge of the sludge, the biocarriers and the formed biofilm, were performed using potentiometric mass titrations with different kinds of electrolytes (e.g. NaCl, NaNO3) and at pH ranging from 3 to 11. The determination of pzc and surface charge of activated sludge and biocarriers is significant, because it can provide new valuable informations about the interaction mechanisms and the formation of biofilms. In each case, the point of zero charge (pzc) was identified as the common intersection point of the potentiometric curve of the blank solution of the electrolyte with the corresponding curves of each material. The pzc value for the biofilm was 6.1 to 6.7 and 6.6 to 6

  9. The Collagen Binding Protein Cnm Contributes to Oral Colonization and Cariogenicity of Streptococcus mutans OMZ175

    PubMed Central

    Miller, James H.; Avilés-Reyes, Alejandro; Scott-Anne, Kathy; Gregoire, Stacy; Watson, Gene E.; Sampson, Edith; Progulske-Fox, Ann; Koo, Hyun; Bowen, William H.; Lemos, José A.

    2015-01-01

    Streptococcus mutans is the etiological agent of dental caries and one of the many bacterial species implicated in infective endocarditis. The expression of the collagen-binding protein Cnm by S. mutans has been associated with extraoral infections, but its relevance for dental caries has only been theorized to date. Due to the collagenous composition of dentinal and root tissues, we hypothesized that Cnm may facilitate the colonization of these surfaces, thereby enhancing the pathogenic potential of S. mutans in advancing carious lesions. As shown for extraoral endothelial cell lines, Cnm mediates the invasion of oral keratinocytes and fibroblasts by S. mutans. In this study, we show that in the Cnm+ native strain, OMZ175, Cnm mediates stringent adhesion to dentinal and root tissues as well as collagen-coated surfaces and promotes both cariogenicity and carriage in vivo. In vitro, ex vivo, and in vivo experiments revealed that while Cnm is not universally required for S. mutans cariogenicity, it contributes to (i) the invasion of the oral epithelium, (ii) enhanced binding on collagenous surfaces, (iii) implantation of oral biofilms, and (IV) the severity of caries due to a native Cnm+ isolate. Taken together, our findings reveal that Cnm is a colonization factor that contributes to the pathogenicity of certain S. mutans strains in their native habitat, the oral cavity. PMID:25733523

  10. Formation of biofilm by Listeria monocytogenes ATCC 19112 at different incubation temperatures and concentrations of sodium chloride

    PubMed Central

    Lee, H.Y.; Chai, L.C.; Pui, C.F.; Mustafa, S.; Cheah, Y.K.; Nishibuchi, M.; Radu, S.

    2013-01-01

    Biofilm formation can lead to various consequences in the food processing line such as contamination and equipment breakdowns. Since formation of biofilm can occur in various conditions; this study was carried out using L. monocytogenes ATCC 19112 and its biofilm formation ability tested under various concentrations of sodium chloride and temperatures. Cultures of L. monocytogenes ATCC 19112 were placed in 96-well microtitre plate containing concentration of sodium chloride from 1–10% (w/v) and incubated at different temperature of 4 °C, 30 °C and 45 °C for up to 60 h. Absorbance reading of crystal violet staining showed the density of biofilm formed in the 96-well microtitre plates was significantly higher when incubated in 4 °C. The formation of biofilm also occurs at a faster rate at 4 °C and higher optical density (OD 570 nm) was observed at 45 °C. This shows that storage under formation of biofilm that may lead to a higher contamination along the processing line in the food industry. Formation of biofilm was found to be more dependent on temperature compared to sodium chloride stress. PMID:24159283

  11. [The effect of biyuanshu oral liquid on the formation of Pseudomonas aeruginosa biofilms in vitro].

    PubMed

    Liu, Xiang; Chen, Haihong; Wang, Shengqing

    2012-07-01

    To observe the effect of biyuanshu oral liquid on the formation of pseudomonas aeruginosa biofilms in vitro. Pseudomonas aeruginosa biofilm was established by plate culture and detected by Scanning electron microscopy and AgNO3 staining. After treated with different dosages of biyuanshu oral liquid and erythromycin, the pseudomonas aeruginosa biofilms were observed by AgNO3 staining and the number of viable bacteria were measured by serial dilution. The pseudomonas aeruginosa biofilms could be detected by SEM at the seventh culture day and it was consistent with the detection of AgNO3 staining. The biyuanshu oral liquid and erythromycin have the effect on inhibiting the formation of pseudomonas aeruginosa biofilms. But with the already formed pseudomonas aeruginosa biofilms the inhibition was not significant. The serial dilution method showed that the viable counts of bacteria of biyuanshu oral liquid and erythromycin treated groups were significantly lower than those untreated groups (P < 0.05). The biyuanshu oral liquid and erythromycin can inhibit the formation of pseudomonas aeruginosa biofilms in vitro.

  12. Mannitol and the Mannitol-Specific Enzyme IIB Subunit Activate Vibrio cholerae Biofilm Formation

    PubMed Central

    Ymele-Leki, Patrick; Houot, Laetitia

    2013-01-01

    Vibrio cholerae is a halophilic, Gram-negative rod found in marine environments. Strains that produce cholera toxin cause the diarrheal disease cholera. V. cholerae use a highly conserved, multicomponent signal transduction cascade known as the phosphoenolpyruvate phosphotransferase system (PTS) to regulate carbohydrate uptake and biofilm formation. Regulation of biofilm formation by the PTS is complex, involving many different regulatory pathways that incorporate distinct PTS components. The PTS consists of the general components enzyme I (EI) and histidine protein (HPr) and carbohydrate-specific enzymes II. Mannitol transport by V. cholerae requires the mannitol-specific EII (EIIMtl), which is expressed only in the presence of mannitol. Here we show that mannitol activates V. cholerae biofilm formation and transcription of the vps biofilm matrix exopolysaccharide synthesis genes. This regulation is dependent on mannitol transport. However, we show that, in the absence of mannitol, ectopic expression of the B subunit of EIIMtl is sufficient to activate biofilm accumulation. Mannitol, a common compatible solute and osmoprotectant of marine organisms, is a main photosynthetic product of many algae and is secreted by algal mats. We propose that the ability of V. cholerae to respond to environmental mannitol by forming a biofilm may play an important role in habitat selection. PMID:23728818

  13. Density of founder cells affects spatial pattern formation and cooperation in Bacillus subtilis biofilms

    PubMed Central

    van Gestel, Jordi; Weissing, Franz J; Kuipers, Oscar P; Kovács, Ákos T

    2014-01-01

    In nature, most bacteria live in surface-attached sedentary communities known as biofilms. Biofilms are often studied with respect to bacterial interactions. Many cells inhabiting biofilms are assumed to express ‘cooperative traits', like the secretion of extracellular polysaccharides (EPS). These traits can enhance biofilm-related properties, such as stress resilience or colony expansion, while being costly to the cells that express them. In well-mixed populations cooperation is difficult to achieve, because non-cooperative individuals can reap the benefits of cooperation without having to pay the costs. The physical process of biofilm growth can, however, result in the spatial segregation of cooperative from non-cooperative individuals. This segregation can prevent non-cooperative cells from exploiting cooperative neighbors. Here we examine the interaction between spatial pattern formation and cooperation in Bacillus subtilis biofilms. We show, experimentally and by mathematical modeling, that the density of cells at the onset of biofilm growth affects pattern formation during biofilm growth. At low initial cell densities, co-cultured strains strongly segregate in space, whereas spatial segregation does not occur at high initial cell densities. As a consequence, EPS-producing cells have a competitive advantage over non-cooperative mutants when biofilms are initiated at a low density of founder cells, whereas EPS-deficient cells have an advantage at high cell densities. These results underline the importance of spatial pattern formation for competition among bacterial strains and the evolution of microbial cooperation. PMID:24694715

  14. Density of founder cells affects spatial pattern formation and cooperation in Bacillus subtilis biofilms.

    PubMed

    van Gestel, Jordi; Weissing, Franz J; Kuipers, Oscar P; Kovács, Akos T

    2014-10-01

    In nature, most bacteria live in surface-attached sedentary communities known as biofilms. Biofilms are often studied with respect to bacterial interactions. Many cells inhabiting biofilms are assumed to express 'cooperative traits', like the secretion of extracellular polysaccharides (EPS). These traits can enhance biofilm-related properties, such as stress resilience or colony expansion, while being costly to the cells that express them. In well-mixed populations cooperation is difficult to achieve, because non-cooperative individuals can reap the benefits of cooperation without having to pay the costs. The physical process of biofilm growth can, however, result in the spatial segregation of cooperative from non-cooperative individuals. This segregation can prevent non-cooperative cells from exploiting cooperative neighbors. Here we examine the interaction between spatial pattern formation and cooperation in Bacillus subtilis biofilms. We show, experimentally and by mathematical modeling, that the density of cells at the onset of biofilm growth affects pattern formation during biofilm growth. At low initial cell densities, co-cultured strains strongly segregate in space, whereas spatial segregation does not occur at high initial cell densities. As a consequence, EPS-producing cells have a competitive advantage over non-cooperative mutants when biofilms are initiated at a low density of founder cells, whereas EPS-deficient cells have an advantage at high cell densities. These results underline the importance of spatial pattern formation for competition among bacterial strains and the evolution of microbial cooperation.

  15. Inhibition of Staphylococcus epidermidis Biofilm Formation by Traditional Thai Herbal Recipes Used for Wound Treatment.

    PubMed

    Chusri, S; Sompetch, K; Mukdee, S; Jansrisewangwong, S; Srichai, T; Maneenoon, K; Limsuwan, S; Voravuthikunchai, S P

    2012-01-01

    Development of biofilm is a key mechanism involved in Staphylococcus epidermidis virulence during device-associated infections. We aimed to investigate antibiofilm formation and mature biofilm eradication ability of ethanol and water extracts of Thai traditional herbal recipes including THR-SK004, THR-SK010, and THR-SK011 against S. epidermidis. A biofilm forming reference strain, S. epidermidis ATCC 35984 was employed as a model for searching anti-biofilm agents by MTT reduction assay. The results revealed that the ethanol extract of THR-SK004 (THR-SK004E) could inhibit the formation of S. epidermidis biofilm on polystyrene surfaces. Furthermore, treatments with the extract efficiently inhibit the biofilm formation of the pathogen on glass surfaces determined by scanning electron microscopy and crystal violet staining. In addition, THR-SK010 ethanol extract (THR-SK010E; 0.63-5 μg/mL) could decrease 30 to 40% of the biofilm development. Almost 90% of a 7-day-old staphylococcal biofilm was destroyed after treatment with THR-SK004E (250 and 500 μg/mL) and THR-SK010E (10 and 20 μg/mL) for 24 h. Therefore, our results clearly demonstrated THR-SK004E could prevent the staphylococcal biofilm development, whereas both THR-SK004E and THR-SK010E possessed remarkable eradication ability on the mature staphylococcal biofilm.

  16. Effects of patterned topography on biofilm formation

    NASA Astrophysics Data System (ADS)

    Vasudevan, Ravikumar

    2011-12-01

    Bacterial biofilms are a population of bacteria attached to each other and irreversibly to a surface, enclosed in a matrix of self-secreted polymers, among others polysaccharides, proteins, DNA. Biofilms cause persisting infections associated with implanted medical devices and hospital acquired (nosocomial) infections. Catheter-associated urinary tract infections (CAUTIs) are the most common type of nosocomial infections accounting for up to 40% of all hospital acquired infections. Several different strategies, including use of antibacterial agents and genetic cues, quorum sensing, have been adopted for inhibiting biofilm formation relevant to CAUTI surfaces. Each of these methods pertains to certain types of bacteria, processes and has shortcomings. Based on eukaryotic cell topography interaction studies and Ulva linza spore studies, topographical surfaces were suggested as a benign control method for biofilm formation. However, topographies tested so far have not included a systematic variation of size across basic topography shapes. In this study patterned topography was systematically varied in size and shape according to two approaches 1) confinement and 2) wetting. For the confinement approach, using scanning electron microscopy and confocal microscopy, orienting effects of tested topography based on staphylococcus aureus (s. aureus) (SH1000) and enterobacter cloacae (e. cloacae) (ATCC 700258) bacterial models were identified on features of up to 10 times the size of the bacterium. Psuedomonas aeruginosa (p. aeruginosa) (PAO1) did not show any orientational effects, under the test conditions. Another important factor in medical biofilms is the identification and quantification of phenotypic state which has not been discussed in the literature concerning bacteria topography characterizations. This was done based on antibiotic susceptibility evaluation and also based on gene expression analysis. Although orientational effects occur, phenotypically no difference

  17. Formation of Biofilms by Foodborne Pathogens and Development of Laboratory In Vitro Model for the Study of Campylobacter Genus Bacteria Based on These Biofilms.

    PubMed

    Efimochkina, N R; Bykova, I B; Markova, Yu M; Korotkevich, Yu V; Stetsenko, V V; Minaeva, L P; Sheveleva, S A

    2017-02-01

    We analyzed the formation of biofilms by 7 strains of Campylobacter genus bacteria and 18 strains of Enterobacteriaceae genus bacteria that were isolated from plant and animal raw materials, from finished products, and swabs from the equipment of the food industry. Biofilm formation on glass plates, slides and coverslips, microtubes made of polymeric materials and Petri dishes, and polystyrene plates of different profiles were analyzed. When studying the process of films formation, different effects on bacterial populations were simulated, including variation of growth factor composition of culture media, technique of creating of anaerobiosis, and biocide treatment (active chlorine solutions in a concentration of 100 mg/dm 3 ). The formation of biofilms by the studied cultures was assessed by the formation of extracellular matrix stained with aniline dyes on glass and polystyrene surfaces after incubation; 0.1% crystal violet solution was used as the dye. The presence and density of biomatrix were assessed by staining intensity of the surfaces of contact with broth cultures or by optical density of the stained inoculum on a spectrophotometer. Biofilms were formed by 57% Campylobacter strains and 44% Enterobacteriaceae strains. The intensity of the film formation depended on culturing conditions and protocols, species and genus of studied isolates, and largely on adhesion properties of abiotic surfaces. In 30% of Enterobacteriaceae strains, the biofilm formation capacity tended to increase under the influence of chlorine-containing biocide solutions. Thus, we developed and tested under laboratory conditions a plate version of in vitro chromogenic model for evaluation of biofilm formation capacity of C. jejuni strains and studied stress responses to negative environmental factors.

  18. Minocycline Inhibits Candida albicans Budded-to-Hyphal-Form Transition and Biofilm Formation.

    PubMed

    Kurakado, Sanae; Takatori, Kazuhiko; Sugita, Takashi

    2017-09-25

    Candida albicans frequently causes bloodstream infections; its budded-to-hyphalform transition (BHT) and biofilm formation are major contributors to virulence. During an analysis of antibacterial compounds that inhibit C. albicans BHT, we found that the tetracycline derivative minocycline inhibited BHT and subsequent biofilm formation. Minocycline decreased expression of hypha-specific genes HWP1 and ECE1, and adhesion factor gene ALS3 of C. albicans. In addition, minocycline decreased cell surface hydrophobicity and the extracellular β-glucan level in biofilms. Minocycline has been widely used for catheter antibiotic lock therapy to prevent bacterial infection; this compound may also be prophylactically effective against Candida infection.

  19. Glycerol metabolism induces Listeria monocytogenes biofilm formation at the air-liquid interface.

    PubMed

    Crespo Tapia, Natalia; den Besten, Heidy M W; Abee, Tjakko

    2018-05-20

    Listeria monocytogenes is a food-borne pathogen that can grow as a biofilm on surfaces. Biofilm formation in food-processing environments is a big concern for food safety, as it can cause product contamination through the food-processing line. Although motile aerobic bacteria have been described to form biofilms at the air-liquid interface of cell cultures, to our knowledge, this type of biofilm has not been described in L. monocytogenes before. In this study we report L. monocytogenes biofilm formation at the air-liquid interface of aerobically grown cultures, and that this phenotype is specifically induced when the media is supplemented with glycerol as a carbon and energy source. Planktonic growth, metabolic activity assays and HPLC measurements of glycerol consumption over time showed that glycerol utilization in L. monocytogenes is restricted to growth under aerobic conditions. Gene expression analysis showed that genes encoding the glycerol transporter GlpF, the glycerol kinase GlpK and the glycerol 3-phosphate dehydrogenase GlpD were upregulated in the presence of oxygen, and downregulated in absence of oxygen. Additionally, motility assays revealed the induction of aerotaxis in the presence of glycerol. Our results demonstrate that the formation of biofilms at the air-liquid interface is dependent on glycerol-induced aerotaxis towards the surface of the culture, where L. monocytogenes has access to higher concentrations of oxygen, and is therefore able to utilize this compound as a carbon source. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Biofilm Formation and Immunomodulatory Activity of Proteus mirabilis Clinically Isolated Strains.

    PubMed

    Fusco, Alessandra; Coretti, Lorena; Savio, Vittoria; Buommino, Elisabetta; Lembo, Francesca; Donnarumma, Giovanna

    2017-02-15

    Urinary tract infections (UTIs) and catheter-associated UTIs (CAUTIs) are the principal hospital-acquired infections. Proteus mirabilis is characterized by several virulence factors able to promote adhesion and biofilm formation and ameliorate the colonization of urinary tract and the formation of crystalline biofilms on the abiotic surface of the urinary catheters. Since, to date, the role of P. mirabilis in the etiopathogenesis of different types of urinary tract infections is not well established, in this study we sought to characterize two different clinically isolated strains of P. mirabilis (PM1 and PM2) with distinctive phenotypes and analyzed various virulence factors possibly implicated in the ability to induce UTIs and CAUTIs. In particular, we analyzed motility, biofilm formation both on abiotic and biotic surfaces of PM1 and PM2 and paralleled these parameters with the ability to induce an inflammatory response in an epithelial cell model. Results showed that PM1 displayed major motility and a capacity to form biofilm and was associated with an anti-inflammatory response of host cells. Conversely, PM2 exhibited lack motility and a had slower organization in biofilm but promoted an increase of proinflammatory cytokine expression in infected epithelial cells. Our study provides data useful to start uncovering the pathologic basis of P. mirabilis -associated urinary infections. The evidence of different virulence factors expressed by PM1 and PM2 highlights the possibility to use precise and personalized therapies targeting specific virulence pathways.