Science.gov

Sample records for mutant b-cell lines

  1. B-cell proliferation and induction of early G1-regulating proteins by Epstein-Barr virus mutants conditional for EBNA2.

    PubMed

    Kempkes, B; Spitkovsky, D; Jansen-Dürr, P; Ellwart, J W; Kremmer, E; Delecluse, H J; Rottenberger, C; Bornkamm, G W; Hammerschmidt, W

    1995-01-01

    Infection of primary B-lymphocytes by Epstein-Barr virus (EBV) leads to growth transformation of these B-cells in vitro. EBV nuclear antigen 2 (EBNA2), one of the first genes expressed after EBV infection of B-cells, is a transcriptional activator of viral and cellular genes and is essential for the transforming potential of the virus. We generated conditional EBV mutants by expressing EBNA2 as chimeric fusion protein with the hormone binding domain of the estrogen receptor on the genetic background of the virus. Growth transformation of primary normal B-cells by mutant virus resulted in estrogen-dependent lymphoblastoid cell lines expressing the chimeric EBNA2 protein. In the absence of estrogen about half of the cells enter a quiescent non-proliferative state whereas the others die by apoptosis. EBNA2 is thus required not only for initiation but also for maintenance of transformation. Growth arrest occurred at G1 and G2 stages of the cell cycle, indicating that functional EBNA2 is required at different restriction points of the cell cycle. Growth arrest is reversible for G1/G0 cells as indicated by the sequential accumulation and modification of cell cycle regulating proteins. EBV induces the same cell cycle regulating proteins as polyclonal stimuli in primary B-cells. These data suggest that EBV is using a common pathway for B-cell activation bypassing the requirement for antigen, T-cell signals and growth factors. PMID:7828599

  2. Reversion of a transcriptionally defective MHC class II-negative human B-cell mutant.

    PubMed Central

    Ombra, M N; Perfetto, C; Autiero, M; Anzisi, A M; Pasquinelli, R; Maffei, A; Del Pozzo, G; Guardiola, J

    1993-01-01

    RJ2.2.5, a mutant derived from the human B-lymphoma cell, Raji, is unable to express the MHC class II genes because of a recessive transcriptional defect attributed to the lack of an activator function. We report the isolation of a RJ2.2.5 revertant, namely AR, in which the expression of the mRNAs encoded by these genes is restored. Comparison of the binding of nuclear extracts or of partially purified nuclear preparations from the wild-type, the mutant and the revertant cells to a conserved MHC class II promoter element, the X-box, showed no alteration in the mobility of the complexes thus formed. However, in extracts from RJ2.2.5, and other MHC class II negative cell lines, such as HeLa, the amount of complex observed was significantly higher than in wild-type Raji cells. Furthermore, the binding activity exhibited by the AR revertant was lower than that of the RJ2.2.5 and higher than that of Raji. The use of specific monoclonal antibodies indicated that in all cases c-Jun and c-Fos or antigenically related proteins were required for binding. An inverse correlation between the level of DNA-protein complex formed and the level of MHC class II gene mRNA expressed in the three cell lines was apparent, suggesting that overexpression of a DNA binding factor forming complexes with class II promoter elements may cause repression of MHC class II transcription. A model which reconciles the previously ascertained recessivity of the phenotype of the mutation carried by RJ2.2.5 with the findings reported here is discussed. Images PMID:8441650

  3. Enhancement of hypermutation frequency in the chicken B cell line DT40 for efficient diversification of the antibody repertoire

    SciTech Connect

    Magari, Masaki; Kanehiro, Yuichi; Todo, Kagefumi; Ikeda, Mika; Kanayama, Naoki Ohmori, Hitoshi

    2010-05-28

    Chicken B cell line DT40 continuously accumulates mutations in the immunoglobulin variable region (IgV) gene by gene conversion and point mutation, both of which are mediated by activation-induced cytidine deaminase (AID), thereby producing an antibody (Ab) library that is useful for screening monoclonal Abs (mAbs) in vitro. We previously generated an engineered DT40 line named DT40-SW, whose AID expression can be reversibly switched on or off, and developed an in vitro Ab generation system using DT40-SW cells. To efficiently create an Ab library with sufficient diversity, higher hypermutation frequency is advantageous. To this end, we generated a novel cell line DT40-SW{Delta}C, which conditionally expresses a C-terminus-truncated AID mutant lacking the nuclear export signal. The transcription level of the mutant AID gene in DT40-SW{Delta}C cells was similar to that of the wild-type gene in DT40-SW cells. However, the protein level of the truncated AID mutant was less than that of the wild type. The mutant protein was enriched in the nuclei of DT40-SW{Delta}C cells, although the protein might be highly susceptible to degradation. In DT40-SW{Delta}C cells, both gene conversion and point mutation occurred in the IgV gene with over threefold higher frequency than in DT40-SW cells, suggesting that a lower level of the mutant AID protein was sufficient to increase mutation frequency. Thus, DT40-SW{Delta}C cells may be useful for constructing Ab libraries for efficient screening of mAbs in vitro.

  4. Human B-cell interleukin-10: B-cell lines derived from patients with acquired immunodeficiency syndrome and Burkitt's lymphoma constitutively secrete large quantities of interleukin-10.

    PubMed

    Benjamin, D; Knobloch, T J; Dayton, M A

    1992-09-01

    A recent addition to the lymphokine network is human IL-10 (hIL-10). This novel lymphokine has striking homology to BCRF1 protein, the product of a previously uncharacterized open-reading frame in the Epstein-Barr virus (EBV) genome. To date, IL-10 expression has been described in several T clones induced with anti-CD3 and phorbol myristate acetate (PMA), in monocytes stimulated with lipopolysaccharide (LPS), and in murine B-cell lymphomas. We sought to determine whether human B cells express hIL-10 and, if so, its relationship to EBV and to other B-cell lymphokines. We studied 21 EBV-positive B-cell lines derived from patients with acquired immunodeficiency syndrome (AIDS) and Burkitt's lymphoma (n = 6), American Burkitt's (n = 3), African Burkitt's (n = 5), and normal lymphoblastoid cell lines (n = 7), in comparison with seven EBV-negative cell lines. All cell lines were activated with the tumor promoters PMA and teleocidin and were studied by Northern blot analysis, reverse transcription-polymerase chain reaction (RT-PCR), and enzyme-linked immunoadsorbent assay (ELISA). We demonstrated that EBV-positive cell lines derived from patients with American Burkitt's lymphoma, and especially those from patients with AIDS, constitutively express large quantities of hIL-10 by Northern blot analysis and ELISA (range, 3,101 to 25,915 pg/mL), and that both teleocidin and PMA induce hIL-10 in these cell lines. In contrast, six of seven EBV-negative cell lines did not express hIL-10 even by RT-PCR, and hIL-10 was not triggered by PMA or teleocidin. To assure that the 350 bp amplified by PCR was hIL-10 and not BCRF1, we used PCR primers, which do not amplify a fragment from plasmid templates containing BCRF1. Cloning and sequencing of the 350 bp product also demonstrated that B-cell IL-10 is identical to hIL-10 from the T-cell clone B21. Correlation of hIL-10 with other B-cell lymphokines secreted by these B-cell lines demonstrated that hIL-10 secretor cell lines also

  5. Properties of an EBV-B cell line derived interleukin 1 (IL 1) receptor

    SciTech Connect

    Matsushima, K.; Akahoshi, T.; Yamada, M.; Furutani, Y.; Oppenheim, J.J.

    1986-03-01

    The properties of an human IL 1 receptor on a human EBV-B line were studied. Purified human IL 1-..beta.. produced by a myelomonocytic cell line (THP-1) was labeled with /sup 125/I by the Bolton-Hunter method without loss of biological activity. Among four EBV-B cell lines tested, a pre-B cell type (VDS-O) specifically bound the most /sup 125/I IL-..beta... Maximal binding was reached within 20 min at 4/sup 0/C. Scatchard analysis of the binding of /sup 125/I-IL 1-..beta.. to VDS-O cells yielded a Kd of 2.4-5.9 x 10/sup -00/ M with 110 to 220 binding (receptor) sites/cell. The binding of /sup 125/I-IL 1-..beta.. to VDS-O cells was inhibited by anti-human IL 1 antibody, natural and recombinant human IL 1-..cap alpha.. as well as IL 1-..beta.., but not by IFN-..cap alpha.., TNF, or LT, suggesting that IL 1-..cap alpha.. and IL 1-..beta.. specifically bind to the same receptor. The mw of the IL 1 receptor on human EBV-B cells was estimated to be 60 Kd both by a chemical crosslinking method and by HPLC gel filtration analysis of solubilized receptor extracted from membranes by a nonionic detergent (CHAPS). The pI of solubilized human IL 1 receptor was 7.3 by HPLC chromatofocusing. Data showing that VDS-O cells proliferate in response to exogenously added IL 1, express IL 1 receptors and also produce IL 1 all support the hypothesis that IL 1 may function as an autocrine signal for B lymphocytes.

  6. Genetic manipulation of an exogenous non-immunoglobulin protein by gene conversion machinery in a chicken B cell line

    PubMed Central

    Kanayama, Naoki; Todo, Kagefumi; Takahashi, Satoko; Magari, Masaki; Ohmori, Hitoshi

    2006-01-01

    During culture, a chicken B cell line DT40 spontaneously mutates immunoglobulin (Ig) genes by gene conversion, which involves activation-induced cytidine deaminase (AID)-dependent homologous recombination of the variable (V) region gene with upstream pseudo-V genes. To explore whether this mutation mechanism can target exogenous non-Ig genes, we generated DT40 lines that bears a gene conversion substrate comprising the green fluorescent protein (GFP) gene as a donor and the blue fluorescent protein (BFP) gene as an acceptor. A few percent of the initially BFP-expressing cells converted their fluorescence from blue to green after culture for 2–3 weeks when the substrate construct was integrated in the Ig light chain locus, but not in the ovalbumin locus. This was the result of AID-dependent and the GFP gene-templated gene conversion of the BFP gene, thereby leading to the introduction of various sizes of GFP-derived gene segment into the BFP gene. Thus, G/B construct may be used to visualize gene conversion events. After switching off AID expression in DT40 cells, the mutant clones were isolated stably and maintained with their mutations being fixed. Thus, the gene conversion machinery in DT40 cells will be a useful means to engineer non-Ig proteins by a type of DNA shuffling. PMID:16421270

  7. Characterization of a B cell-derived growth-enhancing factor produced by a human B cell line established from a patient with rheumatoid arthritis.

    PubMed

    Kang, H; Koyasu, S; Takei, M; Tomura, K; Karasaki, M; Yahara, I; Sawada, S

    1987-08-15

    A human B cell line, TKS-1, which was established from the peripheral blood of a patient with rheumatoid arthritis, was found to spontaneously produce a factor which enhances the activity of interleukin 1 (IL-1). This factor, designated B cell-derived growth-enhancing factor (BGEF), enhanced IL-1-induced proliferation of peanut agglutinin nonagglutinated thymocytes. BGEF also enhanced IL-1-induced production of interleukin 2 (IL-2) by both thymocytes and a human T cell clone, HSB.2 C5B2. BGEF alone did not induce the production of IL-2. BGEF failed to induce proliferation of the IL-2-dependent T cell clone, and did not enhance its response to IL-2. The activity of BGEF was not blocked by antisera against human IL-1-alpha or human IL-1-beta. Gel filtration analysis revealed that BGEF has a m.w. of 60,000 to 65,000 in its native state. We concluded that BGEF differed from IL-1 and IL-2, but is a novel factor produced by TKS-1 cells. In addition, we found that partially purified B cells from patients with rheumatoid arthritis produced factors which enhanced the activity of IL-1. PMID:3497197

  8. Exosomes Derived from Burkitt’s Lymphoma Cell Lines Induce Proliferation, Differentiation, and Class-Switch Recombination in B Cells

    PubMed Central

    Gutzeit, Cindy; Nagy, Noemi; Gentile, Maurizio; Lyberg, Katarina; Gumz, Janine; Vallhov, Helen; Puga, Irene; Klein, Eva; Gabrielsson, Susanne; Cerutti, Andrea; Scheynius, Annika

    2014-01-01

    Exosomes, nano-sized membrane vesicles, are released by various cells and are found in many human body fluids. They are active players in intercellular communication and have immune-suppressive, immune-regulatory, and immune-stimulatory functions. EBV is a ubiquitous human herpesvirus that is associated with various lymphoid and epithelial malignancies. EBV infection of B cells in vitro induces the release of exosomes that harbor the viral latent membrane protein 1 (LMP1). LMP1 per se mimics CD40 signaling and induces proliferation of B lymphocytes and T cell–independent class-switch recombination. Constitutive LMP1 signaling within B cells is blunted through the shedding of LMP1 via exosomes. In this study, we investigated the functional effect of exosomes derived from the DG75 Burkitt’s lymphoma cell line and its sublines (LMP1 transfected and EBV infected), with the hypothesis that they might mimic exosomes released during EBV-associated diseases. We show that exosomes released during primary EBV infection of B cells harbored LMP1, and similar levels were detected in exosomes from LMP1-transfected DG75 cells. DG75 exosomes efficiently bound to human B cells within PBMCs and were internalized by isolated B cells. In turn, this led to proliferation, induction of activation-induced cytidine deaminase, and the production of circle and germline transcripts for IgG1 in B cells. Finally, exosomes harboring LMP1 enhanced proliferation and drove B cell differentiation toward a plasmablast-like phenotype. In conclusion, our results suggest that exosomes released from EBV-infected B cells have a stimulatory capacity and interfere with the fate of human B cells. PMID:24829410

  9. Human B-cell cancer cell lines as a preclinical model for studies of drug effect in diffuse large B-cell lymphoma and multiple myeloma.

    PubMed

    Laursen, Maria Bach; Falgreen, Steffen; Bødker, Julie Støve; Schmitz, Alexander; Kjeldsen, Malene Krag; Sørensen, Suzette; Madsen, Jakob; El-Galaly, Tarec Christoffer; Bøgsted, Martin; Dybkær, Karen; Johnsen, Hans Erik

    2014-11-01

    Drug resistance in cancer refers to recurrent or primary refractory disease following drug therapy. At the cellular level, it is a consequence of molecular functions that ultimately enable the cell to resist cell death-one of the classical hallmarks of cancer. Thus, drug resistance is a fundamental aspect of the cancer cell phenotype, in parallel with sustained proliferation, immortality, angiogenesis, invasion, and metastasis. Here we present a preclinical model of human B-cell cancer cell lines used to identify genes involved in specific drug resistance. This process includes a standardized technical setup for specific drug screening, analysis of global gene expression, and the statistical considerations required to develop resistance gene signatures. The state of the art is illustrated by the first-step classical drug screen (including the CD20 antibody rituximab, the DNA intercalating topoisomerase II inhibitor doxorubicin, the mitotic inhibitor vincristine, and the alkylating agents cyclophosphamide and melphalan) along with the generation of gene lists predicting the chemotherapeutic outcome as validated retrospectively in clinical trial datasets. This B-cell lineage-specific preclinical model will allow us to initiate a range of laboratory studies, with focus on specific gene functions involved in molecular resistance mechanisms. PMID:25072621

  10. Identification of murine B cell lines that undergo somatic hypermutation focused to A:T and G:C residues

    PubMed Central

    Bhattacharya, Palash; Grigera, Fernando; Rogozin, Igor B.; McCarty, Thomas; Morse, Herbert C.; Kenter, Amy L.

    2016-01-01

    Activation-induced deaminase (AID) is the master regulator of class switch recombination (CSR) and somatic hypermutation (SHM), but the mechanisms regulating AID function are obscure. The differential pattern of switch plasmid activity in three IgM+/AID+ and two IgG+/AID+ B cell lines prompted an analysis of global gene expression to discover the origin of these cells. Gene profiling suggested that the IgG+/AID+ B cell lines derived from germinal center B cells. Analysis of SHM potential demonstrates that the IgVκ domains are inducibly diversified at high rate during in vitro culture. The mutation spectra focused to A:T base pairs, revealing a component of the hypermutation program that occurs preferentially during phase 2 of SHM. The A:T error spectra were analyzed and were not characteristic of polymerase η activity. A differential pattern of three consensus motifs used for A:T base substitutions was observed in WT and Polη-, Msh2- and Msh6-deficient B cells. Strikingly, mutations in our B cell lines recapitulated the mutable motif profile for Polη and Msh2 deficiency, respectively, and suggest that an additional pathway for the generation of A:T mutations in SHM is conserved in mouse and human. PMID:18081040

  11. T cell binding to B lymphoid cell lines in humans: a marker for T-B cell interaction?

    PubMed

    Goust, J M; Fudenberg, H H

    1983-04-15

    Binding of human circulating T cells to established normal and malignant B cell lines results in rosette formation. The percentage of B cells, circulating T cells, and thymocytes able to bind to the B-LCL Raji were 0%, 59 +/- 4% and 61 +/- 6%, respectively. The percentage of rosettes formed between Raji cells and circulating mononuclear cells from 92 normal individuals was 27.8 +/- 5.3%, and remained stable over several months. This phenomenon seems to involve relatively mature B cells, and a T cell marker which appears early in T cell ontogeny. In the peripheral blood, most of the B-LCL binding T cells exhibit a 'helper-inducer' phenotype, as determined with the monoclonal antibodies Leu 3a and OKT4. However, a significant percentage of T cells with so-called 'cytotoxic-suppressor' markers (Leu 2a and OKT8) also bind to B-LCL. The T cells involved in this morphological interactive reaction with B cells might conceivably be specifically involved in regulating B cell functions. Enumeration of this particular subset may be useful in conditions where abnormal T-B cell interactions are suspected. PMID:6601166

  12. Genomic Landscape of Primary Mediastinal B-Cell Lymphoma Cell Lines

    PubMed Central

    Nagel, Stefan; Eberth, Sonja; Pommerenke, Claudia; Dirks, Wilhelm G.; Geffers, Robert; Kalavalapalli, Srilaxmi; Kaufmann, Maren; Meyer, Corrina; Faehnrich, Silke; Chen, Suning; Drexler, Hans G.; MacLeod, Roderick A. F.

    2015-01-01

    Primary mediastinal B-Cell lymphoma (PMBL) is a recently defined entity comprising ~2–10% non-Hodgkin lymphomas (NHL). Unlike most NHL subtypes, PMBL lacks recurrent gene rearrangements to serve as biomarkers or betray target genes. While druggable, late chemotherapeutic complications warrant the search for new targets and models. Well characterized tumor cell lines provide unlimited material to serve as preclinical resources for verifiable analyses directed at the discovery of new biomarkers and pathological targets using high throughput microarray technologies. The same cells may then be used to seek intelligent therapies directed at clinically validated targets. Four cell lines have emerged as potential PMBL models: FARAGE, KARPAS-1106P, MEDB-1 and U-2940. Transcriptionally, PMBL cell lines cluster near c(lassical)-HL and B-NHL examples showing they are related but separate entities. Here we document genomic alterations therein, by cytogenetics and high density oligonucleotide/SNP microarrays and parse their impact by integrated global expression profiling. PMBL cell lines were distinguished by moderate chromosome rearrangement levels undercutting cHL, while lacking oncogene translocations seen in B-NHL. In total 61 deletions were shared by two or more cell lines, together with 12 amplifications (≥4x) and 72 homozygous regions. Integrated genomic and transcriptional profiling showed deletions to be the most important class of chromosome rearrangement. Lesions were mapped to several loci associated with PMBL, e.g. 2p15 (REL/COMMD1), 9p24 (JAK2, CD274), 16p13 (SOCS1, LITAF, CIITA); plus new or tenuously associated loci: 2p16 (MSH6), 6q23 (TNFAIP3), 9p22 (CDKN2A/B), 20p12 (PTPN1). Discrete homozygous regions sometimes substituted focal deletions accompanied by gene silencing implying a role for epigenetic or mutational inactivation. Genomic amplifications increasing gene expression or gene-activating rearrangements were respectively rare or absent. Our findings

  13. BST-1, a surface molecule of bone marrow stromal cell lines that facilitates pre-B-cell growth.

    PubMed Central

    Kaisho, T; Ishikawa, J; Oritani, K; Inazawa, J; Tomizawa, H; Muraoka, O; Ochi, T; Hirano, T

    1994-01-01

    Bone marrow stromal cells are essential for B-lymphocyte development. However, how stromal cells regulate B lymphopoiesis is not clear. In this paper, we report the molecular cloning of a stromal cell line-derived glycosyl-phosphatidylinositol-anchored molecule, BST-1, that facilitates pre-B-cell growth. The deduced amino acid sequence of BST-1 exhibited 33% identity with CD38. BST-1 was expressed in a wide range of tissues and in umbilical vein endothelial cells, whereas it was scarcely expressed in a variety of hematopoietic cell lines. The gene for BST-1 was assigned to chromosome 14q32.3, where immunoglobulin heavy-chain genes are clustered. BST-1 expression was enhanced in rheumatoid arthritis patient-derived bone marrow stromal cell lines that were previously shown to have an enhanced ability to support the growth of a pre-B-cell line as compared with stromal cell lines derived from healthy donors. Images PMID:8202488

  14. Functional role of the nicotinic arm of the acetylcholine regulatory axis in human B-cell lines

    PubMed Central

    Arredondo, Juan; Omelchenko, Denys; Chernyavsky, Alexander I; Qian, Jing; Skok, Maryna; Grando, Sergei A

    2009-01-01

    We studied the involvement of nicotinic acetylcholine receptors (nAChRs) in the inflammation-related activity of human B-cell lines. Activation of nAChRs in Daudi cells with epibatidine abolished the pansorbin-dependent upregulation of the pro-inflammatory marker Cox-2 both at the mRNA and protein levels, indicating that the nicotinergic signaling suppresses B-cell activation. While the anti-inflammatory action on B-cells was mediated predominantly through α7 nAChR, as could be judged from abolishing epibatidine effects with methyllycaconitine, both α7 and non-α7 nAChRs, such as α2-containing receptors, were involved in regulation of B-cell apoptosis. The net effect was antiapoptotic. To determine the role of nAChRs in regulating B-cell activation/plasmacytic differentiation, we measured changes in the CD38, CD138 and Bcl-6 gene expression. Epibatidine significantly (P < 0.05) upregulated CD38 at the transcriptional level and CD138 and Bcl-6 – at the translational levels. AR-R17779 significantly (P < 0.05) increased the protein levels of CD38 and CD138. In both cases, the effect of epibatidine was abolished with Mec, and that of AR-R17779 – by MLA, demonstrating a functional role of nAChRs in regulating Daudi cell differentiation. The obtained results revealed distinct contributions of α7 and non-α7 nAChRs to regulation of B-cell activation/differentiation, and suggested that signaling through the nicotinic arm of acetylcholine regulatory axis is important for B-cell involvement in inflammation.

  15. Juxtacrine function of interleukin-15/interleukin-15 receptor system in tumour derived human B-cell lines

    PubMed Central

    Tsukamoto, K; Huang, Y C; Dorsey, W C; Carns, B; Sharma, V

    2006-01-01

    Interleukin-15 (IL-15) is a cytokine that induces proliferation and promotes cell survival of human T, B and NK cells. IL-15 and interleukin-2 (IL-2) exhibit a similar spectrum of immune effects and share the IL-2 receptor (IL-2R) subunits IL-2Rβ and IL-2Rγc for signalling in haematopoietic cells. Furthermore, each cytokine has a private α receptor, namely IL-2Rα for IL-2 and IL-15Rα for IL-15, that functions in ligand binding. Using reverse transcriptase-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) methods, the expression and secretion of IL-15 and IL-15Rα in tumour-derived B-cell lines were studied. The results as presented in this study identify that IL-15 mRNA is predominantly expressed in EBV positive (EBV+) B-cell lines, although IL-15Rα is ubiquitously and constitutively expressed in all these B-cell lines. Although no detectable levels of IL-15 protein secretion were observed in any of these cell lines, we were able to detect membrane-bound expression of IL-15 protein by FACS analysis in some cell lines. These data imply that the IL-15/IL-15R system requires complex regulatory mechanisms for protein secretion. Taken together, we speculate that these results suggest a juxtacrine, intracrine function for IL-15/IL-15R. PMID:17100778

  16. Effect of cell-derived growth factors and cytokines on the clonal outgrowth of EBV-infected B cells and established lymphoblastoid cell lines.

    PubMed

    Ifversen, P; Zhang, X M; Ohlin, M; Zeuthen, J; Borrebaeck, C A

    1993-07-01

    Epstein-Barr virus (EBV) is a potent inducer of polyclonal B lymphocyte proliferation and is widely used as a tool for the establishment of B cell lines producing human monoclonal antibodies. However, because of low transformability, low clonability, and the inherent instability of EBV-infected B cells, valuable antibody-producing B cells are often lost during this procedure. We have here examined various cell-derived cytokines for their ability to enhance both the cellular outgrowth of newly infected B cells and the clonability of infected B cells and lymphoblastoid cell lines. Our results show that the murine thymoma cell line EL-4 is superior to peripheral blood mononuclear cells in both cellular outgrowth and cloning experiments, whereas monocyte-derived factors and monocyte cell lines were less capable than peripheral blood mononuclear cells in enhancing cellular outgrowth and cloning. Furthermore, the human T cell hybridoma cell line MP6 that secretes a B cell growth and differentiation factor, recently identified as an isoform of thioredoxin, is also capable of stimulating EBV-infected B cells and lymphoblastoid cell lines. Co-cultivation of EBV-infected B cells with MP6 cells significantly enhanced the cloning efficiency at the 1 cell/well level. The present results also suggest that one potential role of the MP6-derived thioredoxin could be the up regulation of IL-6 receptor expression in EBV-infected B cells. PMID:8395232

  17. Spontaneous expression of a low affinity Fc receptor for IgA (Fc alpha R) on human B cell lines.

    PubMed Central

    Millet, I; Briere, F; Vincent, C; Rousset, F; Andreoni, C; De Vries, J E; Revillard, J P

    1989-01-01

    Expression of receptors for IgA (Fc alpha Rs) was investigated on a panel of 35 human B cell lines by labelling with human secretory IgA (0.5 mg/ml) and flow cytometry analysis after staining with fluoresceinated goat anti-human secretory component and/or anti-alpha chain F(ab')2 fragments. Receptors for IgA could be demonstrated on one out of nine Burkitt's lymphoma cell lines, three out of five myeloma cell lines and five out of 21 lymphoblastoid cell lines. The percentage of Fc alpha R-positive cells within the same B cell line varied upon repeated examination. Human dimeric IgA1 lambda myeloma protein revealed the same number of IgA receptor positive cells as did secretory IgA, whereas monomeric IgA did not bind to Fc alpha R. Detection of Fc alpha R was not inhibited when the tests were carried out in the presence of human dimeric IgG, IgM, asialo-orosomucoid, and secretory component but it was abrogated by pre-treatment of the cells with trypsin. The binding characteristics of Fc alpha Rs were studied on the myeloma cell line Esteve, using 125I-labelled human dimeric IgA and secretory IgA. The binding was dose-dependent with rapid kinetics and specific inhibition by unlabelled secretory IgA. Scatchard plot analysis resulted in an equilibrium constant K ranging from 3.2 to 4.7 x 10(6) M/l. No correlation was observed between Fc alpha R expression and differentiation stage, monoclonality, polyclonality of the cell lines, or Ig class produced by the B cells. PMID:2788048

  18. Expression of Leu M1 antigen on a monoclonal B cell line established from a patient with rheumatoid arthritis.

    PubMed

    Takei, M; Kang, H; Tomura, K; Ikeda, E; Karasaki, M; Nakauchi, H; Okumura, K; Sawada, S

    1989-11-01

    The purpose of this study is to show that anti-Leu M1 antibody (anti-CD15), which has different staining characteristics in lymphoid and non-lymphoid cells, reacted against the surface antigen of a defined monoclonal B cell line. This antibody recognizes the sugar moiety, lacto-N-fucopentaose (LNF-III), which is linked to the cell membrane protein in several kinds of cells, but not in B cells. However, a human monoclonal B-cell line (TKS-1) which was established from the peripheral blood of a patient with rheumatoid arthritis, expressed the Leu M1 antigen spontaneously. The analysis of surface markers using a fluorescence-activated cell sorter (FACS) has revealed that the surface markers of TKS-1 were anti-mu, delta, kappa, HLA-DR, DQ, Leu 12 (CD19) and Leu M1 (CD15). TKS-1 cells were not reactive with any of the following antibodies: anti-OK M1 (CD11b), Leu M2, Leu M3 (CD14), Leu M4, Leu 1 (CD5), Leu 2 (CD8), Leu 3 (CD4), Leu 4 (CD3), Leu 7 and Leu 11 (CD16). In addition, TKS-1 was positive to Epstein-Barr nuclear antigen, weakly positive to non-specific esterase without staining inhibition by NaF, and negative to peroxidase. TKS-1 cells produced IgM in the culture supernatant and have kappa-light chain rearrangement in its DNA. As shown in other studies, distribution of Leu M1 is very wide. This antigen is not a specific immunodiagnostic marker to distinguish the cell type. We conclude that it is possible to express Leu M1 antigen on the membrane of a B-cell lineage cell. PMID:2575080

  19. Two distinct genetic loci regulating class II gene expression are defective in human mutant and patient cell lines.

    PubMed Central

    Yang, Z; Accolla, R S; Pious, D; Zegers, B J; Strominger, J L

    1988-01-01

    Heterokaryons were prepared and analyzed shortly after cell fusion using two mutant class-II-negative human B cell lines (RJ 2.2.5 and 6.1.6) and a cell line (TF) from a patient with a class-II-negative Bare Lymphocyte Syndrome. The resulting transient heterokaryons were analyzed by using an anti-HLA-DR monoclonal antibody to assess the cell surface expression of HLA-DR (the major subtype of class II antigens) by immunofluorescence microscopy and by using uniformly 32P-labeled SP6 RNA probes in Northern blots and RNase protection assays to assess mRNA synthesis. We find that class II gene expression in a B cell line from a Bare Lymphocyte Syndrome patient (TF) is rescued by a B cell line which expresses class II antigens indicating that this disease, at least in part, is caused by a defect(s) in a genetic locus encoding a factor(s) necessary for class II gene expression. Secondly, reciprocal genetic complementation was demonstrated in the heterokaryons 6.1.6 x RJ 2.2.5 and TF x RJ 2.2.5 (but not in TF x 6.1.6) by detection of cell surface DR by immunofluorescence microscopy and by a novel class II mRNA typing technique which allows characterization of distinct class II alleles. Thus, the two mutants generated in vitro have defects at two different genetic loci encoding specific regulatory factors necessary for human class II gene expression. One of these mutant cell lines, but not the other, complements the defect in the patient cell line, TF. Images PMID:2458252

  20. Endotoxin-stimulated macrophages decrease bile acid uptake in WIF-B cells, a rat hepatoma hybrid cell line.

    PubMed

    Sturm, E; Zimmerman, T L; Crawford, A R; Svetlov, S I; Sundaram, P; Ferrara, J L; Karpen, S J; Crawford, J M

    2000-01-01

    Endotoxemia leads to cytokine-mediated alterations of the hepatocellular sodium-taurocholate-cotransporting polypeptide (ntcp). We hypothesized that stimulated macrophages are essential transducers for down-regulating hepatocellular bile salt uptake in response to endotoxin (lipopolysaccharide [LPS]) exposure. Using an in vitro model, we exposed mouse macrophages (IC-21 cell line) to LPS for 24 hours. Concentrations of cytokines tumor necrosis factor-alpha (TNF-alpha), interleukin (IL)-1beta, and IL-6 increased 10.6-fold, 12.5-fold, and 444-fold, respectively, in LPS-conditioned IC-21 medium (CM) versus unconditioned IC-21 medium (UM). WIF-B rat hepatoma hybrid cells were incubated with either CM or UM or treated directly with medium containing recombinant TNF-alpha, IL-1beta, and IL-6. [(3)H]Taurocholate ([(3)H]TC) uptake decreased in WIF-B cells exposed to either TNF-alpha (54% of control), IL-1beta (78%), IL-6 (55%) as single additives, or in triple combination (TCC) (43%). A virtually identical decrease was observed after exposing WIF-B cells to CM (52%, P <.001). LPS had no direct effect on [(3)H]TC uptake. CM treatment did not decrease L-alanine transport in WIF-B cells. Blocking antibodies against TNF-alpha, IL-1beta, and IL-6 restored the diminished [(3)H]TC uptake in cells exposed to TCC and CM to 87% and 107% of controls, respectively. Northern blotting revealed that ntcp messenger RNA (mRNA) expression was significantly reduced in WIF-B cells after exposure to CM, and in primary rat hepatocytes exposed to CM or TNF-alpha (68%, 14%, and 29% of control, respectively). We conclude that macrophages and their ability to secrete the cytokines TNF-alpha, IL-1beta, and IL-6 may be essential in mediating the endotoxin-induced cholestatic effect of decreased hepatocellular bile salt uptake. PMID:10613737

  1. Fusion Toxin BLyS-Gelonin Inhibits Growth of Malignant Human B Cell Lines In Vitro and In Vivo

    PubMed Central

    Luster, Troy A.; Mukherjee, Ipsita; Carrell, Jeffrey A.; Cho, Yun Hee; Gill, Jeffrey; Kelly, Lizbeth; Garcia, Andy; Ward, Christopher; Oh, Luke; Ullrich, Stephen J.; Migone, Thi-Sau; Humphreys, Robin

    2012-01-01

    B lymphocyte stimulator (BLyS) is a member of the TNF superfamily of cytokines. The biological activity of BLyS is mediated by three cell surface receptors: BR3/BAFF-R, TACI and BCMA. The expression of these receptors is highly restricted to B cells, both normal and malignant. A BLyS-gelonin fusion toxin (BLyS-gel) was generated consisting of the recombinant plant-derived toxin gelonin fused to the N-terminus of BLyS and tested against a large and diverse panel of B-NHL cell lines. Interestingly, B-NHL subtypes mantle cell lymphoma (MCL), diffuse large B cell lymphoma (DLBCL) and B cell precursor-acute lymphocytic leukemia (BCP-ALL) were preferentially sensitive to BLyS-gel mediated cytotoxicity, with low picomolar EC50 values. BLyS receptor expression did not guarantee sensitivity to BLyS-gel, even though the construct was internalized by both sensitive and resistant cells. Resistance to BLyS-gel could be overcome by treatment with the endosomotropic drug chloroquine, suggesting BLyS-gel may become trapped within endosomal/lysosomal compartments in resistant cells. BLyS-gel induced cell death was caspase-independent and shown to be at least partially mediated by the “ribotoxic stress response.” This response involves activation of p38 MAPK and JNK/SAPK, and BLyS-gel mediated cytotoxicity was inhibited by the p38/JNK inhibitor SB203580. Finally, BLyS-gel treatment was shown to localize to sites of disease, rapidly reduce tumor burden, and significantly prolong survival in xenograft mouse models of disseminated BCP-ALL, DLBCL, and MCL. Together, these findings suggest BLyS has significant potential as a targeting ligand for the delivery of cytotoxic “payloads” to malignant B cells. PMID:23056634

  2. Piperlongumine inhibits the proliferation and survival of B-cell acute lymphoblastic leukemia cell lines irrespective of glucocorticoid resistance.

    PubMed

    Han, Seong-Su; Han, Sangwoo; Kamberos, Natalie L

    2014-09-26

    Piperlongumine (PL), a pepper plant alkaloid from Piper longum, has anti-inflammatory and anti-cancer properties. PL selectively kills both solid and hematologic cancer cells, but not normal counterparts. Here we evaluated the effect of PL on the proliferation and survival of B-cell acute lymphoblastic leukemia (B-ALL), including glucocorticoid (GC)-resistant B-ALL. Regardless of GC-resistance, PL inhibited the proliferation of all B-ALL cell lines, but not normal B cells, in a dose- and time-dependent manner and induced apoptosis via elevation of ROS. Interestingly, PL did not sensitize most of B-ALL cell lines to dexamethasone (DEX). Only UoC-B1 exhibited a weak synergistic effect between PL and DEX. All B-ALL cell lines tested exhibited constitutive activation of multiple transcription factors (TFs), including AP-1, MYC, NF-κB, SP1, STAT1, STAT3, STAT6 and YY1. Treatment of the B-ALL cells with PL significantly downregulated these TFs and modulated their target genes. While activation of AURKB, BIRC5, E2F1, and MYB mRNA levels were significantly downregulated by PL, but SOX4 and XBP levels were increased by PL. Intriguingly, PL also increased the expression of p21 in B-ALL cells through a p53-independent mechanism. Given that these TFs and their target genes play critical roles in a variety of hematological malignancies, our findings provide a strong preclinical rationale for considering PL as a new therapeutic agent for the treatment of B-cell malignancies, including B-ALL and GC-resistant B-ALL. PMID:25193702

  3. Assessment of carbonic anhydrase IX expression and extracellular pH in B-cell lymphoma cell line models

    PubMed Central

    Chen, Liu Qi; Howison, Christine M.; Spier, Catherine; Stopeck, Alison T.; Malm, Scott W.; Pagel, Mark D.; Baker, Amanda F.

    2015-01-01

    The expression of carbonic anhydrase (CA IX) and it’s relation to acidosis in lymphomas has not been widely studied. We investigated the protein expression of CA IX in a human B-cell lymphoma tissue microarray, and in Raji, Ramos, and Granta 519 lymphoma cell lines and tumor models, while also investigating the relation with hypoxia. An imaging method, acidoCEST MRI, was used to estimate lymphoma xenograft extracellular pH (pHe). Our results showed that clinical lymphoma tissues and cell line models in vitro and in vivo had moderate CA IX expression. Although in vitro studies showed that CA IX expression was induced by hypoxia, in vivo studies did not show this correlation. Untreated lymphoma xenograft tumor pHe had acidic fractions, and an Acidity Score was qualitatively correlated with CA IX expression. Therefore, CA IX is expressed in B-cell lymphomas and is qualitatively correlated with extracellular acidosis in xenograft tumor models. PMID:25130478

  4. Assessment of carbonic anhydrase IX expression and extracellular pH in B-cell lymphoma cell line models.

    PubMed

    Chen, Liu Qi; Howison, Christine M; Spier, Catherine; Stopeck, Alison T; Malm, Scott W; Pagel, Mark D; Baker, Amanda F

    2015-05-01

    The expression of carbonic anhydrase IX (CA IX) and its relationship to acidosis in lymphomas has not been widely studied. We investigated the protein expression of CA IX in a human B-cell lymphoma tissue microarray, and in Raji, Ramos and Granta 519 lymphoma cell lines and tumor models, while also investigating the relationship with hypoxia. An imaging method, acidoCEST magnetic resonance imaging (MRI), was used to estimate lymphoma xenograft extracellular pH (pHe). Our results showed that clinical lymphoma tissues and cell line models in vitro and in vivo had moderate CA IX expression. Although in vitro studies showed that CA IX expression was induced by hypoxia, in vivo studies did not show this correlation. Untreated lymphoma xenograft tumor pHe had acidic fractions, and an acidity score was qualitatively correlated with CA IX expression. Therefore, CA IX is expressed in B-cell lymphomas and is qualitatively correlated with extracellular acidosis in xenograft tumor models. PMID:25130478

  5. Molecular cloning of a novel human hsp70 from a B cell line and its assignment to chromosome 5

    SciTech Connect

    Fathallah, D.M.; Arnaout, M.A. Harvard Medical School, Charlestown, MA ); Cherif, D.; Dellagi, K. )

    1993-07-15

    A 2391-bp cDNA encoding a novel human hsp70, named hsp70 RY, is described. It was cloned from a cDNA library constructed using mRNA derived from an established EBV-transformed B cell line from a patient with leukocyte adhesion molecule deficiency. hsp70 RY is 701 amino acids long, has the characteristic N-terminal ATP-binding domain and the C-terminal peptide binding domain, and contains four potential N-glycosylation sites. Northern blotting revealed a single mRNA species of 3.0 kb in total RNA prepared from the patient's EBV cell line. In situ hybridization localized the single copy hsp70 RY gene to the long arm of chromosome 5 at 5q31.1-5q31.2. 30 refs., 2 figs.

  6. Epstein-Barr virus-positive and -negative B-cell lines can be infected with human immunodeficiency virus types 1 and 2.

    PubMed Central

    Monroe, J E; Calender, A; Mulder, C

    1988-01-01

    Human immunodeficiency virus type 1 (HIV-1) can infect CD4+ lymphocytes, monocytes-macrophages, and various other cell lines, including B-cell lines. To study the parameters of B-cell infections, we examined the susceptibility of 24 B-lymphoid cell lines to both HIV-1 and HIV-2 infections. These cell lines included a series of Epstein-Barr virus (EBV) genome-negative Burkitt's lymphoma cell lines and their EBV-converted counterparts. To infect these cells we used two HIV-1 isolates and one HIV-2 isolate. Infections were monitored with a cytoplasmic RNA dot-blot and a syncytium assay. HIV infection was also studied by a novel method based on electrophoresis of DNA liberated from cells that were lysed in situ in the well of an agarose gel. All human B-cell lines could be infected with HIV-1, regardless of the presence of EBV genomes; thus, EBV infection had no major effect on HIV susceptibility of B-cell lines. Integrated proviral HIV genomes could be detected by Southern blot analysis of DNA extracted from long-term, non-HIV-producing B-cell lines. This study suggests that B-lymphoid cells may serve as reservoirs for latent or persistent HIV infections in vivo, even in the absence of EBV infection. Images PMID:2841499

  7. Piperlongumine inhibits the proliferation and survival of B-cell acute lymphoblastic leukemia cell lines irrespective of glucocorticoid resistance

    SciTech Connect

    Han, Seong-Su; Han, Sangwoo; Kamberos, Natalie L.

    2014-09-26

    Highlights: • PL inhibits the proliferation of B-ALL cell lines irrespective of GC-resistance. • PL selectively kills B-ALL cells by increasing ROS, but not normal counterpart. • PL does not sensitize majority of B-ALL cells to DEX. • PL represses the network of constitutively activated TFs and modulates their target genes. • PL may serve as a new therapeutic molecule for GC-resistant B-ALL. - Abstract: Piperlongumine (PL), a pepper plant alkaloid from Piper longum, has anti-inflammatory and anti-cancer properties. PL selectively kills both solid and hematologic cancer cells, but not normal counterparts. Here we evaluated the effect of PL on the proliferation and survival of B-cell acute lymphoblastic leukemia (B-ALL), including glucocorticoid (GC)-resistant B-ALL. Regardless of GC-resistance, PL inhibited the proliferation of all B-ALL cell lines, but not normal B cells, in a dose- and time-dependent manner and induced apoptosis via elevation of ROS. Interestingly, PL did not sensitize most of B-ALL cell lines to dexamethasone (DEX). Only UoC-B1 exhibited a weak synergistic effect between PL and DEX. All B-ALL cell lines tested exhibited constitutive activation of multiple transcription factors (TFs), including AP-1, MYC, NF-κB, SP1, STAT1, STAT3, STAT6 and YY1. Treatment of the B-ALL cells with PL significantly downregulated these TFs and modulated their target genes. While activation of AURKB, BIRC5, E2F1, and MYB mRNA levels were significantly downregulated by PL, but SOX4 and XBP levels were increased by PL. Intriguingly, PL also increased the expression of p21 in B-ALL cells through a p53-independent mechanism. Given that these TFs and their target genes play critical roles in a variety of hematological malignancies, our findings provide a strong preclinical rationale for considering PL as a new therapeutic agent for the treatment of B-cell malignancies, including B-ALL and GC-resistant B-ALL.

  8. Cloning and Expression of CD19, a Human B-Cell Marker in NIH-3T3 Cell Line

    PubMed Central

    Abbasi-Kenarsari, Hajar; Shafaghat, Farzaneh; Baradaran, Behzad; Movassaghpour, Ali Akbar; Shanehbandi, Dariush; Kazemi, Tohid

    2015-01-01

    Background CD19 is a pan B cell marker that is recognized as an attractive target for antibody-based therapy of B-cell disorders including autoimmune disease and hematological malignancies. The object of this study was to stably express the human CD19 antigen in the murine NIH-3T3 cell line aimed to be used as an immunogen in our future study. Methods Total RNA was extracted from Raji cells in which high expression of CD19 was confirmed by flow cytometry. Synthesized cDNA was used for CD19 gene amplification by conventional PCR method using Pfu DNA polymerase. PCR product was ligated to pGEM-T Easy vector and ligation mixture was transformed to DH5α competent bacteria. After blue/white selection, one positive white colony was subjected to plasmid extraction and direct sequencing. Then, CD19 cDNA was sub-cloned into pCMV6-Neo expression vector by double digestion using KpnI and HindIII enzymes. NIH-3T3 mouse fibroblast cell line was subsequently transfected by the construct using Jet-PEI transfection reagent. After 48 hours, surface expression of CD19 was confirmed by flow cytometry and stably transfected cells were selected by G418 antibiotic. Results Amplification of CD19 cDNA gave rise to 1701 bp amplicon confirmed by alignment to reference sequence in NCBI database. Flow cytometric analysis showed successful transient and stable expression of CD19 on NIH-3T3 cells (29 and 93%, respectively). Conclusion Stable cell surface expression of human CD19 antigen in a murine NIH-3T3 cell line may develop a proper immunogene which raises specific anti-CD19 antibody production in the mice immunized sera. PMID:25926951

  9. Activation of V(D)J Recombination Induces the Formation of Interlocus Joints and Hybrid Joints in scid Pre-B-Cell Lines

    PubMed Central

    Lew, Sandra; Franco, Daniel; Chang, Yung

    2000-01-01

    V(D)J recombination is the mechanism by which antigen receptor genes are assembled. The site-specific cleavage mediated by RAG1 and RAG2 proteins generates two types of double-strand DNA breaks: blunt signal ends and covalently sealed hairpin coding ends. Although these DNA breaks are mainly resolved into coding joints and signal joints, they can participate in a nonstandard joining process, forming hybrid and open/shut joints that link coding ends to signal ends. In addition, the broken DNA molecules excised from different receptor gene loci could potentially be joined to generate interlocus joints. The interlocus recombination process may contribute to the translocation between antigen receptor genes and oncogenes, leading to malignant transformation of lymphocytes. To investigate the underlying mechanisms of these nonstandard recombination events, we took advantage of recombination-inducible cell lines derived from scid homozygous (s/s) and scid heterozygous (s/+) mice by transforming B-cell precursors with a temperature-sensitive Abelson murine leukemia virus mutant (ts-Ab-MLV). We can manipulate the level of recombination cleavage and end resolution by altering the cell culture temperature. By analyzing various recombination products in scid and s/+ ts-Ab-MLV transformants, we report in this study that scid cells make higher levels of interlocus and hybrid joints than their normal counterparts. These joints arise concurrently with the formation of intralocus joints, as well as with the appearance of opened coding ends. The junctions of these joining products exhibit excessive nucleotide deletions, a characteristic of scid coding joints. These data suggest that an inability of scid cells to promptly resolve their recombination ends exposes the ends to a random joining process, which can conceivably lead to chromosomal translocations. PMID:10982833

  10. Stimulation of kappa light-chain gene rearrangement by the immunoglobulin mu heavy chain in a pre-B-cell line.

    PubMed Central

    Shapiro, A M; Schlissel, M S; Baltimore, D; DeFranco, A L

    1993-01-01

    B-lymphocyte development exhibits a characteristic order of immunoglobulin gene rearrangements. Previous work has led to the hypothesis that expression of the immunoglobulin mu heavy chain induces rearrangement activity at the kappa light-chain locus. To examine this issue in more detail, we isolated five matched pairs of mu- and endogenously rearranged mu+ cell lines from the Abelson murine leukemia virus-transformed pro-B-cell line K.40. In four of the five mu+ cell lines, substantial expression of mu protein on the cell surface was observed, and this correlated with an enhanced frequency of kappa immunoglobulin gene rearrangement compared with that in the matched mu- cell lines. This increased kappa gene rearrangement frequency was not due to a general increase in the amount of V(D)J recombinase activity in the mu+ cells. Consistently, introduction of a functionally rearranged mu gene into one of the mu- pre-B-cell lines resulted in a fivefold increase in kappa gene rearrangements. In three of the four clonally matched pairs with increased kappa gene rearrangements, the increase in rearrangement frequency was not accompanied by a significant increase in germ line transcripts from the C kappa locus. However, in the fourth pair, K.40D, we observed an increase in germ line transcription of the kappa locus after expression of mu protein encoded by either an endogenously rearranged or a transfected functional heavy-chain allele. In these cells, the amount of the germ line C kappa transcript correlated with the measured frequency of rearranged kappa genes. These results support a regulated model of B-cell development in which mu protein expression in some way targets the V(D)J recombinase to the kappa gene locus. Images PMID:8355709

  11. Generation of high-titre virus stocks using BrK.219, a B-cell line infected stably with recombinant Kaposi's sarcoma-associated herpesvirus.

    PubMed

    Kati, Semra; Hage, Elias; Mynarek, Martin; Ganzenmueller, Tina; Indenbirken, Daniela; Grundhoff, Adam; Schulz, Thomas F

    2015-06-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is a gamma-2-lymphotropic human oncogenic herpesvirus associated with Kaposi's sarcoma (KS) and two B-cell lymphoproliferative diseases, primary effusion lymphoma (PEL) and multicentric Castleman's disease (MCD). KSHV establishes latency soon after infection in vivo and in vitro. Consequently, it is technically difficult to generate high-titre virus stocks required for infection experiments in tissue culture. Currently used methods of KSHV stock production involve induction of the lytic/productive cycle in PEL cell lines or in adherent cell lines harbouring recombinant KSHV genomes. In this study, the BJAB-derived B-cell line BrK.219, which is infected latently with a recombinant KSHV (rKSHV.219), is used to produce high-titre virus stocks. BrK.219 cells enter the lytic KSHV replication cycle upon cross-linking of B-cell receptors (BCRs) with anti-IgM antibodies without the need for additional, potentially toxic chemical inducers. High cell concentrations can be cultured and induced easily in spinner flasks, saving time and resources. The established protocol allows the generation of KSHV virus stocks with titres of up to 10(6) IU/ml in unconcentrated culture supernatants, representing a 10(3)-10(4)-fold improvement compared to conventional methods. PMID:25736227

  12. The clinical development candidate CCT245737 is an orally active CHK1 inhibitor with preclinical activity in RAS mutant NSCLC and Eμ-MYC driven B-cell lymphoma

    PubMed Central

    Walton, Mike I.; Eve, Paul D.; Hayes, Angela; Henley, Alan T.; Valenti, Melanie R.; De Haven Brandon, Alexis K.; Box, Gary; Boxall, Kathy J.; Tall, Matthew; Swales, Karen; Matthews, Thomas P.; McHardy, Tatiana; Lainchbury, Michael; Osborne, James; Hunter, Jill E.; Perkins, Neil D.; Aherne, G. Wynne; Reader, John C.; Raynaud, Florence I.; Eccles, Suzanne A.; Collins, Ian; Garrett, Michelle D.

    2016-01-01

    CCT245737 is the first orally active, clinical development candidate CHK1 inhibitor to be described. The IC50 was 1.4nM against CHK1 enzyme and it exhibited>1,000-fold selectivity against CHK2 and CDK1. CCT245737 potently inhibited cellular CHK1 activity (IC50 30-220nM) and enhanced gemcitabine and SN38 cytotoxicity in multiple human tumor cell lines and human tumor xenograft models. Mouse oral bioavailability was complete (100%) with extensive tumor exposure. Genotoxic-induced CHK1 activity (pS296 CHK1) and cell cycle arrest (pY15 CDK1) were inhibited both in vitro and in human tumor xenografts by CCT245737, causing increased DNA damage and apoptosis. Uniquely, we show CCT245737 enhanced gemcitabine antitumor activity to a greater degree than for higher doses of either agent alone, without increasing toxicity, indicating a true therapeutic advantage for this combination. Furthermore, development of a novel ELISA assay for pS296 CHK1 autophosphorylation, allowed the quantitative measurement of target inhibition in a RAS mutant human tumor xenograft of NSCLC at efficacious doses of CCT245737. Finally, CCT245737 also showed significant single-agent activity against a MYC-driven mouse model of B-cell lymphoma. In conclusion, CCT245737 is a new CHK1 inhibitor clinical development candidate scheduled for a first in man Phase I clinical trial, that will use the novel pS296 CHK1 ELISA to monitor target inhibition. PMID:26295308

  13. The clinical development candidate CCT245737 is an orally active CHK1 inhibitor with preclinical activity in RAS mutant NSCLC and Eµ-MYC driven B-cell lymphoma.

    PubMed

    Walton, Mike I; Eve, Paul D; Hayes, Angela; Henley, Alan T; Valenti, Melanie R; De Haven Brandon, Alexis K; Box, Gary; Boxall, Kathy J; Tall, Matthew; Swales, Karen; Matthews, Thomas P; McHardy, Tatiana; Lainchbury, Michael; Osborne, James; Hunter, Jill E; Perkins, Neil D; Aherne, G Wynne; Reader, John C; Raynaud, Florence I; Eccles, Suzanne A; Collins, Ian; Garrett, Michelle D

    2016-01-19

    CCT245737 is the first orally active, clinical development candidate CHK1 inhibitor to be described. The IC50 was 1.4 nM against CHK1 enzyme and it exhibited>1,000-fold selectivity against CHK2 and CDK1. CCT245737 potently inhibited cellular CHK1 activity (IC50 30-220 nM) and enhanced gemcitabine and SN38 cytotoxicity in multiple human tumor cell lines and human tumor xenograft models. Mouse oral bioavailability was complete (100%) with extensive tumor exposure. Genotoxic-induced CHK1 activity (pS296 CHK1) and cell cycle arrest (pY15 CDK1) were inhibited both in vitro and in human tumor xenografts by CCT245737, causing increased DNA damage and apoptosis. Uniquely, we show CCT245737 enhanced gemcitabine antitumor activity to a greater degree than for higher doses of either agent alone, without increasing toxicity, indicating a true therapeutic advantage for this combination. Furthermore, development of a novel ELISA assay for pS296 CHK1 autophosphorylation, allowed the quantitative measurement of target inhibition in a RAS mutant human tumor xenograft of NSCLC at efficacious doses of CCT245737. Finally, CCT245737 also showed significant single-agent activity against a MYC-driven mouse model of B-cell lymphoma. In conclusion, CCT245737 is a new CHK1 inhibitor clinical development candidate scheduled for a first in man Phase I clinical trial, that will use the novel pS296 CHK1 ELISA to monitor target inhibition. PMID:26295308

  14. Real-time analysis of the detailed sequence of cellular events in mAb-mediated complement-dependent cytotoxicity of B-cell lines and of chronic lymphocytic leukemia B-cells.

    PubMed

    Lindorfer, Margaret A; Cook, Erika M; Tupitza, Jillian C; Zent, Clive S; Burack, Richard; de Jong, Rob N; Beurskens, Frank J; Schuurman, Janine; Parren, Paul W H I; Taylor, Ronald P

    2016-02-01

    Complement-dependent cytotoxicity is an important mechanism of action of certain mAbs used in cancer immunotherapy, including ofatumumab and rituximab. However, the detailed sequence of cellular changes that occur in nucleated cells attacked by mAb and complement has not been delineated. Recently developed CD20 mAbs, engineered to form hexamers on binding to cells, react with B-cells in serum, chelate C1q, and then activate complement and promote cell killing considerably more effectively than their wild-type precursors. We used these engineered mAbs as a model to investigate the sequence of events that occur when mAbs bind to B-cell lines and to primary cells from patients with chronic lymphocytic leukemia and then activate complement. Based on four-color confocal microscopy real-time movies and high resolution digital imaging, we find that after CD20 mAb binding and C1q uptake, C3b deposits on cells, followed by Ca(2+) influx, revealed by bright green signals generated on cells labeled with FLUO-4, a Ca(2+) indicator. The bright FLUO-4/Ca(2+) signal fades, replaced by punctate green signals in mitochondria, indicating Ca(2+) localization. This step leads to mitochondrial poisoning followed by cell death. The entire sequence is completed in <2 min for hexamerization-enhanced CD20 mAb-mediated killing. To our knowledge this is the first time the entire process has been characterized in detail in real time. By identifying multiple discrete steps in the cytotoxic pathway for nucleated cells our findings may inform future development and more effective application of complement-fixing mAbs to cancer treatment. PMID:26690706

  15. 90Y-ibritumomab tiuxetan radiotherapy as first-line therapy for early stage low-grade B-cell lymphomas, including bulky disease.

    PubMed

    Samaniego, Felipe; Berkova, Zuzana; Romaguera, Jorge E; Fowler, Nathan; Fanale, Michelle A; Pro, Barbara; Shah, Jatin J; McLaughlin, Peter; Sehgal, Lalit; Selvaraj, Vijairam; Braun, Frank K; Mathur, Rohit; Feng, Lei; Neelapu, Sattva S; Kwak, Larry W

    2014-10-01

    (90) Y-ibritumomab-tiuxetan ((90) YIT) was used as a first-line therapy for patients with early-stage follicular lymphoma (FL) or marginal zone B-cell lymphoma (MZL). Thirty-one patients were treated, with an overall 3-month response rate of 100% (68% complete response, 29% unconfirmed complete response and 3% partial response). At a median follow-up of 56 months, ten patients (32%) had disease relapse or progression. The progression-free rates at 3 and 5 years were lower in males, patients with FL, stage II disease and non-bulky disease, although they did not reach statistical significance. Grade 3-4 neutropenia, thrombocytopenia and anaemia were 61%, 35%, and 3%, respectively. (90) YIT was well tolerated, including in those patients over 60 years old, and achieved high response rates in patients with early-stage low-grade B-cell lymphomas. Bulky disease did not adversely affect tumour response. PMID:25040450

  16. Expression of low-, intermediate-, and high-affinity IL-2 receptors on B cell lines derived from patients with undifferentiated lymphoma of Burkitt's and non-Burkitt's types

    SciTech Connect

    Benjamin, D.; Rosolen, A.; Wormsley, S.B.; DeBault, L.E.; Colamonici, O.R. )

    1990-08-01

    IL-2 receptors on T cells exist in at least three forms which differ in their ligand-binding affinity. The low-affinity IL-2 receptor (IL-2R) consists of the 55-kDa Tac protein (p55 alpha), the intermediate-affinity site corresponds to the 70-kDa molecule (p70 beta), and the high-affinity IL-2R consists of a noncovalent heterodimeric structure involving both p55 alpha and p70 beta. We studied 24 B cell lines (8 EBV-negative and 16 EBV-positive) for IL-2R expression in the presence or absence of the tumor promoter, teleocidin. 125I-IL-2 radioreceptor binding assays and crosslinking studies demonstrated the sole expression of p55 alpha in EBV-negative cell lines only, whereas p55 alpha present in EBV-positive cell lines was always associated with p70 beta to construct high-affinity IL-2R. p70 beta was not detected in any of the EBV-negative cell lines, but was expressed on most of the EBV-positive cell lines (13 of 16). Our data also indicate that the expression of p55 alpha and p70 beta by radiolabeling correlates with their expression in flow cytometry, and that a large excess of p55 alpha is required to construct high-affinity IL-2R. Coexpression of p55 alpha and p70 beta on human B cells contributed to constructing high-affinity IL-2R hybrid complex as shown by rapid association rate contributed by p55 alpha and slow dissociation rate by p70 beta; teleocidin's ability to induce p55 alpha on cell lines which express p70 beta only, resulting in appearance of high-affinity IL-2R; and blocking p55 alpha by anti-Tac mAb in cell lines which constitutively express high-affinity IL-2R eliminated both high- and low-affinity components. The existence of low, intermediate, and high IL-2R on human B cells bears important future implications for understanding the mechanism of IL-2 signaling and the role of IL-2 in B cell activation, proliferation, and differentiation.

  17. Cox4i2, Ifit2, and Prdm11 Mutant Mice: Effective Selection of Genes Predisposing to an Altered Airway Inflammatory Response from a Large Compendium of Mutant Mouse Lines

    PubMed Central

    Bönisch, Clemens; Côme, Christophe; Kolster-Fog, Cathrine; Jensen, Klaus T.; Lund, Anders H.; Lee, Icksoo; Grossman, Lawrence I.; Sinkler, Christopher; Hüttemann, Maik; Bohn, Erwin; Fuchs, Helmut; Ollert, Markus; Gailus-Durner, Valérie; Hrabĕ de Angelis, Martin; Beckers, Johannes

    2015-01-01

    We established a selection strategy to identify new models for an altered airway inflammatory response from a large compendium of mutant mouse lines that were systemically phenotyped in the German Mouse Clinic (GMC). As selection criteria we included published gene functional data, as well as immunological and transcriptome data from GMC phenotyping screens under standard conditions. Applying these criteria we identified a few from several hundred mutant mouse lines and further characterized the Cox4i2tm1Hutt, Ifit2tm1.1Ebsb, and Prdm11tm1.1ahl lines following ovalbumin (OVA) sensitization and repeated OVA airway challenge. Challenged Prdm11tm1.1ahl mice exhibited changes in B cell counts, CD4+ T cell counts, and in the number of neutrophils in bronchoalveolar lavages, whereas challenged Ifit2tm1.1Ebsb mice displayed alterations in plasma IgE, IgG1, IgG3, and IgM levels compared to the challenged wild type littermates. In contrast, challenged Cox4i2tm1Hutt mutant mice did not show alterations in the humoral or cellular immune response compared to challenged wild type mice. Transcriptome analyses from lungs of the challenged mutant mouse lines showed extensive changes in gene expression in Prdm11tm1.1ahl mice. Functional annotations of regulated genes of all three mutant mouse lines were primarily related to inflammation and airway smooth muscle (ASM) remodeling. We were thus able to define an effective selection strategy to identify new candidate genes for the predisposition to an altered airway inflammatory response under OVA challenge conditions. Similar selection strategies may be used for the analysis of additional genotype – envirotype interactions for other diseases. PMID:26263558

  18. In vitro production of anti-neutrophilocyte-cytoplasm-antibodies (ANCA) by Epstein-Barr virus-transformed B-cell lines in Wegener's granulomatosis.

    PubMed

    Mayet, W J; Hermann, E; Kiefer, B; Lehmann, H; Manns, M; Meyer zum Büschenfelde, K H

    1991-01-01

    The frequent detection of anti-neutrophilocyte-cytoplasm-antibodies (ANCA) in patients with Wegener's granulomatosis (WG) led to the supposition that this disease might be of autoimmune nature. For some authors assume that Epstein-Barr virus (EBV) infection of human B-lymphocytes besides polyclonal activation could reveal the cryptic immune status against different autoantigens in patients with autoimmune diseases we investigated EBV-transformed B-lymphocytes from patients with Sjögren's syndrome, mixed connective tissue disease, WG and healthy blood donors. Two stable B-cell lines (Ho3, We1) could be established. Inhibition experiments showed that antibodies produced by transformed B-lymphocytes and serum ANCA (C-ANCA type) of 10 WG patients recognized the identical antigen. Stimulation of one clone (Ho3) with interleukin 6 (IL-6) led to a switch from IgM to IgG production. Antibodies produced by this clone also stained glomeruli of human frozen kidney sections. Western blot analysis using immunoaffinity purified antigen prepared from human granulocytes revealed a reaction with a protein of approx. 29 kD MW. Our data underscore some new aspects concerning the direct pathogenicity of C-ANCA confirming the hypothesis that the autoimmune B-cell repertoire in WG not only reflects a polyclonal B-cell activation but is shaped by antigen driven responses. PMID:1725964

  19. Platelet-activating factor induces phospholipid turnover, calcium flux, arachidonic acid liberation, eicosanoid generation, and oncogene expression in a human B cell line

    SciTech Connect

    Schulam, P.G.; Kuruvilla, A.; Putcha, G.; Mangus, L.; Franklin-Johnson, J.; Shearer, W.T. )

    1991-03-01

    Platelet-activating factor is a potent mediator of the inflammatory response. Studies of the actions of platelet-activating factor have centered mainly around neutrophils, monocytes, and platelets. In this report we begin to uncover the influence of platelet-activating factor on B lymphocytes. Employing the EBV-transformed human B cell line SKW6.4, we demonstrate that platelet-activating factor significantly alters membrane phospholipid metabolism indicated by the incorporation of 32P into phosphatidylcholine, phosphatidylinositol, and phosphatidic acid but not significantly into phosphatidylethanolamine at concentrations ranging from 10(-9) to 10(-6) M. The inactive precursor, lyso-platelet-activating factor, at a concentration as high as 10(-7) M had no effect on any of the membrane phospholipids. We also show that platelet-activating factor from 10(-12) to 10(-6) M induced rapid and significant elevation in intracellular calcium levels, whereas lyso-platelet-activating factor was again ineffective. We further demonstrate the impact of platelet-activating factor binding to B cells by measuring platelet-activating factor induced arachidonic acid release and 5-hydroxyeicosatetraenoic acid production. Moreover, platelet-activating factor was capable of inducing transcription of the nuclear proto-oncogenes c-fos and c-jun. Finally we explored the possible role of 5-hydroxyeicosatetraenoic acid as a regulator of arachidonic acid liberation demonstrating that endogenous 5-lipoxygenase activity modulates platelet-activating factor induced arachidonic acid release perhaps acting at the level of phospholipase A2. In summary, platelet-activating factor is shown here to have a direct and profound effect on a pure B cell line.

  20. Resistance to TGF-β1 correlates with aberrant expression of TGF-β receptor II in human B-cell lymphoma cell lines

    PubMed Central

    Chen, Gang; Osawa, Hiroshi; Sasaki, Carl Y.; Rezanka, Louis; Yang, Jiandong; O'Farrell, Thomas J.; Longo, Dan L.

    2007-01-01

    Resistance to transforming growth factor (TGF)–β1–mediated growth suppression in tumor cells is often associated with the functional loss of TGF-β receptors. Here we describe two B-cell lymphoma cell lines (DB and RL) that differ in their sensitivity to TGF-β1–mediated growth suppression. The TGF-β1–resistant cell line DB lacked functional TGF-β receptor II (TβRII) in contrast to the TGF-β–responsive cell line RL, whereas both cell lines had comparable levels of receptor I (TβRI). Lack of functional TβRII was correlated with the lack of TGF-β1–induced nuclear translocation of phospho-Smad3 and phospho-Smad2, the lack of nuclear expression of p21Cip1/WAF1, and the down-regulation of c-Myc in DB cells. Transfection of wild-type, but not a C-terminal–truncated, form of TβRII rendered the DB cell line responsive to TGF-β1–mediated growth suppression. Analysis of the TβRII gene in DB cells revealed the absence of TβRII message, which was reversed upon 5′-azacytidine treatment, indicating that the promoter methylation might be the cause of gene silencing. Promoter analysis revealed CpG methylations at −25 and −140 that correlated with the gene silencing. These data suggest that promoter methylation plays an important role in TβRII gene silencing and subsequent development of a TGF-β1–resistant phenotype by some B-cell lymphoma cells. PMID:17339425

  1. Subtype specificity of anti-HBs antibodies produced by human B-cell lines isolated from normal individuals vaccinated with recombinant hepatitis B vaccine.

    PubMed

    Shokrgozar, Mohammad Ali; Shokri, Fazel

    2002-05-22

    Hepatitis B surface antigen (HBsAg) constitutes of an immunodominant determinant common to all subtypes of hepatitis B virus (HBV) and four major subtypic determinants. Subtype specificity of the human antibody response to HBsAg has already been partially studied in vivo at serum level. No comprehensive data, however, is available at the cellular level. In this study, the methods of Epstein-Barr virus (EBV) transformation and limiting dilution assay (LDA) were used to establish a large number of B-cell lines secreting anti-HBs antibody from 34 adult individuals who were good-responders to the recombinant hepatitis B vaccine (HBsAg/adw). Specificity of 222 B-cell lines was assayed by sandwich ELISA and immunoblotting, of which 216 samples (97.3%) were identified to be anti-a, 5 samples (2.3%) as anti-d and one sample (0.4%) as anti-w. The isotype of most of the anti-HBs antibodies was IgG and belonged to the IgG1 subclass. These findings which have not already been extensively investigated at the cellular level in human confirm and extend previous circumstantial results achieved in mouse and further prove the immunodominant role of the "a" determinant of HBsAg in antibody response in human. PMID:12009275

  2. Effect of response quality and line of treatment with rituximab on overall and disease-free survival of patients with B-cell lymphoma

    PubMed Central

    Horvat, Mateja; Novakovic, Barbara Jezersek

    2010-01-01

    Background The introduction of rituximab into the treatment of patients with non-Hodgkin’s lymphomas has improved the overall response rate, as well as the response duration and the overall survival of patients with B-cell lymphomas. But only a few studies have addressed the question whether the better response (complete response) and the early introduction of rituximab into the treatment translate into the better survival. The aim of this retrospective study was to assess the potential relationship between either the quality of the response or the line of the rituximab treatment and the overall survival (OS) as well as the disease-free survival (DFS) of patients with B-cell lymphomas. Patients and methods. In the study, we analysed treatment outcomes in patients with different histological types of B-cell lymphomas who were treated at the Institute of Oncology between 2003 and 2007 with rituximab and chemotherapy. We included only patients who had the level of CD20 expression assessed prior to the introduction of the treatment with quantitative flow-cytometric measurements. The OS and DFS were evaluated by Kaplan-Meier survival curves. Results One hundred and fourteen patients were enrolled in the study. Patients who achieved a complete response after the rituximab containing treatment had a significantly longer OS than those reaching a partial response (hazard ratio [HR], 0.34; 95% CI, 0.05 to 0.91, P = 0.0375) and than patients with stable (hazard ratio [HR], 0.11; 95% CI, 0.0002 to 0.033, P < 0.0001) or progressive disease (hazard ratio [HR], 0.09; 95% CI, 0.003 to 0.03, P < 0.0001). Patients who achieved a complete response (CR; n = 70; 61.4%) had also a significantly longer DFS (hazard ratio [HR], 0.26; 95% CI, 0.021 to 0.538, P = 0.0068) than those reaching only a partial response (PR; n = 17; 14.9%). Patients treated with rituximab as the first-line treatment (n = 50; 43.9%) had a significantly longer OS than those treated with rituximab for the first

  3. Field evaluation of mint mutant and hybrid lines for resistance to Verticillium wilt and yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Severity of Verticillium wilt varied significantly among mint lines and cultivars in the inoculated and non-inoculated sub-plots in two field trials. Verticillium wilt was significantly less severe for mutant lines 87M0109-1, 84M0107-7, and M90-11 than for Black Mitcham in 2002 and 2003. Verticilli...

  4. A recurrent dominant negative E47 mutation causes agammaglobulinemia and BCR(-) B cells.

    PubMed

    Boisson, Bertrand; Wang, Yong-Dong; Bosompem, Amma; Ma, Cindy S; Lim, Annick; Kochetkov, Tatiana; Tangye, Stuart G; Casanova, Jean-Laurent; Conley, Mary Ellen

    2013-11-01

    Approximately 90% of patients with isolated agammaglobulinemia and failure of B cell development have mutations in genes required for signaling through the pre–B cell and B cell receptors. The nature of the gene defect in the majority of remaining patients is unknown. We recently identified 4 patients with agammaglobulinemia and markedly decreased numbers of peripheral B cells. The B cells that could be detected had an unusual phenotype characterized by the increased expression of CD19 but the absence of a B cell receptor. Genetic studies demonstrated that all 4 patients had the exact same de novo mutation in the broadly expressed transcription factor E47. The mutant protein (E555K) was stable in patient-derived EBV-transformed cell lines and cell lines transfected with expression vectors. E555K in the transfected cells localized normally to the nucleus and resulted in a dominant negative effect when bound to DNA as a homodimer with wild-type E47. Mutant E47 did permit DNA binding by a tissue-specific heterodimeric DNA-binding partner, myogenic differentiation 1 (MYOD). These findings document a mutational hot-spot in E47 and represent an autosomal dominant form of agammaglobulinemia. Further, they indicate that E47 plays a critical role in enforcing the block in development of B cell precursors that lack functional antigen receptors. PMID:24216514

  5. Outcome of patients with relapsed diffuse large B-cell lymphoma who fail second-line salvage regimens in the International CORAL study.

    PubMed

    Van Den Neste, E; Schmitz, N; Mounier, N; Gill, D; Linch, D; Trneny, M; Milpied, N; Radford, J; Ketterer, N; Shpilberg, O; Dührsen, U; Ma, D; Brière, J; Thieblemont, C; Salles, G; Moskowitz, C H; Glass, B; Gisselbrecht, C

    2016-01-01

    Salvage chemotherapy followed by autologous stem cell transplantation (ASCT) is the standard second-line treatment for relapsed and refractory diffuse large B-cell lymphoma (DLBCL). However, the strategy is less clear in patients who require third-line treatment. Updated outcomes of 203 patients who could not proceed to scheduled ASCT in the Collaborative Trial in Relapsed Aggressive Lymphoma (CORAL) are herein reviewed. In the intent-to-treat analysis, overall response rate to third-line chemotherapy was 39%, with 27% CR or CR unconfirmed, and 12% PR. Among the 203 patients, 64 (31.5%) were eventually transplanted (ASCT 56, allogeneic SCT 8). Median overall survival (OS) of the entire population was 4.4 months. OS was significantly improved in patients with lower tertiary International Prognostic Index (IPI), patients responding to third-line treatment and patients transplanted with a 1-year OS of 41.6% compared with 16.3% for the not transplanted (P<0.0001). In multivariate analysis, IPI at relapse (hazard ratio (HR) 2.409) and transplantation (HR 0.375) independently predicted OS. Third-line salvage chemotherapy can lead to response followed by transplantation and long-term survival in DLBCL patients. However, improvement of salvage efficacy is an urgent need with new drugs. PMID:26367239

  6. Antibodies binding granulocyte-macrophage colony stimulating factor produced by cord blood-derived B cell lines immortalized by Epstein-Barr virus in vitro.

    PubMed

    Revoltella, R P; Laricchia Robbio, L; Liberati, A M; Reato, G; Foa, R; Funaro, A; Vinante, F; Pizzolo, G

    2000-09-15

    We detected natural antibodies (auto-Abs) binding human granulocyte-macrophage colony stimulating factor (GM-CSF) in umbilical cord blood (CB) (23 of 94 samples screened) and peripheral blood of women at the end of pregnancy (6 of 42 samples tested). To demonstrate that Abs detected in CB were produced by the fetus, CB mononuclear cells were infected with Epstein-Barr virus in vitro. Ten cell lines producing constitutively anti-recombinant human GM-CSF (rhGM-CSF) Abs were isolated and characterized. These cells displayed a male karyotype, an early activated B cell phenotype, coexpressed surface IgM and IgD, and secreted only IgM with prevailing lambda clonal restriction. Specific cell surface binding of biotinylated rhGM-CSF and high-level anti-rhGM-CSF IgM Ab production were typical features of early cell cultures. In late cell passages the frequency of more undifferentiated B cells increased. Serum Abs of either maternal or fetal origin or Abs produced in culture did not affect the granulocyte and macrophage colony stimulating activity of rhGM-CSF from bone marrow progenitors in soft agar, suggesting that the Abs produced were nonneutralizing. PMID:11069719

  7. Anti-proliferative and apoptosis-triggering potential of disulfiram and disulfiram-loaded polysorbate 80-stabilized PLGA nanoparticles on hepatocellular carcinoma Hep3B cell line.

    PubMed

    Hoda, Muddasarul; Pajaniradje, Sankar; Shakya, Garima; Mohankumar, Kumaravel; Rajagopalan, Rukkumani

    2016-08-01

    There is an emerging trend to restudy known drugs for their anti-cancer potential. One such anti-alcoholic drug, disulfiram, with significant anti-cancer potential was studied for its efficacy against Hep3B cell lines, an in vitro model of hepatocellular carcinoma. Simultaneously, we intended to study the effect of polysorbate 80-stabilized PLGA nanoparticles and its DSF-loaded counterpart. Cell and nuclear staining, comet assay, flow cytometry and Western blots were performed. Results suggest that cell proliferation was inhibited by DSF and its PLGA nanoparticles through cell cycle arrest, triggering activation of apoptotic pathways that culminates with cell death. DSF loaded nanoparticles when compared with free DSF, showed significantly lesser effect due to its sustained drug-releasing property, while empty nanoparticles showed negligible influence on Hep3B cells. Our results suggest that DSF alone contributes to cell death, while polysorbate 80-stabilized PLGA nanoparticles show sustained drug release patterns that would potentially lower dosage regimens. PMID:27013133

  8. Phenotypic and cytogenetic characteristics of a new Epstein-Barr virus negative cell line (SKW 4) derived from a B-cell lymphoma.

    PubMed

    Nilsson, K; Klareskog, L; Ralph, P; Sundström, C; Zech, L

    1983-01-01

    A new Epstein-Barr virus nuclear antigen (EBNA) negative cell line SKW 4 has been established in vitro from a patient with diffuse histiocytic lymphoma. The SKW 4 seems to be an authentic human tumour cell line as evidenced by its EBV negativity, monoclonality and aneuploidy tested during early in vitro passage. The cell line expresses surface mu and kappa-chains, HLA-DR antigen, C3 and Fc receptors and B-cell lineage antigens. The karyotypic analyses demonstrated many numerical and structural aberrations. No Burkitt lymphoma associated translocations (t8;14, t2;8, t;22) were detected, but most of the markers found are those commonly associated with various types of human cancer. The SKW 4 thus represents the most common type of 'histiocytic lymphoma', that with a B-lymphoid cell phenotype, but is unique among HL derived lymphoma lines in its strong expression of a Helix pomatia A agglutinin binding surface glycoprotein of an apparent molecular weight of 75 000 daltons. PMID:6329938

  9. Human B-cell lymphoma cell lines are highly sensitive to apoptosis induced by all-trans retinoic acid and interferon-gamma.

    PubMed

    Niitsu, Nozomi; Higashihara, Masaaki; Honma, Yoshio

    2002-08-01

    When cells were incubated in the presence of both interferon-gamma (IFN-gamma) and all-trans retinoic acid (ATRA), the concentration of IFN-gamma required to induce apoptosis of B-cell lymphoma cells was much lower than that required for myeloid or erythroid cell lines. The concentration of IFN-gamma that effectively inhibited the proliferation of BALM-3 cells was 1/40 of that required for BALM-1 cells. STAT-1 phosphorylation, IRF-1 mRNA and protein expression and RAR-beta expression were enhanced to a greater degree in BALM-3 cells treated with IFN-gamma and ATRA than in BALM-1 cells treated with IFN-gamma and ATRA, suggesting that these IFN-gamma related genes were involved in the induction of apoptosis of BALM-3 cells. PMID:12191570

  10. Ikaros limits follicular B cell activation by regulating B cell receptor signaling pathways.

    PubMed

    Heizmann, Beate; Sellars, MacLean; Macias-Garcia, Alejandra; Chan, Susan; Kastner, Philippe

    2016-02-12

    The Ikaros transcription factor is essential for early B cell development, but its effect on mature B cells is debated. We show that Ikaros is required to limit the response of naive splenic B cells to B cell receptor signals. Ikaros deficient follicular B cells grow larger and enter cell cycle faster after anti-IgM stimulation. Unstimulated mutant B cells show deregulation of positive and negative regulators of signal transduction at the mRNA level, and constitutive phosphorylation of ERK, p38, SYK, BTK, AKT and LYN. Stimulation results in enhanced and prolonged ERK and p38 phosphorylation, followed by hyper-proliferation. Pharmacological inhibition of ERK and p38 abrogates the increased proliferative response of Ikaros deficient cells. These results suggest that Ikaros functions as a negative regulator of follicular B cell activation. PMID:26775846

  11. Suppression of proliferation of a human B-cell leukaemic cell line derived from acute lymphoblastic leukaemia by soluble factor(s) from Campylobacter rectus.

    PubMed

    Saito, S; Hayakawa, M; Takiguchi, H; Abiko, Y

    1993-06-01

    Soluble sonic extracts of several strains were examined for their ability to alter proliferation of a cell line derived from acute lymphoblastic leukaemia (BALL-1). Extracts of all strains tested caused dose-dependent suppression of proliferation when assessed by DNA (tritiated thymidine incorporation), RNA (tritiated uridine incorporation) and protein (tritiated leucine incorporation) synthesis. There was no effect on the viability of BALL-1 as measured by either trypan-blue exclusion or extracellular release of the cytoplasmic enzyme lactate dehydrogenase. The suppressive factor(s) was separated in a well-defined peak by high-pressure liquid DEAE ion-exchange chromatography, which revealed a single active peak with a molecular mass of 48 kDa. Characterization of the peak indicated that the suppressive factor(s) was heat labile (activity destroyed at 80 degrees C) and sensitive to the proteolytic enzyme pronase P. The soluble suppressive factor(s) from Campylobacter rectus thus has protein-like properties and no cytotoxicity to a human B-cell leukaemic cell line. PMID:8343067

  12. Characterization of a mutant cell line that does not activate NF-kappaB in response to multiple stimuli.

    PubMed Central

    Courtois, G; Whiteside, S T; Sibley, C H; Israel, A

    1997-01-01

    Numerous genes required during the immune or inflammation response as well as the adhesion process are regulated by nuclear factor kappaB (NF-kappaB). Associated with its inhibitor, I kappaB, NF-kappaB resides as an inactive form in the cytoplasm. Upon stimulation by various agents, I kappaB is proteolyzed and NF-kappaB translocates to the nucleus, where it activates its target genes. The transduction pathways that lead to I kappaB inactivation remain poorly understood. In this study, we have characterized a cellular mutant, the 70/Z3-derived 1.3E2 murine pre-B cell line, that does not activate NF-kappaB in response to several stimuli. We demonstrate that upon stimulation by lipopolysaccharide, Taxol, phorbol myristate acetate, interleukin-1, or double-stranded RNA, I kappaB alpha is not degraded, as a result of an absence of induced phosphorylation on serines 32 and 36. Neither a mutation in I kappaB alpha nor a mutation in p50 or relA, the two major subunits of NF-kappaB in this cell line, accounts for this phosphorylation defect. As well as culminating in the inducible phosphorylation of I kappaB alpha on serines 32 and 36, all the stimuli that are inactive on 1.3E2 cells exhibit a sensitivity to the antioxidant pyrrolidine dithiocarbamate (PDTC). In contrast, stimuli such as hyperosmotic shock or phosphatase inhibitors, which use PDTC-insensitive pathways, induce I kappaB alpha degradation in 1.3E2. Analysis of the redox status of 1.3E2 does not reveal any difference from wild-type 70Z/3. We also report that the human T-cell leukemia virus type 1 (HTLV-1)-derived Tax trans-activator induces NF-kappaB activity in 1.3E2, suggesting that this viral protein does not operate via the defective pathway. Finally, we show that two other I kappaB molecules, I kappaB beta and the recently identified I kappaB epsilon, are not degraded in the 1.3E2 cell line following stimulation. Our results demonstrate that 1.3E2 is a cellular transduction mutant exhibiting a defect in a

  13. Translation and assembly of HLA-DR antigens in Xenopus oocytes injected with mRNA from a human B-cell line.

    PubMed Central

    Long, E O; Gross, N; Wake, C T; Mach, J P; Carrel, S; Accolla, R; Mach, B

    1982-01-01

    HLA-DR antigens are polymorphic cell surface glycoproteins, expressed primarily in B lymphocytes and macrophages, which are thought to play an important role in the immune response. Two polypeptide chains, alpha and beta, are associated at the cell surface, and a third chain associates with alpha and beta intracellularly. RNA isolated from the human B-cell line Raji was injected in Xenopus laevis oocytes. Immunoprecipitates of translation products with several monoclonal antibodies revealed the presence of HLA-DR antigens similar to those synthesized in Raji cells. One monoclonal antibody was able to bind the beta chain after dissociation of the three polypeptide chains with detergent. The presence of all three chains was confirmed by two-dimensional gel electrophoresis. The glycosylation pattern of the three chains was identical to that observed in vivo, as evidenced in studies using tunicamycin, an inhibitor of N-linked glycosylation. The presence of alpha chains assembled with beta chains in equimolar ratio was further demonstrated by amino-terminal sequencing. An RNA fraction enriched for the three mRNAs, encoding alpha, beta, and intracellular chains, was isolated. This translation-assembly system and the availability of monoclonal antibodies make it possible to assay for mRNA encoding specific molecules among the multiple human Ia-like antigens. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:6821356

  14. Characterization of endocrine cell lines immortalized by a temperature-sensitive mutant SV40.

    PubMed

    Chen, C L; Simmen, R C; Chou, J Y

    1991-01-01

    An ideal in vitro model for the study of endocrine functions would be one in which cells could propagate in culture and express their specialized functions. Most endocrine studies to date have relied on primary cell culture or on the use of tumor cell lines. This report describes the characterization of three endocrine cell lines immortalized by transfecting endocrine cells with a temperature-sensitive mutant SV40 virus. Rabbit endometrium (HRE-H9), human placenta (SPA209-10) and rat pituitary (RP) cells were immortalized by SV40 virus, a temperature-sensitive (ts) mutant in the A gene, which encodes the large tumor antigen that is required for the maintenance of transformation. The transformed phenotype of the SV40 tsA mutant-immortalized cell line can be reversed simply by a shift in temperature. At the permissive temperature (34 degrees C), all three types of cells exhibited a transformed phenotype, which is characterized by high cell density growth and by the overgrowth of nontransformed cell layers. However, at the non-permissive temperature (40 degrees C) these cells reverted to a non-transformed phenotype as demonstrated by a marked decrease in the overgrowth of nontransformed layers and by the expression of differentiated functions. At the non-permissive temperature (40 degrees C), the endometrial cell line was capable of synthesizing beta-endorphin, and it exhibited hormonally regulated expression of the transfected hybrid uteroferrin gene construct. The human placenta cell line was capable of secreting GnRH upon stimulation by cAMP, forskolin, theophyllin, PGE, catecholamine and Ca++ channel stimulators. Moreover, the rat pituitary cell line was capable of synthesizing and secreting growth hormone (GH) which was stimulated by GHRH and cAMP. The advantage of the temperature-sensitive cell lines is that a single cell line is the source of both the normal and transformed states; thus, studies are internally controlled. These results demonstrate that ts

  15. B cell signatures of BCWD-resistant and susceptible lines of rainbow trout: a shift towards more EBF-expressing progenitors and fewer mature B cells in resistant animals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial Cold Water Disease (BCWD) is a chronic disease of rainbow trout, and is caused by the gram-negative bacterium Flavobacterium psychrophilum (Fp), a common aquaculture pathogen. The National Center for Cool and Cold Water Aquaculture has bred two genetic lines of rainbow trout: a line of Fp...

  16. DNA Cytosine Methylation in the Bovine Leukemia Virus Promoter Is Associated with Latency in a Lymphoma-derived B-cell Line

    PubMed Central

    Pierard, Valérie; Guiguen, Allan; Colin, Laurence; Wijmeersch, Gaëlle; Vanhulle, Caroline; Van Driessche, Benoît; Dekoninck, Ann; Blazkova, Jana; Cardona, Christelle; Merimi, Makram; Vierendeel, Valérie; Calomme, Claire; Nguyên, Thi Liên-Anh; Nuttinck, Michèle; Twizere, Jean-Claude; Kettmann, Richard; Portetelle, Daniel; Burny, Arsène; Hirsch, Ivan; Rohr, Olivier; Van Lint, Carine

    2010-01-01

    Bovine leukemia virus (BLV) proviral latency represents a viral strategy to escape the host immune system and allow tumor development. Besides the previously demonstrated role of histone deacetylation in the epigenetic repression of BLV expression, we showed here that BLV promoter activity was induced by several DNA methylation inhibitors (such as 5-aza-2′-deoxycytidine) and that overexpressed DNMT1 and DNMT3A, but not DNMT3B, down-regulated BLV promoter activity. Importantly, cytosine hypermethylation in the 5′-long terminal repeat (LTR) U3 and R regions was associated with true latency in the lymphoma-derived B-cell line L267 but not with defective latency in YR2 cells. Moreover, the virus-encoded transactivator TaxBLV decreased DNA methyltransferase expression levels, which could explain the lower level of cytosine methylation observed in the L267LTaxSN 5′-LTR compared with the L267 5′-LTR. Interestingly, DNA methylation inhibitors and TaxBLV synergistically activated BLV promoter transcriptional activity in a cAMP-responsive element (CRE)-dependent manner. Mechanistically, methylation at the −154 or −129 CpG position (relative to the transcription start site) impaired in vitro binding of CRE-binding protein (CREB) transcription factors to their respective CRE sites. Methylation at −129 CpG alone was sufficient to decrease BLV promoter-driven reporter gene expression by 2-fold. We demonstrated in vivo the recruitment of CREB/CRE modulator (CREM) and to a lesser extent activating transcription factor-1 (ATF-1) to the hypomethylated CRE region of the YR2 5′-LTR, whereas we detected no CREB/CREM/ATF recruitment to the hypermethylated corresponding region in the L267 cells. Altogether, these findings suggest that site-specific DNA methylation of the BLV promoter represses viral transcription by directly inhibiting transcription factor binding, thereby contributing to true proviral latency. PMID:20413592

  17. Apoptotic induction by pinobanksin and some of its ester derivatives from Sonoran propolis in a B-cell lymphoma cell line.

    PubMed

    Alday, Efrain; Valencia, Dora; Carreño, Ana Laura; Picerno, Patrizia; Piccinelli, Anna Lisa; Rastrelli, Luca; Robles-Zepeda, Ramon; Hernandez, Javier; Velazquez, Carlos

    2015-12-01

    Propolis is a resinous substance produced by honeybees (Apis mellifera) from the selective collection of exudates and bud secretions from several plants. In previous works, we reported the antiproliferative activity of Sonoran propolis (SP) on cancer cells; in addition we suggested the induction of apoptosis after treatment with SP due to the presence of morphological changes and a characteristic DNA fragmentation pattern. Herein, in this study we demonstrated that the antiproliferative effect of SP is induced through apoptosis in a B-cell lymphoma cancer cell line, M12.C3.F6, by an annexin V-FITC/Propidium iodide double labeling. This apoptotic effect of SP resulted to be mediated by modulations in the loss of mitochondrial membrane potential (ΔΨm) and through activation of caspases signaling pathway (3, 8 and 9). Afterward, in order to characterize the chemical constituents of SP that induce apoptosis in cancer cells, an HPLC-PDA-ESI-MS/MS method followed by a preparative isolation procedure and NMR spectroscopy analysis have been used. Eighteen flavonoids, commonly described in propolis from temperate regions, were characterized. Chrysin, pinocembrin, pinobanksin and its ester derivatives are the main constituents of SP and some of them have never been reported in SP. In addition, two esters of pinobanksin (8 and 13) are described by first time in propolis samples in general. The antiproliferative activity on M12.C3.F6 cells through apoptosis induction was exhibited by pinobanksin (4), pinobanksin-3-O-propanoate (14), pinobanksin-3-O-butyrate (16), pinobanksin-3-O-pentanoate (17), and the already reported galangin (11), chrysin (9) and CAPE. To our knowledge this is the first report of bioactivity of pinobanksin and some of its ester derivatives as apoptosis inducers. Further studies are needed to advance in the understanding of the molecular basis of apoptosis induction by SP and its constituents, as well as the structure-activity relationship of them. PMID

  18. HDAC1,2 inhibition impairs EZH2- and BBAP- mediated DNA repair to overcome chemoresistance in EZH2 gain-of-function mutant diffuse large B-cell lymphoma

    PubMed Central

    Tharkar, Shweta; Quayle, Steven N.; Shearstone, Jeffrey R.; Jones, Simon; McDowell, Maria E.; Wellman, Hannah; Tyler, Jessica K.; Cairns, Bradley R.; Chandrasekharan, Mahesh B.; Bhaskara, Srividya

    2015-01-01

    Gain-of-function mutations in the catalytic site of EZH2 (Enhancer of Zeste Homologue 2), is observed in about 22% of diffuse large B-cell lymphoma (DLBCL) cases. Here we show that selective inhibition of histone deacetylase 1,2 (HDAC1,2) activity using a small molecule inhibitor causes cytotoxic or cytostatic effects in EZH2 gain-of-function mutant (EZH2GOF) DLBCL cells. Our results show that blocking the activity of HDAC1,2 increases global H3K27ac without causing a concomitant global decrease in H3K27me3 levels. Our data shows that inhibition of HDAC1,2 is sufficient to decrease H3K27me3 present at DSBs, decrease DSB repair and activate the DNA damage response in these cells. In addition to increased H3K27me3, we found that the EZH2GOF DLBCL cells overexpress another chemotherapy resistance factor − B-lymphoma and BAL-associated protein (BBAP). BBAP monoubiquitinates histone H4K91, a residue that is also subjected to acetylation. Our results show that selective inhibition of HDAC1,2 increases H4K91ac, decreases BBAP-mediated H4K91 monoubiquitination, impairs BBAP-dependent DSB repair and sensitizes the refractory EZH2GOF DLBCL cells to treatment with doxorubicin, a chemotherapy agent. Hence, selective HDAC1,2 inhibition provides a novel DNA repair mechanism-based therapeutic approach as it can overcome both EZH2- and BBAP-mediated DSB repair in the EZH2GOF DLBCL cells. PMID:25605023

  19. Nα-Tosyl-l-phenylalanine Chloromethyl Ketone Induces Caspase-dependent Apoptosis in Transformed Human B Cell Lines with Transcriptional Down-regulation of Anti-apoptotic HS1-associated Protein X-1*

    PubMed Central

    Jitkaew, Siriporn; Trebinska, Alicja; Grzybowska, Ewa; Carlsson, Göran; Nordström, Anders; Lehtiö, Janne; Fröjmark, Anne-Sophie; Dahl, Niklas; Fadeel, Bengt

    2009-01-01

    Nα-Tosyl-l-phenylalanine chloromethylketone (TPCK) has been widely used to investigate signal transduction pathways that are involved in gene expression and cell survival/cell death. However, contradictory effects of TPCK on apoptosis have been reported, and the underlying signaling events leading to TPCK-induced promotion or prevention of apoptosis are not fully understood. Here, we show that TPCK induces caspase-dependent apoptosis in Epstein-Barr virus (EBV)-transformed human B cell lines with release of pro-apoptotic proteins from mitochondria. TPCK treatment also results in down-regulation of the anti-apoptotic proteins, cIAP1, cIAP2, and HAX-1, and caspase-dependent cleavage of the anti-apoptotic proteins, Bcl-2 and XIAP. Quantitative PCR analysis confirmed that the TPCK-induced down-regulation of HAX-1 occurred at the transcriptional level, and experiments using the specific pharmacological inhibitor, Bay 11-7082, suggested that HAX-1 expression is subject to regulation by the transcription factor, NF-κB. B cell lines derived from patients with homozygous HAX1 mutations were more sensitive to TPCK-induced apoptosis when compared with normal donor cell lines. Furthermore, N-acetylcysteine effectively blocked TPCK-induced apoptosis in EBV-transformed B cell lines and prevented the down-regulation or cleavage of anti-apoptotic proteins. Taken together, our studies demonstrate that TPCK induces apoptosis in human B cell lines and exerts multiple effects on pro- and anti-apoptotic factors. PMID:19679660

  20. B cells in transplantation

    PubMed Central

    Dijke, Esme I.; Platt, Jeffrey L.; Blair, Paul; Clatworthy, Menna R.; Patel, Jignesh K.; Kfoury, A.G.; Cascalho, Marilia

    2016-01-01

    B cell responses underlie the most vexing immunological barriers to organ transplantation. Much has been learned about the molecular mechanisms of B cell responses to antigen and new therapeutic agents that specifically target B cells or suppress their functions are available. Yet, despite recent advances, there remains an incomplete understanding about how B cell functions determine the fate of organ transplants and how, whether or when potent new therapeutics should optimally be used. This gap in understanding reflects in part the realization that besides producing antibodies, B cells can also regulate cellular immunity, contribute to the genesis of tolerance and induce accommodation. Whether non-specific depletion of B cells, their progeny or suppression of their functions would undermine these non-cognate functions and whether graft outcome would suffer as a result is unknown. These questions were discussed at a symposium on “B cells in transplantation” at the 2015 ISHLT annual meeting. Those discussions are summarized here and a new perspective is offered. PMID:26996930

  1. Deciphering the mechanisms of developmental disorders: phenotype analysis of embryos from mutant mouse lines

    PubMed Central

    Wilson, Robert; McGuire, Christina; Mohun, Timothy

    2016-01-01

    The Deciphering the Mechanisms of Developmental Disorders (DMDD) consortium is a research programme set up to identify genes in the mouse, which if mutated (or knocked-out) result in embryonic lethality when homozygous, and initiate the study of why disruption of their function has such profound effects on embryo development and survival. The project uses a combination of comprehensive high resolution 3D imaging and tissue histology to identify abnormalities in embryo and placental structures of embryonic lethal lines. The image data we have collected and the phenotypes scored are freely available through the project website (http://dmdd.org.uk). In this article we describe the web interface to the images that allows the embryo data to be viewed at full resolution in different planes, discuss how to search the database for a phenotype, and our approach to organising the data for an embryo and a mutant line so it is easy to comprehend and intuitive to navigate. PMID:26519470

  2. [Development of Triticum aestivum-Haynaldia villosa 6VS ditelosomic substitution line via phlb mutant].

    PubMed

    Chen, J F; Ying, J; Wang, S L; Liu, Z H; Qi, L L; Chen, P D

    2001-01-01

    Chinese Spring phlb mutant (C S phlbphlb) was crossed to Triticum aestivum-Haynaldia villosa 6V (6A) alien substitution line and F1 back was crossed with C. S phlbphlb. One LV 02 with varied H. villosa 6V chromosome and one LV 02-01 with 40 T. aestivum chromosome, one H. villosa 6V and 6VS chromosome were screened in BC1F1 and BC1F2 respectively by C-banding and the fluorescence in situ hybridization (FISH). In segregated generation of LV 02-01, eight T. aestivum-H. villosa 6VS ditelosomic substitution lines were screened by FISH and C-banding. PMID:11209712

  3. RAPD and SSR Polymorphisms in Mutant Lines of Transgenic Wheat Mediated by Low Energy Ion Beam

    NASA Astrophysics Data System (ADS)

    Wang, Tiegu; Huang, Qunce; Feng, Weisen

    2007-10-01

    Two types of markers-random amplified polymorphic DNA (RAPD) and simple sequence repeat DNA (SSR)-have been used to characterize the genetic diversity among nine mutant lines of transgenic wheat intermediated by low energy ion beam and their four receptor cultivars. The objectives of this study were to analyze RAPD-based and SSR-based genetic variance among transgenic wheat lines and with their receptors, and to find specific genetic markers of special traits of transgenic wheat lines. 170 RAPD primers were amplified to 733 fragments in all the experimental materials. There were 121 polymorphic fragments out of the 733 fragments with a ratio of polymorphic fragments of 16.5%. 29 SSR primer pairs were amplified to 83 fragments in all the experiment materials. There were 57 polymorphic fragments out of the 83 fragments with a ratio of polymorphic fragments of 68.7%. The dendrograms were prepared based on a genetic distance matrix using the UPGMA (Unweighted Pair-group Method with Arithmetic averaging) algorithm, which corresponded well to the results of the wheat pedigree analysis and separated the 13 genotypes into four groups. Association analysis between RAPD and SSR markers with the special traits of transgenic wheat mutant lines discovered that three RAPD markers, s1, opt-16, and f14, were significantly associated with the muticate trait, while three SSR markers, Rht8 (Xgwm261), Rht-B1b, and Rht-D1b, highly associated with the dwarf trait. These markers will be useful for marker-assistant breeding and can be used as candidate markers for further gene mapping and cloning.

  4. Functional analysis and drug response to zinc and D-penicillamine in stable ATP7B mutant hepatic cell lines

    PubMed Central

    Chandhok, Gursimran; Horvath, Judit; Aggarwal, Annu; Bhatt, Mohit; Zibert, Andree; Schmidt, Hartmut HJ

    2016-01-01

    AIM: To study the effect of anti-copper treatment for survival of hepatic cells expressing different ATP7B mutations in cell culture. METHODS: The most common Wilson disease (WD) mutations p.H1069Q, p.R778L and p.C271*, found in the ATP7B gene encoding a liver copper transporter, were studied. The mutations represent major genotypes of the United States and Europe, China, and India, respectively. A human hepatoma cell line previously established to carry a knockout of ATP7B was used to stably express WD mutants. mRNA and protein expression of mutant ATP7B, survival of cells, apoptosis, and protein trafficking were determined. RESULTS: Low temperature increased ATP7B protein expression in several mutants. Intracellular ATP7B localization was significantly impaired in the mutants. Mutants were classified as high, moderate, and no survival based on their viability on exposure to toxic copper. Survival of mutant p.H1069Q and to a lesser extent p.C271* improved by D-penicillamine (DPA) treatment, while mutant p.R778L showed a pronounced response to zinc (Zn) treatment. Overall, DPA treatment resulted in higher cell survival as compared to Zn treatment; however, only combined Zn + DPA treatment fully restored cell viability. CONCLUSION: The data indicate that the basic impact of a genotype might be characterized by analysis of mutant hepatic cell lines. PMID:27122662

  5. Genetic and immunochemical analysis of mutant p53 in human breast cancer cell lines.

    PubMed

    Bartek, J; Iggo, R; Gannon, J; Lane, D P

    1990-06-01

    The expression of the tumour suppressor gene p53 was analysed in 11 human breast cancer cell lines by immunohistochemistry, immunoprecipitation and cDNA sequencing. We used a panel of anti-p53 monoclonal antibodies for cell staining and found abnormalities in every case. Eight of the cell lines produce a form of p53 which can be immunoprecipitated by the monoclonal antibody PAb240 but not by PAb1620. In the murine system PAb240 only immunoprecipitates mutant p53. We sequenced p53 cDNA directly from four of the PAb240 positive cell lines using asymmetric PCR templates. All four contained missense mutations in p53 RNA, with no detectable expression of the wild type sequence. Different residues were affected in each cell line, but all the mutations changed amino acids conserved from man to Xenopus. These results imply that as in the murine system, the PAb240 antibody reliably detects a wide variety of p53 mutations and that these mutations have a common effect on the structure of p53. Immunohistochemical data suggest that p53 mutation is the commonest genetic alteration so far detected in primary breast cancer. PMID:1694291

  6. A lacZ reporter gene expression atlas for 313 adult KOMP mutant mouse lines.

    PubMed

    West, David B; Pasumarthi, Ravi K; Baridon, Brian; Djan, Esi; Trainor, Amanda; Griffey, Stephen M; Engelhard, Eric K; Rapp, Jared; Li, Bowen; de Jong, Pieter J; Lloyd, K C Kent

    2015-04-01

    Expression of the bacterial beta-galactosidase reporter gene (lacZ) in the vector used for the Knockout Mouse Project (KOMP) is driven by the endogenous promoter of the target gene. In tissues from KOMP mice, histochemical staining for LacZ enzyme activity can be used to determine gene expression patterns. With this technique, we have produced a comprehensive resource of gene expression using both whole mount (WM) and frozen section (FS) LacZ staining in 313 unique KOMP mutant mouse lines. Of these, ∼ 80% of mutants showed specific staining in one or more tissues, while ∼ 20% showed no specific staining, ∼ 13% had staining in only one tissue, and ∼ 25% had staining in >6 tissues. The highest frequency of specific staining occurred in the brain (∼ 50%), male gonads (42%), and kidney (39%). The WM method was useful for rapidly identifying whole organ and some substructure staining, while the FS method often revealed substructure and cellular staining specificity. Both staining methods had >90% repeatability in biological replicates. Nonspecific LacZ staining occurs in some tissues due to the presence of bacteria or endogenous enzyme activity. However, this can be effectively distinguished from reporter gene activity by the combination of the WM and FS methods. After careful annotation, LacZ staining patterns in a high percentage of mutants revealed a unique structure-function not previously reported for many of these genes. The validation of methods for LacZ staining, annotation, and expression analysis reported here provides unique insights into the function of genes for which little is currently known. PMID:25591789

  7. A lacZ reporter gene expression atlas for 313 adult KOMP mutant mouse lines

    PubMed Central

    Pasumarthi, Ravi K.; Baridon, Brian; Djan, Esi; Trainor, Amanda; Griffey, Stephen M.; Engelhard, Eric K.; Rapp, Jared; Li, Bowen; de Jong, Pieter J.; Lloyd, K.C. Kent

    2015-01-01

    Expression of the bacterial beta-galactosidase reporter gene (lacZ) in the vector used for the Knockout Mouse Project (KOMP) is driven by the endogenous promoter of the target gene. In tissues from KOMP mice, histochemical staining for LacZ enzyme activity can be used to determine gene expression patterns. With this technique, we have produced a comprehensive resource of gene expression using both whole mount (WM) and frozen section (FS) LacZ staining in 313 unique KOMP mutant mouse lines. Of these, ∼80% of mutants showed specific staining in one or more tissues, while ∼20% showed no specific staining, ∼13% had staining in only one tissue, and ∼25% had staining in >6 tissues. The highest frequency of specific staining occurred in the brain (∼50%), male gonads (42%), and kidney (39%). The WM method was useful for rapidly identifying whole organ and some substructure staining, while the FS method often revealed substructure and cellular staining specificity. Both staining methods had >90% repeatability in biological replicates. Nonspecific LacZ staining occurs in some tissues due to the presence of bacteria or endogenous enzyme activity. However, this can be effectively distinguished from reporter gene activity by the combination of the WM and FS methods. After careful annotation, LacZ staining patterns in a high percentage of mutants revealed a unique structure-function not previously reported for many of these genes. The validation of methods for LacZ staining, annotation, and expression analysis reported here provides unique insights into the function of genes for which little is currently known. PMID:25591789

  8. Genetic Variability and Selection Criteria in Rice Mutant Lines as Revealed by Quantitative Traits

    PubMed Central

    Oladosu, Yusuff; Rafii, M. Y.; Abdullah, Norhani; Abdul Malek, Mohammad; Rahim, H. A.; Hussin, Ghazali; Abdul Latif, Mohammad; Kareem, Isiaka

    2014-01-01

    Genetic based knowledge of different vegetative and yield traits play a major role in varietal improvement of rice. Genetic variation gives room for recombinants which are essential for the development of a new variety in any crop. Based on this background, this work was carried out to evaluate genetic diversity of derived mutant lines and establish relationships between their yield and yield components using multivariate analysis. To achieve this objective, two field trials were carried out on 45 mutant rice genotypes to evaluate their growth and yield traits. Data were taken on vegetative traits and yield and its components, while genotypic and phenotypic coefficients, variance components, expected genetic advance, and heritability were calculated. All the genotypes showed variations for vegetative traits and yield and its components. Also, there was positive relationship between the quantitative traits and the final yield with the exception of number of tillers. Finally, the evaluated genotypes were grouped into five major clusters based on the assessed traits with the aid of UPGMA dendrogram. So hybridization of group I with group V or group VI could be used to attain higher heterosis or vigour among the genotypes. Also, this evaluation could be useful in developing reliable selection indices for important agronomic traits in rice. PMID:25431777

  9. Prevention of lysosomal storage diseases and derivation of mutant stem cell lines by preimplantation genetic diagnosis.

    PubMed

    Altarescu, Gheona; Beeri, Rachel; Eiges, Rachel; Epsztejn-Litman, Silvina; Eldar-Geva, Talia; Elstein, Deborah; Zimran, Ari; Margalioth, Ehud J; Levy-Lahad, Ephrat; Renbaum, Paul

    2012-01-01

    Preimplantation genetic diagnosis (PGD) allows birth of unaffected children for couples at risk for a genetic disorder. We present the strategy and outcome of PGD for four lysosomal storage disorders (LSD): Tay-Sachs disease (TSD), Gaucher disease (GD), Fabry disease (FD), and Hunter syndrome (HS), and subsequent development of stem cell lines. For each disease, we developed a family-specific fluorescent multiplex single-cell PCR protocol that included the familial mutation and informative markers surrounding the mutation. Embryo biopsy and PGD analysis were performed on either oocytes (polar bodies one and two) or on single blastomeres from a six-cell embryo. We treated twenty families carrying mutations in these lysosomal storage disorders, including 3 couples requiring simultaneous analysis for two disorders (TSD/GD, TSD/balanced Robertsonian translocation 45XYder(21;14), and HS/oculocutaneus albinism). These analyses led to an overall pregnancy rate/embryo transfer of 38% and the birth of 20 unaffected children from 17 families. We have found that PGD for lysosomal disorders is a safe and effective method to prevent birth of affected children. In addition, by using mutant embryos for the derivation of stem cell lines, we have successfully established GD and HS hESC lines for use as valuable models in LSD research. PMID:23320174

  10. Clinical significance of co-expression of MYC and BCL2 protein in aggressive B-cell lymphomas treated with a second line immunochemotherapy.

    PubMed

    Miura, Katsuhiro; Takahashi, Hiromichi; Nakagawa, Masaru; Izu, Asami; Sugitani, Masahiko; Kurita, Daisuke; Sakagami, Masashi; Ohtake, Shimon; Uchino, Yoshihito; Hojo, Atsuko; Kodaira, Hitomi; Yagi, Mai; Kobayashi, Yujin; Iriyama, Noriyoshi; Kobayashi, Sumiko; Kiso, Satomi; Hirabayashi, Yukio; Hatta, Yoshihiro; Takei, Masami

    2016-06-01

    The clinical significance of concurrent expression of MYC and BCL2 protein, known as "double-expressor lymphoma" (DEL), among patients with relapsed or refractory aggressive B-cell lymphomas, remains unclear. A retrospective analysis was performed of 38 patients treated with a salvage treatment consisting of rituximab, ifosfamide, etoposide, cytarabine and dexamethasone followed by consolidative high-dose chemotherapies. A total of 17 cases (45%) were categorized as DEL using immunohistochemical assay with a cut-off value of positivity of 40% for MYC and 50% for BCL2, respectively. DEL was associated with a lower overall response rate (35% vs 71%, p = 0.0481), worse 2-year progression-free survival (9% vs 67%, p = 0.001) and overall survival (35% vs 71%, p = 0.037). This analysis suggests that DEL is common among patients with relapsed/refractory aggressive B-cell lymphomas and that such patients require novel treatment strategies. PMID:26390147

  11. Expression of an anthranilate synthase from maize mutant bf-1 in maize line HiII

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize mutant bf-1 was one of a series of maize mutants generated by radiation from the Bikini Atoll atomic bomb test in 1946. It is characterized by blue fluorescence in seedlings and anthers under ultraviolet illumination and by mutant plants giving off a characteristic grape-like odor due to the ...

  12. A Gammaherpesvirus Bcl-2 Ortholog Blocks B Cell Receptor-Mediated Apoptosis and Promotes the Survival of Developing B Cells In Vivo

    PubMed Central

    Coleman, Carrie B.; McGraw, Jennifer E.; Feldman, Emily R.; Roth, Alexa N.; Keyes, Lisa R.; Grau, Katrina R.; Cochran, Stephanie L.; Waldschmidt, Thomas J.; Liang, Chengyu; Forrest, J. Craig; Tibbetts, Scott A.

    2014-01-01

    Gammaherpesviruses such as Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV, HHV-8) establish lifelong latency in their hosts and are associated with the development of several types of malignancies, including a subset of B cell lymphomas. These viruses are thought to co-opt the process of B cell differentiation to latently infect a fraction of circulating memory B cells, resulting in the establishment of a stable latency setpoint. However, little is known about how this infected memory B cell compartment is maintained throughout the life of the host. We have previously demonstrated that immature and transitional B cells are long-term latency reservoirs for murine gammaherpesvirus 68 (MHV68), suggesting that infection of developing B cells contributes to the maintenance of lifelong latency. During hematopoiesis, immature and transitional B cells are subject to B cell receptor (BCR)-mediated negative selection, which results in the clonal deletion of autoreactive B cells. Interestingly, numerous gammaherpesviruses encode homologs of the anti-apoptotic protein Bcl-2, suggesting that virus inhibition of apoptosis could subvert clonal deletion. To test this, we quantified latency establishment in mice inoculated with MHV68 vBcl-2 mutants. vBcl-2 mutant viruses displayed a marked decrease in the frequency of immature and transitional B cells harboring viral genome, but this attenuation could be rescued by increased host Bcl-2 expression. Conversely, vBcl-2 mutant virus latency in early B cells and mature B cells, which are not targets of negative selection, was remarkably similar to wild-type virus. Finally, in vivo depletion of developing B cells during chronic infection resulted in decreased mature B cell latency, demonstrating a key role for developing B cells in the maintenance of lifelong latency. Collectively, these findings support a model in which gammaherpesvirus latency in circulating mature B cells is sustained in part through the

  13. Transcriptome analysis of the Chinese bread wheat cultivar Yunong 201 and its ethyl methanesulfonate mutant line.

    PubMed

    Zhang, Ning; Wang, Shasha; Zhang, Xiangfen; Dong, Zhongdong; Chen, Feng; Cui, Dangqun

    2016-01-10

    Roche 454 next-generation sequencing was applied to obtain extensive information about the transcriptomes of the bread wheat cultivar Yunong 201 and its EMS mutant line Yunong 3114. Totals of 1.43 million and 1.44 million raw reads were generated, 14,432, 17,845 and 27,867 isotigs were constructed using the reads in Yunong 201, Yunong 3114 and their combination, respectively. Moreover, 29,042, 34,722, and 48,486 unigenes were generated in Yunong 201, Yunong 3114, and combined cultivars, respectively. A total of 50,382 and 59,891 unigenes from the Yunong 201 and Yunong 3114 were mapped on different chromosomes. Of all unigenes, 1363 DEGs were identified in Yunong 201 and Yunong 3114. qRT-PCR analysis confirmed the expression profiles of 40 candidate unigenes possibly related to abiotic stresses. The expression patterns of four annotated DEGs were also verified in the two wheat cultivars under abiotic stresses. This study provided useful information for further analysis of wheat functional genomics. PMID:26342963

  14. PRIMA-1, a mutant p53 reactivator, induces apoptosis and enhances chemotherapeutic cytotoxicity in pancreatic cancer cell lines.

    PubMed

    Izetti, Patricia; Hautefeuille, Agnes; Abujamra, Ana Lucia; de Farias, Caroline Brunetto; Giacomazzi, Juliana; Alemar, Bárbara; Lenz, Guido; Roesler, Rafael; Schwartsmann, Gilberto; Osvaldt, Alessandro Bersch; Hainaut, Pierre; Ashton-Prolla, Patricia

    2014-10-01

    TP53 mutation is a common event in many cancers, including pancreatic adenocarcinoma, where it occurs in 50-70 % of cases. In an effort to reactivate mutant p53 protein, several new drugs are being developed, including PRIMA-1 and PRIMA-1(Met)/APR-246 (p53 reactivation and induction of massive apoptosis). PRIMA-1 has been shown to induce apoptosis in tumor cells by reactivating p53 mutants, but its effect in pancreatic cancer remains unclear. Here we investigated the effects of PRIMA-1 on cell viability, cell cycle and expression of p53-regulated proteins in PANC-1 and BxPC-3 (mutant TP53), and CAPAN-2 (wild-type TP53) pancreatic cell lines. Treatment with PRIMA-1 selectively induced apoptosis and cell cycle arrest in p53 mutant cells compared to CAPAN-2 cells. The growth suppressive effect of PRIMA-1 was markedly reduced in p53 mutant cell lines transfected with p53 siRNA, supporting the role of mutant p53 in PRIMA-1 induced cell death. Moreover, treatment with the thiol group donor N-acetylcysteine completely blocked PRIMA-1-induced apoptosis and reinforced the hypothesis that thiol modifications are important for PRIMA-1 biological activity. In combination treatments, PRIMA-1 enhanced the anti-tumor activity of several chemotherapic drugs against pancreatic cancer cells and also exhibited a pronounced synergistic effect in association with the Mdm2 inhibitor Nutlin-3. Taken together, our data indicate that PRIMA-1 induces apoptosis in p53 mutant pancreatic cancer cells by promoting the re-activation of p53 and inducing proapoptotic signaling pathways, providing in vitro evidence for a potential therapeutic approach in pancreatic cancer. PMID:24838627

  15. Inhibition of mutant IDH1 decreases D-2-HG levels without affecting tumorigenic properties of chondrosarcoma cell lines

    PubMed Central

    Suijker, Johnny; Oosting, Jan; Koornneef, Annemarie; Struys, Eduard A.; Salomons, Gajja S.; Schaap, Frank G.; Waaijer, Cathelijn J.F.; Wijers-Koster, Pauline M.; Briaire-de Bruijn, Inge H.; Haazen, Lizette; Riester, Scott M.; Dudakovic, Amel; Danen, Erik; Cleton-Jansen, Anne-Marie; van Wijnen, Andre J.; Bovée, Judith V.M.G.

    2015-01-01

    Mutations in isocitrate dehydrogenase 1 (IDH1) and IDH2 are found in a subset of benign and malignant cartilage tumors, gliomas and leukaemias. The mutant enzyme causes the production of D-2-hydroxyglutarate (D-2-HG), affecting CpG island and histone methylation. While mutations in IDH1/2 are early events in benign cartilage tumors, we evaluated whether these mutations play a role in malignant chondrosarcomas. Compared to IDH1/2 wildtype cell lines, chondrosarcoma cell lines harboring an endogenous IDH1 (n=3) or IDH2 mutation (n=2) showed up to a 100-fold increase in intracellular and extracellular D-2-HG levels. Specific inhibition of mutant IDH1 using AGI-5198 decreased levels of D-2-HG in a dose dependent manner. After 72 hours of treatment one out of three mutant IDH1 cell lines showed a moderate decrease in viability, while D-2-HG levels decreased >90%. Likewise, prolonged treatment (up to 20 passages) did not affect proliferation and migration. Furthermore, global gene expression, CpG island methylation as well as histone H3K4, -9, and -27 trimethylation levels remained unchanged. Thus, while IDH1/2 mutations cause enchondroma, malignant progression towards central chondrosarcoma renders chondrosarcoma growth independent of these mutations. Thus, monotherapy based on inhibition of mutant IDH1 appears insufficient for treatment of inoperable or metastasized chondrosarcoma patients. PMID:25895133

  16. B cells and immunological tolerance.

    PubMed

    Manjarrez-Orduño, Nataly; Quách, Tâm D; Sanz, Iñaki

    2009-02-01

    Work from multiple groups continues to provide additional evidence for the powerful and highly diverse roles, both protective and pathogenic, that B cells play in autoimmune diseases. Similarly, it has become abundantly clear that antibody-independent functions may account for the opposing influences that B cells exercise over other arms of the immune response and ultimately over autoimmunity itself. Finally, it is becoming apparent that the clinical impact of B-cell depletion therapy may be, to a large extent, determined by the functional balance between different B-cell subsets that may be generated by this therapeutic intervention. In this review, we postulate that our perspective of B-cell tolerance and our experimental approach to its understanding are fundamentally changed by this view of B cells. Accordingly, we first discuss current knowledge of B-cell tolerance conventionally defined as the censoring of autoantibody-producing B cells (with an emphasis on human B cells). Therefore, we discuss a different model that contemplates B cells not only as targets of tolerance but also as mediators of tolerance. This model is based on the notion that the onset of clinical autoimmune disease may require a B-cell gain-of-pathogenic function (or a B-cell loss-of-regulatory-function) and that accordingly, disease remission may depend on the restoration of the physiological balance between B-cell pathogenic and protective functions. PMID:19148217

  17. Analysis of mutational signatures in exomes from B-cell lymphoma cell lines suggest APOBEC3 family members to be involved in the pathogenesis of primary effusion lymphoma

    DOE PAGESBeta

    Wagener, R.; Alexandrov, L. B.; Montesinos-Rongen, M.; Schlesner, M.; Haake, A.; Drexler, H. G.; Richter, J.; Bignell, G. R.; McDermott, U.; Siebert, R.

    2015-02-04

    Here, primary effusion lymphoma (PEL) is a rare large B-cell neoplasm particularly affecting immunodeficient hosts with an increased incidence in young or middle-aged males infected with the HIV.1 The clinical outcome of patients with PEL is unfavorable with a median survival of <6 months.1 PEL has been closely associated with human herpes virus 8 (HHV8, previously called Kaposi sarcoma herpesvirus) infection.1 In some cases a coinfection of HHV8 with the Epstein–Barr Virus (EBV) has been described.1 HHV8 encodes various genes homologous to cellular genes that have proliferative and anti-apoptotic functions.2 Although HHV8 is supposed to be a major driver ofmore » PEL, it alone is not sufficient for a full-blown lymphomagenesis.2 PEL usually shows complex karyotypes with many chromosomal aberrations.3 This chromosomal complexity might be driven by the viral infection and lead to genetic alterations cooperating with HHV8 in PEL lymphomagenesis.4« less

  18. Analysis of mutational signatures in exomes from B-cell lymphoma cell lines suggest APOBEC3 family members to be involved in the pathogenesis of primary effusion lymphoma

    SciTech Connect

    Wagener, R.; Alexandrov, L. B.; Montesinos-Rongen, M.; Schlesner, M.; Haake, A.; Drexler, H. G.; Richter, J.; Bignell, G. R.; McDermott, U.; Siebert, R.

    2015-02-04

    Here, primary effusion lymphoma (PEL) is a rare large B-cell neoplasm particularly affecting immunodeficient hosts with an increased incidence in young or middle-aged males infected with the HIV.1 The clinical outcome of patients with PEL is unfavorable with a median survival of <6 months.1 PEL has been closely associated with human herpes virus 8 (HHV8, previously called Kaposi sarcoma herpesvirus) infection.1 In some cases a coinfection of HHV8 with the Epstein–Barr Virus (EBV) has been described.1 HHV8 encodes various genes homologous to cellular genes that have proliferative and anti-apoptotic functions.2 Although HHV8 is supposed to be a major driver of PEL, it alone is not sufficient for a full-blown lymphomagenesis.2 PEL usually shows complex karyotypes with many chromosomal aberrations.3 This chromosomal complexity might be driven by the viral infection and lead to genetic alterations cooperating with HHV8 in PEL lymphomagenesis.4

  19. B Cells, Antibodies, and More.

    PubMed

    Hoffman, William; Lakkis, Fadi G; Chalasani, Geetha

    2016-01-01

    B cells play a central role in the immunopathogenesis of glomerulonephritides and transplant rejection. B cells secrete antibodies that contribute to tissue injury via multiple mechanisms. In addition, B cells contribute to disease pathogenesis in autoimmunity and alloimmunity by presenting antigens as well as providing costimulation and cytokines to T cells. B cells also play an immunomodulatory role in regulating the immune response by secreting cytokines that inhibit disease onset and/or progression. B cell-targeted approaches for treating immune diseases of the kidney and other organs have gained significant momentum. However, much remains to be understood about B-cell biology in order to determine the timing, duration, and context of optimal therapeutic response to B cell-targeted approaches. In this review, we discuss the multifaceted roles of B cells as enhancers and regulators of immunity with relevance to kidney disease and transplantation. PMID:26700440

  20. Hormone Autotrophic Growth and Differentiation Identifies Mutant Lines of Arabidopsis with Altered Cytokinin and Auxin Content or Signaling1

    PubMed Central

    Frank, Markus; Rupp, Hans-Michael; Prinsen, Els; Motyka, Václav; Van Onckelen, Harry; Schmülling, Thomas

    2000-01-01

    We describe mutant tissue lines of Arabidopsis that are able to grow in vitro as callus on hormone-free medium. The 14 lines presented here show different hormone autotrophic differentiation behaviors that can be classified into three categories: (a) forming roots (rooty callus), (b) forming shoots or shoot-like structures (shooty callus), or (c) growing without organ formation (callus). Three fast-growing lines showed altered steady-state mRNA levels of the Cdc2 and CycD3 cell cycle genes. Three of the six rooty callus lines contained about 20- to 30-fold higher levels of auxins than wild-type callus. These and two other lines with normal auxin content showed an increased steady-state level of IAA1 and IAA2 transcripts in the absence of exogenous auxin. Five of the six shooty callus lines had increased steady-state mRNA levels of the CKI1 gene and/or of the homeobox genes KNAT1 and STM, suggesting that the phenotype is linked to altered cytokinin signaling. Also, one cytokinin-overproducing line with only 5% of wild-type cytokinin oxidase activity was identified. These results indicate that screening for hormone-autonomous growth identifies mutants with altered hormone content or signaling. PMID:10712535

  1. Epstein-Barr Virus BARF1 Protein Is Dispensable for B-Cell Transformation and Inhibits Alpha Interferon Secretion from Mononuclear Cells

    PubMed Central

    Cohen, Jeffrey I.; Lekstrom, Kristen

    1999-01-01

    The Epstein-Barr virus (EBV) BARF1 gene encodes a soluble colony-stimulating factor 1 (CSF-1) receptor that neutralizes the effects of CSF-1 in vitro. To study the effect of BARF1 on EBV-induced transformation, we added recombinant BARF1 to B cells in the presence of EBV. BARF1 did not enhance transformation of B cells by EBV in vitro. To study the role of BARF1 in the context of EBV infection, we constructed a recombinant EBV mutant with a large deletion followed by stop codons in the BARF1 gene as well as a recombinant virus with a wild-type BARF1 gene. While BARF1 has previously been shown to act as an oncogene in several cell lines, the EBV BARF1 deletion mutant transformed B cells and initiated latent infection, and the B cells transformed with the BARF1 mutant virus induced tumors in SCID mice with an efficiency similar to that of the wild-type recombinant virus. Since human CSF-1 stimulates secretion of alpha interferon from mononuclear cells and BARF1 encodes a soluble CSF-1 receptor, we examined whether recombinant BARF1 or BARF1 derived from EBV-infected B cells could inhibit alpha interferon secretion. Recombinant BARF1 inhibited alpha interferon secretion by mononuclear cells in a dose-dependent fashion. The B cells transformed with mutant BARF1 EBV showed reduced inhibition of alpha interferon secretion by human mononuclear cells when compared with the B cells transformed with wild-type recombinant virus. These experiments indicate that BARF1 expressed from the EBV genome directly inhibits alpha interferon secretion, which may modulate the innate host response to the virus. PMID:10438853

  2. Latent membrane protein 1 is critical for efficient growth transformation of human B cells by epstein-barr virus.

    PubMed

    Dirmeier, Ulrike; Neuhierl, Bernhard; Kilger, Ellen; Reisbach, Gilbert; Sandberg, Mark L; Hammerschmidt, Wolfgang

    2003-06-01

    The EBV latent membrane protein 1 (LMP1) is an integral membrane protein that acts like a constitutively activated receptor. LMP1 interacts with members of the tumor necrosis factor receptor-associated factor family, as well as with tumor necrosis factor receptor-associated death domain, resulting in induction of nuclear factor-kappaB, the p38 mitogen-activated protein kinase pathway, and the c-Jun NH(2)-terminal kinase activator protein 1-signaling cascade. The binding of Janus kinase 3 results in activation of signal transducers and activators of transcription. The domain structure of LMP1 has been mapped extensively, but the quantitative contribution of distinct LMP1 domains to the efficiency of B-cell proliferation by EBV has not been determined. On the basis of the maxi-EBV system, which allows us to introduce and study mutations in the context of the complete EBV genome, a panel of 10 EBV mutants with alterations in the LMP1 gene locus was established. The mutant EBVs were tested for their efficiency to induce and maintain proliferation of clonal B-cell lines in vitro. Surprisingly and with reduced frequency, EBV mutants which deleted LMP1's COOH terminus, transmembrane domains, or the entire open reading frame were able to generate proliferating B-cell clones that were dependent on the presence of human fibroblast feeder cells. A B-cell clone carrying the LMP1-null mutant EBV genome was also analyzed for oncogenicity in severe combined immunodeficiency mice. Our results demonstrate that LMP1 is critical but not mandatory for the generation of proliferating B cells in vitro. LMP1 functions greatly contribute to EBV's transformation potential and appear essential for its oncogenicity in severe combined immunodeficiency mice. PMID:12782607

  3. Induction of epstein-barr virus (EBV) lytic cycle in vitro causes lipid peroxidation, protein oxidation and DNA damage in lymphoblastoid B cell lines

    PubMed Central

    2011-01-01

    Background We investigated the oxidative modifications of lipids, proteins and DNA, potential molecular targets of oxidative stress, in two lymphoblastoid cell lines: B95-8 and Raji, after EBV lytic cycle induction. Conjugated dienes level was measured as biomarker of lipid peroxidation. Malondialdehyde adduct and protein carbonyl levels, as well as protein thiol levels were measured as biomarkers of protein oxidation. DNA fragmentation was evaluated as biomarker of DNA oxidation. Results After 48 h (peak of lytic cycle), a significant increase in conjugated dienes level was observed in B95-8 and Raji cell lines (p = 0.0001 and p = 0.019 respectively). Malondialdehyde adduct, protein carbonyl levels were increased in B95-8 and Raji cell lines after EBV lytic cycle induction as compared to controls (MDA-adduct: p = 0.008 and p = 0.006 respectively; Carbonyl: p = 0.003 and p = 0.0039 respectively). Proteins thiol levels were decreased by induction in B95-8 and Raji cell lines (p = 0.046; p = 0.002 respectively). DNA fragmentation was also detected in B95-8 and Raji cell lines after EBV lytic cycle induction as compared to controls. Conclusion The results of this study demonstrate the presence of increased combined oxidative modifications in lipids, proteins in B95-8 and Raji cells lines after EBV lytic cycle induction. These results suggest that lipid peroxidation, protein oxidation and DNA fragmentation are generally induced during EBV lytic cycle induction and probably contribute to the cytopathic effect of EBV. PMID:21722381

  4. Development of low-linolenic acid Brassica oleracea lines through seed mutagenesis and molecular characterization of mutants.

    PubMed

    Rahman, Habibur; Singer, Stacy D; Weselake, Randall J

    2013-06-01

    Designing the fatty acid composition of Brassica napus L. seed oil for specific applications would extend the value of this crop. A mutation in Fatty Acid Desaturase 3 (FAD3), which encodes the desaturase responsible for catalyzing the formation of α-linolenic acid (ALA; 18:3 (cisΔ9,12,15)), in a diploid Brassica species would potentially result in useful germplasm for creating an amphidiploid displaying low ALA content in the seed oil. For this, seeds of B. oleracea (CC), one of the progenitor species of B. napus, were treated with ethyl-methane-sulfonate to induce mutations in genes encoding enzymes involved in fatty acid biosynthesis. Seeds from 1,430 M2 plants were analyzed, from which M3 seed families with 5.7-6.9 % ALA were obtained. Progeny testing and selection for low ALA content were carried out in M3-M7 generations, from which mutant lines with <2.0 % ALA were obtained. Molecular analysis revealed that the mutation was due to a single nucleotide substitution from G to A in exon 3 of FAD3, which corresponds to an amino acid residue substitution from glutamic acid to lysine. No obvious differences in the expression of the FAD3 gene were detected between wild type and mutant lines; however, evaluation of the performance of recombinant Δ-15 desaturase from mutant lines in yeast indicated reduced production of ALA. The novelty of this mutation can be inferred from the position of the point mutation in the C-genome FAD3 gene when compared to the position of mutations reported previously by other researchers. This B. oleracea mutant line has the potential to be used for the development of low-ALA B. napus and B. carinata oilseed crops. PMID:23475317

  5. The novel cyclin-dependent kinase inhibitor flavopiridol downregulates Bcl-2 and induces growth arrest and apoptosis in chronic B-cell leukemia lines.

    PubMed

    König, A; Schwartz, G K; Mohammad, R M; Al-Katib, A; Gabrilove, J L

    1997-12-01

    Flavopiridol is a novel, potent inhibitor of cyclin-dependent kinases (CDK). This synthetic flavone has been reported to exhibit antitumor activity in murine and human tumor cell lines in vitro and in vivo and is currently undergoing clinical phase I evaluation. In the present study, 1 Epstein-Barr virus (EBV)-transformed B-prolymphocytic cell line (JVM-2), 1 EBV-transformed B-CLL cell line (I83CLL), and 1 non-EBV transformed B-CLL cell line (WSU-CLL) were used as targets. Treatment of the cells with flavopiridol (100 nmol/L to 400 nmol/L) led to a marked dose- and time-dependent inhibition of cell growth and survival as determined using trypan blue exclusion. Morphologic analysis showed characteristic apoptotic changes such as chromatin condensation and fragmentation, membrane blebbing, and formation of apoptotic bodies. Furthermore, quantitative assessment of apoptosis-associated DNA strand breaks by in situ TdT labeling showed that a significant number of flavopiridol-treated cells underwent apoptosis. These cellular effects were associated with a significant decrease in bcl-2 expression as observed by Northern and Western blotting. The results showed that flavopiridol downregulates bcl-2 mRNA and bcl-2 protein expression within 24 hours. Genistein and quercetin, two flavonoids that do not inhibit CDKs, did not affect bcl-2 expression. These data suggest an additional mechanism of action of this new flavone which might be useful as an agent in the treatment of chronic lymphoid malignancies. PMID:9373241

  6. Biochemical identification of a neutral sphingomyelinase 1 (NSM1)-like enzyme as the major NSM activity in the DT40 B-cell line: absence of a role in the apoptotic response to endoplasmic reticulum stress.

    PubMed Central

    Fensome, Amanda C; Josephs, Michelle; Katan, Matilda; Rodrigues-Lima, Fernando

    2002-01-01

    DT40 cells have approx. 10-fold higher Mg2+-dependent neutral sphingomyelinase (NSM) activity in comparison with other B-cell lines and contain very low acidic sphingomyelinase activity. Purification of this activity from DT40 cell membranes suggested the presence of one major NSM isoform. Although complete purification of this isoform could not be achieved, partially purified fractions were examined further with regard to the known characteristics of previously partially purified NSMs and the two cloned enzymes exhibiting in vitro NSM activity (NSM1 and NSM2). For a direct comparative study, highly purified brain preparations, purified NSM1 protein and Bacillus cereus enzyme were used. Analysis of the enzymic properties of the partially purified DT40 NSM, such as cation dependence, substrate specificity, redox regulation and stimulation by phosphatidylserine, together with the localization of this enzyme to the endoplasmic reticulum (ER), suggested that this NSM from DT40 cells corresponds to NSM1. Further studies aimed to correlate presence of the high levels of this NSM1-like activity in DT40 cells with the ability of these cells to accumulate ceramide and undergo apoptosis. When DT40 cells were stimulated to apoptose by a variety of agents, including the ER stress, an increase in endogenous ceramide levels was observed. However, these responses were not enhanced compared with another B-cell line (Nalm-6), characterized by low sphingomyelinase activity. In addition, DT40 cells were not more susceptible to ceramide accumulation and apoptosis when exposed to the ER stress compared with other apoptotic agents. Inhibition of de novo synthesis of ceramide partially inhibited its accumulation, indicating that the ceramide production in DT40 cells could be complex and, under some conditions, could involve both sphingomyelin hydrolysis and ceramide synthesis. PMID:12071841

  7. Study of radiosensitive Drosophila lines. XI. Induction of recessive sex-linked lethal mutations in females of the mutant line rad(2)201/sup G1/

    SciTech Connect

    Varentsova, E.R.

    1986-05-01

    The authors have studied the frequency of occurrence of recessive sex-linked lethal mutations (RSLLM) after treatment of the females with ..gamma..-rays as a function of the dose (from 5 to 20 Gy) and oogenesis stage. They have shown that within the dose range used the oocytes of the 14th and 7th development stage are more sensitive in females of the mutant line than in those of the control. They detected significant differences in the frequency of occurrence of RSLLM between the 14th and 7th stages of development of oocytes for both Drosophila lines investigated.

  8. Germline CARD11 mutation in a patient with severe congenital B cell lymphocytosis

    PubMed Central

    Brohl, Andrew S.; Stinson, Jeffrey; Su, Helen C.; Badgett, Thomas; Jennings, Chester D.; Sukumar, Gauthaman; Sindiri, Sivasish; Wang, Wei; Kardava, Lela; Moir, Susan; Dalgard, Clifton L.; Moscow, Jeffrey A.; Snow, Andrew L.; Khan, Javed

    2015-01-01

    Purpose Activating germline mutations in CARD11 have recently been linked to a rare genetic disorder associated with congenital B cell lymphocytosis. We describe a patient with a similar clinical phenotype who had a de novo germline G123D CARD11 mutation. Methods Whole exome sequencing was performed on DNA from the patient and his biological parents. Laboratory studies examined characteristics of the patient’s B and T lymphocytes. A CARD11 cDNA containing the mutation was transfected into a lymphocyte cell line to gain an understanding of its function. RNA sequencing was performed on samples from the patient and from patients with alternate germline CARD11 mutations and differential gene expression analysis was performed. Results The patient had a decade-long history of severe polyclonal B lymphocytosis in the 20,000–90,000 lymphocytes/mm3 range, which was markedly exacerbated by EBV infection and splenectomy at different times. He had a heterozygous germline CARD11 mutation causing a G123D amino acid substitution, which was demonstrated to induce NF-κB activation in unstimulated lymphocytes. In contrast to previous patients with CARD11 mutations, this patient’s B cells exhibited higher expression of several cell cycle progression genes, as well as enhanced proliferation and improved survival following B cell receptor stimulation. Conclusions This is the third reported germline and first de novo CARD11 mutation shown to cause congenital B cell lymphocytosis. The mutation was associated with a dramatically greater lymphocytosis than in previously described cases, disproportionate to the level of constitutive NF-κB activation. However, comparative review of the patient’s clinical history, combined with additional genomic and functional analyses, underscore other important variables that may affect pathophysiology or regulate mutant CARD11 function in B cell proliferation and disease. We now refer to these patients as having BENTA disease (B cell Expansion

  9. Ibrutinib for B cell malignancies

    PubMed Central

    2014-01-01

    Research over the role of Bruton’s agammaglobulinemia tyrosine kinase (BTK) in B-lymphocyte development, differentiation, signaling and survival has led to better understanding of the pathogenesis of B-cell malignancies. Down-regulation of BTK activity is an attractive novel strategy for treating patients with B-cell malignancies. Ibrutinib (PCI-32765), a potent inhibitor of BTK induces impressive responses in B-cell malignancies through irreversible bond with cysteine-481 in the active site of BTK (TH/SH1 domain) and inhibits BTK phosphorylation on Tyr223. This review discussed in details the role of BTK in B-cell signaling, molecular interactions between B cell lymphoma/leukemia cells and their microenvironment. Clinical trials of the novel BTK inhibitor, ibrutinib (PCI-32765), in B cell malignancies were summarized. PMID:24472371

  10. B Cells, Antibodies, and More

    PubMed Central

    Hoffman, William; Lakkis, Fadi G.

    2016-01-01

    B cells play a central role in the immunopathogenesis of glomerulonephritides and transplant rejection. B cells secrete antibodies that contribute to tissue injury via multiple mechanisms. In addition, B cells contribute to disease pathogenesis in autoimmunity and alloimmunity by presenting antigens as well as providing costimulation and cytokines to T cells. B cells also play an immunomodulatory role in regulating the immune response by secreting cytokines that inhibit disease onset and/or progression. B cell–targeted approaches for treating immune diseases of the kidney and other organs have gained significant momentum. However, much remains to be understood about B-cell biology in order to determine the timing, duration, and context of optimal therapeutic response to B cell–targeted approaches. In this review, we discuss the multifaceted roles of B cells as enhancers and regulators of immunity with relevance to kidney disease and transplantation. PMID:26700440

  11. Molecular Marker Development and Linkage Analysis in Three Low Phytic Acid Barley (Hordeum vulgare) Mutant Lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytate is the primary form of phosphorus found in mature cereal grain. This form of phosphorus is not available to monogastric animals due to a lack of the enzyme phytase in their digestive tract. Several barley low phytic acid (lpa) mutants have been identified that contain substantial decreases...

  12. Chlorambucil plus Rituximab as Front-Line Therapy in Elderly/Unfit Patients Affected by B-Cell Chronic Lymphocytic Leukemia: Results of a Single-Centre Experience

    PubMed Central

    Laurenti, Luca; Vannata, Barbara; Innocenti, Idanna; Autore, Francesco; Santini, Francesco; Piccirillo, Nicola; Za, Tommaso; Bellesi, Silvia; Marietti, Sara; Sica, Simona; Efremov, Dimitar G.; Leone, Giuseppe

    2013-01-01

    The current standard first line therapy for fit patients with B-CLL/SLL is based on combination of fludarabine-cyclophosphamide and rituximab. However, elderly patients or patients with comorbidities poorly tolerate purine analogue-based chemotherapy and they are often treated with Chlorambucil (Chl) only. However, complete response (CR) and overall response (OR) rates with Chl are relatively low. We now investigated whether the addition of Rituximab to Chl will improve the efficacy without impairing the tolerability in elderly and unfit patients. We included in our study 27 elderly or unfit patients that had not received prior therapy. All patients were treated with Chl (1mg/Kg per 28-day cycle for 8 cycles) plus Rituximab (375 mg/m2 for the first course and 500 mg/m2 for subsequent cycles until the 6th cycle). We obtained an OR rate of 74%. The most frequent adverse effect was grade 3–4 neutropenia, which occurred in 18.5% of the patients. Infections or grade 3–4 extra-hematological side effects were not recorded. None of the patients required reduction of dose, delay of therapy or hospitalization. Overall, these data suggest that Chl-R is an effective and well tolerated regimen in elderly/unfit patients with CLL. PMID:23667729

  13. EBV latent membrane proteins (LMPs) 1 and 2 as immunotherapeutic targets: LMP-specific CD4+ cytotoxic T cell recognition of EBV-transformed B cell lines.

    PubMed

    Haigh, Tracey A; Lin, Xiaorong; Jia, Hui; Hui, Edwin P; Chan, Anthony T C; Rickinson, Alan B; Taylor, Graham S

    2008-02-01

    The EBV-latent membrane proteins (LMPs) 1 and 2 are among only three viral proteins expressed in EBV-associated Hodgkin's lymphoma and nasopharyngeal carcinoma. Since these tumors are HLA class I and class II-positive, the LMPs could serve as both CD8+ and CD4+ T cell targets. In contrast to CD8 responses, very little is known about CD4 responses to LMPs. In this study, we describe CD4+ T cell clones defining four LMP1- and three LMP2-derived peptide epitopes and their restricting alleles. All clones produced Th1-like cytokines in response to peptide and most killed peptide-loaded target cells by perforin-mediated lysis. Although clones to different epitopes showed different functional avidities in peptide titration assays, avidity per se was a poor predictor of the ability to recognize naturally infected B lymphoblastoid cell lines (LCLs) expressing LMPs at physiologic levels. Some epitopes, particularly within LMP1, consistently mediated strong LCL recognition detectable in cytokine release, cytotoxicity, and outgrowth inhibition assays. Using cyclosporin A to selectively block cytokine release, we found that CD4+ T cell cytotoxicity is the key effector of LCL outgrowth control. We therefore infer that cytotoxic CD4+ T cells to a subset of LMP epitopes could have therapeutic potential against LMP-expressing tumors. PMID:18209060

  14. Potential role for concurrent abnormalities of the cyclin D1, p16CDKN2 and p15CDKN2B genes in certain B cell non-Hodgkin's lymphomas. Functional studies in a cell line (Granta 519).

    PubMed

    Jadayel, D M; Lukas, J; Nacheva, E; Bartkova, J; Stranks, G; De Schouwer, P J; Lens, D; Bartek, J; Dyer, M J; Kruger, A R; Catovsky, D

    1997-01-01

    Abnormalities of several cell-cycle regulatory genes including cyclin D1, p16CDKN2 and p15CDKN2B have been described in B cell non-Hodgkin's lymphoma (B-NHL). We describe a new B-NHL cell line (Granta 519), with concurrent abnormalities of the cyclin D1, pl6CDKN2 and pl5CDKN2B genes. An independent clinical case of mantle cell NHL (Mc-NHL) with concomitant overexpression of cyclin D1, and deletion of the p16CDKN2 gene was also identified, suggesting that this combination of oncogenic aberration is a pathophysiologic contribution to a subset of NHL cases. More in-depth functional studies of this concept were facilitated by the availability of the cell line Granta 519 which was derived from a case of high-grade NHL and has a mature B cell immunophenotype. Cytogenetic analysis identified translocation t(11;14)(q13;q32) and complex rearrangements involving chromosomes 9p22, 13p21, 17pl1, and 18q21. Molecular analysis identified overexpression of cyclin D1 mRNA and biallelic deletion of the p16CDKN2 and p15CDKN2B genes. To elucidate the effect of these genetic abnormalities on the G1 control of Granta 519 cells, the level and function of the major components of the cyclinD/retinoblastoma (RB) pathway were investigated. Cyclin D1 was dominant among the D-type cyclins, formed abundant complexes with cyclin-dependent kinase (Cdk) Cdk4 rather than Cdk6, and the immunoprecipitated cyclin D1/Cdk4 holoenzyme was active as a pRB kinase. Electroporation of wild-type pl6CDKN2 arrested the Granta 519 cells in G1, consistent with the p16CDKN2 loss as a biologically relevant event during multistep evolution of the tumor, and with the expression of functional pRB. Direct cooperation of these distinct abnormalities to cell-cycle, deregulation in NHL cells was suggested by G1 acceleration upon inducible overexpression of cyclin D1 in a control breast cancer cell line lacking p16CDKN2, an effect which could be prevented by ectopic expression of p16CDKN2. Taken together, these data

  15. Cytotoxic, apoptotic, and sensitization properties of ent-kaurane-type diterpenoids from Croton tonkinensis Gagnep on human liver cancer HepG2 and Hep3b cell lines.

    PubMed

    Pham, Minh Quan; Iscache, Anne Laure; Pham, Quoc Long; Gairin, Jean Edouard

    2016-04-01

    Human hepatocellular carcinoma (HCC) is the most common type of liver cancer, the second most common cause of death from cancer worldwide. A very poor prognosis and a lack of effective treatments make liver cancer a major public health problem, notably in less developed regions, particularly in eastern Asia. This fully justifies the search of new molecules and therapeutic strategies against HCC. Ent-kaurane diterpenoids are natural compounds displaying a broad spectrum of potential therapeutic effects including anticancer activity. In this study, we analyzed the pharmacological properties of a family of ent-kaurane diterpenoids from Croton tonkinensis Gagnep in human HepG2 and Hep3b cell lines, used as cellular reference models for in vitro evaluation of new molecules active on HCC. A structure-related cytotoxicity was observed against both HCC cell lines, enlighting the role of the 16-en-15-one skeleton of ent-kaurane diterpenoids. Cytotoxicity was closely correlated to apoptosis, evidenced by concentration-dependent subG1 cell accumulation, and increased annexin V expression. In addition, subtoxic concentration of ent-kaurane diterpenoid dramatically enhanced the sensitivity of HCC cells to doxorubicin. All together, our data bring strong support to the potential interest of ent-kaurane diterpenoids, alone or in combination with a cytotoxic agent, in cancer and more precisely against HCC. PMID:26713517

  16. Analysis of spontaneous chromosomal rearrangements in neuroblasts of genetically unstable mutant lines of Drosophila melanogaster

    SciTech Connect

    Derzhavets, E.M.; Kim, A.I.; Aslanyan, M.M.

    1988-11-01

    The spectrum and frequency of chromosomal aberrations in the somatic cells of III instar larvae of Drosophila melanogaster mutator line were studied using three of its derivatives (sbt, if, and w/sup a/) and line w as control. It has been demonstrated that the frequency of anaphases with bridges and acentric fragments increases in the neuroblast of flies of the mutator line as well as in the neuroblasts of the larvae of the lines sbt, if, and w/sup a/. The metaphase analysis revealed that the mutator line and its derivatives are characterized by higher frequencies of chromosomal aberrations as compared to the control. Chromatid breaks are predominant type of rearrangements. These results, suggest probably presence of the specific mutator factor or factors in the line studied, affecting chromosomal structure and, possibly, activating migration of the mobile genetic elements in the mutator line.

  17. Genomic Uracil Homeostasis during Normal B Cell Maturation and Loss of This Balance during B Cell Cancer Development

    PubMed Central

    Shalhout, Sophia; Haddad, Dania; Sosin, Angela; Holland, Thomas C.; Al-Katib, Ayad; Martin, Alberto

    2014-01-01

    Activation-induced deaminase (AID) converts DNA cytosines to uracils in immunoglobulin genes, creating antibody diversification. It also causes mutations and translocations that promote cancer. We examined the interplay between uracil creation by AID and its removal by UNG2 glycosylase in splenocytes undergoing maturation and in B cell cancers. The genomic uracil levels remain unchanged in normal stimulated B cells, demonstrating a balance between uracil generation and removal. In stimulated UNG−/− cells, uracil levels increase by 11- to 60-fold during the first 3 days. In wild-type B cells, UNG2 gene expression and enzymatic activity rise and fall with AID levels, suggesting that UNG2 expression is coordinated with uracil creation by AID. Remarkably, a murine lymphoma cell line, several human B cell cancer lines, and human B cell tumors expressing AID at high levels have genomic uracils comparable to those seen with stimulated UNG−/−splenocytes. However, cancer cells express UNG2 gene at levels similar to or higher than those seen with peripheral B cells and have nuclear uracil excision activity comparable to that seen with stimulated wild-type B cells. We propose that more uracils are created during B cell cancer development than are removed from the genome but that the uracil creation/excision balance is restored during establishment of cell lines, fixing the genomic uracil load at high levels. PMID:25154417

  18. Comparative microarray analysis of basal gene expression in mouse Hepa-1c1c7 wild-type and mutant cell lines.

    PubMed

    Fong, C J; Burgoon, L D; Zacharewski, T R

    2005-08-01

    Hepa-1c1c7 wild-type and benzo[a]pyrene-resistant derived mutant cell lines have been used to elucidate pathways and mechanisms involving the aryl hydrocarbon receptor (AhR). However, there has been little focus on other biological processes which may differ between the isolated lines. In this study, mouse cDNA microarrays representing 4858 genes were used to examine differences in basal gene expression between mouse Hepa-1c1c7 wild-type and c1 (truncated Cyp1a1 protein), c4 (AhR nuclear translocator, ARNT, deficient), and c12 (low AhR levels) mutant cell lines. Surprisingly, c1 mutants exhibited the greatest number of gene expression changes compared to wild-type cells, followed by c4 and c12 lines, respectively. Differences in basal gene expression were consistent with cell line specific variations in morphology, mitochondrial activity, and proliferation rate. MTT and direct cell count assays indicate both c4 and c12 mutants exhibit increased proliferative activity when compared to wild-type cells, while the c1 mutants exhibited decreased activity. This study further characterizes Hepa-1c1c7 wild-type and mutant cells and identifies significant differences in biological processes that should be considered when conducting comparative mechanistic studies with these lines. PMID:15888666

  19. Parkinson Disease Mutant E46K Enhances α-Synuclein Phosphorylation in Mammalian Cell Lines, in Yeast, and in Vivo*

    PubMed Central

    Mbefo, Martial Kamdem; Fares, Mohamed-Bilal; Paleologou, Katerina; Oueslati, Abid; Yin, Guowei; Tenreiro, Sandra; Pinto, Madalena; Outeiro, Tiago; Zweckstetter, Markus; Masliah, Eliezer; Lashuel, Hilal A.

    2015-01-01

    Although α-synuclein (α-syn) phosphorylation has been considered as a hallmark of sporadic and familial Parkinson disease (PD), little is known about the effect of PD-linked mutations on α-syn phosphorylation. In this study, we investigated the effects of the A30P, E46K, and A53T PD-linked mutations on α-syn phosphorylation at residues Ser-87 and Ser-129. Although the A30P and A53T mutants slightly affected Ser(P)-129 levels compared with WT α-syn, the E46K mutation significantly enhanced Ser-129 phosphorylation in yeast and mammalian cell lines. This effect was not due to the E46K mutant being a better kinase substrate nor due to alterations in endogenous kinase levels, but was mostly linked with enhanced nuclear and endoplasmic reticulum accumulation. Importantly, lentivirus-mediated overexpression in mice also showed enhanced Ser-129 phosphorylation of the E46K mutant compared to WT α-syn, thus providing in vivo validation of our findings. Altogether, our findings suggest that the different PD-linked mutations may contribute to PD pathogenesis via different mechanisms. PMID:25657004

  20. A lipopolysaccharide (LPS)-resistant mutant isolated from a macrophagelike cell line, J774.1, exhibits an altered activated-macrophage phenotype in response to LPS.

    PubMed

    Amano, F; Akamatsu, Y

    1991-06-01

    A bacterial lipopolysaccharide (LPS)-resistant mutant was isolated from murine macrophagelike cell line J774.1. The mutant showed selective resistance to LPS and lipid A and was almost 10(5)- to 10(6)-fold more resistant than the parent; it grew even in the presence of 1 mg of Escherichia coli O55:B5 LPS per liter, whereas the parent did not grow with less than 10 ng of LPS per milliliter. We next examined the mutant for activation of various functions of macrophages on LPS treatment. This LPS-resistant mutant secreted interleukin-1 and tumor necrosis factor almost as effectively as the parent did. The mutant cells also changed transiently from a round to a spread form; however, they became round again afterwards. The mutant cells secreted less arachidonic acid in response to LPS. These results also suggest that this LPS-resistant mutant responds to LPS and shows activation of some macrophage functions. However, this mutant did not exhibit elevation of O2- generation or H2O2 generation after LPS treatment. Also, treatment of the mutant cells with murine recombinant gamma interferon was partly able to correct the defect in O(2-)-generating activity in response to LPS, suggesting that this defect is probably due to some of the LPS signal pathways. This implies that there is some correlation between O2- metabolism in LPS-activated macrophages and decreases in cell growth and viability. PMID:1645329

  1. A t(6;12)(q23;p13) results in the fusion of ETV6 to a novel gene, STL, in a B-cell ALL cell line.

    PubMed

    Suto, Y; Sato, Y; Smith, S D; Rowley, J D; Bohlander, S K

    1997-04-01

    ETV6 (TEL) is rearranged in various types of hematologic malignancies. The B-cell precursor acute lymphoblastic leukemia (ALL) cell line SUP-B2 has a t(6;12)(q23;p13) involving ETV6 at 12p13 and a submicroscopic deletion of the other ETV6 allele. The reciprocal translocation results in the fusion of ETV6 to a previously unknown gene at 6q23, which we named STL (six-twelve leukemia gene). Both reciprocal fusion transcripts can be detected: On the der(6) chromosome, the ETV6/STL mRNA shows an apparently out of frame fusion of ETV6 at nucleotide 187 to STL, which would result in the addition of 14 amino acids to the first 54 amino acids of ETV6. On the der(12) chromosome three different variants of the STL/ETV6 fusion mRNA could be detected; variable size segments were inserted at the breakpoint between STL and ETV6 exon 3. One of these variants could give rise to a protein in which the first 54 amino acids of ETV6 are replaced by 12 amino acids from one of the STL short open reading frames. Sequence analysis of a 1.4 kb STL cDNA clone from a skeletal muscle library revealed no long open reading frames. This cell line will be very useful in studying the different mechanisms by which alterations of ETV6 contribute to leukemogenesis and in testing the hypothesis that ETV6 might act as a tumor suppressor gene. PMID:9087565

  2. Genotypic stability, segregation and selection in heteroplasmic human cell lines containing np 3243 mutant mtDNA.

    PubMed Central

    Lehtinen, S K; Hance, N; El Meziane, A; Juhola, M K; Juhola, K M; Karhu, R; Spelbrink, J N; Holt, I J; Jacobs, H T

    2000-01-01

    The mitochondrial genotype of heteroplasmic human cell lines containing the pathological np 3243 mtDNA mutation, plus or minus its suppressor at np 12300, has been followed over long periods in culture. Cell lines containing various different proportions of mutant mtDNA remained generally at a consistent, average heteroplasmy value over at least 30 wk of culture in nonselective media and exhibited minimal mitotic segregation, with a segregation number comparable with mtDNA copy number (>/=1000). Growth in selective medium of cells at 99% np 3243 mutant mtDNA did, however, allow the isolation of clones with lower levels of the mutation, against a background of massive cell death. As a rare event, cell lines exhibited a sudden and dramatic diversification of heteroplasmy levels, accompanied by a shift in the average heteroplasmy level over a short period (<8 wk), indicating selection. One such episode was associated with a gain of chromosome 9. Analysis of respiratory phenotype and mitochondrial genotype of cell clones from such cultures revealed that stable heteroplasmy values were generally reestablished within a few weeks, in a reproducible but clone-specific fashion. This occurred independently of any straightforward phenotypic selection at the individual cell-clone level. Our findings are consistent with several alternate views of mtDNA organization in mammalian cells. One model that is supported by our data is that mtDNA is found in nucleoids containing many copies of the genome, which can themselves be heteroplasmic, and which are faithfully replicated. We interpret diversification and shifts of heteroplasmy level as resulting from a reorganization of such nucleoids, under nuclear genetic control. Abrupt remodeling of nucleoids in vivo would have major implications for understanding the developmental consequences of heteroplasmy, including mitochondrial disease phenotype and progression. PMID:10628996

  3. B-cell-activating factor inhibits CD20-mediated and B-cell receptor-mediated apoptosis in human B cells

    PubMed Central

    Saito, Yohei; Miyagawa, Yoshitaka; Onda, Keiko; Nakajima, Hideki; Sato, Ban; Horiuchi, Yasuomi; Okita, Hajime; Katagiri, Yohko U; Saito, Masahiro; Shimizu, Toshiaki; Fujimoto, Junichiro; Kiyokawa, Nobutaka

    2008-01-01

    B-cell-activating factor (BAFF) is a survival and maturation factor for B cells belonging to the tumour necrosis factor superfamily. Among three identified functional receptors, the BAFF receptor (BAFF-R) is thought to be responsible for the effect of BAFF on B cells though details of how remain unclear. We determined that a hairy-cell leukaemia line, MLMA, expressed a relatively high level of BAFF-R and was susceptible to apoptosis mediated by either CD20 or B-cell antigen receptor (BCR). Using MLMA cells as an in vitro model of mature B cells, we found that treatment with BAFF could inhibit apoptosis mediated by both CD20 and BCR. We also observed, using immunoblot analysis and microarray analysis, that BAFF treatment induced activation of nuclear factor-κB2 following elevation of the expression level of Bcl-2, which may be involved in the molecular mechanism of BAFF-mediated inhibition of apoptosis. Interestingly, BAFF treatment was also found to induce the expression of a series of genes, such as that for CD40, related to cell survival, suggesting the involvement of a multiple mechanism in the BAFF-mediated anti-apoptotic effect. MLMA cells should provide a model for investigating the molecular basis of the effect of BAFF on B cells in vitro and will help to elucidate how B cells survive in the immune system in which BAFF-mediated signalling is involved. PMID:18540961

  4. Functional studies and modeling of pore-lining residue mutants of the influenza A virus M2 ion channel†

    PubMed Central

    Balannik, Victoria; Carnevale, Vincenzo; Fiorin, Giacomo; Levine, Benjamin G.; Lamb, Robert A.; Klein, Michael L.; DeGrado, William F.; Pinto, Lawrence H.

    2015-01-01

    The A/M2 protein of influenza A virus forms a tetrameric proton selective pH-gated ion channel. The H37xxxW41 motif located in the channel pore is responsible for its gating and proton selectivity. Channel activation most likely involves protonation of the H37 residues, while the conductive state of the channel is characterized by two or three charged His residues in a tetrad. A/M2 channel activity is inhibited by the anti-viral drug amantadine. Although a large number of functional amantadine-resistant mutants of A/M2 have been observed in vitro, only a few are observed in highly transmissible viruses in the presence or absence of amantadine. We therefore examined 49 point mutants of the pore-lining residues, representing both natural and non-natural variants. Their ion selectivity, amantadine sensitivity, specific activity, and pH dependent conductance were measured in Xenopus oocytes. These measurements showed how variations in the sequence lead to variations in the proton conduction. The results are consistent with a multi-step mechanism that allows the protein to fine-tune its pH-rate profile over a wide range of proton concentrations, hypothesized to arise from different protonation states of the H37 tetrad. Mutations that give native-like conductance at low pH as well as minimal leakage current at pH 7.0 were surprisingly rare. Moreover, the results are consistent with a location of the amantadine-binding site inside the channel pore. These findings have helped to define the set of functionally fit mutants that should be targeted when considering the design of novel drugs that inhibit amantadine-resistant strains of influenza A virus. PMID:20028125

  5. Homologous recombination can restore normal immunoglobulin production in a mutant hybridoma cell line.

    PubMed Central

    Baker, M D; Pennell, N; Bosnoyan, L; Shulman, M J

    1988-01-01

    We report here the occurrence of homologous recombination between transferred and chromosomal immunoglobulin genes. Specifically, we have corrected a chromosomal immunoglobulin gene mutation by transferring pSV2neo vectors encoding the constant region of the immunoglobulin mu heavy chain to mutant hybridoma cells that bear a 2-base-pair deletion in the third constant region exon of their chromosomal mu gene. After DNA transfer, we detected G418-resistant transformants that produce normal IgM. Analysis of the DNA structure of the mu gene in these transformants indicates that in four of five cases the mu gene has been restored as a result of the integration of a single copy of the transfer vector by a reciprocal homologous recombination event; the fifth case seems to have resulted from gene conversion or double crossover. These results suggest that this technology might be adapted for mapping immunoglobulin gene mutations by marker rescue and for more convenient engineering of specifically altered immunoglobulin. Images PMID:2842771

  6. Inhibition of Cell Proliferation in an NRAS Mutant Melanoma Cell Line by Combining Sorafenib and α-Mangostin.

    PubMed

    Xia, Yun; Li, Ying; Westover, Kenneth D; Sun, Jiaming; Chen, Hongxiang; Zhang, Jianming; Fisher, David E

    2016-01-01

    α-Mangostin is a natural product commonly used in Asia for cosmetic and medicinal applications including topical treatment of acne and skin cancer. Towards finding new pharmacological strategies that overcome NRAS mutant melanoma, we performed a cell proliferation-based combination screen using a collection of well-characterized small molecule kinase inhibitors and α-Mangostin. We found that α-Mangostin significantly enhances Sorafenib pharmacological efficacy against an NRAS mutant melanoma cell line. The synergistic effects of α-Mangostin and Sorafenib were associated with enhanced inhibition of activated AKT and ERK, induced ER stress, and reduced autophagy, eventually leading to apoptosis. The structure of α-Mangostin resembles several inhibitors of the Retinoid X receptor (RXR). MITF expression, which is regulated by RXR, was modulated by α-Mangostin. Molecular docking revealed that α-Mangostin can be accommodated by the ligand binding pocket of RXR and may thereby compete with RXR-mediated control of MITF expression. In summary, these data demonstrate an unanticipated synergy between α-Mangostin and sorafenib, with mechanistic actions that convert a known safe natural product to a candidate combinatorial therapeutic agent. PMID:27152946

  7. Inhibition of Cell Proliferation in an NRAS Mutant Melanoma Cell Line by Combining Sorafenib and α-Mangostin

    PubMed Central

    Xia, Yun; Li, Ying; Westover, Kenneth D.; Sun, Jiaming; Chen, Hongxiang; Zhang, Jianming; Fisher, David E.

    2016-01-01

    α-Mangostin is a natural product commonly used in Asia for cosmetic and medicinal applications including topical treatment of acne and skin cancer. Towards finding new pharmacological strategies that overcome NRAS mutant melanoma, we performed a cell proliferation-based combination screen using a collection of well-characterized small molecule kinase inhibitors and α-Mangostin. We found that α-Mangostin significantly enhances Sorafenib pharmacological efficacy against an NRAS mutant melanoma cell line. The synergistic effects of α-Mangostin and Sorafenib were associated with enhanced inhibition of activated AKT and ERK, induced ER stress, and reduced autophagy, eventually leading to apoptosis. The structure of α-Mangostin resembles several inhibitors of the Retinoid X receptor (RXR). MITF expression, which is regulated by RXR, was modulated by α-Mangostin. Molecular docking revealed that α-Mangostin can be accommodated by the ligand binding pocket of RXR and may thereby compete with RXR-mediated control of MITF expression. In summary, these data demonstrate an unanticipated synergy between α-Mangostin and sorafenib, with mechanistic actions that convert a known safe natural product to a candidate combinatorial therapeutic agent. PMID:27152946

  8. Activated mast cells promote differentiation of B cells into effector cells

    PubMed Central

    Palm, Anna-Karin E.; Garcia-Faroldi, Gianni; Lundberg, Marcus; Pejler, Gunnar; Kleinau, Sandra

    2016-01-01

    Based on the known accumulation of mast cells (MCs) in B cell-dependent inflammatory diseases, including rheumatoid arthritis, we hypothesized that MCs directly modulate B cells. We show here that degranulated, and to a lesser extent naïve or IgE-sensitized, MCs activate both naïve and B cell receptor-activated B cells. This was shown by increased proliferation, blast formation, and expression of CD19, MHC class II and CD86 in the B cells. Further, MCs stimulated the secretion of IgM and IgG in IgM+ B cells, indicating that MCs can induce class-switch recombination in B cells. We also show that coculture of MCs with B cells promotes surface expression of L-selectin, a homing receptor, on the B cells. The effects of MCs on B cells were partly dependent on cell-cell contact and both follicular and marginal zone B cells could be activated by MCs. Our findings suggest that degranulated MCs support optimal activation of B cells, a finding that is in line with in vivo studies showing that MCs frequently degranulate in the context of B-cell driven pathologies such as arthritis. Together, our findings show that MCs have the capacity to differentiate B cells to effector cells. PMID:26847186

  9. Quantification of gel-separated proteins and their phosphorylation sites by LC-MS using unlabeled internal standards: analysis of phosphoprotein dynamics in a B cell lymphoma cell line.

    PubMed

    Cutillas, Pedro R; Geering, Barbara; Waterfield, Mike D; Vanhaesebroeck, Bart

    2005-08-01

    Protein phosphorylation plays a critical role in normal cellular function and is often subverted in disease. Although major advances have recently been made in identification and quantitation of protein phosphorylation sites by MS, current methodological limitations still preclude routine, easily usable, and comprehensive quantitative analysis of protein phosphorylation. Here we report a simple LC-MS method to quantify gel-separated proteins and their sites of phosphorylation; in this approach, integrated chromatographic peak areas of peptide analytes from proteins under study are normalized to those of a non-isotopically labeled internal standard protein spiked into the excised gel samples just prior to in-gel digestion. The internal standard intensities correct for differences in enzymatic activities and sample losses that may occur during the processes of in-gel digestion and peptide extraction from the gel pieces. We used this method of peak area measurement with an internal standard to investigate the effects of pervanadate on protein phosphorylation in the WEHI-231 B cell lymphoma cell line and to assess the role of phosphoinositide 3-kinase (PI3K) in these phosphorylation events. Phosphoproteins, isolated from total cell lysates using IMAC or by immunoprecipitation using Tyr(P) antibodies, were analyzed using this method, leading to identification of >400 proteins, several of which were found at higher levels in phosphoprotein fractions after pervanadate treatment. Pretreatment of cells with the PI3K inhibitor wortmannin reduced the phosphorylation level of certain proteins (e.g. STAT1 and phospholipase Cgamma2) while increasing the phosphorylation of several others. Peak area measurement with an internal standard was also used to follow the dynamics of PI3K-dependent and -independent changes in the post-translational modification of both known and novel phospholipase Cgamma2 phosphorylation sites. Our results illustrate the capacity of this conceptually

  10. Central nervous system prophylaxis with intrathecal liposomal cytarabine in a subset of high-risk patients with diffuse large B-cell lymphoma receiving first line systemic therapy in a prospective trial.

    PubMed

    González-Barca, E; Canales, M; Salar, A; Ferreiro-Martínez, J J; Ferrer-Bordes, S; García-Marco, J A; Sánchez-Blanco, J J; García-Frade, J; Peñalver, J; Bello-López, J L; Sancho, J M; Caballero, D

    2016-05-01

    The dissemination in the central nervous system (CNS) is an uncommon but fatal complication occurring in patients with diffuse large B-cell lymphoma (DLBCL). Standard prophylaxis has been demonstrated to reduce CNS relapse and improve survival rates. Intrathecal (IT) liposomal cytarabine allows maintaining elevated drug levels in the cerebrospinal fluid for an extended period of time. Data on the efficacy and safety of liposomal cytarabine as CNS prophylaxis in patients with DLBCL are still insufficient. The objective of the present study was to evaluate the effectiveness and safety of the prophylaxis with IT liposomal cytarabine in prevention of CNS relapse in high-risk patients with DLBCL who were included in a trial of first line systemic therapy with 6 cycles of dose-dense R-CHOP every 14 days. Twenty-four (18.6 %) out of 129 patients were identified to have risk factors for CNS involvement, defined as follows: >30 % bone marrow infiltration, testes infiltration, retroperitoneal mass ≥10 cm, Waldeyer ring, or bulky cervical nodes involvement. Liposomal cytarabine (50 mg) was administered by lumbar puncture the first day of the 1st, 2nd, and 6th cycle of R-CHOP14 scheme. Among 70 IT infusions, grade 3-4 adverse events reported were headache (one patient) and nausea/vomiting (one patient). With a median follow-up of 40.1 months, no CNS involvement by DLBCL was observed in any patient. In conclusion, IT liposomal cytarabine is safe, feasible, and effective for CNS prophylaxis, causing few associated risks and little discomfort to patients with DLBCL. PMID:27025508

  11. Impact of high-dose chemotherapy and autologous transplantation as first-line therapy on the survival of high-risk diffuse large B cell lymphoma patients: a single-center study in Japan.

    PubMed

    Inano, Shojiro; Iwasaki, Makoto; Iwamoto, Yoshihiro; Sueki, Yuki; Fukunaga, Akiko; Yanagita, Soshi; Arima, Nobuyoshi

    2014-02-01

    High-dose chemotherapy (HDT), together with autologous stem cell transplantation (ASCT), plays an important role in the treatment of diffuse large B cell lymphoma (DLBCL), especially as second-line therapy. However, its significance in up-front settings remains to be elucidated. In our institute, patients with DLBCL in both the high-intermediate and high international prognostic index (IPI) groups initially underwent CHOP/R-CHOP treatment followed by HDT/ASCT at upfront settings between 2002 and 2011. We retrospectively analyzed 25 patients who were all treated with upfront HDT/ASCT. We excluded one patient who failed to undergo transplantation because of primary refractory disease from the analysis. The median follow-up was 77 months (range 17-110 months). Five-year overall survival (OS) and progression-free survival (PFS) were 91.7 and 79.2 %, respectively, which were higher than the equivalents in previous studies. The OS and PFS in the high-risk group were lower than those in the high-intermediate group. Treatment-related mortalities or fatal complication were not observed. Our results confirm that HDT/ASCT for high-risk aggressive lymphoma is a feasible and promising therapy, but patients with high IPI continued to have poor prognoses; improvements in treatment strategy are clearly needed. Since HDT/ASCT is an aggressive treatment option associated with long-term complications, we need to identify patient groups that will gain the maximum benefit from HDT/ASCT in the upfront setting. PMID:24338743

  12. Evolution of B Cell Immunity

    PubMed Central

    Sunyer, J. Oriol

    2013-01-01

    Two types of adaptive immune strategies are known to have evolved in vertebrates: the VLR-based system, which is present in jawless organisms and is mediated by VLRA and VLRB lymphocytes, and the BCR/TCR-based system, which is present in jawed species and is provided by B and T cell receptors expressed on B and T cells, respectively. Here we summarize features of B cells and their predecessors in the different animal phyla, focusing the review on B cells from jawed vertebrates. We point out the critical role of nonclassical species and comparative immunology studies in the understanding of B cell immunity. Because nonclassical models include species relevant to veterinary medicine, basic science research performed in these animals contributes to the knowledge required for the development of more efficacious vaccines against emerging pathogens. PMID:25340015

  13. Genome-wide DNA methylation analysis in cohesin mutant human cell lines

    PubMed Central

    Liu, Jinglan; Zhang, Zhe; Bando, Masashige; Itoh, Takehiko; Deardorff, Matthew A.; Li, Jennifer R.; Clark, Dinah; Kaur, Maninder; Tatsuro, Kondo; Kline, Antonie D.; Chang, Celia; Vega, Hugo; Jackson, Laird G.; Spinner, Nancy B.; Shirahige, Katsuhiko; Krantz, Ian D.

    2010-01-01

    The cohesin complex has recently been shown to be a key regulator of eukaryotic gene expression, although the mechanisms by which it exerts its effects are poorly understood. We have undertaken a genome-wide analysis of DNA methylation in cohesin-deficient cell lines from probands with Cornelia de Lange syndrome (CdLS). Heterozygous mutations in NIPBL, SMC1A and SMC3 genes account for ∼65% of individuals with CdLS. SMC1A and SMC3 are subunits of the cohesin complex that controls sister chromatid cohesion, whereas NIPBL facilitates cohesin loading and unloading. We have examined the methylation status of 27 578 CpG dinucleotides in 72 CdLS and control samples. We have documented the DNA methylation pattern in human lymphoblastoid cell lines (LCLs) as well as identified specific differential DNA methylation in CdLS. Subgroups of CdLS probands and controls can be classified using selected CpG loci. The X chromosome was also found to have a unique DNA methylation pattern in CdLS. Cohesin preferentially binds to hypo-methylated DNA in control LCLs, whereas the differential DNA methylation alters cohesin binding in CdLS. Our results suggest that in addition to DNA methylation multiple mechanisms may be involved in transcriptional regulation in human cells and in the resultant gene misexpression in CdLS. PMID:20448023

  14. Multiple pathways of DNA double-strand break processing in a mutant Indian muntjac cell line

    SciTech Connect

    Bouffler, S.D.; Jha, B.; Johnson, R.T. )

    1990-09-01

    DNA break processing is compared in the Indian muntjac cell lines, SVM and DM. The initial frequencies and resealing of X-ray generated single- and double-strand breaks are similar in the two cell lines. Inhibiting the repair of UV damage leads to greater double-strand breakage in SVM than in DM, and some of these breaks are not repaired; however, repair-associated single-strand breakage and resealing are normal. Dimethylsulfate also induces excess double-strand breakage in SVM, and these breaks are irreparable. Restricted plasmids are reconstituted correctly in SVM at approximately 30% of the frequency observed in DM. Thus SVM has a reduced capacity to repair certain types of double-strand break. This defect is not due to a DNA ligase deficiency. We conclude that DNA double-strand breaks are repaired by a variety of pathways within mammalian cells and that the structure of the break or its mode of formation determines its subsequent fate.

  15. Loss of miR-182 affects B-cell extrafollicular antibody response.

    PubMed

    Li, Yan-Feng; Ou, Xijun; Xu, Shengli; Jin, Zi-Bing; Iwai, Naoharu; Lam, Kong-Peng

    2016-06-01

    MicroRNAs have been shown to play a role in B-cell differentiation and activation. Here, we found miR-182 to be highly induced in activated B cells. However, mice lacking miR-182 have normal B-cell and T-cell development. Interestingly, mutant mice exhibited a defective antibody response at early time-points in the immunization regimen when challenged with a T-cell-dependent antigen. Germinal centres were formed but the generation of extrafollicular plasma cells was defective in the spleens of immunized miR-182-deficient mice. Mutant mice were also not able to respond to a T-cell-independent type 2 antigen, which typically elicited an extrafollicular B-cell response. Taken together, the data indicated that miR-182 plays a critical role in driving extrafollicular B-cell antibody responses. PMID:26849109

  16. Isolation and characterization of a Chinese hamster ovary mutant cell line with altered sensitivity to vaccinia virus killing.

    PubMed Central

    Bair, C H; Chung, C S; Vasilevskaya, I A; Chang, W

    1996-01-01

    The Chinese hamster ovary (CHO) cell line is nonpermissive for vaccinia virus, and translation of viral intermediate genes was reported to be blocked (A. Ramsey-Ewing and B. Moss, Virology 206:984-993, 1995). However, cells are readily killed by vaccinia virus. A vaccinia virus-resistant CHO mutant, VV5-4, was isolated by retroviral insertional mutagenesis. Parental CHO cells, upon infection with vaccinia virus, die within 2 to 3 days, whereas VV5-4 cells preferentially survive this cytotoxic effect. The survival phenotype of VV5-4 is partial and in inverse correlation with the multiplicity of infection used. In addition, viral infection fails to shut off host protein synthesis in VV5-4. VV5-4 was used to study the relationship of progression of the virus life cycle and cell fate. We found that in parental CHO cells, vaccinia virus proceeds through expression of viral early genes, uncoating, viral DNA replication, and expression of intermediate and late promoters. In contrast, we detect only expression of early genes and uncoating in VV5-4 cells, whereas viral DNA replication appears to be blocked. Consistent with the cascade regulation model of viral gene expression, we detect little intermediate- and late-gene expression in VV5-4 cells. Since vaccinia virus is known to be cytolytic, isolation of this mutant therefore demonstrates a new mode of the cellular microenvironment that affects progression of the virus life cycle, resulting in a different cell fate. This process appears to be mediated by a general mechanism, since VV5-4 is also resistant to Shope fibroma virus and myxoma virus killing. On the other hand, VV5-4 remains sensitive to cowpox virus killing. To examine the mechanism of VV5-4 survival, we investigated whether apoptosis is involved. DNA laddering and staining of apoptotic nuclei with Hoechst 33258 were observed in both CHO and VV5-4 cells infected with vaccinia virus. We concluded that the cellular pathway, which blocks viral DNA replication and

  17. Characterization of cottonseed nutrients composition in near isogenic cotton (Gossypium hirsutum L.) mutant lines for fuzzless seed trait under well-watered and water stress conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton mutant near isogenic lines (NILs) for fuzzless seed trait has been used to investigate cell biology, genetic, and molecular processes of fiber initiation, development, fiber yield and quality. However, there is no information available on the effect of fuzzless seed trait on cottonseed nutrie...

  18. Environmental stability of oleic acid concentration in seed oil for soybean lines with FAD2-1A and FAD2-1B mutant genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elevating oleic acid (18:1) in seed oil content improves oxidative stability and is desirable for expanding edible and industrial uses of soybean [Glycine max (L.) Merr.]. Soybean lines with up to 800 g kg-1 oleic acid (18:1) concentration were developed by combining a recessive mutant allele at th...

  19. Transport and intracellular distribution of MHC class II molecules and associated invariant chain in normal and antigen-processing mutant cell lines.

    PubMed

    Riberdy, J M; Avva, R R; Geuze, H J; Cresswell, P

    1994-06-01

    We have compared the intracellular transport and subcellular distribution of MHC class II-invariant chain complexes in a wild-type HLA-DR3 homozygous cell line and a mutant cell line, T2.DR3. The latter has a defect in antigen processing and accumulates HLA-DR3 molecules associated with an invariant chain-derived peptide (CLIP) rather than the normal complement of peptides derived from endocytosed proteins. We find that in the wild-type cells, CLIP is transiently associated with HLA-DR3 molecules, suggesting that the peptide is a normal class II-associated intermediate generated during proteolysis of the invariant chain. In the mutant cell line proteolysis of the invariant chain is less efficient, and HLA-DR3/CLIP complexes are generated much more slowly. Examination of the mutant cell line by immunoelectronmicroscopy shows that class II-invariant chain complexes accumulate intracellularly in large acidic vesicles which contain lysosomal markers, including beta-hexosaminidase, cathepsin D, and the lysosomal membrane protein CD63. The markers in these vesicles are identical to those seen in the class II-containing vesicles (MIICs) seen in the wild-type cells but the morphology is drastically different. The vesicles in the mutant cells are endocytic, as measured by the internalization of BSA-gold conjugates. The implication of these findings for antigen processing in general and the nature of the mutation in particular are discussed. PMID:8207055

  20. Regulation of normal B-cell differentiation and malignant B-cell survival by OCT2.

    PubMed

    Hodson, Daniel J; Shaffer, Arthur L; Xiao, Wenming; Wright, George W; Schmitz, Roland; Phelan, James D; Yang, Yandan; Webster, Daniel E; Rui, Lixin; Kohlhammer, Holger; Nakagawa, Masao; Waldmann, Thomas A; Staudt, Louis M

    2016-04-01

    The requirement for the B-cell transcription factor OCT2 (octamer-binding protein 2, encoded by Pou2f2) in germinal center B cells has proved controversial. Here, we report that germinal center B cells are formed normally after depletion of OCT2 in a conditional knockout mouse, but their proliferation is reduced and in vivo differentiation to antibody-secreting plasma cells is blocked. This finding led us to examine the role of OCT2 in germinal center-derived lymphomas. shRNA knockdown showed that almost all diffuse large B-cell lymphoma (DLBCL) cell lines are addicted to the expression of OCT2 and its coactivator OCA-B. Genome-wide chromatin immunoprecipitation (ChIP) analysis and gene-expression profiling revealed the broad transcriptional program regulated by OCT2 that includes the expression of STAT3, IL-10, ELL2, XBP1, MYC, TERT, and ADA. Importantly, genetic alteration of OCT2 is not a requirement for cellular addiction in DLBCL. However, we detected amplifications of the POU2F2 locus in DLBCL tumor biopsies and a recurrent mutation of threonine 223 in the DNA-binding domain of OCT2. This neomorphic mutation subtly alters the DNA-binding preference of OCT2, leading to the transactivation of noncanonical target genes including HIF1a and FCRL3 Finally, by introducing mutations designed to disrupt the OCT2-OCA-B interface, we reveal a requirement for this protein-protein interface that ultimately might be exploited therapeutically. Our findings, combined with the predominantly B-cell-restricted expression of OCT2 and the absence of a systemic phenotype in our knockout mice, suggest that an OCT2-targeted therapeutic strategy would be efficacious in both major subtypes of DLBCL while avoiding systemic toxicity. PMID:26993806

  1. Cytological Characterization and Allelism Testing of Anther Developmental Mutants Identified in a Screen of Maize Male Sterile Lines

    PubMed Central

    Timofejeva, Ljudmilla; Skibbe, David S.; Lee, Sidae; Golubovskaya, Inna; Wang, Rachel; Harper, Lisa; Walbot, Virginia; Cande, William Zacheus

    2013-01-01

    Proper regulation of anther differentiation is crucial for producing functional pollen, and defects in or absence of any anther cell type result in male sterility. To deepen understanding of processes required to establish premeiotic cell fate and differentiation of somatic support cell layers a cytological screen of maize male-sterile mutants has been conducted which yielded 42 new mutants including 22 mutants with premeiotic cytological defects (increasing this class fivefold), 7 mutants with postmeiotic defects, and 13 mutants with irregular meiosis. Allelism tests with known and new mutants confirmed new alleles of four premeiotic developmental mutants, including two novel alleles of msca1 and single new alleles of ms32, ms8, and ocl4, and two alleles of the postmeiotic ms45. An allelic pair of newly described mutants was found. Premeiotic mutants are now classified into four categories: anther identity defects, abnormal anther structure, locular wall defects and premature degradation of cell layers, and/or microsporocyte collapse. The range of mutant phenotypic classes is discussed in comparison with developmental genetic investigation of anther development in rice and Arabidopsis to highlight similarities and differences between grasses and eudicots and within the grasses. PMID:23390600

  2. Studies on radiosensitive lines of Drosophila. X. Effect of 0. 8 MeV neutrons from reactor on the survival and frequency of dominant lethals in mutant line rad(2)201/sup G1/

    SciTech Connect

    Varentsova, E.R.; Sharygin, V.I.; Postnikov, L.N.; Efremov, O.A.

    1986-04-01

    The frequency of dominant lethal mutations (DLM) was studied in the females of the radiosensitive mutant line rad(2)201/sup G1/ following exposure to different doses of neutrons at various stages of oogenesis. Survival of pupae after irradiation of larvae was also studied. It has been demonstrated that in respect of DLM induction, the differential sensitivity of oocytes to the action of neutrons in the control (nonmutated) line is similar to that of gamma-ray treatment. The sensitivity of oocytes at the 7th and earlier stages is higher in the mutant females than in control line. The analysis of relative biological efficiency (RBE) of the neutrons showed that they are more effective in the control line as compared to the mutant line, in respect of survival as well as frequency of DLM induction. The RBE of neutrons depended on the stage of oocyte development: the highest RBE was observed in immature sex cells of females. The possible mechanisms of higher sensitivity of mutant line rad(2)201/sup G1/ to the action of ionizing radiation are discussed.

  3. Endoplasmic reticulum stress-mediated apoptosis contributes to a skeletal dysplasia resembling platyspondylic lethal skeletal dysplasia, Torrance type, in a novel Col2a1 mutant mouse line.

    PubMed

    Kimura, Makoto; Ichimura, Satoki; Sasaki, Kuniaki; Masuya, Hiroshi; Suzuki, Tomohiro; Wakana, Shigeharu; Ikegawa, Shiro; Furuichi, Tatsuya

    In humans, mutations in the COL2A1 gene encoding the α1(II) chain of type II collagen, create many clinical phenotypes collectively termed type II collagenopathies. However, the mechanisms generating this diversity remain to be determined. Here we identified a novel Col2a1 mutant mouse line by screening a large-scale N-ethyl-N-nitrosourea mutant mouse library. This mutant possessed a p.Tyr1391Ser missense mutation in the C-propeptide coding region, and this mutation was located in positions corresponding to the human COL2A1 mutation responsible for platyspondylic lethal skeletal dysplasia, Torrance type (PLSD-T). As expected, p.Tyr1391Ser homozygotes exhibited lethal skeletal dysplasias resembling PLSD-T, including extremely short limbs and severe dysplasia of the spine and pelvis. The secretion of the mutant proteins into the extracellular space was disrupted, accompanied by an abnormally expanded endoplasmic reticulum (ER) and the up-regulation of ER stress-related genes in chondrocytes. Chondrocyte apoptosis was severely induced in the growth plate of the homozygotes. These findings strongly suggest that ER stress-mediated apoptosis caused by the accumulated mutant proteins in ER contributes to skeletal dysplasia in Co12a1 mutant mice and PLSD-T patients. PMID:26545783

  4. Monoclonal B-Cell Lymphocytosis

    PubMed Central

    D’Arena, G.; Musto, P.

    2014-01-01

    Monoclonal B-cell lymphocytosis (MBL) is an asymptomatic hematologic condition defined by the presence of a small (<5 x 109/L) clonal B-cell population in the peripheral blood in the absence of lymph-node enlargement, cytopenias or autoimmune diseases. It is found in approximately 3-12% of normal persons depending on the accuracy of analytical techniques applied. According to the immunophenotypic profile of clonal B-cells, the majority of MBL cases (75%) are classified as chronic lymphocytic leukemia (CLL)-like. This form may progress into CLL at a rate of 1–2% per year. It is thought that CLL is always preceded by MBL. The remaining MBL cases are defined as atypical CLL-like (CD5+/CD20bright) and CD5- MBL. The MBL clone size is quite heterogenous. Accordingly, two forms of MBL are identified: i) high-count, or ‘clinical’ MBL, in which an evidence of lymphocytosis (<5 x 109/L clonal B-cells) is seen, and ii) a low-count MBL, in which a normal leukocyte count is found and that is identified only in population-screening studies. Both forms of MBL may carry the cytogenetic abnormalities that are the hallmark of CLL, including 13q-, 17p- and trisomy 12. Consistent with the indolent phenotype of this condition, genetic lesions, such as TP53, ATM, NOTCH1 and SF3B1 mutations, usually associated with high-risk CLL, are rarely seen. Overall, no prognostic indicator of evolution of MBL to overt CLL has been found at present time. However, taking into account this possibility, a clinical and lab monitoring (at least annually), is recommended. PMID:24779000

  5. SOX2 expression is an early event in a murine model of EGFR mutant lung cancer and promotes proliferation of a subset of EGFR mutant lung adenocarcinoma cell lines

    PubMed Central

    Dogan, Irem; Kawabata, Shigeru; Bergbower, Emily; Gills, Joell J.; Ekmekci, Abdullah; Wilson, Willie; Rudin, Charles M.; Dennis, Phillip A.

    2014-01-01

    Objectives Primary and acquired resistance to EGFR TKIs in EGFR mutant lung cancer occurs primarily through secondary mutations in EGFR or Met amplification. Drug resistance can also be mediated by expression of pluripotency transcription factors, such as OCT4, SOX2 and NANOG that decrease terminal differentiation. In this study, we investigated the expression and role of SOX2 in model systems of EGFR mutant tumors. Materials and Methods Immunoblotting or immunohistochemistry was used to assess expression of pluripotency transcription factors in lungs of transgenic mice or in human NSCLC cell lines. Expression of SOX2 was reduced by shRNA knockdown, and response to erlotinib and cellular proliferation were assessed. Results and Conclusion Induction of mutant EGFR in transgenic CCSP-rtTA/TetO-EGFRL858R/T790M mice correlated with increased OCT4 and SOX2 expression in lung tissue prior to tumor development. Established lung tumors retained SOX2 expression. To assess a role for SOX2 in tumorigenesis, a panel of NSCLC cell lines with activating EGFR mutations was assessed for SOX2 expression. Two of six cell lines with mutant EGFR showed detectable SOX2 levels, suggesting SOX2 expression did not correlate with EGFR mutation status. To assess the role of SOX2 in these cell lines, HCC827 and H1975 cells were infected with lentivirus containing SOX2 shRNA. Knockdown of SOX2 decreased proliferation in both cell lines and increased sensitivity to erlotinib in HCC827 cells. Because constitutive activation of the PI3K/Akt pathway is associated with EGFR TKI resistance, cells were treated with PI3K/AKT inhibitors and expression of SOX2 was examined. PI3K/Akt inhibitors decreased SOX2 expression in a time-dependent manner. These data suggest targeting SOX2 may provide therapeutic benefit in the subset of EGFR-mutant tumors with high constitutive levels of SOX2, and that until more direct means of inhibiting SOX2 are developed, PI3K/Akt inhibitors might be useful to inhibit SOX2

  6. Proliferative activity of a blend of Echinacea angustifolia and Echinacea purpurea root extracts in human vein epithelial, HeLa, and QBC-939 cell lines, but not in Beas-2b cell lines.

    PubMed

    Cichello, Simon Angelo; Yao, Qian; He, Xiao Qiong

    2016-04-01

    Echinacea is used for its immunostimulating properties and may have a role in modulating adverse immune effects of chemotherapy (i.e., use of 5-fluorouracil (5-FU); fluorouracil and its immunosuppressive effect). Patients may seek herbal remedies such as Echinacea (Echinacea angustifolia and Echinacea purpurea) for immune stimulation. Echinacea extracts have been prescribed to supplement cancer chemotherapy for their immune-supportive effects; however, the extracts may also influence tumourgenesis. Our study aimed to determine the proliferative effect of the ethanolic blend of E. angustifolia and E. purpurea on various cancer cervical and bile duct cell lines, including HELA and QBC-939. Various cancer cells (HeLa and QBC-939) and human vein epithelial cells (HUVEC) were treated with the Echinacea blend sample that was evaporated and reconstituted in Dimethyl sulfoxide (DMSO). As the extract concentration of Echinacea was increased from 12.5 μg/mL to 25 μg/mL, there was an increase in cell inhibition up to 100%, which then reduced to 90% over the next three concentrations, 50 μg/mL, 100 μg/mL, and 200 μg/mL, in HeLa cells; further inhibitory effects were observed in QBC-939 cells, from 9% inhibition at a concentration of 25 μg/mL up to 37.96% inhibition at 100 μg/mL concentration. Moreover, this is the first study to report the growth-promoting effects of this Echinacea blend in HUVEC, up to 800% at a dose concentration of 200 μg/mL. Previous studies have suggested that chicoric acid of Echinacea spp. is responsible for the increased cell growth. The results of this study show that the hydroethanolic extract of Echinacea herbal medicine promotes the growth of HeLa cells and QBC-939 cancer cell proliferation, and may interfere with cancer treatment (i.e., chemotherapy drugs such as 5-fluorouracil and Cisplatin (DDP)). However, the Echinacea blend shows potential in neurodegenerative diseases with growth-promoting effects in HUVEC. Further animal

  7. Proliferative activity of a blend of Echinacea angustifolia and Echinacea purpurea root extracts in human vein epithelial, HeLa, and QBC-939 cell lines, but not in Beas-2b cell lines

    PubMed Central

    Cichello, Simon Angelo; Yao, Qian; He, Xiao Qiong

    2015-01-01

    Echinacea is used for its immunostimulating properties and may have a role in modulating adverse immune effects of chemotherapy (i.e., use of 5-fluorouracil (5-FU); fluorouracil and its immunosuppressive effect). Patients may seek herbal remedies such as Echinacea (Echinacea angustifolia and Echinacea purpurea) for immune stimulation. Echinacea extracts have been prescribed to supplement cancer chemotherapy for their immune-supportive effects; however, the extracts may also influence tumourgenesis. Our study aimed to determine the proliferative effect of the ethanolic blend of E. angustifolia and E. purpurea on various cancer cervical and bile duct cell lines, including HELA and QBC-939. Various cancer cells (HeLa and QBC-939) and human vein epithelial cells (HUVEC) were treated with the Echinacea blend sample that was evaporated and reconstituted in Dimethyl sulfoxide (DMSO). As the extract concentration of Echinacea was increased from 12.5 μg/mL to 25 μg/mL, there was an increase in cell inhibition up to 100%, which then reduced to 90% over the next three concentrations, 50 μg/mL, 100 μg/mL, and 200 μg/mL, in HeLa cells; further inhibitory effects were observed in QBC-939 cells, from 9% inhibition at a concentration of 25 μg/mL up to 37.96% inhibition at 100 μg/mL concentration. Moreover, this is the first study to report the growth-promoting effects of this Echinacea blend in HUVEC, up to 800% at a dose concentration of 200 μg/mL. Previous studies have suggested that chicoric acid of Echinacea spp. is responsible for the increased cell growth. The results of this study show that the hydroethanolic extract of Echinacea herbal medicine promotes the growth of HeLa cells and QBC-939 cancer cell proliferation, and may interfere with cancer treatment (i.e., chemotherapy drugs such as 5-fluorouracil and Cisplatin (DDP)). However, the Echinacea blend shows potential in neurodegenerative diseases with growth-promoting effects in HUVEC. Further animal

  8. HIV-associated memory B cell perturbations

    PubMed Central

    Hu, Zhiliang; Luo, Zhenwu; Wan, Zhuang; Wu, Hao; Li, Wei; Zhang, Tong; Jiang, Wei

    2015-01-01

    Memory B-cell depletion, hyperimmunoglobulinemia, and impaired vaccine responses are the hallmark of B cell perturbations inhuman immunodeficiency virus (HIV) disease. Although B cells are not the targets for HIV infection, there is evidence for B cell, especially memory B cell dysfunction in HIV disease mediated by other cells or HIV itself. This review will focus on HIV-associated phenotypic and functional alterations in memory B cells. Additionally, we will discuss the mechanism underlying these perturbations and the effect of anti-retroviral therapy (ART) on these perturbations. PMID:25887082

  9. Kidins220/ARMS binds to the B cell antigen receptor and regulates B cell development and activation

    PubMed Central

    Fiala, Gina J.; Janowska, Iga; Prutek, Fabiola; Hobeika, Elias; Satapathy, Annyesha; Sprenger, Adrian; Plum, Thomas; Seidl, Maximilian; Dengjel, Jörn; Reth, Michael; Cesca, Fabrizia; Brummer, Tilman

    2015-01-01

    B cell antigen receptor (BCR) signaling is critical for B cell development and activation. Using mass spectrometry, we identified a protein kinase D–interacting substrate of 220 kD (Kidins220)/ankyrin repeat–rich membrane-spanning protein (ARMS) as a novel interaction partner of resting and stimulated BCR. Upon BCR stimulation, the interaction increases in a Src kinase–independent manner. By knocking down Kidins220 in a B cell line and generating a conditional B cell–specific Kidins220 knockout (B-KO) mouse strain, we show that Kidins220 couples the BCR to PLCγ2, Ca2+, and extracellular signal-regulated kinase (Erk) signaling. Consequently, BCR-mediated B cell activation was reduced in vitro and in vivo upon Kidins220 deletion. Furthermore, B cell development was impaired at stages where pre-BCR or BCR signaling is required. Most strikingly, λ light chain–positive B cells were reduced sixfold in the B-KO mice, genetically placing Kidins220 in the PLCγ2 pathway. Thus, our data indicate that Kidins220 positively regulates pre-BCR and BCR functioning. PMID:26324445

  10. Effects of the TP53 p.R249S mutant on proliferation and clonogenic properties in human hepatocellular carcinoma cell lines: interaction with hepatitis B virus X protein.

    PubMed

    Gouas, Doriane A; Shi, Hong; Hautefeuille, Agnès H; Ortiz-Cuaran, Sandra L; Legros, Pénélope C; Szymanska, Katarzyna J; Galy, Olivier; Egevad, Lars A; Abedi-Ardekani, Behnoush; Wiman, Klas G; Hantz, Olivier; Caron de Fromentel, Claude; Chemin, Isabelle A; Hainaut, Pierre L

    2010-08-01

    Aflatoxin B(1) (AFB(1)) is a risk factor for hepatocellular carcinoma (HCC) in many low-resource countries. Although its metabolites bind at several positions in TP53, a mutation at codon 249 (AGG to AGT, arginine to serine, p.R249S) accounts for 90% of TP53 mutations in AFB(1)-related HCC. This specificity suggests that p.R249S confers a selective advantage during hepatocarcinogenesis. Using HCC cell lines, we show that p.R249S has lost the capacity to bind to p53 response elements and to transactivate p53 target genes. In p53-null Hep3B cells, stable transfection of p.R249S or of another mutant, p.R248Q, did not induce significant changes in cell proliferation and survival after cytotoxic stress. In contrast, in a cell line that constitutively expresses both p.R249S and the hepatitis B virus antigen HBx (PLC/PRF/5), silencing of either p.R249S or HBx by RNA interference slowed down proliferation, with no additive effects when both factors were silenced. Furthermore, the two proteins appear to form a complex. In human HCC samples, mutation at codon 249 did not correlate with p.R249S protein accumulation or HBx truncation status. We suggest that p.R249S may contribute to hepatocarcinogenesis through interaction with HBx, conferring a subtle growth advantage at early steps of the transformation process, but that this interaction is not required for progression to advanced HCC. PMID:20538734

  11. Memory B cells in mouse models.

    PubMed

    Bergmann, B; Grimsholm, O; Thorarinsdottir, K; Ren, W; Jirholt, P; Gjertsson, I; Mårtensson, I-L

    2013-08-01

    One of the principles behind vaccination, as shown by Edward Jenner in 1796, and host protection is immunological memory, and one of the cells central to this is the antigen-experienced memory B cell that responds rapidly upon re-exposure to the initiating antigen. Classically, memory B cells have been defined as progenies of germinal centre (GC) B cells expressing isotype-switched and substantially mutated B cell receptors (BCRs), that is, membrane-bound antibodies. However, it has become apparent over the last decade that this is not the only pathway to B cell memory. Here, we will discuss memory B cells in mice, as defined by (1) cell surface markers; (2) multiple layers; (3) formation in a T cell-dependent and either GC-dependent or GC-independent manner; (4) formation in a T cell-independent fashion. Lastly, we will touch upon memory B cells in; (5) mouse models of autoimmune diseases. PMID:23679222

  12. Microbes and B cell development.

    PubMed

    Wesemann, Duane R

    2015-01-01

    Animals and many of their chronic microbial inhabitants form relationships of symbiotic mutualism, which occurs when coexisting life-forms derive mutual benefit from stable associations. While microorganisms receive a secure habitat and constant food source from vertebrate hosts, they are required for optimal immune system development and occupy niches otherwise abused by pathogens. Microbes have also been shown to provide vertebrate hosts with metabolic capabilities that enhance energy and nutrient uptake from the diet. The immune system plays a central role in the establishment and maintenance of host-microbe homeostasis, and B lineage cells play a key role in this regulation. Here, I reviewed the structure and function of the microbiota and the known mechanisms of how nonpathogenic microbes influence B cell biology and immunoglobulin repertoire development early in life. I also discuss what is known about how B lineage cells contribute to the process of shaping the composition of commensal/mutualistic microbe membership. PMID:25591467

  13. PAX5 promotes pre-B cell proliferation by regulating the expression of pre-B cell receptor and its downstream signaling.

    PubMed

    Xue, Kai; Song, Jiazhe; Yang, Yan; Li, Zhi; Wu, Chunhua; Jin, Jinhua; Li, Wenzhe

    2016-05-01

    PAX5 is indispensable for the commitment of early lymphoid progenitors to the B cell lineage as well as for the development of B cells. Although previous studies have indicated that the Pax5-conditional-knockout mouse exhibited dedifferentiation of mature B cell and the development of aggressive lymphomas, the changes of Pax5 gene expressions in pre-B cells have not been analyzed. To understand the functional importance of Pax5 gene in the proliferation and survival of pre-B cells, we established a Pax5-knockdown model using 70Z/3 pre-B cell line. Pax5 knockdown 70Z/3 cells (70Z/3-KD cells) showed down-regulations of pre-BCR compounds such as CD19, BLNK, Id2 and λ5. The signaling via pre-BCRs was significantly diminished in the 70Z/3-KD cells, and this alteration was normalized by restored Pax5 gene expression. Loss of PAX5 reduced the growth rates in the 70Z/3-KD cells, compared to the mock cells. Meanwhile, the proliferation of pre-B cells was reduced by the knockdown of Pax5 gene. Moreover, further examinations showed that PAX5 was also activated in B cell acute lymphoblastic leukemia (B-ALL) as a cell proliferation enhancer. These findings suggested that pax5 is critically important for the proliferation and survival of pre-B cells. PMID:27016671

  14. Neurotrophins and B-cell malignancies.

    PubMed

    Hillis, Jennifer; O'Dwyer, Michael; Gorman, Adrienne M

    2016-01-01

    Neurotrophins and their receptors act as important proliferative and pro-survival factors in a variety of cell types. Neurotrophins are produced by multiple cell types in both pro- and mature forms, and can act in an autocrine or paracrine fashion. The p75(NTR) and Trk receptors can elicit signalling in response to the presence or absence of their corresponding neurotrophin ligands. This signalling, along with neurotrophin and receptor expression, varies between different cell types. Neurotrophins and their receptors have been shown to be expressed by and elicit signalling in B lymphocytes. In general, most neurotrophins are expressed by activated B-cells and memory B-cells. Likewise, the TrkB95 receptor is seen on activated B-cells, while TrkA and p75(NTR) are expressed by both resting and active B-cells as well as memory B-cells. Nerve growth factor stimulates B-cell proliferation, memory B-cell survival, antibody production and CD40 expression. Brain-derived neurotrophic factor is involved in B-cell maturation in the bone marrow through TrkB95. Overall neurotrophins and their receptors have been shown to be involved in B-cell proliferation, development, differentiation, antibody secretion and survival. As well as expression and activity in healthy B-cells, the neurotrophins and their receptors can contribute to B-cell malignancies including acute lymphoblastic leukaemia, diffuse large B-cell lymphoma, Burkitt's lymphoma and multiple myeloma. They are involved in B-cell malignancy survival and potentially in drug resistance. PMID:26399960

  15. Tyrosine phosphorylation of CD19 in pre-B and mature B cells.

    PubMed Central

    Chalupny, N J; Kanner, S B; Schieven, G L; Wee, S F; Gilliland, L K; Aruffo, A; Ledbetter, J A

    1993-01-01

    Cross-linking of B cell surface immunoglobulins (sIg) results in activation of mature B cells and stimulates a molecular signaling mechanism for antigen-specific B cell expansion and differentiation. This signaling pathway is dependent on tyrosine (Tyr) phosphorylation and results in the activation of sIg-associated src family kinases and p72SYK. Rapid Tyr phosphorylation occurs on multiple protein substrates. Here we show that activation of B cells by cross-linking sIg results in an increase in Tyr phosphorylation of the lineage-restricted B cell surface antigen CD19, and show that it is a major substrate of activated Tyr kinase following sIg stimulation. Lower levels of constitutive CD19 Tyr phosphorylation occurred in most sIg+ mature B cell lines examined and in normal dense tonsillar B cells. We also find that when CD19 is Tyr-phosphorylated it becomes competent to interact with SH2 domains suggesting a mechanism whereby, following B cell activation, CD19 could be linked to intracellular signaling pathways. In sIg- pre-B cell lines, CD19 was expressed but was not constitutively phosphorylated on tyrosine. Upon CD19 cross-linking, Tyr phosphorylation of CD19 was induced in sIg- pre-B cell lines. CD19 cross-linking also directly induced Tyr phosphorylation of CD19 and other substrates in mature B cells. The ability of CD19 to signal in the absence of sIg expression may provide important stimulation in pre-B cell development. Images PMID:7687539

  16. Studies on radiosensitive lines of Drosophila. IX. Analysis of fertility and frequency of dominant lethal mutations in the gamma-irradiated females of the mutant line rad(2)201/sup G1/

    SciTech Connect

    Varentsova, E.R.; Sharygin, V.I.; Khromykh, Yu.M.

    1986-03-01

    Fertility and frequency of dominant lethal mutations (DLM) induced by gamma rays in females at the age of 0-5 h and 5-7 days were studied in the radiosensitive mutant rad(2)201/sup G1/ of Drosophila. It has been found that the oocytes of mutant lines are more radiosensitive as compared to those of the wild type flies when compared on the basis of DLM frequency obtained through the entire maturation period. The early oocytes of stages 2-7, i.e., at the stages corresponding to the recombination-defective properties of mutation rad(2)201/sup g1/ are the most sensitive. It has also been demonstrated that the gamma-ray doses exceeding 10 Gy cause a strong sterilizing effect in the mutant females as a result of destruction and resorption of the egg chamber, irradiated at the stages of previtellogenic growth of oocytes. In the radiosensitive mutant females, the sensitivity of the oocytes for DLM induction does not correlate with the sensitivity of the ovarian follicles toward the resorbing effect of gamma rays. The possible involvement of the mutant locus in the genetic processes in different specialized cells of the sexual pathway in Drosophila is discussed.

  17. B cell conducts the lymphocyte orchestra.

    PubMed

    Youinou, Pierre

    2007-01-01

    The interest for B cells has recently been revived. They normally play a role in the development, the regulation, as well as the activation of lymphoid architecture: they regulate dendritic cells and T-cell subsets function through cytokine production. Receptor editing is also essential in B cells and aids in preventing autoimmunity. Both abnormalities in the distribution of B-cell subsets and clinical benefit response to B-cell depletion in autoimmune states illustrate their importance. A new area has thus been reached, whereby B lymphocytes return as a significant contributor to autoimmune disorders. PMID:17363215

  18. B-Cell Hematologic Malignancy Vaccination Registry

    ClinicalTrials.gov

    2015-09-15

    Monoclonal Gammopathy of Undetermined Significance; Multiple Myeloma; Waldenstrom Macroglobulinemia; Lymphocytosis; Lymphoma, Non-Hodgkin; B-Cell Chronic Lymphocytic Leukemia; Hematological Malignancies

  19. Gene Expression Analysis of a Panel of Cell Lines That Differentially Restrict HIV-1 CA Mutants Infection in a Cyclophilin A-Dependent Manner

    PubMed Central

    Shah, Vaibhav B.; Aiken, Christopher

    2014-01-01

    HIV-1 replication is dependent on binding of the viral capsid to the host protein cyclophilin A (CypA). Interference with cyclophilin A binding, either by mutations in the HIV-1 capsid protein (CA) or by the drug cyclosporine A (CsA), inhibits HIV-1 replication in cell culture. Resistance to CsA is conferred by A92E or G94D substitutions in CA. The mutant viruses are also dependent on CsA for their replication. Interestingly, infection of some cell lines by these mutants is enhanced by CsA, while infection of others is not affected by the drug. The cells are thus termed nonpermissive and permissive, respectively, for infection by CsA-dependent mutants. The mechanistic basis for the cell type dependence is not well understood, but has been hypothesized to result from a dominant-acting host factor that blocks HIV-1 infection by a mechanism that requires CypA binding to the viral capsid. In an effort to identify a CypA-dependent host restriction factor, we adopted a strategy involving comparative gene expression analysis in three permissive and three non-permissive cell types. We ranked the genes based on their relative overexpression in non-permissive cell types compared to the permissive cell types. Based on specific selection criteria, 26 candidate genes were selected and targeted using siRNA in nonpermissive (HeLa) cells. Depletion of none of the selected candidate genes led to the reversal of CsA-dependent phenotype of the A92E mutant. Our data suggest that none of the 26 genes tested is responsible for the dependence of the A92E mutant on CsA. Our study provides gene expression data that may be useful for future efforts to identify the putative CypA-dependent HIV-1 restriction factor and in studies of other cell-specific phenotypes. PMID:24663101

  20. Gene expression analysis of a panel of cell lines that differentially restrict HIV-1 CA mutants infection in a cyclophilin a-dependent manner.

    PubMed

    Shah, Vaibhav B; Aiken, Christopher

    2014-01-01

    HIV-1 replication is dependent on binding of the viral capsid to the host protein cyclophilin A (CypA). Interference with cyclophilin A binding, either by mutations in the HIV-1 capsid protein (CA) or by the drug cyclosporine A (CsA), inhibits HIV-1 replication in cell culture. Resistance to CsA is conferred by A92E or G94D substitutions in CA. The mutant viruses are also dependent on CsA for their replication. Interestingly, infection of some cell lines by these mutants is enhanced by CsA, while infection of others is not affected by the drug. The cells are thus termed nonpermissive and permissive, respectively, for infection by CsA-dependent mutants. The mechanistic basis for the cell type dependence is not well understood, but has been hypothesized to result from a dominant-acting host factor that blocks HIV-1 infection by a mechanism that requires CypA binding to the viral capsid. In an effort to identify a CypA-dependent host restriction factor, we adopted a strategy involving comparative gene expression analysis in three permissive and three non-permissive cell types. We ranked the genes based on their relative overexpression in non-permissive cell types compared to the permissive cell types. Based on specific selection criteria, 26 candidate genes were selected and targeted using siRNA in nonpermissive (HeLa) cells. Depletion of none of the selected candidate genes led to the reversal of CsA-dependent phenotype of the A92E mutant. Our data suggest that none of the 26 genes tested is responsible for the dependence of the A92E mutant on CsA. Our study provides gene expression data that may be useful for future efforts to identify the putative CypA-dependent HIV-1 restriction factor and in studies of other cell-specific phenotypes. PMID:24663101

  1. Human B-cell TNF-beta microheterogeneity.

    PubMed

    Benjamin, D; Kofler, G; Tschachler, E

    1992-02-01

    The production of TNF-alpha and TNF-beta by human B-cell lines was studied at both the molecular and biological levels. The 24 B-cell lines studied included EBV+ cell lines (n = 13), EBV- cell lines (n = 8), and AIDS-associated B-cell lines (AABCL) (n = 3) which are EBV+/HIV-. Whereas radioimmunoprecipitation using TNF-alpha antisera detected 17-kDa TNF-alpha as expected, similar studies with anti-TNF-beta antisera revealed TNF-beta microheterogeneity. In the AABCL three bands with approximate MW of 26, 24, and 22 kDa were detected under reducing conditions, and in the non-AABCL, two bands only with 26 and 22 kDa were observed. To determine whether the size heterogeneity of TNF-beta is due to glycosylation, TNF-beta deglycosylation studies were done in two AABCL (PA682BM-2, PA682PE-1) and one non-AABCL (IM-1178). As control, the normal lymphoblastoid B-cell line RPMI-1788, which is known to secrete TNF-beta with MW 25 and 20 kDa, has been used. Deglycosylation studies using N-glycanase + neuraminidase + O-glycanase reduced the various bands in all cell lines to one band with 18.6 kDa, which is compatible with the TNF-beta backbone. In attempt to determine whether the differential glycosylation of TNF has any functional significance, all 24 cell lines were studied for TNF secretion and for TNF neutralization by monoclonal antibodies and polyclonal antibodies to TNF-alpha and TNF-beta. Constitutive secretion of TNF-alpha and TNF-beta has been detected only in the three AABCL. Following activation with the tumor promoter teleocidin, the secretion of both TNFs has been triggered in 2/8 EBV- cell lines and in 8/13 EBV+ non-AABCL. Using rabbit polyclonal antibodies to human TNF-alpha and to human TNF-beta, only little if any neutralization of these TNFs has been shown. Our data suggest that the differences in glycosylation of B-cell-derived TNFs may account for the incomplete neutralization, and may influence the cytotoxic biological activity of this lymphokine. PMID

  2. Oncogenic CARMA1 couples NF-κB and β-catenin signaling in diffuse large B-cell lymphomas

    PubMed Central

    Bognar, M K; Vincendeau, M; Erdmann, T; Seeholzer, T; Grau, M; Linnemann, J R; Ruland, J; Scheel, C H; Lenz, P; Ott, G; Lenz, G; Hauck, S M; Krappmann, D

    2016-01-01

    Constitutive activation of the antiapoptotic nuclear factor-κB (NF-κB) signaling pathway is a hallmark of the activated B-cell-like (ABC) subtype of diffuse large B-cell lymphomas (DLBCL). Recurrent oncogenic mutations are found in the scaffold protein CARMA1 (CARD11) that connects B-cell receptor (BCR) signaling to the canonical NF-κB pathway. We asked how far additional downstream processes are activated and contribute to the oncogenic potential of DLBCL-derived CARMA1 mutants. To this end, we expressed oncogenic CARMA1 in the NF-κB negative DLBCL lymphoma cell line BJAB. By a proteomic approach we identified recruitment of β-catenin and its destruction complex consisting of APC, AXIN1, CK1α and GSK3β to oncogenic CARMA1. Recruitment of the β-catenin destruction complex was independent of CARMA1-BCL10-MALT1 complex formation or constitutive NF-κB activation and promoted the stabilization of β-catenin. The β-catenin destruction complex was also recruited to CARMA1 in ABC DLBCL cell lines, which coincided with elevated β-catenin expression. In line, β-catenin was frequently detected in non-GCB DLBCL biopsies that rely on chronic BCR signaling. Increased β-catenin amounts alone were not sufficient to induce classical WNT target gene signatures, but could augment TCF/LEF-dependent transcriptional activation in response to WNT signaling. In conjunction with NF-κB, β-catenin enhanced expression of immunosuppressive interleukin-10 and suppressed antitumoral CCL3, indicating that β-catenin can induce a favorable tumor microenvironment. Thus, parallel activation of NF-κB and β-catenin signaling by gain-of-function mutations in CARMA1 augments WNT stimulation and is required for regulating the expression of distinct NF-κB target genes to trigger cell-intrinsic and extrinsic processes that promote DLBCL lymphomagenesis. PMID:26776161

  3. Non-Hematopoietic and Hematopoietic SIRPα Signaling Differently Regulates Murine B Cell Maturation in Bone Marrow and Spleen

    PubMed Central

    Kolan, Shrikant Shantilal; Lejon, Kristina; Koskinen Holm, Cecilia; Sulniute, Rima; Lundberg, Pernilla; Matozaki, Takashi; Oldenborg, Per-Arne

    2015-01-01

    B lymphocyte development occurs in the bone marrow, while final differentiation and maturation can occur in both the bone marrow and the spleen. Here we provide evidence that signal regulatory protein α (SIRPα), an Ig-superfamily ITIM-receptor expressed by myeloid but not by lymphoid cells, is involved in regulating B cell maturation. Lack of SIRPα signaling in adult SIRPα-mutant mice resulted in a reduced maturation of B cells in the bone marrow, evident by reduced numbers of semi-mature IgD+IgMhi follicular type-II (F-II) and mature IgD+IgMlo follicular type-I (F-I) B cells, as well as reduced blood B cell numbers. In addition, lack of SIRPα signaling also impaired follicular B cell maturation in the spleen. Maturing BM or splenic B cells of SIRPα-mutant mice were found to express higher levels of the pro-apoptotic protein BIM and apoptosis was increased among these B cells. Bone marrow reconstitution experiments revealed that the B cell maturation defect in bone marrow and blood was due to lack of SIRPα signaling in non-hematopoietic cells, while hematopoietic SIRPα signaling was important for follicular B cell maturation in the spleen. Adding on to our previous findings of a stromal cell defect in SIRPα-mutant mice was the finding that gene expression of receptor activator of nuclear factor-ĸB ligand (RANKL) was significantly lower in cultured bone marrow stromal cells of SIRPα mutant mice. These data suggest a novel and opposite contribution of SIRPα signaling within non-hematopoietic and hematopoietic cells, respectively, to maintain B cell maturation and to prevent apoptosis in the bone marrow and spleen of adult mice. PMID:26222253

  4. Production of RANKL by Memory B Cells

    PubMed Central

    Meednu, Nida; Zhang, Hengwei; Owen, Teresa; Sun, Wen; Wang, Victor; Cistrone, Christopher; Rangel-Moreno, Javier; Xing, Lianping; Anolik, Jennifer H.

    2016-01-01

    Objective Rheumatoid arthritis (RA) is a systemic autoimmune disease that often leads to joint damage. The mechanisms of bone damage in RA are complex, involving activation of bone-resorbing osteoclasts (OCs) by synoviocytes and Th17 cells. This study was undertaken to investigate whether B cells play a direct role in osteoclastogenesis through the production of RANKL, the essential cytokine for OC development. Methods RANKL production by total B cells or sorted B cell subpopulations in the peripheral blood and synovial tissue from healthy donors or anti–cyclic citrullinated peptide–positive patients with RA was examined by flow cytometry, real-time polymerase chain reaction, enzyme-linked immunosorbent assay, and immunohistochemical analysis. To define direct effects on osteoclastogenesis, B cells were cocultured with CD14+ monocytes, and OCs were enumerated by tartrate-resistant acid phosphatase staining. Results Healthy donor peripheral blood B cells were capable of expressing RANKL upon stimulation, with switched memory B cells (CD27+IgD−) having the highest propensity for RANKL production. Notably, switched memory B cells in the peripheral blood from RA patients expressed significantly more RANKL compared to healthy controls. In RA synovial fluid and tissue, memory B cells were enriched and spontaneously expressed RANKL, with some of these cells visualized adjacent to RANK+ OC precursors. Critically, B cells supported OC differentiation in vitro in a RANKL-dependent manner, and the number of OCs was higher in cultures with RA B cells than in those derived from healthy controls. Conclusion These findings reveal the critical importance of B cells in bone homeostasis and their likely contribution to joint destruction in RA. PMID:26554541

  5. Flowering responses to altered expression of phytochrome in mutants and transgenic lines of Arabidopsis thaliana (L.) Heynh.

    PubMed Central

    Bagnall, D J; King, R W; Whitelam, G C; Boylan, M T; Wagner, D; Quail, P H

    1995-01-01

    The long-day plant Arabidopsis thaliana (L.) Heynh. flowers early in response to brief end-of-day (EOD) exposures to far-red light (FR) following a fluorescent short day of 8 h. FR promotion of flowering was nullified by subsequent brief red light (R) EOD exposure, indicating phytochrome involvement. The EOD response to R or FR is a robust measure of phytochrome action. Along with their wild-type (WT) parents, mutants deficient in either phytochrome A or B responded similarly to the EOD treatments. Thus, neither phytochrome A nor B exclusively regulated flowering, although phytochrome B controlled hypocotyl elongation. Perhaps a third phytochrome species is important for the EOD responses of the mutants and/or their flowering is regulated by the amount of the FR-absorbing form of phytochrome, irrespective of the phytochrome species. Overexpression of phytochrome A or phytochrome B resulted in differing photoperiod and EOD responses among the genotypes. The day-neutral overexpressor of phytochrome A had an EOD response similar to all of the mutants and WTs, whereas R EOD exposure promoted flowering in the overexpressor of phytochrome B and FR EOD exposure inhibited this promotion. The comparisons between relative flowering times and leaf numbers at flowering of the over-expressors and their WTs were not consistent across photoperiods and light treatments, although both phytochromes A and B contributed to regulating flowering of the transgenic plants. PMID:7659750

  6. Partial Restoration of Mutant Enzyme Homeostasis in Three Distinct Lysosomal Storage Disease Cell Lines by Altering Calcium Homeostasis

    PubMed Central

    Mu, Ting-Wei; Fowler, Douglas M; Kelly, Jeffery W

    2008-01-01

    A lysosomal storage disease (LSD) results from deficient lysosomal enzyme activity, thus the substrate of the mutant enzyme accumulates in the lysosome, leading to pathology. In many but not all LSDs, the clinically most important mutations compromise the cellular folding of the enzyme, subjecting it to endoplasmic reticulum–associated degradation instead of proper folding and lysosomal trafficking. A small molecule that restores partial mutant enzyme folding, trafficking, and activity would be highly desirable, particularly if one molecule could ameliorate multiple distinct LSDs by virtue of its mechanism of action. Inhibition of L-type Ca2+ channels, using either diltiazem or verapamil—both US Food and Drug Administration–approved hypertension drugs—partially restores N370S and L444P glucocerebrosidase homeostasis in Gaucher patient–derived fibroblasts; the latter mutation is associated with refractory neuropathic disease. Diltiazem structure-activity studies suggest that it is its Ca2+ channel blocker activity that enhances the capacity of the endoplasmic reticulum to fold misfolding-prone proteins, likely by modest up-regulation of a subset of molecular chaperones, including BiP and Hsp40. Importantly, diltiazem and verapamil also partially restore mutant enzyme homeostasis in two other distinct LSDs involving enzymes essential for glycoprotein and heparan sulfate degradation, namely α-mannosidosis and type IIIA mucopolysaccharidosis, respectively. Manipulation of calcium homeostasis may represent a general strategy to restore protein homeostasis in multiple LSDs. However, further efforts are required to demonstrate clinical utility and safety. PMID:18254660

  7. Epigenetic Control of B Cell Development and B-Cell-Related Immune Disorders.

    PubMed

    Bao, Yan; Cao, Xuetao

    2016-06-01

    B lymphocytes are generally recognized as the essential component of humoral immunity and also a regulator of innate immunity. The development of B cells is precisely regulated by a variety of factors via different mechanisms, including cytokine/cytokine receptors, signal transduction molecules, and transcription factors. Recent findings suggest that epigenetic factors, such as DNA methylation, histone modification, and non-coding RNA, play critical roles in establishing B cell lineage-specific gene expression profiles to define and sustain B cell identity and function. Epigenetic modifications are also sensitive to external stimuli and might bridge genetic and environmental factors in the pathogenesis or control of B-cell-related immune disorders, such as autoimmune diseases, lymphoma, and leukemia. Better understanding of the epigenetic mechanisms for regulating B cell development and involving B cell abnormal differentiation and function will shed light on the design of new therapeutic approaches to B-cell-related diseases, and potential candidates of epigenetic modulators may be identified to target epigenetic pathways to prevent or treat B cell disorders. We summarize the relevance of epigenetic marks and landscapes in the stages of B cell development, discuss the interaction of the transcriptional networks and epigenetic changes, and review the involvement of epigenetic risk in the pathogenesis of B-cell-related diseases. Understanding how specific epigenetic alterations contribute to the development of B-cell-related autoimmunity and malignancies is instrumental to control B cell disorders. PMID:26066671

  8. Nek2 Is a Novel Regulator of B Cell Development and Immunological Response

    PubMed Central

    Zhou, Wen; Huang, Junwei; Yang, Ye; Wendlandt, Erik; Xu, Hongwei; Zhan, Fenghuang

    2014-01-01

    The serine/threonine kinase Nek2 is commonly found upregulated in a wide variety of neoplasms including diffuse large B cell lymphoma and multiple myeloma. High expression of Nek2 is implicated in the induction of chromosomal instability, promotion of cell proliferation, and drug resistance in tumor cells as well as a marker for poor clinical outcomes. Despite its well recorded involvement in chromosomal instability and neoplastic growth, little is known about the involvement of Nek2 in B cell development. Here we report the development of a transgenic mouse line with conditional expression of Nek2 in the B cell lineage and the effects it has on the development of B cells. Interestingly, we found that the overexpression of Nek2 does not induce spontaneous tumor formation within the transgenic mice up to 24 months after induction. Instead, overexpression of Nek2 in the B cell lineage affects the development of B cells by increasing the proportion of immature B cells in the bone marrow and decreasing B-1 B cells in peritoneal cavity. Furthermore, Nek2 transgenic mice develop spontaneous germinal centers and exhibit an enhanced T cell dependent immune response. Altogether, our data demonstrates a novel role for Nek2 in regulating B cell development and the immune response. PMID:25485281

  9. CEACAM1 mediates B cell aggregation in central nervous system autoimmunity

    PubMed Central

    Rovituso, Damiano M.; Scheffler, Laura; Wunsch, Marie; Dörck, Sebastian; Ulzheimer, Jochen; Bayas, Antonios; Steinman, Lawrence; Ergün, Süleyman; Kuerten, Stefanie

    2016-01-01

    B cell aggregates in the central nervous system (CNS) have been associated with rapid disease progression in patients with multiple sclerosis (MS). Here we demonstrate a key role of carcinoembryogenic antigen-related cell adhesion molecule1 (CEACAM1) in B cell aggregate formation in MS patients and a B cell-dependent mouse model of MS. CEACAM1 expression was increased on peripheral blood B cells and CEACAM1+ B cells were present in brain infiltrates of MS patients. Administration of the anti-CEACAM1 antibody T84.1 was efficient in blocking aggregation of B cells derived from MS patients. Along these lines, application of the monoclonal anti-CEACAM1 antibody mCC1 was able to inhibit CNS B cell aggregate formation and significantly attenuated established MS-like disease in mice in the absence of any adverse effects. CEACAM1 was co-expressed with the regulator molecule T cell immunoglobulin and mucin domain −3 (TIM-3) on B cells, a novel molecule that has recently been described to induce anergy in T cells. Interestingly, elevated coexpression on B cells coincided with an autoreactive T helper cell phenotype in MS patients. Overall, these data identify CEACAM1 as a clinically highly interesting target in MS pathogenesis and open new therapeutic avenues for the treatment of the disease. PMID:27435215

  10. CEACAM1 mediates B cell aggregation in central nervous system autoimmunity.

    PubMed

    Rovituso, Damiano M; Scheffler, Laura; Wunsch, Marie; Kleinschnitz, Christoph; Dörck, Sebastian; Ulzheimer, Jochen; Bayas, Antonios; Steinman, Lawrence; Ergün, Süleyman; Kuerten, Stefanie

    2016-01-01

    B cell aggregates in the central nervous system (CNS) have been associated with rapid disease progression in patients with multiple sclerosis (MS). Here we demonstrate a key role of carcinoembryogenic antigen-related cell adhesion molecule1 (CEACAM1) in B cell aggregate formation in MS patients and a B cell-dependent mouse model of MS. CEACAM1 expression was increased on peripheral blood B cells and CEACAM1(+) B cells were present in brain infiltrates of MS patients. Administration of the anti-CEACAM1 antibody T84.1 was efficient in blocking aggregation of B cells derived from MS patients. Along these lines, application of the monoclonal anti-CEACAM1 antibody mCC1 was able to inhibit CNS B cell aggregate formation and significantly attenuated established MS-like disease in mice in the absence of any adverse effects. CEACAM1 was co-expressed with the regulator molecule T cell immunoglobulin and mucin domain -3 (TIM-3) on B cells, a novel molecule that has recently been described to induce anergy in T cells. Interestingly, elevated coexpression on B cells coincided with an autoreactive T helper cell phenotype in MS patients. Overall, these data identify CEACAM1 as a clinically highly interesting target in MS pathogenesis and open new therapeutic avenues for the treatment of the disease. PMID:27435215

  11. The human Ig-[beta] cDNA sequence, a homologue of murine B29, is identical in B cell and plasma cell lines producing all the human Ig isotypes

    SciTech Connect

    Hashimoto, Shiori; Gregersen, P.K.; Chiorazzi, N. Cornell Univ., New York, NY )

    1993-01-15

    The B cell Ag receptor complex consists of at least two disulfide-linked, heterodimeric structures: the clonally restricted membrane Ig (mIg) molecule and the nonpolymorphic Ig-[alpha]:Ig-[beta] protein dimer. The latter molecule is encoded by two separate genes, mb-1 and B29. The DNA sequences of murine and human mb-1 and murine B29 have been determined previously. This study describes the sequence of the full-length human cDNA homologue of the murine Ig-[beta]/B29 message. The human sequence codes for a protein that displays the typical subunit features of a transmembrane member of the Ig superfamily. The transmembrane and intracytoplasmic domains exhibit striking nucleotide and amino acid sequence similarity between the two species. These regions show almost complete conservation of areas presumed to be involved in noncovalent interactions with other members of the receptor complex and with intracellular kinases and cytoskeletal components. The only sequence dissimilarity seen in these presumed critical areas involves the Y-E-G-L-N motif, a potential target for tyrosine phosphorylation. In contrast, the extracellular portion is much more divergent. Inasmuch as similar patterns of species diversity have been reported for Ig-[alpha], the Ig-[alpha] and Ig-[beta] molecules may have coevolved to maintain species-specific extracellular interactions between one another and with mIg. Similar to the Ig-[alpha] molecule, the Ig-[beta] sequence is identical in B lineage cells expressing all five Ig isotypes. However, in contrast to the Ig-[alpha] molecule, the Ig-[beta] sequence is expressed at apparently similar levels in terminally differentiated, mIg[sup [minus

  12. MK5 activates Rag transcription via Foxo1 in developing B cells

    PubMed Central

    Chow, Kwan T.; Timblin, Greg A.; McWhirter, Sarah M.

    2013-01-01

    Foxo1 is a critical, direct regulator of Rag (recombination activating gene) transcription during B cell development and is thus essential for the generation of a diverse repertoire of antigen receptors. Although Foxo1 regulation has been widely studied in many cell types, pathways regulating Foxo1 in B cells have not been fully elucidated. By screening a panel of Foxo1 mutants, we identified serine 215 on Foxo1 as a novel phosphorylation site that is essential for the activation of Rag transcription. Mutation of S215 strongly attenuated transactivation of Rag but did not affect most other Foxo1 target genes. We show that MK5, a MAPK-activated protein kinase, is a previously unidentified upstream regulator of Foxo1. MK5 was necessary and sufficient to activate Rag transcription in transformed and primary pro–B cells. Together, our experiments show that MK5 positively regulates Rag transcription via phosphorylation of Foxo1 in developing B cells. PMID:23878308

  13. Canonical NF-κB signaling is uniquely required for the long-term persistence of functional mature B cells.

    PubMed

    Derudder, Emmanuel; Herzog, Sebastian; Labi, Verena; Yasuda, Tomoharu; Köchert, Karl; Janz, Martin; Villunger, Andreas; Schmidt-Supprian, Marc; Rajewsky, Klaus

    2016-05-01

    Although canonical NF-κB signaling is crucial to generate a normal mature B-cell compartment, its role in the persistence of resting mature B cells is controversial. To resolve this conflict, we ablated NF-κB essential modulator (NEMO) and IκB kinase 2 (IKK2), two essential mediators of the canonical pathway, either early on in B-cell development or specifically in mature B cells. Early ablation severely inhibited the generation of all mature B-cell subsets, but follicular B-cell numbers could be largely rescued by ectopic expression of B-cell lymphoma 2 (Bcl2), despite a persisting block at the transitional stage. Marginal zone (MZ) B and B1 cells were not rescued, indicating a possible role of canonical NF-κB signals beyond the control of cell survival in these subsets. When canonical NF-κB signaling was ablated specifically in mature B cells, the differentiation and/or persistence of MZ B cells was still abrogated, but follicular B-cell numbers were only mildly affected. However, the mutant cells exhibited increased turnover as well as functional deficiencies upon activation, suggesting that canonical NF-κB signals contribute to their long-term persistence and functional fitness. PMID:27099294

  14. Isolation of a mutant cell line derived from ICR 2A frog cells hypersensitive to the induction of non-dimer DNA damage by solar ultraviolet radiation.

    PubMed

    Rosenstein, B S; Chao, C C

    1985-07-01

    A mutant cell line DRP 36, hypersensitive to nondimer DNA damage induced by exposure of cells to the Mylar-filtered solar ultraviolet (UV) radiation produced by a fluorescent sunlamp plus photoreactivating light (PRL) was isolated from the haploid ICR 2A frog cell line. The DO for mutant cells exposed to this solar UV source was 3.3 kJ/m2 compared with a DO of 7.3 kJ/m2 for the parental ICR 2A cells. In contrast, DRP 36 and ICR 2A cells exhibited similar levels of survival following 254-nm irradiation which causes the induction primarily of pyrimidine dimers. The cross-sensitivity to additional DNA damaging agents was examined, and it was determined that the DRP 36 cells are also hypersensitive to treatment with gamma-rays, ethyl methane sulfonate (EMS), cis-dichlorodiammine platinum (II) (DDP), and 4-nitroquinoline oxide (4-NQO) while exhibiting normal sensitivity to L-phenylalanine mustard (L-PAM), 1,3-bis-(2-chloroethyl)-1-nitrosourea (BCNU) and mitomycin C (MMC). PMID:3860965

  15. Rac-mediated Stimulation of Phospholipase Cγ2 Amplifies B Cell Receptor-induced Calcium Signaling.

    PubMed

    Walliser, Claudia; Tron, Kyrylo; Clauss, Karen; Gutman, Orit; Kobitski, Andrei Yu; Retlich, Michael; Schade, Anja; Röcker, Carlheinz; Henis, Yoav I; Nienhaus, G Ulrich; Gierschik, Peter

    2015-07-10

    The Rho GTPase Rac is crucially involved in controlling multiple B cell functions, including those regulated by the B cell receptor (BCR) through increased cytosolic Ca(2+). The underlying molecular mechanisms and their relevance to the functions of intact B cells have thus far remained unknown. We have previously shown that the activity of phospholipase Cγ2 (PLCγ2), a key constituent of the BCR signalosome, is stimulated by activated Rac through direct protein-protein interaction. Here, we use a Rac-resistant mutant of PLCγ2 to functionally reconstitute cultured PLCγ2-deficient DT40 B cells and to examine the effects of the Rac-PLCγ2 interaction on BCR-mediated changes of intracellular Ca(2+) and regulation of Ca(2+)-regulated and nuclear-factor-of-activated-T-cell-regulated gene transcription at the level of single, intact B cells. The results show that the functional Rac-PLCγ2 interaction causes marked increases in the following: (i) sensitivity of B cells to BCR ligation; (ii) BCR-mediated Ca(2+) release from intracellular stores; (iii) Ca(2+) entry from the extracellular compartment; and (iv) nuclear translocation of the Ca(2+)-regulated nuclear factor of activated T cells. Hence, Rac-mediated stimulation of PLCγ2 activity serves to amplify B cell receptor-induced Ca(2+) signaling. PMID:25903139

  16. B Cells and Autoantibodies in Multiple Sclerosis

    PubMed Central

    Pröbstel, Anne-Katrin; Sanderson, Nicholas S. R.; Derfuss, Tobias

    2015-01-01

    While over the past decades T cells have been considered key players in the pathogenesis of multiple sclerosis (MS), it has only recently become evident that B cells have a major contributing role. Our understanding of the role of B cells has evolved substantially following the clinical success of B cell-targeting therapies and increasing experimental evidence for significant B cell involvement. Rather than mere antibody-producing cells, it is becoming clear that they are team players with the capacity to prime and regulate T cells, and function both as pro- and anti-inflammatory mediators. However, despite tremendous efforts, the target antigen(s) of B cells in MS have yet to be identified. The first part of this review summarizes the clinical evidence and results from animal studies pointing to the relevance of B cells in the pathogenesis of MS. The second part gives an overview of the currently known potential autoantigen targets. The third part recapitulates and critically appraises the currently available B cell-directed therapies. PMID:26197319

  17. B Cells Are Multifunctional Players in Multiple Sclerosis Pathogenesis: Insights from Therapeutic Interventions.

    PubMed

    Claes, Nele; Fraussen, Judith; Stinissen, Piet; Hupperts, Raymond; Somers, Veerle

    2015-01-01

    Multiple sclerosis (MS) is a severe disease of the central nervous system (CNS) characterized by autoimmune inflammation and neurodegeneration. Historically, damage to the CNS was thought to be mediated predominantly by activated pro-inflammatory T cells. B cell involvement in the pathogenesis of MS was solely attributed to autoantibody production. The first clues for the involvement of antibody-independent B cell functions in MS pathology came from positive results in clinical trials of the B cell-depleting treatment rituximab in patients with relapsing-remitting (RR) MS. The survival of antibody-secreting plasma cells and decrease in T cell numbers indicated the importance of other B cell functions in MS such as antigen presentation, costimulation, and cytokine production. Rituximab provided us with an example of how clinical trials can lead to new research opportunities concerning B cell biology. Moreover, analysis of the antibody-independent B cell functions in MS has gained interest since these trials. Limited information is present on the effects of current immunomodulatory therapies on B cell functions, although effects of both first-line (interferon, glatiramer acetate, dimethyl fumarate, and teriflunomide), second-line (fingolimod, natalizumab), and even third-line (monoclonal antibody therapies) treatments on B cell subtype distribution, expression of functional surface markers, and secretion of different cytokines by B cells have been studied to some extent. In this review, we summarize the effects of different MS-related treatments on B cell functions that have been described up to now in order to find new research opportunities and contribute to the understanding of the pathogenesis of MS. PMID:26734009

  18. B Cells Are Multifunctional Players in Multiple Sclerosis Pathogenesis: Insights from Therapeutic Interventions

    PubMed Central

    Claes, Nele; Fraussen, Judith; Stinissen, Piet; Hupperts, Raymond; Somers, Veerle

    2015-01-01

    Multiple sclerosis (MS) is a severe disease of the central nervous system (CNS) characterized by autoimmune inflammation and neurodegeneration. Historically, damage to the CNS was thought to be mediated predominantly by activated pro-inflammatory T cells. B cell involvement in the pathogenesis of MS was solely attributed to autoantibody production. The first clues for the involvement of antibody-independent B cell functions in MS pathology came from positive results in clinical trials of the B cell-depleting treatment rituximab in patients with relapsing-remitting (RR) MS. The survival of antibody-secreting plasma cells and decrease in T cell numbers indicated the importance of other B cell functions in MS such as antigen presentation, costimulation, and cytokine production. Rituximab provided us with an example of how clinical trials can lead to new research opportunities concerning B cell biology. Moreover, analysis of the antibody-independent B cell functions in MS has gained interest since these trials. Limited information is present on the effects of current immunomodulatory therapies on B cell functions, although effects of both first-line (interferon, glatiramer acetate, dimethyl fumarate, and teriflunomide), second-line (fingolimod, natalizumab), and even third-line (monoclonal antibody therapies) treatments on B cell subtype distribution, expression of functional surface markers, and secretion of different cytokines by B cells have been studied to some extent. In this review, we summarize the effects of different MS-related treatments on B cell functions that have been described up to now in order to find new research opportunities and contribute to the understanding of the pathogenesis of MS. PMID:26734009

  19. Two types of mu chain complexes are expressed during differentiation from pre-B to mature B cells.

    PubMed Central

    Takemori, T; Mizuguchi, J; Miyazoe, I; Nakanishi, M; Shigemoto, K; Kimoto, H; Shirasawa, T; Maruyama, N; Taniguchi, M

    1990-01-01

    Immunoglobulin mu chains synthesized in murine pre-B cells are known to be associated with surrogate light chains designated as omega (omega), iota (iota) and B34. In addition to these molecules, we identified the complexes of polypeptides (50, 40, 27 and 15.5 kd) associated with surface or intracellular mu chains of pre-B cell lines. Most of these polypeptides were continuously synthesized and associated with mu chains in virgin B cells lines, although some of them scarcely bound to the mu kappa dimer or mu 2 kappa 2 tetramer concomitantly present in the same clone or population. However, in mature B cells they were no longer detectable except B34. Cross-linking of micron chains on the surface of pre-B cells resulted in an increase in intracellular free Ca2+, indicating that the micron chain complex on the surface of pre-B cell lines acted as a signal transduction molecule. However, the receptor cross-linkage of pre-B cell lines did not induce the increased inositol phospholipid metabolism usually observed in virgin and mature B cell lines. These results suggest that, during the differentiation from pre-B to mature B cells, the cells express two types of mu chain complexes which exhibit different structures as a whole and possess different signal transducing capacities. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:2114976

  20. RelB is differentially regulated by IkappaB Kinase-alpha in B cells and mouse lung by cigarette smoke.

    PubMed

    Yang, Se-Ran; Yao, Hongwei; Rajendrasozhan, Saravanan; Chung, Sangwoon; Edirisinghe, Indika; Valvo, Samantha; Fromm, George; McCabe, Michael J; Sime, Patricia J; Phipps, Richard P; Li, Jian-Dong; Bulger, Michael; Rahman, Irfan

    2009-02-01

    The activation of transcription factor NF-kappaB is controlled by two main pathways: the classical canonical (RelA/p65-p50)- and the alternative noncanonical (RelB/p52)-NF-kappaB pathways. RelB has been shown to play a protective role in RelA/p65-mediated proinflammatory cytokine release in immune-inflammatory lymphoid cells. Increased infiltration of macrophages and lymphoid cells occurs in lungs of patients with chronic obstructive pulmonary disease, leading to abnormal inflammation. We hypothesized that RelB, and its signaling pathway, is differentially regulated in macrophages and B cells and in lung cells, leading to differential regulation of proinflammatory cytokines in response to cigarette smoke (CS). CS exposure increased the levels of RelB and NF-kappaB-inducing kinase associated with recruitment of RelB on promoters of the IL-6 and macrophage inflammatory protein-2 genes in mouse lung. Treatment of macrophage cell line, MonoMac6, with CS extract showed activation of RelB. In contrast, RelB was degraded by a proteasome-dependent mechanism in B lymphocytes (human Ramos, mouse WEHI-231, and primary mouse spleen B cells), suggesting that RelB is differentially regulated in lung inflammatory and lymphoid cells in response to CS exposure. Transient transfection of dominant negative IkappaB-kinase-alpha and double mutants of NF-kappaB-inducing kinase partially attenuated the CS extract-mediated loss of RelB in B cells and normalized the increased RelB level in macrophages. Taken together, these data suggest that RelB is differentially regulated in response to CS exposure in macrophages, B cells, and in lung cells by IkappaB-kinase-alpha-dependent mechanism. Rapid degradation of RelB signals for RelA/p65 activation and loss of its protective ability to suppress the proinflammatory cytokine release in lymphoid B cells. PMID:18688039

  1. Auxin Transport and Ribosome Biogenesis Mutant/Reporter Lines to Study Plant Cell Growth and Proliferation under Altered Gravity

    NASA Astrophysics Data System (ADS)

    Valbuena, Miguel A.; Manzano, Ana I.; van Loon, Jack JWA.; Saez-Vasquez, Julio; Carnero-Diaz, Eugenie; Herranz, Raul; Medina, F. J.

    2013-02-01

    We tested different Arabidopsis thaliana strains to check their availability for space use in the International Space Station (ISS). We used mutants and reporter gene strains affecting factors of cell proliferation and cell growth, to check variations induced by an altered gravity vector. Seedlings were grown either in a Random Positioning Machine (RPM), under simulated microgravity (μg), or in a Large Diameter Centrifuge (LDC), under hypergravity (2g). A combination of the two devices (μgRPM+LDC) was also used. Under all gravity alterations, seedling roots were longer than in control 1g conditions, while the levels of the nucleolar protein nucleolin were depleted. Alterations in the pattern of expression of PIN2, an auxin transporter, and of cyclin B1, a cell cycle regulator, were shown. All these alterations are compatible with previous space data, so the use of these strains will be useful in the next experiments in ISS, under real microgravity.

  2. para-Phenylenediamine-induced autophagy in human uroepithelial cell line mediated mutant p53 and activation of ERK signaling pathway.

    PubMed

    Huang, Ya-Chun; Hung, Wen-Chun; Chye, Soi-Moi; Chen, Wan-Tzu; Chai, Chee-Yin

    2011-12-01

    para-Phenylenediamine (p-PD) is a major aromatic amine that is a widely used commercial oxidative-type hair dye. Some epidemiologic studies have suggested that the use of p-PD-based hair dyes might be related to increased risk of human malignant tumors including bladder cancer. However, the effects of p-PD on autophagy in human uroepithelial cells (SV-HUC-1) is still unclear. In this study, we demonstrate that p-PD can activate the extracellular signaling-regulated protein kinase 1/2 (ERK1/2) signaling pathway in SV-HUC-1 cells. In addition, we observed that autophagosomes increased in p-PD-treated SV-HUC-1 cells as shown by electron microscopy. Our results showed incremental increase of the concentrations, Beclin-1 and microtubule-associated protein light chain 3B (LC3B), which are important regulators of autophagosomes. In contrast, the MEK inhibitor (U0126) was suppressed autophagy and the effect of p-PD on ERK1/2, Beclin-1 and LC3B proteins expression, except for mutant p53. In this study, we demonstrated that inactivation of p53 induces a potent autophagy response. Finally, our results suggest that p-PD can activate the ERK1/2 signaling pathway and mutant p53, leading to the stimulation of autophagy in SV-HUC-1 cells. These results provide us with new insights for the understanding of the mechanism of p-PD-induced cell death in urothelial cells. PMID:21741467

  3. Investigational Immunotherapeutics for B-Cell Malignancies

    PubMed Central

    Quintás-Cardama, Alfonso; Wierda, William; O'Brien, Susan

    2010-01-01

    The use of rituximab-based chemoimmunotherapy regimens has remarkably improved the response rates, long-term outcomes, and quality of life of patients with B-cell malignancies. However, a substantial number of patients exhibit either primary or acquired resistance to rituximab, which suggests that novel immunotherapeutics with distinct mechanisms of action are necessary. A series of monoclonal antibodies with specificity against different surface antigens expressed on malignant B cells (eg, CD22, CD23, CD40, CD70) and novel immunotherapeutics (eg, bispecific monoclonal antibodies, small-modular immunopharmaceuticals, T-cell engagers) are currently in clinical or final preclinical stages of development. Although these agents offer reason for optimism, considerable challenges lie ahead in establishing their real clinical value, as well as in integrating them into current therapeutic algorithms for patients with B-cell malignancies. This review describes some of the most promising investigational immunotherapeutics for the treatment of B-cell malignancies. PMID:20048186

  4. Distinct Transcriptomic Features are Associated with Transitional and Mature B-Cell Populations in the Mouse Spleen

    PubMed Central

    Kleiman, Eden; Salyakina, Daria; De Heusch, Magali; Hoek, Kristen L.; Llanes, Joan M.; Castro, Iris; Wright, Jacqueline A.; Clark, Emily S.; Dykxhoorn, Derek M.; Capobianco, Enrico; Takeda, Akiko; McCormack, Ryan M.; Podack, Eckhard R.; Renauld, Jean-Christophe; Khan, Wasif N.

    2015-01-01

    Splenic transitional B-cells (T1 and T2) are selected to avoid self-reactivity and to safeguard against autoimmunity, then differentiate into mature follicular (FO-I and FO-II) and marginal zone (MZ) subsets. Transcriptomic analysis by RNA-seq of the five B-cell subsets revealed T1 cell signature genes included RAG suggesting a potential for receptor revision. T1 to T2 B-cell differentiation was marked by a switch from Myb to Myc, increased expression of the PI3K adapter DAP10 and MHC class II. FO-II may be an intermediate in FO-I differentiation and may also become MZ B-cells as suggested by principle component analysis. MZ B-cells possessed the most distinct transcriptome including down-regulation of CD45 phosphatase-associated protein (CD45-AP/PTPRC-AP), as well as upregulation of IL-9R and innate molecules TLR3, TLR7, and bactericidal Perforin-2 (MPEG1). Among the endosomal TLRs, stimulation via TLR3 further enhanced Perforin-2 expression exclusively in MZ B-cells. Using gene-deleted and overexpressing transgenic mice we show that IL-9/IL-9R interaction resulted in rapid activation of STAT1, 3, and 5, primarily in MZ B-cells. Importantly, CD45-AP mutant mice had reduced transitional and increased mature MZ and FO B-cells, suggesting that it prevents premature entry of transitional B-cells to the mature B-cell pool or their survival and proliferation. Together, these findings suggest, developmental plasticity among splenic B-cell subsets, potential for receptor revision in peripheral tolerance whereas enhanced metabolism coincides with T2 to mature B-cell differentiation. Further, unique core transcriptional signatures in MZ B-cells may control their innate features. PMID:25717326

  5. Nonrandon X chromosome inactivation in B cells from carriers of X chromosome-linked severe combined immunodeficiency

    SciTech Connect

    Conley, M.E.; Lavoie, A.; Briggs, C.; Brown, P.; Guerra, C.; Puck, J.M.

    1988-05-01

    X chromosome-linked sever combined immunodeficiency (XSCID) is characterized by markedly reduced numbers of T cells, the absence of proliferative responses to mitogens, and hypogammaglobulinemia but normal or elevated number of B cells. To determine if the failure of the B cells to produce immunoglobulin might be due to expression of the XSCID gene defect in B-lineage cells as well as T cells, the authors analyzed patterns of X chromosome inactivation in B cells from nine obligate carriers of this disorder. A series of somatic cell hybrids that selectively retained the active X chromosome was produced from Epstein-Barr virus-stimulated B cells from each woman. To distinguish between the two X chromosome, the hybrids from each woman were analyzed using an X-linked restriction fragment length polymorphism for which the woman in question was heterozygous. In all obligate carriers of XSCID, the B-cell hybrids demonstrated preferential use of a single X chromosome, the nonmutant X, as the active X. To determine if the small number of B-cell hybrids that contained the mutant X were derived from an immature subset of B cells, lymphocytes from three carriers were separated into surface IgM positive and surface IgM negative B cells prior to exposure to Epstein-Barr virus and production of B-cell hybrids. The results demonstrated normal random X chromosome inactivation in B-cell hybrids derived from the less mature surface IgM positive B cells. These results suggest that the XSCID gene product has a direct effect on B cells as well as T cells and is required during B-cell maturation.

  6. Functional deficiency of NBN, the Nijmegen breakage syndrome protein, in a p.R215W mutant breast cancer cell line

    PubMed Central

    2014-01-01

    Background Mutations in NBN, the gene for Nijmegen Breakage Syndrome (NBS), are thought to predispose women to developing breast cancer, but a breast cancer cell line containing mutations in NBN has not yet been described. The p.R215W missense mutation occurs at sub-polymorphic frequencies in several populations. We aimed to investigate its functional impact in breast cancer cells from a carrier of this NBN mutation. Methods Breast cancer cell lines were screened by immunoblotting for NBN protein levels, and the NBN coding region was sequenced for mutation analysis. Radiosensitivity assays and functional studies were performed through immunocytochemistry and immunoblotting, and flow cytometry was employed to assess cell cycle progression. Impedance measurements were used to study the consequences of PARP1 inhibition. Statistical comparisons between cell lines were performed using t-tests. Results HCC1395 breast cancer cells exhibited reduced NBN protein levels. Direct sequencing identified the NBN p.R215W mutation in the hemizygous state, in addition to a truncation in BRCA1. Mutations in both genes were already present in the heterozygous state in the patient’s germline. HCC1395 cells were highly radiosensitive, susceptible to apoptosis and were deficient in the formation of NBN foci. There was also evidence for some impairment in the formation of γH2AX, MDC1, and 53BP1 foci after irradiation; these foci appeared smaller and irregular compared with repair foci in wild-type cells, although ATM signalling was largely unaffected. In line with their deficiency in NBN and BRCA1, HCC1395 cells were particularly sensitive to PARP1 inhibition. Conclusion Our results indicate that the p.R215W mutation in the HCC1395 breast cancer cell line impairs NBN function, making this cell line a potentially useful cellular model for studying defective NBN protein within a mutant BRCA1 background. PMID:24928521

  7. Vitamin A and immune function: retinoic acid modulates population dynamics in antigen receptor and CD38-stimulated splenic B cells.

    PubMed

    Chen, Qiuyan; Ross, A Catharine

    2005-10-01

    Vitamin A and its active metabolite, all-trans retinoic acid (RA), regulate the antibody response in vivo, although the underlying mechanisms are not well understood. We have investigated the regulation by RA of B cell population dynamics and Ig gene expression in purified splenic mouse B cells stimulated through the B cell antigen receptor (BCR) and/or CD38, a BCR coreceptor. After ligation of the BCR and/or CD38, B cells became more heterogeneous in size. RA substantially restrained this change, concomitant with inhibition of cell proliferation. To examine B cell heterogeneity more closely, we categorized stimulated B cells by size (forward angle light scatter) and determined cell division dynamics, germ-line Ig heavy chain gene transcription and surface IgG1 (sIgG1) expression. Flow cytometric analysis of carboxyfluorescein diacetate succinimidyl ester-labeled B cells costained for sIgG1 showed that the more proliferative groups of B cells were smaller, whereas cells expressing more sIgG1 were larger. RA enriched the latter population, whereas cell division frequency in general and the number of smaller B cells that had undergone division cycles were reduced. Although RA significantly inhibited Ig germ-line transcript levels in the total B cell population, CD19(-)IgG1(+) B cells, which represent a more differentiated phenotype, were enriched. Furthermore, pax-5 mRNA was decreased and activation-induced cytidine deaminase mRNA was increased in RA-treated stimulated B cells. Thus, RA regulated factors known to be required for Ig class switch recombination and modulated the population dynamics of ligation-stimulated B cells, while promoting the progression of a fraction of B cells into differentiated sIgG-expressing cells. PMID:16093312

  8. Early B-cell factor 1 (EBF1) is critical for transcriptional control of SLAMF1 gene in human B cells.

    PubMed

    Schwartz, Anton M; Putlyaeva, Lidia V; Covich, Milica; Klepikova, Anna V; Akulich, Kseniya A; Vorontsov, Ilya E; Korneev, Kirill V; Dmitriev, Sergey E; Polanovsky, Oleg L; Sidorenko, Svetlana P; Kulakovskiy, Ivan V; Kuprash, Dmitry V

    2016-10-01

    Signaling lymphocytic activation molecule family member 1 (SLAMF1)/CD150 is a co-stimulatory receptor expressed on a variety of hematopoietic cells, in particular on mature lymphocytes activated by specific antigen, costimulation and cytokines. Changes in CD150 expression level have been reported in association with autoimmunity and with B-cell chronic lymphocytic leukemia. We characterized the core promoter for SLAMF1 gene in human B-cell lines and explored binding sites for a number of transcription factors involved in B cell differentiation and activation. Mutations of SP1, STAT6, IRF4, NF-kB, ELF1, TCF3, and SPI1/PU.1 sites resulted in significantly decreased promoter activity of varying magnitude, depending on the cell line tested. The most profound effect on the promoter strength was observed upon mutation of the binding site for Early B-cell factor 1 (EBF1). This mutation produced a 10-20 fold drop in promoter activity and pinpointed EBF1 as the master regulator of human SLAMF1 gene in B cells. We also identified three potent transcriptional enhancers in human SLAMF1 locus, each containing functional EBF1 binding sites. Thus, EBF1 interacts with specific binding sites located both in the promoter and in the enhancer regions of the SLAMF1 gene and is critical for its expression in human B cells. PMID:27424222

  9. Congenital B cell lymphocytosis explained by novel germline CARD11 mutations.

    PubMed

    Snow, Andrew L; Xiao, Wenming; Stinson, Jeffrey R; Lu, Wei; Chaigne-Delalande, Benjamin; Zheng, Lixin; Pittaluga, Stefania; Matthews, Helen F; Schmitz, Roland; Jhavar, Sameer; Kuchen, Stefan; Kardava, Lela; Wang, Wei; Lamborn, Ian T; Jing, Huie; Raffeld, Mark; Moir, Susan; Fleisher, Thomas A; Staudt, Louis M; Su, Helen C; Lenardo, Michael J

    2012-11-19

    Nuclear factor-κB (NF-κB) controls genes involved in normal lymphocyte functions, but constitutive NF-κB activation is often associated with B cell malignancy. Using high-throughput whole transcriptome sequencing, we investigated a unique family with hereditary polyclonal B cell lymphocytosis. We found a novel germline heterozygous missense mutation (E127G) in affected patients in the gene encoding CARD11, a scaffolding protein required for antigen receptor (AgR)-induced NF-κB activation in both B and T lymphocytes. We subsequently identified a second germline mutation (G116S) in an unrelated, phenotypically similar patient, confirming mutations in CARD11 drive disease. Like somatic, gain-of-function CARD11 mutations described in B cell lymphoma, these germline CARD11 mutants spontaneously aggregate and drive constitutive NF-κB activation. However, these CARD11 mutants rendered patient T cells less responsive to AgR-induced activation. By reexamining this rare genetic disorder first reported four decades ago, our findings provide new insight into why activating CARD11 mutations may induce B cell expansion and preferentially predispose to B cell malignancy without dramatically perturbing T cell homeostasis. PMID:23129749

  10. Congenital B cell lymphocytosis explained by novel germline CARD11 mutations

    PubMed Central

    Xiao, Wenming; Stinson, Jeffrey R.; Lu, Wei; Chaigne-Delalande, Benjamin; Zheng, Lixin; Pittaluga, Stefania; Matthews, Helen F.; Schmitz, Roland; Jhavar, Sameer; Kuchen, Stefan; Kardava, Lela; Wang, Wei; Lamborn, Ian T.; Jing, Huie; Raffeld, Mark; Moir, Susan; Fleisher, Thomas A.; Staudt, Louis M.; Su, Helen C.

    2012-01-01

    Nuclear factor-κB (NF-κB) controls genes involved in normal lymphocyte functions, but constitutive NF-κB activation is often associated with B cell malignancy. Using high-throughput whole transcriptome sequencing, we investigated a unique family with hereditary polyclonal B cell lymphocytosis. We found a novel germline heterozygous missense mutation (E127G) in affected patients in the gene encoding CARD11, a scaffolding protein required for antigen receptor (AgR)–induced NF-κB activation in both B and T lymphocytes. We subsequently identified a second germline mutation (G116S) in an unrelated, phenotypically similar patient, confirming mutations in CARD11 drive disease. Like somatic, gain-of-function CARD11 mutations described in B cell lymphoma, these germline CARD11 mutants spontaneously aggregate and drive constitutive NF-κB activation. However, these CARD11 mutants rendered patient T cells less responsive to AgR-induced activation. By reexamining this rare genetic disorder first reported four decades ago, our findings provide new insight into why activating CARD11 mutations may induce B cell expansion and preferentially predispose to B cell malignancy without dramatically perturbing T cell homeostasis. PMID:23129749

  11. Assembly and Function of the Precursor B-Cell Receptor.

    PubMed

    Übelhart, Rudolf; Werner, Markus; Jumaa, Hassan

    2016-01-01

    During early stages of development, precursor B lymphocytes express a characteristic type of antigen receptor known as the pre-B-cell receptor (pre-BCR). This receptor differs from conventional BCRs in that it possesses a germ line-encoded surrogate light chain (SLC), which is associated with the signal transduction machinery via heavy chain (HC) proteins that have been generated by productive rearrangement of the immunoglobulin HC genes. The pre-BCR marks a key step of B-cell commitment, as it activates the B-cell-specific signaling cascade and mediates the selection, expansion, and differentiation of cells expressing a productively rearranged HC protein. Another difference between the pre-BCR and conventional BCR might be the initial event that triggers receptor activation, as the pre-BCR is activated in the absence of external ligands, while conventional BCRs require antigen for activation. Nonetheless, the pre-BCR downstream signaling cascade is largely similar to that of the BCR suggesting that the characteristic LC of the pre-BCR mediates important receptor interactions thereby providing distinctive, germ line-encoded features to the pre-BCR. In fact, the SLC enables the pre-BCR to act as a surrogate autoreactive receptor. Here, we outline the structure and function of the pre-BCR and how the autonomous signaling capacity might be a direct consequence of pre-BCR assembly. In addition to its role in early B-cell development, we discuss how the ordered activation of downstream signaling cascades enables the pre-BCR to activate seemingly opposing cellular programs such as proliferation and differentiation. PMID:26415650

  12. Essential Role for Survivin in the Proliferative Expansion of Progenitor and Mature B Cells.

    PubMed

    Miletic, Ana V; Jellusova, Julia; Cato, Matthew H; Lee, Charlotte R; Baracho, Gisele V; Conway, Edward M; Rickert, Robert C

    2016-03-01

    Survivin is a member of the inhibitor of apoptosis family of proteins and a biomarker of poor prognosis in aggressive B cell non-Hodgkin's lymphoma. In addition to its role in inhibition of apoptosis, survivin also regulates mitosis. In this article, we show that deletion of survivin during early B cell development results in a complete block at the cycling pre-B stage. In the periphery, B cell homeostasis is not affected, but survivin-deficient B cells are unable to mount humoral responses. Correspondingly, we show that survivin is required for cell division in response to mitogenic stimulation. Thus, survivin is essential for proliferation of B cell progenitors and activated mature B cells, but is dispensable for B cell survival. Moreover, a small-molecule inhibitor of survivin strongly impaired the growth of representative B lymphoma lines in vitro, supporting the validity of survivin as an attractive therapeutic target for high-grade B cell non-Hodgkin's lymphoma. PMID:26810226

  13. Rescue of “crippled” germinal center B cells from apoptosis by Epstein-Barr virus

    PubMed Central

    Mancao, Christoph; Altmann, Markus; Jungnickel, Berit; Hammerschmidt, Wolfgang

    2005-01-01

    Epstein-Barr virus (EBV) is associated with B-cell lymphomas such as Hodgkin lymphoma, Burkitt lymphoma, and post-transplantation lymphoma, which originate from clonal germinal center (GC) B cells. During the process of somatic hypermutation, GC B cells can acquire deleterious or nonsense mutations in the heavy and light immunoglobulin genes. Such mutations abrogate the cell surface expression of the B-cell receptor (BCR), which results in the elimination of these nonfunctional B cells by immediate apoptosis. EBV encodes several latent genes, among them latent membrane protein 1 (LMP1) and LMP2A, which are regularly expressed in EBV-positive Hodgkin lymphoma and posttransplantation lymphomas. Since LMP1 and LMP2A mimic the function of 2 key receptors on B cells, CD40 and BCR, respectively, we wanted to learn whether EBV infection can rescue proapoptotic GC B cells with crippling mutations in the heavy chain immunoglobulin locus from apoptosis. We show here that BCR-negative GC B cells readily enter the cell cycle upon infection with EBV in vitro and yield clonal lymphoblastoid cell lines that are incapable of expressing a functional BCR because the rearranged and formerly functional heavy chain immunoglobulin alleles carry deleterious mutations. Our findings imply an important role for EBV in the process of lymphomagenesis in certain cases of Hodgkin lymphoma and posttransplantation lymphomas. PMID:16076866

  14. Proteomic Changes during B Cell Maturation: 2D-DIGE Approach

    PubMed Central

    Salonen, Johanna; Rönnholm, Gunilla; Kalkkinen, Nisse; Vihinen, Mauno

    2013-01-01

    B cells play a pivotal role in adaptive immune system, since they maintain a delicate balance between recognition and clearance of foreign pathogens and tolerance to self. During maturation, B cells progress through a series of developmental stages defined by specific phenotypic surface markers and the rearrangement and expression of immunoglobulin (Ig) genes. To get insight into B cell proteome during the maturation pathway, we studied differential protein expression in eight human cell lines, which cover four distinctive developmental stages; early pre-B, pre-B, plasma cell and immature B cell upon anti-IgM stimulation. Our two-dimensional differential gel electrophoresis (2D-DIGE) and mass spectrometry based proteomic study indicates the involvement of large number of proteins with various functions. Notably, proteins related to cytoskeleton were relatively highly expressed in early pre-B and pre-B cells, whereas plasma cell proteome contained endoplasmic reticulum and Golgi system proteins. Our long time series analysis in anti-IgM stimulated Ramos B cells revealed the dynamic regulation of cytoskeleton organization, gene expression and metabolic pathways, among others. The findings are related to cellular processes in B cells and are discussed in relation to experimental information for the proteins and pathways they are involved in. Representative 2D-DIGE maps of different B cell maturation stages are available online at http://structure.bmc.lu.se/BcellProteome/. PMID:24205016

  15. NHL (diffuse large B-cell lymphoma)

    PubMed Central

    2010-01-01

    Introduction Non-Hodgkin’s lymphoma (NHL) is the sixth most common cancer in the UK; 9443 new cases were diagnosed in the UK in 2002, and it caused 4418 UK deaths in 2003. Incidence rates show distinct geographical variation, with age-standardised incidence rates ranging from 17 per 100,000 in northern America to 4 per 100,000 in south-central Asia. NHL occurs more commonly in males than in females, and the age-standardised UK incidence increased by 10.3% between 1993 and 2002. Methods and outcomes We conducted a systematic review and aimed to answer the following clinical questions: What are the effects of first-line treatments for aggressive, or for relapsed aggressive, non-Hodgkin's lymphoma (diffuse large B-cell lymphoma)? We searched: Medline, Embase, The Cochrane Library, and other important databases up to January 2010 (Clinical Evidence reviews are updated periodically, please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). Results We found 26 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. Conclusions In this systematic review we present information relating to the effectiveness and safety of the following interventions: allogeneic stem-cell support, chemotherapy (conventional dose salvage, high-dose plus autologous transplant stem-cell support, conventional dose in people with chemosensitive disease), CHOP 14, CHOP 21, CHOP 21 with radiotherapy, CHOP 21 with rituximab, ACVBP, MACOP-B, m-BACOD, PACEBOM, and ProMACE-CytaBOM. PMID:21406125

  16. Functional characterization of a new p53 mutant generated by homozygous deletion in a neuroblastoma cell line

    SciTech Connect

    Nakamura, Yohko; Ozaki, Toshinori; Niizuma, Hidetaka; Ohira, Miki; Kamijo, Takehiko; Nakagawara, Akira . E-mail: akiranak@chiba-cc.jp

    2007-03-23

    p53 is a key modulator of a variety of cellular stresses. In human neuroblastomas, p53 is rarely mutated and aberrantly expressed in cytoplasm. In this study, we have identified a novel p53 mutant lacking its COOH-terminal region in neuroblastoma SK-N-AS cells. p53 accumulated in response to cisplatin (CDDP) and thereby promoting apoptosis in neuroblastoma SH-SY5Y cells bearing wild-type p53, whereas SK-N-AS cells did not undergo apoptosis. We found another p53 (p53{delta}C) lacking a part of oligomerization domain and nuclear localization signals in SK-N-AS cells. p53{delta}C was expressed largely in cytoplasm and lost the transactivation function. Furthermore, a 3'-part of the p53 locus was homozygously deleted in SK-N-AS cells. Thus, our present findings suggest that p53 plays an important role in the DNA-damage response in certain neuroblastoma cells and it seems to be important to search for p53 mutations outside DNA-binding domain.

  17. Pro-B-cell-specific transcription and proapoptotic function of protein kinase Ceta.

    PubMed

    Morrow, T A; Muljo, S A; Zhang, J; Hardwick, J M; Schlissel, M S

    1999-08-01

    Using a subtractive cloning scheme on cDNA prepared from primary pro-B and pre-B cells, we identified several genes whose products regulate apoptosis. We further characterized one of these genes, encoding protein kinase Ceta (PKCeta). PKCeta transcripts were readily detected in pro-B cells but were absent in pre-B cells. Although both a full-length and a truncated form of PKCeta were detectable in bone marrow pro-B cells, transition to the pre-B-cell stage was associated with increased relative levels of truncated PKCeta. We found that PKCeta is proteolyzed in apoptotic lymphocytes, generating a kinase-active fragment identical to the truncated form which is capable of inducing apoptosis when expressed in a pro-B cell line. Caspase-3 can generate an identical PKCeta cleavage product in vitro, and caspase inhibitors prevent the generation of this product during apoptosis in transfected cell lines. Inducible overexpression of either the full-length or truncated form of PKCeta results in cell cycle arrest at the G(1)/S transition. These results suggest that the expression and proteolytic activation of PKCeta play an important role in the regulation of cell division and cell death during early B-cell development. PMID:10409750

  18. Molecular Mechanism for the Thermo-Sensitive Phenotype of CHO-MT58 Cell Line Harbouring a Mutant CTP:Phosphocholine Cytidylyltransferase

    PubMed Central

    Marton, Lívia; Nagy, Gergely N.; Ozohanics, Olivér; Lábas, Anikó; Krámos, Balázs; Oláh, Julianna; Vékey, Károly; Vértessy, Beáta G.

    2015-01-01

    Control and elimination of malaria still represents a major public health challenge. Emerging parasite resistance to current therapies urges development of antimalarials with novel mechanism of action. Phospholipid biosynthesis of the Plasmodium parasite has been validated as promising candidate antimalarial target. The most prevalent de novo pathway for synthesis of phosphatidylcholine is the Kennedy pathway. Its regulatory and often also rate limiting step is catalyzed by CTP:phosphocholine cytidylyltransferase (CCT). The CHO-MT58 cell line expresses a mutant variant of CCT, and displays a thermo-sensitive phenotype. At non-permissive temperature (40°C), the endogenous CCT activity decreases dramatically, blocking membrane synthesis and ultimately leading to apoptosis. In the present study we investigated the impact of the analogous mutation in a catalytic domain construct of Plasmodium falciparum CCT in order to explore the underlying molecular mechanism that explains this phenotype. We used temperature dependent enzyme activity measurements and modeling to investigate the functionality of the mutant enzyme. Furthermore, MS measurements were performed to determine the oligomerization state of the protein, and MD simulations to assess the inter-subunit interactions in the dimer. Our results demonstrate that the R681H mutation does not directly influence enzyme catalytic activity. Instead, it provokes increased heat-sensitivity by destabilizing the CCT dimer. This can possibly explain the significance of the PfCCT pseudoheterodimer organization in ensuring proper enzymatic function. This also provide an explanation for the observed thermo-sensitive phenotype of CHO-MT58 cell line. PMID:26083347

  19. Molecular Mechanism for the Thermo-Sensitive Phenotype of CHO-MT58 Cell Line Harbouring a Mutant CTP:Phosphocholine Cytidylyltransferase.

    PubMed

    Marton, Lívia; Nagy, Gergely N; Ozohanics, Olivér; Lábas, Anikó; Krámos, Balázs; Oláh, Julianna; Vékey, Károly; Vértessy, Beáta G

    2015-01-01

    Control and elimination of malaria still represents a major public health challenge. Emerging parasite resistance to current therapies urges development of antimalarials with novel mechanism of action. Phospholipid biosynthesis of the Plasmodium parasite has been validated as promising candidate antimalarial target. The most prevalent de novo pathway for synthesis of phosphatidylcholine is the Kennedy pathway. Its regulatory and often also rate limiting step is catalyzed by CTP:phosphocholine cytidylyltransferase (CCT). The CHO-MT58 cell line expresses a mutant variant of CCT, and displays a thermo-sensitive phenotype. At non-permissive temperature (40°C), the endogenous CCT activity decreases dramatically, blocking membrane synthesis and ultimately leading to apoptosis. In the present study we investigated the impact of the analogous mutation in a catalytic domain construct of Plasmodium falciparum CCT in order to explore the underlying molecular mechanism that explains this phenotype. We used temperature dependent enzyme activity measurements and modeling to investigate the functionality of the mutant enzyme. Furthermore, MS measurements were performed to determine the oligomerization state of the protein, and MD simulations to assess the inter-subunit interactions in the dimer. Our results demonstrate that the R681H mutation does not directly influence enzyme catalytic activity. Instead, it provokes increased heat-sensitivity by destabilizing the CCT dimer. This can possibly explain the significance of the PfCCT pseudoheterodimer organization in ensuring proper enzymatic function. This also provide an explanation for the observed thermo-sensitive phenotype of CHO-MT58 cell line. PMID:26083347

  20. Analysis of Host Gene Expression Changes Reveals Distinct Roles for the Cytoplasmic Domain of the Epstein-Barr Virus Receptor/CD21 in B-Cell Maturation, Activation, and Initiation of Virus Infection

    PubMed Central

    Arredouani, Mohamed S.; Bhasin, Manoj K.; Sage, David R.; Dunn, Laura K.; Gill, Michael B.; Agnani, Deep; Libermann, Towia A.

    2014-01-01

    ABSTRACT Epstein-Barr virus (EBV) attachment to human CD21 on the B-cell surface initiates infection. Whether CD21 is a simple tether or conveys vital information to the cell interior for production of host factors that promote infection of primary B cells is controversial, as the cytoplasmic fragment of CD21 is short, though highly conserved. The ubiquity of CD21 on normal B cells, the diversity of this population, and the well-known resistance of primary B cells to gene transfer technologies have all impeded resolution of this question. To uncover the role(s) of the CD21 cytoplasmic domain during infection initiation, the full-length receptor (CD21 = CR), a mutant lacking the entire cytoplasmic tail (CT), and a control vector (NEO) were stably expressed in two pre-B-cell lines that lack endogenous receptor. Genome-wide transcriptional analysis demonstrated that stable CD21 surface expression alone (either CR or CT) produced multiple independent changes in gene expression, though both dramatically decreased class I melanoma-associated antigen (MAGE) family RNAs and upregulated genes associated with B-cell differentiation (e.g., C2TA, HLA-II, IL21R, MIC2, CD48, and PTPRCAP/CD45-associated protein). Temporal analysis spanning 72 h revealed that not only CR- but also CT-expressing lines initiated latency. In spite of this, the number and spectrum of transcripts altered in CR- compared with CT-bearing lines at 1 h after infection further diverged. Differential modulation of immediate early cellular transcripts (e.g., c-Jun and multiple histones), both novel and previously linked to CD21-initiated signaling, as well as distinct results from pathway analyses support a separate role for the cytoplasmic domain in initiation of intracellular signals. IMPORTANCE Membrane proteins that mediate virus attachment tether virus particles to the cell surface, initiating infection. In addition, upon virus interaction such proteins may transmit signals to the interior of the cell

  1. Human norovirus culture in B cells

    PubMed Central

    Jones, Melissa K; Grau, Katrina R; Costantini, Veronica; Kolawole, Abimbola O; de Graaf, Miranda; Freiden, Pamela; Graves, Christina L; Koopmans, Marion; Wallet, Shannon M; Tibbetts, Scott A; Schultz-Cherry, Stacey; Wobus, Christiane E; Vinjé, Jan; Karst, Stephanie M

    2015-01-01

    Human noroviruses (HunoVs) are a leading cause of foodborne disease and severe childhood diarrhea, and they cause a majority of the gastroenteritis outbreaks worldwide. However, the development of effective and long-lasting HunoV vaccines and therapeutics has been greatly hindered by their uncultivability. We recently demonstrated that a HunoV replicates in human B cells, and that commensal bacteria serve as a cofactor for this infection. In this protocol, we provide detailed methods for culturing the GII.4-sydney HunoV strain directly in human B cells, and in a coculture system in which the virus must cross a confluent epithelial barrier to access underlying B cells. We also describe methods for bacterial stimulation of HunoV B cell infection and for measuring viral attachment to the surface of B cells. Finally, we highlight variables that contribute to the efficiency of viral replication in this system. Infection assays require 3 d and attachment assays require 3 h. analysis of infection or attachment samples, including rna extraction and rt-qpcr, requires ~6 h. PMID:26513671

  2. Human norovirus culture in B cells.

    PubMed

    Jones, Melissa K; Grau, Katrina R; Costantini, Veronica; Kolawole, Abimbola O; de Graaf, Miranda; Freiden, Pamela; Graves, Christina L; Koopmans, Marion; Wallet, Shannon M; Tibbetts, Scott A; Schultz-Cherry, Stacey; Wobus, Christiane E; Vinjé, Jan; Karst, Stephanie M

    2015-12-01

    Human noroviruses (HuNoVs) are a leading cause of foodborne disease and severe childhood diarrhea, and they cause a majority of the gastroenteritis outbreaks worldwide. However, the development of effective and long-lasting HuNoV vaccines and therapeutics has been greatly hindered by their uncultivability. We recently demonstrated that a HuNoV replicates in human B cells, and that commensal bacteria serve as a cofactor for this infection. In this protocol, we provide detailed methods for culturing the GII.4-Sydney HuNoV strain directly in human B cells, and in a coculture system in which the virus must cross a confluent epithelial barrier to access underlying B cells. We also describe methods for bacterial stimulation of HuNoV B cell infection and for measuring viral attachment to the surface of B cells. Finally, we highlight variables that contribute to the efficiency of viral replication in this system. Infection assays require 3 d and attachment assays require 3 h. Analysis of infection or attachment samples, including RNA extraction and RT-qPCR, requires ∼6 h. PMID:26513671

  3. Phospholipase Cgamma2 dosage is critical for B cell development in the absence of adaptor protein BLNK.

    PubMed

    Xu, Shengli; Huo, Jianxin; Chew, Weng-Keong; Hikida, Masaki; Kurosaki, Tomohiro; Lam, Kong-Peng

    2006-04-15

    B cell linker (BLNK) protein and phospholipase Cgamma2 (PLCgamma2) are components of the BCR signalosome that activate calcium signaling in B cells. Mice lacking either molecule have a severe but incomplete block in B lymphopoiesis. In this study, we generated BLNK-/- PLCgamma2-/- mice to examine the effect of simultaneous disruption of both molecules on B cell development. We showed that BLNK-/- PLCgamma2-/- mice had compounded defects in B cell maturation compared with either single mutant, suggesting that these two molecules cooperatively or synergistically signaled B lymphopoiesis. However, Ig H chain allelic exclusion was maintained in single and double mutants, indicating that signals propagated by BLNK and PLCgamma2 were not involved in this process. Interestingly, in the absence of BLNK, B cell development was dependent on plcgamma2 gene dosage. This was evidenced by the proportionate decrease in splenic B cell population and increase in bone marrow surface pre-BCR+ cells in PLCgamma2-diploid, -haploid, and -null animals. Intracellular calcium signaling and ERK activation in response to BCR engagement were also proportionately decreased and delayed, respectively, with stepwise reduction of plcgamma2 dosage in a BLNK(null) background. Thus, these data indicate the importance of BLNK not only as a conduit to specifically channel BCR-signaling pathways and as a scaffold for the assembling of macromolecular complex, but also as an efficient aggregator or concentrator of PLCgamma2 molecules to effect optimal signaling for B cell generation and activation. PMID:16585562

  4. Isolation and characterization of dexamethasone-resistant mutants from human lymphoid cell line CEM-C7

    SciTech Connect

    Harmon, J.M.; Thompson, E.B.

    1981-06-01

    Fifty-four independent dexamethasone-resistant clones were isolated from the clonal, glucocorticoid-sensitive human leukemic T-cell line CEM-C7. Resistance to 1 ..mu..M dexamethasone was acquired spontaneously at a rate of 2.6 x 10/sup -5/ per cell per generation as determined by fluctuation analysis. After mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), the phenotypic expression time for dexamethasone resistance was determined to be 3 days. The mutagens ICR 191 and MNNG were effective in increasing the dexamethasone-resistant fraction of cells in mutagenized cultures; ICR 191 produced a 35.6-fold increase, and MNNG produced an 8.5-fold increase. All the spontaneous dexamethasone-resistant clones contained glucocorticoid receptors, usually less than half of the amount found in the parental clone. They are therefore strikingly different from dexamethasone-resistant clones derived from the mouse cell lines S49 and W7. Dexamethasone-resistant clones isolated after mutagenesis of CEM-C7 contained, on the average, lower concentrations of receptor than did those isolated spontaneously, and one clone contained no detectable receptor. These results are consistent with a mutational origin for dexamethasone resistance in these human cells at a haploid or functionally hemizygous locus. They also suggest that this is a useful system for mutation assay.

  5. Ligand stimulation of ErbB4 and a constitutively-active ErbB4 mutant result in different biological responses in human pancreatic tumor cell lines

    SciTech Connect

    Mill, Christopher P.; Gettinger, Kathleen L.; Riese, David J.

    2011-02-15

    Pancreatic cancer is the fourth leading cause of cancer death in the United States. Indeed, it has been estimated that 37,000 Americans will die from this disease in 2010. Late diagnosis, chemoresistance, and radioresistance of these tumors are major reasons for poor patient outcome, spurring the search for pancreatic cancer early diagnostic and therapeutic targets. ErbB4 (HER4) is a member of the ErbB family of receptor tyrosine kinases (RTKs), a family that also includes the Epidermal Growth Factor Receptor (EGFR/ErbB1/HER1), Neu/ErbB2/HER2, and ErbB3/HER3. These RTKs play central roles in many human malignancies by regulating cell proliferation, survival, differentiation, invasiveness, motility, and apoptosis. In this report we demonstrate that human pancreatic tumor cell lines exhibit minimal ErbB4 expression; in contrast, these cell lines exhibit varied and in some cases abundant expression and basal tyrosine phosphorylation of EGFR, ErbB2, and ErbB3. Expression of a constitutively-dimerized and -active ErbB4 mutant inhibits clonogenic proliferation of CaPan-1, HPAC, MIA PaCa-2, and PANC-1 pancreatic tumor cell lines. In contrast, expression of wild-type ErbB4 in pancreatic tumor cell lines potentiates stimulation of anchorage-independent colony formation by the ErbB4 ligand Neuregulin 1{beta}. These results illustrate the multiple roles that ErbB4 may be playing in pancreatic tumorigenesis and tumor progression.

  6. Isolation and characterization of a novel B cell activation gene

    SciTech Connect

    Hong, J.X.; Wilson, G.L.; Fox, C.H.; Kehrl, J.H. )

    1993-05-01

    Using subtractive cDNA cloning, the authors have isolated a series of cDNA clones that are differentially expressed between B and T lymphocytes. Whereas some of the isolated cDNA are from known B cell-specific genes, many of them represent previously uncharacterized genes. One of these unknown genes was denoted as BL34. Northern blot analysis performed with the BL34 cDNA revealed a 1.6-kb mRNA transcript that was present at low levels in RNA extracted from resting B lymphocytes, but whose expression was markedly increased in RNA prepared from mitogen-activated B cells. Similarly, RNA prepared from several B cell lines treated with phorbol myristate acetate (PMA) contained high levels of BL34 mRNA. In contrast, RNA from purified T cells treated with phytohemagglutinin and PMA had undetectable amounts of BL34 mRNA. In addition, high levels of BL34 mRNA were detected in RNA purified from PBMC of a patient with B cell acute lymphocytic leukemia. Southern blot analysis of human DNA from various tissues and cells lines demonstrated that BL34 is a single-copy gene without evidence of rearrangement. Two full length BL34 cDNA were sequenced, and an open reading frame of 588 bp was identified that was predicted to encode for a 196 amino acid protein. Searches of several protein data bases failed to find any homologous proteins. To directly analyze the expression of BL34 mRNA in lymphoid tissues in situ, hybridization studies with human tonsil tissue sections were performed. BL34 mRNA was detected in a portion of the cells in the germinal center region and adjacent to the mantle region. Further characterization of the BL34 gene and its protein should lead to insights to its role in B cell function and the consequences of its over-expression in acute lymphocytic leukemia. 26 refs., 6 figs., 1 tab.

  7. Engagement of CD22 on B cells with the monoclonal antibody epratuzumab stimulates the phosphorylation of upstream inhibitory signals of the B cell receptor.

    PubMed

    Lumb, Simon; Fleischer, Sarah J; Wiedemann, Annika; Daridon, Capucine; Maloney, Alison; Shock, Anthony; Dörner, Thomas

    2016-06-01

    The binding of antigen to the B cell receptor (BCR) results in a cascade of signalling events that ultimately drive B cell activation. Uncontrolled B cell activation is regulated by negative feedback loops that involve inhibitory co-receptors such as CD22 and CD32B that exert their functions following phosphorylation of immunoreceptor tyrosine-based inhibition motifs (ITIMs). The CD22-targeted antibody epratuzumab has previously been shown to inhibit BCR-driven signalling events, but its effects on ITIM phosphorylation of CD22 and CD32B have not been properly evaluated. The present study therefore employed both immunoprecipitation and flow cytometry approaches to elucidate the effects of epratuzumab on direct phosphorylation of key tyrosine (Tyr) residues on both these proteins, using both transformed B cell lines and primary human B cells. Epratuzumab induced the phosphorylation of Tyr(822) on CD22 and enhanced its co-localisation with SHP-1. Additionally, in spite of high basal phosphorylation of other key ITIMs on CD22, in primary human B cells epratuzumab also enhanced phosphorylation of Tyr(807), a residue involved in the recruitment of Grb2. Such initiation events could explain the effects of epratuzumab on downstream signalling in B cells. Finally, we were able to demonstrate that epratuzumab stimulated the phosphorylation of Tyr(292) on the low affinity inhibitory Fc receptor CD32B which would further attenuate BCR-induced signalling. Together, these data demonstrate that engagement of CD22 with epratuzumab leads to the direct phosphorylation of key upstream inhibitory receptors of BCR signalling and may help to explain how this antibody modulates B cell function. PMID:27125377

  8. Molecular evidence of Zn chelation of the procaspase activating compound B-PAC-1 in B cell lymphoma

    PubMed Central

    Sarkar, Aloke; Balakrishnan, Kumudha; Chen, Jefferson; Patel, Viralkumar; Neelapu, Sattva S.; McMurray, John S.; Gandhi, Varsha

    2016-01-01

    The resistance of apoptosis in cancer cells is pivotal for their survival and is typically ruled by mutations or dysregulation of core apoptotic cascade. Mantle cell lymphoma (MCL) is a non-Hodgkin's B-cell malignancy expressing higher anti-apoptotic proteins providing survival advantage. B-PAC-1, a procaspase activating compound, induces apoptosis by sequestering Zn bound to procaspase-3, but the amino acids holding Zn in Caspase-3 is not known. Here we show that reintroduction of WT caspase-3 or 7 in Caspase3–7 double knock-out (DKO) mouse embryonic fibroblasts (MEF) promoted B-PAC-1 to induce apoptosis (27–43%), but not in DKO MEFs or MEFs expressing respective Casp3–7 catalytic mutants (12–13%). Using caspase-6 and -9 exosite analysis, we identified and mutated predicted Zn-ligands in caspase-3 (H108A, C148S and E272A) and overexpressed into DKO MEFs. Mutants carrying E272A abrogated Zn-reversal of apoptosis induced by B-PAC-1 via higher XIAP and smac expressions but not in H108A or C148S mutants. Co-immunoprecipitation analysis revealed stronger XIAP-caspase-3 interaction suggesting a novel mechanism of impulsive apoptosis resistance by disrupting predicted Zn-ligands in caspase-3. B-PAC-1 sponsored apoptosis in MCL cell lines (30–73%) via caspase-3 and PARP cleavages accompanied by loss of Mcl-1 and IAPs including XIAP while Zn substantially abrogated B-PAC-1-driven apoptosis (18–36%). In contrary, Zn is dispensable to inhibit staurosporin, bendamustine, ABT199 or MK206-induced apoptosis. Consistent to cell lines, B-PAC-1 stimulated cell death in primary B-lymphoma cells via caspase-3 cleavage with decline in both Mcl-1 and XIAP. This study underscores the first genetic evidence that B-PAC-1 driven apoptosis is mediated via Zn chelation. PMID:26658105

  9. Use of Illumina sequencing to identify transposon insertions underlying mutant phenotypes in high-copy Mutator lines of maize.

    PubMed

    Williams-Carrier, Rosalind; Stiffler, Nicholas; Belcher, Susan; Kroeger, Tiffany; Stern, David B; Monde, Rita-Ann; Coalter, Robert; Barkan, Alice

    2010-07-01

    High-copy transposons have been effectively exploited as mutagens in a variety of organisms. However, their utility for phenotype-driven forward genetics has been hampered by the difficulty of identifying the specific insertions responsible for phenotypes of interest. We describe a new method that can substantially increase the throughput of linking a disrupted gene to a known phenotype in high-copy Mutator (Mu) transposon lines in maize. The approach uses the Illumina platform to obtain sequences flanking Mu elements in pooled, bar-coded DNA samples. Insertion sites are compared among individuals of suitable genotype to identify those that are linked to the mutation of interest. DNA is prepared for sequencing by mechanical shearing, adapter ligation, and selection of DNA fragments harboring Mu flanking sequences by hybridization to a biotinylated oligonucleotide corresponding to the Mu terminal inverted repeat. This method yields dense clusters of sequence reads that tile approximately 400 bp flanking each side of each heritable insertion. The utility of the approach is demonstrated by identifying the causal insertions in four genes whose disruption blocks chloroplast biogenesis at various steps: thylakoid protein targeting (cpSecE), chloroplast gene expression (polynucleotide phosphorylase and PTAC12), and prosthetic group attachment (HCF208/CCB2). This method adds to the tools available for phenotype-driven Mu tagging in maize, and could be adapted for use with other high-copy transposons. A by-product of the approach is the identification of numerous heritable insertions that are unrelated to the targeted phenotype, which can contribute to community insertion resources. PMID:20409008

  10. B Cells and Humoral Immunity in Atherosclerosis

    PubMed Central

    Tsiantoulas, Dimitrios; Diehl, Cody J.; Witztum, Joseph L.; Binder, Christoph J.

    2014-01-01

    Insights into the important contribution of inflammation and immune functions in the development and progression of atherosclerosis have greatly improved our understanding of this disease. Although the role of T cells has been extensively studied for decades, only recently has the role of B cells gained more attention. Recent studies have identified differential effects of different B-cell subsets and helped to clarify the still poorly understood mechanisms by which these act. B1 cells have been shown to prevent lesion formation, whereas B2 cells have been suggested to promote it. Natural IgM antibodies, mainly derived from B1 cells, have been shown to mediate atheroprotective effects, but the functional role of other immunoglobulin classes, particularly IgG, still remains elusive. In this review, we will focus on recent insights on the role of B cells and various immunoglobulin classes and how these may mediate their effects in atherosclerotic lesion formation. Moreover, we will highlight potential therapeutic approaches focusing on B-cell depletion that could be used to translate experimental evidence to human disease. PMID:24855199

  11. Recurrent mutations of the exportin 1 gene (XPO1) and their impact on selective inhibitor of nuclear export compounds sensitivity in primary mediastinal B-cell lymphoma.

    PubMed

    Jardin, Fabrice; Pujals, Anais; Pelletier, Laura; Bohers, Elodie; Camus, Vincent; Mareschal, Sylvain; Dubois, Sydney; Sola, Brigitte; Ochmann, Marlène; Lemonnier, François; Viailly, Pierre-Julien; Bertrand, Philippe; Maingonnat, Catherine; Traverse-Glehen, Alexandra; Gaulard, Philippe; Damotte, Diane; Delarue, Richard; Haioun, Corinne; Argueta, Christian; Landesman, Yosef; Salles, Gilles; Jais, Jean-Philippe; Figeac, Martin; Copie-Bergman, Christiane; Molina, Thierry Jo; Picquenot, Jean Michel; Cornic, Marie; Fest, Thierry; Milpied, Noel; Lemasle, Emilie; Stamatoullas, Aspasia; Moeller, Peter; Dyer, Martin J S; Sundstrom, Christer; Bastard, Christian; Tilly, Hervé; Leroy, Karen

    2016-09-01

    Primary mediastinal B-cell lymphoma (PMBL) is an entity of B-cell lymphoma distinct from the other molecular subtypes of diffuse large B-cell lymphoma (DLBCL). We investigated the prevalence, specificity, and clinical relevance of mutations of XPO1, which encodes a member of the karyopherin-β nuclear transporters, in a large cohort of PMBL. PMBL cases defined histologically or by gene expression profiling (GEP) were sequenced and the XPO1 mutational status was correlated to genetic and clinical characteristics. The XPO1 mutational status was also assessed in DLBCL, Hodgkin lymphoma (HL) and mediastinal gray-zone lymphoma (MGZL).The biological impact of the mutation on Selective Inhibitor of Nuclear Export (SINE) compounds (KPT-185/330) sensitivity was investigated in vitro. XPO1 mutations were present in 28/117 (24%) PMBL cases and in 5/19 (26%) HL cases but absent/rare in MGZL (0/20) or DLBCL (3/197). A higher prevalence (50%) of the recurrent codon 571 variant (p.E571K) was observed in GEP-defined PMBL and was associated with shorter PFS. Age, International Prognostic Index and bulky mass were similar in XPO1 mutant and wild-type cases. KPT-185 induced a dose-dependent decrease in cell proliferation and increased cell-death in PMBL cell lines harboring wild type or XPO1 E571K mutant alleles. Experiments in transfected U2OS cells further confirmed that the XPO1 E571K mutation does not have a drastic impact on KPT-330 binding. To conclude the XPO1 E571K mutation represents a genetic hallmark of the PMBL subtype and serves as a new relevant PMBL biomarker. SINE compounds appear active for both mutated and wild-type protein. Am. J. Hematol. 91:923-930, 2016. © 2016 Wiley Periodicals, Inc. PMID:27312795

  12. A Novel Recombinant Anti-CD22 Immunokinase Delivers Proapoptotic Activity of Death-Associated Protein Kinase (DAPK) and Mediates Cytotoxicity in Neoplastic B Cells.

    PubMed

    Lilienthal, Nils; Lohmann, Gregor; Crispatzu, Giuliano; Vasyutina, Elena; Zittrich, Stefan; Mayer, Petra; Herling, Carmen Diana; Tur, Mehmet Kemal; Hallek, Michael; Pfitzer, Gabriele; Barth, Stefan; Herling, Marco

    2016-05-01

    The serine/threonine death-associated protein kinases (DAPK) provide pro-death signals in response to (oncogenic) cellular stresses. Lost DAPK expression due to (epi)genetic silencing is found in a broad spectrum of cancers. Within B-cell lymphomas, deficiency of the prototypic family member DAPK1 represents a predisposing or early tumorigenic lesion and high-frequency promoter methylation marks more aggressive diseases. On the basis of protein studies and meta-analyzed gene expression profiling data, we show here that within the low-level context of B-lymphocytic DAPK, particularly CLL cells have lost DAPK1 expression. To target this potential vulnerability, we conceptualized B-cell-specific cytotoxic reconstitution of the DAPK1 tumor suppressor in the format of an immunokinase. After rounds of selections for its most potent cytolytic moiety and optimal ligand part, a DK1KD-SGIII fusion protein containing a constitutive DAPK1 mutant, DK1KD, linked to the scFv SGIII against the B-cell-exclusive endocytic glyco-receptor CD22 was created. Its high purity and large-scale recombinant production provided a stable, selectively binding, and efficiently internalizing construct with preserved robust catalytic activity. DK1KD-SGIII specifically and efficiently killed CD22-positive cells of lymphoma lines and primary CLL samples, sparing healthy donor- or CLL patient-derived non-B cells. The mode of cell death was predominantly PARP-mediated and caspase-dependent conventional apoptosis as well as triggering of an autophagic program. The notoriously high apoptotic threshold of CLL could be overcome by DK1KD-SGIII in vitro also in cases with poor prognostic features, such as therapy resistance. The manufacturing feasibility of the novel CD22-targeting DAPK immunokinase and its selective antileukemic efficiency encourage intensified studies towards specific clinical application. Mol Cancer Ther; 15(5); 971-84. ©2016 AACR. PMID:26826117

  13. MuLV-related endogenous retroviral elements and Flt3 participate in aberrant end-joining events that promote B-cell leukemogenesis

    PubMed Central

    Johnson, Radia M.; Papp, Eniko; Grandal, Ildiko; Kowalski, Paul E.; Nutter, Lauryl; Wong, Raymond C.C.; Joseph-George, Ann M.; Danska, Jayne S.; Guidos, Cynthia J.

    2014-01-01

    During V(D)J recombination of immunoglobulin genes, p53 and nonhomologous end-joining (NHEJ) suppress aberrant rejoining of DNA double-strand breaks induced by recombinase-activating genes (Rags)-1/2, thus maintaining genomic stability and limiting malignant transformation during B-cell development. However, Rag deficiency does not prevent B-cell leukemogenesis in p53/NHEJ mutant mice, revealing that p53 and NHEJ also suppress Rag-independent mechanisms of B-cell leukemogenesis. Using several cytogenomic approaches, we identified a novel class of activating mutations in Fms-like tyrosine kinase 3 (Flt3), a receptor tyrosine kinase important for normal hematopoiesis in Rag/p53/NHEJ triple-mutant (TM) B-cell leukemias. These mutant Flt3 alleles were created by complex genomic rearrangements with Moloney leukemia virus (MuLV)-related endogenous retroviral (ERV) elements, generating ERV-Flt3 fusion genes encoding an N-terminally truncated mutant form of Flt3 (trFlt3) that was transcribed from ERV long terminal repeats. trFlt3 protein lacked most of the Flt3 extracellular domain and induced ligand-independent STAT5 phosphorylation and proliferation of hematopoietic progenitor cells. Furthermore, expression of trFlt3 in p53/NHEJ mutant hematopoietic progenitor cells promoted development of clinically aggressive B-cell leukemia. Thus, repetitive MuLV-related ERV sequences can participate in aberrant end-joining events that promote development of aggressive B-cell leukemia. PMID:24888589

  14. A monoclonal antibody that recognizes B cells and B cell precursors in mice

    SciTech Connect

    Coffman, R.L.; Weissman, I.L.

    1981-02-01

    The monoclonal antibody, RA3-2C2, appears to be specific for cells within the B cell lineage. This antibody does not recognize thymocytes, peripheral T cells, or nonlymphoid hematopoietic cells in the spleen or bone marrow. Nor does it recognize the pluripotent hematopoietic stem cells, the spleen colony-forming unit, All sIg+ B cells and most plasma cells are RA3-2C2+. In addition, approximately 20% of nucleated bone marrow cells are RA3-2C2+ but sIg-. This population contains B cell precursors that can give rise to sIg+ cells within 2 d in vitro.

  15. Reprogramming human B cells into induced pluripotent stem cells and its enhancement by C/EBPα.

    PubMed

    Bueno, C; Sardina, J L; Di Stefano, B; Romero-Moya, D; Muñoz-López, A; Ariza, L; Chillón, M C; Balanzategui, A; Castaño, J; Herreros, A; Fraga, M F; Fernández, A; Granada, I; Quintana-Bustamante, O; Segovia, J C; Nishimura, K; Ohtaka, M; Nakanishi, M; Graf, T; Menendez, P

    2016-03-01

    B cells have been shown to be refractory to reprogramming and B-cell-derived induced pluripotent stem cells (iPSC) have only been generated from murine B cells engineered to carry doxycycline-inducible Oct4, Sox2, Klf4 and Myc (OSKM) cassette in every tissue and from EBV/SV40LT-immortalized lymphoblastoid cell lines. Here, we show for the first time that freshly isolated non-cultured human cord blood (CB)- and peripheral blood (PB)-derived CD19+CD20+ B cells can be reprogrammed to iPSCs carrying complete VDJH immunoglobulin (Ig) gene monoclonal rearrangements using non-integrative tetracistronic, but not monocistronic, OSKM-expressing Sendai Virus. Co-expression of C/EBPα with OSKM facilitates iPSC generation from both CB- and PB-derived B cells. We also demonstrate that myeloid cells are much easier to reprogram than B and T lymphocytes. Differentiation potential back into the cell type of their origin of B-cell-, T-cell-, myeloid- and fibroblast-iPSCs is not skewed, suggesting that their differentiation does not seem influenced by 'epigenetic memory'. Our data reflect the actual cell-autonomous reprogramming capacity of human primary B cells because biased reprogramming was avoided by using freshly isolated primary cells, not exposed to cytokine cocktails favoring proliferation, differentiation or survival. The ability to reprogram CB/PB-derived primary human B cells offers an unprecedented opportunity for studying developmental B lymphopoiesis and modeling B-cell malignancies. PMID:26500142

  16. An Integrated Genomic Analysis of Aryl Hydrocarbon Receptor-Mediated Inhibition of B-Cell Differentiation

    PubMed Central

    De Abrew, K. Nadira; Kaminski, Norbert E.; Thomas, Russell S.

    2010-01-01

    The aryl hydrocarbon receptor (AHR) agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) alters differentiation of B cells and suppresses antibody production. A combination of whole-genome, microarray-based chromatin immunoprecipitation (ChIP-on-chip), and time course gene expression microarray analysis was performed on the mouse B-cell line CH12.LX following exposure to lipopolysaccharide (LPS) or LPS and TCDD to identify the primary and downstream transcriptional elements of B-cell differentiation that are altered by the AHR. ChIP-on-chip analysis identified 1893 regions with a significant increase in AHR binding with TCDD treatment. Transcription factor binding site analysis on the ChIP-on-chip data showed enrichment in AHR response elements. Other transcription factors showed significant coenrichment with AHR response elements. When ChIP-on-chip regions were compared with gene expression changes at the early time points, 78 genes were identified as potential direct targets of the AHR. AHR binding and expression changes were confirmed for a subset of genes in primary mouse B cells. Network analysis examining connections between the 78 potential AHR target genes and three transcription factors known to regulate B-cell differentiation indicated multiple paths for potential regulation by the AHR. Enrichment analysis on the differentially expressed genes at each time point evaluated the downstream impact of AHR-regulated gene expression changes on B-cell–related processes. AHR-mediated impairment of B-cell differentiation occurred at multiple nodes of the B-cell differentiation network and potentially through multiple mechanisms including direct cis-acting effects on key regulators of B-cell differentiation, indirect regulation of B-cell differentiation–related pathways, and transcriptional coregulation of target genes by AHR and other transcription factors. PMID:20819909

  17. Rituximab does not reset defective early B cell tolerance checkpoints

    PubMed Central

    Chamberlain, Nicolas; Massad, Christopher; Oe, Tyler; Cantaert, Tineke; Herold, Kevan C.; Meffre, Eric

    2015-01-01

    Type 1 diabetes (T1D) patients show abnormalities in early B cell tolerance checkpoints, resulting in the accumulation of large numbers of autoreactive B cells in their blood. Treatment with rituximab, an anti-CD20 mAb that depletes B cells, has been shown to preserve β cell function in T1D patients and improve other autoimmune diseases, including rheumatoid arthritis and multiple sclerosis. However, it remains largely unknown how anti–B cell therapy thwarts autoimmunity in these pathologies. Here, we analyzed the reactivity of Abs expressed by single, mature naive B cells from 4 patients with T1D before and 52 weeks after treatment to determine whether rituximab resets early B cell tolerance checkpoints. We found that anti–B cell therapy did not alter the frequencies of autoreactive and polyreactive B cells, which remained elevated in the blood of all patients after rituximab treatment. Moreover, the limited proliferative history of autoreactive B cells after treatment revealed that these clones were newly generated B cells and not self-reactive B cells that had escaped depletion and repopulated the periphery through homeostatic expansion. We conclude that anti–B cell therapy may provide a temporary dampening of autoimmune processes through B cell depletion. However, repletion with autoreactive B cells may explain the relapse that occurs in many autoimmune patients after anti–B cell therapy. PMID:26642366

  18. A Network Model to Describe the Terminal Differentiation of B Cells

    PubMed Central

    Méndez, Akram; Mendoza, Luis

    2016-01-01

    Terminal differentiation of B cells is an essential process for the humoral immune response in vertebrates and is achieved by the concerted action of several transcription factors in response to antigen recognition and extracellular signals provided by T-helper cells. While there is a wealth of experimental data regarding the molecular and cellular signals involved in this process, there is no general consensus regarding the structure and dynamical properties of the underlying regulatory network controlling this process. We developed a dynamical model of the regulatory network controlling terminal differentiation of B cells. The structure of the network was inferred from experimental data available in the literature, and its dynamical behavior was analyzed by modeling the network both as a discrete and a continuous dynamical systems. The steady states of these models are consistent with the patterns of activation reported for the Naive, GC, Mem, and PC cell types. Moreover, the models are able to describe the patterns of differentiation from the precursor Naive to any of the GC, Mem, or PC cell types in response to a specific set of extracellular signals. We simulated all possible single loss- and gain-of-function mutants, corroborating the importance of Pax5, Bcl6, Bach2, Irf4, and Blimp1 as key regulators of B cell differentiation process. The model is able to represent the directional nature of terminal B cell differentiation and qualitatively describes key differentiation events from a precursor cell to terminally differentiated B cells. PMID:26751566

  19. Eμ-BRD2 transgenic mice develop B-cell lymphoma and leukemia

    PubMed Central

    Greenwald, Rebecca J.; Tumang, Joseph R.; Sinha, Anupama; Currier, Nicolas; Cardiff, Robert D.; Rothstein, Thomas L.; Faller, Douglas V.; Denis, Gerald V.

    2010-01-01

    Transgenic mice with lymphoid-restricted overexpression of the double bromodomain protein bromodomain-containing 2 (Brd2) develop splenic B-cell lymphoma and, upon transplantation, B-cell leukemia with leukemic infiltrates in liver and lung. Brd2 is a nuclear-localized transcription factor kinase that is most closely related to TATA box binding protein–associated factor, 250 kDa (TAFII250) and the Drosophila developmental protein female sterile homeotic. Constitutive expression of BRD2 in the lymphoid compartment increases cyclin A transcription, “priming” transgenic B cells for proliferation. Mice stochastically develop an aggressive B-cell lymphoma with the features of B-1 cells, including CD5 and surface IgM expression. The B-cell lymphoma is monoclonal for immunoglobulin gene rearrangement and is phenotypically stable. The lymphoblasts are very large and express a transcriptome that is similar to human non-Hodgkin lymphomas. Both a wild-type BRD2 transgene and a kinase-null point mutant drive lymphomagenesis; therefore we propose that, rather than kinase activity, Brd2-mediated recruitment of E2 promoter binding factors (E2Fs) and a specific histone acetyltransferase to the cyclin A promoter by both types of transgene is a mechanistic basis for neoplasia. This report is the first to describe a transgenic mouse model for constitutive expression of a protein with more than one bromodomain. PMID:14563639

  20. Modulation of B-cell receptor and microenvironment signaling by a guanine exchange factor in B-cell malignancies

    PubMed Central

    Liao, Wei; Sharma, Sanjai

    2016-01-01

    Objective: Chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL) cells over-express a guanine exchange factor (GEF), Rasgrf-1. This GEF increases active Ras as it catalyzes the removal of GDP from Ras so that GTP can bind and activate Ras. This study aims to study the mechanism of action of Rasgrf-1 in B-cell malignancies. Methods: N-terminus truncated Rasgrf-1 variants have a higher GEF activity as compared to the full-length transcript therefore a MCL cell line with stable over-expression of truncated Rasgrf-1 was established. The B-cell receptor (BCR) and chemokine signaling pathways were compared in the Rasgrf-1 over-expressing and a control transfected cell line. Results: Cells over-expressing truncated form of Rasgrf-1 have a higher proliferative rate as compared to control transfected cells. BCR was activated by lower concentrations of anti-IgM antibody in Rasgrf-1 over-expressing cells as compared to control cells indicating that these cells are more sensitive to BCR signaling. BCR signaling also phosphorylates Rasgrf-1 that further increases its GEF function and amplifies BCR signaling. This activation of Rasgrf-1 in over-expressing cells resulted in a higher expression of phospho-ERK, AKT, BTK and PKC-alpha as compared to control cells. Besides BCR, Rasgrf-1 over-expressing cells were also more sensitive to microenvironment stimuli as determined by resistance to apoptosis, chemotaxis and ERK pathway activation. Conclusions: This GEF protein sensitizes B-cells to BCR and chemokine mediated signaling and also upregulates a number of other signaling pathways which promotes growth and survival of these cells. PMID:27458535

  1. Switched-memory B cells remodel B cell receptors within secondary germinal centers

    PubMed Central

    Okitsu, Shinji L.; McHeyzer-Williams, Michael G.

    2015-01-01

    Effective vaccines induce high-affinity memory B cells and durable antibody responses through accelerated mechanisms of natural selection. Secondary changes in antibody repertoires after vaccine boosts suggest progressive B cell receptor (BCR) re-diversification, but underlying mechanisms remain unresolved. Here integrated specificity and function of individual memory B cell progeny reveal ongoing evolution of polyclonal antibody specificities through germinal center (GC) specific transcriptional activity. At the clonal and sub-clonal levels, single cell expression of Cd83 and Pol□ segregates the secondary GC transcriptional program into 4 stages that regulate divergent mechanisms of memory BCR evolution. These studies demonstrate that vaccine boosts re-activate a cyclic program of GC function in switched-memory B cells to remodel existing antibody specificities and enhance durable immune protection. PMID:25642821

  2. Polyclonal B cell activation in ankylosing spondylitis.

    PubMed Central

    Barbieri, P; Olivieri, I; Benedettini, G; Marelli, P; Ciompi, M L; Pasero, G; Campa, M

    1990-01-01

    The peripheral blood lymphocyte response of patients with ankylosing spondylitis (AS) to several polyclonal B cell activators was investigated. No differences were found in the reactivity to pokeweed mitogen and protein A between patients and controls; in contrast, the peripheral blood lymphocyte response to Staphylococcus aureus strain Cowan I (SAC) was significantly higher in patients with AS than in controls. This responsiveness was not influenced either by the presence of the HLA-B27 antigen or by environmental factors or associated diseases, and it was higher in patients with active AS than in those with inactive disease. The percentage of circulating B cells was normal. The responses to T cell mitogens and the percentages of T cell subpopulations were similar in patients and in controls. The peripheral blood lymphocyte hyperactivity of patients with AS to SAC was associated with an increased in vitro production of immunoglobulins. PMID:2383063

  3. Advances in Human B Cell Phenotypic Profiling

    PubMed Central

    Kaminski, Denise A.; Wei, Chungwen; Qian, Yu; Rosenberg, Alexander F.; Sanz, Ignacio

    2012-01-01

    To advance our understanding and treatment of disease, research immunologists have been called-upon to place more centralized emphasis on impactful human studies. Such endeavors will inevitably require large-scale study execution and data management regulation (“Big Biology”), necessitating standardized and reliable metrics of immune status and function. A well-known example setting this large-scale effort in-motion is identifying correlations between eventual disease outcome and T lymphocyte phenotype in large HIV-patient cohorts using multiparameter flow cytometry. However, infection, immunodeficiency, and autoimmunity are also characterized by correlative and functional contributions of B lymphocytes, which to-date have received much less attention in the human Big Biology enterprise. Here, we review progress in human B cell phenotyping, analysis, and bioinformatics tools that constitute valuable resources for the B cell research community to effectively join in this effort. PMID:23087687

  4. Impaired regulatory B cells in myasthenia gravis.

    PubMed

    Sheng, Jian Rong; Rezania, Kourosh; Soliven, Betty

    2016-08-15

    Regulatory B cells (Bregs) attenuate the severity of experimental autoimmune myasthenia gravis (EAMG) in an interleukin-10 (IL-10)-dependent manner. The goal of this study was to investigate the role of human Bregs in MG focusing on CD19(+)CD1d(hi) CD5(+) and CD19(+)CD24(hi)CD38(hi) subsets. We found that MG patients exhibited a decrease in the frequency of both Breg subsets and IL-10 producing B cells within each subset, which correlated with disease severity. In addition, there was impaired suppression of Th1 polarization in MG. These findings, taken together with EAMG data, indicate that Bregs play an important role in regulating the severity of MG. PMID:27397074

  5. B Cells and Antibodies in Transplantation.

    PubMed

    Koenig, Alice; Mariat, Christophe; Mousson, Christiane; Wood, Kathryn J; Rifle, Gérard; Thaunat, Olivier

    2016-07-01

    Overlooked for decades, the humoral alloimmune response is increasingly recognized as a leading cause of graft loss after transplantation. However, improvement in the diagnosis of antibody-mediated rejection has not yet translated into better outcomes for transplanted patients. After an update on B cell physiology and antibody generation, the 2015 Beaune Seminar in Transplant Research challenged the conventional view of antibody-mediated rejection pathophysiology and discussed the latest promising therapeutic approaches. PMID:26845305

  6. B Cell Lymphoma mimicking Rheumatoid Arthritis.

    PubMed

    Cosatti, M A; Pisoni, C N; Altuve, J L; Lorente, C

    2016-01-01

    Non Hodking´s lymphoma (NHL) may involve bones but synovial involvement is uncommon. We describe a patient who presented with polyarthritis, sicca symptoms and rash suggestive of rheumatoid arthritis. An atypical skin rash prompted skin and synovial biopsies. A diagnosis of synovial and skin malignant large B-cell lymphoma anaplastic subtype was performed. Chemotherapy with dexamethasone, vincristine and rituximab was started. Following treatment the patient had complete resolution of cutaneous and articular lymphoma manifestations. PMID:27419896

  7. Germinal center B cells and mixed leukocyte reactions

    SciTech Connect

    Monfalcone, A.P.; Kosco, M.H.; Szakal, A.K.; Tew, J.G. )

    1989-09-01

    The present study was undertaken to determine if germinal center (GC) B cells are sufficiently activated to stimulate mixed leukocyte reactions (MLR). Percoll density fractionation and a panning technique with peanut agglutinin (PNA) were used to isolate GC B cells from the lymph nodes of immune mice. The GC B cells were treated with mitomycin C or irradiation and used to stimulate allogeneic or syngeneic splenic T cells in the MLR. Controls included high-density (HD) B cells prepared from spleens of the same mice and HD B cells activated with lipopolysaccharide (LPS) and dextran sulfate. GC B cells bound high amount sof PNA (i.e., PNAhi). Similarly, the LPS-dextran sulfate-activated B cells were PNAhi. Treatment with neuraminidase rendered the PNAlo HD B cells PNAhi. GC B cells and the LPS-dextran sulfate-activated HD B cells stimulated a potent MLR, while the untreated HD B cells did not. However, following neuraminidase treatment, the resulting PNAhi HD B cell population was able to induce an MLR. The PNA marker appeared to be an indicator of stimulatory activity, but incubating the cells with PNA to bind the cell surface ligand did not interfere with the MLR. GC B cells were also capable of stimulating a syngeneic MLR in most experiments although this was not consistently obtained. It appears that germinal centers represent a unique in vivo microenvironment that provides the necessary signals for B cells to become highly effective antigen-presenting cells.

  8. Loss of SIRT3 Provides Growth Advantage for B Cell Malignancies.

    PubMed

    Yu, Wei; Denu, Ryan A; Krautkramer, Kimberly A; Grindle, Kreg M; Yang, David T; Asimakopoulos, Fotis; Hematti, Peiman; Denu, John M

    2016-02-12

    B cell malignancies comprise a diverse group of cancers that proliferate in lymph nodes, bone marrow, and peripheral blood. SIRT3 (sirtuin 3) is the major deacetylase within the mitochondrial matrix that promotes aerobic metabolism and controls reactive oxygen species (ROS) by deacetylating and activating isocitrate dehydrogenase 2 (IDH2) and superoxide dismutase 2 (SOD2). There is controversy as to whether SIRT3 acts as an oncogene or a tumor suppressor, and here we investigated its role in B cell malignancies. In mantle cell lymphoma patient samples, we found that lower SIRT3 protein expression was associated with worse overall survival. Further, SIRT3 protein expression was reduced in chronic lymphocytic leukemia primary samples and malignant B cell lines compared to primary B cells from healthy donors. This lower level of expression correlated with hyperacetylation of IDH2 and SOD2 mitochondrial proteins, lowered enzymatic activities, and higher ROS levels. Overexpression of SIRT3 decreased proliferation and diminished the Warburg-like phenotype in SIRT3-deficient cell lines, and this effect is largely dependent on deacetylation of IDH2 and SOD2. Lastly, depletion of SIRT3 from malignant B cell lines resulted in greater susceptibility to treatment with an ROS scavenger but did not result in greater sensitivity to inhibition of the hypoxia-inducible factor-1α pathway, suggesting that loss of SIRT3 increases proliferation via ROS-dependent but hypoxia-inducible factor-1α-independent mechanisms. Our study suggests that SIRT3 acts as a tumor suppressor in B cell malignancies, and activating the SIRT3 pathway might represent a novel therapeutic approach for treating B cell malignancies. PMID:26631723

  9. EAF2 mediates germinal centre B-cell apoptosis to suppress excessive immune responses and prevent autoimmunity.

    PubMed

    Li, Yingqian; Takahashi, Yoshimasa; Fujii, Shin-ichiro; Zhou, Yang; Hong, Rongjian; Suzuki, Akari; Tsubata, Takeshi; Hase, Koji; Wang, Ji-Yang

    2016-01-01

    Regulated apoptosis of germinal centre (GC) B cells is critical for normal humoral immune responses. ELL-associated factor 2 (EAF2) regulates transcription elongation and has been shown to be an androgen-responsive potential tumour suppressor in prostate by inducing apoptosis. Here we show that EAF2 is selectively upregulated in GC B cells among various immune cell types and promotes apoptosis of GC B cells both in vitro and in vivo. EAF2 deficiency results in enlarged GCs and elevated antibody production during a T-dependent immune response. After immunization with type II collagen, mice lacking EAF2 produce high levels of collagen-specific autoantibodies and rapidly develop severe arthritis. Moreover, the mutant mice spontaneously produce anti-dsDNA, rheumatoid factor and anti-nuclear antibodies as they age. These results demonstrate that EAF2-mediated apoptosis in GC B cells limits excessive humoral immune responses and is important for maintaining self-tolerance. PMID:26935903

  10. Rac-mediated Stimulation of Phospholipase Cγ2 Amplifies B Cell Receptor-induced Calcium Signaling*♦

    PubMed Central

    Walliser, Claudia; Tron, Kyrylo; Clauss, Karen; Gutman, Orit; Kobitski, Andrei Yu.; Retlich, Michael; Schade, Anja; Röcker, Carlheinz; Henis, Yoav I.; Nienhaus, G. Ulrich; Gierschik, Peter

    2015-01-01

    The Rho GTPase Rac is crucially involved in controlling multiple B cell functions, including those regulated by the B cell receptor (BCR) through increased cytosolic Ca2+. The underlying molecular mechanisms and their relevance to the functions of intact B cells have thus far remained unknown. We have previously shown that the activity of phospholipase Cγ2 (PLCγ2), a key constituent of the BCR signalosome, is stimulated by activated Rac through direct protein-protein interaction. Here, we use a Rac-resistant mutant of PLCγ2 to functionally reconstitute cultured PLCγ2-deficient DT40 B cells and to examine the effects of the Rac-PLCγ2 interaction on BCR-mediated changes of intracellular Ca2+ and regulation of Ca2+-regulated and nuclear-factor-of-activated-T-cell-regulated gene transcription at the level of single, intact B cells. The results show that the functional Rac-PLCγ2 interaction causes marked increases in the following: (i) sensitivity of B cells to BCR ligation; (ii) BCR-mediated Ca2+ release from intracellular stores; (iii) Ca2+ entry from the extracellular compartment; and (iv) nuclear translocation of the Ca2+-regulated nuclear factor of activated T cells. Hence, Rac-mediated stimulation of PLCγ2 activity serves to amplify B cell receptor-induced Ca2+ signaling. PMID:25903139

  11. A B-Cell Superantigen Induces the Apoptosis of Murine and Human Malignant B Cells.

    PubMed

    Lorenzo, Daniela; Duarte, Alejandra; Mundiñano, Juliana; Berguer, Paula; Nepomnaschy, Irene; Piazzon, Isabel

    2016-01-01

    B-cell superantigens (Sags) bind to conserved sites of the VH or VL regions of immunoglobulin molecules outside their complementarity-determining regions causing the apoptosis of normal cognate B cells. No attempts to investigate whether B-cell Sags are able to induce the apoptosis of cognate malignant B cells were reported. In the present study we show that protein L (PpL), secreted by Finegoldia magna, a B-cell Sag which interacts with κ+ bearing cells, induces the apoptosis of murine and human κ+ lymphoma B cells both in vitro and in vivo. Apoptosis was not altered by caspase-8 inhibitor. No alterations in the levels of Bid, Fas and Fas-L were found suggesting that PpL does not activate the extrinsic pathway of apoptosis. The involvement of the intrinsic pathway was clearly indicated by: i) alterations in mitochondrial membrane potential (ΔΨm) both in murine and human lymphoma cells exposed to PpL; ii) decreased levels of apoptosis in the presence of caspase-9 inhibitor; iii) significant increases of Bim and Bax protein levels and downregulation of Bcl-2; iv) the translocation from the cytoplasm to the mitochondria of Bax and Bim pro-apoptotic proteins and its inhibition by caspase-9 inhibitor but not by caspase-8 inhibitor and v) the translocation of Bcl-2 protein from the mitochondria to the cytosol and its inhibition by caspase-9 inhibitor but not by caspase-8 inhibitor. The possibility of a therapeutic use of Sags in lymphoma/leukemia B cell malignancies is discussed. PMID:27603942

  12. B-cell-specific conditional expression of Myd88p.L252P leads to the development of diffuse large B-cell lymphoma in mice.

    PubMed

    Knittel, Gero; Liedgens, Paul; Korovkina, Darya; Seeger, Jens M; Al-Baldawi, Yussor; Al-Maarri, Mona; Fritz, Christian; Vlantis, Katerina; Bezhanova, Svetlana; Scheel, Andreas H; Wolz, Olaf-Oliver; Reimann, Maurice; Möller, Peter; López, Cristina; Schlesner, Matthias; Lohneis, Philipp; Weber, Alexander N R; Trümper, Lorenz; Staudt, Louis M; Ortmann, Monika; Pasparakis, Manolis; Siebert, Reiner; Schmitt, Clemens A; Klatt, Andreas R; Wunderlich, F Thomas; Schäfer, Stephan C; Persigehl, Thorsten; Montesinos-Rongen, Manuel; Odenthal, Margarete; Büttner, Reinhard; Frenzel, Lukas P; Kashkar, Hamid; Reinhardt, H Christian

    2016-06-01

    The adaptor protein MYD88 is critical for relaying activation of Toll-like receptor signaling to NF-κB activation. MYD88 mutations, particularly the p.L265P mutation, have been described in numerous distinct B-cell malignancies, including diffuse large B-cell lymphoma (DLBCL). Twenty-nine percent of activated B-cell-type DLBCL (ABC-DLBCL), which is characterized by constitutive activation of the NF-κB pathway, carry the p.L265P mutation. In addition, ABC-DLBCL frequently displays focal copy number gains affecting BCL2 Here, we generated a novel mouse model in which Cre-mediated recombination, specifically in B cells, leads to the conditional expression of Myd88(p.L252P) (the orthologous position of the human MYD88(p.L265P) mutation) from the endogenous locus. These mice develop a lymphoproliferative disease and occasional transformation into clonal lymphomas. The clonal disease displays the morphologic and immunophenotypical characteristics of ABC-DLBCL. Lymphomagenesis can be accelerated by crossing in a further novel allele, which mediates conditional overexpression of BCL2 Cross-validation experiments in human DLBCL samples revealed that both MYD88 and CD79B mutations are substantially enriched in ABC-DLBCL compared with germinal center B-cell DLBCL. Furthermore, analyses of human DLBCL genome sequencing data confirmed that BCL2 amplifications frequently co-occurred with MYD88 mutations, further validating our approach. Finally, in silico experiments revealed that MYD88-mutant ABC-DLBCL cells in particular display an actionable addiction to BCL2. Altogether, we generated a novel autochthonous mouse model of ABC-DLBCL that could be used as a preclinical platform for the development and validation of novel therapeutic approaches for the treatment of ABC-DLBCL. PMID:27048211

  13. Treatment of ongoing autoimmune encephalomyelitis with activated B-cell progenitors maturing into regulatory B cells.

    PubMed

    Korniotis, Sarantis; Gras, Christophe; Letscher, Hélène; Montandon, Ruddy; Mégret, Jérôme; Siegert, Stefanie; Ezine, Sophie; Fallon, Padraic G; Luther, Sanjiv A; Fillatreau, Simon; Zavala, Flora

    2016-01-01

    The influence of signals perceived by immature B cells during their development in bone marrow on their subsequent functions as mature cells are poorly defined. Here, we show that bone marrow cells transiently stimulated in vivo or in vitro through the Toll-like receptor 9 generate proB cells (CpG-proBs) that interrupt experimental autoimmune encephalomyelitis (EAE) when transferred at the onset of clinical symptoms. Protection requires differentiation of CpG-proBs into mature B cells that home to reactive lymph nodes, where they trap T cells by releasing the CCR7 ligand, CCL19, and to inflamed central nervous system, where they locally limit immunopathogenesis through interleukin-10 production, thereby cooperatively inhibiting ongoing EAE. These data demonstrate that a transient inflammation at the environment, where proB cells develop, is sufficient to confer regulatory functions onto their mature B-cell progeny. In addition, these properties of CpG-proBs open interesting perspectives for cell therapy of autoimmune diseases. PMID:27396388

  14. Gastrointestinal B-cell lymphomas: From understanding B-cell physiology to classification and molecular pathology

    PubMed Central

    Sagaert, Xavier; Tousseyn, Thomas; Yantiss, Rhonda K

    2012-01-01

    The gut is the most common extranodal site where lymphomas arise. Although all histological lymphoma types may develop in the gut, small and large B-cell lymphomas predominate. The sometimes unexpected finding of a lymphoid lesion in an endoscopic biopsy of the gut may challenge both the clinician (who is not always familiar with lymphoma pathogenesis) and the pathologist (who will often be hampered in his/her diagnostic skill by the limited amount of available tissue). Moreover, the past 2 decades have spawned an avalanche of new data that encompasses both the function of the reactive B-cell as well as the pathogenic pathways that lead to its neoplastic counterpart, the B-cell lymphoma. Therefore, this review aims to offer clinicians an overview of B-cell lymphomas in the gut, and their pertinent molecular features that have led to new insights regarding lymphomagenesis. It addresses the question as how to incorporate all presently available information on normal and neoplastic B-cell differentiation, and how this knowledge can be applied in daily clinical practice (e.g., diagnostic tools, prognostic biomarkers or therapeutic targets) to optimalise the managment of this heterogeneous group of neoplasms. PMID:23443141

  15. Gastrointestinal B-cell lymphomas: From understanding B-cell physiology to classification and molecular pathology.

    PubMed

    Sagaert, Xavier; Tousseyn, Thomas; Yantiss, Rhonda K

    2012-12-15

    The gut is the most common extranodal site where lymphomas arise. Although all histological lymphoma types may develop in the gut, small and large B-cell lymphomas predominate. The sometimes unexpected finding of a lymphoid lesion in an endoscopic biopsy of the gut may challenge both the clinician (who is not always familiar with lymphoma pathogenesis) and the pathologist (who will often be hampered in his/her diagnostic skill by the limited amount of available tissue). Moreover, the past 2 decades have spawned an avalanche of new data that encompasses both the function of the reactive B-cell as well as the pathogenic pathways that lead to its neoplastic counterpart, the B-cell lymphoma. Therefore, this review aims to offer clinicians an overview of B-cell lymphomas in the gut, and their pertinent molecular features that have led to new insights regarding lymphomagenesis. It addresses the question as how to incorporate all presently available information on normal and neoplastic B-cell differentiation, and how this knowledge can be applied in daily clinical practice (e.g., diagnostic tools, prognostic biomarkers or therapeutic targets) to optimalise the managment of this heterogeneous group of neoplasms. PMID:23443141

  16. Optimized cell transplantation using adult rag2 mutant zebrafish

    PubMed Central

    Tang, Qin; Abdelfattah, Nouran S.; Blackburn, Jessica S.; Moore, John C.; Martinez, Sarah A.; Moore, Finola E.; Lobbardi, Riadh; Tenente, Inês M.; Ignatius, Myron S.; Berman, Jason N.; Liwski, Robert S.; Houvras, Yariv; Langenau, David M.

    2014-01-01

    Cell transplantation into adult zebrafish has lagged behind mouse due to the lack of immune compromised models. Here, we have created homozygous rag2E450fs mutant zebrafish that have reduced numbers of functional T and B cells but are viable and fecund. Mutant fish engraft zebrafish muscle, blood stem cells, and cancers. rag2E450fs mutant zebrafish are the first immune compromised zebrafish model that permits robust, long-term engraftment of multiple tissues and cancer. PMID:25042784

  17. B-cell-independent sialylation of IgG.

    PubMed

    Jones, Mark B; Oswald, Douglas M; Joshi, Smita; Whiteheart, Sidney W; Orlando, Ron; Cobb, Brian A

    2016-06-28

    IgG carrying terminal α2,6-linked sialic acids added to conserved N-glycans within the Fc domain by the sialyltransferase ST6Gal1 accounts for the anti-inflammatory effects of large-dose i.v. Ig (IVIg) in autoimmunity. Here, B-cell-specific ablation of ST6Gal1 in mice revealed that IgG sialylation can occur in the extracellular environment of the bloodstream independently of the B-cell secretory pathway. We also discovered that secreted ST6Gal1 is produced by cells lining central veins in the liver and that IgG sialylation is powered by serum-localized nucleotide sugar donor CMP-sialic acid that is at least partially derived from degranulating platelets. Thus, antibody-secreting cells do not exclusively control the sialylation-dependent anti-inflammatory function of IgG. Rather, IgG sialylation can be regulated by the liver and platelets through the corresponding release of enzyme and sugar donor into the cardiovascular circulation. PMID:27303031

  18. Leukemia - B-Cell Prolymphocytic Leukemia and Hairy Cell Leukemia

    MedlinePlus

    ... Leukemia: Introduction Request Permissions Print to PDF Leukemia - B-cell Prolymphocytic Leukemia and Hairy Cell Leukemia: Introduction ... Research and Advocacy Survivorship Blog About Us Leukemia - B-cell Prolymphocytic Leukemia and Hairy Cell Leukemia Guide ...

  19. Trypanosoma brucei Co-opts NK Cells to Kill Splenic B2 B Cells

    PubMed Central

    Frenkel, Deborah; Guirnalda, Patrick; Haynes, Carole; Bockstal, Viki; Magez, Stefan; Black, Samuel J.

    2016-01-01

    After infection with T. brucei AnTat 1.1, C57BL/6 mice lost splenic B2 B cells and lymphoid follicles, developed poor parasite-specific antibody responses, lost weight, became anemic and died with fulminating parasitemia within 35 days. In contrast, infected C57BL/6 mice lacking the cytotoxic granule pore-forming protein perforin (Prf1-/-) retained splenic B2 B cells and lymphoid follicles, developed high-titer antibody responses against many trypanosome polypeptides, rapidly suppressed parasitemia and did not develop anemia or lose weight for at least 60 days. Several lines of evidence show that T. brucei infection-induced splenic B cell depletion results from natural killer (NK) cell-mediated cytotoxicity: i) B2 B cells were depleted from the spleens of infected intact, T cell deficient (TCR-/-) and FcγRIIIa deficient (CD16-/-) C57BL/6 mice excluding a requirement for T cells, NKT cell, or antibody-dependent cell-mediated cytotoxicity; ii) administration of NK1.1 specific IgG2a (mAb PK136) but not irrelevant IgG2a (myeloma M9144) prevented infection-induced B cell depletion consistent with a requirement for NK cells; iii) splenic NK cells but not T cells or NKT cells degranulated in infected C57BL/6 mice co-incident with B cell depletion evidenced by increased surface expression of CD107a; iv) purified NK cells from naïve C57BL/6 mice killed purified splenic B cells from T. brucei infected but not uninfected mice in vitro indicating acquisition of an NK cell activating phenotype by the post-infection B cells; v) adoptively transferred C57BL/6 NK cells prevented infection-induced B cell population growth in infected Prf1-/- mice consistent with in vivo B cell killing; vi) degranulated NK cells in infected mice had altered gene and differentiation antigen expression and lost cytotoxic activity consistent with functional exhaustion, but increased in number as infection progressed indicating continued generation. We conclude that NK cells in T. brucei infected mice

  20. CD43 expression in B cell lymphoma.

    PubMed Central

    Treasure, J.; Lane, A.; Jones, D. B.; Wright, D. H.

    1992-01-01

    AIMS: To determine the expression of CD43 in frozen sections in a range of B cell lymphomas. METHODS: The monoclonal antibody WR14, clustered provisionally in the Fourth Leucocyte Typing Workshop as a CD43 reagent, was investigated by epitope blocking studies on formalin fixed reactive lymph node tissue, using the established CD43 antibody MT1, to validate its use as a CD43 reagent. CD43 expression was studied in 131 immunophenotypically defined B cell lymphomas, including lymphocytic lymphoma (Lc, n = 13), centrocytic lymphoma (Cc, n = 14), and a range of follicle centre cell lymphomas (FCC) including centroblastic/centrocytic follicular (CbCcF, n = 48), centroblastic diffuse (CbD, n = 39), centroblastic/centrocytic diffuse (CbCcD, n = 4), centroblastic follicular and diffuse (Cb FD, n = 3) and centroblastic/centrocytic follicular and diffuse (CbCc FD, n = 1). Nine lymphomas of mucosa associated lymphoid tissue (MALT) were also examined. RESULTS: Epitope blocking studies showed that WR14 is a CD43 reagent that binds to an epitope identical with or close to that recognised by MT1. Eleven of 13 (84%) cases of Lc and 11 of 14 (78%) cases of Cc expressed CD43; 87 of 95 (91%) cases of FCC did not. All eight low grade lymphomas of MALT were negative. One high grade lymphoma, transformed from a low grade MALT lymphoma, was positive for CD43. The expression of CD43 by tumours of B cell lineage was associated with the expression of CD5 (p < 0.001) although either antigen could occasionally be found in the absence of the other. CONCLUSION: CD43 reagents can be used in conjunction with CD5 antibodies for the immunophenotypic discrimination of follicle centre cell lymphomas from non-follicle centre cell lymphomas. Images PMID:1280654

  1. Active Akt and functional p53 modulate apoptosis in Abelson virus-transformed pre-B cells.

    PubMed

    Gong, Li; Unnikrishnan, Indira; Raghavan, Anuradha; Parmar, Kalindi; Rosenberg, Naomi

    2004-02-01

    Suppression of apoptosis is an important feature of the Abelson murine leukemia virus (Ab-MLV) transformation process. During multistep transformation, Ab-MLV-infected pre-B cells undergo p53-dependent apoptosis during the crisis phase of transformation. Even once cells are fully transformed, an active v-Abl protein tyrosine kinase is required to suppress apoptosis because cells transformed by temperature-sensitive (ts) kinase mutants undergo rapid apoptosis after a shift to the nonpermissive temperature. However, inactivation of the v-Abl protein by a temperature shift interrupts signals transmitted via multiple pathways, making it difficult to identify those that are critically important for the suppression of apoptosis. To begin to dissect these pathways, we tested the ability of an SH2 domain Ab-MLV mutant, P120/R273K, to rescue aspects of the ts phenotype of pre-B cells transformed by the conditional kinase domain mutant. The P120/R273K mutant suppressed apoptosis at the nonpermissive temperature, a phenotype correlated with its ability to activate Akt. Apoptosis also was suppressed at the nonpermissive temperature by constitutively active Akt and in p53-null pre-B cells transformed with the ts kinase domain mutant. These data indicate that an intact Src homology 2 (SH2) domain is not critical for apoptosis suppression and suggest that signals transmitted through Akt and p53 play an important role in the response. PMID:14747529

  2. Identification of IFN-γ-producing innate B cells

    PubMed Central

    Bao, Yan; Liu, Xingguang; Han, Chaofeng; Xu, Sheng; Xie, Bin; Zhang, Qian; Gu, Yan; Hou, Jin; Qian, Li; Qian, Cheng; Han, Huanxing; Cao, Xuetao

    2014-01-01

    Although B cells play important roles in the humoral immune response and the regulation of adaptive immunity, B cell subpopulations with unique phenotypes, particularly those with non-classical immune functions, should be further investigated. By challenging mice with Listeria monocytogenes, Escherichia coli, vesicular stomatitis virus and Toll-like receptor ligands, we identified an inducible CD11ahiFcγRIIIhi B cell subpopulation that is significantly expanded and produces high levels of IFN-γ during the early stage of the immune response. This subpopulation of B cells can promote macrophage activation via generating IFN-γ, thereby facilitating the innate immune response against intracellular bacterial infection. As this new subpopulation is of B cell origin and exhibits the phenotypic characteristics of B cells, we designated these cells as IFN-γ-producing innate B cells. Dendritic cells were essential for the inducible generation of these innate B cells from the follicular B cells via CD40L-CD40 ligation. Increased Bruton's tyrosine kinase activation was found to be responsible for the increased activation of non-canonical NF-κB pathway in these innate B cells after CD40 ligation, with the consequent induction of additional IFN-γ production. The identification of this new population of innate B cells may contribute to a better understanding of B cell functions in anti-infection immune responses and immune regulation. PMID:24296781

  3. Analysis of FOXO1 mutations in diffuse large B-cell lymphoma | Office of Cancer Genomics

    Cancer.gov

    Abstract: Diffuse large B-cell lymphoma (DLBCL) accounts for 30% to 40% of newly diagnosed lymphomas and has an overall cure rate of approximately 60%. Previously, we observed FOXO1 mutations in non-Hodgkin lymphoma patient samples. To explore the effects of FOXO1 mutations, we assessed FOXO1 status in 279 DLBCL patient samples and 22 DLBCL-derived cell lines.

  4. Phenytoin Induced Cutaneous B Cell Pseudolymphoma.

    PubMed

    Riyaz, Najeeba; Sasidharanpillai, Sarita; Aravindan, Karumathil P; Nobin, Babu K; Raghavan, Nisha T; Nikhila, Pappinissery K

    2015-01-01

    Cutaneous pseudolymphomas are benign lymphoproliferative processes mimicking lymphomas clinically and histologically. One of the precipitating factors for pseudolymphoma is drugs like anticonvulsants, antidepressants and angiotensin-converting enzyme inhibitors. According to existing literature phenytoin-induced cutaneous pseudolymphomas are usually T-cell predominant. Most often withdrawal of the drug with or without short-course systemic steroids can attain a cure. Rarely malignant transformation has been reported years later despite withdrawal of the offending drug, which necessitates a long-term follow up of the affected. We report an 80-year-old male patient who was receiving phenytoin sodium and who presented with diffuse erythema and infiltrated skin lesions which histologically resembled cutaneous B-cell lymphoma. Substituting phenytoin with levetiracetam achieved resolution of symptoms. Further evaluation was suggestive of a reactive process. A detailed drug history is of paramount importance in differentiating drug-induced pseudolymphoma from lymphoma. Searching literature we could not find any previous reports of phenytoin-induced cutaneous B-cell pseudolymphoma. PMID:26538730

  5. Phenytoin Induced Cutaneous B Cell Pseudolymphoma

    PubMed Central

    Riyaz, Najeeba; Sasidharanpillai, Sarita; Aravindan, Karumathil P; Nobin, Babu K; Raghavan, Nisha T; Nikhila, Pappinissery K

    2015-01-01

    Cutaneous pseudolymphomas are benign lymphoproliferative processes mimicking lymphomas clinically and histologically. One of the precipitating factors for pseudolymphoma is drugs like anticonvulsants, antidepressants and angiotensin-converting enzyme inhibitors. According to existing literature phenytoin-induced cutaneous pseudolymphomas are usually T-cell predominant. Most often withdrawal of the drug with or without short-course systemic steroids can attain a cure. Rarely malignant transformation has been reported years later despite withdrawal of the offending drug, which necessitates a long-term follow up of the affected. We report an 80-year-old male patient who was receiving phenytoin sodium and who presented with diffuse erythema and infiltrated skin lesions which histologically resembled cutaneous B-cell lymphoma. Substituting phenytoin with levetiracetam achieved resolution of symptoms. Further evaluation was suggestive of a reactive process. A detailed drug history is of paramount importance in differentiating drug-induced pseudolymphoma from lymphoma. Searching literature we could not find any previous reports of phenytoin-induced cutaneous B-cell pseudolymphoma. PMID:26538730

  6. B-cell receptor pathway modulators in NHL

    PubMed Central

    Blum, Kristie A.

    2016-01-01

    With the recent success of the Bruton's tyrosine kinase (BTK) inhibitor, ibrutinib, and the phosphoinositide-3-kinase (PI3K) inhibitor, idelalisib, in the treatment of patients with relapsed or refractory non-Hodgkin's lymphoma (NHL), a number of new agents targeting the B-cell receptor (BCR) pathway are in clinical development. In addition, multiple trials combining these agents with conventional cytotoxic chemotherapy, immunomodulatory agents, monoclonal antibodies, or other kinase inhibitors are underway. This review will summarize the current data with the use of single agent and combination therapy with BCR inhibitors in NHL. In addition, commonly encountered as well as serious toxicities and hypothesized resistance mechanisms will be discussed. Lastly, this review will examine the future of these agents and opportunities to maneuver them into the front-line setting in selected NHL subtypes. PMID:26637705

  7. Single molecule analysis of B cell receptor motion during signaling activation

    NASA Astrophysics Data System (ADS)

    Rey Suarez, Ivan; Koo, Peter; Mochrie, Simon; Song, Wenxia; Upadhyaya, Arpita

    B cells are an essential part of the adaptive immune system. They patrol the body looking for signs of infection in the form of antigen on the surface of antigen presenting cells. The binding of the B cell receptor (BCR) to antigen induces signaling cascades that lead to B cell activation and eventual production of high affinity antibodies. During activation, BCR organize into signaling microclusters, which are platforms for signal amplification. The physical processes underlying receptor movement and aggregation are not well understood. Here we study the dynamics of single BCRs on activated murine primary B cells using TIRF imaging and single particle tracking. The tracks obtained are analyzed using perturbation expectation-maximization (pEM) a systems-level analysis that allows the identification of different short-time diffusive states from a set of single particle tracks. We identified five different diffusive states on wild type cells, which correspond to different molecular states of the BCR. By using actin polymerization inhibitors and mutant cells lacking important actin regulators we were able to identify the BCR molecule configuration associated with each diffusive state.

  8. Pre-Clustering of the B Cell Antigen Receptor Demonstrated by Mathematically Extended Electron Microscopy

    PubMed Central

    Fiala, Gina J.; Kaschek, Daniel; Blumenthal, Britta; Reth, Michael; Timmer, Jens; Schamel, Wolfgang W. A.

    2013-01-01

    The B cell antigen receptor (BCR) plays a crucial role in adaptive immunity, since antigen-induced signaling by the BCR leads to the activation of the B cell and production of antibodies during an immune response. However, the spatial nano-scale organization of the BCR on the cell surface prior to antigen encounter is still controversial. Here, we fixed murine B cells, stained the BCRs on the cell surface with immuno-gold and visualized the distribution of the gold particles by transmission electron microscopy. Approximately 30% of the gold particles were clustered. However the low staining efficiency of 15% precluded a quantitative conclusion concerning the oligomerization state of the BCRs. To overcome this limitation, we used Monte-Carlo simulations to include or to exclude possible distributions of the BCRs. Our combined experimental-modeling approach assuming the lowest number of different BCR sizes to explain the observed gold distribution suggests that 40% of the surface IgD-BCR was present in dimers and 60% formed large laminar clusters of about 18 receptors. In contrast, a transmembrane mutant of the mIgD molecule only formed IgD-BCR dimers. Our approach complements high resolution fluorescence imaging and clearly demonstrates the existence of pre-formed BCR clusters on resting B cells, questioning the classical cross-linking model of BCR activation. PMID:24367367

  9. Proteomics Based Identification of Proteins with Deregulated Expression in B Cell Lymphomas.

    PubMed

    Wu, Rui; Nijland, Marcel; Rutgers, Bea; Veenstra, Rianne; Langendonk, Myra; van der Meeren, Lotte E; Kluin, Philip M; Li, Guanwu; Diepstra, Arjan; Chiu, Jen-Fu; van den Berg, Anke; Visser, Lydia

    2016-01-01

    Follicular lymphoma and diffuse large B cell lymphomas comprise the main entities of adult B cell malignancies. Although multiple disease driving gene aberrations have been identified by gene expression and genomic studies, only a few studies focused at the protein level. We applied 2 dimensional gel electrophoresis to compare seven GC B cell non Hodgkin lymphoma (NHL) cell lines with a lymphoblastoid cell line (LCL). An average of 130 spots were at least two folds different in intensity between NHL cell lines and the LCL. We selected approximately 38 protein spots per NHL cell line and linked them to 145 unique spots based on the location in the gel. 34 spots that were found altered in at least three NHL cell lines when compared to LCL, were submitted for LC-MS/MS. This resulted in 28 unique proteins, a substantial proportion of these proteins were involved in cell motility and cell metabolism. Loss of expression of B2M, and gain of expression of PRDX1 and PPIA was confirmed in the cell lines and primary lymphoma tissue. Moreover, inhibition of PPIA with cyclosporine A blocked cell growth of the cell lines, the effect size was associated with the PPIA expression levels. In conclusion, we identified multiple differentially expressed proteins by 2-D proteomics, and showed that some of these proteins might play a role in the pathogenesis of NHL. PMID:26752561

  10. Vascular cell adhesion molecule-1 and the integrin VLA-4 mediate adhesion of human B cell precursors to cultured bone marrow adherent cells.

    PubMed Central

    Ryan, D H; Nuccie, B L; Abboud, C N; Winslow, J M

    1991-01-01

    Adhesion of B cell precursors to accessory cells in the bone marrow microenvironment may be required for normal early B cell development. Human bone marrow B cell precursors adhere more avidly than mature B cells to bone marrow-derived fibroblasts. To determine the mechanism of this adhesion, expression of adhesion proteins on human B precursor cells and cell lines was measured by flow cytometry. The very late antigen (VLA) integrins VLA-4 and VLA-5 were the only adhesion proteins expressed at higher levels in B cell precursors than mature B cells. Antibodies to the alpha and beta chains of VLA-4, but not VLA-5, significantly blocked binding to bone marrow-derived fibroblasts of immature B cells and cell lines. Although fibronectin is a ligand for VLA-4, anti-fibronectin antibody and a soluble fibronectin fragment containing the VLA-4 binding domain did not block adhesion, suggesting that VLA-4 is involved in adhesion of B cell precursors, but not as a fibronectin receptor. Vascular cell adhesion molecule-1 (VCAM-1), the other known counterreceptor for VLA-4, was identified on bone marrow-derived fibroblasts, and anti-VCAM-1 significantly blocked adhesion of normal B cell precursors to bone marrow-derived fibroblasts, indicating that VLA-4/VCAM-1 interactions are important in adhesion of B cell precursors to the bone marrow microenvironment. Images PMID:1715889

  11. Dengue Virus Directly Stimulates Polyclonal B Cell Activation

    PubMed Central

    Papa, Michelle Premazzi; de Morais, Ana Theresa Silveira; Peçanha, Ligia Maria Torres; de Arruda, Luciana Barros

    2015-01-01

    Dengue infection is associated to vigorous inflammatory response, to a high frequency of activated B cells, and to increased levels of circulating cross-reactive antibodies. We investigated whether direct infection of B cells would promote activation by culturing primary human B lymphocytes from healthy donors with DENV in vitro. B cells were susceptible, but poorly permissive to infection. Even though, primary B cells cultured with DENV induced substantial IgM secretion, which is a hallmark of polyclonal B cell activation. Notably, DENV induced the activation of B cells obtained from either DENV immune or DENV naïve donors, suggesting that it was not dependent on DENV-specific secondary/memory response. B cell stimulation was dependent on activation of MAPK and CD81. B cells cultured with DENV also secreted IL-6 and presented increased expression of CD86 and HLA-DR, which might contribute to B lymphocyte co-stimulatory function. Indeed, PBMCs, but not isolated B cells, secreted high amounts of IgG upon DENV culture, suggesting that interaction with other cell types in vivo might promote Ig isotype switching and IgG secretion from different B cell clones. These findings suggest that activation signaling pathways triggered by DENV interaction with non-specific receptors on B cells might contribute to the exacerbated response observed in dengue patients. PMID:26656738

  12. CX3CR1(+) B Cells Show Immune Suppressor Properties*

    PubMed Central

    Wu, Zhiqiang

    2014-01-01

    The immune regulatory functions of B cells are not fully understood yet. The present study aims to characterize a subtype of B cells that expresses CX3CR1. In this study, peripheral blood samples were collected from patients with food allergies and healthy subjects. Peripheral B cells were analyzed by flow cytometry. T cell proliferation was assessed by carboxyfluorescein succinimidyl ester dilution assay. The results showed that the CX3CR1+ B cells were detected in the peripheral blood samples of healthy subjects and were significantly less in patients with food allergies. CX3CR1+ B cells expressed high levels of TGF-β and integrin αvβ6. CX3CR1+ B cells could efficiently suppress other effector CD4+ T cell activation. We conclude that human peripheral CX3CR1+ B cells have immune suppressor properties. PMID:24970890

  13. A Lentiviral Vector Allowing Physiologically Regulated Membrane-anchored and Secreted Antibody Expression Depending on B-cell Maturation Status.

    PubMed

    Fusil, Floriane; Calattini, Sara; Amirache, Fouzia; Mancip, Jimmy; Costa, Caroline; Robbins, Justin B; Douam, Florian; Lavillette, Dimitri; Law, Mansun; Defrance, Thierry; Verhoeyen, Els; Cosset, François-Loïc

    2015-11-01

    The development of lentiviral vectors (LVs) for expression of a specific antibody can be achieved through the transduction of mature B-cells. This approach would provide a versatile tool for active immunotherapy strategies for infectious diseases or cancer, as well as for protein engineering. Here, we created a lentiviral expression system mimicking the natural production of these two distinct immunoglobulin isoforms. We designed a LV (FAM2-LV) expressing an anti-HCV-E2 surface glycoprotein antibody (AR3A) as a membrane-anchored Ig form or a soluble Ig form, depending on the B-cell maturation status. FAM2-LV induced high-level and functional membrane expression of the transgenic antibody in a nonsecretory B-cell line. In contrast, a plasma cell (PC) line transduced with FAM2-LV preferentially produced the secreted transgenic antibody. Similar results were obtained with primary B-cells transduced ex vivo. Most importantly, FAM2-LV transduced primary B-cells efficiently differentiated into PCs, which secreted the neutralizing anti-HCV E2 antibody upon adoptive transfer into immunodeficient NSG (NOD/SCIDγc(-/-)) recipient mice. Altogether, these results demonstrate that the conditional FAM2-LV allows preferential expression of the membrane-anchored form of an antiviral neutralizing antibody in B-cells and permits secretion of a soluble antibody following B-cell maturation into PCs in vivo. PMID:26281898

  14. CNS accumulation of regulatory B cells is VLA-4-dependent

    PubMed Central

    Lehmann-Horn, Klaus; Sagan, Sharon A.; Winger, Ryan C.; Spencer, Collin M.; Bernard, Claude C.A.; Sobel, Raymond A.

    2016-01-01

    Objective: To investigate the role of very late antigen-4 (VLA-4) on regulatory B cells (Breg) in CNS autoimmune disease. Methods: Experimental autoimmune encephalomyelitis (EAE) was induced in mice selectively deficient for VLA-4 on B cells (CD19cre/α4f/f) by immunization with myelin oligodendrocyte glycoprotein (MOG) peptide (p)35–55 or recombinant human (rh) MOG protein. B-cell and T-cell populations were examined by flow cytometry and immunohistochemistry. Breg were evaluated by intracellular IL-10 staining of B cells and, secondly, by coexpression of CD1d and CD5. Results: As previously reported, EAE was less severe in B-cell VLA-4-deficient vs control CD19cre mice when induced by rhMOG, a model that is B-cell-dependent and leads to efficient B-cell activation and antibody production. Paradoxically, B-cell VLA-4-deficient mice developed more severe clinical disease than control mice when EAE was induced with MOG p35-55, a B-cell-independent encephalitogen that does not efficiently activate B cells. Peripheral T-cell and humoral immune responses were not altered in B-cell VLA-4-deficient mice. In MOG p35-55-induced EAE, B-cell VLA-4 deficiency reduced CNS accumulation of B but not T cells. Breg were detected in the CNS of control mice with MOG p35-55-induced EAE. However, more severe EAE in B-cell VLA-4-deficient mice was associated with virtual absence of CNS Breg. Conclusions: Our results demonstrate that CNS accumulation of Breg is VLA-4-dependent and suggest that Breg may contribute to regulation of CNS autoimmunity in situ. These observations underscore the need to choose the appropriate encephalitogen when studying how B cells contribute to pathogenesis or regulation of CNS autoimmunity. PMID:27027096

  15. B-cell repertoire responses to varicella-zoster vaccination in human identical twins.

    PubMed

    Wang, Chen; Liu, Yi; Cavanagh, Mary M; Le Saux, Sabine; Qi, Qian; Roskin, Krishna M; Looney, Timothy J; Lee, Ji-Yeun; Dixit, Vaishali; Dekker, Cornelia L; Swan, Gary E; Goronzy, Jörg J; Boyd, Scott D

    2015-01-13

    Adaptive immune responses in humans rely on somatic genetic rearrangements of Ig and T-cell receptor loci to generate diverse antigen receptors. It is unclear to what extent an individual's genetic background affects the characteristics of the antibody repertoire used in responding to vaccination or infection. We studied the B-cell repertoires and clonal expansions in response to attenuated varicella-zoster vaccination in four pairs of adult identical twins and found that the global antibody repertoires of twin pair members showed high similarity in antibody heavy chain V, D, and J gene segment use, and in the length and features of the complementarity-determining region 3, a major determinant of antigen binding. These twin similarities were most pronounced in the IgM-expressing B-cell pools, but were seen to a lesser extent in IgG-expressing B cells. In addition, the degree of antibody somatic mutation accumulated in the B-cell repertoire was highly correlated within twin pair members. Twin pair members had greater numbers of shared convergent antibody sequences, including mutated sequences, suggesting similarity among memory B-cell clonal lineages. Despite these similarities in the memory repertoire, the B-cell clones used in acute responses to ZOSTAVAX vaccination were largely unique to each individual. Taken together, these results suggest that the overall B-cell repertoire is significantly shaped by the underlying germ-line genome, but that stochastic or individual-specific effects dominate the selection of clones in response to an acute antigenic stimulus. PMID:25535378

  16. B cells drive lymphocyte activation and expansion in mice with the CD45 wedge mutation and Fas deficiency

    PubMed Central

    Gupta, Vikas A.; Hermiston, Michelle L.; Cassafer, Gail; Daikh, David I.; Weiss, Arthur

    2008-01-01

    CD45 and Fas regulate tyrosine phosphorylation and apoptotic signaling pathways, respectively. Mutation of an inhibitory wedge motif in CD45 (E613R) results in hyperresponsive thymocytes and B cells on the C57BL/6 background, but no overt autoimmunity, whereas Fas deletion results in a mild autoimmune disease on the same genetic background. In this study, we show that these two mutations cooperate in mice, causing early lethality, autoantibody production, and substantial lymphoproliferation. In double-mutant mice, this phenotype was dependent on both T and B cells. T cell activation required signaling in response to endogenous or commensal antigens, demonstrated by the introduction of a transgenic T cell receptor. Genetic deletion of B cells also prevented T cell activation. Similarly, T cells were necessary for B cell autoantibody production. However, B cells appeared to be intrinsically activated even in the absence of T cells, suggesting that they may drive the phenotype of these mice. These results reveal a requirement for careful control of B cell signaling and cell death in preventing inappropriate lymphocyte activation and autoimmunity. PMID:19001138

  17. Defining origins of malignant B cells: a new circulating normal human IgM(+)D(+) B-cell subset lacking CD27 expression and displaying somatically mutated IGHV genes as a relevant memory population.

    PubMed

    Weston-Bell, N; Townsend, M; Di Genova, G; Forconi, F; Sahota, S S

    2009-11-01

    In probing the cell of origin in malignant B cells, an imprint of somatic hypermutation (SHM) in immunoglobulin (Ig) variable (V) region genes delineates antigen encounter, and identifying the precise pathway generating SHM in the normal B-cell counterpart becomes relevant. SHM remains the definitive memory imprint in normal human B cells, but CD27 expression also delineates memory. Recently, dye extrusion adenosine triphosphate-binding transporter assays identified circulating isotype-switched memory B cells that lacked CD27, yet exhibited low levels of SHM. To extend findings, we report a pre-switched CD27(-ve) circulating memory B-cell population in normal blood using comparable assays, and isolated CD19(+)IgM(+)D(+)CD27(-ve) cells (>99% purity) for the analysis of IGHV5/IGHV3-IGHM transcripts. Of these (n=334), approximately 78% were germ line and naive B cell derived. Strikingly, 21.9% of the transcripts were mutated. They showed 3-5 mutations (13.5% of sequences) and >5 mutations (8.4% of sequences) per transcript. Accrual of mutations in a subset of CD19(+)IgM(+)D(+)CD27(-ve) cells define a new circulating pre-switched memory B-cell pool, present in substantial numbers in the population harboring naive B cells. These CD19(+)IgM(+)D(+)CD27(-ve) memory B cells may have a distinct lineage and function, and seem relevant to understanding origins of malignant B cells, in particular those of hairy cell leukemia cells, which display mutated V genes yet lack CD27 expression. PMID:19776762

  18. Identification of the Abundant Hydroxyproline-Rich Glycoproteins in the Root Walls of Wild-Type Arabidopsis, an ext3 Mutant Line, and Its Phenotypic Revertant

    PubMed Central

    Chen, Yuning; Ye, Dening; Held, Michael A.; Cannon, Maura C.; Ray, Tui; Saha, Prasenjit; Frye, Alexandra N.; Mort, Andrew J.; Kieliszewski, Marcia J.

    2015-01-01

    Extensins are members of the cell wall hydroxyproline-rich glycoprotein (HRGP) superfamily that form covalently cross-linked networks in primary cell walls. A knockout mutation in EXT3 (AT1G21310), the gene coding EXTENSIN 3 (EXT3) in Arabidopsis Landsberg erecta resulted in a lethal phenotype, although about 20% of the knockout plants have an apparently normal phenotype (ANP). In this study the root cell wall HRGP components of wild-type, ANP and the ext3 mutant seedlings were characterized by peptide fractionation of trypsin digested anhydrous hydrogen fluoride deglycosylated wall residues and by sequencing using LC-MS/MS. Several HRGPs, including EXT3, were identified in the wild-type root walls but not in walls of the ANP and lethal mutant. Indeed the ANP walls and walls of mutants displaying the lethal phenotype possessed HRGPs, but the profiles suggest that changes in the amount and perhaps type may account for the corresponding phenotypes. PMID:27135319

  19. Identification of the Abundant Hydroxyproline-Rich Glycoproteins in the Root Walls of Wild-Type Arabidopsis, an ext3 Mutant Line, and Its Phenotypic Revertant.

    PubMed

    Chen, Yuning; Ye, Dening; Held, Michael A; Cannon, Maura C; Ray, Tui; Saha, Prasenjit; Frye, Alexandra N; Mort, Andrew J; Kieliszewski, Marcia J

    2015-01-01

    Extensins are members of the cell wall hydroxyproline-rich glycoprotein (HRGP) superfamily that form covalently cross-linked networks in primary cell walls. A knockout mutation in EXT3 (AT1G21310), the gene coding EXTENSIN 3 (EXT3) in Arabidopsis Landsberg erecta resulted in a lethal phenotype, although about 20% of the knockout plants have an apparently normal phenotype (ANP). In this study the root cell wall HRGP components of wild-type, ANP and the ext3 mutant seedlings were characterized by peptide fractionation of trypsin digested anhydrous hydrogen fluoride deglycosylated wall residues and by sequencing using LC-MS/MS. Several HRGPs, including EXT3, were identified in the wild-type root walls but not in walls of the ANP and lethal mutant. Indeed the ANP walls and walls of mutants displaying the lethal phenotype possessed HRGPs, but the profiles suggest that changes in the amount and perhaps type may account for the corresponding phenotypes. PMID:27135319

  20. Affinity maturation of anti-TNF-alpha scFv with somatic hypermutation in non-B cells.

    PubMed

    Chen, Shaopeng; Qiu, Junkang; Chen, Chuan; Liu, Chunchun; Liu, Yuheng; An, Lili; Jia, Junying; Tang, Jie; Wu, Lijun; Hang, Haiying

    2012-06-01

    Activation-induced cytidine deaminase (AID) is required for the generation of antibody diversity through initiating both somatic hypermutation (SHM) and class switch recombination. A few research groups have successfully used the feature of AID for generating mutant libraries in directed evolution of target proteins in B cells in vitro. B cells, cultured in suspension, are not convenient for transfection and cloning. In this study, we established an AID-based mutant accumulation and sorting system in adherent human cells. Mouse AID gene was first transfected into the human non-small cell lung carcinoma H1299 cells, and a stable cell clone (H1299-AID) was selected. Afterwards, anti-hTNF-α scFv (ATscFv) was transfected into H1299-AID cells and ATscFv was displayed on the surface of H1299-AID cells. By 4-round amplification/flow cytometric sorting for cells with the highest affinities to hTNF-alpha, two ATscFv mutant gene clones were isolated. Compared with the wild type ATscFv, the two mutants were much more efficient in neutralizing cytotoxicity of hTNF-alpha. The results indicate that directed evolution by somatic hypermutation can be carried out in adherent non-B cells, which makes directed evolution in mammalian cells easier and more efficient. PMID:22467272

  1. Aberrantly Expressed OTX Homeobox Genes Deregulate B-Cell Differentiation in Hodgkin Lymphoma

    PubMed Central

    Nagel, Stefan; Ehrentraut, Stefan; Meyer, Corinna; Kaufmann, Maren; Drexler, Hans G.; MacLeod, Roderick A. F.

    2015-01-01

    In Hodgkin lymphoma (HL) we recently reported that deregulated homeobox gene MSX1 mediates repression of the B-cell specific transcription factor ZHX2. In this study we investigated regulation of MSX1 in this B-cell malignancy. Accordingly, we analyzed expression and function of OTX homeobox genes which activate MSX1 transcription during embryonal development in the neural plate border region. Our data demonstrate that OTX1 and OTX2 are aberrantly expressed in both HL patients and cell lines. Moreover, both OTX loci are targeted by genomic gains in overexpressing cell lines. Comparative expression profiling and subsequent pathway modulations in HL cell lines indicated that aberrantly enhanced FGF2-signalling activates the expression of OTX2. Downstream analyses of OTX2 demonstrated transcriptional activation of genes encoding transcription factors MSX1, FOXC1 and ZHX1. Interestingly, examination of the physiological expression profile of ZHX1 in normal hematopoietic cells revealed elevated levels in T-cells and reduced expression in B-cells, indicating a discriminatory role in lymphopoiesis. Furthermore, two OTX-negative HL cell lines overexpressed ZHX1 in correlation with genomic amplification of its locus at chromosomal band 8q24, supporting the oncogenic potential of this gene in HL. Taken together, our data demonstrate that deregulated homeobox genes MSX1 and OTX2 respectively impact transcriptional inhibition of (B-cell specific) ZHX2 and activation of (T-cell specific) ZHX1. Thus, we show how reactivation of a specific embryonal gene regulatory network promotes disturbed B-cell differentiation in HL. PMID:26406991

  2. B Cells in Multiple Sclerosis: Connecting the Dots

    PubMed Central

    von Büdingen, H.-Christian; Bar-Or, Amit; Zamvil, Scott S.

    2014-01-01

    Over the last two decades B cells have increasingly moved into the spotlight in multiple sclerosis (MS) research. This interest was fuelled by growing understanding and acceptance of pathological involvement of B cells and antibodies in MS. Data derived from animal models of MS, human histopathological studies, and analyses of B cells in the peripheral blood and cerebrospinal fluid (CSF) have permitted the integration of B cells in our overall picture of MS immunopathogenesis. The as yet strongest direct evidence for a central role of B cells in MS autoimmunity was the demonstration that peripheral B cell depletion leads to a rapid decline of disease-activity in MS. While lending formidable impact to peripheral blood B cells as mediators of disease activity, the effects of anti-CD20 treatment also seemingly challenged the paradigm of a role of antibodies in targeted central nervous system (CNS) myelin destruction. This review shall attempt to provide an overview of our current understanding of B cell and antibody mediated mechanisms relevant to MS. We will include findings from, both, human studies, and animal models to highlight the complexity of B cell function as it pertains to MS. B cells appear to be effective drivers of inflammatory activity in MS by way of a diverse toolset of cellular functions. These functions appear to be closely linked to B cells that can be found in the periphery. However, by serving as the source of antibodies, B cells offer a direct humoral response that may target the CNS and lead to tissue specific destruction. Therefore, B cells participate in MS pathogenesis on both sides of the blood-brain barrier. PMID:21983151

  3. Accumulation of B1-like B cells in transgenic mice over-expressing catalytically inactive RAG1 in the periphery

    PubMed Central

    Hassaballa, Ashraf E; Palmer, Victoria L; Anderson, Dirk K; Kassmeier, Michele D; Nganga, Vincent K; Parks, Kevin W; Volkmer, Dustin L; Perry, Greg A; Swanson, Patrick C

    2011-01-01

    During their development, B lymphocytes undergo V(D)J recombination events and selection processes that, if successfully completed, produce mature B cells expressing a non-self-reactive B-cell receptor (BCR). Primary V(D)J rearrangements yield self-reactive B cells at high frequency, triggering attempts to remove, silence, or reprogramme them through deletion, anergy induction, or secondary V(D)J recombination (receptor editing), respectively. In principle, expressing a catalytically inactive V(D)J recombinase during a developmental stage in which V(D)J rearrangement is initiated may impair this process. To test this idea, we generated transgenic mice expressing a RAG1 active site mutant (dnRAG1 mice); RAG1 transcript was elevated in splenic, but not bone marrow, B cells in dnRAG1 mice relative to wild-type mice. The dnRAG1 mice accumulate splenic B cells with a B1-like phenotype that exhibit defects in B-cell activation, and are clonally diverse, yet repertoire restricted with a bias toward Jκ1 gene segment usage. The dnRAG1 mice show evidence of impaired B-cell development at the immature-to-mature transition, immunoglobulin deficiency, and poorer immune responses to thymus-independent antigens. Interestingly, dnRAG1 mice expressing the anti-dsDNA 3H9H56R heavy chain fail to accumulate splenic B1-like cells, yet retain peritoneal B1 cells. Instead, these mice show an expanded marginal zone compartment, but no difference is detected in the frequency of heavy chain gene replacement. Taken together, these data suggest a model in which dnRAG1 expression impairs secondary V(D)J recombination. As a result, selection and/or differentiation processes are altered in a way that promotes expansion of B1-like B cells in the spleen. PMID:22044391

  4. Screening of abscisic acid insensative (ABI) and low phosphorous efficiency (LPE) mutants from some sequenced lines in the sorghum TILLING population

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sorghum population for Targeting Induced Local Lesion IN Genome (TILLING) was generated from BTx623 in 2005 and publicly available in 2009. After releasing to the public, this population was intensively screened by morphological observation in the field and a number of mutants with useful traits wer...

  5. Primary B-cell lymphoblastic lymphoma of the testis.

    PubMed

    Tombolini, Flavia; Lacetera, Vito; Gini, Guido; Capelli, Debora; Leoni, Pietro; Montironi, Rodolfo; Galosi, Andrea Benedetto; Muzzonigro, Giovanni

    2014-12-01

    We present a rare case of primary lymphoblastic B-cell lymphoma of the testis focusing on ultrasonographic and pathological features and clinical implications. Pathological examination revealed primary testicular lymphoblastic B-cell lymphoma which was treated with adjuvant chemotherapy, including rachicentesis with administration of chemotherapy and with radiotherapy of contralateral testis. Primary testicular lymphoblastic B cell lymphoma is an aggressive disease and it is necessary a multimodal therapy (surgery, chemotherapy and radiotherapy) to prevent metastasis. PMID:25641484

  6. Perspectives on fetal derived CD5+ B1 B cells.

    PubMed

    Hardy, Richard R; Hayakawa, Kyoko

    2015-11-01

    CD5(+) B-cell origins and their predisposition to lymphoma are long-standing issues. Transfer of fetal and adult liver BM Pro-B cells generates B cells with distinct phenotypes: fetal cells generate IgM(high) IgD(low) CD5(+) , whereas adult cells IgM(low) IgD(high) CD5(-) . This suggests a developmental switch in B lymphopoiesis, similar to the switch in erythropoiesis. Comparison of mRNA and miRNA expression in fetal and adult Pro-B cells revealed differential expression of Lin28b mRNA and Let-7 miRNA, providing evidence that this regulatory axis functions in the switch. Recent work has shown that Arid3a is a key transcription factor mediating fetal-type B-cell development. Lin28b-promoted fetal development generates CD5(+) B cells as a consequence of positively selected self-reactivity. CD5(+) B cells play important roles in clearance of apoptotic cells and in protective immune responses, but also pose a risk of progression to leukemia/lymphoma. Differential Lin28b expression in fetal and adult human B-cell precursors showed that human B-cell development may resemble mouse, with self-reactive "innate-like" B cells generated early in life. It remains to be determined whether such human B cells have a higher propensity to leukemic progression. This review describes our recent research with CD5(+) B cells and presents our perspective on their role in disease. PMID:26339791

  7. B-Cell Lymphopoiesis Is Regulated by Cathepsin L

    PubMed Central

    Badano, Maria Noel; Camicia, Gabriela Lorena; Lombardi, Gabriela; Maglioco, Andrea; Cabrera, Gabriel; Costa, Hector; Meiss, Roberto Pablo

    2013-01-01

    Cathepsin L (CTSL) is a ubiquitously expressed lysosomal cysteine peptidase with diverse and highly specific functions. The involvement of CTSL in thymic CD4+ T-cell positive selection has been well documented. Using CTSLnkt/nkt mice that lack CTSL activity, we have previously demonstrated that the absence of CTSL activity affects the homeostasis of the T-cell pool by decreasing CD4+ cell thymic production and increasing CD8+ thymocyte production. Herein we investigated the influence of CTSL activity on the homeostasis of peripheral B-cell populations and bone marrow (BM) B-cell maturation. B-cell numbers were increased in lymph nodes (LN), spleen and blood from CTSLnkt/nkt mice. Increases in splenic B-cell numbers were restricted to transitional T1 and T2 cells and to the marginal zone (MZ) cell subpopulation. No alterations in the proliferative or apoptosis levels were detected in peripheral B-cell populations from CTSLnkt/nkt mice. In the BM, the percentage and the absolute number of pre-pro-B, pro-B, pre-B, immature and mature B cells were not altered. However, in vitro and in vivo experiments showed that BM B-cell production was markedly increased in CTSLnkt/nkt mice. Besides, BM B-cell emigration to the spleen was increased in CTSLnkt/nkt mice. Colony-forming unit pre-B (CFU pre-B) assays in the presence of BM stromal cells (SC) and reciprocal BM chimeras revealed that both BM B-cell precursors and SC would contribute to sustain the increased B-cell hematopoiesis in CTSLnkt/nkt mice. Overall, our data clearly demonstrate that CTSL negatively regulates BM B-cell production and output therefore influencing the homeostasis of peripheral B cells. PMID:23585893

  8. Utilization of a photoactivatable antigen system to examine B-cell probing termination and the B-cell receptor sorting mechanisms during B-cell activation

    PubMed Central

    Wang, Jing; Tang, Shan; Wan, Zhengpeng; Gao, Yiren; Cao, Yiyun; Yi, Junyang; Si, Yanyan; Zhang, Haowen; Liu, Lei; Liu, Wanli

    2016-01-01

    Antigen binding to the B-cell receptor (BCR) induces several responses, resulting in B-cell activation, proliferation, and differentiation. However, it has been difficult to study these responses due to their dynamic, fast, and transient nature. Here, we attempted to solve this problem by developing a controllable trigger point for BCR and antigen recognition through the construction of a photoactivatable antigen, caged 4-hydroxy-3-nitrophenyl acetyl (caged-NP). This photoactivatable antigen system in combination with live cell and single molecule imaging techniques enabled us to illuminate the previously unidentified B-cell probing termination behaviors and the precise BCR sorting mechanisms during B-cell activation. B cells in contact with caged-NP exhibited probing behaviors as defined by the unceasing extension of membrane pseudopods in random directions. Further analyses showed that such probing behaviors are cell intrinsic with strict dependence on F-actin remodeling but not on tonic BCR signaling. B-cell probing behaviors were terminated within 4 s after photoactivation, suggesting that this response was sensitive and specific to BCR engagement. The termination of B-cell probing was concomitant with the accumulation response of the BCRs into the BCR microclusters. We also determined the Brownian diffusion coefficient of BCRs from the same B cells before and after BCR engagement. The analysis of temporally segregated single molecule images of both BCR and major histocompatibility complex class I (MHC-I) demonstrated that antigen binding induced trapping of BCRs into the BCR microclusters is a fundamental mechanism for B cells to acquire antigens. PMID:26764382

  9. EZH2 inhibition re-sensitizes multidrug resistant B-cell lymphomas to etoposide mediated apoptosis

    PubMed Central

    Smonskey, Matthew; Lasorsa, Elena; Rosario, Spencer; Kirk, Jason S.; Hernandez-Ilizaliturri, Francisco J.; Ellis, Leigh

    2016-01-01

    Reactivation of apoptotic pathways is an attractive strategy for patients with treatment-resistant B-cell lymphoma. The tumor suppressor, p53 is central for apoptotic response to multiple DNA damaging agents used to treat aggressive B-cell lymphomas, including etoposide. It has been demonstrated that etoposide induced DNA damage and therapeutic efficacy is enhanced by combination with inhibitors of the histone methyltransferase, enhancer of zeste homolog 2 (EZH2). Further, EZH2 was identified to regulate cell fate decisions in response to DNA damage. Using B-cell lymphoma cell lines resistant to etoposide induced cell death; we show that p53 is dramatically down regulated and MDMX, a negative regulator of p53, is significantly up regulated. However, these cell lines remain responsive to etoposide mediated DNA damage and exhibit cell cycle inhibition and induction of senescence. Furthermore, chemical inhibition of EZH2 directs DNA damage to a predominant p53 dependent apoptotic response associated with loss of MDMX and BCL-XL. These data provide confirmation of EZH2 in determining cell fate following DNA damage and propose a novel therapeutic strategy for patients with aggressive treatment-resistant B-cell lymphoma. PMID:26973857

  10. Involvement of B cells in non-infectious uveitis

    PubMed Central

    Smith, Justine R; Stempel, Andrew J; Bharadwaj, Arpita; Appukuttan, Binoy

    2016-01-01

    Non-infectious uveitis—or intraocular inflammatory disease—causes substantial visual morbidity and reduced quality of life amongst affected individuals. To date, research of pathogenic mechanisms has largely been focused on processes involving T lymphocyte and/or myeloid leukocyte populations. Involvement of B lymphocytes has received relatively little attention. In contrast, B-cell pathobiology is a major field within general immunological research, and large clinical trials have showed that treatments targeting B cells are highly effective for multiple systemic inflammatory diseases. B cells, including the terminally differentiated plasma cell that produces antibody, are found in the human eye in different forms of non-infectious uveitis; in some cases, these cells outnumber other leukocyte subsets. Recent case reports and small case series suggest that B-cell blockade may be therapeutic for patients with non-infectious uveitis. As well as secretion of antibody, B cells may promote intraocular inflammation by presentation of antigen to T cells, production of multiple inflammatory cytokines and support of T-cell survival. B cells may also perform various immunomodulatory activities within the eye. This translational review summarizes the evidence for B-cell involvement in non-infectious uveitis, and considers the potential contributions of B cells to the development and control of the disease. Manipulations of B cells and/or their products are promising new approaches to the treatment of non-infectious uveitis. PMID:26962453