Science.gov

Sample records for mutant epidermal growth

  1. Enhanced dimerization drives ligand-independent activity of mutant epidermal growth factor receptor in lung cancer

    PubMed Central

    Valley, Christopher C.; Arndt-Jovin, Donna J.; Karedla, Narain; Steinkamp, Mara P.; Chizhik, Alexey I.; Hlavacek, William S.; Wilson, Bridget S.; Lidke, Keith A.; Lidke, Diane S.

    2015-01-01

    Mutations within the epidermal growth factor receptor (EGFR/erbB1/Her1) are often associated with tumorigenesis. In particular, a number of EGFR mutants that demonstrate ligand-independent signaling are common in non–small cell lung cancer (NSCLC), including kinase domain mutations L858R (also called L834R) and exon 19 deletions (e.g., ΔL747-P753insS), which collectively make up nearly 90% of mutations in NSCLC. The molecular mechanisms by which these mutations confer constitutive activity remain unresolved. Using multiple subdiffraction-limit imaging modalities, we reveal the altered receptor structure and interaction kinetics of NSCLC-associated EGFR mutants. We applied two-color single quantum dot tracking to quantify receptor dimerization kinetics on living cells and show that, in contrast to wild-type EGFR, mutants are capable of forming stable, ligand-independent dimers. Two-color superresolution localization microscopy confirmed ligand-independent aggregation of EGFR mutants. Live-cell Förster resonance energy transfer measurements revealed that the L858R kinase mutation alters ectodomain structure such that unliganded mutant EGFR adopts an extended, dimerization-competent conformation. Finally, mutation of the putative dimerization arm confirmed a critical role for ectodomain engagement in ligand-independent signaling. These data support a model in which dysregulated activity of NSCLC-associated kinase mutants is driven by coordinated interactions involving both the kinase and extracellular domains that lead to enhanced dimerization. PMID:26337388

  2. Noncovalent Mutant Selective Epidermal Growth Factor Receptor Inhibitors: A Lead Optimization Case Study.

    PubMed

    Heald, Robert; Bowman, Krista K; Bryan, Marian C; Burdick, Daniel; Chan, Bryan; Chan, Emily; Chen, Yuan; Clausen, Saundra; Dominguez-Fernandez, Belen; Eigenbrot, Charles; Elliott, Richard; Hanan, Emily J; Jackson, Philip; Knight, Jamie; La, Hank; Lainchbury, Michael; Malek, Shiva; Mann, Sam; Merchant, Mark; Mortara, Kyle; Purkey, Hans; Schaefer, Gabriele; Schmidt, Stephen; Seward, Eileen; Sideris, Steve; Shao, Lily; Wang, Shumei; Yeap, Kuen; Yen, Ivana; Yu, Christine; Heffron, Timothy P

    2015-11-25

    Because of their increased activity against activating mutants, first-generation epidermal growth factor receptor (EGFR) kinase inhibitors have had remarkable success in treating non-small-cell lung cancer (NSCLC) patients, but acquired resistance, through a secondary mutation of the gatekeeper residue, means that clinical responses only last for 8-14 months. Addressing this unmet medical need requires agents that can target both of the most common double mutants: T790M/L858R (TMLR) and T790M/del(746-750) (TMdel). Herein we describe how a noncovalent double mutant selective lead compound was optimized using a strategy focused on the structure-guided increase in potency without added lipophilicity or reduction of three-dimensional character. Following successive rounds of design and synthesis it was discovered that cis-fluoro substitution on 4-hydroxy- and 4-methoxypiperidinyl groups provided synergistic, substantial, and specific potency gain through direct interaction with the enzyme and/or effects on the proximal ligand oxygen atom. Further development of the fluorohydroxypiperidine series resulted in the identification of a pair of diastereomers that showed 50-fold enzyme and cell based selectivity for T790M mutants over wild-type EGFR (wtEGFR) in vitro and pathway knock-down in an in vivo xenograft model. PMID:26455919

  3. Loss of Mig6 accelerates initiation and progression of mutant epidermal growth factor receptor-driven lung adenocarcinoma

    PubMed Central

    Maity, Tapan K.; Venugopalan, Abhilash; Linnoila, Ilona; Cultraro, Constance M.; Giannakou, Andreas; Nemati, Roxanne; Zhang, Xu; Webster, Joshua D.; Ritt, Daniel; Ghosal, Sarani; Hoschuetzky, Heinz; Simpson, R. Mark; Biswas, Romi; Politi, Katerina; Morrison, Deborah K.; Varmus, Harold E.; Guha, Udayan

    2015-01-01

    Somatic mutations in the epidermal growth factor receptor (EGFR) kinase domain drive lung adenocarcinoma. We have previously identified MIG6, an inhibitor of ERBB signaling and a potential tumor suppressor, as a target for phosphorylation by mutant EGFRs. Here we demonstrate that Mig6 is a tumor suppressor for the initiation and progression of mutant EGFR-driven lung adenocarcinoma in mouse models. Mutant EGFR-induced lung tumor formation was accelerated in Mig6-deficient mice, even with Mig6 haploinsufficiency. We demonstrate that constitutive phosphorylation of MIG6 at Y394/395 in EGFR-mutant human lung adenocarcinoma cell lines is associated with an increased interaction of MIG6 with mutant EGFR, which may stabilize EGFR protein. MIG6 also fails to promote mutant EGFR degradation. We propose a model whereby increased tyrosine phosphorylation of MIG6 decreases its capacity to inhibit mutant EGFR. Nonetheless, the residual inhibition is sufficient for Mig6 to delay mutant EGFR-driven tumor initiation and progression in mouse models. PMID:25735773

  4. Novel hydrazone moiety-bearing aminopyrimidines as selective inhibitors of epidermal growth factor receptor T790M mutant.

    PubMed

    Qin, Mingze; Wang, Tingting; Xu, Boxuan; Ma, Zonghui; Jiang, Nan; Xie, Hongbo; Gong, Ping; Zhao, Yanfang

    2015-11-01

    The epidermal growth factor receptor (EGFR) T790M mutant is found in approximately 50% of clinically acquired resistance to gefitinib among patients with non-small cell lung cancer (NSCLC). Here, a series of novel aminopyrimidines bearing a hydrazone moiety were identified as potent and selective EGFR inhibitors. Compounds 14a, 15g, and 15i potently inhibited all EGFR mutants including EGFR T790M/L858R, EGFR T790M/delE746_A750, and EGFR T790M while they showed weak effects on the wild type (WT) EGFR. In addition, these compounds effectively suppressed proliferation of gefitinib-resistant H1975 (EGFR T790M/L858R) cells but were less potent against A549 (WT EGFR and k-Ras mutation) and HT-29 (non-special gene type) cells, showing a high safety index. Therefore, 14a, 15g, and 15i might be promising candidates to overcome drug resistance mediated by the EGFR T790M mutant. PMID:26451770

  5. Expression of a dominant negative mutant of epidermal growth factor receptor in the epidermis of transgenic mice elicits striking alterations in hair follicle development and skin structure.

    PubMed Central

    Murillas, R; Larcher, F; Conti, C J; Santos, M; Ullrich, A; Jorcano, J L

    1995-01-01

    Epidermal growth factor receptor (EGFR) is a key regulator of keratinocyte biology. However, the physiological role of EGFR in vivo has not been well established. To analyze the role of EGFR in skin, we have generated transgenic mice expressing an EGFR dominant negative mutant in the basal layer of epidermis and outer root sheath of hair follicles. Mice expressing the mutant receptor display short and waved pelage hair and curly whiskers during the first weeks of age, but subsequently pelage and vibrissa hairs become progressively sparser and atrophic. Eventually, most mice present severe alopecia. Histological examination of the skin of transgenic mice shows striking alterations in the development of hair follicles, which fail to enter into catagen stage. These alterations eventually lead to necrosis and disappearance of the follicles, accompanied by strong infiltration of the skin with inflammatory elements. The interfollicular epidermis of these mice shows marked hyperplasia, expression of hyperproliferation-associated keratin K6 and increased 5-bromo-2-deoxyuridine incorporation. EGFR function was inhibited in transgenic skin keratinocytes, since in vivo and in vitro autophosphorylation of EGFR was almost completely abolished on EGF stimulation. These results implicate EGFR in the control of hair cycle progression, and provide new information about its role in epidermal growth and differentiation. Images PMID:7489711

  6. Nexus of signaling and endocytosis in oncogenesis driven by non-small cell lung cancer-associated epidermal growth factor receptor mutants.

    PubMed

    Chung, Byung Min; Tom, Eric; Zutshi, Neha; Bielecki, Timothy Alan; Band, Vimla; Band, Hamid

    2014-12-10

    Epidermal growth factor receptor (EGFR) controls a wide range of cellular processes, and aberrant EGFR signaling as a result of receptor overexpression and/or mutation occurs in many types of cancer. Tumor cells in non-small cell lung cancer (NSCLC) patients that harbor EGFR kinase domain mutations exhibit oncogene addiction to mutant EGFR, which confers high sensitivity to tyrosine kinase inhibitors (TKIs). As patients invariably develop resistance to TKIs, it is important to delineate the cell biological basis of mutant EGFR-induced cellular transformation since components of these pathways can serve as alternate therapeutic targets to preempt or overcome resistance. NSCLC-associated EGFR mutants are constitutively-active and induce ligand-independent transformation in nonmalignant cell lines. Emerging data suggest that a number of factors are critical for the mutant EGFR-dependent tumorigenicity, and bypassing the effects of TKIs on these pathways promotes drug resistance. For example, activation of downstream pathways such as Akt, Erk, STAT3 and Src is critical for mutant EGFR-mediated biological processes. It is now well-established that the potency and spatiotemporal features of cellular signaling by receptor tyrosine kinases such as EGFR, as well as the specific pathways activated, is determined by the nature of endocytic traffic pathways through which the active receptors traverse. Recent evidence indicates that NSCLC-associated mutant EGFRs exhibit altered endocytic trafficking and they exhibit reduced Cbl ubiquitin ligase-mediated lysosomal downregulation. More recent work has shown that mutant EGFRs undergo ligand-independent traffic into the endocytic recycling compartment, a behavior that plays a key role in Src pathway activation and oncogenesis. These studies are beginning to delineate the close nexus between signaling and endocytic traffic of EGFR mutants as a key driver of oncogenic processes. Therefore, in this review, we will discuss the links

  7. Antacid Use and De Novo Brain Metastases in Patients with Epidermal Growth Factor Receptor-Mutant Non-Small Cell Lung Cancer Who Were Treated Using First-Line First-Generation Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors

    PubMed Central

    Chen, Yu-Mu; Lai, Chien-Hao; Chang, Huang-Chih; Chao, Tung-Ying; Tseng, Chia-Cheng; Fang, Wen-Feng; Wang, Chin-Chou; Chung, Yu-Hsiu; Wang, Yi-Hsi; Su, Mao-Chang; Liu, Shih-Feng; Huang, Kuo-Tung; Chen, Hung-Chen; Chang, Ya-Chun; Lin, Meng-Chih

    2016-01-01

    Background Antacid treatments decrease the serum concentrations of first-generation epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs), although it is unknown whether antacids affect clinical outcomes. As cerebrospinal fluid concentrations of TKIs are much lower than serum concentrations, we hypothesized that this drug-drug interaction might affect the prognosis of patients with de novo brain metastases. Materials and Methods This retrospective study evaluated 269 patients with EGFR-mutant non-small cell lung cancer (NSCLC) who had been diagnosed between December 2010 and December 2013, and had been treated using first-line first-generation EGFR-TKIs. Among these patients, we identified patients who concurrently used H2 receptor antagonists (H2RAs) and proton pump inhibitors (PPIs) as antacids. Patients who exhibited >30% overlap between the use of TKIs and antacids were considered antacid users. Results Fifty-seven patients (57/269, 21.2%) were antacid users, and antacid use did not significantly affect progression-free survival (PFS; no antacids: 11.2 months, H2RAs: 9.4 months, PPIs: 6.7 months; p = 0.234). However, antacid use significantly reduced overall survival (OS; no antacids: 25.0 months, H2RAs: 15.5 months, PPIs: 11.3 months; p = 0.002). Antacid use did not affect PFS for various metastasis sites, although antacid users with de novo brain metastases exhibited significantly shorter OS, compared to non-users (11.8 vs. 16.3 months, respectively; p = 0.041). Antacid use did not significantly affect OS in patients with bone, liver, or pleural metastases. Conclusion Antacid use reduced OS among patients with EGFR-mutant NSCLC who were treated using first-line first-generation EGFR-TKIs, and especially among patients with de novo brain metastases. PMID:26894507

  8. JAK3 inhibitor VI is a mutant specific inhibitor for epidermal growth factor receptor with the gatekeeper mutation T790M

    PubMed Central

    Nishiya, Naoyuki; Sakamoto, Yasumitsu; Oku, Yusuke; Nonaka, Takamasa; Uehara, Yoshimasa

    2015-01-01

    AIM: To identify non-quinazoline kinase inhibitors effective against drug resistant mutants of epidermal growth factor receptor (EGFR). METHODS: A kinase inhibitor library was subjected to screening for specific inhibition pertaining to the in vitro kinase activation of EGFR with the gatekeeper mutation T790M, which is resistant to small molecular weight tyrosine kinase inhibitors (TKIs) for EGFR in non-small cell lung cancers (NSCLCs). This inhibitory effect was confirmed by measuring autophosphorylation of EGFR T790M/L858R in NCI-H1975 cells, an NSCLC cell line harboring the gatekeeper mutation. The effects of a candidate compound, Janus kinase 3 (JAK3) inhibitor VI, on cell proliferation were evaluated using the MTT assay and were compared between T790M-positive and -negative lung cancer cell lines. JAK3 inhibitor VI was modeled into the ATP-binding pocket of EGFR T790M/L858R. Potential physical interactions between the compound and kinase domains of wild-type (WT) or mutant EGFRs or JAK3 were estimated by calculating binding energy. The gatekeeper residues of EGFRs and JAKs were aligned to discuss the similarities among EGFR T790M and JAKs. RESULTS: We found that JAK3 inhibitor VI, a known inhibitor for JAK3 tyrosine kinase, selectively inhibits EGFR T790M/L858R, but has weaker inhibitory effects on the WT EGFR in vitro. JAK3 inhibitor VI also specifically reduced autophosphorylation of EGFR T790M/L858R in NCI-H1975 cells upon EGF stimulation, but did not show the inhibitory effect on WT EGFR in A431 cells. Furthermore, JAK3 inhibitor VI suppressed the proliferation of NCI-H1975 cells, but showed limited inhibitory effects on the WT EGFR-expressing cell lines A431 and A549. A docking simulation between JAK3 inhibitor VI and the ATP-binding pocket of EGFR T790M/L858R predicted a potential binding status with hydrogen bonds. Estimated binding energy of JAK3 inhibitor VI to EGFR T790M/L858R was more stable than its binding energy to the WT EGFR. Amino acid

  9. ZD6474, a Multitargeted Inhibitor for Receptor Tyrosine Kinases, Suppresses Growth of Gliomas Expressing an Epidermal Growth Factor Receptor Mutant, EGFRvIII, in the Brain

    PubMed Central

    Yiin, Jia-Jean; Hu, Bo; Schornack, Paul A.; Sengar, Raghvendra S.; Liu, Kun-wei; Feng, Haizhong; Lieberman, Frank S.; Chiou, Shih-Hwa; Sarkaria, Jann N.; Wiener, Erik C.; Ma, Hsin-I; Cheng, Shi-Yuan

    2010-01-01

    Epidermal growth factor receptor (EGFR) vIII is a mutated EGFR that is frequently overexpressed in glioblastomas and implicated in response to receptor tyrosine kinase inhibitors. In this study, we investigate the effect of ZD6474 (ZACTIMA, vandetanib), a dual inhibitor for vascular endothelial growth factor receptor 2 and EGFR on growth and angiogenesis of gliomas expressing EGFRvIII. We used two glioma xenograft models, U87MG cells overexpressing EGFRvIII and short-term cultured primary glioma GBM8 cells with EGFRvIII. ZD6474 inhibited tumor growth and angiogenesis and induced cell apoptosis in various brain gliomas. Moreover, significant inhibition of EGFRvIII-expressing U87MG and GBM8 gliomas was observed compared with their controls. Magnetic resonance imaging analysis using the apparent diffusion coefficient and three-dimensional T2*weighed measurements validated ZD6474 inhibition on tumor growth and angiogenesis in EGFRvIII-expressing GBM8 gliomas. Mechanistically, ZD6474 shows better inhibition of cell growth and survival of U87MG/EGFRvIII, GBM6, and GBM8 cells that express EGFRvIII than U87MG or GBM14 cells that have nondetectable EGFRvIII through attenuation of activated phosphorylation of signal transducer and activator of transcription 3, Akt, and Bcl-XL expression. Albeit in lesser extent, ZD6474 also displays suppressions of U87MG/EGFR and GBM12 cells that overexpress wild-type EGFR. Additionally, ZD6474 inhibits activation of extracellular signal-regulated kinase 1/2 in both types of cells, and expression of a constitutively active phosphoinositide 3-kinases partially rescued ZD6474 inhibition in U87MG/EGFRvIII cells. Taken together, these data show that ZD6474 significantly inhibited growth and angiogenesis of gliomas expressing EGFRvIII by specifically blocking EGFRvIII-activated signaling mediators, suggesting a potential application of ZD6474 in treatments for glioblastomas that overexpress EGFRvIII. PMID:20371720

  10. Loss of BRCA1 leads to an increase in epidermal growth factor receptor expression in mammary epithelial cells, and epidermal growth factor receptor inhibition prevents estrogen receptor-negative cancers in BRCA1-mutant mice

    PubMed Central

    2011-01-01

    Introduction Women who carry a BRCA1 mutation typically develop "triple-negative" breast cancers (TNBC), defined by the absence of estrogen receptor (ER), progesterone receptor and Her2/neu. In contrast to ER-positive tumors, TNBCs frequently express high levels of epidermal growth factor receptor (EGFR). Previously, we found a disproportionate fraction of progenitor cells in BRCA1 mutation carriers with EGFR overexpression. Here we examine the role of EGFR in mammary epithelial cells (MECs) in the emergence of BRCA1-related tumors and as a potential target for the prevention of TNBC. Methods Cultures of MECs were used to examine EGFR protein levels and promoter activity in response to BRCA1 suppression with inhibitory RNA. EGFR was assessed by immunoblot and immunofluorescence analysis, real-time reverse transcriptase-polymerase chain reaction assay (RT-PCR) and flow cytometry. Binding of epidermal growth factor (EGF) to subpopulations of MECs was examined by Scatchard analysis. The responsiveness of MECs to the EGFR inhibitor erlotinib was assessed in vitro in three-dimensional cultures and in vivo. Mouse mammary tumor virus-Cre recombinase (MMTV-Cre) BRCA1flox/flox p53+/- mice were treated daily with erlotinib or vehicle control, and breast cancer-free survival was analyzed using the Kaplan-Meier method. Results Inhibition of BRCA1 in MECs led to upregulation of EGFR with an inverse correlation of BRCA1 with cellular EGFR protein levels (r2 = 0.87) and to an increase in cell surface-expressed EGFR. EGFR upregulation in response to BRCA1 suppression was mediated by transcriptional and posttranslational mechanisms. Aldehyde dehydrogenase 1 (ALDH1)-positive MECs expressed higher levels of EGFR than ALDH1-negative MECs and were expanded two- to threefold in the BRCA1-inhibited MEC population. All MECs were exquisitely sensitive to EGFR inhibition with erlotinib in vitro. EGFR inhibition in MMTV-Cre BRCA1flox/flox p53+/- female mice starting at age 3 months increased

  11. Chemically Induced Conditional Rescue of the Reduced Epidermal Fluorescence8 Mutant of Arabidopsis Reveals Rapid Restoration of Growth and Selective Turnover of Secondary Metabolite Pools1[C][OPEN

    PubMed Central

    Kim, Jeong Im; Ciesielski, Peter N.; Donohoe, Bryon S.; Chapple, Clint; Li, Xu

    2014-01-01

    The phenylpropanoid pathway is responsible for the biosynthesis of diverse and important secondary metabolites including lignin and flavonoids. The reduced epidermal fluorescence8 (ref8) mutant of Arabidopsis (Arabidopsis thaliana), which is defective in a lignin biosynthetic enzyme p-coumaroyl shikimate 3′-hydroxylase (C3′H), exhibits severe dwarfism and sterility. To better understand the impact of perturbation of phenylpropanoid metabolism on plant growth, we generated a chemically inducible C3′H expression construct and transformed it into the ref8 mutant. Application of dexamethasone to these plants greatly alleviates the dwarfism and sterility and substantially reverses the biochemical phenotypes of ref8 plants, including the reduction of lignin content and hyperaccumulation of flavonoids and p-coumarate esters. Induction of C3′H expression at different developmental stages has distinct impacts on plant growth. Although early induction effectively restored the elongation of primary inflorescence stem, application to 7-week-old plants enabled them to produce new rosette inflorescence stems. Examination of hypocotyls of these plants revealed normal vasculature in the newly formed secondary xylem, presumably restoring water transport in the mutant. The ref8 mutant accumulates higher levels of salicylic acid than the wild type, but depletion of this compound in ref8 did not relieve the mutant’s growth defects, suggesting that the hyperaccumulation of salicylic acid is unlikely to be responsible for dwarfism in this mutant. PMID:24381065

  12. Membranous Insulin-like Growth Factor-1 Receptor (IGF1R) Expression Is Predictive of Poor Prognosis in Patients with Epidermal Growth Factor Receptor (EGFR)-Mutant Lung Adenocarcinoma

    PubMed Central

    Park, Eunhyang; Park, Soo Young; Kim, Hyojin; Sun, Ping-Li; Jin, Yan; Cho, Suk Ki; Kim, Kwhanmien; Lee, Choon-Taek; Chung, Jin-Haeng

    2015-01-01

    Background: Insulin-like growth factor-1 receptor (IGF1R) is a membrane receptor-type tyrosine kinase that has attracted considerable attention as a potential therapeutic target, although its clinical significance in non-small cell lung cancer (NSCLC) is controversial. This study aimed to clarify the clinical significance of IGF1R expression in human NSCLC. Methods: IGF1R protein expression was evaluated using immunohistochemistry in 372 patients with NSCLC who underwent curative surgical resection (146 squamous cell carcinomas [SqCCs] and 226 adenocarcinomas [ADCs]). We then analyzed correlations between expression of IGF1R and clinicopathological and molecular features and prognostic significance. Results: Membranous and cytoplasmic IGF1R expression were significantly higher in SqCCs than in ADCs. In patients with SqCC, membranous IGF1R expression was associated with absence of vascular, lymphatic, and perineural invasion; lower stage; and better progression-free survival (PFS) (hazard ratio [HR], 0.586; p = .040). In patients with ADC, IGF1R expression did not have a significant prognostic value; however, in the subgroup of epidermal growth factor receptor (EGFR)-mutant ADC, membranous IGF1R expression was associated with lymphatic and perineural invasion, solid predominant histology, and higher cancer stage and was significantly associated with worse PFS (HR, 2.582; p = .009). Conclusions: Lung ADC and SqCC showed distinct IGF1R expression profiles that demonstrated prognostic significance. High membranous IGF1R expression was predictive of poor PFS in EGFR-mutant lung ADC, while it was predictive of better PFS in SqCC. These findings will help improve study design for subsequent investigations and select patients for future anti-IGF1R therapy. PMID:26265685

  13. Small activating ribonucleic acid reverses tyrosine kinase inhibitor resistance in epidermal growth factor receptor‐mutant lung cancer by increasing the expression of phosphatase and tensin homolog

    PubMed Central

    Li, Meng; Peng, Zhongmin; Ren, Wangang

    2016-01-01

    Background Epidermal growth factor receptor‐tyrosine kinase inhibitors (TKI‐EGFRs) present a new prospect for the treatment of lung cancer. However, in clinical application, the majority of patients become TKI resistant within a year. More and more studies have shown that a loss of phosphatase and tensin homolog (PTEN) expression is associated with TKI resistance. An alternative method of upregulating PTEN expression may reverse TKI resistance. Methods We designed five candidate small activating ribonucleic acids (saRNAs) to target PTEN, and transfected them into H‐157 cells to screen out functional saRNA. We used reverse transcriptase‐polymerase chain reaction and Western blot to evaluate the effect of saRNA to PTEN expression. We then analyzed the growth and apoptosis of cells transfected with saRNA under the treatment of TKI to investigate whether saRNAs can reverse TKI resistance by upregulating PTEN expression. Results The functional saRNA we designed could upregulate PTEN expression. The H‐157 cells transfected with saRNA grew slower in the presence of TKI drugs than the cells that were not transfected with saRNA. The apoptosis rate was also obviously higher. Conclusions Our study proves that loss of PTEN expression is an important mechanism of TKI resistance. It is possible to control TKI resistance by upregulating PTEN expression using RNA activation technology. PMID:27385992

  14. Epidermal growth factor and growth in vivo

    SciTech Connect

    Rhodes, J.A.

    1986-01-01

    Epidermal growth factor (EGF) causes a dose-dependent thickening of the epidermis in suckling mice. The cellular mechanisms underlying this thickening were analyzed by measuring the effect of EGF on the cell-cycle. Neonatal mice were given daily injections of either 2ug EGF/g body weight/day or an equivalent volume of saline, and on the seventh day received a single injection of /sup 3/H-thymidine. At various times the mice were perfused with fixative; 1um sections of skin were stained with a modification of Harris' hematoxylin and were autoradiographed. The sections were analyzed using three methods based on the dependence on time after injection of /sup 3/H-thymidine of: frequency of labelled mitoses, labelling index, and reciprocal grains/nucleus. It was found that EGF caused a two-fold increase in the cell production rate. The effect of exogenous EGF on the morphology of gastric mucosa and incisors of suckling mice was also studied. The gastric mucosa appeared thicker in EGF-treated animals, but the effect was not statistically significant. In contrast to its effect on epidermis and gastric mucosa, EGF caused a significant, dose-dependent decrease in the size of the incisors. Because the mouse submandibular salivary gland is the major source of EGF the effect of sialoadenectomy on female reproductive functions was examined. Ablation of the submandibular gland had no effect on: length of estrus cycle, ability of the female to produce litters, length of the gestation period, litter size, and weight of the litter at birth. There was also no effect on survival of the offspring or on age at which the eyelids separated.

  15. Discovery of 5-(methylthio)pyrimidine derivatives as L858R/T790M mutant selective epidermal growth factor receptor (EGFR) inhibitors.

    PubMed

    Xiao, Qiang; Qu, Rong; Gao, Dingding; Yan, Qi; Tong, Linjiang; Zhang, Wei; Ding, Jian; Xie, Hua; Li, Yingxia

    2016-06-15

    To overcome the drug-resistance of first generation EGFR inhibitors and the nonselective toxicities of second generation inhibitors among NSCLC patients, a series of 5-(methylthio)pyrimidine derivatives were discovered as novel EGFR inhibitors, which harbored not only potent enzymatic and antiproliferative activities against EGFR(L858R/T790M) mutants, but good selectivity over wide-type form of the receptor. This goal was achieved by employing structure-based drug design and traditional optimization strategies, based on WZ4002 and CO1686. These derivatives inhibited the enzymatic activity of EGFR(L858R/T790M) mutants with IC50 values in subnanomolar ranges, while exhibiting hundreds of fold less potency on EGFR(WT). These compounds also strongly inhibited the proliferation of H1975 non-small cell lung cancer cells bearing EGFR(L858R/T790M), while being significantly less toxic to A431 human epithelial carcinoma cells with overexpressed EGFR(WT). The EGFR kinase inhibitory and antiproliferative activities were further validated by Western blot analysis for activation of EGFR and the downstream signaling in cancer cells. PMID:27131639

  16. Epidermal Growth Factor and Intestinal Barrier Function.

    PubMed

    Tang, Xiaopeng; Liu, Hu; Yang, Shufen; Li, Zuohua; Zhong, Jinfeng; Fang, Rejun

    2016-01-01

    Epidermal growth factor (EGF) is a 53-amino acid peptide that plays an important role in regulating cell growth, survival, migration, apoptosis, proliferation, and differentiation. In addition, EGF has been established to be an effective intestinal regulator helping to protect intestinal barrier integrity, which was essential for the absorption of nutrients and health in humans and animals. Several researches have demonstrated that EGF via binding to the EGF receptor and subsequent activation of Ras/MAPK, PI3K/AKT, PLC-γ/PKC, and STATS signal pathways regulates intestinal barrier function. In this review, the relationship between epidermal growth factor and intestinal development and intestinal barrier is described, to provide a better understanding of the effects of EGF on intestine development and health. PMID:27524860

  17. Epidermal Growth Factor and Intestinal Barrier Function

    PubMed Central

    Liu, Hu; Yang, Shufen; Li, Zuohua; Zhong, Jinfeng

    2016-01-01

    Epidermal growth factor (EGF) is a 53-amino acid peptide that plays an important role in regulating cell growth, survival, migration, apoptosis, proliferation, and differentiation. In addition, EGF has been established to be an effective intestinal regulator helping to protect intestinal barrier integrity, which was essential for the absorption of nutrients and health in humans and animals. Several researches have demonstrated that EGF via binding to the EGF receptor and subsequent activation of Ras/MAPK, PI3K/AKT, PLC-γ/PKC, and STATS signal pathways regulates intestinal barrier function. In this review, the relationship between epidermal growth factor and intestinal development and intestinal barrier is described, to provide a better understanding of the effects of EGF on intestine development and health. PMID:27524860

  18. Phase I/II Study of HSP90 Inhibitor AUY922 and Erlotinib for EGFR-Mutant Lung Cancer With Acquired Resistance to Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors

    PubMed Central

    Johnson, Melissa L.; Yu, Helena A.; Hart, Eric M.; Weitner, Bing Bing; Rademaker, Alfred W.; Patel, Jyoti D.; Kris, Mark G.; Riely, Gregory J.

    2015-01-01

    Purpose AUY922 is an HSP90 inhibitor that causes degradation of HSP chaperones and their client proteins, including epidermal growth factor receptor. We conducted a phase I/II trial to evaluate AUY922 and erlotinib for patients with EGFR-mutant lung cancer and disease progression during erlotinib treatment. Patients and Methods All patients had developed acquired resistance after treatment with erlotinib and underwent repeat tumor biopsies before study entry to assess for EGFR T790M. In phase I, 18 patients were treated with AUY922 intravenously once per week and erlotinib once per day in 28-day cycles using a 3 + 3 dose-escalation design. In phase II, 19 additional patients were treated at the maximum-tolerated dose. The primary end point of the phase II trial was complete plus partial response rate. Results In phase I (n = 18), three patients were treated in each cohort, except the highest-dose cohort (AUY922 70 mg and erlotinib 150 mg), which expanded to six patients because of a dose-limiting toxicity (ie, junctional cardiac rhythm). Common drug-related adverse events were diarrhea, skin rash, hyperglycemia, and night blindness. All patients treated at maximum-tolerated dose (n = 25) were evaluable for response. The partial response rate was 16% (four of 25 patients; 95% CI, 5% to 36%) and was independent of tumor T790M status. Conclusion Partial responses were observed, but the duration of treatment with AUY922 and erlotinib was limited by toxicities, especially night blindness. This phase II study of AUY922 and erlotinib did not meet its primary end point. PMID:25870087

  19. Epidermal growth factor signaling in transformed cells

    PubMed Central

    Lindsey, Stephan; Langhans, Sigrid A.

    2016-01-01

    Members of the epidermal growth factor receptor (EGFR/ErbB) family play a critical role in normal cell growth and development. However, many ErbB family members, especially EGFR, are aberrantly expressed or deregulated in tumors and are thought to play crucial roles in cancer development and metastatic progression. In this chapter, we provide an overview of key mechanisms contributing to aberrant EGFR/ErbB signaling in transformed cells which results in many phenotypic changes associated with the earliest stages of tumor formation, including several hallmarks of epithelial-to-mesenchymal transition (EMT). These changes often occur through interaction with other major signaling pathways important to tumor progression resulting in a multitude of transcriptional changes that ultimately impact cell morphology, proliferation and adhesion, all of which are crucial for tumor progression. The resulting mesh of signaling networks will need to be taken into account as new regimens are designed for targeting EGFR for therapeutic intervention. As new insights into the molecular mechanisms of the cross-talk of EGFR signaling with other signaling pathways and their role in therapeutic resistance to anti-EGFR therapies are gained a continual reassessment of clinical therapeutic regimes and strategies will be required. Understanding the consequences and complexity of EGF signaling and how it relates to tumor progression is critical for the development of clinical compounds and establishing clinical protocols for the treatment of cancer. PMID:25619714

  20. [Epidermal growth factor, innovation and safety].

    PubMed

    Esquirol Caussa, Jordi; Herrero Vila, Elisabeth

    2015-10-01

    Bioidentical recombinant human epidermal growth factor (rhEGF) is available in concentrations and purity suitable for therapeutic use in long time stable formulations. Beneficial effects in several skin pathologies and lesions have been reported (traumatic and surgical wound healing, laser induced wounds, abnormal scars, keloids, radiation or chemotherapy induced dermatitis, post inflammatory hyperpigmentation or for skin aging damage repairing) and also may be considered for the treatment of several oropharingeal and high gastroesophageal tract mucosa diseases (mouth sores, pharyngeal fistulas, ulcers), and several corneal or conjunctive mucosa lesions. rhEGF has not shown any important side or collateral effects in humans or in laboratory experimentation animals, showing optimal tolerability and safety with continuous use for months. Compounding gives advantages of versatility, individualization, personalization, molecular stability, safety and effectiveness in ideal conditions, showing good tissue penetration, both on intact skin and skin lesions that expose the lower planes to the surface. rhEGF compounds can be considered for prevention or as a treatment of diverse skin and mucosa diseases and conditions through compounding preparations. PMID:25433777

  1. Cutaneous adverse reactions specific to epidermal growth factor receptor inhibitors

    PubMed Central

    Lupu, I; Voiculescu, VM; Bacalbasa, N; Prie, BE; Cojocaru, I; Giurcaneanu, C

    2015-01-01

    Classical antineoplastic therapy is encumbered by extensively studied adverse reactions, most often of systemic nature. The emergence of new generations of anticancer treatments, including epidermal growth factor receptor inhibitors, besides improving the response to treatment and the survival rate, is accompanied by the occurrence of new specific side effects, incompletely studied. These side effects are most often cutaneous (hand foot syndrome, acneiform reactions), and in some cases are extremely severe, requiring dose reduction or drug discontinuation. The prevention of the cutaneous adverse effects and their treatment require a close collaboration between the oncologist and the dermatologist. The occurrence of some of these skin adverse effects may be a favorable prognostic factor for the response to the cancer treatment and the overall survival. Abbreviations: EGFR = epidermal growth factor receptors; EGFRI = epidermal growth factor receptors inhibitors PMID:26361513

  2. Assessment of epidermal growth factor receptor status in glioblastomas

    PubMed Central

    Zhu, Hui-Jun; Ogawa, Mikako; Magata, Yasuhiro; Hirata, Masahiko; Ohmomo, Yoshiro; Namba, Hiroki; Sakahara, Harumi

    2013-01-01

    Objective(s): Our previous study showed that a newly designed tracer radioiodinated 6-(3-morpholinopropoxy)-7-ethoxy-4-(3’-iodophenoxy)quinazoline ([125I]PYK) is promising for the evaluation of the epidermal growth factor receptor (EGFR) status and prediction of gefitinib treatment of non-small cell lung cancer. EGFR is over-expressed and mutated also in glioblastoma. In the present study, the expressions and mutation of EGFR were tested with [125I] PYK in glioblastoma in vitro and in vivo to determine whether this could be used to predict the sensitivity of glioblastoma to gefitinib treatment. Methods: Glioblastoma cell lines with different expression of EGFR were tested. Growth inhibition of cell lines by gefitinib was assessed by the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) colorimetric assay. Uptake levels of [125I]PYK were evaluated in cell lines in vitro. Tumor targeting of [125I]PYK was examined by a biodistribution study and imaging by single photon emission computed tomography (SPECT). Results: High concentrations of gefitinib were needed to suppress EGFR-mediated proliferation. The uptake of [125I] PYK in cell lines in vitro was low, and showed no correlation with EGFR expression or mutation status. Biodistribution study and SPECT imaging with [125I]PYK for xenografts showed no [125I]PYK uptake. Conclusion: The results showed prediction of gefitinib effectiveness was difficult in glioblastoma by [125I]PYK, which might be due to the complicated expression of EGFR status in glioblastoma. Thus, new tracers for sites downstream of the mutant EGFR should be investigated in further studies.

  3. The biology of human epidermal growth factor receptor 2.

    PubMed

    Sundaresan, S; Penuel, E; Sliwkowski, M X

    1999-09-01

    Our understanding of the normal signaling mechanisms and functions of human epidermal growth factor receptor 2 (HER2) and other members of the HER family, namely epidermal growth factor receptor, HER3, and HER4, is growing rapidly. Activation of these receptors results in a diverse array of signals through the formation of homodimeric and heterodimeric receptor complexes; HER2 is the preferred dimerization partner for the other HERs. These oligomeric receptor complexes activate distinct signaling pathways, such as the Ras-MAPK and PI3-kinase pathways. These, in turn, affect various cellular processes. Recent gene deletion experiments in mice point to an important role for HER2 in cardiac and neural development, and evidence from other studies indicates that HER2 is involved in normal breast growth and development. Thus, HER2 is a key component of a complex signaling network that plays a critical role in the regulation of tissue development, growth, and differentiation. PMID:11122793

  4. Transforming growth factor alpha and epidermal growth factor levels in bladder cancer and their relationship to epidermal growth factor receptor.

    PubMed Central

    Mellon, J. K.; Cook, S.; Chambers, P.; Neal, D. E.

    1996-01-01

    We have examined levels of epidermal growth factor (EGF) and transforming growth factor alpha (TGF-alpha) in neoplastic and non-neoplastic bladder tissue using a standard radioimmunoassay technique. Tumour samples had much higher TGF-alpha levels compared with EGF and TGF-alpha levels in malignant tissue were significantly higher than in benign bladder samples. There was, in addition, a difference in mean EGF levels from 'normal' bladder samples from non-tumour bearing areas of bladder in patients with bladder cancer compared with 'normal' bladder tissue obtained at the time of organ retrieval surgery. Levels of EGF and TGF-alpha did not correlate with levels of EGF receptor (EGFR) as determined by a radioligand binding method but levels of TGF-alpha > 10 ng gm-1 of tumour tissue did correlate with EGFR positivity defined using immunohistochemistry. These data suggest that TGF-alpha is the likely ligand for EGFR in bladder tumours. PMID:8605103

  5. Coregulation of Epidermal Growth Factor Receptor/Human Epidermal Growth Factor Receptor 2 (HER2) Levels and Locations: Quantitative Analysis of HER2 Overexpression Effects

    SciTech Connect

    Hendriks, Bart S.; Opresko, Lee; Wiley, H. S.; Lauffenburger, Douglas A.

    2003-03-01

    Elevated expression of human epidermal growth factor receptor 2 (HER2) is know to alter cell signalilng and behavioral responses implicated in tumor progression. However, multiple diverse mechanisms may be involved in these overall effects, including signaling by HER2 itself, modulation of signalilng by epidermal growth factor receptor (EGFR) and modification of trafficking dynamics for both EGFR and HER2. Continued....

  6. Is there a role for epidermal growth factor receptor tyrosine kinase inhibitors in epidermal growth factor receptor wild-type non-small cell lung cancer?

    PubMed Central

    Arriola, Edurne; Taus, Álvaro; Casadevall, David

    2015-01-01

    Non-small cell lung cancer (NSCLC) is the most common type of lung cancer with a world-wide annual incidence of around 1.3 million. The majority of patients are diagnosed with advanced disease and survival remains poor. However, relevant advances have occurred in recent years through the identification of biomarkers that predict for benefit of therapeutic agents. This is exemplified by the efficacy of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors for the treatment of EGFR mutant patients. These drugs have also shown efficacy in unselected populations but this point remains controversial. Here we have reviewed the clinical data that demonstrate a small but consistent subgroup of EGFR wild-type patients with NSCLC that obtain a clinical benefit from these drugs. Moreover, we review the biological rationale that may explain this benefit observed in the clinical setting. PMID:26266101

  7. The targeted overexpression of a Claudin mutant in the epidermis of transgenic mice elicits striking epidermal and hair follicle abnormalities.

    PubMed

    Troy, Tammy-Claire; Turksen, Kursad

    2007-06-01

    Skin is one of the largest organs of the body, and is formed during development through a highly orchestrated process involving mesenchymal-epithelial interactions, cell commitment, and terminal differentiation. It protects against microorganism invasion and UV irradiation, inhibits water loss, regulates body temperature, and is an important part of the immune system. Using transgenic mouse technology, we have demonstrated that Claudin (Cldn)-containing tight junctions (TJs) are intricately involved in cell signaling during epidermal differentiation and that an epidermal suprabasal overexpression of Cldn6 results in a perturbed epidermal terminal differentiation program with distinct phenotypic abnormalities. To delineate the role of the Cldn cytoplasmic tail domain in epidermal differentiation, we engineered transgenic mice targeting the overexpression of a Cldn6 cytoplasmic tail-truncation mutant in the epidermis. Transgenic mice were characterized by a lethal barrier dysfunction in addition to the existence of hyperproliferative squamous invaginations/cysts replacing hair follicles. Immunohistochemical analysis revealed an epidermal cytoplasmic accumulation of Cldn6, Cldn11, Cldn12, and Cldn18, downregulation of Cldn1 and aberrant expression of various classical markers of epidermal differentiation; namely the basal keratins as well as K1, involucrin, loricrin, and filaggrin. Collectively these studies suggest an important role for Cldns in epidermal/hair follicle differentiation programs likely involving cross talk to signaling pathways (e.g., Notch) directing cell fate selection and differentiation. PMID:17914196

  8. Epidermal growth in the bottlenose dolphin, Tursiops truncatus

    SciTech Connect

    Hicks, B.D.; St. Aubin, D.J.; Geraci, J.R.; Brown, W.R.

    1985-07-01

    Epidermal growth in two mature female bottlenose dolphins, Tursiops truncatus, was investigated by following the movement of a cohort of tritiated thymidine-labeled epidermal cells for 59 days. The majority of the cells migrated in a cluster which was estimated to reach the skin surface in 73 days. The authors calculate that the outermost cell layer is sloughed 12 times per day. Turnover time and sloughing rate are estimated to be 1.7 times longer and 8.5 times faster than the respective values for epidermal cell kinetics in humans. This apparent inconsistency of slow transit time and rapid sloughing rate is reconciled by the convoluted structure of the stratum germinativum in the dolphin which results in a ratio of germinatival to superficial cells of 876:1. The stratum germinativum of dolphin epidermis appears to lack morphologically distinct, spatially segregated subpopulations of anchoring and stem cells. Dolphin epidermis has a large capacity for cell population, relatively long turnover time, and rapid sloughing rate. The adaptive advantages of these characteristics are discussed.

  9. Human corpus luteum: presence of epidermal growth factor receptors and binding characteristics

    SciTech Connect

    Ayyagari, R.R.; Khan-Dawood, F.S.

    1987-04-01

    Epidermal growth factor receptors are present in many reproductive tissues but have not been demonstrated in the human corpus luteum. To determine the presence of epidermal growth factor receptors and its binding characteristics, we carried out studies on the plasma cell membrane fraction of seven human corpora lutea (days 16 to 25) of the menstrual cycle. Specific epidermal growth factor receptors were present in human corpus luteum. Insulin, nerve growth factor, and human chorionic gonadotropin did not competitively displace epidermal growth factor binding. The optimal conditions for corpus luteum-epidermal growth factor receptor binding were found to be incubation for 2 hours at 4 degrees C with 500 micrograms plasma membrane protein and 140 femtomol /sup 125/I-epidermal growth factor per incubate. The number (mean +/- SEM) of epidermal growth factor binding sites was 12.34 +/- 2.99 X 10(-19) mol/micrograms protein; the dissociation constant was 2.26 +/- 0.56 X 10(-9) mol/L; the association constant was 0.59 +/- 0.12 X 10(9) L/mol. In two regressing corpora lutea obtained on days 2 and 3 of the menstrual cycle, there was no detectable specific epidermal growth factor receptor binding activity. Similarly no epidermal growth factor receptor binding activity could be detected in ovarian stromal tissue. Our findings demonstrate that specific receptors for epidermal growth factor are present in the human corpus luteum. The physiologic significance of epidermal growth factor receptors in human corpus luteum is unknown, but epidermal growth factor may be involved in intragonadal regulation of luteal function.

  10. Heterogeneity of epidermal growth factor receptor signalling networks in glioblastoma

    PubMed Central

    Furnari, Frank B.; Cloughesy, Timothy F.; Cavenee, Webster K.; Mischel, Paul S.

    2016-01-01

    As tumours evolve, the daughter cells of the initiating cell often become molecularly heterogeneous and develop different functional properties and therapeutic vulnerabilities. In glioblastoma (GBM), a lethal form of brain cancer, the heterogeneous expression of the epidermal growth factor receptor (EGFR) poses a substantial challenge for the effective use of EGFR-targeted therapies. Understanding the mechanisms that cause EGFR heterogeneity in GBM should provide better insights into how they, and possibly other amplified receptor tyrosine kinases, affect cellular signalling, metabolism and drug resistance. PMID:25855404

  11. Production of human epidermal growth factor using adenoviral based system

    PubMed Central

    Negahdari, Babak; Shahosseini, Zahra; Baniasadi, Vahid

    2016-01-01

    Epidermal growth factor (EGF), a growth factor involved in cell growth and differentiation, is a small polypeptide with molecular weight of approximately 6 kDa known to be present in a number of different mammalian species. Experimental studies in animals and humans have demonstrated that the topical application of EGF accelerates the rate of epidermal regeneration of partial-thickness wounds and second-degree burns. Due to its commercial applications, Human EGF (hEGF) has been cloned in several forms. In the present study, adenoviral based expression system was used to produce biologically active recombinant hEGF. The presence of secreted recombinant hEGF was confirmed by a dot blot and its expression level was determined by enzyme-linked immuno-sorbent assay. Moreover, biological activity of secreted hEGF was evaluated by a proliferation assay performed on A549 cells. For production of hEGF in a secretory form, a chimeric gene coding for the hEGF fused to the signal peptide was expressed using adenoviral based method. This method enables the production of hEGF at the site of interest and moreover it could be used for cell proliferation and differentiation assays in tissue engineering research experiments instead of using commercially available EGF. PMID:27051431

  12. Epidermal growth factor receptor family in lung cancer and premalignancy.

    PubMed

    Franklin, Wilbur A; Veve, Robert; Hirsch, Fred R; Helfrich, Barbara A; Bunn, Paul A

    2002-02-01

    Lung cancer, like many other epithelial malignancies, is thought to be the outcome of genetic and epigenetic changes that result in a constellation of phenotypic abnormalities in bronchial epithelium. These include morphologic epithelial dysplasia, angiogenesis, increased proliferative rate, and changes in expression of cell surface proteins, particularly overexpression of epidermal growth factor receptor (EGFR) family proteins. The EFGR family is a group of four structurally similar tyrosine kinases (EGFR, HER2/neu, ErbB-3, and ErbB-4) that dimerize on binding with a number of ligands, including EGF and transforming growth factor alpha. Epidermal growth factor receptor overexpression is pronounced in virtually all squamous carcinomas and is also found in > or = 65% of large cell and adenocarcinomas. It is not expressed in situ by small cell lung carcinoma. Overexpression of EGFR is one of the earliest and most consistent abnormalities in bronchial epithelium of high-risk smokers. It is present at the stage of basal cell hyperplasia and persists through squamous metaplasia, dysplasia, and carcinoma in situ. Recent studies of the effect of inhibitors of receptor tyrosine kinases suggest that patterns of coexpression of multiple members of the EGFR family could be important in determining response. Intermediate endpoints of such trials could include monitoring of phosphorylation levels in signal transduction molecules downstream of the receptor dimers. These trials represent a new targeted approach to lung cancer treatment and chemoprevention that will require greater attention to molecular endpoints than required in past trials. PMID:11894009

  13. Epidermal growth factor, from gene organization to bedside

    PubMed Central

    Zeng, Fenghua; Harris, Raymond C.

    2014-01-01

    In 1962, epidermal growth factor (EGF) was discovered by Dr. Stanley Cohen while studying nerve growth factor (NGF). It was soon recognized that EGF is the prototypical member of a family of peptide growth factors that activate the EGF receptors, and that the EGF/EGF receptor signaling pathway plays important roles in proliferation, differentiation and migration of a variety of cell types, especially in epithelial cells. After the basic characterization of EGF function in the first decade or so after its discovery, the studies related to EGF and its signaling pathway have extended to a broad range of investigations concerning its biological and pathophysiological roles in development and in human diseases. In this review, we briefly describe the gene organization and tissue distribution of EGF, with emphasis on its biological and pathological roles in human diseases. PMID:24513230

  14. Modulation of epidermal growth factor receptors by human alpha interferon.

    PubMed Central

    Zoon, K C; Karasaki, Y; zur Nedden, D L; Hu, R Q; Arnheiter, H

    1986-01-01

    Treatment of Madin-Darby bovine kidney (MDBK) cells with human interferon (IFN)-alpha 2 at 37 degrees C results in a dose-dependent inhibition of cell growth and a reduction of the subsequent binding of 125I-labeled epidermal growth factor (EGF) at 4 degrees C. Human IFN-beta and -gamma, which exhibit little antiviral and antiproliferative activities on MDBK cells, have little effect on cell growth or the binding of 125I-labeled EGF to these cells. The binding of EGF is decreased after exposure to IFN-alpha for greater than 8 hr. Scatchard analyses of the EGF binding data indicate that a 20-hr exposure period results in a decrease in the apparent number of cell-surface EGF receptors and a reduction in the affinity of EGF for its receptor. The rate of internalization of EGF by MDBK cells does not appear to be affected by IFN treatment. PMID:3095830

  15. Modulation of epidermal growth factor receptors by human alpha interferon.

    PubMed

    Zoon, K C; Karasaki, Y; zur Nedden, D L; Hu, R Q; Arnheiter, H

    1986-11-01

    Treatment of Madin-Darby bovine kidney (MDBK) cells with human interferon (IFN)-alpha 2 at 37 degrees C results in a dose-dependent inhibition of cell growth and a reduction of the subsequent binding of 125I-labeled epidermal growth factor (EGF) at 4 degrees C. Human IFN-beta and -gamma, which exhibit little antiviral and antiproliferative activities on MDBK cells, have little effect on cell growth or the binding of 125I-labeled EGF to these cells. The binding of EGF is decreased after exposure to IFN-alpha for greater than 8 hr. Scatchard analyses of the EGF binding data indicate that a 20-hr exposure period results in a decrease in the apparent number of cell-surface EGF receptors and a reduction in the affinity of EGF for its receptor. The rate of internalization of EGF by MDBK cells does not appear to be affected by IFN treatment. PMID:3095830

  16. Upregulation of epidermal growth factor receptor 4 in oral leukoplakia

    PubMed Central

    Kobayashi, Hiroshi; Kumagai, Kenichi; Gotoh, Akito; Eguchi, Takanori; Yamada, Hiroyuki; Hamada, Yoshiki; Suzuki, Satsuki; Suzuki, Ryuji

    2013-01-01

    In the present study, we investigate the expression profile of the epidermal growth factor receptor family, which comprises EGFR/ErbB1, HER2/ErbB2, HER3/ErbB3 and HER4/ErbB4 in oral leukoplakia (LP). The expression of four epidermal growth factor receptor (EGFR) family genes and their ligands were measured in LP tissues from 14 patients and compared with levels in 10 patients with oral lichen planus (OLP) and normal oral mucosa (NOM) from 14 healthy donors by real-time polymerase chain reaction (PCR) and immunohistochemistry. Synchronous mRNA coexpression of ErbB1, ErbB2, ErbB3 and ErbB4 was detected in LP lesions. Out of the receptors, only ErbB4 mRNA and protein was more highly expressed in LP compared with NOM tissues. These were strongly expressed by epithelial keratinocytes in LP lesions, as shown by immunohistochemistry. Regarding the ligands, the mRNA of Neuregulin2 and 4 were more highly expressed in OLP compared with NOM tissues. Therefore, enhanced ErbB4 on the keratinocytes and synchronous modulation of EGFR family genes may contribute to the pathogenesis and carcinogenesis of LP. PMID:23492901

  17. Intranasal epidermal growth factor treatment rescues neonatal brain injury

    PubMed Central

    Scafidi, Joseph; Hammond, Timothy R.; Scafidi, Susanna; Ritter, Jonathan; Jablonska, Beata; Roncal, Maria; Szigeti-Buck, Klara; Coman, Daniel; Huang, Yuegao; McCarter, Robert J.; Hyder, Fahmeed; Horvath, Tamas L.; Gallo, Vittorio

    2014-01-01

    There are no clinically relevant treatments available that improve function in the growing population of very preterm infants (<32 weeks gestation) with neonatal brain injury. Diffuse white matter injury (DWMI) is a common finding in these children and results in chronic neurodevelopmental impairments1,2. As shown recently, failure in oligodendrocyte progenitor cell maturation contributes to DWMI3. In a previous study, we demonstrated that epidermal growth factor receptor (EGFR) plays an important role in oligodendrocyte development4. Here, we examine whether enhanced epidermal growth factor receptor (EGFR) signaling stimulates the endogenous response of EGFR-expressing progenitor cells during a critical period after brain injury, and promotes cellular and behavioral recovery in the developing brain. Using an established model of very preterm brain injury, we demonstrate that selective overexpression of human (h)EGFR in oligodendrocyte lineage cells or the administration of intranasal heparin binding EGF immediately after injury decreases oligodendroglia death, enhances generation of new oligodendrocytes from progenitor cells (OPCs) and promotes functional recovery. Furthermore, these interventions diminish ultrastructural abnormalities and alleviate behavioral deficits on white matter-specific paradigms. Inhibition of EGFR signaling with a molecularly targeted agent used for cancer therapy demonstrates that EGFR activation is an important contributor to oligodendrocyte regeneration and functional recovery after DWMI. Thus, our study provides direct evidence that targeting EGFR in OPCs at a specific time after injury is clinically feasible and applicable for the treatment of premature children with white matter injury. PMID:24390343

  18. Role for the epidermal growth factor receptor in chemotherapy-induced alopecia.

    PubMed

    Bichsel, Kyle J; Gogia, Navdeep; Malouff, Timothy; Pena, Zachary; Forney, Eric; Hammiller, Brianna; Watson, Patrice; Hansen, Laura A

    2013-01-01

    Treatment of cancer patients with chemotherapeutics like cyclophosphamide often causes alopecia as a result of premature and aberrant catagen. Because the epidermal growth factor receptor (EGFR) signals anagen hair follicles to enter catagen, we hypothesized that EGFR signaling may be involved in cyclophosphamide-induced alopecia. To test this hypothesis, skin-targeted Egfr mutant mice were generated by crossing floxed Egfr and Keratin 14 promoter-driven Cre recombinase mice. Cyclophosphamide treatment of control mice resulted in alopecia while Egfr mutant skin was resistant to cyclophosphamide-induced alopecia. Egfr mutant skin entered catagen normally, as indicated by dermal papilla condensation and decreased follicular proliferation, but did not progress to telogen as did Egfr wild type follicles. Egfr mutant follicles responded with less proliferation, apoptosis, and fewer p53-positive cells after cyclophosphamide. Treatment of control mice with the EGFR inhibitors erlotinib or gefitinib similarly suppressed alopecia and catagen progression by cyclophosphamide. Secondary analysis of clinical trials utilizing EGFR-targeted therapies and alopecia-inducing chemotherapy also revealed evidence for involvement of EGFR in chemotherapy-induced alopecia. Taken together, our results demonstrated the involvement of EGFR signaling in chemotherapy-induced alopecia, which will help in the design of novel therapeutic regimens to minimize chemotherapy-induced alopecia. PMID:23894460

  19. Epidermal Growth Factor Receptor Mutation Enhances Expression of Cadherin-5 in Lung Cancer Cells

    PubMed Central

    Hung, Ming-Szu; Chen, I-Chuan; Lung, Jr-Hau; Lin, Paul-Yann; Li, Ya-Chin; Tsai, Ying-Huang

    2016-01-01

    Epidermal growth factor receptor (EGFR) activation has been shown to play a critical role in tumor angiogenesis. In this study, we investigate the correlation between EGFR mutations and cadherin-5 (CDH5), which is an angiogenic factor, in lung cancer cells. Increased expression CDH5 is observed in lung cancer cells with EGFR mutations. Stable lung cancer cell lines expressing mutant (exon 19 deletion E746-A750, and exon 21 missense mutation L858R) and wild type EGFR genes are established. A significantly higher expression of CDH5 is observed in exon 19 deletion stable lung cancer cells and mouse xenografts. Further studies show that expression of CDH5 is decreased after the inhibition of EGFR and downstream Akt pathways in lung cancer cells with EGFR mutation. In addition, mutant EGFR genes potentiates angiogenesis in lung cancer cells, which is inhibited by CDH5 siRNA, and potentiates migration and invasion in lung cancer cells. Our study shows that mutant EGFR genes are associated with overexpression of CDH5 through increased phosphorylation of EGFR and downstream Akt pathways. Our result may provide an insight into the association of mutant EGFR and CDH5 expression in lung cancer and aid further development of target therapy for NSCLC in the future. PMID:27362942

  20. Interdependent epidermal growth factor receptor signalling and trafficking.

    PubMed

    Jones, Sylwia; Rappoport, Joshua Z

    2014-06-01

    Epidermal growth factor (EGF) receptor (EGFR) signalling regulates diverse cellular functions, promoting cell proliferation, differentiation, migration, cell growth and survival. EGFR signalling is critical during embryogenesis, in particular in epithelial development, and disruption of the EGFR gene results in epithelial immaturity and perinatal death. EGFR signalling also functions during wound healing responses through accelerating wound re-epithelialisation, inducing cell migration, proliferation and angiogenesis. Upregulation of EGFR signalling is often observed in carcinomas and has been shown to promote uncontrolled cell proliferation and metastasis. Therefore aberrant EGFR signalling is a common target for anticancer therapies. Various reports indicate that EGFR signalling primarily occurs at the plasma membrane and EGFR degradation following endocytosis greatly attenuates signalling. Other studies argue that EGFR internalisation is essential for complete activation of downstream signalling cascades and that endosomes can serve as signalling platforms. The aim of this review is to discuss current understanding of intersection between EGFR signalling and trafficking. PMID:24681003

  1. Growth of melanocytes in human epidermal cell cultures

    SciTech Connect

    Staiano-Coico, L.; Hefton, J.M.; Amadeo, C.; Pagan-Charry, I.; Madden, M.R.; Cardon-Cardo, C. )

    1990-08-01

    Epidermal cell cultures were grown in keratinocyte-conditioned medium for use as burn wound grafts; the melanocyte composition of the grafts was studied under a variety of conditions. Melanocytes were identified by immunohistochemistry based on a monoclonal antibody (MEL-5) that has previously been shown to react specifically with melanocytes. During the first 7 days of growth in primary culture, the total number of melanocytes in the epidermal cultures decreased to 10% of the number present in normal skin. Beginning on day 2 of culture, bipolar melanocytes were present at a mean cell density of 116 +/- 2/mm2; the keratinocyte to melanocyte ratio was preserved during further primary culture and through three subpassages. Moreover, exposure of cultures to mild UVB irradiation stimulated the melanocytes to proliferate, suggesting that the melanocytes growing in culture maintained their responsiveness to external stimuli. When the sheets of cultured cells were enzymatically detached from the plastic culture flasks before grafting, melanocytes remained in the basal layer of cells as part of the graft applied to the patient.

  2. Redox-dependent regulation of epidermal growth factor receptor signaling.

    PubMed

    Heppner, David E; van der Vliet, Albert

    2016-08-01

    Tyrosine phosphorylation-dependent cell signaling represents a unique feature of multicellular organisms, and is important in regulation of cell differentiation and specialized cell functions. Multicellular organisms also contain a diverse family of NADPH oxidases (NOXs) that have been closely linked with tyrosine kinase-based cell signaling and regulate tyrosine phosphorylation via reversible oxidation of cysteine residues that are highly conserved within many proteins involved in this signaling pathway. An example of redox-regulated tyrosine kinase signaling involves the epidermal growth factor receptor (EGFR), a widely studied receptor system with diverse functions in normal cell biology as well as pathologies associated with oxidative stress such as cancer. The purpose of this Graphical Redox Review is to highlight recently emerged concepts with respect to NOX-dependent regulation of this important signaling pathway. PMID:26722841

  3. Redox-dependent regulation of epidermal growth factor receptor signaling

    PubMed Central

    Heppner, David E.; van der Vliet, Albert

    2015-01-01

    Tyrosine phosphorylation-dependent cell signaling represents a unique feature of multicellular organisms, and is important in regulation of cell differentiation and specialized cell functions. Multicellular organisms also contain a diverse family of NADPH oxidases (NOXs) that have been closely linked with tyrosine kinase-based cell signaling and regulate tyrosine phosphorylation via reversible oxidation of cysteine residues that are highly conserved within many proteins involved in this signaling pathway. An example of redox-regulated tyrosine kinase signaling involves the epidermal growth factor receptor (EGFR), a widely studied receptor system with diverse functions in normal cell biology as well as pathologies associated with oxidative stress such as cancer. The purpose of this Graphical Redox Review is to highlight recently emerged concepts with respect to NOX-dependent regulation of this important signaling pathway. PMID:26722841

  4. Epidermal Growth Factor and Epidermal Growth Factor Receptor: The Yin and Yang in the Treatment of Cutaneous Wounds and Cancer

    PubMed Central

    Bodnar, Richard J.

    2013-01-01

    Significance Epidermal growth factor (EGF) and EGF receptor (EGFR) play an essential role in wound healing through stimulating epidermal and dermal regeneration. The development of new therapies for enhancing wound healing has included the use of EGF. In addition, EGFR inhibitors (EGFRis) have become a therapeutic option for the treatment of cancer. Thus, therapies targeting EGF/EGFR are useful for the treatment of both cutaneous wounds and cancer. Recent Advances Identification of EGFR as a regulator of normal and pathological cell function has allowed for the development of EGFRis for the treatment of cancer and topical administration of EGF to enhance wound healing. Critical Issues The use of EGFRi has emerged as an option for metastatic cancers. These drugs induce dermatological toxicity, a papulopustular rash that is pruritic and painful; chronic use may negatively impact wound healing. Currently, there is no standard therapy to alleviate the side effects caused by EGFRi administration except to reduce or eliminate EGFRi usage. Therefore, side effects from these drugs should be taken into consideration on patients prone to develop chronic wounds and with cutaneous injuries. Future Directions There is a need for adjunctive treatment to eliminate dermatological toxicity from EGFRi use. The development of new downstream targets of EGFR may be a rational strategy to reduce potential cutaneous side effects and provide a better strategy for the treatment of cancer. Until then, the topical use of EGF could be used to ameliorate dermatological lesions caused by EGFRi. PMID:24527320

  5. A Mutation-Sensitive Switch Assay to Detect Five Clinically Significant Epidermal Growth Factor Receptor Mutations

    PubMed Central

    Liu, Bin; Zhou, Lin; Wang, Qian

    2015-01-01

    Epidermal growth factor receptor (EGFR) mutations can affect the therapeutic efficacy of drugs used to treat nonsmall-cell lung cancer (NSCLC). We aimed to develop methods to detect five common EGFR somatic mutations in tumor tissues from NSCLC patients by using a nanoscale mutation-sensitive switch consisting of a high-fidelity polymerase and phosphorothioate-modified allele-specific primers. The five clinically significant EGFR mutations examined here are S768I, T790M, L858R, and 15- and 18-bp deletion mutations in exon 19. Our assays showed sensitivities of 100 copies and specificities of more than three log scales for matched templates relative to mismatched templates by routine polymerase chain reaction (PCR), real-time PCR, and multiplex PCR. This assay would be superior to DNA sequencing in situations where mutant DNA is not abundant. PMID:25918867

  6. Drosophila Vps4 promotes Epidermal growth factor receptor signaling independently of its role in receptor degradation

    PubMed Central

    Legent, Kevin; Liu, Hui Hua; Treisman, Jessica E.

    2015-01-01

    Endocytic trafficking of signaling receptors is an important mechanism for limiting signal duration. Components of the Endosomal Sorting Complexes Required for Transport (ESCRT), which target ubiquitylated receptors to intra-lumenal vesicles (ILVs) of multivesicular bodies, are thought to terminate signaling by the epidermal growth factor receptor (EGFR) and direct it for lysosomal degradation. In a genetic screen for mutations that affect Drosophila eye development, we identified an allele of Vacuolar protein sorting 4 (Vps4), which encodes an AAA ATPase that interacts with the ESCRT-III complex to drive the final step of ILV formation. Photoreceptors are largely absent from Vps4 mutant clones in the eye disc, and even when cell death is genetically prevented, the mutant R8 photoreceptors that develop fail to recruit surrounding cells to differentiate as R1-R7 photoreceptors. This recruitment requires EGFR signaling, suggesting that loss of Vps4 disrupts the EGFR pathway. In imaginal disc cells mutant for Vps4, EGFR and other receptors accumulate in endosomes and EGFR target genes are not expressed; epistasis experiments place the function of Vps4 at the level of the receptor. Surprisingly, Vps4 is required for EGFR signaling even in the absence of Shibire, the Dynamin that internalizes EGFR from the plasma membrane. In ovarian follicle cells, in contrast, Vps4 does not affect EGFR signaling, although it is still essential for receptor degradation. Taken together, these findings indicate that Vps4 can promote EGFR activity through an endocytosis-independent mechanism. PMID:25790850

  7. Epidermal growth factor receptor mutation in combination with expression of MIG6 alters gefitinib sensitivity

    PubMed Central

    2011-01-01

    Background Epidermal growth factor receptor (EGFR) signaling plays an important role in the regulation of cell proliferation, survival, metastasis, and invasion in various tumors. Earlier studies showed that the EGFR is frequently overexpressed in non-small-cell lung cancer (NSCLC) and EGFR mutations at specific amino acid residues in the kinase domain induce altered responsiveness to gefitinib, a small molecule EGFR tyrosine kinase inhibitor. However, the mechanism underlying the drug response modulated by EGFR mutation is still largely unknown. To elucidate drug response in EGFR signal transduction pathway in which complex dynamics of multiple molecules involved, a systematic approach is necessary. In this paper, we performed experimental and computational analyses to clarify the underlying mechanism of EGFR signaling and cell-specific gefitinib responsiveness in three H1299-derived NSCLC cell lines; H1299 wild type (H1299WT), H1299 with an overexpressed wild type EGFR (H1299EGFR-WT), and H1299 with an overexpressed mutant EGFR L858R (H1299L858R; gefitinib sensitive mutant). Results We predicted and experimentally verified that Mig6, which is a known negative regulator of EGFR and specifically expressed in H1299L858R cells, synergized with gefitinib to suppress cellular growth. Computational analyses indicated that this inhibitory effect is amplified at the phosphorylation/dephosphorylation steps of MEK and ERK. Conclusions Thus, we showed that L858R receptor mutation in combination with expression of its negative regulator, Mig6, alters signaling outcomes and results in variable drug sensitivity. PMID:21333004

  8. Layer-by-layer assembly of epidermal growth factors on polyurethane films for wound closure.

    PubMed

    Kulkarni, Abhilash; Diehl-Jones, William; Ghanbar, Sadegh; Liu, Song

    2014-02-13

    To facilitate the healing of chronic wounds, growth factors such as epidermal growth factor need to be safely encapsulated for their sustained and effective delivery to the wound bed. Using a layer-by-layer assembly technique, epidermal growth factor is successfully encapsulated on the surface of poly(acrylic acid)-modified polyurethane film. The amount of encapsulated epidermal growth factor is controlled by adjusting the number of chitosan/epidermal growth factor bilayers. A controlled release of epidermal growth factor from the surface of polyurethane film for a period of five days is achieved with well-retained bioactivity (over 90%) as evidenced by a cell proliferation assay. In an in vitro cellular wounding assay, the cell gap covered with the epidermal growth factor-loaded polyurethane film closes at a rate more than twice as fast as that covered with a control polyurethane film. Fluorescent staining of F-actin reveals that the released epidermal growth factor induces differences in cytoskeletal organization, suggesting that stimulated cell migration also contributes to the close of the cell gap. PMID:24525716

  9. Transgenic Soybean Production of Bioactive Human Epidermal Growth Factor (EGF)

    PubMed Central

    He, Yonghua; Schmidt, Monica A.; Erwin, Christopher; Guo, Jun; Sun, Raphael; Pendarvis, Ken; Warner, Brad W.; Herman, Eliot M.

    2016-01-01

    Necrotizing enterocolitis (NEC) is a devastating condition of premature infants that results from the gut microbiome invading immature intestinal tissues. This results in a life-threatening disease that is frequently treated with the surgical removal of diseased and dead tissues. Epidermal growth factor (EGF), typically found in bodily fluids, such as amniotic fluid, salvia and mother’s breast milk, is an intestinotrophic growth factor and may reduce the onset of NEC in premature infants. We have produced human EGF in soybean seeds to levels biologically relevant and demonstrated its comparable activity to commercially available EGF. Transgenic soybean seeds expressing a seed-specific codon optimized gene encoding of the human EGF protein with an added ER signal tag at the N’ terminal were produced. Seven independent lines were grown to homozygous and found to accumulate a range of 6.7 +/- 3.1 to 129.0 +/- 36.7 μg EGF/g of dry soybean seed. Proteomic and immunoblot analysis indicates that the inserted EGF is the same as the human EGF protein. Phosphorylation and immunohistochemical assays on the EGF receptor in HeLa cells indicate the EGF protein produced in soybean seed is bioactive and comparable to commercially available human EGF. This work demonstrates the feasibility of using soybean seeds as a biofactory to produce therapeutic agents in a soymilk delivery platform. PMID:27314851

  10. Heparin Binding Epidermal Growth Factor Like Growth Factor Heals Chronic Tympanic Membrane Perforations With Advantage Over Fibroblast Growth Factor 2 and Epidermal Growth Factor in an Animal Model

    PubMed Central

    Santa Maria, Peter Luke; Weierich, Kendall; Kim, Sungwoo; Yang, Yunzhi Peter

    2016-01-01

    Hypothesis That heparin binding epidermal growth factor like growth factor (HB-EGF) heals chronic tympanic membrane (TM) perforations at higher rates than fibroblast growth factor 2 (FGF2) and epidermal growth factor (EGF) in an animal model. Background A non-surgical treatment for chronic TM perforation would benefit those unable to access surgery or those unable to have surgery, as well as reducing the cost of tympanoplasty. Growth factor (GF) treatments have been reported in the literature with variable success with the lack of a suitable animal providing a major obstacle. Methods The GFs were tested in a validated mouse model of chronic TM perforation. A bio absorbable hydrogel polymer was used to deliver the GF at a steady concentration as it dissolved over four weeks. A control (polymer only, n=18) was compared to polymer loaded with HB-EGF (5ug/ml, n=18), FGF2 (100ug/ml, n=19) and EGF (250ug/ml, n=19). Perforations were inspected at four weeks. Results The healing rates, as defined as one hundred percent perforation closure, were control (5/18, 27.8%), HB-EGF (15/18, 83.3%), FGF2 (6/19, 31.6%) and EGF (3/19, 15.8%). There were no differences between FGF2 (p=0.80) and EGF (p=0.31) with control healing rates. HB-EGF (p= 0.000001) showed a significant difference for healing. The HB-EGF healed TMs showed layers similar to a normal TM, whilst the other groups showed a lack of epithelial migration. Conclusion This study confirms the advantage of HB-EGF over two other commonly used growth factors and is a promising non-surgical treatment of chronic TM perforations. PMID:26075672

  11. Epidermal growth factor receptor and KRAS mutations in Brazilian lung cancer patients

    PubMed Central

    Bacchi, Carlos E.; Ciol, Heloísa; Queiroga, Eduardo M.; Benine, Lucimara C.; Silva, Luciana H.; Ojopi, Elida B.

    2012-01-01

    OBJECTIVE: Epidermal growth factor receptor is involved in the pathogenesis of non-small cell lung cancer and has recently emerged as an important target for molecular therapeutics. The KRAS oncogene also plays an important role in the development of lung cancer. The aim of this study was to evaluate the frequency of epidermal growth factor receptor and KRAS mutations in a population of Brazilian patients with non-small cell lung cancer. METHODS: A total of 207 specimens from Brazilian patients with non-small cell lung cancer were analyzed for activating epidermal growth factor receptor and KRAS somatic mutations, and their associations with clinicopathological characteristics (including age, gender, ethnicity, smoking habits, and histological subtype) were examined. RESULTS: We identified 63 cases (30.4%) with epidermal growth factor receptor mutations and 30 cases (14.6%) with KRAS mutations. The most frequent epidermal growth factor receptor mutation we detected was a deletion in exon 19 (60.3%, 38 patients), followed by an L858R amino acid substitution in exon 21 (27%, 17 patients). The most common types of KRAS mutations were found in codon 12. There were no significant differences in epidermal growth factor receptor or KRAS mutations by gender or primary versus metastatic lung cancer. There was a higher prevalence of KRAS mutations in the non-Asian patients. Epidermal growth factor receptor mutations were more prevalent in adenocarcinomas than in non-adenocarcinoma histological types. Being a non-smoker was significantly associated with the prevalence of epidermal growth factor receptor mutations, but the prevalence of KRAS mutations was significantly associated with smoking. CONCLUSIONS: This study is the first to examine the prevalence of epidermal growth factor receptor and KRAS mutations in a Brazilian population sample with non-small cell lung cancer. PMID:22666783

  12. The cutaneous epidermal growth factor network: Can it be translated clinically to stimulate hair growth?

    PubMed

    Alexandrescu, Doru T; Kauffman, C Lisa; Dasanu, Constantin A

    2009-01-01

    The influences exerted by the epidermal growth factor receptor (EGFR) on the skin act at multiple levels, which involve compartments that normally express EGFR. These include the basal and suprabasal layers of the epidermis, sebaceous glands, and the outer root sheath of the hair follicles. The physiological roles of EGFR ensure epidermal renewal and integrity, along with a gatekeeping and function and hair growth stimulation functions. Important cellular functions that are altered during EGF receptor blocking therapy consist of epidermal differentiation, proliferation, apoptosis, and migration, with an overall dominating effect of inducing growth arrest and terminal differentiation of the keratinocytes in the basal layers. The effects of EGFR blockage on the hair cycle include terminal differentiation of the hair follicle, which in certain cases may be associated with trichomegaly. Trichomegaly of the eyelashes may occur as an isolated occurrence or, frequently, as part of a generalized phenomenon that may be associated with the use of the EGFR inhibitors. Molecular changes associated with EGFR blockage are discussed, relevant to their association with hair growth. Modulation of Akt, AP2alpha, CDK4, Notch-1, p27KIP1, and Hedgehog expression are involved in the initiation of the hair cycle and inducement of the anagen phase, followed by proliferation and differentiation of the hair follicles. Epidermal growth factor receptor inhibitors have been developed as therapeutic molecules directed against cancer; in these regimens the knowledge of EGF receptor signaling functions has been translated into significant clinical results. However, among their various collateral effects on the skin, hair growth is observed to occur in certain patients. A particular "wavy" hair phenotype is observed during the pharmacological EGFR receptor blockade, just as in murine transgenic models that carry loss of function of TGF-alpha or EGFR genes. A better characterization of the

  13. Epidermal growth factor and kidney disease: a long-lasting story.

    PubMed

    Klein, Julie; Bascands, Jean-Loup; Buffin-Meyer, Bénédicte; Schanstra, Joost P

    2016-05-01

    Epidermal growth factor has been previously associated with kidney disease. In this issue of Kidney International, Betz et al. (2016) link urinary epidermal growth factor abundance with an increased risk of the development of diabetic nephropathy in a novel animal model of diabetic nephropathy and in a large cohort of patients with type 2 diabetes. Although the clinical value of these observations needs to be confirmed in further studies, these observations further strengthen the tight link between epidermal growth factor and kidney disease. PMID:27083276

  14. Synthetic and natural consensus design for engineering charge within an affibody targeting epidermal growth factor receptor.

    PubMed

    Case, Brett A; Hackel, Benjamin J

    2016-08-01

    Protein ligand charge can impact physiological delivery with charge reduction often benefiting performance. Yet neutralizing mutations can be detrimental to protein function. Herein, three approaches are evaluated to introduce charged-to-neutral mutations of three cations and three anions within an affibody engineered to bind epidermal growth factor receptor. These approaches-combinatorial library sorting or consensus design, based on natural homologs or library-sorted mutants-are used to identify mutations with favorable affinity, stability, and recombinant yield. Consensus design, based on 942 affibody homologs, yielded a mutant of modest function (Kd  = 11 ±4 nM, Tm  = 62°C, and yield = 4.0 ± 0.8 mg/L as compared to 5.3 ± 1.7 nM, 71°C, and 3.5 ± 0.3 mg/L for the parental affibody). Extension of consensus design to 10 additional mutants exhibited varied performance including a substantially improved mutant (Kd  = 6.9 ± 1.4 nM, Tm  = 71°C, and 12.7 ± 0.9 mg/L yield). Sorting a homolog-based combinatorial library of 7 × 10(5) mutants generated a distribution of mutants with lower stability and yield, but did identify one strongly binding variant (Kd  = 1.2 ± 0.3 nM, Tm  = 69°C, and 6.0 ± 0.4 mg/L yield). Synthetic consensus design, based on the amino acid distribution in functional library mutants, yielded higher affinities (P = 0.05) with comparable stabilities and yields. The best of four analyzed clones had Kd  = 1.7 ± 0.5 nM, Tm  = 68°C, and 7.0 ± 0.5 mg/L yield. While all three approaches were effective in creating targeted affibodies with six charged-to-neutral mutations, synthetic consensus design proved to be the most robust. Synthetic consensus design provides a valuable tool for ligand engineering, particularly in the context of charge manipulation. Biotechnol. Bioeng. 2016;113: 1628-1638. © 2016 Wiley Periodicals, Inc. PMID:26724421

  15. Adverse Reaction to Cetuximab, an Epidermal Growth Factor Receptor Inhibitor.

    PubMed

    Štulhofer Buzina, Daška; Martinac, Ivana; Ledić Drvar, Daniela; Čeović, Romana; Bilić, Ivan; Marinović, Branka

    2016-04-01

    Dear Editor, Inhibition of the epidermal growth factor receptor (EGFR) is a new strategy in treatment of a variety of solid tumors, such as colorectal carcinoma, non-small cell lung cancer, squamous cell carcinoma of the head and neck, and pancreatic cancer (1). Cetuximab is a chimeric human-murine monoclonal antibody against EGFR. Cutaneous side effects are the most common adverse reactions occurring during epidermal growth factor receptor inhibitors (EGFRI) therapy. Papulopustular rash (acne like rash) develop with 80-86% patients receiving cetuximab, while xerosis, eczema, fissures, teleangiectasiae, hyperpigmentations, and nail and hair changes occur less frequently (2). The mechanism underlying these skin changes has not been established and understood. It seems EGFRI alter cell growth and differentiation, leading to impaired stratum corneum and cell apoptosis (3-5). An abdominoperineal resection of the rectal adenocarcinoma (Dukes C) was performed on a 43-year-old female patient. Following surgery, adjuvant chemo-radiotherapy was applied. After two years, the patient suffered a metastatic relapse. Abdominal lymphadenopathy was detected on multi-slice computer tomography (MSCT) images, with an increased value of the carcinoembryonic antigen (CEA) tumor marker (maximal value 57 ng/mL). Hematological and biochemical tests were within normal limits, so first-line chemotherapy with oxaliplatin and a 5-fluorouracil (FOLFOX4) protocol was introduced. A wild type of the KRAS gene was confirmed in tumor tissue (diagnostic prerequisite for the introduction of EGFRI) and cetuximab (250 mg per m2 of body surface) was added to the treatment protocol. The patient responded well to the treatment with confirmed partial regression of the tumor formations. Three months after the patient started using cetuximab, an anti-EGFR monoclonal antibody, the patient presented with a papulopustular eruption in the seborrhoeic areas (Figure 1) and eczematoid reactions on the extremities

  16. The ontogeny of epidermal growth factor receptors during mouse development

    SciTech Connect

    Adamson, E.D.; Meek, J.

    1984-05-01

    In an attempt to understand the role(s) of epidermal growth factor (EGF) in vivo during murine development, we have examined the /sup 125/I-EGF binding characteristics of EGF-receptors in membrane preparations of tissues from the 12th day of gestation to parturition. Using autoradiography, the earliest time that we could detect EGF-receptors was on trophoblast cells cultured for 3 days as blastocyst outgrowths. Trophoblast eventually forms a large portion of the placenta, where EGF-receptors have long been recognized. We measured the number and affinity of EGF-receptors on tissues dissected from conceptuses from the 12th day of gestation in order to identify a stage when tissues may be most sensitive to EGF. Whereas the number of EGF receptors increases during gestation for all tissues examined, the affinity of the receptors declines for carcass and placenta and remains relatively unchanged for brain and liver. This suggests that EGF may function differently throughout development. Our hypothesis is that EGF (or its embryonic equivalent) initially stimulates proliferation in embryonic cells and then stimulates differentiation as the tissues mature. In the adult, its main role could be to stimulate tissue repair after damage.

  17. Intranasal epidermal growth factor treatment rescues neonatal brain injury

    NASA Astrophysics Data System (ADS)

    Scafidi, Joseph; Hammond, Timothy R.; Scafidi, Susanna; Ritter, Jonathan; Jablonska, Beata; Roncal, Maria; Szigeti-Buck, Klara; Coman, Daniel; Huang, Yuegao; McCarter, Robert J.; Hyder, Fahmeed; Horvath, Tamas L.; Gallo, Vittorio

    2014-02-01

    There are no clinically relevant treatments available that improve function in the growing population of very preterm infants (less than 32 weeks' gestation) with neonatal brain injury. Diffuse white matter injury (DWMI) is a common finding in these children and results in chronic neurodevelopmental impairments. As shown recently, failure in oligodendrocyte progenitor cell maturation contributes to DWMI. We demonstrated previously that the epidermal growth factor receptor (EGFR) has an important role in oligodendrocyte development. Here we examine whether enhanced EGFR signalling stimulates the endogenous response of EGFR-expressing progenitor cells during a critical period after brain injury, and promotes cellular and behavioural recovery in the developing brain. Using an established mouse model of very preterm brain injury, we demonstrate that selective overexpression of human EGFR in oligodendrocyte lineage cells or the administration of intranasal heparin-binding EGF immediately after injury decreases oligodendroglia death, enhances generation of new oligodendrocytes from progenitor cells and promotes functional recovery. Furthermore, these interventions diminish ultrastructural abnormalities and alleviate behavioural deficits on white-matter-specific paradigms. Inhibition of EGFR signalling with a molecularly targeted agent used for cancer therapy demonstrates that EGFR activation is an important contributor to oligodendrocyte regeneration and functional recovery after DWMI. Thus, our study provides direct evidence that targeting EGFR in oligodendrocyte progenitor cells at a specific time after injury is clinically feasible and potentially applicable to the treatment of premature children with white matter injury.

  18. The epidermal growth factor receptor pathway in chronic kidney diseases.

    PubMed

    Harskamp, Laura R; Gansevoort, Ron T; van Goor, Harry; Meijer, Esther

    2016-08-01

    The epidermal growth factor receptor (EGFR) pathway has a critical role in renal development, tissue repair and electrolyte handling. Numerous studies have reported an association between dysregulation of this pathway and the initiation and progression of various chronic kidney diseases such as diabetic nephropathy, chronic allograft nephropathy and polycystic kidney disease through the promotion of renal cell proliferation, fibrosis and inflammation. In the oncological setting, compounds that target the EGFR pathway are already in clinical use or have been evaluated in clinical trials; in the renal setting, therapeutic interventions targeting this pathway by decreasing ligand availability with disintegrin and metalloproteinase inhibitors or with ligand-neutralizing antibodies, or by inhibiting receptor activation with tyrosine kinase inhibitors or monoclonal antibodies are only just starting to be explored in animal models of chronic kidney disease and in patients with autosomal dominant polycystic kidney disease. In this Review we focus on the role of the EGFR signalling pathway in the kidney under physiological conditions and during the pathophysiology of chronic kidney diseases and explore the clinical potential of interventions in this pathway to treat chronic renal diseases. PMID:27374915

  19. Epidermal Growth Factor Receptor in Prostate Cancer Derived Exosomes

    PubMed Central

    Kharmate, Geetanjali; Hosseini-Beheshti, Elham; Caradec, Josselin; Chin, Mei Yieng; Tomlinson Guns, Emma S.

    2016-01-01

    Exosomes proteins and microRNAs have gained much attention as diagnostic tools and biomarker potential in various malignancies including prostate cancer (PCa). However, the role of exosomes and membrane-associated receptors, particularly epidermal growth factor receptor (EGFR) as mediators of cell proliferation and invasion in PCa progression remains unexplored. EGFR is frequently overexpressed and has been associated with aggressive forms of PCa. While PCa cells and tissues express EGFR, it is unknown whether exosomes derived from PCa cells or PCa patient serum contains EGFR. The aim of this study was to detect and characterize EGFR in exosomes derived from PCa cells, LNCaP xenograft and PCa patient serum. Exosomes were isolated from conditioned media of different PCa cell lines; LNCaP xenograft serum as well as patient plasma/serum by differential centrifugation and ultracentrifugation on a sucrose density gradient. Exosomes were confirmed by electron microscopy, expression of exosomal markers and NanoSight™ analysis. EGFR expression was determined by western blot analysis and ELISA. This study demonstrates that exosomes may easily be derived from PCa cell lines, serum obtained from PCa xenograft bearing mice and clinical samples derived from PCa patients. Presence of exosomal EGFR in PCa patient exosomes may present a novel approach for measuring of the disease state. Our work will allow to build on this finding for future understanding of PCa exosomes and their potential role in PCa progression and as minimal invasive biomarkers for PCa. PMID:27152724

  20. Epidermal growth factor receptor inhibition in lung cancer: status 2012.

    PubMed

    Hirsch, Fred R; Jänne, Pasi A; Eberhardt, Wilfried E; Cappuzzo, Federico; Thatcher, Nick; Pirker, Robert; Choy, Hak; Kim, Edward S; Paz-Ares, Luis; Gandara, David R; Wu, Yi-Long; Ahn, Myung-Ju; Mitsudomi, Tetsuya; Shepherd, Frances A; Mok, Tony S

    2013-03-01

    Lung cancer is the most common cause of cancer deaths. Most patients present with advanced-stage disease, and the prognosis is generally poor. However, with the understanding of lung cancer biology, and development of molecular targeted agents, there have been improvements in treatment outcomes for selected subsets of patients with non-small-cell lung cancer (NSCLC). Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have demonstrated significantly improved tumor responses and progression-free survival in subsets of patients with advanced NSCLC, particularly those with tumors harboring activating EGFR mutations. Testing for EGFR mutations is a standard procedure for identification of patients who will benefit from first-line EGFR TKIs. For patients with advanced NSCLC and no activating EGFR mutations (EGFR wild-type) or no other driving oncogenes such as ALK-gene rearrangement, chemotherapy is still the standard of care. A new generation of EGFR TKIs, targeting multiple receptors and with irreversible bindings to the receptors, are in clinical trials and have shown encouraging effects. Research on primary and acquired resistant mechanisms to EGFR TKIs are ongoing. Monoclonal antibodies (e.g. cetuximab), in combination with chemotherapy, have demonstrated improved outcomes, particularly for subsets of NSCLC patients, but further validations are needed. Novel monoclonal antibodies are combined with chemotherapy, and randomized comparative studies are ongoing. This review summarizes the current status of EGFR inhibitors in NSCLC in 2012 and some of the major challenges we are facing. PMID:23370315

  1. Saccharin and Cyclamate Inhibit Binding of Epidermal Growth Factor

    NASA Astrophysics Data System (ADS)

    Lee, L. S.

    1981-02-01

    The binding of 125I-labeled mouse epidermal growth factor (EGF) to 18 cell lines, including HeLa (human carcinoma), MDCK (dog kidney cells), HTC (rat hepatoma), K22 (rat liver), HF (human foreskin), GM17 (human skin fibroblasts), XP (human xeroderma pigmentosum fibroblasts), and 3T3-L1 (mouse fibroblasts), was inhibited by saccharin and cyclamate. The human cells were more sensitive to inhibition by these sweeteners than mouse or rat cells. EGF at doses far above the physiological levels reversed the inhibition in rodent cells but not in HeLa cells. In HeLa cells, the doses of saccharin and cyclamate needed for 50% inhibition were 3.5 and 9.3 mg/ml, respectively. Glucose, 2-deoxyglucose, sucrose, and xylitol did not inhibit EGF binding. Previous studies have shown that phorbol esters, strongly potent tumor promoters, also inhibit EGF binding to tissue culture cells. To explain the EGF binding inhibition by such greatly dissimilar molecules as phorbol esters, saccharin, and cyclamate, it is suggested that they operate through the activation of a hormone response control unit.

  2. The epidermal growth factor receptor decreases Stathmin 1 and triggers catagen entry in the mouse.

    PubMed

    Bichsel, Kyle J; Hammiller, Brianna; Trempus, Carol S; Li, Yanhua; Hansen, Laura A

    2016-04-01

    The epidermal growth factor receptor (EGFR) is necessary for normal involution of hair follicles after the growth phase of anagen, although the mechanisms through which it acts are not well understood. In this report, we used transcriptional profiling of microdissected hair follicles from mice with skin-targeted deletion of Egfr to investigate how EGFR activation triggers catagen. Immunofluorescence for phospho-EGFR in mouse skin revealed increased activation of EGFR in follicular keratinocytes at catagen onset. Consistent with other models of EGFR deficiency, mice with skin-targeted deletion of Egfr (Krt14-Cre(+) /Egfr(fl/fl) ) exhibited a delayed and asynchronous catagen entry. Transcriptional profiling at the time of normal catagen onset at post-natal day (P) 17 revealed increased expression of the mitotic regulator Rcc2 in hair follicles lacking EGFR. Rcc2 protein was strongly immunopositive in the nuclei of control follicular keratinocytes at P16 then rapidly decreased until it was undetectable between P18 and 21. In contrast, Rcc2 expression continued in Egfr mutant follicles throughout this period. Proliferation, measured by bromodeoxyuridine incorporation, was also significantly increased in Egfr mutant follicular keratinocytes compared to controls at P18-21. Similarly, Rcc2-regulated mitotic regulator Stathmin 1 was strikingly reduced in control but not Egfr mutant follicles between P17 and P19. Deletion of Stmn1, in turn, accelerated catagen entry associated with premature cessation of proliferation in the hair follicles. These data reveal EGFR suppression of mitotic regulators including Rcc2 and Stathmin 1 as a mechanism for catagen induction in mouse skin. PMID:26661905

  3. CD166-mediated epidermal growth factor receptor phosphorylation promotes the growth of oral squamous cell carcinoma.

    PubMed

    Jia, Guodong; Wang, Xu; Yan, Ming; Chen, Wantao; Zhang, Ping

    2016-08-01

    CD166 has been considered a relatively specific marker of stem cells and cancer stem cells, and the altered expression of CD166 has also been reported as a prognostic marker of several other types of cancer. However, the molecular functions of CD166 in these cancer cells are largely unknown. In this study, we found that CD166 significantly enhanced epidermal growth factor receptor (EGFR) phosphorylation and prolonged epidermal growth factor (EGF)/EGFR signalling activation. In addition, EGF stimulation in CD166-overexpressing oral squamous carcinoma cells led to enhanced colony formation, invasion capacity and cytoskeletal re-organization in vitro and elevated tumourigenesis in vivo. Taken together, the results of our study identify CD166 as an intriguing therapeutic target for patients suffering from oral squamous cell carcinoma (OSCC). PMID:27424177

  4. Epidermal Micrografts Produced via an Automated and Minimally Invasive Tool Form at the Dermal/Epidermal Junction and Contain Proliferative Cells That Secrete Wound Healing Growth Factors

    PubMed Central

    Osborne, Sandra N.; Schmidt, Marisa A.; Derrick, Kathleen; Harper, John R.

    2015-01-01

    ABSTRACT OBJECTIVE: The aim of this scientific study was to assess epidermal micrografts for formation at the dermal-epidermal (DE) junction, cellular outgrowth, and growth factor secretion. Epidermal harvesting is an autologous option that removes only the superficial epidermal layer of the skin, considerably limiting donor site damage and scarring. Use of epidermal grafting in wound healing has been limited because of tedious, time-consuming, and inconsistent methodologies. Recently, a simplified, automated epidermal harvesting tool (CelluTome Epidermal Harvesting System; Kinetic Concepts Inc, San Antonio, Texas) that applies heat and suction concurrently to produce epidermal micrografts has become commercially available. The new technique of epidermal harvesting was shown to create viable micrografts with minimal patient discomfort and no donor-site scarring. DESIGN: This study was a prospective institutional review board–approved healthy human study. SETTING: This study was conducted at the multispecialty research facility, Clinical Trials of Texas, Inc, in San Antonio, Texas. PATIENTS: The participants were 15 healthy human volunteers. RESULTS: Epidermal micrografts formed at the DE junction, and migratory basal layer keratinocytes and melanocytes were proliferative in culture. Basement membrane–specific collagen type IV was also found to be present in the grafts, suggesting that the combination of heat and vacuum might cause partial delamination of the basement membrane. Viable basal cells actively secreted key growth factors important for modulating wound healing responses, including vascular endothelial growth factor, hepatocyte growth factor, granulocyte colony-stimulating factor, platelet-derived growth factor, and transforming growth factor α. CONCLUSIONS: Harvested epidermal micrografts retained their original keratinocyte structure, which is critical for potential re-epithelialization and repigmentation of a wound environment. PMID:26258460

  5. Epidermal growth factor system regulates mucin production in airways

    PubMed Central

    Takeyama, Kiyoshi; Dabbagh, Karim; Lee, Heung-Man; Agustí, Carlos; Lausier, James A.; Ueki, Iris F.; Grattan, Kathleen M.; Nadel, Jay A.

    1999-01-01

    Goblet-cell hyperplasia is a critical pathological feature in hypersecretory diseases of airways. However, the underlying mechanisms are unknown, and no effective therapy exists. Here we show that stimulation of epidermal growth factor receptors (EGF-R) by its ligands, EGF and transforming growth factor α (TGFα), causes MUC5AC expression in airway epithelial cells both in in vitro and in vivo. We found that a MUC5AC-inducing epithelial cell line, NCI-H292, expresses EGF-R constitutively; EGF-R gene expression was stimulated further by tumor necrosis factor α (TNFα). EGF-R ligands increased the expression of MUC5AC at both gene and protein levels, and this effect was potentiated by TNFα. Selective EGF-R tyrosine kinase inhibitors blocked MUC5AC expression induced by EGF-R ligands. Pathogen-free rats expressed little EGF-R protein in airway epithelial cells; intratracheal instillation of TNFα induced EGF-R in airway epithelial cells, and subsequent instillation of EGF-R ligands increased the number of goblet cells, Alcian blue–periodic acid–Schiff staining (reflecting mucous glycoconjugates), and MUC5AC gene expression, whereas TNFα, EGF, or TGFα alone was without effect. In sensitized rats, three intratracheal instillations of ovalbumin resulted in EGF-R expression and goblet-cell production in airway epithelium. Pretreatment with EGF-R tyrosine kinase inhibitor, BIBX1522, prevented goblet-cell production both in rats stimulated by TNFα-EGF-R ligands and in an asthma model. These findings suggest potential roles for inhibitors of the EGF-R cascade in hypersecretory diseases of airways. PMID:10077640

  6. [The basic and applied study on the epidermal growth factor].

    PubMed

    Huang, B R; Cai, L W; Xiang, X Z

    2001-04-01

    This article reviews the results of the basic research about epidermal growth factor and its receptor, and the development of the novel drug, EGF eyedrop, that containing chemically synthesized EGF gene, the construction of EGF expression vector, the transformation of the host cells, the purification of the recombinant protein EGF, the preparation of three batches of the EGF product and identification, the preclinical and clinical trials. Relevant studies show that recombinant EGF consisting of 51 amino acids can be secreted into the medium under the control of the alpha factor leading sequence in the yeast cells. The EGF can accelerate the growth of corneal-limbal epithelial cells and the healing of an alkali burned corneal. The EGF can be used in curing oral cavity ulcer and skin burned wound. And it has the preventive effects on experimental duodenal ulcer of rat. The antiserum was made for test of the concentration of blood EGF and urine EGF by RIA. Data from studies demonstrate the inhibition effect of EGF on the growth of tumor cells, such as A431 and BT325 cells in the presence of high EGF concentration (> 10 ng/ml). The expression of EGFR and DNA ploidy in renal carcinoma has clinical significance. Crystallization and preliminary x-ray diffraction studies of the EGF has been made. The MW of the EGF product is 6000, and the pI is about 4.6 and it has correct N-terminal amino acids sequences, immunogenicity and biological activity. There is no vestige of the DNA of the yeast cells. Animal experiments reveal that there is no cumulation of the EGF in the body, and EGF can promote corneal epithelial healing. There is no toxicological effect during cornea wound healing of rabbit. A randomized, double-blind, placebo-controlled, multi-center clinical trial was conducted in four hospitals to assess safety, ocular tolerance and efficacy of an ophthalmic solution of EGF for 200 cases of cornea transplantation and 247 cases of nebulae. Unequivocal results were obtained

  7. Epidermal growth factor receptor inhibition in metastatic anal cancer.

    PubMed

    Rogers, Jane E; Ohinata, Aki; Silva, Ninoska N; Mehdizadeh, Amir; Eng, Cathy

    2016-09-01

    Metastatic squamous cell carcinoma (SCCA) anal cancer is relatively rare. With limited data, cisplatin plus 5-fluorouracil has traditionally been utilized in the first-line setting. Treatment beyond front-line cisplatin progression is not well defined. Epidermal growth factor receptor (EGFR) is highly overexpressed in SCCA anal cancer and EGFR inhibition may represent a potential treatment target for this population in need. Our case series evaluated metastatic SCCA anal cancer patients who received an EGFR monoclonal antibody as second-line or third-line therapy. Data collected consisted of demographics, previous treatment, metastatic disease sites, localized therapy received, regimen received, first radiographic result, progression-free survival, and overall survival. A total of 17 patients were included, with most (76%) patients receiving an EGFR monoclonal antibody in the second-line setting. Common regimens identified combined cetuximab or panitumumab with a fluoropyrimidine plus platinum (35%), carboplatin plus paclitaxel (29%), or cisplatin plus vinorelbine (18%). Thirty-five percent of patients achieved a response and 24% had stable disease. The overall median progression-free survival and overall survival were 7.3 and 24.7 months, respectively. Compared with our large retrospective study in the front-line metastatic anal cancer setting, our study suggests that anti-EGFR therapy in combination with certain chemotherapy derived additional benefit in the refractory setting. In the metastatic setting, there is a need to discover effective therapies. We present a diverse metastatic SCCA anal cancer patient population who received cetuximab or panitumumab with chemotherapy in the second-line or third-line setting. Our case series strengthens the concept of EGFR inhibition in metastatic SCCA anal cancer. PMID:27272412

  8. Epidermal Growth Factor-induced Vacuolar (H+)-ATPase Assembly

    PubMed Central

    Xu, Yanqing; Parmar, Amanda; Roux, Emmanuelle; Balbis, Alejandro; Dumas, Victor; Chevalier, Stephanie; Posner, Barry I.

    2012-01-01

    Using proteomics and immunofluorescence, we demonstrated epidermal growth factor (EGF) induced recruitment of extrinsic V1 subunits of the vacuolar (H+)-ATPase (V-ATPase) to rat liver endosomes. This was accompanied by reduced vacuolar pH. Bafilomycin, an inhibitor of V-ATPase, inhibited EGF-stimulated DNA synthesis and mammalian target of rapamycin complex 1 (mTORC1) activation as indicated by a decrease in eukaryotic initiation factor 4E-binding 1 (4E-BP1) phosphorylation and p70 ribosomal S6 protein kinase (p70S6K) phosphorylation and kinase activity. There was no corresponding inhibition of EGF-induced Akt and extracellular signal-regulated kinase (Erk) activation. Chloroquine, a neutralizer of vacuolar pH, mimicked bafilomycin effects. Bafilomycin did not inhibit the association of mTORC1 with Raptor nor did it affect AMP-activated protein kinase activity. Rather, the intracellular concentrations of essential but not non-essential amino acids were decreased by bafilomycin in EGF-treated primary rat hepatocytes. Cycloheximide, a translation elongation inhibitor known to augment intracellular amino acid levels, prevented the effect of bafilomycin on amino acids levels and completely reversed its inhibition of EGF-induced mTORC1 activation. In vivo administration of EGF stimulated the recruitment of Ras homologue enriched in brain (Rheb) but not mammalian target of rapamycin (mTOR) to endosomes and lysosomes. This was inhibited by chloroquine treatment. Our results suggest a role for vacuolar acidification in EGF signaling to mTORC1. PMID:22689575

  9. Epidermal Growth Factor Receptor in Glioma: Signal Transduction, Neuropathology, Imaging, and Radioresistance1

    PubMed Central

    Hatanpaa, Kimmo J; Burma, Sandeep; Zhao, Dawen; Habib, Amyn A

    2010-01-01

    Aberrant epidermal growth factor receptor (EGFR) signaling is common in cancer. Increased expression of wild type and mutant EGFR is a widespread feature of diverse types of cancer. EGFR signaling in cancer has been the focus of intense investigation for decades primarily for two reasons. First, aberrant EGFR signaling is likely to play an important role in the pathogenesis of cancer, and therefore, the mechanisms of EGFR-mediated oncogenic signaling are of interest. Second, the EGFR signaling system is an attractive target for therapeutic intervention. EGFR gene amplification and overexpression are a particularly striking feature of glioblastoma (GBM), observed in approximately 40% of tumors. GBM is the most common primary malignant tumor of the central nervous system in adults. In approximately 50% of tumors with EGFR amplification, a specific EGFR mutant (EGFRvIII, also known as EGFR type III, de2-7, ΔEGFR) can be detected. This mutant is highly oncogenic and is generated from a deletion of exons 2 to 7 of the EGFR gene, which results in an in-frame deletion of 267 amino acids from the extracellular domain of the receptor. EGFRvIII is unable to bind ligand, and it signals constitutively. Although EGFRvIII has the same signaling domain as the wild type receptor, it seems to generate a distinct set of downstream signals that may contribute to an increased tumorigenicity. In this review, we discuss recent progress in key aspects of EGFR signaling in GBM, focusing on neuropathology, signal transduction, imaging of the EGFR, and the role of the EGFR in mediating resistance to radiation therapy in GBM. PMID:20824044

  10. Discrimination of driver and passenger mutations in epidermal growth factor receptor in cancer.

    PubMed

    Anoosha, P; Huang, Liang-Tsung; Sakthivel, R; Karunagaran, D; Gromiha, M Michael

    2015-10-01

    Cancer is one of the most life-threatening diseases and mutations in several genes are the vital cause in tumorigenesis. Protein kinases play essential roles in cancer progression and specifically, epidermal growth factor receptor (EGFR) is an important target for cancer therapy. In this work, we have developed a method to classify single amino acid polymorphisms (SAPs) in EGFR into disease-causing (driver) and neutral (passenger) mutations using both sequence and structure based features of the mutation site by machine learning approaches. We compiled a set of 222 features and selected a set of 21 properties utilizing feature selection methods, for maximizing the prediction performance. In a set of 540 mutants, we obtained an overall classification accuracy of 67.8% with 10 fold cross validation using support vector machines. Further, the mutations have been grouped into four sets based on secondary structure and accessible surface area, which enhanced the overall classification accuracy to 80.2%, 81.9%, 77.9% and 75.1% for helix, strand, coil-buried and coil-exposed mutants, respectively. The method was tested with a blind dataset of 60 mutations, which showed an average accuracy of 85.4%. These accuracy levels are superior to other methods available in the literature for EGFR mutants, with an increase of more than 30%. Moreover, we have screened all possible single amino acid polymorphisms (SAPs) in EGFR and suggested the probable driver and passenger mutations, which would help in the development of mutation specific drugs for cancer treatment. PMID:26264175

  11. Epidermal cell growth-dependent arylhydrocarbon-hydroxylase (AHH) activity in vitro.

    PubMed

    Thiele, B; Merk, H F; Bonnekoh, B; Mahrle, G; Steigleder, G K

    1987-01-01

    Cytochrome P-450-dependent arylhydrocarbon-hydroxylase (AHH) activity and inducibility by benzanthracene (BA) was measured in cultured guinea pig and human epidermal cells. Basal AHH-activity (AHHb) in guinea pig epidermal cells was much higher than in human epidermal cells. AHHb in guinea pig epidermal cells was directly related to the labeling index and decreased to the original level between the 5th and 7th day of cell culturing. On the other hand, the induction-ratio of AHH reached its maximum level when the number of cells began to rise (proliferation phase) and remained high at day 7 of the cell culture. These results suggest a cell growth dependent activity and inducibility of carcinogen-metabolizing enzymes, such as AHH, in isolated epidermal cells. PMID:3435181

  12. [Relationship between PTEN mutations and protein kinase B phosphorylation caused by insulin or recombinant human epidermal growth factor stimulation].

    PubMed

    Zhong, Hailan; Hu, Xianfu; Lin, Jianhua

    2016-08-01

    Objective To study the effect of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) mutations on protein kinase B (Akt) phosphorylation of CNE-1 nasopharyngeal carcinoma cell line. Methods CNE-1 cells were cultured in RPMI1640 medium containing 100 mL/L fetal calf serum, and then transfected with wild-type PTEN (wtPTEN), mutant PTEN C124S and mutant PTEN G129E plasmid separately. After overnight serum starvation, the cells were stimulated with 0.15 IU/mL insulin or 0.3 μg/mL recombinant human epidermal growth factor (rhEGF). At last, Akt phosphorylation was evaluated by Western blotting. Results Insulin or rhEGF stimulation led to Akt activation in CNE-1 cells. The wtPTEN inhibited insulin- or rhEGF-stimulated phosphorylation of Akt. PTEN C124S mutant activated insulin-stimulated phosphorylation of Akt, but not rhEGF-stimulated phosphorylation of Akt. PTEN G129E mutant inhibited insulin-stimulated phosphorylation of Akt. Conclusion The wtPTEN inhibited insulin- or rhEGF-stimulated phosphorylation of Akt, while PTEN C124S and G129E mutants failed to activate the phosphorylation of Akt consistently. This suggested PTEN mutations might not be correlated with activated Akt. PMID:27412938

  13. Differential Effects of Myopathy-Associated Caveolin-3 Mutants on Growth Factor Signaling

    PubMed Central

    Brauers, Eva; Dreier, Agnes; Roos, Andreas; Wormland, Berthold; Weis, Joachim; Krüttgen, Alexander

    2010-01-01

    Caveolin-3 is an important scaffold protein of cholesterol-rich caveolae. Mutations of caveolin-3 cause hereditary myopathies that comprise remarkably different pathologies. Growth factor signaling plays an important role in muscle physiology; it is influenced by caveolins and cholesterol-rich rafts and might thus be affected by caveolin-3 dysfunction. Prompted by the observation of a marked chronic peripheral neuropathy in a patient suffering from rippling muscle disease due to the R26Q caveolin-3 mutation and because TrkA is expressed by neuronal cells and skeletal muscle fibers, we performed a detailed comparative study on the effect of pathogenic caveolin-3 mutants on the signaling and trafficking of the TrkA nerve growth factor receptor and, for comparison, of the epidermal growth factor receptor. We found that the R26Q mutant slightly and the P28L strongly reduced nerve growth factor signaling in TrkA-transfected cells. Surface biotinylation experiments revealed that the R26Q caveolin-3 mutation markedly reduced the internalization of TrkA, whereas the P28L did not. Moreover, P28L expression led to increased, whereas R26Q expression decreased, epidermal growth factor signaling. Taken together, we found differential effects of the R26Q and P28L caveolin-3 mutants on growth factor signaling. Our findings are of clinical interest because they might help explain the remarkable differences in the degree of muscle lesions caused by caveolin-3 mutations and also the co-occurrence of peripheral neuropathy in the R26Q caveolinopathy case presented. PMID:20472890

  14. Selenoprotein W controls epidermal growth factor receptor surface expression, activation and degradation via receptor ubiquitination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Epidermal growth factor (EGF) receptor (EGFR) is the founding member of the ErbB family of growth factor receptors that modulate a complex network of intracellular signaling pathways controlling growth, proliferation and differentiation. Selenoprotein W (SEPW1) is a diet-regulated, highly conserved...

  15. Evaluation of emulsion electrospun polycaprolactone/hyaluronan/epidermal growth factor nanofibrous scaffolds for wound healing.

    PubMed

    Wang, Zhenbei; Qian, Yuna; Li, Linhao; Pan, Lianhong; Njunge, Lucy W; Dong, Lili; Yang, Li

    2016-01-01

    Wound healing scaffolds provide cells with structural integrity and can also deliver biological agents to establish a skin tissue-specific microenvironment to regulate cell functions and to accelerate the healing process. In this study, we fabricated biodegradable nanofibrous scaffolds with an emulsion electrospinning technique. The scaffolds were composed of polycaprolactone, hyaluronan and encapsulating epidermal growth factor. The morphology and core-sheath structure of the nanofibers were characterized by scanning electron microscopy and transmission electron microscopy. The scaffolds were also characterized for chemical composition and hydrophilicity with a Fourier-transform infrared analysis, energy dispersive spectroscopy and the water contact angle. An in vitro model protein bovine serum albumin and epidermal growth factor release study was conducted to evaluate the sustained release potential of the core-sheath structured nanofibers with and without the hyaluronan component. Additionally, an in vitro cultivation of human skin keratinocytes (HaCaT) and fibroblasts on polycaprolactone/hyaluronan and polycaprolactone/hyaluronan-epidermal growth factor scaffolds showed a significant synergistic effect of hyaluronan and epidermal growth factor on cell proliferation and infiltration. Furthermore, there was an up-regulation of the wound-healing-related genes collagen I, collagen III and TGF-β in polycaprolactone/hyaluronan/epidermal growth factor scaffolds compared with control groups. In the full-thickness wound model, the enhanced regeneration of fully functional skin was facilitated by epidermal regeneration in the polycaprolactone/hyaluronan/epidermal growth factor treatment group. Our findings suggest that bioactivity and hemostasis of the hyaluronan-based nanofibrous scaffolds have the capability to encapsulate and control the release of growth factors that can serve as skin tissue engineering scaffolds for wound healing. PMID:26012354

  16. Asymmetric growth of root epidermal cells is related to the differentiation of root hair cells in Hordeum vulgare (L.)

    PubMed Central

    Marzec, Marek

    2013-01-01

    The root epidermis of most vascular plants harbours two cell types, namely trichoblasts (capable of producing a root hair) and atrichoblasts. Here, in vivo analysis, confocal laser-scanning microscopy, transmission electron microscopy, histological analysis, and three-dimensional reconstruction were used to characterize the cell types present in the barley root epidermis and their distribution in the tissue. Both trichoblasts and atrichoblasts were present in the wild-type cultivars and could be distinguished from one another at an early stage. Trichoblast/atrichoblast differentiation depended on asymmetric cell expansion after a period of symmetrical cell division. After asymmetric growth, only the shorter epidermal cells could produce root hairs, whereas the longer cells became atrichoblasts. Moreover, the root epidermis did not develop root hairs at all if the epidermal cells did not differentiate into two asymmetric cell types. The root hairless phenotype of bald root barley (brb) and root hairless 1.b (rhl1.b) mutants was caused by a mutation in a gene related to the asymmetric expansion of the root epidermal cells. Additionally, the results showed that the mechanism of trichoblast/atrichoblast differentiation is not evolutionally conserved across the subfamilies of the Poaceae; in the Pooideae subfamily, both asymmetric division and asymmetric cell expansion have been observed. PMID:24043851

  17. Multiple requirements for SHPTP2 in epidermal growth factor-mediated cell cycle progression.

    PubMed Central

    Bennett, A M; Hausdorff, S F; O'Reilly, A M; Freeman, R M; Neel, B G

    1996-01-01

    Using transient overexpression and microinjection approaches, we examined SHPTP2's function in growth factor signaling. Overexpression of catalytically inactive SHPTP2 (PTP2CS) but not catalytically inactive SHPTP1, inhibited mitogen-activated protein (MAP) kinase activation and Elk-1 transactivation following epidermal growth factor (EGF) stimulation of 293 cells. An SHPTP2 mutant with both C-terminal tyrosyl phosphorylation sites converted to phenylalanine (PTP2YF) was also without effect; moreover, PTP2YF rescued PTP2CS-induced inhibition of EGF-induced Elk-1 transactivation. PTP2CS did not inhibit transactivation by activated Ras, suggesting that SHPTP2 acts upstream of or parallel to Ras. Neither PTP2CS nor PTP2YF inhibited platelet-derived growth factor (PDGF)-induced Elk-1 transactivation. Thus, protein-tyrosine phosphatase activity, but not tyrosyl phosphorylation of SHPTP2, is required for the immediate-early responses to EGF but not to PDGF. To determine whether SHPTP2 is required later in the cell cycle, we assessed S-phase entry in NIH 3T3 cells microinjected with anti-SHPTP2 antibodies or with a glutathione S-transferase (GST) fusion protein encoding both SH2 domains (GST-SH2). Microinjection of anti-SHPTP2 antibodies prior to stimulation inhibited EGF- but no PDGF- or serum-induced S-phase entry. Anti-SHPTP2 antibodies or GST-SH2 fusion protein could inhibit EGF-induced S-phase entry for up to 8 h after EGF addition. Although MAP kinase activation was detected shortly after EGF stimulation, no MAP kinase activation was detected around the restriction point. Therefore, SHPTP2 is absolutely required for immediate-early and late events induced by some, but not all, growth factors, and the immediate-early and late signal transduction pathways regulated by SHPTP2 are distinguishable. PMID:8622663

  18. The Epidermal Growth Factor Receptor Increases Cytokine Production and Cutaneous Inflammation in Response to Ultraviolet Irradiation

    PubMed Central

    El-Abaseri, Taghrid Bahig; Repertinger, Susan K.; Hansen, Laura A.

    2013-01-01

    The epidermal growth factor receptor (EGFR) is activated in cutaneous keratinocytes upon ultraviolet (UV) exposure and has been implicated in ultraviolet-(UV-)induced inflammation and skin tumorigenesis. Egfr mutant mice and EGFR inhibitors were used to investigate the hypothesis that EGFR activation augments inflammation following UV irradiation. Topical treatment of mouse skin with the EGFR inhibitor AG1478 before UV exposure suppressed UV-induced erythema, edema, mast cell infiltration, and neutrophil infiltration. Genetic ablation of Egfr and EGFR inhibition by AG1478 also suppressed the increase in the proinflammatory cytokines tumor necrosis factor α (TNF-α), interleukin-1α, KC (murine IL-8), and cyclooxygenase-2 (COX-2) after UV exposure of cultured keratinocytes. Finally, genetic ablation of inhibition of EGFR in cultured keratinocytes decreased p38 activation after UV, while inhibition of p38 kinase reduced COX-2 expression after UV. These data demonstrate that EGFR regulates multiple aspects of UV-induced inflammation and suggest activation of p38 kinase leading to increased COX-2 and cytokine expression as one mechanism through which it acts. PMID:23878744

  19. Epidermal growth factor receptors destined for the nucleus are internalized via a clathrin-dependent pathway

    SciTech Connect

    De Angelis Campos, Ana Carolina; Rodrigues, Michele Angela; Andrade, Carolina de; Miranda de Goes, Alfredo; Nathanson, Michael H.; Gomes, Dawidson A.

    2011-08-26

    Highlights: {yields} EGF and its receptor translocates to the nucleus in liver cells. {yields} Real time imaging shows that EGF moves to the nucleus. {yields} EGF moves with its receptor to the nucleus. {yields} Dynamin and clathrin are necessary for EGFR nuclear translocation. -- Abstract: The epidermal growth factor (EGF) transduces its actions via the EGF receptor (EGFR), which can traffic from the plasma membrane to either the cytoplasm or the nucleus. However, the mechanism by which EGFR reaches the nucleus is unclear. To investigate these questions, liver cells were analyzed by immunoblot of cell fractions, confocal immunofluorescence and real time confocal imaging. Cell fractionation studies showed that EGFR was detectable in the nucleus after EGF stimulation with a peak in nuclear receptor after 10 min. Movement of EGFR to the nucleus was confirmed by confocal immunofluorescence and labeled EGF moved with the receptor to the nucleus. Small interference RNA (siRNA) was used to knockdown clathrin in order to assess the first endocytic steps of EGFR nuclear translocation in liver cells. A mutant dynamin (dynamin K44A) was also used to determine the pathways for this traffic. Movement of labeled EGF or EGFR to the nucleus depended upon dynamin and clathrin. This identifies the pathway that mediates the first steps for EGFR nuclear translocation in liver cells.

  20. Two domains of the epidermal growth factor receptor are involved in cytoskeletal interactions

    SciTech Connect

    Song Wei; Wu Jing; Ge Gaoxiang; Lin Qishui

    2008-06-13

    Epidermal growth factor receptor can interact directly with F-actin through an actin-binding domain. In the present study, a mutant EGFR, lacking a previously identified actin-binding domain (ABD 1), was still able to bind elements of the cytoskeleton. A second EGFR actin-binding domain (ABD 2) was identified in the region of the receptor that includes Tyr-1148 by a yeast two-hybrid assay. GST fusion proteins comprising ABD 1 or ABD 2 bound actin in vitro and competed for actin-binding with the full-length EGFR. EGFR binding to actin was also studied in intact cells using fluorescence resonance energy transfer (FRET). The localization of the EGFR/actin-binding complex changed after EGF stimulation. Fusion proteins containing mutations in ABD1 or ABD2 did not display a FRET signal. The results lead to the conclusion that the interaction between ABD1 and ABD2 and actin during EGF-induced signal transduction, and thus between EGFR and actin, are important in cell activation.

  1. Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition.

    PubMed

    Hata, Aaron N; Niederst, Matthew J; Archibald, Hannah L; Gomez-Caraballo, Maria; Siddiqui, Faria M; Mulvey, Hillary E; Maruvka, Yosef E; Ji, Fei; Bhang, Hyo-eun C; Krishnamurthy Radhakrishna, Viveksagar; Siravegna, Giulia; Hu, Haichuan; Raoof, Sana; Lockerman, Elizabeth; Kalsy, Anuj; Lee, Dana; Keating, Celina L; Ruddy, David A; Damon, Leah J; Crystal, Adam S; Costa, Carlotta; Piotrowska, Zofia; Bardelli, Alberto; Iafrate, Anthony J; Sadreyev, Ruslan I; Stegmeier, Frank; Getz, Gad; Sequist, Lecia V; Faber, Anthony C; Engelman, Jeffrey A

    2016-03-01

    Although mechanisms of acquired resistance of epidermal growth factor receptor (EGFR)-mutant non-small-cell lung cancers to EGFR inhibitors have been identified, little is known about how resistant clones evolve during drug therapy. Here we observe that acquired resistance caused by the EGFR(T790M) gatekeeper mutation can occur either by selection of pre-existing EGFR(T790M)-positive clones or via genetic evolution of initially EGFR(T790M)-negative drug-tolerant cells. The path to resistance impacts the biology of the resistant clone, as those that evolved from drug-tolerant cells had a diminished apoptotic response to third-generation EGFR inhibitors that target EGFR(T790M); treatment with navitoclax, an inhibitor of the anti-apoptotic factors BCL-xL and BCL-2 restored sensitivity. We corroborated these findings using cultures derived directly from EGFR inhibitor-resistant patient tumors. These findings provide evidence that clinically relevant drug-resistant cancer cells can both pre-exist and evolve from drug-tolerant cells, and they point to therapeutic opportunities to prevent or overcome resistance in the clinic. PMID:26828195

  2. Analysis of corkscrew signaling in the Drosophila epidermal growth factor receptor pathway during myogenesis.

    PubMed Central

    Johnson Hamlet, M R; Perkins, L A

    2001-01-01

    The Drosophila nonreceptor protein tyrosine phosphatase, Corkscrew (Csw), functions positively in multiple receptor tyrosine kinase (RTK) pathways, including signaling by the epidermal growth factor receptor (EGFR). Detailed phenotypic analyses of csw mutations have revealed that Csw activity is required in many of the same developmental processes that require EGFR function. However, it is still unclear where in the signaling hierarchy Csw functions relative to other proteins whose activities are also required downstream of the receptor. To address this issue, genetic interaction experiments were performed to place csw gene activity relative to the EGFR, spitz (spi), rhomboid (rho), daughter of sevenless (DOS), kinase-suppressor of ras (ksr), ras1, D-raf, pointed (pnt), and moleskin. We followed the EGFR-dependent formation of VA2 muscle precursor cells as a sensitive assay for these genetic interaction studies. First, we established that Csw has a positive function during mesoderm development. Second, we found that tissue-specific expression of a gain-of-function csw construct rescues loss-of-function mutations in other positive signaling genes upstream of rolled (rl)/MAPK in the EGFR pathway. Third, we were able to infer levels of EGFR signaling in various mutant backgrounds during myogenesis. This work extends previous studies of Csw during Torso and Sevenless RTK signaling to include an in-depth analysis of the role of Csw in the EGFR signaling pathway. PMID:11729154

  3. Epidermal growth factor receptor variant III mutations in lung tumorigenesis and sensitivity to tyrosine kinase inhibitors.

    PubMed

    Ji, Hongbin; Zhao, Xiaojun; Yuza, Yuki; Shimamura, Takeshi; Li, Danan; Protopopov, Alexei; Jung, Boonim L; McNamara, Kate; Xia, Huili; Glatt, Karen A; Thomas, Roman K; Sasaki, Hidefumi; Horner, James W; Eck, Michael; Mitchell, Albert; Sun, Yangping; Al-Hashem, Ruqayyah; Bronson, Roderick T; Rabindran, Sridhar K; Discafani, Carolyn M; Maher, Elizabeth; Shapiro, Geoffrey I; Meyerson, Matthew; Wong, Kwok-Kin

    2006-05-16

    The tyrosine kinase inhibitors gefitinib (Iressa) and erlotinib (Tarceva) have shown anti-tumor activity in the treatment of non-small cell lung cancer (NSCLC). Dramatic and durable responses have occurred in NSCLC tumors with mutations in the tyrosine kinase domain of the epidermal growth factor receptor (EGFR). In contrast, these inhibitors have shown limited efficacy in glioblastoma, where a distinct EGFR mutation, the variant III (vIII) in-frame deletion of exons 2-7, is commonly found. In this study, we determined that EGFRvIII mutation was present in 5% (3/56) of analyzed human lung squamous cell carcinoma (SCC) but was not present in human lung adenocarcinoma (0/123). We analyzed the role of the EGFRvIII mutation in lung tumorigenesis and its response to tyrosine kinase inhibition. Tissue-specific expression of EGFRvIII in the murine lung led to the development of NSCLC. Most importantly, these lung tumors depend on EGFRvIII expression for maintenance. Treatment with an irreversible EGFR inhibitor, HKI-272, dramatically reduced the size of these EGFRvIII-driven murine tumors in 1 week. Similarly, Ba/F3 cells transformed with the EGFRvIII mutant were relatively resistant to gefitinib and erlotinib in vitro but proved sensitive to HKI-272. These findings suggest a therapeutic strategy for cancers harboring the EGFRvIII mutation. PMID:16672372

  4. AZD9291 in epidermal growth factor receptor inhibitor—resistant non-small-cell lung cancer

    PubMed Central

    2016-01-01

    Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in advanced EGFR mutant non-small cell lung cancer have an objective response rate (ORR) of approximately 60–70% and a median progression free-survival (PFS) of approximately 10-13 months. Studies of tumor biopsies performed after progression on EGFR TKI revealed that 50-60% of EGFR mutant NSCLC developed an EGFR exon 20 T790M mutation as a mechanism of acquired resistance. AZD9291 is a third generation irreversible EGFR TKI with activity against the activating EGFR mutation, the T790M acquired resistance mutation, and relative sparing of the wild-type EGFR. AZD9291 was investigated in a phase I trial with expansion cohorts in patients with disease progression after EGFR TKI. Patients with and without detectable T790M mutations were enrolled in the trial. The ORR in patients with centrally confirmed and without detectable T790M mutations was 61% (95% CI, 52–70%) and 21% (95% CI, 12–34%), respectively. The PFS observed in patients with centrally confirmed and without detectable T790M mutations was 9.6 months (95% CI, 8.3 to not reached) and 2.8 months (95% CI, 2.1–4.3 months), respectively. At the dose for further investigation, 80 mg daily, the rate of all grade 3-5 drug related adverse events was 11%, and the rates of grade 3 diarrhea and rash were 1% and 0%, respectively. The identification of the T790M resistance mutation and the subsequent development of an agent against the mechanism of resistance provide a template for future drug development for acquired resistance to targeted therapy. PMID:26958499

  5. AZD9291 in epidermal growth factor receptor inhibitor-resistant non-small-cell lung cancer.

    PubMed

    Stinchcombe, Thomas E

    2016-02-01

    Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in advanced EGFR mutant non-small cell lung cancer have an objective response rate (ORR) of approximately 60-70% and a median progression free-survival (PFS) of approximately 10-13 months. Studies of tumor biopsies performed after progression on EGFR TKI revealed that 50-60% of EGFR mutant NSCLC developed an EGFR exon 20 T790M mutation as a mechanism of acquired resistance. AZD9291 is a third generation irreversible EGFR TKI with activity against the activating EGFR mutation, the T790M acquired resistance mutation, and relative sparing of the wild-type EGFR. AZD9291 was investigated in a phase I trial with expansion cohorts in patients with disease progression after EGFR TKI. Patients with and without detectable T790M mutations were enrolled in the trial. The ORR in patients with centrally confirmed and without detectable T790M mutations was 61% (95% CI, 52-70%) and 21% (95% CI, 12-34%), respectively. The PFS observed in patients with centrally confirmed and without detectable T790M mutations was 9.6 months (95% CI, 8.3 to not reached) and 2.8 months (95% CI, 2.1-4.3 months), respectively. At the dose for further investigation, 80 mg daily, the rate of all grade 3-5 drug related adverse events was 11%, and the rates of grade 3 diarrhea and rash were 1% and 0%, respectively. The identification of the T790M resistance mutation and the subsequent development of an agent against the mechanism of resistance provide a template for future drug development for acquired resistance to targeted therapy. PMID:26958499

  6. Increased Serum Levels of Epidermal Growth Factor in Children with Autism

    ERIC Educational Resources Information Center

    Iseri, Elvan; Guney, Esra; Ceylan, Mehmet F.; Yucel, Aysegul; Aral, Arzu; Bodur, Sahin; Sener, Sahnur

    2011-01-01

    The etiology of autism is unclear, however autism is considered as a multifactorial disorder that is influenced by neurological, environmental, immunological and genetic factors. Growth factors, including epidermal growth factor (EGF), play an important role in the celluler proliferation and the differentiation of the central and peripheral…

  7. Problem-Solving Test: The Role of Ubiquitination in Epidermal Growth Factor Receptor Trafficking

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2012-01-01

    Terms to be familiar with before you start to solve the test: growth factor signaling, epidermal growth factor, tyrosine protein kinase, tyrosine phosphorylation, ubiquitin, monoubiquitination, polyubiquitination, site-directed mutagenesis, transfection, expression vector, cDNA, immunoprecipitation, SDS-polyacrylamide gel electrophoresis, Western…

  8. Megalencephalic leukoencephalopathy with subcortical cysts protein-1 regulates epidermal growth factor receptor signaling in astrocytes.

    PubMed

    Lanciotti, Angela; Brignone, Maria Stefania; Visentin, Sergio; De Nuccio, Chiara; Catacuzzeno, Luigi; Mallozzi, Cinzia; Petrini, Stefania; Caramia, Martino; Veroni, Caterina; Minnone, Gaetana; Bernardo, Antonietta; Franciolini, Fabio; Pessia, Mauro; Bertini, Enrico; Petrucci, Tamara Corinna; Ambrosini, Elena

    2016-04-15

    Mutations in the MLC1 gene, which encodes a protein expressed in brain astrocytes, are the leading cause of MLC, a rare leukodystrophy characterized by macrocephaly, brain edema, subcortical cysts, myelin and astrocyte vacuolation. Although recent studies indicate that MLC1 protein is implicated in the regulation of cell volume changes, the exact role of MLC1 in brain physiology and in the pathogenesis of MLC disease remains to be clarified. In preliminary experiments, we observed that MLC1 was poorly expressed in highly proliferating astrocytoma cells when compared with primary astrocytes, and that modulation of MLC1 expression influenced astrocyte growth. Because volume changes are key events in cell proliferation and during brain development MLC1 expression is inversely correlated to astrocyte progenitor proliferation levels, we investigated the possible role for MLC1 in the control of astrocyte proliferation. We found that overexpression of wild type but not mutant MLC1 in human astrocytoma cells hampered cell growth by favoring epidermal growth factor receptor (EGFR) degradation and by inhibiting EGF-induced Ca(+) entry, ERK1/2 and PLCγ1 activation, and calcium-activated KCa3.1 potassium channel function, all molecular pathways involved in astrocyte proliferation stimulation. Interestingly, MLC1 did not influence AKT, an EGFR-stimulated kinase involved in cell survival. Moreover, EGFR expression was higher in macrophages derived from MLC patients than from healthy individuals. Since reactive astrocytes proliferate and re-express EGFR in response to different pathological stimuli, the present findings provide new information on MLC pathogenesis and unravel an important role for MLC1 in other brain pathological conditions where astrocyte activation occurs. PMID:26908604

  9. USP17 is required for clathrin mediated endocytosis of epidermal growth factor receptor

    PubMed Central

    Jaworski, Jakub; de la Vega, Michelle; Fletcher, Sarah J.; McFarlane, Cheryl; Greene, Michelle K.; Smyth, Andrew W.; Van Schaeybroeck, Sandra; Johnston, James A.; Scott, Christopher J.; Rappoport, Joshua Z.; Burrows, James F.

    2014-01-01

    Previously we have shown that expression of the deubiquitinating enzyme USP17 is required for cell proliferation and motility. More recently we reported that USP17 deubiquitinates RCE1 isoform 2 and thus regulates the processing of ‘CaaX’ motif proteins. Here we now show that USP17 expression is induced by epidermal growth factor and that USP17 expression is required for clathrin mediated endocytosis of epidermal growth factor receptor. In addition, we show that USP17 is required for the endocytosis of transferrin, an archetypal substrate for clathrin mediated endocytosis, and that USP17 depletion impedes plasma membrane recruitment of the machinery required for clathrin mediated endocytosis. Thus, our data reveal that USP17 is necessary for epidermal growth factor receptor and transferrin endocytosis via clathrin coated pits, indicate this is mediated via the regulation of the recruitment of the components of the endocytosis machinery and suggest USP17 may play a general role in receptor endocytosis. PMID:25026282

  10. A novel epidermal growth factor receptor-signaling platform and its targeted translation in pancreatic cancer.

    PubMed

    Gilmour, Alanna M; Abdulkhalek, Samar; Cheng, Timothy S W; Alghamdi, Farah; Jayanth, Preethi; O'Shea, Leah K; Geen, Olivia; Arvizu, Luis A; Szewczuk, Myron R

    2013-12-01

    Epidermal growth factor (EGF)-induced EGFR tyrosine kinase receptor activation in cancer cell survival responses has become a strategic molecular-targeting clinical therapeutic intent, but the failures of these targeted approaches in the clinical setting demand alternate strategies. Here, we uncover a novel neuraminidase-1 (Neu1) and matrix metalloproteinase-9 (MMP-9) cross-talk in alliance with GPCR neuromedin B, which is essential for EGF-induced receptor activation and cellular signaling. Neu1 and MMP-9 form a complex with EGFR on the cell surface. Tamiflu (oseltamivir phosphate), anti-Neu1 antibodies, broad range MMP inhibitor galardin (GM6001), neuromedin B GPCR specific antagonist BIM-23127, the selective inhibitor of whole heterotrimeric G-protein complex BIM-46174 and MMP-9 specific inhibitor dose-dependently inhibited Neu1 activity associated with EGF stimulated 3T3-hEGFR cells. Tamiflu, anti-Neu1 antibodies and MMP9i attenuated EGFR phosphorylation associated with EGF-stimulated cells. Preclinical data provide the proof-of-evidence for a therapeutic targeting of Neu1 with Tamiflu in impeding human pancreatic cancer growth and metastatic spread in heterotopic xenografts of eGFP-MiaPaCa-2 tumors growing in RAGxCγ double mutant mice. Tamiflu-treated cohort exhibited a reduction of phosphorylation of EGFR-Tyr1173, Stat1-Tyr701, Akt-Thr308, PDGFRα-Tyr754 and NFκBp65-Ser311 but an increase in phospho-Smad2-Ser465/467 and -VEGFR2-Tyr1175 in the tumor lysates from the xenografts of human eGFP-MiaPaCa-2 tumor-bearing mice. The findings identify a novel promising alternate therapeutic treatment of human pancreatic cancer. PMID:23993964

  11. TERATOGENIC RESPONSES ARE MODULATED IN MICE LACKING EXPRESSION OF EPIDERMAL GROWTH FACTOR (EGF) AND TRANSFORMING GROWTH FACTOR-ALPHA (TGF)

    EPA Science Inventory

    TITLE:
    TERATOGENIC RESPONSES ARE MODULATED IN MICE LACKING EXPRESSION OF EPIDERMAL GROWTH FACTOR (EGF) AND TRANSFORMING GROWTH FACTOR-ALPHA (TGF). AUTHORS (ALL): Abbott, Barbara D.1; Best, Deborah S.1; Narotsky, Michael G.1. SPONSOR NAME: None INSTITUTIONS (ALL): 1. Repro Tox ...

  12. Growth and differentiation in cultured human thyroid cells: effects of epidermal growth factor and thyrotropin.

    PubMed

    Errick, J E; Ing, K W; Eggo, M C; Burrow, G N

    1986-01-01

    Human thyroid cells were grown and subcultured in vitro to examine their responses to known hormones and growth factors, and to serum. The cells were obtained from surgical specimens and were either neoplastic or nonneoplastic. The effects of culture conditions on cell growth were measured by changes in cell numbers and by stimulation of [3H]thymidine incorporation. The results showed that serum (0.5%) was essential for cell proliferation, and that a mixture of insulin (10 micrograms/ml), transferrin (5 micrograms/ml), hydrocortisone (10 micrograms/ml), somatostatin (10 ng/ml), and glycyl-histidyl-lysine (10 ng/ml) enhanced the effect of serum. Maximum growth of the cells was obtained when epidermal growth factor was present at 10(-9) M. Differentiation was measured by production of thyroglobulin, which was found to be stimulated by thyrotropin. This system provides a means to study the hormonal control of growth and differentiation in human thyroid cells. PMID:3511027

  13. Novel MEK1 Mutation Identified by Mutational Analysis of Epidermal Growth Factor Receptor Signaling Pathway Genes in Lung Adenocarcinoma

    PubMed Central

    Marks, Jenifer L.; Gong, Yixuan; Chitale, Dhananjay; Golas, Ben; McLellan, Michael D.; Kasai, Yumi; Ding, Li; Mardis, Elaine R.; Wilson, Richard K.; Solit, David; Levine, Ross; Michel, Kathrin; Thomas, Roman K.; Rusch, Valerie W.; Ladanyi, Marc; Pao, William

    2008-01-01

    Genetic lesions affecting a number of kinases and other elements within the epidermal growth factor receptor (EGFR) signaling pathway have been implicated in the pathogenesis of human non–small-cell lung cancer (NSCLC). We performed mutational profiling of a large cohort of lung adenocarcinomas to uncover other potential somatic mutations in genes of this pathway that could contribute to lung tumorigenesis. We have identified in 2 of 207 primary lung tumors a somatic activating mutation in exon 2 of MEK1 (i.e., mitogen-activated protein kinase kinase 1 or MAP2K1) that substitutes asparagine for lysine at amino acid 57 (K57N) in the nonkinase portion of the kinase. Neither of these two tumors harbored known mutations in other genes encoding components of the EGFR signaling pathway (i.e., EGFR, HER2, KRAS, PIK3CA, and BRAF). Expression of mutant, but not wild-type, MEK1 leads to constitutive activity of extracellular signal–regulated kinase (ERK)-1/2 in human 293T cells and to growth factor–independent proliferation of murine Ba/F3 cells. A selective MEK inhibitor, AZD6244, inhibits mutant-induced ERK activity in 293T cells and growth of mutant-bearing Ba/F3 cells. We also screened 85 NSCLC cell lines for MEK1 exon 2 mutations; one line (NCI-H1437) harbors a Q56P substitution, a known transformation-competent allele of MEK1 originally identified in rat fibroblasts, and is sensitive to treatment with AZD6244. MEK1 mutants have not previously been reported in lung cancer and may provide a target for effective therapy in a small subset of patients with lung adenocarcinoma. PMID:18632602

  14. Characterization of PXK as a Protein Involved in Epidermal Growth Factor Receptor Trafficking ▿

    PubMed Central

    Takeuchi, Hiroshi; Takeuchi, Takako; Gao, Jing; Cantley, Lewis C.; Hirata, Masato

    2010-01-01

    The phox homology (PX) domain is a phosphoinositide-binding module that typically binds phosphatidylinositol 3-phosphate. Out of 47 mammalian proteins containing PX domains, more than 30 are denoted sorting nexins and several of these have been implicated in internalization of cell surface proteins to the endosome, where phosphatidylinositol-3-phosphate is concentrated. Here we investigated a multimodular protein termed PXK, composed of a PX domain, a protein kinase-like domain, and a WASP homology 2 domain. We show that the PX domain of PXK localizes this protein to the endosomal membrane via binding to phosphatidylinositol 3-phosphate. PXK expression in COS7 cells accelerated the ligand-induced internalization and degradation of epidermal growth factor receptors by a mechanism requiring phosphatidylinositol 3-phosphate binding but not involving the WASP homology 2 domain. Conversely, depletion of PXK using RNA interference decreased the rate of epidermal growth factor receptor internalization and degradation. Ubiquitination of epidermal growth factor receptor by the ligand stimulation was enhanced in PXK-expressing cells. These results indicate that PXK plays a critical role in epidermal growth factor receptor trafficking through modulating ligand-induced ubiquitination of the receptor. PMID:20086096

  15. MECHANISMS OF ZN-INDUCED SIGNAL INITIATION THROUGH THE EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR)

    EPA Science Inventory

    MECHANISMS OF Zn-INDUCED SIGNAL INITIATION THROUGH THE EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR)
    James M. Samet*, Lee M. Graves? and Weidong Wu?. *Human Studies Division, NHEERL, ORD, Research Triangle Park, NC 27711, and ?Center for Environmental Medicine, University of North C...

  16. Expression and localization of epidermal growth factor, transforming growth factor-α and epidermal growth factor receptor in the canine testis

    PubMed Central

    TAMADA, Hiromichi; TAKEMOTO, Kohei; TOMINAGA, Masato; KAWATE, Noritoshi; TAKAHASHI, Masahiro; HATOYA, Shingo; MATSUYAMA, Satoshi; INABA, Toshio; SAWADA, Tsutomu

    2015-01-01

    Gene expression of epidermal growth factor (EGF), transforming growth factor-α (TGF-α) and EGF receptor (EGF-R) and the localization of the corresponding proteins in the canine testis were studied. Levels of mRNA expressions were determined by semiquantitative reverse transcription polymerase chain reaction in the testes of the peripubertal (4–6 months), young adult (3–4 years), advanced adult (7–8 years) and senescent (11–16 years) groups. The EGF-R mRNA level in the testes of the peripubertal group was significantly higher than those in the other groups, whereas there was no difference in EGF and TGF-α mRNA levels among groups. Immunohistochemical stainings for EGF, TGF-α and EGF-R in the testis revealed that immunoreactivity in the seminiferous epithelium and Sertoli cell was weak and nonspecific for the stage of spermatogenesis, and distinct staining was found in Leydig cells. These results suggest that the EGF family of growth factors may be involved in testicular maturation and function in the dog. PMID:26498203

  17. Cytokinin production by plant growth promoting rhizobacteria and selected mutants.

    PubMed

    García de Salamone, I E; Hynes, R K; Nelson, L M

    2001-05-01

    One of the proposed mechanisms by which rhizobacteria enhance plant growth is through the production of plant growth regulators. Five plant growth promoting rhizobacterial (PGPR) strains produced the cytokinin dihydrozeatin riboside (DHZR) in pure culture. Cytokinin production by Pseudomonas fluorescens G20-18, a rifampicin-resistant mutant (RIF), and two TnphoA-derived mutants (CNT1, CNT2), with reduced capacity to synthesize cytokinins, was further characterized in pure culture using immunoassay and thin layer chromatography. G20-18 produced higher amounts of three cytokinins, isopentenyl adenosine (IPA), trans-zeatin ribose (ZR), and DHZR than the three mutants during stationary phase. IPA was the major metabolite produced, but the proportion of ZR and DHZR accumulated by CNT1 and CNT2 increased with time. No differences were observed between strain G20-18 and the mutants in the amounts of indole acetic acid synthesized, nor were gibberellins detected in supernatants of any of the strains. Addition of 10(-5) M adenine increased cytokinin production in 96- and 168-h cultures of strain G20-18 by approximately 67%. G20-18 and the mutants CNT1 and CNT2 may be useful for determination of the role of cytokinin production in plant growth promotion by PGPR. PMID:11400730

  18. Phosphorylation and Activation of RhoA by ERK in Response to Epidermal Growth Factor Stimulation.

    PubMed

    Tong, Junfeng; Li, Laiji; Ballermann, Barbara; Wang, Zhixiang

    2016-01-01

    The small GTPase RhoA has been implicated in various cellular activities, including the formation of stress fibers, cell motility, and cytokinesis. In addition to the canonical GTPase cycle, recent findings have suggested that phosphorylation further contributes to the tight regulation of Rho GTPases. Indeed, RhoA is phosphorylated on serine 188 (188S) by a number of protein kinases. We have recently reported that Rac1 is phosphorylated on threonine 108 (108T) by extracellular signal-regulated kinases (ERK) in response to epidermal growth factor (EGF) stimulation. Here, we provide evidence that RhoA is phosphorylated by ERK on 88S and 100T in response to EGF stimulation. We show that ERK interacts with RhoA and that this interaction is dependent on the ERK docking site (D-site) at the C-terminus of RhoA. EGF stimulation enhanced the activation of the endogenous RhoA. The phosphomimetic mutant, GFP-RhoA S88E/T100E, when transiently expressed in COS-7 cells, displayed higher GTP-binding than wild type RhoA. Moreover, the expression of GFP-RhoA S88E/T100E increased actin stress fiber formation in COS-7 cells, which is consistent with its higher activity. In contrast to Rac1, phosphorylation of RhoA by ERK does not target RhoA to the nucleus. Finally, we show that regardless of the phosphorylation status of RhoA and Rac1, substitution of the RhoA PBR with the Rac1 PBR targets RhoA to the nucleus and substitution of Rac1 PBR with RhoA PBR significantly reduces the nuclear localization of Rac1. In conclusion, ERK phosphorylates RhoA on 88S and 100T in response to EGF, which upregulates RhoA activity. PMID:26816343

  19. Phosphorylation and Activation of RhoA by ERK in Response to Epidermal Growth Factor Stimulation

    PubMed Central

    Tong, Junfeng; Li, Laiji; Ballermann, Barbara; Wang, Zhixiang

    2016-01-01

    The small GTPase RhoA has been implicated in various cellular activities, including the formation of stress fibers, cell motility, and cytokinesis. In addition to the canonical GTPase cycle, recent findings have suggested that phosphorylation further contributes to the tight regulation of Rho GTPases. Indeed, RhoA is phosphorylated on serine 188 (188S) by a number of protein kinases. We have recently reported that Rac1 is phosphorylated on threonine 108 (108T) by extracellular signal-regulated kinases (ERK) in response to epidermal growth factor (EGF) stimulation. Here, we provide evidence that RhoA is phosphorylated by ERK on 88S and 100T in response to EGF stimulation. We show that ERK interacts with RhoA and that this interaction is dependent on the ERK docking site (D-site) at the C-terminus of RhoA. EGF stimulation enhanced the activation of the endogenous RhoA. The phosphomimetic mutant, GFP-RhoA S88E/T100E, when transiently expressed in COS-7 cells, displayed higher GTP-binding than wild type RhoA. Moreover, the expression of GFP-RhoA S88E/T100E increased actin stress fiber formation in COS-7 cells, which is consistent with its higher activity. In contrast to Rac1, phosphorylation of RhoA by ERK does not target RhoA to the nucleus. Finally, we show that regardless of the phosphorylation status of RhoA and Rac1, substitution of the RhoA PBR with the Rac1 PBR targets RhoA to the nucleus and substitution of Rac1 PBR with RhoA PBR significantly reduces the nuclear localization of Rac1. In conclusion, ERK phosphorylates RhoA on 88S and 100T in response to EGF, which upregulates RhoA activity. PMID:26816343

  20. Kinetics of growth and differentiation of cultured human epidermal keratinocytes

    SciTech Connect

    Albers, K.M.

    1985-01-01

    A study was made of the interrelationship between replication and differentiation in cultures of human epidermal keratinocytes. Measures of both parameters were made using newly developed methods to quantify the rate at which keratinocytes replicate and the rate at which they withdraw from the cell cycle. Keratinocyte replication was measured by determining the cell doubling time, labeling index, and cell cycle duration. Cell cycle length was measured using a double label assay that determines the length of time between two successive phases of DNA synthesis. The first DNA synthesis phase was marked by labeling keratinocytes with /sup 14/C-thymidine. At the next round of DNA synthesis, cells were labeled with bromodeoxyuridine, a heavy analog of thymidine. The cell cycle length is given by the time required for the /sup 14/C-labeled DNA to become double labeled. To measure keratinocyte differentiation, the rate at which cells withdraw from the cell cycle was determined. To measure withdrawal, the percentage of cells labeled by a pulse of /sup 14/C-thymidine that failed to undergo a second cycle of DNA synthesis, as measured by bromodeoxyuridine incorporation, was determined. Cells which failed to undergo a second cycle of synthesis were considered to have differentiated and withdrawn from the cell cycle.

  1. Characterization of insulin-like growth factor I and epidermal growth factor receptors in meningioma

    SciTech Connect

    Kurihara, M.; Tokunaga, Y.; Tsutsumi, K.; Kawaguchi, T.; Shigematsu, K.; Niwa, M.; Mori, K. )

    1989-10-01

    Receptors for insulin-like growth factor I (IGF-I) and epidermal growth factor (EGF) were localized and characterized in eight samples of human meningioma (four fibrous, two meningothelial, and two angioblastic types), using quantitative autoradiographic techniques. Effects of both growth factors on deoxyribonucleic acid (DNA) synthesis in the cultured meningioma cells were examined. High numbers of specific binding sites for both IGF-I and EGF were homogeneously present in tissue sections derived from fibrous and meningothelial types of meningiomas, whereas binding sites for these growth factors were not detectable in adjacent leptomeninges. While relatively large numbers of IGF-I binding sites were located in the wall of the intratumoral vasculature, the number of binding sites in the stromal component was lower in angioblastic-type meningiomas, including a low number of EGF binding sites detected only in the stromal portion. Scatchard analysis revealed the presence of a single class of high-affinity binding sites for both IGF-I and EGF in the meningiomas examined (dissociation constant (Kd) = 0.6 to 2.9 nM, and the maximum number of binding sites (Bmax) = 16 to 80 fmol/mg for IGF-I; and Kd = 0.6 to 4.0 nM, Bmax = 3 to 39 fmol/mg for EGF). Both growth factors increased the synthesis of DNA, in a dose-dependent manner, as measured by 3H-thymidine incorporation. The combination of IGF-I and EGF synergistically stimulated the synthesis of DNA, and the effects seen with 10% fetal bovine serum could be reproduced at a concentration of 10(-10) M. These observations can be interpreted to mean that both IGF-I and EGF may be involved in the growth modulation of meningiomas, possibly through paracrine or autocrine mechanisms.

  2. Epidermal Growth Factor Receptors with Tyrosine Kinase Domain Mutations Exhibit Reduced Cbl Association, Poor Ubiquitylation, and Down-regulation but Are Efficiently Internalized

    PubMed Central

    Padrón, David; Sato, Mitsuo; Shay, Jerry W.; Gazdar, Adi F.; Minna, John D.; Roth, Michael G.

    2010-01-01

    Some non–small cell lung cancers (NSCLC) with epidermal growth factor receptor (EGFR) tyrosine kinase domain mutations require altered signaling through the EGFR for cell survival and are exquisitely sensitive to tyrosine kinase inhibitors. EGFR down-regulation was impaired in two NSCLCs with EGFR tyrosine kinase domain mutations. The mutant receptors were poorly ubiquitylated and exhibited decreased association with the ubiquitin ligase Cbl. Over-expression of Cbl increased the degradation of EGFR. Treatment with geldanamycin, an inhibitor of the chaperone heat shock protein 90, also increased both wild-type and mutant EGFR degradation without affecting internalization. The down-regulation of the mutant EGFRs was still impaired when they were stably expressed in normal human bronchial epithelial cells. Thus, the mutations that altered signaling also decreased the interaction of EGFRs with the mechanisms responsible for endosomal sorting. PMID:17699773

  3. Activation of c-fos gene expression by a kinase-deficient epidermal growth factor receptor.

    PubMed Central

    Eldredge, E R; Korf, G M; Christensen, T A; Connolly, D C; Getz, M J; Maihle, N J

    1994-01-01

    The intrinsic tyrosine kinase activity of the epidermal growth factor receptor (EGFR) has been shown to be responsible for many of the pleiotropic intracellular effects resulting from ligand stimulation [W.S. Chen, C.S. Lazar, M. Poenie, R.Y. Tsien, G.N. Gill, and M.G. Rosenfeld, Nature (London) 328:820-823, 1987; A.M. Honegger, D. Szapary, A. Schmidt, R. Lyall, E. Van Obberghen, T.J. Dull, A. Ulrich, and J. Schlessinger, Mol. Cell. Biol. 7:4568-4571, 1987]. Recently, however, it has been shown that addition of ligand to cells expressing kinase-defective EGFR mutants can result in the phosphorylation of mitogen-activated protein kinase (R. Campos-González and J.R. Glenney, Jr., J. Biol. Chem. 267:14535-14538, 1992; E. Selva, D.L. Raden, and R.J. Davis, J. Biol. Chem. 268:2250-2254, 1993), as well as stimulation of DNA synthesis (K.J. Coker, J.V. Staros, and C.A. Guyer, Proc. Natl. Acad. Sci. USA 91:6967-6971, 1994). Moreover, mitogen-activated protein kinase has been shown to phosphorylate the transcription factor p62TCF in vitro, leading to enhanced ternary complex formation between p62TCF, p67SRF, and the c-fos serum response element (SRE) [H. Gille, A.D. Sharrocks, and P.E. Shaw, Nature (London) 358:414-417, 1992]. On the basis of these observations, we have investigated the possibility that the intrinsic tyrosine kinase activity of the EGFR may not be necessary for transcriptional activation mediated via p62TCF. Here, we demonstrate that a kinase-defective EGFR mutant can signal ligand-induced expression of c-fos protein and that a significant component of this induction appears to be mediated at the transcriptional level. Investigation of transcriptional activation mediated by the c-fos SRE shows that this response is impaired by mutations in the SRE which eliminate binding of p62(TCF). These data indicate that information inherent in the structure of the EGFR can be accessed by ligand stimulation independent of the receptor's catalytic kinase function

  4. Epidermal Growth Factor Receptor Inhibitors: A Review of Cutaneous Adverse Events and Management

    PubMed Central

    Chanprapaph, K.; Vachiramon, V.; Rattanakaemakorn, P.

    2014-01-01

    Epidermal growth factor inhibitors (EGFRI), the first targeted cancer therapy, are currently an essential treatment for many advance-stage epithelial cancers. These agents have the superior ability to target cancers cells and better safety profile compared to conventional chemotherapies. However, cutaneous adverse events are common due to the interference of epidermal growth factor receptor (EGFR) signaling in the skin. Cutaneous toxicities lead to poor compliance, drug cessation, and psychosocial discomfort. This paper summarizes the current knowledge concerning the presentation and management of skin toxicity from EGFRI. The common dermatologic adverse events are papulopustules and xerosis. Less common findings are paronychia, regulatory abnormalities of hair growth, maculopapular rash, mucositis, and postinflammatory hyperpigmentation. Radiation enhances EGFRI rash due to synergistic toxicity. There is a positive correlation between the occurrence and severity of cutaneous adverse effects and tumor response. To date, prophylactic systemic tetracycline and tetracycline class antibiotics have proven to be the most effective treatment regime. PMID:24723942

  5. Immunohistochemical localization of the epidermal growth factor receptor in normal human tissues.

    PubMed

    Damjanov, I; Mildner, B; Knowles, B B

    1986-11-01

    A monoclonal antibody recognizing an epitope of the external domain of the human epidermal growth factor (EGF) receptor was used to localize this protein in selected normal human tissues. Two patterns of reactivity were recognized: strong linear or granular cell surface staining, and granular cytoplasmic staining. In one tissue, the endometrium, a change in the reaction pattern associated with changes in hormonal stimulation was observed. In some tissues such as epididymis and skin, the antibody showed surface reactivity with cells considered to represent part of the proliferating cell compartment, whereas in liver, pancreas, and prostate, all cells were reactive with the antibody, though the predominant reactivity was localized in the cytoplasm. The differential distribution of the epidermal growth factor receptor to specific cell types and cellular compartments may signify adaptations that permit growth factor responsiveness in a milieu of available ligand. PMID:3534450

  6. Dyskeratosis Congenita Dermal Fibroblasts are Defective in Supporting the Clonogenic Growth of Epidermal Keratinocytes

    PubMed Central

    Buckingham, Erin M.; Goldman, Frederick D.; Klingelhutz, Aloysius J.

    2012-01-01

    Telomere shortening is associated with cellular senescence and aging. Dyskeratosis congenita (DC) is a premature aging syndrome caused by mutations in genes for telomerase components or telomere proteins. DC patients have very short telomeres and exhibit aging-associated pathologies including epidermal abnormalities and bone marrow failure. Here, we show that DC skin fibroblasts are defective in their ability to support the clonogenic growth of epidermal keratinocytes. Conditioned media transfer experiments demonstrated that this defect was largely due to lack of a factor or factors secreted from the DC fibroblasts. Compared to early passage normal fibroblasts, DC fibroblasts express significantly lower transcript levels of several genes that code for secreted proteins, including Insulin-like Growth Factor 1 (IGF1) and Hepatocyte Growth Factor (HGF). Aged normal fibroblasts with short telomeres also had reduced levels of IGF1 and HGF, similar to early passage DC fibroblasts. Knockdown of IGF1 or HGF in normal fibroblasts caused a reduction in the capacity of conditioned media from these fibroblasts to support keratinocyte clonogenic growth. Surprisingly, reconstitution of telomerase in DC fibroblasts did not significantly increase transcript levels of IGF1 or HGF or substantially increase the ability of the fibroblasts to support keratinocyte growth, indicating that the gene expression defect is not readily reversible. Our results suggest that telomere shortening in dermal fibroblasts leads to reduction in expression of genes such as IGF1 and HGF and that this may cause a defect in supporting normal epidermal proliferation. PMID:23251848

  7. Chemical synthesis of a gene for human epidermal growth factor urogastrone and its expression in yeast.

    PubMed Central

    Urdea, M S; Merryweather, J P; Mullenbach, G T; Coit, D; Heberlein, U; Valenzuela, P; Barr, P J

    1983-01-01

    We have chemically synthesized and expressed in yeast a gene coding for human epidermal growth factor (urogastrone), a 53-amino-acid polypeptide that has been shown to promote epithelial cell proliferation and to inhibit gastric acid secretion. The synthetic gene, consisting of 170 base pairs, was designed with yeast-preferred codons and assembled by enzymatic ligation of synthetic fragments produced by phosphoramidite chemistry. The DNA synthesis protocol used allows for facile synthesis of oligonucleotides larger than 50 bases. Yeast cells were transformed with plasmids containing the synthetic gene under control of a yeast glyceraldehyde-3-phosphate dehydrogenase gene promoter and were shown to synthesize a biologically active human epidermal growth factor. Images PMID:6369317

  8. Successful human epidermal growth receptor 2-targeted therapy beyond disease progression for extramammary Paget's disease.

    PubMed

    Watanabe, Satomi; Takeda, Masayuki; Takahama, Takayuki; Iwasa, Tsutomu; Tsurutani, Junji; Tanizaki, Junko; Shimizu, Toshio; Sakai, Kazuko; Wada, Yoshitaka; Isogai, Noritaka; Nishio, Kazuto; Nakagawa, Kazuhiko

    2016-06-01

    Extramammary Paget's disease is a malignant intraepithelial carcinoma, which constitutes less than 1 % of all vulvar malignancies. Surgical resection is the first treatment of choice and standard chemotherapy has not been established for advanced or recurrent disease. Experimental and clinical studies have identified human epidermal growth receptor 2 as a potential therapeutic target. A 63-year-old male was referred for recurrent extramammary Paget's disease after surgery. Human epidermal growth receptor 2 was shown to be overexpressed and amplified by immunohistochemical analysis and fluorescence in situ hybridization analysis, respectively. After two cycles of trastuzumab monotherapy, all lymph node metastases decreased in size. However, he experienced recurrence in the lymph nodes during the seven courses of trastuzumab. As a subsequent treatment, trastuzumab was administered in combination with docetaxel and pertuzumab; clinical response was sustained for 12 months without significant adverse events. PMID:26856856

  9. Human Epidermal Growth Factor Receptor 2 (HER2) in Cancers: Overexpression and Therapeutic Implications

    PubMed Central

    Iqbal, Nida; Iqbal, Naveed

    2014-01-01

    Human epidermal growth factor receptor 2 (HER2) is a member of the epidermal growth factor receptor family having tyrosine kinase activity. Dimerization of the receptor results in the autophosphorylation of tyrosine residues within the cytoplasmic domain of the receptors and initiates a variety of signaling pathways leading to cell proliferation and tumorigenesis. Amplification or overexpression of HER2 occurs in approximately 15–30% of breast cancers and 10–30% of gastric/gastroesophageal cancers and serves as a prognostic and predictive biomarker. HER2 overexpression has also been seen in other cancers like ovary, endometrium, bladder, lung, colon, and head and neck. The introduction of HER2 directed therapies has dramatically influenced the outcome of patients with HER2 positive breast and gastric/gastroesophageal cancers; however, the results have been proved disappointing in other HER2 overexpressing cancers. This review discusses the role of HER2 in various cancers and therapeutic modalities available targeting HER2. PMID:25276427

  10. Expression of an Exogenous Growth Hormone Gene by Transplantable Human Epidermal Cells

    NASA Astrophysics Data System (ADS)

    Morgan, Jeffrey R.; Barrandon, Yann; Green, Howard; Mulligan, Richard C.

    1987-09-01

    Retrovirus-mediated gene transfer was used to introduce a recombinant human growth hormone gene into cultured human keratinocytes. The transduced keratinocytes secreted biologically active growth hormone into the culture medium. When grafted as an epithelial sheet onto athymic mice, these cultured keratinocytes reconstituted an epidermis that was similar in appearance to that resulting from normal cells, but from which human growth hormone could be extracted. Transduced epidermal cells may prove to be a general vehicle for the delivery of gene products by means of grafting.

  11. Epidermal growth factor receptor in non-small cell lung cancer

    PubMed Central

    2015-01-01

    Following the identification of a group of patients in the initial tyrosine kinase inhibitor (TKI) trials for lung cancer, there has been detailed focus on which patients may benefit from inhibitor therapy. This article reviews the background, genetics and prevalence of epidermal growth factor mutations in non-small cell lung cancer (NSCLC). Additionally, the prevalence in unselected patients is compared against various other reviews. PMID:25870793

  12. Colorimetric growth assay for epidermal cell cultures by their crystal violet binding capacity.

    PubMed

    Bonnekoh, B; Wevers, A; Jugert, F; Merk, H; Mahrle, G

    1989-01-01

    The application of a simple, rapid, and inexpensive colorimetric growth assay was tested for human epidermal cells subcultured in uncoated plastic dishes. Cell layers were incubated with a crystal violet (CV) solution (0.2% with ethanol 2% in 0.5 M Tris-Cl buffer, pH 7.8) for 10 min at room temperature. After rinsing with 0.5 M Tris-Cl (pH 7.8) the cell layer was dried and decolorized with a sodium-dodecylsulfate solution (0.5% with ethanol 50% in 0.5 M Tris-Cl, pH 7.8) for 60 min at 37 degrees C. The extinction of the supernatant was read at the absorption maximum of 586 nm. The protein content of attached cells as classical parameter for quantifying cell growth was strongly related to CV extinction with a correlation coefficient of r = 0.98. Furthermore, the subcellular protein binding qualities of CV were analyzed. The water-soluble protein fraction of cultured epidermal cells was separated by sodium-dodecylsulfate polyacrylamide gel electrophoresis and stained with CV. We found a staining pattern which was qualitatively very similar to that of Coomassie blue, however less intense. Keratin electrophoresis revealed an affinity of CV to the 48, 50, and 56 kD cytokeratins. In conclusion, this CV assay is a reliable and simple method for the monitoring of epidermal cell growth in cultures. PMID:2482013

  13. Early signaling dynamics of the epidermal growth factor receptor.

    PubMed

    Reddy, Raven J; Gajadhar, Aaron S; Swenson, Eric J; Rothenberg, Daniel A; Curran, Timothy G; White, Forest M

    2016-03-15

    Despite extensive study of the EGF receptor (EGFR) signaling network, the immediate posttranslational changes that occur in response to growth factor stimulation remain poorly characterized; as a result, the biological mechanisms underlying signaling initiation remain obscured. To address this deficiency, we have used a mass spectrometry-based approach to measure system-wide phosphorylation changes throughout the network with 10-s resolution in the 80 s after stimulation in response to a range of eight growth factor concentrations. Significant changes were observed on proteins far downstream in the network as early as 10 s after stimulation, indicating a system capable of transmitting information quickly. Meanwhile, canonical members of the EGFR signaling network fall into clusters with distinct activation patterns. Src homology 2 domain containing transforming protein (Shc) and phosphoinositol 3-kinase (PI3K) phosphorylation levels increase rapidly, but equilibrate within 20 s, whereas proteins such as Grb2-associated binder-1 (Gab1) and SH2-containing tyrosine phosphatase (SHP2) show slower, sustained increases. Proximity ligation assays reveal that Shc and Gab1 phosphorylation patterns are representative of separate timescales for physical association with the receptor. Inhibition of phosphatases with vanadate reveals site-specific regulatory mechanisms and also uncovers primed activating components in the network, including Src family kinases, whose inhibition affects only a subset of proteins within the network. The results presented highlight the complexity of signaling initiation and provide a window into exploring mechanistic hypotheses about receptor tyrosine kinase (RTK) biology. PMID:26929352

  14. Hepatocyte uptake and nuclear binding of epidermal growth factor (EGF)

    SciTech Connect

    Moriarity, D.M.; Underwood, T.

    1987-05-01

    The internalization of /sup 125/I-EGF and its cell-membrane receptor by target cells suggests a possible intracellular role for EGF and/or its receptor. They have examined the uptake of /sup 125/I-EGF by primary cultures of adult rat hepatocytes after 1, 24 and 48 hours of incubation in the presence of the growth factor. A significant increase in the association of radioactivity with various nuclear fractions was observed between 1 and 24 hours incubation. After 1 hour approximately 2% of the total specific binding was associated with both the nuclear sap proteins extractable with 0.14 M NaCl and with the residual nucleoplasm, while about 1% or less was associated with the nuclear membrane and the chromatin fractions. After 24 hours the percentage associated with the nuclear membrane and chromatin fractions increased 2-4 fold. Binding of /sup 125/I-EGF to isolated nuclei from intact livers of adult rats followed by fractionation of the nuclei after incubation with /sup 125/I-EGF indicated that after 60 min at 37/sup 0/C there was a substantial amount of specific binding associated with the nucleoplasm, nuclear membranes and chromatin fractions. These data indicate that specific interactions of EGF with nuclear components occur in both intact normal hepatocytes and in isolated nuclei from intact liver.

  15. A sensitive and practical method to detect the T790M mutation in the epidermal growth factor receptor

    PubMed Central

    ZHAO, JING; FENG, HUA-HUA; ZHAO, JIN-YIN; LIU, LI-CHENG; XIE, FEI-FEI; XU, YAN; CHEN, MIN-JIANG; ZHONG, WEI; LI, LONG-YUN; WANG, HAN-PING; ZHANG, LI; XIAO, YI; CHEN, WEI-JUN; WANG, MENG-ZHAO

    2016-01-01

    The current study aimed to develop a method to rapidly, sensitively and practically screen for the epidermal growth factor receptor (EGFR) T790M mutation. This method combines an allele-specific competitive blocker (ACB) with a TaqMan quantitative polymerase chain reaction (PCR) amplification refractory mutation system (ARMS) in a one-step reaction. Using a mimic of a human genomic DNA panel containing serially diluted mutant alleles, the performance efficacy of this method was assessed. Using this method, the EGFR T790M mutation was detected in tyrosine kinase inhibitor (TKI)-naïve samples obtained from 27 non-small cell lung cancer (NSCLC) patients with EGFR-activating mutations. The association between de novo T790M mutations and the clinical benefit of EGFR-TKI treatment was also analysed. The sensitivity of this method was as low as 0.01%. In the samples from the 27 NSCLC patients, this method identified 6 mutant patients (22.2%), which was higher than the detection rate with scorpion ARMS (0.0%). No clinical variables were associated with the occurrence of a de novo T790M mutation. The median progression-free survival time in the TKI-naïve patients with a T790M mutation was shorter that that of patients without the mutation, but the difference was not significant (3.2 vs. 19.5 months, respectively; P=0.256). The median overall survival time in the groups with or without T790M mutation also did not significantly differ (10 vs. 20 months, respectively; P=0.689). Overall, the ACB-ARMS PCR method could be useful for detecting the EGFR T790M mutation in clinical samples that contain only a small number of mutant alleles. The clinical significance of a de novo T790M mutation should be further investigated. PMID:27073519

  16. Effects of epidermal growth factor on neural crest cells in tissue culture

    SciTech Connect

    Erickson, C.A.; Turley, E.A.

    1987-04-01

    Epidermal growth factor (EGF) stimulates the release of hyaluronic acid (HA) and chondroitin sulfate proteoglycan (CSPG) from quail trunk neural crest cultures in a dose-dependent fashion. It also promotes the expression of cell-associated heparan sulfate proteoglycan (HSPG) as detected by immunofluorescence and immunoprecipitation of the /sup 3/H-labeled proteoglycan. Furthermore, EGF stimulates (/sup 3/H)thymidine incorporation into total cell DNA. These results raise the possibility that EGF or an analogous growth factor is involved in regulation of neural crest cell morphogenesis.

  17. The Role of Endogenous Epidermal Growth Factor Receptor Ligands in Mediating Corneal Epithelial Homeostasis

    PubMed Central

    Peterson, Joanne L.; Phelps, Eric D.; Doll, Mark A.; Schaal, Shlomit; Ceresa, Brian P.

    2014-01-01

    Purpose. To provide a comprehensive study of the biological role and therapeutic potential of six endogenous epidermal growth factor receptor (EGFR) ligands in corneal epithelial homeostasis. Methods. Kinetic analysis and dose response curves were performed by using in vitro and in vivo wound-healing assays. Biochemical assays were used to determine receptor expression and activity. Human tears were collected and quantitatively analyzed by multianalyte profiling for endogenous EGFR ligands. Results. Epidermal growth factor receptor ligands improved wound closure and activated EGFR, but betacellulin (BTC) was the most efficacious promoter of wound healing in vitro. In contrast, only epidermal growth factor (EGF) promoted wound healing in vivo. Human tears from 25 healthy individuals showed EGFR ligands at these average concentrations: EGF at 2053 ± 312.4 pg/mL, BTC at 207 ± 39.4 pg/mL, heparin-binding EGF at 44 ± 5.8 pg/mL, amphiregulin at 509 ± 28.8 pg/mL, transforming growth factor-α at 84 ± 19 pg/mL, and epiregulin at 52 ± 15 pg/mL. Conclusions. Under unwounded conditions, only EGF was present at concentrations near the ligand's Kd for the receptor, indicating it is the primary mediator of corneal epithelial homeostasis. Other ligands were present but at concentrations 11- to 7500-fold less their Kd, preventing significant ligand binding. Further, the high levels of EGF and its predicted binding preclude receptor occupancy by exogenous ligand and can explain the discrepancy between the in vitro and in vivo data. Therefore, therapeutic use of EGFR ligands may be unpredictable and impractical. PMID:24722692

  18. Fetuin-A promotes primary keratinocyte migration: independent of epidermal growth factor receptor signalling.

    PubMed

    Wang, Xue-Qing; Hung, Betsy S; Kempf, Margit; Liu, Pei-Yun; Dalley, Andrew J; Saunders, Nicholas A; Kimble, Roy M

    2010-08-01

    Previously, we reported that fetuin-A is a major component of ovine foetal skin and significantly enhances 'wound closure' in primary keratinocyte cultures. In this study, we found that in human newborn foreskin, a high level of fetuin-A protein is detected throughout the dermis. However, in adult skin a low level of fetuin-A is observed throughout the epidermal and dermal layers, except at regions surrounding hair follicles and at the epidermal-dermal junction where the level of fetuin-A is relatively high. Fetuin-A significantly induces actin-rich protrusions in human primary keratinocytes. Interestingly, blockade of epidermal growth factor (EGF) receptor signalling has a limited effect on fetuin-A promoted 'wound closure' on primary human keratinocytes, but significantly inhibits fetuin-A's effect on HaCaT cells. These results indicate that high levels of fetuin-A may partially contribute to less scar formation in newborn foreskin and that the effect of fetuin-A on primary keratinocyte migration is independent of EGF receptor signalling. PMID:19758338

  19. Expression and activation of erbB-2 and epidermal growth factor receptor in lung adenocarcinomas.

    PubMed Central

    Rachwal, W. J.; Bongiorno, P. F.; Orringer, M. B.; Whyte, R. I.; Ethier, S. P.; Beer, D. G.

    1995-01-01

    ErbB-2 and EGFR (epidermal growth factor receptor) are expressed in lung adenocarcinomas and associated with a poor prognosis. Immunocytochemical analysis revealed erbB-2 and EGFR coexperession as a characteristic feature of most lung adenocarcinomas, and at levels of receptor expression present in bronchial epithelial cells. In primary lung tumours and cell lines, erbB-2 detected using Western blot analysis demonstrated low-level phosphotyrosine staining of the 185 kDa band, as compared with breast cancer cell lines. A549 and A427 lung adenocarcinoma cells treated with neu differentiation factor (NDF) showed increased erbB-2 phosphotyrosine staining, but to a much lesser extent than breast cancer cells. The lung cells were examined for expression of the potential autocrine growth factors NDF and transforming growth factor alpha (TGF-alpha) by Northern blot analysis. Both NDF and TFG-alpha mRNA were abundantly expressed in the A549 cells. NDF mRNA was highest during active cell proliferation and decreased in confluent cells or after treatment with the growth-inhibitory steroid dexamethasone. Primary tumours and cell lines expressed EGFR, showing higher basal level phosphotyrosine staining than erbB-2. Treatment with NDF and EGF (epidermal growth factor) stimulated cell growth, and in A549 cells the presence of both factors provided an additive increase in cell growth. The growth stimulus that ligand-activated erbB-2 and EGFR provides to lung adenocarcinoma cells may establish a background of continued cell proliferation over which other critical transforming events may occur. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:7599067

  20. The metalloendopeptidase nardilysin (NRDc) is potently inhibited by heparin-binding epidermal growth factor-like growth factor (HB-EGF).

    PubMed Central

    Hospital, Véronique; Nishi, Eiichiro; Klagsbrun, Michael; Cohen, Paul; Seidah, Nabil G; Prat, Annik

    2002-01-01

    Nardilysin (N-arginine dibasic convertase, or NRDc) is a cytosolic and cell-surface metalloendopeptidase that, in vitro, cleaves substrates upstream of Arg or Lys in basic pairs. NRDc differs from most of the other members of the M16 family of metalloendopeptidases by a 90 amino acid acidic domain (DAC) inserted close to its active site. At the cell surface, NRDc binds heparin-binding epidermal growth factor-like growth factor (HB-EGF) and enhances HB-EGF-induced cell migration. An active-site mutant of NRDc fulfills this function as well as wild-type NRDc, indicating that the enzyme activity is not required for this process. We now demonstrate that NRDc starts at Met(49). Furthermore, we show that HB-EGF not only binds to NRDc but also potently inhibits its enzymic activity. NRDc-HB-EGF interaction involves the 21 amino acid heparin-binding domain (P21) of the growth factor, the DAC of NRDc and most probably its active site. Only disulphide-bonded P21 dimers are inhibitory. We also show that Ca(2+), via the DAC, regulates both NRDc activity and HB-EGF binding. We conclude that the DAC is thus a key regulatory element for the two distinct functions that NRDc fulfills, i.e. as an HB-EGF modulator and a peptidase. PMID:12095415

  1. Targeting epidermal growth factor receptor for head and neck squamous cell carcinoma: still lost in translation?

    PubMed Central

    Chapman, Christopher H.; Saba, Nabil F.

    2016-01-01

    The epidermal growth factor receptor (EGFR) is preferentially expressed in head and neck squamous cell carcinoma (HNSCC), and is a promising therapeutic target. Yet other than cetuximab, no agent targeting EGFR has been approved for this disease, and none has shown benefit over the standard of care. Several randomized trials of antibody and small molecule agents have found no new indication for these agents, despite their initial promise. In this review, we examine the major clinical evidence and discuss potential future developments of translational science in this area, including use of these agents in risk-stratified subgroups, inhibition of downstream/parallel targets, and combination with immunotherapy. PMID:27004227

  2. Epidermal growth factor receptor and glioblastoma multiforme: molecular basis for a new approach.

    PubMed

    Belda-Iniesta, Cristóbal; de Castro Carpeño, Javier; Sereno, María; González-Barón, Manuel; Perona, Rosario

    2008-02-01

    High-grade gliomas are the most common primary malignant brain tumours. Surgery, radiotherapy and chemotherapy are the cornerstone of actual treatment. In spite of large therapeutic efforts, overall survival is still poor. New molecular data allow a new molecular classification for high-grade gliomas and open a therapeutic window for targeted therapy. Molecular diagnostic tools may provide a basis for receptor-based therapies and enough information to personalise future treatments. In this regard, epidermal growth factor receptor (EGFR) is a target that will play a critical role in the management of glioma patients. This review summarises basic and preclinical data that support future use of therapies against EGFR. PMID:18258505

  3. Nanostructured materials detect epidermal growth factor receptor, neuron specific enolase and carcinoembryonic antigen

    NASA Astrophysics Data System (ADS)

    Stefan-van Staden, Raluca-Ioana; Comnea-Stancu, Ionela Raluca; Surdu-Bob, Carmen Cristina; Badulescu, Marius

    2015-09-01

    New nanostructured materials based on thin films of Cu and Ni deposited on textile material (veil), as well as gold nanostructured microspheres were used for the design of new stochastic sensors. The stochastic sensors were able to detect simultaneously a panel of biomarkers comprising epidermal growth factor receptor, neuron specific enolase, and carcinoembryonic antigen from whole blood samples with high reliabilities - recovery tests higher than 97.00%, with a RSD (%) lower than 0.1%. The stochastic sensors had shown high sensitivities and low determination levels for the detection of the proposed panel of biomarkers making early detection of lung cancer possible by fast screening of whole blood.

  4. Epidermal growth factor receptors in non-small cell lung cancer.

    PubMed Central

    Veale, D.; Ashcroft, T.; Marsh, C.; Gibson, G. J.; Harris, A. L.

    1987-01-01

    The epidermal growth factor receptor is homologous to the oncogene erb-beta and is the receptor for a class of tumour growth factors (TGF-alpha). The clinical correlations with its expression were studied in 77 non-small cell lung cancers (NSCLC). They were stained for epidermal growth factor receptor (EGFr) by means of an indirect immunoperoxidase technique using a monoclonal antibody against the receptor. Normal lung tissue and normal bronchus were stained for comparison. Cancer tissue showed significantly increased staining compared to normal lung (P less than 0.05). Staining for EGFr in 40 squamous carcinomas was significantly stronger than in 37 specimens of other types of NSCLC (P less than 0.05), and staining in stage three NSCLC was stronger than in stage 1 and 2 (P less than 0.05). These results suggest that the presence of a high intensity of staining for EGF receptor is associated with spread of human non-small cell lung cancer and this receptor may be a suitable target for therapy. Images Figure 1 Figure 2 PMID:3038157

  5. Altered (/sup 125/I)epidermal growth factor binding and receptor distribution in psoriasis

    SciTech Connect

    Nanney, L.B.; Stoscheck, C.M.; Magid, M.; King, L.E. Jr.

    1986-03-01

    Stimulation of growth and differentiation of human epidermis by epidermal growth factor (EGF) is mediated by its binding to specific receptors. Whether EGF receptors primarily mediate cell division or differentiation in hyperproliferative disease such as psoriasis vulgaris is unclear. To study the pathogenesis of psoriasis, 4-mm2 punch biopsy specimens of normal, uninvolved, and involved psoriatic skin were assayed for EGF receptors by autoradiographic, immunohistochemical, and biochemical methods. Using autoradiographic and immunohistochemical methods, basal keratinocytes were found to contain the greatest number of EGF binding sites and immunoreactive receptors as compared to the upper layers of the epidermis in both normal epidermis and psoriatic skin. No EGF receptor differences between normal and psoriatic epidermis were observed in this layer. In the upper layers of the epidermis, a 2-fold increase in EGF binding capacity was observed in psoriatic skin as compared with normal thin or thick skin. Biochemical methods indicated that (/sup 125/I)EGF binding was increased in psoriatic epidermis as compared with similar thickness normal epidermis when measured on a protein basis. Epidermal growth factor was shown to increase phosphorylation of the EGF receptor in skin. EGF receptors retained in the nonmitotic stratum spinosum and parakeratotic stratum corneum may reflect the incomplete, abnormal differentiation that occurs in active psoriatic lesions. Alternatively, retained EGF receptors may play a direct role in inhibiting cellular differentiation in the suprabasal layers.

  6. The Epidermal Growth Factor Receptor Is Involved in Angiotensin II But Not Aldosterone/Salt-Induced Cardiac Remodelling

    PubMed Central

    Griol-Charhbili, Violaine; Escoubet, Brigitte; Sadoshima, Junichi; Farman, Nicolette; Jaisser, Frederic

    2012-01-01

    Experimental and clinical studies have shown that aldosterone/mineralocorticoid receptor (MR) activation has deleterious effects in the cardiovascular system; however, the signalling pathways involved in the pathophysiological effects of aldosterone/MR in vivo are not fully understood. Several in vitro studies suggest that Epidermal Growth Factor Receptor (EGFR) plays a role in the cardiovascular effects of aldosterone. This hypothesis remains to be demonstrated in vivo. To investigate this question, we analyzed the molecular and functional consequences of aldosterone exposure in a transgenic mouse model with constitutive cardiomyocyte-specific overexpression of a mutant EGFR acting as a dominant negative protein (DN-EGFR). As previously reported, Angiotensin II-mediated cardiac remodelling was prevented in DN-EGFR mice. However, when chronic MR activation was induced by aldosterone-salt-uninephrectomy, cardiac hypertrophy was similar between control littermates and DN-EGFR. In the same way, mRNA expression of markers of cardiac remodelling such as ANF, BNF or β-Myosin Heavy Chain as well as Collagen 1a and 3a was similarly induced in DN-EGFR mice and their CT littermates. Our findings confirm the role of EGFR in AngII mediated cardiac hypertrophy, and highlight that EGFR is not involved in vivo in the damaging effects of aldosterone on cardiac function and remodelling. PMID:22291909

  7. Role of mesenchymal-epithelial transition amplification in resistance to anti-epidermal growth factor receptor agents

    PubMed Central

    Morgillo, Floriana; De Mello, Ramon Andrade; Mountzios, Giannis

    2015-01-01

    All patients with epidermal growth factor receptor (EGFR) mutant advanced non-small cell lung cancer (NSCLC) treated with an EGFR-tyrosine kinase inhibitor (EGFR-TKI) such as gefitinib, erlotinib or afatinib will progress after a median of 9-12 months. So far, development of a secondary T790M mutation represents the most common (approximately 60%) mechanism of resistance to these drugs. The relative rarity of mesenchymal-epithelial transition (MET) amplification in NSCLC suggests that this event plays a limited role in primary resistance to EGFR-TKI. In contrast, MET gene amplification has been detected as a secondary event representing one of the most relevant mechanisms involved in the acquired resistance to EGFR-TKIs both in preclinical and clinical studies. The aim of this review is to discuss the role of MET amplification as a mechanism of resistance to anti-EGFR therapies and to review strategies which aim at overcoming this mechanism of resistance, including studies assessing drug combinations targeting both EGFR and MET pathways. PMID:25992380

  8. Regulation of human papillomavirus type 16 DNA replication by E2, glucocorticoid hormone and epidermal growth factor.

    PubMed

    Piccini, A; Storey, A; Romanos, M; Banks, L

    1997-08-01

    The E1 and E2 proteins are the only human papillomavirus (HPV) proteins required for transient replication of plasmids containing the viral origin. The E2 gene products play key roles in both viral transcription and replication. In this study we have analysed in further detail the nature of the association between E1 and E2 using a series of E2 proteins mutated in conserved regions of the N-terminal domain. These proteins were tested for their ability to activate transcription and to stimulate viral DNA replication. Several of these mutants revealed that the two functions of E2 can be separated, and that they define three widely spaced regions of the N-terminal domain which are important for DNA replication, two of which retain E1-binding activity. This suggests that E2 may have a role in viral DNA replication other than simply localizing E1 to the origin of replication. Additional important elements for regulating viral gene expression have been shown to be glucocorticoid hormones and epidermal growth factor (EGF). We show here that they may also be involved in regulating viral DNA replication. Our studies show that the addition of glucocorticoid hormone significantly stimulates viral DNA replication. In contrast, addition of EGF results in modest repression of viral DNA replication. These results have important implications for the pathogenesis of HPV infection and suggest that the relative levels of E2, glucocorticoid hormone and EGF may significantly affect the outcome of an HPV infection. PMID:9266995

  9. Ecdysone signaling opposes epidermal growth factor signaling in regulating cyst differentiation in the male gonad of Drosophila melanogaster.

    PubMed

    Qian, Yue; Dominado, Nicole; Zoller, Richard; Ng, Chun; Kudyba, Karl; Siddall, Nicole A; Hime, Gary R; Schulz, Cordula

    2014-10-15

    The development of stem cell daughters into the differentiated state normally requires a cascade of proliferation and differentiation steps that are typically regulated by external signals. The germline cells of most animals, in specific, are associated with somatic support cells and depend on them for normal development. In the male gonad of Drosophila melanogaster, germline cells are completely enclosed by cytoplasmic extensions of somatic cyst cells, and these cysts form a functional unit. Signaling from the germline to the cyst cells via the Epidermal Growth Factor Receptor (EGFR) is required for germline enclosure and has been proposed to provide a temporal signature promoting early steps of differentiation. A temperature-sensitive allele of the EGFR ligand Spitz (Spi) provides a powerful tool for probing the function of the EGRF pathway in this context and for identifying other pathways regulating cyst differentiation via genetic interaction studies. Using this tool, we show that signaling via the Ecdysone Receptor (EcR), a known regulator of developmental timing during larval and pupal development, opposes EGF signaling in testes. In spi mutant animals, reducing either Ecdysone synthesis or the expression of Ecdysone signal transducers or targets in the cyst cells resulted in a rescue of cyst formation and cyst differentiation. Despite of this striking effect in the spi mutant background and the expression of EcR signaling components within the cyst cells, activity of the EcR pathway appears to be dispensable in a wildtype background. We propose that EcR signaling modulates the effects of EGFR signaling by promoting an undifferentiated state in early stage cyst cells. PMID:25169192

  10. Anti-epidermal growth factor receptor skin toxicity: a matter of topical hydration.

    PubMed

    Ferrari, Daris; Codecà, Carla; Bocci, Barbara; Crepaldi, Francesca; Violati, Martina; Viale, Giulia; Careri, Carmela; Caldiera, Sarah; Bordin, Veronica; Luciani, Andrea; Zonato, Sabrina; Cassinelli, Gabriela; Foa, Paolo

    2016-02-01

    Skin toxicity is a frequent complication of anti-epidermal growth factor receptor therapy, which can be an obstacle in maintaining the dose intensity and may negatively impact on the clinical outcome of cancer patients. Skin lesions depend on the disruption of the keratinocyte development pathways and no treatment is clearly effective in resolving the cutaneous alterations frequently found during anti-epidermal growth factor receptor therapy. Among systemic treatments, oral tetracycline proved to be useful in preventing skin manifestations. We describe the case of a patient affected by metastatic colorectal cancer, for whom a combination of chemotherapy and cetuximab was used as second-line treatment. The patient developed a symptomatic papulopustular skin rash that disappeared completely after a twice-daily application of a hydrating and moisturizing cream, mainly consisting of a mixture of paraffin, silicone compounds, and macrogol. The marked cutaneous amelioration allowed the patient to continue cetuximab without any further symptoms and was associated with a partial radiological response. PMID:26469836

  11. Stepwise Progress in Epidermal Growth Factor Receptor/Radiation Studies for Head and Neck Cancer

    SciTech Connect

    Harari, Paul M.

    2007-10-01

    The U.S. Food and Drug Administration approval of four new epidermal growth factor receptor (EGFR) inhibitors for cancer therapy (cetuximab, panitumumab, gefitinib, and erlotinib) over the last 3 years is a remarkable milestone in oncology. Indeed, molecular inhibition of EGFR signaling represents one of the most promising current arenas for the development of molecular-targeted cancer therapies. Epidermal growth factor receptor inhibitors from both the monoclonal antibody and tyrosine kinase inhibitor class have demonstrated clinical activity in the treatment of a broad spectrum of common human malignancies. For the discipline of radiation oncology, the 2006 report of a phase III trial demonstrating a survival advantage for advanced head and neck cancer patients with the addition of weekly cetuximab during a 7-week course of radiation is particularly gratifying. Indeed, this is the first phase III trial to confirm a survival advantage with the addition of a molecular-targeted agent to radiation. Furthermore, this result seems to have been achieved with only a modest increment in overall treatment toxicity and with very high compliance to the prescribed treatment regimen. Nevertheless, much remains to be learned regarding the rational integration of EGFR inhibitors into cancer treatment regimens, as well as methods to optimize the selection of patients most likely to benefit from EGFR inhibitor strategies.

  12. Epidermal growth factor modulation of prostaglandins and nitrite biosynthesis in rat fetal membranes.

    PubMed

    Ribeiro, M L; Ogando, D; Farina, M; Franchi, A

    2004-01-01

    The production of prostaglandins (PGs) and nitric oxide (NO) by amnion tissue may play a significant role in parturition. It is thought that epidermal growth factor (EGF) may be one of the fetal signals that governs the initiation of labor. The aim of the present study was to investigate the effect of EGF in vivo on the PGs and nitrite production of rat fetal membranes. We have evaluated the regulation of PGs and nitrite production in rat fetal membranes ex vivo. The intra-uterine administration of EGF 500 ng in day 21 of pregnancy induced increases in PGE(2) (P<0.001) and PGF(2alpha) (P<0.01) compared to the control fetal membranes from pregnant rats on day 22. Also, this dose of EGF diminished nitrate production significantly (P<0.01). We found that fetal membranes at term (days 18-22 of gestation) expressed EGF-R. The NO donor, nitroprussiate 300 and 600 microM, elicited an inhibitory effect on the PGE(2) and PGF(2alpha) stimulated synthesis. On the other hand, indomethacin 10(-6) and 10(-7)M, a non-selective cyclooxygenase inhibitor, reverted the inhibitory effect exerted by EGF. Hence, rat fetal membranes were found to express epidermal growth factor receptors and, under the effect of EGF, PGs and nitrites production pathways interact probably to prevent a toxic effect caused by an exacerbated synthesis of these mediators. PMID:14643177

  13. Immunohistochemical localization of epidermal growth factor and its receptor during odontogenesis in the rat.

    PubMed

    Cobo, J; Hernández, L C; del Valle, M E; Vijande, M; Vega, J A

    1992-10-01

    The expression of epidermal growth factor (EGF) and epidermal growth factor receptor (EGFr) in developing teeth has been immunohistochemically studied in rat embryos (E-16 to E-21). Both EGF and EGFr showed a similar pattern of distribution. A very weak immunostaining was observed in the dental germ cells during the bud, cap, and bell teeth stages, as well as in few ectomesenchymal cells. In developed, but not erupted teeth, a moderate immunoreactivity for EGF and EGFr was present in the odontoblasts, in the ameloblasts and in the internal epithelial cells, but it was stronger in the dentine. In addition, the presence of EGF/EGFr was also observed in the intercalated ducts of salivary glands, primarily the submaxillary gland, in the maxillary bone cells, and in the cells of the peripheral and central nervous system. These results suggest that EGF has little or no effect during the early periods of tooth differentiation, whereas it is probably involved in the production of dentine. Moreover, EGF/EGFr seem to participate in the maturation and differentiation of other embryonic tissues such as tissues of the nervous system and bone. PMID:1397071

  14. Lewisy Promotes Migration of Oral Cancer Cells by Glycosylation of Epidermal Growth Factor Receptor

    PubMed Central

    Lin, Wei-Ling; Lin, Yi-Shiuan; Shi, Guey-Yueh; Chang, Chuan-Fa; Wu, Hua-Lin

    2015-01-01

    Aberrant glycosylation changes normal cellular functions and represents a specific hallmark of cancer. Lewisy (Ley) carbohydrate upregulation has been reported in a variety of cancers, including oral squamous cell carcinoma (OSCC). A high level of Ley expression is related to poor prognosis of patients with oral cancer. However, it is unclear how Ley mediates oral cancer progression. In this study, the role of Ley in OSCC was explored. Our data showed that Ley was upregulated in HSC-3 and OC-2 OSCC cell lines. Particularly, glycosylation of epidermal growth factor receptor (EGFR) with Ley was found in OC-2 cells, and this modification was absent upon inhibition of Ley synthesis. The absence of Ley glycosylation of EGFR weakened phosphorylation of AKT and ERK in response to epidermal growth factor (EGF). Additionally, EGF-triggered cell migration was reduced, but cell proliferation was not affected. Ley modification stabilized EGFR upon ligand activation. Conversely, absence of Ley glycosylation accelerated EGFR degradation. In summary, these results indicate that increased expression of Ley in OSCC cells is able to promote cell migration by modifying EGFR which in turn stabilizes EGFR expression and downstream signaling. Targeting Ley on EGFR could have a potential therapeutic effect on oral cancer. PMID:25799278

  15. A sensitive electrochemiluminescence cytosensor for quantitative evaluation of epidermal growth factor receptor expressed on cell surfaces.

    PubMed

    Tang, Yanjuan; Zhang, Shaolian; Wen, Qingqing; Huang, Hongxing; Yang, Peihui

    2015-06-30

    A sensitive electrochemiluminescence (ECL) strategy for evaluating the epidermal growth factor receptor (EGFR) expression level on cell surfaces was designed by integrating the specific recognition of EGFR expressed on MCF-7 cell surfaces with an epidermal growth factor (EGF)-funtionalized CdS quantum dots (CdSQDs)-capped magnetic bead (MB) probe. The high sensitivity of ECL probe of EGF-funtionalized CdSQD-capped-MB was used for competitive recognition with EGFR expressed on cell surfaces with recombinant EGFR protein. The changes of ECL intensity depended on both the cell number and the expression level of EGFR receptor on cell surfaces. A wide linear response to cells ranging from 80 to 4×10(6)cellsmL(-1) with a detection limit of 40cellsmL(-1) was obtained. The EGF-cytosensor was used to evaluate EGFR expression levels on MCF-7 cells, and the average number of EGFR receptor on single MCF-7 cells was 1.35×10(5) with the relative standard deviation of 4.3%. This strategy was further used for in-situ and real-time evaluating EGFR receptor expressed on cell surfaces in response to drugs stimulation at different concentration and incubation time. The proposed method provided potential applications in the detection of receptors on cancer cells and anticancer drugs screening. PMID:26041531

  16. Hepatocyte growth factor reduces sensitivity to the epidermal growth factor receptor-tyrosine kinase inhibitor, gefitinib, in lung adenocarcinoma cells harboring wild-type EGFR

    PubMed Central

    Yang, Hua; Wang, Rong; Peng, Shunli; Chen, Longhua; Li, Qi; Wang, Wei

    2016-01-01

    Epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) therapy is an option for lung cancers harboring wild-type EGFR when chemotherapeutic reagents have failed. In this study, we found that the EGFR-TKI, gefitinib, modestly suppressed proliferation of the lung cancer cell lines, A549 and H358, which both harbor wild-type EGFR. Treatment with hepatocyte growth factor (HGF) reduced the sensitivity to gefitinib, whereas sensitivity was restored by treatment with an HGF antibody, a MET inhibitor, or depletion of MET but not ErbB3 gene. Moreover, both PI3K/mTOR inhibitors and MEK inhibitors suppressed proliferation of A549 cells, whereas only PI3K/mTOR inhibitors effectively suppressed cell viability of EGFR mutant PC-9 cells. Our findings suggest that HGF reduced the gefitinib sensitivity through MET and downstream PI3K and MAPK pathways. Combined use of EGFR-TKI and MET inhibitors or inhibition of downstream signaling molecules might be a better second or third line choice for a group of patients with advanced lung cancer harboring wild-type EGFR. PMID:26919104

  17. Molecular cloning and expression of an additional epidermal growth factor receptor-related gene.

    PubMed Central

    Plowman, G D; Whitney, G S; Neubauer, M G; Green, J M; McDonald, V L; Todaro, G J; Shoyab, M

    1990-01-01

    Epidermal growth factor (EGF), transforming growth factor alpha (TGF-alpha), and amphiregulin are structurally and functionally related growth regulatory proteins. These secreted polypeptides all bind to the 170-kDa cell-surface EGF receptor, activating its intrinsic kinase activity. However, amphiregulin exhibits different activities than EGF and TGF-alpha in a number of biological assays. Amphiregulin only partially competes with EGF for binding EGF receptor, and amphiregulin does not induce anchorage-independent growth of normal rat kidney cells (NRK) in the presence of TGF-beta. Amphiregulin also appears to abrogate the stimulatory effect of TGF-alpha on the growth of several aggressive epithelial carcinomas that overexpress EGF receptor. These findings suggest that amphiregulin may interact with a separate receptor in certain cell types. Here we report the cloning of another member of the human EGF receptor (HER) family of receptor tyrosine kinases, which we have named "HER3/ERRB3." The cDNA was isolated from a human carcinoma cell line, and its 6-kilobase transcript was identified in various human tissues. We have generated peptide-specific antisera that recognizes the 160-kDa HER3 protein when transiently expressed in COS cells. These reagents will allow us to determine whether HER3 binds amphiregulin or other growth regulatory proteins and what role HER3 protein plays in the regulation of cell growth. Images PMID:2164210

  18. Epidermal growth factor promotes proliferation of dermal papilla cells via Notch signaling pathway.

    PubMed

    Zhang, Haihua; Nan, Weixiao; Wang, Shiyong; Zhang, Tietao; Si, Huazhe; Wang, Datao; Yang, Fuhe; Li, Guangyu

    2016-08-01

    The effect of epidermal growth factor (EGF) on the development and growth of hair follicle is controversial. In the present study, 2-20 ng/ml EGF promoted the growth of mink hair follicles in vitro, whereas 200 ng/ml EGF inhibited follicle growth. Further, dermal papilla (DP) cells, a group of mesenchymal cells that govern hair follicle development and growth, were isolated and cultured in vitro. Treatment with or forced expression of EGF accelerated proliferation and induced G1/S transition in DP cells. Moreover, EGF upregulated the expression of DP mesenchymal genes, such as alkaline phosphatase (ALP) and insulin-like growth factor (IGF-1), as well as the Notch pathway molecules including Notch1, Jagged1, Hes1 and Hes5. In addition, inhibition of Notch signaling pathway by DAPT significantly reduced the basal and EGF-enhanced proliferation rate, and also suppressed cell cycle progression. We also show that the expression of several follicle-regulatory genes, such as Survivin and Msx2, were upregulated by EGF, and was inhibited by DAPT. In summary, our study demonstrates that the concentration of EGF is critical for the switch between hair follicle growth and inhibition, and EGF promotes DP cell proliferation via Notch signaling pathway. PMID:27109378

  19. mTOR Inhibitors Control the Growth of EGFR Mutant Lung Cancer Even after Acquiring Resistance by HGF

    PubMed Central

    Ishikawa, Daisuke; Takeuchi, Shinji; Nakagawa, Takayuki; Sano, Takako; Nakade, Junya; Nanjo, Shigeki; Yamada, Tadaaki; Ebi, Hiromichi; Zhao, Lu; Yasumoto, Kazuo; Nakamura, Takahiro; Matsumoto, Kunio; Kagamu, Hiroshi; Yoshizawa, Hirohisa; Yano, Seiji

    2013-01-01

    Resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), gefitinib and erlotinib, is a critical problem in the treatment of EGFR mutant lung cancer. Several mechanisms, including bypass signaling by hepatocyte growth factor (HGF)-triggered Met activation, are implicated as mediators of resistance. The mammalian target of rapamycin (mTOR), is a downstream conduit of EGFR and MET signaling, and is thus considered a therapeutically attractive target in the treatment of various types of cancers. The purpose of this study was to examine whether 2 clinically approved mTOR inhibitors, temsirolimus and everolimus, overcome HGF-dependent resistance to EGFR-TKIs in EGFR mutant lung cancer cells. Both temsirolimus and everolimus inhibited the phosphorylation of p70S6K and 4E-BP1, which are downstream targets of the mTOR pathway, and reduced the viability of EGFR mutant lung cancer cells, PC-9, and HCC827, even in the presence of HGF in vitro. In a xenograft model, temsirolimus suppressed the growth of PC-9 cells overexpressing the HGF-gene; this was associated with suppression of the mTOR signaling pathway and tumor angiogenesis. In contrast, erlotinib did not suppress this signaling pathway or tumor growth. Multiple mechanisms, including the inhibition of vascular endothelial growth factor production by tumor cells and suppression of endothelial cell viability, contribute to the anti-angiogenic effect of temsirolimus. These findings indicate that mTOR inhibitors may be useful for controlling HGF-triggered EGFR-TKI resistance in EGFR mutant lung cancer, and they provide the rationale for clinical trials of mTOR inhibitors in patients stratified by EGFR mutation and HGF expression status. PMID:23690929

  20. Epidermal growth factor-nonresponsive 3T3 variants do not contain epidermal growth factor receptor-related antigens or mRNA

    SciTech Connect

    Schneider, C.A.; Lim, R.W.; Terwilliger, E.; Herschman, H.R.

    1986-01-01

    The authors have previously isolated three independent variants of Swiss 3T3 cells that are unable to generate a mitogenic response to epidermal growth factor (EGF). Each of the variants is unable to bind /sup 125/I-labeled EGF; each lacks a functional EGF receptor. They used an antiserum to murine EGF receptor to look for an EGF-receptor gene product in wild-type 3T3 cells and in the three EGF-nonresponsive variants. No cross-reactive material could be detected in any of the three variants, either in /sup 125/I-labeled cell extracts or in (/sup 35/S)methionine metabolically labeled cells. 3T3 cells contained mRNA molecules homologous to a cDNA probe for the human EGF-receptor coding region. In contrast, no homologous RNA could be detected in any of the three variants. Analysis of genomic Southern blots of the DNA from 3T3 cells and the three EGF-nonresponsive variants indicated sequences from the EGF-receptor gene are present in the DNA of all four cell lines. These EGF-nonresponsive lines, which demonstrate proliferative responses to a variety of mitogens, will be ideal recipients for structure-function studies of the EGF receptor by transfection of the cloned gene.

  1. Emodin Suppresses Maintenance of Stemness by Augmenting Proteosomal Degradation of Epidermal Growth Factor Receptor/Epidermal Growth Factor Receptor Variant III in Glioma Stem Cells

    PubMed Central

    Kim, Jeongyub; Lee, Jong-Seon; Jung, Jieun; Lim, Inhye; Lee, Ji-Yun

    2015-01-01

    There is a growing body of evidence that small subpopulations of cells with stem cell-like characteristics within most solid tumors are responsible for the malignancy of aggressive cancer cells and that targeting these cells might be a good therapeutic strategy to reduce the risk of tumor relapse after therapy. Here, we examined the effects of emodin (1,3,8-trihydroxy-6-methylanthraquinone), an active component of the root and rhizome of Rheum palmatum that has several biological activities, including antitumor effects, on primary cultured glioma stem cells (GSCs). Emodin inhibited the self-renewal activity of GSCs in vitro as evidenced by neurosphere formation, limiting dilution, and soft agar clonogenic assays. Emodin inhibited the maintenance of stemness by suppressing the expression of Notch intracellular domain, nonphosphorylated β-catenin, and phosphorylated STAT3 proteins. In addition, treatment with emodin partially induced apoptosis, reduced cell invasiveness, and sensitized GSCs to ionizing radiation. Intriguingly, emodin induced proteosomal degradation of epidermal growth factor receptor (EGFR)/EGFR variant III (EGFRvIII) by interfering with the association of EGFR/EGFRvIII with heat shock protein 90, resulting in the suppression of stemness pathways. Based on these data, we propose that emodin could be considered as a potent therapeutic adjuvant that targets GSCs. PMID:25229646

  2. Cloning of human epidermal growth factor as a bacterial secretory protein, its properties and mutagenesis

    SciTech Connect

    Engler, D.A.; Matsunami, R.K.; Campion, S.R.; Foote, R.S.; Mural, R.J.; Larimer, F.W.; Stevens, A.; Niyogi, S.K.

    1987-05-01

    A chimeric gene, containing the DNA coding for the human epidermal growth factor (EGF) and that for the signal peptide of E. coli alkaline phosphatase, was constructed by the annealing and subsequent ligation of appropriate DNA oligonucleotides synthesized in an automated DNA synthesizer. The gene was then cloned into a bacterial plasmid under the transcriptional control of the E. coli trp-lac (tac) promoter, and then transformed into E. coli. Following induction with isopropylthiogalactoside, the secretion of EGF into the E. coli periplasmic space and some into the growth medium was confirmed by its specific binding to the EGF receptor and stimulation of the EGF receptor tyrosine kinase activity. The size and physicochemical properties of the purified protein mimicked those of authentic human EGF. Studies of structure/function relationships by specific alterations of targeted amino acid residues in the EGF molecule have been initiated by utilizing site-directed mutagenesis.

  3. Amphiregulin enhances regulatory T cell-suppressive function via the epidermal growth factor receptor.

    PubMed

    Zaiss, Dietmar M W; van Loosdregt, Jorg; Gorlani, Andrea; Bekker, Cornelis P J; Gröne, Andrea; Sibilia, Maria; van Bergen en Henegouwen, Paul M P; Roovers, Rob C; Coffer, Paul J; Sijts, Alice J A M

    2013-02-21

    Epidermal growth factor receptor (EGFR) is known to be critically involved in tissue development and homeostasis as well as in the pathogenesis of cancer. Here we showed that Foxp3(+) regulatory T (Treg) cells express EGFR under inflammatory conditions. Stimulation with the EGF-like growth factor Amphiregulin (AREG) markedly enhanced Treg cell function in vitro, and in a colitis and tumor vaccination model we showed that AREG was critical for efficient Treg cell function in vivo. In addition, mast cell-derived AREG fully restored optimal Treg cell function. These findings reveal EGFR as a component in the regulation of local immune responses and establish a link between mast cells and Treg cells. Targeting of this immune regulatory mechanism may contribute to the therapeutic successes of EGFR-targeting treatments in cancer patients. PMID:23333074

  4. Cowden disease: gene marker studies and measurements of epidermal growth factor.

    PubMed Central

    Carlson, H E; Burns, T W; Davenport, S L; Luger, A M; Spence, M A; Sparkes, R S; Orth, D N

    1986-01-01

    Cowden disease (CD) is a familial syndrome characterized by tumors of the skin, oral mucosa, breast, thyroid, and intestinal epithelium. Since the syndrome is inherited as an autosomal dominant, we examined a battery of gene markers in a family with CD to detect linkage between the CD gene and known marker genes. There was no positive evidence for linkage of a CD locus with any of the markers; other investigators can add to our data to confirm and extend these findings. Additionally, we measured epidermal growth factor (EGF) in body fluids from CD patients and controls to determine if elevated EGF levels might be responsible for the widespread epithelial proliferation in CD. EGF levels in saliva, serum, plasma, and urine were similar in CD patients and control subjects. Although alterations in growth factors or their receptors may play a role in CD, excess circulating EGF is not responsible for the manifestations of the syndrome. Images Fig. 2 PMID:3487976

  5. The expression of epidermal growth factor receptors and their ligands (epidermal growth factor, neuregulin, amphiregulin) in the bitch uterus during the estrus cycle.

    PubMed

    Sağsöz, Hakan; Liman, Narin; Saruhan, Berna Güney; Küçükaslan, İbrahim

    2014-06-30

    In order to study the possible role of EGFR receptors in the bitch reproductive process, we have analyzed the expression pattern and localization of EGFR receptors and some of their ligands epidermal growth factor (EGF), neuregulin (NRG), amphiregulin (AREG), in the uterus during the estrus cycle using immunohistochemistry. The immunostaining for receptors and ligands of EGFR/ligand system was confined to membrane and cytoplasm of the target cells. Variations were observed, not only at the different stages of the estrous cycle, but also in the different tissue compartments of the uterus. However, it was detected that the immunostainings for NRG and AREG in the different cells do not show important differences at stages of the estrus cycle. In the luminal epithelium, strong immunostaining for ErbB1/HER1, ErbB2/HER2, ErbB4/HER4 and EGF was found at estrus. In the glandular epithelium, strong immunostaining for ErbB4/HER4 was observed at diestrus, while strong immunostaining for EGF was detected in both of estrus and diestrus. ErbB3/HER3 immunoreactivity in the stromal cells was higher at diestrus and anestrus, while ErbB4/HER4 immunoreactivity was lower at anestrus. In the myometrium, the highest levels of immunoreactivity of ErbB2/HER2 were found at estrus, while ErbB3/HER3 immunoreactivity was higher at anestrus. EGF immunoreactivity was lower at anestrus compared to other stage of cycle. Altered EGFR/ligand system expression during the estrus cycle suggests this growth factor system is a potent regulator of proliferation and differentiation events during preparation for implantation of bitch uterus. PMID:24813021

  6. Arsenite and insulin exhibit opposing effects on epidermal growth factor receptor and keratinocyte proliferative potential

    SciTech Connect

    Patterson, Timothy J.; Rice, Robert H. . E-mail: rhrice@ucdavis.edu

    2007-05-15

    Previous work has suggested that arsenic exposure contributes to skin carcinogenesis by preserving the proliferative potential of human epidermal keratinocytes, thereby slowing the exit of putative target stem cells into the differentiation pathway. To find a molecular basis for this action, present work has explored the influence of arsenite on keratinocyte responses to epidermal growth factor (EGF). The ability of cultured keratinocytes to found colonies upon passaging several days after confluence was preserved by arsenite and EGF in an additive fashion, but neither was effective when the receptor tyrosine kinase activity was inhibited. Arsenite prevented the loss of EGF receptor protein and phosphorylation of tyrosine 1173, preserving its capability to signal. The level of nuclear {beta}-catenin was higher in cells treated with arsenite and EGF in parallel to elevated colony forming ability, and expression of a dominant negative {beta}-catenin suppressed the increase in both colony forming ability and yield of putative stem cells induced by arsenite and EGF. As judged by expression of three genes regulated by {beta}-catenin, this transcription factor had substantially higher activity in the arsenite/EGF-treated cells. Trivalent antimony exhibited the same effects as arsenite. A novel finding is that insulin in the medium induced the loss of EGF receptor protein, which was largely prevented by arsenite exposure.

  7. Antiestrogen fulvestrant enhances the antiproliferative effects of epidermal growth factor receptor inhibitors in human non-small cell lung cancer

    PubMed Central

    Garon, Edward B.; Pietras, Richard J.; Finn, Richard S.; Kamranpour, Naeimeh; Pitts, Sharon; Márquez-Garbán, Diana C.; Desai, Amrita J.; Dering, Judy; Hosmer, Wylie; von Euw, Erika M.; Dubinett, Steven M.; Slamon, Dennis J.

    2012-01-01

    Introduction Estrogen receptor (ER) signaling and its interaction with epidermal growth factor receptor (EGFR) is a potential therapeutic target in non-small cell lung cancer (NSCLC). To explore cross-communication between ER and EGFR, we have correlated ER pathway gene and protein expression profiles and examined effects of antiestrogens with or without EGFR inhibitors in preclinical models of human NSCLC. Methods We evaluated 54 NSCLC cell lines for growth inhibition with EGFR inhibitors, antiestrogen treatment or the combination. Each line was evaluated for baseline ER pathway protein expression. The majority were also evaluated for baseline ER pathway gene expression. Human NSCLC xenografts were evaluated for effects of inhibition of each pathway either individually or in combination. Results The specific antiestrogen fulvestrant has modest single agent activity in vitro, but in many lines fulvestrant adds to effects of EGFR inhibitors, including synergy in the EGFR mutant, erlotinib-resistant H1975 line. ERα, ERβ, progesterone receptor (PR)-A, PR-B and aromatase proteins are expressed in all lines to varying degrees, with trends towards lower aromatase in more sensitive cell lines. Sensitivity to fulvestrant correlates with greater baseline ERα gene expression. Tumor stability is achieved in human tumor xenografts with either fulvestrant or EGFR inhibitors, but tumors regress significantly when both pathways are inhibited. Conclusions These data provide a rationale for further investigation of the antitumor activity of combined therapy with antiestrogen and anti-EGFR agents in the clinic. Future work should also evaluate dual ER and EGFR inhibition in the setting of secondary resistance to EGFR inhibition. PMID:23399957

  8. Discovery of Novel Human Epidermal Growth Factor Receptor-2 Inhibitors by Structure-based Virtual Screening

    PubMed Central

    Shi, Zheng; Yu, Tian; Sun, Rong; Wang, Shan; Chen, Xiao-Qian; Cheng, Li-Jia; Liu, Rong

    2016-01-01

    Background: Human epidermal growth factor receptor-2 (HER2) is a trans-membrane receptor like protein, and aberrant signaling of HER2 is implicated in many human cancers, such as ovarian cancer, gastric cancer, and prostate cancer, most notably breast cancer. Moreover, it has been in the spotlight in the recent years as a promising new target for therapy of breast cancer. Objective: Since virtual screening has become an integral part of the drug discovery process, it is of great significant to identify novel HER2 inhibitors by structure-based virtual screening. Materials and Methods: In this study, we carried out a series of elegant bioinformatics approaches, such as virtual screening and molecular dynamics (MD) simulations to identify HER2 inhibitors from Food and Drug Administration-approved small molecule drug as potential “new use” drugs. Results: Molecular docking identified top 10 potential drugs which showed spectrum affinity to HER2. Moreover, MD simulations suggested that ZINC08214629 (Nonoxynol-9) and ZINC03830276 (Benzonatate) might exert potential inhibitory effects against HER2-targeted anti-breast cancer therapeutics. Conclusion: Together, our findings may provide successful application of virtual screening studies in the lead discovery process, and suggest that our discovered small molecules could be effective HER2 inhibitor candidates for further study. SUMMARY A series of elegant bioinformatics approaches, including virtual screening and molecular dynamics (MD) simulations were took advantage to identify human epidermal growth factor receptor-2 (HER2) inhibitors. Molecular docking recognized top 10 candidate compounds, which showed spectrum affinity to HER2. Further, MD simulations suggested that ZINC08214629 (Nonoxynol-9) and ZINC03830276 (Benzonatate) in candidate compounds were identified as potential “new use” drugs against HER2-targeted anti-breast cancer therapeutics. Abbreviations used: HER2: Human epidermal growth factor receptor-2

  9. The F-BAR Protein PACSIN2 Regulates Epidermal Growth Factor Receptor Internalization

    PubMed Central

    de Kreuk, Bart-Jan; Anthony, Eloise C.; Geerts, Dirk; Hordijk, Peter L.

    2012-01-01

    Signaling via growth factor receptors, including the epidermal growth factor (EGF) receptor, is key to various cellular processes, such as proliferation, cell survival, and cell migration. In a variety of human diseases such as cancer, aberrant expression and activation of growth factor receptors can lead to disturbed signaling. Intracellular trafficking is crucial for proper signaling of growth factor receptors. As a result, the level of cell surface expression of growth factor receptors is an important determinant for the outcome of downstream signaling. BAR domain-containing proteins represent an important family of proteins that regulate membrane dynamics. In this study, we identify a novel role for the F-BAR protein PACSIN2 in the regulation of EGF receptor signaling. We show that internalized EGF as well as the (activated) EGF receptor translocated to PACSIN2-positive endosomes. Furthermore, loss of PACSIN2 increased plasma membrane expression of the EGF receptor in resting cells and increased EGF-induced phosphorylation of the EGF receptor. As a consequence, EGF-induced activation of Erk and Akt as well as cell proliferation were enhanced in PACSIN2-depleted cells. In conclusion, this study identifies a novel role for the F-BAR-domain protein PACSIN2 in regulating EGF receptor surface levels and EGF-induced downstream signaling. PMID:23129763

  10. Inverse regulation of human ERBB2 and epidermal growth factor receptors by tumor necrosis factor alpha.

    PubMed Central

    Kalthoff, H; Roeder, C; Gieseking, J; Humburg, I; Schmiegel, W

    1993-01-01

    Recombinant human tumor necrosis factor (TNF) alpha decreased the expression of ERBB2 mRNA by stimulating p55 TNF receptors of pancreatic tumor cells. This decrease contrasts with an increase in epidermal growth factor receptor (EGFR) mRNA. Both effects were selectively achieved by TNF-alpha or -beta, whereas interferon alpha or gamma or transforming growth factor beta showed no such effects. The inverse regulatory effects of TNF on ERBB2 and EGFR mRNA levels were evoked by different signaling pathways of p55 TNF receptors. The TNF-mediated ERBB2 mRNA decrease was followed by a reduction in protein. Four of five pancreatic tumor cell lines exhibited this down-regulation. This decrease of ERBB2 is a singular example of a modulation of this growth factor receptor by TNF. Overexpression of ERBB2 has been reported to cause resistance to TNF and other cytotoxic cytokines. In our study we show that the TNF-mediated down-regulation of ERBB2 in pancreatic tumor cells is accompanied by an increase in growth inhibition at low doses of TNF. The simultaneous alteration of the ERBB2/EGFR balance by TNF represents a striking model of cytokine receptor transregulation in the growth control of malignant pancreatic epithelial cells. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8105469

  11. Oak ellagitannins suppress the phosphorylation of the epidermal growth factor receptor in human colon carcinoma cells.

    PubMed

    Fridrich, Diana; Glabasnia, Arne; Fritz, Jessica; Esselen, Melanie; Pahlke, Gudrun; Hofmann, Thomas; Marko, Doris

    2008-05-14

    The ellagitannins castalagin and vescalagin, and the C-glycosides grandinin and roburin E as well as ellagic acid were found to potently inhibit the growth of human colon carcinoma cells (HT29) in vitro. In a cell-free system these compounds were identified as potent inhibitors of the protein tyrosine kinase activity of the epidermal growth factor receptor (EGFR) with IC 50 values in the low nanomolar range. To address the question of whether the interference with the activity of the isolated EGFR also plays a role within intact cells, effects on the phosphorylation status of the EGFR, as a measure for its activity, were determined in HT29 cells. As exemplified for castalagin and grandinin, both the nonglycosylated and the glycosylated ellagitannins effectively suppressed EGFR phosphorylation, but only at concentrations > or =10 microM, thus, in a concentration range where growth inhibition was observed. These results indicate that the suppression of EGFR-mediated signaling might contribute to the growth inhibitory effects of these compounds present in oak-matured wines and spirits such as whiskey. In contrast, despite substantial growth inhibitory properties, ellagic acid did not significantly affect EGFR phosphorylation in HT29 cells up to 100 microM. PMID:18419129

  12. Sensitivities to various epidermal growth factor receptor-tyrosine kinase inhibitors of uncommon epidermal growth factor receptor mutations L861Q and S768I: What is the optimal epidermal growth factor receptor-tyrosine kinase inhibitor?

    PubMed

    Banno, Eri; Togashi, Yosuke; Nakamura, Yu; Chiba, Masato; Kobayashi, Yoshihisa; Hayashi, Hidetoshi; Terashima, Masato; de Velasco, Marco A; Sakai, Kazuko; Fujita, Yoshihiko; Mitsudomi, Tetsuya; Nishio, Kazuto

    2016-08-01

    Most patients with non-small cell lung cancer (NSCLC) harboring common epidermal growth factor receptor (EGFR) mutations, such as deletions in exon 19 or the L858R mutation in exon 21, respond dramatically to EGFR tyrosine kinase inhibitors (EGFR-TKI), and their sensitivities to various EGFR-TKI have been well characterized. Our previous article showed the in vitro sensitivities of EGFR exon 18 mutations to EGFR-TKI, but little information regarding the sensitivities of other uncommon EGFR mutations is available. First, stable transfectant Ba/F3 cell lines harboring EGFR L858R (Ba/F3-L858R), L861Q (Ba/F3-L861Q) or S768I (Ba/F3-S768I) mutations were created and their drug sensitivities to various EGFR-TKI were examined. Both the Ba/F3-L861Q and Ba/F3-S768I cell lines were less sensitive to erlotinib, compared with the Ba/F3-L858R cell line, but their sensitivities to afatinib were similar to that of the Ba/F3-L858R cell line. The Ba/F3-L861Q cell line was similarly sensitive and the Ba/F3-S768I cell line was less sensitive to osimertinib, compared with the Ba/F3-L858R cell line. The results of western blot analyses were consistent with these sensitivities. Next, similar experiments were also performed using the KYSE270 (L861Q) and KYSE 450 (S768I) cell lines, and their results were compatible with those of the transfectant Ba/F3 cell lines. Our findings suggest that NSCLC harboring the EGFR L861Q mutation might be sensitive to afatinib or osimertinib and that NSCLC harboring the EGFR S768I mutation might be sensitive to afatinib. Overall, afatinib might be the optimal EGFR-TKI against these uncommon EGFR mutations. PMID:27240419

  13. Salinity Stiffens the Epidermal Cell Walls of Salt-Stressed Maize Leaves: Is the Epidermis Growth-Restricting?

    PubMed Central

    Zörb, Christian; Mühling, Karl H.; Kutschera, Ulrich; Geilfus, Christoph-Martin

    2015-01-01

    As a result of salt (NaCl)-stress, sensitive varieties of maize (Zea mays L.) respond with a strong inhibition of organ growth. The reduction of leaf elongation investigated here has several causes, including a modification of the mechanical properties of the cell wall. Among the various tissues that form the leaf, the epidermis plays a special role in controlling organ growth, because it is thought to form a rigid outer leaf coat that can restrict elongation by interacting with the inner cell layers. This study was designed to determine whether growth-related changes in the leaf epidermis and its cell wall correspond to the overall reduction in cell expansion of maize leaves during an osmotic stress-phase induced by salt treatment. Two different maize varieties contrasting in their degree of salt resistance (i.e., the hybrids Lector vs. SR03) were compared in order to identify physiological features contributing to resistance towards salinity. Wall loosening-related parameters, such as the capacity of the epidermal cell wall to expand, β-expansin abundance and apoplastic pH values, were analysed. Our data demonstrate that, in the salt-tolerant maize hybrid which maintained leaf growth under salinity, the epidermal cell wall was more extensible under salt stress. This was associated with a shift of the epidermal apoplastic pH into a range more favourable for acid growth. The more sensitive hybrid that displayed a pronounced leaf growth-reduction was shown to have stiffer epidermal cell walls under stress. This may be attributable to the reduced abundance of cell wall-loosening β-expansin proteins following a high salinity-treatment in the nutrient solution (100 mM NaCl, 8 days). This study clearly documents that salt stress impairs epidermal wall-loosening in growth-reduced maize leaves. PMID:25760715

  14. Epidermal growth factor-like repeats of tenascin-C-induced constriction of cerebral arteries via activation of epidermal growth factor receptors in rats.

    PubMed

    Fujimoto, Masashi; Shiba, Masato; Kawakita, Fumihiro; Liu, Lei; Nakasaki, Asuka; Shimojo, Naoshi; Imanaka-Yoshida, Kyoko; Yoshida, Toshimichi; Suzuki, Hidenori

    2016-07-01

    Tenascin-C (TNC), one of matricellular proteins, has been suggested to be involved in cerebral vasospasm after aneurysmal subarachnoid hemorrhage. However, the mechanisms of how TNC constricts cerebral arteries remain unclear. The aim of this study was to examine if epidermal growth factor (EGF)-like repeats of TNC is involved in TNC-induced constriction of cerebral arteries in rats via EGF receptor (EGFR) activation. Two dosages of recombinant TNC (r-TNC) consisting of the EGF-like repeats was administered intracisternally to healthy rats, and its vasoconstrictor effects were evaluated by neurobehavioral tests and India-ink angiography at 24, 48, and 72 hours after the administration. Western blotting and immunohistochemistry were performed to explore the underlying mechanisms on constricted cerebral arteries after 24 hours. The effects of a selective EGFR tyrosine kinase inhibitor (AG1478) on r-TNC-induced vasoconstriction were evaluated by neurobehavioral tests, India-ink angiography and immunohistochemistry at 24 hours after the administration. A higher dosage of r-TNC induced cerebral arterial constriction more severely, which continued for 48 hours. The effects were associated with the activation of EGFR and extracellular signal-regulated kinase (ERK)1/2 in the smooth muscle cell layer of the constricted cerebral artery, while c-Jun N-terminal kinase and p38 were not activated. AG1478 blocked r-TNC-induced vasoconstrictive effects, as well as activation of EGFR and ERK1/2. These findings demonstrate that TNC induces constriction of cerebral arteries via activation of EGFR and ERK1/2. PMID:27086972

  15. Chitosan gel formulations containing egg yolk oil and epidermal growth factor for dermal burn treatment.

    PubMed

    Yenilmez, E; Başaran, E; Arslan, R; Berkman, M S; Güven, U M; Bayçu, C; Yazan, Y

    2015-02-01

    In the present study chitosan based gel formulations containing Egg Yolk Oil (EYO) and Epidermal Growth Factor (EGF) were formulated successfully aiming at enhanced topical treatment of dermal burns the combination of traditional approaches with modern drug delivery systems. Physicochemical properties of the formulations were analyzed and efficacy of the formulations prepared were evaluated versus a commercial product; Silverdin (1% silver sulfadiazine) in vivo on Wistar rats. Burns were generated on the back of the rats and at predetermined time intervals tissue samples were collected and evaluated histologically. The analyses showed that chitosan based gel formulations containing Egg Yolk Oil (E1) and chitosan based gel formulations containing EYO and EGF (M1) formulations seem to be better alternatives for Silverdin with a significant difference (p < 0.05) considering healing ranks of tissue samples. PMID:25997244

  16. Role of milk fat globule-epidermal growth factor 8 in osteoimmunology.

    PubMed

    Sinningen, Kathrin; Thiele, Sylvia; Hofbauer, Lorenz C; Rauner, Martina

    2016-01-01

    Milk fat globule-epidermal growth factor 8 (MFG-E8) is a glycoprotein that is abundantly expressed in various tissues and has a pivotal role in the phagocytic clearance of apoptotic cells. However, MFG-E8 has also gained significant attention because of its wide range of functions in autoimmunity, inflammation and tissue homeostasis. More recently, MFG-E8 has been identified as a critical regulator of bone homeostasis, being expressed in both, osteoblasts and osteoclasts. In addition, it was shown that MFG-E8 fulfils an active role in modulating inflammatory processes, suggesting an anti-inflammatory role of MFG-E8 and proposing it as a novel therapeutic target for inflammatory diseases. This concise review focusses on the expression and regulation of MFG-E8 in the context of inflammatory bone diseases, highlights its role in the pathophysiology of osteoimmune diseases and discusses the therapeutic potential of MFG-E8. PMID:27579162

  17. Epidermal growth factor receptor tyrosine kinase inhibitors for non-small cell lung cancer

    PubMed Central

    Asami, Kazuhiro; Atagi, Shinji

    2014-01-01

    First-generation epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), including gefitinib and erlotinib, have proven to be highly effective agents for advanced non-small cell lung cancer (NSCLC) in patients harboring an activating EGFR mutation such as the exon 19 deletion mutation and L858R. Although those reversible small molecular targeted agents provide a significant response and survival benefit, all responders eventually acquire resistance. Second-generation EGFR-targeting agents, such as irreversible EGFR/HER2 tyrosine kinase inhibitors and pan-HER TKIs, may improve survival further and be useful for patients who acquired resistance to first-generation EGFR-TKIs. This review discusses novel therapeutic strategies for EGFR-mutated advanced NSCLC using first- and second-generation EGFR-TKIs. PMID:25302168

  18. Epidermal growth factor receptor kinase domain mutations are rare in salivary gland carcinomas

    PubMed Central

    Dahse, R; Driemel, O; Schwarz, S; Dahse, J; Kromeyer-Hauschild, K; Berndt, A; Kosmehl, H

    2009-01-01

    Activating mutations within the epidermal growth factor (EGFR) tyrosine kinase domain identify non-small cell lung cancer patients with improved clinical response to tyrosine kinase inhibitor therapy. Recently, we identified two EGFR mutations in a cohort of 25 salivary gland carcinomas (SGCs) by screening the tumour samples for the both most common hotspot mutations in exons 19 and 21 by allele-specific PCR. Here, we present a comprehensive sequencing analysis of the entire critical EGFR tyrosine kinase domain in 65 SGC of the main histopathological types. We found EGFR mutations in the tyrosine kinase domain to be a rare event in SGCs. No additional mutations other than the two known exon 19 deletions (c.2235_2249del15) in a mucoepidermoid carcinoma and an adenoid cystic carcinoma have been detected. Other putative predictive markers for EGFR-targeted therapy in SGCs might be relevant and should be investigated. PMID:19174819

  19. In vivo modulation of epidermal growth factor receptor phosphorylation in mice expressing different gangliosides.

    PubMed

    Daniotti, Jose L; Crespo, Pilar M; Yamashita, Tadashi

    2006-12-01

    We studied in this work the in vivo phosphorylation of the epidermal growth factor receptor (EGFr) in skin from knockout mice lacking different ganglioside glycosyltransferases. Results show an enhancement of EGFr phosphorylation, after EGF stimulation, in skin from Sial-T2 knockout and Sial-T2/GalNAc-T double knockout mice as compared with wild-type and Sial-T1 knockout mice. Qualitative analysis of ganglioside composition in mice skin suggest that the increase of EGFr phosphorylation observed in skin from Sial-T2 knockout and Sial-T2/GalNAc-T double knockout mice in response to EGF might not be primary attributed to the expression of GD3 or a-series gangliosides in mice skin. These studies provide, for the first time, an approach for studying the molecular mechanisms involved in the in vivo regulation of EGFr function by gangliosides. PMID:16817235

  20. Parotid gland is the main source of human salivary epidermal growth factor

    SciTech Connect

    Thesleff, I.; Viinikka, L.; Saxen, L.; Lehtonen, E.; Perheentupa, J.

    1988-01-01

    To clarify the production of human epidermal growth factor (EGF) by different salivary glands, the authors measured its concentration by radioimmunoassay separately in whole saliva, in parotid gland (PG) saliva and in mixed submandibular (SMG) and sublingual gland (SLG) saliva. Also, they studied the presence of EGF in PG and SMG by immunohistochemistry. The mean concentrations of EDG in PG saliva was higher than in whole saliva, which in turn was higher than in mixed SMG + SLG saliva. No sex difference existed in any salivary gland EGF. Immunohistochemistry revealed EGF in the acinar cells of both PG and SMG, buy only in PG there were prominent EDG deposits in luminal spaces. Their data suggest that EDG is produced by both PG and SMG, but that more of it is secreted from the PG. This result is new and challenges the general view that human salivary EDG is mainly from SMG.

  1. Epidermal growth factor increases LRF/Pokemon expression in human prostate cancer cells.

    PubMed

    Aggarwal, Himanshu; Aggarwal, Anshu; Agrawal, Devendra K

    2011-10-01

    Leukemia/lymphoma related factor/POK erythroid myeloid ontogenic factor (LRF/Pokemon) is a member of the POK family of proteins that promotes oncogenesis in several forms of cancer. Recently, we found higher LRF expression in human breast and prostate carcinomas compared to the corresponding normal tissues. The aim of this study was to examine the regulation of LRF expression in human prostate cells. Epidermal growth factor (EGF) and its receptors mediate several tumorigenic cascades that regulate cell differentiation, proliferation, migration and survival of prostate cancer cells. There was significantly higher level of LRF expression in the nucleus of LNCaP and PC-3 cells than RWPE-1 cells. A significant increase in LRF expression was observed with increasing doses of EGF in more aggressive and androgen-sensitive prostate cancer cells suggesting that EGF signaling pathway is critical in upregulating the expression of LRF/Pokemon to promote oncogenesis. PMID:21640721

  2. Characterization of epidermal growth factor receptors on plasma membranes isolated from rat gastric mucosa

    SciTech Connect

    Hori, R.; Nomura, H.; Iwakawa, S.; Okumura, K. )

    1990-06-01

    The binding of human epidermal growth factor (hEGF), beta-urogastrone, to plasma membranes isolated from rat gastric mucosa was studied to characterize gastric EGF receptors. The binding of ({sup 125}I)hEGF was temperature dependent, reversible, and saturable. A single class of binding sites for EGF with a dissociation constant of 0.42 nM and maximal binding capacity of 42 fmol/mg protein was suggested. There was little change in the binding of ({sup 125}I)hEGF upon addition of peptide hormones (secretin, insulin), antiulcer drugs (cimetidine), or an ulcer-inducing reagent (aspirin). Cross-linking of ({sup 125}I)hEGF to gastric plasma membranes with the use of disuccinimidyl suberate resulted in the labeling of a protein of 150 kDa. These results indicate the presence of EGF receptors on plasma membranes of rat gastric mucosa.

  3. Layer-by-layer polysaccharide-coated liposomes for sustained delivery of epidermal growth factor.

    PubMed

    Kaminski, Gabriel A T; Sierakowski, Maria Rita; Pontarolo, Roberto; Santos, Larissa Antoniacomi Dos; de Freitas, Rilton Alves

    2016-04-20

    A three-dimensional layer-by-layer (LbL) structure composed by xanthan and galactomannan biopolymers over dioctadecyldimethylammonium bromide (DODAB) liposome template was proposed and characterized for protein drug delivery. The polymers and the surfactant interaction were sufficiently strong to create a LbL structure up to 8 layers, evaluated using quartz crystal microbalance (QCM) and zeta potential analysis. The polymer-liposome binding enthalpy was determined by isothermal titration calorimetry (ITC). The bilayer of biopolymer-coated liposomes with diameters of 165 (±15)nm, measured by dynamic light scattering (DLS), and ζ-potential of -4 (±13)mV. These bilayer-coated nanoparticles increased up to 5 times the sustained release of epidermal growth factor (EGF) at a first order rate of 0.005min(-1). This system could be useful for improving the release profile of low-stability drugs like EGF. PMID:26876836

  4. Gefitinib in the treatment of nonsmall cell lung cancer with activating epidermal growth factor receptor mutation

    PubMed Central

    Nurwidya, Fariz; Takahashi, Fumiyuki; Takahashi, Kazuhisa

    2016-01-01

    Lung cancer is still the main cause of cancer-related deaths worldwide, with most patients present with advanced disease and poor long-term prognosis. The aim of lung cancer treatment is to slow down the progression of the disease, to relieve the patients from the lung cancer symptoms and whenever possible, to increase the overall survival. The discovery of small molecule targeting tyrosine kinase of epidermal growth factor receptor opens a new way in the management of advanced nonsmall cell lung cancer (NSCLC). This review will discuss several Phase II and III trials evaluated the clinical efficacy of gefitinib as monotherapy in pretreated patients with advanced NSCLC, as well as both monotherapy and combined with chemotherapy in chemotherapy-naive patients. PMID:27433059

  5. Epidermal growth factor (EGF) inhibits stimulated thyroid hormone secretion in the mouse

    SciTech Connect

    Ahren, B.

    1987-07-01

    It is known that epidermal growth factor (EGF) inhibits iodide uptake in the thyroid follicular cells and lowers plasma levels of thyroid hormones upon infusion into sheep and ewes. In this study, the effects of EGF on basal and stimulated thyroid hormone secretion were investigated in the mouse. Mice were pretreated with /sup 125/I and thyroxine; the subsequent release of /sup 125/I is an estimation of thyroid hormone secretion. It was found that basal radioiodine secretion was not altered by intravenous injection of EGF (5 micrograms/animal). However, the radioiodine secretion stimulated by both TSH (120 microU/animal) and vasoactive intestinal peptide (VIP; 5 micrograms/animal) were inhibited by EGF (5 micrograms/animal). At a lower dose level (0.5 microgram/animal), EGF had no influence on stimulated radioiodine secretion. In conclusion, EGF inhibits stimulated thyroid hormone secretion in the mouse.

  6. Effective Delivery of Doxycycline and Epidermal Growth Factor for Expedited Healing of Chronic Wounds

    NASA Astrophysics Data System (ADS)

    Kulkarni, Abhilash

    The problems and high medical costs associated with chronic wounds necessitate an economical bioactive wound dressing. A new strategy was investigated to inhibit MMP-9 proteases and to release epidermal growth factor (EGF) to enhance healing. Doxycycline (DOX) and EGF were encapsulated on polyacrylic acid modified polyurethane film (PAA-PU) using Layer-by-Layer (LbL) assembly. The number of bilayers tuned the concentration of DOX and EGF released over time with over 94% bioactivity of EGF retained over 4 days. A simple wound model in which MMP-9 proteases were added to cell culture containing fibroblast cells demonstrated that DOX inhibited the proteases providing a protective environment for the released EGF to stimulate cell migration and proliferation at a faster healing rate. In the presence of DOX, only small amounts of the highly bioactive EGF are sufficient to close the wound. Results show that this is new and promising bioactive dressing for effective wound management.

  7. Recurrent bilateral spontaneous pneumothorax secondary to lung adenocarcinoma with epidermal growth factor receptor mutation.

    PubMed

    Chen, Wenhui; Lin, Yingxiang; Yu, Yanxia; Wei, Ping; Dai, Huaping

    2016-03-01

    A 42-year-old female patient was admitted for recurrent bilateral spontaneous pneumothorax. High resolution computed tomography showed bilateral pneumothorax and numerous round and oval, thin-walled lung cysts. Microscopically, each small cyst was composed of distended subpleural alveolar spaces. Tumor cells, characteristic of acinar adenocarcinoma, obstructed and narrowed the terminal bronchioles. There was no tumor necrosis or mucin production. This suggested check-valve as a possible mechanism of the thin-walled cysts and pneumothorax. Genetic analysis suggested that the tumors were positive for epidermal growth factor receptor mutation L858R in exon 21. Bilateral spontaneous pneumothorax and thin-walled cysts in association with lung cancer is rarely reported and may be confused with cystic benign lung lesions. PMID:27042232

  8. [Neoadjuvant treatment in human epidermal growth factor receptor 2-positive breast cancer].

    PubMed

    Liu, Yinhua; Liu, Shiwei; Zhang, Hong; Xu, Ling; Li, Ting; Duan, Xuening

    2015-12-01

    Breast cancer is the most prevalent malignancy among females worldwide. Human epidermal growth factor receptor 2 (HER2)-positive breast cancer represents a subtype with aggressive behavior, poor response to treatment and unfavorable prognosis. Anti-HER2-based neoadjuvant treatment has improved clinical outcomes of patients with HER2-positive disease. Pathological complete response (pCR) after neoadjuvant treatment indicates a favorable prognosis. With the development of HER2-targeted therapy and neoadjuvant treatment, numerous studies focus on the predictive factors of pCR or therapeutic resistance of anti-HER2 therapy. Identification of novel predictive factors in HER2-positive breast cancer, such as tumor-infiltrating lymphocytes, will be helpful for clinical decision. PMID:26850663

  9. Cloning, Expression, and Cost Effective Purification of Authentic Human Epidermal Growth Factor With High Activity

    PubMed Central

    Pouranvari, Sara; Ebrahimi, Firouz; Javadi, Gholamreza; Maddah, Bozorgmehr

    2016-01-01

    Background: Epidermal growth factor (EGF) plays a fundamental role in the healing of wounds relating to skin damage, the cornea, and the gastrointestinal tract. Objectives: The aim of this study is the cloning, expression, and purification of recombinant human EGF (rhEGF), and an assessment of its activity. Materials and Methods: In the present experimental study, a synthetic pET28a (+) -hEGF construct was prepared. In order to ligate hEGF into pET24a (+), the PCR technique was performed, using special primers that possess restriction enzyme sites, which are also located in appropriate sites in pET24a (+). After transferring this construct into E. coli cells, protein expression was performed under standard conditions. Protein solubilization was done by urea. hEGF purification and refolding were carried out using gradient dialysis against the urea. We used RP-HPLC to compare between rhEGF and commercial rhEGF as a control. Finally, an MTT assay was performed to assess the viability of the NIH 3T3 cells treated with various concentrations of rhEGF. Results: Dialysis after urea solubilization caused precipitation of unwanted proteins, resulting in achievement of purified EGF with > 90% purity, without the need for expensive and time-consuming process. The MTT assay results showed that our rhEGF activate significantly higher proliferation of NIH 3T3 cells in comparison to the control (P-values were < 0.0001), in total concentrations and times evaluated Conclusions: Via our purification protocol, a sufficient amount of bioactive recombinant human epidermal growth factor was obtained in just a few affordable steps, with superlative purity. PMID:27247796

  10. Nitric oxide reversibly inhibits the epidermal growth factor receptor tyrosine kinase.

    PubMed Central

    Estrada, C; Gómez, C; Martín-Nieto, J; De Frutos, T; Jiménez, A; Villalobo, A

    1997-01-01

    Although it has been demonstrated that NO inhibits the proliferation of different cell types, the mechanisms of its anti-mitotic action are not well understood. In this work we have studied the possible interaction of NO with the epidermal growth factor receptor (EGFR), using transfected fibroblasts which overexpress the human EGFR. The NO donors S-nitroso-N-acetylpenicillamine (SNAP), 1,1-diethyl-2-hydroxy-2-nitrosohydrazine (DEA-NO) and N-¿4-[1-(3-aminopropyl)-2-hydroxy-2-nitrosohydrazino]butyl¿propane -1, 3-diamine (DETA-NO) inhibited DNA synthesis of fibroblasts growing in the presence of fetal calf serum, epidermal growth factor (EGF) or EGF plus insulin, as assessed by [methyl-3H]thymidine incorporation. Neither 8-bromo-cGMP nor the cGMP-phosphodiesterase inhibitor zaprinast mimicked this effect, suggesting that NO is unlikely to inhibit cell proliferation via a cGMP-dependent pathway. SNAP, DEA-NO and DETA-NO also inhibited the transphosphorylation of the EGFR and its tyrosine kinase activity toward the exogenous substrate poly-l-(Glu-Tyr), as measured in permeabilized cells using [gamma-32P]ATP as phosphate donor. In contrast, 3-[morpholinosydnonimine hydrochloride] (SIN-1), a peroxynitrite-forming compound, did not significantly inhibit either DNA synthesis or the EGFR tyrosine kinase activity. The inhibitory action of DEA-NO on the EGFR tyrosine kinase was prevented by haemoglobin, an NO scavenger, but not by superoxide dismutase, and was reversed by dithiothreitol. The binding of EGF to its receptor was unaffected by DEA-NO. The inhibitory action of DEA-NO on the EGF-dependent transphosphorylation of the receptor was also demonstrated in intact cells by immunoblot analysis using an anti-phosphotyrosine antibody. Taken together, these results suggest that NO, but not peroxynitrite, inhibits in a reversible manner the EGFR tyrosine kinase activity by S-nitrosylation of the receptor. PMID:9291107

  11. Immobilized epidermal growth factor stimulates persistent, directed keratinocyte migration via activation of PLCγ1.

    PubMed

    Kim, Chloe S; Mitchell, Isaiah P; Desotell, Anthony W; Kreeger, Pamela K; Masters, Kristyn S

    2016-07-01

    Epidermal growth factor (EGF) is a critical element in dermal repair, but EGF-containing wound dressings have not been successful clinically. However, these dressings have delivered only soluble EGF, and the native environment provides both soluble and matrix-bound EGF. To address our hypothesis that tethered EGF can stimulate cell behaviors not achievable with soluble EGF, we examined single-cell movement and signaling in human immortalized HaCaT keratinocytes treated with soluble or immobilized EGF. Although both EGF treatments increased collective sheet displacement and individual cell speed, only cells treated with immobilized EGF exhibited directed migration, as well as 2-fold greater persistence compared with soluble EGF. Immunofluorescence showed altered EGF receptor (EGFR) trafficking, where EGFR remained membrane-localized in the immobilized EGF condition. Cells treated with soluble EGF demonstrated higher phosphorylated ERK1/2, and cells on immobilized EGF exhibited higher pPLCγ1, which was localized at the leading edge. Treatment with U0126 inhibited migration in both conditions, demonstrating that ERK1/2 activity was necessary but not responsible for the observed differences. In contrast, PLCγ1 inhibition with U73122 significantly decreased persistence on immobilized EGF. Combined, these results suggest that immobilized EGF increases collective keratinocyte displacement via an increase in single-cell migration persistence resulting from altered EGFR trafficking and PLCγ1 activation.-Kim, C. S., Mitchell, I. P., Desotell, A. W., Kreeger, P. K., Masters, K. S. Immobilized epidermal growth factor stimulates persistent, directed keratinocyte migration via activation of PLCγ1. PMID:27025961

  12. Epidermal growth factor treatment decreases mortality and is associated with improved gut integrity in sepsis.

    PubMed

    Clark, Jessica A; Clark, Andrew T; Hotchkiss, Richard S; Buchman, Timothy G; Coopersmith, Craig M

    2008-07-01

    Epidermal growth factor (EGF) is a cytoprotective peptide that has healing effects on the intestinal mucosa. We sought to determine whether systemic administration of EGF after the onset of sepsis improved intestinal integrity and decreased mortality. FVB/N mice were subjected to either sham laparotomy or 2 x 23 cecal ligation and puncture (CLP). Septic mice were further randomized to receive injection of either 150 microg kg(-1) d(-1) (i.p.) EGF or 0.9% saline (i.p.). Circulating EGF levels were decreased after CLP compared with sham animals but were unaffected by giving exogenous EGF treatment. In contrast, intestinal EGF levels increased after CLP and were further augmented by exogenous EGF treatment. Intestinal EGF receptor was increased after CLP, whether assayed by immunohistochemistry, real-time polymerase chain reaction, or Western blot, and exogenous EGF treatment decreased intestinal EGF receptor. Villus length decreased 2-fold between sham and septic animals, and EGF treatment resulted in near total restitution of villus length. Sepsis decreased intestinal proliferation and increased intestinal apoptosis. This was accompanied by increased expression of the proapoptotic proteins Bid and Fas-associated death domain, as well as the cyclin-dependent kinase inhibitor p21 cip1/waf Epidermal growth factor treatment after the onset of sepsis restored both proliferation and apoptosis to levels seen in sham animals and normalized expression of Bid, Fas-associated death domain, and p21 cip1/waf . To determine whether improvements in gut homeostasis were associated with a decrease in sepsis-induced mortality, septic mice with or without EGF treatment after CLP were followed 7 days for survival. Mortality decreased from 60% to 30% in mice treated with EGF after the onset of sepsis (P < 0.05). Thus, EGF may be a potential therapeutic agent for the treatment of sepsis in part due to its ability to protect intestinal integrity. PMID:18004230

  13. Effects of radiation on the epidermal growth factor receptor pathway in the heart

    PubMed Central

    Sridharan, Vijayalakshmi; Sharma, Sunil K.; Moros, Eduardo G.; Corry, Peter M.; Tripathi, Preeti; Lieblong, Benjamin J.; Guha, Chandan; Hauer-Jensen, Martin; Boerma, Marjan

    2013-01-01

    Purpose Radiation-induced heart disease (RIHD) is a serious side effect of thoracic radiotherapy. The epidermal growth factor receptor (EGFR) pathway is essential for the function and survival of cardiomyocytes. Hence, agents that target the EGFR pathway are cardiotoxic. Tocotrienols protect from radiation injury, but may also enhance the therapeutic effects of EGFR pathway inhibitors in cancer treatment. This study investigates the effects of local irradiation on the EGFR pathway in the heart and tests whether tocotrienols may modify radiation-induced changes in this pathway. Methods Male Sprague-Dawley rats received image-guided localized heart irradiation with 21 Gy. Twenty four hours before irradiation, rats received a single dose of tocotrienol-enriched formulation or vehicle by oral gavage. At time points from 2 hours to 9 months after irradiation, left ventricular expression of EGFR pathway mediators was studied. Results Irradiation caused a decrease in the expression of epidermal growth factor (EGF) and neuregulin-1 (Nrg-1) mRNA from 6 hours up to 10 weeks, followed by an upregulation of these ligands and the receptor erythroblastic leukemia viral oncogene homolog (ErbB)4 at 6 months. In addition, the upregulation of Nrg-1 was statistically significant up to 9 months after irradiation. A long-term upregulation of ErbB2 protein did not coincide with changes in transcription or post-translational interaction with the chaperone heat shock protein 90 (HSP90). Pretreatment with tocotrienols prevented radiation-induced changes at 2 weeks. Conclusions Local heart irradiation causes long-term changes in the EGFR pathway. Studies have to address how radiation may interact with cardiotoxic effects of EGFR inhibitors. PMID:23488537

  14. INSULIN INDUCED EPIDERMAL GROWTH FACTOR ACTIVATION IN VASCULAR SMOOTH MUSCLE CELLS IS ADAM-DEPENDENT

    PubMed Central

    Roztocil, Elisa; Nicholl, Suzanne M.; Davies, Mark G.

    2008-01-01

    Background With the rise in metabolic syndrome, understanding the role of insulin signaling within the cells of vasculature has become more important but yet remains poorly defined. The study examines the role of insulin actions on a pivotal cross-talk receptor, Epidermal Growth Factor Receptor (EGFR). EGFR is transactivated by both G-protein-coupled receptors and receptor linked tyrosine kinases and is key to many of their responses. Objective To determine the pathway of EGFR transactivation by insulin in human coronary smooth muscle cells (VSMC) Methods VSMC were cultured in vitro. Assays of EGFR phosphorylation were examined in response to insulin in the presence and absence of the plasmin inhibitors (e-aminocaproic acid and aprotinin) matrix metalloprotease (MMP) inhibitor GM6001, the ADAM (A Disintegrin And Metalloproteinase Domain) inhibitors TAPI-0 and TAPI-1, Heparin binding epidermal growth factor (HB-EGF) inhibitor, CRM197, HB-EGF inhibitory antibodies, EGF inhibitory antibodies and the EGFR inhibitor AG1478. Results Insulin induced time-dependent EGFR phosphorylation, which was inhibited by AG1478 in a concentration dependent manner. Application of the plasmin inhibitors did not block the response. EGFR phosphorylation by insulin was blocked by inhibition of MMP activity and the ligand HB-EGF. The presence of the ADAM inhibitors, TAPI-0 and TAPI-1 significantly decreased EGFR activation. EGFR phosphorylation by EGF was not interrupted by inhibition of plasmin, MMPs TAPIs, or HB-EGF. Direct blockade of the EGFR prevented activation by both insulin and EGF. Conclusion Insulin can induce transactivation of EGFR by an ADAM-mediated, HB-EGF dependent process. This is the first description of crosstalk via ADAM between insulin and EGFR in vascular SMC. Targeting a pivotal cross-talk receptor such as EGFR, which can be transactivated by both G-protein-coupled receptors and receptor tyrosine kinases is an attractive molecular target. PMID:18656632

  15. Overcoming resistance to first/second generation epidermal growth factor receptor tyrosine kinase inhibitors and ALK inhibitors in oncogene-addicted advanced non-small cell lung cancer.

    PubMed

    Romanidou, Ourania; Landi, Lorenza; Cappuzzo, Federico; Califano, Raffaele

    2016-05-01

    Epidermal growth factor receptor (EGFR) activating mutations and anaplastic lymphoma kinase (ALK) gene rearrangement in advanced non-small cell lung cancer (NSCLC) represent the two oncogenic events with an impact on current clinical practice. EGFR tyrosine kinase inhibitors (TKIs) and crizotinib are the standard of care for the treatment of EGFR mutant and ALK gene rearranged advanced NSCLC patients. Unfortunately, despite initial clinical benefit, acquired resistance to EGFR-TKIs or crizotinib usually develops after an average of 10-12 months of treatment. The aim of this review is to describe the mechanisms of resistance to first/second generation EGFR-TKIs and crizotinib. In particular, we focus on strategies to overcome resistance due to secondary EGFR T790M mutation and mutations of the ALK domain. PMID:27239236

  16. Overcoming resistance to first/second generation epidermal growth factor receptor tyrosine kinase inhibitors and ALK inhibitors in oncogene-addicted advanced non-small cell lung cancer

    PubMed Central

    Romanidou, Ourania; Landi, Lorenza; Cappuzzo, Federico; Califano, Raffaele

    2016-01-01

    Epidermal growth factor receptor (EGFR) activating mutations and anaplastic lymphoma kinase (ALK) gene rearrangement in advanced non-small cell lung cancer (NSCLC) represent the two oncogenic events with an impact on current clinical practice. EGFR tyrosine kinase inhibitors (TKIs) and crizotinib are the standard of care for the treatment of EGFR mutant and ALK gene rearranged advanced NSCLC patients. Unfortunately, despite initial clinical benefit, acquired resistance to EGFR-TKIs or crizotinib usually develops after an average of 10–12 months of treatment. The aim of this review is to describe the mechanisms of resistance to first/second generation EGFR-TKIs and crizotinib. In particular, we focus on strategies to overcome resistance due to secondary EGFR T790M mutation and mutations of the ALK domain. PMID:27239236

  17. The constitutive activity of epidermal growth factor receptor vIII leads to activation and differential trafficking of wild-type epidermal growth factor receptor and erbB2.

    PubMed

    Zeineldin, Reema; Ning, Yan; Hudson, Laurie G

    2010-06-01

    A constitutively active epidermal growth factor receptor (EGFR) mutant, EGFR variant III (EGFRvIII), has been detected at high frequencies in certain human cancers. This study evaluated transactivation and trafficking of erbB family members as a result of constitutive EGFR activity in a cancer cell line. Expression of EGFRvIII modulated erbB family members through different mechanisms; the erbB3 mRNA level was reduced, whereas wild-type EGFR (wtEGFR) and erbB2 protein levels were diminished, with no change in their mRNA levels, and there was no change in the erbB4 expression level. Both EGFR and erbB2 were internalized as a result of EGFRvIII's activity and redistributed to the cell surface upon addition of AG1478, an inhibitor of wtEGFR/EGFRvIII catalytic activity. Acute activation of EGFRvIII by removing AG1478 from cells increased phosphorylation of both wtEGFR and erbB2 and caused differential trafficking of EGFRvIII's activation partners; wtEGFR was directed primarily to lysosomal compartments and partially to recycling compartments, whereas erbB2 was directed primarily to recycling compartments and partially to lysosomal compartments. Our data demonstrate that the constitutive activity of EGFRvIII is sufficient to trigger endocytosis and trafficking of wtEGFR and erbB2, which may play a role in activating signaling pathways that are triggered during receptor endocytosis. PMID:20159766

  18. PROLINE IS REQUIRED FOR THE STIMULATION OF DNA SYNTHESIS IN HEPATOCYTE CULTURES BY EGF (EPIDERMAL GROWTH FACTOR)

    EPA Science Inventory

    Epidermal growth factor (EGF) has been shown to stimulate DNA synthesis in rat parenchymal hepatocytes both in vivo and in vitro (4,9). The authors report here that this response in vitro is dependent on the amino acids present in the media. Of all the amino acids, proline has th...

  19. Immunohistochemical detection of mutations in the epidermal growth factor receptor gene in lung adenocarcinomas using mutation-specific antibodies

    PubMed Central

    2013-01-01

    Background The recent development of antibodies specific for the major hotspot mutations in the epidermal growth factor receptor (EGFR), L858R and E746_A750del, may provide an opportunity to use immunohistochemistry (IHC) as a screening test for EGFR gene mutations. This study was designed to optimize the IHC protocol and the criteria for interpretation of the results using DNA sequencing as the gold-standard. Methods Tumor sections from fifty lung adenocarcinoma specimens from Chinese patients were immunostained using L858R and E746_A750del-specific antibodies using three different antigen retrieval solutions, and the results were evaluated using three different sets of criteria. The same specimens were used for DNA purification and analysis of EGFR gene mutations. Results In this study the optimal buffer for antigen retrieval was EDTA (pH 8.0), and the optimal scoring method was to call positive results when there was moderate to strong staining of membrane and/or cytoplasm in >10% of the tumor cells. Using the optimized protocol, L858R-specific IHC showed a sensitivity of 81% and a specificity of 97%, and E746_A750del-specific IHC showed a sensitivity of 59% and a specificity of 100%, both compared with direct DNA analysis. Additionally, the mutant proteins as assessed by IHC showed a more homogeneous than heterogeneous pattern of expression. Conclusions Our data demonstrate that mutation-specific IHC, using optimized procedures, is a reliable prescreening test for detecting EGFR mutations in lung adenocarcinoma. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/2059012601872392 PMID:23419122

  20. The Mediator Kinase Module Restrains Epidermal Growth Factor Receptor Signaling and Represses Vulval Cell Fate Specification in Caenorhabditis elegans.

    PubMed

    Grants, Jennifer M; Ying, Lisa T L; Yoda, Akinori; You, Charlotte C; Okano, Hideyuki; Sawa, Hitoshi; Taubert, Stefan

    2016-02-01

    Cell signaling pathways that control proliferation and determine cell fates are tightly regulated to prevent developmental anomalies and cancer. Transcription factors and coregulators are important effectors of signaling pathway output, as they regulate downstream gene programs. In Caenorhabditis elegans, several subunits of the Mediator transcriptional coregulator complex promote or inhibit vulva development, but pertinent mechanisms are poorly defined. Here, we show that Mediator's dissociable cyclin dependent kinase 8 (CDK8) module (CKM), consisting of cdk-8, cic-1/Cyclin C, mdt-12/dpy-22, and mdt-13/let-19, is required to inhibit ectopic vulval cell fates downstream of the epidermal growth factor receptor (EGFR)-Ras-extracellular signal-regulated kinase (ERK) pathway. cdk-8 inhibits ectopic vulva formation by acting downstream of mpk-1/ERK, cell autonomously in vulval cells, and in a kinase-dependent manner. We also provide evidence that the CKM acts as a corepressor for the Ets-family transcription factor LIN-1, as cdk-8 promotes transcriptional repression by LIN-1. In addition, we find that CKM mutation alters Mediator subunit requirements in vulva development: the mdt-23/sur-2 subunit, which is required for vulva development in wild-type worms, is dispensable for ectopic vulva formation in CKM mutants, which instead display hallmarks of unrestrained Mediator tail module activity. We propose a model whereby the CKM controls EGFR-Ras-ERK transcriptional output by corepressing LIN-1 and by fine tuning Mediator specificity, thus balancing transcriptional repression vs. activation in a critical developmental signaling pathway. Collectively, these data offer an explanation for CKM repression of EGFR signaling output and ectopic vulva formation and provide the first evidence of Mediator CKM-tail module subunit crosstalk in animals. PMID:26715664

  1. Epidermal growth factor receptor plays a role in the regulation of liver and plasma lipid levels in adult male mice

    PubMed Central

    Zhang, Xiuqi; Garcia, Oscar A.; Wang, Rebecca F.; Stevenson, Mary C.; Threadgill, David W.; Russell, William E.

    2014-01-01

    Dsk5 mice have a gain of function in the epidermal growth factor receptor (EGFR), caused by a point mutation in the kinase domain. We analyzed the effect of this mutation on liver size, histology, and composition. We found that the livers of 12-wk-old male Dsk5 heterozygotes (+/Dsk5) were 62% heavier compared with those of wild-type controls (+/+). The livers of the +/Dsk5 mice compared with +/+ mice had larger hepatocytes with prominent, polyploid nuclei and showed modestly increased cell proliferation indices in both hepatocytes and nonparenchymal cells. An analysis of total protein, DNA, and RNA (expressed relative to liver weight) revealed no differences between the mutant and wild-type mice. However, the livers of the +/Dsk5 mice had more cholesterol but less phospholipid and fatty acid. Circulating cholesterol levels were twice as high in adult male +/Dsk5 mice but not in postweaned young male or female mice. The elevated total plasma cholesterol resulted mainly from an increase in low-density lipoprotein (LDL). The +/Dsk5 adult mouse liver expressed markedly reduced protein levels of LDL receptor, no change in proprotein convertase subtilisin/kexin type 9, and a markedly increased fatty acid synthase and 3-hydroxy-3-methyl-glutaryl-CoA reductase. Increased expression of transcription factors associated with enhanced cholesterol synthesis was also observed. Together, these findings suggest that the EGFR may play a regulatory role in hepatocyte proliferation and lipid metabolism in adult male mice, explaining why elevated levels of EGF or EGF-like peptides have been positively correlated to increased cholesterol levels in human studies. PMID:24407590

  2. Epidermal growth factor-like repeats mediate lateral and reciprocal interactions of Ep-CAM molecules in homophilic adhesions.

    PubMed

    Balzar, M; Briaire-de Bruijn, I H; Rees-Bakker, H A; Prins, F A; Helfrich, W; de Leij, L; Riethmüller, G; Alberti, S; Warnaar, S O; Fleuren, G J; Litvinov, S V

    2001-04-01

    Ep-CAM is a new type of cell adhesion molecule (CAM) which does not structurally resemble the members of the four major families (cadherins, integrins, selectins, and CAMs of the immunoglobulin superfamily) and mediates Ca(2+)-independent, homophilic adhesions. The extracellular domain of Ep-CAM consists of a cysteine-rich region, containing two type II epidermal growth factor (EGF)-like repeats, followed by a cysteine-poor region. We generated mutated Ep-CAM forms with various deletions in the extracellular domain. These deletion mutants, together with monoclonal antibodies recognizing different epitopes in the extracellular domain, were used to investigate the role of the EGF-like repeats in the formation of intercellular contacts mediated by Ep-CAM molecules. We established that both EGF-like repeats are required for the formation of Ep-CAM-mediated homophilic adhesions, including the accumulation of Ep-CAM molecules at the cell-cell boundaries, and the anchorage of the Ep-CAM adhesion complex to F-actin via alpha-actinin. Deletion of either EGF-like repeat was sufficient to inhibit the adhesion properties of the molecule. The first EGF-like repeat of Ep-CAM is required for reciprocal interactions between Ep-CAM molecules on adjacent cells, as was demonstrated with blocking antibodies. The second EGF-like repeat was mainly required for lateral interactions between Ep-CAM molecules. Lateral interactions between Ep-CAM molecules result in the formation of tetramers, which might be the first and necessary step in the formation of Ep-CAM-mediated intercellular contacts. PMID:11259604

  3. Epidermal Growth Factor-Like Repeats Mediate Lateral and Reciprocal Interactions of Ep-CAM Molecules in Homophilic Adhesions

    PubMed Central

    Balzar, M.; Briaire-de Bruijn, I. H.; Rees-Bakker, H. A. M.; Prins, F. A.; Helfrich, W.; de Leij, L.; Riethmüller, G.; Alberti, S.; Warnaar, S. O.; Fleuren, G. J.; Litvinov, S. V.

    2001-01-01

    Ep-CAM is a new type of cell adhesion molecule (CAM) which does not structurally resemble the members of the four major families (cadherins, integrins, selectins, and CAMs of the immunoglobulin superfamily) and mediates Ca2+-independent, homophilic adhesions. The extracellular domain of Ep-CAM consists of a cysteine-rich region, containing two type II epidermal growth factor (EGF)-like repeats, followed by a cysteine-poor region. We generated mutated Ep-CAM forms with various deletions in the extracellular domain. These deletion mutants, together with monoclonal antibodies recognizing different epitopes in the extracellular domain, were used to investigate the role of the EGF-like repeats in the formation of intercellular contacts mediated by Ep-CAM molecules. We established that both EGF-like repeats are required for the formation of Ep-CAM-mediated homophilic adhesions, including the accumulation of Ep-CAM molecules at the cell-cell boundaries, and the anchorage of the Ep-CAM adhesion complex to F-actin via α-actinin. Deletion of either EGF-like repeat was sufficient to inhibit the adhesion properties of the molecule. The first EGF-like repeat of Ep-CAM is required for reciprocal interactions between Ep-CAM molecules on adjacent cells, as was demonstrated with blocking antibodies. The second EGF-like repeat was mainly required for lateral interactions between Ep-CAM molecules. Lateral interactions between Ep-CAM molecules result in the formation of tetramers, which might be the first and necessary step in the formation of Ep-CAM-mediated intercellular contacts. PMID:11259604

  4. Molecular Cloning of a Xylosyltransferase That Transfers the Second Xylose to O-Glucosylated Epidermal Growth Factor Repeats of Notch*

    PubMed Central

    Sethi, Maya K.; Buettner, Falk F. R.; Ashikov, Angel; Krylov, Vadim B.; Takeuchi, Hideyuki; Nifantiev, Nikolay E.; Haltiwanger, Robert S.; Gerardy-Schahn, Rita; Bakker, Hans

    2012-01-01

    The extracellular domain of Notch contains epidermal growth factor (EGF) repeats that are extensively modified with different O-linked glycans. O-Fucosylation is essential for receptor function, and elongation with N-acetylglucosamine, catalyzed by members of the Fringe family, modulates Notch activity. Only recently, genes encoding enzymes involved in the O-glucosylation pathway have been cloned. In the Drosophila mutant rumi, characterized by a mutation in the protein O-glucosyltransferase, Notch signaling is impaired in a temperature-dependent manner, and a mouse knock-out leads to embryonic lethality. We have previously identified two human genes, GXYLT1 and GXYLT2, encoding glucoside xylosyltransferases responsible for the transfer of xylose to O-linked glucose. The identity of the enzyme further elongating the glycan to generate the final trisaccharide xylose-xylose-glucose, however, remained unknown. Here, we describe that the human gene C3ORF21 encodes a UDP-xylose:α-xyloside α1,3-xylosyltransferase, acting on xylose-α1,3-glucoseβ1-containing acceptor structures. We have, therefore, renamed it XXYLT1 (xyloside xylosyltransferase 1). XXYLT1 cannot act on a synthetic acceptor containing an α-linked xylose alone, but requires the presence of the underlying glucose. Activity on Notch EGF repeats was proven by in vitro xylosylation of a mouse Notch1 fragment recombinantly produced in Sf9 insect cells, a bacterially expressed EGF repeat from mouse Notch2 modified in vitro by Rumi and Gxylt2 and in vivo by co-expression of the enzyme with the Notch1 fragment. The enzyme was shown to be a typical type II membrane-bound glycosyltransferase localized in the endoplasmic reticulum. PMID:22117070

  5. Development of an epidermal growth factor derivative with EGFR blocking activity.

    PubMed

    Panosa, Clara; Tebar, Francesc; Ferrer-Batallé, Montserrat; Fonge, Humphrey; Seno, Masaharu; Reilly, Raymond M; Massaguer, Anna; De Llorens, Rafael

    2013-01-01

    The members of the epidermal growth factor (EGF)/ErbB family are prime targets for cancer therapy. However, the therapeutic efficiency of the existing anti-ErbB agents is limited. Thus, identifying new molecules that inactivate the ErbB receptors through novel strategies is an important goal on cancer research. In this study we have developed a shorter form of human EGF (EGFt) with a truncated C-terminal as a novel EGFR inhibitor. EGFt was designed based on the superimposition of the three-dimensional structures of EGF and the Potato Carboxypeptidase Inhibitor (PCI), an EGFR blocker previously described by our group. The peptide was produced in E. coli with a high yield of the correctly folded peptide. EGFt showed specificity and high affinity for EGFR but induced poor EGFR homodimerization and phosphorylation. Interestingly, EGFt promoted EGFR internalization and translocation to the cell nucleus although it did not stimulate the cell growth. In addition, EGFt competed with EGFR native ligands, inhibiting the proliferation of cancer cells. These data indicate that EGFt may be a potential EGFR blocker for cancer therapy. In addition, the lack of EGFR-mediated growth-stimulatory activity makes EGFt an excellent delivery agent to target toxins to tumours over-expressing EGFR. PMID:23935985

  6. Amplification of Coronary Arteriogenic Capacity of Multipotent Stromal Cells by Epidermal Growth factor

    PubMed Central

    Belmadani, Souad; Matrougui, Khalid; Kolz, Chris; Pung, Yuh Fen; Palen, Desiree; Prockop, Darwin J; Chilian, William M

    2009-01-01

    Objective We determined if increasing adherence of multipotent stromal cells (MSCs) would amplify their effects on coronary collateral growth (CCG). Methods and Results Adhesion was established in cultured coronary endothelials cells (CECS) or MSCs treated with epidermal growth factor (EGF). EGF increased MSCs adhesion to CECs, and increased intercellular adhesion molecule (ICAM-1) or vascular cell adhesion molecule (VCAM-1) expression. Increased adherence was blocked by EGF receptor antagonism or antibodies to the adhesion molecules. To determine if adherent MSCs, treated with EGF, would augment CCG, repetitive episodes of myocardial ischemia (RI) were introduced and CCG was measured from the ratio of collateral-dependent (CZ) and normal zone (NZ) flows. CZ/NZ was increased by MSCs without treatment vs RI-control and was further increased by EGF-treated MSCs. EGF-treated MSCs significantly improved myocardial function vs RI or RI+ MSCs demonstrating that the increase in collateral flow was functionally significant. Engraftment of MSCs into myocardium was also increased by EGF treatment. Conclusions These results reveal the importance of EGF in MSCs adhesion to endothelium and suggest that MSCs may be effective therapies for the stimulation of coronary collateral growth when interventions are employed to increase their adhesion and homing (in vitro EGF treatment) to the jeopardized myocardium. PMID:19342596

  7. Intracellular processing of epidermal growth factor by early wound healing cells

    SciTech Connect

    Seyfer, A.E.; Nassaux, P.; Emory, R.; Wray, H.L.; Schaudies, R.P. )

    1990-01-01

    Epidermal growth factor (EGF) is a potent 53-amino-acid residue polypeptide that has been implicated in normal wound healing. Although past studies have shown that locally applied EGF accelerates wound healing, these studies have not examined intracellular events related to the processing of the growth factor. The objective of this study was to characterize both initial and later postbinding intracellular processing of EGF by a responsive cell line (osteoblasts) that is important in the healing of wounds. Cloned mouse calvarial osteoblasts (MC-3TC-E1) were incubated with radiolabeled EGF, with and without preincubation with nonlabeled EGF, for specific time intervals. Cell-associated radioactivity was characterized by nondenaturing polyacrylamide gel electrophoresis. Results showed that EGF is processed as three distinct species and that the relative proportions of these species are altered at later time periods when compared with initial processing. The patterns, similar to those reported for human fibroblasts, indicate a possible common pathway for the mitogenic signal in cells associated with the early events of wound healing. In addition, these data represent the first direct evidence that preexposure of cells to nonlabeled EGF alters the processing of radiolabeled EGF. This is significant, because cells must be exposed to EGF for 5 to 8 hours to elicit a growth response. Such data may help to explain the lag phase of wound healing.

  8. Thyroid hormone regulation of epidermal growth factor receptor levels in mouse mammary glands

    SciTech Connect

    Vonderhaar, B.K.; Tang, E.; Lyster, R.R.; Nascimento, M.C.

    1986-08-01

    The specific binding of iodinated epidermal growth factor ((/sup 125/I)iodo-EGF) to membranes prepared from the mammary glands and spontaneous breast tumors of euthyroid and hypothyroid mice was measured in order to determine whether thyroid hormones regulate the EGF receptor levels in vivo. Membranes from hypothyroid mammary glands of mice at various developmental ages bound 50-65% less EGF than those of age-matched euthyroid controls. Treatment of hypothyroid mice with L-T4 before killing restored binding to the euthyroid control level. Spontaneous breast tumors arising in hypothyroid mice also bound 30-40% less EGF than tumors from euthyroid animals even after in vitro desaturation of the membranes of endogenous growth factors with 3 M MgCl2 treatment. The decrease in binding in hypothyroid membranes was due to a decrease in the number of binding sites, not to a change in affinity of the growth factor for its receptor, as determined by Scatchard analysis of the binding data. Both euthyroid and hypothyroid membranes bound EGF primarily to a single class of high affinity sites (dissociation constant (Kd) = 0.7-1.8 nM). Euthyroid membranes bound 28.4 +/- (SE) 0.6 fmol/mg protein, whereas hypothyroid membranes bound 15.5 +/- 1.0 fmol/mg protein. These data indicate that EGF receptor levels in normal mammary glands and spontaneous breast tumors in mice are subject to regulation by thyroid status.

  9. Epidermal growth factor receptor expression in primary cultured human colorectal carcinoma cells.

    PubMed Central

    Tong, W. M.; Ellinger, A.; Sheinin, Y.; Cross, H. S.

    1998-01-01

    In situ hybridization on human colon tissue demonstrates that epidermal growth factor receptor (EGFR) mRNA expression is strongly increased during tumour progression. To obtain test systems to evaluate the relevance of growth factor action during carcinogenesis, primary cultures from human colorectal carcinomas were established. EGFR distribution was determined in 2 of the 27 primary cultures and was compared with that in well-defined subclones derived from the Caco-2 cell line, which has the unique property to differentiate spontaneously in vitro in a manner similar to normal enterocytes. The primary carcinoma-derived cells had up to three-fold higher total EGFR levels than the Caco-2 subclones and a basal mitotic rate at least fourfold higher. The EGFR affinity constant is 0.26 nmol l(-1), which is similar to that reported in Caco-2 cells. The proliferation rate of Caco-2 cells is mainly induced by EGF from the basolateral cell surface where the majority of receptors are located, whereas primary cultures are strongly stimulated from the apical side also. This corresponds to a three- to fivefold higher level of EGFR at the apical cell surface. This redistribution of EGFR to apical plasma membranes in advanced colon carcinoma cells suggests that autocrine growth factors in the colon lumen may play a significant role during tumour progression. Images Figure 1 Figure 2 PMID:9667648

  10. Nimotuzumab enhances temozolomide-induced growth suppression of glioma cells expressing mutant EGFR in vivo.

    PubMed

    Nitta, Yusuke; Shimizu, Saki; Shishido-Hara, Yukiko; Suzuki, Kaori; Shiokawa, Yoshiaki; Nagane, Motoo

    2016-03-01

    A mutant form of epidermal growth factor receptor (EGFR), EGFRvIII, is common in glioblastoma (GBM) and confers enhanced tumorigenic activity and drug resistance. Nimotuzumab, an anti-EGFR antibody, has shown preclinical and clinical activity to GBM, but its specific activity against EGFRvIII has not been fully investigated. Human glioma U87MG or LNZ308 cells overexpressing either wild-type (wt) EGFR or EGFRvIII were treated with nimotuzumab, temozolomide, or both. Expression and phosphorylation status of molecules were determined by Western blot analysis. Methylation status of promoter region of O(6) -methylguanine-DNA methyltransferase (MGMT) was detected by methylation-specific PCR. Antitumor activity was tested using nude mice bearing either subcutaneous or intracerebral xenografts along with analyses of EGFR phosphorylation status, proliferation, apoptosis, and vessel density. Nimotuzumab treatment resulted in reduction of EGFRvIII tyrosine phosphorylation with a decrease in Akt phosphorylation that was greater than that of wtEGFR. Correspondingly, antitumor effects, growth suppression and survival elongation, were more significant in mice bearing either subcutaneous or intracerebral tumor expressing EGFRvIII than in those expressing wtEGFR. These effects were markedly increased when temozolomide was combined with nimotuzumab. The post-treatment recurrent brain tumors exhibited a decrease in expression of the mismatch repair (MMR) proteins, MSH6 and MLH1, but their methylated MGMT status did not changed. Nimotuzumab has in vivo antitumor activity against GBM, especially those expressing EGFRvIII, when combined with temozolomide. This could provide a basis for preselection of patients with GBM by EGFR status who might benefit from the nimotuzumab and temozolomide combination therapy. PMID:26778701

  11. T1-Weighted Dynamic Contrast-Enhanced MRI as a Noninvasive Biomarker of Epidermal Growth Factor Receptor vIII Status

    PubMed Central

    Arevalo-Perez, J.; Thomas, A.A.; Kaley, T.; Lyo, J.; Peck, K.K.; Holodny, A.I.; Mellinghoff, I.K.; Shi, W.; Zhang, Z.; Young, R.J.

    2016-01-01

    BACKGROUND AND PURPOSE Epidermal growth factor receptor variant III is a common mutation in glioblastoma, found in approximately 25% of tumors. Epidermal growth factor receptor variant III may accelerate angiogenesis in malignant gliomas. We correlated T1-weighted dynamic contrast-enhanced MR imaging perfusion parameters with epidermal growth factor receptor variant III status. MATERIALS AND METHODS Eighty-two consecutive patients with glioblastoma and known epidermal growth factor receptor variant III status who had dynamic contrast-enhanced MR imaging before surgery were evaluated. Volumes of interest were drawn around the entire enhancing tumor on contrast T1-weighted images and then were transferred onto coregistered dynamic contrast-enhanced MR imaging perfusion maps. Histogram analysis with normalization was performed to determine the relative mean, 75th percentile, and 90th percentile values for plasma volume and contrast transfer coefficient. A Wilcoxon rank sum test was applied to assess the relationship between baseline perfusion parameters and positive epidermal growth factor receptor variant III status. The receiver operating characteristic method was used to select the cutoffs of the dynamic contrast-enhanced MR imaging perfusion parameters. RESULTS Increased relative plasma volume and increased relative contrast transfer coefficient parameters were both significantly associated with positive epidermal growth factor receptor variant III status. For epidermal growth factor receptor variant III–positive tumors, relative plasma volume mean was 9.3 and relative contrast transfer coefficient mean was 6.5; for epidermal growth factor receptor variant III–negative tumors, relative plasma volume mean was 3.6 and relative contrast transfer coefficient mean was 3.7 (relative plasma volume mean, P < .001, and relative contrast transfer coefficient mean, P = .008). The predictive powers of relative plasma volume histogram metrics outperformed those of the

  12. Growth and development of maize that contains mutant tubulin genes

    SciTech Connect

    Susan M. Wick

    2004-07-23

    Mutant maize plants containing a Mu transposon disrupting one of the five beta tubulin genes of interest were followed for several generations and hybridized with each other to produce plants containing disruptions in both copies of a single gene or disruption of more than one tubulin gene. Seedlings of some of these plants were grown under chilling conditions for a few weeks. After DOE funding ended, plants have been assessed to see whether mutant are more or less tolerant to chilling. Other mutant plants will be assessed for their male and female fertility relative to non-mutant siblings or other close relatives.

  13. Epidermal growth factor (EGF) antagonizes transforming growth factor (TGF)-beta1-induced collagen lattice contraction by human skin fibroblasts.

    PubMed

    Park, J S; Kim, J Y; Cho, J Y; Kang, J S; Yu, Y H

    2000-12-01

    Wound contraction plays an important role in healing, but in extreme conditions, it may lead to excessive scar formation and pathological wound contracture. To date, the key regulator of excessive contracture is known to be transforming growth factor-beta (TGF-beta1). In this study, we have evaluated epidermal growth factor (EGF) antagonism in fibroblast-populated collagen lattice (FPCL) gel contraction, which has been generally used as an in vitro model thought to mimic wound contraction in vivo. As expected, TGF-beta1 treatment enhanced normal fibroblast-induced collagen gel contraction in a dose-dependent manner. In contrast, EGF did not affect normal gel formation, but significantly antagonized TGF-beta1-induced gel formation (p<0.05 at 100 ng/ml), whereas the other growth factor, platelet-derived growth factor (PDGF), did not altered either normal or TGF-beta1-induced gel contractions. Similarly, EGF treatment, but not PDGF, also significantly suppressed TGF-beta1 release that was autologously elicited by TGF-beta1 treatment (p<0.01 at 100 ng/ml). Therefore, the results suggest that EGF may negatively regulate the role of TGF-beta1 through attenuating autologous release of TGF-beta1. PMID:11145189

  14. Nanoconjugation prolongs endosomal signaling of the epidermal growth factor receptor and enhances apoptosis

    NASA Astrophysics Data System (ADS)

    Wu, L.; Xu, F.; Reinhard, B. M.

    2016-07-01

    It is becoming increasingly clear that intracellular signaling can be subject to strict spatial control. As the covalent attachment of a signaling ligand to a nanoparticle (NP) impacts ligand-receptor binding, uptake, and trafficking, nanoconjugation provides new opportunities for manipulating intracellular signaling in a controlled fashion. To establish the effect of nanoconjugation on epidermal growth factor (EGF) mediated signaling, we investigate here the intracellular fate of nanoconjugated EGF (NP-EGF) and its bound receptor (EGFR) by quantitative correlated darkfield/fluorescence microscopy and density-based endosomal fractionation. We demonstrate that nanoconjugation prolongs the dwell time of phosphorylated receptors in the early endosomes and that the retention of activated EGFR in the early endosomes is accompanied by an EGF mediated apoptosis at effective concentrations that do not induce apoptosis in the case of free EGF. Overall, these findings indicate nanoconjugation as a rational strategy for modifying signaling that acts by modulating the temporo-spatial distribution of the activated EGF-EGFR ligand-receptor complex.It is becoming increasingly clear that intracellular signaling can be subject to strict spatial control. As the covalent attachment of a signaling ligand to a nanoparticle (NP) impacts ligand-receptor binding, uptake, and trafficking, nanoconjugation provides new opportunities for manipulating intracellular signaling in a controlled fashion. To establish the effect of nanoconjugation on epidermal growth factor (EGF) mediated signaling, we investigate here the intracellular fate of nanoconjugated EGF (NP-EGF) and its bound receptor (EGFR) by quantitative correlated darkfield/fluorescence microscopy and density-based endosomal fractionation. We demonstrate that nanoconjugation prolongs the dwell time of phosphorylated receptors in the early endosomes and that the retention of activated EGFR in the early endosomes is accompanied by an EGF

  15. Taurine and Epidermal Growth Factor Belong to the Signature of First-Episode Psychosis

    PubMed Central

    Koido, Kati; Innos, Jürgen; Haring, Liina; Zilmer, Mihkel; Ottas, Aigar; Vasar, Eero

    2016-01-01

    This study evaluated the levels of two amino acid derivatives taurine and spermine in first-episode psychosis (FEP) patients and their response to antipsychotic treatment. The levels of taurine and spermine were significantly up-regulated in antipsychotic-naïve FEP patients compared to control subjects (CS). Treatment of FEP patients with antipsychotic drugs significantly reduced the positive symptoms of schizophrenia. This positive effect was accompanied by a significant reduction of taurine and spermine to the levels measured in CS. General linear model was used to establish associations of taurine and spermine with the levels of cytokines and growth factors, measured in our previous experiments using the same study sample. There was a strong association between taurine and epidermal growth factor (EGF). Both biomarkers significantly correlated with the disease symptoms as well as with the effectiveness of antipsychotic treatment. Accordingly one can conclude that taurine and EGF belong to the signature of FEP. Most probably they reflect altered oxidative stress and corrupted function of N-methyl-D-aspartate (NMDA) receptors in FEP. PMID:27471446

  16. ErbB2 resembles an autoinhibited invertebrate epidermal growth factor receptor

    SciTech Connect

    Alvarado, Diego; Klein, Daryl E.; Lemmon, Mark A.

    2009-09-25

    The orphan receptor tyrosine kinase ErbB2 (also known as HER2 or Neu) transforms cells when overexpressed, and it is an important therapeutic target in human cancer. Structural studies have suggested that the oncogenic (and ligand-independent) signalling properties of ErbB2 result from the absence of a key intramolecular 'tether' in the extracellular region that autoinhibits other human ErbB receptors, including the epidermal growth factor (EGF) receptor. Although ErbB2 is unique among the four human ErbB receptors, here we show that it is the closest structural relative of the single EGF receptor family member in Drosophila melanogaster (dEGFR). Genetic and biochemical data show that dEGFR is tightly regulated by growth factor ligands, yet a crystal structure shows that it, too, lacks the intramolecular tether seen in human EGFR, ErbB3 and ErbB4. Instead, a distinct set of autoinhibitory interdomain interactions hold unliganded dEGFR in an inactive state. All of these interactions are maintained (and even extended) in ErbB2, arguing against the suggestion that ErbB2 lacks autoinhibition. We therefore suggest that normal and pathogenic ErbB2 signalling may be regulated by ligands in the same way as dEGFR. Our findings have important implications for ErbB2 regulation in human cancer, and for developing therapeutic approaches that target novel aspects of this orphan receptor.

  17. Reformulating Tylocrebrine in Epidermal Growth Factor Receptor Targeted Polymeric Nanoparticles Improves Its Therapeutic Index

    PubMed Central

    2015-01-01

    Several promising anticancer drug candidates have been sidelined owing to their poor physicochemical properties or unfavorable pharmacokinetics, resulting in high overall cost of drug discovery and development. Use of alternative formulation strategies that alleviate these issues can help advance new molecules to the clinic at a significantly lower cost. Tylocrebrine is a natural product with potent anticancer activity. Its clinical trial was discontinued following the discovery of severe central nervous system toxicities. To improve the safety and potency of tylocrebrine, we formulated the drug in polymeric nanoparticles targeted to the epidermal growth factor receptor (EGFR) overexpressed on several types of tumors. Through in vitro studies in different cancer cell lines, we found that EGFR targeted nanoparticles were significantly more effective in killing tumor cells than the free drug. In vivo pharmacokinetic studies revealed that encapsulation in nanoparticles resulted in lower brain penetration and enhanced tumor accumulation of the drug. Further, targeted nanoparticles were characterized by significantly enhanced tumor growth inhibitory activity in a mouse xenograft model of epidermoid cancer. These results suggest that the therapeutic index of drugs that were previously considered unusable could be significantly improved by reformulation. Application of novel formulation strategies to previously abandoned drugs provides an opportunity to advance new molecules to the clinic at a lower cost. This can significantly increase the repertoire of treatment options available to cancer patients. PMID:26065924

  18. Cutaneous reactions to anticancer agents targeting the epidermal growth factor receptor: a dermatology-oncology perspective.

    PubMed

    Lacouture, M E; Melosky, B L

    2007-01-01

    The epidermal growth factor receptor (EGFR) is often overexpressed or dysregulated in solid tumors. Targeting the EGFR-mediated signaling pathway has become routine practice in the treatment of lung, pancreatic, head and neck, and colon carcinomas. Available agents with selected activity towards the EGFR include low molecular weight tyrosine kinase inhibitors, e.g., erlotinib (Tarceva, Genentech BioOncology/ OSI Pharmaceuticals/ F. Hoffmann-La Roche) and monoclonal antibodies, such as cetuximab (Erbitux, Bristol-Myers Squibb/ ImClone Systems/ Merck) and panitumumab (Vectibix, Amgen). Their use is anticipated to increase for treating other solid tumors that are dependent on this pathway for growth and proliferation. Health Canada and the US FDA have approved erlotinib for the treatment of advanced non-small cell lung carcinoma (NSCLC). It has also been approved in the US for use against pancreatic cancer in combination with gemcitabine (Gemzar, Eli Lilly). Cetuximab and most recently panitumumab (Vectibix, Amgen/ Abgenix) were approved by the US FDA for metastatic colorectal carcinoma. Cetuximab is also approved in the US for head and neck squamous cell carcinoma. The safety profile for this class of drugs is unique, with virtually no hematological toxicity, but frequent cutaneous and gastrointestinal side-effects. Although there is a dearth of randomized trials addressing treatment of the dermatological side-effects, some basic principles of management have been agreed upon and can likely improve patient compliance and decrease inappropriate dose reduction, which may negatively influence the antitumor effect. PMID:17762902

  19. Epidermal growth factor receptor inhibitor protects against abdominal aortic aneurysm in a mouse model.

    PubMed

    Obama, Takashi; Tsuji, Toshiyuki; Kobayashi, Tomonori; Fukuda, Yamato; Takayanagi, Takehiko; Taro, Yoshinori; Kawai, Tatsuo; Forrester, Steven J; Elliott, Katherine J; Choi, Eric; Daugherty, Alan; Rizzo, Victor; Eguchi, Satoru

    2015-05-01

    Angiotensin II (Ang II) has been implicated in the development of abdominal aortic aneurysm (AAA). In vascular smooth muscle cells (VSMC), Ang II activates epidermal growth factor receptor (EGFR) mediating growth promotion. We hypothesized that inhibition of EGFR prevents Ang II-dependent AAA. C57BL/6 mice were co-treated with Ang II and β-aminopropionitrile (BAPN) to induce AAA with or without treatment with EGFR inhibitor, erlotinib. Without erlotinib, 64.3% of mice were dead due to aortic rupture. All surviving mice had AAA associated with EGFR activation. Erlotinib-treated mice did not die and developed far fewer AAA. The maximum diameters of abdominal aortas were significantly shorter with erlotinib treatment. In contrast, both erlotinib-treated and non-treated mice developed hypertension. The erlotinib treatment of abdominal aorta was associated with lack of EGFR activation, endoplasmic reticulum (ER) stress, oxidative stress, interleukin-6 induction and matrix deposition. EGFR activation in AAA was also observed in humans. In conclusion, EGFR inhibition appears to protect mice from AAA formation induced by Ang II plus BAPN. The mechanism seems to involve suppression of vascular EGFR and ER stress. PMID:25531554

  20. Autoradiographic localization of epidermal growth factor receptors to all major uterine cell types

    SciTech Connect

    Lin, T.H.; Mukku, V.R.; Verner, G.; Kirkland, J.L.; Stancel, G.M.

    1988-03-01

    We have recently studied the structure and function of the uterine epidermal growth factor (EGF) receptor, its hormonal regulation, and its possible role in estrogen-induced uterine DNA synthesis. Since the uterus is composed of multiple cell types, we sought, in the work reported here, to localize EGF binding in this organ by autoradiography. Prior to the actual autoradiography, we performed a companion series of experiments to insure that EGF binding to uterine tissue in situ represented a true receptor interaction. Uteri from immature female rats were incubated in vitro with 125I-EGF at 25 degrees C. Tissue binding was maximal within 120 min and remained constant for at least an additional 120 min. This binding of labeled EGF was largely abolished by excess unlabeled EGF but not by other growth factors, indicating that binding was to specific receptors. The binding of 125I-EGF was saturable and reached a plateau at 4-8 nM; specific binding was half-maximal at 1-2 nM EGF. In situ cross-linking studies revealed that 125I-EGF was bound predominantly to a 170,000 MW EGF receptor similar to that seen in isolated uterine membranes. Incubation of uteri with 125I-EGF followed by autoradiography revealed binding to epithelial cells, stroma, and myometrium. These results provide evidence for the presence of specific EGF receptors in all major uterine cell types of the immature rat.

  1. Soluble Epidermal Growth Factor Receptors (sEGFRs) in Cancer: Biological Aspects and Clinical Relevance

    PubMed Central

    Maramotti, Sally; Paci, Massimiliano; Manzotti, Gloria; Rapicetta, Cristian; Gugnoni, Mila; Galeone, Carla; Cesario, Alfredo; Lococo, Filippo

    2016-01-01

    The identification of molecules that can reliably detect the presence of a tumor or predict its behavior is one of the biggest challenges of research in cancer biology. Biological fluids are intriguing mediums, containing many molecules that express the individual health status and, accordingly, may be useful in establishing the potential risk of cancer, defining differential diagnosis and prognosis, predicting the response to treatment, and monitoring the disease progression. The existence of circulating soluble growth factor receptors (sGFRs) deriving from their membrane counterparts has stimulated the interest of researchers to investigate the use of such molecules as potential cancer biomarkers. But what are the origins of circulating sGFRs? Are they naturally occurring molecules or tumor-derived products? Among these, the epidermal growth factor receptor (EGFR) is a cell-surface molecule significantly involved in cancer development and progression; it can be processed into biological active soluble isoforms (sEGFR). We have carried out an extensive review of the currently available literature on the sEGFRs and their mechanisms of regulation and biological function, with the intent to clarify the role of these molecules in cancer (and other pathological conditions) and, on the basis of the retrieved evidences, speculate about their potential use in the clinical setting. PMID:27104520

  2. Soluble Epidermal Growth Factor Receptors (sEGFRs) in Cancer: Biological Aspects and Clinical Relevance.

    PubMed

    Maramotti, Sally; Paci, Massimiliano; Manzotti, Gloria; Rapicetta, Cristian; Gugnoni, Mila; Galeone, Carla; Cesario, Alfredo; Lococo, Filippo

    2016-01-01

    The identification of molecules that can reliably detect the presence of a tumor or predict its behavior is one of the biggest challenges of research in cancer biology. Biological fluids are intriguing mediums, containing many molecules that express the individual health status and, accordingly, may be useful in establishing the potential risk of cancer, defining differential diagnosis and prognosis, predicting the response to treatment, and monitoring the disease progression. The existence of circulating soluble growth factor receptors (sGFRs) deriving from their membrane counterparts has stimulated the interest of researchers to investigate the use of such molecules as potential cancer biomarkers. But what are the origins of circulating sGFRs? Are they naturally occurring molecules or tumor-derived products? Among these, the epidermal growth factor receptor (EGFR) is a cell-surface molecule significantly involved in cancer development and progression; it can be processed into biological active soluble isoforms (sEGFR). We have carried out an extensive review of the currently available literature on the sEGFRs and their mechanisms of regulation and biological function, with the intent to clarify the role of these molecules in cancer (and other pathological conditions) and, on the basis of the retrieved evidences, speculate about their potential use in the clinical setting. PMID:27104520

  3. Sensitivity of human granulosa cell tumor cells to epidermal growth factor receptor inhibition.

    PubMed

    Andersson, Noora; Anttonen, Mikko; Färkkilä, Anniina; Pihlajoki, Marjut; Bützow, Ralf; Unkila-Kallio, Leila; Heikinheimo, Markku

    2014-04-01

    Epidermal growth factor receptor (EGFR) is implicated in the progression of many human cancers, but its significance in ovarian granulosa cell tumor (GCT) pathobiology remains poorly understood. We assessed the EGFR gene copy number, surveyed the mRNA and protein expression patterns of EGFR in 90 adult GCTs, and assessed the in vitro sensitivity of GCT cells to EGFR inhibition. Low-level amplification of EGFR gene was observed in five GCTs and high-level amplification in one sample. EGFR mRNA was robustly expressed in GCTs. Most tumors expressed both unphosphorylated and phosphorylated EGFR protein, but the protein expression did not correlate with clinical parameters, including the risk of recurrence. Small-molecule EGFR inhibitors reduced the EGF-induced activation of EGFR and its downstream signaling molecules at nanomolar doses, but cell viability was reduced, and caspase-3/7 was activated in GCT cells only at micromolar doses. Based on the present results, EGFR is active and abundantly expressed in the majority of GCTs, but probably has only minor contribution to GCT cell growth. Given the high doses of EGFR inhibitors required to reduce GCT cell viability in vitro, they are not likely to be effective for GCT treatment as single agents; they should rather be tested as part of combination therapies for these malignancies. PMID:24463098

  4. Targeted in vivo photodynamic therapy with epidermal growth factor receptor-specific peptide linked nanoparticles.

    PubMed

    Narsireddy, Amreddy; Vijayashree, Kurra; Irudayaraj, Joseph; Manorama, Sunkara V; Rao, Nalam M

    2014-08-25

    In targeted photodynamic therapy (tPDT), photosensitizers (PS) are targeted to disease tissue to reduce the dosage of PS and in addition to reduce the photo damage to the non-target tissue. We synthesized iron oxide nanoparticles (NP) armored with tumor targeting peptide and PS for targeted PDT. Chitosan covered Fe3O4 NPs (30 nm) were deposited with gold NPs to generate two distinct chemical surfaces. To the gold particles PS was attached with a lipoic acid linker. Human epidermal growth factor receptor (hEGFR)-specific peptide was also attached to the same particles via a nickel-nitrilotriacetic acid linker attached to the chitosan. Using these nanoparticles, peptide specific uptake and PDT mediated cell death of the SK-OV-3 cells (Her2(+) positive cells) were demonstrated by confocal microscopy, T2 imaging and viability assays. Peptide mediated preferential distribution of these NPs into tumor tissue was also shown in a xenograft tumor model. After one intravenous injection and one PDT dose, peptide bound NPs retarded tumor growth significantly compared to dark controls or treatments with NPs without peptide. The tumor retardation by targeted NPs was achieved at a PS concentration of 3.9 nmol/animal, whereas similar effect was seen with free PS at 220 nmol/animal. Therapeutic potential of these peptide containing NPs would be a useful in targeted PDT and in imaging the target tissue. PMID:24939618

  5. Epidermal development, growth control, and homeostasis in the face of centrosome amplification

    PubMed Central

    Kulukian, Anita; Holland, Andrew J.; Vitre, Benjamin; Naik, Shruti; Cleveland, Don W.; Fuchs, Elaine

    2015-01-01

    As nucleators of the mitotic spindle and primary cilium, centrosomes play crucial roles in equal segregation of DNA content to daughter cells, coordination of growth and differentiation, and transduction of homeostatic cues. Whereas the majority of mammalian cells carry no more than two centrosomes per cell, exceptions to this rule apply in certain specialized tissues and in select disease states, including cancer. Centrosome amplification, or the condition of having more than two centrosomes per cell, has been suggested to contribute to instability of chromosomes, imbalance in asymmetric divisions, and reorganization of tissue architecture; however, the degree to which these conditions are a direct cause of or simply a consequence of human disease is poorly understood. Here we addressed this issue by generating a mouse model inducing centrosome amplification in a naturally proliferative epithelial tissue by elevating Polo-like kinase 4 (Plk4) expression in the skin epidermis. By altering centrosome numbers, we observed multiciliated cells, spindle orientation errors, and chromosome segregation defects within developing epidermis. None of these defects was sufficient to impart a proliferative advantage within the tissue, however. Rather, impaired mitoses led to p53-mediated cell death and contributed to defective growth and stratification. Despite these abnormalities, mice remained viable and healthy, although epidermal cells with centrosome amplification were still appreciable. Moreover, these abnormalities were insufficient to disrupt homeostasis and initiate or enhance tumorigenesis, underscoring the powerful surveillance mechanisms in the skin. PMID:26578791

  6. Both epidermal growth factor and insulin-like growth factor receptors are dispensable for structural intestinal adaptation

    PubMed Central

    Sun, Raphael C.; Diaz-Miron, Jose L.; Choi, Pamela M.; Sommovilla, Joshua; Guo, Jun; Erwin, Christopher R.; Warner, Brad W.

    2015-01-01

    Purpose Intestinal adaptation structurally represents increases in crypt depth and villus height in response to small bowel resection (SBR). Previously, we found that neither epidermal growth factor receptor (EGFR) nor insulin-like growth factor 1 receptor (IGF1R) function was individually required for normal adaptation. In this study, we sought to determine the effect of disrupting both EGFR and IGF1R expression on resection-induced adaptation. Methods Intestinal-specific EGFR and IGF1R double knockout mice (EGFR/IGF1R-IKO) (n=6) and wild-type (WT) control mice (n=7) underwent 50% proximal SBR. On postoperative day (POD) 7, structural adaptation was scored by measuring crypt depth and villus height. Rates of crypt cell proliferation, apoptosis, and submucosal capillary density were also compared. Results After 50% SBR, normal adaptation occurred in both WT and EGFR/IGF1R-IKO. Rates of proliferation and apoptosis were no different between the two groups. The angiogenic response was less in the EGFR/IGF1R-IKO compared to WT mice. Conclusion Disrupted expression of EGFR and IGF1R in the intestinal epithelial cells does not affect resection-induced structural adaptation but attenuates angiogenesis after SBR. These findings suggest that villus growth is driven by receptors and pathways that occur outside the epithelial cell component, while angiogenic responses may be influenced by epithelial-endothelial crosstalk. PMID:25818318

  7. Expression of transforming growth factor alpha and epidermal growth factor receptor in rat lung neoplasms induced by plutonium-239

    SciTech Connect

    Stegelmeier, B.L.; Gillett, N.A.; Hahn, F.F.; Kelly, G.; Rebar, A.H.

    1994-11-01

    Ninety-two rat lung proliferative lesions and neoplasms induced by inhaled {sup 239}PuO{sub 2} were evaluated for aberrant expression of transforming growth factor alpha (TGF-{alpha}) and epidermal growth factor receptor (EGFR). Expression of TGF-{alpha} protein, measured by immunohistochemistry, was higher in 94% of the squamous cell carcinomas and 87% of the foci of alveolar epithelial squamous metaplasia than that exhibited by the normal-appearing, adjacent lung parenchyma. In contrast, only 20% of adenocarcinomas and foci of epithelial hyperplasia expressed elevated levels of TGF-{alpha}. Many neoplasms expressing TGF-{alpha} also expressed excessive levels of EGFR mRNA. Southern and DNA slot blot analyses showed that the elevated EGFR expression was not due to amplification of the EGFR gene. These data suggest that increased amounts of TGF-{alpha} were early alterations in the progression of plutonium-induced squamous cell carcinoma, and these increases may occur in parallel with overexpression of the receptor for this growth factor. Together, these alterations create a potential autocrine loop for sustaining clonal expansion of cells initiated by high-LET radiation. 44 refs., 4 figs., 1 tab.

  8. Parabens and Human Epidermal Growth Factor Receptor Ligand Cross-Talk in Breast Cancer Cells

    PubMed Central

    Pan, Shawn; Yuan, Chaoshen; Tagmount, Abderrahmane; Rudel, Ruthann A.; Ackerman, Janet M.; Yaswen, Paul; Vulpe, Chris D.; Leitman, Dale C.

    2015-01-01

    Background: Xenoestrogens are synthetic compounds that mimic endogenous estrogens by binding to and activating estrogen receptors. Exposure to estrogens and to some xenoestrogens has been associated with cell proliferation and an increased risk of breast cancer. Despite evidence of estrogenicity, parabens are among the most widely used xenoestrogens in cosmetics and personal-care products and are generally considered safe. However, previous cell-based studies with parabens do not take into account the signaling cross-talk between estrogen receptor α (ERα) and the human epidermal growth factor receptor (HER) family. Objectives: We investigated the hypothesis that the potency of parabens can be increased with HER ligands, such as heregulin (HRG). Methods: The effects of HER ligands on paraben activation of c-Myc expression and cell proliferation were determined by real-time polymerase chain reaction, Western blots, flow cytometry, and chromatin immunoprecipitation assays in ERα- and HER2-positive human BT-474 breast cancer cells. Results: Butylparaben (BP) and HRG produced a synergistic increase in c-Myc mRNA and protein levels in BT-474 cells. Estrogen receptor antagonists blocked the synergistic increase in c-Myc protein levels. The combination of BP and HRG also stimulated proliferation of BT-474 cells compared with the effects of BP alone. HRG decreased the dose required for BP-mediated stimulation of c-Myc mRNA expression and cell proliferation. HRG caused the phosphorylation of serine 167 in ERα. BP and HRG produced a synergistic increase in ERα recruitment to the c-Myc gene. Conclusion: Our results show that HER ligands enhanced the potency of BP to stimulate oncogene expression and breast cancer cell proliferation in vitro via ERα, suggesting that parabens might be active at exposure levels not previously considered toxicologically relevant from studies testing their effects in isolation. Citation: Pan S, Yuan C, Tagmount A, Rudel RA, Ackerman JM

  9. Modulation of cultured porcine granulosa cell responsiveness to follicle stimulating hormone and epidermal growth factor

    SciTech Connect

    Buck, P.A.

    1986-01-01

    Ovarian follicular development is dependent upon the coordinated growth and differentiation of the granulosa cells which line the follicle. Follicle stimulating hormone (FSH) induces granulosa cell differentiation both in vivo and in vitro. Epidermal growth factor (EGF) stimulates granulosa cell proliferation in vitro. The interaction of these two effectors upon selected parameters of growth and differentiation was examined in monolayer cultures of porcine granulose cells. Analysis of the EGF receptor by /sup 125/I-EGF binding revealed that the receptor was of high affinity with an apparent dissociation constant of 4-6 x 10/sup -10/ M. The average number of receptors per cell varied with the state of differentiation both in vivo and in vitro; highly differentiated cells bound two-fold less /sup 125/I-EGF and this effect was at least partially induced by FSH in vitro. EGF receptor function was examined by assessing EGF effects on cell number and /sup 3/H-thymidine incorporation. EGF stimulated thymidine incorporation in both serum-free and serum-supplemented culture, but only in serum-supplemented conditions was cell number increased. EGF receptor function was inversely related to the state of differentiation and was attenuated by FSH. The FSH receptor was examined by /sup 125/I-FSH binding. EGF increased FSH receptor number, and lowered the affinity of the receptor. The function of these receptors was assessed by /sup 125/I-hCG binding and progesterone radioimmunoassay. If EGF was present continuously in the cultures. FSH receptor function was attenuated regardless of FSH receptor number. A preliminary effort to examine the mechanism of this interaction was performed by analyzing hormonally controlled protein synthesis with /sup 35/S-methionine labeling, SDS polyacrylamide gel electrophoresis and fluorography. FSH promoted the expression of a 27,000 dalton protein. This effect was attenuated by EGF.

  10. Growth performance of early-weaned pigs is enhanced by feeding epidermal growth factor-expressing Lactococcus lactis fermentation product.

    PubMed

    Bedford, Andrea; Huynh, Evanna; Fu, Molei; Zhu, Cuilan; Wey, Doug; de Lange, Cornelis; Li, Julang

    2014-03-10

    We have previously generated epidermal growth factor expressing Lactococcus lactis (EGF-LL) using bioengineering approach, and shown that feeding newly-weaned piglets EGF-LL improves digestive function. To address concerns over the use of genetically modified organisms (GMO), the objective of the current study was to investigate the effect of feeding the EGF-LL fermentation product, after removal of the genetically modified EGF-LL, on growth performance and intestine development of newly-weaned piglets. One hundred and twenty newly-weaned piglets were fed ad libitum according to a 2-phase feeding program. Four pens were assigned to each of three treatments: (1) complete EGF-LL fermentation product (Ferm), (2) supernatant of EGF-LL fermentation product, after removal of EGF-LL (Supern), or (3) blank M17GE media (Control). EGF-LL or its fermented supernatant was administrated to piglets in the first 3 weeks post-weaning; their growth performance was monitored throughout treatment, and for the following week. Daily body weight gain (254.8g vs. 200.5g) and Gain:Feed (0.541kg/kg vs. 0.454kg/kg) of pigs on the Supern group were significantly improved compared to that of Control, although no difference was observed between the Ferm and Control pigs. Intestinal sucrase activity was increased in Supern- compared to Control group (166.3±62.1 vs. 81.4±56.5nmol glucose released/mg protein; P<0.05). The lack of growth response with Ferm pigs may be attributed to an overload of bacteria (daily dose included 4.56×10(10)CFU/kg BW/day EGF-LL). These results suggest that GMO-free EGF-LL fermentation product is effective in increasing growth performance of early-weaned piglets. PMID:24445174

  11. Divergent effects of epidermal growth factor and transforming growth factors on a human endometrial carcinoma cell line.

    PubMed

    Korc, M; Haussler, C A; Trookman, N S

    1987-09-15

    Epidermal growth factor (EGF), at concentrations ranging from 0.83 to 4.98 nM, markedly inhibited the proliferation of RL95-2 cells that were seeded at low plating densities (4.7 X 10(3) cells/cm2). Under the same incubation conditions, 16.6 pM EGF enhanced cell proliferation. At high plating densities (2.5 X 10(4) cells/cm2) 0.83 nM EGF also stimulated cell proliferation. Both the inhibitory and stimulatory effects of EGF were mimicked by transforming growth factor-alpha (TGF-alpha). However, the inhibitory action of TGF-alpha was always greater that of EGF. Binding studies with 125I-labeled TGF-alpha indicated that maximal cell surface binding of TGF-alpha occurred at 15 min, whereas maximal internalization occurred at 45 min. Both cell surface and internalized radioactivity declined sharply thereafter. Analysis of radioactivity released into the incubation medium during pulse-chase experiments indicated that RL95-2 cells extensively degraded both TGF-alpha and EGF. The lysosomotropic compound methylamine arrested the generation of low-molecular-weight degradation products of EGF, but not of TGF-alpha. In contrast to EGF and TGF-alpha, transforming growth factor-beta (TGF-beta) inhibited the proliferation of RL95-2 cells that were seeded at either low or high plating densities. Further, transforming growth factor-beta induced the appearance of large cuboidal cells that were readily distinguished from cells treated with either EGF or TGF-alpha. These findings point to complex regulatory actions of growth factors on the proliferation of RL95-2 cells and suggest that the processing of TGF-alpha following EGF receptor activation is distinct from the processing of EGF. PMID:3497713

  12. Co-Activation of Epidermal Growth Factor Receptor and c-MET Defines a Distinct Subset of Lung Adenocarcinomas

    PubMed Central

    Matsubara, Daisuke; Ishikawa, Shumpei; Sachiko, Oguni; Aburatani, Hiroyuki; Fukayama, Masashi; Niki, Toshiro

    2010-01-01

    Epidermal growth factor receptor (EGFR) and MET are molecular targets for lung cancer treatment. The relationships between expression, activation, and gene abnormalities of these two targets are currently unclear. Here, we demonstrate that a panel of 40 lung cancer cell lines could be classified into two groups. Group I was characterized by (1) high phosphorylations of MET and EGFR, (2) frequent mutation or amplification of EGFR, MET, and human epidermal growth factor receptor-2 (HER2), (3) high expressions of bronchial epithelial markers (thyroid transcription factor-1 (TTF-1), MUC1, and Cytokeratin 7 (CK7)); and (4) high expressions of MET, human epidermal growth factor receptor-3, E-cadherin, cyclooxygenase-2, and laminin gamma2. In contrast, Group II exhibited little or no phosphorylation of MET and EGFR; no mutation or amplification of EGFR, MET, and HER2; were triple-negative for TTF-1, MUC1, and CK7; and showed high expressions of vimentin, fibroblast growth factor receptor-1, and transcription factor 8. Importantly, Group I was more sensitive to gefitinib and more resistant to cisplatin and paclitaxel than Group II. The clinical relevance was confirmed in publicly available data on 442 primary lung adenocarcinoma patients; survival benefits by postoperative chemotherapy were seen in only patients with tumors corresponding to Group II. Overall, co-activation of EGFR and MET defines a distinct subgroup of lung carcinoma with characteristic genetic abnormalities, gene expression pattern, and response to chemotherapeutic reagents. PMID:20934974

  13. Niclosamide inhibits epithelial-mesenchymal transition and tumor growth in lapatinib-resistant human epidermal growth factor receptor 2-positive breast cancer.

    PubMed

    Liu, Junjun; Chen, Xiaosong; Ward, Toby; Mao, Yan; Bockhorn, Jessica; Liu, Xiaofei; Wang, Gen; Pegram, Mark; Shen, Kunwei

    2016-02-01

    Acquired resistance to lapatinib, a human epidermal growth factor receptor 2 kinase inhibitor, remains a clinical problem for women with human epidermal growth factor receptor 2-positive advanced breast cancer, as metastasis is commonly observed in these patients. Niclosamide, an anti-helminthic agent, has recently been shown to exhibit cytotoxicity to tumor cells with stem-like characteristics. This study was designed to identify the mechanisms underlying lapatinib resistance and to determine whether niclosamide inhibits lapatinib resistance by reversing epithelial-mesenchymal transition. Here, two human epidermal growth factor receptor 2-positive breast cancer cell lines, SKBR3 and BT474, were exposed to increasing concentrations of lapatinib to establish lapatinib-resistant cultures. Lapatinib-resistant SKBR3 and BT474 cells exhibited up-regulation of the phenotypic epithelial-mesenchymal transition markers Snail, vimentin and α-smooth muscle actin, accompanied by activation of nuclear factor-кB and Src and a concomitant increase in stem cell marker expression (CD44(high)/CD24(low)), compared to naive lapatinib-sensitive SKBR3 and BT474 cells, respectively. Interestingly, niclosamide reversed epithelial-mesenchymal transition, induced apoptosis and inhibited cell growth by perturbing aberrant signaling pathway activation in lapatinib-resistant human epidermal growth factor receptor 2-positive cells. The ability of niclosamide to alleviate stem-like phenotype development and invasion was confirmed. Collectively, our results demonstrate that lapatinib resistance correlates with epithelial-mesenchymal transition and that niclosamide inhibits lapatinib-resistant cell viability and epithelial-mesenchymal transition. These findings suggest a role of niclosamide or derivatives optimized for more favorable bioavailability not only in reversing lapatinib resistance but also in reducing metastatic potential during the treatment of human epidermal growth factor receptor

  14. Dialkoxyquinazolines: Screening Epidermal Growth Factor ReceptorTyrosine Kinase Inhibitors for Potential Tumor Imaging Probes

    SciTech Connect

    VanBrocklin, Henry F.; Lim, John K.; Coffing, Stephanie L.; Hom,Darren L.; Negash, Kitaw; Ono, Michele Y.; Hanrahan, Stephen M.; Taylor,Scott E.; Vanderpoel, Jennifer L.; Slavik, Sarah M.; Morris, Andrew B.; Riese II, David J.

    2005-09-01

    The epidermal growth factor receptor (EGFR), a long-standingdrug development target, is also a desirable target for imaging. Sixteendialkoxyquinazoline analogs, suitable for labeling with positron-emittingisotopes, have been synthesized and evaluated in a battery of in vitroassays to ascertain their chemical and biological properties. Thesecharacteristics provided the basis for the adoption of a selection schemato identify lead molecules for labeling and in vivo evaluation. A newEGFR tyrosine kinase radiometric binding assay revealed that all of thecompounds possessed suitable affinity (IC50 = 0.4 - 51 nM) for the EGFRtyrosine kinase. All of the analogs inhibited ligand-induced EGFRtyrosine phosphorylation (IC50 = 0.8 - 20 nM). The HPLC-estimatedoctanol/water partition coefficients ranged from 2.0-5.5. Four compounds,4-(2'-fluoroanilino)- and 4-(3'-fluoroanilino)-6,7-diethoxyquinazoline aswell as 4-(3'-chloroanilino)- and4-(3'-bromoanilino)-6,7-dimethoxyquinazoline, possess the bestcombination of characteristics that warrant radioisotope labeling andfurther evaluation in tumor-bearing mice.

  15. Recent advances in drug design of epidermal growth factor receptor inhibitors.

    PubMed

    Warnault, P; Yasri, A; Coisy-Quivy, M; Chevé, G; Boriès, C; Fauvel, B; Benhida, R

    2013-01-01

    The tyrosine kinase epidermal growth factor receptor (EGFR) has emerged in recent years as a key and validated target of targeted therapies for solid tumors. It plays a central role in oncology since it is involved in many steps of tumor progression such as proliferation, angiogenesis, invasiveness, decreased apoptosis, and loss of differentiation. Recent advances in targeted therapies have demonstrated that tyrosine kinase inhibitors (TKIs), have provided a marked benefit to subsets of patients whose tumors harbor specific genetic abnormalities. However, resistance phenomenon appears rapidly and patients with EGFR mutations acquire resistance to TKI inhibitors decreasing therefore the median time to disease progression to few months. Several strategies were envisioned to overcome this resistance, such as dual-target inhibitors, multitarget and combined therapy. This review summarizes recent advances in TKIs development with special focus on rational strategies for the design of potent EGFR inhibitors including molecular modeling studies based on crystallographic data. Such advances open the way for new research possibilities in modern medicinal chemistry combined to structure-based drug design. PMID:23410174

  16. Exclusion of epidermal growth factor and high-resolution physical mapping across the Rieger syndrome locus.

    PubMed Central

    Semina, E. V.; Datson, N. A.; Leysens, N. J.; Zabel, B. U.; Carey, J. C.; Bell, G. I.; Bitoun, P.; Lindgren, C.; Stevenson, T.; Frants, R. R.; van Ommen, G.; Murray, J. C.

    1996-01-01

    We have evaluated the 4q25-4q26 region where the autosomal dominant disorder Rieger syndrome has been previously mapped by linkage. We first excluded epidermal growth factor as a candidate gene by carrying out SSCP analysis of each of its 24 exons using a panel of seven unrelated individuals with Rieger syndrome. No evidence for etiologic mutations was detected in these individuals, although four polymorphic variants were identified, including three that resulted in amino acid changes. We next made use of two apparently balanced translocations, one familial and one sporadic, to identify a narrow physical localization likely to contain the gene or to be involved in regulation of gene function. Somatic cell hybrids were established from individuals with these balanced translocations, and these hybrids were used as a physical mapping resource for, first, preliminary mapping of the translocation breakpoints using known sequence tagged sites from chromosome 4 and then, after creating YAC and cosmids contigs encompassing the region, for fine mapping of those breakpoints. A cosmid contig spanning these breakpoints was identified and localized the gene to within approximately 150 kb of D4S193 on chromosome 4. The interval between the two independent translocations is approximately 50 kb in length and provides a powerful resource for gene identification. Images Figure 1 Figure 3 PMID:8940274

  17. Epidermal growth factor receptor mutation mediates cross-resistance to panitumumab and cetuximab in gastrointestinal cancer

    PubMed Central

    Braig, Friederike; März, Manuela; Schieferdecker, Aneta; Schulte, Alexander; Voigt, Mareike; Stein, Alexander; Grob, Tobias; Alawi, Malik; Indenbirken, Daniela; Kriegs, Malte; Engel, Erik; Vanhoefer, Udo; Grundhoff, Adam; Loges, Sonja; Riecken, Kristoffer; Fehse, Boris; Bokemeyer, Carsten; Binder, Mascha

    2015-01-01

    Acquired resistance to epidermal growth factor receptor (EGFR) targeted antibodies represents a clinical challenge in the treatment of gastrointestinal tumors such as metastatic colorectal cancer, but its molecular mechanisms are incompletely understood. We scanned KRAS exon 2/3/4, NRAS exon 2/3/4 and the overlapping epitopes of the EGFR antibodies cetuximab and panitumumab for mutations in pre- and post-treatment tumor tissue of 21 patients with gastrointestinal cancer treated with chemotherapy +/− EGFR antibodies by next-generation sequencing (“tumor tissue” cohort). We describe a novel EGFR exon 12 mutation acquired in tumors of 1 out of 3 patients treated with panitumumab. The EGFR G465R mutation introduces a positive charge within the overlap of the panitumumab and cetuximab epitopes. It abrogates antibody binding and mediates cross-resistance to both antibodies in EGFR G465R-transfected Ba/F3 cells. In circulating tumor DNA from an independent “liquid biopsy” cohort of 27 patients, we found this novel mutation in 1 out of 6 panitumumab-treated cases while about one third of patients show acquired RAS mutations. We show that acquired resistance by epitope-changing mutations also emerges during panitumumab treatment, which can be easily detected by a liquid biopsy approach even before clinical resistance occurs and this may help in tailoring EGFR-targeted therapies. PMID:26059438

  18. Recurrent exposure to nicotine differentiates human bronchial epithelial cells via epidermal growth factor receptor activation

    SciTech Connect

    Martinez-Garcia, Eva; Irigoyen, Marta; Anso, Elena; Martinez-Irujo, Juan Jose; Rouzaut, Ana

    2008-05-01

    Cigarette smoking is the major preventable cause of lung cancer in developed countries. Nicotine (3-(1-methyl-2-pyrrolidinyl)-pyridine) is one of the major alkaloids present in tobacco. Besides its addictive properties, its effects have been described in panoply of cell types. In fact, recent studies have shown that nicotine behaves as a tumor promoter in transformed epithelial cells. This research focuses on the effects of acute repetitive nicotine exposure on normal human bronchial epithelial cells (NHBE cells). Here we show that treatment of NHBE cells with recurrent doses of nicotine up to 500 {mu}M triggered cell differentiation towards a neuronal-like phenotype: cells emitted filopodia and expressed neuronal markers such as neuronal cell adhesion molecule, neurofilament-M and the transcription factors neuronal N and Pax-3. We also demonstrate that nicotine treatment induced NF-kB translocation to the nucleus, phosphorylation of the epidermal growth factor receptor (EGFR), and accumulation of heparin binding-EGF in the extracellular medium. Moreover, addition of AG1478, an inhibitor of EGFR tyrosine phosphorylation, or cetuximab, a monoclonal antibody that precludes ligand binding to the same receptor, prevented cell differentiation by nicotine. Lastly, we show that differentiated cells increased their adhesion to the extracellular matrix and their protease activity. Given that several lung pathologies are strongly related to tobacco consumption, these results may help to better understand the damaging consequences of nicotine exposure.

  19. The Prognostic and Predictive Role of Epidermal Growth Factor Receptor in Surgical Resected Pancreatic Cancer.

    PubMed

    Guo, Meng; Luo, Guopei; Liu, Chen; Cheng, He; Lu, Yu; Jin, Kaizhou; Liu, Zuqiang; Long, Jiang; Liu, Liang; Xu, Jin; Huang, Dan; Ni, Quanxing; Yu, Xianjun

    2016-01-01

    The data regarding the prognostic significance of EGFR (epidermal growth factor receptor) expression and adjuvant therapy in patients with resected pancreatic cancer are insufficient. We retrospectively investigated EGFR status in 357 resected PDAC (pancreatic duct adenocarcinoma) patients using tissue immunohistochemistry and validated the possible role of EGFR expression in predicting prognosis. The analysis was based on excluding the multiple confounding parameters. A negative association was found between overall EGFR status and postoperative survival (p = 0.986). Remarkably, adjuvant chemotherapy and radiotherapy were significantly associated with favorable postoperative survival, which prolonged median overall survival (OS) for 5.8 and 10.2 months (p = 0.009 and p = 0.006, respectively). Kaplan-Meier analysis showed that adjuvant chemotherapy correlated with an obvious survival benefit in the EGFR-positive subgroup rather than in the EGFR-negative subgroup. In the subgroup analyses, chemotherapy was highly associated with increased postoperative survival in the EGFR-negative subgroup (p = 0.002), and radiotherapy had a significant survival benefit in the EGFR-positive subgroup (p = 0.029). This study demonstrated that EGFR expression is not correlated with outcome in resected pancreatic cancer patients. Adjuvant chemotherapy and radiotherapy were significantly associated with improved survival in contrary EGFR expressing subgroup. Further studies of EGFR as a potential target for pancreatic cancer treatment are warranted. PMID:27399694

  20. Positive and negative tissue-specific signaling by a nematode epidermal growth factor receptor.

    PubMed Central

    Lesa, G M; Sternberg, P W

    1997-01-01

    The major determinants of receptor tissue tyrosine kinase (RTK) signaling specificity have been proposed to be Src homology 2 (SH2) binding sites, phosphotyrosine-containing oligopeptides in the cytoplasmic domain of the receptor. The Caenorhabditis elegans epidermal growth factor receptor homologue LET-23 has multiple functions during development and has eight potential SH2-binding sites in a region carboxyl terminal to its kinase domain. By analyzing transgenic nematodes for three distinct LET-23 functions, we show that six of eight potential sites function in vivo and that they are required for most, but not all, of LET-23 activity. A single site is necessary and sufficient to promote wild-type fertility. Three other sites activate the RAS pathway and are involved only in viability and vulval differentiation. A fifth site is promiscuous and can mediate all three LET-23 functions. An additional site mediates tissue-specific negative regulation. Putative SH2 binding sites are thus key effectors of both cell-specific and negative regulation in an intact organism. We suggest two distinct mechanisms for tissue-specific RTK-mediated signaling. A positive mechanism would promote RTK function through effectors present only in certain cell types. A negative mechanism would inhibit RTK function through tissue-specific negative regulators. Images PMID:9168466

  1. Inhibition of Epidermal Growth Factor Receptor Improves Myelination and Attenuates Tissue Damage of Spinal Cord Injury.

    PubMed

    Zhang, Si; Ju, Peijun; Tjandra, Editha; Yeap, Yeeshan; Owlanj, Hamed; Feng, Zhiwei

    2016-10-01

    Preventing demyelination and promoting remyelination of denuded axons are promising therapeutic strategies for spinal cord injury (SCI). Epidermal growth factor receptor (EGFR) inhibition was reported to benefit the neural functional recovery and the axon regeneration after SCI. However, its role in de- and remyelination of axons in injured spinal cord is unclear. In the present study, we evaluated the effects of EGFR inhibitor, PD168393 (PD), on the myelination in mouse contusive SCI model. We found that expression of myelin basic protein (MBP) in the injured spinal cords of PD treated mice was remarkably elevated. The density of glial precursor cells and oligodendrocytes (OLs) was increased and the cell apoptosis in lesions was attenuated after PD168393 treatment. Moreover, PD168393 treatment reduced both the numbers of OX42 + microglial cells and glial fibrillary acidic protein + astrocytes in damaged area of spinal cords. We thus conclude that the therapeutic effects of EGFR inhibition after SCI involves facilitating remyelination of the injured spinal cord, increasing of oligodendrocyte precursor cells and OLs, as well as suppressing the activation of astrocytes and microglia/macrophages. PMID:26883518

  2. Effect of protein kinase P on phosphorylations catalyzed by the epidermal growth factor.

    PubMed Central

    Abdel-Ghany, M; Kole, H K; Racker, E

    1987-01-01

    Protein kinase P (PK-P) activated by histones or certain other basic compounds has been purified previously from yeast [Yanagita, Y., Abdel-Ghany, M., Raden, D., Nelson, N. & Racker, E. (1987) Proc. Natl. Acad. Sci. USA 84, 925-929]. It is shown here that PK-P is present in solubilized membranes of A-431 carcinoma cells where it changes the epidermal growth factor (EGF) receptor kinase activity. Polylysine, a weak PK-P activator, inhibited the autophosphorylation of the EGF receptor both in the absence and presence of EGF. Increased PK-P activity induced by histone 1, a potent activator, gave rise to increased autophosphorylation of the EGF receptor as well as phosphorylation at tyrosine residues of numerous other endogenous membrane components. The stimulation by histone was particularly striking in the presence of EGF. A similar stimulation was achieved with polylysine and EGF on addition of yeast PK-P. However, addition of yeast PK-P in the presence of histone 1 markedly inhibited the EGF-stimulated phosphorylation of endogenous membrane proteins. We conclude from these results that the effect of PK-P on the EGF receptor takes place in three phases: at low levels PK-P inhibits the autophosphorylation, at intermediate levels it stimulates the autophosphorylation as well as the EGF-dependent phosphorylation of numerous other membrane proteins, and at high levels it inhibits the phosphorylation of these proteins. Images PMID:3501120

  3. Granzyme B inhibits keratinocyte migration by disrupting epidermal growth factor receptor (EGFR)-mediated signaling.

    PubMed

    Merkulova, Yulia; Shen, Yue; Parkinson, Leigh G; Raithatha, Sheetal A; Zhao, Hongyan; Westendorf, Kathryn; Sharma, Mehul; Bleackley, Robert Chris; Granville, David J

    2016-09-01

    Chronic non-healing wounds including diabetic, venous, and decubitus skin ulcers are currently lacking effective therapies. Non-healing diabetic ulcers can lead to amputations as progress into a highly chronic state before detection and existing treatments for these wounds often fail. Granzyme B (GzmB) is a serine protease that was, until recently, believed to function exclusively in cytotoxic lymphocyte-mediated apoptosis. However, during excessive or chronic inflammation, GzmB can accumulate in the extracellular milieu, retain its activity, and cleave a number of important extracellular proteins. Epidermal growth factor receptor (EGFR) is a transmembrane receptor involved in cellular processes such as proliferation and migration. EGFR signaling is integral to the wound healing process. The present study investigated the effects of GzmB on keratinocyte cell migration using HaCaT cell line. Using electric cell-substrate impedance sensing and scratch assays, the present study demonstrates that GzmB inhibits keratinocyte migration by interfering with the EGFR pathway. GzmB limited cell transition into a migratory morphology and was found to reduce ligand-induced EGFR phosphorylation. Inhibition of GzmB reversed the aforementioned effects. In summary, data from the present study suggest key role for GzmB in the pathogenesis of impaired wound healing through the impairment of EGFR signaling and cell migration. PMID:27060743

  4. N-Glycosylation as determinant of epidermal growth factor receptor conformation in membranes

    PubMed Central

    Kaszuba, Karol; Grzybek, Michał; Orłowski, Adam; Danne, Reinis; Róg, Tomasz; Simons, Kai; Coskun, Ünal; Vattulainen, Ilpo

    2015-01-01

    The epidermal growth factor receptor (EGFR) regulates several critical cellular processes and is an important target for cancer therapy. In lieu of a crystallographic structure of the complete receptor, atomistic molecular dynamics (MD) simulations have recently shown that they can excel in studies of the full-length receptor. Here we present atomistic MD simulations of the monomeric N-glycosylated human EGFR in biomimetic lipid bilayers that are, in parallel, also used for the reconstitution of full-length receptors. This combination enabled us to experimentally validate our simulations, using ligand binding assays and antibodies to monitor the conformational properties of the receptor reconstituted into membranes. We find that N-glycosylation is a critical determinant of EGFR conformation, and specifically the orientation of the EGFR ectodomain relative to the membrane. In the absence of a structure for full-length, posttranslationally modified membrane receptors, our approach offers new means to structurally define and experimentally validate functional properties of cell surface receptors in biomimetic membrane environments. PMID:25805821

  5. Epidermal growth factor receptor expression in different subtypes of oral lichenoid disease

    PubMed Central

    Cortés-Ramírez, Dionisio A.; Rodríguez-Tojo, María J.; Coca-Meneses, Juan C.; Marichalar-Mendia, Xabier

    2014-01-01

    The oral lichenoid disease (OLD) includes different chronic inflammatory processes such as oral lichen planus (OLP) and oral lichenoid lesions (OLL), both entities with controversial diagnosis and malignant potential. Epidermal growth factor receptor (EFGR) is an important oral carcinogenesis biomarker and overexpressed in several oral potentially malignant disorders. Objectives: To analyze the EGFR expression in the OLD to find differences between OLP and OLL, and to correlate it with the main clinical and pathological features. Material and Methods: Forty-four OLD cases were studied and classified according to their clinical (Group C1: only papular lesions / Group C2: papular and other lesions) and histopathological features (Group HT: OLP-typical / Group HC: OLP-compatible) based in previous published criteria. Standard immunohistochemical identification of EGFR protein was performed. Comparative and descriptive statistical analyses were performed. Results: Thirty-five cases (79.5%) showed EGFR overexpression without significant differences between clinical and histopathological groups (p<0.05). Histological groups showed significant differences in the EGFR expression pattern (p=0.016). Conlusions: All OLD samples showed high EGFR expression. The type of clinical lesion was not related with EGFR expression; however, there are differences in the EGFR expression pattern between histological groups that may be related with a different biological profile and malignant risk. Key words:Oral lichenoid disease, oral lichen planus, oral lichenoid lesion, oral carcinogenesis, EGFR. PMID:24880441

  6. Clinical efficacy and drug resistance of anti-epidermal growth factor receptor therapy in colorectal cancer

    PubMed Central

    Kocoglu, Hakan; Velibeyoglu, Fatih Mehmet; Karaca, Mustafa; Tural, Deniz

    2016-01-01

    Colorectal cancer (CRC) ranked third in cancer related death and its incidence has been increasing worldwide. In recent decades important therapeutic advances have been developed in treatment of metastatic CRC (mCRC), such as monoclonal antibodies against epidermal growth factor receptor (anti-EGFR), which provided additional clinical benefits in mCRC. However, anti-EGFR therapies have limited usage due to approximately 95% of patients with KRAS mutated mCRC do not response to anti-EGFR treatment. Thus, KRAS mutation is predictive of nonresponse to anti-EGFR therapies but it alone is not a sufficient basis to decide who should not be received such therapies because; approximately fifty percent (40%-60%) of CRC patients with wild-type KRAS mutation also have poor response to anti-EGFR based treatment. This fact leads us to suspect that there must be other molecular determinants of response to anti-EGFR therapies which have not been identified yet. Current article summarizes the clinical efficacy of anti-EGFR therapies and also evaluates its resistance mechanisms. PMID:26798432

  7. The influence of adnectin binding on the extracellular domain of epidermal growth factor receptor

    PubMed Central

    Iacob, Roxana E.; Chen, Guodong; Ahn, Joomi; Houel, Stephane; Wei, Hui; Mo, Jingjie; Tao, Li; Cohen, Daniel; Xie, Dianlin; Lin, Zheng; Morin, Paul E.; Doyle, Michael L.; Tymiak, Adrienne A.; Engen, John R.

    2014-01-01

    The precise and unambiguous elucidation and characterization of interactions between a high affinity recognition entity and its cognate protein provides important insights for the design and development of drugs with optimized properties and efficacy. In oncology, one important target protein has been shown to be the epidermal growth factor receptor (EGFR) through the development of therapeutic anticancer antibodies that are selective inhibitors of EGFR activity. More recently, smaller protein derived from the tenth type III domain of human fibronectin termed an adnectin has also been shown to inhibit EGFR in clinical studies. The mechanism of EGFR inhibition by either an adnectin or an antibody results from specific binding of the high affinity protein to the extracellular portion of EGFR (exEGFR) in a manner that prevents phosphorylation of the intracellular kinase domain of the receptor and thereby blocks intracellular signaling. Here the structural changes induced upon binding were studied by probing the solution conformations of full length exEGFR alone and bound to a cognate adnectin through hydrogen/deuterium exchange mass spectrometry (HDX MS). The effects of binding in solution were identified and compared with the structure of a bound complex determined by X-ray crystallography. PMID:25223306

  8. Molecular Basis for Redox Activation of Epidermal Growth Factor Receptor Kinase.

    PubMed

    Truong, Thu H; Ung, Peter Man-Un; Palde, Prakash B; Paulsen, Candice E; Schlessinger, Avner; Carroll, Kate S

    2016-07-21

    Epidermal growth factor receptor (EGFR) is a target of signal-derived H2O2, and oxidation of active-site cysteine 797 to sulfenic acid enhances kinase activity. Although a major class of covalent drugs targets C797, nothing is known about its catalytic importance or how S-sulfenylation leads to activation. Here, we report the first detailed functional analysis of C797. In contrast to prior assumptions, mutation of C797 diminishes catalytic efficiency in vitro and cells. The experimentally determined pKa and reactivity of C797 toward H2O2 correspondingly distinguish this residue from the bulk of the cysteinome. Molecular dynamics simulation of reduced versus oxidized EGFR, reinforced by experimental testing, indicates that sulfenylation of C797 allows new electrostatic interactions to be formed with the catalytic loop. Finally, we show that chronic oxidative stress yields an EGFR subpopulation that is refractory to the FDA-approved drug afatinib. Collectively, our data highlight the significance of redox biology to understanding kinase regulation and drug pharmacology. PMID:27427230

  9. Phthalocyanine-Peptide Conjugates for Epidermal Growth Factor Receptor Targeting1

    PubMed Central

    Ongarora, Benson G.; Fontenot, Krystal R.; Hu, Xiaoke; Sehgal, Inder; Satyanarayana-Jois, Seetharama D.; Vicente, M. Graça H.

    2012-01-01

    Four phthalocyanine (Pc)-peptide conjugates designed to target the epidermal growth factor receptor (EGFR) were synthesized and evaluated in vitro using four cell lines: human carcinoma A431 and HEp2, human colorectal HT-29, and kidney Vero (negative control) cells. Two peptide ligands for EGFR were investigated: EGFR-L1 and -L2, bearing 6 and 13 amino acid residues, respectively. The peptides and Pc-conjugates were shown to bind to EGFR using both theoretical (Autodock) and experimental (SPR) investigations. The Pc-EGFR-L1 conjugates 5a and 5b efficiently targeted EGFR and were internalized, in part due to their cationic charge, whereas the uncharged Pc-EGFR-L2 conjugates 4b and 6a poorly targeted EGFR maybe due to their low aqueous solubility. All conjugates were non-toxic (IC50 > 100 µM) to HT-29 cells, both in the dark and upon light activation (1 J/cm2). Intravenous (iv) administration of conjugate 5b into nude mice bearing A431 and HT-29 human tumor xenografts resulted in a near-IR fluorescence signal at ca. 700 nm, 24 h after administration. Our studies show that Pc-EGFR-L1 conjugates are promising near-IR fluorescent contrast agents for CRC, and potentially other EGFR over-expressing cancers. PMID:22468711

  10. Recombinant modular transporters on the basis of epidermal growth factor for targeted intracellular delivery of photosensitizers

    NASA Astrophysics Data System (ADS)

    Gilyazova, Dinara G.; Rosenkranz, Andrey A.; Gulak, Pavel V.; Lunin, Vladimir G.; Sergienko, Olga V.; Grin, Mikhail A.; Mironov, Andrey F.; Rubin, Andrey B.; Sobolev, Alexander S.

    2005-08-01

    The search for new pharmaceuticals has raised interest in locally-acting drugs which act over short distances within the cell, and for which different cell compartments have different sensitivities. Thus, photosensitizers used in anti-cancer therapy should be transported to the most sensitive subcellular compartments where their action is most pronounced. Earlier, we described the effects of bacterially expressed modular recombinant transporters for photosensitizers comprising a-melanocyte-stimulating hormone as an internalizable, cell-specific ligand, an optimized nuclear localization sequence, an Escherichia coli hemoglobin-like protein as a carrier, and an endosomolytic amphipathic polypeptide. These transporters delivered photosensitizers into the murine melanoma cells nuclei to result in cytotoxic effects 2 orders of magnitude greater than those of nonmodified photosensitizers. Here we describe new transporters possessing the same modules except for a ligand that is replaced with epidermal growth factor specific for other cancer cell types. The new transporter modules retained their functional activities within the chimera, this transporter delivered photosensitizers into the human carcinoma cells nuclei to result in photocytotoxic effects almost 3 orders of magnitude greater than those of nonmodified photosensitizers. The obtained results show that ligand modules of such transporters are interchangeable, meaning that they can be tailored for particular applications.

  11. Slow release of ions from internalized silver nanoparticles modifies the epidermal growth factor signaling response.

    PubMed

    Comfort, Kristen K; Maurer, Elizabeth I; Hussain, Saber M

    2014-11-01

    Due to their distinctive physiochemical properties, including a robust antibacterial activity and plasmonic capability, hundreds of consumer and medical products contain colloidal silver nanoparticles (AgNPs). However, even at sub-toxic dosages, AgNPs are able to disrupt cell functionality, through a yet unknown mechanism. Moreover, internalized AgNPs have the potential to prolong this disruption, even after the removal of excess particles. In the present study, we evaluated the impact, mechanism of action, and continual effects of 50 nm AgNP exposure on epidermal growth factor (EGF) signal transduction within a human keratinocyte (HaCaT) cell line. After AgNP expose, EGF signaling was initially obstructed due to the dissolution of particles into silver ions. However, at longer durations, the internalized AgNPs increased EGF signaling activity. This latter behavior correlated to sustained HaCaT stress, believed to be maintained through the continual dissolution of internalized AgNPs. This study raises concerns that even after exposure ceases, the retained nanomaterials are capable of acting as a slow-release mechanism for metallic ions; continually stressing and modifying normal cellular functionality. PMID:25260222

  12. Characterization of Differential Protein Tethering at the Plasma Membrane in Response to Epidermal Growth Factor Signaling

    PubMed Central

    Looyenga, Brendan D.; MacKeigan, Jeffrey P.

    2013-01-01

    Physical tethering of membrane proteins to the cortical actin cytoskeleton provides functional organization to the plasma membrane and contributes to diverse cellular processes including cell signaling, vesicular trafficking, endocytosis, and migration. For these processes to occur, membrane protein tethering must be dynamically regulated in response to environmental cues. In this study, we describe a novel biochemical scheme for isolating the complement of plasma membrane proteins that are physically tethered to the actin cytoskeleton. We utilized this method in combination with tandem liquid chromatography/mass spectrometry (LC–MS/MS) to demonstrate that cytoskeletal tethering of membrane proteins is acutely regulated by epidermal growth factor (EGF) in normal human kidney (HK2) cells. Our results indicate that several proteins known to be involved in EGF signaling, as well as other proteins not traditionally associated with this pathway, are tethered to the cytoskeleton in dynamic fashion. Further analysis of one hit from our proteomic survey, the receptor phosphotyrosine phosphatase PTPRS, revealed a correlation between cytoskeletal tethering and endosomal trafficking in response to EGF. This finding parallels previous indications that PTPRS is involved in the desensitization of EGFR and provides a potential mechanism to coordinate localization of these two membrane proteins in the same compartment upon EGFR activation. PMID:22559174

  13. Trafficking of epidermal growth factor receptor ligands in polarized epithelial cells.

    PubMed

    Singh, Bhuminder; Coffey, Robert J

    2014-01-01

    A largely unilamellar epithelial layer lines body cavities and organ ducts such as the digestive tract and kidney tubules. This polarized epithelium is composed of biochemically and functionally separate apical and basolateral surfaces. The epidermal growth factor receptor (EGFR) signaling pathway is a critical regulator of epithelial homeostasis and is perturbed in a number of epithelial disorders. It is underappreciated that in vivo EGFR signaling is most often initiated by cell-surface delivery and processing of one of seven transmembrane ligands, resulting in release of the soluble form that binds EGFR. In polarized epithelial cells, EGFR is restricted largely to the basolateral surface, and apical or basolateral ligand delivery therefore has important biological consequences. In vitro approaches have been used to study the biosynthesis, cell-surface delivery, proteolytic processing, and release of soluble EGFR ligands in polarized epithelial cells. We review these results, discuss their relevance to normal physiology, and demonstrate the pathophysiological consequences of aberrant trafficking. These studies have uncovered a rich diversity of apico-basolateral trafficking mechanisms among the EGFR ligands, provided insights into the pathogenesis of an inherited magnesium-wasting disorder of the kidney (isolated renal hypomagnesemia), and identified a new mode of EGFR ligand signaling via exosomes. PMID:24215440

  14. Trafficking of Epidermal Growth Factor Receptor Ligands in Polarized Epithelial Cells

    PubMed Central

    Singh, Bhuminder; Coffey, Robert J.

    2014-01-01

    A largely unilamellar epithelial layer lines body cavities and organ ducts such as the digestive tract and kidney tubules. This polarized epithelium is composed of biochemically and functionally separate apical and basolateral surfaces. The epidermal growth factor receptor (EGFR) signaling pathway is a critical regulator of epithelial homeostasis and is perturbed in a number of epithelial disorders. It is underappreciated that in vivo EGFR signaling is most often initiated by cell-surface delivery and processing of one of seven transmembrane ligands, resulting in release of the soluble form that binds EGFR. In polarized epithelial cells, EGFR is restricted largely to the basolateral surface, and apical or basolateral ligand delivery therefore has important biological consequences. In vitro approaches have been used to study the biosynthesis, cell-surface delivery, proteolytic processing, and release of soluble EGFR ligands in polarized epithelial cells. We review these results, discuss their relevance to normal physiology, and demonstrate the pathophysiological consequences of aberrant trafficking. These studies have uncovered a rich diversity of apico-basolateral trafficking mechanisms among the EGFR ligands, provided insights into the pathogenesis of an inherited magnesium-wasting disorder of the kidney (isolated renal hypomagnesemia), and identified a new mode of EGFR ligand signaling via exosomes. PMID:24215440

  15. Molecular imaging of hepatocellular carcinoma xenografts with epidermal growth factor receptor targeted affibody probes.

    PubMed

    Zhao, Ping; Yang, Xiaoyang; Qi, Shibo; Liu, Hongguang; Jiang, Han; Hoppmann, Susan; Cao, Qizhen; Chua, Mei-Sze; So, Samuel K; Cheng, Zhen

    2013-01-01

    Hepatocellular carcinoma (HCC) is a highly aggressive and lethal cancer. It is typically asymptomatic at the early stage, with only 10%-20% of HCC patients being diagnosed early enough for appropriate surgical treatment. The delayed diagnosis of HCC is associated with limited treatment options and much lower survival rates. Therefore, the early and accurate detection of HCC is crucial to improve its currently dismal prognosis. The epidermal growth factor receptor (EGFR) has been reported to be involved in HCC tumorigenesis and to represent an attractive target for HCC imaging and therapy. In this study, an affibody molecule, Ac-Cys-ZEGFR:1907, targeting the extracellular domain of EGFR, was used for the first time to assess its potential to detect HCC xenografts. By evaluating radio- or fluorescent-labeled Ac-Cys-ZEGFR:1907 as a probe for positron emission tomography (PET) or optical imaging of HCC, subcutaneous EGFR-positive HCC xenografts were found to be successfully imaged by the PET probe. Thus, affibody-based PET imaging of EGFR provides a promising approach for detecting HCC in vivo. PMID:23710458

  16. Quantitative in vivo immunohistochemistry of epidermal growth factor receptor using a receptor concentration imaging approach

    PubMed Central

    Samkoe, Kimberley S.; Tichauer, Kenneth M.; Gunn, Jason R.; Wells, Wendy A.; Hasan, Tayyaba; Pogue, Brian W.

    2014-01-01

    As receptor-targeted therapeutics become increasingly used in clinical oncology, the ability to quantify protein expression and pharmacokinetics in vivo is imperative to ensure successful individualized treatment plans. Current standards for receptor analysis are performed on extracted tissues. These measurements are static and often physiologically irrelevant, therefore, only a partial picture of available receptors for drug targeting in vivo is provided. Until recently, in vivo measurements were limited by the inability to separate delivery, binding, and retention effects but this can be circumvented by a dual-tracer approach for referencing the detected signal. We hypothesized that in vivo receptor concentration imaging (RCI) would be superior to ex vivo immunohistochemistry. Using multiple xenograft tumor models with varying epidermal growth factor receptor (EGFR) expression, we determined the EGFR concentration in each model using a novel targeted agent (anti-EGFR affibody-IRDye800CW conjugate) along with a simultaneously delivered reference agent (control affibody-IRDye680RD conjugate). The RCI-calculated in vivo receptor concentration was strongly correlated with ex vivo pathologist-scored immunohistochemistry and computer-quantified ex vivo immunofluorescence. In contrast, no correlation was observed with ex vivo Western blot or in vitro flow cytometry assays. Overall, our results argue that in vivo RCI provides a robust measure of receptor expression equivalent to ex vivo immuno-staining, with implications for use in non-invasive monitoring of therapy or therapeutic guidance during surgery. PMID:25344226

  17. Galectin-3 regulates intracellular trafficking of epidermal growth factor receptor through Alix and promotes keratinocyte migration

    PubMed Central

    Liu, Wei; Hsu, Daniel K.; Chen, Huan-Yuan; Yang, Ri-Yao; Carraway, Kermit L.; Isseroff, Roslyn R.; Liu, Fu-Tong

    2012-01-01

    The epidermal growth factor receptor (EGFR)-mediated signaling pathways are important in a variety of cellular processes, including cell migration and wound re-epithelialization. Intracellular trafficking of EGFR is critical for maintaining EGFR surface expression. Galectin-3, a member of an animal lectin family, has been implicated in a number of physiological and pathological processes. Through studies of galectin-3-deficient mice and cells isolated from these mice, we demonstrated that absence of galectin-3 impairs keratinocyte migration and skin wound re-epithelialization. We have linked this pro-migratory function to a crucial role of cytosolic galectin-3 in controlling intracellular trafficking and cell surface expression of EGFR after EGF stimulation. Without galectin-3, the surface levels of EGFR are dramatically reduced and the receptor accumulates diffusely in the cytoplasm. This is associated with reduced rates of both endocytosis and recycling of the receptor. We have provided evidence that this novel function of galectin-3 may be mediated through interaction with its binding partner Alix, which is a protein component of the endosomal sorting complex required for transport (ESCRT) machinery. Our results suggest that galectin-3 is potentially a critical regulator of a number of important cellular responses through its intracellular control of trafficking of cell surface receptors. PMID:22785133

  18. The Under-Appreciated Promiscuity of the Epidermal Growth Factor Receptor Family.

    PubMed

    Kennedy, Sean P; Hastings, Jordan F; Han, Jeremy Z R; Croucher, David R

    2016-01-01

    Each member of the epidermal growth factor receptor (EGFR) family plays a key role in normal development, homeostasis, and a variety of pathophysiological conditions, most notably in cancer. According to the prevailing dogma, these four receptor tyrosine kinases (RTKs; EGFR, ERBB2, ERBB3, and ERBB4) function exclusively through the formation of homodimers and heterodimers within the EGFR family. These combinatorial receptor interactions are known to generate increased interactome diversity and therefore influence signaling output, subcellular localization and function of the heterodimer. This molecular plasticity is also thought to play a role in the development of resistance toward targeted cancer therapies aimed at these known oncogenes. Interestingly, many studies now challenge this dogma and suggest that the potential for EGFR family receptors to interact with more distantly related RTKs is much greater than currently appreciated. Here we discuss how the promiscuity of these oncogenic receptors may lead to the formation of many unexpected receptor pairings and the significant implications for the efficiency of many targeted cancer therapies. PMID:27597943

  19. Effect of epidermal growth factor against radiotherapy-induced oral mucositis in rats

    SciTech Connect

    Lee, Sang-wook; Jung, Kwon Il; Kim, Yeun Wha B.S.; Jung, Heun Don; Kim, Hyun Sook; Hong, Joon Pio . E-mail: joonphong@amc.seoul.kr

    2007-03-15

    Purpose: We tested the efficacy of oral recombinant human epidermal growth factor (rhEGF) against radiation-induced oral mucositis in a rat model. Methods and Materials: Each of 35 Sprague-Dawley rats, 7 to 8 weeks of age and weighing 178 {+-} 5 grams, was irradiated once in the head region with 25 Gy, using a 4-MV therapeutic linear accelerator at a rate of 2 Gy/min. The irradiated rats were randomly divided into four groups: those receiving no treatment (Group 1), those treated with vehicle only three times per day (Group 2), and those treated with 50 {mu}g/mL (Group 3), or 100 {mu}g/mL (Group 4) rhEGF three times per day. Results: Rats were monitored for survival rate and daily activity, including hair loss, sensitivity, and anorexia. We found that survival rate and oral intake were significantly increased and histologic changes were significantly decreased in the rhEGF-treated rats. There was no difference, however, between rats treated with 50 {mu}g/mL or 100 {mu}g/mL rhEGF. Conclusion: These findings suggest that orally administered rhEGF decreased radiation-induced oral mucositis in rats.

  20. Recombinant Human Epidermal Growth Factor Accelerates Recovery of Mouse Small Intestinal Mucosa After Radiation Damage

    SciTech Connect

    Lee, Kang Kyoo; Jo, Hyang Jeong; Hong, Joon Pio; Lee, Sang-wook Sohn, Jung Sook; Moon, Soo Young; Yang, Sei Hoon; Shim, Hyeok; Lee, Sang Ho; Ryu, Seung-Hee; Moon, Sun Rock

    2008-07-15

    Purpose: To determine whether systemically administered recombinant human epidermal growth factor (rhEGF) accelerates the recovery of mouse small intestinal mucosa after irradiation. Methods and Materials: A mouse mucosal damage model was established by administering radiation to male BALB/c mice with a single dose of 15 Gy applied to the abdomen. After irradiation, rhEGF was administered subcutaneously at various doses (0.04, 0.2, 1.0, and 5.0 mg/kg/day) eight times at 2- to 3-day intervals. The evaluation methods included histologic changes of small intestinal mucosa, change in body weight, frequency of diarrhea, and survival rate. Results: The recovery of small intestinal mucosa after irradiation was significantly improved in the mice treated with a high dose of rhEGF. In the mice that underwent irradiation without rhEGF treatment, intestinal mucosal ulceration, mucosal layer damage, and severe inflammation occurred. The regeneration of villi was noticeable in mice treated with more than 0.2 mg/kg rhEGF, and the villi recovered fully in mice given more than 1 mg/kg rhEGF. The frequency of diarrhea persisting for more than 3 days was significantly greater in the radiation control group than in the rhEGF-treated groups. Conclusions: Systemic administration of rhEGF accelerates recovery from mucosal damage induced by irradiation. We suggest that rhEGF treatment shows promise for the reduction of small intestinal damage after irradiation.

  1. The Under-Appreciated Promiscuity of the Epidermal Growth Factor Receptor Family

    PubMed Central

    Kennedy, Sean P.; Hastings, Jordan F.; Han, Jeremy Z. R.; Croucher, David R.

    2016-01-01

    Each member of the epidermal growth factor receptor (EGFR) family plays a key role in normal development, homeostasis, and a variety of pathophysiological conditions, most notably in cancer. According to the prevailing dogma, these four receptor tyrosine kinases (RTKs; EGFR, ERBB2, ERBB3, and ERBB4) function exclusively through the formation of homodimers and heterodimers within the EGFR family. These combinatorial receptor interactions are known to generate increased interactome diversity and therefore influence signaling output, subcellular localization and function of the heterodimer. This molecular plasticity is also thought to play a role in the development of resistance toward targeted cancer therapies aimed at these known oncogenes. Interestingly, many studies now challenge this dogma and suggest that the potential for EGFR family receptors to interact with more distantly related RTKs is much greater than currently appreciated. Here we discuss how the promiscuity of these oncogenic receptors may lead to the formation of many unexpected receptor pairings and the significant implications for the efficiency of many targeted cancer therapies. PMID:27597943

  2. Superparamagnetic iron oxide nanoparticles conjugated with epidermal growth factor (SPION–EGF) for targeting brain tumors

    PubMed Central

    Shevtsov, Maxim A; Nikolaev, Boris P; Yakovleva, Ludmila Y; Marchenko, Yaroslav Y; Dobrodumov, Anatolii V; Mikhrina, Anastasiya L; Martynova, Marina G; Bystrova, Olga A; Yakovenko, Igor V; Ischenko, Alexander M

    2014-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) conjugated with recombinant human epidermal growth factor (SPION–EGF) were studied as a potential agent for magnetic resonance imaging contrast enhancement of malignant brain tumors. Synthesized conjugates were characterized by transmission electron microscopy, dynamic light scattering, and nuclear magnetic resonance relaxometry. The interaction of SPION–EGF conjugates with cells was analyzed in a C6 glioma cell culture. The distribution of the nanoparticles and their accumulation in tumors were assessed by magnetic resonance imaging in an orthotopic model of C6 gliomas. SPION–EGF nanosuspensions had the properties of a negative contrast agent with high coefficients of relaxation efficiency. In vitro studies of SPION–EGF nanoparticles showed high intracellular incorporation and the absence of a toxic influence on C6 cell viability and proliferation. Intravenous administration of SPION–EGF conjugates in animals provided receptor-mediated targeted delivery across the blood–brain barrier and tumor retention of the nanoparticles; this was more efficient than with unconjugated SPIONs. The accumulation of conjugates in the glioma was revealed as hypotensive zones on T2-weighted images with a twofold reduction in T2 relaxation time in comparison to unconjugated SPIONs (P<0.001). SPION–EGF conjugates provide targeted delivery and efficient magnetic resonance contrast enhancement of EGFR-overexpressing C6 gliomas. PMID:24421639

  3. Effect of photo-immobilization of epidermal growth factor on the cellular behaviors

    SciTech Connect

    Ogiwara, Kazutaka; Nagaoka, Masato; Cho, Chong-Su; Akaike, Toshihiro . E-mail: takaike@bio.titech.ac.jp

    2006-06-23

    We constructed photo-reactive epidermal growth factor (EGF) bearing p-azido phenylalanine at the C-terminal (HEGFP) by genetic engineering to investigate the possibility of immobilized EGF as a novel artificial extracellular matrix (ECM). The constructed recombinant protein was immobilized to glass surface by ultraviolet irradiation. A431 cells adhered both to HEGFP-immobilized and collagen-coated surfaces. Interaction between immobilized HEGFP and EGF receptors in the A431 cells was independent of Mg{sup 2+} although integrin-mediated cell adhesion to natural ECMs is dependent on Mg{sup 2+}. Phosphorylation of EGF receptors in A431 cells was induced by immobilized HEGFP as same as soluble EGF. DNA uptake of hepatocytes decreased by immobilized HEGFP whereas it increased by soluble EGF. Liver-specific functions of hepatocytes were maintained for 3 days by immobilized HEGFP whereas they were not maintained by soluble EGF, indicating that immobilized HEGFP follows different signal transduction pathway from soluble EGF.

  4. Regulation of Epidermal Growth Factor Receptor Signaling by Endocytosis and Intracellular Trafficking

    SciTech Connect

    Burke, Patrick; Schooler, Kevin; Wiley, H S.

    2001-06-01

    Ligand activation of the epidermal growth factor receptor (EGFR) leads to its rapid internalization and eventual delivery to lysosomes. This process is thought to be a mechanism to attenuate signaling, but signals could potentially be generated following endocytosis. To directly evaluate EGFR signaling during receptor trafficking, we developed a technique to rapidly and selectively isolate internalized EGFR and associated molecules using reversibly-biotinylated anti-EGFR antibodies. In addition, we developed antibodies specific to tyrosine-phosphorylated EGFR. Using a combination of fluorescence imaging and affinity precipitation approaches, we evaluated the state of EGFR activation and substrate association during trafficking in epithelial cells. We found that following internalization, EGFR remained active in the early endosomes. However, receptors were inactivated prior to degradation, apparently due to ligand removal from endosomes. Adapter molecules, such as Shc, were associated with EGFR both at the cell surface and within endosomes. Some molecules, such as Grb2, were primarily found associated with surface EGFR, while others, such as Eps8, were only found with intracellular receptors. During the inactivation phase, c-Cbl became EGFR-associated, consistent with its postulated role in receptor attenuation. We conclude that the association of the EGFR with different proteins is compartment-specific . In addition, ligand loss is the proximal cause of EGFR inactivation. Thus, regulated trafficking could potentially influence the pattern as well as the duration of signal transduction.

  5. Effects of different ligands on epidermal growth factor receptor (EGFR) nuclear translocation.

    PubMed

    Faria, Jerusa A Q A; de Andrade, Carolina; Goes, Alfredo M; Rodrigues, Michele A; Gomes, Dawidson A

    2016-09-01

    The epidermal growth factor receptor (EGFR) is activated through binding to specific ligands and generates signals for proliferation, differentiation, migration, and cell survival. Recent data show the role of nuclear EGFR in tumors. Although many EGFR ligands are upregulated in cancers, little is known about their effects on EGFR nuclear translocation. We have compared the effects of six EGFR ligands (EGF, HB-EGF, TGF-α, β-Cellulin, amphiregulin, and epiregulin) on nuclear translocation of EGFR, receptor phosphorylation, migration, and proliferation. Cell fractionation and confocal immunofluorescence detected EGFR in the nucleus after EGF, HB-EGF, TGF-α and β-Cellulin stimulation in a dose-dependent manner. In contrast, amphiregulin and epiregulin did not generate nuclear translocation of EGFR. EGF, HB-EGF, TGF-α and β-Cellulin showed correlations between a higher rate of wound closure and increased phosphorylation of residues in the carboxy-terminus of EGFR, compared to amphiregulin and epiregulin. The data indicate that EGFR is translocated to the nucleus after stimulation with EGF, HB-EGF, TGF-α and β-Cellulin, and that these ligands are related to increased phosphorylation of EGFR tyrosine residues, inducing migration of SkHep-1 cells. PMID:27462018

  6. WT1 suppresses synthesis of the epidermal growth factor receptor and induces apoptosis.

    PubMed Central

    Englert, C; Hou, X; Maheswaran, S; Bennett, P; Ngwu, C; Re, G G; Garvin, A J; Rosner, M R; Haber, D A

    1995-01-01

    The Wilms tumor suppressor gene WT1 encodes a developmentally regulated transcription factor that is mutated in a subset of embryonal tumors. To test its functional properties, we developed osteosarcoma cell lines expressing WT1 under an inducible tetracycline-regulated promoter. Induction of WT1 resulted in programmed cell death. This effect, which was differentially mediated by the alternative splicing variants of WT1, was independent of p53. WT1-mediated apoptosis was associated with reduced synthesis of the epidermal growth factor receptor (EGFR), but not of other postulated WT1-target genes, and it was abrogated by constitutive expression of EGFR. WT1 repressed transcription from the EGFR promoter, binding to two TC-rich repeat sequences. In the developing kidney, EGFR expression in renal precursor cells declined with the onset of WT1 expression. Repression of EGFR and induction of apoptosis by mechanism that may contribute to its critical role in normal kidney development and to the immortalization of tumor cells with inactivated WT1 alleles. Images PMID:7588596

  7. Distribution of epidermal growth factor binding sites in the adult rat anterior pituitary gland

    SciTech Connect

    Chabot, J.G.; Walker, P.; Pelletier, G.

    1986-01-01

    The distribution of epidermal growth (EGF) binding sites was studied in the pituitary gland using light and electron microscope autoradiography which was performed at different time intervals (2 to 60 min) after intravenous (IV) injection of (/sup 125/I)EGF into adult rats. At the light microscopic level, the labeling was found over cells of the anterior pituitary gland. The time-course study performed by light microscope autoradiography showed that the maximal values were reached at the 2 min time interval. At this time interval, most silver grains were found at the periphery of the target cells. After, the number of silver grains decreased progressively and the localization of silver grains in the cytoplasm indicated the internalization of (/sup 125/I)EGF. Electron microscope autoradiography showed that labeling was mostly restricted to mammotrophs and somatotrophs. Control experiments indicated that the autoradiographic labeling was due specific interaction of (/sup 125/I)EGF with its binding site. These results indicate that EGF binding sites are present in at least two anterior pituitary cell types and suggest that EGF can exert a physiological role in the pituitary gland.

  8. Nanoconjugation prolongs endosomal signaling of the epidermal growth factor receptor and enhances apoptosis.

    PubMed

    Wu, L; Xu, F; Reinhard, B M

    2016-07-14

    It is becoming increasingly clear that intracellular signaling can be subject to strict spatial control. As the covalent attachment of a signaling ligand to a nanoparticle (NP) impacts ligand-receptor binding, uptake, and trafficking, nanoconjugation provides new opportunities for manipulating intracellular signaling in a controlled fashion. To establish the effect of nanoconjugation on epidermal growth factor (EGF) mediated signaling, we investigate here the intracellular fate of nanoconjugated EGF (NP-EGF) and its bound receptor (EGFR) by quantitative correlated darkfield/fluorescence microscopy and density-based endosomal fractionation. We demonstrate that nanoconjugation prolongs the dwell time of phosphorylated receptors in the early endosomes and that the retention of activated EGFR in the early endosomes is accompanied by an EGF mediated apoptosis at effective concentrations that do not induce apoptosis in the case of free EGF. Overall, these findings indicate nanoconjugation as a rational strategy for modifying signaling that acts by modulating the temporo-spatial distribution of the activated EGF-EGFR ligand-receptor complex. PMID:27378391

  9. Network Analysis of Epidermal Growth Factor Signaling using Integrated Genomic, Proteomic and Phosphorylation Data

    SciTech Connect

    Waters, Katrina M.; Liu, Tao; Quesenberry, Ryan D.; Willse, Alan R.; Bandyopadhyay, Somnath; Kathmann, Loel E.; Weber, Thomas J.; Smith, Richard D.; Wiley, H. S.; Thrall, Brian D.

    2012-03-29

    To understand how integration of multiple data types can help decipher cellular responses at the systems level, we analyzed the mitogenic response of human mammary epithelial cells to epidermal growth factor (EGF) using whole genome microarrays, mass spectrometry-based proteomics and large-scale western blots with over 1000 antibodies. A time course analysis revealed significant differences in the expression of 3172 genes and 596 proteins, including protein phosphorylation changes measured by western blot. Integration of these disparate data types showed that each contributed qualitatively different components to the observed cell response to EGF and that varying degrees of concordance in gene expression and protein abundance measurements could be linked to specific biological processes. Networks inferred from individual data types were relatively limited, whereas networks derived from the integrated data recapitulated the known major cellular responses to EGF and exhibited more highly connected signaling nodes than networks derived from any individual dataset. While cell cycle regulatory pathways were altered as anticipated, we found the most robust response to mitogenic concentrations of EGF was induction of matrix metalloprotease cascades, highlighting the importance of the EGFR system as a regulator of the extracellular environment. These results demonstrate the value of integrating multiple levels of biological information to more accurately reconstruct networks of cellular response.

  10. Non-canonical signaling mode of the epidermal growth factor receptor family

    PubMed Central

    Lee, Heng-Huan; Wang, Ying-Nai; Hung, Mien-Chie

    2015-01-01

    Epidermal growth factor receptor (EGFR) and its family members are key players in both physiological and pathological settings for which they are well recognized as models for investigating the functions and regulations of other membrane receptor tyrosine kinases (RTKs) and serve as therapeutic targets critical to clinical need and fundamental research. The canonical view of the pivotal functions in the EGFR family has been well documented as being an initiator of signaling amplification cascades from the plasma membrane to different subcellular compartments via receptor endocytic trafficking, intermolecular interaction, and kinase-substrate reaction in a temporalspatial manner. However, several lines of evidence have identified non-canonical roles of the EGFR family, acting as a transcriptional factor and a chromatin regulator in the nucleus to regulate gene expression, DNA replication, and DNA damage repair. Moreover, the EGFR family can even exert its impact outside the host cell through exosomal vesicle secretion. The emerging concept of the non-canonical roles of the EGFR family reveals an astonishing and elaborate scheme on the molecular functions of membrane RTKs, offering new insights into the receptor biology as well as the development of comprehensive therapeutic strategies in the future. PMID:26693051

  11. Epidermal growth factor receptor cooperates with Src family kinases in acquired resistance to cetuximab.

    PubMed

    Wheeler, Deric L; Iida, Mari; Kruser, Tim J; Nechrebecki, Meghan M; Dunn, Emily F; Armstrong, Eric A; Huang, Shyhmin; Harari, Paul M

    2009-04-01

    The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that plays a major role in oncogenesis. Cetuximab is an EGFR-blocking antibody that is FDA approved for use in patients with metastatic colorectal cancer (mCRC) and head and neck squamous cell carcinoma (HNSCC). Although cetuximab has shown strong clinical benefit for a subset of cancer patients, most become refractory to cetuximab therapy. We reported that cetuximab-resistant NSCLC line NCI-H226 cells have increased steady-state expression and activity of EGFR secondary to altered trafficking/degradation and this increase in EGFR expression and activity lead to hyper-activation of HER3 and down stream signals to survival. We now present data that Src family kinases (SFKs) are highly activated in cetuximab-resistant cells and enhance EGFR activation of HER3 and PI(3)K/Akt. Studies using the Src kinase inhibitor dasatinib decreased HER3 and PI(3)K/Akt activity. In addition, cetuximab-resistant cells were resensitized to cetuximab when treated with dasatinib. These results indicate that SFKs and EGFR cooperate in acquired resistance to cetuximab and suggest a rationale for clinical strategies that investigate combinatorial therapy directed at both the EGFR and SFKs in patients with acquired resistance to cetuximab. PMID:19276677

  12. The Prognostic and Predictive Role of Epidermal Growth Factor Receptor in Surgical Resected Pancreatic Cancer

    PubMed Central

    Guo, Meng; Luo, Guopei; Liu, Chen; Cheng, He; Lu, Yu; Jin, Kaizhou; Liu, Zuqiang; Long, Jiang; Liu, Liang; Xu, Jin; Huang, Dan; Ni, Quanxing; Yu, Xianjun

    2016-01-01

    The data regarding the prognostic significance of EGFR (epidermal growth factor receptor) expression and adjuvant therapy in patients with resected pancreatic cancer are insufficient. We retrospectively investigated EGFR status in 357 resected PDAC (pancreatic duct adenocarcinoma) patients using tissue immunohistochemistry and validated the possible role of EGFR expression in predicting prognosis. The analysis was based on excluding the multiple confounding parameters. A negative association was found between overall EGFR status and postoperative survival (p = 0.986). Remarkably, adjuvant chemotherapy and radiotherapy were significantly associated with favorable postoperative survival, which prolonged median overall survival (OS) for 5.8 and 10.2 months (p = 0.009 and p = 0.006, respectively). Kaplan–Meier analysis showed that adjuvant chemotherapy correlated with an obvious survival benefit in the EGFR-positive subgroup rather than in the EGFR-negative subgroup. In the subgroup analyses, chemotherapy was highly associated with increased postoperative survival in the EGFR-positive subgroup (p = 0.002), and radiotherapy had a significant survival benefit in the EGFR-negative subgroup (p = 0.029). This study demonstrated that EGFR expression is not correlated with outcome in resected pancreatic cancer patients. Adjuvant chemotherapy and radiotherapy were significantly associated with improved survival in contrary EGFR expressing subgroup. Further studies of EGFR as a potential target for pancreatic cancer treatment are warranted. PMID:27399694

  13. Plasma epidermal growth factor decreased in the early stage of Parkinson's disease.

    PubMed

    Jiang, Qian-Wen; Wang, Cheng; Zhou, Yi; Hou, Miao-Miao; Wang, Xi; Tang, Hui-Dong; Wu, Yi-Wen; Ma, Jian-Fang; Chen, Sheng-Di

    2015-06-01

    Epidermal growth factor (EGF) is a neurotrophic factor that plays an important role in Parkinson's disease (PD). We measured plasma EGF level in PD, essential tremor (ET) and normal controls to investigate whether it changes in PD and whether it is associated with motor and non-motor symptoms of PD. 100 patients with PD, 40 patients with ET as disease control and 76 healthy persons were enrolled in the present study. Motor and non-motor symptoms were assessed by different scales. Plasma EGF levels of three groups were measured by enzyme-linked immunosorbent assay kit. Spearman test and linear logistics regression model were used to test the correlation of EGF with motor and non-motor symptoms of PD. Plasma EGF level was significantly decreased in early PD patients compared with normal control, but not in advanced PD patients. Interestingly, plasma EGF level was significantly increased in advanced PD and total PD patients compared with ET patients, but not in early PD patients. In addition, plasma EGF level was correlated with UPDRS-III scores in PD. Also plasma EGF level was correlated with UPDRS-III scores and NMS scores in early PD. Our results suggested that plasma EGF decreased in the early stage of PD and increased later on in the PD disease course. Also, plasma EGF level was increased significantly in PD compared with ET patients and correlated with motor and non-motor symptoms in early PD. PMID:26029474

  14. Molecular basis for multimerization in the activation of the epidermal growth factor receptor

    PubMed Central

    Huang, Yongjian; Bharill, Shashank; Karandur, Deepti; Peterson, Sean M; Marita, Morgan; Shi, Xiaojun; Kaliszewski, Megan J; Smith, Adam W; Isacoff, Ehud Y; Kuriyan, John

    2016-01-01

    The epidermal growth factor receptor (EGFR) is activated by dimerization, but activation also generates higher-order multimers, whose nature and function are poorly understood. We have characterized ligand-induced dimerization and multimerization of EGFR using single-molecule analysis, and show that multimerization can be blocked by mutations in a specific region of Domain IV of the extracellular module. These mutations reduce autophosphorylation of the C-terminal tail of EGFR and attenuate phosphorylation of phosphatidyl inositol 3-kinase, which is recruited by EGFR. The catalytic activity of EGFR is switched on through allosteric activation of one kinase domain by another, and we show that if this is restricted to dimers, then sites in the tail that are proximal to the kinase domain are phosphorylated in only one subunit. We propose a structural model for EGFR multimerization through self-association of ligand-bound dimers, in which the majority of kinase domains are activated cooperatively, thereby boosting tail phosphorylation. DOI: http://dx.doi.org/10.7554/eLife.14107.001 PMID:27017828

  15. The Influence of Adnectin Binding on the Extracellular Domain of Epidermal Growth Factor Receptor

    NASA Astrophysics Data System (ADS)

    Iacob, Roxana E.; Chen, Guodong; Ahn, Joomi; Houel, Stephane; Wei, Hui; Mo, Jingjie; Tao, Li; Cohen, Daniel; Xie, Dianlin; Lin, Zheng; Morin, Paul E.; Doyle, Michael L.; Tymiak, Adrienne A.; Engen, John R.

    2014-12-01

    The precise and unambiguous elucidation and characterization of interactions between a high affinity recognition entity and its cognate protein provides important insights for the design and development of drugs with optimized properties and efficacy. In oncology, one important target protein has been shown to be the epidermal growth factor receptor (EGFR) through the development of therapeutic anticancer antibodies that are selective inhibitors of EGFR activity. More recently, smaller protein derived from the 10th type III domain of human fibronectin termed an adnectin has also been shown to inhibit EGFR in clinical studies. The mechanism of EGFR inhibition by either an adnectin or an antibody results from specific binding of the high affinity protein to the extracellular portion of EGFR (exEGFR) in a manner that prevents phosphorylation of the intracellular kinase domain of the receptor and thereby blocks intracellular signaling. Here, the structural changes induced upon binding were studied by probing the solution conformations of full length exEGFR alone and bound to a cognate adnectin through hydrogen/deuterium exchange mass spectrometry (HDX MS). The effects of binding in solution were identified and compared with the structure of a bound complex determined by X-ray crystallography.

  16. Epidermal growth factor receptor (EGFR) mutations in lung cancer: preclinical and clinical data.

    PubMed

    Jorge, S E D C; Kobayashi, S S; Costa, D B

    2014-09-01

    Lung cancer leads cancer-related mortality worldwide. Non-small-cell lung cancer (NSCLC), the most prevalent subtype of this recalcitrant cancer, is usually diagnosed at advanced stages, and available systemic therapies are mostly palliative. The probing of the NSCLC kinome has identified numerous nonoverlapping driver genomic events, including epidermal growth factor receptor (EGFR) gene mutations. This review provides a synopsis of preclinical and clinical data on EGFR mutated NSCLC and EGFR tyrosine kinase inhibitors (TKIs). Classic somatic EGFR kinase domain mutations (such as L858R and exon 19 deletions) make tumors addicted to their signaling cascades and generate a therapeutic window for the use of ATP-mimetic EGFR TKIs. The latter inhibit these kinases and their downstream effectors, and induce apoptosis in preclinical models. The aforementioned EGFR mutations are stout predictors of response and augmentation of progression-free survival when gefitinib, erlotinib, and afatinib are used for patients with advanced NSCLC. The benefits associated with these EGFR TKIs are limited by the mechanisms of tumor resistance, such as the gatekeeper EGFR-T790M mutation, and bypass activation of signaling cascades. Ongoing preclinical efforts for treating resistance have started to translate into patient care (including clinical trials of the covalent EGFR-T790M TKIs AZD9291 and CO-1686) and hold promise to further boost the median survival of patients with EGFR mutated NSCLC. PMID:25211582

  17. Epidermal growth factor receptor (EGFR) mutations in lung cancer: preclinical and clinical data.

    PubMed

    Jorge, S E D C; Kobayashi, S S; Costa, D B

    2014-11-01

    Lung cancer leads cancer-related mortality worldwide. Non-small-cell lung cancer (NSCLC), the most prevalent subtype of this recalcitrant cancer, is usually diagnosed at advanced stages, and available systemic therapies are mostly palliative. The probing of the NSCLC kinome has identified numerous nonoverlapping driver genomic events, including epidermal growth factor receptor (EGFR) gene mutations. This review provides a synopsis of preclinical and clinical data on EGFR mutated NSCLC and EGFR tyrosine kinase inhibitors (TKIs). Classic somatic EGFR kinase domain mutations (such as L858R and exon 19 deletions) make tumors addicted to their signaling cascades and generate a therapeutic window for the use of ATP-mimetic EGFR TKIs. The latter inhibit these kinases and their downstream effectors, and induce apoptosis in preclinical models. The aforementioned EGFR mutations are stout predictors of response and augmentation of progression-free survival when gefitinib, erlotinib, and afatinib are used for patients with advanced NSCLC. The benefits associated with these EGFR TKIs are limited by the mechanisms of tumor resistance, such as the gatekeeper EGFR-T790M mutation, and bypass activation of signaling cascades. Ongoing preclinical efforts for treating resistance have started to translate into patient care (including clinical trials of the covalent EGFR-T790M TKIs AZD9291 and CO-1686) and hold promise to further boost the median survival of patients with EGFR mutated NSCLC. PMID:25296354

  18. Epidermal growth factor gene is a newly identified candidate gene for gout.

    PubMed

    Han, Lin; Cao, Chunwei; Jia, Zhaotong; Liu, Shiguo; Liu, Zhen; Xin, Ruosai; Wang, Can; Li, Xinde; Ren, Wei; Wang, Xuefeng; Li, Changgui

    2016-01-01

    Chromosome 4q25 has been identified as a genomic region associated with gout. However, the associations of gout with the genes in this region have not yet been confirmed. Here, we performed two-stage analysis to determine whether variations in candidate genes in the 4q25 region are associated with gout in a male Chinese Han population. We first evaluated 96 tag single nucleotide polymorphisms (SNPs) in eight inflammatory/immune pathway- or glucose/lipid metabolism-related genes in the 4q25 region in 480 male gout patients and 480 controls. The SNP rs12504538, located in the elongation of very-long-chain-fatty-acid-like family member 6 gene (Elovl6), was found to be associated with gout susceptibility (Padjusted = 0.00595). In the second stage of analysis, we performed fine mapping analysis of 93 tag SNPs in Elovl6 and in the epidermal growth factor gene (EGF) and its flanking regions in 1017 male patients gout and 1897 healthy male controls. We observed a significant association between the T allele of EGF rs2298999 and gout (odds ratio = 0.77, 95% confidence interval = 0.67-0.88, Padjusted = 6.42 × 10(-3)). These results provide the first evidence for an association between the EGF rs2298999 C/T polymorphism and gout. Our findings should be validated in additional populations. PMID:27506295

  19. Epidermal growth factor gene is a newly identified candidate gene for gout

    PubMed Central

    Han, Lin; Cao, Chunwei; Jia, Zhaotong; Liu, Shiguo; Liu, Zhen; Xin, Ruosai; Wang, Can; Li, Xinde; Ren, Wei; Wang, Xuefeng; Li, Changgui

    2016-01-01

    Chromosome 4q25 has been identified as a genomic region associated with gout. However, the associations of gout with the genes in this region have not yet been confirmed. Here, we performed two-stage analysis to determine whether variations in candidate genes in the 4q25 region are associated with gout in a male Chinese Han population. We first evaluated 96 tag single nucleotide polymorphisms (SNPs) in eight inflammatory/immune pathway- or glucose/lipid metabolism-related genes in the 4q25 region in 480 male gout patients and 480 controls. The SNP rs12504538, located in the elongation of very-long-chain-fatty-acid-like family member 6 gene (Elovl6), was found to be associated with gout susceptibility (Padjusted = 0.00595). In the second stage of analysis, we performed fine mapping analysis of 93 tag SNPs in Elovl6 and in the epidermal growth factor gene (EGF) and its flanking regions in 1017 male patients gout and 1897 healthy male controls. We observed a significant association between the T allele of EGF rs2298999 and gout (odds ratio = 0.77, 95% confidence interval = 0.67–0.88, Padjusted = 6.42 × 10−3). These results provide the first evidence for an association between the EGF rs2298999 C/T polymorphism and gout. Our findings should be validated in additional populations. PMID:27506295

  20. System theoretical investigation of human epidermal growth factor receptor-mediated signalling

    SciTech Connect

    Zhang, Yi; Shankaran, Harish; Opresko, Lee; Resat, Haluk

    2008-09-01

    The partitioning of biological networks into coupled functional modules is gaining increasing attention in the biological sciences. This approach has the advantage that predicting a system level response does not require a mechanistic description of the internal dynamics of each module. Identification of the input-output characteristics of the network modules and the connectivity between the modules provide the necessary quantitative representation of system dynamics. However, determination of the input-output relationships of the modules is not trivial; it requires the controlled perturbation of module inputs and systematic analysis of experimental data. In this report, we apply a system theoretical analysis approach to derive the causal input-output relationships of the functional module for the human epidermal growth factor receptor (HER) mediated Erk and Akt signaling pathways. Using a library of cell lines expressing varying levels of EGFR and HER2, we show that a transfer function-based representation can be successfully applied to quantitatively characterize information transfer in this system.

  1. Attenuation of internal organ damages by exogenously administered epidermal growth factor (EGF) in burned rodents.

    PubMed

    Berlanga, Jorge; Lodos, Jorge; López-Saura, Pedro

    2002-08-01

    Major burns are associated with multiple internal organ damages, including necrosis of the gastrointestinal mucosa. Failure of the intestinal barrier is a serious complication in burned patients. Epidermal growth factor (EGF) is a mitogenic polypeptide that stimulates wound repair and affords protection to the gastric mucosa. We examined whether a single systemic intervention with EGF prevents organ systems damages, following full-thickness scalds (25-30%) in rodents. Animals were randomly assigned to receive an intraperitoneal injection of EGF (30 microg/kg in mice, 10 microg/kg in rats) or saline solution, 30 min prior thermal injury in mice or after the cutaneous injury in rats. General clinical condition and mortality during 24h were recorded. Animals were autopsied and histopathological and histomorphometric studies were conducted. Mice treated with EGF exhibited a milder clinical evolution and acute lethality was significantly reduced as compared to saline counterparts (P<0.01). Histopathological and morphometric analysis showed that EGF significantly reduced intestinal necrosis and contributed to preserve jejunoileal architecture in mice (P<0.05) and rats (P<0.01). The onset of renal hemorrhagic foci was significantly reduced in EGF-treated groups (P<0.01). Lung damages appeared attenuated in EGF-treated animals. These data indicate the salutary effects of EGF by attenuating internal complications associated to thermal injuries. Further studies are warranted to fully elucidate the usefulness of this therapy. PMID:12163282

  2. Phosphatidylinositol kinase is activated in membranes derived from cells treated with epidermal growth factor.

    PubMed Central

    Walker, D H; Pike, L J

    1987-01-01

    The ability of epidermal growth factor (EGF) to stimulate phosphatidylinositol (PtdIns) kinase activity in A431 cells was examined. The incorporation of 32P from [gamma-32P]ATP into PtdIns by A431 membranes was increased in membranes prepared from cells that had been pretreated with EGF. Demonstration of a stimulation of the PtdIns kinase activity by EGF required the use of subconfluent cultures and was dependent on the inclusion of protease inhibitors in the buffers used to prepare the membranes. Stimulation of the PtdIns kinase activity was rapid. The activation peaked 2 min after the addition of EGF and declined slowly thereafter. Half-maximal stimulation of the PtdIns kinase occurred at 7 nM EGF. Kinetic analyses of the reaction indicated that treatment of the cells with EGF resulted in a decrease in the Km for PtdIns with no change in the Vmax. The kinetic parameters for the utilization of ATP were unchanged in the EGF-treated membranes compared to the control membranes. Pretreatment of the cells with the phorbol ester phorbol 12-myristate 13-acetate blocked the ability of EGF to stimulate PtdIns kinase activity. These findings demonstrate that a PtdIns kinase activity in A431 cells is regulated by EGF and provide a good system for examining the mechanism by which EGF stimulates the activity of this intracellular enzyme. PMID:2823265

  3. Foam dressing with epidermal growth factor for severe radiation dermatitis in head and neck cancer patients.

    PubMed

    Lee, Jihyo; Lee, Sang-Wook; Hong, Joon Pio; Shon, Myeong Wha; Ryu, Seung-Hee; Ahn, Seung Do

    2016-06-01

    This study was conducted to evaluate the effects of foam dressing with human recombinant human epidermal growth factor (rhEGF) on the healing process in head and neck cancer patients who experience radiation-induced dermatitis (RID). Seven patients, including three with oropharyngeal, two with nasopharyngeal and one each with hypopharyngeal and laryngeal carcinoma, who underwent radiotherapy (RT) for head and neck cancer at the Asan Medical Center from March to December 2008 were prospectively included in this study. Patients who showed severe RID (more than wet desquamation) on the supraclavicular fossa or neck areas were treated by wound cleaning and debridement of granulation tissue, followed by daily rhEGF spray and foam dressing. Median time to stop exudates and reepithelialisation was 4 days. Within 14 days (median 8 days), all patients showed complete healing of RID and no longer required dressings. This new method of treatment with dressing containing rhEGF may have the potential to accelerate the healing process in patients with RID. A case-control study is needed to confirm this finding. PMID:24947011

  4. Impact of age on epidermal growth factor receptor mutation in lung cancer.

    PubMed

    Ueno, Tsuyoshi; Toyooka, Shinichi; Suda, Kenichi; Soh, Junichi; Yatabe, Yasushi; Miyoshi, Shinichiro; Matsuo, Keitaro; Mitsudomi, Tetsuya

    2012-12-01

    Aging is one of the best, but rarely referred, risk factors for various types of cancer including lung cancer, because age could be a surrogate for accumulation of genetic events in cancers. Smoking inversely associates with the presence of epidermal growth factor receptor (EGFR) mutation in lung cancer, but its strong confounding with age and sex makes it difficult to evaluate sole impact of age. To clarify an impact of age on EGFR mutation, we conducted a cross-sectional study based on data of 1262 lung cancer patients. The associations between EGFR mutation and age, considering sex, smoking and histology, were evaluated using logistic regression models. In multivariate analysis, we found a significant increase of EGFR mutation prevalence by increase of age (p-trend=0.0004). Consistent trend was observed among never-smoking females (p-trend=0.011) and never-smoking males also showed similar trend although not significant. These were consistently observed when we limit the subject to those with adenocarcinoma. In conclusion, age independently associates with EGFR mutation among lung cancer. Positive association between EGFR mutation and age among never-smokers regardless of sex might indicate that EGFR mutation occurs cumulatively by unidentified internal/external factors other than smoking. PMID:23036155

  5. Epidermal growth factor loaded heparin-based hydrogel sheet for skin wound healing.

    PubMed

    Goh, MeeiChyn; Hwang, Youngmin; Tae, Giyoong

    2016-08-20

    A heparin-based hydrogel sheet composed of thiolated heparin and diacrylated poly (ethylene glycol) was prepared via photo polymerization and human epidermal growth factor (hEGF) were loaded into it for the purpose of wound healing. It showed a sustained release profile of hEGF in vitro. In order to evaluate its function on wound healing in vivo, full thickness wounds were created on the dorsal surface of mice. Application of hEGF loaded heparin-based hydrogel sheet accelerated the wound closure compared to the non-treated control group, hEGF solution, and hEGF loaded PEG hydrogel sheet. Histological and immunohistological examinations also demonstrated an advanced granulation tissue formation, capillary formation, and epithelialization in wounds treated by hEGF loaded heparin-based hydrogel compared to other groups, and no biocompatibility issue was observed. In conclusion, the delivery of hEGF using the heparin-based hydrogel could accelerate the skin wound healing process. PMID:27178931

  6. Direct interaction of avermectin with epidermal growth factor receptor mediates the penetration resistance in Drosophila larvae

    PubMed Central

    Chen, Li-Ping; Wang, Pan; Sun, Ying-Jian; Wu, Yi-Jun

    2016-01-01

    With the widespread use of avermectins (AVMs) for managing parasitic and agricultural pests, the resistance of worms and insects to AVMs has emerged as a serious threat to human health and agriculture worldwide. The reduced penetration of AVMs is one of the main reasons for the development of the resistance to the chemicals. However, the detailed molecular mechanisms remain elusive. Here, we use the larvae of Drosophila melanogaster as the model organism to explore the molecular mechanisms underlying the development of penetration resistance to AVMs. We clearly show that the chitin layer is thickened and the efflux transporter P-glycoprotein (P-gp) is overexpressed in the AVM-resistant larvae epidermis. We reveal that the activation of the transcription factor Relish by the over-activated epidermal growth factor receptor (EGFR)/AKT/ERK pathway induces the overexpression of the chitin synthases DmeCHS1/2 and P-gp in the resistant larvae. Interestingly, we discover for the first time, to the best of our knowledge, that AVM directly interacts with EGFR and leads to the activation of the EGFR/AKT/ERK pathway, which activates the transcription factor Relish and induces the overexpression of DmeCHS1/2 and P-gp. These findings provide new insights into the molecular mechanisms underlying the development of penetration resistance to drugs. PMID:27249340

  7. Controlled-release of epidermal growth factor from cationized gelatin hydrogel enhances corneal epithelial wound healing.

    PubMed

    Hori, Kuniko; Sotozono, Chie; Hamuro, Junji; Yamasaki, Kenta; Kimura, Yu; Ozeki, Makoto; Tabata, Yasuhiko; Kinoshita, Shigeru

    2007-04-01

    We designed a new ophthalmic drug-delivery system for epidermal growth factor (EGF) from the biodegradable hydrogel of cationized gelatin. We placed a cationized gelatin hydrogel (CGH) with incorporated (125)I-labelled EGF in the conjunctival sac of mice and measured the residual radioactivity at different times to evaluate the in vivo profile of EGF release. Approximately 60-67% and 10-12% of EGF applied initially remained 1 and 7 days after application, respectively; whereas EGF delivered in topically applied solution or via EGF impregnation of soft contact lenses disappeared within the first day. We also placed CGH films with 5.0 mug of incorporated EGF on round corneal defects in rabbits to evaluate the healing process using image analysis software and to assess epithelial proliferation immunohistochemically by counting the number of Ki67-positive cells. The application of a CGH film with incorporated EGF resulted in a reduction in the epithelial defect in rabbit corneas accompanied by significantly enhanced epithelial proliferation compared with the reduction seen after the topical application of EGF solution or the placement of an EGF-free CGH film. The controlled release of EGF from a CGH placed over a corneal epithelial defect accelerated ocular surface wound healing. PMID:17289206

  8. Immunotoxin Therapies for the Treatment of Epidermal Growth Factor Receptor-Dependent Cancers

    PubMed Central

    Simon, Nathan; FitzGerald, David

    2016-01-01

    Many epithelial cancers rely on enhanced expression of the epidermal growth factor receptor (EGFR) to drive proliferation and survival pathways. Development of therapeutics to target EGFR signaling has been of high importance, and multiple examples have been approved for human use. However, many of the current small molecule or antibody-based therapeutics are of limited effectiveness due to the inevitable development of resistance and toxicity to normal tissues. Recombinant immunotoxins are therapeutic molecules consisting of an antibody or receptor ligand joined to a protein cytotoxin, combining the specific targeting of a cancer-expressed receptor with the potent cell killing of cytotoxic enzymes. Over the decades, many bacterial- or plant-based immunotoxins have been developed with the goal of targeting the broad range of cancers reliant upon EGFR overexpression. Many examples demonstrate excellent anti-cancer properties in preclinical development, and several EGFR-targeted immunotoxins have progressed to human trials. This review summarizes much of the past and current work in the development of immunotoxins for targeting EGFR-driven cancers. PMID:27153091

  9. Hormonal regulation of epidermal growth factor and protease in the submandibular gland of the adult mouse.

    PubMed

    Gresik, E W; Schenkein, I; van der Noen, H; Barka, T

    1981-09-01

    The structure of the granular convoluted tubules of the mouse submandibular gland is influenced by androgens, adrenal steroids, and thyroid hormones. We wished to investigate the effects of variations in hormonal status on the quantitative and qualitative distribution of two secretory products of these tubules, epidermal growth factor (EGF) and protease. The effects of the thyroid and adrenal glands on EGF content and protease activity of the submandibular glands of adult female mice were studied by RIAs (EGF), enzyme assays (protease), and immunocytochemical methods. In animals rendered chronically hypothyroid by propylthiouracil (4 months) or in animals which were adrenalectomized and ovariectomized (3 weeks), protease activity and EGF levels were reduced by 81-97%. The administration of testosterone induced these polypeptides even in hypothyroid animals. Daily administration of L-T4 (T4; 1 micrograms/g BW) for 7 days increased EGF and protease activity 3.6-fold in intact mice and reversed the effect of hypothyroidism. EGF and protease were also induced by T4 in adrenalectomized and ovariectomized mice, although to a lesser degree than in intact animals. Immunocytochemical stainings of submandibular glands indicated that the number of granular convoluted tubule cells immunoreactive for EGF correlated with the levels of EGF determined by RIAs. With respect to immunostaining for protease, such a correlation was not observed. The data indicate multihormonal regulation of EGF and protease in the mouse submandibular gland. PMID:7021131

  10. Epidermal growth factor receptor signaling mediates aldosterone-induced profibrotic responses in kidney.

    PubMed

    Sheng, Lili; Yang, Min; Ding, Wei; Zhang, Minmin; Niu, Jianying; Qiao, Zhongdong; Gu, Yong

    2016-08-01

    Aldosterone has been recognized as a risk factor for the development of chronic kidney disease (CKD). Studies have indicated that enhanced activation of epidermal growth factor receptor (EGFR) is associated with the development and progression of renal fibrosis. But if EGFR is involved in aldosterone-induced renal fibrosis is less investigated. In the present study, we examined the effect of erlotinib, an inhibitor of EGFR tyrosine kinase activity, on the progression of aldosterone-induced renal profibrotic responses in a murine model underwent uninephrectomy. Erlotinib-treated rats exhibited relieved structural lesion comparing with rats treated with aldosterone alone, as characterized by glomerular hypertrophy, mesangial cell proliferation and expansion. Also, erlotinib inhibited the expression of TGF-β, α-SMA and mesangial matrix proteins such as collagen Ⅳ and fibronectin. In cultured mesangial cells, inhibition of EGFR also abrogated aldosterone-induced expression of extracellular matrix proteins, cell proliferation and migration. We also demonstrated that aldosterone induced the phosphorylation of EGFR through generation of ROS. And the activation of EGFR resulted in the phosphorylation of ERK1/2, leading to the activation of profibrotic pathways. Taken together, we concluded that aldosterone-mediated tissue fibrosis relies on ROS induced EGFR/ERK activation, highlighting EGFR as a potential therapeutic target for modulating renal fibrosis. PMID:27317889

  11. Modulation of influenza vaccine immune responses using an epidermal growth factor receptor kinase inhibitor

    PubMed Central

    Pulit-Penaloza, Joanna A.; Sapkota, Bishu; Stein Esser, E.; Compans, Richard W.; Pollack, Brian P.; Skountzou, Ioanna

    2015-01-01

    Systemic use of epidermal growth factor receptor inhibitors (EGFRIs) has been shown to alter MHC expression and that of several chemokines, and to enhance immune cell recruitment into human skin. We hypothesized that EGFRIs may have value as cutaneous immune response modifiers, and determined the effects of topical application of an irreversible EGFRI on a well-established murine model of influenza vaccination. We found that a single topical application of an EGFRI led to increased levels of antibodies that inhibit influenza mediated hemagglutination and viral cytopathic effects. The topically applied EGFRI significantly enhanced the generation of vaccine-specific IL-4 and IFN-γ producing cells within skin-draining lymph nodes as early as one week following vaccination. The EGFRI/vaccine group showed a twelve-fold reduction in detectable pulmonary viral load four days after infection as compared to the vaccine alone control group. The reduction in the lung viral titers correlated with the survival rate, which demonstrated 100% protection in the EGFRI/vaccine immunized group but only 65% protection in the mice immunized with vaccine alone. These findings are significant because they demonstrate that inhibition of defined signaling pathways within the skin using small molecule kinase inhibitors provides a novel approach to enhance immune responses to vaccines. PMID:26227481

  12. Pertuzumab in human epidermal growth-factor receptor 2-positive breast cancer: clinical and economic considerations

    PubMed Central

    Lamond, Nathan WD; Younis, Tallal

    2014-01-01

    In the absence of specific therapy, the 15%–20% of breast cancers demonstrating human epidermal growth-factor receptor 2 (HER2) protein overexpression and/or gene amplification are characterized by a more aggressive phenotype and poorer prognosis compared to their HER2-negative counterparts. Trastuzumab (Herceptin), the first anti-HER2-targeted therapy, has been associated with improved survival outcomes in HER2-positive breast cancer. However, many patients with early stage disease continue to relapse, and metastatic disease remains incurable. In order to further improve these outcomes, several novel HER2-targeted agents have recently been developed. Pertuzumab (Perjeta), a monoclonal antibody against the HER2 dimerization domain, has also been associated with improved patient outcomes in clinical trials, and has recently been approved in combination with chemotherapy and trastuzumab for neoadjuvant therapy of early stage, HER2-positive breast cancer and first-line treatment of metastatic disease. This review briefly summarizes pertuzumab’s clinical development as well as the published evidence supporting its use, and highlights some of the currently unanswered questions that will influence pertuzumab’s incorporation into clinical practice. PMID:24876795

  13. Targeting Epidermal Growth Factor Receptor-Related Signaling Pathways in Pancreatic Cancer.

    PubMed

    Philip, Philip A; Lutz, Manfred P

    2015-10-01

    Pancreatic cancer is aggressive, chemoresistant, and characterized by complex and poorly understood molecular biology. The epidermal growth factor receptor (EGFR) pathway is frequently activated in pancreatic cancer; therefore, it is a rational target for new treatments. However, the EGFR tyrosine kinase inhibitor erlotinib is currently the only targeted therapy to demonstrate a very modest survival benefit when added to gemcitabine in the treatment of patients with advanced pancreatic cancer. There is no molecular biomarker to predict the outcome of erlotinib treatment, although rash may be predictive of improved survival; EGFR expression does not predict the biologic activity of anti-EGFR drugs in pancreatic cancer, and no EGFR mutations are identified as enabling the selection of patients likely to benefit from treatment. Here, we review clinical studies of EGFR-targeted therapies in combination with conventional cytotoxic regimens or multitargeted strategies in advanced pancreatic cancer, as well as research directed at molecules downstream of EGFR as alternatives or adjuncts to receptor targeting. Limitations of preclinical models, patient selection, and trial design, as well as the complex mechanisms underlying resistance to EGFR-targeted agents, are discussed. Future clinical trials must incorporate translational research end points to aid patient selection and circumvent resistance to EGFR inhibitors. PMID:26355547

  14. Brain metastasis in human epidermal growth factor receptor 2-positive breast cancer: from biology to treatment

    PubMed Central

    Koo, Taeryool

    2016-01-01

    Overexpression of human epidermal growth factor receptor 2 (HER2) is found in about 20% of breast cancer patients. With treatment using trastuzumab, an anti-HER2 monoclonal antibody, systemic control is improved. Nonetheless, the incidence of brain metastasis does not be improved, rather seems to be increased in HER2-positive breast cancer. The mainstay treatment for brain metastases is radiotherapy. According to the number of metastatic lesions and performance status of patients, radiosurgery or whole brain radiotherapy can be performed. The concurrent use of a radiosensitizer further improves intracranial control. Due to its large molecular weight, trastuzumab has a limited ability to cross the blood-brain barrier. However, small tyrosine kinase inhibitors such as lapatinib, has been noted to be a promising agent that can be used as a radiosensitizer to affect HER2-positive breast cancer. This review will outline general management of brain metastases and will focus on preclinical findings regarding the radiosensitizing effect of small molecule HER2 targeting agents. PMID:27104161

  15. Epidermal Growth Factor Receptor-Specific Nanoprobe Biodistribution in Mouse Models.

    PubMed

    Lee, Christopher L D; Fashir, Samia B; Castilho, Maiara L; Hupman, Michael A; Raniero, Leandro J; Alwayn, Ian; Hewitt, Kevin C

    2016-01-01

    Nanotechnology offers a targeted approach to both imaging and treatment of cancer, the leading cause of death worldwide. Previous studies have found that nanoparticles with a wide variety of coatings initiate an immune response leading to sequestration in the liver and spleen. In an effort to find a nanoparticle platform which does not elicit an immune response, we created 43 nm and 44 nm of gold and silver nanoparticles coated with biomolecules normally produced by the body, α-lipoic acid and the epidermal growth factor (EGF), and have used mass spectroscopy to determine their biodistribution in mouse models, 24 h after tail vein injection. Relative to controls, mouse EGF (mEGF)-coated silver and gold nanoprobes are found at background levels in all organs including the liver and spleen. The lack of sequestration of mEGF-coated nanoprobes in the liver and spleen and the corresponding uptake of control nanoprobes at elevated levels in these organs suggest that the former are not recognized by the immune system. Further studies of cytokine and interleukin levels in the blood are required to confirm avoidance of an immune response. PMID:26852838

  16. Construction of an immunotoxin by linking a monoclonal antibody against the human epidermal growth factor receptor and a hemolytic toxin.

    PubMed

    Avila, Ana D; Calderón, Carlos F; Pérez, Rita M; Pons, Carmen; Pereda, Celia M; Ortiz, Ana R

    2007-01-01

    Hybrid molecules obtained through conjugation of monoclonal antibodies and toxins constitute an approach under exploration to generate potential agents for the treatment of cancer and other diseases. A frequently employed toxic component in the construction of such immunotoxins is ricin, a plant toxin which inhibits protein synthesis at ribosomal level and so requires to be internalized by the cell. A hemolytic toxin isolated from the sea anemone Stichodactyla helianthus, which is active at the cell membrane level, was linked through a disulfide bond to the anti-epidermal growth factor receptor monoclonal antibody ior egf/r3. The resulting immunotoxin did not exhibit hemolytic activity except under reducing conditions. It was toxic for H125 cells that express the human epidermal growth factor receptor, but non-toxic for U1906 cells that do not express this receptor. PMID:18064354

  17. Heparin Binding–Epidermal Growth Factor-Like Growth Factor for the Regeneration of Chronic Tympanic Membrane Perforations in Mice

    PubMed Central

    Kim, Sungwoo; Varsak, Yasin Kursad; Yang, Yunzhi Peter

    2015-01-01

    We aim to explore the role of epidermal growth factor (EGF) ligand shedding in tympanic membrane wound healing and to investigate the translation of its modulation in tissue engineering of chronic tympanic membrane perforations. Chronic suppurative otitis media (CSOM) is an infected chronic tympanic membrane perforation. Up to 200 million suffer from its associated hearing loss and it is the most common cause of pediatric hearing loss in developing countries. There is a need for nonsurgical treatment due to a worldwide lack of resources. In this study, we show that EGF ligand shedding is essential for tympanic membrane healing as it's inhibition, with KB-R7785, leads to chronic perforation in 87.9% (n=58) compared with 0% (n=20) of controls. We then show that heparin binding–EGF-like growth factor (5 μg/mL), which acts to shed EGF ligands, can regenerate chronic perforations in mouse models with 92% (22 of 24) compared with 38% (10 of 26), also with eustachian tube occlusion with 94% (18 of 19) compared with 9% (2 of 23) and with CSOM 100% (16 of 16) compared with 41% (7 of 17). We also show the nonototoxicity of this treatment and its hydrogel delivery vehicle. This provides preliminary data for a clinical trial where it could be delivered by nonspecialist trained healthcare workers and fulfill the clinical need for a nonsurgical treatment for chronic tympanic membrane perforation and CSOM. PMID:25567607

  18. Discovery of selective and noncovalent diaminopyrimidine-based inhibitors of epidermal growth factor receptor containing the T790M resistance mutation.

    PubMed

    Hanan, Emily J; Eigenbrot, Charles; Bryan, Marian C; Burdick, Daniel J; Chan, Bryan K; Chen, Yuan; Dotson, Jennafer; Heald, Robert A; Jackson, Philip S; La, Hank; Lainchbury, Michael D; Malek, Shiva; Purkey, Hans E; Schaefer, Gabriele; Schmidt, Stephen; Seward, Eileen M; Sideris, Steve; Tam, Christine; Wang, Shumei; Yeap, Siew Kuen; Yen, Ivana; Yin, Jianping; Yu, Christine; Zilberleyb, Inna; Heffron, Timothy P

    2014-12-11

    Activating mutations within the epidermal growth factor receptor (EGFR) kinase domain, commonly L858R or deletions within exon 19, increase EGFR-driven cell proliferation and survival and are correlated with impressive responses to the EGFR inhibitors erlotinib and gefitinib in nonsmall cell lung cancer patients. Approximately 60% of acquired resistance to these agents is driven by a single secondary mutation within the EGFR kinase domain, specifically substitution of the gatekeeper residue threonine-790 with methionine (T790M). Due to dose-limiting toxicities associated with inhibition of wild-type EGFR (wtEGFR), we sought inhibitors of T790M-containing EGFR mutants with selectivity over wtEGFR. We describe the evolution of HTS hits derived from Jak2/Tyk2 inhibitors into selective EGFR inhibitors. X-ray crystal structures revealed two distinct binding modes and enabled the design of a selective series of novel diaminopyrimidine-based inhibitors with good potency against T790M-containing mutants of EGFR, high selectivity over wtEGFR, broad kinase selectivity, and desirable physicochemical properties. PMID:25383627

  19. Discordance of Mutation Statuses of Epidermal Growth Factor Receptor and K-ras between Primary Adenocarcinoma of Lung and Brain Metastasis.

    PubMed

    Rau, Kun-Ming; Chen, Han-Ku; Shiu, Li-Yen; Chao, Tsai-Ling; Lo, Yi-Ping; Wang, Chin-Chou; Lin, Meng-Chih; Huang, Chao-Cheng

    2016-01-01

    Mutations on epidermal growth factor receptor (EGFR) of adenocarcinomas of lung have been found to be associated with increased sensitivity to EGFR tyrosine kinase inhibitors and K-ras mutations may correlate with primary resistance. We aimed to explore the discordant mutation statuses of EGFR and K-ras between primary tumors and matched brain metastases in adenocarcinomas of lung. We used a sensitive Scorpion ARMS method to analyze EGFR mutation, and Sanger sequencing followed by allele-specific real-time polymerase chain reaction to analyze K-ras mutation. Forty-nine paired tissues with both primary adenocarcinoma of lung and matched brain metastasis were collected. Thirteen patients (26.5%) were discordant for the status of EGFR between primary and metastatic sites. K-ras gene could be checked in paired specimens from 33 patients, thirteen patients (39.6%) were discordant for the status of K-ras. In primary lung adenocarcinoma, there were 14 patients of mutant EGFR had mutant K-ras synchronously. This study revealed that the status of EGFR mutation in lung adenocarcinomas is relatively consistent between primary and metastatic sites compared to K-ras mutation. However, there are still a few cases of adenocarcinoma of lung showing discordance for the status of EGFR mutation. Repeated analysis of EGFR mutation is highly recommended if tissue from metastatic or recurrent site is available for the evaluation of target therapy. PMID:27070580

  20. Discordance of Mutation Statuses of Epidermal Growth Factor Receptor and K-ras between Primary Adenocarcinoma of Lung and Brain Metastasis

    PubMed Central

    Rau, Kun-Ming; Chen, Han-Ku; Shiu, Li-Yen; Chao, Tsai-Ling; Lo, Yi-Ping; Wang, Chin-Chou; Lin, Meng-Chih; Huang, Chao-Cheng

    2016-01-01

    Mutations on epidermal growth factor receptor (EGFR) of adenocarcinomas of lung have been found to be associated with increased sensitivity to EGFR tyrosine kinase inhibitors and K-ras mutations may correlate with primary resistance. We aimed to explore the discordant mutation statuses of EGFR and K-ras between primary tumors and matched brain metastases in adenocarcinomas of lung. We used a sensitive Scorpion ARMS method to analyze EGFR mutation, and Sanger sequencing followed by allele-specific real-time polymerase chain reaction to analyze K-ras mutation. Forty-nine paired tissues with both primary adenocarcinoma of lung and matched brain metastasis were collected. Thirteen patients (26.5%) were discordant for the status of EGFR between primary and metastatic sites. K-ras gene could be checked in paired specimens from 33 patients, thirteen patients (39.6%) were discordant for the status of K-ras. In primary lung adenocarcinoma, there were 14 patients of mutant EGFR had mutant K-ras synchronously. This study revealed that the status of EGFR mutation in lung adenocarcinomas is relatively consistent between primary and metastatic sites compared to K-ras mutation. However, there are still a few cases of adenocarcinoma of lung showing discordance for the status of EGFR mutation. Repeated analysis of EGFR mutation is highly recommended if tissue from metastatic or recurrent site is available for the evaluation of target therapy. PMID:27070580

  1. Oncogene swap as a novel mechanism of acquired resistance to epidermal growth factor receptor-tyrosine kinase inhibitor in lung cancer.

    PubMed

    Mizuuchi, Hiroshi; Suda, Kenichi; Murakami, Isao; Sakai, Kazuko; Sato, Katsuaki; Kobayashi, Yoshihisa; Shimoji, Masaki; Chiba, Masato; Sesumi, Yuichi; Tomizawa, Kenji; Takemoto, Toshiki; Sekido, Yoshitaka; Nishio, Kazuto; Mitsudomi, Tetsuya

    2016-04-01

    Mutant selective epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs), such as rociletinib and AZD9291, are effective for tumors with T790M secondary mutation that become refractory to first-generation EGFR-TKI. However, acquired resistance to these prospective drugs is anticipated considering the high adaptability of cancer cells and the mechanisms remain largely obscure. Here, CNX-2006 (tool compound of rociletinib) resistant sublines were established by chronic exposure of HCC827EPR cells harboring exon 19 deletion and T790M to CNX-2006. Through the analyses of these resistant subclones, we identified two resistant mechanisms accompanied by MET amplification. One was bypass signaling by MET amplification in addition to T790M, which was inhibited by the combination of CNX-2006 and MET-TKI. Another was loss of amplified EGFR mutant allele including T790M while acquiring MET amplification. Interestingly, MET-TKI alone was able to overcome this resistance, suggesting that oncogenic dependence completely shifted from EGFR to MET. We propose describing this phenomenon as an "oncogene swap." Furthermore, we analyzed multiple lesions from a patient who died of acquired resistance to gefitinib, then found a clinical example of an oncogene swap in which the EGFR mutation was lost and a MET gene copy was gained. In conclusion, an "oncogene swap" from EGFR to MET is a novel resistant mechanism to the EGFR-TKI. This novel mechanism should be considered in order to avoid futile inhibition of the original oncogene. PMID:26845230

  2. Discovery of Selective and Noncovalent Diaminopyrimidine-Based Inhibitors of Epidermal Growth Factor Receptor Containing the T790M Resistance Mutation

    PubMed Central

    2015-01-01

    Activating mutations within the epidermal growth factor receptor (EGFR) kinase domain, commonly L858R or deletions within exon 19, increase EGFR-driven cell proliferation and survival and are correlated with impressive responses to the EGFR inhibitors erlotinib and gefitinib in nonsmall cell lung cancer patients. Approximately 60% of acquired resistance to these agents is driven by a single secondary mutation within the EGFR kinase domain, specifically substitution of the gatekeeper residue threonine-790 with methionine (T790M). Due to dose-limiting toxicities associated with inhibition of wild-type EGFR (wtEGFR), we sought inhibitors of T790M-containing EGFR mutants with selectivity over wtEGFR. We describe the evolution of HTS hits derived from Jak2/Tyk2 inhibitors into selective EGFR inhibitors. X-ray crystal structures revealed two distinct binding modes and enabled the design of a selective series of novel diaminopyrimidine-based inhibitors with good potency against T790M-containing mutants of EGFR, high selectivity over wtEGFR, broad kinase selectivity, and desirable physicochemical properties. PMID:25383627

  3. The prognostic value of epidermal growth factor receptor mRNA expression in primary ovarian cancer.

    PubMed Central

    Bartlett, J. M.; Langdon, S. P.; Simpson, B. J.; Stewart, M.; Katsaros, D.; Sismondi, P.; Love, S.; Scott, W. N.; Williams, A. R.; Lessells, A. M.; Macleod, K. G.; Smyth, J. F.; Miller, W. R.

    1996-01-01

    The expression of mRNA for the epidermal growth factor (EGF) receptor, EGF and transforming growth factor alpha (TGF-alpha) was determined in 76 malignant, six borderline and 15 benign primary ovarian tumours using the reverse transcriptase-polymerase chain reaction and related to clinical and pathological parameters. Of the malignant tumours, 70% (53/76) expressed EGF receptor mRNA, 31% (23/75) expressed EGF mRNA and 35% (26/75) expressed TGF-alpha mRNA. For the borderline tumours, four of six (67%) expressed EGF receptor mRNA, 1/6 (17%) expressed TGF-alpha mRNA and none expressed EGF mRNA. Finally, 33% (5/15) of the benign tumours expressed EGF receptor mRNA, whereas 40% (6/15) expressed EGF mRNA and 7% (1/15) expressed TGF-alpha mRNA. The presence of the EGF receptor in malignant tumours was associated with that of TGF-alpha (P = 0.0015) but not with EGF (P = 1.00), whereas there was no relationship between the presence of EGF and TGF-alpha (P = 1.00). EGF receptor mRNA expression was significantly and positively associated with serous histology (P = 0.006) but not with stage or grade. Neither EGF nor TGF-alpha showed any link with histological subtype or stage. The survival of patients with malignant tumours possessing EGF receptor mRNA was significantly reduced compared with that of patients whose tumours were negative (P = 0.030 for all malignant tumours; P = 0.007 for malignant epithelial tumours only). In contrast, neither the expression of TGF-alpha nor EGF was related to survival. These data suggest that the presence of EGF receptor mRNA is associated with poor prognosis in primary ovarian cancer. Images Figure 1 PMID:8562334

  4. Epidermal growth factor receptor is required for estradiol-stimulated bovine satellite cell proliferation.

    PubMed

    Reiter, B C; Kamanga-Sollo, E; Pampusch, M S; White, M E; Dayton, W R

    2014-07-01

    The objective of this study was to assess the role of the epidermal growth factor receptor (EGFR) in estradiol-17β (E2)-stimulated proliferation of cultured bovine satellite cells (BSCs). Treatment of BSC cultures with AG1478 (a specific inhibitor of EGFR tyrosine kinase activity) suppresses E2-stimulated BSC proliferation (P < 0.05). In addition, E2-stimulated proliferation is completely suppressed (P < 0.05) in BSCs in which EGFR expression is silenced by treatment with EGFR small interfering RNA (siRNA). These results indicate that EGFR is required for E2 to stimulate proliferation in BSC cultures. Both AG1478 treatment and EGFR silencing also suppress proliferation stimulated by LR3-IGF-1 (an IGF1 analogue that binds normally to the insulin-like growth factor receptor (IGFR)-1 but has little or no affinity for IGF binding proteins) in cultured BSCs (P < 0.05). Even though EGFR siRNA treatment has no effect on IGFR-1β mRNA expression in cultured BSCs, IGFR-1β protein level is substantially reduced in BSCs treated with EGFR siRNA. These data suggest that EGFR silencing results in post-transcriptional modifications that result in decreased IGFR-1β protein levels. Although it is clear that functional EGFR is necessary for E2-stimulated proliferation of BSCs, the role of EGFR is not clear. Transactivation of EGFR may directly stimulate proliferation, or EGFR may function to maintain the level of IGFR-1β which is necessary for E2-stimulated proliferation. It also is possible that the role of EGFR in E2-stimulated BSC proliferation may involve both of these mechanisms. PMID:24906928

  5. Inhibition of epidermal growth factor signaling by the cardiac glycoside ouabain in medulloblastoma.

    PubMed

    Wolle, Daniel; Lee, Seung Joon; Li, Zhiqin; Litan, Alisa; Barwe, Sonali P; Langhans, Sigrid A

    2014-10-01

    Epidermal growth factor (EGF) signaling regulates cell growth, proliferation, and differentiation. Upon receptor binding, EGF triggers cascades of downstream signaling, including the MAPK and phosphoinositide-3-kinase (PI3K)/Akt signaling pathways. Aberrant expression/activation of EGFR is found in multiple human cancers, including medulloblastoma, the most prevalent pediatric brain cancer, and often has been associated with metastasis, poor prognosis, and resistance to chemotherapy. Na,K-ATPase is an ion pump well known for its role in intracellular ion homeostasis. Recent studies showed that Na,K-ATPase also functions as a signaling platform and revealed a role in EGFR, MAPK, and PI3K signaling. While both EGFR and Na,K-ATPase seem to modulate similar signaling pathways, cardiac glycosides that are steroid-like inhibitors of Na,K-ATPase, exhibit antiproliferative and proapoptotic properties in cancer cells. Thus, we sought to better understand the relationship between EGF and cardiac glycoside signaling. Here, we show that in medulloblastoma cells, both EGF and ouabain activate Erk1/2 and PI3K/Akt signaling. Nevertheless, in medulloblastoma cells ouabain did not transactivate EGFR as has been reported in various other cell lines. Indeed, ouabain inhibited EGF-induced Erk1/2 and Akt activation and, moreover, prevented EGF-induced formation of actin stress fibers and cell motility, probably by activating a stress signaling response. Na,K-ATPase has been proposed to act as a signaling scaffold and our studies suggest that in medulloblastoma cells Na,K-ATPase might act as a check point to integrate EGF-associated signaling pathways. Thus, Na,K-ATPase might serve as a valid target to develop novel therapeutic approaches in tumors with aberrant activation of the EGFR signaling cascades. PMID:25052069

  6. Effects of epidermal growth factor-loaded mucoadhesive films on wounded oral tissue rafts.

    PubMed

    Ramineni, Sandeep K; Fowler, Craig B; Fisher, Paul D; Cunningham, Larry L; Puleo, David A

    2015-02-01

    Current treatments for traumatic oral mucosal wounds include the gold standard of autologous tissue and alternative tissue-engineered grafts. While use of autografts has disadvantages of minimal availability of oral keratinized tissue, second surgery, and donor site discomfort, tissue-engineered grafts are limited by their unavailability as off-the-shelf products owing to their fabrication time of 4-8 weeks. Hence, the current work aimed to develop a potentially cost-effective, readily available device capable of enhancing native mucosal regeneration. Considering the key role of epidermal growth factor (EGF) in promoting mucosal wound regeneration and the advantages of mucoadhesive delivery systems, mucoadhesive films composed of polyvinylpyrrolidone and carboxymethylcellulose were developed to provide sustained release of EGF for a minimum of 6 h. Bioactivity of released EGF supernatants was then confirmed by its ability to promote proliferation of BALB/3T3 fibroblasts. Efficacy of the developed system was then investigated in vitro using buccal tissues (ORL 300-FT) as a potential replacement for small animal studies. Although the mucoadhesive films achieved their desired role of delivering bioactive EGF in a sustained manner, treatment with EGF, irrespective of its release from the films or solubilized in medium, caused a hyperparakeratotic response from in vitro tissues with distinguishable histological features including thickening of the spinous layer, intra- and intercellular edema, and pyknotic nuclei. These significant morphological changes were associated with no improvements in wound closure. These observations raise questions about the potential of using in vitro tissues as a wound healing model and substitute for small animal studies. The mucoadhesive delivery system developed, however, with its potential for sustained release of bioactive growth factors and small molecules, may be loaded with other desired compounds, with or without EGF, to accelerate

  7. Dysregulation of epidermal growth factor receptor expression in premalignant lesions during head and neck tumorigenesis.

    PubMed

    Shin, D M; Ro, J Y; Hong, W K; Hittelman, W N

    1994-06-15

    The development of head and neck cancer, believed to result from field cancerization and a multistep process of tumorigenesis, is often associated with an accumulation of genotypic and phenotypic alterations. The phenotypic changes could be the result of dysregulation of growth control genes such as epidermal growth factor receptor (EGFR). With the goal of identifying a potential biomarker of the multistep process of tumorigensis, we studied specimens of 36 head and neck squamous cell carcinomas from 5 different sites that contained normal epithelia and/or premalignant lesions adjacent to the tumors. Almost all of the individuals from whom these specimens were obtained had been exposed to first-hand smoking and/or alcohol consumption. Using a monoclonal anti-EGFR antibody for immunohistochemical analysis on paraffin-embedded sections with attached 886 cells for internal control, the levels of EGFR expression were assessed by image analysis. The relative staining intensity of EGFR in normal epithelia adjacent to tumors was 2-fold higher than that in normal control epithelium (P = 0.021), suggesting that, even in histologically normal epithelium, EGFR was already up-regulated in tissues surrounding tumors. These findings supported the theory of field cancerization in head and neck tumorigenesis. As tissue progressed from normal tissue adjacent to tumor to hyperplasia and to dysplasia, EGFR expression remained elevated. However, in the step from dysplasia to squamous cell carcinoma, EGFR expression was further and dramatically up-regulated (P = 0.01). Therefore, these results indicate that EGFR dysregulation happens in two steps, the moderate up-regulation of EGFR expression in normal epithelium adjacent to tumor and the further up-regulation of EGFR expression in the change from dysplasia to squamous cell carcinoma. In summary, the studies presented here indicate that EGFR dysregulation might be a useful marker for identifying individuals at risk of tumor development

  8. Graphene Enhances Cellular Proliferation through Activating the Epidermal Growth Factor Receptor.

    PubMed

    Liu, Wei; Sun, Cheng; Liao, Chunyang; Cui, Lin; Li, Haishan; Qu, Guangbo; Yu, Wenlian; Song, Naining; Cui, Yuan; Wang, Zheng; Xie, Wenping; Chen, Huiming; Zhou, Qunfang

    2016-07-27

    Graphene has promising applications in food packaging, water purification, and detective sensors for contamination monitoring. However, the biological effects of graphene are not fully understood. It is necessary to clarify the potential risks of graphene exposure to humans through diverse routes, such as foods. In the present study, graphene, as the model nanomaterial, was used to test its potential effects on the cell proliferation based on multiple representative cell lines, including HepG2, A549, MCF-7, and HeLa cells. Graphene was characterized by Raman spectroscopy, particle size analysis, atomic force microscopy, and transmission electron microscopy. The cellular responses to graphene exposure were evaluated using flow cytometry, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, and alamarBlue assays. Rat cerebral astrocyte cultures, as the non-cancer cells, were used to assess the potential cytotoxicity of graphene as well. The results showed that graphene stimulation enhanced cell proliferation in all tested cell cultures and the highest elevation in cell growth was up to 60%. A western blot assay showed that the expression of epidermal growth factor (EGF) was upregulated upon graphene treatment. The phosphorylation of EGF receptor (EGFR) and the downstream proteins, ShC and extracellular regulating kinase (ERK), were remarkably induced, indicating that the activation of the mitogen-activated protein kinase (MAPK)/ERK signaling pathway was triggered. The activation of PI3 kinase p85 and AKT showed that the PI3K/AKT signaling pathway was also involved in graphene-induced cell proliferation, causing the increase of cell ratios in the G2/M phase. No influences on cell apoptosis were observed in graphene-treated cells when compared to the negative controls, proving the low cytotoxicity of this emerging nanomaterial. The findings in this study revealed the potential cellular biological effect of graphene, which may give useful hints on its biosafety

  9. MAP kinase mediates epidermal growth factor- and phorbol ester-induced prostacyclin formation in cardiomyocytes.

    PubMed

    Braconi Quintaje, S; Rebsamen, M; Church, D J; Vallotton, M B; Lang, U

    1998-05-01

    We studied the role of protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) in epidermal growth factor (EGF)-induced prostacyclin (PGI2) production in cultured, spontaneously-beating neonatal ventricular rat cardiomyocytes. To this purpose, the effect of EGF on cardiomyocyte MAPK phosphorylation, MAPK activity and PGI2-production were investigated, and compared to those induced by the PKC activator 4 beta phorbol 12-myristate 13-acetate (PMA). Both EGF (0.1 microM) and PMA (0.1 microM) induced the rapid and reversible phosphorylation of 42 KDa-MAPK in ventricular cardiomyocytes, responses that were accompanied by transient increases in MAPK activity (190-230% of control values within 5 min), and two- to three-fold increases in PGI2 formation. The tyrosine kinase inhibitors lavendustin (1 microM) and genistein (10 microM) strongly inhibited EGF-induced MAPK activation and PGI2-formation, but had no effect on PMA-stimulated responses. Experiments with the PKC inhibitor CGP 41251 (1 microM) or with PKC-downregulated cells demonstrated that in contrast to the PMA-stimulated responses, EGF-induced MAPK activation and PGI2-production were PKC-independent processes. Investigating the role of MAPK in EGF- and in PMA-promoted PGI2-formation, we found that the MAPK-inhibitor 6-thioguanine (500 microM), as well as the MAPK-kinase-inhibitor PD98059 (50 microM) abolished both EGF- and PMA-stimulated PGI2-production in cardiomyocytes. Our results indicate that MAPK-activation is at the basis of both growth factor receptor and PKC-dependent eicosanoid-formation in ventricular cardiomyocytes, where EGF-induced prostaglandin-production takes place via a PKC-independent pathway. PMID:9618234

  10. Effects of Epidermal Growth Factor-Loaded Mucoadhesive Films on Wounded Oral Tissue Rafts

    PubMed Central

    Ramineni, Sandeep K.; Fowler, Craig B.; Fisher, Paul D.; Cunningham, Larry L.; Puleo, David A.

    2015-01-01

    Current treatments for traumatic oral mucosal wounds include the gold standard of autologous tissue and alternative tissue engineered grafts. While use of autografts has disadvantages of minimal availability of oral keratinized tissue, second surgery, and donor site discomfort, tissue engineered grafts are limited by their unavailability as off-the-shelf products owing to their fabrication time of 4–8 weeks. Hence, the current work aimed to develop a potentially cost-effective, readily available device capable of enhancing native mucosal regeneration. Considering the key role of epidermal growth factor (EGF) in promoting mucosal wound regeneration and the advantages of mucoadhesive delivery systems, mucoadhesive films composed of polyvinylpyrrolidone and carboxymethylcellulose were developed to provide sustained release of EGF for minimum of 6 hours. Bioactivity of released EGF supernatants was then confirmed by its ability to promote proliferation of BALB/3T3 fibroblasts. Efficacy of the developed system was then investigated in vitro using buccal tissues (ORL 300-FT) as a potential replacement for small animal studies. Although the mucoadhesive films achieved their desired role of delivering bioactive EGF in a sustained manner, treatment with EGF, irrespective of its release from the films or solubilized in medium, caused a hyperparakeratotic response from in vitro tissues with distinguishable histological features including thickening of the spinous layer, intra- and intercellular edema, and pyknotic nuclei. These significant morphological changes were associated with no improvements in wound closure. These observations raise questions about the potential of using in vitro tissues as a wound healing model and substitute for small animal studies. The mucoadhesive delivery system developed, however, with its potential for sustained release of bioactive growth factors and small molecules, may be loaded with other desired compounds, with or without EGF, to

  11. Redox regulation of epidermal growth factor receptor signaling during the development of pulmonary hypertension.

    PubMed

    Rafikova, Olga; Rafikov, Ruslan; Kangath, Archana; Qu, Ning; Aggarwal, Saurabh; Sharma, Shruti; Desai, Julin; Fields, Taylor; Ludewig, Britta; Yuan, Jason X-Y; Jonigk, Danny; Black, Stephen M

    2016-06-01

    The development of pulmonary hypertension (PH) involves the uncontrolled proliferation of pulmonary smooth muscle cells via increased growth factor receptor signaling. However, the role of epidermal growth factor receptor (EGFR) signaling is controversial, as humans with advanced PH exhibit no changes in EGFR protein levels and purpose of the present study was to determine whether there are post-translational mechanisms that enhance EGFR signaling in PH. The EGFR inhibitor, gefinitib, significantly attenuated EGFR signaling and prevented the development of PH in monocrotaline (MCT)-exposed rats, confirming the contribution of EGFR activation in MCT induced PH. There was an early MCT-mediated increase in hydrogen peroxide, which correlated with the binding of the active metabolite of MCT, monocrotaline pyrrole, to catalase Cys377, disrupting its multimeric structure. This early oxidative stress was responsible for the oxidation of EGFR and the formation of sodium dodecyl sulfate (SDS) stable EGFR dimers through dityrosine cross-linking. These cross-linked dimers exhibited increased EGFR autophosphorylation and signaling. The activation of EGFR signaling did not correlate with pp60(src) dependent Y845 phosphorylation or EGFR ligand expression. Importantly, the analysis of patients with advanced PH revealed the same enhancement of EGFR autophosphorylation and covalent dimer formation in pulmonary arteries, while total EGFR protein levels were unchanged. As in the MCT exposed rat model, the activation of EGFR in human samples was independent of pp60(src) phosphorylation site and ligand expression. This study provides a novel molecular mechanism of oxidative stress stimulated covalent EGFR dimerization via tyrosine dimerization that contributes into development of PH. PMID:26928584

  12. Quercetin 3-O-glucoside suppresses epidermal growth factor-induced migration by inhibiting EGFR signaling in pancreatic cancer cells.

    PubMed

    Lee, Jungwhoi; Han, Song-I; Yun, Jeong-Hun; Kim, Jae Hoon

    2015-12-01

    Pancreatic cancer is one of the most dangerous cancers and is associated with a grave prognosis. Despite increased knowledge of the complex signaling networks responsible for progression of pancreatic cancer, many challenging therapies have fallen short of expectations. In this study, we examined the anti-migratory effect of quercetin 3-O-glucoside in epidermal growth factor-induced cell migration by inhibiting EGF receptor (EGFR) signaling in several human pancreatic cancer cell lines. Treatment with quercetin, quercetin 3-O-glucoside, and quercetin 7-O-glucoside differentially suppressed epidermal growth factor-induced migration activity of human pancreatic cancer cells. In particular, quercetin 3-O-glucoside strongly inhibited the infiltration activity of pancreatic cancer cells in a dose-dependent manner. Furthermore, quercetin 3-O-glucoside exerted the anti-migratory effect even at a relatively low dose compared with other forms of quercetin. The anti-tumor effects of quercetin 3-O-glucoside were mediated by selectively inhibiting the EGFR-mediated FAK, AKT, MEK1/2, and ERK1/2 signaling pathway. Combinatorial treatment with quercetin 3-O-glucoside plus gemcitabine showed the synergistic anti-migratory effect on epidermal growth factor-induced cell migration in human pancreatic cancer cell lines. These results suggest that quercetin 3-O-glucoside has potential for anti-metastatic therapy in human pancreatic cancer. PMID:26109002

  13. Isoliquiritigenin Induces Apoptosis and Inhibits Xenograft Tumor Growth of Human Lung Cancer Cells by Targeting Both Wild Type and L858R/T790M Mutant EGFR*

    PubMed Central

    Jung, Sung Keun; Lee, Mee-Hyun; Lim, Do Young; Kim, Jong Eun; Singh, Puja; Lee, Sung-Young; Jeong, Chul-Ho; Lim, Tae-Gyu; Chen, Hanyong; Chi, Young-In; Kundu, Joydeb Kumar; Lee, Nam Hyouck; Lee, Charles C.; Cho, Yong-Yeon; Bode, Ann M.; Lee, Ki Won; Dong, Zigang

    2014-01-01

    Non-small-cell lung cancer (NSCLC) is associated with diverse genetic alterations including mutation of epidermal growth factor receptor (EGFR). Isoliquiritigenin (ILQ), a chalcone derivative, possesses anticancer activities. In the present study, we investigated the effects of ILQ on the growth of tyrosine kinase inhibitor (TKI)-sensitive and -resistant NSCLC cells and elucidated its underlying mechanisms. Treatment with ILQ inhibited growth and induced apoptosis in both TKI-sensitive and -resistant NSCLC cells. ILQ-induced apoptosis was associated with the cleavage of caspase-3 and poly-(ADP-ribose)-polymerase, increased expression of Bim, and reduced expression of Bcl-2. In vitro kinase assay results revealed that ILQ inhibited the catalytic activity of both wild type and double mutant (L858R/T790M) EGFR. Treatment with ILQ inhibited the anchorage-independent growth of NIH3T3 cells stably transfected with either wild type or double-mutant EGFR with or without EGF stimulation. ILQ also reduced the phosphorylation of Akt and ERK1/2 in both TKI-sensitive and -resistant NSCLC cells, and attenuated the kinase activity of Akt1 and ERK2 in vitro. ILQ directly interacted with both wild type and double-mutant EGFR in an ATP-competitive manner. A docking model study showed that ILQ formed two hydrogen bonds (Glu-762 and Met-793) with wild type EGFR and three hydrogen bonds (Lys-745, Met-793, and Asp-855) with mutant EGFR. ILQ attenuated the xenograft tumor growth of H1975 cells, which was associated with decreased expression of Ki-67 and diminished phosphorylation of Akt and ERK1/2. Taken together, ILQ suppresses NSCLC cell growth by directly targeting wild type or mutant EGFR. PMID:25368326

  14. Antitumor effect of afatinib, as a human epidermal growth factor receptor 2-targeted therapy, in lung cancers harboring HER2 oncogene alterations.

    PubMed

    Suzawa, Ken; Toyooka, Shinichi; Sakaguchi, Masakiyo; Morita, Mizuki; Yamamoto, Hiromasa; Tomida, Shuta; Ohtsuka, Tomoaki; Watanabe, Mototsugu; Hashida, Shinsuke; Maki, Yuho; Soh, Junichi; Asano, Hiroaki; Tsukuda, Kazunori; Miyoshi, Shinichiro

    2016-01-01

    Human epidermal growth factor receptor 2 (HER2) is a member of the HER family of proteins containing four receptor tyrosine kinases. It plays an important role in the pathogenesis of certain human cancers. In non-small-cell lung cancer (NSCLC), HER2 amplification or mutations have been reported. However, little is known about the benefit of HER2-targeted therapy for NSCLCs harboring HER2 alterations. In this study, we investigated the antitumor effect of afatinib, an irreversible epidermal growth factor receptor (EGFR)-HER2 dual inhibitor, in lung cancers harboring HER2 oncogene alterations, including novel HER2 mutations in the transmembrane domain, which we recently identified. Normal bronchial epithelial cells, BEAS-2B, ectopically overexpressing wild-type HER2 or mutants (A775insYVMA, G776VC, G776LC, P780insGSP, V659E, and G660D) showed constitutive autophosphorylation of HER2 and activation of downstream signaling. They were sensitive to afatinib, but insensitive to gefitinib. Furthermore, we examined the antitumor activity of afatinib and gefitinib in several NSCLC cell lines, and investigated the association between their genetic alterations and sensitivity to afatinib treatment. In HER2-altered NSCLC cells (H2170, Calu-3, and H1781), afatinib downregulated the phosphorylation of HER2 and EGFR as well as their downstream signaling, and induced an antiproliferative effect through G1 arrest and apoptotic cell death. In contrast, HER2- or EGFR-non-dependent NSCLC cells were insensitive to afatinib. In addition, these effects were confirmed in vivo by using a xenograft mouse model of HER2-altered lung cancer cells. Our results suggest that afatinib is a therapeutic option as a HER2-targeted therapy for NSCLC harboring HER2 amplification or mutations. PMID:26545934

  15. The heat shock protein 90-binding geldanamycin inhibits cancer cell proliferation, down-regulates oncoproteins, and inhibits epidermal growth factor-induced invasion in thyroid cancer cell lines.

    PubMed

    Park, Jin-Woo; Yeh, Michael W; Wong, Mariwil G; Lobo, Margaret; Hyun, William C; Duh, Quan-Yang; Clark, Orlo H

    2003-07-01

    Heat shock protein 90 (HSP90) serves as a chaperone protein and plays a critical role in tumor cell growth and/or survival. Geldanamycin, a specific inhibitor of HSP90, is cytotoxic to several human cancer cell lines, but its effect in thyroid cancer is unknown. We, therefore, investigated the effect of geldanamycin on cell proliferation, oncoprotein expression, and invasion in human thyroid cancer cell lines. We used six thyroid cancer cell lines: TPC-1 (papillary), FTC-133, FTC-236, FTC-238 (follicular), XTC-1 (Hürthle cell), and ARO (anaplastic). We used the dimethyl-thiazol-diphenyltetrazolium bromide assay, a clonogenic assay, an apoptotic assay, and a Matrigel invasion assay. We evaluated oncoprotein expression using Western blots and flow cytometry. After 6 d of treatment with 50 nM geldanamycin, the percent inhibition of growth was 29.4% in TPC-1, 97.5% in FTC-133, 96.7% in FTC-236, 10.8% in FTC-238, 70.9% in XTC-1, and 45.5% in ARO cell lines. In the FTC-133 cell line, geldanamycin treatment decreased clonogenicity by 21% at a concentration of 50 nM; geldanamycin induced apoptosis and down-regulated c-Raf-1, mutant p53, and epidermal growth factor (EGF) receptor expression; geldanamycin inhibited EGF-stimulated invasion. In conclusion, geldanamycin inhibited cancer cell proliferation, down-regulated oncoproteins, and inhibited EGF-induced invasion in thyroid cancer cell lines. PMID:12843186

  16. Does salinity reduce growth in maize root epidermal cells by inhibiting their capacity for cell wall acidification?

    PubMed

    Zidan, I; Azaizeh, H; Neumann, P M

    1990-05-01

    The reduction in growth of maize (Zea mays L.) seedling primary roots induced by salinization of the nutrient medium with 100 millimolar NaCl was accompanied by reductions in the length of the root tip elongation zone, the length of fully elongated epidermal cells, and the apparent rate of cell production: Each was partially restored when calcium levels in the salinized growth medium were increased from 0.5 to 10.0 millimolar. We investigated the possibility that the inhibition of elongation growth by salinity might be associated with an inhibition of cell wall acidification, such as that which occurs when root growth is inhibited by IAA. A qualitative assay of root surface acidification, using bromocresol purple pH indicator in agar, showed that salinized roots, with and without extra calcium, produced a zone of surface acidification which was similar to that produced by control roots. The zone of acidification began 1 to 2 millimeters behind the tip and coincided with the zone of cell elongation. The remainder of the root alkalinized its surface. Kinetics of surface acidification were assayed quantitatively by placing a flat tipped pH electrode in contact with the elongation zone. The pH at the epidermal surfaces of roots grown either with 100 millimolar NaCl (growth inhibitory), or with 10 millimolar calcium +/- NaCl (little growth inhibition), declined from 6.0 to 5.1 over 30 minutes. We conclude that NaCl did not inhibit growth by reducing the capacity of epidermal cells to acidify their walls. PMID:16667468

  17. In vivo toxicity, pharmacokinetics, and anticancer activity of Genistein linked to recombinant human epidermal growth factor.

    PubMed

    Uckun, F M; Narla, R K; Zeren, T; Yanishevski, Y; Myers, D E; Waurzyniak, B; Ek, O; Schneider, E; Messinger, Y; Chelstrom, L M; Gunther, R; Evans, W

    1998-05-01

    Epidermal growth factor receptor (EGFR)-associated protein tyrosine kinase (PTK) complexes have vital anti-apoptotic functions in human breast cancer cells. We have shown previously that targeting the naturally occurring PTK inhibitor genistein to the EGFR-associated PTK complexes using the EGF-Genistein (Gen) conjugate triggers rapid apoptotic cell death in human breast cancer cells and abrogates their in vitro clonogenic growth. In the present study, we examined the in vivo toxicity profile, pharmacokinetics, and anticancer activity of EGF-Gen. No toxicities were observed in mice treated with EGF-Gen at dose levels as high as 40 mg/kg administered i.p. as a single dose or 140 mg/kg administered i.p. over 28 consecutive days. EGF-Gen significantly improved tumor-free survival in a severe combined immune deficiency (SCID) mouse xenograft model of human breast cancer, when it was administered 24 h after inoculation of tumor cells. At 100 microg/kg/day x 10 days (1 mg/kg total dose), which is >100-fold less than the highest tested and nontoxic cumulative dose (ie., 140 mg/kg) in mice, EGF-Gen was more effective than cyclophosphamide (50 mg/kg/day x 2 days), Adriamycin (2.5 mg/kg x 1 day), or methotrexate (0.5 mg/kg x 1 day), the most widely used standard chemotherapeutic drugs for breast cancer, and resulted in 60% long-term tumor-free survival. Furthermore, treating SCID mice with established s.c. human breast cancer xenografts of 0.5-cm diameter with EGF-Gen at this dose level resulted in disappearance of the tumors in two of five mice and >50% shrinkage in three of five mice within 10 days, whereas all of the control tumors in five PBS-treated mice as well as five mice treated with unconjugated Gen (1 mg/kg/day x 10 days) showed >200% increase in diameter during the same observation period. EGF-Gen treatment reduced the growth rate of breast cancer xenografts of 1.0-cm diameter, but unlike with tumors of 0.5-cm diameter, it failed to cause shrinkage or

  18. Surfactant protein D suppresses lung cancer progression by downregulation of epidermal growth factor signaling.

    PubMed

    Hasegawa, Y; Takahashi, M; Ariki, S; Asakawa, D; Tajiri, M; Wada, Y; Yamaguchi, Y; Nishitani, C; Takamiya, R; Saito, A; Uehara, Y; Hashimoto, J; Kurimura, Y; Takahashi, H; Kuroki, Y

    2015-02-12

    Surfactant protein D (SP-D) is a member of the collectin family that has an important role in maintaining pulmonary homeostasis. In this study, we demonstrated that SP-D inhibited the proliferation, migration and invasion of A549 human lung adenocarcinoma cells. We found that SP-D suppressed epidermal growth factor (EGF) signaling in A549 cells, H441 human lung adenocarcinoma cells and human EGF receptor (EGFR) stable expression CHO-K1 cells. A binding study using (125)I-EGF demonstrated that SP-D downregulated the binding of EGF to EGFR. A ligand blot indicated that SP-D bound to EGFR, and a lectin blot suggested that EGFR in A549 cells had both high-mannose type and complex type N-glycans. We purified the recombinant extracellular domain of EGFR (soluble EGFR=soluble EGFR (sEGFR)), and demonstrated that SP-D directly bound to sEGFR in a Ca(2+)-dependent manner. The binding of SP-D to sEGFR was suppressed by EDTA, mannose or N-glycopeptidase F treatment. Mass spectrometric analysis indicated that N-glycans in domain III of EGFR were of a high-mannose type. These data suggest that SP-D reduces EGF binding to EGFR through the interaction between the carbohydrate recognition domain of SP-D and N-glycans of EGFR, and downregulates EGF signaling. Our finding suggests the novel type of regulation system of EGF signaling involving lectin-to-carbohydrate interaction and downregulation of ligand binding. PMID:24608429

  19. Epidermal Growth Factor Receptor Kinase Domain Mutations in Esophageal and Pancreatic Adenocarcinomas

    PubMed Central

    Kwak, Eunice L.; Jankowski, Janusz; Thayer, Sarah P.; Lauwers, Gregory Y.; Brannigan, Brian W.; Harris, Patricia L.; Okimoto, Ross A.; Haserlat, Sara M.; Dris coll, David R.; Ferry, David; Muir, Beth; Settleman, Jeff; Fuchs, Charles S.; Kulke, Matthew H.; Ryan, David P.; Clark, Jeff W.; Sgroi, Dennis C.; Haber, Daniel A.; Bell, Daphne W.

    2013-01-01

    Purpose Specific activating mutations within the epidermal growth factor receptor (EGFR) identify a subset of non – small cell lung cancers with dramatic sensitivity to the specific tyrosine kinase inhibitors (TKI), gefitinib and erlotinib. Despite the abundant expression of EGFR protein in a broad range of epithelial cancers, EGFR mutations have not been reported in a substantial fraction of other cancers. Given recent reports of TKI-responsive cases of esophageal and pancreatic cancer, this study was designed to determine the prevalence of EGFR mutations in these gastrointestinal cancers. Experimental Design We sequenced exons 18 to 21 of EGFR from 21cases of Barrett's esophagus, 5 cases of high-grade esophageal dysplasia, 17 cases of esophageal adenocarcinoma, and 55 cases of pancreatic adenocarcinoma. Subsets of esophageal (n = 7) and pancreatic cancer cases (n = 5) were obtained from patients who were subsequently treated with gefitinib or erlotinib-capecitabine, respectively. Results Mutations of EGFR were identified in two esophageal cancers (11.7%), three cases of Barrett's esophagus (14.2%), and two pancreatic cancers (3.6%). The mutations consisted of the recurrent missense L858R and in-frame deletion delE746-A750, previously characterized as activating EGFR mutations in non – small cell lung cancer. We also identified the TKI drug resistance – associated EGFR T790M mutation in an untreated case of Barrett's esophagus and the corresponding adenocarcinoma. Conclusion The presence of activating mutations within EGFR in both esophageal and pancreatic adenocarcinomas defines a previously unrecognized subset of gastrointestinal tumors in which EGFR signaling may play an important biological role. EGFR mutations in premalignant lesions of Barrett's esophagus also point to these as an early event in transformation of the esophageal epithelium. The role of genotype-directed TKI therapy should be tested in prospective clinical trials. PMID:16857803

  20. Mechanisms of resistance to anti-epidermal growth factor receptor inhibitors in metastatic colorectal cancer.

    PubMed

    Sforza, Vincenzo; Martinelli, Erika; Ciardiello, Fortunato; Gambardella, Valentina; Napolitano, Stefania; Martini, Giulia; Della Corte, Carminia; Cardone, Claudia; Ferrara, Marianna L; Reginelli, Alfonso; Liguori, Giuseppina; Belli, Giulio; Troiani, Teresa

    2016-07-28

    The prognosis of patients with metastatic colorectal cancer (mCRC) remain poor despite the impressive improvement of treatments observed over the last 20 years that led to an increase in median overall survival from 6 mo, with the only best supportive care, to approximately 30 mo with the introduction of active chemotherapy drugs and targeted agents. The monoclonal antibodies (moAbs) cetuximab and panitumumab, directed against the epidermal growth factor receptor (EGFR), undoubtedly represent a major step forward in the treatment of mCRC, given the relevant efficacy in terms of progression-free survival, overall survival, response rate, and quality of life observed in several phase III clinical trials among different lines of treatment. However, the anti-EGFR moAbs were shown only to be effective in a subset of patients. For instance, KRAS and NRAS mutations have been identified as biomarkers of resistance to these drugs, improving the selection of patients who might derive a benefit from these treatments. Nevertheless, several other alterations might affect the response to these drugs, and unfortunately, even the responders eventually become resistant by developing secondary (or acquired) resistance in approximately 13-18 mo. Several studies highlighted that the landscape of responsible alterations of both primary and acquired resistance to anti-EGFR drugs biochemically converge into MEK-ERK and PIK3CA-AKT pathways. In this review, we describe the currently known mechanisms of primary and acquired resistance to anti-EGFR moAbs together with the various strategies evaluated to prevent, overcame or revert them. PMID:27605871

  1. Epidermal Growth Factor Receptor-Dependent Mutual Amplification between Netrin-1 and the Hepatitis C Virus

    PubMed Central

    Plissonnier, Marie-Laure; Lahlali, Thomas; Michelet, Maud; Lebossé, Fanny; Cottarel, Jessica; Beer, Melanie; Neveu, Grégory; Durantel, David; Bartosch, Birke; Accardi, Rosita; Clément, Sophie; Paradisi, Andrea; Devouassoux-Shisheboran, Mojgan; Einav, Shirit; Mehlen, Patrick; Zoulim, Fabien; Parent, Romain

    2016-01-01

    Hepatitis C virus (HCV) is an oncogenic virus associated with the onset of hepatocellular carcinoma (HCC). The present study investigated the possible link between HCV infection and Netrin-1, a ligand for dependence receptors that sustains tumorigenesis, in particular in inflammation-associated tumors. We show that Netrin-1 expression is significantly elevated in HCV+ liver biopsies compared to hepatitis B virus (HBV+) and uninfected samples. Furthermore, Netrin-1 was upregulated in all histological stages of HCV+ hepatic lesions, from minimal liver fibrosis to cirrhosis and HCC, compared to histologically matched HCV- tissues. Both cirrhosis and HCV contributed to the induction of Netrin-1 expression, whereas anti-HCV treatment resulted in a reduction of Netrin-1 expression. In vitro, HCV increased the level and translation of Netrin-1 in a NS5A-La-related protein 1 (LARP1)-dependent fashion. Knockdown and forced expression experiments identified the receptor uncoordinated receptor-5 (UNC5A) as an antagonist of the Netrin-1 signal, though it did not affect the death of HCV-infected cells. Netrin-1 enhanced infectivity of HCV particles and promoted viral entry by increasing the activation and decreasing the recycling of the epidermal growth factor receptor (EGFR), a protein that is dysregulated in HCC. Netrin-1 and HCV are, therefore, reciprocal inducers in vitro and in patients, as seen from the increase in viral morphogenesis and viral entry, both phenomena converging toward an increase in the level of infectivity of HCV virions. This functional association involving a cancer-related virus and Netrin-1 argues for evaluating the implication of UNC5 receptor ligands in other oncogenic microbial species. PMID:27031829

  2. Polyethylene glycol-mediated colorectal cancer chemoprevention: roles of epidermal growth factor receptor and Snail.

    PubMed

    Wali, Ramesh K; Kunte, Dhananjay P; Koetsier, Jennifer L; Bissonnette, Marc; Roy, Hemant K

    2008-09-01

    Polyethylene glycol (PEG) is a clinically widely used agent with profound chemopreventive properties in experimental colon carcinogenesis. We reported previously that Snail/beta-catenin signaling may mediate the suppression of epithelial proliferation by PEG, although the upstream events remain unclear. We report herein the role of epidermal growth factor receptor (EGFR), a known mediator of Snail and overexpressed in approximately 80% of human colorectal cancers, on PEG-mediated antiproliferative and hence antineoplastic effects in azoxymethane (AOM) rats and HT-29 colon cancer cells. AOM rats were randomized to either standard diet or one with 10% PEG-3350 and euthanized 8 weeks later. The colonic samples were subjected to immunohistochemical or Western blot analyses. PEG decreased mucosal EGFR by 60% (P < 0.001). Similar PEG effects were obtained in HT-29 cells. PEG suppressed EGFR protein via lysosmal degradation with no change in mRNA levels. To show that EGFR antagonism per se was responsible for the antiproliferative effect, we inhibited EGFR by either pretreating cells with gefitinib or stably transfecting with EGFR-short hairpin RNA and measured the effect of PEG on proliferation. In either case, PEG effect was blunted, suggesting a vital role of EGFR. Flow cytometric analysis revealed that EGFR-short hairpin RNA cells, besides having reduced membrane EGFR, also expressed low Snail levels (40%), corroborating a strong association. Furthermore, in EGFR silenced cells, PEG effect on EGFR or Snail was muted, similar to that on proliferation. In conclusion, we show that EGFR is the proximate membrane signaling molecule through which PEG initiates antiproliferative activity with Snail/beta-catenin pathway playing the central intermediary function. PMID:18790788

  3. Nitric oxide stimulates the proliferation of neural stem cells bypassing the epidermal growth factor receptor.

    PubMed

    Carreira, Bruno Pereira; Morte, Maria Inês; Inácio, Angela; Costa, Gabriel; Rosmaninho-Salgado, Joana; Agasse, Fabienne; Carmo, Anália; Couceiro, Patrícia; Brundin, Patrik; Ambrósio, António Francisco; Carvalho, Caetana Monteiro; Araújo, Inês Maria

    2010-07-01

    Nitric oxide (NO) was described to inhibit the proliferation of neural stem cells. Some evidence suggests that NO, under certain conditions, can also promote cell proliferation, although the mechanisms responsible for a potential proliferative effect of NO in neural stem cells have remained unaddressed. In this work, we investigated and characterized the proliferative effect of NO in cell cultures obtained from the mouse subventricular zone. We found that the NO donor NOC-18 (10 microM) increased cell proliferation, whereas higher concentrations (100 microM) inhibited cell proliferation. Increased cell proliferation was detected rapidly following exposure to NO and was prevented by blocking the mitogen-activated kinase (MAPK) pathway, independently of the epidermal growth factor (EGF) receptor. Downstream of the EGF receptor, NO activated p21Ras and the MAPK pathway, resulting in a decrease in the nuclear presence of the cyclin-dependent kinase inhibitor 1, p27(KIP1), allowing for cell cycle progression. Furthermore, in a mouse model that shows increased proliferation of neural stem cells in the hippocampus following seizure injury, we observed that the absence of inducible nitric oxide synthase (iNOS(-/-) mice) prevented the increase in cell proliferation observed following seizures in wild-type mice, showing that NO from iNOS origin is important for increased cell proliferation following a brain insult. Overall, we show that NO is able to stimulate the proliferation of neural stem cells bypassing the EGF receptor and promoting cell division. Moreover, under pathophysiological conditions in vivo, NO from iNOS origin also promotes proliferation in the hippocampus. PMID:20506358

  4. First in human nanotechnology doxorubicin delivery system to target epidermal growth factor receptors in recurrent glioblastoma.

    PubMed

    Whittle, James R; Lickliter, Jason D; Gan, Hui K; Scott, Andrew M; Simes, John; Solomon, Benjamin J; MacDiarmid, Jennifer A; Brahmbhatt, Himanshu; Rosenthal, Mark A

    2015-12-01

    There are limited treatment options for patients with recurrent glioblastoma (GBM). The EnGeneIC delivery vehicle (EDV) is a novel nanocellular (minicell) compound which packages theoretically effective concentrations of chemotherapeutic drugs that are designed to target tumors via minicell-surface attached bispecific proteins (EnGeneIC, Lane Cove West, NSW, Australia). Epidermal growth factor receptor (EGFR) is overexpressed in 40-50% of patients with GBM and is a promising target for new therapeutics. (V)EDVDox contains doxorubicin (Dox) within the minicells and targets EGFR through Vectibix (V; Amgen Biologicals, Thousand Oaks, CA, USA). We conducted a first in human Phase I study of (V)EDVDox in adults with recurrent GBM expressing EGFR on immunohistochemistry, following standard therapy including radiation and temozolomide, to establish a safe maximum tolerated dose and determine a recommended Phase II dose (RPTD). (V)EDVDox was administered weekly in an 8week cycle, with dose escalation in successive cohorts of patients using a standard 3+3 design. In total, 14 patients were treated at three dose levels, and the RPTD was identified as 5×10(9)(V)EDVDox. Overall (V)EDVDox was well tolerated, with no dose limiting toxicity and no withdrawals from the study due to adverse events. The most common adverse events were nausea, fever, and chills or rigors, experienced in seven, five and five patients, respectively. Transient uncomplicated hypophosphatemia was seen in seven patients and was not dose-related. Our results demonstrate that (V)EDVDox, up to a dose of 5×10(9)(V)EDVDox weekly, is well tolerated in patients with recurrent GBM. PMID:26279503

  5. The multiple roles of epidermal growth factor repeat O-glycans in animal development.

    PubMed

    Haltom, Amanda R; Jafar-Nejad, Hamed

    2015-10-01

    The epidermal growth factor (EGF)-like repeat is a common, evolutionarily conserved motif found in secreted proteins and the extracellular domain of transmembrane proteins. EGF repeats harbor six cysteine residues which form three disulfide bonds and help generate the three-dimensional structure of the EGF repeat. A subset of EGF repeats harbor consensus sequences for the addition of one or more specific O-glycans, which are initiated by O-glucose, O-fucose or O-N-acetylglucosamine. These glycans are relatively rare compared to mucin-type O-glycans. However, genetic experiments in model organisms and cell-based assays indicate that at least some of the glycosyltransferases involved in the addition of O-glycans to EGF repeats play important roles in animal development. These studies, combined with state-of-the-art biochemical and structural biology experiments have started to provide an in-depth picture of how these glycans regulate the function of the proteins to which they are linked. In this review, we will discuss the biological roles assigned to EGF repeat O-glycans and the corresponding glycosyltransferases. Since Notch receptors are the best studied proteins with biologically-relevant O-glycans on EGF repeats, a significant part of this review is devoted to the role of these glycans in the regulation of the Notch signaling pathway. We also discuss recently identified proteins other than Notch which depend on EGF repeat glycans to function properly. Several glycosyltransferases involved in the addition or elongation of O-glycans on EGF repeats are mutated in human diseases. Therefore, mechanistic understanding of the functional roles of these carbohydrate modifications is of interest from both basic science and translational perspectives. PMID:26175457

  6. Epidermal Growth Factor Receptor-Dependent Mutual Amplification between Netrin-1 and the Hepatitis C Virus.

    PubMed

    Plissonnier, Marie-Laure; Lahlali, Thomas; Michelet, Maud; Lebossé, Fanny; Cottarel, Jessica; Beer, Melanie; Neveu, Grégory; Durantel, David; Bartosch, Birke; Accardi, Rosita; Clément, Sophie; Paradisi, Andrea; Devouassoux-Shisheboran, Mojgan; Einav, Shirit; Mehlen, Patrick; Zoulim, Fabien; Parent, Romain

    2016-03-01

    Hepatitis C virus (HCV) is an oncogenic virus associated with the onset of hepatocellular carcinoma (HCC). The present study investigated the possible link between HCV infection and Netrin-1, a ligand for dependence receptors that sustains tumorigenesis, in particular in inflammation-associated tumors. We show that Netrin-1 expression is significantly elevated in HCV+ liver biopsies compared to hepatitis B virus (HBV+) and uninfected samples. Furthermore, Netrin-1 was upregulated in all histological stages of HCV+ hepatic lesions, from minimal liver fibrosis to cirrhosis and HCC, compared to histologically matched HCV- tissues. Both cirrhosis and HCV contributed to the induction of Netrin-1 expression, whereas anti-HCV treatment resulted in a reduction of Netrin-1 expression. In vitro, HCV increased the level and translation of Netrin-1 in a NS5A-La-related protein 1 (LARP1)-dependent fashion. Knockdown and forced expression experiments identified the receptor uncoordinated receptor-5 (UNC5A) as an antagonist of the Netrin-1 signal, though it did not affect the death of HCV-infected cells. Netrin-1 enhanced infectivity of HCV particles and promoted viral entry by increasing the activation and decreasing the recycling of the epidermal growth factor receptor (EGFR), a protein that is dysregulated in HCC. Netrin-1 and HCV are, therefore, reciprocal inducers in vitro and in patients, as seen from the increase in viral morphogenesis and viral entry, both phenomena converging toward an increase in the level of infectivity of HCV virions. This functional association involving a cancer-related virus and Netrin-1 argues for evaluating the implication of UNC5 receptor ligands in other oncogenic microbial species. PMID:27031829

  7. Illuminating epidermal growth factor receptor densities on filopodia through plasmon coupling.

    PubMed

    Wang, Jing; Boriskina, Svetlana V; Wang, Hongyun; Reinhard, Björn M

    2011-08-23

    Filopodia have been hypothesized to act as remote sensors of the cell environment, but many details of the sensor function remain unclear. We investigated the distribution of the epidermal growth factor (EGF) receptor (EGFR) density on filopodia and on the dorsal cell membrane of A431 human epidermoid carcinoma cells using a nanoplasmonic enabled imaging tool. We targeted cell surface EGFR with 40 nm diameter Au nanoparticles (NPs) using a high affinity multivalent labeling strategy and determined relative NP binding affinities spatially resolved through plasmon coupling. Distance-dependent near-field interactions between the labels generated a NP density (ρ)-dependent spectral response that facilitated a spatial mapping of the EGFR density distribution on subcellular length scales in an optical microscope in solution. The measured ρ values were significantly higher on filopodia than on the cellular surface, which is indicative of an enrichment of EGFR on filopodia. A detailed characterization of the spatial distribution of the NP immunolabels through scanning electron microscopy (SEM) confirmed the findings of the all-optical plasmon coupling studies and provided additional structural details. The NPs exhibited a preferential association with the sides of the filopodia. We calibrated the ρ-dependent spectral response of the Au immunolabels through correlation of optical spectroscopy and SEM. The experimental dependence of the measured plasmon resonance wavelength (λ(res)) of the interacting immunolabels on ρ was well described by the fit λ(res) = 595.0 nm - 46.36 nm exp(-ρ/51.48) for ρ ≤ 476 NPs/μm(2). The performed correlated spectroscopic/SEM studies pave the way toward quantitative immunolabeling studies of EGFR and other important cell surface receptors in an optical microscope. PMID:21761914

  8. Epidermal growth factor receptor is overexpressed in neuroblastoma tissues and cells.

    PubMed

    Zheng, Chao; Shen, Ruling; Li, Kai; Zheng, Na; Zong, Yuqing; Ye, Danrong; Wang, Qingcheng; Wang, Zuopeng; Chen, Lian; Ma, Yangyang

    2016-08-01

    Neuroblastoma is the most common abdominal malignant tumor in childhood. Immunotoxin (IT) that targets the tumor cell surface receptor is a new supplementary therapeutic treatment approach. The purpose of this study is to detect the expression of epidermal growth factor receptor (EGFR) in neuroblastoma cell lines and tissues, and to explore if IT therapy can be used to treat refractory neuroblastoma. The EGFR expression in human neuroblastoma tissue samples was detected by immunohistochemistry staining. The positive rate of EGFR expression was 81.0% in neuroblastoma tissue and 50.0% in gangliocytoma, respectively, but without statistical significance between them (P > 0.05). The positive rate of EGFR expression in favorable type and unfavorable type was 62.5% and 92.3%, respectively, but they were not statistically different (P > 0.05). Results from pre-chemotherapy and post-chemotherapy samples showed that there was no significant statistical difference (P > 0.05) between them in the EGFR expression. Furthermore, the EGFR expression levels in five neuroblastoma cell lines were measured using cell-based ELISA assay and western blot analysis. The results showed that the expression of EGFR was higher in KP-N-NS and BE(2)-C than those in other cell lines. Our results revealed that there are consistent and widespread expressions of EGFR in neuroblastoma tissues as well as in neuroblastoma cell lines, suggesting that it is possible to develop future treatment strategies of neuroblastoma by targeting at the EGFR. PMID:27353319

  9. Bio-Imaging of Colorectal Cancer Models Using Near Infrared Labeled Epidermal Growth Factor

    PubMed Central

    Cohen, Gadi; Lecht, Shimon; Arien-Zakay, Hadar; Ettinger, Keren; Amsalem, Orit; Oron-Herman, Mor; Yavin, Eylon; Prus, Diana; Benita, Simon; Nissan, Aviram; Lazarovici, Philip

    2012-01-01

    Novel strategies that target the epidermal growth factor receptor (EGFR) have led to the clinical development of monoclonal antibodies, which treat metastatic colorectal cancer (mCRC) but only subgroups of patients with increased wild type KRAS and EGFR gene copy, respond to these agents. Furthermore, resistance to EGFR blockade inevitably occurred, making future therapy difficult. Novel bio-imaging (BOI) methods may assist in quantization of EGFR in mCRC tissue thus complementing the immunohistochemistry methodology, in guiding the future treatment of these patients. The aim of the present study was to explore the usefulness of near infrared-labeled EGF (EGF-NIR) for bio-imaging of CRC using in vitro and in vivo orthotopic tumor CRC models and ex vivo human CRC tissues. We describe the preparation and characterization of EGF-NIR and investigate binding, using BOI of a panel of CRC cell culture models resembling heterogeneity of human CRC tissues. EGF-NIR was specifically and selectively bound by EGFR expressing CRC cells, the intensity of EGF-NIR signal to background ratio (SBR) reflected EGFR levels, dose-response and time course imaging experiments provided optimal conditions for quantization of EGFR levels by BOI. EGF-NIR imaging of mice with HT-29 orthotopic CRC tumor indicated that EGF-NIR is more slowly cleared from the tumor and the highest SBR between tumor and normal adjacent tissue was achieved two days post-injection. Furthermore, images of dissected tissues demonstrated accumulation of EGF-NIR in the tumor and liver. EGF-NIR specifically and strongly labeled EGFR positive human CRC tissues while adjacent CRC tissue and EGFR negative tissues expressed weak NIR signals. This study emphasizes the use of EGF-NIR for preclinical studies. Combined with other methods, EGF-NIR could provide an additional bio-imaging specific tool in the standardization of measurements of EGFR expression in CRC tissues. PMID:23144978

  10. Microenvironmental stiffness enhances glioma cell proliferation by stimulating epidermal growth factor receptor signaling.

    PubMed

    Umesh, Vaibhavi; Rape, Andrew D; Ulrich, Theresa A; Kumar, Sanjay

    2014-01-01

    The aggressive and rapidly lethal brain tumor glioblastoma (GBM) is associated with profound tissue stiffening and genomic lesions in key members of the epidermal growth factor receptor (EGFR) pathway. Previous studies from our laboratory have shown that increasing microenvironmental stiffness in culture can strongly enhance glioma cell behaviors relevant to tumor progression, including proliferation, yet it has remained unclear whether stiffness and EGFR regulate proliferation through common or independent signaling mechanisms. Here we test the hypothesis that microenvironmental stiffness regulates cell cycle progression and proliferation in GBM tumor cells by altering EGFR-dependent signaling. We began by performing an unbiased reverse phase protein array screen, which revealed that stiffness modulates expression and phosphorylation of a broad range of signals relevant to proliferation, including members of the EGFR pathway. We subsequently found that culturing human GBM tumor cells on progressively stiffer culture substrates both dramatically increases proliferation and facilitates passage through the G1/S checkpoint of the cell cycle, consistent with an EGFR-dependent process. Western Blots showed that increasing microenvironmental stiffness enhances the expression and phosphorylation of EGFR and its downstream effector Akt. Pharmacological loss-of-function studies revealed that the stiffness-sensitivity of proliferation is strongly blunted by inhibition of EGFR, Akt, or PI3 kinase. Finally, we observed that stiffness strongly regulates EGFR clustering, with phosphorylated EGFR condensing into vinculin-positive focal adhesions on stiff substrates and dispersing as microenvironmental stiffness falls to physiological levels. Our findings collectively support a model in which tissue stiffening promotes GBM proliferation by spatially and biochemically amplifying EGFR signaling. PMID:25000176

  11. The role of epidermal growth factor receptor in chordoma pathogenesis: a potential therapeutic target.

    PubMed

    Shalaby, Asem; Presneau, Nadège; Ye, Hongtao; Halai, Dina; Berisha, Fitim; Idowu, Bernadine; Leithner, Andreas; Liegl, Bernadette; Briggs, Timothy R W; Bacsi, Krisztian; Kindblom, Lars-Gunnar; Athanasou, Nicholas; Amary, Maria Fernanda; Hogendoorn, Pancras C W; Tirabosco, Roberto; Flanagan, Adrienne M

    2011-02-01

    Chordoma, the molecular hallmark of which is T (brachyury), is a rare malignant bone tumour with a high risk of local recurrence and a tumour from which metastatic disease is a common late event. Currently, there is no effective drug therapy for treating chordomas, although there is evidence that some patients respond to the empirical use of epidermal growth factor receptor (EGFR) antagonists. The aim of this study was to determine the role of EGFR in the pathogenesis of chordoma. Paraffin-embedded material from 173 chordomas from 160 patients [sacro-coccygeal (n = 94), skull-based (n = 50), and mobile spine (n = 16)] was analysed by immunohistochemistry and revealed total EGFR expression in 69% of cases analysed. Of 147 informative chordomas analysed by FISH, 38% revealed high-level EGFR polysomy, 4% high-level polysomy with focal amplification, 18% low-level polysomy, and 39% disomy. Phospho-receptor tyrosine kinase array membranes showed EGFR activation in the chordoma cell line U-CH1 and all of the three chordomas analysed. Direct sequencing of EGFR (exons 18-21), KRAS, NRAS, HRAS (exons 2, 3), and BRAF (exons 11, 15) using DNA from 62 chordomas failed to reveal mutations. PTEN expression was absent by immunohistochemistry in 19 of 147 (13%) analysed chordomas, only one of which revealed high-level polysomy of EGFR. The EGFR inhibitor tyrphostin (AG 1478) markedly inhibited proliferation of the chordoma cell line U-CH1 in vitro and diminished EGFR phosphorylation in a dose-dependant manner, a finding supported by inhibition of phosphorylated Erk1/2. p-Akt was suppressed to a much lesser degree in these experiments. There was no reduction of T as assessed by western blotting. These data implicate aberrant EGFR signalling in the pathogenesis of chordoma. This study provides a strategy for patient stratification for treatment with EGFR antagonists. PMID:21171079

  12. Conformational nanobodies reveal tethered epidermal growth factor receptor involved in EGFR/ErbB2 predimers.

    PubMed

    Nevoltris, Damien; Lombard, Benjamin; Dupuis, Elodie; Mathis, Gérard; Chames, Patrick; Baty, Daniel

    2015-02-24

    The epidermal growth factor receptor (EGFR) is a cell-surface receptor with a single transmembrane domain and tyrosine kinase activity carried by the intracellular domain. This receptor is one of the four members of the ErbB family including ErbB2, ErbB3, and ErbB4. Ligand binding, like EGF binding, induces a conformational rearrangement of the receptor and induces a homo/hetero dimerization essentially with ErbB family receptors that leads to the phosphorylation of the kinase domain, triggering a signaling cascade. EGFR can also form inactive dimers in a ligand-independent way through interactions between cytoplasmic domains. To date, the conformation of EGFR extracellular domain engaged in these inactive dimers remains unclear. In this study, we describe the successful selection and characterization of llama anti-EGFR nanobodies and their use as innovative conformational sensors. We isolated three different specific anti-EGFR clones binding to three distinct epitopes. Interestingly, the binding of all three nanobodies was found highly sensitive to ligand stimulation. Two nanobodies, D10 and E10, can only bind the ligand-free EGFR conformation characterized by an intramolecular tether between domains II and IV, whereas nanobody G10 binds both ligand-free and ligand activated EGFR, with an 8-fold higher affinity for the extended conformation in the presence of ligand. Here we took advantage of these conformational probes to reveal the existence of tethered EGFR in EGFR/ErbB2 predimers. These biosensors represent important tools allowing the determination of EGFR conformations and should help the design of relevant inhibitors. PMID:25603171

  13. Mechanisms of resistance to anti-epidermal growth factor receptor inhibitors in metastatic colorectal cancer

    PubMed Central

    Sforza, Vincenzo; Martinelli, Erika; Ciardiello, Fortunato; Gambardella, Valentina; Napolitano, Stefania; Martini, Giulia; della Corte, Carminia; Cardone, Claudia; Ferrara, Marianna L; Reginelli, Alfonso; Liguori, Giuseppina; Belli, Giulio; Troiani, Teresa

    2016-01-01

    The prognosis of patients with metastatic colorectal cancer (mCRC) remain poor despite the impressive improvement of treatments observed over the last 20 years that led to an increase in median overall survival from 6 mo, with the only best supportive care, to approximately 30 mo with the introduction of active chemotherapy drugs and targeted agents. The monoclonal antibodies (moAbs) cetuximab and panitumumab, directed against the epidermal growth factor receptor (EGFR), undoubtedly represent a major step forward in the treatment of mCRC, given the relevant efficacy in terms of progression-free survival, overall survival, response rate, and quality of life observed in several phase III clinical trials among different lines of treatment. However, the anti-EGFR moAbs were shown only to be effective in a subset of patients. For instance, KRAS and NRAS mutations have been identified as biomarkers of resistance to these drugs, improving the selection of patients who might derive a benefit from these treatments. Nevertheless, several other alterations might affect the response to these drugs, and unfortunately, even the responders eventually become resistant by developing secondary (or acquired) resistance in approximately 13-18 mo. Several studies highlighted that the landscape of responsible alterations of both primary and acquired resistance to anti-EGFR drugs biochemically converge into MEK-ERK and PIK3CA-AKT pathways. In this review, we describe the currently known mechanisms of primary and acquired resistance to anti-EGFR moAbs together with the various strategies evaluated to prevent, overcame or revert them. PMID:27605871

  14. Enterocyte-specific epidermal growth factor prevents barrier dysfunction and improves mortality in murine peritonitis.

    PubMed

    Clark, Jessica A; Gan, Heng; Samocha, Alexandr J; Fox, Amy C; Buchman, Timothy G; Coopersmith, Craig M

    2009-09-01

    Systemic administration of epidermal growth factor (EGF) decreases mortality in a murine model of septic peritonitis. Although EGF can have direct healing effects on the intestinal mucosa, it is unknown whether the benefits of systemic EGF in peritonitis are mediated through the intestine. Here, we demonstrate that enterocyte-specific overexpression of EGF is sufficient to prevent intestinal barrier dysfunction and improve survival in peritonitis. Transgenic FVB/N mice that overexpress EGF exclusively in enterocytes (IFABP-EGF) and wild-type (WT) mice were subjected to either sham laparotomy or cecal ligation and puncture (CLP). Intestinal permeability, expression of the tight junction proteins claudins-1, -2, -3, -4, -5, -7, and -8, occludin, and zonula occludens-1; villus length; intestinal epithelial proliferation; and epithelial apoptosis were evaluated. A separate cohort of mice was followed for survival. Peritonitis induced a threefold increase in intestinal permeability in WT mice. This was associated with increased claudin-2 expression and a change in subcellular localization. Permeability decreased to basal levels in IFABP-EGF septic mice, and claudin-2 expression and localization were similar to those of sham animals. Claudin-4 expression was decreased following CLP but was not different between WT septic mice and IFABP-EGF septic mice. Peritonitis-induced decreases in villus length and proliferation and increases in apoptosis seen in WT septic mice did not occur in IFABP-EGF septic mice. IFABP-EGF mice had improved 7-day mortality compared with WT septic mice (6% vs. 64%). Since enterocyte-specific overexpression of EGF is sufficient to prevent peritonitis-induced intestinal barrier dysfunction and confers a survival advantage, the protective effects of systemic EGF in septic peritonitis appear to be mediated in an intestine-specific fashion. PMID:19571236

  15. Epidermal growth factor treatment decreases mortality and is associated with improved gut integrity in sepsis

    PubMed Central

    Clark, Jessica A.; Clark, Andrew T.; Hotchkiss, Richard S.; Buchman, Timothy G.; Coopersmith, Craig M.

    2007-01-01

    Epidermal growth factor (EGF) is a cytoprotective peptide that has healing effects on the intestinal mucosa. We sought to determine whether systemic administration of EGF following the onset of sepsis improved intestinal integrity and decreased mortality. FVB/N mice were subjected to either sham laparotomy or 2×23 cecal ligation and puncture (CLP). Septic mice were further randomized to receive intraperitoneal injection of either 150 μg/kg/day EGF or 0.9% saline. Circulating EGF levels were decreased following CLP compared to sham animals but were unaffected by giving exogenous EGF treatment. In contrast, intestinal EGF levels increased following CLP, and were further augmented by exogenous EGF treatment. Intestinal EGF-receptor (EGF-R) was increased following CLP whether assayed by immunohistochemistry, real-time PCR or western blot, and exogenous EGF treatment decreased intestinal EGF-R. Villus length decreased 2-fold between sham and septic animals, and EGF treatment resulted in near total restitution of villus length. Sepsis decreased intestinal proliferation and increased intestinal apoptosis. This was accompanied by increased expression of the pro-apoptotic proteins Bid and FADD, as well as the cyclin-dependent kinase inhibitor p21cip1/waf. EGF treatment after the onset of sepsis restored both proliferation and apoptosis to levels seen in sham animals and normalized expression of Bid, FADD, and p21cip1/waf. To determine whether improvements in gut homeostasis were associated with a decrease in sepsis-induced mortality, septic mice with or without EGF treatment after CLP were followed seven days for survival. Mortality decreased from 60% to 30% in mice treated with EGF after the onset of sepsis (p<0.05). EGF may thus be a potential therapeutic agent for the treatment of sepsis, in part due to its ability to protect intestinal integrity. PMID:18004230

  16. Enterocyte-specific epidermal growth factor prevents barrier dysfunction and improves mortality in murine peritonitis

    PubMed Central

    Clark, Jessica A.; Gan, Heng; Samocha, Alexandr J.; Fox, Amy C.; Buchman, Timothy G.; Coopersmith, Craig M.

    2009-01-01

    Systemic administration of epidermal growth factor (EGF) decreases mortality in a murine model of septic peritonitis. Although EGF can have direct healing effects on the intestinal mucosa, it is unknown whether the benefits of systemic EGF in peritonitis are mediated through the intestine. Here, we demonstrate that enterocyte-specific overexpression of EGF is sufficient to prevent intestinal barrier dysfunction and improve survival in peritonitis. Transgenic FVB/N mice that overexpress EGF exclusively in enterocytes (IFABP-EGF) and wild-type (WT) mice were subjected to either sham laparotomy or cecal ligation and puncture (CLP). Intestinal permeability, expression of the tight junction proteins claudins-1, -2, -3, -4, -5, -7, and -8, occludin, and zonula occludens-1; villus length; intestinal epithelial proliferation; and epithelial apoptosis were evaluated. A separate cohort of mice was followed for survival. Peritonitis induced a threefold increase in intestinal permeability in WT mice. This was associated with increased claudin-2 expression and a change in subcellular localization. Permeability decreased to basal levels in IFABP-EGF septic mice, and claudin-2 expression and localization were similar to those of sham animals. Claudin-4 expression was decreased following CLP but was not different between WT septic mice and IFABP-EGF septic mice. Peritonitis-induced decreases in villus length and proliferation and increases in apoptosis seen in WT septic mice did not occur in IFABP-EGF septic mice. IFABP-EGF mice had improved 7-day mortality compared with WT septic mice (6% vs. 64%). Since enterocyte-specific overexpression of EGF is sufficient to prevent peritonitis-induced intestinal barrier dysfunction and confers a survival advantage, the protective effects of systemic EGF in septic peritonitis appear to be mediated in an intestine-specific fashion. PMID:19571236

  17. Establishing an Indicator of Hypokalemia in Patients Receiving Anti-Epidermal Growth Factor Receptor Antibodies.

    PubMed

    Yasuda, Masahiro; Tachi, Tomoya; Umeda, Michi; Osawa, Tomohiro; Makino, Teppei; Nagaya, Katsuhiro; Koda, Akihide; Setta, Eriko; Matsui, Koji; Nishina, Takuo; Yamada, Makoto; Goto, Chitoshi; Teramachi, Hitomi

    2016-03-01

    Risk factors for hypokalemia were analyzed in patients who received anti-epidermal growth factor receptor monoclonal antibodies (anti-EGFR MoAbs) at Gifu Municipal Hospital between February 2010 and March 2013. Subjects were 51 patients (27 men and 24 women) with the median age (interquartile range) of 66 (63-72) years. The study period started from the initiation of anti-EGFR MoAbs administration and ended 4 weeks after administration was completed. Patients were categorized into the side effect group if both minimum serum potassium (Min S-K) grade and b grade (pre-treatment S-K grade-Min S-K grade) were B1; otherwise, they were placed into the no side effect group. Univariate analysis for factors to prevent the side effect identified the "concomitant use of hyperkalemia-inducing drugs" to be statistically significant (p=0.010). Multivariate analysis was conducted on factors with a p value of <0.25 in the univariate analysis and on "concomitant use of hyperkalemia-inducing drugs," which was likely to clinically affect S-K decrease, although its p value was >0.25. It showed that "concomitant use of hyperkalemia-inducing drugs" was a significant risk-prevention factor (odds ratio: 0.138, 95% confidence interval[CI]: 0.033-0.581, p=0.007). In conclusion, "concomitant use of hyperkalemia-inducing drugs" is a factor associated with preventing hypokalemia accompanying anti-EGFR MoAbs administration. PMID:27067850

  18. Molecular determinants of epidermal growth factor binding: a molecular dynamics study.

    PubMed

    Sanders, Jeffrey M; Wampole, Matthew E; Thakur, Mathew L; Wickstrom, Eric

    2013-01-01

    The epidermal growth factor receptor (EGFR) is a member of the receptor tyrosine kinase family that plays a role in multiple cellular processes. Activation of EGFR requires binding of a ligand on the extracellular domain to promote conformational changes leading to dimerization and transphosphorylation of intracellular kinase domains. Seven ligands are known to bind EGFR with affinities ranging from sub-nanomolar to near micromolar dissociation constants. In the case of EGFR, distinct conformational states assumed upon binding a ligand is thought to be a determining factor in activation of a downstream signaling network. Previous biochemical studies suggest the existence of both low affinity and high affinity EGFR ligands. While these studies have identified functional effects of ligand binding, high-resolution structural data are lacking. To gain a better understanding of the molecular basis of EGFR binding affinities, we docked each EGFR ligand to the putative active state extracellular domain dimer and 25.0 ns molecular dynamics simulations were performed. MM-PBSA/GBSA are efficient computational approaches to approximate free energies of protein-protein interactions and decompose the free energy at the amino acid level. We applied these methods to the last 6.0 ns of each ligand-receptor simulation. MM-PBSA calculations were able to successfully rank all seven of the EGFR ligands based on the two affinity classes: EGF>HB-EGF>TGF-α>BTC>EPR>EPG>AR. Results from energy decomposition identified several interactions that are common among binding ligands. These findings reveal that while several residues are conserved among the EGFR ligand family, no single set of residues determines the affinity class. Instead we found heterogeneous sets of interactions that were driven primarily by electrostatic and Van der Waals forces. These results not only illustrate the complexity of EGFR dynamics but also pave the way for structure-based design of therapeutics targeting EGF

  19. Tissue transcriptome-driven identification of epidermal growth factor as a chronic kidney disease biomarker.

    PubMed

    Ju, Wenjun; Nair, Viji; Smith, Shahaan; Zhu, Li; Shedden, Kerby; Song, Peter X K; Mariani, Laura H; Eichinger, Felix H; Berthier, Celine C; Randolph, Ann; Lai, Jennifer Yi-Chun; Zhou, Yan; Hawkins, Jennifer J; Bitzer, Markus; Sampson, Matthew G; Thier, Martina; Solier, Corinne; Duran-Pacheco, Gonzalo C; Duchateau-Nguyen, Guillemette; Essioux, Laurent; Schott, Brigitte; Formentini, Ivan; Magnone, Maria C; Bobadilla, Maria; Cohen, Clemens D; Bagnasco, Serena M; Barisoni, Laura; Lv, Jicheng; Zhang, Hong; Wang, Hai-Yan; Brosius, Frank C; Gadegbeku, Crystal A; Kretzler, Matthias

    2015-12-01

    Chronic kidney disease (CKD) affects 8 to 16% people worldwide, with an increasing incidence and prevalence of end-stage kidney disease (ESKD). The effective management of CKD is confounded by the inability to identify patients at high risk of progression while in early stages of CKD. To address this challenge, a renal biopsy transcriptome-driven approach was applied to develop noninvasive prognostic biomarkers for CKD progression. Expression of intrarenal transcripts was correlated with the baseline estimated glomerular filtration rate (eGFR) in 261 patients. Proteins encoded by eGFR-associated transcripts were tested in urine for association with renal tissue injury and baseline eGFR. The ability to predict CKD progression, defined as the composite of ESKD or 40% reduction of baseline eGFR, was then determined in three independent CKD cohorts. A panel of intrarenal transcripts, including epidermal growth factor (EGF), a tubule-specific protein critical for cell differentiation and regeneration, predicted eGFR. The amount of EGF protein in urine (uEGF) showed significant correlation (P < 0.001) with intrarenal EGF mRNA, interstitial fibrosis/tubular atrophy, eGFR, and rate of eGFR loss. Prediction of the composite renal end point by age, gender, eGFR, and albuminuria was significantly (P < 0.001) improved by addition of uEGF, with an increase of the C-statistic from 0.75 to 0.87. Outcome predictions were replicated in two independent CKD cohorts. Our approach identified uEGF as an independent risk predictor of CKD progression. Addition of uEGF to standard clinical parameters improved the prediction of disease events in diverse CKD populations with a wide spectrum of causes and stages. PMID:26631632

  20. Crosstalk between Src and major vault protein in epidermal growth factor-dependent cell signalling.

    PubMed

    Kim, Euikyung; Lee, Seunghwan; Mian, Md Firoz; Yun, Sang Uk; Song, Minseok; Yi, Kye-Sook; Ryu, Sung Ho; Suh, Pann-Ghill

    2006-02-01

    Vaults are highly conserved, ubiquitous ribonucleoprotein (RNP) particles with an unidentified function. For the three protein species (TEP1, VPARP, and MVP) and a small RNA that comprises vault, expression of the unique 100-kDa major vault protein (MVP) is sufficient to form the basic vault structure. To identify and characterize proteins that interact with the Src homology 2 (SH2) domain of Src and potentially regulate Src activity, we used a pull-down assay using GST-Src-SH2 fusion proteins. We found MVP as a Src-SH2 binding protein in human stomach tissue. Interaction of Src and MVP was also observed in 253J stomach cancer cells. A subcellular localization study using immunofluorescence microscopy shows that epidermal growth factor (EGF) stimulation triggers MVP translocation from the nucleus to the cytosol and perinuclear region where it colocalizes with Src. We found that the interaction between Src and MVP is critically dependent on Src activity and protein (MVP) tyrosyl phosphorylation, which are induced by EGF stimulation. Our results also indicate MVP to be a novel substrate of Src and phosphorylated in an EGF-dependent manner. Interestingly, purified MVP inhibited the in vitro tyrosine kinase activity of Src in a concentration-dependent manner. MVP overexpression downregulates EGF-dependent ERK activation in Src overexpressing cells. To our knowledge, this is the first report of MVP interacting with a protein tyrosine kinase involved in a distinct cell signalling pathway. It appears that MVP is a novel regulator of Src-mediated signalling cascades. PMID:16441665

  1. Rapidly activated epidermal growth factor receptor mediates lipopolysaccharide-triggered migration of microglia.

    PubMed

    Qu, Wen-Sheng; Liu, Jun-Li; Li, Chun-Yu; Li, Xiao; Xie, Min-Jie; Wang, Wei; Tian, Dai-Shi

    2015-11-01

    Previous reports have suggested that epidermal growth factor receptor (EGFR) is involved in microglia activation characterized by cell morphology changes, cytokine production and cell migration; and the biochemical regulation of the microglia migration is a potential therapeutic target following CNS inflammatory damages. However, the role of EGFR in microglia motility after inflammatory stimulation remains unknown. In the present study, lipopolysaccharide (LPS) was found to trigger rapid EGFR phosphorylation within 10 min, which was sustained during long-term stimulation in both primary microglial cells and the cultured BV2 microglial cells, furthermore, blocking EGFR phosphorylation by AG1478 significantly attenuated the LPS-induced chemotactic and chemokinetic migration of microglia. In addition, LPS could initiate calcium oscillation in microglia during live-cell recording, however, an intracellular calcium chelator and a selective inhibitor of calcium/calmodulin-dependent protein kinase II, but not an extracellular calcium chelator, remarkably suppressed the LPS-induced EGFR phosphorylation in BV2 microglia cells. As EGFR is not a traditional receptor for LPS, these findings suggest that the rapid phosphorylation of EGFR is attributed to the LPS-triggered intracellular calcium mobilization. By examining the downstream signals of EGFR, we further proved that extracellular signal-regulated kinase (ERK) is essential for EGFR-mediated microglia migration, because ERK inhibition attenuated the chemotactic and chemokinetic migration of microglia that had been induced by either LPS or EGF. Collectively, these results suggest that LPS could trigger the rapid phosphorylation of EGFR and subsequent ERK activation through mobilizing calcium activity, which underlies the microglia migration in an inflammatory condition. PMID:26209152

  2. Selection of DNA aptamers against epidermal growth factor receptor with high affinity and specificity

    SciTech Connect

    Wang, Deng-Liang; Song, Yan-Ling; Zhu, Zhi; Li, Xi-Lan; Zou, Yuan; Yang, Hai-Tao; Wang, Jiang-Jie; Yao, Pei-Sen; Pan, Ru-Jun; Yang, Chaoyong James; Kang, De-Zhi

    2014-10-31

    Highlights: • This is the first report of DNA aptamer against EGFR in vitro. • Aptamer can bind targets with high affinity and selectivity. • DNA aptamers are more stable, cheap and efficient than RNA aptamers. • Our selected DNA aptamer against EGFR has high affinity with K{sub d} 56 ± 7.3 nM. • Our selected DNA aptamer against EGFR has high selectivity. - Abstract: Epidermal growth factor receptor (EGFR/HER1/c-ErbB1), is overexpressed in many solid cancers, such as epidermoid carcinomas, malignant gliomas, etc. EGFR plays roles in proliferation, invasion, angiogenesis and metastasis of malignant cancer cells and is the ideal antigen for clinical applications in cancer detection, imaging and therapy. Aptamers, the output of the systematic evolution of ligands by exponential enrichment (SELEX), are DNA/RNA oligonucleotides which can bind protein and other substances with specificity. RNA aptamers are undesirable due to their instability and high cost of production. Conversely, DNA aptamers have aroused researcher’s attention because they are easily synthesized, stable, selective, have high binding affinity and are cost-effective to produce. In this study, we have successfully identified DNA aptamers with high binding affinity and selectivity to EGFR. The aptamer named TuTu22 with K{sub d} 56 ± 7.3 nM was chosen from the identified DNA aptamers for further study. Flow cytometry analysis results indicated that the TuTu22 aptamer was able to specifically recognize a variety of cancer cells expressing EGFR but did not bind to the EGFR-negative cells. With all of the aforementioned advantages, the DNA aptamers reported here against cancer biomarker EGFR will facilitate the development of novel targeted cancer detection, imaging and therapy.

  3. Epidermal growth factor protects against carbon tetrachloride-induced hepatic injury.

    PubMed

    Berlanga, J; Caballero, M E; Ramirez, D; Torres, A; Valenzuela, C; Lodos, J; Playford, R J

    1998-03-01

    1. Epidermal growth factor (EGF) is known to protect the gastrointestinal tract against various noxious agents. Its potential value in preventing/ treating hepatic injury is, however, largely unexplored. We therefore examined whether EGF could influence CCl4-induced hepatic injury. 2. Female Sprague-Dawley rats (8 per group) received saline or recombinant EGF (500 or 750 micrograms/kg, intraperitoneal) 30 min before CCl4 (20% v/v, in olive oil, intraperitoneal). Eighteen hours later, animals were killed, serum was collected for assay of biochemical markers of hepatic injury and livers were removed for histological analyses. 3. Administration of CCl4 resulted in severe hepatic necrosis and caused a 10-fold rise in plasma alanine aminotransferase levels compared with levels seen in control animals (218 +/- 15 compared with 23 +/- 9 mumol/l in controls, mean +/- SEM, P < 0.01). Serum malondialdehyde levels, used as a marker of lipid peroxidation, showed a 2-fold rise in response to CCl4 treatment (median 4.0, quartile range 3.3-5.8 units/l compared with median 2.3, quartile range 2.1-2.5 units/l in controls, P < 0.05). Administration of EGF at 500 micrograms/kg, before the CCl4, did not protect against injury, as assessed by histology or rise in plasma alanine aminotransferase levels. In contrast, animals given EGF at 750 micrograms/kg, before the CCl4, had only minimal changes in histology, with only a minor rise in alanine aminotransferase levels (37 +/- 4 compared with 23 +/- 9 mumol/l in animals not given CCl4) and had no significant rise in malondialdehyde levels. 4. EGF protects against CCl4-induced hepatic injury and may provide a novel approach to the treatment of liver damage. PMID:9616254

  4. Intracellular modification of /sup 125/I-labeled epidermal growth factor by normal human foreskin fibroblasts

    SciTech Connect

    Schaudies, R.P.; Savage, C.R. Jr.

    1986-02-01

    Intracellular processing of /sup 125/I-labeled epidermal growth factor (EGF) in normal human foreskin fibroblasts was examined after incubation with saturating concentrations of (/sup 125/I)EGF. This report describes the column chromatographic separation of multiple processed forms of EGF generated by human foreskin fibroblasts and their structural characterization. More than 95% of the cell-bound (/sup 125/I)EGF was converted into multiple forms, which were separated into four distinct peaks of radioactivity using columns of Bio-Gel P-150 equilibrated with 0.2% sodium dodecyl sulfate. These were designated peaks 1-4. Cellular generation of these four peaks was dependent on culture conditions. Differences in absolute and relative amounts of peaks 1-4 were observed as a function of time of incubation at 37 C. In addition, chromatographic profiles of cell-associated /sup 125/I varied in relation to cell density. The radioactivity in peak 1 comigrated with /sup 125/I-labeled native EGF on nondenaturing polyacrylamide gels (pH 9.5), whereas peaks 2 and 3 exhibited more rapid electrophoretic mobilities. Electrophoretic mobilities of the radioactivity in peaks 2 and 3 were indistinguishable from those of chemically prepared derivatives of (/sup 125/I)EGF which were lacking either one or six amino acid residues from the carboxyterminus, respectively. The EGF receptor bound the radioactive material in peak 2 with an affinity equal to or greater than that of EGF; however, the radioactivity in peak 3 was bound to a much lesser extent. The radiolabel in both peaks 2 and 3 was greater than 95% precipitable by antiserum to native EGF. The labeled material in peak 4 was composed of (/sup 125/I)monoiodotyrosine, /sup 125/I-, and an unidentified peptide. None of the radiolabeled compounds in peak 4 interacted with the EGF receptor or with antiserum to native EGF.

  5. Tissue transcriptome-driven identification of epidermal growth factor as a chronic kidney disease biomarker

    PubMed Central

    Smith, Shahaan; Zhu, Li; Shedden, Kerby; Song, Peter X. K.; Mariani, Laura H.; Eichinger, Felix H.; Berthier, Celine C.; Randolph, Ann; Lai, Jennifer Yi-Chun; Zhou, Yan; Hawkins, Jennifer J.; Bitzer, Markus; Sampson, Matthew G.; Thier, Martina; Solier, Corinne; Duran-Pacheco, Gonzalo C.; Duchateau-Nguyen, Guillemette; Essioux, Laurent; Schott, Brigitte; Formentini, Ivan; Magnone, Maria C.; Bobadilla, Maria; Cohen, Clemens D.; Bagnasco, Serena M.; Barisoni, Laura; Lv, Jicheng; Zhang, Hong; Brosius, Frank C.; Gadegbeku, Crystal A.; Kretzler, Matthias

    2016-01-01

    Chronic kidney disease (CKD) affects 8 to 16% people worldwide, with an increasing incidence and prevalence of end-stage kidney disease (ESKD). The effective management of CKD is confounded by the inability to identify patients at high risk of progression while in early stages of CKD. To address this challenge, a renal biopsy transcriptome-driven approach was applied to develop noninvasive prognostic biomarkers for CKD progression. Expression of intrarenal transcripts was correlated with the baseline estimated glomerular filtration rate (eGFR) in 261 patients. Proteins encoded by eGFR-associated transcripts were tested in urine for association with renal tissue injury and baseline eGFR. The ability to predict CKD progression, defined as the composite of ESKD or 40% reduction of baseline eGFR, was then determined in three independent CKD cohorts. A panel of intrarenal transcripts, including epidermal growth factor (EGF), a tubule-specific protein critical for cell differentiation and regeneration, predicted eGFR. The amount of EGF protein in urine (uEGF) showed significant correlation (P < 0.001) with intrarenal EGF mRNA, interstitial fibrosis/tubular atrophy, eGFR, and rate of eGFR loss. Prediction of the composite renal end point by age, gender, eGFR, and albuminuria was significantly (P < 0.001) improved by addition of uEGF, with an increase of the C-statistic from 0.75 to 0.87. Outcome predictions were replicated in two independent CKD cohorts. Our approach identified uEGF as an independent risk predictor of CKD progression. Addition of uEGF to standard clinical parameters improved the prediction of disease events in diverse CKD populations with a wide spectrum of causes and stages. PMID:26631632

  6. Molecular Imaging of Therapeutic Response to Epidermal Growth Factor Receptor Blockade in Colorectal Cancer

    PubMed Central

    Manning, H. Charles; Merchant, Nipun B.; Foutch, A. Coe; Virostko, John M.; Wyatt, Shelby K.; Shah, Chirayu; McKinley, Eliot T.; Xie, Jingping; Mutic, Nathan J.; Washington, M. Kay; LaFleur, Bonnie; Tantawy, Mohammed Noor; Peterson, Todd E.; Ansari, M. Sib; Baldwin, Ronald M.; Rothenberg, Mace L.; Bornhop, Darryl J.; Gore, John C.; Coffey, Robert J.

    2009-01-01

    Purpose To evaluate noninvasive molecular imaging methods as correlative biomarkers of therapeutic efficacy of cetuximab in human colorectal cancer cell line xenografts grown in athymic nude mice. The correlation between molecular imaging and immunohistochemical analysis to quantify epidermal growth factor (EGF) binding, apoptosis, and proliferation was evaluated in treated and untreated tumor-bearing cohorts. Experimental Design Optical imaging probes targeting EGF receptor (EGFR) expression (NIR800-EGF) and apoptosis (NIR700-Annexin V) were synthesized and evaluated in vitro and in vivo. Proliferation was assessed by 3′-[18F]fluoro-3′-deoxythymidine ([18F] FLT) positron emission tomography. Assessment of inhibition of EGFR signaling by cetuximab was accomplished by concomitant imaging of NIR800-EGF, NIR700-Annexin V, and [18F] FLT in cetuximab-sensitive (DiFi) and insensitive (HCT-116) human colorectal cancer cell line xenografts. Imaging results were validated by measurement of tumor size and immunohistochemical analysis of total and phosphorylated EGFR, caspase-3, and Ki-67 immediately following in vivo imaging. Results NIR800-EGF accumulation in tumors reflected relative EGFR expression and EGFR occupancy by cetuximab. NIR700-Annexin V accumulation correlated with cetuximab-induced apoptosis as assessed by immunohistochemical staining of caspase-3. No significant difference in tumor proliferation was noted between treated and untreated animals by [18F] FLT positron emission tomography or Ki-67 immunohistochemistry. Conclusions Molecular imaging can accurately assess EGF binding, proliferation, and apoptosis in human colorectal cancer xenografts. These imaging approaches may prove useful for serial, noninvasive monitoring of the biological effects of EGFR inhibition in preclinical studies. It is anticipated that these assays can be adapted for clinical use. PMID:19010858

  7. Characterization of mechanical behavior of an epithelial monolayer in response to epidermal growth factor stimulation

    SciTech Connect

    Yang, Ruiguo; Chen, Jennifer Y.; Xi, Ning; Lai, King Wai Chiu; Qu, Chengeng; Fung, Carmen Kar Man; Penn, Lynn S.; Xi, Jun

    2012-03-10

    Cell signaling often causes changes in cellular mechanical properties. Knowledge of such changes can ultimately lead to insight into the complex network of cell signaling. In the current study, we employed a combination of atomic force microscopy (AFM) and quartz crystal microbalance with dissipation monitoring (QCM-D) to characterize the mechanical behavior of A431 cells in response to epidermal growth factor receptor (EGFR) signaling. From AFM, which probes the upper portion of an individual cell in a monolayer of cells, we observed increases in energy dissipation, Young's modulus, and hysteresivity. Increases in hysteresivity imply a shift toward a more fluid-like mechanical ordering state in the bodies of the cells. From QCM-D, which probes the basal area of the monolayer of cells collectively, we observed decreases in energy dissipation factor. This result suggests a shift toward a more solid-like state in the basal areas of the cells. The comparative analysis of these results indicates a regionally specific mechanical behavior of the cell in response to EGFR signaling and suggests a correlation between the time-dependent mechanical responses and the dynamic process of EGFR signaling. This study also demonstrates that a combination of AFM and QCM-D is able to provide a more complete and refined mechanical profile of the cells during cell signaling. -- Highlights: Black-Right-Pointing-Pointer The EGF-induced cellular mechanical response is regionally specific. Black-Right-Pointing-Pointer The EGF-induced cellular mechanical response is time and dose dependent. Black-Right-Pointing-Pointer A combination of AFM and QCM-D provides a more complete mechanical profile of cells.

  8. Reduction of peritoneal adhesions by sustained and local administration of epidermal growth factor.

    PubMed

    Uguralp, S; Akin, M; Karabulut, A Bay; Harma, B; Kiziltay, Aysel; Kiran, T R; Hasirci, N

    2008-02-01

    Previous studies have shown epidermal growth factor (EGF) facilitate peritoneal membrane healing by augmenting cell adhesion and migration. The objective of this study was to show the effect of sustained and local administration of EGF on peritoneal adhesion. Fourty-two rats were divided into six groups: control 7 and 14, gelatin 7 and 14, and EGF 7 and 14. Adhesions were created by scraping the cecum with mesh gause followed by application of absolute alcohol and placement of silk suture in the parietal peritoneum. The anterior walls of the intestines were covered with 5 x 5 cm unloaded, and EGF loaded gelatin films in the gelatin and EGF groups, respectively. The rats were killed on days 7 and 14 to assess the adhesion occurring, and for biochemical examination. The mean adhesion grades of EGF groups were significantly lower than in the other groups (P < 0.008). The mean adenosine deaminase (ADA) measurements of EGF 7 group were lower than in the gelatin 7 and control 7 groups but the difference was not significant (P > 0.008). The mean ADA measurements in the 14 days groups were as follows: control 14 < EGF 14 < gelatin 14 groups. The mean ADA measurements between 14 days groups did not significantly differ from each other (P > 0.008). The mean hydroxyproline measurements did not differ among the groups (P > 0.008). EGF decreased intestinal adhesion in our study. EGF has important roles in DNA synthesis and cell proliferation. Further studies are required to determine the exact mechanism by which EGF lowers the efficiency of intestinal adhesion. PMID:17985134

  9. Epidermal growth factor precursor in mouse lactating mammary gland alveolar cells

    SciTech Connect

    Brown, C.F.; Teng, C.T.; Pentecost, B.T.; DiAugustine, R.P. )

    1989-07-01

    Previous studies have demonstrated that high levels of epidermal growth factor (EGF) occur in human and rodent milk and that oral administration of this polypeptide stimulates rodent gastrointestinal development. It is not known whether EGF in milk originates from cells of the lactating mammary gland or is sequestered from an extramammary source. In the present study, prepro-EGF mRNA (approximately 4.7 kilobases) was detected in the CD-1 mouse mammary gland throughout the period of lactation; by comparison, negligible levels of this EGF transcript were found in the gland during pregnancy. Low levels of EGF immunoreactivity (4-5 ng/g wet wt tissue) were extracted from lactating (day 18) mammary glands with dilute acetic acid. Immunolocalization was evident with antisera to either EGF or two other regions of the EGF precursor in essentially all alveolar cells of the lactating gland. The most prominent staining with antiserum to EGF was observed along the luminal borders of cells; this pattern of cellular staining required proteolytic pretreatment of tissue sections. Western blot analyses of cell membranes isolated from the day 16 lactating mammary gland revealed an EGF-immunoreactive band at about 145K, which was equivalent in size to the EGF precursor found in mouse kidney cell membranes. Despite these findings, labeling of lactating mammary gland mince with L-(35S)methionine and cysteine for up to 4 h did not reveal any specific bands in immunoprecipitates. These cumulative findings suggest that the precursor form of EGF occurs in alveolar cells of lactating mammary gland and that this protein is translocated to the cell membrane.

  10. Recommendations for Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer

    PubMed Central

    Wolff, Antonio C.; Hammond, M. Elizabeth H.; Hicks, David G.; Dowsett, Mitch; McShane, Lisa M.; Allison, Kimberly H.; Allred, Donald C.; Bartlett, John M.S.; Bilous, Michael; Fitzgibbons, Patrick; Hanna, Wedad; Jenkins, Robert B.; Mangu, Pamela B.; Paik, Soonmyung; Perez, Edith A.; Press, Michael F.; Spears, Patricia A.; Vance, Gail H.; Viale, Giuseppe; Hayes, Daniel F.

    2014-01-01

    Purpose To update the American Society of Clinical Oncology (ASCO)/College of American Pathologists (CAP) guideline recommendations for human epidermal growth factor receptor 2 (HER2) testing in breast cancer to improve the accuracy of HER2 testing and its utility as a predictive marker in invasive breast cancer. Methods ASCO/CAP convened an Update Committee that included coauthors of the 2007 guideline to conduct a systematic literature review and update recommendations for optimal HER2 testing. Results The Update Committee identified criteria and areas requiring clarification to improve the accuracy of HER2 testing by immunohistochemistry (IHC) or in situ hybridization (ISH). The guideline was reviewed and approved by both organizations. Recommendations The Update Committee recommends that HER2 status (HER2 negative or positive) be determined in all patients with invasive (early stage or recurrence) breast cancer on the basis of one or more HER2 test results (negative, equivocal, or positive). Testing criteria define HER2-positive status when (on observing within an area of tumor that amounts to >10% of contiguous and homogeneous tumor cells) there is evidence of protein overexpression (IHC) or gene amplification (HER2 copy number or HER2/CEP17 ratio by ISH based on counting at least 20 cells within the area). If results are equivocal (revised criteria), reflex testing should be performed using an alternative assay (IHC or ISH). Repeat testing should be considered if results seem discordant with other histopathologic findings. Laboratories should demonstrate high concordance with a validated HER2 test on a sufficiently large and representative set of specimens. Testing must be performed in a laboratory accredited by CAP or another accrediting entity. The Update Committee urges providers and health systems to cooperate to ensure the highest quality testing. PMID:24099077

  11. Intralesional epidermal growth factor for diabetic foot wounds: the first cases in Turkey

    PubMed Central

    Ertugrul, Bulent M.; Buke, Cagri; Ersoy, Ozlem Saylak; Ay, Bengisu; Demirez, Dilek Senen; Savk, Oner

    2015-01-01

    Background Intralesional recombinant epidermal growth factor (EGF) was produced in the Centre for Genetic Engineering and Biotechnology (CIGB), Cuba, in 1988 and licensed in 2006. Because it may accelerate wound healing, it is a potential new treatment option in patients with a diabetic foot wound (whether infected or not) as an adjunct to standard treatment (i.e. debridement, antibiotics). We conducted the initial evaluation of EGF for diabetic foot wounds in Turkey. Methods We enrolled 17 patients who were hospitalized in various medical centers for a foot ulcer and/or infection and for whom below the knee amputation was suggested to all except one. All patients received 75 μg intralesional EGF three times per week on alternate days. Results The appearance of new granulation tissue on the wound site (≥75%) was observed in 13 patients (76%), and complete wound closure was observed in 3 patients (18%), yielding a ‘complete recovery’ rate of 94%. The most common side effects were tremor (n=10, 59%) and nausea (n=6, 35%). In only one case,a serious side effect requiring cessation of EGF treatment was noted. That patient experienced severe hypotension at the 16th application session, and treatment was discontinued. At baseline, a total of 21 causative bacteria were isolated from 15 patients, whereascultures were sterile in two patients. The most frequently isolated species was Pseudomonas aeruginosa. Conclusion Thus, this preliminary study suggests that EGF seems to be a potential adjunctive treatment option in patients with limb-threatening diabetic foot wounds. PMID:26268583

  12. Lapatinib plus capecitabine resolved human epidermal growth factor receptor 2-positive brain metastases.

    PubMed

    Glück, Stefan; Castrellon, Aurelio

    2009-01-01

    Brain metastases affect 25%-30% of women with human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer and are associated with a high burden of disease and poor prognosis. A 55-year-old woman presented with HER2-positive, hormone receptor-positive, locally advanced infiltrating ductal carcinoma. She received 4 cycles of neoadjuvant docetaxel (75 mg/m) plus trastuzumab (6 mg/kg) on a 21-day cycle, resulting in complete pathologic response at the time of surgery. Trastuzumab (6 mg/kg every 21 days) plus anastrozole (1 mg/d) was continued for 1 year. Two years later, the patient progressed with pulmonary nodules and a large pleural effusion. Computed tomography and positron emission tomography revealed multiple lesions in the liver and thoracic spine but no evidence of brain metastases. The patient received weekly trastuzumab (2 mg/kg), paclitaxel (80 mg/m), and carboplatin (area under the curve 2) for 6 months; her symptoms resolved and her disease stabilized. Seven months later, she developed diplopia and gait difficulties, and magnetic resonance imaging revealed multiple brain lesions. Whole-brain radiotherapy (30 Gy in 10 fractions) was delivered with excellent clinical results. The patient remained progression free without symptoms for approximately 3 months. When she developed central nervous system symptoms, she was treated with lapatinib (1250 mg/d continuously) plus capecitabine (2000 mg/m given on days 1-14 of a 21-day cycle). Four months later, a brain computed tomography performed shortly before her death from progressive systemic disease revealed near complete resolution of brain metastases. Lapatinib plus capecitabine seems to have clinical activity in HER2-positive brain metastases. PMID:19287304

  13. Pharmacological effects of epidermal growth factor (EGF) with focus on the urinary and gastrointestinal tracts.

    PubMed

    Vinter-Jensen, L

    1999-01-01

    Epidermal growth factor (EGF) belongs to a family of growth factor ligands and receptors. At present, five ligands have been recognized which as EGF exert their effects via binding to the same EGF receptor. The family has three other receptors erbB2, erbB3, and erbB4, which have their own ligands (the heregulins). The system is ubiquitously distributed in mammals, and has important roles in normal development, and in regenerative and neoplastic growth. Mouse and human EGF were discovered in 1962 and 1975 by Stanley Cohen and Harry Gregory, respectively, due to EGFs potent systemic effects. EGF accelerated eyelid opening in newborn mice and inhibited gastric acid secretion in humans. Already in the late thirties, a factor in human urine was recognized which prevented or accelerated healing of experimental damage in the gastrointestinal tract. This factor appeared to be EGF. Around 1980, an effect of commercial interest was described-EGF caused shedding of the fleece in sheep. In line with the original observations, several studies have examined effects of EGF on developmental processes. Amongst other effects, EGF accelerates lung and intestinal maturation before birth and in newborn mammals. Due to the possible use of EGF in the wool industry, it was mandatory to know more about EGF. Amongst other effects in mature sheep and other animals are haemodynamic changes, changes in electrolyte homeostasis, and endocrinological changes. In relation to experimental damage, the therapeutic potential of systemic EGF has been demonstrated in all parts of the gastrointestinal tract, in the kidneys, in the liver and in the trachea. EGF has even been tried in humans in gastric ulcer healing and in necrotising enterocolitis. Studies on prolonged treatment with EGF have first recently appeared. We described effects of 4-5 weeks of treatment in Goettingen minipigs and in rats, and two other groups described effects in monkeys and in rats. In summary, species differences were observed

  14. A role for sorting nexin 2 in epidermal growth factor receptor down-regulation: evidence for distinct functions of sorting nexin 1 and 2 in protein trafficking.

    PubMed

    Gullapalli, Anuradha; Garrett, Tiana A; Paing, May M; Griffin, Courtney T; Yang, Yonghua; Trejo, JoAnn

    2004-05-01

    Sorting nexin 1 (SNX1) and SNX2, homologues of the yeast vacuolar protein-sorting (Vps)5p, contain a phospholipid-binding motif termed the phox homology (PX) domain and a carboxyl terminal coiled-coil region. A role for SNX1 in trafficking of cell surface receptors from endosomes to lysosomes has been proposed; however, the function of SNX2 remains unknown. Toward understanding the function of SNX2, we first examined the distribution of endogenous protein in HeLa cells. We show that SNX2 resides primarily in early endosomes, whereas SNX1 is found partially in early endosomes and in tubulovesicular-like structures distributed throughout the cytoplasm. We also demonstrate that SNX1 interacts with the mammalian retromer complex through its amino terminal domain, whereas SNX2 does not. Moreover, activated endogenous epidermal growth factor receptor (EGFR) colocalizes markedly with SNX2-positive endosomes, but minimally with SNX1-containing vesicles. To assess SNX2 function, we examined the effect of a PX domain-mutated SNX2 that is defective in vesicle localization on EGFR trafficking. Mutant SNX2 markedly inhibited agonist-induced EGFR degradation, whereas internalization remained intact. In contrast, SNX1 PX domain mutants failed to effect EGFR degradation, whereas a SNX1 deletion mutant significantly inhibited receptor down-regulation. Interestingly, knockdown of SNX1 and SNX2 expression by RNA interference failed to alter agonist-induced EGFR down-regulation. Together, these findings suggest that both SNX1 and SNX2 are involved in regulating lysosomal sorting of internalized EGFR, but neither protein is essential for this process. These studies are the first to demonstrate a function for SNX2 in protein trafficking. PMID:14978220

  15. Interaction of phosphatidylinositol 3-kinase-associated p85 with epidermal growth factor and platelet-derived growth factor receptors.

    PubMed Central

    Hu, P; Margolis, B; Skolnik, E Y; Lammers, R; Ullrich, A; Schlessinger, J

    1992-01-01

    One of the immediate cellular responses to stimulation by various growth factors is the activation of a phosphatidylinositol (PI) 3-kinase. We recently cloned the 85-kDa subunit of PI 3-kinase (p85) from a lambda gt11 expression library, using the tyrosine-phosphorylated carboxy terminus of the epidermal growth factor (EGF) receptor as a probe (E. Y. Skolnik, B. Margolis, M. Mohammadi, E. Lowenstein, R. Fischer, A. Drepps, A. Ullrich, and J. Schlessinger, Cell 65:83-90, 1991). In this study, we have examined the association of p85 with EGF and platelet-derived growth factor (PDGF) receptors and the tyrosine phosphorylation of p85 in 3T3 (HER14) cells in response to EGF and PDGF treatment. Treatment of cells with EGF or PDGF markedly increased the amount of p85 associated with EGF and PDGF receptors. Binding assays with glutathione S-transferase (GST) fusion proteins demonstrated that either Src homology region 2 (SH2) domain of p85 is sufficient for binding to EGF and PDGF receptors and that receptor tyrosine autophosphorylation is required for binding. Binding of a GST fusion protein expressing the N-terminal SH2 domain of p85 (GST-N-SH2) to EGF and PDGF receptors was half-maximally inhibited by 2 and 24 mM phosphotyrosine (P-Tyr), respectively, suggesting that the N-SH2 domain interacts more stably with PDGF receptors than with EGF receptors. The amount of receptor-p85 complex detected in HER14 cells treated with EGF or PDGF. Growth factor treatment also increased the amount of p85 found in anti-PDGF-treated HER14 cells, suggesting that the vast majority of p85 in the anti-P-Tyr fraction is receptor associated but not phosphorylated on tyrosine residues. Only upon transient overexpression of p85 and PDGF receptor did p85 become tyrosine phosphorylated. These are consistent with the hypothesis that p85 functions as an adaptor molecule that targets PI 3-kinase to activated growth factor receptors. Images PMID:1372091

  16. Perinatal Epidermal Growth Factor Receptor Blockade Prevents Peripheral Nerve Disruption in a Mouse Model Reminiscent of Benign World Health Organization Grade I Neurofibroma

    PubMed Central

    Wu, Jianqiang; Crimmins, Jason T.; Monk, Kelly R.; Williams, Jon P.; Fitzgerald, Maureen E.; Tedesco, Susan; Ratner, Nancy

    2006-01-01

    Benign peripheral nerve tumors called neurofibromas are a major source of morbidity for patients with neurofibromatosis type 1. Some neurofibroma Schwann cells aberrantly express the epidermal growth factor receptor (EGFR). In a mouse model in which the CNPase promoter drives expression of human EGFR in Schwann cells, nerves develop hypertrophy, mast cell accumulation, collagen deposition, disruption of axon-glial interactions, characteristics of neurofibroma and are hypoalgesic. Administration of the EGFR antagonist cetuximab (IMC-C225) for 2 weeks beginning at birth in CNPase-hEGFR mice normalized all pathologies at 3 months of age as evaluated by hotplate testing or histology and by electron microscopy. Mast cell chemoattractants brain-derived neurotrophic factor, monocyte chemoattractant protein-1, and transforming growth factor-β1, which may account for mast cell accumulation and fibrosis, were reduced by cetuximab. Later treatment was much less effective. A birth to 2-week pulse of cetuximab blocked hEGFR phosphorylation and Schwann cell proliferation in perinatal mutant nerve, so CNPase-hEGFR Schwann cell numbers correlate with the cetuximab effect. A >250-fold enlarged population of EGFR+/p75+ cells was detected in newborn Nf1+/− mouse nerves. These results suggest the existence of an EGFR+ cell enriched in the perinatal period capable of driving complex changes characteristic of neurofibroma formation. PMID:16651634

  17. Sphingosine-1-phosphate mediates epidermal growth factor-induced muscle satellite cell activation

    SciTech Connect

    Nagata, Yosuke Ohashi, Kazuya; Wada, Eiji; Yuasa, Yuki; Shiozuka, Masataka; Nonomura, Yoshiaki; Matsuda, Ryoichi

    2014-08-01

    Skeletal muscle can regenerate repeatedly due to the presence of resident stem cells, called satellite cells. Because satellite cells are usually quiescent, they must be activated before participating in muscle regeneration in response to stimuli such as injury, overloading, and stretch. Although satellite cell activation is a crucial step in muscle regeneration, little is known of the molecular mechanisms controlling this process. Recent work showed that the bioactive lipid sphingosine-1-phosphate (S1P) plays crucial roles in the activation, proliferation, and differentiation of muscle satellite cells. We investigated the role of growth factors in S1P-mediated satellite cell activation. We found that epidermal growth factor (EGF) in combination with insulin induced proliferation of quiescent undifferentiated mouse myoblast C2C12 cells, which are also known as reserve cells, in serum-free conditions. Sphingosine kinase activity increased when reserve cells were stimulated with EGF. Treatment of reserve cells with the D-erythro-N,N-dimethylsphingosine, Sphingosine Kinase Inhibitor, or siRNA duplexes specific for sphingosine kinase 1, suppressed EGF-induced C2C12 activation. We also present the evidence showing the S1P receptor S1P2 is involved in EGF-induced reserve cell activation. Moreover, we demonstrated a combination of insulin and EGF promoted activation of satellite cells on single myofibers in a manner dependent on SPHK and S1P2. Taken together, our observations show that EGF-induced satellite cell activation is mediated by S1P and its receptor. - Highlights: • EGF in combination with insulin induces proliferation of quiescent C2C12 cells. • Sphingosine kinase activity increases when reserve cells are stimulated with EGF. • EGF-induced activation of reserve cells is dependent on sphingosine kinase and ERK. • The S1P receptor S1P2 is involved in EGF-induced reserve cell activation. • EGF-induced reserve cell activation is mediated by S1P and its

  18. The effect of epidermal growth factor on neonatal incisor differentiation in the mouse.

    PubMed

    Topham, R T; Chiego, D J; Gattone, V H; Hinton, D A; Klein, R M

    1987-12-01

    The effect of epidermal growth factor (EGF) on cellular differentiation of the neonatal mouse mandibular incisor was examined autoradiographically using tritiated thymidine ([3H]TDR) and tritiated proline ([3H]PRO). On days 0 (day of birth), 1, and 2, EGF was administered (3 micrograms/g body wt) sc to neonates. Mice were killed on Days 1, 4, 7, 10, and 13 after birth and were injected with either [3H]TDR or [3H]PRO 1 hr before death. [3H]TDR was used to analyze cell proliferation in eight cell types in the developing mouse incisor including upper (lingual) and lower (buccal) pulpal fibroblasts, preodontoblasts, inner and outer enamel epithelial cells (IEE and OEE), stratum intermedium (SI), stellate reticulum (SR), and periodontal ligament (PDL) fibroblasts. [3H]PRO was used to analyze protein synthesis in ameloblasts, and their secretion products (enamel and dentin), as well as PDL fibroblasts. The selected EGF injection scheme elicited acceleration of incisor eruption with minimal growth retardation. At Day 1, the upper and lower pulp, preodontoblasts, SI, and SR showed a significant decrease in labeling index (LI) 24 hr after a single EGF injection. After multiple injections (Days 0, 1, 2), two LI patterns were observed. In lower pulp, preodontoblasts, IEE, SI, SR, and OEE, a posteruptive change in LI was observed. In contrast, the upper pulp and PDL regions demonstrated a direct temporal relationship with eruption. Autoradiographic analysis with [3H]PRO indicated that EGF treatment caused significant increases in grain counts per unit area in ameloblast, odontoblast, and PDL regions studied. Significant differences were found in all four regions studied (ameloblasts, enamel, odontoblasts, dentin) at the 45-microns-tall ameloblast level as well as ameloblasts and odontoblasts at the 30-microns level at 13 days of age. The PDL demonstrated significant differences at all locations studied (base, 30 microns, 45 microns,) in 4-, 7-, and 13-day-old mice

  19. Differentiation of ionic currents in CNS progenitor cells: dependence upon substrate attachment and epidermal growth factor.

    PubMed

    Feldman, D H; Thinschmidt, J S; Peel, A L; Papke, R L; Reier, P J

    1996-08-01

    Multipotential progenitor cells grown from central nervous system (CNS) tissues in defined media supplemented with epidermal growth factor (EGF), when attached to a suitable substratum, differentiate to express neural and glial histochemical markers and morphologies. To assess the functional characteristics of such cells, expression of voltage-gated Na+ and K+ currents (INa, IK) was studied by whole-cell patch clamp methods in progenitors raised from postnatal rat forebrain. Undifferentiated cells were acutely dissociated from proliferative "spheres," and differentiated cells were studied 1-25 days after plating spheres onto polylysine/laminin-treated coverslips. INa and IK were detected together in 58%, INa alone in 11%, and IK alone in 19% of differentiated cells recorded with K(+)-containing pipettes. With internal Cs+ (to isolate INa), INa up to 45 pA/pF was observed in some cells within 1 day after plating. I Na ranged up to 150 pA/pF subsequently. Overall, 84% of cells expressed I Na, with an average of 38 pA/pF. INa had fast kinetics, as in neurons, but steadystate inactivation curves were strongly negative, resembling those of glial INa. Inward tail currents sensitive to [K+]out were observed upon repolarization after the 10-ms test pulse with internal Cs+, indicating the expression of K+ channels in 82% of cells. In contrast to the substantial currents observed in differentiating cells, little or no INa or Ik-tail currents were detected in recordings from cells acutely dissociated from spheres. Thus, in the presence of EGF, ionic currents develop early during differentiation induced by attachment to an appropriate substratum. Cells switched from EGF to basic fibroblast growth factor (bFGF) when plated onto coverslips showed greatly reduced proliferation and developed less neuron-like morphologies than cells plated in the presence of EGF. INa was observed in only 53% of bFGF-treated cells, with an average of 9 pA/pF. Thus, in contrast to reports that b

  20. Neoadjuvant and adjuvant epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) therapy for lung cancer

    PubMed Central

    Zhai, Haoran; Zhong, Wenzhao; Yang, Xuening

    2015-01-01

    The Lung Adjuvant Cisplatin Evaluation (LACE) meta-analysis and the meta-analysis of individual participant data reported by non-small cell lung cancer (NSCLC) Meta-analysis Collaborative Group in neo-adjuvant setting validated respectively that adjuvant and neoadjuvant chemotherapy would significantly improve overall survival (OS) and recurrence-free survival for resectable NSCLC. However, chemotherapy has reached a therapeutic plateau. It has been confirmed that epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) targeting therapy provides a dramatic response to patients with advanced EGFR-mutation positive NSCLC. Researchers have paid more attention to exploring applications of TKIs to early resectable NSCLCs. Several studies on adjuvant TKI treatment concluded its safety and feasibility. But there existed certain limitations of these studies as inference factors to interpret data accurately: the BR19 study recruited patients among which almost 52% had stage IB and only 15 (3.0%, 15/503) had been confirmed with EGFR-mutant type; retrospective studies performed at Memorial Sloan Kettering Cancer Center (MSKCC) selected EGFR mutant-type NSCLC patients but couldn’t avoid inherent defects inside retrospective researches; the RADIANT study revised endpoints from targeting at EGFR immunohistochemistry (IHC)+ and/or fluorescence in situ hybridization (FISH)+ mutation to only EGFR IHC+ mutation, leading to selective bias; despite that the SELECT study validated efficacy of adjuvant TKI and second round of TKI after resistance occurred, a single-arm clinical trial is not that persuasive in the absence of comparison with chemotherapy. Taking all these limitations into account, CTONG1104 in China and IMPACT in Japan have been conducted and recruiting patients to offer higher level of evidences to explore efficacy of preoperative TKI therapy for early resectable EGFR mutation positive NSCLC patients (confirmed by pathological results of tumor tissue or

  1. Potential Role of Preoperative Conventional MRI Including Diffusion Measurements in Assessing Epidermal Growth Factor Receptor Gene Amplification Status in Patients with Glioblastoma

    PubMed Central

    Young, R.J.; Gupta, A.; Shah, A.D.; Graber, J.J.; Schweitzer, A.D.; Prager, A.; Shi, W.; Zhang, Z.; Huse, J.; Omuro, A.M.P.

    2016-01-01

    BACKGROUND AND PURPOSE Epidermal growth factor receptor amplification is a common molecular event in glioblastomas. The purpose of this study was to examine the potential usefulness of morphologic and diffusion MR imaging signs in the prediction of epidermal growth factor receptor gene amplification status in patients with glioblastoma. MATERIALS AND METHODS We analyzed pretreatment MR imaging scans from 147 consecutive patients with newly diagnosed glioblastoma and correlated MR imaging features with tumor epidermal growth factor receptor amplification status. The following morphologic tumor MR imaging features were qualitatively assessed: 1) border sharpness, 2) cystic/necrotic change, 3) hemorrhage, 4) T2-isointense signal, 5) restricted water diffusion, 6) nodular enhancement, 7) subependymal enhancement, and 8) multifocal discontinuous enhancement. A total of 142 patients had DWI available for quantitative analysis. ADC maps were calculated, and the ADCmean, ADCmin, ADCmax, ADCROI, and ADCratio were measured. RESULTS Epidermal growth factor receptor amplification was present in 60 patients (40.8%) and absent in 87 patients (59.2%). Restricted water diffusion correlated with epidermal growth factor receptor amplification (P = .04), whereas the other 7 morphologic MR imaging signs did not (P > .12). Quantitative DWI analysis found that all ADC measurements correlated with epidermal growth factor receptor amplification, with the highest correlations found with ADCROI (P = .0003) and ADCmean (P = .0007). CONCLUSIONS Our results suggest a role for diffusion MR imaging in the determination of epidermal growth factor receptor amplification status in glioblastoma. Additional work is necessary to confirm these results and isolate new imaging biomarkers capable of noninvasively characterizing the molecular status of these tumors. PMID:23811973

  2. CT Features Associated with Epidermal Growth Factor Receptor Mutation Status in Patients with Lung Adenocarcinoma.

    PubMed

    Liu, Ying; Kim, Jongphil; Qu, Fangyuan; Liu, Shichang; Wang, Hua; Balagurunathan, Yoganand; Ye, Zhaoxiang; Gillies, Robert J

    2016-07-01

    Purpose To retrospectively identify the relationship between epidermal growth factor receptor (EGFR) mutation status, predominant histologic subtype, and computed tomographic (CT) characteristics in surgically resected lung adenocarcinomas in a cohort of Asian patients. materials and Methods This study was approved by the institutional review board, with waiver of informed consent. Preoperative chest CT findings were retrospectively evaluated in 385 surgically resected lung adenocarcinomas. A total of 30 CT descriptors were assessed. EGFR mutations at exons 18-21 were determined by using the amplification refractory mutation system. Multiple logistic regression analyses were performed to identify independent factors of harboring EGFR mutation status. The final model was selected by using the backward elimination method, and two areas under the receiver operating characteristic curve (ROC) were compared with the nonparametric approach of DeLong, DeLong, and Clarke-Pearson. Results EGFR mutations were found in 168 (43.6%) of 385 patients. Mutations were found more frequently in (a) female patients (P < .001); (b)those who had never smoked (P < .001); (c)those with lepidic predominant adenocarcinomas (P = .001) or intermediate pathologic grade (P < .001); (e) smaller tumors (P < .001); (f)tumors with spiculation (P = .019), ground-glass opacity (GGO) or mixed GGO (P < .001), air bronchogram (P = .006), bubblelike lucency (P < .001), vascular convergence (P = .024), thickened adjacent bronchovascular bundles (P = .027), or pleural retraction (P < .001); and (g) tumors without pleural attachment (P = .004), a well-defined margin (P = .010), marked heterogeneous enhancement (P = .001), severe peripheral emphysema (P = .002), severe peripheral fibrosis (P = .013), or lymphadenopathy (P = .028). The most important and significantly independent prognostic factors of harboring EGFR-activating mutation for the model with both clinical variables and CT features were those who

  3. Anti-epidermal growth factor receptor conjugated mesoporous zinc oxide nanofibers for breast cancer diagnostics.

    PubMed

    Ali, Md Azahar; Mondal, Kunal; Singh, Chandan; Malhotra, Bansi Dhar; Sharma, Ashutosh

    2015-04-28

    We report the fabrication of an efficient, label-free, selective and highly reproducible immunosensor with unprecedented sensitivity (femto-molar) to detect a breast cancer biomarker for early diagnostics. Mesoporous zinc oxide nanofibers (ZnOnFs) are synthesized by electrospinning technique with a fiber diameter in the range of 50-150 nm. Fragments of ZnOnFs are electrophoretically deposited on an indium tin oxide glass substrate and conjugated via covalent or electrostatic interactions with a biomarker (anti-ErbB2; epidermal growth factor receptor 2). Oxygen plasma treatment of the carbon doped ZnOnFs generates functional groups (-COOH, -OH, etc.) that are effective for the conjugation of anti-ErbB2. ZnOnFs without plasma treatment that conjugate via electrostatic interactions were also tested for comparison. Label-free detection of the breast cancer biomarker by this point-of-care device is achieved by an electrochemical impedance technique that has high sensitivity (7.76 kΩ μM(-1)) and can detect 1 fM (4.34 × 10(-5) ng mL(-1)) concentration. The excellent impedimetric response of this immunosensor provides a fast detection (128 s) in a wide detection test range (1.0 fM-0.5 μM). The oxy-plasma treated ZnOnF immunoelectrode shows a higher association constant (404.8 kM(-1) s(-1)) indicating a higher affinity towards the ErbB2 antigen compared to the untreated ZnOnF immunoelectrode (165.6 kM(-1) s(-1)). This sensor is about an order of magnitude more sensitive than the best demonstrated in the literature based on different nanomaterials and about three orders of magnitude better than the ELISA standard for breast cancer biomarker detection. This proposed point-of-care cancer diagnostic offers several advantages, such as higher stability, rapid monitoring, simplicity, cost-effectiveness, etc., and should prove to be useful for the detection of other bio- and cancer markers. PMID:25811908

  4. The status of epidermal growth factor receptor in borderline ovarian tumours

    PubMed Central

    Showeil, Rania; Romano, Claudia; Valganon, Mikel; Lambros, Maryou; Trivedi, Pritesh; Van Noorden, Susan; Sriraksa, Ruethairat; El-Kaffash, Dalal; El-Etreby, Nour; Natrajan, Rachael; Foroni, Letizia; Osborne, Richard; El-Bahrawy, Mona

    2016-01-01

    The majority of borderline ovarian tumours (BOTs) behave in a benign fashion, but some may show aggressive behavior. The reason behind this has not been elucidated. The epidermal growth factor receptor (EGFR) is known to contribute to cell survival signals as well as metastatic potential of some tumours. EGFR expression and gene status have not been thoroughly investigated in BOTs as it has in ovarian carcinomas. In this study we explore protein expression as well as gene mutations and amplifications of EGFR in BOTs in comparison to a subset of other epithelial ovarian tumours. We studied 85 tumours, including 61 BOTs, 10 low grade serous carcinomas (LGSCs), 9 high grade serous carcinomas (HGSCs) and 5 benign epithelial tumours. EGFR protein expression was studied using immunohistochemistry. Mutations were investigated by Sanger sequencing exons 18-21 of the tyrosine kinase domain of EGFR. Cases with comparatively higher protein expression were examined for gene amplification by chromogenic in situ hybridization. We also studied the tumours for KRAS and BRAF mutations. Immunohistochemistry results revealed both cytoplasmic and nuclear EGFR expression with variable degrees between tumours. The level of nuclear localization was relatively higher in BOTs and LGSCs as compared to HGSCs or benign tumours. The degree of nuclear expression of BOTs showed no significant difference from that in LGSCs (mean ranks 36.48, 33.05, respectively, p=0.625), but was significantly higher than in HGSCs (mean ranks: 38.88, 12.61 respectively, p< 0.001) and benign tumours (mean ranks: 35.18, 13.00 respectively, p= 0.010). Cytoplasmic expression level was higher in LGSCs. No EGFR gene mutations or amplification were identified, yet different polymorphisms were detected. Five different types of point mutations in the KRAS gene and the V600E BRAF mutation were detected exclusively in BOTs and LGSCs. Our study reports for the first time nuclear localization of EGFR in BOTs. The nuclear

  5. Epidermal growth factor-like domain 7 promotes cell invasion and angiogenesis in pancreatic carcinoma.

    PubMed

    Shen, Xiaochun; Han, Ye; Xue, Xiaofeng; Li, Wei; Guo, Xiaobo; Li, Pu; Wang, Yunliang; Li, Dechun; Zhou, Jin; Zhi, Qiaoming

    2016-02-01

    Epidermal growth factor-like domain 7 (EGFL7), also known as vascular endothelial stain, was firstly identified as a modulator of smooth muscle cell migration. Though the expression of EGFL7 was reported to be up-regulated during tumorigenesis, the clinical and biological functions of EGFL7 in pancreatic carcinoma (PC) were still not fully elucidated. In this study, we found that the serum EGFL7 level in PC tissues was statistically higher than that in normal subjects (p<0.001), and its level in non-resectable patients was also higher than that in resectable ones (p=0.013). Among these resectable PC patients, the postoperative EGFL7 expression was significantly down-regulated when tumors were resected (p=0.018). Using the immunohistochemistry method, our results demonstrated that the positive expression of EGFL7 was significantly associated with the TNM stage (p=0.024), lymph node metastasis (p=0.003) and local invasion (p=0.022), and the EGFL7 expression closely correlated to the micro-vessel density (MVD) in PC tissues by Spearman analysis (r=0.941, p=0.000). In vitro, EGFL7 was silenced by the small interference RNA in PC cells, and our data indicated that down-regulation of EGFL7 did not influence the cycle progression, proliferation, colony formation and apoptosis of PC cells (p>0.05), whereas inhibition of EGFL7 expression could decrease PaCa-2 cell invasion (p<0.05). More interestingly, by tubular formation, Chick embryo chorioallantoic membrane (CAM) and ELISA assays, our results revealed that silencing EGFL7 expression represented a strong inhibiting effect on tubular formation of micro-vessels through down-regulating the protein levels of VEGF and Ang-2 (p<0.05). Our results raised the possibility of using EGFL7as a potential prognostic biomarker and therapy target of PC, and down-regulation of EGFL7 might be considered to be a potentially important molecular treatment strategy for patients with PC. PMID:26796281

  6. Low levels of cobalamin, epidermal growth factor, and normal prions in multiple sclerosis spinal cord.

    PubMed

    Scalabrino, G; Veber, D; De Giuseppe, R; Roncaroli, F

    2015-07-01

    We have previously demonstrated that multiple sclerosis (MS) patients have abnormal cerebrospinal fluid (CSF) levels of the key myelin-related molecules cobalamin (Cbl), epidermal growth factor (EGF), and normal cellular prions (PrP(C)s), thus confirming that some CSF abnormalities may be co-responsible for remyelination failure. We determined the levels of these three molecules in post-mortem spinal cord (SC) samples taken from MS patients and control patients. The control SC samples, almost all of which came from non-neurological patients, did not show any microscopic lesions of any type. All of the samples were supplied by the U.K. MS Tissue Bank. The Cbl, EGF, and PrP(C) levels were determined using enzyme-linked immunosorbent assays. The SC total homocysteine level was determined using a competitive immunoenzymatic assay. CSF samples, taken from a further group of MS patients, were used for the assay of holo-transcobalamin (holo-TC) levels. The Cbl, EGF, and PrP(C) levels were significantly decreased in MS SCs in comparison with controls and, paradoxically, the decreased Cbl levels were associated with decreased SC levels of homocysteine, a biochemical marker of Cbl deficiency. The trends of EGF and PrP(C) levels paralleled those previously found in CSF, whereas that of Cbl was the opposite. There was no significant difference in CSF holo-TC levels between the MS patients and the controls. Given that we have previously demonstrated that Cbl positively regulates central nervous system EGF levels, it is conceivable that the low EGF levels in the MS SC may be causally related to a local decrease in Cbl levels. Only PrP(C) levels were invariably decreased in both the SC and CSF regardless of the clinical course of the disease. These findings suggest that the simultaneous lack of Cbl, EGF, and PrP(C)s may greatly hamper the remyelination process in MS patients, because they are key molecules of the machinery for remyelination. PMID:25888933

  7. Epidermal Growth Factor Receptor Tyrosine Kinase Defines Critical Prognostic Genes of Stage I Lung Adenocarcinoma

    PubMed Central

    Nagasaki, Masao; Shimamura, Teppei; Imoto, Seiya; Saito, Ayumu; Ueno, Kazuko; Hatanaka, Yousuke; Yoshida, Ryo; Higuchi, Tomoyuki; Nomura, Masaharu; Beer, David G.; Yokota, Jun; Miyano, Satoru; Gotoh, Noriko

    2012-01-01

    Purpose To identify stage I lung adenocarcinoma patients with a poor prognosis who will benefit from adjuvant therapy. Patients and Methods Whole gene expression profiles were obtained at 19 time points over a 48-hour time course from human primary lung epithelial cells that were stimulated with epidermal growth factor (EGF) in the presence or absence of a clinically used EGF receptor tyrosine kinase (RTK)-specific inhibitor, gefitinib. The data were subjected to a mathematical simulation using the State Space Model (SSM). “Gefitinib-sensitive” genes, the expressional dynamics of which were altered by addition of gefitinib, were identified. A risk scoring model was constructed to classify high- or low-risk patients based on expression signatures of 139 gefitinib-sensitive genes in lung cancer using a training data set of 253 lung adenocarcinomas of North American cohort. The predictive ability of the risk scoring model was examined in independent cohorts of surgical specimens of lung cancer. Results The risk scoring model enabled the identification of high-risk stage IA and IB cases in another North American cohort for overall survival (OS) with a hazard ratio (HR) of 7.16 (P = 0.029) and 3.26 (P = 0.0072), respectively. It also enabled the identification of high-risk stage I cases without bronchioalveolar carcinoma (BAC) histology in a Japanese cohort for OS and recurrence-free survival (RFS) with HRs of 8.79 (P = 0.001) and 3.72 (P = 0.0049), respectively. Conclusion The set of 139 gefitinib-sensitive genes includes many genes known to be involved in biological aspects of cancer phenotypes, but not known to be involved in EGF signaling. The present result strongly re-emphasizes that EGF signaling status in cancer cells underlies an aggressive phenotype of cancer cells, which is useful for the selection of early-stage lung adenocarcinoma patients with a poor prognosis. Trial Registration The Gene Expression Omnibus (GEO) GSE31210 PMID:23028479

  8. Cetuximab-oxaliplatin-liposomes for epidermal growth factor receptor targeted chemotherapy of colorectal cancer.

    PubMed

    Zalba, Sara; Contreras, Ana M; Haeri, Azadeh; Ten Hagen, Timo L M; Navarro, Iñigo; Koning, Gerben; Garrido, María J

    2015-07-28

    Oxaliplatin (L-OH), a platinum derivative with good tolerability is currently combined with Cetuximab (CTX), a monoclonal antibody (mAb), for the treatment of certain (wild-type KRAS) metastatic colorectal cancer (CRC) expressing epidermal growth factor receptor (EGFR). Improvement of L-OH pharmacokinetics (PK) can be provided by its encapsulation into liposomes, allowing a more selective accumulation and delivery to the tumor. Here, we aim to associate both agents in a novel liposomal targeted therapy by linking CTX to the drug-loaded liposomes. These EGFR-targeted liposomes potentially combine the therapeutic activity and selectivity of CTX with tumor-cell delivery of L-OH in a single therapeutic approach. L-OH liposomes carrying whole CTX or CTX-Fab' fragments on their surface were designed and characterized. Their functionality was tested in vitro using four human CRC cell lines, expressing different levels of EGFR to investigate the role of CTX-EGFR interactions in the cellular binding and uptake of the nanocarriers and encapsulated drug. Next, those formulations were evaluated in vivo in a colorectal cancer xenograft model with regard to tumor drug accumulation, toxicity and therapeutic activity. In EGFR-overexpressing cell lines, intracellular drug delivery by targeted liposomes increased with receptor density reaching up to 3-fold higher levels than with non-targeted liposomes. Receptor specific uptake was demonstrated by competition with free CTX, which reduced internalization to levels similar to non-targeted liposomes. In a CRC xenograft model, drug delivery was strongly enhanced upon treatment with targeted formulations. Liposomes conjugated with monovalent CTX-Fab' fragments showed superior drug accumulation in tumor tissue (2916.0±507.84ng/g) compared to CTX liposomes (1546.02±362.41ng/g) or non-targeted liposomes (891.06±155.1ng/g). Concomitantly, CTX-Fab' targeted L-OH liposomes outperformed CTX-liposomes, which on its turn was still more

  9. Yes and Lyn play a role in nuclear translocation of the epidermal growth factor receptor.

    PubMed

    Iida, M; Brand, T M; Campbell, D A; Li, C; Wheeler, D L

    2013-02-01

    The epidermal growth factor receptor (EGFR) is a central regulator of tumor progression in human cancers. Cetuximab is an anti-EGFR antibody that has been approved for use in oncology. Previously we investigated mechanisms of resistance to cetuximab using a model derived from the non-small cell lung cancer line NCI-H226. We demonstrated that cetuximab-resistant clones (Ctx(R)) had increased nuclear localization of the EGFR. This process was mediated by Src family kinases (SFKs), and nuclear EGFR had a role in resistance to cetuximab. To better understand SFK-mediated nuclear translocation of EGFR, we investigated which SFK member(s) controlled this process as well as the EGFR tyrosine residues that are involved. Analyses of mRNA and protein expression indicated upregulation of the SFK members Yes (v-Yes-1 yamaguchi sarcoma viral oncogene) and Lyn (v-yes-1 Yamaguchi sarcoma viral-related oncogene homolog) in all Ctx(R) clones. Further, immunoprecipitation analysis revealed that EGFR interacts with Yes and Lyn in Ctx(R) clones, but not in cetuximab-sensitive (Ctx(S)) parental cells. Using RNAi interference, we found that knockdown of either Yes or Lyn led to loss of EGFR translocation to the nucleus. Conversely, overexpression of Yes or Lyn in low nuclear EGFR-expressing Ctx(S) parental cells led to increased nuclear EGFR. Chromatin immunoprecipitation (ChIP) assays confirmed nuclear EGFR complexes associated with the promoter of the known EGFR target genes B-Myb and iNOS. Further, all Ctx(R) clones exhibited upregulation of B-Myb and iNOS at the mRNA and protein levels. siRNAs directed at Yes or Lyn led to decreased binding of EGFR complexes to the B-Myb and iNOS promoters based on ChIP analyses. SFKs have been shown to phosphorylate EGFR on tyrosines 845 and 1101 (Y845 and Y1101), and mutation of Y1101, but not Y845, impaired nuclear entry of the EGFR. Taken together, our findings demonstrate that Yes and Lyn phosphorylate EGFR at Y1101, which influences EGFR

  10. Chemical allergens stimulate human epidermal keratinocytes to produce lymphangiogenic vascular endothelial growth factor

    SciTech Connect

    Bae, Ok-Nam; Ahn, Seyeon; Jin, Sun Hee; Hong, Soo Hyun; Lee, Jinyoung; Kim, Eun-Sun; Jeong, Tae Cheon; Chun, Young-Jin; Lee, Ai-Young; Noh, Minsoo

    2015-03-01

    Allergic contact dermatitis (ACD) is a cell-mediated immune response that involves skin sensitization in response to contact with various allergens. Angiogenesis and lymphangiogenesis both play roles in the allergic sensitization process. Epidermal keratinocytes can produce vascular endothelial growth factor (VEGF) in response to UV irradiation and during wound healing. However, the effect of haptenic chemical allergens on the VEGF production of human keratinocytes, which is the primary contact site of toxic allergens, has not been thoroughly researched. We systematically investigated whether immune-regulatory cytokines and chemical allergens would lead to the production of VEGF in normal human keratinocytes (NHKs) in culture. VEGF production significantly increased when NHKs were treated with IFNγ, IL-1α, IL-4, IL-6, IL-17A, IL-22 or TNFα. Among the human sensitizers listed in the OECD Test Guideline (TG) 429, we found that CMI/MI, DNCB, 4-phenylenediamine, cobalt chloride, 2-mercaptobenzothiazole, citral, HCA, cinnamic alcohol, imidazolidinyl urea and nickel chloride all significantly upregulated VEGF production in NHKs. In addition, common human haptenic allergens such as avobenzone, formaldehyde and urushiol, also induced the keratinocyte-derived VEGF production. VEGF upregulation by pro-inflammatory stimuli, IFNγ, DNCB or formaldehyde is preceded by the production of IL-8, an acute inflammatory phase cytokine. Lymphangiogenic VEGF-C gene transcription was significantly increased when NHKs were treated with formaldehyde, DNCB or urushiol, while transcription of VEGF-A and VEGF-B did not change. Therefore, the chemical allergen-induced VEGF upregulation is mainly due to the increase in lymphangiogenic VEGF-C transcription in NHKs. These results suggest that keratinocyte-derived VEGF may regulate the lymphangiogenic process during the skin sensitization process of ACD. - Highlights: • Pro-inflammatory cytokines induced VEGF production in normal human

  11. Evidence for glomerular actions of epidermal growth factor in the rat.

    PubMed Central

    Harris, R C; Hoover, R L; Jacobson, H R; Badr, K F

    1988-01-01

    Epidermal growth factor (EGF), an endogenous mitogenic peptide, has recently been shown to be a potent vasoconstrictor of vascular smooth muscle. In view of its potential role in proliferative and inflammatory renal glomerular diseases, we examined the effects of EGF both on cultured rat mesangial cells and on in vivo glomerular hemodynamics. Mesangial cells possess specific, saturable EGF receptors of differing affinities, with Kd's of 0.1 and 1.7 nM, respectively. EGF produced a rapid increase in intracellular pH of 0.12 +/- 0.01 pH U, which was sodium dependent and amiloride inhibitable. The addition of EGF to mesangial cells cultured on either glass or dimethylpolysiloxane substratum induced reproducible cell contraction. Intrarenal EGF infusion did not affect systemic blood pressure or hematocrit but reversibly decreased GFR and renal blood flow from 4.19 +/- 0.33 to 3.33 +/- 0.26 and from 1.17 +/- 0.09 to 0.69 +/- 0.07 ml/min, respectively. Glomerular micropuncture confirmed decreases in single nephron plasma flow and in single nephron GFR (from 142 +/- 9 to 98 +/- 8 and from 51.6 +/- 11.7 to 28.5 +/- 3.5 nl/min, respectively) which were due to significant increases in both pre- and postglomerular arteriolar resistances (from 1.97 +/- 0.31 to 2.65 +/- 0.36 and from 1.19 +/- 0.11 to 2.00 +/- 0.15 10(10) dyn.s.cm-5 respectively) and to a significant decrease in the ultrafiltration coefficient, Kf, which fell from 0.100 +/- 0.019 to 0.031 +/- 0.007 nl/(s.mmHg). These studies demonstrate that mesangial cells possess specific receptors for EGF, and exposure of these cells to physiologic concentrations of EGF results in an in vitro functional response characterized by activation of Na+/H+ exchange and by resultant intracellular alkalinization, as well as by cell contraction. EGF administration in vivo significantly reduces the glomerular capillary ultrafiltration coefficient, Kf, which, in combination with EGF-induced constriction of both preglomerular and

  12. Mutant tristetraprolin: a potent inhibitor of malignant glioma cell growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Malignant gliomas rely on the production of certain critical growth factors including VEGF, interleukin (IL)-6 and IL-8, to fuel rapid tumor growth, angiogenesis, and treatment resistance. Post-transcriptional regulation through adenine and uridine-rich elements of the 3' untranslated region is one ...

  13. Survival, growth, and localization of epiphytic fitness mutants of pseudomonas syringae on leaves

    SciTech Connect

    Beattie, G.A.; Lindow, S.E. )

    1994-10-01

    Among 82 epiphytic fitness mutants of a Pseudomonas syringae pv. syringae strain that were characterized in a previous study, 4 mutants were particularly intolerant of the stresses associated with dry leaf surfaces. These four mutants each exhibited distinctive behaviors when inoculated into and into plant leaves. For example, while non showed measurable growth on dry potato leaf surfaces, they grew to different population sizes in the intercellular space of bean leaves and on dry bean leaf surfaces, and one mutant appeared incapable of growth in both environments although it grew well on moist bean leaves. The presence of the parental strain did not influence the survival of the mutants immediately following exposure of leaves to dry, high-light incubation conditions, suggesting that the reduced survival of the mutants did not result from an inability to produce extracellular factors in planta. On moist bean leaves that were colonized by either a mutant or the wild type, the proportion of the total epiphytic population that was located in sizes protected from a surface sterilant was smaller for the mutants than for the wild type, indicating that the mutants were reduced in their ability to locate, multiply in, and/or survive in such protected sites. This reduced ability was only one of possible several factors contributing to the reduced epiphytic fitness of each mutant. Their reduced fitness was not specific to the host plant bean, since they also exhibited reduced fitness on the nonhost plant potato; the functions altered in these strains are thus of interest for their contribution to the general fitness of bacterial epiphytes. 52 refs., 6 figs., 1 tab.

  14. Affibody-functionalized gold-silica nanoparticles for Raman molecular imaging of the epidermal growth factor receptor.

    PubMed

    Jokerst, Jesse V; Miao, Zheng; Zavaleta, Cristina; Cheng, Zhen; Gambhir, Sanjiv S

    2011-03-01

    The affibody functionalization of fluorescent surface-enhanced Raman scattering gold-silica nanoparticles as multimodal contrast agents for molecular imaging specific to epidermal growth factor receptor (EGFR) is reported. This nanoparticle bioconjugate reports EGFR-positive A431 tumors with a signal nearly 35-fold higher than EGFR-negative MDA-435S tumors. The low-level EGFR expression in adjacent healthy tissue is 7-fold lower than in the positive tumors. Validation via competitive inhibition reduces the signal by a factor of six, and independent measurement of EGFR via flow cytometry correlates at R(2) = 0.92. PMID:21302357

  15. Increased optical contrast in imaging of epidermal growth factor receptor using magnetically actuated hybrid gold/iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Aaron, Jesse S.; Oh, Junghwan; Larson, Timothy A.; Kumar, Sonia; Milner, Thomas E.; Sokolov, Konstantin V.

    2006-12-01

    We describe a new approach for optical imaging that combines the advantages of molecularly targeted plasmonic nanoparticles and magnetic actuation. This combination is achieved through hybrid nanoparticles with an iron oxide core surrounded by a gold layer. The nanoparticles are targeted in-vitro to epidermal growth factor receptor, a common cancer biomarker. The gold portion resonantly scatters visible light giving a strong optical signal and the superparamagnetic core provides a means to externally modulate the optical signal. The combination of bright plasmon resonance scattering and magnetic actuation produces a dramatic increase in contrast in optical imaging of cells labeled with hybrid gold/iron oxide nanoparticles.

  16. Epidermal growth factor receptor (EGFR) mutations in small cell lung cancers: Two cases and a review of the literature.

    PubMed

    Siegele, Bradford J; Shilo, Konstantin; Chao, Bo H; Carbone, David P; Zhao, Weiqiang; Ioffe, Olga; Franklin, Wilbur A; Edelman, Martin J; Aisner, Dara L

    2016-05-01

    Activating mutations in the epidermal growth factor receptor (EGFR) gene are exceedingly rare in small cell lung cancer (SCLC). We present two cases of SCLC harboring EGFR mutations, one in an 82 year-old male smoker with a combined SCLC and adenocarcinoma with a novel D855H point mutation in exon 21, and the second in a 68 year-old female never smoker with the L858R point mutation in exon 21. The cases, accompanied by a review of the literature, highlight the importance of integration of clinicopathologic considerations and adherence to recently promulgated Guideline recommendations for molecular testing in lung cancer. PMID:27040854

  17. Recombinant porcine epidermal growth factor-secreting Lactococcus lactis promotes the growth performance of early-weaned piglets

    PubMed Central

    2014-01-01

    Background Epidermal growth factor (EGF) is an important growth factor in regulation of cell proliferation, differentiation, survival and apoptosis. Studies showed that food-grade Lactococcus lactis (L. lactis) and NICE expression system have superior performance in exogenous protein expression. This study aimed to construct and express porcine EGF (pEGF), and use L. lactis as vehicle for producing and delivering pEGF. Furthermore, investigating biological activity of pEGF and exploring applications feasibility of combination effects of L. lactis and pEGF on early weaned piglets’ production. Results A recombinant Lactococcus lactis which produced and secreted pEGF at 1000 ng/ml in culture supernatant was generated. Secreted pEGF was a fully biologically active protein, as demonstrated by its capacity to stimulate L929 mouse fibroblast cell line proliferation in vitro. For in vivo study, forty piglets were randomly allocated to control, antibiotic control, empty vector-expressing L. lactis (LL-EV) and pEGF-secreting L. lactis (LL-pEGF). After 14 d of rearing, final body weight and average daily gain in LL-pEGF were greater (P < 0.05, 8.95 vs. 8.37 kg, 206.1 vs. 157.7 g/day, respectively) than those in control, but no significant differences between LL-pEGF, LL-EV and antibiotic control. Overall period average daily feed intake was higher in LL-pEGF, LL-EV and antibiotic control than in control (P < 0.05, 252.9, 255.6, 250.0, 207.3 g/day, respectively). No significant difference was observed on ADFI/ADG. LL-pEGF increased villous height in the duodenum, jejunum and ileum than in control and LL-EV (P < 0.05). Sucrase in the 3 intestinal segments, aminopeptidase A in the duodenum and Jejunum, aminopeptidase N and dipeptidase IV in the duodenum in LL-pEGF were higher than those in control (P < 0.05). Furthermore, Escherichia coli and Enterococcus counts decreased in the ileum and Lactobacillus increased in the ileum and cecum digesta in LL-pEGF compare with the

  18. Knockdown of phosphodiesterase 4D inhibits nasopharyngeal carcinoma proliferation via the epidermal growth factor receptor signaling pathway

    PubMed Central

    XU, TING; WU, SIHAI; YUAN, YUAN; YAN, GUOXIN; XIAO, DAJIANG

    2014-01-01

    Phosphodiesterase 4D (PDE4D) is a subtype of metallohydrolases, and it has been reported that PDE4D functions as a proliferation promoting factor in certain types of cancer, including head and neck cancer. The present study first investigated the function of PDE4D in nasopharyngeal carcinoma (NPC). Western blot analysis was applied to detect PDE4D expression in NPC samples and cells. A lentiviral infection technique was used to stabilize the knockdown of PDE4D, which was subsequently examined in vitro and in vivo. The results showed that PDE4D was overexpressed in the NPC tissues and cells. Knockdown of PDE4D inhibited the growth of CNE2 and 5–8F, inducing cell cycle arrest in the G0/G1 phase in CNE2. These effects could be reversed by epidermal growth factor (EGF) stimulation. Furthermore, knockdown of PDE4D significantly inhibited the phosphorylation of epidermal growth factor receptor (EGFR) and AKT. The results were further validated in an NPC xenograft in nude mice. In conclusion, this study demonstrated that PDE4D may function as a proliferation promoting factor in NPC, by affecting the EGFR/PI3K/AKT signaling pathway. Therefore, the targeting of PDE4D may be a rational strategy in the treatment of NPC. PMID:25289091

  19. Anti-epidermal growth factor receptor conjugated mesoporous zinc oxide nanofibers for breast cancer diagnostics

    NASA Astrophysics Data System (ADS)

    Ali, Md. Azahar; Mondal, Kunal; Singh, Chandan; Dhar Malhotra, Bansi; Sharma, Ashutosh

    2015-04-01

    We report the fabrication of an efficient, label-free, selective and highly reproducible immunosensor with unprecedented sensitivity (femto-molar) to detect a breast cancer biomarker for early diagnostics. Mesoporous zinc oxide nanofibers (ZnOnFs) are synthesized by electrospinning technique with a fiber diameter in the range of 50-150 nm. Fragments of ZnOnFs are electrophoretically deposited on an indium tin oxide glass substrate and conjugated via covalent or electrostatic interactions with a biomarker (anti-ErbB2; epidermal growth factor receptor 2). Oxygen plasma treatment of the carbon doped ZnOnFs generates functional groups (-COOH, -OH, etc.) that are effective for the conjugation of anti-ErbB2. ZnOnFs without plasma treatment that conjugate via electrostatic interactions were also tested for comparison. Label-free detection of the breast cancer biomarker by this point-of-care device is achieved by an electrochemical impedance technique that has high sensitivity (7.76 kΩ μM-1) and can detect 1 fM (4.34 × 10-5 ng mL-1) concentration. The excellent impedimetric response of this immunosensor provides a fast detection (128 s) in a wide detection test range (1.0 fM-0.5 μM). The oxy-plasma treated ZnOnF immunoelectrode shows a higher association constant (404.8 kM-1 s-1) indicating a higher affinity towards the ErbB2 antigen compared to the untreated ZnOnF immunoelectrode (165.6 kM-1 s-1). This sensor is about an order of magnitude more sensitive than the best demonstrated in the literature based on different nanomaterials and about three orders of magnitude better than the ELISA standard for breast cancer biomarker detection. This proposed point-of-care cancer diagnostic offers several advantages, such as higher stability, rapid monitoring, simplicity, cost-effectiveness, etc., and should prove to be useful for the detection of other bio- and cancer markers.We report the fabrication of an efficient, label-free, selective and highly reproducible immunosensor

  20. The Mitogenic Potential of Heparin-Binding Epidermal Growth Factor in the Human Endometrium Is Mediated by the Epidermal Growth Factor Receptor and Is Modulated by Tumor Necrosis Factor-α

    PubMed Central

    CHOBOTOVA, KATYA; MUCHMORE, MARY-ELIZABETH; CARVER, JANET; YOO, HYUNG-J; MANEK, SANJIV; GULLICK, WILLIAM J.; BARLOW, DAVID H.; MARDON, HELEN J.

    2006-01-01

    Heparin-binding epidermal growth factor (HB-EGF), a member of the epidermal growth factor (EGF) family, is implicated in a variety of biological processes, including reproduction. Previous studies describe increased levels of HB-EGF in the human endometrium during the midsecretory stage of the menstrual cycle, suggesting a function for HB-EGF in implantation of the human blastocyst. Here we have investigated the expression and function of the soluble and transmembrane forms of HB-EGF in the human endometrium. We show that the expression of the transmembrane form of HB-EGF in the human endometrium is modulated according to the stage of the menstrual cycle. We present data demonstrating that both the soluble and transmembrane forms of HB-EGF induce DNA synthesis in human endometrial stromal cells. Furthermore, TNFα has a cooperative effect on HB-EGF, EGF, TGFα, and betacellulin-induced DNA synthesis in stromal cells, suggesting roles for the EGF family and TNFα in regeneration and maturation of human endometrium. Induction of DNA synthesis by HB-EGF and its modulation by TNFα in endometrial stromal cells are mediated by the EGF receptor and not the HB-EGF receptor ErbB4. Our data suggest key functions for HB-EGF, TNFα, and the EGF receptor in endometrial maturation, via autocrine/paracrine and juxtacrine pathways, in preparation for embryo implantation. PMID:12466384

  1. Sym004: a novel synergistic anti-epidermal growth factor receptor antibody mixture with superior anticancer efficacy.

    PubMed

    Pedersen, Mikkel Wandahl; Jacobsen, Helle Jane; Koefoed, Klaus; Hey, Adam; Pyke, Charles; Haurum, John Sørensen; Kragh, Michael

    2010-01-15

    Epidermal growth factor receptor (EGFR) is a validated therapeutic target in cancer and EGFR antagonists with greater effectiveness than existing clinical agents remain of interest. Here, we report a novel approach based on Sym004, a mixture of two anti-EGFR monoclonal antibodies directed against distinct nonoverlapping epitopes in EGFR extracellular domain III. Like anti-EGFR monoclonal antibodies in current clinical use, Sym004 inhibits cancer cell growth and survival by blocking ligand-binding receptor activation and phosphorylation and downstream receptor signaling. However, unlike the other antibodies, Sym004 induces rapid and efficient removal of the receptor from the cancer cell surface by triggering EGFR internalization and degradation. Compared with reference anti-EGFR monoclonal antibodies, Sym004 exhibited more pronounced growth inhibition in vitro and superior efficacy in vivo. Together, these findings illustrate a strategy to target EGFR more effectively than existing clinical antibodies. PMID:20068188

  2. Protein kinase C is differentially regulated by thrombin, insulin, and epidermal growth factor in human mammary tumor cells

    SciTech Connect

    Gomez, M.L.; Tellez-Inon, M.T. ); Medrano, E.E.; Cafferatta, E.G.A. )

    1988-03-01

    The exposure of serum-deprived mammary tumor cells MCF-7 and T-47D to insulin, thrombin, and epidermal growth factor (EGF) resulted in dramatic modifications in the activity and in the translocation capacity of protein kinase C from cytosol to membrane fractions. Insulin induces a 600% activation of the enzyme after 5 h of exposure to the hormone in MCF-7 cells; thrombin either activates (200% in MCF-7) or down-regulates (in T-47D), and EGF exerts only a moderate effect. Thus, the growth factors studied modulate differentially the protein kinase C activity in human mammary tumor cells. The physiological significance of the results obtained are discussed in terms of the growth response elicited by insulin, thrombin, and EGF.

  3. Endocytic Adaptor Epidermal Growth Factor Receptor Substrate 15 (Eps15) Is Involved in the Trafficking of Ubiquitinated α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid Receptors*

    PubMed Central

    Lin, Amy; Man, Heng-Ye

    2014-01-01

    AMPA-type glutamate receptors (AMPARs) play a critical role in mediating fast excitatory synaptic transmission in the brain. Alterations in receptor expression, distribution, and trafficking have been shown to underlie synaptic plasticity and higher brain functions, including learning and memory, as well as brain dysfunctions such as drug addiction and psychological disorders. Therefore, it is essential to elucidate the molecular mechanisms that regulate AMPAR dynamics. We have shown previously that mammalian AMPARs are subject to posttranslational modification by ubiquitin, with AMPAR ubiquitination enhancing receptor internalization and reducing AMPAR cell surface expression. Here we report a crucial role for epidermal growth factor receptor substrate 15 (Eps15), an endocytic adaptor, in ubiquitination-dependent AMPAR internalization. We find that suppression or overexpression of Eps15 results in changes in AMPAR surface expression. Eps15 interacts with AMPARs, which requires Nedd4-mediated GluA1 ubiquitination and the ubiquitin-interacting motif of Eps15. Importantly, we find that Eps15 plays an important role in AMPAR internalization. Knockdown of Eps15 suppresses the internalization of GluA1 but not the mutant GluA1 that lacks ubiquitination sites, indicating a role of Eps15 for the internalization of ubiquitinated AMPARs. These results reveal a novel molecular mechanism employed specifically for the trafficking of the ubiquitin-modified AMPARs. PMID:25023288

  4. The major vault protein is a novel substrate for the tyrosine phosphatase SHP-2 and scaffold protein in epidermal growth factor signaling.

    PubMed

    Kolli, Sivanagarani; Zito, Christina I; Mossink, Marieke H; Wiemer, Erik A C; Bennett, Anton M

    2004-07-01

    The catalytic activity of the Src homology 2 (SH2) domain-containing tyrosine phosphatase, SHP-2, is required for virtually all of its signaling effects. Elucidating the molecular mechanisms of SHP-2 signaling, therefore, rests upon the identification of its target substrates. In this report, we have used SHP-2 substrate-trapping mutants to identify the major vault protein (MVP) as a putative SHP-2 substrate. MVP is the predominant component of vaults that are cytoplasmic ribonucleoprotein complexes of unknown function. We show that MVP is dephosphorylated by SHP-2 in vitro and it forms an enzyme-substrate complex with SHP-2 in vivo. In response to epidermal growth factor (EGF), SHP-2 associates via its SH2 domains with tyrosyl-phosphorylated MVP. MVP also interacts with the activated form of the extracellular-regulated kinases (Erks) in response to EGF and a constitutive complex between tyrosyl-phosphorylated MVP, SHP-2, and the Erks was detected in MCF-7 breast cancer cells. Using MVP-deficient fibroblasts, we demonstrate that MVP cooperates with Ras for optimal EGF-induced Elk-1 activation and is required for cell survival. We propose that MVP functions as a novel scaffold protein for both SHP-2 and Erk. The regulation of MVP tyrosyl phosphorylation by SHP-2 may play an important role in cell survival signaling. PMID:15133037

  5. Detection of K-ras Mutations in Predicting Efficacy of Epidermal Growth Factor Receptor Tyrosine Kinase (EGFR-TK) Inhibitor in Patients with Metastatic Colorectal Cancer

    PubMed Central

    Li, Ze; Liu, Xue-Wei; Chi, Zhao-Cheng; Sun, Bao-Sheng; Cheng, Ying; Cheng, Long-Wei

    2015-01-01

    Epidermal growth factor receptor tyrosine kinase (EGFR-TK) inhibitors are useful in treating different advanced human cancers; however, their clinical efficacy varies. This study detected K-ras mutations to predict the efficacy of EGFR-TK inhibitor cetuximab treatment on Chinese patients with metastatic colorectal cancer (mCRC). A total of 87 patients with metastatic colorectal cancer were treated with cetuximab for 2-16 months, in combination with chemotherapy between August 2008 and July 2012, and tissue samples were used to detect K-ras mutations. The data showed that K-ras mutation occurred in 27/87 (31%). The objective response rates and disease control rate in K-ras wild type and mutant patients were 42% (25/60) versus 11% (3/27) (p<0.05) and 60% (36/60) versus 26% (7/27) (p<0.05), respectively. Patients with the wild-type K-ras had significantly higher median survival times and progression-free survival, than patients with mutated K-ras (21 months versus 17 months, p=0.017; 10 months versus 6 months, p=0.6). These findings suggest that a high frequency of K-ras mutations occurs in Chinese mCRC patients and that K-ras mutation is required to select patients for eligibility for cetuximab therapy. Further prospective studies using a large sample size are needed to confirm these preliminary findings. PMID:25950441

  6. Acquired resistance mechanisms to tyrosine kinase inhibitors in lung cancer with activating epidermal growth factor receptor mutation--diversity, ductility, and destiny.

    PubMed

    Suda, Kenichi; Mizuuchi, Hiroshi; Maehara, Yoshihiko; Mitsudomi, Tetsuya

    2012-12-01

    Lung cancers that harbor somatic activating mutations in the gene for the epidermal growth factor receptor (EGFR) depend on mutant EGFR for their proliferation and survival; therefore, lung cancer patients with EGFR mutations often dramatically respond to orally available EGFR tyrosine kinase inhibitors (TKIs). However, emergence of acquired resistance is virtually inevitable, thus limiting improvement in patient outcomes. To elucidate and overcome this acquired resistance, multidisciplinary basic and clinical investigational approaches have been applied, using in vitro cell line models or samples obtained from lung cancer patients treated with EGFR-TKIs. These efforts have revealed several acquired resistance mechanisms and candidates, including EGFR secondary mutations (T790M and other rare mutations), MET amplification, PTEN downregulation, CRKL amplification, high-level HGF expression, FAS-NFκB pathway activation, epithelial-mesenchymal transition, and conversion to small cell lung cancer. Interestingly, cancer cells harbor potential destiny and ductility together in acquiring resistance to EGFR-TKIs, as shown in in vitro acquired resistance models. Molecular mechanisms of "reversible EGFR-TKI tolerance" that occur in early phase EGFR-TKI exposure have been identified in cell line models. Furthermore, others have reported molecular markers that can predict response to EGFR-TKIs in clinical settings. Deeper understanding of acquired resistance mechanisms to EGFR-TKIs, followed by the development of molecular target drugs that can overcome the resistance, might turn this fatal disease into a chronic disorder. PMID:22736441

  7. ARF6 promotes the formation of Rac1 and WAVE-dependent ventral F-actin rosettes in breast cancer cells in response to epidermal growth factor.

    PubMed

    Marchesin, Valentina; Montagnac, Guillaume; Chavrier, Philippe

    2015-01-01

    Coordination between actin cytoskeleton assembly and localized polarization of intracellular trafficking routes is crucial for cancer cell migration. ARF6 has been implicated in the endocytic recycling of surface receptors and membrane components and in actin cytoskeleton remodeling. Here we show that overexpression of an ARF6 fast-cycling mutant in MDA-MB-231 breast cancer-derived cells to mimick ARF6 hyperactivation observed in invasive breast tumors induced a striking rearrangement of the actin cytoskeleton at the ventral cell surface. This phenotype consisted in the formation of dynamic actin-based podosome rosette-like structures expanding outward as wave positive for F-actin and actin cytoskeleton regulatory components including cortactin, Arp2/3 and SCAR/WAVE complexes and upstream Rac1 regulator. Ventral rosette-like structures were similarly induced in MDA-MB-231 cells in response to epidermal growth factor (EGF) stimulation and to Rac1 hyperactivation. In addition, interference with ARF6 expression attenuated activation and plasma membrane targeting of Rac1 in response to EGF treatment. Our data suggest a role for ARF6 in linking EGF-receptor signaling to Rac1 recruitment and activation at the plasma membrane to promote breast cancer cell directed migration. PMID:25799492

  8. Effects of epidermal growth factor and keratinocyte growth factor on the growth of oropharyngeal keratinocytes in coculture with autologous fibroblasts in a three-dimensional matrix.

    PubMed

    Blaimauer, Karin; Watzinger, Elisabeth; Erovic, Boban M; Martinek, Helga; Jagersberger, Tamara; Thurnher, Dietmar

    2006-01-01

    Tissue engineering of oropharyngeal mucosa is rendered complex by the fact that oropharyngeal keratinocytes are difficult to culture in the long term and do not grow well after several subcultivations. Three populations of oropharyngeal keratinocytes were isolated by a method based on different levels of beta(1)-integrin expression. In particular, keratinocytes were isolated between cell fractions that adhere rapidly on collagen-IV-coated culture dishes (RAC-IV) and populations that are less adherent (RAC-IV-D). The total fraction of both subpopulations served as a control (RAC-IV-T). The epidermal growth factor (EGF) and the keratinocyte growth factor (KGF) were examined with regard to their effects on the growth of the three populations. Growth curves of all three cell fractions grown with or without EGF were generated, and different concentrations of EGF and KGF were tested. EGF did not change any growth characteristics of the cells, with the exception of the speed of growth. Best growth was achieved with a physiologic EGF concentration of 0.15-1.5 ng/ml and a KGF concentration of 15 ng/ml. Finally, we cocultured oropharyngeal keratinocytes and their autologous fibroblasts in a three-dimensional matrix using Matrigeltrade mark. Oropharyngeal keratinocytes grown in coculture formed larger colonies than keratinocytes grown without fibroblasts. In conclusion, we were able to optimize the supplement of EGF and KGF in standard medium for the long-term culture of primary oropharyngeal keratinocytes. The use of Matrigel as a scaffold for three-dimensional cocultures of oropharyngeal keratinocytes and fibroblasts might signify a step forward in the development of a transplantable mucosa construct. PMID:16804300

  9. Establishment of a 2-week canine skin organ culture model and its pharmacological modulation by epidermal growth factor and dexamethasone.

    PubMed

    Abramo, Francesca; Pirone, Andrea; Lenzi, Carla; Vannozzi, Iacopo; Della Valle, Maria Federica; Miragliotta, Vincenzo

    2016-09-01

    Although canine skin models are already available as either monocellular or organotypic cultures, they only partly recapitulate normal skin morphological features and function. The objective of this study was to establish a canine serum-free skin organ culture model and verify whether dexamethasone could rescue epidermal growth factor-induced changes. The study of morphological changes as a response to pharmacological substances may indeed help to investigate skin physiology and pathology. Normal skin was obtained from five client-owned dogs subjected to surgical procedures unrelated to dermatological conditions. Two experimental designs were performed: (i) two-week viability of the skin culture; (ii) dexamethasone (DMS) inhibition of epidermal growth factor (EGF)-induced effects. Serum-free submerged organ cultures were established in Williams' E medium supplemented with penicillin-streptomycin, insulin, hydrocortisone and l-glutamine. General morphological features of skin anatomical structures were well maintained up to day 14, scattered pyknotic nuclei were visible in the epidermis from day 7. Normal keratinocyte differentiation was confirmed by cytokeratin (K) 10, K14 and loricrin immunostaining. Epidermal thickness did not decrease throughout the study. A decrease in keratinocyte proliferation was observed at day 7 and 14. Treatment with EGF induced both keratinocyte proliferation and thickening of the epidermis; both responses were counteracted by DMS. Treatment with EGF increased the length of epithelial tongues at the edge of the skin explants; this effect was further enhanced by DMS supplementation. Our findings demonstrate the potential use of a full-thickness canine skin organ culture model for the study of skin physiology and pharmacological response to exogenous compounds, especially in the field of re-epithelialisation and keratinization disorders. PMID:27058637

  10. SRC promotes survival and invasion of lung cancers with epidermal growth factor receptor abnormalities and is a potential candidate for molecular-targeted therapy.

    PubMed

    Leung, Elaine Lai-Han; Tam, Issan Yee-San; Tin, Vicky Pui-Chi; Chua, Daniel Tsin-Tien; Sihoe, Alan Dart-Loon; Cheng, Lik-Cheung; Ho, James Chung-Man; Chung, Lap-Ping; Wong, Maria Pik

    2009-06-01

    Molecular-targeted therapy using tyrosine kinase inhibitors against epidermal growth factor receptor (EGFR) is an effective therapy for non-small cell lung cancer that harbor EGFR mutations. This study aimed to investigate the role of Src, a close EGFR associator, as a drug target in NSCLC cells with different EGFR genomic statuses. Src inhibition was achieved using 4-(4'-Phenoxyanilino)-6,7-dimethoxyquinazolinee (SKI-1) and the specificity of action was verified by RNA interference. The results showed that SKI-1 induced significant apoptosis in a dose-dependent manner in cancer cells with high basal Src activation. Activation of FAK and p130Cas was involved in Src-mediated invasion in SKI-1-sensitive cells. SKI-1 inhibited phosphorylation of EGFR as well as EGFR downstream effectors, such as signal transducers and activators of transcription 3/5, extracellular signal-regulated kinase 1/2 and AKT in the mutant cells but not the wild-type cells. This inhibition profile of EGFR implicates that induction of apoptosis and sensitivity of mutant cells to SKI treatment is mediated by EGFR and EGFR downstream pathways. Cotreatment with SKI-1 and gefitinib enhanced apoptosis in cancer cells that contained EGFR mutation and/or amplification. SKI-1 treatment alone induced significant apoptosis in H1975 cells known to be resistant to gefitinib. Src phosphorylation was shown by immunohistochemistry in around 30% of primary lung carcinomas. In 152 adenocarcinomas studied, p-Src was associated with EGFR mutations (P = 0.029). Overall, the findings indicated that Src could be a useful target for treatment of non-small cell lung cancer. Besides EGFR genomic mutations, other forms of EGFR and related family member abnormalities such as EGFR amplification might enhance SKI sensitivity. PMID:19491201

  11. Death-associated protein kinase 1 promotes growth of p53-mutant cancers.

    PubMed

    Zhao, Jing; Zhao, Dekuang; Poage, Graham M; Mazumdar, Abhijit; Zhang, Yun; Hill, Jamal L; Hartman, Zachary C; Savage, Michelle I; Mills, Gordon B; Brown, Powel H

    2015-07-01

    Estrogen receptor-negative (ER-negative) breast cancers are extremely aggressive and associated with poor prognosis. In particular, effective treatment strategies are limited for patients diagnosed with triple receptor-negative breast cancer (TNBC), which also carries the worst prognosis of all forms of breast cancer; therefore, extensive studies have focused on the identification of molecularly targeted therapies for this tumor subtype. Here, we sought to identify molecular targets that are capable of suppressing tumorigenesis in TNBCs. Specifically, we found that death-associated protein kinase 1 (DAPK1) is essential for growth of p53-mutant cancers, which account for over 80% of TNBCs. Depletion or inhibition of DAPK1 suppressed growth of p53-mutant but not p53-WT breast cancer cells. Moreover, DAPK1 inhibition limited growth of other p53-mutant cancers, including pancreatic and ovarian cancers. DAPK1 mediated the disruption of the TSC1/TSC2 complex, resulting in activation of the mTOR pathway. Our studies demonstrated that high DAPK1 expression causes increased cancer cell growth and enhanced signaling through the mTOR/S6K pathway; evaluation of multiple breast cancer patient data sets revealed that high DAPK1 expression associates with worse outcomes in individuals with p53-mutant cancers. Together, our data support targeting DAPK1 as a potential therapeutic strategy for p53-mutant cancers. PMID:26075823

  12. Death-associated protein kinase 1 promotes growth of p53-mutant cancers

    PubMed Central

    Zhao, Jing; Zhao, Dekuang; Poage, Graham M.; Mazumdar, Abhijit; Zhang, Yun; Hill, Jamal L.; Hartman, Zachary C.; Savage, Michelle I.; Mills, Gordon B.; Brown, Powel H.

    2015-01-01

    Estrogen receptor–negative (ER-negative) breast cancers are extremely aggressive and associated with poor prognosis. In particular, effective treatment strategies are limited for patients diagnosed with triple receptor–negative breast cancer (TNBC), which also carries the worst prognosis of all forms of breast cancer; therefore, extensive studies have focused on the identification of molecularly targeted therapies for this tumor subtype. Here, we sought to identify molecular targets that are capable of suppressing tumorigenesis in TNBCs. Specifically, we found that death-associated protein kinase 1 (DAPK1) is essential for growth of p53-mutant cancers, which account for over 80% of TNBCs. Depletion or inhibition of DAPK1 suppressed growth of p53-mutant but not p53-WT breast cancer cells. Moreover, DAPK1 inhibition limited growth of other p53-mutant cancers, including pancreatic and ovarian cancers. DAPK1 mediated the disruption of the TSC1/TSC2 complex, resulting in activation of the mTOR pathway. Our studies demonstrated that high DAPK1 expression causes increased cancer cell growth and enhanced signaling through the mTOR/S6K pathway; evaluation of multiple breast cancer patient data sets revealed that high DAPK1 expression associates with worse outcomes in individuals with p53-mutant cancers. Together, our data support targeting DAPK1 as a potential therapeutic strategy for p53-mutant cancers. PMID:26075823

  13. Label-free and dynamic evaluation of cell-surface epidermal growth factor receptor expression via an electrochemiluminescence cytosensor.

    PubMed

    Qiu, Youyi; Wen, Qingqing; Zhang, Lin; Yang, Peihui

    2016-04-01

    A label-free electrochemiluminescence (ECL) cytosensor was developed for dynamically evaluating of epidermal growth factor receptor (EGFR) expression on MCF-7 cancer cells based on the specific recognition of epidermal growth factor (EGF) with its receptor (EGFR). EGF-cytosensor was fabricated by in-situ electro-polymerization of polyaniline as substrate, using CdS quantum dots (CdS QDs) as ECL probe and gold nanoparticles (AuNPs) as a carrier for loading of EGF. AuNPs and CdS QDs were jointly attached on polyaniline surface to provide a sensitive and stable sensing interface, as well as a simple and label-free mode for ECL assay. Electron microscopy, atomic force microscopy (AFM) and electrochemical methods were employed to characterize the multilayer construction process of the sensing interface. The proposed EGF-cytosensor exhibited excellent analytical performance for MCF-7 cancer cells, ranging from 12 to 1.2 × 10(6) cells mL(-1), with a low detection limit of 12 cells mL(-1). Also, it was successfully applied in evaluating EGFR expression of cells surface, which was stimulated by some inhibitors or activator, and the results were confirmed by using flow cytometry and laser scanning confocal microscopy analysis. The proposed ECL cytosensor has potential applications in monitoring the dynamic variation of receptor molecules expression on cell surfaces in response to external stimulation by drugs and screening anti-cancer therapeutic agents. PMID:26838410

  14. Mitochondrial oxidative stress is modulated by oleic acid via an epidermal growth factor receptor-dependent activation of glutathione peroxidase.

    PubMed Central

    Duval, Carine; Augé, Nathalie; Frisach, Marie-Françoise; Casteilla, Louis; Salvayre, Robert; Nègre-Salvayre, Anne

    2002-01-01

    Mitochondria generate reactive oxygen species (ROS) under various pathophysiological conditions. In isolated mitochondria, fatty acids (FA) exhibit an uncoupling effect of the respiratory activity and modulate ROS generation. The effect of FA on intact cultured cells remains to be elucidated. The present study reports that FA (buffered by BSA) decrease the level of cellular ROS generated by the mitochondrial respiratory chain in cultured cells incubated with antimycin A. Both saturated and unsaturated FA are effective. This fatty acid-induced antioxidant effect does not result from a decrease in ROS production, but is subsequent to cellular glutathione peroxidase (GPx) activation and enhanced ROS degradation. This fatty acid-induced GPx activation is mediated through epidermal growth factor receptor (EGFR) signalling, since this response is (i) abrogated by the EGFR inhibitor AG1478 or by a defect in EGFR (in EGFR-deficient B82L fibroblasts), (ii) restored in B82LK+ cells expressing EGFR and (iii) mimicked by epidermal growth factor. These findings indicate that FA contribute to enhance cellular antioxidant defences against mitochondrial oxidative stress through EGFR-dependent GPx activation. PMID:12153397

  15. Epidermal growth factor-induced stimulation of proliferation and gene expression changes in the hypotrichous ciliate, Stylonychia lemnae.

    PubMed

    Mu, Weijie; Wang, Qi; Bourland, William A; Jiang, Chuanqi; Yuan, Dongxia; Pan, Xuming; Miao, Wei; Chen, Ying; Xiong, Jie

    2016-10-30

    Epidermal growth factor (EGF) induces proliferation of epidermal and epithelial tissues in mammals. However, the effect of EGF on the single-celled eukaryotes is not well characterized, especially in the protists. Ciliates, an important group of protists, are well characterized as both pollution indicators and model organisms for research. Stylonychia lemnae, is one of the most common free-living ciliates, widely distributed in ponds, rivers and marshes. Here, we report the role of EGF on cell proliferation stimulation in S. lemnae. The growth curve of S. lemnae was established, and the stimulation effect of EGF on the proliferation of S. lemnae was investigated. Based on the results, potential EGF receptors were identified in S. lemnae according to the conserved domains and gene expression. Differential gene expression revealed that EGF-induced genes in other organisms (e.g. antioxidant) also up-regulated in S. lemnae cells at propagation stages. In addition, our results showed that EGF could up-regulate the signal transduction-related processes in the decline stage of S. lemnae cells, indicating its potential function in apoptosis inhibition. In summary, this study reports findings of the first investigation of EGF effects in hypotrich ciliates, and establishes an additional system for the study of the molecular mechanisms of EGF actions in eukaryotic cell division and proliferation. PMID:27506312

  16. Human epidermal growth factor receptor 2 positive (HER2+) metastatic breast cancer: how the latest results are improving therapeutic options

    PubMed Central

    Jiang, Hanfang; Rugo, Hope S.

    2015-01-01

    Human epidermal growth factor receptor 2 positive (HER2+) metastatic breast cancer (MBC) remains an incurable disease, and approximately 25% of patients with HER2+ early breast cancer still relapse after adjuvant trastuzumab-based treatment. HER2 is a validated therapeutic target that remains relevant throughout the disease process. Recently, a number of novel HER2 targeted agents have become available, including lapatinib (a small molecule tyrosine kinase inhibitor of both HER2 and the epidermal growth factor receptor), pertuzumab (a new anti-HER2 monoclonal antibody) and ado-trastuzumab emtansine (T-DM1, a novel antibody–drug conjugate), which provide additional treatment options for patients with HER2+ MBC. The latest clinical trials have demonstrated improved outcome with treatment including pertuzumab or T-DM1 compared with standard HER2 targeted therapy. Here we review the clinical development of approved and investigational targeted agents for the treatment of HER2+ MBC, summarize the latest results of important clinical trials supporting use of these agents in the treatment of HER2+ MBC, and discuss how these results impact therapeutic options in clinical practice. PMID:26557900

  17. pH dependence of ligand-induced human epidermal growth factor receptor activation investigated by molecular dynamics simulations.

    PubMed

    Dong, Jun; Zhang, Yonghui; Zhang, Zhiyong

    2016-06-01

    The activation of human epidermal growth factor receptor (hEGFR) involves a large conformational change in its soluble extracellular domains (sECD, residues 1-620), from a tethered to an extended conformation upon binding of ligands, such as EGF. It has been reported that this dynamic process is pH-dependent, that is, hEGFR can be activated by EGF at high pH to form an extended dimer but remains as an inactive monomer at low pH. In this paper, we perform all-atom molecular dynamics (MD) simulations starting from the tethered conformation of sECD:EGF complex, at pH 5.0 and 8.5, respectively. Simulation results indicate that sECD:EGF shows different dynamic properties between the two pHs, and the complex may have a higher tendency of activation at pH 8.5. Twenty residues, including 13 histidines, in sECD:EGF have different protonation states between the two pHs (calculated by the H++ server). The charge distribution at pH 8.5 is more favorable for forming an extended conformation toward the active state of sECD than that at pH 5.0. Our study may shed light on the mechanism of pH dependence of hEGFR activation. Graphical abstract pH dependence of ligand-induced human epidermal growth factor receptor activation. PMID:27179806

  18. Anti-epidermal growth factor receptor monoclonal antibody cetuximab inhibits EGFR/HER-2 heterodimerization and activation.

    PubMed

    Patel, Dipa; Bassi, Rajiv; Hooper, Andrea; Prewett, Marie; Hicklin, Daniel J; Kang, Xiaoqiang

    2009-01-01

    Human carcinomas frequently express one or more members of the epidermal growth factor receptor family. Two family members, epidermal growth factor receptor (EGFR) and c-erbB2/neu (HER2), homodimerize or heterodimerize upon activation with ligand and trigger potent mechanisms of cellular proliferation, differentiation and migration. In this study, we examined the effect of the anti-EGFR monoclonal antibody Erbitux (cetuximab) on human tumor cells expressing both EGFR and HER2. Investigation of the effect of cetuximab on the activation of EGFR-EGFR, EGFR-HER2 and HER2-HER2 homodimers and heterodimers was conducted using the NCI-N87 human gastric carcinoma cell line. Treatment of NCI-N87 cells with cetuximab completely inhibited formation of EGFR-EGFR homodimers and EGFR-HER2 heterodimers. Activation of HER2-HER2 homodimers was not appreciably stimulated by exogenous ligand and was not inhibited by cetuximab treatment. Furthermore, cetuximab inhibited EGF-induced EGFR and HER2 phosphorylation in CAL27, NCI-H226 and NCI-N87 cells. The activation of downstream signaling molecules such as AKT, MAPK and STAT-3 were also inhibited by cetuximab in these cells. To examine the effect of cetuximab on the growth of tumors in vivo, athymic mice bearing established NCI-N87 or CAL27 xenografts were treated with cetuximab (1 mg, i.p., q3d). The growth of NCI-N87 and CAL27 tumors was significantly inhibited with cetuximab therapy compared to the control groups (p<0.0001 in both cases). In the CAL27 xenograft model, tumor growth inhibition by cetuximab treatment was similar to that by cetuximab and trastuzumab combination treatment. Immunohistological analysis of cetuximab-treated tumors showed a decrease in EGFR-HER2 signaling and reduced tumor cell proliferation. These results suggest that cetuximab may be useful in the treatment of carcinomas co-expressing EGFR and HER2. PMID:19082474

  19. Epidermal growth factor receptor gene polymorphisms are associated with prognostic features of breast cancer

    PubMed Central

    2014-01-01

    Background The epidermal growth factor receptor (EGFR) is differently expressed in breast cancer, and its presence may favor cancer progression. We hypothesized that two EGFR functional polymorphisms, a (CA)n repeat in intron 1, and a single nucleotide polymorphism, R497K, may affect EGFR expression and breast cancer clinical profile. Methods The study population consisted of 508 Brazilian women with unilateral breast cancer, and no distant metastases. Patients were genotyped for the (CA)n and R497K polymorphisms, and the associations between (CA)n polymorphism and EGFR transcript levels (n = 129), or between either polymorphism and histopathological features (n = 505) were evaluated. The REMARK criteria of tumor marker evaluation were followed. Results (CA)n lengths ranged from 14 to 24 repeats, comprehending 11 alleles and 37 genotypes. The most frequent allele was (CA)16 (0.43; 95% CI = 0.40–0.46), which was set as the cut-off length to define the Short allele. Variant (CA)n genotypes had no significant effect in tumoral EGFR mRNA levels, but patients with two (CA)n Long alleles showed lower chances of being negative for progesterone receptor (ORadjusted = 0.42; 95% CI = 0.19–0.91). The evaluation of R497K polymorphism indicated a frequency of 0.21 (95% CI = 0.19 – 0.24) for the variant (Lys) allele. Patients with variant R497K genotypes presented lower proportion of worse lymph node status (pN2 or pN3) when compared to the reference genotype Arg/Arg (ORadjusted = 0.32; 95% CI = 0.17–0.59), which resulted in lower tumor staging (ORadjusted = 0.34; 95% CI = 0.19-0.63), and lower estimated recurrence risk (OR = 0.50; 95% CI = 0.30-0.81). The combined presence of both EGFR polymorphisms (Lys allele of R497K and Long/Long (CA)n) resulted in lower TNM status (ORadjusted = 0.22; 95% CI = 0.07-0.75) and lower ERR (OR = 0.25; 95% CI = 0.09-0.71). When tumors were stratified according to biological

  20. Epidermal growth factor and Ras regulate gene expression in GH4 pituitary cells by separate, antagonistic signal transduction pathways.

    PubMed Central

    Pickett, C A; Gutierrez-Hartmann, A

    1995-01-01

    We have previously demonstrated that epidermal growth factor (EGF) produces activation of the rat prolactin (rPRL) promoter in GH4 neuroendocrine cells via a Ras-independent mechanism. This Ras independence of the EGF response appears to be cell rather than promoter specific. Oncogenic Ras also produces activation of the rPRL promoter when transfected into GH4 cells and requires the sequential activation of Raf kinase, mitogen-activated protein (MAP) kinase, and c-Ets-1/GHF-1 to mediate this response. In these studies, we have investigated the interaction between EGF and Ras in stimulating rPRL promoter activity and the role of Raf and MAP kinases in mediating the EGF response. We have also examined the role of several transcription factors and used various promoter mutants of the rPRL gene in order to better define the trans- and cis-acting components of the EGF response. EGF treatment of GH4 cells inhibits activation of the rPRL promoter produced by transfection of V12Ras from 24- to 4-fold in an EGF dose-dependent manner. This antagonistic effect of EGF and Ras is mutual in that transfection of V12Ras also blocks EGF-induced activation of the rPRL promoter in a Ras dose-dependent manner, from 5.5- to 1.6-fold. Transfection of a plasmid encoding the dominant-negative Raf C4 blocks Ras-induced activation by 66% but fails to inhibit EGF-mediated activation of the rPRL promoter. Similarly, transfection of a construct encoding an inhibitory form of MAP kinase decreases the Ras response by 50% but does not inhibit the EGF response. Previous studies have demonstrated that c-Ets-1 is necessary and that GHF-1 acts synergistically with c-Ets-1 in the Ras response of the rPRL promoter. In contrast, overexpression of neither c-Ets-1 nor GHF-1 enhanced EGF-mediated activation of the rPRL promoter, and dominant-negative forms of these transcription factors failed to inhibit the EGF response. Using 5' deletion and site-specific mutations, we have mapped the EGF response to two

  1. Proliferation of the intestinal epithelium and of the regenerating liver of rats with epidermal growth factor deficiency

    SciTech Connect

    Ivashchenko, Yu.D.; Gut, I.T.; Osipova, L.A.; Garmanchuk, L.V.; Khranovskaya, L.N.; Bykorez, A.I.

    1986-09-01

    The presence of specific receptors for epidermal growth factor (EGF) in hepatocytes and enterocytes, changes in their number during the period of postresection regeneration of the liver, and also the inexplicably high concentrations of this powerful growth factor in the saliva determined the main purpose of this investigation, which was to study the effect of EGF deficiency, produced by submandibular sialadenectomy, on proliferation of the intestinal and hepatic epithelium during postresection regeneration of these organs. The experiments were carried out on rats that received an intraperitoneal injection of /sup 3/H-thymidine. The specific activity of /sup 125/I-EGF was 12,000 cpm/ng. The EGF concentration in the rats' blood serum, saliva, and urine was determined by radioimmunoassay. Bound /sup 125/I-EGF was precipitated. Results indicate that EGF is a regulatory factor which modifies proliferation.

  2. Study of lung-metastasized prostate cancer cell line chemotaxis to epidermal growth factor with a BIOMEMS device

    NASA Astrophysics Data System (ADS)

    Tata, Uday; Rao, Smitha M. N.; Sharma, Akash; Pabba, Krishna; Pokhrel, Kushal; Adhikari, Bandita; Lin, Victor K.; Chiao, J.-C.

    2012-09-01

    Understanding the effects of different growth factors on cancer metastasis will enable researchers to develop effective post-surgery therapeutic strategies to stop the spread of cancer. Conventional Boyden chamber assays to evaluate cell motility in metastasis studies require high volumes of reagents and are impractical for high-throughput analysis. A microfluidic device was designed for arrayed assaying of prostate cancer cell migration towards different growth factors. The device was created with polydimethylsiloxane (PDMS) and featured two wells connected by 10 micro channels. One well was for cell seeding and the other well for specific growth factors. Each channel has a width of 20 μm, a length of 1 mm and a depth of 10 μm. The device was placed on a culture dish and primed with growth media. Lung-metastasized cells in suspension of RPMI 1640 media1 supplemented with 2% of fetal bovine serum (FBS) were seeded in the cell wells. Cell culture media with epidermal growth factor (EGF) of 25, 50, 75, 100 and 125 ng ml‑1 concentrations were individually added in the respective growth factor wells. A 5-day time-lapsed study of cell migration towards the chemoattractant was performed. The average numbers of cells per device in the microchannels were obtained for each attractant condition. The results indicated migration of cells increased from 50 to 100 ng ml‑1 of EGF and significantly decreased at 125 ng ml‑1 of EGF, as compared to control.

  3. Althaea rosea Cavanil and Plantago major L. suppress neoplastic cell transformation through the inhibition of epidermal growth factor receptor kinase.

    PubMed

    Choi, Eun-Sun; Cho, Sung-Dae; Shin, Ji-Ae; Kwon, Ki Han; Cho, Nam-Pyo; Shim, Jung-Hyun

    2012-10-01

    For thousands of years in Asia, Althaea rosea Cavanil (ARC) and Plantago major L. (PML) have been used as powerful non-toxic therapeutic agents that inhibit inflammation. However, the anticancer mechanisms and molecular targets of ARC and PML are poorly understood, particularly in epidermal growth factor (EGF)-induced neoplastic cell transformation. The aim of this study was to evaluate the chemopreventive effects and mechanisms of the methanol extracts from ARC (MARC) and PML (MPML) in EGF-induced neoplastic cell transformation of JB6 P+ mouse epidermal cells using an MTS assay, anchorage-independent cell transformation assay and western blotting. Our results showed that MARC and MPML significantly suppressed neoplastic cell transformation by inhibiting the kinase activity of the EGF receptor (EGFR). The activation of EGFR by EGF was suppressed by MARC and MPML treatment in EGFR(+/+) cells, but not in EGFR(-/-) cells. In addition, MARC and MPML inhibited EGF-induced cell proliferation in EGFR-expressing murine embryonic fibroblasts (EGFR(+/+)). These results strongly indicate that EGFR targeting by MARC and MPML may be a good strategy for chemopreventive or chemotherapeutic applications. PMID:22767187

  4. In Vivo Growth of Porcine Reproductive and Respiratory Syndrome Virus Engineered Nsp2 Deletion Mutants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prior studies on PRRSV strain VR-2332 nonstructural protein 2 (nsp2) had shown that as much as 403 amino acids could be removed from the hypervariable region without losing virus viability in vitro. We utilized selected nsp2 deletion mutants to examine in vivo growth. Young swine (4 pigs/group; 5 co...

  5. Potent endogenous allelopathic compounds in Lepidium sativum seed exudate: effects on epidermal cell growth in Amaranthus caudatus seedlings.

    PubMed

    Iqbal, Amjad; Fry, Stephen C

    2012-04-01

    Many plants exude allelochemicals--compounds that affect the growth of neighbouring plants. This study reports further studies of the reported effect of cress (Lepidium sativum) seed(ling) exudates on seedling growth in Amaranthus caudatus and Lactuca sativa. In the presence of live cress seedlings, both species grew longer hypocotyls and shorter roots than cress-free controls. The effects of cress seedlings were allelopathic and not due to competition for resources. Amaranthus seedlings grown in the presence of cress allelochemical(s) had longer, thinner hypocotyls and shorter, thicker roots--effects previously attributed to lepidimoide. The active principle was more abundant in cress seed exudate than in seedling (root) exudates. It was present in non-imbibed seeds and releasable from heat-killed seeds. Release from live seeds was biphasic, starting rapidly but then continuing gradually for 24 h. The active principle was generated by aseptic cress tissue and was not a microbial digestion product or seed-treatment chemical. Crude seed exudate affected hypocotyl and root growth at ~25 and ~450 μg ml(-1) respectively. The exudate slightly (28%) increased epidermal cell number along the length of the Amaranthus hypocotyl but increased total hypocotyl elongation by 129%; it resulted in a 26% smaller hypocotyl circumference but a 55% greater epidermal cell number counted round the circumference. Therefore, the effect of the allelochemical(s) on organ morphology was imposed primarily by regulation of cell expansion, not cell division. It is concluded that cress seeds exude endogenous substances, probably including lepidimoide, that principally regulate cell expansion in receiver plants. PMID:22268144

  6. Epidermal growth factor receptor gene-amplified MDA-468 breast cancer cell line and its nonamplified variants.

    PubMed Central

    Filmus, J; Trent, J M; Pollak, M N; Buick, R N

    1987-01-01

    We have recently reported (J. Filmus, M. N. Pollak, R. Cailleau, and R. N. Buick, Biochem. Biophys. Res. Commun. 128:898-905, 1985) that MDA-468, a human breast cancer cell line with a high number of epidermal growth factor (EGF) receptors, has an amplified EGF receptor gene and is growth inhibited in vitro pharmacological doses of EGF. We have derived several MDA-468 clonal variants which are resistant to EGF-induced growth inhibition. These clones had a number of EGF receptors, similar to normal human fibroblasts, and had lost the EGF receptor gene amplification. Karyotype analysis showed that MDA-468 cells had an abnormally banded region (ABR) in chromosome 7p which was not present in the variants. It was shown by in situ hybridization that the amplified EGF receptor sequences were located in that chromosome, 7pABR. Five of the six variants studied were able to generate tumors in nude mice, but their growth rate was significantly lower than that of tumors derived from the parental cell line. The variant that was unable to produce tumors was found to be uniquely dependent on EGF for growth in soft agar. Images PMID:3494191

  7. Expression of epidermal growth factor receptor, p53, Bcl2, vascular endothelial growth factor, cyclooxygenase-2, cyclin D1, human epidermal receptor-2 and Ki-67: Association with clinicopathological profiles and outcomes in gallbladder carcinoma

    PubMed Central

    Doval, Dinesh Chandra; Azam, Saud; Sinha, Rupal; Batra, Ullas; Mehta, Anurag

    2014-01-01

    Background: The present study observed the expression levels of epidermal growth factor receptor (EGFR), p53, Bcl2, vascular endothelial growth factor (VEGF), cyclooxygenase-2 (cox-2), cyclin D1, human epidermal receptor-2 (HER-2) and Ki-67 in gallbladder carcinoma (GBC) and their association with clinicopathological profiles and disease outcomes. Materials and Methods: Fifty consecutive samples of cholecystectomy/biopsies from GB bed (archived formalin fixed paraffin embedded tissue blocks of different stages of GBC) were included, and patient details related to their demographic profile, investigations, tumor profile, treatment, and follow-up were recorded. Immunohistochemistry was performed to study the expression levels. Results: Overexpression of EGFR, p53, Bcl2, VEGF, cox-2, cyclin D1 and HER-2 was observed as 74%, 44%, 8%, 34%, 66%, 64%, and 4%, respectively. Association of Bcl2 overexpression in mucinous morphology (40%, P = 0.045), cox-2 overexpression in early stage (I/II) tumors (87.5%, P = 0.028) and VEGF overexpression in alive patients (47.1%, P = 0.044) was observed. Co-expression of EGFR and p53 were statistically significant (P = 0.033). Ki-67 labeling index was significantly higher in patients in age group <40 years (P = 0.027), and poorly differentiated tumors (P = 0.023). Advanced disease and poorly differentiated tumors showed a significantly poor median survival (P < 0.05). Conclusion: EGFR, cox-2 and cyclin D1 were largely overexpressed. Advanced tumor stages and poorly differentiated tumors are predictors of poor survival. PMID:25225463

  8. Epidermal growth factor-expressing Lactococcus lactis enhances growth performance of early-weaned pigs fed diets devoid of blood plasma.

    PubMed

    Bedford, A; Li, Z; Li, M; Ji, S; Liu, W; Huai, Y; de Lange, C F M; Li, J

    2012-12-01

    The effect of supplementing Lactococcus lactis (L. lactis) that was engineered to express epidermal growth factor (EGF-LL) to early-weaned pigs fed diets with typical levels of blood plasma (5%) or diets without blood plasma [blood plasma was substituted with soybean (Glycine max) meal and fish meal, based on amino acid supply] was examined. A total of 108 weaned piglets (19-26 d of age; mean initial BW 6.58 kg; 9 pigs per pen) were fed ad libitum according to a 2-phase feeding program without growth promoters. Three pens were assigned to each of 4 treatments: i) blood plasma-containing diet with blank bacterial growth medium (BP-Con), ii) blood plasma-containing diet with fermented EGF-LL (BP-EGF), iii) blood plasma-free diet with blank bacterial growth medium (BPF-Con), and iv) blood plasma-free diet with fermented EGF-LL (BPF-EGF). The amount of epidermal growth factor (EGF) was determined in the fermentation product and pigs were allotted 60 μg EGF/kg BW/d for 3 wk postweaning. There were no differences in overall growth performance between BP-Con and BP-EGF pigs and no differences in overall growth performance between LoCon and BPF-EGF pigs. Pigs fed BPF-EGF showed increased daily BW gain (410 vs. 260 g/d; P < 0.01) and gain:feed (0.67 vs. 0.58; P < 0.05) compared to BPF-Con pigs in wk 3 postweaning; this was comparable to values for the BP-Con group (400 g/d and 0.64). These results indicate that supplementation with EGF-LL can be effective in enhancing the performance of early-weaned piglets fed a low complexity diet and reduces the need for feeding high-quality animal proteins and antibiotics. PMID:23365266

  9. Mutant forms of growth factor-binding protein-2 reverse BCR-ABL-induced transformation.

    PubMed Central

    Gishizky, M L; Cortez, D; Pendergast, A M

    1995-01-01

    Growth factor-binding protein 2 (Grb2) is an adaptor protein that links tyrosine kinases to Ras. BCR-ABL is a tyrosine kinase oncoprotein that is implicated in the pathogenesis of Philadelphia chromosome (Ph1)-positive leukemias. Grb2 forms a complex with BCR-ABL and the nucleotide exchange factor Sos that leads to the activation of the Ras protooncogene. In this report we demonstrate that Grb2 mutant proteins lacking amino- or carboxyl-terminal src homology SH3 domains suppress BCR-ABL-induced Ras activation and reverse the oncogenic phenotype. The Grb2 SH3-deletion mutant proteins bind to BCR-ABL and do not impair tyrosine kinase activity. Expression of the Grb2 SH3-deletion mutant proteins in BCR-ABL-transformed Rat-1 fibroblasts and in the human Ph1-positive leukemic cell line K562 inhibits their ability to grow as foci in soft agar and form tumors in nude mice. Furthermore, expression of the Grb2 SH3-deletion mutants in K562 cells induced their differentiation. Because Ras plays an important role in signaling by receptor and nonreceptor tyrosine kinases, the use of interfering mutant Grb2 proteins may be applied to block the proliferation of other cancers that depend in part on activated tyrosine kinases for growth. Images Fig. 1 Fig. 2 Fig. 3 PMID:7479904

  10. Human Epidermal Growth Factor Receptor Family-Targeted Therapies in the Treatment of HER2-Overexpressing Breast Cancer

    PubMed Central

    Eroglu, Zeynep; Tagawa, Tomoko

    2014-01-01

    Breast cancer characterized by overexpression of human epidermal growth factor receptor 2 (HER2) has been associated with more aggressive disease progression and a poorer prognosis. Although an improved understanding of breast cancer pathogenesis and the role of HER2 signaling has resulted in significant survival improvements in the past 20 years, resistance to HER2-targeted therapy remains a concern. A number of strategies to prevent or overcome resistance to HER2-targeted therapy in breast cancer are being evaluated. This article provides a comprehensive review of (a) the role of HER2 signaling in breast cancer pathogenesis, (b) potential receptor and downstream therapeutic targets in breast cancer to overcome resistance to HER2-targeted therapy, and (c) clinical trials evaluating agents targeting one or more members of the HER family and/or downstream pathways for the treatment of breast cancer, with a focus on metastatic disease. PMID:24436312

  11. Epiderstatin, a new inhibitor of the mitogenic activity induced by epidermal growth factor. I. Taxonomy, fermentation, isolation and characterization.

    PubMed

    Osada, H; Sonoda, T; Kusakabe, H; Isono, K

    1989-11-01

    Inhibitors of mitogenic activity induced by epidermal growth factor (EGF) were screened from culture broths of soil microorganisms. A strain of actinomycetes has been found to produce a new glutarimide antibiotic named epiderstatin which inhibits the incorporation of [3H]thymidine into quiescent animal cells stimulated by EGF. Taxonomic studies have revealed that the producing strain belongs to a subspecies of Streptomyces pulveraceus, thus the name, Streptomyces pulveraceus subsp. epiderstagenes was given to this strain. The molecular formula (C15H20N2O4) and UV profile (lambda max 295 nm) of the antibiotic are distinct from other known antibiotics. It inhibited the incorporation of [3H]thymidine into quiescent cells stronger than into growing cells. PMID:2584144

  12. Hepatitis C Virus Induces Epidermal Growth Factor Receptor Activation via CD81 Binding for Viral Internalization and Entry

    PubMed Central

    Diao, Jingyu; Pantua, Homer; Ngu, Hai; Komuves, Laszlo; Diehl, Lauri; Schaefer, Gabriele

    2012-01-01

    While epidermal growth factor receptor (EGFR) has been shown to be important in the entry process for multiple viruses, including hepatitis C virus (HCV), the molecular mechanisms by which EGFR facilitates HCV entry are not well understood. Using the infectious cell culture HCV model (HCVcc), we demonstrate that the binding of HCVcc particles to human hepatocyte cells induces EGFR activation that is dependent on interactions between HCV and CD81 but not claudin 1. EGFR activation can also be induced by antibody mediated cross-linking of CD81. In addition, EGFR ligands that enhance the kinetics of HCV entry induce EGFR internalization and colocalization with CD81. While EGFR kinase inhibitors inhibit HCV infection primarily by preventing EGFR endocytosis, antibodies that block EGFR ligand binding or inhibitors of EGFR downstream signaling have no effect on HCV entry. These data demonstrate that EGFR internalization is critical for HCV entry and identify a hitherto-unknown association between CD81 and EGFR. PMID:22855500

  13. Prediction of Inhibitory Activity of Epidermal Growth Factor Receptor Inhibitors Using Grid Search-Projection Pursuit Regression Method

    PubMed Central

    Du, Hongying; Hu, Zhide; Bazzoli, Andrea; Zhang, Yang

    2011-01-01

    The epidermal growth factor receptor (EGFR) protein tyrosine kinase (PTK) is an important protein target for anti-tumor drug discovery. To identify potential EGFR inhibitors, we conducted a quantitative structure–activity relationship (QSAR) study on the inhibitory activity of a series of quinazoline derivatives against EGFR tyrosine kinase. Two 2D-QSAR models were developed based on the best multi-linear regression (BMLR) and grid-search assisted projection pursuit regression (GS-PPR) methods. The results demonstrate that the inhibitory activity of quinazoline derivatives is strongly correlated with their polarizability, activation energy, mass distribution, connectivity, and branching information. Although the present investigation focused on EGFR, the approach provides a general avenue in the structure-based drug development of different protein receptor inhibitors. PMID:21811593

  14. Structural features that specify tyrosine kinase activity deduced from homology modeling of the epidermal growth factor receptor.

    PubMed Central

    Knighton, D R; Cadena, D L; Zheng, J; Ten Eyck, L F; Taylor, S S; Sowadski, J M; Gill, G N

    1993-01-01

    To identify structural features that distinguish protein-tyrosine kinases from protein-serine kinases, a molecular model of the kinase domain of epidermal growth factor receptor was constructed by substituting its amino acid sequence for the amino acid sequence of the catalytic subunit of cAMP-dependent protein kinase in a 2.7-A refined crystallographic model. General folding was conserved as was the configuration of invariant residues at the active site. Two sequence motifs that distinguish the two families correspond to loops that converge at the active site of the enzyme. A conserved arginine in the catalytic loop is proposed to interact with the gamma phosphate of ATP. The second loop provides a binding surface that positions the tyrosine of the substrate. A positively charged surface provides additional sites for substrate recognition. Images Fig. 2 Fig. 3 Fig. 4 PMID:8389462

  15. The Microtubule-associated Histone Deacetylase 6 (HDAC6) Regulates Epidermal Growth Factor Receptor (EGFR) Endocytic Trafficking and Degradation*

    PubMed Central

    Gao, Ya-sheng; Hubbert, Charlotte C.; Yao, Tso-Pang

    2010-01-01

    Histone deacetylase 6 (HDAC6) is a microtubule-associated deacetylase with tubulin deacetylase activity, and it binds dynein motors. Recent studies revealed that microtubule acetylation affects the affinity and processivity of microtubule motors. These unique properties implicate a role for HDAC6 in intracellular organelle transport. Here, we show that HDAC6 associates with the endosomal compartments and controls epidermal growth factor receptor (EGFR) trafficking and degradation. We found that loss of HDAC6 promoted EGFR degradation. Mechanistically, HDAC6 deficiency did not cause aberrant EGFR internalization and recycling. Rather, it resulted in accelerated segregation of EGFR from early endosomes and premature delivery of EGFR to the late endosomal and lysosomal compartments. The deregulated EGFR endocytic trafficking was accompanied by an increase in microtubule-dependent movement of EGFR-bearing vesicles, revealing a novel regulation of EGFR vesicular trafficking and degradation by the microtubule deacetylase HDAC6. PMID:20133936

  16. Design and Synthesis of Novel Schiff Base-Benzothiazole Hybrids as Potential Epidermal Growth Factor Receptor (EGFR) Inhibitors.

    PubMed

    Singh, Meenakshi; Singh, Sudhir Kumar; Thakur, Bhushan; Ray, Pritha; Singh, Sushil K

    2016-01-01

    A series of novel Schiff bases -benzothiazole hybrids was designed, synthesized and evaluated for their anticancer activity by MTT assay and western blot method. Antiproliferative screening indicated that compound containing dihydroxy substituents had potent inhibitory activity with IC50 value 34µg/ml against SKOV3, A2780-S and A2780-CR cell lines. It showed more potent cytotoxicity in combination with cisplatin and paclitaxel than alone in the selected cell lines (SKOV3, A2780 and A2780-CR models). The in vitro cytotoxicity of the compounds on IOSE 364 cell line was evaluated to establish the selectivity. Molecular docking study exhibited good binding against epidermal growth factor receptor, which was further ascertained by immunoblot assay using specific antibody against phosphorylated EGFR, and thus unravelling the targeted anticancer mechanism. PMID:26443027

  17. Transactivation of Epidermal Growth Factor Receptor by G Protein-Coupled Receptors: Recent Progress, Challenges and Future Research

    PubMed Central

    Wang, Zhixiang

    2016-01-01

    Both G protein-coupled receptors (GPCRs) and receptor-tyrosine kinases (RTKs) regulate large signaling networks, control multiple cell functions and are implicated in many diseases including various cancers. Both of them are also the top therapeutic targets for disease treatment. The discovery of the cross-talk between GPCRs and RTKs connects these two vast signaling networks and complicates the already complicated signaling networks that regulate cell signaling and function. In this review, we focus on the transactivation of epidermal growth factor receptor (EGFR), a subfamily of RTKs, by GPCRs. Since the first report of EGFR transactivation by GPCR, significant progress has been made including the elucidation of the mechanisms underlying the transactivation. Here, we first provide a basic picture for GPCR, EGFR and EGFR transactivation by GPCR. We then discuss the progress made in the last five years and finally provided our view of the future challenge and future researches needed to overcome these challenges. PMID:26771606

  18. Cytoplasmic domains determine signal specificity, cellular routing characteristics and influence ligand binding of epidermal growth factor and insulin receptors.

    PubMed Central

    Riedel, H; Dull, T J; Honegger, A M; Schlessinger, J; Ullrich, A

    1989-01-01

    The cell surface receptors for insulin and epidermal growth factor (EGF) both employ a tyrosine-specific protein kinase activity to fulfil their distinct biological roles. To identify the structural domains responsible for various receptor activities, we have generated chimeric receptor polypeptides consisting of major EGF and insulin receptor structural domains and examined their biochemical properties and cellular signalling activities. The EGF-insulin receptor hybrids are properly synthesized and transported to the cell surface, where they form binding competent structures that are defined by the origin of their extracellular domains. While their ligand binding affinities are altered, we find that these chimeric receptors are fully functional in transmitting signals across the plasma membrane and into the cell. Thus, EGF receptor and insulin receptor cytoplasmic domain signalling capabilities are independent of their new heterotetrameric or monomeric environments respectively. Furthermore, the cytoplasmic domains carry the structural determinants that define kinase specificity, mitogenic and transforming potential, and receptor routing. Images PMID:2583088

  19. Effect of epidermal growth factor/urogastrone on glycosaminoglycan synthesis and accumulation in vitro in the developing mouse palate.

    PubMed

    Turley, E A; Hollenberg, M D; Pratt, R M

    1985-01-01

    Epidermal growth factor/urogastrone (EGF-URO) has previously been implicated in murine secondary-palate formation. We report here that, in correlation with its effects on palate fusion, EGF-URO in physiological amounts (1.7 nmol/l) markedly affects glycosaminoglycan (GAG) production in organ cultures of mouse palate tissue; the effects of EGF-URO are dependent on the developmental stage of the palate. GAG production, particularly that of hyaluronic acid (HA), is stimulated two- to eight-fold by EGF-URO in cultures of palate tissue obtained between days 11-12 and 13-15 of development; by the time of birth, EGF-URO no longer stimulates GAG production in such cultures. EGF-URO increases the amount and alters the distribution of HA within the palate. The results suggest a role for EGF-URO and for HA in the process of normal palatal development. PMID:3888761

  20. Receptor-purified, Bolton-Hunter radioiodinated, recombinant, human epidermal growth factor: An improved radioligand for receptor studies

    SciTech Connect

    Kermode, J.C.; Tritton, T.R. )

    1990-01-01

    We report an assessment of the applicability of the Bolton-Hunter method to the radioiodination of epidermal growth factor (EGF). Recombinant human EGF (hEGF) could be radioiodinated successfully by this method, whereas murine EGF could not. Bolton-Hunter {sup 125}I-labeled hEGF was compared with commercial 125I-labeled hEGF prepared by the chloramine-T radioiodination method. Neither radioligand was sufficiently pure for a detailed characterization of the purportedly heterogeneous pattern of binding of EGF to its receptors. A procedure based on receptor adsorption was thus developed for repurification of the Bolton-Hunter 125I-labeled hEGF. This provided a much purer radioligand suitable for detailed studies of receptor-binding heterogeneity.

  1. Epidermal growth factor receptor-dependent stimulation of amphiregulin expression in androgen-stimulated human prostate cancer cells.

    PubMed Central

    Sehgal, I; Bailey, J; Hitzemann, K; Pittelkow, M R; Maihle, N J

    1994-01-01

    Amphiregulin is a heparin-binding epidermal growth factor (EGF)-related peptide that binds to the EGF receptor (EGF-R) with high affinity. In this study, we report a role for amphiregulin in androgen-stimulated regulation of prostate cancer cell growth. Androgen is known to enhance EGF-R expression in the androgen-sensitive LNCaP human prostate carcinoma cell line, and it has been suggested that androgenic stimuli may regulate proliferation, in part, through autocrine mechanisms involving the EGF-R. In this study, we demonstrate that LNCaP cells express amphiregulin mRNA and peptide and that this expression is elevated by androgenic stimulation. We also show that ligand-dependent EGF-R stimulation induces amphiregulin expression and that androgenic effects on amphiregulin synthesis are mediated through this EGF-R pathway. Parallel studies using the estrogen-responsive breast carcinoma cell line, MCF-7, suggest that regulation of amphiregulin by estrogen may also be mediated via an EGF-R pathway. In addition, heparin treatment of LNCaP cells inhibits androgen-stimulated cell growth further suggesting that amphiregulin can mediate androgen-stimulated LNCaP proliferation. Together, these results implicate an androgen-regulated autocrine loop composed of amphiregulin and its receptor in prostate cancer cell growth and suggest that the mechanism of steroid hormone regulation of amphiregulin synthesis may occur through androgen upregulation of the EGF-R and subsequent receptor-dependent pathways. Images PMID:8049525

  2. Differential regulation of human Eag1 channel expression by serum and epidermal growth factor in lung and breast cancer cells

    PubMed Central

    Acuña-Macías, Isabel; Vera, Eunice; Vázquez-Sánchez, Alma Yolanda; Mendoza-Garrido, María Eugenia; Camacho, Javier

    2015-01-01

    Oncogenic ether à-go-go-1 (Eag1) potassium channels are overexpressed in most primary human solid tumors. Low oxygen and nutrient/growth factor concentrations play critical roles in tumorigenesis. However, the mechanisms by which tumor cells survive and proliferate under growth factor-depleted conditions remain elusive. Here, we investigated whether serum-deprived conditions and epidermal growth factor (EGF) regulate Eag1 expression in human lung and breast cancer cells. The human cancer cell lines A549 and MCF-7 (from the lungs and breast, respectively) were obtained from the American Type Culture Collection and cultured following the manufacturer’s recommendations. Eag1 gene and protein expression were studied by real-time PCR and immunocytochemistry, respectively. Cell proliferation was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and ERK1/2 phosphorylation was investigated by Western blot. Serum-deprived conditions increased Eag1 mRNA and protein expression in both cell lines. This Eag1 upregulation was prevented by EGF and the ERK1/2 inhibitor U0126 in only lung cancer cells; vascular endothelial growth factor did not prevent Eag1 upregulation. Our results suggest that Eag1 may act as a survival and mitogenic factor under low-serum and nutrient conditions and may be a clinical target during the early stages of tumor development. PMID:26527881

  3. Surface tethered epidermal growth factor protects proliferating and differentiating multipotential stromal cells from FasL induced apoptosis

    PubMed Central

    Rodrigues, Melanie; Blair, Harry; Stockdale, Linda; Griffith, Linda; Wells, Alan

    2012-01-01

    Multipotential stromal cells, or mesenchymal stem cells, (MSC) have ben proposed as aids in regenerating bone and adipose tissues, as these cells form osteoblasts and adipocytes. A major obstacle to this use of MSC is the initial loss of cells post-implantation. This cell death in part, is due to ubiquitous non-specific inflammatory cytokines such as FasL generated in the implant site. Our group previously found that soluble epidermal growth factor (sEGF) promotes MSC expansion. Further, tethering EGF onto a two-dimensional surface (tEGF) altered MSC responses, by restricting epidermal growth factor receptor (EGFR) to the cell surface, causing sustained activation of EGFR, and promoting survival from FasL-induced death. sEGF by causing internalization of EGFR does not support MSC survival. However, for tEGF to be useful in bone regeneration, it needs to allow for MSC differentiation into osteoblasts while also protecting emerging osteoblasts from apoptosis. tEGF did not block induced differentiation of MSCs into osteoblasts, or adipocytes, a common default MSC-differentiation pathway. MSC-derived pre-osteoblasts showed increased Fas levels and became more susceptible to FasL induced death, which tEGF prevented. Differentiating adipocytes underwent a reduction in Fas expression and became resistant to FasL-induced death, with tEGF having no further survival effect. tEGF protected undifferentiated MSC from combined insults of FasL, serum deprivation and physiologic hypoxia. Additionally, tEGF was dominant in the face of sEGF to protect MSC from FasL-induced death. Our results suggest that MSCs and differentiating osteoblasts need protective signals to survive in the inflammatory wound milieu and that tEGF can serve this function. PMID:22948863

  4. The prognostic significance of tumor epidermal growth factor receptor (EGFR) expression change after neoadjuvant chemoradiation in patients with rectal adenocarcinoma

    PubMed Central

    Dvořák, Josef; Urbanec, Marek; Bluml, Antonin; Čermáková, Eva; Bartoš, Jiří; Petera, Jiří

    2015-01-01

    Aim of the study The aim of this retrospective study was to determine the prognostic impact of epidermal growth factor receptor (EGFR) expression changes during neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer. Material and methods Fifty patients with locally advanced rectal cancer were evaluated. All the patients were administered the total dose of 44 Gy. Capecitabine has been concomitantly administered in the dose 825 mg/m2 in two daily oral administrations. Surgery was indicated 4–8 weeks from the chemoradiotherapy completion. Epidermal growth factor receptor expression in the pretreatment biopsies and in the resected specimens was assessed with immunohistochemistry. Results All of 50 patients received radiotherapy without interruption up to the total planned dose. In 30 patients sphincter-saving surgery was performed, 20 patients underwent amputation of the rectum. Downstaging was described in 30 patients. Four patients have had complete pathologic remission. Twenty-six patients have had partial remission, the disease was stable in 15 patients. Progression was reported in 5 patients. The median disease-free survival was 64.9 months, median overall survival was 76.4 months. Increased EGFR expression was found in 12 patients (26.1%). A statistically significantly shorter overall survival (p < 0.0001) and disease-free survival (p < 0.0001) was found in patients with increased expression of EGFR compared with patients where no increase in the expression of EGFR during neoadjuvant chemoradiotherapy was observed. Conclusions The overexpression of EGFR during neoadjuvant chemoradiotherapy for locally advanced rectal adenokarcinoma associated with significant shorter overall survival and disease free survival. PMID:26199571

  5. Expression, purification, and characterization of recombinant human and murine milk fat globule-epidermal growth factor-factor 8.

    PubMed

    Castellanos, Erick R; Ciferri, Claudio; Phung, Wilson; Sandoval, Wendy; Matsumoto, Marissa L

    2016-08-01

    Milk fat globule-epidermal growth factor-factor 8 (MFG-E8), as its name suggests, is a major glycoprotein component of milk fat globules secreted by the mammary epithelium. Although its role in milk fat production is unclear, MFG-E8 has been shown to act as a bridge linking apoptotic cells to phagocytes for removal of these dying cells. MFG-E8 is capable of bridging these two very different cell types via interactions through both its epidermal growth factor (EGF)-like domain(s) and its lectin-type C domains. The EGF-like domain interacts with αVβ3 and αVβ5 integrins on the surface of phagocytes, whereas the C domains bind phosphatidylserine found on the surface of apoptotic cells. In an attempt to purify full-length, recombinant MFG-E8 expressed in either insect cells or CHO cells, we find that it is highly aggregated. Systematic truncation of the domain architecture of MFG-E8 indicates that the C domains are mainly responsible for the aggregation propensity. Addition of Triton X-100 to the conditioned cell culture media allowed partial recovery of non-aggregated, full-length MFG-E8. A more comprehensive detergent screen identified CHAPS as a stabilizer of MFG-E8 and allowed purification of a significant portion of non-aggregated, full-length protein. The CHAPS-stabilized recombinant MFG-E8 retained its natural ability to bind both αVβ3 and αVβ5 integrins and phosphatidylserine suggesting that it is properly folded and active. Herein we describe an efficient purification method for production of non-aggregated, full-length MFG-E8. PMID:27102803

  6. Epidermal growth factor receptor-targeted lipid nanoparticles retain self-assembled nanostructures and provide high specificity

    NASA Astrophysics Data System (ADS)

    Zhai, Jiali; Scoble, Judith A.; Li, Nan; Lovrecz, George; Waddington, Lynne J.; Tran, Nhiem; Muir, Benjamin W.; Coia, Gregory; Kirby, Nigel; Drummond, Calum J.; Mulet, Xavier

    2015-02-01

    Next generation drug delivery utilising nanoparticles incorporates active targeting to specific sites. In this work, we combined targeting with the inherent advantages of self-assembled lipid nanoparticles containing internal nano-structures. Epidermal growth factor receptor (EGFR)-targeting, PEGylated lipid nanoparticles using phytantriol and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-PEG-maleimide amphiphiles were created. The self-assembled lipid nanoparticles presented here have internal lyotropic liquid crystalline nano-structures, verified by synchrotron small angle X-ray scattering and cryo-transmission electron microscopy, that offer the potential of high drug loading and enhanced cell penetration. Anti-EGFR Fab' fragments were conjugated to the surface of nanoparticles via a maleimide-thiol reaction at a high conjugation efficiency and retained specificity following conjugation to the nanoparticles. The conjugated nanoparticles were demonstrated to have high affinity for an EGFR target in a ligand binding assay.Next generation drug delivery utilising nanoparticles incorporates active targeting to specific sites. In this work, we combined targeting with the inherent advantages of self-assembled lipid nanoparticles containing internal nano-structures. Epidermal growth factor receptor (EGFR)-targeting, PEGylated lipid nanoparticles using phytantriol and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-PEG-maleimide amphiphiles were created. The self-assembled lipid nanoparticles presented here have internal lyotropic liquid crystalline nano-structures, verified by synchrotron small angle X-ray scattering and cryo-transmission electron microscopy, that offer the potential of high drug loading and enhanced cell penetration. Anti-EGFR Fab' fragments were conjugated to the surface of nanoparticles via a maleimide-thiol reaction at a high conjugation efficiency and retained specificity following conjugation to the nanoparticles. The conjugated nanoparticles

  7. Nanobiophotonics for molecular imaging of cancer: Au- and Ag-based Epidermal Growth Factor receptor (EGFR) specific nanoprobes

    NASA Astrophysics Data System (ADS)

    Lucas, Leanne J.; Hewitt, Kevin C.

    2012-03-01

    Our aim is to create and validate a novel SERS-based nanoprobe for optical imaging of the epidermal growth factor receptor (EGFR). Gold and silver nanoparticles (Au/AgNPs) of various sizes were synthesized and coupled to epidermal growth factor (EGF) via a short ligand, α-lipoic acid (206 g/mol), which binds strongly to both Au and Ag nanoparticles via its disulfide end group. We used carbodiimide chemistry to couple EGF to α-lipoic acid. These nanoprobes were tested for binding affinity using Enzyme Linked ImmunoSorbent Assay (ELISA) and, in-vitro, using EGFRoverexpressing A431 cells. The nanoprobes show excellent EGFR-specific binding. Time of Flight Mass Spectrometry demonstrate the carbodiimide based linking of the carboxylic acid end-group of α-lipoic acid to one or more of the three (terminal, or 2 lysine) amine groups on EGF. ELISA confirms that the linked EGF is active by itself, and following conjugation with gold or silver nanoparticles. Compared with bare nanoparticles, UV-Vis spectroscopy of Ag-based nanoprobes exhibit significant plasmon red-shift, while there was no discernable shift for Au-based ones. Dark field microscopy shows abundant uptake by EGFR overexpressing A431 cells, and serves to further confirm the excellent binding affinity. Nanoprobe internalization and consequent aggregation is thought to be the basis of enhanced light scattering in the dark field images, supporting the notion that these nanoprobes should provide excellent SERS signals at all nanoprobe sizes. In summary, novel EGFR-specific nanoprobes have been synthesized and validated by standard assay and in cell culture for use as SERS optical imaging probes.

  8. SRC-DEPENDENT PHOSPHORYLATION OF THE EPIDERMAL GROWTH FACTOR RECEPTOR ON TYROSINE 845 IS REQUIRED FOR ZINC-INDUCED RAS ACTIVATION

    EPA Science Inventory

    Src-dependent Phosphorylation of the Epidermal Growth Factor Receptor on Tyrosine 845 Is Required for Zinc-induced Ras Activation
    Weidong Wu 1 , Lee M. Graves 2 , Gordon N. Gill 3 , Sarah J. Parsons 4 , and James M. Samet 5
    1 Center for Environmental Medicine and Lung Biolo...

  9. MATRIX METALLOPROTEINS (MMP)-MEDIATED PHOSPHORYLATION OF THE EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR) IN HUMAN AIRWAY EPITHELIAL CELLS (HAEC) EXPOSED TO ZINC (ZN)

    EPA Science Inventory

    Matrix Metalloproteinase (MMP)-Mediated Phosphorylation of The Epidermal Growth Factor Receptor (EGFR) in Human Airway Epithelial Cells (HAEC) Exposed to Zinc (Zn)
    Weidong Wu, James M. Samet, Robert Silbajoris, Lisa A. Dailey, Lee M. Graves, and Philip A. Bromberg
    Center fo...

  10. Metformin and trametinib have synergistic effects on cell viability and tumor growth in NRAS mutant cancer

    PubMed Central

    Vujic, Igor; Sanlorenzo, Martina; Posch, Christian; Esteve-Puig, Rosaura; Yen, Adam J.; Kwong, Andrew; Tsumura, Aaron; Murphy, Ryan; Rappersberger, Klemens; Ortiz-Urda, Susana

    2015-01-01

    Attempts to directly block the mutant neuroblastoma rat sarcoma oncogene (NRAS) protein, a driving mutation in many cancer types, have been unsuccessful. Current treatments focus on inhibition of different components of NRAS' two main downstream cascades: PI3K/AKT/mTOR and MAPK. Here we test a novel dual therapy combination of metformin and trametinib on a panel of 16 NRAS mutant cell lines, including melanoma cells, melanoma cells with acquired trametinib resistance, lung cancer and neuroblastoma cells. We show that both of the main downstream cascades of NRAS can be blocked by this combination: metformin indirectly inhibits the PI3K/AKT/mTOR pathway and trametinib directly impedes the MAPK pathway. This dual therapy synergistically reduced cell viability in vitro and xenograft tumor growth in vivo. We conclude that metformin and trametinib combinations are effective in preclinical models and may be a possible option for treatment of NRAS mutant cancers. PMID:25504439

  11. Mutant IDH1 is required for IDH1 mutated tumor cell growth.

    PubMed

    Jin, Genglin; Pirozzi, Christopher J; Chen, Lee H; Lopez, Giselle Y; Duncan, Christopher G; Feng, Jie; Spasojevic, Ivan; Bigner, Darell D; He, Yiping; Yan, Hai

    2012-08-01

    Frequent somatic hotspot mutations in isocitrate dehydrogenase 1 (IDH1) have been identified in gliomas, acute myeloid leukemias, chondrosarcomas, and other cancers, providing a likely avenue for targeted cancer therapy. However, whether mutant IDH1 protein is required for maintaining IDH1 mutated tumor cell growth remains unknown. Here, using a genetically engineered inducible system, we report that selective suppression of endogenous mutant IDH1 expression in HT1080, a fibrosarcoma cell line with a native IDH1(R132C) heterozygous mutation, significantly inhibits cell proliferation and decreases clonogenic potential. Our findings offer insights into changes that may contribute to the inhibition of cell proliferation and offer a strong preclinical rationale for utilizing mutant IDH1 as a valid therapeutic target. PMID:22885298

  12. Improved tumor-to-organ ratios of a novel 67Ga-human epidermal growth factor radionuclide conjugate with preadministered antiepidermal growth factor receptor affibody molecules.

    PubMed

    Sandström, Karl; Haylock, Anna-Karin; Velikyan, Irina; Spiegelberg, Diana; Kareem, Heewa; Tolmachev, Vladimir; Lundqvist, Hans; Nestor, Marika

    2011-10-01

    The overexpression of the epidermal growth factor receptor (EGFR) in head and neck squamous cell carcinoma (HNSCC) is associated with poor prognosis. Targeted nuclear imaging of the EGFR expression could improve the diagnostics in patients with HNSCC. However, the high expression of EGFR in normal organs may conceal the tumor uptake and therefore limit the use. This study assesses the biodistribution of a novel human epidermal growth factor (hEGF) radionuclide conjugate after preinjection with anti-EGFR affibody molecules. hEGF was conjugated with p-SCN-Bn-NOTA and labeled with (67)Ga. The biodistribution of [(67)Ga]Ga-NOTA-Bn-NCS-hEGF in nude mice with EGFR-expressing xenografts was evaluated either alone or 45 minutes after preinjection with one of the anti-EGFR affibody molecules Z(EGFR:1907), (Z(EGFR:1907))(2), or (Z(EGFR:955))(2). The novel radioimmunoconjugate, [(67)Ga]Ga-NOTA-Bn-NCS-hEGF, demonstrated high stability in vitro and specific binding to hEGF in vitro and in vivo. Preinjection with anti-EGFR affibody molecules improved the tumor-to-organ ratio in the liver, salivary glands, and colon. Overall, the dimeric high-affinity affibody molecule (Z(EGFR:1907))(2) exhibited the best results. These findings show that preblocking with an anti-EGFR affibody molecule is a promising tool that could improve the outcome of radionuclide-based imaging of EGFR-expressing tumors. PMID:21834651

  13. Epidermal growth factor receptor mutation and treatment outcome of mediastinoscopic N2 positive non-small cell lung cancer patients treated with neoadjuvant chemoradiotherapy followed by surgery.

    PubMed

    Ahn, Hee Kyung; Choi, Yoon-La; Han, Joung Ho; Ahn, Yong Chan; Kim, Kwhanmien; Kim, Jhingook; Shim, Young Mog; Um, Sang-Won; Kim, Hojoong; Kwon, O Jung; Sun, Jong-Mu; Ahn, Jin Seok; Park, Keunchil; Ahn, Myung-Ju

    2013-03-01

    Epidermal growth factor receptor (EGFR) mutation in non-small cell lung cancer (NSCLC) is a strong predictive factor for a favorable response to EGFR tyrosine kinase inhibitors, however, its prognostic role in locally advanced stage is unclear. The aim of this study was to analyze the association of EGFR mutational status and clinical outcome after neoadjuvant chemoradiotherapy (CRT) followed by surgical resection in mediastinoscopically proven N2(+) NSCLC patients. We retrospectively identified 168 patients diagnosed between 1998 and 2006. EGFR mutational status was identified in 107 patients. Response and survival after neoadjuvant CRT followed by surgery were compared according to EGFR mutational status. 83 patients (77.6%) were found to have wild type EGFR, while exon 19 deletions or L858R missense mutations in the EGFR gene were detected in 19 patients. There was no significant difference in overall survival; however, the 5-year PFS rate in EGFR mutant patients (8.4%) were significantly lower than in the EGFR wild-type patients (33.6%; p=0.005). In multivariate analysis, EGFR mutation was a significant prognostic factor for a higher risk of distant recurrence/progression than the EGFR wild type (HR=7.183, p=0.005). In locally advanced mediastinoscopic N2-positive NSCLC, EGFR mutation was associated with more frequent distant relapses and worse 5-year PFS rate after neoadjuvant CRT followed by surgery, which might suggest that systemic control might be important in patients with the EGFR mutation. Therefore, the role of TKI for adjuvant EGFR TKI to decrease disease recurrence in distant sites should be further investigated. PMID:23261144

  14. ZEB1 Mediates Acquired Resistance to the Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors in Non-Small Cell Lung Cancer

    PubMed Central

    Yoshida, Takeshi; Song, Lanxi; Bai, Yun; Kinose, Fumi; Li, Jiannong; Ohaegbulam, Kim C.; Muñoz-Antonia, Teresita; Qu, Xiaotao; Eschrich, Steven; Uramoto, Hidetaka; Tanaka, Fumihiro; Nasarre, Patrick; Gemmill, Robert M.; Roche, Joëlle; Drabkin, Harry A.; Haura, Eric B.

    2016-01-01

    Epithelial-mesenchymal transition (EMT) is one mechanism of acquired resistance to inhibitors of the epidermal growth factor receptor-tyrosine kinases (EGFR-TKIs) in non-small cell lung cancer (NSCLC). The precise mechanisms of EMT-related acquired resistance to EGFR-TKIs in NSCLC remain unclear. We generated erlotinib-resistant HCC4006 cells (HCC4006ER) by chronic exposure of EGFR-mutant HCC4006 cells to increasing concentrations of erlotinib. HCC4006ER cells acquired an EMT phenotype and activation of the TGF-β/SMAD pathway, while lacking both T790M secondary EGFR mutation and MET gene amplification. We employed gene expression microarrays in HCC4006 and HCC4006ER cells to better understand the mechanism of acquired EGFR-TKI resistance with EMT. At the mRNA level, ZEB1 (TCF8), a known regulator of EMT, was >20-fold higher in HCC4006ER cells than in HCC4006 cells, and increased ZEB1 protein level was also detected. Furthermore, numerous ZEB1 responsive genes, such as CDH1 (E-cadherin), ST14, and vimentin, were coordinately regulated along with increased ZEB1 in HCC4006ER cells. We also identified ZEB1 overexpression and an EMT phenotype in several NSCLC cells and human NSCLC samples with acquired EGFR-TKI resistance. Short-interfering RNA against ZEB1 reversed the EMT phenotype and, importantly, restored erlotinib sensitivity in HCC4006ER cells. The level of micro-RNA-200c, which can negatively regulate ZEB1, was significantly reduced in HCC4006ER cells. Our results suggest that increased ZEB1 can drive EMT-related acquired resistance to EGFR-TKIs in NSCLC. Attempts should be made to explore targeting ZEB1 to resensitize TKI-resistant tumors. PMID:26789630

  15. Oral epidermal growth factor receptor tyrosine kinase inhibitors for the treatment of non-small cell lung cancer: comparative pharmacokinetics and drug-drug interactions.

    PubMed

    Peters, Solange; Zimmermann, Stefan; Adjei, Alex A

    2014-09-01

    The development of orally active small molecule inhibitors of the epidermal growth factor receptor (EGFR) has led to new treatment options for non-small cell lung cancer (NSCLC). Patients with activating mutations of the EGFR gene show sensitivity to, and clinical benefit from, treatment with EGFR tyrosine kinase inhibitors (EGFR-TKls). First generation reversible ATP-competitive EGFR-TKls, gefitinib and erlotinib, are effective as first, second-line or maintenance therapy. Despite initial benefit, most patients develop resistance within a year, 50-60% of cases being related to the appearance of a T790M gatekeeper mutation. Newer, irreversible EGFR-TKls - afatinib and dacomitinib - covalently bind to and inhibit multiple receptors in the ErbB family (EGFR, HER2 and HER4). These agents have been mainly evaluated for first-line treatment but also in the setting of acquired resistance to first-generation EGFR-TKls. Afatinib is the first ErbB family blocker approved for patients with NSCLC with activating EGFR mutations; dacomitinib is in late stage clinical development. Mutant-selective EGFR inhibitors (AZD9291, CO-1686, HM61713) that specifically target the T790M resistance mutation are in early development. The EGFR-TKIs differ in their spectrum of target kinases, reversibility of binding to EGFR receptor, pharmacokinetics and potential for drug-drug interactions, as discussed in this review. For the clinician, these differences are relevant in the setting of polymedicated patients with NSCLC, as well as from the perspective of innovative anticancer drug combination strategies. PMID:25027951

  16. Effects of icotinib on early-stage non-small-cell lung cancer as neoadjuvant treatment with different epidermal growth factor receptor phenotypes

    PubMed Central

    Wang, Tao; Liu, Yang; Zhou, Bin; Wang, Zhi; Liang, Naichao; Zhang, Yundong; Dong, Zhouhuan; Li, Jie

    2016-01-01

    Purpose Epidermal growth factor receptor–tyrosine kinase inhibitors (EGFR–TKIs) have demonstrated efficacy in treating advanced non-small-cell lung cancer (NSCLC). Preliminary findings suggested that EGFR–TKIs might also be beneficial in neoadjuvant therapy in treating NSCLC. Therefore, this study aimed to evaluate the efficacy and safety of neoadjuvant therapy with icotinib in patients with early-stage NSCLC. Patients and methods We retrospectively reviewed the medical history of patients who were initially diagnosed with stage IA–IIIA NSCLC and were under icotinib administration before surgery between December 2011 and December 2014. Tumor assessment was conducted between the second and fourth week from initial icotinib treatment. The association between personal characteristics, smoking status, disease stage, EGFR mutation status, and clinical outcomes were investigated using multivariate logistic regression analysis. Results A total of 67 patients with NSCLC were reviewed, and approximately half (38/67) of them were identified as having EGFR-mutant tumors. The overall response rate of all patients was 26.7% at 2–4 weeks’ assessment. Multivariate analysis showed that female sex (38.5% versus 10.7% in males, P=0.028) and EGFR mutation status (42.1% versus 6.9% in EGFR wild type, P=0.011) were independent predictive factors. The analysis also showed that the most common adverse effects were rash (43.3%) and dry skin (34.4%), which were tolerable. Conclusion Icotinib induced clinical response with minimal toxicity as neoadjuvant treatment in early NSCLC, especially in patients with common EGFR mutations. Further studies are warranted to confirm our findings. PMID:27042123

  17. Ascorbate-Deficient vtc2 Mutants in Arabidopsis Do Not Exhibit Decreased Growth

    PubMed Central

    Lim, Benson; Smirnoff, Nicholas; Cobbett, Christopher S.; Golz, John F.

    2016-01-01

    In higher plants the L-galactose pathway represents the major route for ascorbate biosynthesis. The first committed step of this pathway is catalyzed by the enzyme GDP-L-galactose phosphorylase and is encoded by two paralogs in Arabidopsis – VITAMIN C2 (VTC2) and VTC5. The first mutant of this enzyme, vtc2-1, isolated via an EMS mutagenesis screen, has approximately 20–30% of wildtype ascorbate levels and has been reported to have decreased growth under standard laboratory conditions. Here, we show that a T-DNA insertion into the VTC2 causes a similar reduction in ascorbate levels, but does not greatly affect plant growth. Subsequent segregation analysis revealed the growth defects of vtc2-1 mutants segregate independently of the vtc2-1 mutation. These observations suggest that it is the presence of an independent cryptic mutation that affects growth of vtc2-1 mutants, and not the 70–80% decrease in ascorbate levels that has been assumed in past studies. PMID:27468291

  18. Epidermal growth factor receptor variant III mediates head and neck cancer cell invasion via STAT3 activation

    PubMed Central

    Suzuki, Shinsuke; Morgan, Sarah E.; Thomas, Sufi M.; Sen, Malabika; Leeman-Neill, Rebecca J.; Kuan, Chien-Tsun; Bigner, Darrell; Gooding, William E.; Lai, Stephen Y.; Grandis, Jennifer R.

    2009-01-01

    Epidermal Growth Factor Receptor (EGFR) is frequently over-expressed in head and neck squamous cell carcinoma (HNSCC) where aberrant signaling downstream of this receptor contributes to tumor growth. EGFR variant III (EGFRvIII) is the most commonly altered form of EGFR and contains a truncated ligand-binding domain. We previously reported that EGFRvIII is expressed in up to 40% of HNSCC tumors where it is associated with increased proliferation, tumor growth and chemoresistance to anti-tumor drugs including the EGFR targeting monoclonal antibody cetuximab. Cetuximab was FDA-approved in 2006 for HNSCC but has not been shown to prevent invasion or metastasis. The present study was undertaken to evaluate the mechanisms of EGFRvIII-mediated cell motility and invasion in HNSCC. We found that EGFRvIII induced HNSCC cell migration and invasion in conjunction with increased STAT3 activation, which was not abrogated by cetuximab treatment. Further investigation demonstrated that EGF-induced expression of the STAT3 target gene HIF1-α, was abolished by cetuximab in HNSCC cells expressing wild-type EGFR under hypoxic conditions, but not in EGFRvIII-expressing HNSCC cells. These results suggest that EGFRvIII mediates HNSCC cell migration and invasion via increased STAT3 activation and induction of HIF1-α, which contribute to cetuximab resistance in EGFRvIII-expressing HNSCC tumors. PMID:20622897

  19. Development of novel epidermal growth receptor-basedradiopharmaceuticals: Imaging agents for breast cancer

    SciTech Connect

    Van Brocklin, Henry F.

    2001-09-25

    The goal of this research was to develop epidermal growthfactor receptor (EGFR) nuclear medicine breast cancer imaging agents. Ourapproach was to synthesize small molecule inhibitors of the EGFR tyrosinekinase (tk) suitable for labeling with single photon or positron-emittingradioisotopes and evaluate the imaging potential of these new molecules.We have synthesized and fully characterized 22 quinazoline compounds. Allcompounds inhibit EGFR tk phosphorylation activity in the nanomolarrange. All compounds tested exhibited specificity for the EGFR tk versusthe ErbB2 and ErbB4 tyrosine kinases. A radiometric binding assay usingan iodine-125 labeled quinazoline was developed to determine the affinityof the quinazolines for the EGFR tk ATP binding site. The affinitiesranged from 0.4-51 nM. The octanol/water partition coefficients (Log P;lipophilicity) of the new compounds ranged from 2.2-5.5. Six compoundshave been labeled with fluorine-18. Biodistribution in EGFRoverexpressing tumor bearing mice demonstrated tumor uptake buthighlighted delivery and metabolism issues. The 2-fluoro quinazoline wasnot metabolized in an in vitro hepatocyte study. From this work a breadthof agent characteristics was created establishing the foundation forfuture research toward the optimal EGFR imaging agent.

  20. Differences in human skin between the epidermal growth factor receptor distribution detected by EGF binding and monoclonal antibody recognition.

    PubMed

    Green, M R; Couchman, J R

    1985-09-01

    Two methods have been used to examine epidermal growth factor (EGF) receptor distribution in human scalp and foreskin. The first employed [125I]EGF viable explants and autoradiography to determine the EGF binding pattern while the second used a monoclonal antibody to the human EGF receptor to map the distribution on frozen skin sections of an extracellular epitope on the EGF receptor. The [125I]EGF binding experiments showed accessible, unoccupied EGF receptors to be present on the epidermal basal cells (with reduced binding to spinous cells), the basal cells of the hair shaft and sebaceous gland, the eccrine sweat glands, capillary system, and the hair follicle outer root sheath, generally similar in pattern to that previously reported for full-thickness rat skin and human epidermis. The same areas also bound EGF-R1 but in addition the monoclonal antibody recognized a cone of melanin containing presumptive cortex cells, excluding the medulla, lying around and above the upper dermal papilla of anagen hair follicles, epithelial cells around the lower dermal papilla region, and in some tissue samples the cell margins of the viable differentiating layers of the epidermis. In a control study, to clarify whether EGF-R1 could recognize molecules unrelated to the EGF receptor, the EGF binding and EGF-R1 recognition profiles were compared on cultures of SVK14 cells, a SV40 transformed human keratinocyte cell line. EGF binding and EGF-R1 monoclonal antibody distribution on these cells was found to be similar, indicating that, at least for SVK14 cells, EGF-R1 binding provides a reliable marker for EGF binding. Explanations for the discrepancies between these two methods for determining EGF receptor distribution in human skin are discussed, including the possibility that latent EGF receptors, unable to bind [125I]EGF, may be present in some differentiating epithelial compartments. PMID:2411822

  1. Altered growth, differentiation, and responsiveness to epidermal growth factor of human embryonic mesenchymal cells of palate by persistent rubella virus infection

    SciTech Connect

    Yoneda, T.; Urade, M.; Sakuda, M.; Miyazaki, T.

    1986-05-01

    We previously demonstrated that human embryonic mesenchymal cells derived from the palate (HEMP cells) retain alkaline phosphatase (ALP) content and capacity for collagen synthesis after long-term culture, and their growth is markedly stimulated by epidermal growth factor (EGF). There was a dramatic decrease in ALP content and capacity to synthesize collagen in HEMP cells (HEMP-RV cells) persistently infected with rubella virus (RV). EGF increased ALP activity and decreased collagen synthesis in HEMP cells, whereas EGF showed no effect on these activities in HEMP-RV cells. Growth of HEMP-RV cells was slightly reduced compared with that of HEMP cells. EGF stimulated growth of HEMP cells and to a lesser extent of HEMP-RV cells. Binding of /sup 125/I-EGF to cell-surface receptors in HEMP-RV cells was, to our surprise, twice as much as that in HEMP cells. However, internalization of bound /sup 125/I-EGF in HEMP-RV cells was profoundly diminished. Thus, persistent RV infection causes not only changes in HEMP cell growth and differentiation but a decrease in or loss of HEMP cell responsiveness to EGF. The effects of persistent RV infection on palatal cell differentiation as well as growth may be responsible for the pathogenesis of congenital rubella. Furthermore, since HEMP cells appear to be closely related to osteoblasts, these results suggest a mechanism for RV-induced osseous abnormalities manifested in congenital rubella patients.

  2. Combined Inhibition of c-Src and Epidermal Growth Factor Receptor Abrogates Growth and Invasion of Head and Neck Squamous Cell Carcinoma

    PubMed Central

    Koppikar, Priya; Choi, Seung-Ho; Egloff, Ann Marie; Cai, Quan; Suzuki, Shinsuke; Freilino, Maria; Nozawa, Hiroshi; Thomas, Sufi M.; Gooding, William E.; Siegfried, Jill M.; Grandis, Jennifer R.

    2012-01-01

    Purpose Increased expression and/or activation of epidermal growth factor receptor (EGFR) is associated with tumor progression and poor prognosis in many cancers including head and neck squamous cell carcinoma (HNSCC). Src family kinases, including c-Src, mediate a variety of intra- or extracellular signals that contribute to tumor formation and progression. This study was undertaken to elucidate the role of c-Src in the growth and invasion of HNSCC and to determine the effects of combined targeting of EGFR and Src kinases in HNSCC cell lines. Experimental design HNSCC cells were engineered to stably express a dominant-active (DA) form of c-Src and investigated in cell growth and invasion assays. The biochemical effects of combined treatment with the Src inhibitor, AZD0530, a potent, orally active Src inhibitor with Bcr/Abl activity and the EGFR kinase inhibitor, gefitinib, were examined as well as the consequences of dual Src/EGFR targeting on the growth and invasion of a panel of HNSCC cell lines. Results HNSCC cells expressing DA c-Src demonstrated increased growth and invasion compared with vector-transfected controls. Combined treatment with AZD0530 and gefitinib resulted in greater inhibition of HNSCC cell growth and invasion compared with either agent alone. Conclusions These results suggest that increased expression and activation of c-Src promotes HNSCC progression where combined targeting of EGFR and c-Src may be an efficacious treatment approach. PMID:18594011

  3. Increased epidermal growth factor receptor gene expression by gamma-interferon in a human breast carcinoma cell line.

    PubMed Central

    Hamburger, A. W.; Pinnamaneni, G. D.

    1991-01-01

    The interferons are a group of naturally occurring proteins that inhibit the growth of tumours in vivo and many transformed cell lines in vitro. The mechanisms of action of interferon, however, remain unclear. The IFN induced inhibition of growth of many epithelial cancer cell lines is associated with changes in Epidermal Growth Factor Receptor (EGFR) binding or expression. Therefore, we examined the effect of IFN treatment on the expression of EGFR in a human breast carcinoma cell line, MDA 468. We have found the IFN-gamma inhibited, in a dose dependent fashion, the growth of MDA 468 cells. IFN decreased cell surface binding of 125I-EGF to EGFR by changing receptor number rather than affinity. However, total cellular receptor protein, as measured by immunoprecipitation with monoclonal antibodies, was increased in IFN-treated cells. The half-life of the metabolically labelled receptor was unchanged by treatment with IFN. Increased amounts of EGFR mRNA were observed in MDA 468 cells treated with IFN-gamma for 3 days. The levels of mRNA increased with time in culture, reaching a peak of four times control values after 5 days of treatment. This effect was observable with as little as 10 U ml-1 of IFN-gamma. Treatment of the cells with Actinomycin D to inhibit new RNA synthesis suggested that the stability of EGFR mRNA was not enhanced in IFN-gamma treated cells. The increase in receptor mRNA induced by IFN was not inhibited by cycloheximide. These data suggest IFN-gamma can increase expression of EGFR mRNA and protein in MDA 468 cells. Increased expression of EGFR mRNA and protein by IFN-gamma is associated with inhibition of cell growth. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:1906727

  4. Mutant activated FGFR3 impairs endochondral bone growth by preventing SOX9 downregulation in differentiating chondrocytes.

    PubMed

    Zhou, Zi-Qiang; Ota, Sara; Deng, Chuxia; Akiyama, Haruhiko; Hurlin, Peter J

    2015-03-15

    Fibroblast growth factor receptor 3 (FGFR3) plays a critical role in the control of endochondral ossification, and bone growth and mutations that cause hyperactivation of FGFR3 are responsible for a collection of developmental disorders that feature poor endochondral bone growth. FGFR3 is expressed in proliferating chondrocytes of the cartilaginous growth plate but also in chondrocytes that have exited the cell cycle and entered the prehypertrophic phase of chondrocyte differentiation. Achondroplasia disorders feature defects in chondrocyte proliferation and differentiation, and the defects in differentiation have generally been considered to be a secondary manifestation of altered proliferation. By initiating a mutant activated knockin allele of FGFR3 (FGFR3K650E) that causes Thanatophoric Dysplasia Type II (TDII) specifically in prehypertrophic chondrocytes, we show that mutant FGFR3 induces a differentiation block at this stage independent of any changes in proliferation. The differentiation block coincided with persistent expression of SOX9, the master regulator of chondrogenesis, and reducing SOX9 dosage allowed chondrocyte differentiation to proceed and significantly improved endochondral bone growth in TDII. These findings suggest that a proliferation-independent and SOX9-dependent differentiation block is a key driving mechanism responsible for poor endochondral bone growth in achondroplasia disorders caused by mutations in FGFR3. PMID:25432534

  5. Clinical Characteristics and Continued Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Administration in EGFR-mutated Non-Small Cell Lung Cancer with Skeletal Metastasis

    PubMed Central

    Hong, Sook-Hee; Kim, Yeon-Sil; Lee, Ji Eun; Kim, In-ho; Kim, Seung Joon; Han, Daehee; Yoo, Ie Ryung; Chung, Yang-Guk; Kim, Young-Hoon; Lee, Kyo-Young; Kang, Jin-Hyoung

    2016-01-01

    Purpose The aim of this study was to analyze clinical characteristics of skeletal metastasis in epidermal growth factor receptor (EGFR) mutant non-small cell lung cancer (NSCLC) and treatment outcomes of continued EGFR tyrosine kinase inhibitor (TKI) therapy in patients presenting with skeletal metastasis progression. Materials and Methods Of the 216 patients treated with EGFR-TKI for management of stage III-IV NSCLC between 2006 and 2012 in Seoul St. Mary’s Hospital, 76 patients with confirmed EGFR-mutated NSCLC with skeletal metastases during therapy were analyzed retrospectively. Results Of 76 patients with EGFR mutant lung cancer with skeletal metastasis, 37 patients developed first progressive disease (PD) in skeletal regions. EGFR-TKI was continued in these 37 patients after first PD in skeletal regions. Median time to first PD of skeletal regions was 8.9 months (95% confidence interval [CI], 4.8 to 13.0). Median time of continued EGFR-TKI after first PD of skeletal regions was 8.0 months (95% CI, 2.9 to 13.0) in patients with disease progression of preexisting regions, 5.6 months (95% CI, 4.5 to 6.7) in patients showing new localized regions, and 3.3 months (95% CI, 1.1 to 5.5) in patients with multiple new metastatic regions (p=0.006). Median time of postskeletal metastasis progression survival was 23.0 months (95% CI, 13.5 to 32.5), 15.0 months (95% CI, 3 to 34.7), and 7.0 months (95% CI, 6.0 to 8.0) (p=0.004) in the above described patient groups, respectively. Overall, seven patients (18.9%) had more than one episode of skeletal progression of disease without extraskeletal PD. Conclusion Continued EGFR-TKI treatment with adequate local treatment after progression of skeletal metastasis may be considered for patients who show disease progression in preexisting regions or local progression. PMID:26790969

  6. ROLES OF EPIDERMAL GROWTH FACTOR (EGF) AND TRANSFORMING GROWTH FACTOR-ALPHA (TGF-A) IN MEDIATION OF DIOXIN (TCDD)-INDUCED DELAYS IN DEVELOPMENT OF THE MOUSE MAMMARY GLAND

    EPA Science Inventory

    Roles of Epidermal Growth Factor (EGF) and Transforming Growth Factor-alpha (TGF-a) in Mediation of Dioxin (TCDD)-Induced Delays in Development of the Mouse Mammary Gland.
    Suzanne E. Fenton, Barbara Abbott, Lamont Bryant, and Angela Buckalew. U.S. EPA, NHEERL, Reproductive Tox...

  7. Characterization of the growth and auxin physiology of roots of the tomato mutant, diageotropica

    NASA Technical Reports Server (NTRS)

    Muday, G. K.; Lomax, T. L.; Rayle, D. L.

    1995-01-01

    Roots of the tomato (Lycopersicon esculentum, Mill.) mutant (diageotropica (dgt) exhibit an altered phenotype. These roots are agravitropic and lack lateral roots. Relative to wild-type (VFN8) roots, dgt roots are less sensitive to growth inhibition by exogenously applied IAA and auxin transport inhibitors (phytotropins), and the roots exhibit a reduction in maximal growth inhibition in response to ethylene. However, IAA transport through roots, binding of the phytotropin, tritiated naphthylphthalamic acid ([3H]NPA), to root microsomal membranes, NPA-sensitive IAA uptake by root segments, and uptake of [3H]NPA into root segments are all similar in mutant and wild-type roots. We speculate that the reduced sensitivity of dgt root growth to auxin-transport inhibitors and ethylene is an indirect result of the reduction in sensitivity to auxin in this single gene, recessive mutant. We conclude that dgt roots, like dgt shoots, exhibit abnormalities indicating they have a defect associated with or affecting a primary site of auxin perception or action.

  8. Characterization of the growth and auxin physiology of roots of the tomato mutant, diageotropica.

    PubMed

    Muday, G K; Lomax, T L; Rayle, D L

    1995-01-01

    Roots of the tomato (Lycopersicon esculentum, Mill.) mutant (diageotropica (dgt) exhibit an altered phenotype. These roots are agravitropic and lack lateral roots. Relative to wild-type (VFN8) roots, dgt roots are less sensitive to growth inhibition by exogenously applied IAA and auxin transport inhibitors (phytotropins), and the roots exhibit a reduction in maximal growth inhibition in response to ethylene. However, IAA transport through roots, binding of the phytotropin, tritiated naphthylphthalamic acid ([3H]NPA), to root microsomal membranes, NPA-sensitive IAA uptake by root segments, and uptake of [3H]NPA into root segments are all similar in mutant and wild-type roots. We speculate that the reduced sensitivity of dgt root growth to auxin-transport inhibitors and ethylene is an indirect result of the reduction in sensitivity to auxin in this single gene, recessive mutant. We conclude that dgt roots, like dgt shoots, exhibit abnormalities indicating they have a defect associated with or affecting a primary site of auxin perception or action. PMID:11536692

  9. Growth, seed development and genetic analysis in wild type and Def mutant of Pisum sativum L

    PubMed Central

    2011-01-01

    Background The def mutant pea (Pisum sativum L) showed non-abscission of seeds from the funicule. Here we present data on seed development and growth pattern and their relationship in predicting this particular trait in wild type and mutant lines as well as the inheritance pattern of the def allele in F2 and F3 populations. Findings Pod length and seed fresh weight increase with fruit maturity and this may affect the abscission event in pea seeds. However, the seed position in either the distal and proximal ends of the pod did not show any difference. The growth factors of seed fresh weight (FW), width of funicles (WFN), seed width (SW) and seed height (SH) were highly correlated and their relationships were determined in both wild type and def mutant peas. The coefficient of determination R2 values for the relationship between WFN and FW, SW and SH and their various interactions were higher for the def dwarf type. Stepwise multiple regression analysis showed that variation of WFN was associated with SH and SW. Pearson's chi square analysis revealed that the inheritance and segregation of the Def locus in 3:1 ratio was significant in two F2 populations. Structural analysis of the F3 population was used to confirm the inheritance status of the Def locus in F2 heterozygote plants. Conclusions This study investigated the inheritance of the presence or absence of the Def allele, controlling the presence of an abscission zone (AZ) or an abscission-less zone (ALZ) forming in wild type and mutant lines respectively. The single major gene (Def) controlling this phenotype was monogenic and def mutants were characterized and controlled by the homozygous recessive def allele that showed no palisade layers in the hilum region of the seed coat. PMID:22078070

  10. Human epidermal growth factor antagonists and cardiotoxicity-A short review of the problem and preventative measures.

    PubMed

    Dias, A; Claudino, W; Sinha, R; Perez, C A; Jain, D

    2016-08-01

    The Human Epidermal growth factor Receptor 2 (HER2) is a potent mediator of cellular growth and proliferation. It plays an important role in cardiac development and maintaining the physiologic function of an adult heart. Amplification of the HER2 gene, and the corresponding overexpression of the HER2 receptor, occurs in roughly 20% of breast tumors and is associated with a poor outcome. Molecular targeting of the HER2 receptor with the humanized monoclonal antibody, Trastuzumab has improved disease-free and overall survival in patients with both metastatic and early HER2-positive breast cancer. Although trastuzumab is devoid of the classical toxicities associated with chemotherapy, one of the major concerns noted is the occurrence of symptomatic and asymptomatic cardiotoxicity (decline in left-ventricular-ejection-fraction (LVEF). Additionally, newer HER2 therapies such as Lapatinib, Pertuzumab and Ado-trastuzumab (TDM1) are either approved or are being evaluated in clinical trials for cancer therapy. Targeted therapies against HER2 have led to revolutionary strides in breast cancer research and treatment. With the concern of cardiotoxicity caused by these agents, new treatment strategies for preventing cardiac side effects need to be developed. In this review, we discuss the proposed mechanisms of HER 2 antagonist-induced cardiotoxicity and the ways to prevent it. PMID:27338847

  11. Epidermal Growth Factor-Induced Tumor Cell Invasion and Metastasis Initiated by Dephosphorylation and Downregulation of Focal Adhesion Kinase

    PubMed Central

    Lu, Zhimin; Jiang, Guoqiang; Blume-Jensen, Peter; Hunter, Tony

    2001-01-01

    Upregulated epidermal growth factor (EGF) receptor (EGFR) expression and EGFR-induced signaling have been correlated with progression to invasion and metastasis in a wide variety of carcinomas, but the mechanism behind this is not well understood. We show here that, in various human carcinoma cells that overexpress EGFR, EGF treatment induced rapid tyrosine dephosphorylation of focal adhesion kinase (FAK) associated with downregulation of its kinase activity. The downregulation of FAK activity was both required and sufficient for EGF-induced refractile morphological changes, detachment of cells from the extracellular matrix, and increased tumor cell motility, invasion, and metastasis. Tumor cells with downregulated FAK activity became less adherent to the extracellular matrix. However, once cells started reattaching, FAK activity was restored by activated integrin signaling. Moreover, this process of readhesion and spreading could not be abrogated by further EGF stimulation. Interruption of transforming growth factor alpha-EGFR autocrine regulation with an EGFR tyrosine kinase inhibitor led to a substantial increase in FAK tyrosine phosphorylation and inhibition of tumor cell invasion in vitro. Consistent with this, FAK tyrosine phosphorylation was reduced in cells from tumors growing in transplanted, athymic, nude mice, which have an intact autocrine regulation of the EGFR. We suggest that the dynamic regulation of FAK activity, initiated by EGF-induced downregulation of FAK leading to cell detachment and increased motility and invasion, followed by integrin-dependent reactivation during readhesion, plays a role in EGF-associated tumor invasion and metastasis. PMID:11359909

  12. Amlexanox Blocks the Interaction between S100A4 and Epidermal Growth Factor and Inhibits Cell Proliferation.

    PubMed

    Cho, Ching Chang; Chou, Ruey-Hwang; Yu, Chin

    2016-01-01

    The human S100A4 protein binds calcium, resulting in a change in its conformation to promote the interaction with its target protein. Human epidermal growth factor (EGF) is the target protein of S100A4 and a critical ligand of the receptor EGFR. The EGF/EGFR system promotes cell survival, differentiation, and growth by activating several signaling pathways. Amlexanox is an anti-inflammatory and anti-allergic drug that is used to treat recurrent aphthous ulcers. In the present study, we determined that amlexanox interacts with S100A4 using heteronuclear single quantum correlation titration. We elucidated the interactions of S100A4 with EGF and amlexanox using fluorescence and nuclear magnetic resonance spectroscopy. We generated two binary models (for the S100A4-EGF and S100A4-amlexanox complexes) and observed that amlexanox and EGF share a similar binding region in mS100A4. We also used a WST-1 assay to investigate the bioactivity of S100A4, EGF, and amlexanox, and found that amlexanox blocks the binding between S100A4 and EGF, and is therefore useful for the development of new anti-proliferation drugs. PMID:27559743

  13. Amlexanox Blocks the Interaction between S100A4 and Epidermal Growth Factor and Inhibits Cell Proliferation

    PubMed Central

    Cho, Ching Chang; Chou, Ruey-Hwang; Yu, Chin

    2016-01-01

    The human S100A4 protein binds calcium, resulting in a change in its conformation to promote the interaction with its target protein. Human epidermal growth factor (EGF) is the target protein of S100A4 and a critical ligand of the receptor EGFR. The EGF/EGFR system promotes cell survival, differentiation, and growth by activating several signaling pathways. Amlexanox is an anti-inflammatory and anti-allergic drug that is used to treat recurrent aphthous ulcers. In the present study, we determined that amlexanox interacts with S100A4 using heteronuclear single quantum correlation titration. We elucidated the interactions of S100A4 with EGF and amlexanox using fluorescence and nuclear magnetic resonance spectroscopy. We generated two binary models (for the S100A4-EGF and S100A4-amlexanox complexes) and observed that amlexanox and EGF share a similar binding region in mS100A4. We also used a WST-1 assay to investigate the bioactivity of S100A4, EGF, and amlexanox, and found that amlexanox blocks the binding between S100A4 and EGF, and is therefore useful for the development of new anti-proliferation drugs. PMID:27559743

  14. A tubular gelatin scaffold capable of the time-dependent controlled release of epidermal growth factor and mitomycin C.

    PubMed

    Zhu, Jixiang; Yang, Fanwen; He, Fupo; Tian, Xiumei; Tang, Shuo; Chen, Xiaoming

    2015-11-01

    A tubular gelatin scaffold for the time-dependent controlled release of epidermal growth factor (EGF) and mitomycin C (MMC) was fabricated. EGF was incorporated using silk fibroin carriers, and MMC was planted using polylactide (PLA) microspheres. The relationship between scaffold properties and crosslinking degrees was evaluated. As the crosslinking degree was increased from 23.7% to 65.3%, the mechanical properties of the scaffold obviously improved, and the compressive modulus increased to approximately 65kPa. The mass degradation of the scaffold was also controlled from 9 days to approximately 1 month. In vitro release tests indicated that the scaffold mainly released EGF in the early period and MMC in the later period. Urethral epithelial cells (UECs) and urethral scar derived fibroblast cells (UFCs) were coseeded in the scaffold at a ratio of 1:1. After 9 days of coculture, immunostaining results displayed that the proportion of UECs continuously increased to approximately 71%. These changes in cell proportion were confirmed by the results of Western blot analysis. Therefore, the scaffold promoted the growth but inhibited the regeneration of UFCs. This scaffold for time-dependent controlled release of multiple biofactors may be potentially useful in urethral reconstruction and other tissue engineering studies. PMID:26277717

  15. Effect of recombinant human epidermal growth factor against cutaneous scar formation in murine full-thickness wound healing.

    PubMed

    Kim, Young Seok; Lew, Dae Hyun; Tark, Kwan Chul; Rah, Dong Kyun; Hong, Joon Pio

    2010-04-01

    A visible cutaneous scar develops from the excess formation of immature collagen in response to an inflammatory reaction. This study examined the role of epidermal growth factor (EGF) in the formation of cutaneous scars. Twenty Crl:CD-1 (ICR) mice were used and 2 full-thickness skin wounds were made on the dorsum of each mouse. One of the wounds was treated with recombinant human EGF by local application and the other was treated with saline for control until complete healing was achieved. The EGF-treated group's wounds healed faster than the control group's. The width of the scar was smaller by 30% and the area was smaller by 26% in the EGF-treated group. Inflammatory cell numbers were significantly lower in the EGF-treated group. The expression of transforming growth factor (TGF)-beta(1) in the EGF-treated group was increased. It was observed that the amount of collagen in the EGF-treated group was larger than the control group. In the EGF-treated group, the visible external scars were less noticeable than that in the control group. These results suggest that EGF can reduce cutaneous scars by suppressing inflammatory reactions, decreasing expression of TGF-beta(1), and mediating the formation of collagen. PMID:20358003

  16. Plumbagin Ameliorates CCl4-Induced Hepatic Fibrosis in Rats via the Epidermal Growth Factor Receptor Signaling Pathway

    PubMed Central

    Chen, Si; Chen, Yi; Chen, Bi; Cai, Yi-jing; Zou, Zhuo-lin; Wang, Jin-guo; Lin, Zhuo; Wang, Xiao-dong; Fu, Li-yun; Hu, Yao-ren; Chen, Yong-ping; Chen, Da-zhi

    2015-01-01

    Epidermal growth factor (EGF) and its signaling molecules, EGFreceptor (EGFR) and signal transducer and activator of transcription factor 3 (STAT3), have been considered to play a role in liver fibrosis and cirrhosis. Plumbagin (PL) is an extracted component from the plant and has been used to treat different kinds of cancer. However, its role in regulation of EGFR and STAT3 during liver fibrosis has not been investigated. In this study, the effects of PL on the regulation of EGFR and STAT3 were investigated in carbon tetrachloride (CCl4) induced liver fibrosis and hepatic stellate cells (HSC-T6). PL significantly attenuated liver injury and fibrosis in CCl4 treated rats. At concentrations of 2 to 6 μM, PL did not induce significant cytotoxicity of HSC-T6 cells. Moreover, PL reduced phosphorylation of EGFR and STAT3 in both fibrotic liver and heparin-binding EGF-like growth factor (HB-EGF) treated HSC-T6 cells. Furthermore, PL reduced the expression of α-SMA, EGFR, and STAT3 in both fibrotic liver and HB-EGF treated HSC-T6 cells. In conclusion, plumbagin could ameliorate the development of hepatic fibrosis through its downregulation of EGFR and STAT3 in the liver, especially in hepatic stellate cells. PMID:26550019

  17. Human epidermal growth factor receptor 2 expression in urothelial carcinoma of the renal pelvis: correlation with clinicopathologic parameters.

    PubMed

    Ehsani, Laleh; Osunkoya, Adeboye O

    2014-01-01

    The significance of human epidermal growth factor receptor 2 (HER2) overexpression in breast cancer is well established, and these patients are subsequently treated with Trastuzumab. Although HER2 expression in urothelial carcinoma of the urinary bladder has also been recently characterized, it has not been well studied in urothelial carcinoma of the renal pelvis. We investigated the relationship between HER2 overexpression in urothelial carcinoma of the renal pelvis and clinicopathologic parameters. Forty six cases were identified. HER2 overexpression was present in 34/46 (74%) cases. Mean patient age with HER2 overexpression was 68 years (range: 42-87 years). There was a male predominance with 28/34 (82%) patients. High grade urothelial carcinoma was present in 32/34 (94%) cases and 2/34 (6%) cases had low grade urothelial carcinoma. Pathologic staging was as follows; 9/34 (26%) cases were pTa, 10/34 (29%) cases were pT1, 2/34 (6%) cases were pT2, 12/34 (35%) cases were pT3, and 1/34 (3%) cases was pT4. An inverted growth pattern was present in 23/46 (50%) cases. HER2 overexpression was present in 15/23 (65%) cases of urothelial carcinoma with an inverted growth pattern. Our study showed that HER2 overexpression is more common in male patients with high grade urothelial carcinoma, especially those with an inverted growth pattern. It is highly conceivable that patients with urothelial carcinoma of the renal pelvis may be further stratified based on HER2 overexpression, and may also be potential candidates for Trastuzumab therapy in the neoadjuvant or adjuvant setting. PMID:24966967

  18. MicroRNA-27a functions as a tumor suppressor in renal cell carcinoma by targeting epidermal growth factor receptor

    PubMed Central

    LI, YUEYAN; LI, JIE; SUN, XIAOLEI; CHEN, JIACUN; SUN, XIAOQING; ZHENG, JUNNIAN; CHEN, RENFU

    2016-01-01

    Numerous studies have suggested that microRNAs (miRNAs) are vital in the development of various types of human cancers, including renal cell carcinoma (RCC), and the regulation of tumor progression and invasion. However, the effect of miRNA-27a (miR-27a) on the tumorigenesis of RCC is unclear. The aim of the present study was to investigate the function of miR-27a and identify its possible target genes in RCC cells. In the present study, cell proliferation, migration and invasion and the percentage of apoptotic cells were detected by methylthiazol tetrazolium assays, Annexin V analysis, wound-healing assays and Transwell invasion assays. Western blot analysis was performed to validate the protein expression level and assess whether the epidermal growth factor receptor (EGFR) was a target gene of miR-27a. A tumor xenograft animal model was used to detect the role of miR-27a on RCC cell growth in vivo. The present study demonstrated that miR-27a significantly suppressed human RCC 786-O cell proliferation and induced cell apoptosis. Restoration of miR-27 also resulted in 786-O cell migration and invasion inhibition. Furthermore, upregulated miR-27a attenuated RCC tumor growth in the tumor xenograft animal model. The present results suggested that miR-27a functions as a tumor suppressor in RCC. The western blot analysis assay revealed that EGFR was a novel target of miR-27a. The growth suppression of RCC cells was attributed partly to the downregulation of the cell cycle by ERFR inhibition. The present findings may aid in the understanding of the molecular mechanism of miR-27a in the tumorigenesis of RCC, and may provide novel diagnostic and therapeutic options for RCC. PMID:27313769

  19. [Bacillus subtilis and streptomycin resistant mutant growth in the medium with saponite].

    PubMed

    Chebotarev, A Iu; Gordienko, A S; Kurdish, I K

    2013-01-01

    The influence of dispersed saponite on growth activity of Bacillus subtilis IMV B-7023 and its streptomycin resistant mutant has been shown. The effectiveness of this process depends on the content of dispersed material and phosphate in the medium. It has been found that when B. subtilis is cultured in the medium containing 0.6 g/l PO4(3-) stimulation of bacteria growth is observed, but at a lower concentration (0.1 g/l PO4(3-)) there is a decline in the culture growth activity. At the same time streptomycin resistant mutant is shown to increase growth activity in the growth medium which contains up to 1.0 g/l saponite, regardless of the concentration of phosphate. It is shown that this effect is a consequence of uniformity of surface properties of streptomycin resistant strain of bacteria and similar parent strain at a concentration of 0.6 g/l PO4(3-). PMID:24479315

  20. Epidermal Growth Factor Receptor mediated cellular and subcellular targeted delivery of Iron oxide core-Titanium dioxide shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Yuan, Ye

    TiO2 nanomaterials can carry a multitude of therapeutic and diagnostic agents and the semiconductor properties of TiO2 allow for the production of cytotoxic reactive oxygen species following photoactivation. However, the delivery of these nanomaterials to specific cancer cells and specific subcellular organelles within these cells can have a substantial impact on the efficacy and safety of TiO2 nanoparticle therapeutics. Targeting cell surface receptors that are overexpressed by cancer cells is one strategy to improve the specificity of nanoparticle delivery. Therefore we decided to target the Epidermal Growth Factor Receptor (EGFR) because ligand- binding induces rapid receptor endocytosis and ligand-bound EGFR can translocate to the nucleus of cancer cells. To create NPs that can bind EGFR, we identified a peptide derived from the B-loop of Epidermal Growth Factor (EGF) that has been shown to bind and activate EGFR and conjugated it to the surface of Fe3O4 core-TiO2 shell NPs to produce B-loop NCs. We then devised a pulldown assay to show that B-loop NCs, but not bare NPs or NCs carrying a scrambled B-loop peptide, can bind and extract EGFR from HeLa cell protein extracts. Interestingly, B-loop NCs can also pulldown importin-beta, a protein that can transport EGFR to the nucleus. Furthermore, we used flow cytometry and fluorescently labeled NPs to show that B-loop peptides can significantly improve the internalization of NPs by EGFR-expressing HeLa cells. We determined that B-loop NCs can bind EGFR on the membrane of HeLa cells and that these NCs can be transported to the nucleus, by using a combination of confocal microscopy and X-ray Fluorescence Microscopy (XFM) to indirectly and directly track the subcellular distribution of NCs. Finally, we demonstrate how the Bionanoprobe, a novel high-resolution XFM apparatus that can scan whole-mounted, frozen-hydrated cells at multiple angles can be used to verify the subcellular distribution of B-loop NCs.

  1. Cellular and Tumor Radiosensitivity is Correlated to Epidermal Growth Factor Receptor Protein Expression Level in Tumors Without EGFR Amplification;Epidermal growth factor receptor; Radiotherapy; Squamous cell carcinoma; Biomarker; Local tumor control

    SciTech Connect

    Kasten-Pisula, Ulla; Saker, Jarob; Eicheler, Wolfgang; Krause, Mechthild; Yaromina, Ala; Meyer-Staeckling, Soenke; Scherkl, Benjamin; Kriegs, Malte; Brandt, Burkhard; Grenman, Reidar; Petersen, Cordula; Baumann, Michael; Dikomey, Ekkehard

    2011-07-15

    Purpose: There is conflicting evidence for whether the expression of epidermal growth factor receptor in human tumors can be used as a marker of radioresponse. Therefore, this association was studied in a systematic manner using squamous cell carcinoma (SCC) cell lines grown as cell cultures and xenografts. Methods and Materials: The study was performed with 24 tumor cell lines of different tumor types, including 10 SCC lines, which were also investigated as xenografts on nude mice. Egfr gene dose and the length of CA-repeats in intron 1 were determined by polymerase chain reaction, protein expression in vitro by Western blot and in vivo by enzyme-linked immunosorbent assay, and radiosensitivity in vitro by colony formation. Data were correlated with previously published tumor control dose 50% data after fractionated irradiation of xenografts of the 10 SCC. Results: EGFR protein expression varies considerably, with most tumor cell lines showing moderate and only few showing pronounced upregulation. EGFR upregulation could only be attributed to massive gene amplification in the latter. In the case of little or no amplification, in vitro EGFR expression correlated with both cellular and tumor radioresponse. In vivo EGFR expression did not show this correlation. Conclusions: Local tumor control after the fractionated irradiation of tumors with little or no gene amplification seems to be dependent on in vitro EGFR via its effect on cellular radiosensitivity.

  2. Growth, photosynthesis, nitrogen partitioning and responses to CO2 enrichment in barley mutants lacking NADH-dependent nitrate reductase activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We examined plant growth, photosynthesis and leaf constituents of both the wild type (WT) and two mutant lines of barley (Hordeum vulgare L. cv. Steptoe) with defects in NADH-dependent nitrate reductase (NADH-NAR) activity. The first mutant, nar1, had a lesion within the NAR structural gene and the...

  3. Thyrotropin inhibits while insulin, epidermal growth factor and tetradecanoyl phorbol acetate stimulate insulin-like growth factor binding protein secretion from sheep thyroid cells.

    PubMed

    Eggo, M C; Bachrach, L K; Brown, A L; Burrow, G N

    1991-01-01

    Six insulin-like growth factor binding proteins (IGFBP) have been identified in the conditioned medium from sheep thyroid cells cultured under serum-free conditions. IGFBPs of 32, 28, 23 and 19 kDa were secreted by cells cultured for 14 days in serum-free and hormone-free medium. The constitutive secretion of IGFBP was inhibited by thyrotropin (TSH, 0.3 mU per mL). The effect was most marked on the secretion of the 28 kDa BP. High insulin concentrations stimulated the secretion of this IGFBP. The stimulatory effects of insulin were inhibited by TSH. Growth hormone treatment decreased the secretion of the 28 kDa protein. Tetradecanoylphorbol-13 acetate (TPA) and epidermal growth factor (EGF) both of which stimulate thyroid cell growth but inhibit differentiated function, markedly stimulated IGFBP secretion and induced the appearance of a 46 and a 150 kDa IGFBP. The effects of EGF and TPA were not identical. A rat IGFBP-2 cDNA reacted with sheep thyroid RNA of approximate size 1.6 kb. TPA treatment increased IGFBP-2 mRNA. Other hormones used to enhance differentiation and growth in thyroid cells in culture i.e. transferrin, somatostatin, cortisol and glycyl-histidyl-lysine acetate had no marked effects on IGFBP secretion nor on TSH-dependent, insulin-mediated iodide uptake and organification and cell growth. We show a correlation between secretion of high molecular weight IGFBP with enhanced growth but decreased function. Conversely, we find a correlation between decreased secretion of the 28 kDa BP and increased growth and function. PMID:1722684

  4. Phytochrome, Gibberellins, and Hypocotyl Growth (A Study Using the Cucumber (Cucumis sativus L.) long hypocotyl Mutant).

    PubMed Central

    Lopez-Juez, E.; Kobayashi, M.; Sakurai, A.; Kamiya, Y.; Kendrick, R. E.

    1995-01-01

    The possible involvement of gibberellins (GAs) in the regulation of hypocotyl elongation by phytochrome was examined. Under white light the tall long hypocotyl (lh) cucumber (Cucumis sativus L.) mutant, deficient in a type B-like phytochrome, shows an increased "responsiveness" (defined as response capability) to applied GA4 (the main endogenous active GA) compared to the wild type. Supplementing far-red irradiation results in a similar increase in responsiveness in the wild type. Experiments involving application of the precursor GA9 and of an inhibitor of GA4 inactivation suggest that both the GA4 activation and inactivation steps are phytochrome independent. Endogenous GA levels of whole seedlings were analyzed by combined gas chromatography-mass spectrometry using deuterated internal standards. The levels of GA4 (and those of GA34, the inactivated GA4) were lower in the lh mutant under low-irradiance fluorescent light compared with the wild type, similar to wild type under higher irradiance light during the initial hypocotyl extension phase, and higher during the phase of sustained growth, in which extension involved an increase in the number of cells in the upper region. In all cases, growth of the lh mutant was more rapid than that of the wild type. It is proposed that GA4 and phytochrome control cell elongation primarily through separate mechanisms that interact at a step close to the terminal response. PMID:12228348

  5. Design, expression and evaluation of a novel humanized single chain antibody against epidermal growth factor receptor (EGFR).

    PubMed

    Akbari, Bahman; Farajnia, Safar; Zarghami, Nosratollah; Mahdieh, Nejat; Rahmati, Mohammad; Khosroshahi, Shiva Ahdi; Rahbarnia, Leila

    2016-11-01

    Various strategies have been attempted for targeting of epidermal growth factor receptor (EGFR), as an essential biomarker in a variety of cancers. Several anti-EGFR antibodies including cetuximab are used in clinics for treatment of EGFR-overexpressing colorectal and head and neck cancers but the efficiency of these antibodies is threatened by their large size and chimeric nature. Humanized single chains antibodies (huscFv) are smaller generation of antibodies with lower immunogenicity may overcome these limitations. This article reports production and evaluation of a novel humanized anti-EGFR scFv. The CDRs of cetuximab heavy and light chains were grafted onto human antibody frameworks as framework donors. To maintain the antigen binding affinity of murine antibody, the murine vernier zone residues were retained in framework regions of huscFv. Additionally, two point mutations in CDR-L1 and CDR-L3 and three point mutations in CDR-H2 and CDR-H3 loops of the humanized scFv (huscFv) were introduced to increase affinity of the huscFv to EGFR. Analysis of results demonstrated that the humanness degree of resultant huscFv was increased as 19%. HuscFv was expressed in BL21 (DE3) and affinity purified via Ni-NTA column. The reactivity of huscFv with EGFR was evaluated by ELISA and dot blot techniques. Analysis by ELISA and dot blot showed that the huscFv was able to recognize and react with EGFR. Toxicity analysis by MTT assay indicated an inhibitory effect on growth of EGFR-overexpressing A431 cells. In conclusion, the huscFv produced in this study revealed decreased immunogenicity while retained growth inhibitory effect on EGFR-overexpressing tumor cells. PMID:27298212

  6. Epidermal growth factor inhibits radioiodine uptake but stimulates deoxyribonucleic acid synthesis in newborn rat thyroids grown in nude mice

    SciTech Connect

    Ozawa, S.; Spaulding, S.W. )

    1990-08-01

    We have studied the effect of altering the level of circulating epidermal growth factor (EGF) on the function and growth of newborn rat thyroids transplanted into nude mice. Preliminary studies confirmed that sialoadenectomy reduced circulating EGF levels in nude mice (from 0.17 +/- 0.02 to 0.09 +/- 0.02 ng/ml), and that ip injection of 5 micrograms EGF raised EGF levels (the peak level of 91.7 +/- 3.3 ng/ml was achieved at 30 min, with a subsequent half-life of about 1 h). The radioiodine uptake by newborn rat thyroid transplants in the sialoadenectomized and sham-operated animals correlated inversely with the circulating EGF levels determined when the mice were killed (r = -0.99). Low-dose TSH treatment (0.1 microU/day) generally stimulated the radioiodine uptake, but high-dose TSH groups (100 microU/day) were not significantly different from the control group. The 5-day nuclear (3H)thymidine labeling index was 6.8 +/- 0.5% IN newborn rat thyroid transplants grown in sialoadenectomized animals, 13.1 +/- 0.3% in sham-operated animals, and 16.8 +/- 0.5% in nude mice receiving 5 micrograms EGF ip daily. In general, both low-dose and high-dose TSH promoted DNA synthesis under low EGF conditions but were ineffective in the presence of higher levels of EGF. Adult rat thyroid transplants showed no significant responses. Although sialoadenectomy may alter other factors besides EGF, it appears that changes in the levels of circulating EGF within the physiological range affect the function and growth of newborn rat thyroid transplants. Circulating EGF may play a role in thyroid maturation and may also be involved in the regulation of thyroid function throughout life.

  7. Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition

    PubMed Central

    Hata, Aaron N; Niederst, Matthew J; Archibald, Hannah L; Gomez-Caraballo, Maria; Siddiqui, Faria M; Mulvey, Hillary E; Maruvka, Yosef E; Ji, Fei; Bhang, Hyo-eun C; Radhakrishna, Viveksagar Krishnamurthy; Siravegna, Giulia; Hu, Haichuan; Raoof, Sana; Lockerman, Elizabeth; Kalsy, Anuj; Lee, Dana; Keating, Celina L; Ruddy, David A; Damon, Leah J; Crystal, Adam S; Costa, Carlotta; Piotrowska, Zofia; Bardelli, Alberto; Iafrate, Anthony J; Sadreyev, Ruslan I; Stegmeier, Frank; Getz, Gad; Sequist, Lecia V; Faber, Anthony C; Engelman, Jeffrey A

    2016-01-01

    Although mechanisms of acquired resistance of EGFR mutant non-small cell lung cancers to EGFR inhibitors have been identified, little is known about how resistant clones evolve during drug therapy. Here, we observe that acquired resistance caused by the T790M gatekeeper mutation can occur either by selection of pre-existing T790M clones or via genetic evolution of initially T790M-negative drug tolerant cells. The path to resistance impacts the biology of the resistant clone, as those that evolved from drug tolerant cells had a diminished apoptotic response to third generation EGFR inhibitors that target T790M EGFR; treatment with navitoclax, an inhibitor of BCL-XL and BCL-2 restored sensitivity. We corroborated these findings using cultures derived directly from EGFR inhibitor-resistant patient tumors. These findings provide evidence that clinically relevant drug resistant cancer cells can both pre-exist and evolve from drug tolerant cells, and point to therapeutic opportunities to prevent or overcome resistance in the clinic. PMID:26828195

  8. A halocin-H4 mutant Haloferax mediterranei strain retains the ability to inhibit growth of other halophilic archaea.

    PubMed

    Naor, Adit; Yair, Yael; Gophna, Uri

    2013-11-01

    Many members of the Halobacteriaceae were found to produce halocins, molecules that inhibit the growth of other halophilic archaea. Halocin H4 that is produced by Haloferax mediterranei and inhibits the growth of Halobacterium salinarum is one of the best studied halocins to date. The gene encoding this halocin had been previously identified as halH4, located on one of Hfx. mediterranei megaplasmids. We generated a mutant of the halH4 gene and examined the killing ability of the Haloferax mediterranei halH4 mutant with respect to both Halobacterium salinarum and Haloferax volcanii. We showed that both wild-type Hfx. mediterranei and the halH4 mutant strain efficiently inhibited the growth of both species, indicating halocin redundancy. Surprisingly, the halH4 deletion mutant exhibited faster growth in standard medium than the wild type, and is likely to have a better response to several nucleotides, which could explain this phenotype. PMID:24037372

  9. Drosophila Nipped-B Mutants Model Cornelia de Lange Syndrome in Growth and Behavior

    PubMed Central

    Xu, Dongbin; Misulovin, Ziva; Schaaf, Cheri A.; Mosarla, Ramya C.; Mannino, Elizabeth; Shannon, Megan; Jones, Emily; Shi, Mi; Chen, Wen-Feng; Katz, Olivia L.; Sehgal, Amita; Jongens, Thomas A.; Krantz, Ian D.; Dorsett, Dale

    2015-01-01

    Individuals with Cornelia de Lange Syndrome (CdLS) display diverse developmental deficits, including slow growth, multiple limb and organ abnormalities, and intellectual disabilities. Severely-affected individuals most often have dominant loss-of-function mutations in the Nipped-B-Like (NIPBL) gene, and milder cases often have missense or in-frame deletion mutations in genes encoding subunits of the cohesin complex. Cohesin mediates sister chromatid cohesion to facilitate accurate chromosome segregation, and NIPBL is required for cohesin to bind to chromosomes. Individuals with CdLS, however, do not display overt cohesion or segregation defects. Rather, studies in human cells and model organisms indicate that modest decreases in NIPBL and cohesin activity alter the transcription of many genes that regulate growth and development. Sister chromatid cohesion factors, including the Nipped-B ortholog of NIPBL, are also critical for gene expression and development in Drosophila melanogaster. Here we describe how a modest reduction in Nipped-B activity alters growth and neurological function in Drosophila. These studies reveal that Nipped-B heterozygous mutant Drosophila show reduced growth, learning, and memory, and altered circadian rhythms. Importantly, the growth deficits are not caused by changes in systemic growth controls, but reductions in cell number and size attributable in part to reduced expression of myc (diminutive) and other growth control genes. The learning, memory and circadian deficits are accompanied by morphological abnormalities in brain structure. These studies confirm that Drosophila Nipped-B mutants provide a useful model for understanding CdLS, and provide new insights into the origins of birth defects. PMID:26544867

  10. Drosophila Nipped-B Mutants Model Cornelia de Lange Syndrome in Growth and Behavior.

    PubMed

    Wu, Yaning; Gause, Maria; Xu, Dongbin; Misulovin, Ziva; Schaaf, Cheri A; Mosarla, Ramya C; Mannino, Elizabeth; Shannon, Megan; Jones, Emily; Shi, Mi; Chen, Wen-Feng; Katz, Olivia L; Sehgal, Amita; Jongens, Thomas A; Krantz, Ian D; Dorsett, Dale

    2015-11-01

    Individuals with Cornelia de Lange Syndrome (CdLS) display diverse developmental deficits, including slow growth, multiple limb and organ abnormalities, and intellectual disabilities. Severely-affected individuals most often have dominant loss-of-function mutations in the Nipped-B-Like (NIPBL) gene, and milder cases often have missense or in-frame deletion mutations in genes encoding subunits of the cohesin complex. Cohesin mediates sister chromatid cohesion to facilitate accurate chromosome segregation, and NIPBL is required for cohesin to bind to chromosomes. Individuals with CdLS, however, do not display overt cohesion or segregation defects. Rather, studies in human cells and model organisms indicate that modest decreases in NIPBL and cohesin activity alter the transcription of many genes that regulate growth and development. Sister chromatid cohesion factors, including the Nipped-B ortholog of NIPBL, are also critical for gene expression and development in Drosophila melanogaster. Here we describe how a modest reduction in Nipped-B activity alters growth and neurological function in Drosophila. These studies reveal that Nipped-B heterozygous mutant Drosophila show reduced growth, learning, and memory, and altered circadian rhythms. Importantly, the growth deficits are not caused by changes in systemic growth controls, but reductions in cell number and size attributable in part to reduced expression of myc (diminutive) and other growth control genes. The learning, memory and circadian deficits are accompanied by morphological abnormalities in brain structure. These studies confirm that Drosophila Nipped-B mutants provide a useful model for understanding CdLS, and provide new insights into the origins of birth defects. PMID:26544867

  11. Analysis of the Role of the C-Terminal Tail in the Regulation of the Epidermal Growth Factor Receptor.

    PubMed

    Kovacs, Erika; Das, Rahul; Wang, Qi; Collier, Timothy S; Cantor, Aaron; Huang, Yongjian; Wong, Kathryn; Mirza, Amar; Barros, Tiago; Grob, Patricia; Jura, Natalia; Bose, Ron; Kuriyan, John

    2015-09-01

    The ∼230-residue C-terminal tail of the epidermal growth factor receptor (EGFR) is phosphorylated upon activation. We examined whether this phosphorylation is affected by deletions within the tail and whether the two tails in the asymmetric active EGFR dimer are phosphorylated differently. We monitored autophosphorylation in cells using flow cytometry and found that the first ∼80 residues of the tail are inhibitory, as demonstrated previously. The entire ∼80-residue span is important for autoinhibition and needs to be released from both kinases that form the dimer. These results are interpreted in terms of crystal structures of the inactive kinase domain, including two new ones presented here. Deletions in the remaining portion of the tail do not affect autophosphorylation, except for a six-residue segment spanning Tyr 1086 that is critical for activation loop phosphorylation. Phosphorylation of the two tails in the dimer is asymmetric, with the activator tail being phosphorylated somewhat more strongly. Unexpectedly, we found that reconstitution of the transmembrane and cytoplasmic domains of EGFR in vesicles leads to a peculiar phenomenon in which kinase domains appear to be trapped between stacks of lipid bilayers. This artifactual trapping of kinases between membranes enhances an intrinsic functional asymmetry in the two tails in a dimer. PMID:26124280

  12. The relationship of quantitative epidermal growth factor receptor expression in non-small cell lung cancer to long term survival.

    PubMed Central

    Veale, D.; Kerr, N.; Gibson, G. J.; Kelly, P. J.; Harris, A. L.

    1993-01-01

    Increased expression of epidermal growth factor receptor (EGFr) has been reported in non small cell lung cancers (NSCLC) when compared to normal lung. We have examined post-operative survival in 19 surgically treated patients with NSCLC who had full characterisation of EGFr on primary tumour membrane preparations from resection specimens. There were ten squamous, seven adeno and two large cell carcinomas. The median concentration of high affinity sites was 31 fmol per mg of protein (4-1532) and the median dissociation constant (Kd) of these high affinity sites was 2.3 x 10(-10) per mol (1.2-30 x 10(-10)). Seven patients survived over 5 years. Twelve patients died between 8.5 and 55 months from the time of surgery. When > 5 year survivors were compared to non-survivors there was no difference as regards tumour size or stage, or as regards age or sex. The survivors had a median concentration of high affinity EGFr sites of 16.1 fmol mg-1 protein compared to a median concentration of 68.6 fmol mg-1 protein in the non-survivors (P = 0.01 Wilcoxon test). No long term survivor had > 35 fmol mg-1 protein of receptor. Thus EGFr quantitation may give independent prognostic information in NSCLC and help to select patients for adjuvant therapy after surgery. These results need confirmation in a larger prospective study. PMID:8391303

  13. Epidermal growth factor receptor tyrosine kinase inhibitors with conventional chemotherapy for the treatment of non-small cell lung cancer

    PubMed Central

    Gao, Yuan; Song, PingPing; Li, Hui; Guo, HongBo; Jia, Hui; Zhang, BaiJiang

    2016-01-01

    We report a Chinese male patient with advanced stage lung squamous cell carcinoma who developed brain metastases after responding to treatment comprising six cycles of conventional chemotherapy with docetaxel and cisplatin. The patient was then treated with oral erlotinib (150 mg/day) and whole-brain radiation therapy followed by four cycles of docetaxel and carboplatin chemotherapy. The patient then received gefitinib (250 mg/day) as a maintenance therapy until the end of the follow-up period. In this patient, progression-free survival, defined as the interval from the initiation of first-line chemotherapy to the cessation of erlotinib due to progressive disease or death from any cause, was 3 months. Overall survival, defined as the interval from the initiation of first-line chemotherapy to death from any cause, was 75 months. Erlotinib was well tolerated in combination with whole-brain radiation therapy and a favorable objective response rate was observed. Furthermore, targeted drug treatment warrants consideration in patients with a negative epidermal growth factor receptor mutation status and male patients with a history of smoking. PMID:26719713

  14. Increased epidermal growth factor-receptor protein in a human mesothelial cell line in response to long asbestos fibers.

    PubMed Central

    Pache, J. C.; Janssen, Y. M.; Walsh, E. S.; Quinlan, T. R.; Zanella, C. L.; Low, R. B.; Taatjes, D. J.; Mossman, B. T.

    1998-01-01