Science.gov

Sample records for mutation affecting symbiosis

  1. Interaction between host genotype and environmental conditions affects bacterial density in Wolbachia symbiosis.

    PubMed

    Mouton, Laurence; Henri, Hélène; Charif, Delphine; Boulétreau, Michel; Vavre, Fabrice

    2007-04-22

    Regulation of microbial population density is a necessity in stable symbiotic interactions. In Wolbachia symbiosis, both bacterial and host genotypes are involved in density regulation, but environmental factors may also affect bacterial population density. Here, we studied the interaction between three strains of Wolbachia in two divergent homozygous lines of the wasp Leptopilina heterotoma at two different temperatures. Wolbachia density varied between the two host genotypes at only one temperature. Moreover, at this temperature, reciprocal-cross F1 insects displayed identical Wolbachia densities, which were intermediate between the densities in the two parental lines. While these findings confirm that the host genotype plays an important role in Wolbachia density, they also highlight its interaction with environmental conditions, making possible the evolution of local adaptations for the regulation of Wolbachia density. PMID:17251124

  2. How Symbiosis Creates Diversity

    ERIC Educational Resources Information Center

    Lord, Joshua

    2010-01-01

    Diversity in habitats on Earth is astounding--whether on land or in the sea--and this is in part due to symbiosis. The lesson described in this article helps students understand how symbiosis affects different organisms through a fun and engaging game where they match hosts and symbionts based on their respective needs. This 45-minute lesson is…

  3. Symbiosis between nitrogen-fixing bacteria and Medicago truncatula is not significantly affected by silver and silver sulfide nanomaterials.

    PubMed

    Judy, Jonathan D; Kirby, Jason K; McLaughlin, Mike J; McNear, David; Bertsch, Paul M

    2016-07-01

    Silver (Ag) engineered nanomaterials (ENMs) are being released into waste streams and are being discharged, largely as Ag2S aged-ENMs (a-ENMs), into agroecosystems receiving biosolids amendments. Recent research has demonstrated that biosolids containing an environmentally relevant mixture of ZnO, TiO2, and Ag ENMs and their transformation products, including Ag2S a-ENMs, disrupted the symbiosis between nitrogen-fixing bacteria and legumes. However, this study was unable to unequivocally determine which ENM or combination of ENMs and a-ENMs was responsible for the observed inhibition. Here, we examined further the effects of polyvinylpyrollidone (PVP) coated pristine Ag ENMs (PVP-Ag), Ag2S a-ENMs, and soluble Ag (as AgSO4) at 1, 10, and 100 mg Ag kg(-1) on the symbiosis between the legume Medicago truncatula and the nitrogen-fixing bacterium, Sinorhizobium melliloti in biosolids-amended soil. Nodulation frequency, nodule function, glutathione reductase production, and biomass were not significantly affected by any of the Ag treatments, even at 100 mg kg(-1), a concentration analogous to a worst-case scenario resulting from long-term, repeated biosolids amendments. Our results provide additional evidence that the disruption of the symbiosis between nitrogen-fixing bacteria and legumes in response to a mixture of ENMs in biosolids-amended soil reported previously may not be attributable to Ag ENMs or their transformation end-products. We anticipate these findings will provide clarity to regulators and industry regarding potential unintended consequences to terrestrial ecosystems resulting from of the use of Ag ENMs in consumer products. PMID:27149150

  4. High phosphate reduces host ability to develop arbuscular mycorrhizal symbiosis without affecting root calcium spiking responses to the fungus

    PubMed Central

    Balzergue, Coline; Chabaud, Mireille; Barker, David G.; Bécard, Guillaume; Rochange, Soizic F.

    2013-01-01

    The arbuscular mycorrhizal symbiosis associates soil fungi with the roots of the majority of plants species and represents a major source of soil phosphorus acquisition. Mycorrhizal interactions begin with an exchange of molecular signals between the two partners. A root signaling pathway is recruited, for which the perception of fungal signals triggers oscillations of intracellular calcium concentration. High phosphate availability is known to inhibit the establishment and/or persistence of this symbiosis, thereby favoring the direct, non-symbiotic uptake of phosphorus by the root system. In this study, Medicago truncatula plants were used to investigate the effects of phosphate supply on the early stages of the interaction. When plants were supplied with high phosphate fungal attachment to the roots was drastically reduced. An experimental system was designed to individually study the effects of phosphate supply on the fungus, on the roots, and on root exudates. These experiments revealed that the most important effects of high phosphate supply were on the roots themselves, which became unable to host mycorrhizal fungi even when these had been appropriately stimulated. The ability of the roots to perceive their fungal partner was then investigated by monitoring nuclear calcium spiking in response to fungal signals. This response did not appear to be affected by high phosphate supply. In conclusion, high levels of phosphate predominantly impact the plant host, but apparently not in its ability to perceive the fungal partner. PMID:24194742

  5. Arbuscular mycorrhizal symbiosis affects the grain proteome of Zea mays: a field study.

    PubMed

    Bona, Elisa; Scarafoni, Alessio; Marsano, Francesco; Boatti, Lara; Copetta, Andrea; Massa, Nadia; Gamalero, Elisa; D'Agostino, Giovanni; Cesaro, Patrizia; Cavaletto, Maria; Berta, Graziella

    2016-01-01

    Maize is one of the most important crops worldwide and is strongly dependent on arbuscular mycorrhiza (AM) fungi, organisms that form a mutualistic association with land plants. In maize, AM symbiosis enhances spike dry weight, spike length, spike circumference, and the dry weight and dimensions of the grain. Notwithstanding its ubiquitous nature, the detailed relationship between AM fungal colonization and plant development is not completely understood. To facilitate a better understanding of the effects of AM fungi on plants, the work reported here assessed the effects of a consortium of AM fungi on the kernel proteome of maize, cultivated in open-field conditions. To our knowledge, this is the first report of the modulation of a plant seed proteome following AM fungal inoculation in the field. Here, it was found that AM fungi modify the maize seed proteome by up-regulating enzymes involved in energetic metabolism, embryo development, nucleotide metabolism, seed storage and stress responses. PMID:27216714

  6. Arbuscular mycorrhizal symbiosis affects the grain proteome of Zea mays: a field study

    PubMed Central

    Bona, Elisa; Scarafoni, Alessio; Marsano, Francesco; Boatti, Lara; Copetta, Andrea; Massa, Nadia; Gamalero, Elisa; D’Agostino, Giovanni; Cesaro, Patrizia; Cavaletto, Maria; Berta, Graziella

    2016-01-01

    Maize is one of the most important crops worldwide and is strongly dependent on arbuscular mycorrhiza (AM) fungi, organisms that form a mutualistic association with land plants. In maize, AM symbiosis enhances spike dry weight, spike length, spike circumference, and the dry weight and dimensions of the grain. Notwithstanding its ubiquitous nature, the detailed relationship between AM fungal colonization and plant development is not completely understood. To facilitate a better understanding of the effects of AM fungi on plants, the work reported here assessed the effects of a consortium of AM fungi on the kernel proteome of maize, cultivated in open-field conditions. To our knowledge, this is the first report of the modulation of a plant seed proteome following AM fungal inoculation in the field. Here, it was found that AM fungi modify the maize seed proteome by up-regulating enzymes involved in energetic metabolism, embryo development, nucleotide metabolism, seed storage and stress responses. PMID:27216714

  7. Schoolyard Symbiosis.

    ERIC Educational Resources Information Center

    Allard, David W.

    1996-01-01

    Discusses different types of symbiosis--mutualism, commensalism, and parasitism--and examples of each type including lichens, legumes, mistletoe, and epiphytes. Describes how teachers can use these examples in the study of symbiosis which allows teachers to focus on many basic concepts in evolution, cell biology, ecology, and other fields of…

  8. Mycorrhizal symbiosis in leeks increases plant growth under low phosphorus and affects the levels of specific flavonoid glycosides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction- Mycorrhizae symbiosis is a universal phenomenon in nature that promotes plant growth and food quality in most plants, especially, under phosphorus deficiency and water stress. Objective- The objective of this study was to assess the effects of mycorrhizal symbiosis on changes in the le...

  9. Metal toxicity differently affects the Iris pseudacorus-arbuscular mycorrhiza fungi symbiosis in terrestrial and semi-aquatic habitats.

    PubMed

    Wężowicz, K; Turnau, K; Anielska, T; Zhebrak, I; Gołuszka, K; Błaszkowski, J; Rozpądek, P

    2015-12-01

    Phytoremediation offers an environmental friendly alternative to conventional cleanup techniques. In this study, mycorrhizal fungi isolated from the roots of Mentha longifolia grown in the basin of the Centuria River (S Poland) were used. Iris pseudacorus was grown in substratum from an industrial waste, enriched in Pb, Fe, Zn, and Cd in a terrestrial and water-logged habitat. Plant yield and photosynthetic performance was the highest in the aquatic environment; however, the presence of toxic metals (TM) negatively affected photosystem II (PSII) photochemistry as shown by the JIP test. Fungi colonization and Cd accumulation within plant tissues was decreased. In the terrestrial habitat, neither arbuscular mycorrhizal fungi (AMF) nor metal toxicity affected plant growth, although metal uptake, Cd in particular, as well as photosynthesis were affected. Inoculated plants accumulated significantly more Cd, and photosynthesis was downregulated. The results presented in this study clearly indicate that the I. pseudacorus-AMF symbiosis adapts itself to the presence of toxic metals in the environment, optimizing resource supply, energy fluxes, and possibly stress tolerance mechanisms. Plant/AMF consortia grown in terrestrial and water-logged habitats utilize different strategies to cope with metal toxicity. The use of AMF in improving the phytoremediation potential of I. pseudacorus needs, however, further research. PMID:26585452

  10. Genetic Analysis of 63 Mutations Affecting Maize Kernel Development Isolated from Mutator Stocks

    PubMed Central

    Scanlon, M. J.; Stinard, P. S.; James, M. G.; Myers, A. M.; Robertson, D. S.

    1994-01-01

    Sixty-three mutations affecting development of the maize kernel were isolated from active Robertson's Mutator (Mu) stocks. At least 14 previously undescribed maize gene loci were defined by mutations in this collection. Genetic mapping located 53 of these defective kernel (dek) mutations to particular chromosome arms, and more precise map determinations were made for 21 of the mutations. Genetic analyses identified 20 instances of allelism between one of the novel mutations and a previously described dek mutation, or between new dek mutations identified in this study; phenotypic variability was observed in three of the allelic series. Viability testing of homozygous mutant kernels identified numerous dek mutations with various pleiotropic effects on seedling and plant development. The mutations described here presumably arose by insertion of a Mu transposon within a dek gene; thus, many of the affected loci are expected to be accessible to molecular cloning via transposon-tagging. PMID:8138165

  11. Teaching Symbiosis.

    ERIC Educational Resources Information Center

    Harper, G. H.

    1985-01-01

    Argues that the meaning of the word "symbiosis" be standardized and that it should be used in a broad sense. Also criticizes the orthodox teaching of general principles in this subject and recommends that priority be given to continuity, intimacy, and associated adaptations, rather than to the harm/benefit relationship. (Author/JN)

  12. Symbiosis: An Evolutionary Innovator.

    ERIC Educational Resources Information Center

    Case, Emily

    2003-01-01

    Defines symbiosis and describes the connection between symbiosis and evolution, how it is described in science textbooks, and genetic variability. Discusses educational policy and science curriculum content. (YDS)

  13. Identification of mutations in Colombian patients affected with Fabry disease.

    PubMed

    Uribe, Alfredo; Mateus, Heidi Eliana; Prieto, Juan Carlos; Palacios, Maria Fernanda; Ospina, Sandra Yaneth; Pasqualim, Gabriela; da Silveira Matte, Ursula; Giugliani, Roberto

    2015-12-15

    Fabry Disease (FD) is an X-linked inborn error of glycosphingolipid catabolism, caused by a deficiency of the lisosomal α-galactosidase A (AGAL). The disorder leads to a vascular disease secondary to the involvement of kidney, heart and the central nervous system. The mutation analysis is a valuable tool for diagnosis and genetic counseling. Although more than 600 mutations have been identified, most mutations are private. Our objective was to describe the analysis of nine Colombian patients with Fabry disease by automated sequencing of the seven exons of the GLA gene. Two novel mutations were identified in two patients affected with the classical subtype of FD, in addition to other 6 mutations previously reported. The present study confirms the heterogeneity of mutations in Fabry disease and the importance of molecular analysis for genetic counseling, female heterozygotes detection as well as therapeutic decisions. PMID:26297554

  14. The Symbiosis Regulator CbrA Modulates a Complex Regulatory Network Affecting the Flagellar Apparatus and Cell Envelope Proteins▿ †

    PubMed Central

    Gibson, Katherine E.; Barnett, Melanie J.; Toman, Carol J.; Long, Sharon R.; Walker, Graham C.

    2007-01-01

    Sinorhizobium meliloti participates in a nitrogen-fixing symbiosis with legume plant host species of the genera Medicago, Melilotus, and Trigonella. We recently identified an S. meliloti two-component sensory histidine kinase, CbrA, which is absolutely required to establish a successful symbiosis with Medicago sativa (K. E. Gibson, G. R. Campbell, J. Lloret, and G. C. Walker, J. Bacteriol. 188:4508-4521, 2006). In addition to having a symbiotic defect, the cbrA::Tn5 mutant also has free-living phenotypes that suggest a cell envelope perturbation. Because the bases for these phenotypes are not well understood, we undertook an identification of CbrA-regulated genes. We performed a microarray analysis and compared the transcriptome of the cbrA::Tn5 mutant to that of the wild type. Our global analysis of gene expression identified 162 genes that are differentially expressed in the cbrA::Tn5 mutant, including those encoding proteins involved in motility and chemotaxis, metabolism, and cell envelope function. With regard to those genes with a known role in symbiosis, we observed increased expression of nine genes with overlapping functions in bacterial invasion of its host, which suggests that the mutant could be competent for invasion. Since these CbrA-repressed genes are vital to the invasion process, it appears that down-regulation of CbrA activity is important at this stage of nodule development. In contrast, our previous work showed that CbrA is required for bacteria to establish themselves within the host as nitrogen-fixing symbionts. Therefore, we propose a model in which CbrA functions as a developmental switch during symbiosis. PMID:17237174

  15. Analysis of Dominant Mutations Affecting Muscle Excitation in Caenorhabditis Elegans

    PubMed Central

    Reiner, D. J.; Weinshenker, D.; Thomas, J. H.

    1995-01-01

    We examined mutations that disrupt muscle activation in Caenorhabditis elegans. Fifteen of 17 of these genes were identified previously and we describe new mutations in three of them. We also describe mutations in two new genes, exp-3 and exp-4. We assessed the degree of defect in pharyngeal, body-wall, egg-laying, and enteric muscle activation in animals mutant for each gene. Mutations in all 17 genes are semidominant and, in cases that could be tested, appear to be gain-of-function. Based on their phenotypes, the genes fall into three broad categories: mutations in 11 genes cause defective muscle activation, mutations in four genes cause hyperactivated muscle, and mutations in two genes cause defective activation in some muscle types and hyperactivation in others. In all testable cases, the mutations blocked response to pharmacological activators of egg laying, but did not block muscle activation by irradiation with a laser microbeam. The data suggest that these mutations affect muscle excitation, but not the capacity of the muscle fibers to contract. For most of the genes, apparent loss-of-function mutants have a grossly wild-type phenotype. These observations suggest that there is a large group of genes that function in muscle excitation that can be identified primarily by dominant mutations. PMID:8582640

  16. Structural implications of mutations in the pea SYM8 symbiosis gene, the DMI1 ortholog, encoding a predicted ion channel.

    PubMed

    Edwards, Anne; Heckmann, Anne B; Yousafzai, Faridoon; Duc, Gerard; Downie, J Allan

    2007-10-01

    The Pisum sativum SYM8 gene plays an essential part in both rhizobial and mycorrhizal symbioses. Mutation of sym8 in the original type line R25 blocks nodulation, mycorrhization, and Nod-factor-induced calcium spiking, an early component of the nodulation signaling pathway. We describe four new sym8 alleles of pea, which fall into the same complementation group as R25. The sym8 mutants are phenotypically similar to Medicago truncatula dmi1 mutants and map to a syntenic location. We used sequence homology to isolate the pea ortholog of M. truncatula DMI1 and have shown that the cloned pea ortholog can complement a M. truncatula dmi1 mutant for nodulation. Each of the five pea sym8 mutants carries a mutation in the DMI1 ortholog, confirming that the pea SYM8 is the DMI1 ortholog. Based on predicted structural similarities with an archaebacterial ion channel, we propose that SYM8 forms a tetrameric calcium-gated channel of a predicted structure similar to the archaebacterial potassium channel but containing a filter region that is different. The predicted structure identifies four aspartate residues (one from each subunit) forming the channel opening. We made a mutation changing the aspartate to valine and identified a missense mutation (changing alanine to valine adjacent to the aspartate residues) in this predicted filter region; both mutations caused a loss of function. We also identified a loss-of-function missense mutation (changing arginine to isoleucine) in a domain proposed to link the predicted channel and the gating ring domains, indicating that this mutation may block function by preventing a protein conformational change being transmitted from the gating-ring domain to the pore domain. PMID:17918620

  17. Autosomal Mutations Affecting Adhesion between Wing Surfaces in Drosophila Melanogaster

    PubMed Central

    Prout, M.; Damania, Z.; Soong, J.; Fristrom, D.; Fristrom, J. W.

    1997-01-01

    Integrins are evolutionarily conserved transmembrane α,β heterodimeric receptors involved in cell-to-matrix and cell-to-cell adhesions. In Drosophila the position-specific (PS) integrins mediate the formation and maintenance of junctions between muscle and epidermis and between the two epidermal wing surfaces. Besides integrins, other proteins are implicated in integrin-dependent adhesion. In Drosophila, somatic clones of mutations in PS integrin genes disrupt adhesion between wing surfaces to produce wing blisters. To identify other genes whose products function in adhesion between wing surfaces, we conducted a screen for autosomal mutations that produce blisters in somatic wing clones. We isolated 76 independent mutations in 25 complementation groups, 15 of which contain more than one allele. Chromosomal sites were determined by deficiency mapping, and genetic interactions with mutations in the β(PS) integrin gene myospheroid were investigated. Mutations in four known genes (blistered, Delta, dumpy and mastermind) were isolated. Mutations were isolated in three new genes (piopio, rhea and steamer duck) that affect myo-epidermal junctions or muscle function in embryos. Mutations in three other genes (kakapo, kiwi and moa) may also affect cell adhesion or muscle function at hatching. These new mutants provide valuable material for the study of integrin-dependent cell-to-cell adhesion. PMID:9136017

  18. Computer symbiosis: Emergence of symbiotic behavior through evolution

    SciTech Connect

    Ikegami, Takashi; Kaneko, Kunihiko

    1989-01-01

    Symbiosis is altruistic cooperation between distinct species. It is one of the most effective evolutionary processes, but its dynamics are not well understood as yet. A simple model of symbiosis is introduced, where we consider interactions between hosts and parasites and also mutations of hosts and parasites. It is found that a symbiotic state emerges for a suitable range of mutation rates. The symbiotic state is not static, but dynamically oscillates. Harmful parasites violating symbiosis appear periodically, but are rapidly extinguished by hosts and other parasites, and the symbiotic state is recovered. The emergence of ''Tit for Tat'' strategy to maintain symbiosis is discussed. 4 figs.

  19. The Regulatory Protein RosR Affects Rhizobium leguminosarum bv. trifolii Protein Profiles, Cell Surface Properties, and Symbiosis with Clover.

    PubMed

    Rachwał, Kamila; Boguszewska, Aleksandra; Kopcińska, Joanna; Karaś, Magdalena; Tchórzewski, Marek; Janczarek, Monika

    2016-01-01

    Rhizobium leguminosarum bv. trifolii is capable of establishing a symbiotic relationship with plants from the genus Trifolium. Previously, a regulatory protein encoded by rosR was identified and characterized in this bacterium. RosR possesses a Cys2-His2-type zinc finger motif and belongs to Ros/MucR family of rhizobial transcriptional regulators. Transcriptome profiling of the rosR mutant revealed a role of this protein in several cellular processes, including the synthesis of cell-surface components and polysaccharides, motility, and bacterial metabolism. Here, we show that a mutation in rosR resulted in considerable changes in R. leguminosarum bv. trifolii protein profiles. Extracellular, membrane, and periplasmic protein profiles of R. leguminosarum bv. trifolii wild type and the rosR mutant were examined, and proteins with substantially different abundances between these strains were identified. Compared with the wild type, extracellular fraction of the rosR mutant contained greater amounts of several proteins, including Ca(2+)-binding cadherin-like proteins, a RTX-like protein, autoaggregation protein RapA1, and flagellins FlaA and FlaB. In contrast, several proteins involved in the uptake of various substrates were less abundant in the mutant strain (DppA, BraC, and SfuA). In addition, differences were observed in membrane proteins of the mutant and wild-type strains, which mainly concerned various transport system components. Using atomic force microscopy (AFM) imaging, we characterized the topography and surface properties of the rosR mutant and wild-type cells. We found that the mutation in rosR gene also affected surface properties of R. leguminosarum bv. trifolii. The mutant cells were significantly more hydrophobic than the wild-type cells, and their outer membrane was three times more permeable to the hydrophobic dye N-phenyl-1-naphthylamine. The mutation of rosR also caused defects in bacterial symbiotic interaction with clover plants. Compared with

  20. The Regulatory Protein RosR Affects Rhizobium leguminosarum bv. trifolii Protein Profiles, Cell Surface Properties, and Symbiosis with Clover

    PubMed Central

    Rachwał, Kamila; Boguszewska, Aleksandra; Kopcińska, Joanna; Karaś, Magdalena; Tchórzewski, Marek; Janczarek, Monika

    2016-01-01

    Rhizobium leguminosarum bv. trifolii is capable of establishing a symbiotic relationship with plants from the genus Trifolium. Previously, a regulatory protein encoded by rosR was identified and characterized in this bacterium. RosR possesses a Cys2-His2-type zinc finger motif and belongs to Ros/MucR family of rhizobial transcriptional regulators. Transcriptome profiling of the rosR mutant revealed a role of this protein in several cellular processes, including the synthesis of cell-surface components and polysaccharides, motility, and bacterial metabolism. Here, we show that a mutation in rosR resulted in considerable changes in R. leguminosarum bv. trifolii protein profiles. Extracellular, membrane, and periplasmic protein profiles of R. leguminosarum bv. trifolii wild type and the rosR mutant were examined, and proteins with substantially different abundances between these strains were identified. Compared with the wild type, extracellular fraction of the rosR mutant contained greater amounts of several proteins, including Ca2+-binding cadherin-like proteins, a RTX-like protein, autoaggregation protein RapA1, and flagellins FlaA and FlaB. In contrast, several proteins involved in the uptake of various substrates were less abundant in the mutant strain (DppA, BraC, and SfuA). In addition, differences were observed in membrane proteins of the mutant and wild-type strains, which mainly concerned various transport system components. Using atomic force microscopy (AFM) imaging, we characterized the topography and surface properties of the rosR mutant and wild-type cells. We found that the mutation in rosR gene also affected surface properties of R. leguminosarum bv. trifolii. The mutant cells were significantly more hydrophobic than the wild-type cells, and their outer membrane was three times more permeable to the hydrophobic dye N-phenyl-1-naphthylamine. The mutation of rosR also caused defects in bacterial symbiotic interaction with clover plants. Compared with

  1. Large-scale mapping of mutations affecting zebrafish development

    PubMed Central

    Geisler, Robert; Rauch, Gerd-Jörg; Geiger-Rudolph, Silke; Albrecht, Andrea; van Bebber, Frauke; Berger, Andrea; Busch-Nentwich, Elisabeth; Dahm, Ralf; Dekens, Marcus PS; Dooley, Christopher; Elli, Alexandra F; Gehring, Ines; Geiger, Horst; Geisler, Maria; Glaser, Stefanie; Holley, Scott; Huber, Matthias; Kerr, Andy; Kirn, Anette; Knirsch, Martina; Konantz, Martina; Küchler, Axel M; Maderspacher, Florian; Neuhauss, Stephan C; Nicolson, Teresa; Ober, Elke A; Praeg, Elke; Ray, Russell; Rentzsch, Brit; Rick, Jens M; Rief, Eva; Schauerte, Heike E; Schepp, Carsten P; Schönberger, Ulrike; Schonthaler, Helia B; Seiler, Christoph; Sidi, Samuel; Söllner, Christian; Wehner, Anja; Weiler, Christian; Nüsslein-Volhard, Christiane

    2007-01-01

    Background Large-scale mutagenesis screens in the zebrafish employing the mutagen ENU have isolated several hundred mutant loci that represent putative developmental control genes. In order to realize the potential of such screens, systematic genetic mapping of the mutations is necessary. Here we report on a large-scale effort to map the mutations generated in mutagenesis screening at the Max Planck Institute for Developmental Biology by genome scanning with microsatellite markers. Results We have selected a set of microsatellite markers and developed methods and scoring criteria suitable for efficient, high-throughput genome scanning. We have used these methods to successfully obtain a rough map position for 319 mutant loci from the Tübingen I mutagenesis screen and subsequent screening of the mutant collection. For 277 of these the corresponding gene is not yet identified. Mapping was successful for 80 % of the tested loci. By comparing 21 mutation and gene positions of cloned mutations we have validated the correctness of our linkage group assignments and estimated the standard error of our map positions to be approximately 6 cM. Conclusion By obtaining rough map positions for over 300 zebrafish loci with developmental phenotypes, we have generated a dataset that will be useful not only for cloning of the affected genes, but also to suggest allelism of mutations with similar phenotypes that will be identified in future screens. Furthermore this work validates the usefulness of our methodology for rapid, systematic and inexpensive microsatellite mapping of zebrafish mutations. PMID:17212827

  2. Lipopolysaccharide mutants of Rhizobium meliloti are not defective in symbiosis

    SciTech Connect

    Clover, R.H.; Kieber, J.; Signer, E.R. )

    1989-07-01

    Mutants of Rhizobium meliloti selected primarily for bacteriophage resistance fall into 13 groups. Mutants in the four best-characterized groups (class A, lpsB, lpsC, and class D), which map to the rhizobial chromosome, appear to affect lipopolysaccharide (LPS) as judged by the reactivity with monoclonal antibodies and behavior on sodium dodecyl sulfate-polyacrylamide gels of extracted LPS. Mutations in all 13 groups, in an otherwise wild-type genetic background, are Fix{sup +} on alfalfa. This suggests that LPS does not play a major role in symbiosis. Mutations in lpsB, however, are Fix{sup {minus}} in one particular genetic background, evidently because of the cumulative effect of several independent background mutations. In addition, an auxotrophic mutation evidently equivalent to Escherichia coli carAB is Fix{sup {minus}} on alfalfa.

  3. Nickel tolerance of serpentine and non-serpentine Knautia arvensis plants as affected by arbuscular mycorrhizal symbiosis.

    PubMed

    Doubková, Pavla; Sudová, Radka

    2014-04-01

    Serpentine soils have naturally elevated concentrations of certain heavy metals, including nickel. This study addressed the role of plant origin (serpentine vs. non-serpentine) and symbiosis with arbuscular mycorrhizal fungi (AMF) in plant Ni tolerance. A semi-hydroponic experiment involving three levels of Ni and serpentine and non-serpentine AMF isolates and populations of a model plant species (Knautia arvensis) revealed considerable negative effects of elevated Ni availability on both plant and fungal performance. Plant growth response to Ni was independent of edaphic origin; however, higher Ni tolerance of serpentine plants was indicated by a smaller decline in the concentrations of photosynthetic pigments and restricted root-to-shoot Ni translocation. Serpentine plants also retained relatively more Mg in their roots, resulting in a higher shoot Ca/Mg ratio. AMF inoculation, especially with the non-serpentine isolate, further aggravated Ni toxicity to host plants. Therefore, AMF do not appear to be involved in Ni tolerance of serpentine K. arvensis plants. PMID:24136374

  4. Hepatitis C virus mutation affects proteasomal epitope processing

    PubMed Central

    Seifert, Ulrike; Liermann, Heike; Racanelli, Vito; Halenius, Anne; Wiese, Manfred; Wedemeyer, Heiner; Ruppert, Thomas; Rispeter, Kay; Henklein, Peter; Sijts, Alice; Hengel, Hartmut; Kloetzel, Peter-M.; Rehermann, Barbara

    2004-01-01

    The high incidence of hepatitis C virus (HCV) persistence raises the question of how HCV interferes with host immune responses. Studying a single-source HCV outbreak, we identified an HCV mutation that impaired correct carboxyterminal cleavage of an immunodominant HLA-A2–restricted CD8 cell epitope that is frequently recognized by recovered patients. The mutation, a conservative HCV nonstructural protein 3 (NS3) tyrosine to phenylalanine substitution, was absent in 54 clones of the infectious source, but present in 15/21 (71%) HLA-A2–positive and in 11/24 (46%) HLA-A2–negative patients with chronic hepatitis C. In order to analyze whether the mutation affected the processing of the HLA-A2–restricted CD8 cell epitope, mutant and wild-type NS3 polypeptides were digested in vitro with 20S constitutive proteasomes and with immunoproteasomes. The presence of the mutation resulted in impaired carboxyterminal cleavage of the epitope. In order to analyze whether impaired epitope processing affected T cell priming in vivo, HLA-A2–transgenic mice were infected with vaccinia viruses encoding either wild-type or mutant HCV NS3. The mutant induced fewer epitope-specific, IFN-γ;–producing and fewer tetramer+ cells than the wild type. These data demonstrate how a conservative mutation in the flanking region of an HCV epitope impairs the induction of epitope-specific CD8+ T cells and reveal a mechanism that may contribute to viral sequence evolution in infected patients. PMID:15254592

  5. The classical pink-eyed dilution mutation affects angiogenic responsiveness.

    PubMed

    Rogers, Michael S; Boyartchuk, Victor; Rohan, Richard M; Birsner, Amy E; Dietrich, William F; D'Amato, Robert J

    2012-01-01

    Angiogenesis is the process by which new blood vessels are formed from existing vessels. Mammalian populations, including humans and mice, harbor genetic variations that alter angiogenesis. Angiogenesis-regulating gene variants can result in increased susceptibility to multiple angiogenesis-dependent diseases in humans. Our efforts to dissect the complexity of the genetic diversity that regulates angiogenesis have used laboratory animals due to the availability of genome sequence for many species and the ability to perform high volume controlled breeding. Using the murine corneal micropocket assay, we have observed more than ten-fold difference in angiogenic responsiveness among various mouse strains. This degree of difference is observed with either bFGF or VEGF induced corneal neovascularization. Ongoing mapping studies have identified multiple loci that affect angiogenic responsiveness in several mouse models. In this study, we used F2 intercrosses between C57BL/6J and the 129 substrains 129P1/ReJ and 129P3/J, as well as the SJL/J strain, where we have identified new QTLs that affect angiogenic responsiveness. In the case of AngFq5, on chromosome 7, congenic animals were used to confirm the existence of this locus and subcongenic animals, combined with a haplotype-based mapping approach that identified the pink-eyed dilution mutation as a candidate polymorphism to explain AngFq5. The ability of mutations in the pink-eyed dilution gene to affect angiogenic response was demonstrated using the p-J allele at the same locus. Using this allele, we demonstrate that pink-eyed dilution mutations in Oca2 can affect both bFGF and VEGF-induced corneal angiogenesis. PMID:22615734

  6. Inflammatory Bowel Disease and Mutations Affecting the Interleukin-10 Receptor

    PubMed Central

    Glocker, Erik-Oliver; Kotlarz, Daniel; Boztug, Kaan; Gertz, E. Michael; Schäffer, Alejandro A.; Noyan, Fatih; Perro, Mario; Diestelhorst, Jana; Allroth, Anna; Murugan, Dhaarini; Hätscher, Nadine; Pfeifer, Dietmar; Sykora, Karl-Walter; Sauer, Martin; Kreipe, Hans; Lacher, Martin; Nustede, Rainer; Woellner, Cristina; Baumann, Ulrich; Salzer, Ulrich; Koletzko, Sibylle; Shah, Neil; Segal, Anthony W.; Sauerbrey, Axel; Buderus, Stephan; Snapper, Scott B.; Grimbacher, Bodo; Klein, Christoph

    2009-01-01

    BACKGROUND The molecular cause of inflammatory bowel disease is largely unknown. METHODS We performed genetic-linkage analysis and candidate-gene sequencing on samples from two unrelated consanguineous families with children who were affected by early-onset inflammatory bowel disease. We screened six additional patients with early-onset colitis for mutations in two candidate genes and carried out functional assays in patients’ peripheral-blood mononuclear cells. We performed an allogeneic hematopoietic stem-cell transplantation in one patient. RESULTS In four of nine patients with early-onset colitis, we identified three distinct homozygous mutations in genes IL10RA and IL10RB, encoding the IL10R1 and IL10R2 proteins, respectively, which form a heterotetramer to make up the interleukin-10 receptor. The mutations abrogate interleukin-10–induced signaling, as shown by deficient STAT3 (signal transducer and activator of transcription 3) phosphorylation on stimulation with interleukin-10. Consistent with this observation was the increased secretion of tumor necrosis factor α and other proinflammatory cytokines from peripheral-blood mononuclear cells from patients who were deficient in IL10R subunit proteins, suggesting that interleukin-10–dependent “negative feedback” regulation is disrupted in these cells. The allogeneic stem-cell transplantation performed in one patient was successful. CONCLUSIONS Mutations in genes encoding the IL10R subunit proteins were found in patients with early-onset enterocolitis, involving hyperinflammatory immune responses in the intestine. Allogeneic stem-cell transplantation resulted in disease remission in one patient. PMID:19890111

  7. Mutations affecting the chemosensory neurons of Caenorhabditis elegans.

    PubMed

    Starich, T A; Herman, R K; Kari, C K; Yeh, W H; Schackwitz, W S; Schuyler, M W; Collet, J; Thomas, J H; Riddle, D L

    1995-01-01

    We have identified and characterized 95 mutations that reduce or abolish dye filling of amphid and phasmid neurons and that have little effect on viability, fertility or movement. Twenty-seven mutations occurred spontaneously in strains with a high frequency of transposon insertion. Sixty-eight were isolated after treatment with EMS. All of the mutations result in defects in one or more chemosensory responses, such as chemotaxis to ammonium chloride or formation of dauer larvae under conditions of starvation and overcrowding. Seventy-five of the mutations are alleles of 12 previously defined genes, mutations which were previously shown to lead to defects in amphid ultrastructure. We have assigned 20 mutations to 13 new genes, called dyf-1 through dyf-13. We expect that the genes represented by dye-filing defective mutants are important for the differentiation of amphid and phasmid chemosensilla. PMID:7705621

  8. Mutations affecting the chemosensory neurons of Caenorhabditis elegans

    SciTech Connect

    Starich, T.A.; Herman, R.K.; Kari, C.K.

    1995-01-01

    We have identified and characterized 95 mutations that reduce or abolish dye filling of amphid and phasmid neurons and that have little effect on viability, fertility or movement. Twenty-seven mutations occurred spontaneously in strains with a high frequency of transposon insertion. Sixty-eight were isolated after treatment with EMS. All of the mutations result in defects in one or more chemosensory responses, such as chemotaxis to ammonium chloride or formation of dauer larvae under conditions of starvation and overcrowding. Seventy-five of the mutations are alleles of 12 previously defined genes, mutations which were previously shown to lead to defects in amphid ultrastructure. We have assigned 20 mutations to 13 new genes, called dyf-1 through dyf-13. We expect that the genes represented by dye-filling defective mutants are important for the differentiation of amphid and phasmid chemosensilla. 58 refs., 3 figs., 6 tabs.

  9. Mutations affecting GABAergic signaling in seizures and epilepsy

    PubMed Central

    Galanopoulou, Aristea S.

    2010-01-01

    The causes of epilepsies and epileptic seizures are multifactorial. Genetic predisposition may contribute in certain types of epilepsies and seizures, whether idiopathic or symptomatic of genetic origin. Although these are not very common, they have offered a unique opportunity to investigate the molecular mechanisms underlying epileptogenesis and ictogenesis. Among the implicated gene mutations, a number of GABAA receptor subunit mutations have been recently identified that contribute to several idiopathic epilepsies, febrile seizures, and rarely to certain types of symptomatic epilepsies, like the severe myoclonic epilepsy of infancy. Deletion of GABAA receptor genes has also been linked to Angelman syndrome. Furthermore, mutations of proteins controlling chloride homeostasis, which indirectly defines the functional consequences of GABAA signaling, have been identified. These include the chloride channel 2 (CLCN2) and the potassium chloride cotransporter KCC3. The pathogenic role of CLCN2 mutations has not been clearly demonstrated and may represent either susceptibility genes or, in certain cases, innocuous polymorphisms. KCC3 mutations have been associated with hereditary motor and sensory polyneuropathy with corpus callosum agenesis (Andermann syndrome) that often manifests with epileptic seizures. This review summarizes the recent progress in the genetic linkages of epilepsies and seizures to the above genes and discusses potential pathogenic mechanisms that contribute to the age, sex, and conditional expression of these seizures in carriers of these mutations. PMID:20352446

  10. Symbiosis: Rich, Exciting, Neglected Topic

    ERIC Educational Resources Information Center

    Rowland, Jane Thomas

    1974-01-01

    Argues that the topic of symbiosis has been greatly neglected and underemphasized in general-biology textbooks. Discusses many types and examples of symbiosis, and provides an extensive bibliography of the literature related to this topic. (JR)

  11. Calmodulin Point Mutations Affect Drosophila Development and Behavior

    PubMed Central

    Nelson, H. B.; Heiman, R. G.; Bolduc, C.; Kovalick, G. E.; Whitley, P.; Stern, M.; Beckingham, K.

    1997-01-01

    Calmodulin (CAM) is recognized as a major intermediary in intracellular calcium signaling, but as yet little is known of its role in developmental and behavioral processes. We have generated and studied mutations to the endogenous Cam gene of Drosophila melanogaster that change single amino acids within the protein coding region. One of these mutations produces a striking pupal lethal phenotype involving failure of head eversion. Various mutant combinations produce specific patterns of ectopic wing vein formation or melanotic scabs on the cuticle. Anaphase chromosome bridging is also seen as a maternal effect during the early embryonic nuclear divisions. In addition, specific behavioral defects such as poor climbing and flightlessness are detected among these mutants. Comparisons with other Drosophila mutant phenotypes suggests potential CAM targets that may mediate these developmental and behavioral effects, and analysis of the CAM crystal structure suggests the structural consequences of the individual mutations. PMID:9409836

  12. Nonsense mutations in the human. beta. -globin gene affect mRNA metabolism

    SciTech Connect

    Baserga, S.J.; Benz, E.J. Jr. )

    1988-04-01

    A number of premature translation termination mutations (nonsense mutations) have been described in the human {alpha}- and {beta}-globin genes. Studies on mRNA isolated from patients with {beta}{sup 0}-thalassemia have shown that for both the {beta}-17 and the {beta}-39 mutations less than normal levels of {beta}-globin mRNA accumulate in peripheral blood cells. (The codon at which the mutation occurs designates the name of the mutation; there are 146 codons in human {beta}-globin mRNA). In vitro studies using the cloned {beta}-39 gene have reproduced this effect in a heterologous transfection system and have suggested that the defect resides in intranuclear metabolism. The authors have asked if this phenomenon of decreased mRNA accumulation is a general property of nonsense mutations and if the effect depends on the location or the type of mutation. Toward this end, they have studied the effect of five nonsense mutations and two missense mutations on the expression of human {beta}-globin mRNA in a heterologous transfection system. In all cases studied, the presence of a translation termination codon correlates with a decrease in the steady-state level of mRNA. The data suggest that the metabolism of a mammalian mRNA is affected by the presence of a mutation that affects translation.

  13. Spondyloepimetaphyseal dysplasia with joint laxity (Beighton type); mutation analysis in eight affected South African families.

    PubMed

    Vorster, A A; Beighton, P; Ramesar, R S

    2015-05-01

    Spondyloepimetaphyseal dysplasia with joint laxity (SEMD-JL), type 1 is an autosomal recessive disorder which has been identified in more than 30 affected children in the Afrikaans-speaking community of South Africa. Sequencing of B3GALT6 revealed a specific mutation, c.235A > G, in homozygous form in four families, while three others were compound heterozygotes for this mutation in combination with the c.200C > T mutation. In addition, a proband from one family carried the c.16C > T mutation combined with c.200C > T. In a series of five Iranian persons, mutations in B3GALT6 have been implicated in a syndrome characterised by skeletal abnormalities with intellectual disability, bone and connective tissue fragility. Other mutations in B3GALT6 resulted in the classical SEMD-JL phenotype in seven Japanese families and in a syndrome which has been likened to a progeroid form of Ehlers-Danlos syndrome (EDS). It is evident that there is considerable intragenic heterogeneity in B3GALT6. One of the mutations, c.200C > T, in the affected South Africans was also present in one of the Japanese persons and the respective phenotypes were identical. The multiplicity of allelic mutations and the phenotypic differences in the affected persons supports the concept that a spectrum of connective tissue disorders is programmed by mutations in B3GALT6. PMID:24766538

  14. Mutation of the Zinc-Binding Metalloprotease Motif Affects Bacteroides fragilis Toxin Activity but Does Not Affect Propeptide Processing

    PubMed Central

    Franco, Augusto A.; Buckwold, Simy L.; Shin, Jai W.; Ascon, Miguel; Sears, Cynthia L.

    2005-01-01

    To evaluate the role of the zinc-binding metalloprotease in Bacteroides fragilis toxin (BFT) processing and activity, the zinc-binding consensus sequences (H348, E349, H352, G355, H358, and M366) were mutated by site-directed-mutagenesis. Our results indicated that single point mutations in the zinc-binding metalloprotease motif do not affect BFT processing but do reduce or eliminate BFT biologic activity in vitro. PMID:16041055

  15. Symbiosis-mediated outbreaks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Symbiosis simply means "living together" and in its narrowest form can mean two species deriving mutual benefit from the association. Recent studies have made evident that insect associations with microorganisms can range the gamut from casual associations to obligate or context-dependent mutualisms...

  16. Survival through Symbiosis.

    ERIC Educational Resources Information Center

    Abdi, S. Wali

    1992-01-01

    Describes symbiosis and its significance in the day-to-day lives of plants and animals. Gives specific examples of mutualism, commensalism, and parasitism in the relationships among fungus and plant roots, animals and bacteria, birds and animals, fish, and predator and prey. (MDH)

  17. Mutations in Ran system affected telomere silencing in Saccharomyces cerevisiae

    SciTech Connect

    Hayashi, Naoyuki Kobayashi, Masahiko; Shimizu, Hiroko; Yamamoto, Ken-ichi; Murakami, Seishi; Nishimoto, Takeharu

    2007-11-23

    The Ran GTPase system regulates the direction and timing of several cellular events, such as nuclear-cytosolic transport, centrosome formation, and nuclear envelope assembly in telophase. To gain insight into the Ran system's involvement in chromatin formation, we investigated gene silencing at the telomere in several mutants of the budding yeast Saccharomyces cerevisiae, which had defects in genes involved in the Ran system. A mutation of the RanGAP gene, rna1-1, caused reduced silencing at the telomere, and partial disruption of the nuclear Ran binding factor, yrb2-{delta}2, increased this silencing. The reduced telomere silencing in rna1-1 cells was suppressed by a high dosage of the SIR3 gene or the SIT4 gene. Furthermore, hyperphosphorylated Sir3 protein accumulated in the rna1-1 mutant. These results suggest that RanGAP is required for the heterochromatin structure at the telomere in budding yeast.

  18. Parental age affects somatic mutation rates in the progeny of flowering plants.

    PubMed

    Singh, Amit Kumar; Bashir, Tufail; Sailer, Christian; Gurumoorthy, Viswanathan; Ramakrishnan, Anantha Maharasi; Dhanapal, Shanmuhapreya; Grossniklaus, Ueli; Baskar, Ramamurthy

    2015-05-01

    In humans, it is well known that the parental reproductive age has a strong influence on mutations transmitted to their progeny. Meiotic nondisjunction is known to increase in older mothers, and base substitutions tend to go up with paternal reproductive age. Hence, it is clear that the germinal mutation rates are a function of both maternal and paternal ages in humans. In contrast, it is unknown whether the parental reproductive age has an effect on somatic mutation rates in the progeny, because these are rare and difficult to detect. To address this question, we took advantage of the plant model system Arabidopsis (Arabidopsis thaliana), where mutation detector lines allow for an easy quantitation of somatic mutations, to test the effect of parental age on somatic mutation rates in the progeny. Although we found no significant effect of parental age on base substitutions, we found that frameshift mutations and transposition events increased in the progeny of older parents, an effect that is stronger through the maternal line. In contrast, intrachromosomal recombination events in the progeny decrease with the age of the parents in a parent-of-origin-dependent manner. Our results clearly show that parental reproductive age affects somatic mutation rates in the progeny and, thus, that some form of age-dependent information, which affects the frequency of double-strand breaks and possibly other processes involved in maintaining genome integrity, is transmitted through the gametes. PMID:25810093

  19. Parental Age Affects Somatic Mutation Rates in the Progeny of Flowering Plants1

    PubMed Central

    Singh, Amit Kumar; Bashir, Tufail; Sailer, Christian; Gurumoorthy, Viswanathan; Ramakrishnan, Anantha Maharasi; Dhanapal, Shanmuhapreya; Grossniklaus, Ueli; Baskar, Ramamurthy

    2015-01-01

    In humans, it is well known that the parental reproductive age has a strong influence on mutations transmitted to their progeny. Meiotic nondisjunction is known to increase in older mothers, and base substitutions tend to go up with paternal reproductive age. Hence, it is clear that the germinal mutation rates are a function of both maternal and paternal ages in humans. In contrast, it is unknown whether the parental reproductive age has an effect on somatic mutation rates in the progeny, because these are rare and difficult to detect. To address this question, we took advantage of the plant model system Arabidopsis (Arabidopsis thaliana), where mutation detector lines allow for an easy quantitation of somatic mutations, to test the effect of parental age on somatic mutation rates in the progeny. Although we found no significant effect of parental age on base substitutions, we found that frameshift mutations and transposition events increased in the progeny of older parents, an effect that is stronger through the maternal line. In contrast, intrachromosomal recombination events in the progeny decrease with the age of the parents in a parent-of-origin-dependent manner. Our results clearly show that parental reproductive age affects somatic mutation rates in the progeny and, thus, that some form of age-dependent information, which affects the frequency of double-strand breaks and possibly other processes involved in maintaining genome integrity, is transmitted through the gametes. PMID:25810093

  20. Activating Mutations Affecting the Dbl Homology Domain of SOS2 Cause Noonan Syndrome.

    PubMed

    Cordeddu, Viviana; Yin, Jiani C; Gunnarsson, Cecilia; Virtanen, Carl; Drunat, Séverine; Lepri, Francesca; De Luca, Alessandro; Rossi, Cesare; Ciolfi, Andrea; Pugh, Trevor J; Bruselles, Alessandro; Priest, James R; Pennacchio, Len A; Lu, Zhibin; Danesh, Arnavaz; Quevedo, Rene; Hamid, Alaa; Martinelli, Simone; Pantaleoni, Francesca; Gnazzo, Maria; Daniele, Paola; Lissewski, Christina; Bocchinfuso, Gianfranco; Stella, Lorenzo; Odent, Sylvie; Philip, Nicole; Faivre, Laurence; Vlckova, Marketa; Seemanova, Eva; Digilio, Cristina; Zenker, Martin; Zampino, Giuseppe; Verloes, Alain; Dallapiccola, Bruno; Roberts, Amy E; Cavé, Hélène; Gelb, Bruce D; Neel, Benjamin G; Tartaglia, Marco

    2015-11-01

    The RASopathies constitute a family of autosomal-dominant disorders whose major features include facial dysmorphism, cardiac defects, reduced postnatal growth, variable cognitive deficits, ectodermal and skeletal anomalies, and susceptibility to certain malignancies. Noonan syndrome (NS), the commonest RASopathy, is genetically heterogeneous and caused by functional dysregulation of signal transducers and regulatory proteins with roles in the RAS/extracellular signal-regulated kinase (ERK) signal transduction pathway. Mutations in known disease genes account for approximately 80% of affected individuals. Here, we report that missense mutations altering Son of Sevenless, Drosophila, homolog 2 (SOS2), which encodes a RAS guanine nucleotide exchange factor, occur in a small percentage of subjects with NS. Four missense mutations were identified in five unrelated sporadic cases and families transmitting NS. Disease-causing mutations affected three conserved residues located in the Dbl homology (DH) domain, of which two are directly involved in the intramolecular binding network maintaining SOS2 in its autoinhibited conformation. All mutations were found to promote enhanced signaling from RAS to ERK. Similar to NS-causing SOS1 mutations, the phenotype associated with SOS2 defects is characterized by normal development and growth, as well as marked ectodermal involvement. Unlike SOS1 mutations, however, those in SOS2 are restricted to the DH domain. PMID:26173643

  1. NEK8 mutations affect ciliary and centrosomal localization and may cause nephronophthisis.

    PubMed

    Otto, Edgar A; Trapp, Melissa L; Schultheiss, Ulla T; Helou, Juliana; Quarmby, Lynne M; Hildebrandt, Friedhelm

    2008-03-01

    Nephronophthisis, an autosomal recessive kidney disease, is the most frequent genetic cause of chronic renal failure in the first 3 decades of life. Causative mutations in 8 genes (NPHP1-8) have been identified, and homologous mouse models for NPHP2/INVS and NPHP3 have been described. The jck mouse is another model of recessive cystic kidney disease, and this mouse harbors a missense mutation, G448V, in the highly conserved RCC1 domain of Nek8. We hypothesized that mutations in NEK8 might cause nephronophthisis in humans, so we performed mutational analysis in a worldwide cohort of 588 patients. We identified 3 different amino acid changes that were conserved through evolution (L330F, H425Y, and A497P) and that were absent from at least 80 ethnically matched controls. All 3 mutations were within RCC1 domains, and the mutation H425Y was positioned within the same RCC1 repeat as the mouse jck mutation. To test the functional significance of these mutations, we introduced them into full-length mouse Nek8 GFP-tagged cDNA constructs. We transiently overexpressed the constructs in inner medullary collecting duct cells (IMCD-3 cell line) and compared the subcellular localization of mutant Nek8 to wild-type Nek8. All mutant forms of Nek8 showed defects in ciliary localization to varying degrees; the H431Y mutant (human H425Y) was completely absent from cilia and the amount localized to centrosomes was decreased. Overexpression of these mutants did not affect overall ciliogenesis, mitosis, or centriole number. Our genetic and functional data support the assumption that mutations in NEK8 cause nephronophthisis (NPHP9), adding another link between proteins mutated in cystic kidney disease and their localization to cilia and centrosomes. PMID:18199800

  2. First missense mutation outside of SERAC1 lipase domain affecting intracellular cholesterol trafficking.

    PubMed

    Rodríguez-García, María Elena; Martín-Hernández, Elena; de Aragón, Ana Martínez; García-Silva, María Teresa; Quijada-Fraile, Pilar; Arenas, Joaquín; Martín, Miguel A; Martínez-Azorín, Francisco

    2016-01-01

    We report the clinical and genetic findings in a Spanish boy who presented MEGDEL syndrome, a very rare inborn error of metabolism. Whole-exome sequencing uncovered a new homozygous mutation in the serine active site containing 1 (SERAC1) gene, which is essential for both mitochondrial function and intracellular cholesterol trafficking. Functional studies in patient fibroblasts showed that p.D224G mutation affects the intracellular cholesterol trafficking. Only three missense mutations in this gene have been described before, being p.D224G the first missense mutation outside of the SERAC1 serine-lipase domain. Therefore, we conclude that the defect in cholesterol trafficking is not limited to alterations in this specific part of the protein. PMID:26445863

  3. A molecular description of mutations affecting the pollen component of the Nicotiana alata S locus.

    PubMed Central

    Golz, J F; Su, V; Clarke, A E; Newbigin, E

    1999-01-01

    Mutations affecting the self-incompatibility response of Nicotiana alata were generated by irradiation. Mutants in the M1 generation were selected on the basis of pollen tube growth through an otherwise incompatible pistil. Twelve of the 18 M1 plants obtained from the mutagenesis screen were self-compatible. Eleven self-compatible plants had mutations affecting only the pollen function of the S locus (pollen-part mutants). The remaining self-compatible plant had a mutation affecting only the style function of the S locus (style-part mutant). Cytological examination of the pollen-part mutant plants revealed that 8 had an extra chromosome (2n + 1) and 3 did not. The pollen-part mutation in 7 M1 plants was followed in a series of crosses. DNA blot analysis using probes for S-RNase genes (encoding the style function of the S locus) indicated that the pollen-part mutation was associated with an extra S allele in 4 M1 plants. In 3 of these plants, the extra S allele was located on the additional chromosome. There was no evidence of an extra S allele in the 3 remaining M1 plants. The breakdown of self-incompatibility in plants with an extra S allele is discussed with reference to current models of the molecular basis of self-incompatibility. PMID:10388830

  4. Suppressors of Mutations in the rII Gene of Bacteriophage T4 Affect Promoter Utilization

    PubMed Central

    Hall, Dwight H.; Snyder, Ronald D.

    1981-01-01

    Homyk, Rodriguez and Weil (1976) have described T4 mutants, called sip, that partially suppress the inability of T4rII mutants to grow in λ lysogens. We have found that mutants sip1 and sip2 are resistant to folate analogs and overproduce FH2 reductase. The results of recombination and complementation studies indicate that sip mutations are in the mot gene. Like other mot mutations (Mattson, Richardson and Goodin 1974; Chace and Hall 1975; Sauerbier, Hercules and Hall 1976), the sip2 mutation affects the expression of many genes and appears to affect promoter utilization. The mot gene function is not required for T4 growth on most hosts, but we have found that it is required for good growth on E. coli CTr5X. Homyk, Rodriguez and Weil (1976) also described L mutations that reverse the effects of sip mutations. L2 decreases the folate analog resistance and the inability of sip2 to grow on CTr5X. L2 itself is partially resistant to a folate analog, and appears to reverse the effects of sip2 on gene expression. These results suggest that L2 affects another regulatory gene related to the mot gene. PMID:7262547

  5. Determinant factors of industrial symbiosis: greening Pasir Gudang industrial park

    NASA Astrophysics Data System (ADS)

    Teh, B. T.; Ho, C. S.; Matsuoka, Y.; Chau, L. W.; Gomi, K.

    2014-02-01

    Green industry has been identified as an important element in attaining greater sustainability. It calls for harmonizing robust economic growth with environment protection. Industries, particularly in developing and transitional nations such as Malaysia, are in need of a reform. Many experts and international organizations suggest the concept of industrial symbiosis. Mainly, there are successful cases of industrial symbiosis practices around the world. However, there are numerous cases of failure too. As industrial symbiosis is an emerging new approach, with a short history of two decades, a lot of researches are generally focused on narrow context and technical details. There is a lack of concerted efforts to look into the drivers and barriers of industrial symbiosis across different cases. This paper aims to examine the factors influencing the development of industrial symbiosis from various countries to supports such networks to evolve in Pasir Gudang. The findings show institution, law and regulation, finance, awareness and capacity building, technology, research and development, information, collaboration, market, geography proximity, environmental issues and industry structure affect the formation of industrial symbiosis.

  6. A Peptidoglycan-Remodeling Enzyme Is Critical for Bacteroid Differentiation in Bradyrhizobium spp. During Legume Symbiosis.

    PubMed

    Gully, Djamel; Gargani, Daniel; Bonaldi, Katia; Grangeteau, Cédric; Chaintreuil, Clémence; Fardoux, Joël; Nguyen, Phuong; Marchetti, Roberta; Nouwen, Nico; Molinaro, Antonio; Mergaert, Peter; Giraud, Eric

    2016-06-01

    In response to the presence of compatible rhizobium bacteria, legumes form symbiotic organs called nodules on their roots. These nodules house nitrogen-fixing bacteroids that are a differentiated form of the rhizobium bacteria. In some legumes, the bacteroid differentiation comprises a dramatic cell enlargement, polyploidization, and other morphological changes. Here, we demonstrate that a peptidoglycan-modifying enzyme in Bradyrhizobium strains, a DD-carboxypeptidase that contains a peptidoglycan-binding SPOR domain, is essential for normal bacteroid differentiation in Aeschynomene species. The corresponding mutants formed bacteroids that are malformed and hypertrophied. However, in soybean, a plant that does not induce morphological differentiation of its symbiont, the mutation does not affect the bacteroids. Remarkably, the mutation also leads to necrosis in a large fraction of the Aeschynomene nodules, indicating that a normally formed peptidoglycan layer is essential for avoiding the induction of plant immune responses by the invading bacteria. In addition to exopolysaccharides, capsular polysaccharides, and lipopolysaccharides, whose role during symbiosis is well defined, our work demonstrates an essential role in symbiosis for yet another rhizobial envelope component, the peptidoglycan layer. PMID:26959836

  7. Different inactivating mutations of the mineralocorticoid receptor in fourteen families affected by type I pseudohypoaldosteronism.

    PubMed

    Sartorato, Paola; Lapeyraque, Anne-Laure; Armanini, Decio; Kuhnle, Ursula; Khaldi, Yasmina; Salomon, Rémi; Abadie, Véronique; Di Battista, Eliana; Naselli, Arturo; Racine, Alain; Bosio, Maurizio; Caprio, Massimiliano; Poulet-Young, Véronique; Chabrolle, Jean-Pierre; Niaudet, Patrick; De Gennes, Christiane; Lecornec, Marie-Hélène; Poisson, Elodie; Fusco, Anna Maria; Loli, Paola; Lombès, Marc; Zennaro, Maria-Christina

    2003-06-01

    We have analyzed the human mineralocorticoid receptor (hMR) gene in 14 families with autosomal dominant or sporadic pseudohypoaldosteronism (PHA1), a rare form of mineralocorticoid resistance characterized by neonatal renal salt wasting and failure to thrive. Six heterozygous mutations were detected. Two frameshift mutations in exon 2 (insT1354, del8bp537) and one nonsense mutation in exon 4 (C2157A, Cys645stop) generate truncated proteins due to premature stop codons. Three missense mutations (G633R, Q776R, L979P) differently affect hMR function. The DNA binding domain mutant R633 exhibits reduced maximal transactivation, although its binding characteristics and ED(50) of transactivation are comparable with wild-type hMR. Ligand binding domain mutants R776 and P979 present reduced or absent aldosterone binding, respectively, which is associated with reduced or absent ligand-dependent transactivation capacity. Finally, P979 possesses a transdominant negative effect on wild-type hMR activity, whereas mutations G633R and Q776R probably result in haploinsufficiency in PHA1 patients. We conclude that hMR mutations are a common feature of autosomal dominant PHA1, being found in 70% of our familial cases. Their absence in some families underscores the importance of an extensive investigation of the hMR gene and the role of precise diagnostic procedures to allow for identification of other genes potentially involved in the disease. PMID:12788847

  8. A novel mutation in TFL1 homolog affecting determinacy in cowpea (Vigna unguiculata).

    PubMed

    Dhanasekar, P; Reddy, K S

    2015-02-01

    Mutations in the widely conserved Arabidopsis Terminal Flower 1 (TFL1) gene and its homologs have been demonstrated to result in determinacy across genera, the knowledge of which is lacking in cowpea. Understanding the molecular events leading to determinacy of apical meristems could hasten development of cowpea varieties with suitable ideotypes. Isolation and characterization of a novel mutation in cowpea TFL1 homolog (VuTFL1) affecting determinacy is reported here for the first time. Cowpea TFL1 homolog was amplified using primers designed based on conserved sequences in related genera and sequence variation was analysed in three gamma ray-induced determinate mutants, their indeterminate parent "EC394763" and two indeterminate varieties. The analyses of sequence variation exposed a novel SNP distinguishing the determinate mutants from the indeterminate types. The non-synonymous point mutation in exon 4 at position 1,176 resulted from transversion of cytosine (C) to adenine (A) leading to an amino acid change (Pro-136 to His) in determinate mutants. The effect of the mutation on protein function and stability was predicted to be detrimental using different bioinformatics/computational tools. The functionally significant novel substitution mutation is hypothesized to affect determinacy in the cowpea mutants. Development of suitable regeneration protocols in this hitherto recalcitrant crop and subsequent complementation assay in mutants or over-expressing assay in parents could decisively conclude the role of the SNP in regulating determinacy in these cowpea mutants. PMID:25146839

  9. Mutations in the su(s) gene affect RNA processing in Drosophila melanogaster.

    PubMed Central

    Geyer, P K; Chien, A J; Corces, V G; Green, M M

    1991-01-01

    We have studied the effect of mutations in the suppressor of sable [su(s)] gene on P element-induced yellow alleles. Two independent mutations tested, y76d28 and y1#7, contain a 1.1-kilobase (kb) P element inserted in the 5' transcribed untranslated portion of the yellow gene. Sequences responsible for the y1#7 mutation are inserted in the same transcriptional orientation as yellow and cannot be processed by splicing, and this mutation is not suppressed by su(s) mutations. P element sequences are located in a transcriptional orientation opposite to that of the yellow gene in y76d28; these sequences can be spliced from a composite P element-yellow mRNA, resulting in low accumulation of a functional 1.9-kb yellow transcript. The levels of both the putative precursor P element-yellow RNA and the 1.9-kb yellow transcript increase in y76d28 su(s) flies, suggesting that mutations in su(s) do not affect the efficiency of splicing of the P element sequences. Analysis of y76d28 cDNAs isolated from flies carrying a wild-type or mutant su(s) gene demonstrates that the choice of splice junctions to process P element sequences is unchanged in these different backgrounds, suggesting that mutations in su(s) do not affect the selection of donor and acceptor splice sites. We propose that the su(s) protein functions to control the stability of unprocessed RNA during the splicing reaction. Images PMID:1714588

  10. Mutation in the Monocarboxylate Transporter 12 Gene Affects Guanidinoacetate Excretion but Does Not Cause Glucosuria.

    PubMed

    Dhayat, Nasser; Simonin, Alexandre; Anderegg, Manuel; Pathare, Ganesh; Lüscher, Benjamin P; Deisl, Christine; Albano, Giuseppe; Mordasini, David; Hediger, Matthias A; Surbek, Daniel V; Vogt, Bruno; Sass, Jörn Oliver; Kloeckener-Gruissem, Barbara; Fuster, Daniel G

    2016-05-01

    A heterozygous mutation (c.643C>A; p.Q215X) in the monocarboxylate transporter 12-encoding gene MCT12 (also known as SLC16A12) that mediates creatine transport was recently identified as the cause of a syndrome with juvenile cataracts, microcornea, and glucosuria in a single family. Whereas the MCT12 mutation cosegregated with the eye phenotype, poor correlation with the glucosuria phenotype did not support a pathogenic role of the mutation in the kidney. Here, we examined MCT12 in the kidney and found that it resides on basolateral membranes of proximal tubules. Patients with MCT12 mutation exhibited reduced plasma levels and increased fractional excretion of guanidinoacetate, but normal creatine levels, suggesting that MCT12 may function as a guanidinoacetate transporter in vivo However, functional studies in Xenopus oocytes revealed that MCT12 transports creatine but not its precursor, guanidinoacetate. Genetic analysis revealed a separate, undescribed heterozygous mutation (c.265G>A; p.A89T) in the sodium/glucose cotransporter 2-encoding gene SGLT2 (also known as SLC5A2) in the family that segregated with the renal glucosuria phenotype. When overexpressed in HEK293 cells, the mutant SGLT2 transporter did not efficiently translocate to the plasma membrane, and displayed greatly reduced transport activity. In summary, our data indicate that MCT12 functions as a basolateral exit pathway for creatine in the proximal tubule. Heterozygous mutation of MCT12 affects systemic levels and renal handling of guanidinoacetate, possibly through an indirect mechanism. Furthermore, our data reveal a digenic syndrome in the index family, with simultaneous MCT12 and SGLT2 mutation. Thus, glucosuria is not part of the MCT12 mutation syndrome. PMID:26376857

  11. Water Collective Dynamics in Whole Photosynthetic Green Algae as Affected by Protein Single Mutation.

    PubMed

    Russo, Daniela; Rea, Giuseppina; Lambreva, Maya D; Haertlein, Michael; Moulin, Martine; De Francesco, Alessio; Campi, Gaetano

    2016-07-01

    In the context of the importance of water molecules for protein function/dynamics relationship, the role of water collective dynamics in Chlamydomonas green algae carrying both native and mutated photosynthetic proteins has been investigated by neutron Brillouin scattering spectroscopy. Results show that single point genetic mutation may notably affect collective density fluctuations in hydrating water providing important insight on the transmission of information possibly correlated to biological functionality. In particular, we highlight that the damping factor of the excitations is larger in the native compared to the mutant algae as a signature of a different plasticity and structure of the hydrogen bond network. PMID:27300078

  12. Expanding genomics of mycorrhizal symbiosis

    PubMed Central

    Kuo, Alan; Kohler, Annegret; Martin, Francis M.; Grigoriev, Igor V.

    2014-01-01

    The mycorrhizal symbiosis between soil fungi and plant roots is a ubiquitous mutualism that plays key roles in plant nutrition, soil health, and carbon cycling. The symbiosis evolved repeatedly and independently as multiple morphotypes [e.g., arbuscular mycorrhizae (AM), ectomycorrhizal (ECM)] in multiple fungal clades (e.g., phyla Glomeromycota, Ascomycota, Basidiomycota). The accessibility and cultivability of many mycorrhizal partners make them ideal models for symbiosis studies. Alongside molecular, physiological, and ecological investigations, sequencing led to the first three mycorrhizal fungal genomes, representing two morphotypes and three phyla. The genome of the ECM basidiomycete Laccaria bicolor showed that the mycorrhizal lifestyle can evolve through loss of plant cell wall-degrading enzymes (PCWDEs) and expansion of lineage-specific gene families such as short secreted protein (SSP) effectors. The genome of the ECM ascomycete Tuber melanosporum showed that the ECM type can evolve without expansion of families as in Laccaria, and thus a different set of symbiosis genes. The genome of the AM glomeromycete Rhizophagus irregularis showed that despite enormous phylogenetic distance and morphological difference from the other two fungi, symbiosis can involve similar solutions as symbiosis-induced SSPs and loss of PCWDEs. The three genomes provide a solid base for addressing fundamental questions about the nature and role of a vital mutualism. PMID:25408690

  13. Expanding genomics of mycorrhizal symbiosis

    SciTech Connect

    Kuo, Alan; Kohler, Annegret; Martin, Francis M.; Grigoriev, Igor V.

    2014-11-04

    The mycorrhizal symbiosis between soil fungi and plant roots is a ubiquitous mutualism that plays key roles in plant nutrition, soil health, and carbon cycling. The symbiosis evolved repeatedly and independently as multiple morphotypes [e.g., arbuscular mycorrhizae (AM), ectomycorrhizal (ECM)] in multiple fungal clades (e.g., phyla Glomeromycota, Ascomycota, Basidiomycota). The accessibility and cultivability of many mycorrhizal partners make them ideal models for symbiosis studies. Alongside molecular, physiological, and ecological investigations, sequencing led to the first three mycorrhizal fungal genomes, representing two morphotypes and three phyla. The genome of the ECM basidiomycete Laccaria bicolor showed that the mycorrhizal lifestyle can evolve through loss of plant cell wall-degrading enzymes (PCWDEs) and expansion of lineage-specific gene families such as short secreted protein (SSP) effectors. The genome of the ECM ascomycete Tuber melanosporum showed that the ECM type can evolve without expansion of families as in Laccaria, and thus a different set of symbiosis genes. The genome of the AM glomeromycete Rhizophagus irregularis showed that despite enormous phylogenetic distance and morphological difference from the other two fungi, symbiosis can involve similar solutions as symbiosis-induced SSPs and loss of PCWDEs. The three genomes provide a solid base for addressing fundamental questions about the nature and role of a vital mutualism.

  14. Expanding genomics of mycorrhizal symbiosis

    DOE PAGESBeta

    Kuo, Alan; Kohler, Annegret; Martin, Francis M.; Grigoriev, Igor V.

    2014-11-04

    The mycorrhizal symbiosis between soil fungi and plant roots is a ubiquitous mutualism that plays key roles in plant nutrition, soil health, and carbon cycling. The symbiosis evolved repeatedly and independently as multiple morphotypes [e.g., arbuscular mycorrhizae (AM), ectomycorrhizal (ECM)] in multiple fungal clades (e.g., phyla Glomeromycota, Ascomycota, Basidiomycota). The accessibility and cultivability of many mycorrhizal partners make them ideal models for symbiosis studies. Alongside molecular, physiological, and ecological investigations, sequencing led to the first three mycorrhizal fungal genomes, representing two morphotypes and three phyla. The genome of the ECM basidiomycete Laccaria bicolor showed that the mycorrhizal lifestyle can evolvemore » through loss of plant cell wall-degrading enzymes (PCWDEs) and expansion of lineage-specific gene families such as short secreted protein (SSP) effectors. The genome of the ECM ascomycete Tuber melanosporum showed that the ECM type can evolve without expansion of families as in Laccaria, and thus a different set of symbiosis genes. The genome of the AM glomeromycete Rhizophagus irregularis showed that despite enormous phylogenetic distance and morphological difference from the other two fungi, symbiosis can involve similar solutions as symbiosis-induced SSPs and loss of PCWDEs. The three genomes provide a solid base for addressing fundamental questions about the nature and role of a vital mutualism.« less

  15. A novel SMARCAL1 missense mutation that affects splicing in a severely affected Schimke immunoosseous dysplasia patient.

    PubMed

    Barraza-García, Jimena; Rivera-Pedroza, Carlos I; Belinchón, Alberta; Fernández-Camblor, Carlota; Valenciano-Fuente, Blanca; Lapunzina, Pablo; Heath, Karen E

    2016-08-01

    Schimke immunoosseous dysplasia (SIOD) is an autosomal recessive disease characterized by skeletal dysplasia, focal segmental glomerulosclerosis, renal failure and immunodeficiency. In this work, we report the molecular studies undertaken in a severely affected SIOD patient that died at six years old due to nephropathy. The patient was screened for mutations using a targeted skeletal dysplasias panel. A homozygous novel missense mutation was identified, c.1615C > G (p.[Leu539Val]) that was predicted as mildly pathogenic by in silico pathogenicity prediction tools. However, splicing prediction software suggested that this variant may create a new splicing donor site in exon 9, which was subsequently confirmed using a minigene assay in HEK293 cells. Thus, the splicing alteration, c.1615C > G; r.1615c > g, 1615_1644del; (p.[Leu539_Ile548del]), results in the loss of 10 amino acids of the HARP-ATPase catalytic domain and the RPA-binding domain. Several studies have demonstrated a weak genotype-phenotype correlation among such patients. Thus, the molecular characterization has helped us to understand why a predicted weakly pathogenic missense mutation results in severe SIOD and should be considered in similar scenarios. PMID:27282802

  16. Progranulin Mutations Affects Brain Oscillatory Activity in Fronto-Temporal Dementia

    PubMed Central

    Moretti, Davide V.; Benussi, Luisa; Fostinelli, Silvia; Ciani, Miriam; Binetti, Giuliano; Ghidoni, Roberta

    2016-01-01

    Background: Mild cognitive impairment (MCI) is a clinical stage indicating a prodromal phase of dementia. This practical concept could be used also for fronto-temporal dementia (FTD). Progranulin (PGRN) has been recently recognized as a useful diagnostic biomarker for fronto-temporal lobe degeneration (FTLD) due to GRN null mutations. Electroencephalography (EEG) is a reliable tool in detecting brain networks changes. The working hypothesis of the present study is that EEG oscillations could detect different modifications among FTLD stages (FTD-MCI versus overt FTD) as well as differences between GRN mutation carriers versus non-carriers in patients with overt FTD. Materials and Methods: EEG in all patients and PGRN dosage in patients with a clear FTD were detected. The cognitive state has been investigated through mini mental state examination (MMSE). Results: MCI-FTD showed a significant lower spectral power in both alpha and theta oscillations as compared to overt FTD. GRN mutations carriers affected by FTLD show an increase in high alpha and decrease in theta oscillations as compared to non-carriers. Conclusion: EEG frequency rhythms are sensible to different stage of FTD and could detect changes in brain oscillatory activity affected by GRN mutations. PMID:26973510

  17. Identification of Regulatory Mutations in SERPINC1 Affecting Vitamin D Response Elements Associated with Antithrombin Deficiency

    PubMed Central

    Toderici, Mara; de la Morena-Barrio, María Eugenia; Padilla, José; Miñano, Antonia; Antón, Ana Isabel; Iniesta, Juan Antonio; Herranz, María Teresa; Fernández, Nuria; Vicente, Vicente; Corral, Javier

    2016-01-01

    Antithrombin is a crucial anticoagulant serpin whose even moderate deficiency significantly increases the risk of thrombosis. Most cases with antithrombin deficiency carried genetic defects affecting exons or flanking regions of SERPINC1.We aimed to identify regulatory mutations inSERPINC1 through sequencing the promoter, intron 1 and 2 of this gene in 23 patients with antithrombin deficiency but without known genetic defects. Three cases with moderate antithrombin deficiency (63–78%) carried potential regulatory mutations. One located 200 bp before the initiation ATG and two in intron 1. These mutations disrupted two out of five potential vitamin D receptor elements (VDRE) identified in SERPINC1 with different software. One genetic defect, c.42-1060_-1057dupTTGA, was a new low prevalent polymorphism (MAF: 0.01) with functional consequences on plasma antithrombin levels. The relevance of the vitamin D pathway on the regulation of SERPINC1 was confirmed in a cell model. Incubation of HepG2 with paricalcitol, a vitamin D analog, increased dose-dependently the levels of SERPINC1transcripts and antithrombin released to the conditioned medium. This study shows further evidence of the transcriptional regulation of SERPINC1 by vitamin D and first describes the functional and pathological relevance of mutations affecting VDRE of this gene. Our study opens new perspectives in the search of new genetic defects involved in antithrombin deficiency and the risk of thrombosis as well as in the design of new antithrombotic treatments. PMID:27003919

  18. Mutations in the putative calcium-binding domain of polyomavirus VP1 affect capsid assembly

    NASA Technical Reports Server (NTRS)

    Haynes, J. I. 2nd; Chang, D.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    Calcium ions appear to play a major role in maintaining the structural integrity of the polyomavirus and are likely involved in the processes of viral uncoating and assembly. Previous studies demonstrated that a VP1 fragment extending from Pro-232 to Asp-364 has calcium-binding capabilities. This fragment contains an amino acid stretch from Asp-266 to Glu-277 which is quite similar in sequence to the amino acids that make up the calcium-binding EF hand structures found in many proteins. To assess the contribution of this domain to polyomavirus structural integrity, the effects of mutations in this region were examined by transfecting mutated viral DNA into susceptible cells. Immunofluorescence studies indicated that although viral protein synthesis occurred normally, infective viral progeny were not produced in cells transfected with polyomavirus genomes encoding either a VP1 molecule lacking amino acids Thr-262 through Gly-276 or a VP1 molecule containing a mutation of Asp-266 to Ala. VP1 molecules containing the deletion mutation were unable to bind 45Ca in an in vitro assay. Upon expression in Escherichia coli and purification by immunoaffinity chromatography, wild-type VP1 was isolated as pentameric, capsomere-like structures which could be induced to form capsid-like structures upon addition of CaCl2, consistent with previous studies. However, although VP1 containing the point mutation was isolated as pentamers which were indistinguishable from wild-type VP1 pentamers, addition of CaCl2 did not result in their assembly into capsid-like structures. Immunogold labeling and electron microscopy studies of transfected mammalian cells provided in vivo evidence that a mutation in this region affects the process of viral assembly.

  19. Thoracic Aortic Aneurysm (TAAD)-causing Mutation in Actin Affects Formin Regulation of Polymerization*

    PubMed Central

    Malloy, Lindsey E.; Wen, Kuo-Kuang; Pierick, Alyson R.; Wedemeyer, Elesa W.; Bergeron, Sarah E.; Vanderpool, Nicole D.; McKane, Melissa; Rubenstein, Peter A.; Bartlett, Heather L.

    2012-01-01

    More than 30 mutations in ACTA2, which encodes α-smooth muscle actin, have been identified to cause autosomal dominant thoracic aortic aneurysm and dissection. The mutation R256H is of particular interest because it also causes patent ductus arteriosus and moyamoya disease. R256H is one of the more prevalent mutations and, based on its molecular location near the strand-strand interface in the actin filament, may affect F-actin stability. To understand the molecular ramifications of the R256H mutation, we generated Saccharomyces cerevisiae yeast cells expressing only R256H yeast actin as a model system. These cells displayed abnormal cytoskeletal morphology and increased sensitivity to latrunculin A. After cable disassembly induced by transient exposure to latrunculin A, mutant cells were delayed in reestablishing the actin cytoskeleton. In vitro, mutant actin exhibited a higher than normal critical concentration and a delayed nucleation. Consequently, we investigated regulation of mutant actin by formin, a potent facilitator of nucleation and a protein needed for normal vascular smooth muscle cell development. Mutant actin polymerization was inhibited by the FH1-FH2 fragment of the yeast formin, Bni1. This fragment strongly capped the filament rather than facilitating polymerization. Interestingly, phalloidin or the presence of wild type actin reversed the strong capping behavior of Bni1. Together, the data suggest that the R256H actin mutation alters filament conformation resulting in filament instability and misregulation by formin. These biochemical effects may contribute to abnormal histology identified in diseased arterial samples from affected patients. PMID:22753406

  20. Thoracic aortic aneurysm (TAAD)-causing mutation in actin affects formin regulation of polymerization.

    PubMed

    Malloy, Lindsey E; Wen, Kuo-Kuang; Pierick, Alyson R; Wedemeyer, Elesa W; Bergeron, Sarah E; Vanderpool, Nicole D; McKane, Melissa; Rubenstein, Peter A; Bartlett, Heather L

    2012-08-17

    More than 30 mutations in ACTA2, which encodes α-smooth muscle actin, have been identified to cause autosomal dominant thoracic aortic aneurysm and dissection. The mutation R256H is of particular interest because it also causes patent ductus arteriosus and moyamoya disease. R256H is one of the more prevalent mutations and, based on its molecular location near the strand-strand interface in the actin filament, may affect F-actin stability. To understand the molecular ramifications of the R256H mutation, we generated Saccharomyces cerevisiae yeast cells expressing only R256H yeast actin as a model system. These cells displayed abnormal cytoskeletal morphology and increased sensitivity to latrunculin A. After cable disassembly induced by transient exposure to latrunculin A, mutant cells were delayed in reestablishing the actin cytoskeleton. In vitro, mutant actin exhibited a higher than normal critical concentration and a delayed nucleation. Consequently, we investigated regulation of mutant actin by formin, a potent facilitator of nucleation and a protein needed for normal vascular smooth muscle cell development. Mutant actin polymerization was inhibited by the FH1-FH2 fragment of the yeast formin, Bni1. This fragment strongly capped the filament rather than facilitating polymerization. Interestingly, phalloidin or the presence of wild type actin reversed the strong capping behavior of Bni1. Together, the data suggest that the R256H actin mutation alters filament conformation resulting in filament instability and misregulation by formin. These biochemical effects may contribute to abnormal histology identified in diseased arterial samples from affected patients. PMID:22753406

  1. Mendelian and non-mendelian mutations affecting surface antigen expression in Paramecium tetraurelia

    SciTech Connect

    Epstein, L.M.; Forney, J.D.

    1984-08-01

    A screening procedure was devised for the isolation of X-ray-induced mutations affecting the expression of the A immobilization antigen (i-antigen) in Paramecium tetraurelia. Two of the mutations isolated by this procedure proved to be in modifier genes. The two genes are unlinked to each other and unlinked to the structural A i-antigen gene. These are the first modifier genes identified in a Paramecium sp. that affect surface antigen expression. Another mutation was found to be a deletion of sequences just downstream from the A i-antigen gene. In cells carrying this mutation, the A i-antigen gene lies in close proximity to the end of a macronuclear chromosome. The expression of the A i-antigen is not affected in these cells, demonstrating that downstream sequences are not important for the regulation and expression of the A i-antigen gene. A stable cell line was also recovered which shows non-Mendelian inheritance of a macronuclear deletion of the A i-antigen gene. This mutant does not contain the gene in its macronucleus, but contains a complete copy of the gene in its micronucleus. In the cytoplasm of wild-type animals, the micronuclear gene is included in the developing macronucleus; in the cytoplasm of the mutant, the incorporation of the A i-antigen gene into the macronucleus is inhibited. This is the first evidence that a mechanism is available in ciliates to control the expression of a gene by regulating its incorporation into developing macronuclei.

  2. Symbiosis, Empathy, Suicidal Behavior, and the Family.

    ERIC Educational Resources Information Center

    Richman, Joseph

    1978-01-01

    This paper discusses the theoretical concept of symbiosis, as described by Mahler and her co-workers, and its clinical applications in suicidal situations. Also, the practical implications of the concept of symbiosis for assessment and treatment are discussed (Author)

  3. Mutations in the clk-1 gene of Caenorhabditis elegans affect developmental and behavioral timing

    SciTech Connect

    Wong, A.; Boutis, P.; Hekimi, S.

    1995-03-01

    We have identified three allelic, maternal-effect mutations that affect developmental and behavioral timing in Caenorhabditis elegans. They result in a mean lengthening of embryonic and postembryonic development, the cell cycle period and life span, as well as the periods of the defecation, swimming and pumping cycles. These mutants also display a number of additional phenotypes related to timing. For example, the variability in the length of embryonic development is several times larger in the mutants than in the wild type, resulting in the occasional production of mutant embryos developing more rapidly than the most rapidly developing wild-type embryos. In addition, the duration of embryonic development of the mutants, but not of the wild type, depends on the temperature at which their parents were raised. Finally, individual variations in the severity of distinct mutant phenotypes are correlated in a counterintuitive way. For example, the animals with the shortest embryonic development have the longest defecation cycle and those with the longest embryonic development have the shortest defecation cycle. Most of the features affected by these mutations are believed to be controlled by biological clocks, and we therefore call the gene defined by these mutations clk-1, for {open_quotes}abnormal function of biological clocks.{close_quotes} 52 refs., 5 figs., 4 tabs.

  4. Identification of quantitative trait loci affecting ectomycorrhizal symbiosis in an interspecific F1 poplar cross and differential expression of genes in ectomycorrhizas of the two parents: Populus deltoides and Populus trichocarpa

    SciTech Connect

    Labbe, Jessy L; Jorge, Veronique; Vion, Patrice; Marcais, Benoit; Bastien, Catherine; Tuskan, Gerald A; Martin, Francis; Le Tacon, F

    2011-01-01

    A Populus deltoides Populus trichocarpa F1 pedigree was analyzed for quantitative trait loci (QTLs) affecting ectomycorrhizal development and for microarray characterization of gene networks involved in this symbiosis. A 300 genotype progeny set was evaluated for its ability to form ectomycorrhiza with the basidiomycete Laccaria bicolor. The percentage of mycorrhizal root tips was determined on the root systems of all 300 progeny and their two parents. QTL analysis identified four significant QTLs, one on the P. deltoides and three on the P. trichocarpa genetic maps. These QTLs were aligned to the P. trichocarpa genome and each contained several megabases and encompass numerous genes. NimbleGen whole-genome microarray, using cDNA from RNA extracts of ectomycorrhizal root tips from the parental genotypes P. trichocarpa and P. deltoides, was used to narrow the candidate gene list. Among the 1,543 differentially expressed genes (p value 0.05; 5.0-fold change in transcript level) having different transcript levels in mycorrhiza of the two parents, 41 transcripts were located in the QTL intervals: 20 in Myc_d1, 14 in Myc_t1, and seven in Myc_t2, while no significant differences among transcripts were found in Myc_t3. Among these 41 transcripts, 25 were overrepresented in P. deltoides relative to P. trichocarpa; 16 were overrepresented in P. trichocarpa. The transcript showing the highest overrepresentation in P. trichocarpa mycorrhiza libraries compared to P. deltoides mycorrhiza codes for an ethylene-sensitive EREBP-4 protein which may repress defense mechanisms in P. trichocarpa while the highest overrepresented transcripts in P. deltoides code for proteins/genes typically associated with pathogen resistance.

  5. Genetic mapping of hph2, a mutation affecting amino acid transport in the mouse.

    PubMed

    Symula, D J; Shedlovsky, A; Dove, W F

    1997-02-01

    We describe the genetic mapping of hyperphenylal-aninemia 2 (hph2), a recessive mutation in the mouse that causes deficient amino acid transport similar to Hartnup disorder, a human genetic amino acid transport disorder. The hph2 locus was mapped in three separate crosses to identify candidate genes for hph2 and a region of homology in the human genome where we propose the Hartnup Disorder gene might lie. The mutation maps to mouse Chromosome (Chr) 7 distal of the simple sequence length polymorphism (SSLP) marker D7Mit140 and does not recombine with D7Nds4, an SSLP marker in the fibroblast growth factor 3 (Fgf3) gene. Unexpectedly, the mutant chromosome affects recombination frequency in the D7Mit12 to D7Nds4 interval. PMID:9060407

  6. A Point Mutation within the Replicase Gene Differentially Affects Coronavirus Genome versus Minigenome Replication

    PubMed Central

    Galán, Carmen; Enjuanes, Luis; Almazán, Fernando

    2005-01-01

    During the construction of the transmissible gastroenteritis virus (TGEV) full-length cDNA clone, a point mutation at position 637 that was present in the defective minigenome DI-C was maintained as a genetic marker. Sequence analysis of the recovered viruses showed a reversion at this position to the original virus sequence. The effect of point mutations at nucleotide 637 was analyzed by reverse genetics using a TGEV full-length cDNA clone and cDNAs from TGEV-derived minigenomes. The replacement of nucleotide 637 of TGEV genome by a T, as in the DI-C sequence, or an A severely affected virus recovery from the cDNA, yielding mutant viruses with low titers and small plaques compared to those of the wild type. In contrast, T or A at position 637 was required for minigenome rescue in trans by the helper virus. No relationship between these observations and RNA secondary-structure predictions was found, indicating that mutations at nucleotide 637 most likely had an effect at the protein level. Nucleotide 637 occupies the second codon position at amino acid 108 of the pp1a polyprotein. This position is predicted to map in the N-terminal polyprotein papain-like proteinase (PLP-1) cleavage site at the p9/p87 junction. Replacement of G-637 by A, which causes a drastic amino acid change (Gly to Asp) at position 108, affected PLP-1-mediated cleavage in vitro. A correlation was found between predicted cleaving and noncleaving mutations and efficient virus rescue from cDNA and minigenome amplification, respectively. PMID:16306572

  7. Epilepsy due to PNPO mutations: genotype, environment and treatment affect presentation and outcome

    PubMed Central

    Mills, Philippa B.; Camuzeaux, Stephane S.M.; Footitt, Emma J.; Mills, Kevin A.; Gissen, Paul; Fisher, Laura; Das, Krishna B.; Varadkar, Sophia M.; Zuberi, Sameer; McWilliam, Robert; Stödberg, Tommy; Plecko, Barbara; Baumgartner, Matthias R.; Maier, Oliver; Calvert, Sophie; Riney, Kate; Wolf, Nicole I.; Livingston, John H.; Bala, Pronab; Morel, Chantal F.; Feillet, François; Raimondi, Francesco; Del Giudice, Ennio; Chong, W. Kling; Pitt, Matthew

    2014-01-01

    The first described patients with pyridox(am)ine 5’-phosphate oxidase deficiency all had neonatal onset seizures that did not respond to treatment with pyridoxine but responded to treatment with pyridoxal 5’-phosphate. Our data suggest, however, that the clinical spectrum of pyridox(am)ine 5’-phosphate oxidase deficiency is much broader than has been reported in the literature. Sequencing of the PNPO gene was undertaken for a cohort of 82 individuals who had shown a reduction in frequency and severity of seizures in response to pyridoxine or pyridoxal 5’-phosphate. Novel sequence changes were studied using a new cell-free expression system and a mass spectrometry-based assay for pyridoxamine phosphate oxidase. Three groups of patients with PNPO mutations that had reduced enzyme activity were identified: (i) patients with neonatal onset seizures responding to pyridoxal 5’-phosphate (n = 6); (ii) a patient with infantile spasms (onset 5 months) responsive to pyridoxal 5’-phosphate (n = 1); and (iii) patients with seizures starting under 3 months of age responding to pyridoxine (n = 8). Data suggest that certain genotypes (R225H/C and D33V) are more likely to result in seizures that to respond to treatment with pyridoxine. Other mutations seem to be associated with infertility, miscarriage and prematurity. However, the situation is clearly complex with the same combination of mutations being seen in patients who responded and did not respond to pyridoxine. It is possible that pyridoxine responsiveness in PNPO deficiency is affected by prematurity and age at the time of the therapeutic trial. Other additional factors that are likely to influence treatment response and outcome include riboflavin status and how well the foetus has been supplied with vitamin B6 by the mother. For some patients there was a worsening of symptoms on changing from pyridoxine to pyridoxal 5’-phosphate. Many of the mutations in PNPO affected residues involved in binding flavin

  8. Epilepsy due to PNPO mutations: genotype, environment and treatment affect presentation and outcome.

    PubMed

    Mills, Philippa B; Camuzeaux, Stephane S M; Footitt, Emma J; Mills, Kevin A; Gissen, Paul; Fisher, Laura; Das, Krishna B; Varadkar, Sophia M; Zuberi, Sameer; McWilliam, Robert; Stödberg, Tommy; Plecko, Barbara; Baumgartner, Matthias R; Maier, Oliver; Calvert, Sophie; Riney, Kate; Wolf, Nicole I; Livingston, John H; Bala, Pronab; Morel, Chantal F; Feillet, François; Raimondi, Francesco; Del Giudice, Ennio; Chong, W Kling; Pitt, Matthew; Clayton, Peter T

    2014-05-01

    The first described patients with pyridox(am)ine 5'-phosphate oxidase deficiency all had neonatal onset seizures that did not respond to treatment with pyridoxine but responded to treatment with pyridoxal 5'-phosphate. Our data suggest, however, that the clinical spectrum of pyridox(am)ine 5'-phosphate oxidase deficiency is much broader than has been reported in the literature. Sequencing of the PNPO gene was undertaken for a cohort of 82 individuals who had shown a reduction in frequency and severity of seizures in response to pyridoxine or pyridoxal 5'-phosphate. Novel sequence changes were studied using a new cell-free expression system and a mass spectrometry-based assay for pyridoxamine phosphate oxidase. Three groups of patients with PNPO mutations that had reduced enzyme activity were identified: (i) patients with neonatal onset seizures responding to pyridoxal 5'-phosphate (n = 6); (ii) a patient with infantile spasms (onset 5 months) responsive to pyridoxal 5'-phosphate (n = 1); and (iii) patients with seizures starting under 3 months of age responding to pyridoxine (n = 8). Data suggest that certain genotypes (R225H/C and D33V) are more likely to result in seizures that to respond to treatment with pyridoxine. Other mutations seem to be associated with infertility, miscarriage and prematurity. However, the situation is clearly complex with the same combination of mutations being seen in patients who responded and did not respond to pyridoxine. It is possible that pyridoxine responsiveness in PNPO deficiency is affected by prematurity and age at the time of the therapeutic trial. Other additional factors that are likely to influence treatment response and outcome include riboflavin status and how well the foetus has been supplied with vitamin B6 by the mother. For some patients there was a worsening of symptoms on changing from pyridoxine to pyridoxal 5'-phosphate. Many of the mutations in PNPO affected residues involved in binding flavin mononucleotide or

  9. Identification of a mutation affecting an alanine-alpha-ketoisovalerate transaminase activity in Escherichia coli K-12.

    PubMed

    Falkinham, J O

    1979-10-01

    A mutation affecting alanine-alpha-ketoisovalerate transaminase activity has been shown to be cotransducible with ilv gene cluster. The transaminase deficiency results in conditional isoleucine auxotrophy in the presence of alanine. PMID:396446

  10. Recombination affects accumulation of damaging and disease-associated mutations in human populations.

    PubMed

    Hussin, Julie G; Hodgkinson, Alan; Idaghdour, Youssef; Grenier, Jean-Christophe; Goulet, Jean-Philippe; Gbeha, Elias; Hip-Ki, Elodie; Awadalla, Philip

    2015-04-01

    Many decades of theory have demonstrated that, in non-recombining systems, slightly deleterious mutations accumulate non-reversibly, potentially driving the extinction of many asexual species. Non-recombining chromosomes in sexual organisms are thought to have degenerated in a similar fashion; however, it is not clear the extent to which damaging mutations accumulate along chromosomes with highly variable rates of crossing over. Using high-coverage sequencing data from over 1,400 individuals in the 1000 Genomes and CARTaGENE projects, we show that recombination rate modulates the distribution of putatively deleterious variants across the entire human genome. Exons in regions of low recombination are significantly enriched for deleterious and disease-associated variants, a signature varying in strength across worldwide human populations with different demographic histories. Regions with low recombination rates are enriched for highly conserved genes with essential cellular functions and show an excess of mutations with demonstrated effects on health, a phenomenon likely affecting disease susceptibility in humans. PMID:25685891

  11. SPL1-1, a Saccharomyces cerevisiae mutation affecting tRNA splicing.

    PubMed Central

    Kolman, C; Söll, D

    1993-01-01

    A genetic approach was used to isolate and characterize Saccharomyces cerevisiae genes affecting tRNA processing. Three mutants were isolated which were able to process and utilize splicing-deficient transcripts from inactivated Schizosaccharomyces pombe suppressor tRNA genes. Extragenic recovery of suppressibility was verified by the suppression of nonsense mutations in LEU2, HIS4, and ADE1. One mutant, SPL1-1, was chosen for detailed analysis on the basis of its increased synthesis of mature suppressor tRNA over wild-type cell levels as determined by Northern (RNA) analysis. This mutant exhibited strong suppression exclusively with the defective tRNA gene used in the mutant selection. Genetic analysis revealed that a single, dominant, haplo-lethal mutation was responsible for the suppression phenotype. The mutation mapped on chromosome III to an essential 1.5-kb open reading frame (L. S. Symington and T. D. Petes, Mol. Cell. Biol. 8:595-604, 1988), recently named NFS1 (S. G. Oliver et al., Nature [London] 357:38-46, 1992), located adjacent (centromere proximal) to LEU2. Images PMID:8444805

  12. Human CalDAG-GEFI gene (RASGRP2) mutation affects platelet function and causes severe bleeding

    PubMed Central

    Canault, Matthias; Ghalloussi, Dorsaf; Grosdidier, Charlotte; Guinier, Marie; Perret, Claire; Chelghoum, Nadjim; Germain, Marine; Raslova, Hana; Peiretti, Franck; Morange, Pierre E.; Saut, Noemie; Pillois, Xavier; Nurden, Alan T.; Cambien, François; Pierres, Anne; van den Berg, Timo K.; Kuijpers, Taco W.; Tregouet, David-Alexandre

    2014-01-01

    The nature of an inherited platelet disorder was investigated in three siblings affected by severe bleeding. Using whole-exome sequencing, we identified the culprit mutation (cG742T) in the RAS guanyl-releasing protein-2 (RASGRP2) gene coding for calcium- and DAG-regulated guanine exchange factor-1 (CalDAG-GEFI). Platelets from individuals carrying the mutation present a reduced ability to activate Rap1 and to perform proper αIIbβ3 integrin inside-out signaling. Expression of CalDAG-GEFI mutant in HEK293T cells abolished Rap1 activation upon stimulation. Nevertheless, the PKC- and ADP-dependent pathways allow residual platelet activation in the absence of functional CalDAG-GEFI. The mutation impairs the platelet’s ability to form thrombi under flow and spread normally as a consequence of reduced Rac1 GTP-binding. Functional deficiencies were confined to platelets and megakaryocytes with no leukocyte alteration. This contrasts with the phenotype seen in type III leukocyte adhesion deficiency caused by the absence of kindlin-3. Heterozygous did not suffer from bleeding and have normal platelet aggregation; however, their platelets mimicked homozygous ones by failing to undergo normal adhesion under flow and spreading. Rescue experiments on cultured patient megakaryocytes corrected the functional deficiency after transfection with wild-type RASGRP2. Remarkably, the presence of a single normal allele is sufficient to prevent bleeding, making CalDAG-GEFI a novel and potentially safe therapeutic target to prevent thrombosis. PMID:24958846

  13. Mutations Affecting the Trna-Splicing Endonuclease Activity of Saccharomyces Cerevisiae

    PubMed Central

    Winey, M.; Culbertson, M. R.

    1988-01-01

    Two unlinked mutations that alter the enzyme activity of tRNA-splicing endonuclease have been identified in yeast. The sen1-1 mutation, which maps on chromosome 12, causes temperature-sensitive growth, reduced in vitro endonuclease activity, and in vivo accumulation of unspliced pre-tRNAs. The sen2-1 mutation does not confer a detectable growth defect, but causes a temperature-dependent reduction of in vitro endonuclease activity. Pre-tRNAs do not accumulate in sen2-1 strains. The in vitro enzyme activities of sen1-1 and sen2-1 complement in extracts from a heterozygous diploid, but fail to complement in mixed extracts from separate sen1-1 and sen2-1 haploid strains. These results suggest a direct role for SEN gene products in the enzymatic removal of introns from tRNA that is distinct from the role of other products known to affect tRNA splicing. PMID:3284787

  14. Mutations in the white gene of Drosophila melanogaster affecting ABC transporters that determine eye colouration.

    PubMed

    Mackenzie, S M; Brooker, M R; Gill, T R; Cox, G B; Howells, A J; Ewart, G D

    1999-07-15

    The white, brown and scarlet genes of Drosophila melanogaster encode proteins which transport guanine or tryptophan (precursors of the red and brown eye colour pigments) and belong to the ABC transporter superfamily. Current models envisage that the white and brown gene products interact to form a guanine specific transporter, while white and scarlet gene products interact to form a tryptophan transporter. In this study, we report the nucleotide sequence of the coding regions of five white alleles isolated from flies with partially pigmented eyes. In all cases, single amino acid changes were identified, highlighting residues with roles in structure and/or function of the transporters. Mutations in w(cf) (G589E) and w(sat) (F590G) occur at the extracellular end of predicted transmembrane helix 5 and correlate with a major decrease in red pigments in the eyes, while brown pigments are near wild-type levels. Therefore, those residues have a more significant role in the guanine transporter than the tryptophan transporter. Mutations identified in w(crr) (H298N) and w(101) (G243S) affect amino acids which are highly conserved among the ABC transporter superfamily within the nucleotide binding domain. Both cause substantial and similar decreases of red and brown pigments indicating that both tryptophan and guanine transport are impaired. The mutation identified in w(Et87) alters an amino acid within an intracellular loop between transmembrane helices 2 and 3 of the predicted structure. Red and brown pigments are reduced to very low levels by this mutation indicating this loop region is important for the function of both guanine and tryptophan transporters. PMID:10407069

  15. Mutations in SGOL1 cause a novel cohesinopathy affecting heart and gut rhythm.

    PubMed

    Chetaille, Philippe; Preuss, Christoph; Burkhard, Silja; Côté, Jean-Marc; Houde, Christine; Castilloux, Julie; Piché, Jessica; Gosset, Natacha; Leclerc, Séverine; Wünnemann, Florian; Thibeault, Maryse; Gagnon, Carmen; Galli, Antonella; Tuck, Elizabeth; Hickson, Gilles R; El Amine, Nour; Boufaied, Ines; Lemyre, Emmanuelle; de Santa Barbara, Pascal; Faure, Sandrine; Jonzon, Anders; Cameron, Michel; Dietz, Harry C; Gallo-McFarlane, Elena; Benson, D Woodrow; Moreau, Claudia; Labuda, Damian; Zhan, Shing H; Shen, Yaoqing; Jomphe, Michèle; Jones, Steven J M; Bakkers, Jeroen; Andelfinger, Gregor

    2014-11-01

    The pacemaking activity of specialized tissues in the heart and gut results in lifelong rhythmic contractions. Here we describe a new syndrome characterized by Chronic Atrial and Intestinal Dysrhythmia, termed CAID syndrome, in 16 French Canadians and 1 Swede. We show that a single shared homozygous founder mutation in SGOL1, a component of the cohesin complex, causes CAID syndrome. Cultured dermal fibroblasts from affected individuals showed accelerated cell cycle progression, a higher rate of senescence and enhanced activation of TGF-β signaling. Karyotypes showed the typical railroad appearance of a centromeric cohesion defect. Tissues derived from affected individuals displayed pathological changes in both the enteric nervous system and smooth muscle. Morpholino-induced knockdown of sgol1 in zebrafish recapitulated the abnormalities seen in humans with CAID syndrome. Our findings identify CAID syndrome as a novel generalized dysrhythmia, suggesting a new role for SGOL1 and the cohesin complex in mediating the integrity of human cardiac and gut rhythm. PMID:25282101

  16. Rare Mutations of CACNB2 Found in Autism Spectrum Disease-Affected Families Alter Calcium Channel Function

    PubMed Central

    Breitenkamp, Alexandra F. S.; Matthes, Jan; Nass, Robert Daniel; Sinzig, Judith; Lehmkuhl, Gerd; Nürnberg, Peter; Herzig, Stefan

    2014-01-01

    Autism Spectrum Disorders (ASD) are complex neurodevelopmental diseases clinically defined by dysfunction of social interaction. Dysregulation of cellular calcium homeostasis might be involved in ASD pathogenesis, and genes coding for the L-type calcium channel subunits CaV1.2 (CACNA1C) and CaVβ2 (CACNB2) were recently identified as risk loci for psychiatric diseases. Here, we present three rare missense mutations of CACNB2 (G167S, S197F, and F240L) found in ASD-affected families, two of them described here for the first time (G167S and F240L). All these mutations affect highly conserved regions while being absent in a sample of ethnically matched controls. We suggest the mutations to be of physiological relevance since they modulate whole-cell Ba2+ currents through calcium channels when expressed in a recombinant system (HEK-293 cells). Two mutations displayed significantly decelerated time-dependent inactivation as well as increased sensitivity of voltage-dependent inactivation. In contrast, the third mutation (F240L) showed significantly accelerated time-dependent inactivation. By altering the kinetic parameters, the mutations are reminiscent of the CACNA1C mutation causing Timothy Syndrome, a Mendelian disease presenting with ASD. In conclusion, the results of our first-time biophysical characterization of these three rare CACNB2 missense mutations identified in ASD patients support the hypothesis that calcium channel dysfunction may contribute to autism. PMID:24752249

  17. The transcriptional activities and cellular localization of the human estrogen receptor alpha are affected by the synonymous Ala87 mutation.

    PubMed

    Fernández-Calero, Tamara; Astrada, Soledad; Alberti, Alvaro; Horjales, Sofía; Arnal, Jean Francois; Rovira, Carlos; Bollati-Fogolín, Mariela; Flouriot, Gilles; Marin, Mónica

    2014-09-01

    Until recently, synonymous mutations (which do not change amino acids) have been much neglected. Some evidence suggests that this kind of mutations could affect mRNA secondary structure or stability, translation kinetics and protein structure. To explore deeper the role of synonymous mutations, we studied their consequence on the functional activity of the estrogen receptor alpha (ERα). The ERα is a ligand-inducible transcription factor that orchestrates pleiotropic cellular effects, at both genomic and non-genomic levels in response to estrogens. In this work we analyzed in transient transfection experiments, the activity of ERα carrying the synonymous mutation Ala87, a polymorphism involving about 5-10% of the population. In comparison to the wild type receptor, our results show that ERαA87 mutation reduces the transactivation efficiency of ERα on an ERE reporter gene while its expression level remains similar. This mutation enhances 4-OHT-induced transactivation of ERα on an AP1 reporter gene. Finally, the mutation affects the subcellular localization of ERα in a cell type specific manner. It enhances the cytoplasmic location of ERα without significant changes in non-genomic effects of E2. The functional alteration of the ERαA87 determined in this work highlights the relevance of synonymous mutations for biomedical and pharmacological points of view. PMID:24607813

  18. Mutations of the Drosophila Myosin Regulatory Light Chain Affect Courtship Song and Reduce Reproductive Success

    PubMed Central

    Chakravorty, Samya; Vu, Hien; Foelber, Veronica; Vigoreaux, Jim O.

    2014-01-01

    The Drosophila indirect flight muscles (IFM) rely on an enhanced stretch-activation response to generate high power output for flight. The IFM is neurally activated during the male courtship song, but its role, if any, in generating the small amplitude wing vibrations that produce the song is not known. Here, we examined the courtship song properties and mating behavior of three mutant strains of the myosin regulatory light chain (DMLC2) that are known to affect IFM contractile properties and impair flight: (i) Dmlc2Δ2–46 (Ext), an N-terminal extension truncation; (ii) Dmlc2S66A,S67A (Phos), a disruption of two MLC kinase phosphorylation sites; and (iii) Dmlc2Δ2–46;S66A,S67A (Dual), expressing both mutations. Our results show that the Dmlc2 gene is pleiotropic and that mutations that have a profound effect on flight mechanics (Phos and Dual) have minimal effects on courtship song. None of the mutations affect interpulse interval (IPI), a determinant of species-specific song, and intrapulse frequency (IPF) compared to Control (Dmlc2+ rescued null strain). However, abnormalities in the sine song (increased frequency) and the pulse song (increased cycles per pulse and pulse length) evident in Ext males are not apparent in Dual males suggesting that Ext and Phos interact differently in song and flight mechanics, given their known additive effect on the latter. All three mutant males produce a less vigorous pulse song and exhibit impaired mating behavior compared to Control males. As a result, females are less receptive to Ext, Phos, and Dual males when a Control male is present. These results open the possibility that DMLC2, and perhaps contractile protein genes in general, are partly under sexual selection. That mutations in DMLC2 manifest differently in song and flight suggest that this protein fulfills different roles in song and flight and that stretch activation plays a smaller role in song production than in flight. PMID:24587213

  19. Clinical and structural impact of mutations affecting the residue Phe367 of FOXP3 in patients with IPEX syndrome.

    PubMed

    Colobran, Roger; Álvarez de la Campa, Elena; Soler-Palacín, Pere; Martín-Nalda, Andrea; Pujol-Borrell, Ricardo; de la Cruz, Xavier; Martínez-Gallo, Mónica

    2016-02-01

    Immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome is a monogenic autoimmune disease characterized by early-onset life-threatening multisystemic autoimmunity. This rare hereditary disorder is caused by loss-of-function mutations in the gene encoding the forkhead box P3 (FOXP3) transcription factor, which plays a key role in the differentiation and function of CD4(+)CD25(+) natural regulatory T cells (Tregs), essential for the establishment and maintenance of natural tolerance. We identified a novel mutation in the FOXP3 gene affecting the Phe367 residue of the protein (F367V) in a family with three male siblings affected by IPEX. Two other mutations affecting the FOXP3 Phe367 residue (F367L and F367C) have been described previously. This unique situation of three mutations affecting the same residue in FOXP3 led us to study the molecular impact of these mutations on the structure of FOXP3 protein. Structure analysis showed that Phe367 is involved in a rich interaction network related to both monomer and dimer structure stabilization, and is crucial for FOXP3 regulatory activity. The relevance of this location is confirmed by the results of SIFT and PolyPhen-2 pathogenicity predictions for F367V mutation. In summary, as assessment of the pathogenicity of a novel mutation is crucial to achieve a proper molecular diagnosis, we analysed the impact of mutations affecting the Phe367 residue using a combined approach that provides a mechanistic view of their pathogenic effect. PMID:26748374

  20. Mutations in cadherin 23 affect tip links in zebrafish sensory hair cells.

    PubMed

    Söllner, Christian; Rauch, Gerd-Jörg; Siemens, Jan; Geisler, Robert; Schuster, Stephan C; Müller, Ulrich; Nicolson, Teresa

    2004-04-29

    Hair cells have highly organized bundles of apical projections, or stereocilia, that are deflected by sound and movement. Displacement of stereocilia stretches linkages at the tips of stereocilia that are thought to gate mechanosensory channels. To identify the molecular machinery that mediates mechanotransduction in hair cells, zebrafish mutants were identified with defects in balance and hearing. In sputnik mutants, stereociliary bundles are splayed to various degrees, with individuals displaying reduced or absent mechanotransduction. Here we show that the defects in sputnik mutants are caused by mutations in cadherin 23 (cdh23). Mutations in Cdh23 also cause deafness and vestibular defects in mice and humans, and the protein is present in hair bundles. We show that zebrafish Cdh23 protein is concentrated near the tips of hair bundles, and that tip links are absent in homozygous sputnik(tc317e) larvae. Moreover, tip links are absent in larvae carrying weak alleles of cdh23 that affect mechanotransduction but not hair bundle integrity. We conclude that Cdh23 is an essential tip link component required for hair-cell mechanotransduction. PMID:15057246

  1. Glutamine synthetase-constitutive mutation affecting the glnALG upstream promoter of Escherichia coli.

    PubMed Central

    León, P; Romero, D; Garciarrubio, A; Bastarrachea, F; Covarrubias, A A

    1985-01-01

    The spontaneous gln-76 mutation of Escherichia coli (Osorio et al., Mol. Gen. Genet. 194:114-123, 1984) was previously shown to be responsible for the cis-dominant constitutive expression of the glnA gene in the absence of a glnG-glnF activator system. Nucleotide sequence analysis has now revealed that gln-76 is a single transversion T.A to A.T, an up-promoter mutation affecting the -10 region of glnAp1, the upstream promoter of the glnALG control region. Both, wild-type and gln-76 DNA control regions were cloned into the promoter-probe plasmid pKO1. Galactokinase activity determinations of cells carrying the fused plasmids showed 10-fold more effective expression mediated by gln-76 than by the glnA wild-type control region. Primer extension experiments with RNA from strains carrying the gln-76 control region indicated that the transcription initiation sites were the same in both the gln-76 mutant and the wild type. Images PMID:2866175

  2. Four novel cystic fibrosis mutations in splice junction sequences affecting the CFTR nucleotide binding folds

    SciTech Connect

    Doerk, T.; Wulbrand, U.; Tuemmler, B. )

    1993-03-01

    Single cases of the four novel splice site mutations 1525[minus]1 G [r arrow] A (intron 9), 3601[minus]2 A [r arrow] G (intron 18), 3850[minus]3 T [r arrow] G (intron 19), and 4374+1 G [r arrow] T (intron 23) were detected in the CFTR gene of cystic fibrosis patients of Indo-Iranian, Turkish, Polish, and Germany descent. The nucleotide substitutions at the +1, [minus]1, and [minus]2 positions all destroy splice sites and lead to severe disease alleles associated with features typical of gastrointestinal and pulmonary cystic fibrosis disease. The 3850[minus]3 T-to-G change was discovered in a very mildly affected 33-year-old [Delta]F508 compound heterozygote, suggesting that the T-to-G transversion at the less conserved [minus]3 position of the acceptor splice site may retain some wildtype function. 13 refs., 1 fig., 2 tabs.

  3. Mutation in bovine beta-carotene oxygenase 2 affects milk color.

    PubMed

    Berry, S D; Davis, S R; Beattie, E M; Thomas, N L; Burrett, A K; Ward, H E; Stanfield, A M; Biswas, M; Ankersmit-Udy, A E; Oxley, P E; Barnett, J L; Pearson, J F; van der Does, Y; Macgibbon, A H K; Spelman, R J; Lehnert, K; Snell, R G

    2009-07-01

    beta-Carotene biochemistry is a fundamental process in mammalian biology. Aberrations either through malnutrition or potentially through genetic variation may lead to vitamin A deficiency, which is a substantial public health burden. In addition, understanding the genetic regulation of this process may enable bovine improvement. While many bovine QTL have been reported, few of the causative genes and mutations have been identified. We discovered a QTL for milk beta-carotene and subsequently identified a premature stop codon in bovine beta-carotene oxygenase 2 (BCO2), which also affects serum beta-carotene content. The BCO2 enzyme is thereby identified as a key regulator of beta-carotene metabolism. PMID:19398771

  4. Different X-linked KDM5C mutations in affected male siblings: is maternal reversion error involved?

    PubMed

    Fujita, A; Waga, C; Hachiya, Y; Kurihara, E; Kumada, S; Takeshita, E; Nakagawa, E; Inoue, K; Miyatake, S; Tsurusaki, Y; Nakashima, M; Saitsu, H; Goto, Y-I; Miyake, N; Matsumoto, N

    2016-09-01

    Genetic reversion is the phenomenon of spontaneous gene correction by which gene function is partially or completely rescued. However, it is unknown whether this mechanism always correctly repairs mutations, or is prone to error. We investigated a family of three boys with intellectual disability, and among them we identified two different mutations in KDM5C, located at Xp11.22, using whole-exome sequencing. Two affected boys have c.633delG and the other has c.631delC. We also confirmed de novo germline (c.631delC) and low-prevalence somatic (c.633delG) mutations in their mother. The two mutations are present on the same maternal haplotype, suggesting that a postzygotic somatic mutation or a reversion error occurred at an early embryonic stage in the mother, leading to switched KDM5C mutations in the affected siblings. This event is extremely unlikely to arise spontaneously (with an estimated probability of 0.39-7.5 × 10(-28) ), thus a possible reversion error is proposed here to explain this event. This study provides evidence for reversion error as a novel mechanism for the generation of somatic mutations in human diseases. PMID:26919706

  5. A family with a dystrophin gene mutation specifically affecting dystrophin expression in the heart

    SciTech Connect

    Muntoni, F.; Davies, K.; Dubowitz, V.

    1994-09-01

    We recently described a family with X-linked dilated cardiomyopathy where a large deletion in the muscle promoter region of the dystrophin gene was associated with a severe dilated cardiomyopathy in absence of clinical skeletal muscle involvement. The deletion removed the entire muscle promoter region, the first muscle exon and part of intron 1. The brain and Purkinje cell promoters were not affected by the deletion. Despite the lack of both the muscle promoter and the first muscle exon, dystrophin was detected immunocytochemically in relative high levels in the skeletal muscle of the affected males. We have now found that both the brain and Purkinje cell promoters were transcribed at high levels in the skeletal muscle of these individuals. This phenomenon, that does not occur in normal skeletal muscle, indicates that these two isoforms, physiologically expressed mainly in the central nervous system, can be transcribed and be functionally active in skeletal muscle under specific circumstances. Contrary to what is observed in skeletal muscle, dystrophin was not detected in the heart of one affected male using immunocytochemistry and an entire panel of anti-dystrophin antibodies. This was most likely the cause for the pronounced cardiac fibrosis observed and eventually responsible for the severe cardiac involvement invariably seen in seven affected males. In conclusion, the mutation of the muscle promoter, first muscle exon and part of intron 1 specifically affected expression of dystrophin in the heart. We believe that this deletion removes sequences involved in regulation of dystrophin expression in the heart and are at the moment characterizing other families with X-linked cardiomyopathy secondary to a dystrophinopathy.

  6. Balancing Protein Stability and Activity in Cancer: A New Approach for Identifying Driver Mutations Affecting CBL Ubiquitin Ligase Activation.

    PubMed

    Li, Minghui; Kales, Stephen C; Ma, Ke; Shoemaker, Benjamin A; Crespo-Barreto, Juan; Cangelosi, Andrew L; Lipkowitz, Stanley; Panchenko, Anna R

    2016-02-01

    Oncogenic mutations in the monomeric Casitas B-lineage lymphoma (Cbl) gene have been found in many tumors, but their significance remains largely unknown. Several human c-Cbl (CBL) structures have recently been solved, depicting the protein at different stages of its activation cycle and thus providing mechanistic insight underlying how stability-activity tradeoffs in cancer-related proteins-may influence disease onset and progression. In this study, we computationally modeled the effects of missense cancer mutations on structures representing four stages of the CBL activation cycle to identify driver mutations that affect CBL stability, binding, and activity. We found that recurrent, homozygous, and leukemia-specific mutations had greater destabilizing effects on CBL states than random noncancer mutations. We further tested the ability of these computational models, assessing the changes in CBL stability and its binding to ubiquitin-conjugating enzyme E2, by performing blind CBL-mediated EGFR ubiquitination assays in cells. Experimental CBL ubiquitin ligase activity was in agreement with the predicted changes in CBL stability and, to a lesser extent, with CBL-E2 binding affinity. Two thirds of all experimentally tested mutations affected the ubiquitin ligase activity by either destabilizing CBL or disrupting CBL-E2 binding, whereas about one-third of tested mutations were found to be neutral. Collectively, our findings demonstrate that computational methods incorporating multiple protein conformations and stability and binding affinity evaluations can successfully predict the functional consequences of cancer mutations on protein activity, and provide a proof of concept for mutations in CBL. PMID:26676746

  7. Interaction between Mutations in the Suppressor of Hairy Wing and Modifier of Mdg4 Genes of Drosophila Melanogaster Affecting the Phenotype of Gypsy-Induced Mutations

    PubMed Central

    Georgiev, P.; Kozycina, M.

    1996-01-01

    The suppressor of Hairy-wing [su(Hw)] protein mediates the mutagenic effect of the gypsy retrotransposon by repressing the function of transcriptional enhancers located distally from the promoter with respect to the position of the su(Hw)-binding region. Mutations in a second gene, modifier of mdg4, also affect the gypsy-induced phenotype. Two major effects of the mod(mdg4)(1u1) mutation can be distinguished: the interference with insulation by the su(Hw)-binding region and direct inhibition of gene expression that is not dependent on the su(Hw)-binding region position. The mod(mdg4)(1u1) mutation partially suppresses ct(6), sc(D1) and Hw(1) mutations, possibly by interfering with the insulation effect of the su(Hw)-binding region. An example of the second effect of mod(mdg4)(1u1) is a complete inactivation of yellow expression in combination with the y(2) allele. Phenotypic analyses of flies with combinations of mod(mdg4)(1u1) and different su(Hw) mutations, or with constructions carrying deletions of the acidic domains of the su(Hw) protein, suggest that the carboxy-terminal acidic domain is important for direct inhibition of yellow transcription in bristles, while the amino-terminal acidic domain is more essential for insulation. PMID:8852842

  8. ColE1 plasmid incompatibility: localization and analysis of mutations affecting incompatibility.

    PubMed Central

    Hashimoto-Gotoh, T; Inselburg, J

    1979-01-01

    Deletion mutants of plasmid ColE1 that involve the replication origin and adjacent regions of the plasmid have been studied to determine the mechanism by which those mutations affect the expression of plasmid incompatibility. It was observed that (i) a region of ColE1 that is involved in the expression of plasmid incompatibility lies between base pairs -185 and -684; (ii) the integrity of at least part of the region of ColE1 DNA between base pairs -185 and -572 is essential for the expression of ColE1 incompatibility; (iii) the expression of incompatibility is independent of the ability of the ColE1 genome to replicate autonomously; (iv) plasmid incompatibility is affected by plasmid copy number; and (v) ColE1 plasmid-mediated DNA replication of the lambda phage-ColE1 chimera lambda imm434 Oam29 Pam3 ColE1 is inhibited by ColE1-incompatible but not by ColE1-compatible plasmids. Images PMID:378980

  9. Arbuscular mycorrhizal symbiosis-mediated tomato tolerance to drought.

    PubMed

    Chitarra, Walter; Maserti, Biancaelena; Gambino, Giorgio; Guerrieri, Emilio; Balestrini, Raffaella

    2016-07-01

    A multidisciplinary approach, involving eco-physiological, morphometric, biochemical and molecular analyses, has been used to study the impact of two different AM fungi, i.e. Funneliformis mosseae and Rhizophagus intraradices, on tomato response to water stress. Overall, results show that AM symbiosis positively affects the tolerance to drought in tomato with a different plant response depending on the involved AM fungal species. PMID:27359066

  10. Mutations affecting the SAND domain of DEAF1 cause intellectual disability with severe speech impairment and behavioral problems.

    PubMed

    Vulto-van Silfhout, Anneke T; Rajamanickam, Shivakumar; Jensik, Philip J; Vergult, Sarah; de Rocker, Nina; Newhall, Kathryn J; Raghavan, Ramya; Reardon, Sara N; Jarrett, Kelsey; McIntyre, Tara; Bulinski, Joseph; Ownby, Stacy L; Huggenvik, Jodi I; McKnight, G Stanley; Rose, Gregory M; Cai, Xiang; Willaert, Andy; Zweier, Christiane; Endele, Sabine; de Ligt, Joep; van Bon, Bregje W M; Lugtenberg, Dorien; de Vries, Petra F; Veltman, Joris A; van Bokhoven, Hans; Brunner, Han G; Rauch, Anita; de Brouwer, Arjan P M; Carvill, Gemma L; Hoischen, Alexander; Mefford, Heather C; Eichler, Evan E; Vissers, Lisenka E L M; Menten, Björn; Collard, Michael W; de Vries, Bert B A

    2014-05-01

    Recently, we identified in two individuals with intellectual disability (ID) different de novo mutations in DEAF1, which encodes a transcription factor with an important role in embryonic development. To ascertain whether these mutations in DEAF1 are causative for the ID phenotype, we performed targeted resequencing of DEAF1 in an additional cohort of over 2,300 individuals with unexplained ID and identified two additional individuals with de novo mutations in this gene. All four individuals had severe ID with severely affected speech development, and three showed severe behavioral problems. DEAF1 is highly expressed in the CNS, especially during early embryonic development. All four mutations were missense mutations affecting the SAND domain of DEAF1. Altered DEAF1 harboring any of the four amino acid changes showed impaired transcriptional regulation of the DEAF1 promoter. Moreover, behavioral studies in mice with a conditional knockout of Deaf1 in the brain showed memory deficits and increased anxiety-like behavior. Our results demonstrate that mutations in DEAF1 cause ID and behavioral problems, most likely as a result of impaired transcriptional regulation by DEAF1. PMID:24726472

  11. Cell Biology of Cnidarian-Dinoflagellate Symbiosis

    PubMed Central

    Allemand, Denis; Weis, Virginia M.

    2012-01-01

    Summary: The symbiosis between cnidarians (e.g., corals or sea anemones) and intracellular dinoflagellate algae of the genus Symbiodinium is of immense ecological importance. In particular, this symbiosis promotes the growth and survival of reef corals in nutrient-poor tropical waters; indeed, coral reefs could not exist without this symbiosis. However, our fundamental understanding of the cnidarian-dinoflagellate symbiosis and of its links to coral calcification remains poor. Here we review what we currently know about the cell biology of cnidarian-dinoflagellate symbiosis. In doing so, we aim to refocus attention on fundamental cellular aspects that have been somewhat neglected since the early to mid-1980s, when a more ecological approach began to dominate. We review the four major processes that we believe underlie the various phases of establishment and persistence in the cnidarian/coral-dinoflagellate symbiosis: (i) recognition and phagocytosis, (ii) regulation of host-symbiont biomass, (iii) metabolic exchange and nutrient trafficking, and (iv) calcification. Where appropriate, we draw upon examples from a range of cnidarian-alga symbioses, including the symbiosis between green Hydra and its intracellular chlorophyte symbiont, which has considerable potential to inform our understanding of the cnidarian-dinoflagellate symbiosis. Ultimately, we provide a comprehensive overview of the history of the field, its current status, and where it should be going in the future. PMID:22688813

  12. TERT promoter mutations in bladder cancer affect patient survival and disease recurrence through modification by a common polymorphism.

    PubMed

    Rachakonda, P Sivaramakrishna; Hosen, Ismail; de Verdier, Petra J; Fallah, Mahdi; Heidenreich, Barbara; Ryk, Charlotta; Wiklund, N Peter; Steineck, Gunnar; Schadendorf, Dirk; Hemminki, Kari; Kumar, Rajiv

    2013-10-22

    The telomerase reverse transcriptase (TERT) promoter, an important element of telomerase expression, has emerged as a target of cancer-specific mutations. Originally described in melanoma, the mutations in TERT promoter have been shown to be common in certain other tumor types that include glioblastoma, hepatocellular carcinoma, and bladder cancer. To fully define the occurrence and effect of the TERT promoter mutations, we investigated tumors from a well-characterized series of 327 patients with urothelial cell carcinoma of bladder. The somatic mutations, mainly at positions -124 and -146 bp from ATG start site that create binding motifs for E-twenty six/ternary complex factors (Ets/TCF), affected 65.4% of the tumors, with even distribution across different stages and grades. Our data showed that a common polymorphism rs2853669, within a preexisting Ets2 binding site in the TERT promoter, acts as a modifier of the effect of the mutations on survival and tumor recurrence. The patients with the mutations showed poor survival in the absence [hazard ratio (HR) 2.19, 95% confidence interval (CI) 1.02-4.70] but not in the presence (HR 0.42, 95% CI 0.18-1.01) of the variant allele of the polymorphism. The mutations in the absence of the variant allele were highly associated with the disease recurrence in patients with Tis, Ta, and T1 tumors (HR 1.85, 95% CI 1.11-3.08). The TERT promoter mutations are the most common somatic lesions in bladder cancer with clinical implications. The association of the mutations with patient survival and disease recurrence, subject to modification by a common polymorphism, can be a unique putative marker with individualized prognostic potential. PMID:24101484

  13. A novel reef coral symbiosis

    NASA Astrophysics Data System (ADS)

    Pantos, O.; Bythell, J. C.

    2010-09-01

    Reef building corals form close associations with unicellular microalgae, fungi, bacteria and archaea, some of which are symbiotic and which together form the coral holobiont. Associations with multicellular eukaryotes such as polychaete worms, bivalves and sponges are not generally considered to be symbiotic as the host responds to their presence by forming physical barriers with an active growth edge in the exoskeleton isolating the invader and, at a subcellular level, activating innate immune responses such as melanin deposition. This study describes a novel symbiosis between a newly described hydrozoan ( Zanclea margaritae sp. nov.) and the reef building coral Acropora muricata (= A. formosa), with the hydrozoan hydrorhiza ramifying throughout the coral tissues with no evidence of isolation or activation of the immune systems of the host. The hydrorhiza lacks a perisarc, which is typical of symbiotic species of this and related genera, including species that associate with other cnidarians such as octocorals. The symbiosis was observed at all sites investigated from two distant locations on the Great Barrier Reef, Australia, and appears to be host species specific, being found only in A. muricata and in none of 30 other species investigated at these sites. Not all colonies of A. muricata host the hydrozoans and both the prevalence within the coral population (mean = 66%) and density of emergent hydrozoan hydranths on the surface of the coral (mean = 4.3 cm-2, but up to 52 cm-2) vary between sites. The form of the symbiosis in terms of the mutualism-parasitism continuum is not known, although the hydrozoan possesses large stenotele nematocysts, which may be important for defence from predators and protozoan pathogens. This finding expands the known A. muricata holobiont and the association must be taken into account in future when determining the corals’ abilities to defend against predators and withstand stress.

  14. The localization of FGFR3 mutations causing thanatophoric dysplasia type I differentially affects phosphorylation, processing and ubiquitylation of the receptor.

    PubMed

    Bonaventure, Jacky; Gibbs, Linda; Horne, William C; Baron, Roland

    2007-06-01

    Recurrent missense fibroblast growth factor receptor 3 (FGFR3) mutations have been ascribed to skeletal dysplasias of variable severity including the lethal neonatal thanatophoric dysplasia types I (TDI) and II (TDII). To elucidate the role of activating mutations causing TDI on receptor trafficking and endocytosis, a series of four mutants located in different domains of the receptor were generated and transiently expressed. The putatively elongated X807R receptor was identified as three isoforms. The fully glycosylated mature isoform was constitutively but mildly phosphorylated. Similarly, mutations affecting the extracellular domain (R248C and Y373C) induced moderate constitutive receptor phosphorylation. By contrast, the K650M mutation affecting the tyrosine kinase 2 (TK2) domain produced heavy phosphorylation of the nonglycosylated and mannose-rich isoforms that impaired receptor trafficking through the Golgi network. This resulted in defective expression of the mature isoform at the cell surface. Normal processing was rescued by tyrosine kinase inhibitor treatment. Internalization of the R248C and Y373C mutant receptors, which form stable disulfide-bonded dimers at the cell surface was less efficient than the wild-type, whereas ubiquitylation was markedly increased but apparently independent of the E3 ubiquitin-ligase casitas B-lineage lymphoma (c-Cbl). Constitutive phosphorylation of c-Cbl by the K650M mutant appeared to be related to the intracellular retention of the receptor. Therefore, although mutation K650M affecting the TK2 domain induces defective targeting of the overphosphorylated receptor, a different mechanism characterized by receptor retention at the plasma membrane, excessive ubiquitylation and reduced degradation results from mutations that affect the extracellular domain and the stop codon. PMID:17509076

  15. Mutations Affecting Sexual Conjugation and Related Processes in SACCHAROMYCES CEREVISIAE. II. Genetic Analysis of Nonmating Mutants

    PubMed Central

    Mackay, Vivian; Manney, Thomas R.

    1974-01-01

    Rare diploids formed by sterile mutants have been studied by tetrad analysis. Sixteen classes of mutants representing at least five distinct genetic loci have been defined. One group of mutations, isolated only in α, maps at the mating-type locus, while none of the others shows any linkage to mating type. Some of the mutations are nonspecific for mating type, while others act only on a or α. In addition, mutations were found that prevent sporulation when heterozygous in diploids. These appear to be mutations of the mating-type alleles. PMID:4595644

  16. A mutation in the C31 subunit of Saccharomyces cerevisiae RNA polymerase III affects transcription initiation.

    PubMed Central

    Thuillier, V; Stettler, S; Sentenac, A; Thuriaux, P; Werner, M

    1995-01-01

    The C31 subunit belongs to a complex of three subunits (C31, C34 and C82) specific to RNA polymerase (pol) III that have no counterparts in other RNA polymerases. This complex is thought to play a role in transcription initiation since it interacts with the general initiation factor TFIIIB via subunit C34. We have obtained a conditional mutation of pol III by partially deleting the acidic C-terminus of the C31 subunit. A Saccharomyces cerevisiae strain carrying this truncated C31 subunit is impaired in in vivo transcription of tRNAs and failed to grow at 37 degrees C. This conditional growth phenotype was suppressed by overexpression of the gene coding for the largest subunit of pol III (C160), suggesting an interaction between C160 and C31. The mutant pol III enzyme transcribed non-specific templates at wild-type rates in vitro, but was impaired in its capacity to transcribe tRNA genes in the presence of general initiation factors. Transcription initiation, but not termination or recycling of the enzyme, was affected in the mutant, suggesting that it could be altered on interaction with initiation factors or on the formation of the open complex. Interestingly, the C-terminal deletion was also suppressed by a high gene dosage of the DED1 gene encoding a putative helicase. Images PMID:7835345

  17. Genetics of mutations affecting the development of a barley floral bract.

    PubMed Central

    Pozzi, C; Faccioli, P; Terzi, V; Stanca, A M; Cerioli, S; Castiglioni, P; Fink, R; Capone, R; Müller, K J; Bossinger, G; Rohde, W; Salamini, F

    2000-01-01

    Two groups of mutants that affect the morphology of the lemma, a floral bract of barley, are described. The first comprises phenotypes associated with mutant alleles of calcaroides loci. On the lemma of these mutants, a well-organized neomorphic structure is formed, termed the sac. We provide a morphological description of wild-type (WT) and mutant lemmas, based on scanning electron microscopy (SEM), showing that both consist of similar tissues, but that the mutant is characterized by reversed growth polarity. The sac is a unique structure among grasses, and it is remarkable that recessive mutations at five different genetic loci lead to the same organ. The second group of mutants carry recessive alleles of two leafy lemma genes, both of which are necessary to cause the transformation of the lemma into a structure having all characteristics of a vegetative leaf, as shown by SEM analysis. The presence of sheath, blade, and ligule in the mutant lemma suggests that wild-type lemma development is interrupted at a leaf-like stage. The genes cal a, b, C, d, 23, lel1, and lel2 have now been mapped at precise positions on linkage groups 2, 7, 7, 3, 7, 5, and 7, respectively. The mutants considered in this article are unaffected in other floral organs. A model for lemma development is suggested. PMID:10757774

  18. Mutations in the CRE pocket of bacterial RNA polymerase affect multiple steps of transcription

    PubMed Central

    Petushkov, Ivan; Pupov, Danil; Bass, Irina; Kulbachinskiy, Andrey

    2015-01-01

    During transcription, the catalytic core of RNA polymerase (RNAP) must interact with the DNA template with low-sequence specificity to ensure efficient enzyme translocation and RNA extension. Unexpectedly, recent structural studies of bacterial promoter complexes revealed specific interactions between the nontemplate DNA strand at the downstream edge of the transcription bubble (CRE, core recognition element) and a protein pocket formed by core RNAP (CRE pocket). We investigated the roles of these interactions in transcription by analyzing point amino acid substitutions and deletions in Escherichia coli RNAP. The mutations affected multiple steps of transcription, including promoter recognition, RNA elongation and termination. In particular, we showed that interactions of the CRE pocket with a nontemplate guanine immediately downstream of the active center stimulate RNA-hairpin-dependent transcription pausing but not other types of pausing. Thus, conformational changes of the elongation complex induced by nascent RNA can modulate CRE effects on transcription. The results highlight the roles of specific core RNAP–DNA interactions at different steps of RNA synthesis and suggest their importance for transcription regulation in various organisms. PMID:25990734

  19. P-Element Insertion Alleles of Essential Genes on the Third Chromosome of Drosophila Melanogaster: Mutations Affecting Embryonic Pns Development

    PubMed Central

    Salzberg, A.; Prokopenko, S. N.; He, Y.; Tsai, P.; Pal, M.; Maroy, P.; Glover, D. M.; Deak, P.; Bellen, H. J.

    1997-01-01

    To identify novel genes and to isolate tagged mutations in known genes that are required for the development of the peripheral nervous system (PNS), we have screened a novel collection of 2460 strains carrying lethal or semilethal P-element insertions on the third chromosome. Monoclonal antibody 22C10 was used as a marker to visualize the embryonic PNS. We identified 109 mutant strains that exhibited reproducible phenotypes in the PNS. Cytological and genetic analyses of these strains indicated that 87 mutations affect previously identified genes: tramtrack (n = 18 alleles), string (n = 15), cyclin A (n = 13), single-minded (n = 13), Delta (n = 9), neuralized (n = 4), pointed (n = 4), extra macrochaetae (n = 4), prospero (n = 3), tartan (n = 2), and pebble (n = 2). In addition, 13 mutations affect genes that we identified recently in a chemical mutagenesis screen designed to isolate similar mutants: hearty (n = 3), dorsotonals (n = 2), pavarotti (n = 2), sanpodo (n = 2), dalmatian (n = 1), missensed (n = 1), senseless (n = 1), and sticky ch1 (n = 1). The remaining nine mutations define seven novel complementation groups. The data presented here demonstrate that this collection of P elements will be useful for the identification and cloning of novel genes on the third chromosome, since >70% of mutations identified in the screen are caused by the insertion of a P element. A comparison between this screen and a chemical mutagenesis screen undertaken earlier highlights the complementarity of the two types of genetic screens. PMID:9409832

  20. Genetic and biochemical characterization of mutations affecting the ability of the yeast Pachysolen tannophilus to metabolize D-xylose

    SciTech Connect

    James, A.P.; Zahab, D.M.; Mahmourides, G.; Maleszka, R.; Schneider, H. )

    1989-11-01

    Induced mutants, selected for their defective growth on D-xylose while retaining the ability to grow normally on D-glucose, were studied in Pachysolen tannophilus, a yeast capable of converting D-xylose to ethanol. Fourteen of the mutations were found to occur at nine distinct loci, and data indicated that many more loci remain to be detected. Most of the mutations were pleiotropic in character, and the expression of some of them was much affected by nutritional conditions and by genetic background. Mutations at several loci resulted in poor growth on at least one compound that was either an intermediate of the tricarboxylic acid cycle, succinate or {alpha}-ketoglutarate, or on compounds metabolizable via this cycle, ethanol or glycerol. An initial biochemical characterization of the mutants was undertaken. Analysis for xylose reductase, xylitol dehydrogenase, and xylulose kinase activity showed that one or more of these activities was affected in 12 of 13 mutants. However, drastic reduction in activity of a single enzyme was confined to that of xylitol dehydrogenase by mutations at three different loci and to that of D-xylose reductase by mutation at another locus. Growth of these latter four mutants was normal on all carbon sources tested that were not five-carbon sugars.

  1. Mycetocyte symbiosis in insects.

    PubMed

    Douglas, A E

    1989-11-01

    partners. However, some methods to obtain aposymbiotic insects (e.g. antibiotics and lysozyme) deleteriously affect certain insects and aposymbionts may differ from the symbiont-containing stocks from which they were derived. 7. The mycetocyte symbionts have been proposed to synthesize various nutrients required by the insect. The symbionts of beetles and haematophagous insects may provide B vitamins and those in cockroaches and the Homoptera essential amino acids. The role of symbionts in the sterol nutrition of insects is equivocal. 8. Mycetocyte symbionts may have evolved from gut symbionts or guest microorganisms. The association is monophyletic in cockroaches but polyphyletic in many groups, including the sucking lice, beetles and scale insects.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:2696562

  2. Biallelic mutations in huntington disease: A new case with just one affected parent, review of the literature and terminology.

    PubMed

    Uhlmann, Wendy R; Peñaherrera, Maria S; Robinson, Wendy P; Milunsky, Jeff M; Nicholson, Jane M; Albin, Roger L

    2015-05-01

    Patients with biallelic mutations for Huntington disease (HD) are rare. We present a 46-year-old female with two expanded Huntingtin (HTT) alleles with just one known affected parent. This is the first reported patient with molecular studies performed to exclude HTT uniparental disomy (UPD). The proband had biparental inheritance of HTT alleles (42/44 CAG repeats). Given the negative UPD results, the proband's unaffected mother either had a reduced penetrance allele that expanded into the full mutation range during transmission to our patient or an unknown full HTT mutation and died before symptom onset, unlikely given no family history of HD and asymptomatic at age 59. We made the novel observation in our literature review that most patients with biallelic HD did not have two full HTT mutations. Most had one HTT allele that was in the intermediate or reduced penetrance ranges or 40 CAG repeats, the lowest limit of the full mutation range. Although the number of patients is small, when an allele in these size ranges was present, generally the age of HD onset was in the 50s. If the second HTT allele had >45 repeats, then onset was typically 20s-30s. While similar ages of onset have been reported for patients with one or two HTT mutations, patients with biallelic mutations may have later onset if an expanded HTT allele has ≤40 CAG repeats. Finally, we propose that "biallelic mutations" or "compound heterozygosity" are more accurate descriptive terms than "homozygosity" when there are two non-identical expanded HTT alleles. PMID:25736541

  3. Replication Mode and Landscape Topology Differentially Affect RNA Virus Mutational Load and Robustness▿

    PubMed Central

    Sardanyés, Josep; Solé, Ricard V.; Elena, Santiago F.

    2009-01-01

    Regardless of genome polarity, intermediaries of complementary sense must be synthesized and used as templates for the production of new genomic strands. Depending on whether these new genomic strands become themselves templates for producing extra antigenomic ones, thus giving rise to geometric growth, or only the firstly synthesized antigenomic strands can be used to this end, thus following Luria's stamping machine model, the abundances and distributions of mutant genomes will be different. Here we propose mathematical and bit string models that allow distinguishing between stamping machine and geometric replication. We have observed that, regardless the topology of the fitness landscape, the critical mutation rate at which the master sequence disappears increases as the mechanism of replication switches from purely geometric to stamping machine. We also found that, for a wide range of mutation rates, large-effect mutations do not accumulate regardless the scheme of replication. However, mild mutations accumulate more in the geometric model. Furthermore, at high mutation rates, geometric growth leads to a population collapse for intermediate values of mutational effects at which the stamping machine still produces master genomes. We observed that the critical mutation rate was weakly dependent on the strength of antagonistic epistasis but strongly dependent on synergistic epistasis. In conclusion, we have shown that RNA viruses may increase their robustness against the accumulation of deleterious mutations by replicating as stamping machines and that the magnitude of this benefit depends on the topology of the fitness landscape assumed. PMID:19776117

  4. A deleterious RNF43 germline mutation in a severely affected serrated polyposis kindred

    PubMed Central

    Taupin, Douglas; Lam, Wesley; Rangiah, David; McCallum, Larissa; Whittle, Belinda; Zhang, Yafei; Andrews, Daniel; Field, Matthew; Goodnow, Christopher C; Cook, Matthew C

    2015-01-01

    We report a germline nonsense mutation within the extracellular domain of the RING finger ubiquitin ligase RNF43, segregating with a severe form of serrated polyposis within a kindred. The finding provides evidence that inherited RNF43 mutations define a familial cancer syndrome. PMID:27081527

  5. Mutations affecting both the rearranged and the unrearranged PML alleles in refractory acute promyelocytic leukaemia.

    PubMed

    Iaccarino, Licia; Ottone, Tiziana; Divona, Mariadomenica; Cicconi, Laura; Cairoli, Roberto; Voso, Maria Teresa; Lo-Coco, Francesco

    2016-03-01

    Acute promyelocytic leukaemia (APL) is characterized by the PML/RARA fusion transcript. PML and RARA mutations have been shown to directly respond to arsenic trioxide (ATO) and all-trans retinoic (ATRA). We analysed the prevalence of PML mutations in 32 patients with de novo or therapy-related APL (t-APL; n = 5), treated with ATO. We identified one ATO-resistant t-APL patient, who presented a PML A216T mutation in both the rearranged and unrearranged PML alleles, and two mutations in the rearranged RARA gene. In this patient, subclones with different PML and RARA mutations acquired clonal dominance during the disease course, probably leading to treatment resistance. PMID:26728337

  6. Biallelic nonsense mutations in the otogelin-like gene (OTOGL) in a child affected by mild to moderate hearing impairment.

    PubMed

    Bonnet, C; Louha, M; Loundon, N; Michalski, N; Verpy, E; Smagghe, L; Hardelin, J-P; Rouillon, I; Jonard, L; Couderc, R; Gherbi, S; Garabedian, E N; Denoyelle, F; Petit, C; Marlin, S

    2013-09-25

    Hearing impairment is characterized by great genetic heterogeneity. We report the identification, by whole exome sequencing, of two different nonsense mutations (c.1558C>T; p.Gln520 and c.2773C>T; p.Arg925) in the otogelin-like gene (OTOGL), in a child affected by mild to moderate isolated deafness. Parental genotypes allowed us to conclude that these mutations are present in the compound heterozygous state in the patient. In addition, our clinical data establish that the tectorial membrane and/or the outer hair cells are defective in this form of deafness. PMID:23850727

  7. Identification of Novel Mutations in HEXA Gene in Children Affected with Tay Sachs Disease from India

    PubMed Central

    Sheth, Frenny; Sanghavi, Daksha; Kondurkar, Pratima; Patil, Swapnil; Idicula-Thomas, Susan; Gupta, Sarita; Sheth, Jayesh

    2012-01-01

    Tay Sachs disease (TSD) is a neurodegenerative disorder due to β-hexosaminidase A deficiency caused by mutations in the HEXA gene. The mutations leading to Tay Sachs disease in India are yet unknown. We aimed to determine mutations leading to TSD in India by complete sequencing of the HEXA gene. The clinical inclusion criteria included neuroregression, seizures, exaggerated startle reflex, macrocephaly, cherry red spot on fundus examination and spasticity. Neuroimaging criteria included thalamic hyperdensities on CT scan/T1W images of MRI of the brain. Biochemical criteria included deficiency of hexosaminidase A (less than 2% of total hexosaminidase activity for infantile patients). Total leukocyte hexosaminidase activity was assayed by 4-methylumbelliferyl-N-acetyl-β-D-glucosamine lysis and hexosaminidase A activity was assayed by heat inactivation method and 4-methylumbelliferyl-N-acetyl-β-D-glucosamine-6-sulphate lysis method. The exons and exon-intron boundaries of the HEXA gene were bidirectionally sequenced using an automated sequencer. Mutations were confirmed in parents and looked up in public databases. In silico analysis for mutations was carried out using SIFT, Polyphen2, MutationT@ster and Accelrys Discovery Studio softwares. Fifteen families were included in the study. We identified six novel missense mutations, c.340 G>A (p.E114K), c.964 G>A (p.D322N), c.964 G>T (p.D322Y), c.1178C>G (p.R393P) and c.1385A>T (p.E462V), c.1432 G>A (p.G478R) and two previously reported mutations. c.1277_1278insTATC and c.508C>T (p.R170W). The mutation p.E462V was found in six unrelated families from Gujarat indicating a founder effect. A previously known splice site mutation c.805+1 G>C and another intronic mutation c.672+30 T>G of unknown significance were also identified. Mutations could not be identified in one family. We conclude that TSD patients from Gujarat should be screened for the common mutation p.E462V. PMID:22723944

  8. Identification of novel mutations in HEXA gene in children affected with Tay Sachs disease from India.

    PubMed

    Mistri, Mehul; Tamhankar, Parag M; Sheth, Frenny; Sanghavi, Daksha; Kondurkar, Pratima; Patil, Swapnil; Idicula-Thomas, Susan; Gupta, Sarita; Sheth, Jayesh

    2012-01-01

    Tay Sachs disease (TSD) is a neurodegenerative disorder due to β-hexosaminidase A deficiency caused by mutations in the HEXA gene. The mutations leading to Tay Sachs disease in India are yet unknown. We aimed to determine mutations leading to TSD in India by complete sequencing of the HEXA gene. The clinical inclusion criteria included neuroregression, seizures, exaggerated startle reflex, macrocephaly, cherry red spot on fundus examination and spasticity. Neuroimaging criteria included thalamic hyperdensities on CT scan/T1W images of MRI of the brain. Biochemical criteria included deficiency of hexosaminidase A (less than 2% of total hexosaminidase activity for infantile patients). Total leukocyte hexosaminidase activity was assayed by 4-methylumbelliferyl-N-acetyl-β-D-glucosamine lysis and hexosaminidase A activity was assayed by heat inactivation method and 4-methylumbelliferyl-N-acetyl-β-D-glucosamine-6-sulphate lysis method. The exons and exon-intron boundaries of the HEXA gene were bidirectionally sequenced using an automated sequencer. Mutations were confirmed in parents and looked up in public databases. In silico analysis for mutations was carried out using SIFT, Polyphen2, MutationT@ster and Accelrys Discovery Studio softwares. Fifteen families were included in the study. We identified six novel missense mutations, c.340 G>A (p.E114K), c.964 G>A (p.D322N), c.964 G>T (p.D322Y), c.1178C>G (p.R393P) and c.1385A>T (p.E462V), c.1432 G>A (p.G478R) and two previously reported mutations. c.1277_1278insTATC and c.508C>T (p.R170W). The mutation p.E462V was found in six unrelated families from Gujarat indicating a founder effect. A previously known splice site mutation c.805+1 G>C and another intronic mutation c.672+30 T>G of unknown significance were also identified. Mutations could not be identified in one family. We conclude that TSD patients from Gujarat should be screened for the common mutation p.E462V. PMID:22723944

  9. A mutation, tl2, in pea (Pisum sativum L.) affects leaf development only in the heterozygous state.

    PubMed

    Berdnikov, V A; Gorel, F L

    2005-04-01

    After gamma irradiation of pea seeds, a mutation designated as tendril-less2 (tl2) was induced. In the heterozygous state, it transforms tendrils into very narrow leaflets that resemble the heterozygote phenotype of the classic tl mutation. The tendrils of the double heterozygote tl2/+, tl/+ are converted into oval leaflets. Unlike tl, the novel mutation in the homozygous state does not affect tendrils. The leaf phenotype of homozygotes tl2/tl2 and Tl2/Tl2 do not differ in the tl/+ background. However, the anthocyanin pigmentation is strongly suppressed in petals of tl2/tl2 plants. Some hypotheses to explain the unusual phenotypic manifestation of tl2 are suggested. PMID:15714325

  10. Symbiosis.

    ERIC Educational Resources Information Center

    Bicevskis, Rob

    2002-01-01

    Exposing today's students to a balance of science and the outside world is critical. The outdoors provides a context for practical applications of science, exposing the relevance of science to everyday life. Outdoor education instills an awareness that the health of the environment is directly coupled with our own health, enabling us to make…

  11. Evolution of symbiosis with resource allocation from fecundity to survival

    NASA Astrophysics Data System (ADS)

    Fukui, Shin

    2014-05-01

    Symbiosis is one of the most fundamental relationships between or among organisms and includes parasitism (which has negative effects on the fitness of the interacting partner), commensalism (no effect), and mutualism (positive effects). The effects of these interactions are usually assumed to influence a single component of a species' fitness, either survival or fecundity, even though in reality the interaction can simultaneously affect both of these components. I used a dual lattice model to investigate the process of evolution of mutualistic symbiosis in the presence of interactive effects on both survival and fecundity. I demonstrate that a positive effect on survival and a negative effect on fecundity are key to the establishment of mutualism. Furthermore, both the parasitic and the mutualistic behaviour must carry large costs for mutualism to evolve. This helps develop a new understanding of symbiosis as a function of resource allocation, in which resources are shifted from fecundity to survival. The simultaneous establishment of mutualism from parasitism never occurs in two species, but can do so in one of the species as long as the partner still behaves parasitically. This suggests that one of the altruistic behaviours in a mutualistic unit consisting of two species must originate as a parasitic behaviour.

  12. Point mutations in the pore region directly or indirectly affect glibenclamide block of the CFTR chloride channel.

    PubMed

    Gupta, Jyoti; Linsdell, Paul

    2002-03-01

    The sulfonylurea glibenclamide is a relatively potent inhibitor of the CFTR Cl(-) channel. This inhibition is thought to be via an open channel block mechanism. However, nothing is known about the physical nature of the glibenclamide-binding site on CFTR. Here we show that mutations in the pore-forming 6th and 12th transmembrane regions of CFTR affect block by intracellular glibenclamide, confirming previous suggestions that glibenclamide enters the pore in order to block the channel. Two mutations in the 6th transmembrane region, F337A and T338A, significantly weakened glibenclamide block, consistent with a direct interaction between glibenclamide and this region of the pore. Interestingly, two mutations in the 12th transmembrane region (N1138A and T1142A) significantly strengthened block. These two mutations also abolished the dependence of block on the extracellular Cl(-) concentration, which in wild-type CFTR suggests an interaction between Cl(-) and glibenclamide within the channel pore that limits block. We suggest that mutations in the 12th transmembrane region strengthen glibenclamide block not by directly altering interactions between glibenclamide and the pore walls, but indirectly by reducing interactions between Cl(-) ions and glibenclamide within the pore. This work demonstrates that glibenclamide binds within the CFTR channel pore and begins to define its intrapore binding site. PMID:11889571

  13. A Novel Inducer of Roseobacter Motility Is Also a Disruptor of Algal Symbiosis

    PubMed Central

    Sule, Preeti

    2013-01-01

    Silicibacter sp. strain TM1040, a member of the Roseobacter clade, forms a symbiosis with unicellular phytoplankton, which is inextricably linked to the biphasic “swim or stick” lifestyle of the bacteria. Mutations in flaC bias the population toward the motile phase. Renewed examination of the FlaC− strain (HG1016) uncovered that it is composed of two different cells: a pigmented type, PS01, and a nonpigmented cell, PS02, each of which has an identical mutation in flaC. While monocultures of PS01 and PS02 had few motile cells (0.6 and 6%, respectively), coculturing the two strains resulted in a 10-fold increase in the number of motile cells. Cell-free supernatants from coculture or wild-type cells were fully capable of restoring motility to PS01 and PS02, which was due to increased fliC3 (flagellin) transcription, FliC3 protein levels per cell, and flagella synthesis. The motility-inducing compound has an estimated mass of 226 Da, as determined by mass spectrometry, and is referred to as Roseobacter Motility Inducer (RMI). Mutations affecting genes involved in phenyl acetic acid synthesis significantly reduced RMI, while defects in tropodithietic acid (TDA) synthesis had marginal or no effect on RMI. RMI biosynthesis is induced by p-coumaric acid, a product of algal lignin degradation. When added to algal cultures, RMI caused loss of motility, cell enlargement, and vacuolization in the algal cells. RMI is a new member of the roseobacticide family of troponoid compounds whose activities affect roseobacters, by shifting their population toward motility, as well as their phytoplankton hosts, through an algicidal effect. PMID:23161030

  14. Mutations in MCT8 in patients with Allan-Herndon-Dudley-syndrome affecting its cellular distribution.

    PubMed

    Kersseboom, Simone; Kremers, Gert-Jan; Friesema, Edith C H; Visser, W Edward; Klootwijk, Wim; Peeters, Robin P; Visser, Theo J

    2013-05-01

    Monocarboxylate transporter 8 (MCT8) is a thyroid hormone (TH)-specific transporter. Mutations in the MCT8 gene are associated with Allan-Herndon-Dudley Syndrome (AHDS), consisting of severe psychomotor retardation and disturbed TH parameters. To study the functional consequences of different MCT8 mutations in detail, we combined functional analysis in different cell types with live-cell imaging of the cellular distribution of seven mutations that we identified in patients with AHDS. We used two cell models to study the mutations in vitro: 1) transiently transfected COS1 and JEG3 cells, and 2) stably transfected Flp-in 293 cells expressing a MCT8-cyan fluorescent protein construct. All seven mutants were expressed at the protein level and showed a defect in T3 and T4 transport in uptake and metabolism studies. Three mutants (G282C, P537L, and G558D) had residual uptake activity in Flp-in 293 and COS1 cells, but not in JEG3 cells. Four mutants (G221R, P321L, D453V, P537L) were expressed at the plasma membrane. The mobility in the plasma membrane of P537L was similar to WT, but the mobility of P321L was altered. The other mutants studied (insV236, G282C, G558D) were predominantly localized in the endoplasmic reticulum. In essence, loss of function by MCT8 mutations can be divided in two groups: mutations that result in partial or complete loss of transport activity (G221R, P321L, D453V, P537L) and mutations that mainly disturb protein expression and trafficking (insV236, G282C, G558D). The cell type-dependent results suggest that MCT8 mutations in AHDS patients may have tissue-specific effects on TH transport probably caused by tissue-specific expression of yet unknown MCT8-interacting proteins. PMID:23550058

  15. New VMD2 gene mutations identified in patients affected by Best vitelliform macular dystrophy

    PubMed Central

    Marchant, D; Yu, K; Bigot, K; Roche, O; Germain, A; Bonneau, D; Drouin‐Garraud, V; Schorderet, D F; Munier, F; Schmidt, D; Neindre, P Le; Marsac, C; Menasche, M; Dufier, J L; Fischmeister, R; Hartzell, C; Abitbol, M

    2007-01-01

    Purpose The mutations responsible for Best vitelliform macular dystrophy (BVMD) are found in a gene called VMD2. The VMD2 gene encodes a transmembrane protein named bestrophin‐1 (hBest1) which is a Ca2+‐sensitive chloride channel. This study was performed to identify disease‐specific mutations in 27 patients with BVMD. Because this disease is characterised by an alteration in Cl− channel function, patch clamp analysis was used to test the hypothesis that one of the VMD2 mutated variants causes the disease. Methods Direct sequencing analysis of the 11 VMD2 exons was performed to detect new abnormal sequences. The mutant of hBest1 was expressed in HEK‐293 cells and the associated Cl− current was examined using whole‐cell patch clamp analysis. Results Six new VMD2 mutations were identified, located exclusively in exons four, six and eight. One of these mutations (Q293H) was particularly severe. Patch clamp analysis of human embryonic kidney cells expressing the Q293H mutant showed that this mutant channel is non‐functional. Furthermore, the Q293H mutant inhibited the function of wild‐type bestrophin‐1 channels in a dominant negative manner. Conclusions This study provides further support for the idea that mutations in VMD2 are a necessary factor for Best disease. However, because variable expressivity of VMD2 was observed in a family with the Q293H mutation, it is also clear that a disease‐linked mutation in VMD2 is not sufficient to produce BVMD. The finding that the Q293H mutant does not form functional channels in the membrane could be explained either by disruption of channel conductance or gating mechanisms or by improper trafficking of the protein to the plasma membrane. PMID:17287362

  16. Search for mutations affecting protein structure in children of atomic bomb survivors: preliminary report

    SciTech Connect

    Neel, J.V.; Satoh, C.; Hamilton, H.B.; Otake, M.; Goriki, K.; Kageoka, T.; Fujita, M.; Neriishi, S.; Asakawa J.

    1980-07-01

    A total of 289,868 locus tests, based on 28 different protein phenotypes and using one-dimensional electrophoresis to detect variant proteins, has yielded one probable mutation in the offspring of proximally exposed parents, who received an estimated average gonadal exposure of 31 to 39 rem in the atomic bombings of Hiroshima and Nagasaki. There were no mutations in 208,196 locus tests involving children of distally exposed parents, who had essentially no radiation exposure.

  17. Spectrum of splicing errors caused by CHRNE mutations affecting introns and intron/exon boundaries

    PubMed Central

    Ohno, K; Tsujino, A; Shen, X; Milone, M; Engel, A

    2005-01-01

    Background: Mutations in CHRNE, the gene encoding the muscle nicotinic acetylcholine receptor ε subunit, cause congenital myasthenic syndromes. Only three of the eight intronic splice site mutations of CHRNE reported to date have had their splicing consequences characterised. Methods: We analysed four previously reported and five novel splicing mutations in CHRNE by introducing the entire normal and mutant genomic CHRNEs into COS cells. Results and conclusions: We found that short introns (82–109 nucleotides) favour intron retention, whereas medium to long introns (306–1210 nucleotides) flanking either or both sides of an exon favour exon skipping. Two mutations are of particular interest. Firstly, a G→T substitution at the 3' end of exon 8 predicts an R286M missense mutation, but instead results in skipping of exon 8. In human genes, a mismatch of the last exonic nucleotide to U1 snRNP is frequently compensated by a matching nucleotide at intron position +6. CHRNE intron 8 has a mismatch at position +6, and accordingly fails to compensate for the exonic mutation at position –1. Secondly, a 16 bp duplication, giving rise to two 3' splice sites (g.IVS10-9_c.1167dup16), results in silencing of the downstream 3' splice site. This conforms to the scanning model of recognition of the 3' splice site, which predicts that the first "ag" occurring after the branch point is selected for splicing. PMID:16061559

  18. A novel papillation assay for the identification of genes affecting mutation rate in Pseudomonas putida and other pseudomonads.

    PubMed

    Tagel, Mari; Tavita, Kairi; Hõrak, Rita; Kivisaar, Maia; Ilves, Heili

    2016-08-01

    Formation of microcolonies (papillae) permits easy visual screening of mutational events occurring in single colonies of bacteria. In this study, we have established a novel papillation assay employable in a wide range of pseudomonads including Pseudomonas aeruginosa and Pseudomonas putida for monitoring mutation frequency in distinct colonies. With the aid of this assay, we conducted a genome-wide search for the factors affecting mutation frequency in P. putida. Screening ∼27,000 transposon mutants for increased mutation frequency allowed us to identify 34 repeatedly targeted genes. In addition to genes involved in DNA replication and repair, we identified genes participating in metabolism and transport of secondary metabolites, cell motility, and cell wall synthesis. The highest effect on mutant frequency was observed when truA (tRNA pseudouridine synthase), mpl (UDP-N-acetylmuramate-alanine ligase) or gacS (multi-sensor hybrid histidine kinase) were inactivated. Inactivation of truA elevated the mutant frequency only in growing cells, while the deficiency of gacS affected mainly stationary-phase mutagenesis. Thus, our results demonstrate the feasibility of the assay for isolating mutants with elevated mutagenesis in growing as well as stationary-phase bacteria. PMID:27447898

  19. HERC 1 Ubiquitin Ligase Mutation Affects Neocortical, CA3 Hippocampal and Spinal Cord Projection Neurons: An Ultrastructural Study

    PubMed Central

    Ruiz, Rocío; Pérez-Villegas, Eva María; Bachiller, Sara; Rosa, José Luis; Armengol, José Angel

    2016-01-01

    The spontaneous mutation tambaleante is caused by the Gly483Glu substitution in the highly conserved N terminal RCC1-like domain of the HERC1 protein, which leads to the increase of mutated protein levels responsible for cerebellar Purkinje cell death by autophagy. Until now, Purkinje cells have been the only central nervous neurons reported as being targeted by the mutation, and their degeneration elicits an ataxic syndrome in adult mutant mice. However, the ultrastructural analysis performed here demonstrates that signs of autophagy, such as autophagosomes, lysosomes, and altered mitochondria, are present in neocortical pyramidal, CA3 hippocampal pyramidal, and spinal cord motor neurons. The main difference is that the reduction in the number of neurons affected in the tambaleante mutation in the neocortex, the hippocampus, and the spinal cord is not so evident as the dramatic loss of cerebellar Purkinje cells. Interestingly, signs of autophagy are absent in both interneurons and neuroglia cells. Affected neurons have in common that they are projection neurons which receive strong and varied synaptic inputs, and possess the highest degree of neuronal activity. Therefore, because the integrity of the ubiquitin-proteasome system is essential for protein degradation and hence, for normal protein turnover, it could be hypothesized that the deleterious effects of the misrouting of these pathways would depend directly on the neuronal activity. PMID:27147983

  20. HERC 1 Ubiquitin Ligase Mutation Affects Neocortical, CA3 Hippocampal and Spinal Cord Projection Neurons: An Ultrastructural Study.

    PubMed

    Ruiz, Rocío; Pérez-Villegas, Eva María; Bachiller, Sara; Rosa, José Luis; Armengol, José Angel

    2016-01-01

    The spontaneous mutation tambaleante is caused by the Gly483Glu substitution in the highly conserved N terminal RCC1-like domain of the HERC1 protein, which leads to the increase of mutated protein levels responsible for cerebellar Purkinje cell death by autophagy. Until now, Purkinje cells have been the only central nervous neurons reported as being targeted by the mutation, and their degeneration elicits an ataxic syndrome in adult mutant mice. However, the ultrastructural analysis performed here demonstrates that signs of autophagy, such as autophagosomes, lysosomes, and altered mitochondria, are present in neocortical pyramidal, CA3 hippocampal pyramidal, and spinal cord motor neurons. The main difference is that the reduction in the number of neurons affected in the tambaleante mutation in the neocortex, the hippocampus, and the spinal cord is not so evident as the dramatic loss of cerebellar Purkinje cells. Interestingly, signs of autophagy are absent in both interneurons and neuroglia cells. Affected neurons have in common that they are projection neurons which receive strong and varied synaptic inputs, and possess the highest degree of neuronal activity. Therefore, because the integrity of the ubiquitin-proteasome system is essential for protein degradation and hence, for normal protein turnover, it could be hypothesized that the deleterious effects of the misrouting of these pathways would depend directly on the neuronal activity. PMID:27147983

  1. Novel missense mutation in the GALNS gene in an affected patient with severe form of mucopolysaccharidosis type IVA.

    PubMed

    Seyedhassani, Seyed Mohammad; Hashemi-Gorji, Feyzollah; Yavari, Mahdieh; Mirfakhraie, Reza

    2015-10-23

    Mucopolysaccharidosis type IVA (MPS IVA), also known as Morquio A, is an autosomal recessive disorder characterized by a deficiency of N-acetylgalactosamine-6-sulfate sulfatase (GALNS), which causes major skeletal and connective tissue abnormalities and affects multiple organ systems. In this study, one MPS IVA patient with a severe form from consanguine large Iranian family has been investigated. To find a mutation, all of the 14 exons and intron-exon junctions of GALNS gene were sequenced. Sequencing results were analyzed using bioinformatic analysis in order to predict probable pathogenic effect of the variant. One novel homozygous missense mutation in exon 5, c.542A>G (p.Y181C), was found in the proband. That was predicted as being probably pathogenic by bioinformatics analysis. Segregation and familial study confirmed this pathogenic mutation. In conclusion, we have identified the novel mutation responsible for MPS IVA in an Iranian patient to assist in the diagnosis, genetic counseling and prenatal diagnosis of the affected families. PMID:26276046

  2. C-Nap1 mutation affects centriole cohesion and is associated with a Seckel-like syndrome in cattle

    PubMed Central

    Floriot, Sandrine; Vesque, Christine; Rodriguez, Sabrina; Bourgain-Guglielmetti, Florence; Karaiskou, Anthi; Gautier, Mathieu; Duchesne, Amandine; Barbey, Sarah; Fritz, Sébastien; Vasilescu, Alexandre; Bertaud, Maud; Moudjou, Mohammed; Halliez, Sophie; Cormier-Daire, Valérie; E.L. Hokayem, Joyce; Nigg, Erich A.; Manciaux, Luc; Guatteo, Raphaël; Cesbron, Nora; Toutirais, Geraldine; Eggen, André; Schneider-Maunoury, Sylvie; Boichard, Didier; Sobczak-Thépot, Joelle; Schibler, Laurent

    2015-01-01

    Caprine-like Generalized Hypoplasia Syndrome (SHGC) is an autosomal-recessive disorder in Montbéliarde cattle. Affected animals present a wide range of clinical features that include the following: delayed development with low birth weight, hind limb muscular hypoplasia, caprine-like thin head and partial coat depigmentation. Here we show that SHGC is caused by a truncating mutation in the CEP250 gene that encodes the centrosomal protein C-Nap1. This mutation results in centrosome splitting, which neither affects centriole ultrastructure and duplication in dividing cells nor centriole function in cilium assembly and mitotic spindle organization. Loss of C-Nap1-mediated centriole cohesion leads to an altered cell migration phenotype. This discovery extends the range of loci that constitute the spectrum of autosomal primary recessive microcephaly (MCPH) and Seckel-like syndromes. PMID:25902731

  3. C-Nap1 mutation affects centriole cohesion and is associated with a Seckel-like syndrome in cattle.

    PubMed

    Floriot, Sandrine; Vesque, Christine; Rodriguez, Sabrina; Bourgain-Guglielmetti, Florence; Karaiskou, Anthi; Gautier, Mathieu; Duchesne, Amandine; Barbey, Sarah; Fritz, Sébastien; Vasilescu, Alexandre; Bertaud, Maud; Moudjou, Mohammed; Halliez, Sophie; Cormier-Daire, Valérie; Hokayem, Joyce E L; Nigg, Erich A; Manciaux, Luc; Guatteo, Raphaël; Cesbron, Nora; Toutirais, Geraldine; Eggen, André; Schneider-Maunoury, Sylvie; Boichard, Didier; Sobczak-Thépot, Joelle; Schibler, Laurent

    2015-01-01

    Caprine-like Generalized Hypoplasia Syndrome (SHGC) is an autosomal-recessive disorder in Montbéliarde cattle. Affected animals present a wide range of clinical features that include the following: delayed development with low birth weight, hind limb muscular hypoplasia, caprine-like thin head and partial coat depigmentation. Here we show that SHGC is caused by a truncating mutation in the CEP250 gene that encodes the centrosomal protein C-Nap1. This mutation results in centrosome splitting, which neither affects centriole ultrastructure and duplication in dividing cells nor centriole function in cilium assembly and mitotic spindle organization. Loss of C-Nap1-mediated centriole cohesion leads to an altered cell migration phenotype. This discovery extends the range of loci that constitute the spectrum of autosomal primary recessive microcephaly (MCPH) and Seckel-like syndromes. PMID:25902731

  4. The ts111 Mutation of Paramecium tetraurelia Affects a Member of the Protein Palmitoylation Family.

    PubMed

    Prajer, Małgorzata; Tarcz, Sebastian

    2015-01-01

    The thermosensitive ts111 mutant of Parameciun tetraurelia carries a recessive mutation which causes cell death after 2-8 divisions at the restrictive temperature of 35 degrees C. Expression at 35 degrees C induces disassembly of the infraciliary lattice (ICL). In this study, we found that the ts111 mutation also results in significant abnormalities in the number and structure of contractile vacuole complexes (CVCs) and in their functioning at the restrictive temperature. In order to characterize the ts111 gene, the complementation cloning was performed by microinjection into the macronucleus of an indexed genomic DNA library. The mutation was complemented by a sequence of 852 bp, which differed from the mutant sequence by a single nucleotide substitution. The deduced protein sequence is 284 amino acids long. It contains a domain referred to as the DHHC domain, associated with 2 trans-membrane helices. The DHHC proteins belong to the Palmitoyl-Acyl Transferases (PATs) protein family, which is implicated in the protein palmitoylation process playing the role in protein addressing. The ts111 mutation induces the amino acid change, localized before the first membrane helix. Transformation of ts111 mutant cells with the TS111-GFP gene fusion showed the expected reparation restoring thermoresistance and also demonstrated a localization of the protein in contractile vacuoles, but not in the ICL. The entire gene silencing in wild type cells at restrictive temperature caused the same effect as the expression of a point mutation in ts111 mutant. The authors propose the following hypotheses: (i) function of CVCs at the restrictive temperature depends in Paramecium on the TS111 protein--a member of the PAT family, and the primary effect of the termosensitive ts111 mutation are morphological abnormalities and dysfunction of CVCs, (ii) disassembly of the ICL is a secondary effect of the ts111 mutation, which results from disturbed regulation of the intracellular concentration

  5. The shiverer mutation affects the persistence of Theiler's virus in the central nervous system.

    PubMed Central

    Bihl, F; Pena-Rossi, C; Guénet, J L; Brahic, M; Bureau, J F

    1997-01-01

    Theiler's virus persists in the white matter of the spinal cord of genetically susceptible mice and causes primary demyelination. The virus persists in macrophages/microglial cells, but also in oligodendrocytes, the myelin-forming cells. Susceptibility/resistance to this chronic infection has been mapped to several loci including one tentatively located in the telomeric region of chromosome 18, close to the myelin basic protein locus (Mbp locus). To determine if the MBP gene influences viral persistence, we inoculated C3H mice bearing the shiverer mutation, a 20-kb deletion in the gene. Whereas control C3H mice were of intermediate susceptibility, C3H mice heterozygous for the mutation were very susceptible, and those homozygous for the mutation were completely resistant. This resistance was not immune mediated. Furthermore, C3H/101H mice homozygous for a point mutation in the gene coding for the proteolipid protein of myelin, the rumpshaker mutation, were resistant. These results strongly support the view that oligodendrocytes are a necessary viral target for the establishment of a persistent infection by Theiler's virus. PMID:9188567

  6. High dietary intake of sodium selenite does not affect gene mutation frequency in rat colon and liver.

    PubMed

    Zeng, Huawei; Uthus, Eric O; Ross, Sharon A; Davis, Cindy D

    2009-10-01

    Our previous studies have shown that selenium (Se) is protective against dimethylhydrazine (DMH)-induced preneoplastic colon cancer lesions, and protection against DNA damage has been hypothesized to be one mechanism for the anticancer effect of Se. The present study was designed to determine whether dietary selenite affects somatic mutation frequency in vivo. We used the Big Blue transgenic model to evaluate the in vivo mutation frequency of the cII gene in rats fed either a Se-deficient (0 microg Se/g diet) or Se-supplemented diet (0.2 or 2 microg Se/g diet; n = 3 rats/diet in experiment 1 and n = 5 rats/group in experiment 2) and injected with DMH (25 mg/kg body weight, i.p.). There were no significant differences in body weight between the Se-deficient and Se-supplemented (0.2 or 2 microg Se/g diet) rats, but the activities of liver glutathione peroxidase and thioredoxin reductase and concentration of liver Se were significantly lower (p < 0.0001) in Se-deficient rats compared to rats supplemented with Se. We found no effect of dietary Se on liver 8-hydroxy-2'-deoxyguanosine. Gene mutation frequency was significantly lower in liver (p < 0.001) than that of colon regardless of dietary Se. However, there were no differences in gene mutation frequency in DNA from colon mucosa or liver from rats fed the Se-deficient diet compared to those fed the Se-supplemented (0.2 or 2 microg Se/g diet) diet. Although gene mutations have been implicated in the etiology of cancer, our data suggest that decreasing gene mutation is not likely a key mechanism through which dietary selenite exerts its anticancer action against DMH-induced preneoplastic colon cancer lesions in a Big Blue transgenic rat model. PMID:19263001

  7. Viable Maternal-Effect Mutations That Affect the Development of the Nematode Caenorhabditis Elegans

    PubMed Central

    Hekimi, S.; Boutis, P.; Lakowski, B.

    1995-01-01

    We carried out a genetic screen for viable maternal-effect mutants to identify genes with a critical function relatively early in development. This type of mutation would not have been identified readily in previous screens for viable mutants and therefore could define previously unidentified genes. We screened 30,000 genomes and identified 41 mutations falling into 24 complementation groups. We genetically mapped these 24 loci; only two of them appear to correspond to previously identified genes. We present a partial phenotypic characterization of the mutants and a quantitative analysis of the degree to which they can be maternally or zygotically rescued. PMID:8601479

  8. Heritable symbiosis: The advantages and perils of an evolutionary rabbit hole

    PubMed Central

    Bennett, Gordon M.; Moran, Nancy A.

    2015-01-01

    Many eukaryotes have obligate associations with microorganisms that are transmitted directly between generations. A model for heritable symbiosis is the association of aphids, a clade of sap-feeding insects, and Buchnera aphidicola, a gammaproteobacterium that colonized an aphid ancestor 150 million years ago and persists in almost all 5,000 aphid species. Symbiont acquisition enables evolutionary and ecological expansion; aphids are one of many insect groups that would not exist without heritable symbiosis. Receiving less attention are potential negative ramifications of symbiotic alliances. In the short run, symbionts impose metabolic costs. Over evolutionary time, hosts evolve dependence beyond the original benefits of the symbiosis. Symbiotic partners enter into an evolutionary spiral that leads to irreversible codependence and associated risks. Host adaptations to symbiosis (e.g., immune-system modification) may impose vulnerabilities. Symbiont genomes also continuously accumulate deleterious mutations, limiting their beneficial contributions and environmental tolerance. Finally, the fitness interests of obligate heritable symbionts are distinct from those of their hosts, leading to selfish tendencies. Thus, genes underlying the host–symbiont interface are predicted to follow a coevolutionary arms race, as observed for genes governing host–pathogen interactions. On the macroevolutionary scale, the rapid evolution of interacting symbiont and host genes is predicted to accelerate host speciation rates by generating genetic incompatibilities. However, degeneration of symbiont genomes may ultimately limit the ecological range of host species, potentially increasing extinction risk. Recent results for the aphid–Buchnera symbiosis and related systems illustrate that, whereas heritable symbiosis can expand ecological range and spur diversification, it also presents potential perils. PMID:25713367

  9. Heritable symbiosis: The advantages and perils of an evolutionary rabbit hole.

    PubMed

    Bennett, Gordon M; Moran, Nancy A

    2015-08-18

    Many eukaryotes have obligate associations with microorganisms that are transmitted directly between generations. A model for heritable symbiosis is the association of aphids, a clade of sap-feeding insects, and Buchnera aphidicola, a gammaproteobacterium that colonized an aphid ancestor 150 million years ago and persists in almost all 5,000 aphid species. Symbiont acquisition enables evolutionary and ecological expansion; aphids are one of many insect groups that would not exist without heritable symbiosis. Receiving less attention are potential negative ramifications of symbiotic alliances. In the short run, symbionts impose metabolic costs. Over evolutionary time, hosts evolve dependence beyond the original benefits of the symbiosis. Symbiotic partners enter into an evolutionary spiral that leads to irreversible codependence and associated risks. Host adaptations to symbiosis (e.g., immune-system modification) may impose vulnerabilities. Symbiont genomes also continuously accumulate deleterious mutations, limiting their beneficial contributions and environmental tolerance. Finally, the fitness interests of obligate heritable symbionts are distinct from those of their hosts, leading to selfish tendencies. Thus, genes underlying the host-symbiont interface are predicted to follow a coevolutionary arms race, as observed for genes governing host-pathogen interactions. On the macroevolutionary scale, the rapid evolution of interacting symbiont and host genes is predicted to accelerate host speciation rates by generating genetic incompatibilities. However, degeneration of symbiont genomes may ultimately limit the ecological range of host species, potentially increasing extinction risk. Recent results for the aphid-Buchnera symbiosis and related systems illustrate that, whereas heritable symbiosis can expand ecological range and spur diversification, it also presents potential perils. PMID:25713367

  10. Hemoglobin LjGlb1-1 is involved in nodulation and regulates the level of nitric oxide in the Lotus japonicus–Mesorhizobium loti symbiosis

    PubMed Central

    Fukudome, Mitsutaka; Calvo-Begueria, Laura; Kado, Tomohiro; Osuki, Ken-ichi; Rubio, Maria Carmen; Murakami, Ei-ichi; Nagata, Maki; Kucho, Ken-ichi; Sandal, Niels; Stougaard, Jens; Becana, Manuel; Uchiumi, Toshiki

    2016-01-01

    Leghemoglobins transport and deliver O2 to the symbiosomes inside legume nodules and are essential for nitrogen fixation. However, the roles of other hemoglobins (Hbs) in the rhizobia–legume symbiosis are unclear. Several Lotus japonicus mutants affecting LjGlb1-1, a non-symbiotic class 1 Hb, have been used to study the function of this protein in symbiosis. Two TILLING alleles with single amino acid substitutions (A102V and E127K) and a LORE1 null allele with a retrotransposon insertion in the 5′-untranslated region (96642) were selected for phenotyping nodulation. Plants of all three mutant lines showed a decrease in long infection threads and nodules, and an increase in incipient infection threads. About 4h after inoculation, the roots of mutant plants exhibited a greater transient accumulation of nitric oxide (NO) than did the wild-type roots; nevertheless, in vitro NO dioxygenase activities of the wild-type, A102V, and E127K proteins were similar, suggesting that the mutated proteins are not fully functional in vivo. The expression of LjGlb1-1, but not of the other class 1 Hb of L. japonicus (LjGlb1-2), was affected during infection of wild-type roots, further supporting a specific role for LjGlb1-1. In conclusion, the LjGlb1-1 mutants reveal that this protein is required during rhizobial infection and regulates NO levels. PMID:27443280

  11. Characterization of novel Brown midrib 6 mutations affecting lignin biosynthesis in sorghum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The presence of lignin reduces the quality of lignocellulosic biomass for forage materials and feedstock for biofuels. In C4 grasses, the brown midrib phenotype has been linked to mutations to genes in the monolignol biosynthesis pathway. For example, the Bmr6 gene in sorghum (Sorghum bicolor) has b...

  12. Mutation Rate and Dominance of Genes Affecting Viability in DROSOPHILA MELANOGASTER

    PubMed Central

    Mukai, Terumi; Chigusa, Sadao I.; Mettler, L. E.; Crow, James F.

    1972-01-01

    Spontaneous mutations were allowed to accumulate in a second chromosome that was transmitted only through heterozygous males for 40 generations. At 10-generation intervals the chromosomes were assayed for homozygous effects of the accumulated mutants. From the regression of homozygous viability on the number of generations of mutant accumulation and from the increase in genetic variance between replicate chromosomes it is possible to estimate the mutation rate and average effect of the individual mutants. Lethal mutations arose at a rate of 0.0060 per chromosome per generation. The mutants having small effects on viability are estimated to arise with a frequency at least 10 times as high as lethals, more likely 20 times as high, and possibly many more times as high if there is a large class of very nearly neutral mutations.—The dominance of such mutants was measured for chromosomes extracted from a natural population. This was determined from the regression of heterozygous viability on that of the sum of the two constituent homozygotes. The average dominance for minor viability genes in an equilibrium population was estimated to be 0.21. This is lower than the value for new mutants, as expected since those with the greatest heterozygous effect are most quickly eliminated from the population. That these mutants have a disproportionately large heterozygous effect on total fitness (as well as on the viability component thereof) is shown by the low ratio of the genetic load in equilibrium homozygotes to that of new mutant homozygotes. PMID:4630587

  13. A mutation affecting carbon catabolite repression suppresses growth defects in pyruvate carboxylase mutants from Saccharomyces cerevisiae.

    PubMed

    Blázquez, M A; Gamo, F J; Gancedo, C

    1995-12-18

    Yeasts with disruptions in the genes PYC1 and PYC2 encoding the isoenzymes of pyruvate carboxylase cannot grow in a glucose-ammonium medium (Stucka et al. (1991) Mol. Gen. Genet. 229, 307-315). We have isolated a dominant mutation, BPC1-1, that allows growth in this medium of yeasts with interrupted PYC1 and PYC2 genes. The BPC1-1 mutation abolishes catabolite repression of a series of genes and allows expression of the enzymes of the glyoxylate cycle during growth in glucose. A functional glyoxylate cycle is necessary for suppression as a disruption of gene ICL1 encoding isocitrate lyase abolished the phenotypic effect of BPC1-1 on growth in glucose-ammonium. Concurrent expression from constitutive promoters of genes ICL1 and MLS1 (encoding malate synthase) also suppressed the growth phenotype of pyc1 pyc2 mutants. The mutation BPC1-1 is either allelic or closely linked to the mutation DGT1-1. PMID:8543050

  14. Vps33b pathogenic mutations preferentially affect VIPAS39/SPE-39-positive endosomes.

    PubMed

    Tornieri, Karine; Zlatic, Stephanie A; Mullin, Ariana P; Werner, Erica; Harrison, Robert; L'hernault, Steven W; Faundez, Victor

    2013-12-20

    Mutations in Vps33 isoforms cause pigment dilution in mice (Vps33a, buff) and Drosophila (car) and the neurogenic arthrogryposis, renal dysfunction and cholestasis syndrome in humans (ARC1, VPS33B). The later disease is also caused by mutations in VIPAS39, (Vps33b interacting protein, apical-basolateral polarity regulator, SPE-39 homolog; ARC2), a protein that interacts with the HOmotypic fusion and Protein Sorting (HOPS) complex, a tether necessary for endosome-lysosome traffic. These syndromes offer insight into fundamental endosome traffic processes unique to metazoans. However, the molecular and cellular mechanisms underlying these mutant phenotypes remain poorly understood. Here we investigate interactions of wild-type and disease-causing mutations in VIPAS39/SPE-39 and Vps33b by yeast two hybrid, immunoprecipitation and quantitative fluorescent microscopy. We find that although few mutations prevent interaction between VIPAS39/SPE-39 and Vps33b, some mutants fragment VIPAS39/SPE-39-positive endosomes, but all mutants alter the subcellular localization of Vps33b to VIPAS39/SPE-39-positive endosomes. Our data suggest that the ARC syndrome may result through impaired VIPAS39/SPE-39 and Vps33b-dependent endosomal maturation or fusion. PMID:23918659

  15. Vps33b pathogenic mutations preferentially affect VIPAS39/SPE-39-positive endosomes

    PubMed Central

    Tornieri, Karine; Zlatic, Stephanie A.; Mullin, Ariana P.; Werner, Erica; Harrison, Robert; L'Hernault, Steven W.; Faundez, Victor

    2013-01-01

    Mutations in Vps33 isoforms cause pigment dilution in mice (Vps33a, buff) and Drosophila (car) and the neurogenic arthrogryposis, renal dysfunction and cholestasis syndrome in humans (ARC1, VPS33B). The later disease is also caused by mutations in VIPAS39, (Vps33b interacting protein, apical-basolateral polarity regulator, SPE-39 homolog; ARC2), a protein that interacts with the HOmotypic fusion and Protein Sorting (HOPS) complex, a tether necessary for endosome–lysosome traffic. These syndromes offer insight into fundamental endosome traffic processes unique to metazoans. However, the molecular and cellular mechanisms underlying these mutant phenotypes remain poorly understood. Here we investigate interactions of wild-type and disease-causing mutations in VIPAS39/SPE-39 and Vps33b by yeast two hybrid, immunoprecipitation and quantitative fluorescent microscopy. We find that although few mutations prevent interaction between VIPAS39/SPE-39 and Vps33b, some mutants fragment VIPAS39/SPE-39-positive endosomes, but all mutants alter the subcellular localization of Vps33b to VIPAS39/SPE-39-positive endosomes. Our data suggest that the ARC syndrome may result through impaired VIPAS39/SPE-39 and Vps33b-dependent endosomal maturation or fusion. PMID:23918659

  16. MVP-Associated Filamin A Mutations Affect FlnA-PTPN12 (PTP-PEST) Interactions

    PubMed Central

    Duval, Damien; Labbé, Pauline; Bureau, Léa; Le Tourneau, Thierry; Norris, Russell A.; Markwald, Roger R.; Levine, Robert; Schott, Jean-Jacques; Mérot, Jean

    2015-01-01

    Although the genetic basis of mitral valve prolapse (MVP) has now been clearly established, the molecular and cellular mechanisms involved in the pathological processes associated to a specific mutation often remain to be determined. The FLNA gene (encoding Filamin A; FlnA) was the first gene associated to non-syndromic X-linked myxomatous valvular dystrophy, but the impacts of the mutations on its function remain un-elucidated. Here, using the first repeats (1–8) of FlnA as a bait in a yeast two-hybrid screen, we identified the tyrosine phosphatase PTPN12 (PTP-PEST) as a specific binding partner of this region of FlnA protein. In addition, using yeast two-hybrid trap assay pull down and co-immunoprecipitation experiments, we showed that the MVP-associated FlnA mutations (G288R, P637Q, H743P) abolished FlnA/PTPN12 interactions. PTPN12 is a key regulator of signaling pathways involved in cell-extracellular matrix (ECM) crosstalk, cellular responses to mechanical stress that involve integrins, focal adhesion transduction pathways, and actin cytoskeleton dynamics. Interestingly, we showed that the FlnA mutations impair the activation status of two PTPN12 substrates, the focal adhesion associated kinase Src, and the RhoA specific activating protein p190RhoGAP. Together, these data point to PTPN12/FlnA interaction and its weakening by FlnA mutations as a mechanism potentially involved in the physiopathology of FlnA-associated MVP. PMID:26594644

  17. Mucopolysaccharidosis type I: Identification and characterization of mutations affecting alpha-L-iduronidase activity.

    PubMed

    Lee-Chen, Guey-Jen; Lin, Shuan-Pei; Chen, I-Shen; Chang, Jui-Hung; Yang, Chyau-Wen; Chin, Yi-Wen

    2002-06-01

    Mucopolysaccharidosis type I (MPS I) is caused by a deficiency of the lysosomal enzyme alpha-L-iduronidase (IDUA). MPS I covers a broad spectrum of clinical severity ranging from severe Hurler syndrome through intermediate Hurler/Scheie syndrome to mild Scheie syndrome. Mutation screening was performed in two unrelated Taiwanese MPS I patients. A Hurler/Scheie patient had A79V (C to T transition in codon 79) in exon 2 and R619G (C to G transversion in codon 619) in exon 14. R619G has been shown to cause disease. Expression of A79V in COS-7 cells showed trace amounts of IDUA activity, demonstrating the deleterious nature of the mutation. A79V mutation did not cause a reduction in IDUA mRNA levels. The reduced level of IDUA protein suggests increased degradation of the mutant enzyme. A Hurler patient had 134del12 (in-frame deletion of codons 16-19 in signal peptide) in exon 1 and Q584X (C to T transition in codon 584) in exon 13. Transfection of COS-7 cells with Q584X did not yield active enzyme. Q584X mutation caused an apparent reduction in the IDUA mRNA level and no IDUA protein was detected. Conversely, 134del12 showed 124.6% of normal activity in transfected cells and a 77-kDa precursor protein was observed on Western blot, suggesting biologic activity of precursor IDUA without posttranslational cleavage. These findings provide further evidence of the molecular heterogeneity in mutations in MPS I. PMID:12189649

  18. Degenerate in vitro genetic selection reveals mutations that diminish alfalfa mosaic virus RNA replication without affecting coat protein binding.

    PubMed

    Rocheleau, Gail; Petrillo, Jessica; Guogas, Laura; Gehrke, Lee

    2004-08-01

    The alfalfa mosaic virus (AMV) RNAs are infectious only in the presence of the viral coat protein; however, the mechanisms describing coat protein's role during replication are disputed. We reasoned that mechanistic details might be revealed by identifying RNA mutations in the 3'-terminal coat protein binding domain that increased or decreased RNA replication without affecting coat protein binding. Degenerate (doped) in vitro genetic selection, based on a pool of randomized 39-mers, was used to select 30 variant RNAs that bound coat protein with high affinity. AUGC sequences that are conserved among AMV and ilarvirus RNAs were among the invariant nucleotides in the selected RNAs. Five representative clones were analyzed in functional assays, revealing diminished viral RNA expression resulting from apparent defects in replication and/or translation. These data identify a set of mutations, including G-U wobble pairs and nucleotide mismatches in the 5' hairpin, which affect viral RNA functions without significant impact on coat protein binding. Because the mutations associated with diminished function were scattered over the 3'-terminal nucleotides, we considered the possibility that RNA conformational changes rather than disruption of a precise motif might limit activity. Native polyacrylamide gel electrophoresis experiments showed that the 3' RNA conformation was indeed altered by nucleotide substitutions. One interpretation of the data is that coat protein binding to the AUGC sequences determines the orientation of the 3' hairpins relative to one another, while local structural features within these hairpins are also critical determinants of functional activity. PMID:15254175

  19. The DMRT3 'Gait keeper' mutation affects performance of Nordic and Standardbred trotters.

    PubMed

    Jäderkvist, K; Andersson, L S; Johansson, A M; Árnason, T; Mikko, S; Eriksson, S; Andersson, L; Lindgren, G

    2014-10-01

    In a previous study it was shown that a nonsense mutation in the DMRT3 gene alters the pattern of locomotion in horses and that this mutation has a strong positive impact on trotting performance of Standardbreds. One aim of this study was to test if racing performance and trotting technique in the Nordic (Coldblood) trotters are also influenced by the DMRT3 genotype. Another aim was to further investigate the effect of the mutation on performance in Standardbreds, by using a within-family analysis and genotype-phenotype correlations in a larger horse material than in the previous study. We genotyped 427 Nordic trotters and 621 Standardbreds for the DMRT3 nonsense mutation and a SNP in strong linkage disequilibrium with it. In Nordic trotters, we show that horses homozygous for the DMRT3 mutation (A) had significantly higher EBV for trotting performance traits than heterozygous (CA) or homozygous wild-type (CC) horses (P = 0.001). Furthermore, AA homozygotes had a higher proportion of victories and top 3 placings than horses heterozygous or homozygous wild-type, when analyzing performance data for the period 3 to 6 yr of age (P = 0.06 and P = 0.05, respectively). Another finding in the Nordic trotters was that the DMRT3 mutation influenced trotting technique (P = 2.1 × 10(-8)). Standardbred horses homozygous AA had significantly higher EBV for all traits than horses with at least 1 wild-type allele (CA and CC; P = 1.6 × 10(-16)). In a within-family analysis of Standardbreds, we found significant differences in several traits (e.g., earnings, P = 0.002; number of entered races, P = 0.004; and fraction of offspring that entered races, P = 0.002) among paternal half-sibs with genotype AA or CA sired by a CA stallion. For most traits, we found significant differences at young ages. For Nordic trotters, most of the results were significant at 3 yr of age but not for the older ages, and for the Standardbreds most of the results for the ages 3 to 5 were significant. For

  20. Mutation at position 791 in Escherichia coli 16S ribosomal RNA affects processes involved in the initiation of protein synthesis.

    PubMed Central

    Tapprich, W E; Goss, D J; Dahlberg, A E

    1989-01-01

    A single base was mutated from guanine to adenine at position 791 in 16S rRNA in the Escherichia coli rrnB operon on the multicopy plasmid pKK3535. The plasmid-coded rRNA was processed and assembled into 30S ribosomal subunits in E. coli and caused a retardation of cell growth. The mutation affected crucial functional roles of the 30S subunit in the initiation of protein synthesis. The affinity of the mutant 30S subunits for 50S subunits was reduced and the association equilibrium constant for initiation factor 3 was decreased by a factor of 10 compared to wild-type 30S subunits. The interrelationship among the region of residue 790 in 16S rRNA, subunit association, and initiation factor 3 binding during initiation complex formation, as revealed by this study, offers insights into the functional role of rRNA in protein synthesis. PMID:2662189

  1. Missense mutations in Desmocollin-2 N-terminus, associated with arrhythmogenic right ventricular cardiomyopathy, affect intracellular localization of desmocollin-2 in vitro

    PubMed Central

    Beffagna, Giorgia; De Bortoli, Marzia; Nava, Andrea; Salamon, Michela; Lorenzon, Alessandra; Zaccolo, Manuela; Mancuso, Luisa; Sigalotti, Luca; Bauce, Barbara; Occhi, Gianluca; Basso, Cristina; Lanfranchi, Gerolamo; Towbin, Jeffrey A; Thiene, Gaetano; Danieli, Gian Antonio; Rampazzo, Alessandra

    2007-01-01

    Background Mutations in genes encoding desmosomal proteins have been reported to cause arrhythmogenic right ventricular cardiomyopathy (ARVC), an autosomal dominant disease characterised by progressive myocardial atrophy with fibro-fatty replacement. We screened 54 ARVC probands for mutations in desmocollin-2 (DSC2), the only desmocollin isoform expressed in cardiac tissue. Methods Mutation screening was performed by denaturing high-performance liquid chromatography and direct sequencing. To evaluate the pathogenic potentials of the DSC2 mutations detected in patients affected with ARVC, full-length wild-type and mutated cDNAs were cloned in eukaryotic expression vectors to obtain a fusion protein with green fluorescence protein (GFP); constructs were transfected in neonatal rat cardiomyocytes and in HL-1 cells. Results We identified two heterozygous mutations (c.304G>A (p.E102K) and c.1034T>C (p.I345T)) in two probands and in four family members. The two mutations p.E102K and p.I345T map to the N-terminal region, relevant to adhesive interactions. In vitro functional studies demonstrated that, unlike wild-type DSC2, the two N-terminal mutants are predominantly localised in the cytoplasm. Conclusion The two missense mutations in the N-terminal domain affect the normal localisation of DSC2, thus suggesting the potential pathogenic effect of the reported mutations. Identification of additional DSC2 mutations associated with ARVC may result in increased diagnostic accuracy with implications for genetic counseling. PMID:17963498

  2. Transient congenital hypothyroidism caused by compound heterozygous mutations affecting the NADPH-oxidase domain of DUOX2.

    PubMed

    Yoshizawa-Ogasawara, Atsuko; Abe, Kiyomi; Ogikubo, Sayaka; Narumi, Satoshi; Hasegawa, Tomonobu; Satoh, Mari

    2016-03-01

    Here, we describe three cases of loss-of-function mutations in the nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase (NOX) domain of dual oxidase 2 (DUOX2) occurring along with concurrent missense mutations in thyroid peroxidase (TPO), leading to transient congenital hypothyroidism (CH). Three Japanese boys with nonconsanguineous parents were diagnosed with CH during their neonatal screenings. All patients presented with moderate-to-severe neonatal hypothyroidism and were diagnosed with transient CH after re-evaluation of thyroid function. Two siblings were compound heterozygous for p.[R1110Q]+[Y1180X] in DUOX2; one of them was also heterozygous for p.[R361L] in TPO. The third patient was compound heterozygous for p.[L1160del]+[R1334W] in DUOX2 and heterozygous for p.[P883S] in TPO. This is the first report of a de novo L1160del mutation affecting the DUOX2 gene and of the novel mutations Y1180X in DUOX2 and R361L in TPO. R1110Q and L1160del were found to reduce H2O2 production (5%-9%, p<0.01), while Y1180X, which introduces a premature stop codon, did not confer detectable H2O2 production (-0.7%±0.6%, p<0.01). Moreover, R1334W, a missense mutation possibly affecting electron transfer, led to reduced H2O2 production (24%±0.9%, p<0.01) in vitro, and R1110Q and R1334W resulted in reduced protein expression. Y1180X was detected in a 120 kDa truncated form, whereas L1160del expression was maintained. Further, R361L, a novel missense mutation in TPO, caused partial reduction in peroxidase activity (20.6%±0.8%, p=0.01), whereas P883S, a missense variant, increased it (133.7%±2.8%, p=0.02). The protein expression levels in the case of R361L and P883S were maintained. In conclusion, we provide clinical and in vitro demonstrations of different functional defects and phenotypic heterogeneity in the same thyroid hormonogenesis pathway. PMID:26565538

  3. Mutations that affect production of branched RNA-linked msDNA in Myxococcus xanthus.

    PubMed Central

    Dhundale, A; Furuichi, T; Inouye, M; Inouye, S

    1988-01-01

    A deletion mutation of the gene (msd-msr) for the branched RNA-linked msDNA of Myxococcus xanthus was constructed by replacing the chromosomal 0.7-kilobase (kb) SmaI-XhoI fragment encompassing msd-msr with a 1.4-kb fragment carrying a gene for kanamycin resistance. It was found that this deletion strain (delta msSX) could not produce msDNA, although it still contained another species of msDNA, mrDNA (msDNA, reduced size). No apparent differences between delta msSX and the wild-type strain were observed in terms of cell growth, morphogenesis, fruiting-body formation, or motility. Both a deletion mutation at the region 100 base pairs upstream of msd and an insertion mutation at a site 500 base pairs upstream of msd showed a significant reduction of msDNA production, indicating that there is a cis- or trans-acting positive element in this region. When the 3.5-kb BamHI fragment carrying msd-msr from Stigmatella aurantiaca was inserted into the M. xanthus chromosome, the S. aurantiaca msDNA was found to be produced in M. xanthus. Images PMID:2461359

  4. Mutations in Durum Wheat SBEII Genes affect Grain Yield Components, Quality, and Fermentation Responses in Rats

    PubMed Central

    Hazard, Brittany; Zhang, Xiaoqin; Naemeh, Mahmoudreza; Hamilton, M. Kristina; Rust, Bret; Raybould, Helen E.; Newman, John W.; Martin, Roy; Dubcovsky, Jorge

    2016-01-01

    Increased amylose in wheat (Triticum ssp.) starch is associated with increased resistant starch, a fermentable dietary fiber. Fermentation of resistant starch in the large intestine produces short-chain fatty acids that are associated with human health benefits. Since wheat foods are an important component of the human diet, increases in amylose and resistant starch in wheat grains have the potential to deliver health benefits to a large number of people. In three replicated field trials we found that mutations in starch branching enzyme II genes (SBEIIa and SBEIIb) in both A and B genomes (SBEIIa/b-AB) of durum wheat [T. turgidum L. subsp. durum (Desf.) Husn.] resulted in large increases of amylose and resistant starch content. The presence of these four mutations was also associated with an average 5% reduction in kernel weight (P = 0.0007) and 15% reduction in grain yield (P = 0.06) compared to the wild type. Complete milling and pasta quality analysis showed that the mutant lines have an acceptable quality with positive effects on pasta firmness and negative effects on semolina extraction and pasta color. Positive fermentation responses were detected in rats (Rattus spp.) fed with diets incorporating mutant wheat flour. This study quantifies benefits and limitations associated with the deployment of the SBEIIa/b-AB mutations in durum wheat and provides the information required to develop realistic strategies to deploy durum wheat varieties with increased levels of amylose and resistant starch. PMID:27134286

  5. A Remote Mutation Affects the Hydride Transfer by Disrupting Concerted Protein Motions in Thymidylate Synthase

    PubMed Central

    Wang, Zhen; Abeysinghe, Thelma; Finer-Moore, Janet S.; Stroud, Robert M.; Kohen, Amnon

    2012-01-01

    The role of protein flexibility in enzyme-catalyzed activation of chemical bonds is an evolving perspective in enzymology. Here we examine the role of protein motions in the hydride transfer reaction catalyzed by thymidylate synthase (TSase). Being remote from the chemical reaction site, the Y209W mutation of E. coli TSase significantly reduces the protein activity, despite the remarkable similarity between the crystal structures of the wild type and mutant enzymes with ligands representing their Michaelis complexes. The most conspicuous difference between those two crystal structures is in the anisotropic B-factors, which indicates disruption of the correlated atomic vibrations of protein residues in the mutant. This dynamically altered mutant allows a variety of small thiols to compete for the reaction intermediate that precedes the hydride transfer, indicating disruption of motions that preorganize the protein environment for this chemical step. Although the mutation causes higher enthalpy of activation of the hydride transfer, it only shows a small effect on the temperature-dependence of the intrinsic KIE, suggesting marginal changes in the geometry and dynamics of the H-donor and acceptor at the tunneling ready state. These observations suggest that that the mutation disrupts the concerted motions that bring the H-donor and acceptor together during the pre- and re-organization of the protein environment. The integrated structural and kinetic data allow us to probe the impact of protein motions on different timescales on the hydride transfer reaction within a complex enzymatic mechanism. PMID:23034004

  6. Characterization of novel Brown midrib 6 mutations affecting lignin biosynthesis in sorghum.

    PubMed

    Scully, Erin D; Gries, Tammy; Funnell-Harris, Deanna L; Xin, Zhanguo; Kovacs, Frank A; Vermerris, Wilfred; Sattler, Scott E

    2016-02-01

    The presence of lignin reduces the quality of lignocellulosic biomass for forage materials and feedstock for biofuels. In C4 grasses, the brown midrib phenotype has been linked to mutations to genes in the monolignol biosynthesis pathway. For example, the Bmr6 gene in sorghum (Sorghum bicolor) has been previously shown to encode cinnamyl alcohol dehydrogenase (CAD), which catalyzes the final step of the monolignol biosynthesis pathway. Mutations in this gene have been shown to reduce the abundance of lignin, enhance digestibility, and improve saccharification efficiencies and ethanol yields. Nine sorghum lines harboring five different bmr6 alleles were identified in an EMS-mutagenized TILLING population. DNA sequencing of Bmr6 revealed that the majority of the mutations impacted evolutionarily conserved amino acids while three-dimensional structural modeling predicted that all of these alleles interfered with the enzyme's ability to bind with its NADPH cofactor. All of the new alleles reduced in vitro CAD activity levels and enhanced glucose yields following saccharification. Further, many of these lines were associated with higher reductions in acid detergent lignin compared to lines harboring the previously characterized bmr6-ref allele. These bmr6 lines represent new breeding tools for manipulating biomass composition to enhance forage and feedstock quality. PMID:26172142

  7. Cancer-associated SF3B1 mutations affect alternative splicing by promoting alternative branchpoint usage

    PubMed Central

    Alsafadi, Samar; Houy, Alexandre; Battistella, Aude; Popova, Tatiana; Wassef, Michel; Henry, Emilie; Tirode, Franck; Constantinou, Angelos; Piperno-Neumann, Sophie; Roman-Roman, Sergio; Dutertre, Martin; Stern, Marc-Henri

    2016-01-01

    Hotspot mutations in the spliceosome gene SF3B1 are reported in ∼20% of uveal melanomas. SF3B1 is involved in 3′-splice site (3′ss) recognition during RNA splicing; however, the molecular mechanisms of its mutation have remained unclear. Here we show, using RNA-Seq analyses of uveal melanoma, that the SF3B1R625/K666 mutation results in deregulated splicing at a subset of junctions, mostly by the use of alternative 3′ss. Modelling the differential junctions in SF3B1WT and SF3B1R625/K666 cell lines demonstrates that the deregulated splice pattern strictly depends on SF3B1 status and on the 3'ss-sequence context. SF3B1WT knockdown or overexpression do not reproduce the SF3B1R625/K666 splice pattern, qualifying SF3B1R625/K666 as change-of-function mutants. Mutagenesis of predicted branchpoints reveals that the SF3B1R625/K666-promoted splice pattern is a direct result of alternative branchpoint usage. Altogether, this study provides a better understanding of the mechanisms underlying splicing alterations induced by mutant SF3B1 in cancer, and reveals a role for alternative branchpoints in disease. PMID:26842708

  8. Intronic mutations affecting splicing of MBTPS2 cause ichthyosis follicularis, alopecia and photophobia (IFAP) syndrome.

    PubMed

    Oeffner, Frank; Martinez, Francisco; Schaffer, Julie; Salhi, Aïcha; Monfort, Sandra; Oltra, Silvestre; Neidel, Ulrike; Bornholdt, Dorothea; van Bon, Bregje; König, Arne; Happle, Rudolf; Grzeschik, Karl-Heinz

    2011-05-01

    Ichthyosis follicularis, alopecia and photophobia (IFAP) syndrome is an X-linked genodermatosis with congenital atrichia being the most prominent feature. Recently, we have shown that functional deficiency of MBTPS2 (membrane-bound transcription factor protease site 2) - a zinc metalloprotease essential for cholesterol homeostasis and endoplasmic reticulum stress response - causes the disease. Here, we present results obtained by analysing two intronic MBTPS2 mutations, c.671-9T>G and c.225-6T>A, using in silico and cell-based splicing assays. Accordingly, the c.225-6T>A transversion generated a new splice acceptor site, which caused extension of exon 3 by four bases and subsequently introduced a premature stop codon. Both, minigene experiments and RT-PCR analysis with patient-derived mRNA, demonstrated that the c.671-9T>G mutation resulted in skipping of exon 6, most likely because of disruption of the polypyrimidin tract or a putative intronic splicing enhancer (ISE). Our combined biocomputational and experimental analysis strongly suggested that both intronic alterations are disease-causing mutations. PMID:21426410

  9. Mild mutations in the pan neural gene prospero affect male-specific behaviour in Drosophila melanogaster.

    PubMed

    Grosjean, Yaël; Savy, Mathilde; Soichot, Julien; Everaerts, Claude; Cézilly, Frank; Ferveur, Jean François

    2004-01-30

    The fruitfly Drosophila melanogaster is one of the most appropriate model organisms to study the genetics of behaviour. Here, we focus on prospero (pros), a key gene for the development of the nervous system which specifies multiple aspects from the early formation of the embryonic central nervous system to the formation of larval and adult sensory organs. We studied the effects on locomotion, courtship and mating behaviour of three mild pros mutations. These newly isolated pros mutations were induced after the incomplete excision of a transposable genomic element that, before excision, caused a lethal phenotype during larval development. Strikingly, these mutant strains, but not the strains with a clean excision, produced a high frequency of heterozygous flies, after more than 50 generations in the lab. We investigated the factors that could decrease the fitness of homozygotes relatively to heterozygous pros mutant flies. Flies of both genotypes had slightly different levels of fertility. More strikingly, homozygous mutant males had a lower sexual activity than heterozygous males and failed to mate in a competitive situation. No similar effect was detected in mutant females. These findings suggest that mild mutations in pros did not alter vital functions during development but drastically changed adult male behaviour and reproductive fitness. PMID:14744542

  10. A new Gsdma3 mutation affecting anagen phase of first hair cycle

    SciTech Connect

    Tanaka, Shigekazu; Tamura, Masaru; Aoki, Aya; Fujii, Tomoaki; Komiyama, Hiromitsu; Sagai, Tomoko; Shiroishi, Toshihiko . E-mail: tshirois@lab.nig.ac.jp

    2007-08-10

    Recombination-induced mutation 3 (Rim3) is a spontaneous mouse mutation that exhibits dominant phenotype of hyperkeratosis and hair loss. Fine linkage analysis of Rim3 and sequencing revealed a novel single point mutation, G1124A leading to Ala348Thr, in Gsdma3 in chromosome 11. Transgenesis with BAC DNA harboring the Rim3-type Gsdma3 recaptured the Rim3 phenotype, providing direct evidence that Gsdma3 is the causative gene of Rim3. We examined the spatial expression of Gsdma3 and characterized the Rim3 phenotype in detail. Gsdma3 is expressed in differentiated epidermal cells in the skin, but not in the proliferating epidermal cells. Histological analysis of Rim3 mutant showed hyperplasia of the epidermal cells in the upper hair follicles and abnormal anagen phase at the first hair cycle. Furthermore, immunohistochemical analysis revealed hyperproliferation and misdifferentiation of the upper follicular epidermis in Rim3 mutant. These results suggest that Gsdma3 is involved in the proliferation and differentiation of epidermal stem cells.

  11. Ocean acidification alters fish-jellyfish symbiosis.

    PubMed

    Nagelkerken, Ivan; Pitt, Kylie A; Rutte, Melchior D; Geertsma, Robbert C

    2016-06-29

    Symbiotic relationships are common in nature, and are important for individual fitness and sustaining species populations. Global change is rapidly altering environmental conditions, but, with the exception of coral-microalgae interactions, we know little of how this will affect symbiotic relationships. We here test how the effects of ocean acidification, from rising anthropogenic CO2 emissions, may alter symbiotic interactions between juvenile fish and their jellyfish hosts. Fishes treated with elevated seawater CO2 concentrations, as forecast for the end of the century on a business-as-usual greenhouse gas emission scenario, were negatively affected in their behaviour. The total time that fish (yellowtail scad) spent close to their jellyfish host in a choice arena where they could see and smell their host was approximately three times shorter under future compared with ambient CO2 conditions. Likewise, the mean number of attempts to associate with jellyfish was almost three times lower in CO2-treated compared with control fish, while only 63% (high CO2) versus 86% (control) of all individuals tested initiated an association at all. By contrast, none of three fish species tested were attracted solely to jellyfish olfactory cues under present-day CO2 conditions, suggesting that the altered fish-jellyfish association is not driven by negative effects of ocean acidification on olfaction. Because shelter is not widely available in the open water column and larvae of many (and often commercially important) pelagic species associate with jellyfish for protection against predators, modification of the fish-jellyfish symbiosis might lead to higher mortality and alter species population dynamics, and potentially have flow-on effects for their fisheries. PMID:27358374

  12. Effects of nano-ZnO on the agronomically relevant Rhizobium-legume symbiosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The impact of nano-ZnO (nZnO) on Rhizobium-legume symbiosis was studied with garden pea and its compatible bacterial partner Rhizobium leguminosarum bv. viciae 3841. Exposure of peas to nZnO had no impact on germination, but significantly affected root length. Chronic exposure of plant to nZnO impac...

  13. Effects of nano-TiO2 on the agronomically-relevant Rhizobium-legume symbiosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The impact of nano-TiO2 on Rhizobium-legume symbiosis was studied using garden peas and the compatible bacterial partner Rhizobium leguminosarum bv. viciae 3841. Exposure to nano-TiO2 did not affect the germination of peas grown aseptically, nor did it impact the gross root structure. However, nano-...

  14. Suppressors of a genetic regulatory mutation affecting isoleucine-valine biosynthesis in Escherichia coli K-12.

    PubMed Central

    Hahn, J E; Calhoun, D H

    1978-01-01

    Escherichia coli K-12 mutant PS187 carries a mutation, ilvA538, in the structural gene for the biosynthetic L-threonine deaminase that leads to a leucine-sensitive growth phenotype, an isoleucine- and leucine-hypersensitive L-threonine deaminase, and pleiotropic effects resulting in abnormally low and invariant expression of some of the isoleucine-valine biosynthetic enzymes. Fifty-eight derivatives of strain PS187 were isolated as resistant to growth inhibition by leucine, by valine, or by valine plus glycly-valine and were biochemically, genetically, and physiologically characterized. All of these derivatives produced the feedback-hypersensitive L-threonine deaminase, and thus presumably possess the ilvA538 allele of the parent strain. Elevated synthesis of L-threonine deaminase was observed in 41 of the 58 isolates. Among 18 strains analyzed genetically, only those with mutations linked to the ilv gene clusters at 83 min produced elevated levels of L-threonine deaminase. One of the strains, MSR91, isolated as resistant to valine plus glycyl-valine, was chosen for more detailed study. The locus in strain MSR91 conferring resistance was located in four factor crosses between ilvE and rbs, and is in or near the ilvO gene postulated to be a site controlling the expression of the ilvEDA genes. Synthesis of the ilvEDA gene products in strain MSR91 is constitutive and derepressed approximately 200-fold relative to the parent strain, indicating that the genetic regulatory effects of the ilvA538 allele have been suppressed. Strain MSR91 should be suitable for use in purification of the ilvA538 gene product, since enzyme synthesis is fully derepressed and the suppressor mutation is clearly not located within the ilvA gene. PMID:361682

  15. A novel COL11A1 mutation affecting splicing in a patient with Stickler syndrome

    PubMed Central

    Kohmoto, Tomohiro; Naruto, Takuya; Kobayashi, Haruka; Watanabe, Miki; Okamoto, Nana; Masuda, Kiyoshi; Imoto, Issei; Okamoto, Nobuhiko

    2015-01-01

    Stickler syndrome is a clinically and genetically heterogeneous collagenopathy characterized by ocular, auditory, skeletal and orofacial abnormalities, commonly occurring as an autosomal dominant trait. We conducted target resequencing to analyze candidate genes associated with known clinical phenotypes from a 4-year-old girl with Stickler syndrome. We detected a novel heterozygous intronic mutation (NM_001854.3:c.3168+5G>A) in COL11A1 that may impair splicing, which was suggested by in silico prediction and a minigene assay. PMID:27081549

  16. Mutations altering the gammaretrovirus endoproteolytic motif affect glycosylation of the envelope glycoprotein and early events of the virus life cycle

    SciTech Connect

    Argaw, Takele; Wilson, Carolyn A.

    2015-01-15

    Previously, we found that mutation of glutamine to proline in the endoproteolytic cleavage signal of the PERV-C envelope (RQKK to RPKK) resulted in non-infectious vectors. Here, we show that RPKK results in a non-infectious vector when placed in not only a PERV envelope, but also the envelope of a related gammaretrovirus, FeLV-B. The amino acid substitutions do not prevent envelope precursor cleavage, viral core and genome assembly, or receptor binding. Rather, the mutations result in the formation of hyperglycosylated glycoprotein and a reduction in the reverse transcribed minus strand synthesis and undetectable 2-LTR circular DNA in cells exposed to vectors with these mutated envelopes. Our findings suggest novel functions associated with the cleavage signal sequence that may affect trafficking through the glycosylation machinery of the cell. Further, the glycosylation status of the envelope appears to impact post-binding events of the viral life cycle, either membrane fusion, internalization, or reverse transcription. - Highlights: • Env cleavage signal impacts infectivity of gammaretroviruses. • Non-infectious mutants have hyper-glycosylated envelope that bind target cells. • Non-infectious mutants have defects in the formation of the double-stranded DNA. • Env cleavage motif has functions beyond cleavage of the env precursor.

  17. The prevalence of ABCB1:c.227_230delATAG mutation in affected dog breeds from European countries.

    PubMed

    Firdova, Zuzana; Turnova, Evelina; Bielikova, Marcela; Turna, Jan; Dudas, Andrej

    2016-06-01

    Deletion of 4-base pairs in the canine ABCB1 (MDR1) gene, responsible for encoding P-glycoprotein, leads to nonsense frame-shift mutation, which causes hypersensitivity to macrocyclic lactones drugs (e.g. ivermectin). To date, at least 12 purebred dog breeds have been found to be affected by this mutation. The aim of this study was to update information about the prevalence of ABCB1 mutation (c.227_230delATAG) in predisposed breeds in multiple European countries. This large scale survey also includes countries which were not involved in previous studies. The samples were collected in the period from 2012 to 2014. The overview is based on genotyping data of 4729 individuals. The observed mutant allele frequencies were 58.5% (Smooth Collie), 48.3% (Rough Collie), 35% (Australian Shepherd), 30.3% (Shetland Sheepdog), 28.1% (Silken Windhound), 26.1% (Miniature Australian Shepherd), 24.3% (Longhaired Whippet), 16.2% (White Swiss Shepherd) and 0% (Border Collie). The possible presence of an ABCB1 mutant allele in Akita-Inu breed has been investigated with negative results. This information could be helpful for breeders in optimization of their breeding strategy and for veterinarians when prescribing drug therapy for dogs of predisposed breeds. PMID:27234542

  18. Human CLP1 mutations alter tRNA biogenesis affecting both peripheral and central nervous system function

    PubMed Central

    Karaca, Ender; Weitzer, Stefan; Pehlivan, Davut; Shiraishi, Hiroshi; Gogakos, Tasos; Hanada, Toshikatsu; Jhangiani, Shalini N.; Wiszniewski, Wojciech; Withers, Marjorie; Campbell, Ian M.; Erdin, Serkan; Isikay, Sedat; Franco, Luis M.; Gonzaga-Jauregui, Claudia; Gambin, Tomasz; Gelowani, Violet; Hunter, Jill V.; Yesil, Gozde; Koparir, Erkan; Yilmaz, Sarenur; Brown, Miguel; Briskin, Daniel; Hafner, Markus; Morozov, Pavel; Farazi, Thalia A.; Bernreuther, Christian; Glatzel, Markus; Trattnig, Siegfried; Friske, Joachim; Kronnerwetter, Claudia; Bainbridge, Matthew N.; Gezdirici, Alper; Seven, Mehmet; Muzny, Donna M.; Boerwinkle, Eric; Ozen, Mustafa; Clausen, Tim; Tuschl, Thomas; Yuksel, Adnan; Hess, Andreas; Gibbs, Richard A.; Martinez, Javier; Penninger, Josef M.; Lupski, James R.

    2014-01-01

    CLP1 is a RNA kinase involved in tRNA splicing. Recently, CLP1 kinase-dead mice were shown to display a neuromuscular disorder with loss of motor neurons and muscle paralysis. Human genome analyses now identified a CLP1 homozygous missense mutation (p.R140H) in five unrelated families, leading to a loss of CLP1 interaction with the tRNA splicing endonuclease (TSEN) complex, largely reduced pre-tRNA cleavage activity, and accumulation of linear tRNA introns. The affected individuals develop severe motor-sensory defects, cortical dysgenesis and microcephaly. Mice carrying kinase-dead CLP1 also displayed microcephaly and reduced cortical brain volume due to the enhanced cell death of neuronal progenitors that is associated with reduced numbers of cortical neurons. Our data elucidate a novel neurological syndrome defined by CLP1 mutations that impair tRNA splicing. Reduction of a founder mutation to homozygosity illustrates the importance of rare variations in disease and supports the clan genomics hypothesis. PMID:24766809

  19. Mutations altering the gammaretrovirus endoproteolytic motif affect glycosylation of the envelope glycoprotein and early events of the virus life cycle.

    PubMed

    Argaw, Takele; Wilson, Carolyn A

    2015-01-15

    Previously, we found that mutation of glutamine to proline in the endoproteolytic cleavage signal of the PERV-C envelope (RQKK to RPKK) resulted in non-infectious vectors. Here, we show that RPKK results in a non-infectious vector when placed in not only a PERV envelope, but also the envelope of a related gammaretrovirus, FeLV-B. The amino acid substitutions do not prevent envelope precursor cleavage, viral core and genome assembly, or receptor binding. Rather, the mutations result in the formation of hyperglycosylated glycoprotein and a reduction in the reverse transcribed minus strand synthesis and undetectable 2-LTR circular DNA in cells exposed to vectors with these mutated envelopes. Our findings suggest novel functions associated with the cleavage signal sequence that may affect trafficking through the glycosylation machinery of the cell. Further, the glycosylation status of the envelope appears to impact post-binding events of the viral life cycle, either membrane fusion, internalization, or reverse transcription. PMID:25462351

  20. Saccharomyces cerevisiae Hsp70 mutations affect [PSI+] prion propagation and cell growth differently and implicate Hsp40 and tetratricopeptide repeat cochaperones in impairment of [PSI+].

    PubMed Central

    Jones, Gary W; Masison, Daniel C

    2003-01-01

    We previously described an Hsp70 mutant (Ssa1-21p), altered in a conserved residue (L483W), that dominantly impairs yeast [PSI(+)] prion propagation without affecting growth. We generated new SSA1 mutations that impaired [PSI(+)] propagation and second-site mutations in SSA1-21 that restored normal propagation. Effects of mutations on growth did not correlate with [PSI(+)] phenotype, revealing differences in Hsp70 function required for growth and [PSI(+)] propagation and suggesting that Hsp70 interacts differently with [PSI(+)] prion aggregates than with other cellular substrates. Complementary suppression of altered activity between forward and suppressing mutations suggests that mutations that impair [PSI(+)] affect a similar Hsp70 function and that suppressing mutations similarly overcome this effect. All new mutations that impaired [PSI(+)] propagation were located in the ATPase domain. Locations and homology of several suppressing substitutions suggest that they weaken Hsp70's substrate-trapping conformation, implying that impairment of [PSI(+)] by forward mutations is due to altered ability of the ATPase domain to regulate substrate binding. Other suppressing mutations are in residues important for interactions with Hsp40 or TPR-containing cochaperones, suggesting that such interactions are necessary for the impairment of [PSI(+)] propagation caused by mutant Ssa1p. PMID:12618389

  1. A mutation in protein phosphatase 2A regulatory subunit A affects auxin transport in Arabidopsis.

    PubMed Central

    Garbers, C; DeLong, A; Deruére, J; Bernasconi, P; Söll, D

    1996-01-01

    The phytohormone auxin controls processes such as cell elongation, root hair development and root branching. Tropisms, growth curvatures triggered by gravity, light and touch, are also auxin-mediated responses. Auxin is synthesized in the shoot apex and transported through the stem, but the molecular mechanism of auxin transport is not well understood. Naphthylphthalamic acid (NPA) and other inhibitors of auxin transport block tropic curvature responses and inhibit root and shoot elongation. We have isolated a novel Arabidopsis thaliana mutant designated roots curl in NPA (rcn1). Mutant seedlings exhibit altered responses to NPA in root curling and hypocotyl elongation. Auxin efflux in mutant seedlings displays increased sensitivity to NPA. The rcn1 mutation was transferred-DNA (T-DNA) tagged and sequences flanking the T-DNA insert were cloned. Analysis of the RCN1 cDNA reveals that the T-DNA insertion disrupts a gene for the regulatory A subunit of protein phosphatase 2A (PP2A-A). The RCN1 gene rescues the rcn1 mutant phenotype and also complements the temperature-sensitive phenotype of the Saccharomyces cerevisiae PP2A-A mutation, tpd3-1. These data implicate protein phosphatase 2A in the regulation of auxin transport in Arabidopsis. Images PMID:8641277

  2. Glutamine synthetase mutations which affect expression of nitrogen fixation genes in Klebsiella pneumoniae.

    PubMed Central

    Ausubel, F M; Bird, S C; Durbin, K J; Janssen, K A; Margolskee, R F; Peskin, A P

    1979-01-01

    Previous studies have implicated glutamine synthetase (L-glutamate:ammonia ligase [adenosine diphosphate for-ing], EC 6.6.1.2) as a major controlling element of the nitrogen fixation (nif) genes in Klebsiella pneumoniae. We report here the isolation of a new class of K. pneumoniae mutants which exhibit altered patterns of nif and hut (histidine utlization) regulation. The expression of nif in these mutants, which were isolated as Gln+ (glutamine nonrequiring) revertants of a particular glnA mutation, is extremely sensitive to ammonia repression. These mutants have a Nif- Hut- phenotype at external ammonia concentrations at which wild-type strains are Nif+ Hut+. On the other hand, these mutants can be fully derepressed for nif at very low ammonia concentrations. We adopted the nomenclature "GlnR- (Nif- Hut-)" to facilitate discussion of the phenotype of these mutant strains. The mutations in these strains which confer the GlnR- phenotype map at or near glnA, the structural gene for glutamine synthetase. PMID:40960

  3. Yeast killer plasmid mutations affecting toxin secretion and activity and toxin immunity function

    SciTech Connect

    Bussey, H.; Sacks, W.; Galley, D.; Saville, D.

    1982-04-01

    M double-stranded RNA (MdsRNA) plasmid mutants were obtained by mutagenesis and screening of a diploid killer culture partially heat cured of the plasmid, so that a high proportion of the cells could be expected to have only one M plasmid. Mutants with neutral (K/sup -/), immune (R/sup +/) or suicide (killer (K/sup +/), sensitive (R/sup -/)) phenotypes were examined. All mutants became K/sup -/ R/sup -/ sensitives on heat curing of the MdsRNA plasmid, and showed cytoplasmic inheritance by random spore analysis. In some cases, M plasmid mutations were indicated by altered mobility of the MdsRNA by agarose gel electrophoresis or by altered size of in vitro translation products from denatured dsRNA. Neutral mutants were of two types: nonsecretors of the toxin protein or secretors of an inactive toxin. Of three neutral nonsecretors examined, one (NLP-1), probably a nonsense mutation, made a smaller protoxin precursor in vitro and in vivo, and two made full-size protoxin molecules. The in vivo protoxin of 43,000 molecular weight was unstable in the wild type and kinetically showed a precursor product relationship to the processed, secreted 11,000-molecular-weight toxin. In one nonsecretor (N1), the protoxin appeared more stable in a pulse-chase experiment, and could be altered in a recognition site required for protein processing.

  4. A single mutation in Escherichia coli ribonuclease II inactivates the enzyme without affecting RNA binding.

    PubMed

    Amblar, Mónica; Arraiano, Cecília M

    2005-01-01

    Exoribonuclease II (RNase II), encoded by the rnb gene, is a ubiquitous enzyme that is responsible for 90% of the hydrolytic activity in Escherichia coli crude extracts. The E. coli strain SK4803, carrying the mutant allele rnb296, has been widely used in the study of the role of RNase II. We determined the DNA sequence of rnb296 and cloned this mutant gene in an expression vector. Only a point mutation in the coding sequence of the gene was detected, which results in the single substitution of aspartate 209 for asparagine. The mutant and the wild-type RNase II enzymes were purified, and their 3' to 5' exoribonucleolytic activity, as well as their RNA binding capability, were characterized. We also studied the metal dependency of the exoribonuclease activity of RNase II. The results obtained demonstrated that aspartate 209 is absolutely essential for RNA hydrolysis, but is not required for substrate binding. This is the first evidence of an acidic residue that is essential for the activity of RNase II-like enzymes. The possible involvement of this residue in metal binding at the active site of the enzyme is discussed. These results are particularly relevant at this time given that no structural or mutational analysis has been performed for any protein of the RNR family of exoribonucleases. PMID:15654875

  5. A mutation in protein phosphatase 2A regulatory subunit A affects auxin transport in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Garbers, C.; DeLong, A.; Deruere, J.; Bernasconi, P.; Soll, D.; Evans, M. L. (Principal Investigator)

    1996-01-01

    The phytohormone auxin controls processes such as cell elongation, root hair development and root branching. Tropisms, growth curvatures triggered by gravity, light and touch, are also auxin-mediated responses. Auxin is synthesized in the shoot apex and transported through the stem, but the molecular mechanism of auxin transport is not well understood. Naphthylphthalamic acid (NPA) and other inhibitors of auxin transport block tropic curvature responses and inhibit root and shoot elongation. We have isolated a novel Arabidopsis thaliana mutant designated roots curl in NPA (rcn1). Mutant seedlings exhibit altered responses to NPA in root curling and hypocotyl elongation. Auxin efflux in mutant seedlings displays increased sensitivity to NPA. The rcn1 mutation was transferred-DNA (T-DNA) tagged and sequences flanking the T-DNA insert were cloned. Analysis of the RCN1 cDNA reveals that the T-DNA insertion disrupts a gene for the regulatory A subunit of protein phosphatase 2A (PP2A-A). The RCN1 gene rescues the rcn1 mutant phenotype and also complements the temperature-sensitive phenotype of the Saccharomyces cerevisiae PP2A-A mutation, tpd3-1. These data implicate protein phosphatase 2A in the regulation of auxin transport in Arabidopsis.

  6. pigk Mutation underlies macho behavior and affects Rohon-Beard cell excitability

    PubMed Central

    Carmean, V.; Yonkers, M. A.; Tellez, M. B.; Willer, J. R.; Willer, G. B.; Gregg, R. G.; Geisler, R.; Neuhauss, S. C.

    2015-01-01

    The study of touch-evoked behavior allows investigation of both the cells and circuits that generate a response to tactile stimulation. We investigate a touch-insensitive zebrafish mutant, macho (maco), previously shown to have reduced sodium current amplitude and lack of action potential firing in sensory neurons. In the genomes of mutant but not wild-type embryos, we identify a mutation in the pigk gene. The encoded protein, PigK, functions in attachment of glycophosphatidylinositol anchors to precursor proteins. In wild-type embryos, pigk mRNA is present at times when mutant embryos display behavioral phenotypes. Consistent with the predicted loss of function induced by the mutation, knock-down of PigK phenocopies maco touch insensitivity and leads to reduced sodium current (INa) amplitudes in sensory neurons. We further test whether the genetic defect in pigk underlies the maco phenotype by overexpressing wild-type pigk in mutant embryos. We find that ubiquitous expression of wild-type pigk rescues the touch response in maco mutants. In addition, for maco mutants, expression of wild-type pigk restricted to sensory neurons rescues sodium current amplitudes and action potential firing in sensory neurons. However, expression of wild-type pigk limited to sensory cells of mutant embryos does not allow rescue of the behavioral touch response. Our results demonstrate an essential role for pigk in generation of the touch response beyond that required for maintenance of proper INa density and action potential firing in sensory neurons. PMID:26133798

  7. Novel familial dilated cardiomyopathy mutation in MYL2 affects the structure and function of myosin regulatory light chain.

    PubMed

    Huang, Wenrui; Liang, Jingsheng; Yuan, Chen-Ching; Kazmierczak, Katarzyna; Zhou, Zhiqun; Morales, Ana; McBride, Kim L; Fitzgerald-Butt, Sara M; Hershberger, Ray E; Szczesna-Cordary, Danuta

    2015-06-01

    Dilated cardiomyopathy (DCM) is a disease of the myocardium characterized by left ventricular dilatation and diminished contractile function. Here we describe a novel DCM mutation in the myosin regulatory light chain (RLC), in which aspartic acid at position 94 is replaced by alanine (D94A). The mutation was identified by exome sequencing of three adult first-degree relatives who met formal criteria for idiopathic DCM. To obtain insight into the functional significance of this pathogenic MYL2 variant, we cloned and purified the human ventricular RLC wild-type (WT) and D94A mutant proteins, and performed in vitro experiments using RLC-mutant or WT-reconstituted porcine cardiac preparations. The mutation induced a reduction in the α-helical content of the RLC, and imposed intra-molecular rearrangements. The phosphorylation of RLC by Ca²⁺/calmodulin-activated myosin light chain kinase was not affected by D94A. The mutation was seen to impair binding of RLC to the myosin heavy chain, and its incorporation into RLC-depleted porcine myosin. The actin-activated ATPase activity of mutant-reconstituted porcine cardiac myosin was significantly higher compared with ATPase of wild-type. No changes in the myofibrillar ATPase-pCa relationship were observed in wild-type- or D94A-reconstituted preparations. Measurements of contractile force showed a slightly reduced maximal tension per cross-section of muscle, with no change in the calcium sensitivity of force in D94A-reconstituted skinned porcine papillary muscle strips compared with wild-type. Our data indicate that subtle structural rearrangements in the RLC molecule, followed by its impaired interaction with the myosin heavy chain, may trigger functional abnormalities contributing to the DCM phenotype. PMID:25825243

  8. A cis-acting mutation in the Sindbis virus junction region which affects subgenomic RNA synthesis.

    PubMed Central

    Grakoui, A; Levis, R; Raju, R; Huang, H V; Rice, C M

    1989-01-01

    The synthesis of Sindbis virus minus-strand and genomic and subgenomic RNAs is believed to require specific cis-acting sequences or structures in the template RNAs and a combination of virus-specific proteins and host components which act in trans. A conserved sequence of about 21 nucleotides in the junction region and encompassing the start site for the subgenomic RNA has been proposed to function as the promoter on the minus-strand template for synthesis of the subgenomic RNA (J.-H. Ou, C. M. Rice, L. Dalgarno, E. G. Strauss, and J. H. Strauss, Proc. Natl. Acad. Sci. USA 79:5235-5239, 1982). We introduced a three-base insertion in this sequence, which also inserts a single amino acid near the COOH terminus of nsP4, in a cDNA clone of Sindbis virus from which infectious RNA transcripts can be generated. The phenotype of this mutant, called Toto1100CR4.1, was studied after RNA transfection of chicken embryo fibroblasts or BHK cells. The mutation leads to a drastic reduction in the level of the subgenomic RNA but does not alter the start site of the RNA. Probably as a consequence of depressed structural-protein synthesis, very few progeny virions are released and the mutant makes tiny or indistinct plaques even after prolonged incubation. The cis-acting effect of this mutation was demonstrated by incorporating either a wild-type or mutant junction region into a defective-interfering RNA and examining the relative synthesis of defective-interfering RNA-derived subgenomic RNA in vivo in the presence of wild-type helper virus. These results show that the junction region is recognized by yet unidentified viral trans-acting components for subgenomic RNA synthesis. When the Toto1100CR4.1 mutant was passaged in culture, plaque morphology variants readily arose. A total of 24 independent revertants were isolated, and 16 were characterized in detail. All revertants analyzed showed an increase in the level of subgenomic RNA synthesis. Sequence analysis of the junction region

  9. Factors affecting the decision to undergo risk-reducing salpingo-oophorectomy among women with BRCA gene mutation.

    PubMed

    Kim, Dongwon; Kang, Eunyoung; Hwang, Euijun; Sun, Young; Hwang, Yoonsun; Yom, Cha Kyong; Kim, Kidong; No, Jae Hong; Kim, Yong-Beom; Kim, Sung-Won

    2013-12-01

    The objective of this study was to identify factors that affect the decision to undergo risk-reducing salpingo-oophorectomy (RRSO) in BRCA1 or BRCA2 mutations carriers in South Korea. The medical records of 124 women who had been found to have BRCA1 or BRCA2 gene mutation at our institution between May 2003 and December 2011 were reviewed. The carriers were divided into RRSO and non-RRSO groups for comparison of their clinicopathologic, socio-economic, and psychosocial factors. Of the 71 carriers eligible for RRSO, 21 had undergone RRSO. In univariate analysis, classification of carriers into 3 groups by decade of life (4th, 5th, or 6th and later decade) and subsequent analysis revealed that 52.6% of carriers in the 5th decade had undergone RRSO, a rate significantly higher than that of the other age groups (p = 0.007). The RRSO rate was higher in carriers with a personal history of breast cancer than in those without (39.2% vs. 5.0%, p = 0.004), in carriers with a family history of breast cancer than in those without (35.5% vs. 11.8%, p = 0.065), and in carriers with a family history of ovarian cancer than in those carriers without a family history (66.7% vs. 24.2%, p = 0.016). Multivariate analysis identified age and personal history of breast cancer as independent factors affecting the decision to undergo RRSO. Age and personal history of breast cancer are important factors in the decision to undergo, and should thus be considered when counseling BRCA1/2 mutation carriers. PMID:23504064

  10. Mutations in the bvgA gene of Bordetella pertussis that differentially affect regulation of virulence determinants.

    PubMed Central

    Stibitz, S

    1994-01-01

    By using chemical mutagenesis and genetic mapping, a search was undertaken for previously undescribed genes which may be involved in different regulatory mechanisms governing different virulence factors of Bordetella pertussis. Previous studies have shown that the fha locus encoding filamentous hemagglutinin is regulated directly by the bvgAS two component system, while regulation of ptx encoding pertussis toxin is less direct or occurs by a different mechanism. With a strain containing gene fusions to each of these regulated loci, screening was done for mutations which were defective for ptx expression but maintained normal or nearly normal levels of fha expression. Two mutations which had such a phenotype and were also deficient in adenylate cyclase toxin/hemolysin expression were found and characterized more fully. Both were found to affect residues in the C-terminal portion of the BvgA response regulator protein, a domain which shares sequence similarity with a family of regulatory proteins including FixJ, UhpA, MalT, RcsA, RcsB, and LuxR. The residues affected are within a region which, by extension from studies on the LuxR protein, may be involved in transcriptional activation. Images PMID:8083156

  11. Mutations Affecting the Dissimilation of Mannitol by Escherichia coli K-121

    PubMed Central

    Solomon, E.; Lin, E. C. C.

    1972-01-01

    Mutants of Escherichia coli K-12 defective in the mannitol-specific enzyme II complex of the phosphoenolpyruvate phosphotransferase system (PTS) or lacking mannitol-1-phosphate dehydrogenase have been isolated. These mutants fail only to grow on mannitol. Growth of the dehydrogenase-negative mutant on casein hydrolysate can be abruptly inhibited by exposure to mannitol. A mutant with constitutive expression of both of these enzymes has also been isolated. All three mutations are clustered in a region represented at min 71 of the Taylor map. In a mutant with less than 5% of the activity of enzyme I of the PTS, both the enzyme II complex and the dehydrogenase remain inducible by mannitol. In the mutant defective in the enzyme II complex, mannitol is able to induce the dehydrogenase. Thus, mannitol, rather than its phosphorylated product, seems to be the inducer. PMID:4559737

  12. Single amino acid mutation in alpha-helical peptide affect second harmonic generation hyperpolarizability

    NASA Astrophysics Data System (ADS)

    Wei, Jing; Wang, Jin-Yun; Zhang, Min-Yi; Chai, Guo-Liang; Lin, Chen-Sheng; Cheng, Wen-Dan

    2013-01-01

    We investigate the effect of side chain on the first-order hyperpolarizability in α-helical polyalanine peptide with the 10th alanine mutation (Acetyl(ala)9X(ala)7NH2). Structures of various substituted peptides are optimized by ONIOM (DFT: AM1) scheme, and then linear and nonlinear optical properties are calculated by SOS//CIS/6-31G∗ method. The polarizability and first-order hyperpolarizability increase obviously only when 'X' represents phenylalanine, tyrosine and tryptophan. We also discuss the origin of nonlinear optical response and determine what caused the increase of first-order hyperpolarizability. Our results strongly suggest that side chains containing benzene, phenol and indole have important contributions to first-order hyperpolarizability.

  13. Genetic analysis of jumbled spine and ribs (Jsr) mutation affecting the vertebral development in mice.

    PubMed

    Okano, Shinya; Asano, Atsushi; Kon, Yasuhiro; Miyoshi, Hiroyuki; Watanabe, Tomomasa

    2002-10-01

    The jumbled spine and ribs (Jsr) mouse was derived from a spontaneous mutation. As the phenotype, a shortened trunk and kinky tail are characteristic Jsr traits. In this study, on high resolution mapping it was found that Lunatic fringe (Lfng) mapped at the same position as Jsr. Lfng was identified as the candidate gene for Jsr, but sequence analysis of this gene revealed no substitution in the coding region of cDNA. Therefore, we adopted the strategy of positional cloning for Jsr using a mouse bacterial artificial chromosome (BAC) library. A BAC contig was constructed from three BAC clones showing positive signals of Lfng and 11MMHAP75FRD8.seq near the Jsr locus on chromosome 5. Based on the genetic mapping of both T7 and sp6 ends of a clone of BAC382-O-7 (BAC382), the Jsr gene was considered to exist in BAC382 and to be positioned near the sp6 side. PMID:12392169

  14. Mutations of Arabidopsis TBL32 and TBL33 Affect Xylan Acetylation and Secondary Wall Deposition

    PubMed Central

    Yuan, Youxi; Teng, Quincy; Zhong, Ruiqin; Haghighat, Marziyeh; Richardson, Elizabeth A.; Ye, Zheng-Hua

    2016-01-01

    Xylan is a major acetylated polymer in plant lignocellulosic biomass and it can be mono- and di-acetylated at O-2 and O-3 as well as mono-acetylated at O-3 of xylosyl residues that is substituted with glucuronic acid (GlcA) at O-2. Based on the finding that ESK1, an Arabidopsis thaliana DUF231 protein, specifically mediates xylan 2-O- and 3-O-monoacetylation, we previously proposed that different acetyltransferase activities are required for regiospecific acetyl substitutions of xylan. Here, we demonstrate the functional roles of TBL32 and TBL33, two ESK1 close homologs, in acetyl substitutions of xylan. Simultaneous mutations of TBL32 and TBL33 resulted in a significant reduction in xylan acetyl content and endoxylanase digestion of the mutant xylan released GlcA-substituted xylooligomers without acetyl groups. Structural analysis of xylan revealed that the tbl32 tbl33 mutant had a nearly complete loss of 3-O-acetylated, 2-O-GlcA-substituted xylosyl residues. A reduction in 3-O-monoacetylated and 2,3-di-O-acetylated xylosyl residues was also observed. Simultaneous mutations of TBL32, TBL33 and ESK1 resulted in a severe reduction in xylan acetyl level down to 15% of that of the wild type, and concomitantly, severely collapsed vessels and stunted plant growth. In particular, the S2 layer of secondary walls in xylem vessels of tbl33 esk1 and tbl32 tbl33 esk1 exhibited an altered structure, indicating abnormal assembly of secondary wall polymers. These results demonstrate that TBL32 and TBL33 play an important role in xylan acetylation and normal deposition of secondary walls. PMID:26745802

  15. Mutations of Arabidopsis TBL32 and TBL33 affect xylan acetylation and secondary wall deposition

    DOE PAGESBeta

    Yuan, Youxi; Teng, Quincy; Zhong, Ruiqin; Haghighat, Marziyeh; Richardson, Elizabeth A.; Ye, Zheng -Hua; Zhang, Jin -Song

    2016-01-08

    Xylan is a major acetylated polymer in plant lignocellulosic biomass and it can be monoand di-acetylated at O-2 and O-3 as well as mono-acetylated at O-3 of xylosyl residues that is substituted with glucuronic acid (GlcA) at O-2. Based on the finding that ESK1, an Arabidopsis thaliana DUF231 protein, specifically mediates xylan 2-O- and 3-O-monoacetylation, we previously proposed that different acetyltransferase activities are required for regiospecific acetyl substitutions of xylan. Here, we demonstrate the functional roles of TBL32 and TBL33, two ESK1 close homologs, in acetyl substitutions of xylan. Simultaneous mutations of TBL32 and TBL33 resulted in a significant reductionmore » in xylan acetyl content and endoxylanase digestion of the mutant xylan released GlcA-substituted xylooligomers without acetyl groups. Structural analysis of xylan revealed that the tbl32 tbl33 mutant had a nearly complete loss of 3-O-acetylated, 2-O-GlcA-substituted xylosyl residues. A reduction in 3-Omonoacetylated and 2,3-di-O-acetylated xylosyl residues was also observed. Simultaneous mutations of TBL32, TBL33 and ESK1 resulted in a severe reduction in xylan acetyl level down to 15% of that of the wild type, and concomitantly, severely collapsed vessels and stunted plant growth. In particular, the S2 layer of secondary walls in xylem vessels of tbl33 esk1 and tbl32 tbl33 esk1 exhibited an altered structure, indicating abnormal assembly of secondary wall polymers. Furthermore, these results demonstrate that TBL32 and TBL33 play an important role in xylan acetylation and normal deposition of secondary walls.« less

  16. Mutations in NADH:ubiquinone oxidoreductase of Escherichia coli affect growth on mixed amino acids.

    PubMed Central

    Prüss, B M; Nelms, J M; Park, C; Wolfe, A J

    1994-01-01

    We isolated and characterized mutants defective in nuo, encoding NADH dehydrogenase I, the multisubunit complex homologous to eucaryotic mitochondrial complex I. By Southern hybridization and/or sequence analysis, we characterized three distinct mutations: a polar insertion designated nuoG::Tn10-1, a nonpolar insertion designated nuoF::Km-1, and a large deletion designated delta(nuoFGHIJKL)-1. Cells carrying any of these three mutations exhibited identical phenotypes. Each mutant exhibited reduced NADH oxidase activity, grew poorly on minimal salts medium containing acetate as the sole carbon source, and failed to produce the inner, L-aspartate chemotactic band on tryptone swarm plates. During exponential growth in tryptone broth, nuo mutants grew as rapidly as wild-type cells and excreted similar amounts of acetate into the medium. As they began the transition to stationary phase, in contrast to wild-type cells, the mutant cells abruptly slowed their growth and continued to excrete acetate. The growth defect was entirely suppressed by L-serine or D-pyruvate, partially suppressed by alpha-ketoglutarate or acetate, and not suppressed by L-aspartate or L-glutamate. We extended these studies, analyzing the sequential consumption of amino acids by both wild-type and nuo mutant cells growing in tryptone broth. During the lag and exponential phases, both wild-type and mutant cells consumed, in order, L-serine and L-aspartate. As they began the transition to stationary phase, both cell types consumed L-tryptophan. Whereas wild-type cells then consumed L-glutamate, glycine, L-threonine, and L-alanine, mutant cells utilized these amino acids poorly. We propose that cells defective for NADH dehydrogenase I exhibit all these phenotypes, because large NADH/NAD+ ratios inhibit certain tricarboxylic acid cycle enzymes, e.g., citrate synthase and malate dehydrogenase. Images PMID:8157582

  17. Heavy metal stress in alders: Tolerance and vulnerability of the actinorhizal symbiosis.

    PubMed

    Bélanger, Pier-Anne; Bellenger, Jean-Philippe; Roy, Sébastien

    2015-11-01

    Alders have already demonstrated their potential for the revegetation of both mining and industrial sites. These actinorhizal trees and shrubs and the actinobacteria Frankia associate in a nitrogen-fixing symbiosis which could however be negatively affected by the presence of heavy metals, and accumulate them. In our hydroponic assay with black alders, quantification of the roots and shoots metal concentrations showed that, in the absence of stress, symbiosis increases Mo and Ni root content and simultaneously decreases Mo shoot content. Interestingly, the Mo shoot content also decreases in the presence of Ni, Cu, Pb, Zn and Cd for symbiotic alders. In symbiotic alders, Pb shoot translocation was promoted in presence of Pb. On the other hand, Cd exclusion in symbiotic root tissues was observed with Pb and Cd. In the presence of symbiosis, only Cd and Pb showed translocation into aerial tissues when present in the nutrient solution. Moreover, the translocation of Ni to shoot was prevented by symbiosis in the presence of Cd, Ni and Pb. The hydroponic experiment demonstrated that alders benefit from the symbiosis, producing more biomass (total, root and shoot) than non nodulated alders in control condition, and in the presence of metals (Cu, Ni, Zn, Pb and Cd). Heavy metals did not reduce the nodule numbers (SNN), but the presence of Zn or Cd did reduce nodule allocation. Our study suggests that the Frankia-alder symbiosis is a promising (and a compatible) plant-microorganism association for the revegetation of contaminated sites, with minimal risk of metal dispersion. PMID:26091871

  18. Experimental and molecular dynamics studies showed that CBP KIX mutation affects the stability of CBP:c-Myb complex.

    PubMed

    Odoux, Anne; Jindal, Darren; Tamas, Tamara C; Lim, Benjamin W H; Pollard, Drake; Xu, Wu

    2016-06-01

    The coactivators CBP (CREBBP) and its paralog p300 (EP300), two conserved multi-domain proteins in eukaryotic organisms, regulate gene expression in part by binding DNA-binding transcription factors. It was previously reported that the CBP/p300 KIX domain mutant (Y650A, A654Q, and Y658A) altered both c-Myb-dependent gene activation and repression, and that mice with these three point mutations had reduced numbers of platelets, B cells, T cells, and red blood cells. Here, our transient transfection assays demonstrated that mouse embryonic fibroblast cells containing the same mutations in the KIX domain and without a wild-type allele of either CBP or p300, showed decreased c-Myb-mediated transcription. Dr. Wright's group solved a 3-D structure of the mouse CBP:c-Myb complex using NMR. To take advantage of the experimental structure and function data and improved theoretical calculation methods, we performed MD simulations of CBP KIX, CBP KIX with the mutations, and c-Myb, as well as binding energy analysis for both the wild-type and mutant complexes. The binding between CBP and c-Myb is mainly mediated by a shallow hydrophobic groove in the center where the side-chain of Leu302 of c-Myb plays an essential role and two salt bridges at the two ends. We found that the KIX mutations slightly decreased stability of the CBP:c-Myb complex as demonstrated by higher binding energy calculated using either MM/PBSA or MM/GBSA methods. More specifically, the KIX mutations affected the two salt bridges between CBP and c-Myb (CBP-R646 and c-Myb-E306; CBP-E665 and c-Myb-R294). Our studies also revealed differing dynamics of the hydrogen bonds between CBP-R646 and c-Myb-E306 and between CBP-E665 and c-Myb-R294 caused by the CBP KIX mutations. In the wild-type CBP:c-Myb complex, both of the hydrogen bonds stayed relatively stable. In contrast, in the mutant CBP:c-Myb complex, hydrogen bonds between R646 and E306 showed an increasing trend followed by a decreasing trend, and hydrogen

  19. Vesicular stomatitis virus glycoprotein mutations that affect membrane fusion activity and abolish virus infectivity.

    PubMed Central

    Fredericksen, B L; Whitt, M A

    1995-01-01

    We have introduced amino acid substitutions into two regions of the extracellular domain of the vesicular stomatitis virus (VSV) glycoprotein (G protein) and examined the effect of these mutations on protein transport, low-pH-induced stability of G protein oligomers, and membrane fusion activity. We suggested previously that the region between amino acids 118 and 139 may be important for the membrane fusion activity of G protein, on the basis of the characterization of a fusion-defective G protein mutant (M. A. Whitt, P. Zagouras, B. Crise, and J. K. Rose, J. Virol. 64:4907-4913, 1990). It has also been postulated by others that this region as well as the region between amino acids 181 and 212 may constitute putative internal fusion domains of VSV G protein. In this report, we show that three different amino acids substitutions between residues 118 and 139 (G-124-->E, P-127-->D, and A-133-->K) either altered or abolished low-pH-dependent membrane fusion activity. In contrast, substitutions between residues 192 and 212 resulted either in G proteins that had wild-type fusion activity or in mutant proteins in which the mutation prevented transport of G protein to the cell surface. Two of the substitutions between residues 118 and 139 (G-124-->E and P-127-->D) resulted in G proteins that were fusion defective at pH 5.7, although syncytia were observed after cells were treated with fusion buffer at pH 5.5, albeit at levels significantly less than that induced by wild-type G protein. Interestingly, when either G-124-->E or P-127-->D was incorporated into tsO45 virions, the resulting particles were not infectious, presumably because the viral envelope was not able to fuse with the proper intracellular membrane. These results support the hypothesis that the region between amino acids 118 and 139 is important for the membrane fusion activity of VSV G protein and may constitute an internal fusion domain. PMID:7853475

  20. Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato.

    PubMed

    Ruiz-Lozano, Juan Manuel; Aroca, Ricardo; Zamarreño, Ángel María; Molina, Sonia; Andreo-Jiménez, Beatriz; Porcel, Rosa; García-Mina, José María; Ruyter-Spira, Carolien; López-Ráez, Juan Antonio

    2016-02-01

    Arbuscular mycorrhizal (AM) symbiosis alleviates drought stress in plants. However, the intimate mechanisms involved, as well as its effect on the production of signalling molecules associated with the host plant-AM fungus interaction remains largely unknown. In the present work, the effects of drought on lettuce and tomato plant performance and hormone levels were investigated in non-AM and AM plants. Three different water regimes were applied, and their effects were analysed over time. AM plants showed an improved growth rate and efficiency of photosystem II than non-AM plants under drought from very early stages of plant colonization. The levels of the phytohormone abscisic acid, as well as the expression of the corresponding marker genes, were influenced by drought stress in non-AM and AM plants. The levels of strigolactones and the expression of corresponding marker genes were affected by both AM symbiosis and drought. The results suggest that AM symbiosis alleviates drought stress by altering the hormonal profiles and affecting plant physiology in the host plant. In addition, a correlation between AM root colonization, strigolactone levels and drought severity is shown, suggesting that under these unfavourable conditions, plants might increase strigolactone production in order to promote symbiosis establishment to cope with the stress. PMID:26305264

  1. Histone H2B mutations in inner region affect ubiquitination, centromere function, silencing and chromosome segregation.

    PubMed

    Maruyama, Takeshi; Nakamura, Takahiro; Hayashi, Takeshi; Yanagida, Mitsuhiro

    2006-06-01

    The reiterated nature of histone genes has hampered genetic approach to dissect the role of histones in chromatin dynamics. We here report isolation of three temperature-sensitive (ts) Schizosaccharomyces pombe strains, containing amino-acid substitutions in the sole histone H2B gene (htb1+). The mutation sites reside in the highly conserved, non-helical residues of H2B, which are implicated in DNA-protein or protein-protein interactions in the nucleosome. In the allele of htb1-72, the substitution (G52D) occurs at the DNA binding loop L1, causing disruption of the gene silencing in heterochromatic regions and lagging chromosomes in anaphase. In another allele htb1-223 (P102L) locating in the junction between alpha3 and alphaC, the mutant residue is in contact with H2A and other histones, leading to structural aberrations in the central centromere chromatin and unequal chromosome segregation in anaphase. The third allele htb1-442 (E34K) near alpha1 displayed little defect. Evidence is provided that monoubiquitinated H2B is greatly unstable in P102L mutant, possibly owing to proteasome-independent destruction or enhanced deubiquitination. Histone H2B thus plays an important role in centromere/kinetochore formation. PMID:16688222

  2. Characterization and genetic mapping of a mutation affecting apurinic endonuclease activity in Staphylococcus aureus.

    PubMed Central

    Tam, J E; Pattee, P A

    1986-01-01

    Protoplast fusion between the Rec- mutant RN981 (L. Wyman, R. V. Goering, and R. P. Novick, Genetics 76:681-702, 1974) of Staphylococcus aureus NCTC 8325 and a Rec+ NCTC 8325 derivative yielded Rec+ recombinants that exhibited the increased sensitivity to N-methyl-N'-nitro-N-nitrosoguanidine characteristic of RN981. Transformation analyses identified a specific mutation, designated ngr-374, that was responsible not only for N-methyl-N'-nitro-N-nitrosoguanidine sensitivity, but also sensitivity to methyl methanesulfonate, ethyl methanesulfonate, nitrous acid, and UV irradiation. However, ngr-374-carrying recombinants showed no significant increase in their sensitivity to mitomycin C or 4-nitroquinoline 1-oxide and were unaffected in recombination proficiency. In vitro assays showed that ngr-374-carrying strains had lower apurinic/apyrimidinic endonuclease activities than the wild type. The chromosomal locus occupied by ngr-374 was shown to exist in the gene order omega(Chr::Tn551)40-ngr-374-thrB106. PMID:2430940

  3. The kakapo Mutation Affects Terminal Arborization and Central Dendritic Sprouting of Drosophila Motorneurons

    PubMed Central

    Prokop, Andreas; Uhler, Jay; Roote, John; Bate, Michael

    1998-01-01

    The lethal mutation l(2)CA4 causes specific defects in local growth of neuronal processes. We uncovered four alleles of l(2)CA4 and mapped it to bands 50A-C on the polytene chromosomes and found it to be allelic to kakapo (Prout et al. 1997. Genetics. 146:275– 285). In embryos carrying our kakapo mutant alleles, motorneurons form correct nerve branches, showing that long distance growth of neuronal processes is unaffected. However, neuromuscular junctions (NMJs) fail to form normal local arbors on their target muscles and are significantly reduced in size. In agreement with this finding, antibodies against kakapo (Gregory and Brown. 1998. J. Cell Biol. 143:1271–1282) detect a specific epitope at all or most Drosophila NMJs. Within the central nervous system of kakapo mutant embryos, neuronal dendrites of the RP3 motorneuron form at correct positions, but are significantly reduced in size. At the subcellular level we demonstrate two phenotypes potentially responsible for the defects in neuronal branching: first, transmembrane proteins, which can play important roles in neuronal growth regulation, are incorrectly localized along neuronal processes. Second, microtubules play an important role in neuronal growth, and kakapo appears to be required for their organization in certain ectodermal cells: On the one hand, kakapo mutant embryos exhibit impaired microtubule organization within epidermal cells leading to detachment of muscles from the cuticle. On the other, a specific type of sensory neuron (scolopidial neurons) shows defects in microtubule organization and detaches from its support cells. PMID:9832556

  4. A glycosylation mutation affects cell fate in chimeras of Dictyostelium discoideum.

    PubMed Central

    Houle, J; Balthazar, J; West, C M

    1989-01-01

    Prestalk and prespore cells form a simple pattern in the pseudoplasmodium of the cellular slime mold Dictyostelium discoideum. Prestalk cells are distinguished from prespore cells by a low level of expression of a glycoantigen on their surfaces and by reduced intercellular cohesion. We examined the possible significance of these differences, using the modB mutation, which eliminates this glycoantigen genetically, leading to reduced intercellular cohesion, modB mutant cells were allowed to develop together with normal cells to form chimeric slugs. Mutant cells labeled by feeding with fluorescent bacteria were highly enriched in the prestalk cell zone at the anterior end of the slug. In contrast, normal cells, if in a minority, were concentrated in the rear part of the prespore cell zone. Immunoblot analysis and cell-by-cell double-label immunofluorescence of these mixtures showed that mutant cells underproduced several prespore cell markers. Mutant cells tended not to form spores in chimeras unless they exceeded a threshold proportion of ca. 30%. However, mutant cells showed no tendency to produce excess prestalk cells when allowed to develop alone. These findings are most simply explained by postulating that reduced glycoantigen expression and intercellular adhesion encourage a more anterior cell localization, which in turn causes differentiation into a prestalk cell. Since normal prestalk cells also show reduced glycoantigen expression and intercellular adhesion, this suggests that a similar mechanism may contribute to pattern formation during normal development. Images PMID:2726746

  5. Mutations which affect the inhibition of protein phosphatase 2A by simian virus 40 small-t antigen in vitro decrease viral transformation.

    PubMed Central

    Mungre, S; Enderle, K; Turk, B; Porrás, A; Wu, Y Q; Mumby, M C; Rundell, K

    1994-01-01

    Three independent point mutations within residues 97 to 103 of the simian virus 40-small-t antigen (small-t) greatly reduced the ability of purified small-t to inhibit protein phosphatase 2A in vitro. These mutations affected the interaction of small-t antigen with the protein phosphatase 2A A subunit translated in vitro, and a peptide from the region identified by these mutations released the A subunit from immune complexes. When introduced into virus, the mutations eliminated the ability of small-t to enhance viral transformation of growth-arrested rat F111 cells. In contrast, the mutant small-t antigens were unimpaired in the transactivation of the adenovirus E2 promoter, an activity which was reduced by a double mutation in small-t residues 43 and 45. Images PMID:8107228

  6. Hypertrophic cardiomyopathy mutations in the calponin-homology domain of ACTN2 affect actin binding and cardiomyocyte Z-disc incorporation

    PubMed Central

    Haywood, Natalie J.; Wolny, Marcin; Rogers, Brendan; Trinh, Chi H.; Shuping, Yu; Edwards, Thomas A.; Peckham, Michelle

    2016-01-01

    α-Actinin-2 (ACTN2) is the only muscle isoform of α-actinin expressed in cardiac muscle. Mutations in this protein have been implicated in mild to moderate forms of hypertrophic cardiomyopathy (HCM). We have investigated the effects of two mutations identified from HCM patients, A119T and G111V, on the secondary and tertiary structure of a purified actin binding domain (ABD) of ACTN2 by circular dichroism and X-ray crystallography, and show small but distinct changes for both mutations. We also find that both mutants have reduced F-actin binding affinity, although the differences are not significant. The full length mEos2 tagged protein expressed in adult cardiomyocytes shows that both mutations additionally affect Z-disc localization and dynamic behaviour. Overall, these two mutations have small effects on structure, function and behaviour, which may contribute to a mild phenotype for this disease. PMID:27287556

  7. Mutations in HISTONE ACETYLTRANSFERASE1 affect sugar response and gene expression in Arabidopsis

    PubMed Central

    Heisel, Timothy J.; Li, Chun Yao; Grey, Katia M.; Gibson, Susan I.

    2013-01-01

    Nutrient response networks are likely to have been among the first response networks to evolve, as the ability to sense and respond to the levels of available nutrients is critical for all organisms. Although several forward genetic screens have been successful in identifying components of plant sugar-response networks, many components remain to be identified. Toward this end, a reverse genetic screen was conducted in Arabidopsis thaliana to identify additional components of sugar-response networks. This screen was based on the rationale that some of the genes involved in sugar-response networks are likely to be themselves sugar regulated at the steady-state mRNA level and to encode proteins with activities commonly associated with response networks. This rationale was validated by the identification of hac1 mutants that are defective in sugar response. HAC1 encodes a histone acetyltransferase. Histone acetyltransferases increase transcription of specific genes by acetylating histones associated with those genes. Mutations in HAC1 also cause reduced fertility, a moderate degree of resistance to paclobutrazol and altered transcript levels of specific genes. Previous research has shown that hac1 mutants exhibit delayed flowering. The sugar-response and fertility defects of hac1 mutants may be partially explained by decreased expression of AtPV42a and AtPV42b, which are putative components of plant SnRK1 complexes. SnRK1 complexes have been shown to function as central regulators of plant nutrient and energy status. Involvement of a histone acetyltransferase in sugar response provides a possible mechanism whereby nutritional status could exert long-term effects on plant development and metabolism. PMID:23882272

  8. Mutations in the C-terminal region affect subcellular localization of crucian carp herpesvirus (CaHV) GPCR.

    PubMed

    Wang, Jun; Gui, Lang; Chen, Zong-Yan; Zhang, Qi-Ya

    2016-08-01

    G protein-coupled receptors (GPCRs) are known as seven transmembrane domain receptors and consequently can mediate diverse biological functions via regulation of their subcellular localization. Crucian carp herpesvirus (CaHV) was recently isolated from infected fish with acute gill hemorrhage. CaHV GPCR of 349 amino acids (aa) was identified based on amino acid identity. A series of variants with truncation/deletion/substitution mutation in the C-terminal (aa 315-349) were constructed and expressed in fathead minnow (FHM) cells. The roles of three key C-terminal regions in subcellular localization of CaHV GPCR were determined. Lysine-315 (K-315) directed the aggregation of the protein preferentially at the nuclear side. Predicted N-myristoylation site (GGGWTR, aa 335-340) was responsible for punctate distribution in periplasm or throughout the cytoplasm. Predicted phosphorylation site (SSR, aa 327-329) and GGGWTR together determined the punctate distribution in cytoplasm. Detection of organelles localization by specific markers showed that the protein retaining K-315 colocalized with the Golgi apparatus. These experiments provided first evidence that different mutations of CaHV GPCR C-terminals have different affects on the subcellular localization of fish herpesvirus-encoded GPCRs. The study provided valuable information and new insights into the precise interactions between herpesvirus and fish cells, and could also provide useful targets for antiviral agents in aquaculture. PMID:27059239

  9. Mutations in the 3c and 7b genes of feline coronavirus in spontaneously affected FIP cats.

    PubMed

    Borschensky, C M; Reinacher, M

    2014-10-01

    Feline infectious peritonitis (FIP) is the most frequent lethal infectious disease in cats. However, understanding of FIP pathogenesis is still incomplete. Mutations in the ORF 3c/ORF 7b genes are proposed to play a role in the occurrence of the fatal FIPV biotype. Here, we investigated 282 tissue specimens from 28 cats that succumbed to FIP. Within one cat, viral sequences from different organs were similar or identical, whereas greater discrepancies were found comparing sequences from various cats. Eleven of the cats exhibited deletions in the 3c gene, resulting in truncated amino acid sequences. The 7b gene was affected by deletions only in one cat. In three of the FIP cats, coronavirus isolates with both intact 3c genes as well as 7b genes of full length could also be detected. Thus, deletions or stop codons in the 3c sequence seem to be a frequent but not compelling feature of FIPVs. PMID:25128417

  10. Mutations that affect structure and assembly of light-harvesting proteins in the cyanobacterium Synechocystis sp. strain 6701

    SciTech Connect

    Anderson, L.K.; Rayner, M.C.; Eiserling, F.A.

    1987-01-01

    The unicellular cyanobacterium Synechocystis sp. strain 6701 was mutagenized with UV irradiation and screened for pigment changes that indicated genetic lesions involving the light-harvesting proteins of the phycobilisome. A previous examination of the pigment mutant UV16 showed an assembly defect in the phycocyanin component of the phycobilisome. Mutagenesis of UV16 produced an additional double mutant, UV16-40, with decreased phycoerythrin content. Phycocyanin and phycoerythrin were isolated from UV16-40 and compared with normal biliproteins. The results suggested that the UV16 mutation affected the alpha subunit of phycocyanin, while the phycoerythrin beta subunit from UV16-40 had lost one of its three chromophores. Characterization of the unassembled phycobilisome components in these mutants suggests that these strains will be useful for probing in vivo the regulated expression and assembly of phycobilisomes.

  11. Systematic screening for mutations in the human serotonin 1F receptor gene in patients with bipolar affective disorder and schizophrenia

    SciTech Connect

    Shimron-Abarbanell, D.; Harms, H.; Erdmann, J.; Propping, P.; Noethen, M.M.

    1996-04-09

    Using single strand conformational analysis we screened the complete coding sequence of the serotonin 1F (5-HT{sub 1F}) receptor gene for the presence of DNA sequence variation in a sample of 137 unrelated individuals including 45 schizophrenic patients, 46 bipolar patients, as well as 46 healthy controls. We detected only three rare sequence variants which are characterized by single base pair substitutions, namely a silent T{r_arrow}A transversion in the third position of codon 261 (encoding isoleucine), a silent C{r_arrow}T transition in the third position of codon 176 (encoding histidine), and a C{r_arrow}T transition in position -78 upstream from the start codon. The lack of significant mutations in patients suffering from schizophrenia and bipolar affective disorder indicates that the 5-HT{sub 1F} receptor is not commonly involved in the etiology of these diseases. 12 refs., 1 fig., 2 tabs.

  12. Interleukin-6 Deficiency Does Not Affect Motor Neuron Disease Caused by Superoxide Dismutase 1 Mutation

    PubMed Central

    Han, Yongmei; Ripley, Barry; Serada, Satoshi; Naka, Tetsuji; Fujimoto, Minoru

    2016-01-01

    Background & Aim Amyotrophic Lateral Sclerosis (ALS) is an adult-onset, progressive, motor neuron degenerative disease. Recent evidence indicates that inflammation is associated with many neurodegenerative diseases including ALS. Previously, abnormal levels of inflammatory cytokines including IL-1β, IL-6 and TNF-α were described in ALS patients and/or in mouse ALS models. In addition, one study showed that blocking IL-1β could slow down progression of ALS-like symptoms in mice. In this study, we examined a role for IL-6 in ALS, using an animal model for familial ALS. Methods Mice with mutant SOD1 (G93A) transgene, a model for familial ALS, were used in this study. The expression of the major inflammatory cytokines, IL-6, IL-1β and TNF-α, in spinal cords of these SOD1 transgenic (TG) mice were assessed by real time PCR. Mice were then crossed with IL-6(-/-) mice to generate SOD1TG/IL-6(-/-) mice. SOD1 TG/IL-6(-/-) mice (n = 17) were compared with SOD1 TG/IL-6(+/-) mice (n = 18), SOD1 TG/IL-6(+/+) mice (n = 11), WT mice (n = 15), IL-6(+/-) mice (n = 5) and IL-6(-/-) mice (n = 8), with respect to neurological disease severity score, body weight and the survival. We also histologically compared the motor neuron loss in lumber spinal cords and the atrophy of hamstring muscles between these mouse groups. Results Levels of IL-6, IL-1β and TNF-α in spinal cords of SOD1 TG mice was increased compared to WT mice. However, SOD1 TG/IL-6(-/-) mice exhibited weight loss, deterioration in motor function and shortened lifespan (167.55 ± 11.52 days), similarly to SOD1 TG /IL-6(+/+) mice (164.31±12.16 days). Motor neuron numbers and IL-1β and TNF-α levels in spinal cords were not significantly different in SOD1 TG /IL-6(-/-) mice and SOD1 TG /IL-6 (+/+) mice. Conclusion These results provide compelling preclinical evidence indicating that IL-6 does not directly contribute to motor neuron disease caused by SOD1 mutations. PMID:27070121

  13. Molecular analysis of HEXA gene in Argentinean patients affected with Tay-Sachs disease: possible common origin of the prevalent c.459+5A>G mutation.

    PubMed

    Zampieri, Stefania; Montalvo, Annalisa; Blanco, Mariana; Zanin, Irene; Amartino, Hernan; Vlahovicek, Kristian; Szlago, Marina; Schenone, Andrea; Pittis, Gabriela; Bembi, Bruno; Dardis, Andrea

    2012-05-15

    Tay-Sachs disease (TSD) is a recessively inherited disorder caused by the deficient activity of hexosaminidase A due to mutations in the HEXA gene. Up to date there is no information regarding the molecular genetics of TSD in Argentinean patients. In the present study we have studied 17 Argentinean families affected by TSD, including 20 patients with the acute infantile form and 3 with the sub-acute form. Overall, we identified 14 different mutations accounting for 100% of the studied alleles. Eight mutations were novel: 5 were single base changes leading to drastic residue changes or truncated proteins, 2 were small deletions and one was an intronic mutation that may cause a splicing defect. Although the spectrum of mutations was highly heterogeneous, a high frequency of the c.459+5G>A mutation, previously described in different populations was found among the studied cohort. Haplotype analysis suggested that in these families the c.459+5G>A mutation might have arisen by a single mutational event. PMID:22441121

  14. An affective disorder in zebrafish with mutation of the glucocorticoid receptor.

    PubMed

    Ziv, L; Muto, A; Schoonheim, P J; Meijsing, S H; Strasser, D; Ingraham, H A; Schaaf, M J M; Yamamoto, K R; Baier, H

    2013-06-01

    Upon binding of cortisol, the glucocorticoid receptor (GR) regulates the transcription of specific target genes, including those that encode the stress hormones corticotropin-releasing hormone (CRH) and adrenocorticotropic hormone. Dysregulation of the stress axis is a hallmark of major depression in human patients. However, it is still unclear how glucocorticoid signaling is linked to affective disorders. We identified an adult-viable zebrafish mutant in which the negative feedback on the stress response is disrupted, due to abolition of all transcriptional activity of GR. As a consequence, cortisol is elevated, but unable to signal through GR. When placed into an unfamiliar aquarium ('novel tank'), mutant fish become immobile ('freeze'), show reduced exploratory behavior and do not habituate to this stressor upon repeated exposure. Addition of the antidepressant fluoxetine to the holding water and social interactions restore normal behavior, followed by a delayed correction of cortisol levels. Fluoxetine does not affect the overall transcription of CRH, the mineralocorticoid receptor (MR), the serotonin transporter (Serta) or GR itself. Fluoxetine, however, suppresses the stress-induced upregulation of MR and Serta in both wild-type fish and mutants. Our studies show a conserved, protective function of glucocorticoid signaling in the regulation of emotional behavior and reveal novel molecular aspects of how chronic stress impacts vertebrate brain physiology and behavior. Importantly, the zebrafish model opens up the possibility of high-throughput drug screens in search of new classes of antidepressants. PMID:22641177

  15. Arabidopsis AtADF1 is functionally affected by mutations on actin binding sites.

    PubMed

    Dong, Chun-Hai; Tang, Wei-Ping; Liu, Jia-Yao

    2013-03-01

    The plant actin depolymerizing factor (ADF) binds to both monomeric and filamentous actin, and is directly involved in the depolymerization of actin filaments. To better understand the actin binding sites of the Arabidopsis thaliana L. AtADF1, we generated mutants of AtADF1 and investigated their functions in vitro and in vivo. Analysis of mutants harboring amino acid substitutions revealed that charged residues (Arg98 and Lys100) located at the α-helix 3 and forming an actin binding site together with the N-terminus are essential for both G- and F-actin binding. The basic residues on the β-strand 5 (K82/A) and the α-helix 4 (R135/A, R137/A) form another actin binding site that is important for F-actin binding. Using transient expression of CFP-tagged AtADF1 mutant proteins in onion (Allium cepa) peel epidermal cells and transgenic Arabidopsis thaliana L. plants overexpressing these mutants, we analyzed how these mutant proteins regulate actin organization and affect seedling growth. Our results show that the ADF mutants with a lower affinity for actin filament binding can still be functional, unless the affinity for actin monomers is also affected. The G-actin binding activity of the ADF plays an essential role in actin binding, depolymerization of actin polymers, and therefore in the control of actin organization. PMID:23190411

  16. Interacting genes that affect microtubule function in Drosophila melanogaster: Two classes of mutation revert the failure to complement between hay sup nc2 and mutations in tubulin genes

    SciTech Connect

    Regan, C.L.; Fuller, M.T. )

    1990-05-01

    The recessive male sterile mutation hay{sup nc2} of Drosophila melanogaster fails to complement certain {beta}{sub 2}-tubulin and {alpha}-tubulin mutations, suggesting that the haywire product plays a role in microtubule function, perhaps as a structural component of microtubules. The genetic interaction appears to require the presence of the aberrant product encoded by hay{sup nc2}, which may act as a structural poison. Based on this observation, the authors have isolated ten new mutations with EMS that revert the failure to complement between hay{sup nc2} and B2t{sup n}. The revertants tested behaved as intragenic mutations of hay in recombination tests, and feel into two phenotypic classes, suggesting two functional domains of the hay gene product. Some revertants were hemizygous viable and less severe than hay{sup nc2} in their recessive phenotype. These mutations might revert the poison by restoring the aberrant product encoded by the hay{sup nc2} allele to more wild-type function. Most of the revertants were recessive lethal mutations, indicating that the hay gene product is essential for viability. These more extreme mutations could revert the poison by destroying the ability of the aberrant haywire{sup nc2} product to interact structurally with microtubules. Flies heterozygous for the original hay{sup nc2} allele and an extreme revertant show defects in both the structure and the function of the male meiotic spindle.

  17. The effect of pseudo-microgravity on the symbiosis of plants and microorganisms

    NASA Astrophysics Data System (ADS)

    Tomita-Yokotani, Kaori; Maki, Asano; Aoki, Toshio; Tamura, Kenji; Wada, Hidenori; Hashimoto, Hirofumi; Yamashita, Masamichi

    The symbiosis of plants and microorganisms is important to conduct agriculture under space environment. However, we have less knowledge on whether this kind of symbiosis can be established under space condition. We examined the functional compounds responsible to symbiosis between rhizobiaum and Lotus japonicus as a model of symbiotic combination. The existence of the substances for their symbiosis, some flavonoids, have already been known from the study of gene expression, but the detail structures have not yet been elucidated. Pseudomicrogravity was generated by the 3D-clinorotation. Twenty flavonoids were found in the extracts of 16 days plants of Lotus japonicus grown under the normal gravity by HPLC. Content of two flavonoids among them was affected by the infection of Mesorhizobium loti to them. It has a possibility that the two flavonoids were key substances for their combination process. The productions of those flavonoids were confirmed also under the pseudo-microgravity. The amount of one flavonoid was increased by both infection of rhizobium and exposure to the normal and pseudo-micro gravity. Chemical species of these flavonoids were identified by LC- ESI/MS and spectroscopic analysis. To show the effects of pseudo-microgravity on the gene expression, enzymic activities related to the functional compounds are evaluated after the rhizobial infection.

  18. Insights on the Impact of Arbuscular Mycorrhizal Symbiosis on Tomato Tolerance to Water Stress.

    PubMed

    Chitarra, Walter; Pagliarani, Chiara; Maserti, Biancaelena; Lumini, Erica; Siciliano, Ilenia; Cascone, Pasquale; Schubert, Andrea; Gambino, Giorgio; Balestrini, Raffaella; Guerrieri, Emilio

    2016-06-01

    Arbuscular mycorrhizal (AM) fungi, which form symbioses with the roots of the most important crop species, are usually considered biofertilizers, whose exploitation could represent a promising avenue for the development in the future of a more sustainable next-generation agriculture. The best understood function in symbiosis is an improvement in plant mineral nutrient acquisition, as exchange for carbon compounds derived from the photosynthetic process: this can enhance host growth and tolerance to environmental stresses, such as water stress (WS). However, physiological and molecular mechanisms occurring in arbuscular mycorrhiza-colonized plants and directly involved in the mitigation of WS effects need to be further investigated. The main goal of this work is to verify the potential impact of AM symbiosis on the plant response to WS To this aim, the effect of two AM fungi (Funneliformis mosseae and Rhizophagus intraradices) on tomato (Solanum lycopersicum) under the WS condition was studied. A combined approach, involving ecophysiological, morphometric, biochemical, and molecular analyses, has been used to highlight the mechanisms involved in plant response to WS during AM symbiosis. Gene expression analyses focused on a set of target genes putatively involved in the plant response to drought, and in parallel, we considered the expression changes induced by the imposed stress on a group of fungal genes playing a key role in the water-transport process. Taken together, the results show that AM symbiosis positively affects the tolerance to WS in tomato, with a different plant response depending on the AM fungi species involved. PMID:27208301

  19. Insights on the Impact of Arbuscular Mycorrhizal Symbiosis on Tomato Tolerance to Water Stress1[OPEN

    PubMed Central

    Siciliano, Ilenia

    2016-01-01

    Arbuscular mycorrhizal (AM) fungi, which form symbioses with the roots of the most important crop species, are usually considered biofertilizers, whose exploitation could represent a promising avenue for the development in the future of a more sustainable next-generation agriculture. The best understood function in symbiosis is an improvement in plant mineral nutrient acquisition, as exchange for carbon compounds derived from the photosynthetic process: this can enhance host growth and tolerance to environmental stresses, such as water stress (WS). However, physiological and molecular mechanisms occurring in arbuscular mycorrhiza-colonized plants and directly involved in the mitigation of WS effects need to be further investigated. The main goal of this work is to verify the potential impact of AM symbiosis on the plant response to WS. To this aim, the effect of two AM fungi (Funneliformis mosseae and Rhizophagus intraradices) on tomato (Solanum lycopersicum) under the WS condition was studied. A combined approach, involving ecophysiological, morphometric, biochemical, and molecular analyses, has been used to highlight the mechanisms involved in plant response to WS during AM symbiosis. Gene expression analyses focused on a set of target genes putatively involved in the plant response to drought, and in parallel, we considered the expression changes induced by the imposed stress on a group of fungal genes playing a key role in the water-transport process. Taken together, the results show that AM symbiosis positively affects the tolerance to WS in tomato, with a different plant response depending on the AM fungi species involved. PMID:27208301

  20. [Effect of five fungicides on growth of Glycyrrhiza uralensis and efficiency of mycorrhizal symbiosis].

    PubMed

    Li, Peng-ying; Yang, Guang; Zhou, Xiu-teng; Zhou, Liane-yun; Shao, Ai-juan; Chen, Mei-lan

    2015-12-01

    In order to obtain the fungicides with minimal impact on efficiency of mycorrhizal symbiosis, the effect of five fungicides including polyoxins, jinggangmycins, thiophanate methylate, chlorothalonil and carbendazim on the growth of medicinal plant and efficiency of mycorrhizal symbiosis were studied. Pot cultured Glycyrrhiza uralensis was treated with different fungicides with the concentration that commonly used in the field. 60 d after treated with fungicides, infection rate, infection density, biomass indexes, photosyn- thetic index and the content of active component were measured. Experimental results showed that carbendazim had the strongest inhibition on mycorrhizal symbiosis effect. Carbendazim significantly inhibited the mycorrhizal infection rate, significantly suppressed the actual photosynthetic efficiency of G. uralensis and the most indicators of biomass. Polyoxins showed the lowest inhibiting affection. Polyoxins had no significant effect on mycorrhizal infection rate, the actual photosynthetic efficiency of G. uralensis and the most indicators of biomass. The other three fungicides also had an inhibitory effect on efficiency of mycorrhizal symbiosis, and the inhibition degrees were all between polyoxins's and carbendazim's. The author considered that fungicide's inhibition degree on mycorrhizal effect might be related with the species of fungicides, so the author suggested that the farmer should try to choose bio-fungicides like polyoxins. PMID:27141668

  1. High Incidence of Noonan Syndrome Features Including Short Stature and Pulmonic Stenosis in Patients carrying NF1 Missense Mutations Affecting p.Arg1809: Genotype-Phenotype Correlation.

    PubMed

    Rojnueangnit, Kitiwan; Xie, Jing; Gomes, Alicia; Sharp, Angela; Callens, Tom; Chen, Yunjia; Liu, Ying; Cochran, Meagan; Abbott, Mary-Alice; Atkin, Joan; Babovic-Vuksanovic, Dusica; Barnett, Christopher P; Crenshaw, Melissa; Bartholomew, Dennis W; Basel, Lina; Bellus, Gary; Ben-Shachar, Shay; Bialer, Martin G; Bick, David; Blumberg, Bruce; Cortes, Fanny; David, Karen L; Destree, Anne; Duat-Rodriguez, Anna; Earl, Dawn; Escobar, Luis; Eswara, Marthanda; Ezquieta, Begona; Frayling, Ian M; Frydman, Moshe; Gardner, Kathy; Gripp, Karen W; Hernández-Chico, Concepcion; Heyrman, Kurt; Ibrahim, Jennifer; Janssens, Sandra; Keena, Beth A; Llano-Rivas, Isabel; Leppig, Kathy; McDonald, Marie; Misra, Vinod K; Mulbury, Jennifer; Narayanan, Vinodh; Orenstein, Naama; Galvin-Parton, Patricia; Pedro, Helio; Pivnick, Eniko K; Powell, Cynthia M; Randolph, Linda; Raskin, Salmo; Rosell, Jordi; Rubin, Karol; Seashore, Margretta; Schaaf, Christian P; Scheuerle, Angela; Schultz, Meredith; Schorry, Elizabeth; Schnur, Rhonda; Siqveland, Elizabeth; Tkachuk, Amanda; Tonsgard, James; Upadhyaya, Meena; Verma, Ishwar C; Wallace, Stephanie; Williams, Charles; Zackai, Elaine; Zonana, Jonathan; Lazaro, Conxi; Claes, Kathleen; Korf, Bruce; Martin, Yolanda; Legius, Eric; Messiaen, Ludwine

    2015-11-01

    Neurofibromatosis type 1 (NF1) is one of the most frequent genetic disorders, affecting 1:3,000 worldwide. Identification of genotype-phenotype correlations is challenging because of the wide range clinical variability, the progressive nature of the disorder, and extreme diversity of the mutational spectrum. We report 136 individuals with a distinct phenotype carrying one of five different NF1 missense mutations affecting p.Arg1809. Patients presented with multiple café-au-lait macules (CALM) with or without freckling and Lisch nodules, but no externally visible plexiform neurofibromas or clear cutaneous neurofibromas were found. About 25% of the individuals had Noonan-like features. Pulmonic stenosis and short stature were significantly more prevalent compared with classic cohorts (P < 0.0001). Developmental delays and/or learning disabilities were reported in over 50% of patients. Melanocytes cultured from a CALM in a segmental NF1-patient showed two different somatic NF1 mutations, p.Arg1809Cys and a multi-exon deletion, providing genetic evidence that p.Arg1809Cys is a loss-of-function mutation in the melanocytes and causes a pigmentary phenotype. Constitutional missense mutations at p.Arg1809 affect 1.23% of unrelated NF1 probands in the UAB cohort, therefore this specific NF1 genotype-phenotype correlation will affect counseling and management of a significant number of patients. PMID:26178382

  2. Mutations Affecting Internal TEA Blockade Identify the Probable Pore-Forming Region of a K^+ Channel

    NASA Astrophysics Data System (ADS)

    Yellen, Gary; Jurman, Mark E.; Abramson, Tatiana; MacKinnon, Roderick

    1991-02-01

    The active site of voltage-activated potassium channels is a transmembrane aqueous pore that permits ions to permeate the cell membrane in a rapid yet highly selective manner. A useful probe for the pore of potassium-selective channels is the organic ion tetraethylammonium (TEA), which binds with millimolar affinity to the intracellular opening of the pore and blocks potassium current. In the potassium channel encoded by the Drosophila Shaker gene, an amino acid residue that specifically affects the affinity for intracellular TEA has now been identified by site-directed mutagenesis. This residue is in the middle of a conserved stretch of 18 amino acids that separates two locations that are both near the external opening of the pore. These findings suggest that this conserved region is intimately involved in the formation of the ion conduction pore of voltage-activated potassium channels. Further, a stretch of only eight amino acid residues must traverse 80 percent of the transmembrane electric potential difference.

  3. Mutations affecting sensitivity of the cellular slime mold Dictyostelium discoideum to DNA-damaging agents.

    PubMed

    Bronner, C E; Welker, D L; Deering, R A

    1992-09-01

    We describe 22 new mutants of D. discoideum that are sensitive to DNA damage. These mutants were isolated on the basis of sensitivity to either temperature, gamma-rays, or 4-nitroquinolone-1-oxide (4NQO). The doses of gamma-rays, ultraviolet light (UV), and 4NQO required to reduce the survival of colony-forming ability of these mutants to 10% (D10) range from 2% to 100% of the D10s for the nonmutant, parent strains. For most of the mutants, those which are very sensitive to one agent are very sensitive to all agents tested and those which are moderately sensitive to one agent, are moderately sensitive to all agents tested. One mutant is sensitive only to 4NQO. Linkage relationships have been examined for 13 of these mutants. This linkage information was used to design complementation tests to determine allelism with previously characterized complementation groups affecting sensitivity to radiation. 4 of the new mutants fall within previously identified complementation groups and 3 new complementation groups have been identified (radJ, radK and radL). Other new loci probably also exist among these new mutants. This brings the number of characterized mutants of D. discoideum which are sensitive to DNA-damaging agents to 33 and the number of assigned complementation groups to 11. PMID:1380652

  4. Epigenetic Mutation of RAV6 Affects Leaf Angle and Seed Size in Rice.

    PubMed

    Zhang, Xiangqian; Sun, Jing; Cao, Xiaofeng; Song, Xianwei

    2015-11-01

    Heritable epigenetic variants of genes, termed epialleles, can broaden genetic and phenotypic diversity in eukaryotes. Epialleles may also provide a new source of beneficial traits for crop breeding, but very few epialleles related to agricultural traits have been identified in crops. Here, we identified Epi-rav6, a gain-of-function epiallele of rice (Oryza sativa) RELATED TO ABSCISIC ACID INSENSITIVE3 (ABI3)/VIVIPAROUS1 (VP1) 6 (RAV6), which encodes a B3 DNA-binding domain-containing protein. The Epi-rav6 plants show larger lamina inclination and smaller grain size; these agronomically important phenotypes are inherited in a semidominant manner. We did not find nucleotide sequence variation of RAV6. Instead, we found hypomethylation in the promoter region of RAV6, which caused ectopic expression of RAV6 in Epi-rav6 plants. Bisulfite analysis revealed that cytosine methylation of four CG and two CNG loci within a continuous 96-bp region plays essential roles in regulating RAV6 expression; this region contains a conserved miniature inverted repeat transposable element transposon insertion in cultivated rice genomes. Overexpression of RAV6 in the wild type phenocopied the Epi-rav6 phenotype. The brassinosteroid (BR) receptor BR INSENSITIVE1 and BR biosynthetic genes EBISU DWARF, DWARF11, and BR-DEFICIENT DWARF1 were ectopically expressed in Epi-rav6 plants. Also, treatment with a BR biosynthesis inhibitor restored the leaf angle defects of Epi-rav6 plants. This indicates that RAV6 affects rice leaf angle by modulating BR homeostasis and demonstrates an essential regulatory role of epigenetic modification on a key gene controlling important agricultural traits. Thus, our work identifies a unique rice epiallele, which may represent a common phenomenon in complex crop genomes. PMID:26351308

  5. Speciation by Symbiosis: the Microbiome and Behavior

    PubMed Central

    Shropshire, J. Dylan

    2016-01-01

    ABSTRACT Species are fundamental units of comparison in biology. The newly discovered importance and ubiquity of host-associated microorganisms are now stimulating work on the roles that microbes can play in animal speciation. We previously synthesized the literature and advanced concepts of speciation by symbiosis with notable attention to hybrid sterility and lethality. Here, we review recent studies and relevant data on microbes as players in host behavior and behavioral isolation, emphasizing the patterns seen in these analyses and highlighting areas worthy of additional exploration. We conclude that the role of microbial symbionts in behavior and speciation is gaining exciting traction and that the holobiont and hologenome concepts afford an evolving intellectual framework to promote research and intellectual exchange between disciplines such as behavior, microbiology, genetics, symbiosis, and speciation. Given the increasing centrality of microbiology in macroscopic life, microbial symbiosis is arguably the most neglected aspect of animal and plant speciation, and studying it should yield a better understanding of the origin of species. PMID:27034284

  6. Speciation by Symbiosis: the Microbiome and Behavior.

    PubMed

    Shropshire, J Dylan; Bordenstein, Seth R

    2016-01-01

    Species are fundamental units of comparison in biology. The newly discovered importance and ubiquity of host-associated microorganisms are now stimulating work on the roles that microbes can play in animal speciation. We previously synthesized the literature and advanced concepts of speciation by symbiosis with notable attention to hybrid sterility and lethality. Here, we review recent studies and relevant data on microbes as players in host behavior and behavioral isolation, emphasizing the patterns seen in these analyses and highlighting areas worthy of additional exploration. We conclude that the role of microbial symbionts in behavior and speciation is gaining exciting traction and that the holobiont and hologenome concepts afford an evolving intellectual framework to promote research and intellectual exchange between disciplines such as behavior, microbiology, genetics, symbiosis, and speciation. Given the increasing centrality of microbiology in macroscopic life, microbial symbiosis is arguably the most neglected aspect of animal and plant speciation, and studying it should yield a better understanding of the origin of species. PMID:27034284

  7. Use of advanced recombinant lines to study the impact and potential of mutations affecting starch synthesis in barley☆

    PubMed Central

    Howard, Thomas P.; Fahy, Brendan; Leigh, Fiona; Howell, Phil; Powell, Wayne; Greenland, Andy; Trafford, Kay; Smith, Alison M.

    2014-01-01

    The effects on barley starch and grain properties of four starch synthesis mutations were studied during the introgression of the mutations from diverse backgrounds into an elite variety. The lys5f (ADPglucose transporter), wax (granule-bound starch synthase), isa1 (debranching enzyme isoamylase 1) and sex6 (starch synthase IIa) mutations were introgressed into NFC Tipple to give mutant and wild-type BC2F4 families with different genomic contributions of the donor parent. Comparison of starch and grain properties between the donor parents, the BC2F4 families and NFC Tipple allowed the effects of the mutations to be distinguished from genetic background effects. The wax and sex6 mutations had marked effects on starch properties regardless of genetic background. The sex6 mutation conditioned low grain weight and starch content, but the wax mutation did not. The lys5 mutation conditioned low grain weight and starch content, but exceptionally high β-glucan contents. The isa1 mutation promotes synthesis of soluble α-glucan (phytoglycogen). Its introgression into NFC Tipple increased grain weight and total α-glucan content relative to the donor parent, but reduced the ratio of phytoglycogen to starch. This study shows that introgression of mutations into a common, commercial background provides new insights that could not be gained from the donor parent. PMID:24748716

  8. Molecular characterization of a mutation affecting abscisic acid biosynthesis and consequently stomatal responses to humidity in an agriculturally important species.

    PubMed

    McAdam, Scott A M; Sussmilch, Frances C; Brodribb, Timothy J; Ross, John J

    2015-01-01

    Mutants deficient in the phytohormone abscisic acid (ABA) have been instrumental in determining not only the biosynthetic pathway for this hormone, but also its physiological role in land plants. The wilty mutant of Pisum sativum is one of the classical, well-studied ABA-deficient mutants; however, this mutant remains uncharacterized at a molecular level. Using a candidate gene approach, we show that the wilty mutation affects the xanthoxin dehydrogenase step in ABA biosynthesis. To date, this step has only been represented by mutants in the ABA2 gene of Arabidopsis thaliana. Functional ABA biosynthesis appears to be critical for normal stomatal responses to changes in humidity in angiosperms, with wilty mutant plants having no increase in foliar ABA levels in response to a doubling in vapour pressure deficit, and no closure of stomata. Phylogenetic analysis of the ABA2 gene family from diverse land plants indicates that an ABA-biosynthesis-specific short-chain dehydrogenase (ABA2) evolved in the earliest angiosperms. The relatively recent origin of specificity in this step has important implications for both the evolution of ABA biosynthesis and action in land plants. PMID:26216469

  9. Fanconi anemia with biallelic FANCD1/BRCA2 mutations - Case report of a family with three affected children.

    PubMed

    Svojgr, Karel; Sumerauer, David; Puchmajerova, Alena; Vicha, Ales; Hrusak, Ondrej; Michalova, Kyra; Malis, Josef; Smisek, Petr; Kyncl, Martin; Novotna, Drahuse; Machackova, Eva; Jencik, Jan; Pycha, Karel; Vaculik, Miroslav; Kodet, Roman; Stary, Jan

    2016-03-01

    Fanconi anemia, complementation group D1 with bi-allelic FANCD1 (BRCA2) mutations, is a very rare genetic disorder characterized by early onset of childhood malignancies, including acute leukemia, brain cancer and nephroblastoma. Here, we present a case report of a family with 3 affected children in terms of treatment outcome, toxicity and characterization of the malignancies using comprehensive cytogenetic analysis. The first child was diagnosed with T-cell acute lymphoblastic leukemia when he was 11 months old. During chemotherapy, he suffered from repeated pancytopenia, sepsis and severe vincristine polyneuropathy, and 18 months after primary diagnosis, he succumbed to secondary acute monocytic leukemia. The second child was diagnosed with stage 2 triphasic nephroblastoma (Wilms tumor), when he was 3 years and 11 months old. During chemotherapy, he suffered from vincristine polyneuropathy. Currently, he is in complete remission, 29 months following the initial diagnosis. The third child was diagnosed with medulloblastoma with classical histology, when she was 4 years and 5 months old. After the first cycle of chemotherapy, she suffered from prolonged pancytopenia, sepsis and severe skin and mucosal toxicity. Six weeks after primary diagnosis, a first relapse in the posterior fossa was diagnosed, and at 7 and half months after primary diagnosis, a second relapse was diagnosed that led to the patient's death. Our case report underscores tumor heterogeneity, treatment toxicity and poor outcome in Fanconi anemia patients of complementation group D1. PMID:26657402

  10. Molecular characterization of a mutation affecting abscisic acid biosynthesis and consequently stomatal responses to humidity in an agriculturally important species

    PubMed Central

    McAdam, Scott A. M.; Sussmilch, Frances C.; Brodribb, Timothy J.; Ross, John J.

    2015-01-01

    Mutants deficient in the phytohormone abscisic acid (ABA) have been instrumental in determining not only the biosynthetic pathway for this hormone, but also its physiological role in land plants. The wilty mutant of Pisum sativum is one of the classical, well-studied ABA-deficient mutants; however, this mutant remains uncharacterized at a molecular level. Using a candidate gene approach, we show that the wilty mutation affects the xanthoxin dehydrogenase step in ABA biosynthesis. To date, this step has only been represented by mutants in the ABA2 gene of Arabidopsis thaliana. Functional ABA biosynthesis appears to be critical for normal stomatal responses to changes in humidity in angiosperms, with wilty mutant plants having no increase in foliar ABA levels in response to a doubling in vapour pressure deficit, and no closure of stomata. Phylogenetic analysis of the ABA2 gene family from diverse land plants indicates that an ABA-biosynthesis-specific short-chain dehydrogenase (ABA2) evolved in the earliest angiosperms. The relatively recent origin of specificity in this step has important implications for both the evolution of ABA biosynthesis and action in land plants. PMID:26216469

  11. Effects of multiple climate change factors on the tall fescue–fungal endophyte symbiosis: infection frequency and tissue chemistry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    •Climate change (altered CO2, warming, and precipitation) may affect plant–microbial interactions, such as the Lolium arundinaceum–Neotyphodium coenophialum symbiosis, to alter future ecosystem structure and function. •To assess this possibility, tall fescue tillers were collected from an existing c...

  12. Mutations affecting two adjacent amino acid residues in the alpha subunit of RNA polymerase block transcriptional activation by the bacteriophage P2 Ogr protein.

    PubMed Central

    Ayers, D J; Sunshine, M G; Six, E W; Christie, G E

    1994-01-01

    The bacteriophage P2 ogr gene product is a positive regulator of transcription from P2 late promoters. The ogr gene was originally defined by compensatory mutations that overcame the block to P2 growth imposed by a host mutation, rpoA109, in the gene encoding the alpha subunit of RNA polymerase. DNA sequence analysis has confirmed that this mutation affects the C-terminal region of the alpha subunit, changing a leucine residue at position 290 to a histidine (rpoAL290H). We have employed a reporter plasmid system to screen other, previously described, rpoA mutants for effects on activation of a P2 late promoter and have identified a second allele, rpoA155, that blocks P2 late transcription. This mutation lies just upstream of rpoAL290H, changing the leucine residue at position 289 to a phenylalanine (rpoAL289F). The effect of the rpoAL289F mutation is not suppressed by the rpoAL290H-compensatory P2 ogr mutation. P2 ogr mutants that overcome the block imposed by rpoAL289F were isolated and characterized. Our results are consistent with a direct interaction between Ogr and the alpha subunit of RNA polymerase and support a model in which transcription factor contact sites within the C terminus of alpha are discrete and tightly clustered. PMID:8002564

  13. Interallelic complementation of mutations in propionic acidemia by microinjection of mutant cDNAs into fibroblasts of affected patients

    SciTech Connect

    Loyer, M.; Leclerc, D.; Gravel, R.A.

    1994-09-01

    Propionic acidemia is a rare autosomal recessive disorder resulting from defects of the {alpha} or {beta} subunit of biotin-dependent propionyl-CoA carboxylase (PCC). Mutations are assigned to defects of the PCCA ({alpha} subunit) or PCCB ({beta} subunit) gene through complementation studies after somatic fusion of patient cell lines. About two-thirds of patients with {beta} subunit defects (complementation group pccBC) show interallelic complementation in cell fusion experiments (subgroups pccB and pccC), monitored by the PCC-dependent metabolisms of {sup 14}C-propionate. Most patient cell lines are heteroallelic for two different mutations, leaving ambiguous the identity of the mutation participating in interallelic complementation. To identify the complementing mutations, we have expressed {beta}-subunit cDNAs containing individual mutations by microinjection of the cDNAs in recipient cells from patients with {beta} subunit defects. Correction of the PCC defect was monitored by autoradiography of {sup 14}C-propionate incorporation. In some experiments, cDNAs were co-injected with a plasmid expressing the E. coli lacZ gene as a positive control for successful injection. Two mutations from the pccB subgroup showed complementation when injected into pccC cells; dupKICK140-143 and Pro228Leu. Similarly, two mutations from the pccC subgroup complemented after injection into pccB cells; {Delta}Ile408 and Arg410Trp. No mutation complemented with mutation of the pccBC group which are classified as non-complementing in cell fusion experiments. The results show that the complementing pccB mutations are found in the N-terminal half of the {beta} subunit, while the complementing pccC mutations cluxter at a site in the C-terminal half. The latter site is a candidate for the propionyl-CoA binding site based on sequence identity with a region of transcarboxylase from Propionibacterium shermanii.

  14. Interrelationships between mycorrhizal symbiosis, soil pH and plant sex modify the performance of Antennaria dioica

    NASA Astrophysics Data System (ADS)

    Varga, Sandra; Kytöviita, Minna-Maarit

    2010-05-01

    AM symbiosis is usually beneficial for plants, but the benefits gained may depend on the soil abiotic factors. In dioecious plants, female and male individuals have different resource demands and allocation patterns. As a consequence of these differences, it is logical to assume that female and male plants differ in their relationship with arbuscular mycorrhizal (AM) fungi, although this has rarely been examined. We used a factorial greenhouse experiment to investigate whether female and male plants in the dioecious model species Antennaria dioica have a different relationship with their AM symbionts under two soil pH levels. In particular, we asked: (1) Do the sexes in A. dioica have sex-specific benefits from AM symbiosis? (2) If so, which sex gains the highest benefit? (3) How does soil pH affect the sex - AM fungal relationship? Our results indicate that the sexes responded similarly to AM symbiosis and pH when mycorrhizal benefit was examined as growth and phosphorus accumulation. However, the sexes differed in response to AM symbiosis in terms of survival, as mortality was increased due to AM symbiosis in female plants whilst the opposite effect was detected in males. The plant-AM fungus relationship was significantly affected by soil pH as lowering the soil pH decreased the benefits gained by the plants from the mycorrhizal fungus. Taken together, our findings indicate that AM symbiosis is beneficial for plants depending on the life history trait considered. In addition, interactions between plants and their AM symbionts are modified by soil factors and the sex of the plant.

  15. Characterization of a Disease-associated Mutation Affecting a Putative Splicing Regulatory Element in Intron 6b of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Gene*

    PubMed Central

    Faà, Valeria; Incani, Federica; Meloni, Alessandra; Corda, Denise; Masala, Maddalena; Baffico, A. Maria; Seia, Manuela; Cao, Antonio; Rosatelli, M. Cristina

    2009-01-01

    Cystic fibrosis (CF) is a common recessive disorder caused by >1600 mutations in the CF transmembrane conductance regulator (CFTR) gene. About 13% of CFTR mutations are classified as “splicing mutations,” but for almost 40% of these, their role in affecting the pre-mRNA splicing of the gene is not yet defined. In this work, we describe a new splicing mutation detected in three unrelated Italian CF patients. By DNA analyses and mRNA studies, we identified the c.1002–1110_1113delTAAG mutation localized in intron 6b of the CFTR gene. At the mRNA level, this mutation creates an aberrant inclusion of a sequence of 101 nucleotides between exons 6b and 7. This sequence corresponds to a portion of intron 6b and resembles a cryptic exon because it is characterized by an upstream ag and a downstream gt sequence, which are most probably recognized as 5′- and 3′-splice sites by the spliceosome. Through functional analysis of this splicing defect, we show that this mutation abolishes the interaction of the splicing regulatory protein heterogeneous nuclear ribonucleoprotein A2/B1 with an intronic splicing regulatory element and creates a new recognition motif for the SRp75 splicing factor, causing activation of the cryptic exon. Our results show that the c.1002–1110_1113delTAAG mutation creates a new intronic splicing regulatory element in intron 6b of the CFTR gene exclusively recognized by SRp75. PMID:19759008

  16. High dietary intake of sodium selenite does not affect gene mutation frequency in rat colon and liver

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gene mutations have been implicated in the etiology of cancer. In the present study, we utilized Big Blue transgenic rats to evaluate the in vivo mutation frequency of the ' cII gene in rats fed either a Se-deficient (0 µg Se/g diet) or selenium-supplemented diet (2 µg Se/g diet) (n=6 rats/diet) and...

  17. Modeling symbiosis by interactions through species carrying capacities

    NASA Astrophysics Data System (ADS)

    Yukalov, V. I.; Yukalova, E. P.; Sornette, D.

    2012-08-01

    We introduce a mathematical model of symbiosis between different species by taking into account the influence of each species on the carrying capacities of the others. The modeled entities can pertain to biological and ecological societies or to social, economic and financial societies. Our model includes three basic types: symbiosis with direct mutual interactions, symbiosis with asymmetric interactions, and symbiosis without direct interactions. In all cases, we provide a complete classification of all admissible dynamical regimes. The proposed model of symbiosis turned out to be very rich, as it exhibits four qualitatively different regimes: convergence to stationary states, unbounded exponential growth, finite-time singularity, and finite-time death or extinction of species.

  18. The Cystic Fibrosis-causing Mutation ΔF508 Affects Multiple Steps in Cystic Fibrosis Transmembrane Conductance Regulator Biogenesis*

    PubMed Central

    Thibodeau, Patrick H.; Richardson, John M.; Wang, Wei; Millen, Linda; Watson, Jarod; Mendoza, Juan L.; Du, Kai; Fischman, Sharon; Senderowitz, Hanoch; Lukacs, Gergely L.; Kirk, Kevin; Thomas, Philip J.

    2010-01-01

    The deletion of phenylalanine 508 in the first nucleotide binding domain of the cystic fibrosis transmembrane conductance regulator is directly associated with >90% of cystic fibrosis cases. This mutant protein fails to traffic out of the endoplasmic reticulum and is subsequently degraded by the proteasome. The effects of this mutation may be partially reversed by the application of exogenous osmolytes, expression at low temperature, and the introduction of second site suppressor mutations. However, the specific steps of folding and assembly of full-length cystic fibrosis transmembrane conductance regulator (CFTR) directly altered by the disease-causing mutation are unclear. To elucidate the effects of the ΔF508 mutation, on various steps in CFTR folding, a series of misfolding and suppressor mutations in the nucleotide binding and transmembrane domains were evaluated for effects on the folding and maturation of the protein. The results indicate that the isolated NBD1 responds to both the ΔF508 mutation and intradomain suppressors of this mutation. In addition, identification of a novel second site suppressor of the defect within the second transmembrane domain suggests that ΔF508 also effects interdomain interactions critical for later steps in the biosynthesis of CFTR. PMID:20667826

  19. Persistence time of loss-of-function mutations at nonessential loci affecting eye color in Drosophila melanogaster.

    PubMed

    Yampolsky, Lev Y; Allen, Chenoa; Shabalina, Svetlana A; Kondrashov, Alexey S

    2005-12-01

    Persistence time of a mutant allele, the expected number of generations before its elimination from the population, can be estimated as the ratio of the number of segregating mutations per individual over the mutation rate per generation. We screened two natural populations of Drosophila melanogaster for mutations causing clear-cut eye phenotypes and detected 25 mutant alleles, falling into 19 complementation groups, in 1164 haploid genomes, which implies 0.021 eye mutations/genome. The de novo haploid mutation rate for the same set of loci was estimated as 2 x 10(-4) in a 10-generation mutation-accumulation experiment. Thus, the average persistence time of all mutations causing clear-cut eye phenotypes is approximately 100 generations (95% confidence interval: 61-219). This estimate shows that the strength of selection against phenotypically drastic alleles of nonessential loci is close to that against recessive lethals. In both cases, deleterious alleles are apparently eliminated by selection against heterozygous individuals, which show no visible phenotypic differences from wild type. PMID:16118190

  20. Symbiosis of sea anemones and hermit crabs: different resource utilization patterns in the Aegean Sea

    NASA Astrophysics Data System (ADS)

    Vafeiadou, Anna-Maria; Antoniadou, Chryssanthi; Chintiroglou, Chariton

    2012-09-01

    The small-scale distribution and resource utilization patterns of hermit crabs living in symbiosis with sea anemones were investigated in the Aegean Sea. Four hermit crab species, occupying shells of nine gastropod species, were found in symbiosis with the sea anemone Calliactis parasitica. Shell resource utilization patterns varied among hermit crabs, with Dardanus species utilizing a wide variety of shells. The size structure of hermit crab populations also affected shell resource utilization, with small-sized individuals inhabiting a larger variety of shells. Sea anemone utilization patterns varied both among hermit crab species and among residence shells, with larger crabs and shells hosting an increased abundance and biomass of C. parasitica. The examined biometric relationships suggested that small-sized crabs carry, proportionally to their weight, heavier shells and increased anemone biomass than larger ones. Exceptions to the above patterns are related either to local resource availability or to other environmental factors.

  1. Single Mutations in the Transmembrane Domains of Maize Plasma Membrane Aquaporins Affect the Activity of Monomers within a Heterotetramer.

    PubMed

    Berny, Marie C; Gilis, Dimitri; Rooman, Marianne; Chaumont, François

    2016-07-01

    Aquaporins are channels facilitating the diffusion of water and/or small uncharged solutes across biological membranes. They assemble as homotetramers but some of them also form heterotetramers, especially in plants. In Zea mays, aquaporins belonging to the plasma membrane intrinsic protein (PIP) subfamily are clustered into two groups, PIP1 and PIP2, which exhibit different water-channel activities when expressed in Xenopus oocytes. When PIP1 and PIP2 isoforms are co-expressed, they physically interact to modulate their subcellular localization and channel activity. Here, we demonstrated by affinity chromatography purification that, when co-expressed in Xenopus oocytes, the maize PIP1;2 and PIP2;5 isoforms assemble as homo- and heterodimers within heterotetramers. We built the 3D structure of such heterotetramers by comparative modeling on the basis of the spinach SoPIP2;1 X-ray structure and identified amino acid residues in the transmembrane domains which putatively interact at the interfaces between monomers. Their roles in the water-channel activity, subcellular localization, protein abundance, and physical interaction were investigated by mutagenesis. We highlighted single-residue substitutions that either inactivated PIP2;5 or activated PIP1;2 without affecting their interaction. Interestingly, the Phe220Ala mutation in the transmembrane domain 5 of PIP1;2 activated its water-channel activity and, at the same time, inactivated PIP2;5 within a heterotetramer. Altogether, these data contribute to a better understanding of the interaction mechanisms between PIP isoforms and the role of heterotetramerization on their water-channel activity. PMID:27109604

  2. Mutations in exons of the CYP17-II gene affect sex steroid concentration in male Japanese flounder ( Paralichthys olivaceus)

    NASA Astrophysics Data System (ADS)

    Ma, Ruiqin; He, Feng; Wen, Haishen; Li, Jifang; Shi, Bao; Shi, Dan; Liu, Miao; Mu, Weijie; Zhang, Yuanqing; Hu, Jian; Han, Weiguo; Zhang, Jianan; Wang, Qingqing; Yuan, Yuren; Liu, Qun

    2012-03-01

    As a specific gene of fish, cytochrome P450c17-II ( CYP17-II) gene plays a key role in the growth, development an reproduction level of fish. In this study, the single-stranded conformational polymorphism (SSCP) technique was used to characterize polymorphisms within the coding region of CYP17-II gene in a population of 75 male Japanese flounder ( Paralichthys olivaceus). Three single nucleotide polymorphisms (SNPs) were identified in CYP17-II gene of Japanese flounder. They were c.G594A (p.G188R), c.G939A and c.G1502A (p.G490D). SNP1 (c.G594A), located in exon 4 of CYP17-II gene, was significantly associated with gonadosomatic index (GSI). Individuals with genotype GG of SNP1 had significantly lower GSI ( P < 0.05) than those with genotype AA or AG. SNP2 (c.G939A) located at the CpG island of CYP17-II gene. The mutation changed the methylation of exon 6. Individuals with genotype AA of SNP2 had significantly lower serum testosterone (T) level and hepatosomatic index (HSI) compared to those with genotype GG. The results suggested that SNP2 could influence the reproductive endocrine of male Japanese flounder. However, the SNP3 (c.G1502A) located in exon 9 did not affect the four measured reproductive traits. This study showed that CYP17-II gene could be a potentially useful candidate gene for the research of genetic breeding and physiological aspects of Japanese flounder.

  3. Mastering ectomycorrhizal symbiosis: the impact of carbohydrates.

    PubMed

    Nehls, Uwe

    2008-01-01

    Mycorrhiza formation is the consequence of a mutualistic interaction between certain soil fungi and plant roots that helps to overcome nutritional limitations faced by the respective partners. In symbiosis, fungi contribute to tree nutrition by means of mineral weathering and mobilization of nutrients from organic matter, and obtain plant-derived carbohydrates as a response. Support with easily degradable carbohydrates seems to be the driving force for fungi to undergo this type of interaction. As a consequence, the fungal hexose uptake capacity is strongly increased in Hartig net hyphae of the model fungi Amanita muscaria and Laccaria bicolor. Next to fast carbohydrate uptake and metabolism, storage carbohydrates are of special interest. In functional A. muscaria ectomycorrhizas, expression and activity of proteins involved in trehalose biosynthesis is mainly localized in hyphae of the Hartig net, indicating an important function of trehalose in generation of a strong carbon sink by fungal hyphae. In symbiosis, fungal partners receive up to approximately 19 times more carbohydrates from their hosts than normal leakage of the root system would cause, resulting in a strong carbohydrate demand of infected roots and, as a consequence, a more efficient plant photosynthesis. To avoid fungal parasitism, the plant seems to have developed mechanisms to control carbohydrate drain towards the fungal partner and link it to the fungus-derived mineral nutrition. In this contribution, current knowledge on fungal strategies to obtain carbohydrates from its host and plant strategies to enable, but also to control and restrict (under certain conditions), carbon transfer are summarized. PMID:18272925

  4. Network analysis of eight industrial symbiosis systems

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Zheng, Hongmei; Shi, Han; Yu, Xiangyi; Liu, Gengyuan; Su, Meirong; Li, Yating; Chai, Yingying

    2016-06-01

    Industrial symbiosis is the quintessential characteristic of an eco-industrial park. To divide parks into different types, previous studies mostly focused on qualitative judgments, and failed to use metrics to conduct quantitative research on the internal structural or functional characteristics of a park. To analyze a park's structural attributes, a range of metrics from network analysis have been applied, but few researchers have compared two or more symbioses using multiple metrics. In this study, we used two metrics (density and network degree centralization) to compare the degrees of completeness and dependence of eight diverse but representative industrial symbiosis networks. Through the combination of the two metrics, we divided the networks into three types: weak completeness, and two forms of strong completeness, namely "anchor tenant" mutualism and "equality-oriented" mutualism. The results showed that the networks with a weak degree of completeness were sparse and had few connections among nodes; for "anchor tenant" mutualism, the degree of completeness was relatively high, but the affiliated members were too dependent on core members; and the members in "equality-oriented" mutualism had equal roles, with diverse and flexible symbiotic paths. These results revealed some of the systems' internal structure and how different structures influenced the exchanges of materials, energy, and knowledge among members of a system, thereby providing insights into threats that may destabilize the network. Based on this analysis, we provide examples of the advantages and effectiveness of recent improvement projects in a typical Chinese eco-industrial park (Shandong Lubei).

  5. Auxin influences strigolactones in pea mycorrhizal symbiosis.

    PubMed

    Foo, E

    2013-03-15

    Hormone interactions are essential for the control of many developmental processes, including intracellular symbioses. The interaction between auxin and the new plant hormone strigolactone in the regulation of arbuscular mycorrhizal symbiosis was examined in one of the few auxin deficient mutants available in a mycorrhizal species, the auxin-deficient bsh mutant of pea (Pisum sativum). Mycorrhizal colonisation with the fungus Glomus intraradices was significantly reduced in the low auxin bsh mutant. The bsh mutant also exhibited a reduction in strigolactone exudation and the expression of a key strigolactone biosynthesis gene (PsCCD8). Strigolactone exudation was also reduced in wild type plants when the auxin content was reduced by stem girdling. Low strigolactone levels appear to be at least partially responsible for the reduced colonisation of the bsh mutant, as application of the synthetic strigolactone GR24 could partially rescue the mycorrhizal phenotype of bsh mutants. Data presented here indicates root auxin content was correlated with strigolactone exudation in both mutant and wild type plants. Mutant studies suggest that auxin may regulate early events in the formation of arbuscular mycorrhizal symbiosis by controlling strigolactone levels, both in the rhizosphere and possibly during early root colonisation. PMID:23219475

  6. Microfungal "weeds" in the leafcutter ant symbiosis.

    PubMed

    Rodrigues, A; Bacci, M; Mueller, U G; Ortiz, A; Pagnocca, F C

    2008-11-01

    Leafcutter ants (Formicidae: tribe Attini) are well-known insects that cultivate basidiomycete fungi (Agaricales: Lepiotaceae) as their principal food. Fungus gardens are monocultures of a single cultivar strain, but they also harbor a diverse assemblage of additional microbes with largely unknown roles in the symbiosis. Cultivar-attacking microfungi in the genus Escovopsis are specialized parasites found only in association with attine gardens. Evolutionary theory predicts that the low genetic diversity in monocultures should render ant gardens susceptible to a wide range of diseases, and additional parasites with roles similar to that of Escovopsis are expected to exist. We profiled the diversity of cultivable microfungi found in 37 nests from ten Acromyrmex species from Southern Brazil and compared this diversity to published surveys. Our study revealed a total of 85 microfungal strains. Fusarium oxysporum and Escovopsis were the predominant species in the surveyed gardens, infecting 40.5% and 27% of the nests, respectively. No specific relationship existed regarding microfungal species and ant-host species, ant substrate preference (dicot versus grass) or nesting habit. Molecular data indicated high genetic diversity among Escovopsis isolates. In contrast to the garden parasite, F. oxysporum strains are not specific parasites of the cultivated fungus because strains isolated from attine gardens have similar counterparts found in the environment. Overall, the survey indicates that saprophytic microfungi are prevalent in South American leafcutter ants. We discuss the antagonistic potential of these microorganisms as "weeds" in the ant-fungus symbiosis. PMID:18369523

  7. The Microbiota, Chemical Symbiosis, and Human Disease

    PubMed Central

    Redinbo, Matthew R.

    2014-01-01

    Our understanding of mammalian-microbial mutualism has expanded by combing microbial sequencing with evolving molecular and cellular methods, and unique model systems. Here, the recent literature linking the microbiota to diseases of three of the key mammalian mucosal epithelial compartments – nasal, lung and gastrointestinal (GI) tract – is reviewed with a focus on new knowledge about the taxa, species, proteins and chemistry that promote health and impact progression toward disease. The information presented is further organized by specific diseases now associated with the microbiota:, Staphylococcus aureus infection and rhinosinusitis in the nasal-sinus mucosa; cystic fibrosis (CF), chronic obstructive pulmonary disorder (COPD), and asthma in the pulmonary tissues. For the vast and microbially dynamic GI compartment, several disorders are considered, including obesity, atherosclerosis, Crohn’s disease, ulcerative colitis, drug toxicity, and even autism. Our appreciation of the chemical symbiosis ongoing between human systems and the microbiota continues to grow, and suggest new opportunities for modulating this symbiosis using designed interventions. PMID:25305474

  8. Isolation of constitutive mutations affecting the proline utilization pathway in Saccharomyces cerevisiae and molecular analysis of the PUT3 transcriptional activator.

    PubMed Central

    Marczak, J E; Brandriss, M C

    1989-01-01

    The enzymes of the proline utilization pathway (the products of the PUT1 and PUT2 genes) in Saccharomyces cerevisiae are coordinately regulated by proline and the PUT3 transcriptional activator. To learn more about the control of this pathway, constitutive mutations in PUT3 as well as in other regulators were sought. A scheme using a gene fusion between PUT1 (S. cerevisiae proline oxidase) and galK (Escherichia coli galactokinase) was developed to select directly for constitutive mutations affecting the PUT1 promoter. These mutations were secondarily screened for their effects in trans on the promoter of the PUT2 (delta 1-pyrroline-5-carboxylate dehydrogenase) gene by using a PUT2-lacZ (E. coli beta-galactosidase) gene fusion. Three different classes of mutations were isolated. The major class consisted of semidominant constitutive PUT3 mutations that caused PUT2-lacZ expression to vary from 2 to 22 times the uninduced level. A single dominant mutation in a new locus called PUT5 resulted in low-level constitutive expression of PUT2-lacZ; this mutation was epistatic to the recessive, noninducible put3-75 allele. Recessive constitutive mutations were isolated that had pleiotropic growth defects; it is possible that these mutations are not specific to the proline utilization pathway but may be in genes that control several pathways. Since the PUT3 gene appears to have a major role in the regulation of this pathway, a molecular analysis was undertaken. This gene was cloned by functional complementation of the put3-75 mutation. Strains carrying a complete deletion of this gene are viable, proline nonutilizing, and indistinguishable in phenotype from the original put3-75 allele. The PUT3 gene encodes a 2.8-kilobase-pair transcript that is not regulated by proline at the level of RNA accumulation. The presence of the gene on a high-copy-number plasmid did not alter the regulation of one of its target genes, PUT2-lacZ, suggesting that the PUT3 gene product is not limiting

  9. A novel point mutation within the EDA gene causes an exon dropping in mature RNA in Holstein Friesian cattle breed affected by X-linked anhidrotic ectodermal dysplasia

    PubMed Central

    2011-01-01

    Background X-linked anhidrotic ectodermal dysplasia is a disorder characterized by abnormal development of tissues and organs of ectodermal origin caused by mutations in the EDA gene. The bovine EDA gene encodes the ectodysplasin A, a membrane protein expressed in keratinocytes, hair follicles and sweat glands, which is involved in the interactions between cell and cell and/or cell and matrix. Four mutations causing ectodermal dysplasia in cattle have been described so far. Results We identified a new single nucleotide polymorphism (SNP) at the 9th base of exon 8 in the EDA gene in two calves of Holstein Friesian cattle breed affected by ectodermal dysplasia. This SNP is located in the exonic splicing enhancer (ESEs) recognized by SRp40 protein. As a consequence, the spliceosome machinery is no longer able to recognize the sequence as exonic and causes exon skipping. The mutation determines the deletion of the entire exon (131 bp) in the RNA processing, causing a severe alteration of the protein structure and thus the disease. Conclusion We identified a mutation, never described before, that changes the regulation of alternative splicing in the EDA gene and causes ectodermal dysplasia in cattle. The analysis of the SNP allows the identification of carriers that can transmit the disease to the offspring. This mutation can thus be exploited for a rational and efficient selection of unequivocally healthy cows for breeding. PMID:21740563

  10. Correspondence regarding Ballana et al., "Mitochondrial 12S rRNA gene mutations affect RNA secondary structure and lead to variable penetrance in hearing impairment".

    PubMed

    Abreu-Silva, R S; Batissoco, A C; Lezirovitz, K; Romanos, J; Rincon, D; Auricchio, M T B M; Otto, P A; Mingroni-Netto, R C

    2006-05-12

    Ballana et al. [E. Ballana, E. Morales, R. Rabionet, B. Montserrat, M. Ventayol, O. Bravo, P. Gasparini, X. Estivill, Mitochondrial 12S rRNA gene mutations affect RNA secondary structure and lead to variable penetrance in hearing impairment, Biochem. Biophys. Res. Commun. 341 (2006) 950-957] detected a T1291C mutation segregating in a Cuban pedigree with hearing impairment. They interpreted it as probably pathogenic, based on family history, RNA conformation prediction and its absence in a control group of 95 Spanish subjects. We screened a sample of 203 deaf subjects and 300 hearing controls (110 "European-Brazilians" and 190 "African-Brazilians") for the mitochondrial mutations A1555G and T1291C. Five deaf subjects had the T1291C substitution, three isolated cases and two familial cases. In the latter, deafness was paternally inherited or segregated with the A1555G mutation. This doesn't support the hypothesis of T1291C mutation being pathogenic. Two "African-Brazilian" controls also had the T1291C substitution. Six of the seven T1291C-carriers (five deaf and two controls) had mitochondrial DNA of African origin, belonging to macrohaplogroup L1/L2. Therefore, these data point to T1291C substitution as most probably an African non-pathogenic polymorphism. PMID:16574076

  11. The LPS O-Antigen in Photosynthetic Bradyrhizobium Strains Is Dispensable for the Establishment of a Successful Symbiosis with Aeschynomene Legumes

    PubMed Central

    Busset, Nicolas; De Felice, Antonia; Chaintreuil, Clémence; Gully, Djamel; Fardoux, Joël; Romdhane, Sana; Molinaro, Antonio; Silipo, Alba; Giraud, Eric

    2016-01-01

    The photosynthetic bradyrhizobia are able to use a Nod-factor independent process to induce nitrogen-fixing nodules on some semi-aquatic Aeschynomene species. These bacteria display a unique LPS O-antigen composed of a new sugar, the bradyrhizose that is regarded as a key symbiotic factor due to its non-immunogenic character. In this study, to check this hypothesis, we isolated mutants affected in the O-antigen synthesis by screening a transposon mutant library of the ORS285 strain for clones altered in colony morphology. Over the 10,000 mutants screened, five were selected and found to be mutated in two genes, rfaL, encoding for a putative O-antigen ligase and gdh encoding for a putative dTDP-glucose 4,6-dehydratase. Biochemical analysis confirmed that the LPS of these mutants completely lack the O-antigen region. However, no effect of the mutations could be detected on the symbiotic properties of the mutants indicating that the O-antigen region of photosynthetic Bradyrhizobium strains is not required for the establishment of symbiosis with Aeschynomene. PMID:26849805

  12. Mutations at the Smo Genetic Locus Affect the Shape of Diverse Cell Types in the Rice Blast Fungus

    PubMed Central

    Hamer, J. E.; Valent, B.; Chumley, F. G.

    1989-01-01

    Teflon film surfaces are highly conducive to the formation of infection structures (appressoria) in the plant pathogenic fungus, Magnaporthe grisea. We have utilized Teflon films to screen and select for mutants of M. grisea that are defective in appressorium formation. This approach and several others yielded a group of 14 mutants with a similar phenotype. All the mutant strains make abnormally shaped conidia and appressoria. When two mutant strains are crossed, abnormally shaped asci are formed. Ascus shape is normal when a mutant strain is crossed with a wild-type strain. Despite dramatic alterations in cell shape these strains otherwise grow, form conidia, undergo meiosis, and infect plants normally. This mutant phenotype, which we have termed Smo(-), for abnormal spore morphology, segregates in simple Mendelian fashion in crosses with wild-type strains. Some ascospore lethality is associated with smo mutations. In genetic crosses between mutants, smo mutations fail to recombine and do not demonstrate complementation of the abnormal ascus shape phenotype. We conclude that the smo mutations are alleles of a single genetic locus and are recessive with regard to the the ascus shape defect. Mutations at the SMO locus also permit germinating M. grisea conidia to differentiate appressoria on surfaces that are not normally conducive to infection structure formation. A number of spontaneous smo mutations have been recovered. The frequent occurrence of this mutation suggests that the SMO locus may be highly mutable. PMID:17246498

  13. Mutation of light-dependent phosphorylation sites of the Drosophila transient receptor potential-like (TRPL) ion channel affects its subcellular localization and stability.

    PubMed

    Cerny, Alexander C; Oberacker, Tina; Pfannstiel, Jens; Weigold, Sebastian; Will, Carina; Huber, Armin

    2013-05-31

    The Drosophila phototransduction cascade terminates in the opening of the ion channel transient receptor potential (TRP) and TRP-like (TRPL). Contrary to TRP, TRPL undergoes light-dependent subcellular trafficking between rhabdomeric photoreceptor membranes and an intracellular storage compartment, resulting in long term light adaptation. Here, we identified in vivo phosphorylation sites of TRPL that affect TRPL stability and localization. Quantitative mass spectrometry revealed a light-dependent change in the TRPL phosphorylation pattern. Mutation of eight C-terminal phosphorylation sites neither affected multimerization of the channels nor the electrophysiological response of flies expressing the mutated channels. However, these mutations resulted in mislocalization and enhanced degradation of TRPL after prolonged dark-adaptation. Mutation of subsets of the eight C-terminal phosphorylation sites also led to a reduction of TRPL content and partial mislocalization in the dark. This suggests that a light-dependent switch in the phosphorylation pattern of the TRPL channel mediates stable expression of TRPL in the rhabdomeres upon prolonged dark-adaptation. PMID:23592784

  14. Mutation of Light-dependent Phosphorylation Sites of the Drosophila Transient Receptor Potential-like (TRPL) Ion Channel Affects Its Subcellular Localization and Stability*

    PubMed Central

    Cerny, Alexander C.; Oberacker, Tina; Pfannstiel, Jens; Weigold, Sebastian; Will, Carina; Huber, Armin

    2013-01-01

    The Drosophila phototransduction cascade terminates in the opening of the ion channel transient receptor potential (TRP) and TRP-like (TRPL). Contrary to TRP, TRPL undergoes light-dependent subcellular trafficking between rhabdomeric photoreceptor membranes and an intracellular storage compartment, resulting in long term light adaptation. Here, we identified in vivo phosphorylation sites of TRPL that affect TRPL stability and localization. Quantitative mass spectrometry revealed a light-dependent change in the TRPL phosphorylation pattern. Mutation of eight C-terminal phosphorylation sites neither affected multimerization of the channels nor the electrophysiological response of flies expressing the mutated channels. However, these mutations resulted in mislocalization and enhanced degradation of TRPL after prolonged dark-adaptation. Mutation of subsets of the eight C-terminal phosphorylation sites also led to a reduction of TRPL content and partial mislocalization in the dark. This suggests that a light-dependent switch in the phosphorylation pattern of the TRPL channel mediates stable expression of TRPL in the rhabdomeres upon prolonged dark-adaptation. PMID:23592784

  15. Symbiosis as a mechanism of evolution: status of cell symbiosis theory.

    PubMed

    Margulis, L; Bermudes, D

    1985-01-01

    Several theories for the origin of eukaryotic (nucleated) cells from prokaryotic (bacterial) ancestors have been published: the progenote, the direct filiation and the serial endosymbiotic theory (SET). Compelling evidence for two aspects of the SET is now available suggesting that both mitochondria and plastids originated by symbioses with a third type of microbe, probably a Thermoplasma-like archaebacterium ancestral to the nucleocytoplasm. We conclude that not enough information is available to negate or substantiate another SET hypothesis: that the undulipodia (cilia, eukaryotic flagella) evolved from spirochetes. Recognizing the power of symbiosis to recombine in single individual semes from widely differing partners, we develop the idea that symbiosis has been important in the origin of species and higher taxa. The abrupt origin of novel life forms through the formation of stable symbioses is consistent with certain patterns of evolution (e.g punctuated equilibria) described by some paleontologists. PMID:11543608

  16. SUMF1 mutations affecting stability and activity of formylglycine generating enzyme predict clinical outcome in multiple sulfatase deficiency.

    PubMed

    Schlotawa, Lars; Ennemann, Eva Charlotte; Radhakrishnan, Karthikeyan; Schmidt, Bernhard; Chakrapani, Anupam; Christen, Hans-Jürgen; Moser, Hugo; Steinmann, Beat; Dierks, Thomas; Gärtner, Jutta

    2011-03-01

    Multiple Sulfatase Deficiency (MSD) is caused by mutations in the sulfatase-modifying factor 1 gene encoding the formylglycine-generating enzyme (FGE). FGE post translationally activates all newly synthesized sulfatases by generating the catalytic residue formylglycine. Impaired FGE function leads to reduced sulfatase activities. Patients display combined clinical symptoms of single sulfatase deficiencies. For ten MSD patients, we determined the clinical phenotype, FGE expression, localization and stability, as well as residual FGE and sulfatase activities. A neonatal, very severe clinical phenotype resulted from a combination of two nonsense mutations leading to almost fully abrogated FGE activity, highly unstable FGE protein and nearly undetectable sulfatase activities. A late infantile mild phenotype resulted from FGE G263V leading to unstable protein but high residual FGE activity. Other missense mutations resulted in a late infantile severe phenotype because of unstable protein with low residual FGE activity. Patients with identical mutations displayed comparable clinical phenotypes. These data confirm the hypothesis that the phenotypic outcome in MSD depends on both residual FGE activity as well as protein stability. Predicting the clinical course in case of molecularly characterized mutations seems feasible, which will be helpful for genetic counseling and developing therapeutic strategies aiming at enhancement of FGE. PMID:21224894

  17. The Identification of Transposon-Tagged Mutations in Essential Genes That Affect Cell Morphology in Saccharomyces Cerevisiae

    PubMed Central

    Chun, K. T.; Goebl, M. G.

    1996-01-01

    The yeast Saccharomyces cerevisiae reproduces by budding, and many genes are required for proper bud development. Mutations in some of these genes cause cells to die with an unusual terminal morphology--elongated or otherwise aberrantly shaped buds. To gain insight into bud development, we set out to identify novel genes that encode proteins required for proper bud morphogenesis. Previous studies screened collections of conditional mutations to identify genes required for essential functions, including bud formation. However, genes that are not susceptible to the generation of mutations that cause a conditional phenotype will not be identified in such screens. To identify a more comprehensive collection of mutants, we used transposon mutagenesis to generate a large collection of lethal disruption mutations. This collection was used to identify 209 mutants with disruptions that cause an aberrant terminal bud morphology. The disruption mutations in 33 of these mutants identify three previously uncharacterized genes as essential, and the mutant phenotypes suggest roles for their products in bud morphogenesis. PMID:8770583

  18. An F1 genetic screen for maternal-effect mutations affecting embryonic pattern formation in Drosophila melanogaster.

    PubMed Central

    Luschnig, Stefan; Moussian, Bernard; Krauss, Jana; Desjeux, Isabelle; Perkovic, Josip; Nüsslein-Volhard, Christiane

    2004-01-01

    Large-scale screens for female-sterile mutations have revealed genes required maternally for establishment of the body axes in the Drosophila embryo. Although it is likely that the majority of components involved in axis formation have been identified by this approach, certain genes have escaped detection. This may be due to (1) incomplete saturation of the screens for female-sterile mutations and (2) genes with essential functions in zygotic development that mutate to lethality, precluding their identification as female-sterile mutations. To overcome these limitations, we performed a genetic mosaic screen aimed at identifying new maternal genes required for early embryonic patterning, including zygotically required ones. Using the Flp-FRT technique and a visible germline clone marker, we developed a system that allows efficient screening for maternal-effect phenotypes after only one generation of breeding, rather than after the three generations required for classic female-sterile screens. We identified 232 mutants showing various defects in embryonic pattern or morphogenesis. The mutants were ordered into 10 different phenotypic classes. A total of 174 mutants were assigned to 86 complementation groups with two alleles on average. Mutations in 45 complementation groups represent most previously known maternal genes, while 41 complementation groups represent new loci, including several involved in dorsoventral, anterior-posterior, and terminal patterning. PMID:15166158

  19. De novo mutation causes steroid 21-hydroxylase deficiency in one family of HLA-identical affected and unaffected siblings

    SciTech Connect

    Tajima, Toshihiro Hokkaido Univ., Sapporo ); Fujieda, K. ); Fujii-Kuriyama, Yoshiaki )

    1993-07-01

    Over 90% of congenital adrenal hyperplasia (CAH) results from 21-hydroxylase deficiency. Because the CYP21B gene is located within the HLA complex and is very tightly linked to HLA markers, HLA typing is widely used for prenatal diagnosis and identifying heterozygous family members. In the course of a study on identification of heterozygous family members with HLA typing, the authors recognized an unusual family case in which three siblings share the same HLA haplotype, and only one of them had the simple virilizing form; her two siblings did not have any endocrinological abnormalities. They investigated the mode of genetic transmission by using polymerase chain reaction and single stranded conformation polymorphism. The present study revealed that the proband was a compound heterozygote with the intron 2 mutation that causes aberrant RNA splicing and the missense mutation of exon 4, while the other siblings and the father had only one allele of a missense mutation in exon 4; the mother is a normal homozygote. This result together with DNA fingerprint analysis strongly suggest that the intron 2 mutation occurred de novo in the maternally inherited gene of the proband. This seems to be the first case of a de novo mutation of the CYP21B gene that causes CAH. 19 refs., 5 figs., 1 tab.

  20. Factor V Leiden mutation does not affect coagulopathy or outcome in lethal H1N1 influenza.

    PubMed

    Schouten, M; van der Sluijs, K F; Roelofs, J J T H; Levi, M; Van't Veer, C; van der Poll, T

    2010-12-01

    Influenza A is a major cause of mortality. Knowledge on coagulation activation in influenza infection is limited. The factor V Leiden (FVL) mutation is possibly subject to positive selection pressure. It is unknown whether this mutation impacts on the outcome of severe influenza. In the present study, the effect of lethal influenza on pulmonary and systemic coagulation activation and whether or not FVL mutation alters coagulation activation in and the course of lethal influenza, was determined. Wild-type mice, and mice heterozygous or homozygous for FVL were infected intranasally with a lethal dose of H1N1 (haemagglutinin 1 and neuraminidase 1) influenza A. Mice were sacrificed after 48 or 96 h for determination of coagulation activation, histopathology, pulmonary inflammatory parameters and viral load, or were observed in a survival study. Extensive local and systemic coagulation activation during lethal influenza was demonstrated by increased lung and plasma levels of thrombin-antithrombin complexes and fibrin degradation products, and by pulmonary fibrin deposition. FVL mutation did not influence the procoagulant response, lung histopathology or survival. FVL mice demonstrated elevated viral loads 48 h after infection. In conclusion, coagulation is activated locally and systemically during lethal murine influenza A infection. The FVL mutation does not influence coagulation activation, lung inflammation or survival in lethal influenza A. PMID:20413539

  1. Distinct Mutations in Yeast TAFII25 Differentially Affect the Composition of TFIID and SAGA Complexes as Well as Global Gene Expression Patterns

    PubMed Central

    Kirschner, Doris B.; vom Baur, Elmar; Thibault, Christelle; Sanders, Steven L.; Gangloff, Yann-Gaël; Davidson, Irwin; Weil, P. Anthony; Tora, Làszlò

    2002-01-01

    The RNA polymerase II transcription factor TFIID, composed of the TATA-binding protein (TBP) and TBP-associated factors (TAFIIs), nucleates preinitiation complex formation at protein-coding gene promoters. SAGA, a second TAFII-containing multiprotein complex, is involved in transcription regulation in Saccharomyces cerevisiae. One of the essential protein components common to SAGA and TFIID is yTAFII25. We define a minimal evolutionarily conserved 91-amino-acid region of TAFII25 containing a histone fold domain that is necessary and sufficient for growth in vivo. Different temperature-sensitive mutations of yTAFII25 or chimeras with the human homologue TAFII30 arrested cell growth at either the G1 or G2/M cell cycle phase and displayed distinct phenotypic changes and gene expression patterns. Immunoprecipitation studies revealed that TAFII25 mutation-dependent gene expression and phenotypic changes correlated at least partially with the integrity of SAGA and TFIID. Genome-wide expression analysis revealed that the five TAFII25 temperature-sensitive mutant alleles individually affect the expression of between 18 and 33% of genes, whereas taken together they affect 64% of all class II genes. Thus, different yTAFII25 mutations induce distinct phenotypes and affect the regulation of different subsets of genes, demonstrating that no individual TAFII mutant allele reflects the full range of its normal functions. PMID:11940675

  2. The mvp2 mutation affects the generative transition through the modification of transcriptome pattern, salicylic acid and cytokinin metabolism in Triticum monococcum.

    PubMed

    Boldizsár, Ákos; Vanková, Radomíra; Novák, Aliz; Kalapos, Balázs; Gulyás, Zsolt; Pál, Magda; Floková, Kristyna; Janda, Tibor; Galiba, Gábor; Kocsy, Gábor

    2016-09-01

    Wild type and mvp2 (maintained vegetative phase) deletion mutant T. monococcum plants incapable of flowering were compared in order to determine the effect of the deleted region of chromosome 5A on transcript profile and hormone metabolism. This region contains the vernalization1 (VRN1) gene, a major regulator of the vegetative/generative transition. Transcript profiling in the crowns of T. monococcum during the transition and the subsequent formation of flower primordia showed that 306 genes were affected by the mutation, 198 by the developmental phase and 14 by the interaction of these parameters. In addition, 546 genes were affected by two or three factors. The genes controlled by the deleted region encode transcription factors, antioxidants and enzymes of hormone, carbohydrate and amino acid metabolism. The observed changes in the expression of the gene encoding phenylalanine ammonia lyase (PAL) might indicate the effect of mvp2 mutation on the metabolism of salicylic acid, which was corroborated by the differences in 2-hydroxycinnamic acid and cinnamic acid contents in both of the leaves and crowns, and in the concentrations of salicylic acid and benzoic acid in crowns during the vegetative/generative transition. The amount and ratio of active cytokinins and their derivatives (ribosides, glucosides and phosphates) were affected by developmental changes as well as by mvp2 mutation, too. PMID:27450491

  3. The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling events

    PubMed Central

    Balzergue, Coline; Puech-Pagès, Virginie; Bécard, Guillaume; Rochange, Soizic F.

    2011-01-01

    Most plants form root symbioses with arbuscular mycorrhizal (AM) fungi, which provide them with phosphate and other nutrients. High soil phosphate levels are known to affect AM symbiosis negatively, but the underlying mechanisms are not understood. This report describes experimental conditions which triggered a novel mycorrhizal phenotype under high phosphate supply: the interaction between pea and two different AM fungi was almost completely abolished at a very early stage, prior to the formation of hyphopodia. As demonstrated by split-root experiments, down-regulation of AM symbiosis occurred at least partly in response to plant-derived signals. Early signalling events were examined with a focus on strigolactones, compounds which stimulate pre-symbiotic fungal growth and metabolism. Strigolactones were also recently identified as novel plant hormones contributing to the control of shoot branching. Root exudates of plants grown under high phosphate lost their ability to stimulate AM fungi and lacked strigolactones. In addition, a systemic down-regulation of strigolactone release by high phosphate supply was demonstrated using split-root systems. Nevertheless, supplementation with exogenous strigolactones failed to restore root colonization under high phosphate. This observation does not exclude a contribution of strigolactones to the regulation of AM symbiosis by phosphate, but indicates that they are not the only factor involved. Together, the results suggest the existence of additional early signals that may control the differentiation of hyphopodia. PMID:21045005

  4. The site-directed mutation I(L177)H in Rhodobacter sphaeroides reaction center affects coordination of P(A) and B(B) bacteriochlorophylls.

    PubMed

    Vasilieva, L G; Fufina, T Y; Gabdulkhakov, A G; Leonova, M M; Khatypov, R A; Shuvalov, V A

    2012-08-01

    To explore the influence of the I(L177)H single mutation on the properties of the nearest bacteriochlorophylls (BChls), three reaction centers (RCs) bearing double mutations were constructed in the photosynthetic purple bacterium Rhodobacter sphaeroides, and their properties and pigment content were compared with those of the correspondent single mutant RCs. Each pair of the mutations comprised the amino acid substitution I(L177)H and another mutation altering histidine ligand of BChl P(A) or BChl B(B). Contrary to expectations, the double mutation I(L177)H+H(L173)L does not bring about a heterodimer RC but causes a 46nm blue shift of the long-wavelength P absorbance band. The histidine L177 or a water molecule were suggested as putative ligands for P(A) in the RC I(L177)H+H(L173)L although this would imply a reorientation of the His backbone and additional rearrangements in the primary donor environment or even a repositioning of the BChl dimer. The crystal structure of the mutant I(L177)H reaction center determined to a resolution of 2.9Å shows changes at the interface region between the BChl P(A) and the monomeric BChl B(B). Spectral and pigment analysis provided evidence for β-coordination of the BChl B(B) in the double mutant RC I(L177)H+H(M182)L and for its hexacoordination in the mutant reaction center I(L177)H. Computer modeling suggests involvement of two water molecules in the β-coordination of the BChl B(B). Possible structural consequences of the L177 mutation affecting the coordination of the two BChls P(A) and B(B) are discussed. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial. PMID:22365928

  5. TET2 Mutations Affect Non-CpG Island DNA Methylation at Enhancers and Transcription Factor-Binding Sites in Chronic Myelomonocytic Leukemia.

    PubMed

    Yamazaki, Jumpei; Jelinek, Jaroslav; Lu, Yue; Cesaroni, Matteo; Madzo, Jozef; Neumann, Frank; He, Rong; Taby, Rodolphe; Vasanthakumar, Aparna; Macrae, Trisha; Ostler, Kelly R; Kantarjian, Hagop M; Liang, Shoudan; Estecio, Marcos R; Godley, Lucy A; Issa, Jean-Pierre J

    2015-07-15

    TET2 enzymatically converts 5-methylcytosine to 5-hydroxymethylcytosine as well as other covalently modified cytosines and its mutations are common in myeloid leukemia. However, the exact mechanism and the extent to which TET2 mutations affect DNA methylation remain in question. Here, we report on DNA methylomes in TET2 wild-type (TET2-WT) and mutant (TET2-MT) cases of chronic myelomonocytic leukemia (CMML). We analyzed 85,134 CpG sites [28,114 sites in CpG islands (CGI) and 57,020 in non-CpG islands (NCGI)]. TET2 mutations do not explain genome-wide differences in DNA methylation in CMML, and we found few and inconsistent differences at CGIs between TET2-WT and TET2-MT cases. In contrast, we identified 409 (0.71%) TET2-specific differentially methylated CpGs (tet2-DMCs) in NCGIs, 86% of which were hypermethylated in TET2-MT cases, suggesting a strikingly different biology of the effects of TET2 mutations at CGIs and NCGIs. DNA methylation of tet2-DMCs at promoters and nonpromoters repressed gene expression. Tet2-DMCs showed significant enrichment at hematopoietic-specific enhancers marked by H3K4me1 and at binding sites for the transcription factor p300. Tet2-DMCs showed significantly lower 5-hydroxymethylcytosine in TET2-MT cases. We conclude that leukemia-associated TET2 mutations affect DNA methylation at NCGI regions containing hematopoietic-specific enhancers and transcription factor-binding sites. PMID:25972343

  6. ESR1 mutations affect anti-proliferative responses to tamoxifen through enhanced cross-talk with IGF signaling.

    PubMed

    Gelsomino, Luca; Gu, Guowei; Rechoum, Yassine; Beyer, Amanda R; Pejerrey, Sasha M; Tsimelzon, Anna; Wang, Tao; Huffman, Kenneth; Ludlow, Andrew; Andò, Sebastiano; Fuqua, Suzanne A W

    2016-06-01

    The purpose of this study was to address the role of ESR1 hormone-binding mutations in breast cancer. Soft agar anchorage-independent growth assay, Western blot, ERE reporter transactivation assay, proximity ligation assay (PLA), coimmunoprecipitation assay, silencing assay, digital droplet PCR (ddPCR), Kaplan-Meier analysis, and statistical analysis. It is now generally accepted that estrogen receptor (ESR1) mutations occur frequently in metastatic breast cancers; however, we do not yet know how to best treat these patients. We have modeled the three most frequent hormone-binding ESR1 (HBD-ESR1) mutations (Y537N, Y537S, and D538G) using stable lentiviral transduction in human breast cancer cell lines. Effects on growth were examined in response to hormonal and targeted agents, and mutation-specific changes were studied using microarray and Western blot analysis. We determined that the HBD-ESR1 mutations alter anti-proliferative effects to tamoxifen (Tam), due to cell-intrinsic changes in activation of the insulin-like growth factor receptor (IGF1R) signaling pathway and levels of PIK3R1/PIK3R3. The selective estrogen receptor degrader, fulvestrant, significantly reduced the anchorage-independent growth of ESR1 mutant-expressing cells, while combination treatments with the mTOR inhibitor everolimus, or an inhibitor blocking IGF1R, and the insulin receptor significantly enhanced anti-proliferative responses. Using digital drop (dd) PCR, we identified mutations at high frequencies ranging from 12 % for Y537N, 5 % for Y537S, and 2 % for D538G in archived primary breast tumors from women treated with adjuvant mono-tamoxifen therapy. The HBD-ESR1 mutations were not associated with recurrence-free or overall survival in response in this patient cohort and suggest that knowledge of other cell-intrinsic factors in combination with ESR1 mutation status will be needed determine anti-proliferative responses to Tam. PMID:27178332

  7. Symbiosis and the origin of eukaryotic motility

    NASA Technical Reports Server (NTRS)

    Margulis, L.; Hinkle, G.

    1991-01-01

    Ongoing work to test the hypothesis of the origin of eukaryotic cell organelles by microbial symbioses is discussed. Because of the widespread acceptance of the serial endosymbiotic theory (SET) of the origin of plastids and mitochondria, the idea of the symbiotic origin of the centrioles and axonemes for spirochete bacteria motility symbiosis was tested. Intracellular microtubular systems are purported to derive from symbiotic associations between ancestral eukaryotic cells and motile bacteria. Four lines of approach to this problem are being pursued: (1) cloning the gene of a tubulin-like protein discovered in Spirocheata bajacaliforniesis; (2) seeking axoneme proteins in spirochets by antibody cross-reaction; (3) attempting to cultivate larger, free-living spirochetes; and (4) studying in detail spirochetes (e.g., Cristispira) symbiotic with marine animals. Other aspects of the investigation are presented.

  8. WASTE TO VALUE: INCORPORATING INDUSTRIAL SYMBIOSIS FOR SUSTAINABLE INFRASTRUCTURE

    EPA Science Inventory

    Technical Challenge: Investigators will examine the role of technology innovations as well as environmental justice (EJ) obligations in initiating and implementing urban-industrial symbiosis in Commerce City (CC), CO. The sustainability challenge invol...

  9. The hunt for a functional mutation affecting conformation and calving traits on chromosome 18 in Holstein cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sequence data from 11 US Holstein bulls were analyzed to identify putative causal mutations associated with calving and conformation traits. The SNP ARS-BFGL-NGS-109285 at 57,589,121 bp (UMD 3.1 assembly) on BTA18 has large effects on 4 measures of body shape and size, 2 measures of dystocia, longev...

  10. Identification and characterization of a mutation affecting the division arrest signaling of the pheromone response pathway in Saccharomyces cerevisiae

    SciTech Connect

    Fujimura, Hiroaki Hoechst Japan Ltd., Kawagoe )

    1990-02-01

    Mating pheromones, a- and {alpha}-factors, arrest the division of cells of opposite mating types, {alpha} and a cells, respectively. The author has isolated a sterile mutant of Saccharomyces cerevisiae using EMS that is defective in division arrest in response to {alpha}-factor but not defective in morphological changes and agglutinin induction. The mutation was designated dac2 for division arrest control by mating pheromones. The dac2 mutation was closely linked to gal1 and was different from the previously identified cell type nonspecific sterile mutations (ste4, ste5, ste7, ste11, ste12, ste18, and dac1). Although dac2 cells had no phenotype in the absence of pheromones, they showed morphological alterations and divided continuously in the presence of pheromones. As a result, dac2 cells had a mating defect. The dac2 mutation could suppress the lethality caused by the disruption of the GPA1 gene. These results suggest that the DAC2 product may control the signal for G-protein-mediated cell-cycle arrest and indicate that the synchronization of haploid yeast cell cycles by mating pheromones is essential for cell fusion during conjugation.

  11. Differential secretion of the mutated protein is a major component affecting phenotypic severity in CRLF1-associated disorders

    PubMed Central

    Herholz, Jana; Meloni, Alessandra; Marongiu, Mara; Chiappe, Francesca; Deiana, Manila; Herrero, Carmen Roche; Zampino, Giuseppe; Hamamy, Hanan; Zalloum, Yusra; Waaler, Per Erik; Crisponi, Giangiorgio; Crisponi, Laura; Rutsch, Frank

    2011-01-01

    Crisponi syndrome (CS) and cold-induced sweating syndrome type 1 (CISS1) are disorders caused by mutations in CRLF1. The two syndromes share clinical characteristics, such as dysmorphic features, muscle contractions, scoliosis and cold-induced sweating, with CS patients showing a severe clinical course in infancy involving hyperthermia, associated with death in most cases in the first years of life. To evaluate a potential genotype/phenotype correlation and whether CS and CISS1 represent two allelic diseases or manifestations at different ages of the same disorder, we carried out a detailed clinical analysis of 19 patients carrying mutations in CRLF1. We studied the functional significance of the mutations found in CRLF1, providing evidence that phenotypic severity of the two disorders mainly depends on altered kinetics of secretion of the mutated CRLF1 protein. On the basis of these findings, we believe that the two syndromes, CS and CISS1, represent manifestations of the same disorder, with different degrees of severity. We suggest renaming the two genetic entities CS and CISS1 with the broader term of Sohar–Crisponi syndrome. PMID:21326283

  12. Reciprocal mouse and human limb phenotypes caused by gain- and loss-of-function mutations affecting Lmbr1.

    PubMed Central

    Clark, R M; Marker, P C; Roessler, E; Dutra, A; Schimenti, J C; Muenke, M; Kingsley, D M

    2001-01-01

    The major locus for dominant preaxial polydactyly in humans has been mapped to 7q36. In mice the dominant Hemimelic extra toes (Hx) and Hammertoe (Hm) mutations map to a homologous chromosomal region and cause similar limb defects. The Lmbr1 gene is entirely within the small critical intervals recently defined for both the mouse and human mutations and is misexpressed at the exact time that the mouse Hx phenotype becomes apparent during limb development. This result suggests that Lmbr1 may underlie preaxial polydactyly in both mice and humans. We have used deletion chromosomes to demonstrate that the dominant mouse and human limb defects arise from gain-of-function mutations and not from haploinsufficiency. Furthermore, we created a loss-of-function mutation in the mouse Lmbr1 gene that causes digit number reduction (oligodactyly) on its own and in trans to a deletion chromosome. The loss of digits that we observed in mice with reduced Lmbr1 activity is in contrast to the gain of digits observed in Hx mice and human polydactyly patients. Our results suggest that the Lmbr1 gene is required for limb formation and that reciprocal changes in levels of Lmbr1 activity can lead to either increases or decreases in the number of digits in the vertebrate limb. PMID:11606546

  13. Functional characterization of ClC-1 mutations from patients affected by recessive myotonia congenita presenting with different clinical phenotypes.

    PubMed

    Desaphy, Jean-François; Gramegna, Gianluca; Altamura, Concetta; Dinardo, Maria Maddalena; Imbrici, Paola; George, Alfred L; Modoni, Anna; Lomonaco, Mauro; Conte Camerino, Diana

    2013-10-01

    Myotonia congenita (MC) is caused by loss-of-function mutations of the muscle ClC-1 chloride channel. Clinical manifestations include the variable association of myotonia and transitory weakness. We recently described a cohort of recessive MC patients showing, at a low rate repetitive nerves stimulation protocol, different values of compound muscle action potential (CMAP) transitory depression, which is considered the neurophysiologic counterpart of transitory weakness. From among this cohort, we studied the chloride currents generated by G190S (associated with pronounced transitory depression), F167L (little or no transitory depression), and A531V (variable transitory depression) hClC-1 mutants in transfected HEK293 cells using patch-clamp. While F167L had no effect on chloride currents, G190S dramatically shifts the voltage dependence of channel activation and A531V reduces channel expression. Such variability in molecular mechanisms observed in the hClC-1 mutants may help to explain the different clinical and neurophysiologic manifestations of each ClCN1 mutation. In addition we examined five different mutations found in compound heterozygosis with F167L, including the novel P558S, and we identified additional molecular defects. Finally, the G190S mutation appeared to impair acetazolamide effects on chloride currents in vitro. PMID:23933576

  14. Functional characterization of ClC-1 mutations from patients affected by recessive myotonia congenita presenting with different clinical phenotypes☆

    PubMed Central

    Desaphy, Jean-François; Gramegna, Gianluca; Altamura, Concetta; Dinardo, Maria Maddalena; Imbrici, Paola; George, Alfred L.; Modoni, Anna; LoMonaco, Mauro; Conte Camerino, Diana

    2013-01-01

    Myotonia congenita (MC) is caused by loss-of-function mutations of the muscle ClC-1 chloride channel. Clinical manifestations include the variable association of myotonia and transitory weakness. We recently described a cohort of recessive MC patients showing, at a low rate repetitive nerves stimulation protocol, different values of compound muscle action potential (CMAP) transitory depression, which is considered the neurophysiologic counterpart of transitory weakness. From among this cohort, we studied the chloride currents generated by G190S (associated with pronounced transitory depression), F167L (little or no transitory depression), and A531V (variable transitory depression) hClC-1 mutants in transfected HEK293 cells using patch-clamp. While F167L had no effect on chloride currents, G190S dramatically shifts the voltage dependence of channel activation and A531V reduces channel expression. Such variability in molecular mechanisms observed in the hClC-1 mutants may help to explain the different clinical and neurophysiologic manifestations of each ClCN1 mutation. In addition we examined five different mutations found in compound heterozygosis with F167L, including the novel P558S, and we identified additional molecular defects. Finally, the G190S mutation appeared to impair acetazolamide effects on chloride currents in vitro. PMID:23933576

  15. Exome and deep sequencing of clinically aggressive neuroblastoma reveal somatic mutations that affect key pathways involved in cancer progression.

    PubMed

    Lasorsa, Vito Alessandro; Formicola, Daniela; Pignataro, Piero; Cimmino, Flora; Calabrese, Francesco Maria; Mora, Jaume; Esposito, Maria Rosaria; Pantile, Marcella; Zanon, Carlo; De Mariano, Marilena; Longo, Luca; Hogarty, Michael D; de Torres, Carmen; Tonini, Gian Paolo; Iolascon, Achille; Capasso, Mario

    2016-04-19

    The spectrum of somatic mutation of the most aggressive forms of neuroblastoma is not completely determined. We sought to identify potential cancer drivers in clinically aggressive neuroblastoma.Whole exome sequencing was conducted on 17 germline and tumor DNA samples from high-risk patients with adverse events within 36 months from diagnosis (HR-Event3) to identify somatic mutations and deep targeted sequencing of 134 genes selected from the initial screening in additional 48 germline and tumor pairs (62.5% HR-Event3 and high-risk patients), 17 HR-Event3 tumors and 17 human-derived neuroblastoma cell lines.We revealed 22 significantly mutated genes, many of which implicated in cancer progression. Fifteen genes (68.2%) were highly expressed in neuroblastoma supporting their involvement in the disease. CHD9, a cancer driver gene, was the most significantly altered (4.0% of cases) after ALK.Other genes (PTK2, NAV3, NAV1, FZD1 and ATRX), expressed in neuroblastoma and involved in cell invasion and migration were mutated at frequency ranged from 4% to 2%.Focal adhesion and regulation of actin cytoskeleton pathways, were frequently disrupted (14.1% of cases) thus suggesting potential novel therapeutic strategies to prevent disease progression.Notably BARD1, CHEK2 and AXIN2 were enriched in rare, potentially pathogenic, germline variants.In summary, whole exome and deep targeted sequencing identified novel cancer genes of clinically aggressive neuroblastoma. Our analyses show pathway-level implications of infrequently mutated genes in leading neuroblastoma progression. PMID:27009842

  16. Translational Compensation of a Frameshift Mutation Affecting Herpes Simplex Virus Thymidine Kinase Is Sufficient To Permit Reactivation from Latency

    PubMed Central

    Griffiths, Anthony; Chen, Shun-Hua; Horsburgh, Brian C.; Coen, Donald M.

    2003-01-01

    Herpes simplex virus thymidine kinase is important for reactivation of virus from its latent state and is a target for the antiviral drug acyclovir. Most acyclovir-resistant isolates have mutations in the thymidine kinase gene; however, how these mutations confer clinically relevant resistance is unclear. Reactivation from explanted mouse ganglia was previously observed with a patient-derived drug-resistant isolate carrying a single guanine insertion within a run of guanines in the thymidine kinase gene. Despite this mutation, low levels of active enzyme were synthesized following an unusual ribosomal frameshift. Here we report that a virus, generated from a pretherapy isolate from the same patient, engineered to lack thymidine kinase activity, was competent for reactivation. This suggested that the clinical isolate contains alleles of other genes that permit reactivation in the absence of thymidine kinase. Therefore, to establish whether thymidine kinase synthesized via a ribosomal frameshift was sufficient for reactivation under conditions where reactivation requires this enzyme, we introduced the mutation into the well-characterized strain KOS. This mutant virus reactivated from latency, albeit less efficiently than KOS. Plaque autoradiography revealed three phenotypes of reactivating viruses: uniformly low thymidine kinase activity, mixed high and low activity, and uniformly high activity. We generated a recombinant thymidine kinase-null virus from a reactivating virus expressing uniformly low activity. This virus did not reactivate, confirming that mutations in other genes that would influence reactivation had not arisen. Therefore, in strains that require thymidine kinase for reactivation from latency, low levels of enzyme synthesized via a ribosomal frameshift can suffice. PMID:12663777

  17. Exome and deep sequencing of clinically aggressive neuroblastoma reveal somatic mutations that affect key pathways involved in cancer progression

    PubMed Central

    Lasorsa, Vito Alessandro; Formicola, Daniela; Pignataro, Piero; Cimmino, Flora; Calabrese, Francesco Maria; Mora, Jaume; Esposito, Maria Rosaria; Pantile, Marcella; Zanon, Carlo; De Mariano, Marilena; Longo, Luca; Hogarty, Michael D.; de Torres, Carmen; Tonini, Gian Paolo; Iolascon, Achille; Capasso, Mario

    2016-01-01

    The spectrum of somatic mutation of the most aggressive forms of neuroblastoma is not completely determined. We sought to identify potential cancer drivers in clinically aggressive neuroblastoma. Whole exome sequencing was conducted on 17 germline and tumor DNA samples from high-risk patients with adverse events within 36 months from diagnosis (HR-Event3) to identify somatic mutations and deep targeted sequencing of 134 genes selected from the initial screening in additional 48 germline and tumor pairs (62.5% HR-Event3 and high-risk patients), 17 HR-Event3 tumors and 17 human-derived neuroblastoma cell lines. We revealed 22 significantly mutated genes, many of which implicated in cancer progression. Fifteen genes (68.2%) were highly expressed in neuroblastoma supporting their involvement in the disease. CHD9, a cancer driver gene, was the most significantly altered (4.0% of cases) after ALK. Other genes (PTK2, NAV3, NAV1, FZD1 and ATRX), expressed in neuroblastoma and involved in cell invasion and migration were mutated at frequency ranged from 4% to 2%. Focal adhesion and regulation of actin cytoskeleton pathways, were frequently disrupted (14.1% of cases) thus suggesting potential novel therapeutic strategies to prevent disease progression. Notably BARD1, CHEK2 and AXIN2 were enriched in rare, potentially pathogenic, germline variants. In summary, whole exome and deep targeted sequencing identified novel cancer genes of clinically aggressive neuroblastoma. Our analyses show pathway-level implications of infrequently mutated genes in leading neuroblastoma progression. PMID:27009842

  18. Study of cnidarian-algal symbiosis in the "omics" age.

    PubMed

    Meyer, Eli; Weis, Virginia M

    2012-08-01

    The symbiotic associations between cnidarians and dinoflagellate algae (Symbiodinium) support productive and diverse ecosystems in coral reefs. Many aspects of this association, including the mechanistic basis of host-symbiont recognition and metabolic interaction, remain poorly understood. The first completed genome sequence for a symbiotic anthozoan is now available (the coral Acropora digitifera), and extensive expressed sequence tag resources are available for a variety of other symbiotic corals and anemones. These resources make it possible to profile gene expression, protein abundance, and protein localization associated with the symbiotic state. Here we review the history of "omics" studies of cnidarian-algal symbiosis and the current availability of sequence resources for corals and anemones, identifying genes putatively involved in symbiosis across 10 anthozoan species. The public availability of candidate symbiosis-associated genes leaves the field of cnidarian-algal symbiosis poised for in-depth comparative studies of sequence diversity and gene expression and for targeted functional studies of genes associated with symbiosis. Reviewing the progress to date suggests directions for future investigations of cnidarian-algal symbiosis that include (i) sequencing of Symbiodinium, (ii) proteomic analysis of the symbiosome membrane complex, (iii) glycomic analysis of Symbiodinium cell surfaces, and (iv) expression profiling of the gastrodermal cells hosting Symbiodinium. PMID:22983032

  19. HIV-1 Nef mutations abrogating downregulation of CD4 affect other Nef functions and show reduced pathogenicity in transgenic mice

    SciTech Connect

    Hanna, Zaher . E-mail: Zaher.Hanna@ircm.qc.ca; Priceputu, Elena; Hu, Chunyan; Vincent, Patrick; Jolicoeur, Paul

    2006-03-01

    pathologies) in respectively Nef{sup RD35/36AA} and Nef{sup D174K} Tg mice, relative to those developing in Nef{sup Wt} Tg mice. Our data suggest that the RD35/36AA and D174K mutations affect other Nef functions, namely those involved in the development of lung and kidney diseases, in addition to their known role in CD4 downregulation. Similarly, in HIV-1-infected individuals, loss of CD4 downregulation by Nef alleles may reflect their lower intrinsic pathogenicity, independently of their effects on virus replication.

  20. Fundus albipunctatus: review of the literature and report of a novel RDH5 gene mutation affecting the invariant tyrosine (p.Tyr175Phe).

    PubMed

    Skorczyk-Werner, Anna; Pawłowski, Przemysław; Michalczuk, Marta; Warowicka, Alicja; Wawrocka, Anna; Wicher, Katarzyna; Bakunowicz-Łazarczyk, Alina; Krawczyński, Maciej R

    2015-08-01

    Fundus albipunctatus (FA) is a rare, congenital form of night blindness with rod system impairment, characterised by the presence of numerous small, white-yellow retinal lesions. FA belongs to a heterogenous group of so-called flecked retina syndromes. This disorder shows autosomal recessive inheritance and is caused mostly by mutations in the RDH5 gene. This gene encodes the enzyme that is a part of the visual cycle, the 11-cis retinol dehydrogenase. This study is a brief review of the literature on FA and a report of the first molecular evidence for RDH5 gene mutation in a Polish patient with this rare disorder. We present a novel pathogenic RDH5 gene mutation in a 16-year-old female patient with symptoms of night blindness. The patient underwent ophthalmological examinations, including colour vision testing, fundus photography, automated visual field testing, full-field electroretinography (ERG) and spectral optical coherent tomography (SOCT). The patient showed typical FA ERG records, the visual field was constricted and fundus examination revealed numerous characteristic, small, white-yellowish retinal lesions. DNA sequencing of the RDH5 gene coding sequence (exons 2-5) enabled the detection of the homozygous missense substitution c.524A > T (p.Tyr175Phe) in exon 3. This is the first report of RDH5 gene mutation that affects the invariant tyrosine, one of the most conserved amino acid residues in short-chain alcohol dehydrogenases/reductases (SDRs), crucial for these enzymes' activity. The location of this substitution, together with its predicted influence on the protein function, indicate that the p.Tyr175Phe mutation is the cause of FA in our patient. PMID:25820994

  1. Characterization of a Spontaneous Novel Mutation in the NPC2 Gene in a Cat Affected by Niemann Pick Type C Disease

    PubMed Central

    Zampieri, Stefania; Bianchi, Ezio; Cantile, Carlo; Saleri, Roberta; Bembi, Bruno; Dardis, Andrea

    2014-01-01

    Niemann-Pick C disease (NPC) is an autosomal recessive lysosomal storage disorder characterized by accumulation of unesterified cholesterol and other lipids within the lysosomes due to mutation in NPC1 or NPC2 genes. A feline model of NPC carrying a mutation in NPC1 gene has been previously described. We have identified two kittens affected by NPC disease due to a mutation in NPC2 gene. They manifested with tremors at the age of 3 months, which progressed to dystonia and severe ataxia. At 6 months of age cat 2 was unable to stand without assistance and had bilaterally reduced menace response. It died at the age of 10 months. Post-mortem histological analysis of the brain showed the presence of neurons with cytoplasmic swelling and vacuoles, gliosis of the substantia nigra and degeneration of the white matter. Spheroids with accumulation of ubiquitinated aggregates were prominent in the cerebellar cortex. Purkinje cells were markedly reduced in number and they showed prominent intracytoplasmic storage. Scattered perivascular aggregates of lymphocytes and microglial cells proliferation were present in the thalamus and midbrain. Proliferation of Bergmann glia was also observed. In the liver, hepatocytes were swollen because of accumulation of small vacuoles and foamy Kupffer cells were also detected. Foamy macrophages were observed within the pulmonary interstitium and alveoli as well. At 9 months cat 1 was unable to walk, developed seizures and it was euthanized at 21 months. Filipin staining of cultured fibroblasts showed massive storage of unesterified cholesterol. Molecular analysis of NPC1 and NPC2 genes showed the presence of a homozygous intronic mutation (c.82+5G>A) in the NPC2 gene. The subsequent analysis of the mRNA showed that the mutation causes the retention of 105 bp in the mature mRNA, which leads to the in frame insertion of 35 amino acids between residues 28 and 29 of NPC2 protein (p.G28_S29ins35). PMID:25396745

  2. Mutations associated with Dent's disease affect gating and voltage dependence of the human anion/proton exchanger ClC-5

    PubMed Central

    Alekov, Alexi K.

    2015-01-01

    Dent's disease is associated with impaired renal endocytosis and endosomal acidification. It is linked to mutations in the membrane chloride/proton exchanger ClC-5; however, a direct link between localization in the protein and functional phenotype of the mutants has not been established until now. Here, two Dent's disease mutations, G212A and E267A, were investigated using heterologous expression in HEK293T cells, patch-clamp measurements and confocal imaging. WT and mutant ClC-5 exhibited mixed cell membrane and vesicular distribution. Reduced ion currents were measured for both mutants and both exhibited reduced capability to support endosomal acidification. Functionally, mutation G212A was capable of mediating anion/proton antiport but dramatically shifted the activation of ClC-5 toward more depolarized potentials. The shift can be explained by impeded movements of the neighboring gating glutamate Gluext, a residue that confers major part of the voltage dependence of ClC-5 and serves as a gate at the extracellular entrance of the anion transport pathway. Cell surface abundance of E267A was reduced by ~50% but also dramatically increased gating currents were detected for this mutant and accordingly reduced probability to undergoing cycles associated with electrogenic ion transport. Structurally, the gating alternations correlate to the proximity of E267A to the proton glutamate Gluin that serves as intracellular gate in the proton transport pathway and regulates the open probability of ClC-5. Remarkably, two other mammalian isoforms, ClC-3 and ClC-4, also differ from ClC-5 in gating characteristics affected by the here investigated disease-causing mutations. This evolutionary specialization, together with the functional defects arising from mutations G212A and E267A, demonstrate that the complex gating behavior exhibited by most of the mammalian CLC transporters is an important determinant of their cellular function. PMID:26042048

  3. Mutations in genes encoding complement inhibitors CD46 and CFH affect the age at nephritis onset in patients with systemic lupus erythematosus

    PubMed Central

    2011-01-01

    Introduction Inherited deficiencies of several complement components strongly predispose to systemic lupus erythematosus (SLE) while deficiencies of complement inhibitors are found in kidney diseases such as atypical hemolytic uremic syndrome (aHUS). Methods The exons of complement inhibitor genes CD46 and CFH (factor H) were fully sequenced using the Sanger method in SLE patients with nephritis originating from two cohorts from southern and mid Sweden (n = 196). All identified mutations and polymorphisms were then analyzed in SLE patients without nephritis (n = 326) and in healthy controls (n = 523). Results We found nonsynonymous, heterozygous mutations in CFH in 6.1% patients with nephritis, in comparison with 4.0% and 5.4% in patients without nephritis and controls, respectively. No associations of SLE or nephritis with common variants in CFH (V62I/Y402H/E936D) were found. Furthermore, we found two nonsynonymous heterozygous mutations in CD46 in SLE patients but not in controls. The A353V polymorphism, known to affect function of CD46, was found in 6.6% of nephritis patients versus 4.9% and 6.1% of the non-nephritis SLE patients and controls. The presence of mutations in CD46 and CFH did not predispose to SLE or nephritis but was associated with earlier onset of nephritis. Furthermore, we found weak indications that there is one protective and one risk haplotype predisposing to nephritis composed of several polymorphisms in noncoding regions of CD46, which were previously implicated in aHUS. Conclusions SLE nephritis is not associated with frequent mutations in CFH and CD46 as found in aHUS but these may be modifying factors causing earlier onset of nephritis. PMID:22171659

  4. Cellular interference in craniofrontonasal syndrome: males mosaic for mutations in the X-linked EFNB1 gene are more severely affected than true hemizygotes

    PubMed Central

    Twigg, Stephen R.F.; Babbs, Christian; van den Elzen, Marijke E.P.; Goriely, Anne; Taylor, Stephen; McGowan, Simon J.; Giannoulatou, Eleni; Lonie, Lorne; Ragoussis, Jiannis; Akha, Elham Sadighi; Knight, Samantha J.L.; Zechi-Ceide, Roseli M.; Hoogeboom, Jeannette A.M.; Pober, Barbara R.; Toriello, Helga V.; Wall, Steven A.; Rita Passos-Bueno, M.; Brunner, Han G.; Mathijssen, Irene M.J.; Wilkie, Andrew O.M.

    2013-01-01

    Craniofrontonasal syndrome (CFNS), an X-linked disorder caused by loss-of-function mutations of EFNB1, exhibits a paradoxical sex reversal in phenotypic severity: females characteristically have frontonasal dysplasia, craniosynostosis and additional minor malformations, but males are usually more mildly affected with hypertelorism as the only feature. X-inactivation is proposed to explain the more severe outcome in heterozygous females, as this leads to functional mosaicism for cells with differing expression of EPHRIN-B1, generating abnormal tissue boundaries—a process that cannot occur in hemizygous males. Apparently challenging this model, males occasionally present with a more severe female-like CFNS phenotype. We hypothesized that such individuals might be mosaic for EFNB1 mutations and investigated this possibility in multiple tissue samples from six sporadically presenting males. Using denaturing high performance liquid chromatography, massively parallel sequencing and multiplex-ligation-dependent probe amplification (MLPA) to increase sensitivity above standard dideoxy sequencing, we identified mosaic mutations of EFNB1 in all cases, comprising three missense changes, two gene deletions and a novel point mutation within the 5′ untranslated region (UTR). Quantification by Pyrosequencing and MLPA demonstrated levels of mutant cells between 15 and 69%. The 5′ UTR variant mutates the stop codon of a small upstream open reading frame that, using a dual-luciferase reporter construct, was demonstrated to exacerbate interference with translation of the wild-type protein. These results demonstrate a more severe outcome in mosaic than in constitutionally deficient males in an X-linked dominant disorder and provide further support for the cellular interference mechanism, normally related to X-inactivation in females. PMID:23335590

  5. PINK1 loss-of-function mutations affect mitochondrial complex I activity via NdufA10 ubiquinone uncoupling.

    PubMed

    Morais, Vanessa A; Haddad, Dominik; Craessaerts, Katleen; De Bock, Pieter-Jan; Swerts, Jef; Vilain, Sven; Aerts, Liesbeth; Overbergh, Lut; Grünewald, Anne; Seibler, Philip; Klein, Christine; Gevaert, Kris; Verstreken, Patrik; De Strooper, Bart

    2014-04-11

    Under resting conditions, Pink1 knockout cells and cells derived from patients with PINK1 mutations display a loss of mitochondrial complex I reductive activity, causing a decrease in the mitochondrial membrane potential. Analyzing the phosphoproteome of complex I in liver and brain from Pink1(-/-) mice, we found specific loss of phosphorylation of serine-250 in complex I subunit NdufA10. Phosphorylation of serine-250 was needed for ubiquinone reduction by complex I. Phosphomimetic NdufA10 reversed Pink1 deficits in mouse knockout cells and rescued mitochondrial depolarization and synaptic transmission defects in pink(B9)-null mutant Drosophila. Complex I deficits and adenosine triphosphate synthesis were also rescued in cells derived from PINK1 patients. Thus, this evolutionary conserved pathway may contribute to the pathogenic cascade that eventually leads to Parkinson's disease in patients with PINK1 mutations. PMID:24652937

  6. Mutations Affecting Potassium Import Restore the Viability of the Escherichia coli DNA Polymerase III holD Mutant.

    PubMed

    Durand, Adeline; Sinha, Anurag Kumar; Dard-Dascot, Cloelia; Michel, Bénédicte

    2016-06-01

    Mutants lacking the ψ (HolD) subunit of the Escherichia coli DNA Polymerase III holoenzyme (Pol III HE) have poor viability, but a residual growth allows the isolation of spontaneous suppressor mutations that restore ΔholD mutant viability. Here we describe the isolation and characterization of two suppressor mutations in the trkA and trkE genes, involved in the main E. coli potassium import system. Viability of ΔholD trk mutants is abolished on media with low or high K+ concentrations, where alternative K+ import systems are activated, and is restored on low K+ concentrations by the inactivation of the alternative Kdp system. These findings show that the ΔholD mutant is rescued by a decrease in K+ import. The effect of trk inactivation is additive with the previously identified ΔholD suppressor mutation lexAind that blocks the SOS response indicating an SOS-independent mechanism of suppression. Accordingly, although lagging-strand synthesis is still perturbed in holD trkA mutants, the trkA mutation allows HolD-less Pol III HE to resist increased levels of the SOS-induced bypass polymerase DinB. trk inactivation is also partially additive with an ssb gene duplication, proposed to stabilize HolD-less Pol III HE by a modification of the single-stranded DNA binding protein (SSB) binding mode. We propose that lowering the intracellular K+ concentration stabilizes HolD-less Pol III HE on DNA by increasing electrostatic interactions between Pol III HE subunits, or between Pol III and DNA, directly or through a modification of the SSB binding mode; these three modes of action are not exclusive and could be additive. To our knowledge, the holD mutant provides the first example of an essential protein-DNA interaction that strongly depends on K+ import in vivo. PMID:27280472

  7. Defective oxidative phosphorylation in thyroid oncocytic carcinoma is associated with pathogenic mitochondrial DNA mutations affecting complexes I and III.

    PubMed

    Bonora, Elena; Porcelli, Anna Maria; Gasparre, Giuseppe; Biondi, Annalisa; Ghelli, Anna; Carelli, Valerio; Baracca, Alessandra; Tallini, Giovanni; Martinuzzi, Andrea; Lenaz, Giorgio; Rugolo, Michela; Romeo, Giovanni

    2006-06-15

    Oncocytic tumors are characterized by cells with an aberrant accumulation of mitochondria. To assess mitochondrial function in neoplastic oncocytic cells, we studied the thyroid oncocytic cell line XTC.UC1 and compared it with other thyroid non-oncocytic cell lines. Only XTC.UC1 cells were unable to survive in galactose, a condition forcing cells to rely solely on mitochondria for energy production. The rate of respiration and mitochondrial ATP synthesis driven by complex I substrates was severely reduced in XTC.UC1 cells. Furthermore, the enzymatic activity of complexes I and III was dramatically decreased in these cells compared with controls, in conjunction with a strongly enhanced production of reactive oxygen species. Osteosarcoma-derived transmitochondrial cell hybrids (cybrids) carrying XTC.UC1 mitochondrial DNA (mtDNA) were generated to discriminate whether the energetic failure depended on mitochondrial or nuclear DNA mutations. In galactose medium, XTC.UC1 cybrid clones showed reduced viability and ATP content, similarly to the parental XTC.UC1, clearly pointing to the existence of mtDNA alterations. Sequencing of XTC.UC1 mtDNA identified a frameshift mutation in ND1 and a nonconservative substitution in cytochrome b, two mutations with a clear pathogenic potential. In conclusion, this is the first demonstration that mitochondrial dysfunction of XTC.UC1 is due to a combined complex I/III defect associated with mtDNA mutations, as proven by the transfer of the defective energetic phenotype with the mitochondrial genome into the cybrids. PMID:16778181

  8. Mutations Affecting Potassium Import Restore the Viability of the Escherichia coli DNA Polymerase III holD Mutant

    PubMed Central

    Durand, Adeline

    2016-01-01

    Mutants lacking the ψ (HolD) subunit of the Escherichia coli DNA Polymerase III holoenzyme (Pol III HE) have poor viability, but a residual growth allows the isolation of spontaneous suppressor mutations that restore ΔholD mutant viability. Here we describe the isolation and characterization of two suppressor mutations in the trkA and trkE genes, involved in the main E. coli potassium import system. Viability of ΔholD trk mutants is abolished on media with low or high K+ concentrations, where alternative K+ import systems are activated, and is restored on low K+ concentrations by the inactivation of the alternative Kdp system. These findings show that the ΔholD mutant is rescued by a decrease in K+ import. The effect of trk inactivation is additive with the previously identified ΔholD suppressor mutation lexAind that blocks the SOS response indicating an SOS-independent mechanism of suppression. Accordingly, although lagging-strand synthesis is still perturbed in holD trkA mutants, the trkA mutation allows HolD-less Pol III HE to resist increased levels of the SOS-induced bypass polymerase DinB. trk inactivation is also partially additive with an ssb gene duplication, proposed to stabilize HolD-less Pol III HE by a modification of the single-stranded DNA binding protein (SSB) binding mode. We propose that lowering the intracellular K+ concentration stabilizes HolD-less Pol III HE on DNA by increasing electrostatic interactions between Pol III HE subunits, or between Pol III and DNA, directly or through a modification of the SSB binding mode; these three modes of action are not exclusive and could be additive. To our knowledge, the holD mutant provides the first example of an essential protein-DNA interaction that strongly depends on K+ import in vivo. PMID:27280472

  9. Host–Bacterial Symbiosis in Health and Disease

    PubMed Central

    Chow, Janet; Lee, S. Melanie; Shen, Yue; Khosravi, Arya; Mazmanian, Sarkis K.

    2011-01-01

    All animals live in symbiosis. Shaped by eons of co-evolution, host-bacterial associations have developed into prosperous relationships creating mechanisms for mutual benefits to both microbe and host. No better example exists in biology than the astounding numbers of bacteria harbored by the lower gastrointestinal tract of mammals. The mammalian gut represents a complex ecosystem consisting of an extraordinary number of resident commensal bacteria existing in homeostasis with the host’s immune system. Most impressive about this relationship may be the concept that the host not only tolerates, but has evolved to require colonization by beneficial microorganisms, known as commensals, for various aspects of immune development and function. The microbiota provides critical signals that promote maturation of immune cells and tissues, leading to protection from infections by pathogens. Gut bacteria also appear to contribute to non-infectious immune disorders such as inflammatory bowel disease and autoimmunity. How the microbiota influences host immune responses is an active area of research with important implications for human health. This review synthesizes emerging findings and concepts that describe the mutualism between the microbiota and mammals, specifically emphasizing the role of gut bacteria in shaping an immune response that mediates the balance between health and disease. Unlocking how beneficial bacteria affect the development of the immune system may lead to novel and natural therapies based on harnessing the immunomodulatory properties of the microbiota. PMID:21034976

  10. A Genetic Screen for Mutations Affecting Cell Division in the Arabidopsis thaliana Embryo Identifies Seven Loci Required for Cytokinesis

    PubMed Central

    Gillmor, C. Stewart; Roeder, Adrienne H. K.; Sieber, Patrick; Somerville, Chris; Lukowitz, Wolfgang

    2016-01-01

    Cytokinesis in plants involves the formation of unique cellular structures such as the phragmoplast and the cell plate, both of which are required to divide the cell after nuclear division. In order to isolate genes that are involved in de novo cell wall formation, we performed a large-scale, microscope-based screen for Arabidopsis mutants that severely impair cytokinesis in the embryo. We recovered 35 mutations that form abnormally enlarged cells with multiple, often polyploid nuclei and incomplete cell walls. These mutants represent seven genes, four of which have previously been implicated in phragmoplast or cell plate function. Mutations in two loci show strongly reduced transmission through the haploid gametophytic generation. Molecular cloning of both corresponding genes reveals that one is represented by hypomorphic alleles of the kinesin-5 gene RADIALLY SWOLLEN 7 (homologous to tobacco kinesin-related protein TKRP125), and that the other gene corresponds to the Arabidopsis FUSED ortholog TWO-IN-ONE (originally identified based on its function in pollen development). No mutations that completely abolish the formation of cross walls in diploid cells were found. Our results support the idea that cytokinesis in the diploid and haploid generations involve similar mechanisms. PMID:26745275

  11. Consequences of symbiosis for food web dynamics.

    PubMed

    Kooi, B W; Kuijper, L D J; Kooijman, S A L M

    2004-09-01

    Basic Lotka-Volterra type models in which mutualism (a type of symbiosis where the two populations benefit both) is taken into account, may give unbounded solutions. We exclude such behaviour using explicit mass balances and study the consequences of symbiosis for the long-term dynamic behaviour of a three species system, two prey and one predator species in the chemostat. We compose a theoretical food web where a predator feeds on two prey species that have a symbiotic relationships. In addition to a species-specific resource, the two prey populations consume the products of the partner population as well. In turn, a common predator forages on these prey populations. The temporal change in the biomass and the nutrient densities in the reactor is described by ordinary differential equations (ODE). Since products are recycled, the dynamics of these abiotic materials must be taken into account as well, and they are described by odes in a similar way as the abiotic nutrients. We use numerical bifurcation analysis to assess the long-term dynamic behaviour for varying degrees of symbiosis. Attractors can be equilibria, limit cycles and chaotic attractors depending on the control parameters of the chemostat reactor. These control parameters that can be experimentally manipulated are the nutrient density of the inflow medium and the dilution rate. Bifurcation diagrams for the three species web with a facultative symbiotic association between the two prey populations, are similar to that of a bi-trophic food chain; nutrient enrichment leads to oscillatory behaviour. Predation combined with obligatory symbiotic prey-interactions has a stabilizing effect, that is, there is stable coexistence in a larger part of the parameter space than for a bi-trophic food chain. However, combined with a large growth rate of the predator, the food web can persist only in a relatively small region of the parameter space. Then, two zero-pair bifurcation points are the organizing centers. In

  12. Academia-industry symbiosis in organic chemistry.

    PubMed

    Michaudel, Quentin; Ishihara, Yoshihiro; Baran, Phil S

    2015-03-17

    Collaboration between academia and industry is a growing phenomenon within the chemistry community. These sectors have long held strong ties since academia traditionally trains the future scientists of the corporate world, but the recent drastic decrease of public funding is motivating the academic world to seek more private grants. This concept of industrial "sponsoring" is not new, and in the past, some companies granted substantial amounts of money per annum to various academic institutions in exchange for prime access to all their scientific discoveries and inventions. However, academic and industrial interests were not always aligned, and therefore the investment has become increasingly difficult to justify from industry's point of view. With fluctuating macroeconomic factors, this type of unrestricted grant has become more rare and has been largely replaced by smaller and more focused partnerships. In our view, forging a partnership with industry can be a golden opportunity for both parties and can represent a true symbiosis. This type of project-specific collaboration is engendered by industry's desire to access very specific academic expertise that is required for the development of new technologies at the forefront of science. Since financial pressures do not allow companies to spend the time to acquire this expertise and even less to explore fundamental research, partnering with an academic laboratory whose research is related to the problem gives them a viable alternative. From an academic standpoint, it represents the perfect occasion to apply "pure science" research concepts to solve problems that benefit humanity. Moreover, it offers a unique opportunity for students to face challenges from the "real world" at an early stage of their career. Although not every problem in industry can be solved by research developments in academia, we argue that there is significant scientific overlap between these two seemingly disparate groups, thereby presenting an

  13. Identification of Genetic Loci Affecting the Severity of Symptoms of Hirschsprung Disease in Rats Carrying Ednrbsl Mutations by Quantitative Trait Locus Analysis

    PubMed Central

    Torigoe, Daisuke; Lei, Chuzhao; Lan, Xianyong; Chen, Hong; Sasaki, Nobuya; Wang, Jinxi; Agui, Takashi

    2015-01-01

    Hirschsprung’s disease (HSCR) is a congenital disease in neonates characterized by the absence of the enteric ganglia in a variable length of the distal colon. This disease results from multiple genetic interactions that modulate the ability of enteric neural crest cells to populate developing gut. We previously reported that three rat strains with different backgrounds (susceptible AGH-Ednrbsl/sl, resistant F344-Ednrbsl/sl, and LEH-Ednrbsl/sl) but the same null mutation of Ednrb show varying severity degrees of aganglionosis. This finding suggests that strain-specific genetic factors affect the severity of HSCR. Consistent with this finding, a quantitative trait locus (QTL) for the severity of HSCR on chromosome (Chr) 2 was identified using an F2 intercross between AGH and F344 strains. In the present study, we performed QTL analysis using an F2 intercross between the susceptible AGH and resistant LEH strains to identify the modifier/resistant loci for HSCR in Ednrb-deficient rats. A significant locus affecting the severity of HSCR was also detected within the Chr 2 region. These findings strongly suggest that a modifier gene of aganglionosis exists on Chr 2. In addition, two potentially causative SNPs (or mutations) were detected upstream of a known HSCR susceptibility gene, Gdnf. These SNPs were possibly responsible for the varied length of gut affected by aganglionosis. PMID:25790447

  14. Variable intrafamilial expressivity of the rare tumor necrosis factor-receptor associated periodic syndrome-associated mutation I170N that affects the TNFR1A cleavage site

    PubMed Central

    Salzberger, Bernd; Haerle, Peter; Aksentijevich, Ivona; Kastner, Daniel; Schoelmerich, Juergen; Rosenfeld, Stephanie; Mueller-Ladner, Ulf

    2010-01-01

    We report on a 33-year-old female patient with a relatively mild clinical case of TNF-receptor associated periodic syndrome (TRAPS) and her 58-year-old father in whom end-stage renal disease due to TRAPS-related AA-amyloidosis has already developed. TRAPS was caused by a I170N mutation that has previously not been associated with amyloidosis. It remains unclear if an only mildly affected patient such as ours would benefit from treatment considering her father’s severe course of disease. The relevant literature on this problem is reviewed. PMID:20169391

  15. Mutations affecting the development of the peripheral nervous system in Drosophila: a molecular screen for novel proteins.

    PubMed Central

    Prokopenko, S N; He, Y; Lu, Y; Bellen, H J

    2000-01-01

    In our quest for novel genes required for the development of the embryonic peripheral nervous system (PNS), we have performed three genetic screens using MAb 22C10 as a marker of terminally differentiated neurons. A total of 66 essential genes required for normal PNS development were identified, including 49 novel genes. To obtain information about the molecular nature of these genes, we decided to complement our genetic screens with a molecular screen. From transposon-tagged mutations identified on the basis of their phenotype in the PNS we selected 31 P-element strains representing 26 complementation groups on the second and third chromosomes to clone and sequence the corresponding genes. We used plasmid rescue to isolate and sequence 51 genomic fragments flanking the sites of these P-element insertions. Database searches using sequences derived from the ends of plasmid rescues allowed us to assign genes to one of four classes: (1) previously characterized genes (11), (2) first mutations in cloned genes (1), (3) P-element insertions in genes that were identified, but not characterized molecularly (1), and (4) novel genes (13). Here, we report the cloning, sequence, Northern analysis, and the embryonic expression pattern of candidate cDNAs for 10 genes: astray, chrowded, dalmatian, gluon, hoi-polloi, melted, pebble, skittles, sticky ch1, and vegetable. This study allows us to draw conclusions about the identity of proteins required for the development of the nervous system in Drosophila and provides an example of a molecular approach to characterize en masse transposon-tagged mutations identified in genetic screens. PMID:11102367

  16. Lenz-Majewski mutations in PTDSS1 affect phosphatidylinositol 4-phosphate metabolism at ER-PM and ER-Golgi junctions.

    PubMed

    Sohn, Mira; Ivanova, Pavlina; Brown, H Alex; Toth, Daniel J; Varnai, Peter; Kim, Yeun Ju; Balla, Tamas

    2016-04-19

    Lenz-Majewski syndrome (LMS) is a rare disease characterized by complex craniofacial, dental, cutaneous, and limb abnormalities combined with intellectual disability. Mutations in thePTDSS1gene coding one of the phosphatidylserine (PS) synthase enzymes, PSS1, were described as causative in LMS patients. Such mutations render PSS1 insensitive to feedback inhibition by PS levels. Here we show that expression of mutant PSS1 enzymes decreased phosphatidylinositol 4-phosphate (PI4P) levels both in the Golgi and the plasma membrane (PM) by activating the Sac1 phosphatase and altered PI4P cycling at the PM. Conversely, inhibitors of PI4KA, the enzyme that makes PI4P in the PM, blocked PS synthesis and reduced PS levels by 50% in normal cells. However, mutant PSS1 enzymes alleviated the PI4P dependence of PS synthesis. Oxysterol-binding protein-related protein 8, which was recently identified as a PI4P-PS exchanger between the ER and PM, showed PI4P-dependent membrane association that was significantly decreased by expression of PSS1 mutant enzymes. Our studies reveal that PS synthesis is tightly coupled to PI4P-dependent PS transport from the ER. Consequently, PSS1 mutations not only affect cellular PS levels and distribution but also lead to a more complex imbalance in lipid homeostasis by disturbing PI4P metabolism. PMID:27044099

  17. Removal of gating in voltage-dependent ClC-2 chloride channel by point mutations affecting the pore and C-terminus CBS-2 domain

    PubMed Central

    Yusef, Yamil R; Zúñiga, Leandro; Catalán, Marcelo; Niemeyer, María Isabel; Cid, L Pablo; Sepúlveda, Francisco V

    2006-01-01

    Functional and structural studies demonstrate that Cl− channels of the ClC family have a dimeric double-barrelled structure, with each monomer contributing an identical pore. Studies with ClC-0, the prototype ClC channel, show the presence of independent mechanisms gating the individual pores or both pores simultaneously. A single-point mutation in the CBS-2 domain of ClC-0 has been shown to abolish slow gating. We have taken advantage of the high conservation of CBS domains in ClC channels to test for the presence of a slow gate in ClC-2 by reproducing this mutation (H811A). ClC-2-H811A showed faster opening kinetics and opened at more positive potentials than ClC-2. There was no difference in [Cl−]i dependence. Additional neutralization of a putative pore gate glutamate side chain (E207V) abolished all gating. Resolving slow and fast gating relaxations, however, revealed that the H811A mutation affected both fast and slow gating processes in ClC-2. This suggests that slow and fast gating in ClC-2 are coupled, perhaps with slow gating contributing to the operation of the pore E207 as a protopore gate. PMID:16469788

  18. Removal of gating in voltage-dependent ClC-2 chloride channel by point mutations affecting the pore and C-terminus CBS-2 domain.

    PubMed

    Yusef, Yamil R; Zúñiga, Leandro; Catalán, Marcelo; Niemeyer, María Isabel; Cid, L Pablo; Sepúlveda, Francisco V

    2006-04-01

    Functional and structural studies demonstrate that Cl(-) channels of the ClC family have a dimeric double-barrelled structure, with each monomer contributing an identical pore. Studies with ClC-0, the prototype ClC channel, show the presence of independent mechanisms gating the individual pores or both pores simultaneously. A single-point mutation in the CBS-2 domain of ClC-0 has been shown to abolish slow gating. We have taken advantage of the high conservation of CBS domains in ClC channels to test for the presence of a slow gate in ClC-2 by reproducing this mutation (H811A). ClC-2-H811A showed faster opening kinetics and opened at more positive potentials than ClC-2. There was no difference in [Cl(-)](i) dependence. Additional neutralization of a putative pore gate glutamate side chain (E207V) abolished all gating. Resolving slow and fast gating relaxations, however, revealed that the H811A mutation affected both fast and slow gating processes in ClC-2. This suggests that slow and fast gating in ClC-2 are coupled, perhaps with slow gating contributing to the operation of the pore E207 as a protopore gate. PMID:16469788

  19. DNA Microarray and Gene Ontology Enrichment Analysis Reveals That a Mutation in opsX Affects Virulence and Chemotaxis in Xanthomonas oryzae pv. oryzae

    PubMed Central

    Kim, Hong-Il; Park, Young-Jin

    2016-01-01

    Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial leaf blight (BLB) in rice (Oryza sativa L.). In this study, we investigated the effect of a mutation in opsX (XOO1056), which encodes a saccharide biosynthesis regulatory protein, on the virulence and bacterial chemotaxis of Xoo. We performed DNA microarray analysis, which showed that 63 of 2,678 genes, including genes related to bacterial motility (flagellar and chemotaxis proteins) were significantly downregulated (<−2 log2 fold changes) by the mutation in opsX. Indeed, motility assays showed that the mutant strain was nonmotile on semisolid agar swarm plates. In addition, a mutant strain (opsX::Tn5) showed decreased virulence against the susceptible rice cultivar, IR24. Quantitative real-time RT-PCR reaction was performed to confirm the expression levels of these genes, including those related to flagella and chemotaxis, in the opsX mutant. Our findings revealed that mutation of opsX affects both virulence and bacterial motility. These results will help to improve our understanding of Xoo and provide insight into Xoo-rice interactions. PMID:27298594

  20. A Symbiosis: Carbon Monitoring and Carbon Management

    NASA Astrophysics Data System (ADS)

    Macauley, M.

    2015-12-01

    "We measure what we value and value what we measure." This old dictum characterizes the usefulness of carbon monitoring in serving society, both in advancing research on carbon cycles and in applying new scientific knowledge to help carbon management. Many attempts to design policy for carbon management have been limited, ineffective, or otherwise unsuccessful in part due to inadequate capacity to observe carbon sources and sinks with sufficient measurement certainty and at appropriate spatial scale. Too often, policy designers fail to understand the complexities of carbon science and carbon researchers fail to align at least a portion of their science goals with policy requirements. The carbon monitoring systems research and applications activities under the auspices of the US National Aeronautics and Space Administration have significantly advanced both science and applications. To further this necessary symbiosis, this paper will synthesize current and prospective spatial and temporal requirements for emerging policy needs, discuss likely requirements for measurement certainty, and draw lessons from experiences in policies designed to monitor and manage other natural resources for which scientific research necessarily influenced policy design and effectiveness.

  1. Bacterial communities associated with the lichen symbiosis.

    PubMed

    Bates, Scott T; Cropsey, Garrett W G; Caporaso, J Gregory; Knight, Rob; Fierer, Noah

    2011-02-01

    Lichens are commonly described as a mutualistic symbiosis between fungi and "algae" (Chlorophyta or Cyanobacteria); however, they also have internal bacterial communities. Recent research suggests that lichen-associated microbes are an integral component of lichen thalli and that the classical view of this symbiotic relationship should be expanded to include bacteria. However, we still have a limited understanding of the phylogenetic structure of these communities and their variability across lichen species. To address these knowledge gaps, we used bar-coded pyrosequencing to survey the bacterial communities associated with lichens. Bacterial sequences obtained from four lichen species at multiple locations on rock outcrops suggested that each lichen species harbored a distinct community and that all communities were dominated by Alphaproteobacteria. Across all samples, we recovered numerous bacterial phylotypes that were closely related to sequences isolated from lichens in prior investigations, including those from a lichen-associated Rhizobiales lineage (LAR1; putative N(2) fixers). LAR1-related phylotypes were relatively abundant and were found in all four lichen species, and many sequences closely related to other known N(2) fixers (e.g., Azospirillum, Bradyrhizobium, and Frankia) were recovered. Our findings confirm the presence of highly structured bacterial communities within lichens and provide additional evidence that these bacteria may serve distinct functional roles within lichen symbioses. PMID:21169444

  2. Metabolic constraints for a novel symbiosis.

    PubMed

    Sørensen, Megan E S; Cameron, Duncan D; Brockhurst, Michael A; Wood, A Jamie

    2016-03-01

    Ancient evolutionary events are difficult to study because their current products are derived forms altered by millions of years of adaptation. The primary endosymbiotic event formed the first photosynthetic eukaryote resulting in both plants and algae, with vast consequences for life on Earth. The evolutionary time that passed since this event means the dominant mechanisms and changes that were required are obscured. Synthetic symbioses such as the novel interaction between Paramecium bursaria and the cyanobacterium Synechocystis PC6803, recently established in the laboratory, permit a unique window on the possible early trajectories of this critical evolutionary event. Here, we apply metabolic modelling, using flux balance analysis (FBA), to predict the metabolic adaptations necessary for this previously free-living symbiont to transition to the endosymbiotic niche. By enforcing reciprocal nutrient trading, we are able to predict the most efficient exchange nutrients for both host and symbiont. During the transition from free-living to obligate symbiosis, it is likely that the trading parameters will change over time, which leads in our model to discontinuous changes in the preferred exchange nutrients. Our results show the applicability of FBA modelling to ancient evolutionary transitions driven by metabolic exchanges, and predict how newly established endosymbioses, governed by conflict, will differ from a well-developed one that has reached a mutual-benefit state. PMID:27069664

  3. Metabolic constraints for a novel symbiosis

    PubMed Central

    Sørensen, Megan E. S.; Cameron, Duncan D.; Brockhurst, Michael A.; Wood, A. Jamie

    2016-01-01

    Ancient evolutionary events are difficult to study because their current products are derived forms altered by millions of years of adaptation. The primary endosymbiotic event formed the first photosynthetic eukaryote resulting in both plants and algae, with vast consequences for life on Earth. The evolutionary time that passed since this event means the dominant mechanisms and changes that were required are obscured. Synthetic symbioses such as the novel interaction between Paramecium bursaria and the cyanobacterium Synechocystis PC6803, recently established in the laboratory, permit a unique window on the possible early trajectories of this critical evolutionary event. Here, we apply metabolic modelling, using flux balance analysis (FBA), to predict the metabolic adaptations necessary for this previously free-living symbiont to transition to the endosymbiotic niche. By enforcing reciprocal nutrient trading, we are able to predict the most efficient exchange nutrients for both host and symbiont. During the transition from free-living to obligate symbiosis, it is likely that the trading parameters will change over time, which leads in our model to discontinuous changes in the preferred exchange nutrients. Our results show the applicability of FBA modelling to ancient evolutionary transitions driven by metabolic exchanges, and predict how newly established endosymbioses, governed by conflict, will differ from a well-developed one that has reached a mutual-benefit state. PMID:27069664

  4. The A1555G Mutation in the 12S rRNA Gene of Human mtDNA: Recurrent Origins and Founder Events in Families Affected by Sensorineural Deafness

    PubMed Central

    Torroni, Antonio; Cruciani, Fulvio; Rengo, Chiara; Sellitto, Daniele; López-Bigas, Núria; Rabionet, Raquel; Govea, Nancy; López de Munain, Adolfo; Sarduy, Maritza; Romero, Lourdes; Villamar, Manuela; del Castillo, Ignacio; Moreno, Felipe; Estivill, Xavier; Scozzari, Rosaria

    1999-01-01

    Summary The mtDNA variation of 50 Spanish and 4 Cuban families affected by nonsyndromic sensorineural deafness due to the A1555G mutation in the 12S rRNA gene was studied by high-resolution RFLP analysis and sequencing of the control region. Phylogenetic analyses of haplotypes and detailed survey of population controls revealed that the A1555G mutation can be attributed to ⩾30 independent mutational events among the 50 Spanish families and that it occurs on mtDNA haplogroups that are common in all European populations. This indicates that the relatively high detection rate of this mutation in Spain is not due to sampling biases or to a single major founder event. Moreover, the distribution of these mutational events on different haplogroups is compatible with a random occurrence of the A1555G mutation and tends to support the conclusion that mtDNA backgrounds do not play a significant role in the expression of the mutation. Overall, these findings appear to indicate that the rare detection of this mutation in other populations is most likely due to inadequacy in patient ascertainment and molecular screening. This probable lack of identification of the A1555G mutation in subjects affected by sensorineural hearing loss implies that their maternally related relatives are not benefiting from presymptomatic detection and information concerning their increased risk of ototoxicity due to aminoglycoside treatments. PMID:10521300

  5. Tmc1 Point Mutation Affects Ca2+ Sensitivity and Block by Dihydrostreptomycin of the Mechanoelectrical Transducer Current of Mouse Outer Hair Cells

    PubMed Central

    Corns, Laura F.; Johnson, Stuart L.; Kros, Corné J.

    2016-01-01

    transmembrane channel-like protein isoform 1 (TMC1) channels in the mammalian cochlea. Using a mutant mouse model (Beethoven) for progressive hearing loss in humans (DFNA36), which harbors a point mutation in the Tmc1 gene, we show that this mutation affects the MET channel pore, reducing its Ca2+ permeability and its affinity for the permeant blocker dihydrostreptomycin. A number of phenomena that we ascribe to Ca2+-dependent adaptation appear stronger, in compensation for the reduced Ca2+ entry. PMID:26758827

  6. A null mutation in the first enzyme of flavonoid biosynthesis does not affect male fertility in Arabidopsis.

    PubMed Central

    Burbulis, I E; Iacobucci, M; Shirley, B W

    1996-01-01

    Flavonoids are a major class of secondary metabolites that serves a multitude of functions in higher plants, including a recently discovered role in male fertility. Surprisingly, Arabidopsis plants deficient in flavonoid biosynthesis appear to be fully fertile. Using RNA gel blot analysis and polymerase chain reaction-based assays, we have shown that a mutation at the 3' splice acceptor site in the Arabidopsis chalcone synthase gene completely disrupts synthesis of the active form of the enzyme. We also confirmed that this enzyme, which catalyzes the first step of flavonoid biosynthesis, is encoded by a single-copy gene. HPLC analysis of whole flowers and stamens was used to show that plants homozygous for the splice site mutation are completely devoid of flavonoids. This work provides compelling evidence that despite the high levels of these compounds in the pollen of most plant species, flavonoids are not universally required for fertility. The role of flavonoids in plant reproduction may therefore offer an example of convergent functional evolution in secondary metabolism. PMID:8672888

  7. Mutations in Arabidopsis thaliana genes involved in the tryptophan biosynthesis pathway affect root waving on tilted agar surfaces

    NASA Technical Reports Server (NTRS)

    Rutherford, R.; Gallois, P.; Masson, P. H.

    1998-01-01

    Arabidopsis thaliana roots grow in a wavy pattern upon a slanted surface. A novel mutation in the anthranilate synthase alpha 1 (ASA1) gene, named trp5-2wvc1, and mutations in the tryptophan synthase alpha and beta 1 genes (trp3-1 and trp2-1, respectively) confer a compressed root wave phenotype on tilted agar surfaces. When trp5-2wvc1 seedlings are grown on media supplemented with anthranilate metabolites, their roots wave like wild type. Genetic and pharmacological experiments argue that the compressed root wave phenotypes of trp5-2wvc1, trp2-1 and trp3-1 seedlings are not due to reduced IAA biosynthetic potential, but rather to a deficiency in L-tryptophan (L-Trp), or in a L-Trp derivative. Although the roots of 7-day-old seedlings possess higher concentrations of free L-Trp than the shoot as a whole, trp5-2wvc1 mutants show no detectable alteration in L-Trp levels in either tissue type, suggesting that a very localized shortage of L-Trp, or of a L-Trp-derived compound, is responsible for the observed phenotype.

  8. Genome Sequencing of Arabidopsis abp1-5 Reveals Second-Site Mutations That May Affect Phenotypes.

    PubMed

    Enders, Tara A; Oh, Sookyung; Yang, Zhenbiao; Montgomery, Beronda L; Strader, Lucia C

    2015-07-01

    Auxin regulates numerous aspects of plant growth and development. For many years, investigating roles for AUXIN BINDING PROTEIN1 (ABP1) in auxin response was impeded by the reported embryo lethality of mutants defective in ABP1. However, identification of a viable Arabidopsis thaliana TILLING mutant defective in the ABP1 auxin binding pocket (abp1-5) allowed inroads into understanding ABP1 function. During our own studies with abp1-5, we observed growth phenotypes segregating independently of the ABP1 lesion, leading us to sequence the genome of the abp1-5 line described previously. We found that the abp1-5 line we sequenced contains over 8000 single nucleotide polymorphisms in addition to the ABP1 mutation and that at least some of these mutations may originate from the Arabidopsis Wassilewskija accession. Furthermore, a phyB null allele in the abp1-5 background is likely causative for the long hypocotyl phenotype previously attributed to disrupted ABP1 function. Our findings complicate the interpretation of abp1-5 phenotypes for which no complementation test was conducted. Our findings on abp1-5 also provide a cautionary tale illustrating the need to use multiple alleles or complementation lines when attributing roles to a gene product. PMID:26106149

  9. Mutation in the primer binding site of the type 1 human immunodeficiency virus genome affects virus production and infectivity.

    PubMed Central

    Nagashunmugam, T; Velpandi, A; Goldsmith, C S; Zaki, S R; Kalyanaraman, V S; Srinivasan, A

    1992-01-01

    In an effort to understand the contribution of the primer-binding site (PBS) region to human immunodeficiency virus (HIV) replication, we have constructed a mutant HIV proviral DNA with an alteration in the 5' end of the PBS. The PBS mutant proviral DNA was characterized by transfection of the viral DNA into CD4+ and non-CD4+ target cells. The results indicate that mutation in the PBS reduced the level of viral particles released into the medium of transfected cells in comparison to wild-type proviral DNA. The viral particles were noninfectious upon transmission to established CD4+ cell lines and phytohemagglutinin-stimulated peripheral blood lymphocytes. Electron microscopic analysis of the transfected cells revealed no abnormalities in the structure of the virion directed by the mutant proviral DNA. Also, the protein and RNA contents of the mutant virions were similar to the wild type. The quantitation of intracellular viral structural protein in the transfected cells, however, indicated that the PBS mutation may have an effect on the assembly of viral particles in addition to completely abolishing reverse transcription of viral RNA into DNA. These results provide evidence that the PBS region of the viral genome has multiple functions in HIV-1 replication. Images PMID:1373895

  10. A Naturally Occurring Single-Residue Mutation in the Translocator Domain of Neisseria meningitidis NhhA Affects Trimerization, Surface Localization, and Adhesive Capabilities▿†

    PubMed Central

    Echenique-Rivera, Hebert; Brunelli, Brunella; Scarselli, Maria; Taddei, Anna Rita; Pizza, Mariagrazia; Aricò, Beatrice; Serruto, Davide

    2011-01-01

    Neisseria meningitidis NhhA (Neisseria hia/hsf homologue A) is an oligomeric outer membrane protein belonging to the family of trimeric autotransporter adhesins. NhhA mediates the interaction of N. meningitidis with human epithelial cells and components of the extracellular matrix. The recombinant protein is able to induce bactericidal antibodies and hence has also been considered a potential vaccine candidate. In this study, we analyzed the production of NhhA in a large panel of N. meningitidis strains belonging to different serogroups and clonal complexes. We found that trimeric NhhA was produced at different levels by the various strains tested. In some strains belonging to the clonal complex ST41/44, the protein is detectable only as a monomer. Sequencing of the nhhA gene and generation of complementing strains in different genetic backgrounds have proved that a single mutation (Gly to Asp) in the translocator domain affected both trimerization and surface localization of NhhA. In vitro infection assays showed that this mutation impairs meningococcal NhhA-mediated adhesion, suggesting that strains carrying the mutation may rely on different strategies or molecules to mediate interaction with host cells. Finally, we demonstrated that N. meningitidis ST41/44 strains producing the mutated form did not induce killing mediated by NhhA-specific bactericidal antibodies. Our data help to elucidate the secretion mechanisms of trimeric autotransporters and to understand the contribution of NhhA in the evolutionary process of host-Neisseria interactions. Also, they might have important implications for the evaluation of NhhA as a vaccine candidate. PMID:21844231

  11. Understanding regulation of the host-mediated gut symbiont population and the symbiont-mediated host immunity in the Riptortus-Burkholderia symbiosis system.

    PubMed

    Kim, Jiyeun Kate; Lee, Jun Beom; Jang, Ho Am; Han, Yeon Soo; Fukatsu, Takema; Lee, Bok Luel

    2016-11-01

    Valuable insect models have tremendously contributed to our understanding of innate immunity and symbiosis. Bean bug, Riptortus pedestris, is a useful insect symbiosis model due to harboring cultivable monospecific gut symbiont, genus Burkholderia. Bean bug is a hemimetabolous insect whose immunity is not well-understood. However, we recently identified three major antimicrobial peptides of Riptortus and examined the relationship between gut symbiosis and host immunity. We found that the presence of Burkholderia gut symbiont positively affects Riptortus immunity. From studying host regulation mechanisms of symbiont population, we revealed that the symbiotic Burkholderia cells are much more susceptible to Riptortus immune responses than the cultured cells. We further elucidated that the immune-susceptibility of the Burkholderia gut symbionts is due to the drastic change of bacterial cell envelope. Finally, we show that the immune-susceptible Burkholderia symbionts are able to prosper in host owing to the suppression of immune responses of the symbiotic midgut. PMID:26774501

  12. DELLA proteins regulate arbuscule formation in arbuscular mycorrhizal symbiosis

    PubMed Central

    Floss, Daniela S.; Levy, Julien G.; Lévesque-Tremblay, Véronique; Pumplin, Nathan; Harrison, Maria J.

    2013-01-01

    Most flowering plants are able to form endosymbioses with arbuscular mycorrhizal fungi. In this mutualistic association, the fungus colonizes the root cortex and establishes elaborately branched hyphae, called arbuscules, within the cortical cells. Arbuscule development requires the cellular reorganization of both symbionts, and the resulting symbiotic interface functions in nutrient exchange. A plant symbiosis signaling pathway controls the development of the symbiosis. Several components of the pathway have been identified, but transcriptional regulators that control downstream pathways for arbuscule formation are still unknown. Here we show that DELLA proteins, which are repressors of gibberellic acid (GA) signaling and function at the nexus of several signaling pathways, are required for arbuscule formation. Arbuscule formation is severely impaired in a Medicago truncatula Mtdella1/Mtdella2 double mutant; GA treatment of wild-type roots phenocopies the della double mutant, and a dominant DELLA protein (della1-Δ18) enables arbuscule formation in the presence of GA. Ectopic expression of della1-Δ18 suggests that DELLA activity in the vascular tissue and endodermis is sufficient to enable arbuscule formation in the inner cortical cells. In addition, expression of della1-Δ18 restores arbuscule formation in the symbiosis signaling pathway mutant cyclops/ipd3, indicating an intersection between DELLA and symbiosis signaling for arbuscule formation. GA signaling also influences arbuscule formation in monocots, and a Green Revolution wheat variety carrying dominant DELLA alleles shows enhanced colonization but a limited growth response to arbuscular mycorrhizal symbiosis. PMID:24297892

  13. A review of industrial symbiosis research: theory and methodology

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Zheng, Hongmei; Chen, Bin; Su, Meirong; Liu, Gengyuan

    2015-03-01

    The theory, methodologies, and case studies in the field of industrial symbiosis have been developing for nearly 30 years. In this paper, we trace the development history of industrial symbiosis, and review its current theoretical and methodological bases, as well as trends in current research. Based on the research gaps that we identify, we provide suggestions to guide the future development of this approach to permit more comprehensive analyses. Our theoretical review includes key definitions, a classification system, and a description of the formation and development mechanisms. We discuss methodological studies from the perspective of individual industrial metabolic processes and network analysis. Analyzing specific metabolic processes can help to characterize the exchanges of materials and energy, and to reveal the ecological performance and economic benefits of the symbiosis. Network analysis methods are increasingly being used to analyze both the structural and functional characteristics of a system. Our suggestions for future research focus on three aspects: how to quantitatively classify industrial symbiosis systems, monitor the dynamics of a developing industrial symbiosis system, and analyze its internal attributes more deeply.

  14. Mutations affecting transport of the hexitols D-mannitol, D-glucitol, and galactitol in Escherichia coli K-12: isolation and mapping.

    PubMed Central

    Lengeler, J

    1975-01-01

    Mutants of Escherichia coli K-12 unable to grow on any of the three naturally occurring hexitols D-manitol, D-glucitol, and galactitol and, among these specifically, mutants with altered transport and phosphorylating activity have been isolated. Different isolation procedures have been utilized, including suicide by D-[3H]mannitol, chemotaxis, and resistance to the toxic hexitol analogue 2-deoxy-arabino-hexitol. Mutations thus obtained have been mapped in four distinct operons. (i) Mutations affecting an enzyme II-complexmt1 activity of the phosphoenolpyruvate-dependent phosphotransferase system all map in gene mtlA. This gene has previously been shown (Solomon and Lin, 1972) to be part of an operon, mtl, located at 71 min on the E. coli linkage map containing, in addition to mtlA, the cis-dominant regulatory gene mtlC and mtlD, the structural gene for the enzyme D-mannitol-1-phosphate dehydrogenase. The gene order in this operon, induced by D-mannitol, is mtlC A D. (ii) Mutations in gene gutA affecting a second enzyme II-complexgut of the phosphotransferase system map at 51 min, clustered in operon gutC A D together with the cis-dominant regulatory gene gutC and the structural gene gutD for the enzyme D-glucitol-6-phosphate dehydrogenase. The gut operon, previously called sbl or srl, is induced by D-glucitol. (iii) Mutations affecting the transport and catabolism of galactitol are clustered in a third operon, gatC A D, located at 40.5 min. This operon again contains a cis-dominant regulatory gene, gatC, the structural gene gatD for galactitol-1-phosphate dehydrogenase, and gene gatA coding for a thrid hexitol-specific enzyme II-complexgat. Other genes coding for two additional enzymes involved in galactitol catabolism apparently are not linked to gatC A D. (iv) A fourth class of mutants pleiotropically negative for hexitol growth and transport maps in the pts operon. Triple-negative mutants (mtlA gutA gatA) do not have further transport or phosphorylating activity

  15. Recurrent De Novo Mutations Affecting Residue Arg138 of Pyrroline-5-Carboxylate Synthase Cause a Progeroid Form of Autosomal-Dominant Cutis Laxa

    PubMed Central

    Fischer-Zirnsak, Björn; Escande-Beillard, Nathalie; Ganesh, Jaya; Tan, Yu Xuan; Al Bughaili, Mohammed; Lin, Angela E.; Sahai, Inderneel; Bahena, Paulina; Reichert, Sara L.; Loh, Abigail; Wright, Graham D.; Liu, Jaron; Rahikkala, Elisa; Pivnick, Eniko K.; Choudhri, Asim F.; Krüger, Ulrike; Zemojtel, Tomasz; van Ravenswaaij-Arts, Conny; Mostafavi, Roya; Stolte-Dijkstra, Irene; Symoens, Sofie; Pajunen, Leila; Al-Gazali, Lihadh; Meierhofer, David; Robinson, Peter N.; Mundlos, Stefan; Villarroel, Camilo E.; Byers, Peter; Masri, Amira; Robertson, Stephen P.; Schwarze, Ulrike; Callewaert, Bert; Reversade, Bruno; Kornak, Uwe

    2015-01-01

    Progeroid disorders overlapping with De Barsy syndrome (DBS) are collectively denoted as autosomal-recessive cutis laxa type 3 (ARCL3). They are caused by biallelic mutations in PYCR1 or ALDH18A1, encoding pyrroline-5-carboxylate reductase 1 and pyrroline-5-carboxylate synthase (P5CS), respectively, which both operate in the mitochondrial proline cycle. We report here on eight unrelated individuals born to non-consanguineous families clinically diagnosed with DBS or wrinkly skin syndrome. We found three heterozygous mutations in ALDH18A1 leading to amino acid substitutions of the same highly conserved residue, Arg138 in P5CS. A de novo origin was confirmed in all six probands for whom parental DNA was available. Using fibroblasts from affected individuals and heterologous overexpression, we found that the P5CS-p.Arg138Trp protein was stable and able to interact with wild-type P5CS but showed an altered sub-mitochondrial distribution. A reduced size upon native gel electrophoresis indicated an alteration of the structure or composition of P5CS mutant complex. Furthermore, we found that the mutant cells had a reduced P5CS enzymatic activity leading to a delayed proline accumulation. In summary, recurrent de novo mutations, affecting the highly conserved residue Arg138 of P5CS, cause an autosomal-dominant form of cutis laxa with progeroid features. Our data provide insights into the etiology of cutis laxa diseases and will have immediate impact on diagnostics and genetic counseling. PMID:26320891

  16. Recurrent De Novo Mutations Affecting Residue Arg138 of Pyrroline-5-Carboxylate Synthase Cause a Progeroid Form of Autosomal-Dominant Cutis Laxa.

    PubMed

    Fischer-Zirnsak, Björn; Escande-Beillard, Nathalie; Ganesh, Jaya; Tan, Yu Xuan; Al Bughaili, Mohammed; Lin, Angela E; Sahai, Inderneel; Bahena, Paulina; Reichert, Sara L; Loh, Abigail; Wright, Graham D; Liu, Jaron; Rahikkala, Elisa; Pivnick, Eniko K; Choudhri, Asim F; Krüger, Ulrike; Zemojtel, Tomasz; van Ravenswaaij-Arts, Conny; Mostafavi, Roya; Stolte-Dijkstra, Irene; Symoens, Sofie; Pajunen, Leila; Al-Gazali, Lihadh; Meierhofer, David; Robinson, Peter N; Mundlos, Stefan; Villarroel, Camilo E; Byers, Peter; Masri, Amira; Robertson, Stephen P; Schwarze, Ulrike; Callewaert, Bert; Reversade, Bruno; Kornak, Uwe

    2015-09-01

    Progeroid disorders overlapping with De Barsy syndrome (DBS) are collectively denoted as autosomal-recessive cutis laxa type 3 (ARCL3). They are caused by biallelic mutations in PYCR1 or ALDH18A1, encoding pyrroline-5-carboxylate reductase 1 and pyrroline-5-carboxylate synthase (P5CS), respectively, which both operate in the mitochondrial proline cycle. We report here on eight unrelated individuals born to non-consanguineous families clinically diagnosed with DBS or wrinkly skin syndrome. We found three heterozygous mutations in ALDH18A1 leading to amino acid substitutions of the same highly conserved residue, Arg138 in P5CS. A de novo origin was confirmed in all six probands for whom parental DNA was available. Using fibroblasts from affected individuals and heterologous overexpression, we found that the P5CS-p.Arg138Trp protein was stable and able to interact with wild-type P5CS but showed an altered sub-mitochondrial distribution. A reduced size upon native gel electrophoresis indicated an alteration of the structure or composition of P5CS mutant complex. Furthermore, we found that the mutant cells had a reduced P5CS enzymatic activity leading to a delayed proline accumulation. In summary, recurrent de novo mutations, affecting the highly conserved residue Arg138 of P5CS, cause an autosomal-dominant form of cutis laxa with progeroid features. Our data provide insights into the etiology of cutis laxa diseases and will have immediate impact on diagnostics and genetic counseling. PMID:26320891

  17. In Azospirillum brasilense, mutations in flmA or flmB genes affect polar flagellum assembly, surface polysaccharides, and attachment to maize roots.

    PubMed

    Rossi, Fernando Ariel; Medeot, Daniela Beatriz; Liaudat, Juan Pablo; Pistorio, Mariano; Jofré, Edgardo

    2016-09-01

    Azospirillum brasilense is a soil bacterium capable of promoting plant growth. Several surface components were previously reported to be involved in the attachment of A. brasilense to root plants. Among these components are the exopolysaccharide (EPS), lipopolysaccharide (LPS) and the polar flagellum. Flagellin from polar flagellum is glycosylated and it was suggested that genes involved in such a posttranslational modification are the same ones involved in the biosynthesis of sugars present in the O-antigen of the LPS. In this work, we report on the characterization of two homologs present in A. brasilense Cd, to the well characterized flagellin modification genes, flmA and flmB, from Aeromonas caviae. We show that mutations in either flmA or flmB genes of A. brasilense resulted in non-motile cells due to alterations in the polar flagellum assembly. Moreover, these mutations also affected the capability of A. brasilense cells to adsorb to maize roots and to produce LPS and EPS. By generating a mutant containing the polar flagellum affected in their rotation, we show the importance of the bacterial motility for the early colonization of maize roots. PMID:27393999

  18. Mutations in BIN1 Associated with Centronuclear Myopathy Disrupt Membrane Remodeling by Affecting Protein Density and Oligomerization

    PubMed Central

    Wu, Tingting; Shi, Zheng; Baumgart, Tobias

    2014-01-01

    The regulation of membrane shapes is central to many cellular phenomena. Bin/Amphiphysin/Rvs (BAR) domain-containing proteins are key players for membrane remodeling during endocytosis, cell migration, and endosomal sorting. BIN1, which contains an N-BAR domain, is assumed to be essential for biogenesis of plasma membrane invaginations (T-tubules) in muscle tissues. Three mutations, K35N, D151N and R154Q, have been discovered so far in the BAR domain of BIN1 in patients with centronuclear myopathy (CNM), where impaired organization of T-tubules has been reported. However, molecular mechanisms behind this malfunction have remained elusive. None of the BIN1 disease mutants displayed a significantly compromised curvature sensing ability. However, two mutants showed impaired membrane tubulation both in vivo and in vitro, and displayed characteristically different behaviors. R154Q generated smaller membrane curvature compared to WT N-BAR. Quantification of protein density on membranes revealed a lower membrane-bound density for R154Q compared to WT and the other mutants, which appeared to be the primary reason for the observation of impaired deformation capacity. The D151N mutant was unable to tubulate liposomes under certain experimental conditions. At medium protein concentrations we found ‘budding’ structures on liposomes that we hypothesized to be intermediates during the tubulation process except for the D151N mutant. Chemical crosslinking assays suggested that the D151N mutation impaired protein oligomerization upon membrane binding. Although we found an insignificant difference between WT and K35N N-BAR in in vitro assays, depolymerizing actin in live cells allowed tubulation of plasma membranes through the K35N mutant. Our results provide insights into the membrane-involved pathophysiological mechanisms leading to human disease. PMID:24755653

  19. Mutations That Affect Transcription and Cyclic Amp-Crp Regulation of the Adenylate Cyclase Gene (Cya) of Salmonella Typhimurium

    PubMed Central

    Fandl, J. P.; Thorner, L. K.; Artz, S. W.

    1990-01-01

    We studied the expression of the cya promoter(s) in cya-lac fusion strains of Salmonella typhimurium and demonstrated cAMP receptor protein (CRP)-dependent repression by cAMP. Expression of cya was reduced about fourfold in cultures grown in acetate minimal medium as compared to cultures grown in glucose-6-phosphate minimal medium. Expression of cya was also reduced about fourfold by addition of 5 mM cAMP to cultures grown in glucose minimal medium. We constructed in vitro deletion and insertion mutations altering a major cya promoter (P2) and a putative CRP binding site overlapping P2. These mutations were recombined into the chromosome by allele replacement with M13mp::cya recombinant phages and the regulation of the mutant promoters was analyzed. A 4-bp deletion of the CRP binding site and a 4-bp insertion in this site nearly eliminated repression by cAMP. A mutant with the P2 promoter and the CRP binding site both deleted exhibited an 80% reduction in cya expression; the 20% residual expression was insensitive to cAMP repression. This mutant retained a Cya(+) phenotype. Taken together, the results establish that the cya gene is transcribed from multiple promoters one of which, P2, is negatively regulated by the cAMP-CRP complex. Correction for the contribution to transcription by the cAMP-CRP nonregulated cya promoters indicates that the P2 promoter is repressed at least eightfold by cAMP-CRP. PMID:2168849

  20. Using answer set programming to integrate RNA expression with signalling pathway information to infer how mutations affect ageing.

    PubMed

    Papatheodorou, Irene; Ziehm, Matthias; Wieser, Daniela; Alic, Nazif; Partridge, Linda; Thornton, Janet M

    2012-01-01

    A challenge of systems biology is to integrate incomplete knowledge on pathways with existing experimental data sets and relate these to measured phenotypes. Research on ageing often generates such incomplete data, creating difficulties in integrating RNA expression with information about biological processes and the phenotypes of ageing, including longevity. Here, we develop a logic-based method that employs Answer Set Programming, and use it to infer signalling effects of genetic perturbations, based on a model of the insulin signalling pathway. We apply our method to RNA expression data from Drosophila mutants in the insulin pathway that alter lifespan, in a foxo dependent fashion. We use this information to deduce how the pathway influences lifespan in the mutant animals. We also develop a method for inferring the largest common sub-paths within each of our signalling predictions. Our comparisons reveal consistent homeostatic mechanisms across both long- and short-lived mutants. The transcriptional changes observed in each mutation usually provide negative feedback to signalling predicted for that mutation. We also identify an S6K-mediated feedback in two long-lived mutants that suggests a crosstalk between these pathways in mutants of the insulin pathway, in vivo. By formulating the problem as a logic-based theory in a qualitative fashion, we are able to use the efficient search facilities of Answer Set Programming, allowing us to explore larger pathways, combine molecular changes with pathways and phenotype and infer effects on signalling in in vivo, whole-organism, mutants, where direct signalling stimulation assays are difficult to perform. Our methods are available in the web-service NetEffects: http://www.ebi.ac.uk/thornton-srv/software/NetEffects. PMID:23251396

  1. Pkd1 and Nek8 mutations affect cell-cell adhesion and cilia in cysts formed in kidney organ cultures.

    PubMed

    Natoli, Thomas A; Gareski, Tiffany C; Dackowski, William R; Smith, Laurie; Bukanov, Nikolay O; Russo, Ryan J; Husson, Hervé; Matthews, Douglas; Piepenhagen, Peter; Ibraghimov-Beskrovnaya, Oxana

    2008-01-01

    Development of novel therapies for polycystic kidney disease (PKD) requires assays that adequately reflect disease biology and are adaptable to high-throughput screening. Here we describe an embryonic cystic kidney organ culture model and demonstrate that a new mutant allele of the Pkd1 gene (Pkd1(tm1Bdgz)) modulates cystogenesis in this model. Cyst formation induced by cAMP is influenced by the dosage of the mutant allele: Pkd1(tm1Bdgz) -/- cultures develop a larger cystic area compared with +/+ counterparts, while Pkd1(tm1Bdgz) +/- cultures show an intermediate phenotype. A similar relationship between the degree of cystogenesis and mutant gene dosage is seen in cystic kidney organ cultures derived from mice with a mutated Nek8 gene (Nek8(jck)). Both Pkd1- and Nek8- cultures display altered cell-cell junctions, with reduced E-cadherin expression and altered desmosomal protein expression, similar to ADPKD epithelia. Additionally, characteristic ciliary abnormalities are identified in cystic kidney cultures, with elevated ciliary polycystin 1 expression in Nek8 homozygous cultures and elevated ciliary Nek8 protein expression in Pkd1 homozygotes. These data suggest that the Nek8 and Pkd1 genes function in a common pathway to regulate cystogenesis. Moreover, compound Pkd1 and Nek8 heterozygous adult mice develop a more aggressive cystic disease than animals with a mutation in either gene alone. Finally, we validate the kidney organ culture cystogenesis assay as a therapeutic testing platform using the CDK inhibitor roscovitine. Therefore, embryonic kidney organ culture represents a relevant model for studying molecular cystogenesis and a rapid tool for the screening for therapies that block cystic growth. PMID:17928412

  2. On Human Symbiosis and the Vicissitudes of Individuation. Infantile Psychosis, Volume 1.

    ERIC Educational Resources Information Center

    Mahler, Margaret S.

    The concepts of symbiosis and separation-individuation are explained, and the symbiosis theory of infantile psychosis is presented. Diagnostic considerations and clinical cases of child psychosis are reviewed; prototypes of mother-child interaction are described; and therapy is discussed. A summary of the symbiosis theory and a bibliography of…

  3. Evolving together: the biology of symbiosis, part 1

    PubMed Central

    2000-01-01

    Symbioses, prolonged associations between organisms often widely separated phylogenetically, are more common in biology than we once thought and have been neglected as a phenomenon worthy of study on its own merits. Extending along a dynamic continuum from antagonistic to cooperative and often involving elements of both antagonism and mutualism, symbioses involve pathogens, commensals, and mutualists interacting in myriad ways over the evolutionary history of the involved “partners.” In this first of 2 parts, some remarkable examples of symbiosis will be explored, from the coral-algal symbiosis and nitrogen fixation to the great diversity of dietary specializations enabled by the gastrointestinal microbiota of animals. PMID:16389385

  4. Point mutations in EBV gH that abrogate or differentially affect B cell and epithelial cell fusion

    SciTech Connect

    Wu Liguo; Hutt-Fletcher, Lindsey M. . E-mail: lhuttf@lsuhsc.edu

    2007-06-20

    Cell fusion mediated by Epstein-Barr virus requires three conserved glycoproteins, gB and gHgL, but activation is cell type specific. B cell fusion requires interaction between MHC class II and a fourth virus glycoprotein, gp42, which complexes non-covalently with gHgL. Epithelial cell fusion requires interaction between gHgL and a novel epithelial cell coreceptor and is blocked by excess gp42. We show here that gp42 interacts directly with gH and that point mutations in the region of gH recognized by an antibody that differentially inhibits epithelial and B cell fusion significantly impact both the core fusion machinery and cell-specific events. Substitution of alanine for glycine at residue 594 completely abrogates fusion with either B cells or epithelial cells. Substitution of alanine for glutamic acid at residue 595 reduces fusion with epithelial cells, greatly enhances fusion with B cells and allows low levels of B cell fusion even in the absence of gL.

  5. Mutation in the xpsD gene of Xanthomonas axonopodis pv. citri affects cellulose degradation and virulence

    PubMed Central

    2010-01-01

    The Gram-negative bacterium Xanthomonas axonopodis pv. citri, the causal agent of citrus canker, is a major threat to the citrus industry worldwide. Although this is a leaf spot pathogen, it bears genes highly related to degradation of plant cell walls, which are typically found in plant pathogens that cause symptoms of tissue maceration. Little is known on Xac capacity to cause disease and hydrolyze cellulose. We investigated the contribution of various open reading frames on degradation of a cellulose compound by means of a global mutational assay to selectively screen for a defect in carboxymethyl cellulase (CMCase) secretion in X. axonopodis pv. citri. Screening on CMC agar revealed one mutant clone defective in extracellular glycanase activity, out of nearly 3,000 clones. The insertion was located in the xpsD gene, a component of the type II secretion system (T2SS) showing an influence in the ability of Xac to colonize tissues and hydrolyze cellulose. In summary, these data show for the first time, that X. axonopodis pv. citri is capable of hydrolyzing cellulose in a T2SS-dependent process. Furthermore, it was demonstrated that the ability to degrade cellulose contributes to the infection process as a whole. PMID:21637619

  6. LTBP2 mutations cause Weill-Marchesani and Weill-Marchesani-like syndrome and affect disruptions in the extracellular matrix.

    PubMed

    Haji-Seyed-Javadi, Ramona; Jelodari-Mamaghani, Sahar; Paylakhi, Seyed Hassan; Yazdani, Shahin; Nilforushan, Naveed; Fan, Jian-Bing; Klotzle, Brandy; Mahmoudi, Mohammad Jafar; Ebrahimian, Mohammad Jafar; Chelich, Noori; Taghiabadi, Ehsan; Kamyab, Kambiz; Boileau, Catherine; Paisan-Ruiz, Coro; Ronaghi, Mostafa; Elahi, Elahe

    2012-08-01

    Latent transforming growth factor (TGF) beta-binding protein 2 (LTBP2) is an extracellular matrix (ECM) protein that associates with fibrillin-1 containing microfibrils. Various factors prompted considering LTBP2 in the etiology of isolated ectopia lentis and associated conditions such as Weill-Marchesani syndrome (WMS) and Marfan syndrome (MFS). LTBP2 was screened in 30 unrelated Iranian patients. Mutations were found only in one WMS proband and one MFS proband. Homozygous c.3529G>A (p.Val1177Met) was shown to cause autosomal recessive WMS or WM-like syndrome by several approaches, including homozygosity mapping. Light, fluorescent, and electron microscopy evidenced disruptions of the microfibrillar network in the ECM of the proband's skin. In conjunction with recent findings regarding other ECM proteins, the results presented strongly support the contention that anomalies in WMS patients are due to disruptions in the ECM. Heterozygous c.1642C >T (p.Arg548*) possibly contributed to MFS-related phenotypes, including ocular manifestations, mitral valve prolapse, and pectus excavatum, but was not cause of MFS. PMID:22539340

  7. Alteration of seed fatty acid composition by an ethyl methanesulfonate-induced mutation in Arabidopsis thaliana affecting diacylglycerol acyltransferase activity.

    PubMed Central

    Katavic, V; Reed, D W; Taylor, D C; Giblin, E M; Barton, D L; Zou, J; Mackenzie, S L; Covello, P S; Kunst, L

    1995-01-01

    In characterizing the enzymes involved in the formation of very long-chain fatty acids (VLCFAs) in the Brassicaceae, we have generated a series of mutants of Arabidopsis thaliana that have reduced VLCFA content. Here we report the characterization of a seed lipid mutant, AS11, which, in comparison to wild type (WT), has reduced levels of 20:1 and 18:1 and accumulates 18:3 as the major fatty acid in triacylglycerols. Proportions of 18:2 remain similar to WT. Genetic analyses indicate that the fatty acid phenotype is caused by a semidominant mutation in a single nuclear gene, designated TAG1, located on chromosome 2. Biochemical analyses have shown that the AS11 phenotype is not due to a deficiency in the capacity to elongate 18:1 or to an increase in the relative delta 15 or delta 12 desaturase activities. Indeed, the ratio of desaturase/elongase activities measured in vitro is virtually identical in developing WT and AS11 seed homogenates. Rather, the fatty acid phenotype of AS11 is the result of reduced diacylglycerol acyltransferase activity throughout development, such that triacylglycerol biosynthesis is reduced. This leads to a reduction in 20:1 biosynthesis during seed development, leaving more 18:1 available for desaturation. Thus, we have demonstrated that changes to triacylglycerol biosynthesis can result in dramatic changes in fatty acid composition and, in particular, in the accumulation of VLCFAs in seed storage lipids. PMID:7784510

  8. Novel and recurrent mutations in the TAT gene in Tunisian families affected with Richner-Hanhart syndrome.

    PubMed

    Bouyacoub, Yosra; Zribi, Hela; Azzouz, Hatem; Nasrallah, Fehmi; Abdelaziz, Rim Ben; Kacem, Monia; Rekaya, Ben; Messaoud, Olfa; Romdhane, Lilia; Charfeddine, Cherine; Bouziri, Mustapha; Bouziri, Sonia; Tebib, Neji; Mokni, Mourad; Kaabachi, Naziha; Boubaker, Samir; Abdelhak, Sonia

    2013-10-15

    Tyrosinemia type II, also designated as oculocutaneous tyrosinemia or Richner-Hanhart syndrome (RHS), is a very rare autosomal recessive disorder. In the present study, we report clinical features and molecular genetic investigation of the tyrosine aminotransferase (TAT) gene in two young patients, both born to consanguineous unions between first-degree cousins. These two unrelated families originated from Northern and Southern Tunisia. The clinical diagnosis was based on the observation of several complications related to Richner-Hanhart syndrome: recurrent eye redness, tearing and burning pain, photophobia, bilateral pseudodendritic keratitis, an erythematous and painful focal palmo-plantar hyperkeratosis and a mild delay of mental development. The diagnosis was confirmed by biochemical analysis. Sequencing of the TAT gene revealed the presence of a previously reported missense mutation (c.452G>A, p.Cys151Tyr) in a Tunisian family, and a novel G duplication (c.869dupG, p.Trp291Leufs 6). Early diagnosis of RHS and protein-restricted diet are crucial to reduce the risk and the severity of long-term complications of hypertyrosinemia such as intellectual disability. PMID:23954227

  9. Molecular analysis of mutations affecting hprt mRNA splicing in human T-lymphocytes in vivo

    SciTech Connect

    Rossi, A.M. Pisa Univ. ); Tates, A.D.; van Zeeland, A.A.; Vrieling, H. )

    1992-01-01

    Molecular analysis of hypoxanthine-guanine phosphoribosyltransferase (hprt) cDNA from 6-thioguanine-resistant T-lymphocytes cloned from smoking and non-smoking adult donors showed that 35% of these mutants were defective in splicing of hprt mRNA. Among a set of 42 hprt splice mutants, the authors observed (1) complete loss of one or more exons, (2) partial loss of one exon, or (3) inclusion of part of an intron sequence between adjacent exons. Loss of exon 4 was significantly more frequent than of the other exons, suggesting that the sequences that regulate splicing of this exon are either larger than those of the other exons or especially prone to mutation. In order to identify the molecular nature of DNA alterations causing aberrant splicing of hprt mRNA, 17 splice mutants were analyzed in more detail by sequencing the genomic regions flanking the mis-spliced exon. Base pair substitutions or small deletions causing defective splicing were either detected in exon sequences or in splice site consensus sequences of introns.

  10. Gatekeeper Tyrosine Phosphorylation of SYMRK Is Essential for Synchronizing the Epidermal and Cortical Responses in Root Nodule Symbiosis.

    PubMed

    Saha, Sudip; Paul, Anindita; Herring, Laura; Dutta, Ayan; Bhattacharya, Avisek; Samaddar, Sandip; Goshe, Michael B; DasGupta, Maitrayee

    2016-05-01

    Symbiosis receptor kinase (SYMRK) is indispensable for activation of root nodule symbiosis (RNS) at both epidermal and cortical levels and is functionally conserved in legumes. Previously, we reported SYMRK to be phosphorylated on "gatekeeper" Tyr both in vitro as well as in planta. Since gatekeeper phosphorylation was not necessary for activity, the significance remained elusive. Herein, we show that substituting gatekeeper with nonphosphorylatable residues like Phe or Ala significantly affected autophosphorylation on selected targets on activation segment/αEF and β3-αC loop of SYMRK. In addition, the same gatekeeper mutants failed to restore proper symbiotic features in a symrk null mutant where rhizobial invasion of the epidermis and nodule organogenesis was unaffected but rhizobia remain restricted to the epidermis in infection threads migrating parallel to the longitudinal axis of the root, resulting in extensive infection patches at the nodule apex. Thus, gatekeeper phosphorylation is critical for synchronizing epidermal/cortical responses in RNS. PMID:26960732

  11. Specificity and stability of the Acromyrmex–Pseudonocardia symbiosis

    PubMed Central

    Andersen, S B; Hansen, L H; Sapountzis, P; Sørensen, S J; Boomsma, J J

    2013-01-01

    The stability of mutualistic interactions is likely to be affected by the genetic diversity of symbionts that compete for the same functional niche. Fungus-growing (attine) ants have multiple complex symbioses and thus provide ample opportunities to address questions of symbiont specificity and diversity. Among the partners are Actinobacteria of the genus Pseudonocardia that are maintained on the ant cuticle to produce antibiotics, primarily against a fungal parasite of the mutualistic gardens. The symbiosis has been assumed to be a hallmark of evolutionary stability, but this notion has been challenged by culturing and sequencing data indicating an unpredictably high diversity. We used 454 pyrosequencing of 16S rRNA to estimate the diversity of the cuticular bacterial community of the leaf-cutting ant Acromyrmex echinatior and other fungus-growing ants from Gamboa, Panama. Both field and laboratory samples of the same colonies were collected, the latter after colonies had been kept under laboratory conditions for up to 10 years. We show that bacterial communities are highly colony-specific and stable over time. The majority of colonies (25/26) had a single dominant Pseudonocardia strain, and only two strains were found in the Gamboa population across 17 years, confirming an earlier study. The microbial community on newly hatched ants consisted almost exclusively of a single strain of Pseudonocardia while other Actinobacteria were identified on older, foraging ants in varying but usually much lower abundances. These findings are consistent with recent theory predicting that mixtures of antibiotic-producing bacteria can remain mutualistic when dominated by a single vertically transmitted and resource-demanding strain. PMID:23899369

  12. Mutation of either G box or I box sequences profoundly affects expression from the Arabidopsis rbcS-1A promoter.

    PubMed Central

    Donald, R G; Cashmore, A R

    1990-01-01

    A deletion analysis of the Arabidopsis thaliana rbcS-1A promoter defined a 196 bp region (-320 to -125) sufficient to confer light-regulated expression on a heterologous Arabidopsis alcohol dehydrogenase (Adh) reporter gene in transgenic Nicotiana tabacum (tobacco) leaves. This region, which contains DNA sequences I, G and GT boxes, with homology to other ribulose-1,5-bisphosphate carboxylase small subunit (RBCS) gene promoter sequences, directed expression independent of orientation and relative position in the Adh promoter. Site-specific mutagenesis of these conserved sequences and subsequent expression analysis in transgenic tobacco showed that both G box and I box mutations in the context of the full (-1700 to +21) rbcS-1A promoter substantially reduced the expression of Adh and beta-glucuronidase (GUS) reporter genes. The G box has previously been shown to specifically bind in vitro a factor isolated from nuclear extracts of tomato and Arabidopsis. This factor (GBF) is distinct from the factor GT-1 which binds to adjacent GT boxes in the pea rbcS-3A promoter. Multiple mutations in putative Arabidopsis rbcS-1A promoter GT boxes had no pronounced affect on expression, possibly due to a redundancy of these sites. Experiments in which rbcS-1A promoter fragments were fused to truncated 35S CaMV (cauliflower mosaic virus) promoter--GUS reporter constructs showed that cis-acting CaMV promoter elements could partially restore expression to G-box-mutated rbcS-1A sequences. Images Fig. 1. Fig. 2. Fig. 4. Fig. 5. Fig. 6. PMID:2347304

  13. The N370S (Asn370-->Ser) mutation affects the capacity of glucosylceramidase to interact with anionic phospholipid-containing membranes and saposin C.

    PubMed

    Salvioli, Rosa; Tatti, Massimo; Scarpa, Susanna; Moavero, Sabrina Maria; Ciaffoni, Fiorella; Felicetti, Federica; Kaneski, Christine R; Brady, Roscoe O; Vaccaro, Anna Maria

    2005-08-15

    The properties of the endolysosomal enzyme GCase (glucosylceramidase), carrying the most prevalent mutation observed in Gaucher patients, namely substitution of an asparagine residue with a serine at amino acid position 370 [N370S (Asn370-->Ser) GCase], were investigated in the present study. We previously demonstrated that Sap (saposin) C, the physiological GCase activator, promotes the association of GCase with anionic phospholipid-containing membranes, reconstituting in this way the enzyme activity. In the present study, we show that, in the presence of Sap C and membranes containing high levels of anionic phospholipids, both normal and N370S GCases are able to associate with the lipid surface and to express their activity. Conversely, when the amount of anionic phospholipids in the membrane is reduced (approximately 20% of total lipids), Sap C is still able to promote binding and activation of the normal enzyme, but not of N370S GCase. The altered interaction of the mutated enzyme with anionic phospholipid-containing membranes and Sap C was further demonstrated in Gaucher fibroblasts by confocal microscopy, which revealed poor co-localization of N370S GCase with Sap C and lysobisphosphatidic acid, the most abundant anionic phospholipid in endolysosomes. Moreover, we found that N370S Gaucher fibroblasts accumulate endolysosomal free cholesterol, a lipid that might further interfere with the interaction of the enzyme with Sap C and lysobisphosphatidic acid-containing membranes. In summary, our results show that the N370S mutation primarily affects the interaction of GCase with its physiological activators, namely Sap C and anionic phospholipid-containing membranes. We thus propose that the poor contact between N370S GCase and its activators may be responsible for the low activity of the mutant enzyme in vivo. PMID:15826241

  14. Integrating transcriptome and genome re-sequencing data to identify key genes and mutations affecting chicken eggshell qualities.

    PubMed

    Zhang, Quan; Zhu, Feng; Liu, Long; Zheng, Chuan Wei; Wang, De He; Hou, Zhuo Cheng; Ning, Zhong Hua

    2015-01-01

    Eggshell damages lead to economic losses in the egg production industry and are a threat to human health. We examined 49-wk-old Rhode Island White hens (Gallus gallus) that laid eggs having shells with significantly different strengths and thicknesses. We used HiSeq 2000 (Illumina) sequencing to characterize the chicken transcriptome and whole genome to identify the key genes and genetic mutations associated with eggshell calcification. We identified a total of 14,234 genes expressed in the chicken uterus, representing 89% of all annotated chicken genes. A total of 889 differentially expressed genes were identified by comparing low eggshell strength (LES) and normal eggshell strength (NES) genomes. The DEGs are enriched in calcification-related processes, including calcium ion transport and calcium signaling pathways as revealed by gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis. Some important matrix proteins, such as OC-116, LTF and SPP1, were also expressed differentially between two groups. A total of 3,671,919 single-nucleotide polymorphisms (SNPs) and 508,035 Indels were detected in protein coding genes by whole-genome re-sequencing, including 1775 non-synonymous variations and 19 frame-shift Indels in DEGs. SNPs and Indels found in this study could be further investigated for eggshell traits. This is the first report to integrate the transcriptome and genome re-sequencing to target the genetic variations which decreased the eggshell qualities. These findings further advance our understanding of eggshell calcification in the chicken uterus. PMID:25974068

  15. Integrating Transcriptome and Genome Re-Sequencing Data to Identify Key Genes and Mutations Affecting Chicken Eggshell Qualities

    PubMed Central

    Liu, Long; Zheng, Chuan Wei; Wang, De He; Hou, Zhuo Cheng; Ning, Zhong Hua

    2015-01-01

    Eggshell damages lead to economic losses in the egg production industry and are a threat to human health. We examined 49-wk-old Rhode Island White hens (Gallus gallus) that laid eggs having shells with significantly different strengths and thicknesses. We used HiSeq 2000 (Illumina) sequencing to characterize the chicken transcriptome and whole genome to identify the key genes and genetic mutations associated with eggshell calcification. We identified a total of 14,234 genes expressed in the chicken uterus, representing 89% of all annotated chicken genes. A total of 889 differentially expressed genes were identified by comparing low eggshell strength (LES) and normal eggshell strength (NES) genomes. The DEGs are enriched in calcification-related processes, including calcium ion transport and calcium signaling pathways as reveled by gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis. Some important matrix proteins, such as OC-116, LTF and SPP1, were also expressed differentially between two groups. A total of 3,671,919 single-nucleotide polymorphisms (SNPs) and 508,035 Indels were detected in protein coding genes by whole-genome re-sequencing, including 1775 non-synonymous variations and 19 frame-shift Indels in DEGs. SNPs and Indels found in this study could be further investigated for eggshell traits. This is the first report to integrate the transcriptome and genome re-sequencing to target the genetic variations which decreased the eggshell qualities. These findings further advance our understanding of eggshell calcification in the chicken uterus. PMID:25974068

  16. Mutations in the A subunit affect yield, stability, and protease sensitivity of nontoxic derivatives of heat-labile enterotoxin.

    PubMed

    Magagnoli, C; Manetti, R; Fontana, M R; Giannelli, V; Giuliani, M M; Rappuoli, R; Pizza, M

    1996-12-01

    Heat-labile toxin (LT) is a protein related to cholera toxin, produced by enterotoxigenic Escherichia coli strains, that is organized as an AB5 complex. A number of nontoxic derivatives of LT, useful for new or improved vaccines against diarrheal diseases or as mucosal adjuvants, have been constructed by site-directed mutagenesis. Here we have studied the biochemical properties of the nontoxic mutants LT-K7 (Arg-7-->Lys), LT-D53 (Val-53-->Asp), LT-K63 (Ser-63-->Lys), LT-K97 (Val-97-->Lys), LT-K104 (Tyr-104-->Lys), LT-K114 (Ser-114-->Lys), and LT-K7/K97 (Arg-7-->Lys and Val-97-->Lys). We have found that mutations in the A subunit may have profound effects on the ability to form the AB5 structure and on the stability and trypsin sensitivity of the purified proteins. Unstable mutants, during long-term storage at 4 degrees C, showed a decrease in the amount of the assembled protein in solution and a parallel appearance of soluble monomeric B subunit. This finding suggests that the stability of the B pentamer is influenced by the A subunit which is associated with it. Among the seven nontoxic mutants tested, LT-K63 was found to be efficient in AB5 production, extremely stable during storage, resistant to proteolytic attack, and very immunogenic. In conclusion, LT-K63 is a good candidate for the development of antidiarrheal vaccines and mucosal adjuvants. PMID:8945604

  17. Mapping of equine cerebellar abiotrophy to ECA2 and identification of a potential causative mutation affecting expression of MUTYH.

    PubMed

    Brault, Leah S; Cooper, Caitlin A; Famula, Thomas R; Murray, James D; Penedo, M Cecilia T

    2011-02-01

    Equine Cerebellar Abiotrophy (CA) is a neurological disease found in Arabian horses. CA is characterized by post-natal degeneration of the Purkinje cells of the cerebellum. Signs of CA include ataxia, head tremors, and a lack of balance equilibrium. We have discovered a linkage of the CA phenotype to a microsatellite marker on ECA2 and identified a region of conserved homozygosity spanning approximately 142 kb. Complete sequencing of the four genes in this region identified one SNP found only in Arabian horses, located in exon 4 of TOE1 and approximately 1200 base pairs upstream of MUTYH, adjacent to a possible binding site for the transcription factor GATA2. qPCR analysis of cDNA from the cerebella of affected and unaffected horses suggested that MUTYH expression is down-regulated in affected horses. This SNP may therefore have a function effect on TOE1, or a regulatory effect on MUTYH by negatively affecting the binding affinity of GATA2. PMID:21126570

  18. Mutations within the LINC-HELLP non-coding RNA differentially bind ribosomal and RNA splicing complexes and negatively affect trophoblast differentiation.

    PubMed

    van Dijk, Marie; Visser, Allerdien; Buabeng, Kwadwo M L; Poutsma, Ankie; van der Schors, Roel C; Oudejans, Cees B M

    2015-10-01

    LINC-HELLP, showing chromosomal linkage with the pregnancy-specific HELLP syndrome in Dutch families, reduces differentiation from a proliferative to an invasive phenotype of first-trimester extravillous trophoblasts. Here we show that mutations in LINC-HELLP identified in HELLP families negatively affect this trophoblast differentiation either by inducing proliferation rate or by causing cell cycle exit as shown by a decrease in both proliferation and invasion. As LincRNAs predominantly function through interactions with proteins, we identified the directly interacting proteins using chromatin isolation by RNA purification followed by protein mass spectrometry. We found 22 proteins predominantly clustering in two functional networks, i.e. RNA splicing and the ribosome. YBX1, PCBP1, PCBP2, RPS6 and RPL7 were validated, and binding to these proteins was influenced by the HELLP mutations carried. Finally, we show that the LINC-HELLP transcript levels are significantly upregulated in plasma of women in their first trimester of pregnancy compared with non-pregnant women, whereas this upregulation seems absent in a pilot set of patients later developing pregnancy complications, indicative of its functional significance in vivo. PMID:26173455

  19. Mutations in the pho2 (bas2) transcription factor that differentially affect activation with its partner proteins bas1, pho4, and swi5.

    PubMed

    Bhoite, Leena T; Allen, Jason M; Garcia, Emily; Thomas, Lance R; Gregory, I David; Voth, Warren P; Whelihan, Kristen; Rolfes, Ronda J; Stillman, David J

    2002-10-01

    The yeast PHO2 gene encodes a homeodomain protein that exemplifies combinatorial control in transcriptional activation. Pho2 alone binds DNA in vitro with low affinity, but in vivo it activates transcription with at least three disparate DNA-binding proteins: the zinc finger protein Swi5, the helix-loop-helix factor Pho4, and Bas1, an myb-like activator. Pho2 + Swi5 activates HO, Pho2 + Pho4 activates PHO5, and Pho2 + Bas1 activates genes in the purine and histidine biosynthesis pathways. We have conducted a genetic screen and identified 23 single amino acid substitutions in Pho2 that differentially affect its ability to activate its specific target genes. Analysis of the mutations suggests that the central portion of Pho2 serves as protein-protein interactive surface, with a requirement for distinct amino acids for each partner protein. PMID:12145299

  20. Chapter 9: Symbiosis of plants, animals, and microbes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A diversity of plants, animals and microbes on Earth abound due to evolution, climate, competition, and symbiosis. Single cell species such as microorganisms are assumed to have evolved initially. Over time, plants and animals established and flourished. As each new kingdom of life came about, the...

  1. Evaluation of Project Symbiosis: An Interdisciplinary Science Education Project.

    ERIC Educational Resources Information Center

    Altschuld, James W.

    1993-01-01

    The goal of this report is to provide a summary of the evaluation of Project Symbiosis which focused on enhancing the teaching of science principles in high school agriculture courses. The project initially involved 15 teams of science and agriculture teachers and was characterized by an extensive evaluation component consisting of six formal…

  2. Identification of genes controlling development of arbuscules in AM symbiosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most vascular flowering plants have the capacity to form mutualistic symbioses with arbuscular mycorrhizal (AM) fungi. These associations develop in the roots where the fungus delivers phosphate to the root cortical cells and receives carbon from its plant host. During the symbiosis, the fungus prol...

  3. Null Mutations of NT-3 and Bax Affect Trigeminal Ganglion Cell Number but Not Brainstem Barrelette Pattern Formation

    PubMed Central

    Mosconi, Tony; Arends, J.J.; Jacquin, Mark F.

    2014-01-01

    Trigeminal ganglion (TG) neurons innervate the grid-like array of whisker follicles on the face of the mouse. Central TG axons project to the trigeminal (V) brainstem nuclear complex, including the nucleus principalis (PrV), and the spinal subnucleus interpolaris (SpVi), where they innervate barrelettes that are organized in a pattern that recapitulates the whisker pattern on the face. Neurotrophin-3 (NT-3) supports a population of TG cells that supply slowly adapting mechanoreceptors in the whisker pad. We examined mice at embryonic day 17 (E17) and on the day of birth (P0) with null mutations of NT-3, Bax, a proapoptotic gene associated with naturally occurring cell death, and Bax/NT-3 double knockout mutants to determine if: 1) the number of TG cells would be reduced; 2) eliminating the Bax gene would rescue the NT-3 dependent neurons; and 3) the central projections of the rescued axons in the Bax/NT-3 double knockout mice would fail to develop the barrelette patterns in the PrV and SpVi subnuclei. In mice at E17, NT-3−/− mutants had 65% fewer TG neurons than found in age matched wild-type (WT) mice, and at P0, the number was reduced by 55% (p < 0.001 for both). Bax null mutant mice at E17 had 132% of the WT number of TG cells (p < 0.001), although the numbers returned to WT levels by P0. Bax/NT-3 double knockout mice at E17 had TG cell numbers equal to those seen in WT, but the double knockout failed to retain WT TG neuron numbers in P0 mice (39% fewer cells; p < 0.001). In all cases of reduced experimental neuron numbers, and in the E17 Bax−/− mice with supernumerary cells, the barrelette patterns in the PrV and SpVi were normal. Only a slight qualitative reduction in overall barrelette field area and clarity of barrelettes were seen. These results suggest that NT-3 is not necessary for barrelette pattern formation in the brainstem. PMID:23614607

  4. Mutations in RNA Polymerase Bridge Helix and Switch Regions Affect Active-Site Networks and Transcript-Assisted Hydrolysis.

    PubMed

    Zhang, Nan; Schäfer, Jorrit; Sharma, Amit; Rayner, Lucy; Zhang, Xiaodong; Tuma, Roman; Stockley, Peter; Buck, Martin

    2015-11-01

    In bacterial RNA polymerase (RNAP), the bridge helix and switch regions form an intricate network with the catalytic active centre and the main channel. These interactions are important for catalysis, hydrolysis and clamp domain movement. By targeting conserved residues in Escherichia coli RNAP, we are able to show that functions of these regions are differentially required during σ(70)-dependent and the contrasting σ(54)-dependent transcription activations and thus potentially underlie the key mechanistic differences between the two transcription paradigms. We further demonstrate that the transcription factor DksA directly regulates σ(54)-dependent activation both positively and negatively. This finding is consistent with the observed impacts of DksA on σ(70)-dependent promoters. DksA does not seem to significantly affect RNAP binding to a pre-melted promoter DNA but affects extensively activity at the stage of initial RNA synthesis on σ(54)-regulated promoters. Strikingly, removal of the σ(54) Region I is sufficient to invert the action of DksA (from stimulation to inhibition or vice versa) at two test promoters. The RNAP mutants we generated also show a strong propensity to backtrack. These mutants increase the rate of transcript-hydrolysis cleavage to a level comparable to that seen in the Thermus aquaticus RNAP even in the absence of a non-complementary nucleotide. These novel phenotypes imply an important function of the bridge helix and switch regions as an anti-backtracking ratchet and an RNA hydrolysis regulator. PMID:26365052

  5. Mutations in RNA Polymerase Bridge Helix and Switch Regions Affect Active-Site Networks and Transcript-Assisted Hydrolysis

    PubMed Central

    Zhang, Nan; Schäfer, Jorrit; Sharma, Amit; Rayner, Lucy; Zhang, Xiaodong; Tuma, Roman; Stockley, Peter; Buck, Martin

    2015-01-01

    In bacterial RNA polymerase (RNAP), the bridge helix and switch regions form an intricate network with the catalytic active centre and the main channel. These interactions are important for catalysis, hydrolysis and clamp domain movement. By targeting conserved residues in Escherichia coli RNAP, we are able to show that functions of these regions are differentially required during σ70-dependent and the contrasting σ54-dependent transcription activations and thus potentially underlie the key mechanistic differences between the two transcription paradigms. We further demonstrate that the transcription factor DksA directly regulates σ54-dependent activation both positively and negatively. This finding is consistent with the observed impacts of DksA on σ70-dependent promoters. DksA does not seem to significantly affect RNAP binding to a pre-melted promoter DNA but affects extensively activity at the stage of initial RNA synthesis on σ54-regulated promoters. Strikingly, removal of the σ54 Region I is sufficient to invert the action of DksA (from stimulation to inhibition or vice versa) at two test promoters. The RNAP mutants we generated also show a strong propensity to backtrack. These mutants increase the rate of transcript-hydrolysis cleavage to a level comparable to that seen in the Thermus aquaticus RNAP even in the absence of a non-complementary nucleotide. These novel phenotypes imply an important function of the bridge helix and switch regions as an anti-backtracking ratchet and an RNA hydrolysis regulator. PMID:26365052

  6. Rabies virulence: effect on pathogenicity and sequence characterization of rabies virus mutations affecting antigenic site III of the glycoprotein.

    PubMed Central

    Seif, I; Coulon, P; Rollin, P E; Flamand, A

    1985-01-01

    Using four neutralizing monoclonal antibodies which presumably bind to the same antigenic site on the CVS glycoprotein (antigenic site III as defined by cross-neutralization tests), we isolated 58 mutants of the CVS strain of rabies virus. These mutants were highly resistant to the selecting antibodies and grew efficiently in cell cultures. We classified them into five groups on the basis of the pattern of resistance to the four antibodies. We determined pathogenicities of the mutants for adult mice by intracerebral inoculation. Group 2 mutants were nonpathogenic or had attenuated pathogenicity. On the contrary, mutants from the other groups were pathogenic, causing paralysis and death as does CVS. We determined the nucleotide alterations of representative mutants from each group by using the dideoxy method of RNA sequencing. In the glycoproteins of eight nonpathogenic or attenuated mutants, we identified an amino acid substitution at position 333. Arginine 333 was replaced by either glutamine or glycine. In the glycoprotein of eight pathogenic mutants, we identified an amino acid substitution at lysine 330, asparagine 336, or isoleucine 338. Thus, although all substitutions affected neutralization and were located close to each other in the glycoprotein sequence, only substitutions at position 333 affected pathogenicity. Images PMID:2579247

  7. Effects of nano-TiO₂ on the agronomically-relevant Rhizobium-legume symbiosis.

    PubMed

    Fan, Ruimei; Huang, Yu Chu; Grusak, Michael A; Huang, C P; Sherrier, D Janine

    2014-01-01

    The impact of nano-TiO₂ on Rhizobium-legume symbiosis was studied using garden peas and the compatible bacterial partner Rhizobium leguminosarum bv. viciae 3841. Exposure to nano-TiO₂ did not affect the germination of peas grown aseptically, nor did it impact the gross root structure. However, nano-TiO₂ exposure did impact plant development by decreasing the number of secondary lateral roots. Cultured R. leguminosarum bv. viciae 3841 was also impacted by exposure to nano-TiO₂, resulting in morphological changes to the bacterial cells. Moreover, the interaction between these two organisms was disrupted by nano-TiO₂ exposure, such that root nodule development and the subsequent onset of nitrogen fixation were delayed. Further, the polysaccharide composition of the walls of infected cells of nodules was altered, suggesting that the exposure induced a systemic response in host plants. Therefore, nano-TiO₂ contamination in the environment is potentially hazardous to the Rhizobium-legume symbiosis system. PMID:23933452

  8. Novel tools integrating metabolic and gene function to study the impact of the environment on coral symbiosis.

    PubMed

    Pernice, Mathieu; Levy, Oren

    2014-01-01

    The symbiotic dinoflagellates (genus Symbiodinium) inhabiting coral endodermal tissues are well known for their role as keystone symbiotic partners, providing corals with enormous amounts of energy acquired via photosynthesis and the absorption of dissolved nutrients. In the past few decades, corals reefs worldwide have been increasingly affected by coral bleaching (i.e., the breakdown of the symbiosis between corals and their dinoflagellate symbionts), which carries important socio-economic implications. Consequently, the number of studies focusing on the molecular and cellular processes underlying this biological phenomenon has grown rapidly, and symbiosis is now widely recognized as a major topic in coral biology. However, obtaining a clear image of the interplay between the environment and this mutualistic symbiosis remains challenging. Here, we review the potential of recent technological advances in molecular biology and approaches using stable isotopes to fill critical knowledge gaps regarding coral symbiotic function. Finally, we emphasize that the largest opportunity to achieve the full potential in this field arises from the integration of these technological advances. PMID:25191321

  9. Novel tools integrating metabolic and gene function to study the impact of the environment on coral symbiosis

    PubMed Central

    Pernice, Mathieu; Levy, Oren

    2014-01-01

    The symbiotic dinoflagellates (genus Symbiodinium) inhabiting coral endodermal tissues are well known for their role as keystone symbiotic partners, providing corals with enormous amounts of energy acquired via photosynthesis and the absorption of dissolved nutrients. In the past few decades, corals reefs worldwide have been increasingly affected by coral bleaching (i.e., the breakdown of the symbiosis between corals and their dinoflagellate symbionts), which carries important socio-economic implications. Consequently, the number of studies focusing on the molecular and cellular processes underlying this biological phenomenon has grown rapidly, and symbiosis is now widely recognized as a major topic in coral biology. However, obtaining a clear image of the interplay between the environment and this mutualistic symbiosis remains challenging. Here, we review the potential of recent technological advances in molecular biology and approaches using stable isotopes to fill critical knowledge gaps regarding coral symbiotic function. Finally, we emphasize that the largest opportunity to achieve the full potential in this field arises from the integration of these technological advances. PMID:25191321

  10. Pyrosequencing-Based Assays for Rapid Detection of HER2 and HER3 Mutations in Clinical Samples Uncover an E332E Mutation Affecting HER3 in Retroperitoneal Leiomyosarcoma

    PubMed Central

    González-Alonso, Paula; Chamizo, Cristina; Moreno, Víctor; Madoz-Gúrpide, Juan; Carvajal, Nerea; Daoud, Lina; Zazo, Sandra; Martín-Aparicio, Ester; Cristóbal, Ion; Rincón, Raúl; García-Foncillas, Jesús; Rojo, Federico

    2015-01-01

    Mutations in Human Epidermal Growth Factor Receptors (HER) are associated with poor prognosis of several types of solid tumors. Although HER-mutation detection methods are currently available, such as Next-Generation Sequencing (NGS), alternative pyrosequencing allow the rapid characterization of specific mutations. We developed specific PCR-based pyrosequencing assays for identification of most prevalent HER2 and HER3 mutations, including S310F/Y, R678Q, L755M/P/S/W, V777A/L/M, 774-776 insertion, and V842I mutations in HER2, as well as M91I, V104M/L, D297N/V/Y, and E332E/K mutations in HER3. We tested 85 Formalin Fixed and Paraffin Embbeded (FFPE) samples and we detected three HER2-V842I mutations in colorectal carcinoma (CRC), ovarian carcinoma, and pancreatic carcinoma patients, respectively, and a HER2-L755M mutation in a CRC specimen. We also determined the presence of a HER3-E332K mutation in an urothelial carcinoma sample, and two HER3-D297Y mutations, in both gastric adenocarcinoma and CRC specimens. The D297Y mutation was previously detected in breast and gastric tumors, but not in CRC. Moreover, we found a not-previously-described HER3-E332E synonymous mutation in a retroperitoneal leiomyosarcoma patient. The pyrosequencing assays presented here allow the detection and characterization of specific HER2 and HER3 mutations. These pyrosequencing assays might be implemented in routine diagnosis for molecular characterization of HER2/HER3 receptors as an alternative to complex NGS approaches. PMID:26287187

  11. A 2-component system is involved in the early stages of the Pisolithus tinctorius-Pinus greggii symbiosis.

    PubMed

    Herrera-Martínez, Aseneth; Ruiz-Medrano, Roberto; Galván-Gordillo, Santiago Valentín; Toscano Morales, Roberto; Gómez-Silva, Lidia; Valdés, María; Hinojosa-Moya, Jesús; Xoconostle-Cázares, Beatriz

    2014-01-01

    Ectomycorrhizal symbiosis results in profound morphological and physiological modifications in both plant and fungus. This in turn is the product of differential gene expression in both co-symbionts, giving rise to specialized cell types capable of performing novel functions. During the precolonization stage, chemical signals from root exudates are sensed by the ectomycorrizal fungus, and vice versa, which are in principle responsible for the observed change in the developmental symbionts program. Little is known about the molecular mechanisms involved in the signaling and recognition between ectomycorrhizal fungi and their host plants. In the present work, we characterized a novel lactone, termed pinelactone, and identified a gene encoding for a histidine kinase in Pisolithus tictorius, which function is proposed to be the perception of the aforementioned metabolites. In this study, the use of closantel, a specific inhibitor of histidine kinase phosphorylation, affected the capacity for fungal colonization in the symbiosis between Pisolithus tinctorius and Pinus greggii, indicating that a 2-component system (TCS) may operate in the early events of plant-fungus interaction. Indeed, the metabolites induced the accumulation of Pisolithus tinctorius mRNA for a putative histidine kinase (termed Pthik1). Of note, Pthik1 was able to partially complement a S. cerevisiae histidine kinase mutant, demonstrating its role in the response to the presence of the aforementioned metabolites. Our results indicate a role of a 2-component pathway in the early stages of ectomycorrhizal symbiosis before colonization. Furthermore, a novel lactone from Pinus greggii root exudates may activate a signal transduction pathway that contributes to the establishment of the ectomycorrhizal symbiosis. PMID:24704731

  12. A 2-component system is involved in the early stages of the Pisolithus tinctorius-Pinus greggii symbiosis

    PubMed Central

    Herrera-Martínez, Aseneth; Ruiz-Medrano, Roberto; Galván-Gordillo, Santiago Valentín; Toscano-Morales, Roberto; Gómez-Silva, Lidia; Valdés, María; Hinojosa-Moya, Jesús; Xoconostle-Cázares, Beatriz

    2014-01-01

    Ectomycorrhizal symbiosis results in profound morphological and physiological modifications in both plant and fungus. This in turn is the product of differential gene expression in both co-symbionts, giving rise to specialized cell types capable of performing novel functions. During the precolonization stage, chemical signals from root exudates are sensed by the ectomycorrhizal fungus, and vice versa, which are in principle responsible for the observed change in the symbionts developmental program. Little is known about the molecular mechanisms involved in the signaling and recognition between ectomycorrhizal fungi and their host plants. In the present work, we characterized a novel lactone, termed pinelactone, and identified a gene encoding for a histidine kinase in Pisolithus tictorius, the function of which is proposed to be the perception of the aforementioned metabolites. In this study, the use of closantel, a specific inhibitor of histidine kinase phosphorylation, affected the capacity for fungal colonization in the symbiosis between Pisolithus tinctorius and Pinus greggii, indicating that a 2-component system (TCS) may operate in the early events of plant-fungus interaction. Indeed, the metabolites induced the accumulation of Pisolithus tinctorius mRNA for a putative histidine kinase (termed Pthik1). Of note, Pthik1 was able to partially complement a S. cerevisiae histidine kinase mutant, demonstrating its role in the response to the presence of these metabolites. Our results indicate a role of a TCS pathway in the early stages of ectomycorrhizal symbiosis before colonization. Furthermore, a novel lactone from Pinus greggii root exudates may activate a signal transduction pathway that contributes to the establishment of the ectomycorrhizal symbiosis. PMID:24704731

  13. Genetic analysis of Rhizobium meliloti bacA-phoA fusion results in identification of degP: two loci required for symbiosis are closely linked to degP.

    PubMed Central

    Glazebrook, J; Ichige, A; Walker, G C

    1996-01-01

    The function of the Rhizobium meliloti bacA gene, which is a homolog of the Escherichia coli sbmA gene, is required for an intermediate step in nodule development. A strain carrying the bacA386::TnphoA fusion was mutagenized with N-methyl-N'-nitro-N-nitrosoguanidine, and three mutants that had higher levels of alkaline phosphatase activity were identified. The mutations in these strains were recessive and mapped to the same genetic locus. The gene affected by these mutations was identified and sequenced and was found to be a homolog of the E. coli degP gene, which encodes a periplasmic endopeptidase. Although degP function is important for the virulence of certain intracellular pathogens of mammals, it is not required for the R. meliloti-alfalfa symbiosis. The genetic analyses involving degP were complicated by the presence of a locus immediately upstream of depP that was lethal when present in multiple copies in a DegP- background. R. meliloti derivatives carrying insertion mutations in this locus displayed an N,N,N',N'-tetramethyl-p-phenylenediamine oxidase-negative phenotype, elicited the formation of white cylindrical nodules that did not fix nitrogen, and grew slowly in rich medium, suggesting that the locus was a cyc gene encoding a protein involved in the biosynthesis of a component or components of a respiratory chain. The previously identified fix-382::TnphoA, which similarly causes the formation of white cylindrical nodules that do not fix nitrogen, was shown to affect a gene that is separate from this cyc gene but extremely closely linked to it. PMID:8550509

  14. Null mutation of chloride channel 7 (Clcn7) impairs dental root formation but does not affect enamel mineralization.

    PubMed

    Guo, Jing; Bervoets, Theodore J M; Henriksen, Kim; Everts, Vincent; Bronckers, Antonius L J J

    2016-02-01

    ClC-7, located in late endosomes and lysosomes, is critical for the function of osteoclasts. Secretion of Cl(-) by the ruffled border of osteoclasts enables H(+) secretion by v-H(+)-ATPases to dissolve bone mineral. Mice lacking ClC-7 show altered lysosomal function that leads to severe lysosomal storage. Maturation ameloblasts are epithelial cells with a ruffled border that secrete Cl(-) as well as endocytose and digest large quantities of enamel matrix proteins during formation of dental enamel. We tested the hypothesis that ClC-7 in maturation ameloblasts is required for intracellular digestion of matrix fragments to complete enamel mineralization. Craniofacial bones and developing teeth in Clcn7(-/-) mice were examined by micro-CT, immunohistochemistry, quantified histomorphometry and electron microscopy. Osteoclasts and ameloblasts in wild-type mice stained intensely with anti-ClC-7 antibody but not in Clcn7(-/-) mice. Craniofacial bones in Clcn7(-/-) mice were severely osteopetrotic and contained 1.4- to 1.6-fold more bone volume, which was less mineralized than the wild-type littermates. In Clcn7(-/-) mice maturation ameloblasts and osteoclasts highly expressed Ae2 as in wild-type mice. However, teeth failed to erupt, incisors were much shorter and roots were disfigured. Molars formed a normal dental crown. In compacted teeth, dentin was slightly less mineralized, enamel did not retain a matrix and mineralized fairly normal. We concluded that ClC-7 is essential for osteoclasts to resorb craniofacial bones to enable tooth eruption and root development. Disruption of Clcn7 reduces bone and dentin mineral density but does not affect enamel mineralization. PMID:26346547

  15. Deduced consensus sequence of Sindbis virus strain AR339: mutations contained in laboratory strains which affect cell culture and in vivo phenotypes.

    PubMed Central

    McKnight, K L; Simpson, D A; Lin, S C; Knott, T A; Polo, J M; Pence, D F; Johannsen, D B; Heidner, H W; Davis, N L; Johnston, R E

    1996-01-01

    The consensus sequence of the Sindbis virus AR339 isolate, the prototype alphavirus, has been deduced. THe results presented here suggest (i) that a substantial proportion of the sequence divergence evident between the consensus sequence and sequences of laboratory strains of AR339 has resulted from selection for efficient growth in cell culture, (ii) that many of these changes affect the virulence of the virus in animal models, and (iii) that such modified genetic backgrounds present in laboratory strains can exert a significant influence on genetic studies of virus pathogenesis and host range. A laboratory strain of Sindbis virus AR339 was sequenced and cloned as a cDNA (pTRSB) from which infectious virus (TRSB) could be derived. The consensus sequence was deduced from the complete sequences of pTRSB and HRsp (E. G. Strauss, C. M. Rice, and J. H. Strauss, Virology 133:92-110, 1984), from partial sequences of the glycoprotein genes of three other AR339 laboratory strains, and by comparison with the sequences of the glycoprotein genes of three other AR339 sequence. HRsp differed form the consensus sequence by eight coding changes, and TRSB differed by three coding changes. In the 5' untranslated region, HRsp differed from the consensus sequence at nucleotide (nt) 5. These differences were likely the result of cell culture passage of the original AR339 isolate. At three of the difference loci (one in TRSB and two in HRsp), selection of cell-culture-adaptive mutations was documented with Sindbis virus or other alphaviruses. Selection in cell culture often results in attenuation of virulence in animals. Considering the TRSB and HRsp sequences together, one noncoding difference from the consensus (an A-for-G substitution in the 5' untranslated region at nt 5) and six coding differences in the glycoprotein genes (at E2 amino acids 1, 3, 70, and 172 and at E1 amino acids 72 and 237) were at loci which, either individually or in combination, significantly affected

  16. A point mutation in the EGF-4 domain of β3 integrin is responsible for the formation of the Seca platelet alloantigen and affects receptor function

    PubMed Central

    Sachs, Ulrich J.; Bakchoul, Tamam; Eva, Olga; Giptner, Astrid; Bein, Gregor; Aster, Richard H.; Gitter, Maria; Peterson, Julie; Santoso, Sentot

    2013-01-01

    Summary Neonatal alloimmune thrombocytopenia (NAIT) is caused by fetomaternal platelet incompatibility with maternal antibodies crossing the placenta and destroying fetal platelets. Antibodies against human platelet antigen-1a (HPA-1a) and HPA-5b are responsible for the majority of NAIT cases. We observed a suspected NAIT in a newborn with a platelet count of 25 G/l and petechial haemorrhages. Serological analysis of maternal serum revealed an immunisation against αIIbβ3 on paternal platelets only, indicating the presence of an antibody against a new rare alloantigen (Seca) residing on αIIbβ3. The location of Seca on αIIbβ3 was confirmed by immunoprecipitation. Nucleotide sequence analysis of paternal β3 revealed a single nucleotide exchange (G1818T) in exon 11 of the β3 gene (ITGB3), changing Lys580 (wild-type) to Asn580 (Seca). Two additional members of the family Sec were typed Seca positive, but none of 300 blood donors. Chinese hamster ovary cells expressing Asn580, but not Lys580 αIIbβ3, bound anti-Seca, which was corroborated by immunoprecipitation. Adhesion of transfected cells onto immobilised fibrinogen showed reduced binding of the Asn580 variant compared to wild-type αIIbβ3. Analysis of transfected cells with anti-LIBS and PAC-1 antibody showed reduced binding when compared to the wild-type. No such effects were observed with Seca positive platelets, which, however, are heterozygous for the Lys580Asn mutation. In this study, we describe a NAIT case caused by maternal alloimmunisation against a new antigen on αIIbβ3. Analysis with mutant transfected cells showed that the Lys580Asn mutation responsible for the formation of the Seca antigenic determinant affects αIIbβ3 receptor function. PMID:22116617

  17. Identification of a cytogenetic deletion and of four novel mutations (Q69X, I172F, G188V, G197R) affecting the gene for ornithine transcarbamylase (OTC) in Spanish patients with OTC deficiency.

    PubMed

    Climent, C; García-Pérez, M A; Sanjurjo, P; Ruiz-Sanz, J I; Vilaseca, M A; Pineda, M; Campistol, J; Rubio, V

    1999-10-01

    A deletion of at least 11.5 cM in the paternal X chromosome mapping between microsatellites DXS989 and DXS1003 and encompassing the genes for ornithine transcarbamylase (OTC), retinitis pigmentosa GTPase regulator (RPGR) and dystrophin, was associated with the loss of band Xp21 in a female patient with OTC deficiency. Another four female patients were heterozygous for point mutations in the OTC gene: the nonsense mutation Q69X or the missense mutations I172F, G188V and G197R. In the OTC amino acid sequence, I172 and G197 are proximate to residues involved in catalysis, and G188 is within a loop joining helix 5 and strand 6 in the core of the ornithine-bindingdomain. Therefore, the mutations of these residues may cause structural changes affecting catalysis and/or the architecture of the ornithine domain. The mutation appeared "de novo" in the patients or, in one case, in the mother of the patient, in agreement with the predominance of "de novo" mutations in female patients of OTC deficiency. There was full agreement between the results of mutational analysis and of allopurinol testing in the patients and their female relatives, supporting the value of the allopurinol test in the detection of carriers of OTC deficiency. This deficiency is a genetically heterogeneous X-linked condition. PMID:10502831

  18. Mutations Affecting the BHLHA9 DNA-Binding Domain Cause MSSD, Mesoaxial Synostotic Syndactyly with Phalangeal Reduction, Malik-Percin Type

    PubMed Central

    Malik, Sajid; Percin, Ferda E.; Bornholdt, Dorothea; Albrecht, Beate; Percesepe, Antonio; Koch, Manuela C.; Landi, Antonio; Fritz, Barbara; Khan, Rizwan; Mumtaz, Sara; Akarsu, Nurten A.; Grzeschik, Karl-Heinz

    2014-01-01

    Mesoaxial synostotic syndactyly, Malik-Percin type (MSSD) (syndactyly type IX) is a rare autosomal-recessive nonsyndromic digit anomaly with only two affected families reported so far. We previously showed that the trait is genetically distinct from other syndactyly types, and through autozygosity mapping we had identified a locus on chromosome 17p13.3 for this unique limb malformation. Here, we extend the number of independent pedigrees from various geographic regions segregating MSSD to a total of six. We demonstrate that three neighboring missense mutations affecting the highly conserved DNA-binding region of the basic helix-loop-helix A9 transcription factor (BHLHA9) are associated with this phenotype. Recombinant BHLHA9 generated by transient gene expression is shown to be located in the cytoplasm and the cell nucleus. Transcription factors 3, 4, and 12, members of the E protein (class I) family of helix-loop-helix transcription factors, are highlighted in yeast two-hybrid analysis as potential dimerization partners for BHLHA9. In the presence of BHLHA9, the potential of these three proteins to activate expression of an E-box-regulated target gene is reduced considerably. BHLHA9 harboring one of the three substitutions detected in MSSD-affected individuals eliminates entirely the transcription activation by these class I bHLH proteins. We conclude that by dimerizing with other bHLH protein monomers, BHLHA9 could fine tune the expression of regulatory factors governing determination of central limb mesenchyme cells, a function made impossible by altering critical amino acids in the DNA binding domain. These findings identify BHLHA9 as an essential player in the regulatory network governing limb morphogenesis in humans. PMID:25466284

  19. Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation.

    PubMed

    Göhre, Vera; Paszkowski, Uta

    2006-05-01

    High concentrations of heavy metals (HM) in the soil have detrimental effects on ecosystems and are a risk to human health as they can enter the food chain via agricultural products or contaminated drinking water. Phytoremediation, a sustainable and inexpensive technology based on the removal of pollutants from the environment by plants, is becoming an increasingly important objective in plant research. However, as phytoremediation is a slow process, improvement of efficiency and thus increased stabilization or removal of HMs from soils is an important goal. Arbuscular mycorrhizal (AM) fungi provide an attractive system to advance plant-based environmental clean-up. During symbiotic interaction the hyphal network functionally extends the root system of their hosts. Thus, plants in symbiosis with AM fungi have the potential to take up HM from an enlarged soil volume. In this review, we summarize current knowledge about the contribution of the AM symbiosis to phytoremediation of heavy metals. PMID:16555102

  20. The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis

    SciTech Connect

    Martin, F.; Aerts, A.; Ahren, D.; Brun, A.; Danchin, E. G. J.; Duchaussoy, F.; Gibon, J.; Kohler, A.; Lindquist, E.; Peresa, V.; Salamov, A.; Shapiro, H. J.; Wuyts, J.; Blaudez, D.; Buee, M.; Brokstein, P.; Canback, B.; Cohen, D.; Courty, P. E.; Coutinho, P. M.; Delaruelle, C.; Detter, J. C.; Deveau, A.; DiFazio, S.; Duplessis, S.; Fraissinet-Tachet, L.; Lucic, E.; Frey-Klett, P.; Fourrey, C.; Feussner, I.; Gay, G.; Grimwood, J.; Hoegger, P. J.; Jain, P.; Kilaru, S.; Labbe, J.; Lin, Y. C.; Legue, V.; Le Tacon, F.; Marmeisse, R.; Melayah, D.; Montanini, B.; Muratet, M.; Nehls, U.; Niculita-Hirzel, H.; Secq, M. P. Oudot-Le; Peter, M.; Quesneville, H.; Rajashekar, B.; Reich, M.; Rouhier, N.; Schmutz, J.; Yin, T.; Chalot, M.; Henrissat, B.; Kues, U.; Lucas, S.; Van de Peer, Y.; Podila, G. K.; Polle, A.; Pukkila, P. J.; Richardson, P. M.; Rouze, P.; Sanders, I. R.; Stajich, J. E.; Tunlid, A.; Tuskan, G.; Grigoriev, I. V.

    2007-08-10

    Mycorrhizal symbioses the union of roots and soil fungi are universal in terrestrial ecosystems and may have been fundamental to land colonization by plants 1, 2. Boreal, temperate and montane forests all depend on ectomycorrhizae1. Identification of the primary factors that regulate symbiotic development and metabolic activity will therefore open the door to understanding the role of ectomycorrhizae in plant development and physiology, allowing the full ecological significance of this symbiosis to be explored. Here we report the genome sequence of the ectomycorrhizal basidiomycete Laccaria bicolor (Fig. 1) and highlight gene sets involved in rhizosphere colonization and symbiosis. This 65-megabase genome assembly contains 20,000 predicted protein-encoding genes and a very large number of transposons and repeated sequences. We detected unexpected genomic features, most notably a battery of effector-type small secreted proteins (SSPs) with unknown function, several of which are only expressed in symbiotic tissues. The most highly expressed SSP accumulates in the proliferating hyphae colonizing the host root. The ectomycorrhizae-specific SSPs probably have a decisive role in the establishment of the symbiosis. The unexpected observation that the genome of L. bicolor lacks carbohydrate-active enzymes involved in degradation of plant cell walls, but maintains the ability to degrade non-plant cell wall polysaccharides, reveals the dual saprotrophic and biotrophic lifestyle of the mycorrhizal fungus that enables it to grow within both soil and living plant roots. The predicted gene inventory of the L. bicolor genome, therefore, points to previously unknown mechanisms of symbiosis operating in biotrophic mycorrhizal fungi. The availability of this genome provides an unparalleled opportunity to develop a deeper understanding of the processes by which symbionts interact with plants within their ecosystem to perform vital functions in the carbon and nitrogen cycles that are

  1. Coral Reef Genomics: Developing tools for functional genomics ofcoral symbiosis

    SciTech Connect

    Schwarz, Jodi; Brokstein, Peter; Manohar, Chitra; Coffroth, MaryAlice; Szmant, Alina; Medina, Monica

    2005-03-01

    Symbioses between cnidarians and dinoflagellates in the genus Symbiodinium are widespread in the marine environment. The importance of this symbiosis to reef-building corals and reef nutrient and carbon cycles is well documented, but little is known about the mechanisms by which the partners establish and regulate the symbiosis. Because the dinoflagellate symbionts live inside the cells of their host coral, the interactions between the partners occur on cellular and molecular levels, as each partner alters the expression of genes and proteins to facilitate the partnership. These interactions can examined using high-throughput techniques that allow thousands of genes to be examined simultaneously. We are developing the groundwork so that we can use DNA microarray profiling to identify genes involved in the Montastraea faveolata and Acropora palmata symbioses. Here we report results from the initial steps in this microarray initiative, that is, the construction of cDNA libraries from 4 of 16 target stages, sequencing of 3450 cDNA clones to generate Expressed Sequenced Tags (ESTs), and annotation of the ESTs to identify candidate genes to include in the microarrays. An understanding of how the coral-dinoflagellate symbiosis is regulated will have implications for atmospheric and ocean sciences, conservation biology, the study and diagnosis of coral bleaching and disease, and comparative studies of animal-protest interactions.

  2. Zooxanthellar symbiosis in planula larvae of the coral Pocillopora damicornis

    PubMed Central

    Gaither, Michelle R.; Rowan, Rob

    2010-01-01

    We characterized the planular-zooxanthellae symbiosis of the coral Pocillopora damicornis using criteria that are familiar in studies on corals. Similar to adult corals, planulae exhibited photoacclimation, as changes in symbiont chlorophyll a (chl a); changes in the light-saturation constant for photosynthesis (Ik); and, at insufficient light, fewer zooxanthellae, decreased respiration, increased weight loss, and increased sensitivity to photoinhibition. Numbers of zooxanthellae in newly-released planulae varied by at least three-fold within broods. Planulae with low versus high numbers of zooxanthellae (termed pale versus dark planulae, respectively) did not differ in symbiont chl-a content, Ik, or biomass-specific rate of dark respiration. Pale planulae had lower rates of photosynthesis, but this difference vanished after three weeks, when zooxanthellar numbers increased by 225% in pale planulae and by 31% in dark planulae. Numbers of zooxanthellae also increased significantly in planulae cultured in ammonium-enriched seawater; ammonium also apparently prevented weight loss and induced settlement. Approximately 70% of photosynthetically-fixed carbon (labeled using 14C) apparently was translocated from the zooxanthellae to their host. A comparison of planulae cultured at 0.3% versus 11% sunlight suggested that photosynthesis provided ~ 31% of the energy utilized by the latter. Overall, we conclude that the physiology of symbiosis in planulae of P. damicornis is broadly similar to symbiosis physiology in adult corals. PMID:20526380

  3. Stepwise Exposure of Staphylococcus aureus to Pleuromutilins Is Associated with Stepwise Acquisition of Mutations in rplC and Minimally Affects Susceptibility to Retapamulin▿

    PubMed Central

    Gentry, Daniel R.; Rittenhouse, Stephen F.; McCloskey, Lynn; Holmes, David J.

    2007-01-01

    To assess their effects on susceptibility to retapamulin in Staphylococcus aureus, first-, second-, and third-step mutants with elevated MICs to tiamulin and other investigational pleuromutilin compounds were isolated and characterized through exposure to high drug concentrations. All first- and second-step mutations were in rplC, encoding ribosomal protein L3. Most third-step mutants acquired a third mutation in rplC. While first- and second-step mutations did cause an elevation in tiamulin and retapamulin MICs, a significant decrease in activity was not seen until a third mutation was acquired. All third-step mutants exhibited severe growth defects, and faster-growing variants arose at a high frequency from most isolates. These faster-growing variants were found to be more susceptible to pleuromutilins. In the case of a mutant with three alterations in rplC, the fast-growing variants acquired an additional mutation in rplC. In the case of fast-growing variants of isolates with two mutations in rplC and at least one mutation at an unmapped locus, one of the two rplC mutations reverted to wild type. These data indicate that mutations in rplC that lead to pleuromutilin resistance have a direct, negative effect on fitness. While reduction in activity of retapamulin against S. aureus can be seen through mutations in rplC, it is likely that target-specific resistance to retapamulin will be slow to emerge due to the need for three mutations for a significant effect on activity and the fitness cost of each mutational step. PMID:17404009

  4. D471G Mutation in LCMV-NP Affects its Ability to Self-associate and Results in a Dominant Negative Effect in Viral RNA Synthesis

    PubMed Central

    Ortiz-Riaño, Emilio; Cheng, Benson Y. H.; de la Torre, Juan C.; Martínez-Sobrido, Luis

    2012-01-01

    Arenaviruses merit significant interest because several family members are etiological agents of severe hemorrhagic fevers, representing a major burden to public health. Currently, there are no FDA-licensed vaccines against arenaviruses and the only available antiviral therapy is limited to the use of ribavirin that is partially effective. Arenavirus nucleoprotein (NP) is found associated with the genomic RNA forming the viral ribonucleoproteins (vRNPs) that together with the polymerase (L) direct viral replication and transcription. Virion formation requires the recruitment of vRNPs into budding sites, a process in which the arenavirus matrix-like protein (Z) plays a major role. Therefore, proper NP-NP and NP-Z interactions are required for the generation of infectious progeny. In this work we demonstrate the role of the amino acid residue D471 in the self-association of lymphocytic choriomeningitis virus nucleoprotein (LCMV-NP). Amino acid substitutions at this position abrogate NP oligomerization, affecting its ability to mediate replication and transcription of a minigenome reporter plasmid. However, its ability to interact with the Z protein, counteract the cellular interferon response and bind to dsRNA analogs was retained. Additionally, we also document the dominant negative effect of D471G mutation on viral infection, suggesting that NP self-association is an excellent target for the development of new antivirals against arenaviruses. PMID:23202457

  5. Arsenic affects expression and processing of amyloid precursor protein (APP) in primary neuronal cells overexpressing the Swedish mutation of human APP.

    PubMed

    Zarazúa, Sergio; Bürger, Susanne; Delgado, Juan M; Jiménez-Capdeville, Maria E; Schliebs, Reinhard

    2011-06-01

    Arsenic poisoning due to contaminated water and soil, mining waste, glass manufacture, select agrochemicals, as well as sea food, affects millions of people world wide. Recently, an involvement of arsenic in Alzheimer's disease (AD) has been hypothesized (Gong and O'Bryant, 2010). The present study stresses the hypothesis whether sodium arsenite, and its main metabolite, dimethylarsinic acid (DMA), may affect expression and processing of the amyloid precursor protein (APP), using the cholinergic cell line SN56.B5.G4 and primary neuronal cells overexpressing the Swedish mutation of APP, as experimental approaches. Exposure of cholinergic SN56.B5.G4 cells with either sodium arsenite or DMA decreased cell viability in a concentration- and exposure-time dependent manner, and affected the activities of the cholinergic enzymes acetylcholinesterase and choline acetyltransferase. Both sodium arsenite and DMA exposure of SN56.B5.G4 cells resulted in enhanced level of APP, and sAPP in the membrane and cytosolic fractions, respectively. To reveal any effect of arsenic on APP processing, the amounts of APP cleavage products, sAPPβ, and β-amyloid (Aβ) peptides, released into the culture medium of primary neuronal cells derived from transgenic Tg2576 mice, were assessed by ELISA. Following exposure of neuronal cells by sodium arsenite for 12h, the membrane-bound APP level was enhanced, the amount of sAPPβ released into the culture medium was slightly higher, while the levels of Aβ peptides in the culture medium were considerably lower as compared to that assayed in the absence of any drug. The sodium arsenite-induced reduction of Aβ formation suggests an inhibition of the APP γ-cleavage step by arsenite. In contrast, DMA exposure of neuronal cells considerably increased formation of Aβ and sAPPβ, accompanied by enhanced membrane APP level. The DMA-induced changes in APP processing may be the result of the enhanced APP expression. Alternatively, increased Aβ production

  6. A Novel Ankyrin-Repeat Membrane Protein, IGN1, Is Required for Persistence of Nitrogen-Fixing Symbiosis in Root Nodules of Lotus japonicus1[OA

    PubMed Central

    Kumagai, Hirotaka; Hakoyama, Tsuneo; Umehara, Yosuke; Sato, Shusei; Kaneko, Takakazu; Tabata, Satoshi; Kouchi, Hiroshi

    2007-01-01

    Nitrogen-fixing symbiosis of legume plants with Rhizobium bacteria is established through complex interactions between two symbiotic partners. Similar to the mutual recognition and interactions at the initial stages of symbiosis, nitrogen fixation activity of rhizobia inside root nodules of the host legume is also controlled by specific interactions during later stages of nodule development. We isolated a novel Fix− mutant, ineffective greenish nodules 1 (ign1), of Lotus japonicus, which forms apparently normal nodules containing endosymbiotic bacteria, but does not develop nitrogen fixation activity. Map-based cloning of the mutated gene allowed us to identify the IGN1 gene, which encodes a novel ankyrin-repeat protein with transmembrane regions. IGN1 expression was detected in all organs of L. japonicus and not enhanced in the nodulation process. Immunoanalysis, together with expression analysis of a green fluorescent protein-IGN1 fusion construct, demonstrated localization of the IGN1 protein in the plasma membrane. The ign1 nodules showed extremely rapid premature senescence. Irregularly enlarged symbiosomes with multiple bacteroids were observed at early stages (8–9 d post inoculation) of nodule formation, followed by disruption of the symbiosomes and disintegration of nodule infected cell cytoplasm with aggregation of the bacteroids. Although the exact biochemical functions of the IGN1 gene are still to be elucidated, these results indicate that IGN1 is required for differentiation and/or persistence of bacteroids and symbiosomes, thus being essential for functional symbiosis. PMID:17277093

  7. Mutations in the araC regulatory gene of Escherichia coli B/r that affect repressor and activator functions of AraC protein.

    PubMed Central

    Cass, L G; Wilcox, G

    1986-01-01

    Mutations in the araC gene of Escherichia coli B/r were isolated which alter both activation of the araBAD operon expression and autoregulation. The mutations were isolated on an araC-containing plasmid by hydroxylamine mutagenesis of plasmid DNA. The mutant phenotype selected was the inability to autoregulate. The DNA sequence of 16 mutants was determined and found to consist of seven different missense mutations located within the distal third of the araC gene. Enzyme activities revealed that each araC mutation had altered both autoregulatory and activator functions of AraC protein. The mutational analysis presented in this paper suggests that both autoregulatory and activator functions are localized to the same determinants of the AraC protein and that the amino acid sequence within the carboxy-terminal region of AraC protein is important for site-specific DNA binding. Images PMID:3011750

  8. Genetic variation in the GDNF promoter affects its expression and modifies the severity of Hirschsprung's disease (HSCR) in rats carrying Ednrb(sl) mutations.

    PubMed

    Huang, Jieping; Dang, Ruihua; Torigoe, Daisuke; Li, Anqi; Lei, Chuzhao; Sasaki, Nobuya; Wang, Jinxi; Agui, Takashi

    2016-01-01

    Glial cell line-derived neurotrophic factor (GDNF) is necessary for the migration of neural crest stem cells in the gut. However, mutations in GDNF per se are deemed neither necessary nor sufficient to cause Hirschsprung's disease (HSCR). In a previous study, a modifier locus on chromosome 2 in rats carrying Ednrb(sl) mutations was identified, and several mutations in the putative regulatory region of the Gdnf gene in AGH-Ednrb(sl) rats were detected. Specifically, the mutation -232C>T has been shown to be strongly associated with the severity of HSCR. In the present study, the influence of genetic variations on the transcription of the Gdnf gene was tested using dual-luciferase assay. Results showed that the mutation -613C>T, located near the mutation -232C>T in AGH-Ednrb(sl) rats, decreased Gdnf transcription in an in vitro dual-luciferase expression assay. These data suggested an important role of -613C in Gdnf transcription. Expression levels of the Gdnf gene may modify the severity of HSCR in rats carrying Ednrb(sl) mutations. PMID:26318480

  9. The EGFR mutation status affects the relative biological effectiveness of carbon-ion beams in non-small cell lung carcinoma cells

    PubMed Central

    Amornwichet, Napapat; Oike, Takahiro; Shibata, Atsushi; Nirodi, Chaitanya S.; Ogiwara, Hideaki; Makino, Haruhiko; Kimura, Yuka; Hirota, Yuka; Isono, Mayu; Yoshida, Yukari; Ohno, Tatsuya; Kohno, Takashi; Nakano, Takashi

    2015-01-01

    Carbon-ion radiotherapy (CIRT) holds promise to treat inoperable locally-advanced non-small cell lung carcinoma (NSCLC), a disease poorly controlled by standard chemoradiotherapy using X-rays. Since CIRT is an extremely limited medical resource, selection of NSCLC patients likely to benefit from it is important; however, biological predictors of response to CIRT are ill-defined. The present study investigated the association between the mutational status of EGFR and KRAS, driver genes frequently mutated in NSCLC, and the relative biological effectiveness (RBE) of carbon-ion beams over X-rays. The assessment of 15 NSCLC lines of different EGFR/KRAS mutational status and that of isogenic NSCLC lines expressing wild-type or mutant EGFR revealed that EGFR-mutant NSCLC cells, but not KRAS-mutant cells, show low RBE. This was attributable to (i) the high X-ray sensitivity of EGFR-mutant cells, since EGFR mutation is associated with a defect in non-homologous end joining, a major pathway for DNA double-strand break (DSB) repair, and (ii) the strong cell-killing effect of carbon-ion beams due to poor repair of carbon-ion beam-induced DSBs regardless of EGFR mutation status. These data highlight the potential of EGFR mutation status as a predictor of response to CIRT, i.e., CIRT may show a high therapeutic index in EGFR mutation-negative NSCLC. PMID:26065573

  10. The EGFR mutation status affects the relative biological effectiveness of carbon-ion beams in non-small cell lung carcinoma cells.

    PubMed

    Amornwichet, Napapat; Oike, Takahiro; Shibata, Atsushi; Nirodi, Chaitanya S; Ogiwara, Hideaki; Makino, Haruhiko; Kimura, Yuka; Hirota, Yuka; Isono, Mayu; Yoshida, Yukari; Ohno, Tatsuya; Kohno, Takashi; Nakano, Takashi

    2015-01-01

    Carbon-ion radiotherapy (CIRT) holds promise to treat inoperable locally-advanced non-small cell lung carcinoma (NSCLC), a disease poorly controlled by standard chemoradiotherapy using X-rays. Since CIRT is an extremely limited medical resource, selection of NSCLC patients likely to benefit from it is important; however, biological predictors of response to CIRT are ill-defined. The present study investigated the association between the mutational status of EGFR and KRAS, driver genes frequently mutated in NSCLC, and the relative biological effectiveness (RBE) of carbon-ion beams over X-rays. The assessment of 15 NSCLC lines of different EGFR/KRAS mutational status and that of isogenic NSCLC lines expressing wild-type or mutant EGFR revealed that EGFR-mutant NSCLC cells, but not KRAS-mutant cells, show low RBE. This was attributable to (i) the high X-ray sensitivity of EGFR-mutant cells, since EGFR mutation is associated with a defect in non-homologous end joining, a major pathway for DNA double-strand break (DSB) repair, and (ii) the strong cell-killing effect of carbon-ion beams due to poor repair of carbon-ion beam-induced DSBs regardless of EGFR mutation status. These data highlight the potential of EGFR mutation status as a predictor of response to CIRT, i.e., CIRT may show a high therapeutic index in EGFR mutation-negative NSCLC. PMID:26065573

  11. Impediment to symbiosis establishment between giant clams and Symbiodinium algae due to sterilization of seawater.

    PubMed

    Kurihara, Takeo; Yamada, Hideaki; Inoue, Ken; Iwai, Kenji; Hatta, Masayuki

    2013-01-01

    To survive the juvenile stage, giant clam juveniles need to establish a symbiotic relationship with the microalgae Symbiodinium occurring in the environment. The percentage of giant clam juveniles succeeding in symbiosis establishment ("symbiosis rate") is often low, which is problematic for seed producers. We investigated how and why symbiosis rates vary, depending on whether giant clam seeds are continuously reared in UV treated or non treated seawater. Results repeatedly demonstrated that symbiosis rates were lower for UV treated seawater than for non treated seawater. Symbiosis rates were also lower for autoclaved seawater and 0.2-µm filtered seawater than for non treated seawater. The decreased symbiosis rates in various sterilized seawater suggest the possibility that some factors helping symbiosis establishment in natural seawater are weakened owing to sterilization. The possible factors include vitality of giant clam seeds, since additional experiments revealed that survival rates of seeds reared alone without Symbiodinium were lower in sterilized seawater than in non treated seawater. In conclusion, UV treatment of seawater was found to lead to decreased symbiosis rates, which is due possibly to some adverse effects common to the various sterilization techniques and relates to the vitality of the giant clam seeds. PMID:23613802

  12. Symbiosis, Printspeak, and Politics: Topics in the Orality and Literacy Debate.

    ERIC Educational Resources Information Center

    Bhola, H. S.

    Orality and literacy are not antithetical, rather they exist in a complex symbiosis at the individual, family, and community levels. Such a symbiosis is inevitable and appears in all kinds of institutions, including economic, political, social, cultural, and educatonal institutions. Out of this relationship, "printspeak" has emerged. Printspeak is…

  13. Impediment to Symbiosis Establishment between Giant Clams and Symbiodinium Algae Due to Sterilization of Seawater

    PubMed Central

    Kurihara, Takeo; Yamada, Hideaki; Inoue, Ken; Iwai, Kenji; Hatta, Masayuki

    2013-01-01

    To survive the juvenile stage, giant clam juveniles need to establish a symbiotic relationship with the microalgae Symbiodinium occurring in the environment. The percentage of giant clam juveniles succeeding in symbiosis establishment (“symbiosis rate”) is often low, which is problematic for seed producers. We investigated how and why symbiosis rates vary, depending on whether giant clam seeds are continuously reared in UV treated or non treated seawater. Results repeatedly demonstrated that symbiosis rates were lower for UV treated seawater than for non treated seawater. Symbiosis rates were also lower for autoclaved seawater and 0.2-µm filtered seawater than for non treated seawater. The decreased symbiosis rates in various sterilized seawater suggest the possibility that some factors helping symbiosis establishment in natural seawater are weakened owing to sterilization. The possible factors include vitality of giant clam seeds, since additional experiments revealed that survival rates of seeds reared alone without Symbiodinium were lower in sterilized seawater than in non treated seawater. In conclusion, UV treatment of seawater was found to lead to decreased symbiosis rates, which is due possibly to some adverse effects common to the various sterilization techniques and relates to the vitality of the giant clam seeds. PMID:23613802

  14. Man-Computer Symbiosis Through Interactive Graphics: A Survey and Identification of Critical Research Areas.

    ERIC Educational Resources Information Center

    Knoop, Patricia A.

    The purpose of this report was to determine the research areas that appear most critical to achieving man-computer symbiosis. An operational definition of man-computer symbiosis was developed by: (1) reviewing and summarizing what others have said about it, and (2) attempting to distinguish it from other types of man-computer relationships. From…

  15. Carbon availability for the fungus triggers nitrogen uptake and transport in the arbuscular mycorrhizal symbiosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The arbuscular mycorrhizal (AM) symbiosis is characterized by a transfer of nutrients in exchange for carbon. We tested the effect of the carbon availability for the AM fungus Glomus intraradices on nitrogen (N) uptake and transport in the symbiosis. We followed the uptake and transport of 15N and ...

  16. The importance of integration and scale in the arbuscular mycorrhizal symbiosis.

    SciTech Connect

    Miller, R. M.; Kling, M.; Environmental Research; Swedish Univ. of Agricultural Sciences

    2000-01-01

    The arbuscular mycorrhizal (AM) fungus contributes to system processes and functions at various hierarchical organizational levels, through their establishment of linkages and feedbacks between whole-plants and nutrient cycles. Even though these fungal mediated feedbacks and linkages involve lower-organizational level processes (e.g. photo-assimilate partitioning, interfacial assimilate uptake and transport mechanisms, intraradical versus extraradical fungal growth), they influence higher-organizational scales that affect community and ecosystem behavior (e.g. whole-plant photosynthesis, biodiversity, nutrient and carbon cycling, soil structure). Hence, incorporating AM fungi into research directed at understanding many of the diverse environmental issues confronting society will require knowledge of how these fungi respond to or initiate changes in vegetation dynamics, soil fertility or both. Within the last few years, the rapid advancement in the development of analytical tools has increased the resolution by which we are able to quantify the mycorrhizal symbiosis. It is important that these tools are applied within a conceptual framework that is temporally and spatially relevant to fungus and host. Unfortunately, many of the studies being conducted on the mycorrhizal symbiosis at lower organizational scales are concerned with questions directed solely at understanding fungus or host without awareness of what the plant physiologist or ecologist needs for integrating the mycorrhizal association into larger organizational scales or process levels. We show by using the flow of C from plant-to-fungus-to-soil, that through thoughtful integration, we have the ability to bridge different organizational scales. Thus, an essential need of mycorrhizal research is not only to better integrate the various disciplines of mycorrhizal research, but also to identify those relevant links and scales needing further investigation for understanding the larger-organizational level

  17. Point mutations of the alpha 1 beta 2 gamma 2 gamma-aminobutyric acid(A) receptor affecting modulation of the channel by ligands of the benzodiazepine binding site.

    PubMed

    Buhr, A; Baur, R; Malherbe, P; Sigel, E

    1996-06-01

    Clinically relevant benzodiazepines allosterically stimulate neurotransmitter-evoked chloride currents at the gamma-aminobutyric acid type A(GABAA) receptor. Rat wild-type or mutated alpha 1, beta 2, and gamma 2S subunits were coexpressed in Xenopus oocytes and investigated with electrophysiological techniques. Point mutations in two subunits were identified that affect the response of gamma-aminobutyric acid (GABA)-induced currents by benzodiazepines. Mutation of one of three amino acid residues to alanine (alpha Tyr161 and alpha Thr206) or leucine (gamma Phe77) resulted in a approximately 3-fold increase in potentiation by diazepam. The response to zolpidem was increased in two mutant channels containing the mutated alpha subunit but was nearly absent in channels containing the mutated gamma subunit. In the former cases, methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM) acted as a negative allosteric modulator of the channel, much stronger than in the wild-type channel, whereas there was no significant difference to the wild-type channel in the latter case. Thus, the mutant gamma subunit has different functional consequences for the various types of ligand of the benzodiazepine binding site. All three amino acid residues, alpha Tyr161, alpha Thr206, and gamma Phe77, are close or identical to homologous residues that are implicated in GABA binding. If the residues binding the channel agonist GABA are located at subunit interfaces, the residues influencing the benzodiazepine effects must also be located at subunit interfaces. PMID:8649346

  18. IL36RN Mutations Affect Protein Expression and Function: A Basis for Genotype-Phenotype Correlation in Pustular Diseases.

    PubMed

    Tauber, Marie; Bal, Elodie; Pei, Xue-Yuan; Madrange, Marine; Khelil, Amel; Sahel, Houria; Zenati, Akila; Makrelouf, Mohamed; Boubridaa, Khaled; Chiali, Amel; Smahi, Naima; Otsmane, Farida; Bouajar, Bakar; Marrakchi, Slaheddine; Turki, Hamida; Bourrat, Emmanuelle; Viguier, Manuelle; Hamel, Yamina; Bachelez, Hervé; Smahi, Asma

    2016-09-01

    Homozygous or compound heterozygous IL36RN gene mutations underlie the pathogenesis of psoriasis-related pustular eruptions including generalized pustular psoriasis, palmoplantar pustular psoriasis, acrodermatitis continua of Hallopeau, and acute generalized exanthematous pustular eruption. We identified two unreported IL36RN homozygous mutations (c.41C>A/p.Ser14X and c.420_426del/p.Gly141MetfsX29) in patients with familial generalized pustular psoriasis. We analyzed the impact of a spectrum of IL36RN mutations on IL-36 receptor antagonist protein by using site-directed mutagenesis and expression in HEK293T cells. This enabled us to differentiate null mutations with complete absence of IL-36 receptor antagonist (the two previously unreported mutations, c.80T>C/p.Leu27Pro, c.28C>T/p.Arg10X, c.280G>T/p.Glu94X, c.368C>G/p.Thr123Arg, c.368C>T/p.Thr123Met, and c.227C>T/p.Pro76Leu) from mutations with decreased (c.95A>G/p.His32Arg, c.142C>T/p.Arg48Trp, and c.308C>T/p.Ser113Leu) or unchanged (c.304C>T/p.Arg102Trp and c.104A>G/p.Lys35Arg) protein expression. Functional assays measuring the impact of mutations on the capacity to repress IL-36-dependent activation of the NF-κB pathway showed complete functional impairment for null mutations, whereas partial or no impairment was observed for other mutations considered as hypomorphic. Finally, null mutations were associated with severe clinical phenotypes (generalized pustular psoriasis, acute generalized exanthematous pustular eruption), whereas hypomorphic mutations were identified in both localized (palmoplantar pustular psoriasis, acrodermatitis continua of Hallopeau) and generalized variants. These results provide a preliminary basis for genotype-phenotype correlation in patients with deficiency of the IL-36Ra (DITRA), and suggest the involvement of other factors in the modulation of clinical expression. PMID:27220475

  19. Repeated loss of coloniality and symbiosis in scleractinian corals

    PubMed Central

    Barbeitos, Marcos S.; Romano, Sandra L.; Lasker, Howard R.

    2010-01-01

    The combination of coloniality and symbiosis in Scleractinia is thought to confer competitive advantage over other benthic invertebrates, and it is likely the key factor for the dominance of corals in tropical reefs. However, the extant Scleractinia are evenly split between zooxanthellate and azooxanthellate species. Most azooxanthellate species are solitary and nearly absent from reefs, but have much wider geographic and bathymetric distributions than reef corals. Molecular phylogenetic analyses have repeatedly recovered clades formed by colonial/zooxanthellate and solitary/azooxanthellate taxa, suggesting that coloniality and symbiosis were repeatedly acquired and/or lost throughout the history of the Scleractinia. Using Bayesian ancestral state reconstruction, we found that symbiosis was lost at least three times and coloniality lost at least six times, and at least two instances in which both characters were lost. All of the azooxanthellate lineages originated from ancestors that were reconstructed as symbiotic, corroborating the onshore–offshore diversification trend recorded in marine taxa. Symbiotic sister taxa of two of these descendant lineages are extant in Caribbean reefs but disappeared from the Mediterranean before the end of the Miocene, whereas extant azooxanthellate lineages have trans-Atlantic distributions. Thus, the phyletic link between reef and nonreef communities may have played an important role in the dynamics of extinction and recovery that marks the evolutionary history of scleractinians, and some reef lineages may have escaped local extinction by diversifying into offshore environments. However, this macroevolutionary mechanism offers no hope of mitigating the effects of climate change on coral reefs in the next century. PMID:20547851

  20. Stellar Pulsations and Stellar Evolution: Conflict, Cohabitation, or Symbiosis?

    NASA Astrophysics Data System (ADS)

    Weiss, Achim

    While the analysis of stellar pulsations allows the determination of current properties of a star, stellar evolution models connect it with its previous history. In many cases results from both methods do not agree. In this review some classical and current cases of disagreement are presented. In some cases these conflicts led to an improvement of the theory of stellar evolution, while in others they still remain unsolved. Some well-known problems of stellar physics are pointed out as well, for which it is hoped that seismology—or in general the analysis of stellar pulsations—will help to resolve them. The limits of this symbiosis will be discussed as well.

  1. Persistent virus and addiction modules: an engine of symbiosis.

    PubMed

    Villarreal, Luis P

    2016-06-01

    The giant DNA viruses are highly prevalent and have a particular affinity for the lytic infection of unicellular eukaryotic host. The giant viruses can also be infected by inhibitory virophage which can provide lysis protection to their host. The combined protective and destructive action of such viruses can define a general model (PD) of virus-mediated host survival. Here, I present a general model for role such viruses play in the evolution of host symbiosis. By considering how virus mixtures can participate in addiction modules, I provide a functional explanation for persistence of virus derived genetic 'junk' in their host genomic habitats. PMID:27039268

  2. Ectomycorrhizins - symbiosis-specific or artitactual polypeptides from ectomycorrhizas?

    PubMed

    Guttenberger, M; Hampp, R

    1992-08-01

    Fungal mycelium of the fly agaric (Amanita muscaria [L. ex Fr.] Hooker), and inoculated or noninoculated seedlings of Norway spruce (Picea abies [L.] Karst.) were grown aseptically under controlled conditions. In order to detect symbiosis-specific polypeptides ('ectomycorrhizins', see Hubert and Martin, 1988, New Phytol. 110, 339-346) the protein patterns of (i) fungal mycelium, (ii) mycorrhizal, and (iii) non-mycorrhizal root tips were compared by means of one- and twodimensional electrophoresis on a microscale. Because of the sensitivity of these micromethods (50 and 200 ng of protein, respectively), single mycorrhizal root tips and even the minute quantities of extramatrical mycelium growing between the roots of inoculated plants could be analysed. Differences in the protein patterns of root tips could be shown within the root system of an individual plant (mycorrhizal as well as non-mycorrhizal). In addition, the protein pattern of fungal mycelium grown on a complex medium (malt extract and casein hydrolysate) differed from that of extramatrical mycelium collected from the mycorrhiza culture (pure mineral medium). Such differences in protein patterns are obviously due to the composition of the media and/or different developmental stages. Consequently, conventional analyses which use extracts of a large number of root tips, are not suitable for differentiating between these effects and symbiosis-specific differences in protein patterns. In order to detect ectomycorrhizins, it is suggested that roots and mycelium from individual, inoculated plants should be analysed. This approach eliminates the influence of differing media, and at the same time allows a correct discrimination between developmental and symbiosisspecific changes. In our gels we could only detect changes in spot intensity but could not detect any ectomycorrhizins or the phenomenon of polypeptide 'cleansing', which both characterize the Eucalyptus-Pisolithus symbiosis (Martin and Hubert, 1991

  3. Ectomycorrhizins - symbiosis-specific or artifactual polypeptides from ectomycorrhizas?

    PubMed

    Guttenberger, M; Hampp, R

    1992-03-01

    Fungal mycelium of the fly agaric (Amanita muscaria [L. ex Fr.] Hooker), and inoculated or noninoculated seedlings of Norway spruce (Picea abies [L.] Karst.) were grown aseptically under controlled conditions. In order to detect symbiosis-specific polypeptides ('ectomycorrhizins', see Hubert and Martin, 1988, New Phytol.110, 339-346) the protein patterns of (i) fungal mycelium, (ii) mycorrhizal, and (iii) non-mycorrhizal root tips were compared by means of one- and twodimensional electrophoresis on a microscale. Because of the sensitivity of these micromethods (50 and 200 ng of protein, respectively), single mycorrhizal root tips and even the minute quantities of extramatrical mycelium growing between the roots of inoculated plants could be analysed. Differences in the protein patterns of root tips could be shown within the root system of an individual plant (mycorrhizal as well as non-mycorrhizal). In addition, the protein pattern of fungal mycelium grown on a complex medium (malt extract and casein hydrolysate) differed from that of extramatrical mycelium collected from the mycorrhiza culture (pure mineral medium). Such differences in protein patterns are obviously due to the composition of the media and/or different developmental stages. Consequently, conventional analyses which use extracts of a large number of root tips, are not suitable for differentiating between these effects and symbiosis-specific differences in protein patterns. In order to detect ectomycorrhizins, it is suggested that roots and mycelium from individual, inoculated plants should be analysed. This approach eliminates the influence of differing media, and at the same time allows a correct discrimination between developmental and symbiosisspecific changes. In our gels we could only detect changes in spot intensity but could not detect any ectomycorrhizins or the phenomenon of polypeptide 'cleansing', which both characterize theEucalyptus-Pisolithus symbiosis (Martin and Hubert, 1991

  4. [Iron regulation of gene expression in the Bradyrhizobium japonicum/soybean symbiosis]. Progress report

    SciTech Connect

    Guerinot, M.L.

    1992-06-01

    We wish to address the question of whether iron plays a regulatory role in the Bradyrhizobium japonicum/soybeam symbiosis. Iron may be an important regulatory signal in planta as the bacteria must acquire iron from their plant hosts and iron-containing proteins figure prominently in all nitrogen-fixing symbioses. For example, the bacterial partner is believed to synthesize the heme moiety of leghemoglobin, which may represent as much as 25--30% of the total soluble protein in an infected plant cell. For this reason, we have focused our attention on the regulation by iron of the first step in the bacterial heme biosynthetic pathway. The enzyme which catalyzes this step, 5-aminolevulinic acid synthase, is encoded by the hemA gene which we had previously cloned and sequenced. Specific objectives include: to define the cis-acting sequences which confer iron regulation on the B. japonicum hemA gene; to identify trans-acting factors which regulate the expression of hemA by iron; to identify new loci which are transcriptionally responsive to changes in iron availability; and to examine the effects of mutations in various known regulatory genes for their effect on the expression of hemA.

  5. (Iron regulation of gene expression in the Bradyrhizobium japonicum/soybean symbiosis)

    SciTech Connect

    Guerinot, M.L.

    1992-01-01

    We wish to address the question of whether iron plays a regulatory role in the Bradyrhizobium japonicum/soybeam symbiosis. Iron may be an important regulatory signal in planta as the bacteria must acquire iron from their plant hosts and iron-containing proteins figure prominently in all nitrogen-fixing symbioses. For example, the bacterial partner is believed to synthesize the heme moiety of leghemoglobin, which may represent as much as 25--30% of the total soluble protein in an infected plant cell. For this reason, we have focused our attention on the regulation by iron of the first step in the bacterial heme biosynthetic pathway. The enzyme which catalyzes this step, 5-aminolevulinic acid synthase, is encoded by the hemA gene which we had previously cloned and sequenced. Specific objectives include: to define the cis-acting sequences which confer iron regulation on the B. japonicum hemA gene; to identify trans-acting factors which regulate the expression of hemA by iron; to identify new loci which are transcriptionally responsive to changes in iron availability; and to examine the effects of mutations in various known regulatory genes for their effect on the expression of hemA.

  6. Symbiosis and development: the hologenome concept.

    PubMed

    Rosenberg, Eugene; Zilber-Rosenberg, Ilana

    2011-03-01

    All animals and plants establish symbiotic relationships with microorganisms; often the combined genetic information of the diverse microbiota exceeds that of the host. How the genetic wealth of the microbiota affects all aspects of the holobiont's (host plus all of its associated microorganisms) fitness (adaptation, survival, development, growth and reproduction) and evolution is reviewed, using selected coral, insect, squid, plant, and human/mouse published experimental results. The data are discussed within the framework of the hologenome theory of evolution, which demonstrates that changes in environmental parameters, for example, diet, can cause rapid changes in the diverse microbiota, which not only can benefit the holobiont in the short term but also can be transmitted to offspring and lead to long lasting cooperations. As acquired characteristics (microbes) are heritable, consideration of the holobiont as a unit of selection in evolution leads to neo-Lamarckian principles within a Darwinian framework. The potential application of these principles can be seen in the growing fields of prebiotics and probiotics. PMID:21425442

  7. A Spontaneous Missense Mutation in Branched Chain Keto Acid Dehydrogenase Kinase in the Rat Affects Both the Central and Peripheral Nervous Systems

    PubMed Central

    Zigler, J. Samuel; Hodgkinson, Colin A.; Wright, Megan; Klise, Andrew; Broman, Karl W.; Huang, Hao; Patek, Bonnie; Sergeev, Yuri; Hose, Stacey; Xaiodong, Jiao; Vasquez, David; Maragakis, Nicholas; Mori, Susumu; Goldman, David; Sinha, Debasish

    2016-01-01

    A novel mutation, causing a phenotype we named frogleg because its most obvious characteristic is a severe splaying of the hind limbs, arose spontaneously in a colony of Sprague-Dawley rats. Frogleg is a complex phenotype that includes abnormalities in hind limb function, reduced brain weight with dilated ventricles and infertility. Using micro-satellite markers spanning the entire rat genome, the mutation was mapped to a region of rat chromosome 1 between D1Rat131 and D1Rat287. Analysis of whole genome sequencing data within the linkage interval, identified a missense mutation in the branched-chain alpha-keto dehydrogenase kinase (Bckdk) gene. The protein encoded by Bckdk is an integral part of an enzyme complex located in the mitochondrial matrix of many tissues which regulates the levels of the branched-chain amino acids (BCAAs), leucine, isoleucine and valine. BCAAs are essential amino acids (not synthesized by the body), and circulating levels must be tightly regulated; levels that are too high or too low are both deleterious. BCKDK phosphorylates Ser293 of the E1α subunit of the BCKDH protein, which catalyzes the rate-limiting step in the catabolism of the BCAAs, inhibiting BCKDH and thereby, limiting breakdown of the BCAAs. In contrast, when Ser293 is not phosphorylated, BCKDH activity is unchecked and the levels of the BCAAs will decrease dramatically. The mutation is located within the kinase domain of Bckdk and is predicted to be damaging. Consistent with this, we show that in rats homozygous for the mutation, phosphorylation of BCKDH in the brain is markedly decreased relative to wild type or heterozygous littermates. Further, circulating levels of the BCAAs are reduced by 70–80% in animals homozygous for the mutation. The frogleg phenotype shares important characteristics with a previously described Bckdk knockout mouse and with human subjects with Bckdk mutations. In addition, we report novel data regarding peripheral neuropathy of the hind limbs

  8. A Spontaneous Missense Mutation in Branched Chain Keto Acid Dehydrogenase Kinase in the Rat Affects Both the Central and Peripheral Nervous Systems.

    PubMed

    Zigler, J Samuel; Hodgkinson, Colin A; Wright, Megan; Klise, Andrew; Sundin, Olof; Broman, Karl W; Hejtmancik, Fielding; Huang, Hao; Patek, Bonnie; Sergeev, Yuri; Hose, Stacey; Brayton, Cory; Xaiodong, Jiao; Vasquez, David; Maragakis, Nicholas; Mori, Susumu; Goldman, David; Hoke, Ahmet; Sinha, Debasish

    2016-01-01

    A novel mutation, causing a phenotype we named frogleg because its most obvious characteristic is a severe splaying of the hind limbs, arose spontaneously in a colony of Sprague-Dawley rats. Frogleg is a complex phenotype that includes abnormalities in hind limb function, reduced brain weight with dilated ventricles and infertility. Using micro-satellite markers spanning the entire rat genome, the mutation was mapped to a region of rat chromosome 1 between D1Rat131 and D1Rat287. Analysis of whole genome sequencing data within the linkage interval, identified a missense mutation in the branched-chain alpha-keto dehydrogenase kinase (Bckdk) gene. The protein encoded by Bckdk is an integral part of an enzyme complex located in the mitochondrial matrix of many tissues which regulates the levels of the branched-chain amino acids (BCAAs), leucine, isoleucine and valine. BCAAs are essential amino acids (not synthesized by the body), and circulating levels must be tightly regulated; levels that are too high or too low are both deleterious. BCKDK phosphorylates Ser293 of the E1α subunit of the BCKDH protein, which catalyzes the rate-limiting step in the catabolism of the BCAAs, inhibiting BCKDH and thereby, limiting breakdown of the BCAAs. In contrast, when Ser293 is not phosphorylated, BCKDH activity is unchecked and the levels of the BCAAs will decrease dramatically. The mutation is located within the kinase domain of Bckdk and is predicted to be damaging. Consistent with this, we show that in rats homozygous for the mutation, phosphorylation of BCKDH in the brain is markedly decreased relative to wild type or heterozygous littermates. Further, circulating levels of the BCAAs are reduced by 70-80% in animals homozygous for the mutation. The frogleg phenotype shares important characteristics with a previously described Bckdk knockout mouse and with human subjects with Bckdk mutations. In addition, we report novel data regarding peripheral neuropathy of the hind limbs

  9. Effects of multiple climate change factors on the tall fescue-fungal endophyte symbiosis: infection frequency and tissue chemistry.

    SciTech Connect

    Brosi, Glade; McCulley, Rebecca L; Bush, L P; Nelson, Jim A; Classen, Aimee T; Norby, Richard J

    2011-01-01

    Climate change (altered CO{sub 2}, warming, and precipitation) may affect plant-microbial interactions, such as the Lolium arundinaceum-Neotyphodium coenophialum symbiosis, to alter future ecosystem structure and function. To assess this possibility, tall fescue tillers were collected from an existing climate manipulation experiment in a constructed old-field community in Tennessee (USA). Endophyte infection frequency (EIF) was determined, and infected (E+) and uninfected (E-) tillers were analysed for tissue chemistry. The EIF of tall fescue was higher under elevated CO{sub 2} (91% infected) than with ambient CO{sub 2} (81%) but was not affected by warming or precipitation treatments. Within E+ tillers, elevated CO{sub 2} decreased alkaloid concentrations of both ergovaline and loline, by c. 30%; whereas warming increased loline concentrations 28% but had no effect on ergovaline. Independent of endophyte infection, elevated CO{sub 2} reduced concentrations of nitrogen, cellulose, hemicellulose, and lignin. These results suggest that elevated CO{sub 2}, more than changes in temperature or precipitation, may promote this grass-fungal symbiosis, leading to higher EIF in tall fescue in old-field communities. However, as all three climate factors are likely to change in the future, predicting the symbiotic response and resulting ecological consequences may be difficult and dependent on the specific atmospheric and climatic conditions encountered.

  10. Strategic mutations in the class I major histocompatibility complex HLA-A2 independently affect both peptide binding and T cell receptor recognition.

    PubMed

    Baxter, Tiffany K; Gagnon, Susan J; Davis-Harrison, Rebecca L; Beck, John C; Binz, Anne-Kathrin; Turner, Richard V; Biddison, William E; Baker, Brian M

    2004-07-01

    Mutational studies of T cell receptor (TCR) contact residues on the surface of the human class I major histocompatibility complex (MHC) molecule HLA-A2 have identified a "functional hot spot" that comprises Arg(65) and Lys(66) and is involved in recognition by most peptide-specific HLA-A2-restricted TCRs. Although there is a significant amount of functional data on the effects of mutations at these positions, there is comparatively little biochemical information that could illuminate their mode of action. Here, we have used a combination of fluorescence anisotropy, functional assays, and Biacore binding experiments to examine the effects of mutations at these positions on the peptide-MHC interaction and TCR recognition. The results indicate that mutations at both position 65 and position 66 influence peptide binding by HLA-A2 to various extents. In particular, mutations at position 66 result in significantly increased peptide dissociation rates. However, these effects are independent of their effects on TCR recognition, and the Arg(65)-Lys(66) region thus represents a true "hot spot" for TCR recognition. We also made the observation that in vitro T cell reactivity does not scale with the half-life of the peptide-MHC complex, as is often assumed. Finally, position 66 is implicated in the "dual recognition" of both peptide and TCR, emphasizing the multiple roles of the class I MHC peptide-binding domain. PMID:15131131

  11. Modifications on the hydrogen bond network by mutations of Escherichia coli copper efflux oxidase affect the process of proton transfer to dioxygen leading to alterations of enzymatic activities

    SciTech Connect

    Kajikawa, Takao; Kataoka, Kunishige; Sakurai, Takeshi

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer Proton transfer pathway to dioxygen in CueO was identified. Black-Right-Pointing-Pointer Glu506 is the key amino acid to transport proton. Black-Right-Pointing-Pointer The Ala mutation at Glu506 formed a compensatory proton transfer pathway. Black-Right-Pointing-Pointer The Ile mutation at Glu506 shut down the hydrogen bond network. -- Abstract: CueO has a branched hydrogen bond network leading from the exterior of the protein molecule to the trinuclear copper center. This network transports protons in the four-electron reduction of dioxygen. We replaced the acidic Glu506 and Asp507 residues with the charged and uncharged amino acid residues. Peculiar changes in the enzyme activity of the mutants relative to the native enzyme indicate that an acidic amino acid residue at position 506 is essential for effective proton transport. The Ala mutation resulted in the formation of a compensatory hydrogen bond network with one or two extra water molecules. On the other hand, the Ile mutation resulted in the complete shutdown of the hydrogen bond network leading to loss of enzymatic activities of CueO. In contrast, the hydrogen bond network without the proton transport function was constructed by the Gln mutation. These results exerted on the hydrogen bond network in CueO are discussed in comparison with proton transfers in cytochrome oxidase.

  12. Genes conserved for arbuscular mycorrhizal symbiosis identified through phylogenomics.

    PubMed

    Bravo, Armando; York, Thomas; Pumplin, Nathan; Mueller, Lukas A; Harrison, Maria J

    2016-01-01

    Arbuscular mycorrhizal symbiosis (AMS), a widespread mutualistic association of land plants and fungi(1), is predicted to have arisen once, early in the evolution of land plants(2-4). Consistent with this notion, several genes required for AMS have been conserved throughout evolution(5) and their symbiotic functions preserved, at least between monocot and dicot plants(6,7). Despite its significance, knowledge of the plants' genetic programme for AMS is limited. To date, most genes required for AMS have been found through commonalities with the evolutionarily younger nitrogen-fixing Rhizobium legume symbiosis (RLS)(8) or by reverse genetic analyses of differentially expressed candidate genes(9). Large sequence-indexed insertion mutant collections and recent genome editing technologies have vastly increased the power of reverse genetics but selection of candidate genes, from the thousands of genes that change expression during AMS, remains an arbitrary process. Here, we describe a phylogenomics approach to identify genes whose evolutionary history predicts conservation for AMS and we demonstrate the accuracy of the predictions through reverse genetics analysis. Phylogenomics analysis of 50 plant genomes resulted in 138 genes from Medicago truncatula predicted to function in AMS. This includes 15 genes with known roles in AMS. Additionally, we demonstrate that mutants in six previously uncharacterized AMS-conserved genes are all impaired in AMS. Our results demonstrate that phylogenomics is an effective strategy to identify a set of evolutionarily conserved genes required for AMS. PMID:27249190

  13. Diminished exoproteome of Frankia spp. in culture and symbiosis.

    PubMed

    Mastronunzio, J E; Huang, Y; Benson, D R

    2009-11-01

    Frankia species are the most geographically widespread gram-positive plant symbionts, carrying out N(2) fixation in root nodules of trees and woody shrubs called actinorhizal plants. Taking advantage of the sequencing of three Frankia genomes, proteomics techniques were used to investigate the population of extracellular proteins (the exoproteome) from Frankia, some of which potentially mediate host-microbe interactions. Initial two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of culture supernatants indicated that cytoplasmic proteins appeared in supernatants as cells aged, likely because older hyphae lyse in this slow-growing filamentous actinomycete. Using liquid chromatography coupled to tandem mass spectrometry to identify peptides, 38 proteins were identified in the culture supernatant of Frankia sp. strain CcI3, but only three had predicted export signal peptides. In symbiotic cells, 42 signal peptide-containing proteins were detected from strain CcI3 in Casuarina cunninghamiana and Casuarina glauca root nodules, while 73 and 53 putative secreted proteins containing signal peptides were identified from Frankia strains in field-collected root nodules of Alnus incana and Elaeagnus angustifolia, respectively. Solute-binding proteins were the most commonly identified secreted proteins in symbiosis, particularly those predicted to bind branched-chain amino acids and peptides. These direct proteomics results complement a previous bioinformatics study that predicted few secreted hydrolytic enzymes in the Frankia proteome and provide direct evidence that the symbiosis succeeds partly, if not largely, because of a benign relationship. PMID:19749056

  14. The symbiont side of symbiosis: do microbes really benefit?

    PubMed Central

    Garcia, Justine R.; Gerardo, Nicole M.

    2014-01-01

    Microbial associations are integral to all eukaryotes. Mutualism, the interaction of two species for the benefit of both, is an important aspect of microbial associations, with evidence that multicellular organisms in particular benefit from microbes. However, the microbe’s perspective has largely been ignored, and it is unknown whether most microbial symbionts benefit from their associations with hosts. It has been presumed that microbial symbionts receive host-derived nutrients or a competition-free environment with reduced predation, but there have been few empirical tests, or even critical assessments, of these assumptions. We evaluate these hypotheses based on available evidence, which indicate reduced competition and predation are not universal benefits for symbionts. Some symbionts do receive nutrients from their host, but this has not always been linked to a corresponding increase in symbiont fitness. We recommend experiments to test symbiont fitness using current experimental systems of symbiosis and detail considerations for other systems. Incorporating symbiont fitness into symbiosis research will provide insight into the evolution of mutualistic interactions and cooperation in general. PMID:25309530

  15. Shared Metabolic Pathways in a Coevolved Insect-Bacterial Symbiosis

    PubMed Central

    Russell, Calum W.; Bouvaine, Sophie; Newell, Peter D.

    2013-01-01

    The symbiotic bacterium Buchnera aphidicola lacks key genes in the biosynthesis of five essential amino acids (EAAs), and yet its animal hosts (aphids) depend on the symbiosis for the synthesis of these EAAs (isoleucine, leucine, methionine, phenylalanine, and valine). We tested the hypothesis, derived from genome annotation, that the missing Buchnera reactions are mediated by host enzymes, with the exchange of metabolic intermediates between the partners. The specialized host cells bearing Buchnera were separated into a Buchnera fraction and a Buchnera-free host cell fraction (HF). Addition of HF to isolated Buchnera preparations significantly increased the production of leucine and phenylalanine, and recombinant enzymes mediating the final reactions in branched-chain amino acid and phenylalanine synthesis rescued the production of these EAAs by Buchnera preparations without HF. The likely precursors for the missing proximal reactions in isoleucine and methionine synthesis were identified, and they differed from predictions based on genome annotations: synthesis of 2-oxobutanoate, the aphid-derived precursor of isoleucine synthesis, was stimulated by homoserine and not threonine via threonine dehydratase, and production of the homocysteine precursor of methionine was driven by cystathionine, not cysteine, via reversal of the transsulfuration pathway. The evolution of shared metabolic pathways in this symbiosis can be attributed to host compensation for genomic deterioration in the symbiont, involving changes in host gene expression networks to recruit specific enzymes to the host cell. PMID:23892755

  16. Shared metabolic pathways in a coevolved insect-bacterial symbiosis.

    PubMed

    Russell, Calum W; Bouvaine, Sophie; Newell, Peter D; Douglas, Angela E

    2013-10-01

    The symbiotic bacterium Buchnera aphidicola lacks key genes in the biosynthesis of five essential amino acids (EAAs), and yet its animal hosts (aphids) depend on the symbiosis for the synthesis of these EAAs (isoleucine, leucine, methionine, phenylalanine, and valine). We tested the hypothesis, derived from genome annotation, that the missing Buchnera reactions are mediated by host enzymes, with the exchange of metabolic intermediates between the partners. The specialized host cells bearing Buchnera were separated into a Buchnera fraction and a Buchnera-free host cell fraction (HF). Addition of HF to isolated Buchnera preparations significantly increased the production of leucine and phenylalanine, and recombinant enzymes mediating the final reactions in branched-chain amino acid and phenylalanine synthesis rescued the production of these EAAs by Buchnera preparations without HF. The likely precursors for the missing proximal reactions in isoleucine and methionine synthesis were identified, and they differed from predictions based on genome annotations: synthesis of 2-oxobutanoate, the aphid-derived precursor of isoleucine synthesis, was stimulated by homoserine and not threonine via threonine dehydratase, and production of the homocysteine precursor of methionine was driven by cystathionine, not cysteine, via reversal of the transsulfuration pathway. The evolution of shared metabolic pathways in this symbiosis can be attributed to host compensation for genomic deterioration in the symbiont, involving changes in host gene expression networks to recruit specific enzymes to the host cell. PMID:23892755

  17. Aphids evolved novel secreted proteins for symbiosis with bacterial endosymbiont.

    PubMed

    Shigenobu, Shuji; Stern, David L

    2013-01-01

    Aphids evolved novel cells, called bacteriocytes, that differentiate specifically to harbour the obligatory mutualistic endosymbiotic bacteria Buchnera aphidicola. The genome of the host aphid Acyrthosiphon pisum contains many orphan genes that display no similarity with genes found in other sequenced organisms, prompting us to hypothesize that some of these orphan genes are related to lineage-specific traits, such as symbiosis. We conducted deep sequencing of bacteriocytes mRNA followed by whole mount in situ hybridizations of over-represented transcripts encoding aphid-specific orphan proteins. We identified a novel class of genes that encode small proteins with signal peptides, which are often cysteine-rich, that are over-represented in bacteriocytes. These genes are first expressed at a developmental time point coincident with the incorporation of symbionts strictly in the cells that contribute to the bacteriocyte and this bacteriocyte-specific expression is maintained throughout the aphid's life. The expression pattern suggests that recently evolved secretion proteins act within bacteriocytes, perhaps to mediate the symbiosis with beneficial bacterial partners, which is reminiscent of the evolution of novel cysteine-rich secreted proteins of leguminous plants that regulate nitrogen-fixing endosymbionts. PMID:23173201

  18. An ancient tripartite symbiosis of plants, ants and scale insects.

    PubMed

    Ueda, Shouhei; Quek, Swee-Peck; Itioka, Takao; Inamori, Keita; Sato, Yumiko; Murase, Kaori; Itino, Takao

    2008-10-22

    In the Asian tropics, a conspicuous radiation of Macaranga plants is inhabited by obligately associated Crematogaster ants tending Coccus (Coccidae) scale insects, forming a tripartite symbiosis. Recent phylogenetic studies have shown that the plants and the ants have been codiversifying over the past 16-20 million years (Myr). The prevalence of coccoids in ant-plant mutualisms suggest that they play an important role in the evolution of ant-plant symbioses. To determine whether the scale insects were involved in the evolutionary origin of the mutualism between Macaranga and Crematogaster, we constructed a cytochrome oxidase I (COI) gene phylogeny of the scale insects collected from myrmecophytic Macaranga and estimated their time of origin based on a COI molecular clock. The minimum age of the associated Coccus was estimated to be half that of the ants, at 7-9Myr, suggesting that they were latecomers in the evolutionary history of the symbiosis. Crematogaster mitochondrial DNA (mtDNA) lineages did not exhibit specificity towards Coccus mtDNA lineages, and the latter was not found to be specific towards Macaranga taxa, suggesting that patterns of associations in the scale insects are dictated by opportunity rather than by specialized adaptations to host plant traits. PMID:18611850

  19. An ancient tripartite symbiosis of plants, ants and scale insects

    PubMed Central

    Ueda, Shouhei; Quek, Swee-Peck; Itioka, Takao; Inamori, Keita; Sato, Yumiko; Murase, Kaori; Itino, Takao

    2008-01-01

    In the Asian tropics, a conspicuous radiation of Macaranga plants is inhabited by obligately associated Crematogaster ants tending Coccus (Coccidae) scale insects, forming a tripartite symbiosis. Recent phylogenetic studies have shown that the plants and the ants have been codiversifying over the past 16–20 million years (Myr). The prevalence of coccoids in ant–plant mutualisms suggest that they play an important role in the evolution of ant–plant symbioses. To determine whether the scale insects were involved in the evolutionary origin of the mutualism between Macaranga and Crematogaster, we constructed a cytochrome oxidase I (COI) gene phylogeny of the scale insects collected from myrmecophytic Macaranga and estimated their time of origin based on a COI molecular clock. The minimum age of the associated Coccus was estimated to be half that of the ants, at 7–9 Myr, suggesting that they were latecomers in the evolutionary history of the symbiosis. Crematogaster mitochondrial DNA (mtDNA) lineages did not exhibit specificity towards Coccus mtDNA lineages, and the latter was not found to be specific towards Macaranga taxa, suggesting that patterns of associations in the scale insects are dictated by opportunity rather than by specialized adaptations to host plant traits. PMID:18611850

  20. Methanotrophic marine molluscan (Bivalvia, Mytilidae) symbiosis: mussels fueled by gas

    SciTech Connect

    Childress, J.J.; Fisher, C.R.; Brooks, J.M.; Kennicutt, M.C. II; Bidigare, R.; Anderson, A.E.

    1986-09-19

    An undescribed mussel (family Mytilidae), which lives in the vicinity of hydrocarbon seeps in the Gulf of Mexico, consumes methane (the principal component of natural gas) at a high rate. The methane consumption is limited to the gills of these animals and is apparently due to the abundant intracellular bacteria found there. This demonstrates a methane-based symbiosis between an animal and intracellular bacteria. Methane consumption is dependent on the availability of oxygen and is inhibited by acetylene. The consumption of methane by these mussels is associated with a dramatic increase in oxygen consumption and carbon dioxide production. As the methane consumption of the bivalve can exceed its carbide dioxide production, the symbiosis may be able to entirely satisfy its carbon needs from methane uptake. The very light (delta/sup 13/C = -51 to -57 per mil) stable carbon isotope ratios found in this animal support methane (delta/sup 13/C = -45 per mil at this site) as the primary carbon source for both the mussels and their symbionts. 19 references, 2 figures, 1 table.

  1. Value of the Hydra model system for studying symbiosis.

    PubMed

    Kovacevic, Goran

    2012-01-01

    Green Hydra is used as a classical example for explaining symbiosis in schools as well as an excellent research model. Indeed the cosmopolitan green Hydra (Hydra viridissima) provides a potent experimental framework to investigate the symbiotic relationships between a complex eumetazoan organism and a unicellular photoautotrophic green algae named Chlorella. Chlorella populates a single somatic cell type, the gastrodermal myoepithelial cells (also named digestive cells) and the oocyte at the time of sexual reproduction. This symbiotic relationship is stable, well-determined and provides biological advantages to the algal symbionts, but also to green Hydra over the related non-symbiotic Hydra i.e. brown hydra. These advantages likely result from the bidirectional flow of metabolites between the host and the symbiont. Moreover genetic flow through horizontal gene transfer might also participate in the establishment of these selective advantages. However, these relationships between the host and the symbionts may be more complex. Thus, Jolley and Smith showed that the reproductive rate of the algae increases dramatically outside of Hydra cells, although this endosymbiont isolation is debated. Recently it became possible to keep different species of endosymbionts isolated from green Hydra in stable and permanent cultures and compare them to free-living Chlorella species. Future studies testing metabolic relationships and genetic flow should help elucidate the mechanisms that support the maintenance of symbiosis in a eumetazoan species. PMID:22689374

  2. A novel mutation affecting the arginine-137 residue of AVPR2 in dizygous twins leads to nephrogenic diabetes insipidus and attenuated urine exosome aquaporin-2.

    PubMed

    Hinrichs, Gitte R; Hansen, Louise H; Nielsen, Maria R; Fagerberg, Christina; Dieperink, Hans; Rittig, Søren; Jensen, Boye L

    2016-04-01

    Mutations in the vasopressin V2 receptor gene AVPR2 may cause X-linked nephrogenic diabetes insipidus by defective apical insertion of aquaporin-2 in the renal collecting duct principal cell. Substitution mutations with exchange of arginine at codon 137 can cause nephrogenic syndrome of inappropriate antidiuresis or congenital X-linked nephrogenic diabetes insipidus. We present a novel mutation in codon 137 within AVPR2 with substitution of glycine for arginine in male dizygotic twins. Nephrogenic diabetes insipidus was demonstrated by water deprivation test and resistance to vasopressin administration. While a similar urine exosome release rate was shown between probands and controls by western blotting for the marker ALIX, there was a selective decrease in exosome aquaporin-2 versus aquaporin-1 protein in probands compared to controls. PMID:27117808

  3. Newly identified mutations at the CSN1S1 gene in Ethiopian goats affect casein content and coagulation properties of their milk.

    PubMed

    Mestawet, T A; Girma, A; Adnøy, T; Devold, T G; Vegarud, G E

    2013-08-01

    Very high casein content and good coagulation properties previously observed in some Ethiopian goat breeds led to investigating the αs1-casein (CSN1S1) gene in these breeds. Selected regions of the CSN1S1 gene were sequenced in 115 goats from 5 breeds (2 indigenous: Arsi-Bale and Somali, 1 exotic: Boer, and 2 crossbreeds: Boer × Arsi-Bale and Boer × Somali). The DNA analysis resulted in 35 new mutations: 3 in exons, 3 in the 5' untranslated region (UTR), and 29 in the introns. The mutations in exons that resulted in an amino acid shift were then picked to evaluate their influence on individual casein content (αs1-, αs2-, β-, and κ-CN), micellar size, and coagulation properties in the milk from the 5 goat breeds. A mutation at nucleotide 10657 (exon 10) involved a transversion: CAG→CCG, resulting in an amino acid exchange Gln77→Pro77. This mutation was associated with the indigenous breeds only. Two new mutations, at nucleotide 6072 (exon 4) and 12165 (exon 12), revealed synonymous transitions: GTC→GTT in Val15 and AGA→AGG in Arg100 of the mature protein. Transitions G→A and C→T at nucleotides 1374 and 1866, respectively, occurred in the 5' UTR, whereas the third mutation involved a transversion T→G at nucleotide location 1592. The goats were grouped into homozygote new (CC), homozygote reference (AA), and heterozygote (CA) based on the nucleotide that involved the transversion. The content of αs1-CN (15.32g/kg) in milk samples of goats homozygous (CC) for this newly identified mutation, Gln77→Pro77 was significantly higher than in milks of heterozygous (CA; 9.05g/kg) and reference (AA; 7.61g/kg) genotype animals. The αs2-, β-, and κ-CN contents showed a similar pattern. Milk from goats with a homozygous new mutation had significantly lower micellar size. Milk from both homozygote and heterozygote new-mutation goats had significantly shorter coagulation rate and stronger gel than the reference genotype. Except the transversion, the

  4. DNA polymerases β and λ do not directly affect Ig variable region somatic hypermutation although their absence reduces the frequency of mutations

    PubMed Central

    Schrader, Carol E.; Linehan, Erin K.; Ucher, Anna J.; Bertocci, Barbara; Stavnezer, Janet

    2014-01-01

    During somatic hypermutation (SHM) of antibody variable (V) region genes, activation-induced cytidine deaminase (AID) converts dC to dU, and dUs can either be excised by uracil DNA glycosylase (UNG), by mismatch repair, or replicated over. If UNG excises the dU, the abasic site could be cleaved by AP-endonuclease (APE), introducing the single-strand DNA breaks (SSBs) required for generating mutations at A:T bp, which are known to depend upon mismatch repair and DNA Pol η. DNA Pol β or λ could instead repair the lesion correctly. To assess the involvement of Pols β and λ in SHM of antibody genes, we analyzed mutations in the VDJh4 3′ flanking region in Peyer’s patch germinal center (GC) B cells from polβ−/−polλ−/−, polλ−/−, and polβ−/− mice. We find that deficiency of either or both polymerases results in a modest but significant decrease in V region SHM, with Pol β having a greater effect, but there is no effect on mutation specificity, suggesting they have no direct role in SHM. Instead, the effect on SHM appears to be due to a role for these enzymes in GC B cell proliferation or viability. The results suggest that the BER pathway is not important during V region SHM for generating mutations at A:T bp. Furthermore, this implies that most of the SSBs required for Pol η to enter and create A:T mutations are likely generated during replication instead. These results contrast with the inhibitory effect of Pol β on mutations at the Ig Sμ locus, Sμ DSBs and class switch recombination (CSR) reported previously. We show here that B cells deficient in Pol λ or both Pol β and λ proliferate normally in culture and undergo slightly elevated CSR, as shown previously for Pol β-deficient B cells. PMID:24084171

  5. Variable clinical expression of an identical mutation in the ATP7A gene for Menkes disease/occipital horn syndrome in three affected males in a single family.

    PubMed

    Borm, Bettina; Møller, Lisbeth Birk; Hausser, Ingrid; Emeis, Michael; Baerlocher, Kurt; Horn, Nina; Rossi, Rainer

    2004-07-01

    Two maternal half-brothers presented with huge cephalic hematoma, fatal in one. Skin morphology disclosed lack of elastic fibres. Their maternal uncle is moderately mentally handicapped and has extensive connective tissue disorders. In all these patients, an identical missense mutation in the ATP7A gene was found and confirmed Menkes' disease. PMID:15238919

  6. A Missense Mutation in CLIC2 Associated with Intellectual Disability is Predicted by In Silico Modeling to Affect Protein Stability and Dynamics

    PubMed Central

    Witham, Shawn; Takano, Kyoko; Schwartz, Charles; Alexov, Emil

    2011-01-01

    Large-scale next generation resequencing of X chromosome genes identified a missense mutation in the CLIC2 gene on Xq28 in a male with X-linked intellectual disability (XLID) and not found in healthy individuals. At the same time, numerous nsSNPs (nonsynonomous SNP) have been reported in the CLIC2 gene in healthy individuals indicating that the CLIC2 protein can tolerate amino acid substitutions and be fully functional. To test the possibility that p.H101Q is a disease-causing mutation, we performed in silico simulations to calculate the effects of the p.H101Q mutation on CLIC2 stability, dynamics and ionization states while comparing the effects obtained for presumably harmless nsSNPs. It was found that p.H101Q, in contrast with other nsSNPs, (a) lessens the flexibility of the joint loop which is important for the normal function of CLIC2, (b) makes the overall 3D structure of CLIC2 more stable and thus reduces the possibility of the large conformational change expected to occur when CLIC2 moves from a soluble to membrane form and (c) removes the positively charged residue, H101, which may be important for the membrane association of CLIC2. The results of in silico modeling, in conjunction with the polymorphism analysis, suggest that p.H101Q may be a disease-causing mutation, the first one suggested in the CLIC family. PMID:21630357

  7. ida4-1, ida4-2, and ida4-3 are intron splicing mutations affecting the locus encoding p28, a light chain of Chlamydomonas axonemal inner dynein arms.

    PubMed Central

    LeDizet, M; Piperno, G

    1995-01-01

    We recently determined the nucleotide sequence of the gene encoding p28, a light chain of inner dynein arms of Chlamydomonas axonemes. Here, we show that p28 is the protein encoded by the IDA4 locus. p28, and the dynein heavy chains normally associated with it, are completely absent from the flagella and cell bodies of three allelic strains of ida4, named ida4-1, ida4-2, and ida4-3. We determined the nucleotide sequence of the three alleles of the p28 gene and found in each case a single nucleotide change, affecting the splice sites of the first, second, and fourth introns, respectively. Reverse transcriptase-polymerase chain reaction amplification of RNAs prepared from ida4 cells confirmed that these mutations prevent the correct splicing of the affected introns, thereby blocking the synthesis of full-length p28. These are the first intron splicing mutations described in Chlamydomonas and the first inner dynein arm mutations characterized at the molecular level. The absence in ida4 axonemes of the dynein heavy chains normally found in association with p28 suggests that p28 is necessary for stable assembly of a subset of inner dynein arms or for the binding of these arms to the microtubule doublets. Images PMID:7579690

  8. A nonsense mutation in mouse Tardbp affects TDP43 alternative splicing activity and causes limb-clasping and body tone defects.

    PubMed

    Ricketts, Thomas; McGoldrick, Philip; Fratta, Pietro; de Oliveira, Hugo M; Kent, Rosie; Phatak, Vinaya; Brandner, Sebastian; Blanco, Gonzalo; Greensmith, Linda; Acevedo-Arozena, Abraham; Fisher, Elizabeth M C

    2014-01-01

    Mutations in TARDBP, encoding Tar DNA binding protein-43 (TDP43), cause amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Attempts to model TDP43 dysfunction in mice have used knockouts or transgenic overexpressors, which have revealed the difficulties of manipulating TDP43, whose level is tightly controlled by auto-regulation. In a complementary approach, to create useful mouse models for the dissection of TDP43 function and pathology, we have identified a nonsense mutation in the endogenous mouse Tardbp gene through screening an N-ethyl-N-nitrosourea (ENU) mutant mouse archive. The mutation is predicted to cause a Q101X truncation in TDP43. We have characterised Tardbp(Q101X) mice to investigate this mutation in perturbing TDP43 biology at endogenous expression levels. We found the Tardbp(Q101X) mutation is homozygous embryonic lethal, highlighting the importance of TDP43 in early development. Heterozygotes (Tardbp(+/Q101X) ) have abnormal levels of mutant transcript, but we find no evidence of the truncated protein and mice have similar full-length TDP43 protein levels as wildtype littermates. Nevertheless, Tardbp(+/Q101X) mice have abnormal alternative splicing of downstream gene targets, and limb-clasp and body tone phenotypes. Thus the nonsense mutation in Tardbp causes a mild loss-of-function phenotype and behavioural assessment suggests underlying neurological abnormalities. Due to the role of TDP43 in ALS, we investigated potential interactions with another known causative gene, mutant superoxide dismutase 1 (SOD1). Tardbp(+/Q101X) mice were crossed with the SOD1(G93Adl) transgenic mouse model of ALS. Behavioural and physiological assessment did not reveal modifying effects on the progression of ALS-like symptoms in the double mutant progeny from this cross. In summary, the Tardbp(Q101X) mutant mice are a useful tool for the dissection of TDP43 protein regulation, effects on splicing, embryonic development and neuromuscular phenotypes

  9. The two mutations, Q204X and nt821, of the myostatin gene affect carcass and meat quality in young heterozygous bulls of French beef breeds.

    PubMed

    Allais, S; Levéziel, H; Payet-Duprat, N; Hocquette, J F; Lepetit, J; Rousset, S; Denoyelle, C; Bernard-Capel, C; Journaux, L; Bonnot, A; Renand, G

    2010-02-01

    The availability of genetic tests to detect different mutations in the myostatin gene allows the identification of heterozygous animals and would warrant the superiority of these animals for slaughter performance if this superiority is confirmed. Thus, 2 mutations of this gene, Q204X and nt821, were studied in 3 French beef breeds in the program Qualvigène. This work was done with 1,114 Charolais, 1,254 Limousin, and 981 Blonde d'Aquitaine young bulls from, respectively, 48, 36, and 30 sires and slaughtered from 2004 to 2006. In addition to the usual carcass traits recorded at slaughter (e.g., carcass yield, muscle score), carcass composition was estimated by weighing internal fat and dissecting the 6th rib. The muscle characteristic traits analyzed were lipid and collagen contents, muscle fiber section area, and pH. Regarding meat quality, sensory qualities of meat samples were evaluated by a taste panel, and Warner-Bratzler shear force was measured. Deoxyribonucleic acid was extracted from the blood samples of all calves, the blood samples of 78% of the dams, and the blood or semen samples of all the sires. Genotypes were determined for 2 disruptive mutations, Q204X and nt821. Analyses were conducted by breed. The superiority of carcass traits of calves carrying one copy of the mutated allele (Q204X or nt821) over noncarrier animals was approximately +1 SD in the Charolais and Limousin breeds but was not significant in the Blonde d'Aquitaine. In the Charolais breed, for which the frequency was the greatest (7%), young bulls carrying the Q204X mutation presented a carcass with less fat, less intramuscular fat and collagen contents, and a clearer and more tender meat than those of homozygous-normal cattle. The meat of these animals also had slightly less flavor. Also in the Charolais breed, 13 of 48 sires were heterozygous. For each sire, the substitution effect of the wild allele by the mutant allele was approximately +1 SD for carcass conformation and yield

  10. A Nonsense Mutation in Mouse Tardbp Affects TDP43 Alternative Splicing Activity and Causes Limb-Clasping and Body Tone Defects

    PubMed Central

    Fratta, Pietro; de Oliveira, Hugo M.; Kent, Rosie; Phatak, Vinaya; Brandner, Sebastian; Blanco, Gonzalo; Greensmith, Linda; Acevedo-Arozena, Abraham; Fisher, Elizabeth M. C.

    2014-01-01

    Mutations in TARDBP, encoding Tar DNA binding protein-43 (TDP43), cause amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Attempts to model TDP43 dysfunction in mice have used knockouts or transgenic overexpressors, which have revealed the difficulties of manipulating TDP43, whose level is tightly controlled by auto-regulation. In a complementary approach, to create useful mouse models for the dissection of TDP43 function and pathology, we have identified a nonsense mutation in the endogenous mouse Tardbp gene through screening an N-ethyl-N-nitrosourea (ENU) mutant mouse archive. The mutation is predicted to cause a Q101X truncation in TDP43. We have characterised TardbpQ101X mice to investigate this mutation in perturbing TDP43 biology at endogenous expression levels. We found the TardbpQ101X mutation is homozygous embryonic lethal, highlighting the importance of TDP43 in early development. Heterozygotes (Tardbp+/Q101X) have abnormal levels of mutant transcript, but we find no evidence of the truncated protein and mice have similar full-length TDP43 protein levels as wildtype littermates. Nevertheless, Tardbp+/Q101X mice have abnormal alternative splicing of downstream gene targets, and limb-clasp and body tone phenotypes. Thus the nonsense mutation in Tardbp causes a mild loss-of-function phenotype and behavioural assessment suggests underlying neurological abnormalities. Due to the role of TDP43 in ALS, we investigated potential interactions with another known causative gene, mutant superoxide dismutase 1 (SOD1). Tardbp+/Q101X mice were crossed with the SOD1G93Adl transgenic mouse model of ALS. Behavioural and physiological assessment did not reveal modifying effects on the progression of ALS-like symptoms in the double mutant progeny from this cross. In summary, the TardbpQ101X mutant mice are a useful tool for the dissection of TDP43 protein regulation, effects on splicing, embryonic development and neuromuscular phenotypes. These mice are

  11. Bacterial Molecular Signals in the Sinorhizobium fredii-Soybean Symbiosis.

    PubMed

    López-Baena, Francisco J; Ruiz-Sainz, José E; Rodríguez-Carvajal, Miguel A; Vinardell, José M

    2016-01-01

    Sinorhizobium (Ensifer) fredii (S. fredii) is a rhizobial species exhibiting a remarkably broad nodulation host-range. Thus, S. fredii is able to effectively nodulate dozens of different legumes, including plants forming determinate nodules, such as the important crops soybean and cowpea, and plants forming indeterminate nodules, such as Glycyrrhiza uralensis and pigeon-pea. This capacity of adaptation to different symbioses makes the study of the molecular signals produced by S. fredii strains of increasing interest since it allows the analysis of their symbiotic role in different types of nodule. In this review, we analyze in depth different S. fredii molecules that act as signals in symbiosis, including nodulation factors, different surface polysaccharides (exopolysaccharides, lipopolysaccharides, cyclic glucans, and K-antigen capsular polysaccharides), and effectors delivered to the interior of the host cells through a symbiotic type 3 secretion system. PMID:27213334

  12. Bacterial Molecular Signals in the Sinorhizobium fredii-Soybean Symbiosis

    PubMed Central

    López-Baena, Francisco J.; Ruiz-Sainz, José E.; Rodríguez-Carvajal, Miguel A.; Vinardell, José M.

    2016-01-01

    Sinorhizobium (Ensifer) fredii (S. fredii) is a rhizobial species exhibiting a remarkably broad nodulation host-range. Thus, S. fredii is able to effectively nodulate dozens of different legumes, including plants forming determinate nodules, such as the important crops soybean and cowpea, and plants forming indeterminate nodules, such as Glycyrrhiza uralensis and pigeon-pea. This capacity of adaptation to different symbioses makes the study of the molecular signals produced by S. fredii strains of increasing interest since it allows the analysis of their symbiotic role in different types of nodule. In this review, we analyze in depth different S. fredii molecules that act as signals in symbiosis, including nodulation factors, different surface polysaccharides (exopolysaccharides, lipopolysaccharides, cyclic glucans, and K-antigen capsular polysaccharides), and effectors delivered to the interior of the host cells through a symbiotic type 3 secretion system. PMID:27213334

  13. Identification of Sinorhizobium meliloti Genes Regulated during Symbiosis

    PubMed Central

    Cabanes, Didier; Boistard, Pierre; Batut, Jacques

    2000-01-01

    RNA fingerprinting by arbitrarily primed PCR was used to isolate Sinorhizobium meliloti genes regulated during the symbiotic interaction with alfalfa (Medicago sativa). Sixteen partial cDNAs were isolated whose corresponding genes were differentially expressed between symbiotic and free-living conditions. Thirteen sequences corresponded to genes up-regulated during symbiosis, whereas three were instead repressed during establishment of the symbiotic interaction. Seven cDNAs corresponded to known or predicted nif and fix genes. Four presented high sequence similarity with genes not yet identified in S. meliloti, including genes encoding a component of the pyruvate dehydrogenase complex, a cell surface protein component, a copper transporter, and an argininosuccinate lyase. Finally, five cDNAs did not exhibit any similarity with sequences present in databases. A detailed expression analysis of the nine non-nif-fix genes provided evidence for an unexpected variety of regulatory patterns, most of which have not been described so far. PMID:10850975

  14. Aspects of narcissism and symbiosis, or, essential neurosis of twins.

    PubMed

    Kahn, Charlotte

    2012-06-01

    Following a brief introduction I address the relationships of twins from five different perspectives: the Intimate Connection, the Mirror Image and Complementarity, Object- and Self-Representation, Self and Object or Rivalry, and Intersubjective Communication. This approach attempts to understand twin relationships and the individual development of twins in terms of their intense mutual dependence, akin to infantile symbiosis, and in terms of narcissism. In their similarity to each other, twins may choose each other as love objects even as they see themselves in the other. That is, a twin may "love what he himself is" or "someone who was once part of himself." This "type of object-choice … must be termed 'narcissistic'" (Freud, 1914, pp. 90, 88). Such "cathexis of an undifferentiated self-object" is considered to be "primary narcissism" (Burstein, 1977, p. 103). Hoffer (1952) describes primary narcissism as "the lack of all qualities discriminating between self and not-self, inside and outside" (p. 33). PMID:22712590

  15. Unfolding the secrets of coral–algal symbiosis

    PubMed Central

    Rosic, Nedeljka; Ling, Edmund Yew Siang; Chan, Chon-Kit Kenneth; Lee, Hong Ching; Kaniewska, Paulina; Edwards, David; Dove, Sophie; Hoegh-Guldberg, Ove

    2015-01-01

    Dinoflagellates from the genus Symbiodinium form a mutualistic symbiotic relationship with reef-building corals. Here we applied massively parallel Illumina sequencing to assess genetic similarity and diversity among four phylogenetically diverse dinoflagellate clades (A, B, C and D) that are commonly associated with corals. We obtained more than 30 000 predicted genes for each Symbiodinium clade, with a majority of the aligned transcripts corresponding to sequence data sets of symbiotic dinoflagellates and <2% of sequences having bacterial or other foreign origin. We report 1053 genes, orthologous among four Symbiodinium clades, that share a high level of sequence identity to known proteins from the SwissProt (SP) database. Approximately 80% of the transcripts aligning to the 1053 SP genes were unique to Symbiodinium species and did not align to other dinoflagellates and unrelated eukaryotic transcriptomes/genomes. Six pathways were common to all four Symbiodinium clades including the phosphatidylinositol signaling system and inositol phosphate metabolism pathways. The list of Symbiodinium transcripts common to all four clades included conserved genes such as heat shock proteins (Hsp70 and Hsp90), calmodulin, actin and tubulin, several ribosomal, photosynthetic and cytochrome genes and chloroplast-based heme-containing cytochrome P450, involved in the biosynthesis of xanthophylls. Antioxidant genes, which are important in stress responses, were also preserved, as were a number of calcium-dependent and calcium/calmodulin-dependent protein kinases that may play a role in the establishment of symbiosis. Our findings disclose new knowledge about the genetic uniqueness of symbiotic dinoflagellates and provide a list of homologous genes important for the foundation of coral–algal symbiosis. PMID:25343511

  16. Unfolding the secrets of coral-algal symbiosis.

    PubMed

    Rosic, Nedeljka; Ling, Edmund Yew Siang; Chan, Chon-Kit Kenneth; Lee, Hong Ching; Kaniewska, Paulina; Edwards, David; Dove, Sophie; Hoegh-Guldberg, Ove

    2015-04-01

    Dinoflagellates from the genus Symbiodinium form a mutualistic symbiotic relationship with reef-building corals. Here we applied massively parallel Illumina sequencing to assess genetic similarity and diversity among four phylogenetically diverse dinoflagellate clades (A, B, C and D) that are commonly associated with corals. We obtained more than 30,000 predicted genes for each Symbiodinium clade, with a majority of the aligned transcripts corresponding to sequence data sets of symbiotic dinoflagellates and <2% of sequences having bacterial or other foreign origin. We report 1053 genes, orthologous among four Symbiodinium clades, that share a high level of sequence identity to known proteins from the SwissProt (SP) database. Approximately 80% of the transcripts aligning to the 1053 SP genes were unique to Symbiodinium species and did not align to other dinoflagellates and unrelated eukaryotic transcriptomes/genomes. Six pathways were common to all four Symbiodinium clades including the phosphatidylinositol signaling system and inositol phosphate metabolism pathways. The list of Symbiodinium transcripts common to all four clades included conserved genes such as heat shock proteins (Hsp70 and Hsp90), calmodulin, actin and tubulin, several ribosomal, photosynthetic and cytochrome genes and chloroplast-based heme-containing cytochrome P450, involved in the biosynthesis of xanthophylls. Antioxidant genes, which are important in stress responses, were also preserved, as were a number of calcium-dependent and calcium/calmodulin-dependent protein kinases that may play a role in the establishment of symbiosis. Our findings disclose new knowledge about the genetic uniqueness of symbiotic dinoflagellates and provide a list of homologous genes important for the foundation of coral-algal symbiosis. PMID:25343511

  17. Species specificity of symbiosis and secondary metabolism in ascidians

    PubMed Central

    Tianero, Ma Diarey B; Kwan, Jason C; Wyche, Thomas P; Presson, Angela P; Koch, Michael; Barrows, Louis R; Bugni, Tim S; Schmidt, Eric W

    2015-01-01

    Ascidians contain abundant, diverse secondary metabolites, which are thought to serve a defensive role and which have been applied to drug discovery. It is known that bacteria in symbiosis with ascidians produce several of these metabolites, but very little is known about factors governing these ‘chemical symbioses'. To examine this phenomenon across a wide geographical and species scale, we performed bacterial and chemical analyses of 32 different ascidians, mostly from the didemnid family from Florida, Southern California and a broad expanse of the tropical Pacific Ocean. Bacterial diversity analysis showed that ascidian microbiomes are highly diverse, and this diversity does not correlate with geographical location or latitude. Within a subset of species, ascidian microbiomes are also stable over time (R=−0.037, P-value=0.499). Ascidian microbiomes and metabolomes contain species-specific and location-specific components. Location-specific bacteria are found in low abundance in the ascidians and mostly represent strains that are widespread. Location-specific metabolites consist largely of lipids, which may reflect differences in water temperature. By contrast, species-specific bacteria are mostly abundant sequenced components of the microbiomes and include secondary metabolite producers as major components. Species-specific chemicals are dominated by secondary metabolites. Together with previous analyses that focused on single ascidian species or symbiont type, these results reveal fundamental properties of secondary metabolic symbiosis. Different ascidian species have established associations with many different bacterial symbionts, including those known to produce toxic chemicals. This implies a strong selection for this property and the independent origin of secondary metabolite-based associations in different ascidian species. The analysis here streamlines the connection of secondary metabolite to producing bacterium, enabling further biological and

  18. Lichen symbiosis: nature's high yielding machines for induced hydrogen production.

    PubMed

    Papazi, Aikaterini; Kastanaki, Elizabeth; Pirintsos, Stergios; Kotzabasis, Kiriakos

    2015-01-01

    Hydrogen is a promising future energy source. Although the ability of green algae to produce hydrogen has long been recognized (since 1939) and several biotechnological applications have been attempted, the greatest obstacle, being the O2-sensitivity of the hydrogenase enzyme, has not yet been overcome. In the present contribution, 75 years after the first report on algal hydrogen production, taking advantage of a natural mechanism of oxygen balance, we demonstrate high hydrogen yields by lichens. Lichens have been selected as the ideal organisms in nature for hydrogen production, since they consist of a mycobiont and a photobiont in symbiosis. It has been hypothesized that the mycobiont's and photobiont's consumption of oxygen (increase of COX and AOX proteins of mitochondrial respiratory pathways and PTOX protein of chrolorespiration) establishes the required anoxic conditions for the activation of the phycobiont's hydrogenase in a closed system. Our results clearly supported the above hypothesis, showing that lichens have the ability to activate appropriate bioenergetic pathways depending on the specific incubation conditions. Under light conditions, they successfully use the PSII-dependent and the PSII-independent pathways (decrease of D1 protein and parallel increase of PSaA protein) to transfer electrons to hydrogenase, while under dark conditions, lichens use the PFOR enzyme and the dark fermentative pathway to supply electrons to hydrogenase. These advantages of lichen symbiosis in combination with their ability to survive in extreme environments (while in a dry state) constitute them as unique and valuable hydrogen producing natural factories and pave the way for future biotechnological applications. PMID:25826211

  19. Lichen Symbiosis: Nature's High Yielding Machines for Induced Hydrogen Production

    PubMed Central

    Papazi, Aikaterini; Kastanaki, Elizabeth; Pirintsos, Stergios; Kotzabasis, Kiriakos

    2015-01-01

    Hydrogen is a promising future energy source. Although the ability of green algae to produce hydrogen has long been recognized (since 1939) and several biotechnological applications have been attempted, the greatest obstacle, being the O2-sensitivity of the hydrogenase enzyme, has not yet been overcome. In the present contribution, 75 years after the first report on algal hydrogen production, taking advantage of a natural mechanism of oxygen balance, we demonstrate high hydrogen yields by lichens. Lichens have been selected as the ideal organisms in nature for hydrogen production, since they consist of a mycobiont and a photobiont in symbiosis. It has been hypothesized that the mycobiont’s and photobiont’s consumption of oxygen (increase of COX and AOX proteins of mitochondrial respiratory pathways and PTOX protein of chrolorespiration) establishes the required anoxic conditions for the activation of the phycobiont’s hydrogenase in a closed system. Our results clearly supported the above hypothesis, showing that lichens have the ability to activate appropriate bioenergetic pathways depending on the specific incubation conditions. Under light conditions, they successfully use the PSII-dependent and the PSII-independent pathways (decrease of D1 protein and parallel increase of PSaA protein) to transfer electrons to hydrogenase, while under dark conditions, lichens use the PFOR enzyme and the dark fermentative pathway to supply electrons to hydrogenase. These advantages of lichen symbiosis in combination with their ability to survive in extreme environments (while in a dry state) constitute them as unique and valuable hydrogen producing natural factories and pave the way for future biotechnological applications. PMID:25826211

  20. Arbuscular mycorrhizal fungi in terms of symbiosis-parasitism continuum.

    PubMed

    Schmidt, B; Gaşpar, S; Camen, D; Ciobanu, I; Sumălan, R

    2011-01-01

    adverse climatic conditions, like temperature shock at the beginning of growing period modified the nature of symbiosis. In this case, the physiological parameters were reduced at colonized plants, while usual, constant growing conditions permitted the normal, efficient and beneficial development of symbiosis. PMID:22702184

  1. Mutations of the functional ARH1 allele in tumors from ARH1 heterozygous mice and cells affect ARH1 catalytic activity, cell proliferation and tumorigenesis

    PubMed Central

    Kato, J; Vekhter, D; Heath, J; Zhu, J; Barbieri, J T; Moss, J

    2015-01-01

    ADP-ribosylation results from transfer of the ADP-ribose moiety of nicotinamide adenine dinucleotide (NAD) to an acceptor with ADP-ribose-acceptor content determined by the activities of ADP-ribosyltransferases, which modify the acceptor, and ADP-ribose-acceptor hydrolase (ARH), which cleave the ADP-ribose-acceptor bond. ARH1 was discovered as an ADP-ribose(arginine)protein hydrolase. Previously, we showed that ARH1-knockout and ARH1 heterozygous mice spontaneously developed tumors. Further, ARH1-knockout and ARH1 heterozygous mouse embryonic fibroblasts (MEFs) produced tumors when injected into nude mice. In tumors arising in ARH1 heterozygous mice and MEFs, we found both loss of heterozygosity (LOH) of the ARH1 gene and ARH1 gene mutations. In the present report, we found that these mutant ARH1 genes encode proteins with reduced ARH1 enzymatic activity. Moreover, MEFs transformed with ARH1 mutant genes exhibiting different levels of ARH1 activity showed altered rates of proliferation, anchorage-independent colony growth in soft agar, and tumorigenesis in nude mice. MEFs transformed with the wild-type (WT) gene, but expressing low levels of hydrolase activity were also tumorigenic. However, transformation with the WT gene was less likely to yield tumors than transformation with a mutant gene exhibiting similar hydrolase activity. Thus, control of protein-ADP-ribosylation by ARH1 is critical for tumorigenesis. In the human cancer database, LOH and mutations of the ARH1 gene were observed. Further, ARH1 gene mutations were located in exons 3 and 4, comparable to exons 2 and 3 of the murine ARH1 gene, which comprise the catalytic site. Thus, human ARH1 gene mutations similar to their murine counterparts may be involved in human cancers. PMID:26029825

  2. FANCM c.5791C>T nonsense mutation (rs144567652) induces exon skipping, affects DNA repair activity and is a familial breast cancer risk factor.

    PubMed

    Peterlongo, Paolo; Catucci, Irene; Colombo, Mara; Caleca, Laura; Mucaki, Eliseos; Bogliolo, Massimo; Marin, Maria; Damiola, Francesca; Bernard, Loris; Pensotti, Valeria; Volorio, Sara; Dall'Olio, Valentina; Meindl, Alfons; Bartram, Claus; Sutter, Christian; Surowy, Harald; Sornin, Valérie; Dondon, Marie-Gabrielle; Eon-Marchais, Séverine; Stoppa-Lyonnet, Dominique; Andrieu, Nadine; Sinilnikova, Olga M; Mitchell, Gillian; James, Paul A; Thompson, Ella; Marchetti, Marina; Verzeroli, Cristina; Tartari, Carmen; Capone, Gabriele Lorenzo; Putignano, Anna Laura; Genuardi, Maurizio; Medici, Veronica; Marchi, Isabella; Federico, Massimo; Tognazzo, Silvia; Matricardi, Laura; Agata, Simona; Dolcetti, Riccardo; Della Puppa, Lara; Cini, Giulia; Gismondi, Viviana; Viassolo, Valeria; Perfumo, Chiara; Mencarelli, Maria Antonietta; Baldassarri, Margherita; Peissel, Bernard; Roversi, Gaia; Silvestri, Valentina; Rizzolo, Piera; Spina, Francesca; Vivanet, Caterina; Tibiletti, Maria Grazia; Caligo, Maria Adelaide; Gambino, Gaetana; Tommasi, Stefania; Pilato, Brunella; Tondini, Carlo; Corna, Chiara; Bonanni, Bernardo; Barile, Monica; Osorio, Ana; Benitez, Javier; Balestrino, Luisa; Ottini, Laura; Manoukian, Siranoush; Pierotti, Marco A; Renieri, Alessandra; Varesco, Liliana; Couch, Fergus J; Wang, Xianshu; Devilee, Peter; Hilbers, Florentine S; van Asperen, Christi J; Viel, Alessandra; Montagna, Marco; Cortesi, Laura; Diez, Orland; Balmaña, Judith; Hauke, Jan; Schmutzler, Rita K; Papi, Laura; Pujana, Miguel Angel; Lázaro, Conxi; Falanga, Anna; Offit, Kenneth; Vijai, Joseph; Campbell, Ian; Burwinkel, Barbara; Kvist, Anders; Ehrencrona, Hans; Mazoyer, Sylvie; Pizzamiglio, Sara; Verderio, Paolo; Surralles, Jordi; Rogan, Peter K; Radice, Paolo

    2015-09-15

    Numerous genetic factors that influence breast cancer risk are known. However, approximately two-thirds of the overall familial risk remain unexplained. To determine whether some of the missing heritability is due to rare variants conferring high to moderate risk, we tested for an association between the c.5791C>T nonsense mutation (p.Arg1931*; rs144567652) in exon 22 of FANCM gene and breast cancer. An analysis of genotyping data from 8635 familial breast cancer cases and 6625 controls from different countries yielded an association between the c.5791C>T mutation and breast cancer risk [odds ratio (OR) = 3.93 (95% confidence interval (CI) = 1.28-12.11; P = 0.017)]. Moreover, we performed two meta-analyses of studies from countries with carriers in both cases and controls and of all available data. These analyses showed breast cancer associations with OR = 3.67 (95% CI = 1.04-12.87; P = 0.043) and OR = 3.33 (95% CI = 1.09-13.62; P = 0.032), respectively. Based on information theory-based prediction, we established that the mutation caused an out-of-frame deletion of exon 22, due to the creation of a binding site for the pre-mRNA processing protein hnRNP A1. Furthermore, genetic complementation analyses showed that the mutation influenced the DNA repair activity of the FANCM protein. In summary, we provide evidence for the first time showing that the common p.Arg1931* loss-of-function variant in FANCM is a risk factor for familial breast cancer. PMID:26130695

  3. Bovine Viral Diarrhea Virus: Prevention of Persistent Fetal Infection by a Combination of Two Mutations Affecting Erns RNase and Npro Protease▿

    PubMed Central

    Meyers, Gregor; Ege, Andreas; Fetzer, Christiane; von Freyburg, Martina; Elbers, Knut; Carr, Veronica; Prentice, Helen; Charleston, Bryan; Schürmann, Eva-Maria

    2007-01-01

    Different genetically engineered mutants of bovine viral diarrhea virus (BVDV) were analyzed for the ability to establish infection in the fetuses of pregnant heifers. The virus mutants exhibited either a deletion of the overwhelming part of the genomic region coding for the N-terminal protease Npro, a deletion of codon 349, which abrogates the RNase activity of the structural glycoprotein Erns, or a combination of both mutations. Two months after infection of pregnant cattle with wild-type virus or either of the single mutants, the majority of the fetuses contained virus or were aborted or found dead in the uterus. In contrast, the double mutant was not recovered from fetal tissues after a similar challenge, and no dead fetuses were found. This result was verified with a nonrelated BVDV containing similar mutations. After intrauterine challenge with wild-type virus, mutated viruses, and cytopathogenic BVDV, all viruses could be detected in fetal tissue after 5, 7, and 14 days. Type 1 interferon (IFN) could be detected in fetal serum after challenge, except with wild-type noncytopathogenic BVDV. On days 7 and 14 after challenge, the largest quantities of IFN in fetal serum were induced by the Npro and RNase-negative double mutant virus. The longer duration of fetal infection with the double mutant resulted in abortion. Therefore, for the first time, we have demonstrated the essential role of both Npro and Erns RNase in blocking interferon induction and establishing persistent infection by a pestivirus in the natural host. PMID:17215285

  4. Mutations in chronic lymphocytic leukemia and how they affect therapy choice: focus on NOTCH1, SF3B1, and TP53.

    PubMed

    Zent, Clive S; Burack, W Richard

    2014-12-01

    Chronic lymphocytic leukemia (CLL) is characterized by a relatively small number of recurrent genetic defects. These can be evaluated by clinically available methods such as fluorescent in situ hybridization and targeted sequencing approaches to provide data that can be very helpful in prognostication and planning of treatment. Acquired defects in the p53 pathway, activating mutations of NOTCH1, and dysfunctional mutations of SF3B1 and BIRC3 identify patients with higher risk of progressive disease, poorer responses to conventional chemoimmunotherapy, and shorter survival. Risk stratification using these data can identify patients with aggressive CLL who require careful monitoring and are unlikely to have durable responses to chemoimmunotherapy at disease progression. Patients with defective DNA damage repair mechanisms because of p53 dysfunction should be considered for non-chemotherapy-based regimens including tyrosine kinase inhibitors, BCL2 inhibitors, monoclonal antibodies, and immunological therapies including allogeneic transplantation and chimeric antigen receptor-targeted T cells. Conversely, patients with no high-risk mutations can usually be monitored for a prolonged time and are likely to have durable responses to chemoimmunotherapy at disease progression. New technologies for genetic analysis such as targeted next-generation sequencing have the potential to make these analyses cheaper, faster, and more widely available. Comprehensive genetic analysis of patients both at diagnosis and before treatment for progressive disease could become an integral component of care for CLL. PMID:25696844

  5. The Laccaria and Tuber Genomes Reveal Unique Signatures of Mycorrhizal Symbiosis Evolution (2010 JGI User Meeting)

    SciTech Connect

    Knapp, Steve

    2010-03-24

    Francis Martin from the French agricultural research institute INRA talks on how "The Laccaria and Tuber genomes reveal unique signatures of mycorrhizal symbiosis evolution" on March 24, 2010 at the 5th Annual DOE JGI User Meeting

  6. Are heterotrophic and silica-rich eukaryotic microbes an important part of the lichen symbiosis?

    PubMed Central

    Wilkinson, David M.; Creevy, Angela L.; Kalu, Chiamaka L.; Schwartzman, David W.

    2015-01-01

    We speculate that heterotrophic and/or silica-rich eukaryotic microorganisms maybe an important part of the lichen symbiosis. None of the very few studies of heterotrophic protists associated with lichens have considered the possibility that they may be of functional significance in the lichen symbiosis. Here we start to develop, currently speculative, theoretical ideas about their potential significance. For example, all the protist taxa identified in lichens we sampled in Ohio USA depend on silica for growth and construction of their cell walls, this could suggest that silica-rich lichen symbionts may be significant in the biogeochemistry of the lichen symbiosis. We also present arguments suggesting a role for protists in nitrogen cycling within lichen thalli and a potential role in controlling bacterial populations associated with lichens. In this necessarily speculative paper we highlight areas for future research and how newer technologies may be useful for understanding the full suite of organisms involved in the lichen symbiosis. PMID:26000198

  7. [One amino acid mutation in an anti-CD20 antibody fragment that affects the yield bacterial secretion and the affinity].

    PubMed

    Liu, Yin-Xing; Xiong, Dong-Sheng; Fan, Dong-Mei; Shao, Xiao-Feng; Xu, Yuan-Fu; Zhu, Zhen-Ping; Yang, Chun-Zheng

    2003-05-01

    Monoclonal antibodies (mAb) directed against CD20, either unmodified or in radiolabeled forms, have been successfully exploited in clinic as effective therapeutic agents in the management of non-Hodgkin's B-cell lymphoma. The antibody fragment is a potential agent in image and therapy of tumor. To further improve the soluble expression of anti-CD20 antibody Fab' fragment, PCR was used to mutate the anti-CD20 VL and VH genes and its biological activity was identified. The expression vector of chimeric antibody Fab' was constructed and expressed in E. coli. The data of mutant clone DNA sequence showed that the amino acid of light chain gene of the parent anti-CD20 antibody (H47) was successful mutated as Ser (GAG)-Asn (CAG). The soluble expression of mutated anti-CD20 Fab' (CD20-7) was 3.8 mg/g dry cell weight, while the parent (CD20-2) was 1.3 mg/g dry cell weight. The affinity constant Ka of CD20-7 was 2.2 x 10(9) L/mol. The primary results of competitive assays by FACS showed that CD20-7 could partially block the sites through which parent antibody (HI47) bind to Raji cells. There was difference in the Raji cells (CD20+)-binding activity between the mutant CD20-7 and parent CD20-2. The site mutation of anti-CD20 Fab' gene make it possible that the anti-CD20 antibody fragment was succeeded to obtain higher expression. In this thesis, we succeeded in completing mutation and expression of anti-CD20 Fab' genes, distinguishing its biological activity, and obtaining its highly expression. These period results will lay a foundation for development of other kind of anti-CD20 engineering antibody (for instance: Fab' Diabody and miniantibody), and make it possible for anti-CD20 antibody to be applied to tumor therapy in civil in the future. PMID:15969005

  8. The engine of the reef: photobiology of the coral–algal symbiosis

    PubMed Central

    Roth, Melissa S.

    2014-01-01

    Coral reef ecosystems thrive in tropical oligotrophic oceans because of the relationship between corals and endosymbiotic dinoflagellate algae called Symbiodinium. Symbiodinium convert sunlight and carbon dioxide into organic carbon and oxygen to fuel coral growth and calcification, creating habitat for these diverse and productive ecosystems. Light is thus a key regulating factor shaping the productivity, physiology, and ecology of the coral holobiont. Similar to all oxygenic photoautotrophs, Symbiodinium must safely harvest sunlight for photosynthesis and dissipate excess energy to prevent oxidative stress. Oxidative stress is caused by environmental stressors such as those associated with global climate change, and ultimately leads to breakdown of the coral–algal symbiosis known as coral bleaching. Recently, large-scale coral bleaching events have become pervasive and frequent threatening and endangering coral reefs. Because the coral–algal symbiosis is the biological engine producing the reef, the future of coral reef ecosystems depends on the ecophysiology of the symbiosis. This review examines the photobiology of the coral–algal symbiosis with particular focus on the photophysiological responses and timescales of corals and Symbiodinium. Additionally, this review summarizes the light environment and its dynamics, the vulnerability of the symbiosis to oxidative stress, the abiotic and biotic factors influencing photosynthesis, the diversity of the coral–algal symbiosis, and recent advances in the field. Studies integrating physiology with the developing “omics” fields will provide new insights into the coral–algal symbiosis. Greater physiological and ecological understanding of the coral–algal symbiosis is needed for protection and conservation of coral reefs. PMID:25202301

  9. Origin and Evolution of Nitrogen Fixation Genes on Symbiosis Islands and Plasmid in Bradyrhizobium

    PubMed Central

    Okubo, Takashi; Piromyou, Pongdet; Tittabutr, Panlada; Teaumroong, Neung; Minamisawa, Kiwamu

    2016-01-01

    The nitrogen fixation (nif) genes of nodule-forming Bradyrhizobium strains are generally located on symbiosis islands or symbiosis plasmids, suggesting that these genes have been transferred laterally. The nif genes of rhizobial and non-rhizobial Bradyrhizobium strains were compared in order to infer the evolutionary histories of nif genes. Based on all codon positions, the phylogenetic tree of concatenated nifD and nifK sequences showed that nifDK on symbiosis islands formed a different clade from nifDK on non-symbiotic loci (located outside of symbiosis islands and plasmids) with elongated branches; however, these genes were located in close proximity, when only the 1st and 2nd codon positions were analyzed. The guanine (G) and cytosine (C) content of the 3rd codon position of nifDK on symbiosis islands was lower than that on non-symbiotic loci. These results suggest that nif genes on symbiosis islands were derived from the non-symbiotic loci of Bradyrhizobium or closely related strains and have evolved toward a lower GC content with a higher substitution rate than the ancestral state. Meanwhile, nifDK on symbiosis plasmids clustered with nifDK on non-symbiotic loci in the tree representing all codon positions, and the GC content of symbiotic and non-symbiotic loci were similar. These results suggest that nif genes on symbiosis plasmids were derived from the non-symbiotic loci of Bradyrhizobium and have evolved with a similar evolutionary pattern and rate as the ancestral state. PMID:27431195

  10. Book review of Insect Symbiosis. Volume 2. Bourtzis, K.A. and Miller, T.A. editros. 2006 CRC Press, Taylor and Francis Group, Boca Raton, FL, 276 pp. ISBN 0-8493-1286-8

    SciTech Connect

    Hoy, M.A.

    2007-03-15

    There are several definitions of symbiosis, but in this book it involves an association where one organism (the symbiont) lives within or on the body of another organism (the host), regardless of the actual effect on the host. Some symbioses are mutualistic, some parasitic, and some involve commensalism, in which one partner derives some benefit without either harming or benefiting the other. This is the second volume in this exciting and rapidly advancing topic by these editors. The first volume was published in 2003 and during the intervening three years additional data have been produced that make this book a useful addition to your library. The first book provided chapters that provided an overview of insect symbiosis, discussions of the primary aphid symbiont Buchnera and other aphid symbionts, symbiosis in tsetse, symbionts in the weevil Sitophilus , the possible use of paratransgenic symbionts of Rhodnius prolixis to prevent disease transmission, bark beetle and fungal symbiosis, symbionts of tephritid fruit flies, symbionts affecting termite behavior, an overview of microsporidia as symbionts (parasites?) of insects, an overview of a newly discovered bacterium that causes sex-ratio distortion in insects and mites (from the Bacteroides group), symbionts that selectively kill male insects, and several chapters on the ubiquitous endosymbiont Wolbachia.

  11. Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis.

    PubMed

    Fellbaum, Carl R; Gachomo, Emma W; Beesetty, Yugandhar; Choudhari, Sulbha; Strahan, Gary D; Pfeffer, Philip E; Kiers, E Toby; Bücking, Heike

    2012-02-14

    The arbuscular mycorrhizal (AM) symbiosis, formed between the majority of land plants and ubiquitous soil fungi of the phylum Glomeromycota, is responsible for massive nutrient transfer and global carbon sequestration. AM fungi take up nutrients from the soil and exchange them against photosynthetically fixed carbon (C) from the host. Recent studies have demonstrated that reciprocal reward strategies by plant and fungal partners guarantee a "fair trade" of phosphorus against C between partners [Kiers ET, et al. (2011) Science 333:880-882], but whether a similar reward mechanism also controls nitrogen (N) flux in the AM symbiosis is not known. Using mycorrhizal root organ cultures, we manipulated the C supply to the host and fungus and followed the uptake and transport of N sources in the AM symbiosis, the enzymatic activities of arginase and urease, and fungal gene expression in the extraradical and intraradical mycelium. We found that the C supply of the host plant triggers the uptake and transport of N in the symbiosis, and that the increase in N transport is orchestrated by changes in fungal gene expression. N transport in the symbiosis is stimulated only when the C is delivered by the host across the mycorrhizal interface, not when C is supplied directly to the fungal extraradical mycelium in the form of acetate. These findings support the importance of C flux from the root to the fungus as a key trigger for N uptake and transport and provide insight into the N transport regulation in the AM symbiosis. PMID:22308426

  12. Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis

    PubMed Central

    Fellbaum, Carl R.; Gachomo, Emma W.; Beesetty, Yugandhar; Choudhari, Sulbha; Strahan, Gary D.; Pfeffer, Philip E.; Kiers, E. Toby; Bücking, Heike

    2012-01-01

    The arbuscular mycorrhizal (AM) symbiosis, formed between the majority of land plants and ubiquitous soil fungi of the phylum Glomeromycota, is responsible for massive nutrient transfer and global carbon sequestration. AM fungi take up nutrients from the soil and exchange them against photosynthetically fixed carbon (C) from the host. Recent studies have demonstrated that reciprocal reward strategies by plant and fungal partners guarantee a “fair trade” of phosphorus against C between partners [Kiers ET, et al. (2011) Science 333:880–882], but whether a similar reward mechanism also controls nitrogen (N) flux in the AM symbiosis is not known. Using mycorrhizal root organ cultures, we manipulated the C supply to the host and fungus and followed the uptake and transport of N sources in the AM symbiosis, the enzymatic activities of arginase and urease, and fungal gene expression in the extraradical and intraradical mycelium. We found that the C supply of the host plant triggers the uptake and transport of N in the symbiosis, and that the increase in N transport is orchestrated by changes in fungal gene expression. N transport in the symbiosis is stimulated only when the C is delivered by the host across the mycorrhizal interface, not when C is supplied directly to the fungal extraradical mycelium in the form of acetate. These findings support the importance of C flux from the root to the fungus as a key trigger for N uptake and transport and provide insight into the N transport regulation in the AM symbiosis. PMID:22308426

  13. The micro-RNA72c-APETALA2-1 node as a key regulator of the common bean-Rhizobium etli nitrogen fixation symbiosis.

    PubMed

    Nova-Franco, Bárbara; Íñiguez, Luis P; Valdés-López, Oswaldo; Alvarado-Affantranger, Xochitl; Leija, Alfonso; Fuentes, Sara I; Ramírez, Mario; Paul, Sujay; Reyes, José L; Girard, Lourdes; Hernández, Georgina

    2015-05-01

    Micro-RNAs are recognized as important posttranscriptional regulators in plants. The relevance of micro-RNAs as regulators of the legume-rhizobia nitrogen-fixing symbiosis is emerging. The objective of this work was to functionally characterize the role of micro-RNA172 (miR172) and its conserved target APETALA2 (AP2) transcription factor in the common bean (Phaseolus vulgaris)-Rhizobium etli symbiosis. Our expression analysis revealed that mature miR172c increased upon rhizobial infection and continued increasing during nodule development, reaching its maximum in mature nodules and decaying in senescent nodules. The expression of AP2-1 target showed a negative correlation with miR172c expression. A drastic decrease in miR172c and high AP2-1 mRNA levels were observed in ineffective nodules. Phenotypic analysis of composite bean plants with transgenic roots overexpressing miR172c or a mutated AP2-1 insensitive to miR172c cleavage demonstrated the pivotal regulatory role of the miR172 node in the common bean-rhizobia symbiosis. Increased miR172 resulted in improved root growth, increased rhizobial infection, increased expression of early nodulation and autoregulation of nodulation genes, and improved nodulation and nitrogen fixation. In addition, these plants showed decreased sensitivity to nitrate inhibition of nodulation. Through transcriptome analysis, we identified 114 common bean genes that coexpressed with AP2-1 and proposed these as being targets for transcriptional activation by AP2-1. Several of these genes are related to nodule senescence, and we propose that they have to be silenced, through miR172c-induced AP2-1 cleavage, in active mature nodules. Our work sets the basis for exploring the miR172-mediated improvement of symbiotic nitrogen fixation in common bean, the most important grain legume for human consumption. PMID:25739700

  14. The Micro-RNA172c-APETALA2-1 Node as a Key Regulator of the Common Bean-Rhizobium etli Nitrogen Fixation Symbiosis1[OPEN

    PubMed Central

    Nova-Franco, Bárbara; Íñiguez, Luis P.; Valdés-López, Oswaldo; Leija, Alfonso; Fuentes, Sara I.; Ramírez, Mario; Paul, Sujay

    2015-01-01

    Micro-RNAs are recognized as important posttranscriptional regulators in plants. The relevance of micro-RNAs as regulators of the legume-rhizobia nitrogen-fixing symbiosis is emerging. The objective of this work was to functionally characterize the role of micro-RNA172 (miR172) and its conserved target APETALA2 (AP2) transcription factor in the common bean (Phaseolus vulgaris)-Rhizobium etli symbiosis. Our expression analysis revealed that mature miR172c increased upon rhizobial infection and continued increasing during nodule development, reaching its maximum in mature nodules and decaying in senescent nodules. The expression of AP2-1 target showed a negative correlation with miR172c expression. A drastic decrease in miR172c and high AP2-1 mRNA levels were observed in ineffective nodules. Phenotypic analysis of composite bean plants with transgenic roots overexpressing miR172c or a mutated AP2-1 insensitive to miR172c cleavage demonstrated the pivotal regulatory role of the miR172 node in the common bean-rhizobia symbiosis. Increased miR172 resulted in improved root growth, increased rhizobial infection, increased expression of early nodulation and autoregulation of nodulation genes, and improved nodulation and nitrogen fixation. In addition, these plants showed decreased sensitivity to nitrate inhibition of nodulation. Through transcriptome analysis, we identified 114 common bean genes that coexpressed with AP2-1 and proposed these as being targets for transcriptional activation by AP2-1. Several of these genes are related to nodule senescence, and we propose that they have to be silenced, through miR172c-induced AP2-1 cleavage, in active mature nodules. Our work sets the basis for exploring the miR172-mediated improvement of symbiotic nitrogen fixation in common bean, the most important grain legume for human consumption. PMID:25739700

  15. Mutations and environmental factors affecting regulation of riboflavin synthesis and iron assimilation also cause oxidative stress in the yeast Pichia guilliermondii.

    PubMed

    Boretsky, Yuriy R; Protchenko, Olga V; Prokopiv, Tetiana M; Mukalov, Igor O; Fedorovych, Daria V; Sibirny, Andriy A

    2007-10-01

    Iron deficiency causes oversynthesis of riboflavin in several yeast species, known as flavinogenic yeasts. However, the mechanisms of such regulation are not known. We found that mutations causing riboflavin overproduction and iron hyperaccumulation (rib80, rib81 and hit1), as well as cobalt excess or iron deficiency all provoke oxidative stress in the Pichia guilliermondii yeast. Iron content in the cells, production both of riboflavin and malondialdehyde by P. guilliermondii wild type and hit1 mutant strains depend on a type of carbon source used in cultivation media. The data suggest that the regulation of riboflavin biosynthesis and iron assimilation in P. guilliermondii are linked with cellular oxidative state. PMID:17910100

  16. The R215W mutation in NBS1 impairs {gamma}-H2AX binding and affects DNA repair: molecular bases for the severe phenotype of 657del5/R215W Nijmegen breakage syndrome patients

    SciTech Connect

    Masi, Alessandra di Viganotti, Mara; Polticelli, Fabio; Ascenzi, Paolo; Tanzarella, Caterina; Antoccia, Antonio

    2008-05-09

    Nijmegen breakage syndrome (NBS) is a genetic disorder characterized by chromosomal instability and hypersensitivity to ionising radiation. Compound heterozygous 657del5/R215W NBS patients display a clinical phenotype more severe than the majority of NBS patients homozygous for the 657del5 mutation. The NBS1 protein, mutated in NBS patients, contains a FHA/BRCT domain necessary for the DNA-double strand break (DSB) damage response. Recently, a second BRCT domain has been identified, however, its role is still unknown. Here, we demonstrate that the R215W mutation in NBS1 impairs histone {gamma}-H2AX binding after induction of DNA damage, leading to a delay in DNA-DSB rejoining. Molecular modelling reveals that the 215 residue of NBS1 is located between the two BRCT domains, affecting their relative orientation that appears critical for {gamma}-H2AX binding. Present data represent the first evidence for the role of NBS1 tandem BRCT domains in {gamma}-H2AX recognition, and could explain the severe phenotype observed in 657del5/R215W NBS patients.

  17. Altered Carbohydrates Allocation by Associated Bacteria-fungi Interactions in a Bark Beetle-microbe Symbiosis

    PubMed Central

    Zhou, Fangyuan; Lou, Qiaozhe; Wang, Bo; Xu, Letian; Cheng, Chihang; Lu, Min; Sun, Jianghua

    2016-01-01

    Insect-microbe interaction is a key area of research in multiplayer symbiosis, yet little is known about the role of microbe-microbe interactions in insect-microbe symbioses. The red turpentine beetle (RTB) has destroyed millions of healthy pines in China and forms context-dependent relationships with associated fungi. The adult-associated fungus Leptographium procerum have played key roles in RTB colonization. However, common fungal associates (L. procerum and Ophiostoma minus) with RTB larvae compete for carbohydrates. Here, we report that dominant bacteria associated with RTB larvae buffer the competition by inhibiting the growth and D-glucose consumption of O. minus. However, they didn’t inhibit the growth of L. procerum and forced this fungus to consume D-pinitol before consuming D-glucose, even though D-glucose was available and a better carbon source not only for L. procerum but also for RTB larvae and associated bacteria. This suggests the most frequently isolated bacteria associated with RTB larvae could affect fungal growth and the sequence of carbohydrate consumption. Thus, this regulates carbohydrate allocation in the RTB larva-microbe community, which may in turn benefit RTB larvae development. We also discuss the mechanism of carbohydrate allocation in the RTB larva-microbe community, and its potential contribution to the maintenance of a symbiotic community. PMID:26839264

  18. Friend or foe? A behavioral and stable isotopic investigation of an ant-plant symbiosis.

    PubMed

    Tillberg, Chadwick V

    2004-08-01

    In ant-plant symbioses, the behavior of ant inhabitants affects the nature of the interaction, ranging from mutualism to parasitism. Mutualistic species confer a benefit to the plant, while parasites reap the benefits of the interaction without reciprocating, potentially resulting in a negative impact on the host plant. Using the ant-plant symbiosis between Cordia alliodora and its ant inhabitants as a model system, I examine the costs and benefits of habitation by the four most common ant inhabitants at La Selva Biological Station, Costa Rica. Costs are measured by counting coccoids associated with each ant species. Benefits include patrolling behavior, effectiveness at locating resources, and recruitment response. I also compare the diets of the four ant species using stable isotope analysis of nitrogen (N) and carbon (C). Ants varied in their rates of association with coccoids, performance of beneficial behaviors, and diet. These differences in cost, benefit, and diet among the ant species suggest differences in the nature of the symbiotic relationship between C. alliodora and its ants. Two of the ant species behave in a mutualistic manner, while the other two ant species appear to be parasites of the mutualism. I determined that the mutualistic ants feed at a higher trophic level than the parasitic ants. Behavioral and dietary evidence indicate the protective role of the mutualists, and suggest that the parasitic ants do not protect the plant by consuming herbivores. PMID:15179580

  19. Auxin Perception Is Required for Arbuscule Development in Arbuscular Mycorrhizal Symbiosis1[W

    PubMed Central

    Etemadi, Mohammad; Gutjahr, Caroline; Couzigou, Jean-Malo; Zouine, Mohamed; Lauressergues, Dominique; Timmers, Antonius; Audran, Corinne; Bouzayen, Mondher; Bécard, Guillaume; Combier, Jean-Philippe

    2014-01-01

    Most land plant species live in symbiosis with arbuscular mycorrhizal fungi. These fungi differentiate essential functional structures called arbuscules in root cortical cells from which mineral nutrients are released to the plant. We investigated the role of microRNA393 (miR393), an miRNA that targets several auxin receptors, in arbuscular mycorrhizal root colonization. Expression of the precursors of the miR393 was down-regulated during mycorrhization in three different plant species: Solanum lycopersicum, Medicago truncatula, and Oryza sativa. Treatment of S. lycopersicum, M. truncatula, and O. sativa roots with concentrations of synthetic auxin analogs that did not affect root development stimulated mycorrhization, particularly arbuscule formation. DR5-GUS, a reporter for auxin response, was preferentially expressed in root cells containing arbuscules. Finally, overexpression of miR393 in root tissues resulted in down-regulation of auxin receptor genes (transport inhibitor response1 and auxin-related F box) and underdeveloped arbuscules in all three plant species. These results support the conclusion that miR393 is a negative regulator of arbuscule formation by hampering auxin perception in arbuscule-containing cells. PMID:25096975

  20. A Missense Mutation in the Zinc Finger Domain of OsCESA7 Deleteriously Affects Cellulose Biosynthesis and Plant Growth in Rice

    PubMed Central

    Wang, Daofeng; Qin, Yanling; Fang, Jingjing; Yuan, Shoujiang; Peng, Lixiang; Zhao, Jinfeng; Li, Xueyong

    2016-01-01

    Rice is a model plant species for the study of cellulose biosynthesis. We isolated a mutant, S1-24, from ethyl methanesulfonate (EMS)-treated plants of the japonica rice cultivar, Nipponbare. The mutant exhibited brittle culms and other pleiotropic phenotypes such as dwarfism and partial sterility. The brittle culms resulted from reduced mechanical strength due to a defect in thickening of the sclerenchyma cell wall and reduced cellulose content in the culms of the S1-24 mutant. Map-based gene cloning and a complementation assay showed that phenotypes of the S1-24 mutant were caused by a recessive point mutation in the OsCESA7 gene, which encodes cellulose synthase A subunit 7. The missense mutation changed the highly conserved C40 to Y in the zinc finger domain. The OsCESA7 gene is expressed predominantly in the culm at the mature stage, particularly in mechanical tissues such as vascular bundles and sclerenchyma cells, consistent with the brittle phenotype in the culm. These results indicate that OsCESA7 plays an important role in cellulose biosynthesis and plant growth. PMID:27092937

  1. A Missense Mutation in the Zinc Finger Domain of OsCESA7 Deleteriously Affects Cellulose Biosynthesis and Plant Growth in Rice.

    PubMed

    Wang, Daofeng; Qin, Yanling; Fang, Jingjing; Yuan, Shoujiang; Peng, Lixiang; Zhao, Jinfeng; Li, Xueyong

    2016-01-01

    Rice is a model plant species for the study of cellulose biosynthesis. We isolated a mutant, S1-24, from ethyl methanesulfonate (EMS)-treated plants of the japonica rice cultivar, Nipponbare. The mutant exhibited brittle culms and other pleiotropic phenotypes such as dwarfism and partial sterility. The brittle culms resulted from reduced mechanical strength due to a defect in thickening of the sclerenchyma cell wall and reduced cellulose content in the culms of the S1-24 mutant. Map-based gene cloning and a complementation assay showed that phenotypes of the S1-24 mutant were caused by a recessive point mutation in the OsCESA7 gene, which encodes cellulose synthase A subunit 7. The missense mutation changed the highly conserved C40 to Y in the zinc finger domain. The OsCESA7 gene is expressed predominantly in the culm at the mature stage, particularly in mechanical tissues such as vascular bundles and sclerenchyma cells, consistent with the brittle phenotype in the culm. These results indicate that OsCESA7 plays an important role in cellulose biosynthesis and plant growth. PMID:27092937

  2. [Hereditary amyloid cardiomyopathy related to a mutation at transthyretin protein number 111. A clinical, genetic and echocardiographic study of an affected Danish family].

    PubMed

    Svendsen, I H; Steensgaard-Hansen, F; Nordvåg, B Y

    1999-09-01

    Amyloidosis is a group of diseases characterized by amyloid deposition in various tissues. The diseases can roughly be divided into hereditary and non-hereditary forms. The hereditary forms are related to a mutation in the serum protein transthyretin which is produced mainly in the liver. The inheritance is autosomal dominant. A family in Denmark has earlier been described as having inherited cardiac amyloidosis with a mutation at amino acid number 111 in the transthyretin protein. The family now has been re-examined because of new diagnostic and therapeutic possibilities. The aims of the study were to identify carriers and non-carriers of the mutant transthyretin methionine 111 linked familial amyloid disease, to detect early signs of the restrictive cardiomyopathy and other clinical manifestations of this disease. Clinical, echocardiographic and genetic examination was carried out. Out of 125 living family members, 99 were available for examination. Twenty-five persons were heterozygous carriers of the mutant transthyretin methionine 111 genotype, while 74 were non-carriers. Eight carriers, all above the age of 35, showed echocardiographic abnormalities suggestive of developing or manifest restrictive cardiomyopathy. Nine carriers had carpal tunnel syndrome as opposed to none of the non-carriers. It is concluded that for early detection of familial amyloid cardiomyopathy, echocardiography is the investigation of choice. The first sign is diastolic dysfunction detected as an abnormal relaxation pattern. Carpal tunnel syndrome appears to be the earliest presenting clinical symptom. Early liver transplantation seems to be curative. PMID:10489791

  3. Construction and Characterization of Mutations within the Klebsiella mrkD1P Gene That Affect Binding to Collagen Type V

    PubMed Central

    Sebghati, Tricia A.; Clegg, Steven

    1999-01-01

    The fimbria-associated MrkD1P protein mediates adherence of type 3 fimbriate strains of Klebsiella pneumoniae to collagen type V. Currently, three different MrkD adhesins have been described in Klebsiella species, and each possesses a distinctive binding pattern. Therefore, the binding abilities of mutants possessing defined mutations within the mrkD1P gene were examined in order to determine whether specific regions of the adhesin molecule were responsible for collagen binding. Both site-directed and chemically induced mutations were constructed within mrkD1P, and the ability of the gene products to be incorporated into fimbrial appendages or bind to collagen was determined. Binding to type V collagen was not associated solely with one particular region of the MrkD1P protein, and two classes of nonadhesive mutants were isolated. In one class of mutants, the MrkD adhesin was not assembled into the fimbrial shaft, whereas in the second class of mutants, the adhesin was associated with fimbriae but did not bind to collagen. Both hemagglutinating and collagen-binding activities were associated with the MrkD1P molecule, since P pili and type 3 fimbriae carrying adhesive MrkD proteins exhibited identical binding properties. PMID:10085002

  4. Germline mutations induced by N-nitroso-N-ethylurea do not affect the inserted copia retrotransposon in a Drosophila melanogaster wa mutant.

    PubMed

    Baldrich, E; Velázquez, A; Xamena, N; Cabré, O

    2003-11-01

    The white-apricot (wa) mutant of Drosophila melanogaster is characterized by a copia retrotransposon inserted in the second intron of the white locus. After germinal exposure to the alkylating agent N-ethyl-N-nitrosourea, we have obtained new phenotypes in the offspring, mainly lighter eye colour, but not revertants to the original phenotype. Subsequent genetic crosses showed that only 3 out of 13 new mutant phenotypes were allelic. Three white gene regions were analysed by Southern blot in order to determine the nature of the mutations. These three regions were the 5' regulatory region, the copia insertion site and the 3' coding region. The results obtained indicate that the treatment does not induce the total or partial excision of copia in the white locus. Two of the new allelic mutants present a 5' or 3' deletion in the white locus. The other new phenotypes seem to be caused by mutations being induced in other loci acting as modifiers, most of them located on the X chromosome. PMID:14614188

  5. A case of ovarian torsion in a patient carrier of a FSH receptor gene mutation previously affected by spontaneous ovarian hyperstimulation syndrome.

    PubMed

    Di Carlo, C; Savoia, F; Fabozzi, A; Gargano, V; Nappi, C

    2015-02-01

    We here report a case of ovarian torsion in a patient with an history of two previous episodes of spontaneous ovarian hyperstimulation syndrome during her two pregnancies. A mutation of follicle-stimulating hormone receptor (FSHr) gene was identified in this patient and in other members of the family. Two years after her successful second pregnancy, the patient showed signs of severe thyroiditis during administration of oral contraceptive, with suppressed TSH and increased thyreoglobulin, in the absence of any abnormalities of the auto-antibodies. In few days, she developed severe pelvic pain and ultrasonographic evidence of increased ovarian volume. She underwent laparoscopy with unilateral adnexectomy for ovarian ischemic necrosis due to adnexal torsion. Our experience suggests that patients' carrier of a mutation of FSHr gene are at risk of ovarian pathologies also when non-pregnant and in the presence of low TSH levels. Further investigations are needed for an appropriate knowledge of typical and atypical manifestations of spontaneous ovarian hyperstimulation syndrome. PMID:25495063

  6. Common mycorrhizal networks and their effect on the bargaining power of the fungal partner in the arbuscular mycorrhizal symbiosis

    PubMed Central

    Bücking, Heike; Mensah, Jerry A.; Fellbaum, Carl R.

    2016-01-01

    ABSTRACT Arbuscular mycorrhizal (AM) fungi form mutualistic interactions with the majority of land plants, including some of the most important crop species. The fungus takes up nutrients from the soil, and transfers these nutrients to the mycorrhizal interface in the root, where these nutrients are exchanged against carbon from the host. AM fungi form extensive hyphal networks in the soil and connect with their network multiple host plants. These common mycorrhizal networks (CMNs) play a critical role in the long-distance transport of nutrients through soil ecosystems and allow the exchange of signals between the interconnected plants. CMNs affect the survival, fitness, and competitiveness of the fungal and plant species that interact via these networks, but how the resource transport within these CMNs is controlled is largely unknown. We discuss the significance of CMNs for plant communities and for the bargaining power of the fungal partner in the AM symbiosis. PMID:27066184

  7. Common mycorrhizal networks and their effect on the bargaining power of the fungal partner in the arbuscular mycorrhizal symbiosis.

    PubMed

    Bücking, Heike; Mensah, Jerry A; Fellbaum, Carl R

    2016-01-01

    Arbuscular mycorrhizal (AM) fungi form mutualistic interactions with the majority of land plants, including some of the most important crop species. The fungus takes up nutrients from the soil, and transfers these nutrients to the mycorrhizal interface in the root, where these nutrients are exchanged against carbon from the host. AM fungi form extensive hyphal networks in the soil and connect with their network multiple host plants. These common mycorrhizal networks (CMNs) play a critical role in the long-distance transport of nutrients through soil ecosystems and allow the exchange of signals between the interconnected plants. CMNs affect the survival, fitness, and competitiveness of the fungal and plant species that interact via these networks, but how the resource transport within these CMNs is controlled is largely unknown. We discuss the significance of CMNs for plant communities and for the bargaining power of the fungal partner in the AM symbiosis. PMID:27066184

  8. Systematic screening for mutations in the 5{prime}-regulatory region of the human dopamine D{sub 1} receptor (DRD1) gene in patients with schizophrenia and bipolar affective disorder

    SciTech Connect

    Cichon, S.; Noethen, M.M.; Stoeber, G.

    1996-07-26

    A possible dysregulation of dopaminergic neurotransmission has been implicated in a variety of neuropsychiatric diseases. In the present study we systematically searched for the presence of mutations in the 5{prime}-flanking region of the dopamine D{sub 1} receptor (DRD1) gene. This region has previously been shown to contain a functional promoter. We investigated 119 unrelated individuals (including 36 schizophrenic patients, 38 bipolar affective patients, and 45 healthy controls) using single-strand conformation analysis (SSCA). Eleven overlapping PCR fragments covered 2,189 bp of DNA sequence. We identified six single base substitutions: -2218T/C, -2102C/A, -2030T/C, -1992G/A, -1251G/C, and -800T/C. None of the mutations was found to be located in regions which have important influence on the level of transcriptional activity. Allele frequencies were similar in patients and controls, indicating that genetic variation in the 5{prime}-regulatory region of the DRD1 gene is unlikely to play a frequent, major role in the genetic predisposition to either schizophrenia or bipolar affective disorder. 31 refs., 3 tabs.

  9. Mutations Designed by Ensemble Defect to Misfold Conserved RNA Structures of Influenza A Segments 7 and 8 Affect Splicing and Attenuate Viral Replication in Cell Culture.

    PubMed

    Jiang, Tian; Nogales, Aitor; Baker, Steven F; Martinez-Sobrido, Luis; Turner, Douglas H

    2016-01-01

    Influenza A virus is a significant public health threat, but little is understood about the viral RNA structure and function. Current vaccines and therapeutic options to control influenza A virus infections are mostly protein-centric and of limited effectiveness. Here, we report using an ensemble defect approach to design mutations to misfold regions of conserved mRNA structures in influenza A virus segments 7 and 8. Influenza A mutant viruses inhibit pre-mRNA splicing and attenuate viral replication in cell culture, thus providing evidence for functions of the targeted regions. Targeting these influenza A viral RNA regions provides new possibilities for designing vaccines and therapeutics against this important human respiratory pathogen. The results also demonstrate that the ensemble defect approach is an efficient way to test for function of RNA sequences. PMID:27272307

  10. Mutations Designed by Ensemble Defect to Misfold Conserved RNA Structures of Influenza A Segments 7 and 8 Affect Splicing and Attenuate Viral Replication in Cell Culture

    PubMed Central

    Jiang, Tian; Nogales, Aitor; Baker, Steven F; Martinez-Sobrido, Luis; Turner, Douglas H

    2016-01-01

    Influenza A virus is a significant public health threat, but little is understood about the viral RNA structure and function. Current vaccines and therapeutic options to control influenza A virus infections are mostly protein-centric and of limited effectiveness. Here, we report using an ensemble defect approach to design mutations to misfold regions of conserved mRNA structures in influenza A virus segments 7 and 8. Influenza A mutant viruses inhibit pre-mRNA splicing and attenuate viral replication in cell culture, thus providing evidence for functions of the targeted regions. Targeting these influenza A viral RNA regions provides new possibilities for designing vaccines and therapeutics against this important human respiratory pathogen. The results also demonstrate that the ensemble defect approach is an efficient way to test for function of RNA sequences. PMID:27272307

  11. Emergy-based assessment on industrial symbiosis: a case of Shenyang Economic and Technological Development Zone.

    PubMed

    Geng, Yong; Liu, Zuoxi; Xue, Bing; Dong, Huijuan; Fujita, Tsuyoshi; Chiu, Anthony

    2014-12-01

    Industrial symbiosis is the sharing of services, utility, and by-product resources among industries. This is usually made in order to add value, reduce costs, and improve the environment, and therefore has been taken as an effective approach for developing an eco-industrial park, improving resource efficiency, and reducing pollutant emission. Most conventional evaluation approaches ignored the contribution of natural ecosystem to the development of industrial symbiosis and cannot reveal the interrelations between economic development and environmental protection, leading to a need of an innovative evaluation method. Under such a circumstance, we present an emergy analysis-based evaluation method by employing a case study at Shenyang Economic and Technological Development Zone (SETDZ). Specific emergy indicators on industrial symbiosis, including emergy savings and emdollar value of total emergy savings, were developed so that the holistic picture of industrial symbiosis can be presented. Research results show that nonrenewable inputs, imported resource inputs, and associated services could be saved by 89.3, 32.51, and 15.7 %, and the ratio of emergy savings to emergy of the total energy used would be about 25.58 %, and the ratio of the emdollar value of total emergy savings to the total gross regional product (GRP) of SETDZ would be 34.38 % through the implementation of industrial symbiosis. In general, research results indicate that industrial symbiosis could effectively reduce material and energy consumption and improve the overall eco-efficiency. Such a method can provide policy insights to industrial park managers so that they can raise appropriate strategies on developing eco-industrial parks. Useful strategies include identifying more potential industrial symbiosis opportunities, optimizing energy structure, increasing industrial efficiency, recovering local ecosystems, and improving public and industrial awareness of eco-industrial park policies. PMID

  12. Global distribution and vertical patterns of a prymnesiophyte-cyanobacteria obligate symbiosis.

    PubMed

    Cabello, Ana M; Cornejo-Castillo, Francisco M; Raho, Nicolas; Blasco, Dolors; Vidal, Montserrat; Audic, Stéphane; de Vargas, Colomban; Latasa, Mikel; Acinas, Silvia G; Massana, Ramon

    2016-03-01

    A marine symbiosis has been recently discovered between prymnesiophyte species and the unicellular diazotrophic cyanobacterium UCYN-A. At least two different UCYN-A phylotypes exist, the clade UCYN-A1 in symbiosis with an uncultured small prymnesiophyte and the clade UCYN-A2 in symbiosis with the larger Braarudosphaera bigelowii. We targeted the prymnesiophyte-UCYN-A1 symbiosis by double CARD-FISH (catalyzed reporter deposition-fluorescence in situ hybridization) and analyzed its abundance in surface samples from the MALASPINA circumnavigation expedition. Our use of a specific probe for the prymnesiophyte partner allowed us to verify that this algal species virtually always carried the UCYN-A symbiont, indicating that the association was also obligate for the host. The prymnesiophyte-UCYN-A1 symbiosis was detected in all ocean basins, displaying a patchy distribution with abundances (up to 500 cells ml(-1)) that could vary orders of magnitude. Additional vertical profiles taken at the NE Atlantic showed that this symbiosis occupied the upper water column and disappeared towards the Deep Chlorophyll Maximum, where the biomass of the prymnesiophyte assemblage peaked. Moreover, sequences of both prymnesiophyte partners were searched within a large 18S rDNA metabarcoding data set from the Tara-Oceans expedition around the world. This sequence-based analysis supported the patchy distribution of the UCYN-A1 host observed by CARD-FISH and highlighted an unexpected homogeneous distribution (at low relative abundance) of B. bigelowii in the open ocean. Our results demonstrate that partners are always in symbiosis in nature and show contrasted ecological patterns of the two related lineages. PMID:26405830

  13. Mutations within the mepA operator affect binding of the MepR regulatory protein and its induction by MepA substrates in Staphylococcus aureus.

    PubMed

    Schindler, Bryan D; Seo, Susan M; Birukou, Ivan; Brennan, Richard G; Kaatz, Glenn W

    2015-03-01

    The expression of mepA, encoding the Staphylococcus aureus MepA multidrug efflux protein, is repressed by the MarR homologue MepR. Repression occurs through binding of two MepR dimers to an operator with two homologous and closely approximated pseudopalindromic binding sites (site 1 [S1] and site 2 [S2]). MepR binding is impeded in the presence of pentamidine, a MepA substrate. The effects of various mepA operator mutations on MepR binding were determined using electrophoretic mobility shift assays and isothermal titration calorimetry, and an in vivo confirmation of the effects observed was established for a fully palindromic operator mutant. Altering the S1-S2 spacing by 1 to 4 bp severely impaired S2 binding, likely due to a physical collision between adjacent MepR dimers. Extension of the spacing to 9 bp eliminated the S1 binding-mediated DNA allostery required for efficient S2 binding, consistent with positive cooperative binding of MepR dimers. Binding of a single dimer to S1 was maintained when S2 was disrupted, whereas disruption of S1 eliminated any significant binding to S2, also consistent with positive cooperativity. Palindromization of binding sites, especially S2, enhanced MepR affinity for the mepA operator and reduced MepA substrate-mediated MepR induction. As a result, the on-off equilibrium between MepR and its binding sites was shifted toward the on state, resulting in less free MepR being available for interaction with inducing ligand. The selective pressure(s) under which mepA expression is advantageous likely contributed to the accumulation of mutations in the mepA operator, resulting in the current sequence from which MepR is readily induced by MepA substrates. PMID:25583977

  14. X-linked thrombocytopenia with thalassemia from a mutation in the amino finger of GATA-1 affecting DNA binding rather than FOG-1 interaction

    PubMed Central

    Yu, Channing; Niakan, Kathy K.; Matsushita, Mark; Stamatoyannopoulos, George; Orkin, Stuart H.; Raskind, Wendy H.

    2010-01-01

    Transcription factor GATA-1 is essential for the development of erythroid cells and megakaryocytes. Each of its 2 zinc fingers is critical for normal function. The C-terminal finger is necessary for DNA binding. The N finger mediates interaction with FOG-1, a cofactor for GATA-1, and also modulates DNA-binding affinity, notably at complex or palindromic GATA sites. Residues of the N finger–mediating interaction with FOG-1 lie on the surface of the N finger facing away from DNA. Strong sequence conservation of residues facing DNA suggests that this other surface may also have an important role. We report here that a syndrome of X-linked thrombocytopenia with thalassemia in humans is caused by a missense mutation (Arg216Gln) in the GATA-1 N finger. To investigate the functional consequences of this substitution, we used site-directed mutagenesis to alter the corresponding residue in GATA-1. Compared with wild-type GATA-1, Arg216Gln GATA-1 shows comparable affinity to single GATA sites but decreased affinity to palindromic sites. Arg216Gln GATA-1 interacts with FOG-1 similarly with wild-type GATA-1. Arg216Gln GATA-1 supports erythroid maturation of GATA-1 erythroid cells, albeit at reduced efficiency compared with wild-type GATA-1. Together, these findings suggest that residues of the N finger of GATA-1–facing DNA contribute to GATA-1 function apart from interaction with the cofactor FOG-1. This is also the first example of β-thalassemia in humans caused by a mutation in an erythroid transcription factor. PMID:12200364

  15. GM1 gangliosidosis and Morquio B disease: expression analysis of missense mutations affecting the catalytic site of acid beta-galactosidase.

    PubMed

    Hofer, Doris; Paul, Karl; Fantur, Katrin; Beck, Michael; Bürger, Friederike; Caillaud, Catherine; Fumic, Ksenija; Ledvinova, Jana; Lugowska, Agnieszka; Michelakakis, Helen; Radeva, Briguita; Ramaswami, Uma; Plecko, Barbara; Paschke, Eduard

    2009-08-01

    Alterations in GLB1, the gene coding for acid beta-D-galactosidase (beta-Gal), can result in GM1 gangliosidosis (GM1), a neurodegenerative disorder, or in Morquio B disease (MBD), a phenotype with dysostosis multiplex and normal central nervous system (CNS) function. While most MBD patients carry a common allele, c.817TG>CT (p.W273L), only few of the >100 mutations known in GM1 can be related to a certain phenotype. In 25 multiethnic patients with GM1 or MBD, 11 missense mutations were found as well as one novel insertion and a transversion causing aberrant gene products. Except c.602G>A (p.R201H) and two novel alleles, c.592G>T (p.D198Y) and c.1189C>G (p.P397A), all mutants resulted in significantly reduced beta-Gal activities (<10% of normal) upon expression in COS-1 cells. Although c.997T>C (p.Y333H) expressed 3% of normal activity, the mutant protein was localized in the lysosomal-endosomal compartment. A homozygous case presented with late infantile GM1, while a heterozygous, juvenile case carried p.Y333H together with p.R201H. This allele, recently found in homozygous MBD, gives rise to rough endoplasmic reticulum (RER)-located beta-Gal precursors. Thus, unlike classical MBD, the phenotype of heterozygotes carrying p.R201H may rather be determined by poorly active, properly transported products of the counter allele than by the mislocalized p.R201H precursors. PMID:19472408

  16. The functional effect of dilated cardiomyopathy mutation (R144W) in mouse cardiac troponin T is differently affected by α- and β-myosin heavy chain isoforms

    PubMed Central

    Gollapudi, Sampath K.; Tardiff, Jil C.

    2015-01-01

    Given the differential impact of α- and β-myosin heavy chain (MHC) isoforms on how troponin T (TnT) modulates contractile dynamics, we hypothesized that the effects of dilated cardiomyopathy (DCM) mutations in TnT would be altered differently by α- and β-MHC. We characterized dynamic contractile features of normal (α-MHC) and transgenic (β-MHC) mouse cardiac muscle fibers reconstituted with a mouse TnT analog (TnTR144W) of the human DCM R141W mutation. TnTR144W did not alter maximal tension but attenuated myofilament Ca2+ sensitivity (pCa50) to a similar extent in α- and β-MHC fibers. TnTR144W attenuated the speed of cross-bridge (XB) distortion dynamics (c) by 24% and the speed of XB recruitment dynamics (b) by 17% in α-MHC fibers; however, both b and c remained unaltered in β-MHC fibers. Likewise, TnTR144W attenuated the rates of XB detachment (g) and tension redevelopment (ktr) only in α-MHC fibers. TnTR144W also decreased the impact of strained XBs on the recruitment of new XBs (γ) by 30% only in α-MHC fibers. Because c, b, g, ktr, and γ are strongly influenced by thin filament-based cooperative mechanisms, we conclude that the TnTR144W- and β-MHC-mediated changes in the thin filament interact to produce a less severe functional phenotype, compared with that brought about by TnTR144W and α-MHC. These observations provide a basis for lower mortality rates of humans (β-MHC) harboring the TnTR141W mutant compared with transgenic mouse studies. Our findings strongly suggest that some caution is necessary when extrapolating data from transgenic mouse studies to human hearts. PMID:25681424

  17. Mutations of the domain forming the dimeric interface of the ArdA protein affect dimerization and antimodification activity but not antirestriction activity

    PubMed Central

    Roberts, Gareth A; Chen, Kai; Bower, Edward K M; Madrzak, Julia; Woods, Arcadia; Barker, Amy M; Cooper, Laurie P; White, John H; Blakely, Garry W; Manfield, Iain; Dryden, David T F

    2013-01-01

    ArdA antirestriction proteins are encoded by genes present in many conjugative plasmids and transposons within bacterial genomes. Antirestriction is the ability to prevent cleavage of foreign incoming DNA by restriction-modification (RM) systems. Antimodification, the ability to inhibit modification by the RM system, can also be observed with some antirestriction proteins. As these mobile genetic elements can transfer antibiotic resistance genes, the ArdA proteins assist their spread. The consequence of antirestriction is therefore the enhanced dissemination of mobile genetic elements. ArdA proteins cause antirestriction by mimicking the DNA structure bound by Type I RM enzymes. The crystal structure of ArdA showed it to be a dimeric protein with a highly elongated curved cylindrical shape [McMahon SA et al. (2009) Nucleic Acids Res37, 4887–4897]. Each monomer has three domains covered with negatively charged side chains and a very small interface with the other monomer. We investigated the role of the domain forming the dimer interface for ArdA activity via site-directed mutagenesis. The antirestriction activity of ArdA was maintained when up to seven mutations per monomer were made or the interface was disrupted such that the protein could only exist as a monomer. The antimodification activity of ArdA was lost upon mutation of this domain. The ability of the monomeric form of ArdA to function in antirestriction suggests, first, that it can bind independently to the restriction subunit or the modification subunits of the RM enzyme, and second, that the many ArdA homologues with long amino acid extensions, present in sequence databases, may be active in antirestriction. Structured digital abstract ArdA and ArdA bind by molecular sieving (1, 2) ArdA and ArdA bind by cosedimentation in solution (1, 2) PMID:23910724

  18. Genetic diversity for mycorrhizal symbiosis and phosphate transporters in rice.

    PubMed

    Jeong, Kwanho; Mattes, Nicolas; Catausan, Sheryl; Chin, Joong Hyoun; Paszkowski, Uta; Heuer, Sigrid

    2015-11-01

    Phosphorus (P) is a major plant nutrient and developing crops with higher P-use efficiency is an important breeding goal. In this context we have conducted a comparative study of irrigated and rainfed rice varieties to assess genotypic differences in colonization with arbuscular mycorrhizal (AM) fungi and expression of different P transporter genes. Plants were grown in three different soil samples from a rice farm in the Philippines. The data show that AM symbiosis in all varieties was established after 4 weeks of growth under aerobic conditions and that, in soil derived from a rice paddy, natural AM populations recovered within 6 weeks. The analysis of AM marker genes (AM1, AM3, AM14) and P transporter genes for the direct Pi uptake (PT2, PT6) and AM-mediated pathway (PT11, PT13) were largely in agreement with the observed root AM colonization providing a useful tool for diversity studies. Interestingly, delayed AM colonization was observed in the aus-type rice varieties which might be due to their different root structure and might confer an advantage for weed competition in the field. The data further showed that P-starvation induced root growth and expression of the high-affinity P transporter PT6 was highest in the irrigated variety IR66 which also maintained grain yield under P-deficient field conditions. PMID:26466747

  19. Microgravity effects on the legume/Rhizobium symbiosis

    NASA Astrophysics Data System (ADS)

    Urban, James E.

    1997-01-01

    Symbiotic nitrogen fixation is of critical importance to world agriculture and likely will be a critical part of life support systems developed for prolonged missions in space. Bacteroid formation, an essential step in an effective Dutch White Clover/Rhizobium leguminosarum bv trifolii symbiosis, is induced by succinic acid which is produced by the plant and which is bound and incorporated by the bacterium. Aspirin mimics succinate in its role as a bacteroid inducer and measures of aspirin binding mimiced measurements of succinate binding. In normal gravity (1×g), rhizobium bacteria immediately bound relatively high levels of aspirin (or succinate) in a readily reversible manner. Within a few seconds a portion of this initially bound aspirin became irreversibly bound. In the microgravity environment aboard the NASA 930 aircraft, rhizobia did not display the initial reversible binding of succinate, but did display a similar kinetic pattern of irreversible binding, and ultimately bound 32% more succinate (Acta Astronautica 36:129-133, 1995.) In normal gravity succinate treated cells stop dividing and swell to their maximum size (twice the normal cell volume) within a time equivalent to the time required for two normal cell doublings. Swelling in microgravity was tested in FPA and BPM sample holders aboard the space shuttle (USML-1, and STS-54, 57, and 60.) The behavior of cells in the two sample holders was similar, and swelling behavior of cells in microgravity was identical to behavior in normal gravity.

  20. Paracatenula, an ancient symbiosis between thiotrophic Alphaproteobacteria and catenulid flatworms

    PubMed Central

    Gruber-Vodicka, Harald Ronald; Dirks, Ulrich; Leisch, Nikolaus; Stoecker, Kilian; Bulgheresi, Silvia; Heindl, Niels Robert; Horn, Matthias; Lott, Christian; Loy, Alexander; Wagner, Michael; Ott, Jörg

    2011-01-01

    Harnessing chemosynthetic symbionts is a recurring evolutionary strategy. Eukaryotes from six phyla as well as one archaeon have acquired chemoautotrophic sulfur-oxidizing bacteria. In contrast to this broad host diversity, known bacterial partners apparently belong to two classes of bacteria—the Gamma- and Epsilonproteobacteria. Here, we characterize the intracellular endosymbionts of the mouthless catenulid flatworm genus Paracatenula as chemoautotrophic sulfur-oxidizing Alphaproteobacteria. The symbionts of Paracatenula galateia are provisionally classified as “Candidatus Riegeria galateiae” based on 16S ribosomal RNA sequencing confirmed by fluorescence in situ hybridization together with functional gene and sulfur metabolite evidence. 16S rRNA gene phylogenetic analysis shows that all 16 Paracatenula species examined harbor host species-specific intracellular Candidatus Riegeria bacteria that form a monophyletic group within the order Rhodospirillales. Comparing host and symbiont phylogenies reveals strict cocladogenesis and points to vertical transmission of the symbionts. Between 33% and 50% of the body volume of the various worm species is composed of bacterial symbionts, by far the highest proportion among all known endosymbiotic associations between bacteria and metazoans. This symbiosis, which likely originated more than 500 Mya during the early evolution of flatworms, is the oldest known animal–chemoautotrophic bacteria association. The distant phylogenetic position of the symbionts compared with other mutualistic or parasitic Alphaproteobacteria promises to illuminate the common genetic predispositions that have allowed several members of this class to successfully colonize eukaryote cells. PMID:21709249

  1. The effects of SO sub 2 on Azolla - Anabaena symbiosis

    SciTech Connect

    Jaeseoun Hur; Wellburn, A.R. )

    1991-05-01

    Cultures of Azolla pinnata containing Anabaena were investigated as a sensitive and reproducible bioindicator of air pollution. Three equal doses of SO{sub 2} (week*ppb: 1*100, 2*50, 4*25) were applied to Azolla cultures growing in nitrogen-free medium in a specially-designed exposure system. Exposure to high concentrations of SO{sub 2} showed highly significant reductions in growth of the fern, while nitrogen fixation and heterocyst development were severely damaged. This was associated with a reduction of protein content in the SO{sub 2}-exposed ferns and again more significant at higher SO{sub 2} levels. There was a variation in the absolute amount of the individual pigments between SO{sub 2} doses and/or treatments which was related to the physiological development of the ferns throughout the fumigations. Moreover, the ratio of violaxanthin to antheraxanthin in the 100 ppb SO{sub 2}-treated ferns was significantly higher than that in the clean air-grown ferns. The results clearly demonstrate that SO{sub 2} has adverse effects on the symbiosis and suggest that this fern is a promising bioindicator of air pollution and a very good model to investigate the inter-relationships between photosynthesis, nitrogen fixation and air pollution stress.

  2. Engineering Plant-Microbe Symbiosis for Rhizoremediation of Heavy Metals

    PubMed Central

    Wu, Cindy H.; Wood, Thomas K.; Mulchandani, Ashok; Chen, Wilfred

    2006-01-01

    The use of plants for rehabilitation of heavy-metal-contaminated environments is an emerging area of interest because it provides an ecologically sound and safe method for restoration and remediation. Although a number of plant species are capable of hyperaccumulation of heavy metals, the technology is not applicable for remediating sites with multiple contaminants. A clever solution is to combine the advantages of microbe-plant symbiosis within the plant rhizosphere into an effective cleanup technology. We demonstrated that expression of a metal-binding peptide (EC20) in a rhizobacterium, Pseudomonas putida 06909, not only improved cadmium binding but also alleviated the cellular toxicity of cadmium. More importantly, inoculation of sunflower roots with the engineered rhizobacterium resulted in a marked decrease in cadmium phytotoxicity and a 40% increase in cadmium accumulation in the plant root. Owing to the significantly improved growth characteristics of both the rhizobacterium and plant, the use of EC20-expressing P. putida endowed with organic-degrading capabilities may be a promising strategy to remediate mixed organic-metal-contaminated sites. PMID:16461658

  3. Reciprocal genomic evolution in the ant-fungus agricultural symbiosis.

    PubMed

    Nygaard, Sanne; Hu, Haofu; Li, Cai; Schiøtt, Morten; Chen, Zhensheng; Yang, Zhikai; Xie, Qiaolin; Ma, Chunyu; Deng, Yuan; Dikow, Rebecca B; Rabeling, Christian; Nash, David R; Wcislo, William T; Brady, Seán G; Schultz, Ted R; Zhang, Guojie; Boomsma, Jacobus J

    2016-01-01

    The attine ant-fungus agricultural symbiosis evolved over tens of millions of years, producing complex societies with industrial-scale farming analogous to that of humans. Here we document reciprocal shifts in the genomes and transcriptomes of seven fungus-farming ant species and their fungal cultivars. We show that ant subsistence farming probably originated in the early Tertiary (55-60 MYA), followed by further transitions to the farming of fully domesticated cultivars and leaf-cutting, both arising earlier than previously estimated. Evolutionary modifications in the ants include unprecedented rates of genome-wide structural rearrangement, early loss of arginine biosynthesis and positive selection on chitinase pathways. Modifications of fungal cultivars include loss of a key ligninase domain, changes in chitin synthesis and a reduction in carbohydrate-degrading enzymes as the ants gradually transitioned to functional herbivory. In contrast to human farming, increasing dependence on a single cultivar lineage appears to have been essential to the origin of industrial-scale ant agriculture. PMID:27436133

  4. Crystal structure of a symbiosis-related lectin from octocoral.

    PubMed

    Kita, Akiko; Jimbo, Mitsuru; Sakai, Ryuichi; Morimoto, Yukio; Miki, Kunio

    2015-09-01

    D-Galactose-binding lectin from the octocoral, Sinularia lochmodes (SLL-2), distributes densely on the cell surface of microalgae, Symbiodinium sp., an endosymbiotic dinoflagellate of the coral, and is also shown to be a chemical cue that transforms dinoflagellate into a non-motile (coccoid) symbiotic state. SLL-2 binds with high affinity to the Forssman antigen (N-acetylgalactosamine(GalNAc)α1-3GalNAcβ1-3Galα1-4Galβ1-4Glc-ceramide), and the presence of Forssman antigen-like sugar on the surface of Symbiodinium CS-156 cells was previously confirmed. Here we report the crystal structures of SLL-2 and its GalNAc complex as the first crystal structures of a lectin involved in the symbiosis between coral and dinoflagellate. N-Linked sugar chains and a galactose derivative binding site common to H-type lectins were observed in each monomer of the hexameric SLL-2 crystal structure. In addition, unique sugar-binding site-like regions were identified at the top and bottom of the hexameric SLL-2 structure. These structural features suggest a possible binding mode between SLL-2 and Forssman antigen-like pentasaccharide. PMID:26022515

  5. Algal ancestor of land plants was preadapted for symbiosis.

    PubMed

    Delaux, Pierre-Marc; Radhakrishnan, Guru V; Jayaraman, Dhileepkumar; Cheema, Jitender; Malbreil, Mathilde; Volkening, Jeremy D; Sekimoto, Hiroyuki; Nishiyama, Tomoaki; Melkonian, Michael; Pokorny, Lisa; Rothfels, Carl J; Sederoff, Heike Winter; Stevenson, Dennis W; Surek, Barbara; Zhang, Yong; Sussman, Michael R; Dunand, Christophe; Morris, Richard J; Roux, Christophe; Wong, Gane Ka-Shu; Oldroyd, Giles E D; Ané, Jean-Michel

    2015-10-27

    Colonization of land by plants was a major transition on Earth, but the developmental and genetic innovations required for this transition remain unknown. Physiological studies and the fossil record strongly suggest that the ability of the first land plants to form symbiotic associations with beneficial fungi was one of these critical innovations. In angiosperms, genes required for the perception and transduction of diffusible fungal signals for root colonization and for nutrient exchange have been characterized. However, the origin of these genes and their potential correlation with land colonization remain elusive. A comprehensive phylogenetic analysis of 259 transcriptomes and 10 green algal and basal land plant genomes, coupled with the characterization of the evolutionary path leading to the appearance of a key regulator, a calcium- and calmodulin-dependent protein kinase, showed that the symbiotic signaling pathway predated the first land plants. In contrast, downstream genes required for root colonization and their specific expression pattern probably appeared subsequent to the colonization of land. We conclude that the most recent common ancestor of extant land plants and green algae was preadapted for symbiotic associations. Subsequent improvement of this precursor stage in early land plants through rounds of gene duplication led to the acquisition of additional pathways and the ability to form a fully functional arbuscular mycorrhizal symbiosis. PMID:26438870

  6. Algal ancestor of land plants was preadapted for symbiosis

    PubMed Central

    Delaux, Pierre-Marc; Radhakrishnan, Guru V.; Jayaraman, Dhileepkumar; Cheema, Jitender; Malbreil, Mathilde; Volkening, Jeremy D.; Sekimoto, Hiroyuki; Nishiyama, Tomoaki; Melkonian, Michael; Pokorny, Lisa; Rothfels, Carl J.; Sederoff, Heike Winter; Stevenson, Dennis W.; Surek, Barbara; Zhang, Yong; Sussman, Michael R.; Dunand, Christophe; Morris, Richard J.; Roux, Christophe; Wong, Gane Ka-Shu; Oldroyd, Giles E. D.; Ané, Jean-Michel

    2015-01-01

    Colonization of land by plants was a major transition on Earth, but the developmental and genetic innovations required for this transition remain unknown. Physiological studies and the fossil record strongly suggest that the ability of the first land plants to form symbiotic associations with beneficial fungi was one of these critical innovations. In angiosperms, genes required for the perception and transduction of diffusible fungal signals for root colonization and for nutrient exchange have been characterized. However, the origin of these genes and their potential correlation with land colonization remain elusive. A comprehensive phylogenetic analysis of 259 transcriptomes and 10 green algal and basal land plant genomes, coupled with the characterization of the evolutionary path leading to the appearance of a key regulator, a calcium- and calmodulin-dependent protein kinase, showed that the symbiotic signaling pathway predated the first land plants. In contrast, downstream genes required for root colonization and their specific expression pattern probably appeared subsequent to the colonization of land. We conclude that the most recent common ancestor of extant land plants and green algae was preadapted for symbiotic associations. Subsequent improvement of this precursor stage in early land plants through rounds of gene duplication led to the acquisition of additional pathways and the ability to form a fully functional arbuscular mycorrhizal symbiosis. PMID:26438870

  7. Cell wall remodeling in mycorrhizal symbiosis: a way towards biotrophism

    PubMed Central

    Balestrini, Raffaella; Bonfante, Paola

    2014-01-01

    Cell walls are deeply involved in the molecular talk between partners during plant and microbe interactions, and their role in mycorrhizae, i.e., the widespread symbiotic associations established between plant roots and soil fungi, has been investigated extensively. All mycorrhizal interactions achieve full symbiotic functionality through the development of an extensive contact surface between the plant and fungal cells, where signals and nutrients are exchanged. The exchange of molecules between the fungal and the plant cytoplasm takes place both through their plasma membranes and their cell walls; a functional compartment, known as the symbiotic interface, is thus defined. Among all the symbiotic interfaces, the complex intracellular interface of arbuscular mycorrhizal (AM) symbiosis has received a great deal of attention since its first description. Here, in fact, the host plasma membrane invaginates and proliferates around all the developing intracellular fungal structures, and cell wall material is laid down between this membrane and the fungal cell surface. By contrast, in ectomycorrhizae (ECM), where the fungus grows outside and between the root cells, plant and fungal cell walls are always in direct contact and form the interface between the two partners. The organization and composition of cell walls within the interface compartment is a topic that has attracted widespread attention, both in ecto- and endomycorrhizae. The aim of this review is to provide a general overview of the current knowledge on this topic by integrating morphological observations, which have illustrated cell wall features during mycorrhizal interactions, with the current data produced by genomic and transcriptomic approaches. PMID:24926297

  8. Reciprocal genomic evolution in the ant–fungus agricultural symbiosis

    PubMed Central

    Nygaard, Sanne; Hu, Haofu; Li, Cai; Schiøtt, Morten; Chen, Zhensheng; Yang, Zhikai; Xie, Qiaolin; Ma, Chunyu; Deng, Yuan; Dikow, Rebecca B.; Rabeling, Christian; Nash, David R.; Wcislo, William T.; Brady, Seán G.; Schultz, Ted R.; Zhang, Guojie; Boomsma, Jacobus J.

    2016-01-01

    The attine ant–fungus agricultural symbiosis evolved over tens of millions of years, producing complex societies with industrial-scale farming analogous to that of humans. Here we document reciprocal shifts in the genomes and transcriptomes of seven fungus-farming ant species and their fungal cultivars. We show that ant subsistence farming probably originated in the early Tertiary (55–60 MYA), followed by further transitions to the farming of fully domesticated cultivars and leaf-cutting, both arising earlier than previously estimated. Evolutionary modifications in the ants include unprecedented rates of genome-wide structural rearrangement, early loss of arginine biosynthesis and positive selection on chitinase pathways. Modifications of fungal cultivars include loss of a key ligninase domain, changes in chitin synthesis and a reduction in carbohydrate-degrading enzymes as the ants gradually transitioned to functional herbivory. In contrast to human farming, increasing dependence on a single cultivar lineage appears to have been essential to the origin of industrial-scale ant agriculture. PMID:27436133

  9. DELLA proteins regulate expression of a subset of AM symbiosis-induced genes in Medicago truncatula.

    PubMed

    Floss, Daniela S; Lévesque-Tremblay, Véronique; Park, Hee-Jin; Harrison, Maria J

    2016-04-01

    The majority of the vascular flowering plants form symbiotic associations with fungi from the phylum Glomeromycota through which both partners gain access to nutrients, either mineral nutrients in the case of the plant, or carbon, in the case of the fungus. (1) The association develops in the roots and requires substantial remodeling of the root cortical cells where branched fungal hyphae, called arbuscules, are housed in a new membrane-bound apoplastic compartment. (2) Nutrient exchange between the symbionts occurs over this interface and its development and maintenance is critical for symbiosis. Previously, we showed that DELLA proteins, which are well known as repressors of gibberellic acid signaling, also regulate development of AM symbiosis and are necessary to enable arbuscule development. (3) Furthermore, constitutive overexpression of a dominant DELLA protein (della1-Δ18) is sufficient to induce transcripts of several AM symbiosis-induced genes, even in the absence of the fungal symbiont. (4) Here we further extend this approach and identify AM symbiosis genes that respond transcriptionally to constitutive expression of a dominant DELLA protein and also genes that do respond to this treatment. Additionally, we demonstrate that DELLAs interact with REQUIRED FOR ARBUSCULE DEVELOPMENT 1 (RAD1) which further extends our knowledge of GRAS factor complexes that have the potential to regulate gene expression during AM symbiosis. PMID:26984507

  10. Mutation of FVS1, encoding a protein with a sterile alpha motif domain, affects asexual reproduction in the fungal plant pathogen Fusarium oxysporum.

    PubMed

    Iida, Yuichiro; Fujiwara, Kazuki; Yoshioka, Yosuke; Tsuge, Takashi

    2014-02-01

    Fusarium oxysporum produces three kinds of asexual spores: microconidia, macroconidia and chlamydospores. We previously analysed expressed sequence tags during vegetative growth and conidiation in F. oxysporum and found 42 genes that were markedly upregulated during conidiation compared to vegetative growth. One of the genes, FVS1, encodes a protein with a sterile alpha motif (SAM) domain, which functions in protein-protein interactions that are involved in transcriptional or post-transcriptional regulation and signal transduction. Here, we made FVS1-disrupted mutants from the melon wilt pathogen F. oxysporum f. sp. melonis. Although the mutants produced all three kinds of asexual spores with normal morphology, they formed markedly fewer microconidia and macroconidia than the wild type. The mutants appeared to have a defect in the development of the conidiogenesis cells, conidiophores and phialides, required for the formation of microconidia and macroconidia. In contrast, chlamydospore formation was dramatically promoted in the mutants. The growth rates of the mutants on media were slightly reduced, indicating that FVS1 is also involved in, but not essential for, vegetative growth. We also observed that mutation of FVS1 caused defects in conidial germination and virulence, suggesting that the Fvs1 has pleiotropic functions in F. oxysporum. PMID:24330129

  11. A mutation in the Arabidopsis HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin, and cytokinin

    NASA Technical Reports Server (NTRS)

    Lu, C.; Fedoroff, N.

    2000-01-01

    Both physiological and genetic evidence indicate interconnections among plant responses to different hormones. We describe a pleiotropic recessive Arabidopsis transposon insertion mutation, designated hyponastic leaves (hyl1), that alters the plant's responses to several hormones. The mutant is characterized by shorter stature, delayed flowering, leaf hyponasty, reduced fertility, decreased rate of root growth, and an altered root gravitropic response. It also exhibits less sensitivity to auxin and cytokinin and hypersensitivity to abscisic acid (ABA). The auxin transport inhibitor 2,3,5-triiodobenzoic acid normalizes the mutant phenotype somewhat, whereas another auxin transport inhibitor, N-(1-naph-thyl)phthalamic acid, exacerbates the phenotype. The gene, designated HYL1, encodes a 419-amino acid protein that contains two double-stranded RNA (dsRNA) binding motifs, a nuclear localization motif, and a C-terminal repeat structure suggestive of a protein-protein interaction domain. We present evidence that the HYL1 gene is ABA-regulated and encodes a nuclear dsRNA binding protein. We hypothesize that the HYL1 protein is a regulatory protein functioning at the transcriptional or post-transcriptional level.

  12. A new disease-related mutation for mitochondrial encephalopathy lactic acidosis and strokelike episodes (MELAS) syndrome affects the ND4 subunit of the respiratory complex I

    SciTech Connect

    Lertrit, P.; Noer, A.S.; Kapsa, R.; Marzuki, S. ); Jean-Francois, M.J.B.; Thyagarajan, D.; Byrne, E. ); Dennett, X. ); Lethlean, K. )

    1992-09-01

    The molecular lesions in two patients exhibiting classical clinical manifestations of MELAS (mitochondrial encephalopathy, lactic acidosis, and strokelike episodes) syndrome have been investigated. A recently reported disease-related A[yields]G base substitution at nt 3243 of the mtDNA, in the DHU loop of tRNA[sup Leu], was detected by restriction-enzyme analysis of the relevant PCR-amplified segment of the mtDNA of one patient but was not observed, by either restriction-enzyme analysis or nucleotide sequencing, in the other. To define the molecular lesion in the patient who does not have the A[yields]G base substitution at nt 3243, the total mitochondrial genome of the patient has been sequenced. An A[yields]G base substitution at nt 11084, leading to a Thr-to-Ala amino acid replacement in the ND4 subunit of the respiratory complex I, is suggested to be a disease-related mutation. 49 refs., 7 figs., 1 tab.

  13. Mutation of the Light-Induced Yellow Leaf 1 Gene, Which Encodes a Geranylgeranyl Reductase, Affects Chlorophyll Biosynthesis and Light Sensitivity in Rice

    PubMed Central

    Yuan, Yuan; Zhu, Jinyan; Wang, Man; Yuan, Fuhai; Wu, Shujun; Wang, Zhiqin; Yi, Chuandeng; Xu, Tinghua; Ryom, MyongChol; Gu, Minghong; Liang, Guohua

    2013-01-01

    Chlorophylls (Chls) are crucial for capturing light energy for photosynthesis. Although several genes responsible for Chl biosynthesis were characterized in rice (Oryza sativa), the genetic properties of the hydrogenating enzyme involved in the final step of Chl synthesis remain unknown. In this study, we characterized a rice light-induced yellow leaf 1-1 (lyl1-1) mutant that is hypersensitive to high-light and defective in the Chl synthesis. Light-shading experiment suggested that the yellowing of lyl1-1 is light-induced. Map-based cloning of LYL1 revealed that it encodes a geranylgeranyl reductase. The mutation of LYL1 led to the majority of Chl molecules are conjugated with an unsaturated geranylgeraniol side chain. LYL1 is the firstly defined gene involved in the reduction step from Chl-geranylgeranylated (ChlGG) and geranylgeranyl pyrophosphate (GGPP) to Chl-phytol (ChlPhy) and phytyl pyrophosphate (PPP) in rice. LYL1 can be induced by light and suppressed by darkness which is consistent with its potential biological functions. Additionally, the lyl1-1 mutant suffered from severe photooxidative damage and displayed a drastic reduction in the levels of α-tocopherol and photosynthetic proteins. We concluded that LYL1 also plays an important role in response to high-light in rice. PMID:24058671

  14. Structural basis for regulation of rhizobial nodulation and symbiosis gene expression by the regulatory NolR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The symbiosis between rhizobial microbes and host plants involves the coordinated expression of multiple genes, which leads to nodule formation and nitrogen fixation. As part of the transcriptional machinery for nodulation and symbiosis across a range of Rhizobium, NolR serves as a global regulatory...

  15. Solution Conditions Affect the Ability of the K30D Mutation To Prevent Amyloid Fibril Formation by Apolipoprotein C-II: Insights from Experiments and Theoretical Simulations.

    PubMed

    Mao, Yu; Todorova, Nevena; Zlatic, Courtney O; Gooley, Paul R; Griffin, Michael D W; Howlett, Geoffrey J; Yarovsky, Irene

    2016-07-12

    Apolipoproteins form amphipathic helical structures that bind lipid surfaces. Paradoxically, lipid-free apolipoproteins display a strong propensity to form cross-β structure and self-associate into disease-related amyloid fibrils. Studies of apolipoprotein C-II (apoC-II) amyloid fibrils suggest that a K30-D69 ion pair accounts for the dual abilities to form helix and cross-β structure. Consistent with this is the observation that a K30D mutation prevents fibril formation under standard fibril forming conditions. However, we found that fibril formation by K30D apoC-II proceeded readily at low pH and a higher salt or protein concentration. Structural analysis demonstrated that K30D apoC-II fibrils at pH 7 have a structure similar to that of the wild-type fibrils but are less stable. Molecular dynamics simulations of the wild-type apoC-II fibril model at pH 7 and 3 showed that the loss of charge on D69 at pH 3 leads to greater separation between residues K30 and D69 within the fibril with a corresponding reduction in β-strand content around residue 30. In contrast, in simulations of the K30D mutant model at pH 7 and 3, residues D30 and D69 moved closer at pH 3, accompanied by an increase in β-strand content around residue 30. The simulations also demonstrated a strong dominance of inter- over intramolecular contacts between ionic residues of apoC-II and suggested a cooperative mechanism for forming favorable interactions between the individual strands under different conditions. These observations demonstrate the important role of the buried K30-D69 ion pair in the stability and solution properties of apoC-II amyloid fibrils. PMID:27311794

  16. Cytosine deaminase as a negative selectable marker for the microalgal chloroplast: a strategy for the isolation of nuclear mutations that affect chloroplast gene expression.

    PubMed

    Young, Rosanna E B; Purton, Saul

    2014-12-01

    Negative selectable markers are useful tools for forward-genetic screens aimed at identifying trans-acting factors that are required for expression of specific genes. Transgenic lines harbouring the marker fused to a gene element, such as a promoter, may be mutagenized to isolate loss-of-function mutants able to survive under selection. Such a strategy allows the molecular dissection of factors that are essential for expression of the gene. Expression of individual chloroplast genes in plants and algae typically requires one or more nuclear-encoded factors that act at the post-transcriptional level, often through interaction with the 5' UTR of the mRNA. To study such nuclear control further, we have developed the Escherichia coli cytosine deaminase gene codA as a conditional negative selectable marker for use in the model green alga Chlamydomonas reinhardtii. We show that a codon-optimized variant of codA with three amino acid substitutions confers sensitivity to 5-fluorocytosine (5-FC) when expressed in the chloroplast under the control of endogenous promoter/5' UTR elements from the photosynthetic genes psaA or petA. UV mutagenesis of the psaA transgenic line allowed recovery of 5-FC-resistant, photosynthetically deficient lines harbouring mutations in the nuclear gene for the factor TAA1 that is required for psaA translation. Similarly, the petA line was used to isolate mutants of the petA mRNA stability factor MCA1 and the translation factor TCA1. The codA marker may be used to identify critical residues in known nuclear factors and to aid the discovery of additional factors required for expression of chloroplast genes. PMID:25234691

  17. Mutations at the C-terminus of the simian immunodeficiency virus envelope glycoprotein affect gp120-gp41 stability on virions

    SciTech Connect

    Affranchino, Jose L.; Gonzalez, Silvia A. . E-mail: sigonzal@ub.edu.ar

    2006-03-30

    The transmembrane (TM) subunit of the envelope (Env) glycoprotein of the simian immunodeficiency virus (SIV) contains an unusually long cytoplasmic domain of 164 amino acids. Previously, we identified domains in the SIV TM cytoplasmic tail that are necessary for Env incorporation into virions and viral infectivity. In this study, we investigated the relevance to Env function of the highly conserved sequence comprising the immediate C-terminal 19 residues of TM. To this end, small in-frame deletions as well as a premature stop codon mutation were introduced into the coding region for the SIV TM C-terminus. All the mutant Env glycoproteins were expressed, processed and transported to the cell surface in an essentially wild-type manner. Moreover, the ability of the mutant Env proteins to mediate cell-to-cell fusion was similar to or slightly lower than that of the wild-type Env. However, viruses expressing the mutant Env glycoproteins were found to be poorly infectious in single-cycle infectivity assays. Further characterization of the TM mutant viruses revealed that while exhibiting wild-type levels of the TM protein, they contained significantly lower levels of the Env surface (SU) subunit, which is consistent with increased SU shedding from virions after Env incorporation. This phenotype was independent of Gag processing, since genetic inactivation of the viral protease did not increase SU retention by the resulting immature particles. Our findings indicate that deletions at the C-terminus of the SIV Env promote the instability of the SU-TM association on the virion surface and point to an important role for the TM cytoplasmic domain in modulating Env structure.

  18. Impact of simulated microgravity on the normal developmental time line of an animal-bacteria symbiosis

    PubMed Central

    Foster, Jamie S.; Khodadad, Christina L. M.; Ahrendt, Steven R.; Parrish, Mirina L.

    2013-01-01

    The microgravity environment during space flight imposes numerous adverse effects on animal and microbial physiology. It is unclear, however, how microgravity impacts those cellular interactions between mutualistic microbes and their hosts. Here, we used the symbiosis between the host squid Euprymna scolopes and its luminescent bacterium Vibrio fischeri as a model system. We examined the impact of simulated microgravity on the timeline of bacteria-induced development in the host light organ, the site of the symbiosis. To simulate the microgravity environment, host squid and symbiosis-competent bacteria were incubated together in high-aspect ratio rotating wall vessel bioreactors and examined throughout the early stages of the bacteria-induced morphogenesis. The host innate immune response was suppressed under simulated microgravity; however, there was an acceleration of bacteria-induced apoptosis and regression in the host tissues. These results suggest that the space flight environment may alter the cellular interactions between animal hosts and their natural healthy microbiome. PMID:23439280

  19. Lyso-phosphatidylcholine is a signal in the arbuscular mycorrhizal symbiosis.

    PubMed

    Drissner, David; Kunze, Gernot; Callewaert, Nico; Gehrig, Peter; Tamasloukht, M'barek; Boller, Thomas; Felix, Georg; Amrhein, Nikolaus; Bucher, Marcel

    2007-10-12

    The arbuscular mycorrhizal (AM) symbiosis represents the most widely distributed mutualistic root symbiosis. We report that root extracts of mycorrhizal plants contain a lipophilic signal capable of inducing the phosphate transporter genes StPT3 and StPT4 of potato (Solanum tuberosum L.), genes that are specifically induced in roots colonized by AM fungi. The same signal caused rapid extracellular alkalinization in suspension-cultured tomato (Solanum lycopersicum L.) cells and induction of the mycorrhiza-specific phosphate transporter gene LePT4 in these cells. The active principle was characterized as the lysolipid lyso-phosphatidylcholine (LPC) via a combination of gene expression studies, alkalinization assays in cell cultures, and chromatographic and mass spectrometric analyses. Our results highlight the importance of lysophospholipids as signals in plants and in particular in the AM symbiosis. PMID:17932296

  20. Impact of simulated microgravity on the normal developmental time line of an animal-bacteria symbiosis.

    PubMed

    Foster, Jamie S; Khodadad, Christina L M; Ahrendt, Steven R; Parrish, Mirina L

    2013-01-01

    The microgravity environment during space flight imposes numerous adverse effects on animal and microbial physiology. It is unclear, however, how microgravity impacts those cellular interactions between mutualistic microbes and their hosts. Here, we used the symbiosis between the host squid Euprymna scolopes and its luminescent bacterium Vibrio fischeri as a model system. We examined the impact of simulated microgravity on the timeline of bacteria-induced development in the host light organ, the site of the symbiosis. To simulate the microgravity environment, host squid and symbiosis-competent bacteria were incubated together in high-aspect ratio rotating wall vessel bioreactors and examined throughout the early stages of the bacteria-induced morphogenesis. The host innate immune response was suppressed under simulated microgravity; however, there was an acceleration of bacteria-induced apoptosis and regression in the host tissues. These results suggest that the space flight environment may alter the cellular interactions between animal hosts and their natural healthy microbiome. PMID:23439280

  1. Neo-Symbiosis: The Next Stage in the Evolution of Human Information Interaction.

    SciTech Connect

    Griffith, Douglas; Greitzer, Frank L.

    2008-12-01

    In his 1960 paper Man-Machine Symbiosis, Licklider predicted that human brains and computing machines will be coupled in a tight partnership that will think as no human brain has ever thought and process data in a way not approached by the information-handling machines we know today. Today we are on the threshold of resurrecting the vision of symbiosis. While Licklider’s original vision suggested a co-equal relationship, here we discuss an updated vision, neo-symbiosis, in which the human holds a superordinate position in an intelligent human-computer collaborative environment. This paper was originally published as a journal article and is being published as a chapter in an upcoming book series, Advances in Novel Approaches in Cognitive Informatics and Natural Intelligence.

  2. Resistance to Antiangiogenic Therapies by Metabolic Symbiosis in Renal Cell Carcinoma PDX Models and Patients.

    PubMed

    Jiménez-Valerio, Gabriela; Martínez-Lozano, Mar; Bassani, Nicklas; Vidal, August; Ochoa-de-Olza, María; Suárez, Cristina; García-Del-Muro, Xavier; Carles, Joan; Viñals, Francesc; Graupera, Mariona; Indraccolo, Stefano; Casanovas, Oriol

    2016-05-10

    Antiangiogenic drugs are used clinically for treatment of renal cell carcinoma (RCC) as a standard first-line treatment. Nevertheless, these agents primarily serve to stabilize disease, and resistance eventually develops concomitant with progression. Here, we implicate metabolic symbiosis between tumor cells distal and proximal to remaining vessels as a mechanism of resistance to antiangiogenic therapies in patient-derived RCC orthoxenograft (PDX) models and in clinical samples. This metabolic patterning is regulated by the mTOR pathway, and its inhibition effectively blocks metabolic symbiosis in PDX models. Clinically, patients treated with antiangiogenics consistently present with histologic signatures of metabolic symbiosis that are exacerbated in resistant tumors. Furthermore, the mTOR pathway is also associated in clinical samples, and its inhibition eliminates symbiotic patterning in patient samples. Overall, these data support a mechanism of resistance to antiangiogenics involving metabolic compartmentalization of tumor cells that can be inhibited by mTOR-targeted drugs. PMID:27134180

  3. Synthetic biology approaches to engineering the nitrogen symbiosis in cereals.

    PubMed

    Rogers, Christian; Oldroyd, Giles E D

    2014-05-01

    Nitrogen is abundant in the earth's atmosphere but, unlike carbon, cannot be directly assimilated by plants. The limitation this places on plant productivity has been circumvented in contemporary agriculture through the production and application of chemical fertilizers. The chemical reduction of nitrogen for this purpose consumes large amounts of energy and the reactive nitrogen released into the environment as a result of fertilizer application leads to greenhouse gas emissions, as well as widespread eutrophication of aquatic ecosystems. The environmental impacts are intensified by injudicious use of fertilizers in many parts of the world. Simultaneously, limitations in the production and supply of chemical fertilizers in other regions are leading to low agricultural productivity and malnutrition. Nitrogen can be directly fixed from the atmosphere by some bacteria and Archaea, which possess the enzyme nitrogenase. Some plant species, most notably legumes, have evolved close symbiotic associations with nitrogen-fixing bacteria. Engineering cereal crops with the capability to fix their own nitrogen could one day address the problems created by the over- and under-use of nitrogen fertilizers in agriculture. This could be achieved either by expression of a functional nitrogenase enzyme in the cells of the cereal crop or through transferring the capability to form a symbiotic association with nitrogen-fixing bacteria. While potentially transformative, these biotechnological approaches are challenging; however, with recent advances in synthetic biology they are viable long-term goals. This review discusses the possibility of these biotechnological solutions to the nitrogen problem, focusing on engineering the nitrogen symbiosis in cereals. PMID:24687978

  4. Stress tolerance in plants via habitat-adapted symbiosis

    USGS Publications Warehouse

    Rodriguez, R.J.; Henson, J.; Van Volkenburgh, E.; Hoy, M.; Wright, L.; Beckwith, F.; Kim, Y.-O.; Redman, R.S.

    2008-01-01

    We demonstrate that native grass species from coastal and geothermal habitats require symbiotic fungal endophytes for salt and heat tolerance, respectively. Symbiotically conferred stress tolerance is a habitat-specific phenomenon with geothermal endophytes conferring heat but not salt tolerance, and coastal endophytes conferring salt but not heat tolerance. The same fungal species isolated from plants in habitats devoid of salt or heat stress did not confer these stress tolerances. Moreover, fungal endophytes from agricultural crops conferred disease resistance and not salt or heat tolerance. We define habitat-specific, symbiotically-conferred stress tolerance as habitat-adapted symbiosis and hypothesize that it is responsible for the establishment of plants in high-stress habitats. The agricultural, coastal and geothermal plant endophytes also colonized tomato (a model eudicot) and conferred disease, salt and heat tolerance, respectively. In addition, the coastal plant endophyte colonized rice (a model monocot) and conferred salt tolerance. These endophytes have a broad host range encompassing both monocots and eudicots. Interestingly, the endophytes also conferred drought tolerance to plants regardless of the habitat of origin. Abiotic stress tolerance correlated either with a decrease in water consumption or reactive oxygen sensitivity/generation but not to increased osmolyte production. The ability of fungal endophytes to confer stress tolerance to plants may provide a novel strategy for mitigating the impacts of global climate change on agricultural and native plant communities.The ISME Journal (2008) 2, 404-416; doi:10.1038/ismej.2007.106; published online 7 February 2008. ?? 2008 International Society for Microbial Ecology All rights reserved.

  5. Shared skeletal support in a coral-hydroid symbiosis.

    PubMed

    Pantos, Olga; Hoegh-Guldberg, Ove

    2011-01-01

    Hydroids form symbiotic relationships with a range of invertebrate hosts. Where they live with colonial invertebrates such as corals or bryozoans the hydroids may benefit from the physical support and protection of their host's hard exoskeleton, but how they interact with them is unknown. Electron microscopy was used to investigate the physical interactions between the colonial hydroid Zanclea margaritae and its reef-building coral host Acropora muricata. The hydroid tissues extend below the coral tissue surface sitting in direct contact with the host's skeleton. Although this arrangement provides the hydroid with protective support, it also presents problems of potential interference with the coral's growth processes and exposes the hydroid to overgrowth and smothering. Desmocytes located within the epidermal layer of the hydroid's perisarc-free hydrorhizae fasten it to the coral skeleton. The large apical surface area of the desmocyte and high bifurcation of the distal end within the mesoglea, as well as the clustering of desmocytes suggests that a very strong attachment between the hydroid and the coral skeleton. This is the first study to provide a detailed description of how symbiotic hydroids attach to their host's skeleton, utilising it for physical support. Results suggest that the loss of perisarc, a characteristic commonly associated with symbiosis, allows the hydroid to utilise desmocytes for attachment. The use of these anchoring structures provides a dynamic method of attachment, facilitating detachment from the coral skeleton during extension, thereby avoiding overgrowth and smothering enabling the hydroid to remain within the host colony for prolonged periods of time. PMID:21695083

  6. KRAS Mutation

    PubMed Central

    Franklin, Wilbur A.; Haney, Jerry; Sugita, Michio; Bemis, Lynne; Jimeno, Antonio; Messersmith, Wells A.

    2010-01-01

    Treatment of colon carcinoma with the anti-epidermal growth factor receptor antibody Cetuximab is reported to be ineffective in KRAS-mutant tumors. Mutation testing techniques have therefore become an urgent concern. We have compared three methods for detecting KRAS mutations in 59 cases of colon carcinoma: 1) high resolution melting, 2) the amplification refractory mutation system using a bifunctional self-probing primer (ARMS/Scorpion, ARMS/S), and 3) direct sequencing. We also evaluated the effects of the methods of sectioning and coring of paraffin blocks to obtain tumor DNA on assay sensitivity and specificity. The most sensitive and specific combination of block sampling and mutational analysis was ARMS/S performed on DNA derived from 1-mm paraffin cores. This combination of tissue sampling and testing method detected KRAS mutations in 46% of colon tumors. Four samples were positive by ARMS/S, but initially negative by direct sequencing. Cloned DNA samples were retested by direct sequencing, and in all four cases KRAS mutations were identified in the DNA. In six cases, high resolution melting abnormalities could not be confirmed as specific mutations either by ARMS/S or direct sequencing. We conclude that coring of the paraffin blocks and testing by ARMS/S is a sensitive, specific, and efficient method for KRAS testing. PMID:20007845

  7. The Ecology of Technological Progress: How Symbiosis and Competition Affect the Growth of Technology Domains

    ERIC Educational Resources Information Center

    Carnabuci, Gianluca

    2010-01-01

    We show that the progress of technological knowledge is an inherently ecological process, wherein the growth rate of each technology domain depends on dynamics occurring in "other" technology domains. We identify two sources of ecological interdependence among technology domains. First, there are symbiotic interdependencies, implying that the rate…

  8. Mutation of Glycosylation Sites in BST-2 Leads to Its Accumulation at Intracellular CD63-Positive Vesicles without Affecting Its Antiviral Activity against Multivesicular Body-Targeted HIV-1 and Hepatitis B Virus

    PubMed Central

    Han, Zhu; Lv, Mingyu; Shi, Ying; Yu, Jinghua; Niu, Junqi; Yu, Xiao-Fang; Zhang, Wenyan

    2016-01-01

    BST-2/tetherin blocks the release of various enveloped viruses including HIV-1 with a “physical tethering” model. The detailed contribution of N-linked glycosylation to this model is controversial. Here, we confirmed that mutation of glycosylation sites exerted an effect of post-translational mis-trafficking, leading to an accumulation of BST-2 at intracellular CD63-positive vesicles. BST-2 with this phenotype potently inhibited the release of multivesicular body-targeted HIV-1 and hepatitis B virus, without affecting the co-localization of BST-2 with EEA1 and LAMP1. These results suggest that N-linked glycosylation of human BST-2 is dispensable for intracellular virion retention and imply that this recently discovered intracellular tethering function may be evolutionarily distinguished from the canonical antiviral function of BST-2 by tethering nascent virions at the cell surface. PMID:26938549

  9. Mutation analysis in patients with Wilson disease: identification of 4 novel mutations. Mutation in brief no. 250. Online.

    PubMed

    Haas, R; Gutierrez-Rivero, B; Knoche, J; Böker, K; Manns, M P; Schmidt, H H

    1999-01-01

    In order to obtain novel mutations in the recently discovered Wilson disease gene, we screened 5 unrelated German individuals for mutations in the 21 exons and their flanking intronic sequences. We detected 9 mutations affecting the Wilson disease gene. Four of those, designated 802-808delTGTAAGT, 2008-2013delTATATG, Cys985Thr, and Ile1148Thr have not yet been reported. One patient had a homozygous mutation whereas the remaining four subjects were compound heterozygous. Therefore these data confirm, that mutations causing Wilson disease are frequently found in affected subjects and they are very heterogenous. PMID:10447265

  10. Arbuscular mycorrhiza-induced shifts in foliar metabolism and photosynthesis mirror the developmental stage of the symbiosis and are only partly driven by improved phosphate uptake.

    PubMed

    Schweiger, Rabea; Baier, Markus C; Müller, Caroline

    2014-12-01

    In arbuscular mycorrhizal (AM) plants, the plant delivers photoassimilates to the arbuscular mycorrhizal fungus (AMF), whereas the mycosymbiont contributes, in addition to other beneficial effects, to phosphate (PO4(3-)) uptake from the soil. Thereby, the additional fungal carbon (C) sink strength in roots and improved plant PO4(3-) nutrition may influence aboveground traits. We investigated how the foliar metabolome of Plantago major is affected along with the development of root symbiosis, whether the photosynthetic performance is affected by AM, and whether these effects are mediated by improved PO4(3-) nutrition. Therefore, we studied PO4(3-)-limited and PO4(3-)-supplemented controls in comparison with mycorrhizal plants at 20, 30, and 62 days postinoculation with the AMF Rhizophagus irregularis. Foliar metabolome modifications were determined by the developmental stage of symbiosis, with changes becoming more pronounced over time. In a well-established stage of mature mutualism, about 60% of the metabolic changes and an increase in foliar CO2 assimilation were unrelated to the significantly increased foliar phosphorus (P) content. We propose a framework relating the time-dependent metabolic changes to the shifts in C costs and P benefits for the plant. Besides P-mediated effects, the strong fungal C sink activity may drive the change