Science.gov

Sample records for mycorrhizal symbiosis poncirus

  1. Expanding genomics of mycorrhizal symbiosis

    PubMed Central

    Kuo, Alan; Kohler, Annegret; Martin, Francis M.; Grigoriev, Igor V.

    2014-01-01

    The mycorrhizal symbiosis between soil fungi and plant roots is a ubiquitous mutualism that plays key roles in plant nutrition, soil health, and carbon cycling. The symbiosis evolved repeatedly and independently as multiple morphotypes [e.g., arbuscular mycorrhizae (AM), ectomycorrhizal (ECM)] in multiple fungal clades (e.g., phyla Glomeromycota, Ascomycota, Basidiomycota). The accessibility and cultivability of many mycorrhizal partners make them ideal models for symbiosis studies. Alongside molecular, physiological, and ecological investigations, sequencing led to the first three mycorrhizal fungal genomes, representing two morphotypes and three phyla. The genome of the ECM basidiomycete Laccaria bicolor showed that the mycorrhizal lifestyle can evolve through loss of plant cell wall-degrading enzymes (PCWDEs) and expansion of lineage-specific gene families such as short secreted protein (SSP) effectors. The genome of the ECM ascomycete Tuber melanosporum showed that the ECM type can evolve without expansion of families as in Laccaria, and thus a different set of symbiosis genes. The genome of the AM glomeromycete Rhizophagus irregularis showed that despite enormous phylogenetic distance and morphological difference from the other two fungi, symbiosis can involve similar solutions as symbiosis-induced SSPs and loss of PCWDEs. The three genomes provide a solid base for addressing fundamental questions about the nature and role of a vital mutualism. PMID:25408690

  2. Expanding genomics of mycorrhizal symbiosis

    SciTech Connect

    Kuo, Alan; Kohler, Annegret; Martin, Francis M.; Grigoriev, Igor V.

    2014-11-04

    The mycorrhizal symbiosis between soil fungi and plant roots is a ubiquitous mutualism that plays key roles in plant nutrition, soil health, and carbon cycling. The symbiosis evolved repeatedly and independently as multiple morphotypes [e.g., arbuscular mycorrhizae (AM), ectomycorrhizal (ECM)] in multiple fungal clades (e.g., phyla Glomeromycota, Ascomycota, Basidiomycota). The accessibility and cultivability of many mycorrhizal partners make them ideal models for symbiosis studies. Alongside molecular, physiological, and ecological investigations, sequencing led to the first three mycorrhizal fungal genomes, representing two morphotypes and three phyla. The genome of the ECM basidiomycete Laccaria bicolor showed that the mycorrhizal lifestyle can evolve through loss of plant cell wall-degrading enzymes (PCWDEs) and expansion of lineage-specific gene families such as short secreted protein (SSP) effectors. The genome of the ECM ascomycete Tuber melanosporum showed that the ECM type can evolve without expansion of families as in Laccaria, and thus a different set of symbiosis genes. The genome of the AM glomeromycete Rhizophagus irregularis showed that despite enormous phylogenetic distance and morphological difference from the other two fungi, symbiosis can involve similar solutions as symbiosis-induced SSPs and loss of PCWDEs. The three genomes provide a solid base for addressing fundamental questions about the nature and role of a vital mutualism.

  3. Expanding genomics of mycorrhizal symbiosis

    DOE PAGESBeta

    Kuo, Alan; Kohler, Annegret; Martin, Francis M.; Grigoriev, Igor V.

    2014-11-04

    The mycorrhizal symbiosis between soil fungi and plant roots is a ubiquitous mutualism that plays key roles in plant nutrition, soil health, and carbon cycling. The symbiosis evolved repeatedly and independently as multiple morphotypes [e.g., arbuscular mycorrhizae (AM), ectomycorrhizal (ECM)] in multiple fungal clades (e.g., phyla Glomeromycota, Ascomycota, Basidiomycota). The accessibility and cultivability of many mycorrhizal partners make them ideal models for symbiosis studies. Alongside molecular, physiological, and ecological investigations, sequencing led to the first three mycorrhizal fungal genomes, representing two morphotypes and three phyla. The genome of the ECM basidiomycete Laccaria bicolor showed that the mycorrhizal lifestyle can evolvemore » through loss of plant cell wall-degrading enzymes (PCWDEs) and expansion of lineage-specific gene families such as short secreted protein (SSP) effectors. The genome of the ECM ascomycete Tuber melanosporum showed that the ECM type can evolve without expansion of families as in Laccaria, and thus a different set of symbiosis genes. The genome of the AM glomeromycete Rhizophagus irregularis showed that despite enormous phylogenetic distance and morphological difference from the other two fungi, symbiosis can involve similar solutions as symbiosis-induced SSPs and loss of PCWDEs. The three genomes provide a solid base for addressing fundamental questions about the nature and role of a vital mutualism.« less

  4. Carbon cost of the fungal symbiont relative to net leaf P accumulation in a split-root VA mycorrhizal symbiosis. [Poncirus trifoliata L. Raf. x Citrus sinensis L. Osbeck; Glomus intraradices Schenk and Smith

    SciTech Connect

    Douds, D.D. Jr.; Johnson, C.R.; Koch, K.E. )

    1988-02-01

    Translocation of {sup 14}C-photosynthates to mycorrhizal (++), half mycorrhizal (0+), and nonmycorrhizal (00) split-root systems was compared to P accumulation in leaves of the host plant. Carrizo citrange seedlings (Poncirus trifoliata (L.) Raf. {times} Citrus sinensis (L.) Osbeck) were inoculated with the vesicular-arbuscular mycorrhizal fungus Glomus intraradices Schenck and Smith. Plants were exposed to {sup 14}CO{sub 2} for 10 minutes and ambient air for 2 hours. Three to 4% of recently labeled photosynthate was allocated to metabolism of the mycorrhiza in each inoculated root half independent of shoot P concentration, growth response, and whether one or both root halves were colonized. Nonmycorrhizal roots respired more of the label translocated to them than did mycorrhizal roots. Label recovered in the potting medium due to exudation or transport into extraradical hyphae was 5 to 6 times greater for (++) versus (00) plants. In low nutrient media, roots of (0+) and (++) plants transported more P to leaves per root weight than roots of (00) plants. However, when C translocated to roots utilized for respiration, exudation, etc., as well as growth is considered, (00) plant roots were at least as efficient at P uptake (benefit) per C utilized (cost) as (0+) and (++) plants. Root systems of (++) plants did not supply more P to leaves than (0+) plants in higher nutrient media, yet they still allocated twice the {sup 14}C-photosynthate to the mycorrhiza as did (0+) root systems.

  5. Auxin influences strigolactones in pea mycorrhizal symbiosis.

    PubMed

    Foo, E

    2013-03-15

    Hormone interactions are essential for the control of many developmental processes, including intracellular symbioses. The interaction between auxin and the new plant hormone strigolactone in the regulation of arbuscular mycorrhizal symbiosis was examined in one of the few auxin deficient mutants available in a mycorrhizal species, the auxin-deficient bsh mutant of pea (Pisum sativum). Mycorrhizal colonisation with the fungus Glomus intraradices was significantly reduced in the low auxin bsh mutant. The bsh mutant also exhibited a reduction in strigolactone exudation and the expression of a key strigolactone biosynthesis gene (PsCCD8). Strigolactone exudation was also reduced in wild type plants when the auxin content was reduced by stem girdling. Low strigolactone levels appear to be at least partially responsible for the reduced colonisation of the bsh mutant, as application of the synthetic strigolactone GR24 could partially rescue the mycorrhizal phenotype of bsh mutants. Data presented here indicates root auxin content was correlated with strigolactone exudation in both mutant and wild type plants. Mutant studies suggest that auxin may regulate early events in the formation of arbuscular mycorrhizal symbiosis by controlling strigolactone levels, both in the rhizosphere and possibly during early root colonisation. PMID:23219475

  6. Phylogeonomics and Ecogenomics of the Mycorrhizal Symbiosis

    SciTech Connect

    Kuo, Alan; Grigoriev, Igor V.; Kohler, Annegret; Martin, Francis

    2013-05-23

    Mycorrhizal fungi play critical roles in host plant health, soil community structure and chemistry, and carbon and nutrient cycling, all areas of intense interest to the US Dept. of Energy (DOE) Joint Genome Institute (JGI). To this end we are building on our earlier sequencing of the Laccaria bicolor genome by partnering with INRA-Nancy and the mycorrhizal research community in the MGI to sequence and analyze 2 dozen mycorrhizal genomes of numerous known mycorrhizal orders and several ecological types (ectomycorrhizal [ECM], ericoid, orchid, and arbuscular). JGI has developed and deployed high-throughput pipelines for genomic, transcriptomic, and re-sequencing, and platforms for assembly, annotation, and analysis. In the last 2 years we have sequenced 21 genomes of mycorrhizal fungi, and resequenced 6 additional strains of L. bicolor. Most of this data is publicly available on JGI MycoCosm?s Mycorrhizal Fungi Portal (http://jgi.doe.gov/Mycorrhizal_fungi/), which provides access to both the genome data and tools with which to analyze the data. These data allow us to address long-standing issues in mycorrhizal evolution and ecology. For example, a major observation of mycorrhizal evolution is that each of the major ecological types appears to have evolved independently in multiple fungal clades. Using an ecogenomic approach we provide preliminary evidence that 2 clades (Cantharellales and Sebacinales) of a single symbiotic ecotype (orchid) utilize some common regulatory (protein tyrosine kinase) and metabolic (lipase) paths, the latter of which may be the product of HGT. Using a phylogenomic approach we provide preliminary evidence that a particular ecotype (ericoid) may have evolved more than once within a major clade (Leotiomycetes).

  7. DELLA proteins regulate arbuscule formation in arbuscular mycorrhizal symbiosis

    PubMed Central

    Floss, Daniela S.; Levy, Julien G.; Lévesque-Tremblay, Véronique; Pumplin, Nathan; Harrison, Maria J.

    2013-01-01

    Most flowering plants are able to form endosymbioses with arbuscular mycorrhizal fungi. In this mutualistic association, the fungus colonizes the root cortex and establishes elaborately branched hyphae, called arbuscules, within the cortical cells. Arbuscule development requires the cellular reorganization of both symbionts, and the resulting symbiotic interface functions in nutrient exchange. A plant symbiosis signaling pathway controls the development of the symbiosis. Several components of the pathway have been identified, but transcriptional regulators that control downstream pathways for arbuscule formation are still unknown. Here we show that DELLA proteins, which are repressors of gibberellic acid (GA) signaling and function at the nexus of several signaling pathways, are required for arbuscule formation. Arbuscule formation is severely impaired in a Medicago truncatula Mtdella1/Mtdella2 double mutant; GA treatment of wild-type roots phenocopies the della double mutant, and a dominant DELLA protein (della1-Δ18) enables arbuscule formation in the presence of GA. Ectopic expression of della1-Δ18 suggests that DELLA activity in the vascular tissue and endodermis is sufficient to enable arbuscule formation in the inner cortical cells. In addition, expression of della1-Δ18 restores arbuscule formation in the symbiosis signaling pathway mutant cyclops/ipd3, indicating an intersection between DELLA and symbiosis signaling for arbuscule formation. GA signaling also influences arbuscule formation in monocots, and a Green Revolution wheat variety carrying dominant DELLA alleles shows enhanced colonization but a limited growth response to arbuscular mycorrhizal symbiosis. PMID:24297892

  8. The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis

    SciTech Connect

    Martin, F.; Aerts, A.; Ahren, D.; Brun, A.; Danchin, E. G. J.; Duchaussoy, F.; Gibon, J.; Kohler, A.; Lindquist, E.; Peresa, V.; Salamov, A.; Shapiro, H. J.; Wuyts, J.; Blaudez, D.; Buee, M.; Brokstein, P.; Canback, B.; Cohen, D.; Courty, P. E.; Coutinho, P. M.; Delaruelle, C.; Detter, J. C.; Deveau, A.; DiFazio, S.; Duplessis, S.; Fraissinet-Tachet, L.; Lucic, E.; Frey-Klett, P.; Fourrey, C.; Feussner, I.; Gay, G.; Grimwood, J.; Hoegger, P. J.; Jain, P.; Kilaru, S.; Labbe, J.; Lin, Y. C.; Legue, V.; Le Tacon, F.; Marmeisse, R.; Melayah, D.; Montanini, B.; Muratet, M.; Nehls, U.; Niculita-Hirzel, H.; Secq, M. P. Oudot-Le; Peter, M.; Quesneville, H.; Rajashekar, B.; Reich, M.; Rouhier, N.; Schmutz, J.; Yin, T.; Chalot, M.; Henrissat, B.; Kues, U.; Lucas, S.; Van de Peer, Y.; Podila, G. K.; Polle, A.; Pukkila, P. J.; Richardson, P. M.; Rouze, P.; Sanders, I. R.; Stajich, J. E.; Tunlid, A.; Tuskan, G.; Grigoriev, I. V.

    2007-08-10

    Mycorrhizal symbioses the union of roots and soil fungi are universal in terrestrial ecosystems and may have been fundamental to land colonization by plants 1, 2. Boreal, temperate and montane forests all depend on ectomycorrhizae1. Identification of the primary factors that regulate symbiotic development and metabolic activity will therefore open the door to understanding the role of ectomycorrhizae in plant development and physiology, allowing the full ecological significance of this symbiosis to be explored. Here we report the genome sequence of the ectomycorrhizal basidiomycete Laccaria bicolor (Fig. 1) and highlight gene sets involved in rhizosphere colonization and symbiosis. This 65-megabase genome assembly contains 20,000 predicted protein-encoding genes and a very large number of transposons and repeated sequences. We detected unexpected genomic features, most notably a battery of effector-type small secreted proteins (SSPs) with unknown function, several of which are only expressed in symbiotic tissues. The most highly expressed SSP accumulates in the proliferating hyphae colonizing the host root. The ectomycorrhizae-specific SSPs probably have a decisive role in the establishment of the symbiosis. The unexpected observation that the genome of L. bicolor lacks carbohydrate-active enzymes involved in degradation of plant cell walls, but maintains the ability to degrade non-plant cell wall polysaccharides, reveals the dual saprotrophic and biotrophic lifestyle of the mycorrhizal fungus that enables it to grow within both soil and living plant roots. The predicted gene inventory of the L. bicolor genome, therefore, points to previously unknown mechanisms of symbiosis operating in biotrophic mycorrhizal fungi. The availability of this genome provides an unparalleled opportunity to develop a deeper understanding of the processes by which symbionts interact with plants within their ecosystem to perform vital functions in the carbon and nitrogen cycles that are

  9. Arbuscular mycorrhizal fungi in terms of symbiosis-parasitism continuum.

    PubMed

    Schmidt, B; Gaşpar, S; Camen, D; Ciobanu, I; Sumălan, R

    2011-01-01

    Arbuscular mycorrhizal fungi are forming the most wide-spread mycorrhizal relationships on Earth. Mycorrhiza contributes to phosphorous acquisition, water absorption and resistance to diseases. The fungus promotes the absorption of nutrients and water from soil, meanwhile the host plant offers photosynthetic assimilates in exchange, like carbohydrates, as energy source. The plant benefits from the contribution of symbiotic partner only when nutrients are in low concentrations in soil and the root system would not be able to absorb sufficiently the minerals. When the help of mycorrhizal fungi is not necessarily needed, the host plant is making an economy of energy, suppressing the development of fungi in the internal radicular space. In this moment, the nature of relationship turns from symbiotic to parasitic, triggering a series of defensive reactions from the plant. Also, there were several cases reported when the presence of arbuscular mycorrhizal fungi negatively influenced the host plant. For example, in adverse environmental conditions, like very high temperatures, instead of determining a higher plant biomass and flowering, the mycorrhiza reduces the growth of the host plant. We conducted a pot experiment with hydroponic culture to examine the effect of arbuscular mycorrhiza on development of French marigold as a host plant. As experimental variants, the phosphorous content in nutrient medium and temperature varied. Plants were artificially infected with arbuscular mycorrhizal fungi using a commercial inoculum containing three fungal species, as following: Glomus intraradices, Glomus etunicatum and Glomus claroideum. Colonization intensity and arbuscular richness were checked using root staining with aniline blue and estimation with the Trouvelot method. To observe the differences between plants from the experimental variants, we examined the number of side shoots, flower buds and fully developed flowers, fresh biomass and total leaf area. Results show that

  10. Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation.

    PubMed

    Göhre, Vera; Paszkowski, Uta

    2006-05-01

    High concentrations of heavy metals (HM) in the soil have detrimental effects on ecosystems and are a risk to human health as they can enter the food chain via agricultural products or contaminated drinking water. Phytoremediation, a sustainable and inexpensive technology based on the removal of pollutants from the environment by plants, is becoming an increasingly important objective in plant research. However, as phytoremediation is a slow process, improvement of efficiency and thus increased stabilization or removal of HMs from soils is an important goal. Arbuscular mycorrhizal (AM) fungi provide an attractive system to advance plant-based environmental clean-up. During symbiotic interaction the hyphal network functionally extends the root system of their hosts. Thus, plants in symbiosis with AM fungi have the potential to take up HM from an enlarged soil volume. In this review, we summarize current knowledge about the contribution of the AM symbiosis to phytoremediation of heavy metals. PMID:16555102

  11. Cell wall remodeling in mycorrhizal symbiosis: a way towards biotrophism

    PubMed Central

    Balestrini, Raffaella; Bonfante, Paola

    2014-01-01

    Cell walls are deeply involved in the molecular talk between partners during plant and microbe interactions, and their role in mycorrhizae, i.e., the widespread symbiotic associations established between plant roots and soil fungi, has been investigated extensively. All mycorrhizal interactions achieve full symbiotic functionality through the development of an extensive contact surface between the plant and fungal cells, where signals and nutrients are exchanged. The exchange of molecules between the fungal and the plant cytoplasm takes place both through their plasma membranes and their cell walls; a functional compartment, known as the symbiotic interface, is thus defined. Among all the symbiotic interfaces, the complex intracellular interface of arbuscular mycorrhizal (AM) symbiosis has received a great deal of attention since its first description. Here, in fact, the host plasma membrane invaginates and proliferates around all the developing intracellular fungal structures, and cell wall material is laid down between this membrane and the fungal cell surface. By contrast, in ectomycorrhizae (ECM), where the fungus grows outside and between the root cells, plant and fungal cell walls are always in direct contact and form the interface between the two partners. The organization and composition of cell walls within the interface compartment is a topic that has attracted widespread attention, both in ecto- and endomycorrhizae. The aim of this review is to provide a general overview of the current knowledge on this topic by integrating morphological observations, which have illustrated cell wall features during mycorrhizal interactions, with the current data produced by genomic and transcriptomic approaches. PMID:24926297

  12. The Laccaria and Tuber Genomes Reveal Unique Signatures of Mycorrhizal Symbiosis Evolution (2010 JGI User Meeting)

    SciTech Connect

    Knapp, Steve

    2010-03-24

    Francis Martin from the French agricultural research institute INRA talks on how "The Laccaria and Tuber genomes reveal unique signatures of mycorrhizal symbiosis evolution" on March 24, 2010 at the 5th Annual DOE JGI User Meeting

  13. Genes conserved for arbuscular mycorrhizal symbiosis identified through phylogenomics.

    PubMed

    Bravo, Armando; York, Thomas; Pumplin, Nathan; Mueller, Lukas A; Harrison, Maria J

    2016-01-01

    Arbuscular mycorrhizal symbiosis (AMS), a widespread mutualistic association of land plants and fungi(1), is predicted to have arisen once, early in the evolution of land plants(2-4). Consistent with this notion, several genes required for AMS have been conserved throughout evolution(5) and their symbiotic functions preserved, at least between monocot and dicot plants(6,7). Despite its significance, knowledge of the plants' genetic programme for AMS is limited. To date, most genes required for AMS have been found through commonalities with the evolutionarily younger nitrogen-fixing Rhizobium legume symbiosis (RLS)(8) or by reverse genetic analyses of differentially expressed candidate genes(9). Large sequence-indexed insertion mutant collections and recent genome editing technologies have vastly increased the power of reverse genetics but selection of candidate genes, from the thousands of genes that change expression during AMS, remains an arbitrary process. Here, we describe a phylogenomics approach to identify genes whose evolutionary history predicts conservation for AMS and we demonstrate the accuracy of the predictions through reverse genetics analysis. Phylogenomics analysis of 50 plant genomes resulted in 138 genes from Medicago truncatula predicted to function in AMS. This includes 15 genes with known roles in AMS. Additionally, we demonstrate that mutants in six previously uncharacterized AMS-conserved genes are all impaired in AMS. Our results demonstrate that phylogenomics is an effective strategy to identify a set of evolutionarily conserved genes required for AMS. PMID:27249190

  14. Carbon availability for the fungus triggers nitrogen uptake and transport in the arbuscular mycorrhizal symbiosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The arbuscular mycorrhizal (AM) symbiosis is characterized by a transfer of nutrients in exchange for carbon. We tested the effect of the carbon availability for the AM fungus Glomus intraradices on nitrogen (N) uptake and transport in the symbiosis. We followed the uptake and transport of 15N and ...

  15. [Effect of five fungicides on growth of Glycyrrhiza uralensis and efficiency of mycorrhizal symbiosis].

    PubMed

    Li, Peng-ying; Yang, Guang; Zhou, Xiu-teng; Zhou, Liane-yun; Shao, Ai-juan; Chen, Mei-lan

    2015-12-01

    In order to obtain the fungicides with minimal impact on efficiency of mycorrhizal symbiosis, the effect of five fungicides including polyoxins, jinggangmycins, thiophanate methylate, chlorothalonil and carbendazim on the growth of medicinal plant and efficiency of mycorrhizal symbiosis were studied. Pot cultured Glycyrrhiza uralensis was treated with different fungicides with the concentration that commonly used in the field. 60 d after treated with fungicides, infection rate, infection density, biomass indexes, photosyn- thetic index and the content of active component were measured. Experimental results showed that carbendazim had the strongest inhibition on mycorrhizal symbiosis effect. Carbendazim significantly inhibited the mycorrhizal infection rate, significantly suppressed the actual photosynthetic efficiency of G. uralensis and the most indicators of biomass. Polyoxins showed the lowest inhibiting affection. Polyoxins had no significant effect on mycorrhizal infection rate, the actual photosynthetic efficiency of G. uralensis and the most indicators of biomass. The other three fungicides also had an inhibitory effect on efficiency of mycorrhizal symbiosis, and the inhibition degrees were all between polyoxins's and carbendazim's. The author considered that fungicide's inhibition degree on mycorrhizal effect might be related with the species of fungicides, so the author suggested that the farmer should try to choose bio-fungicides like polyoxins. PMID:27141668

  16. Community analysis of arbuscular mycorrhizal fungi in roots of Poncirus trifoliata and Citrus reticulata based on SSU rDNA.

    PubMed

    Wang, Peng; Wang, Yin

    2014-01-01

    Morphological observation of arbuscular mycorrhizal fungi (AMF) species in rhizospheric soil could not accurately reflect the actual AMF colonizing status in roots, while molecular identification of indigenous AMF colonizing citrus rootstocks at present was rare in China. In our study, community of AMF colonizing trifoliate orange (Poncirus trifoliata L. Raf.) and red tangerine (Citrus reticulata Blanco) were analyzed based on small subunit of ribosomal DNA genes. Morphological observation showed that arbuscular mycorrhizal (AM) colonization, spore density, and hyphal length did not differ significantly between two rootstocks. Phylogenetic analysis showed that 173 screened AMF sequences clustered in at least 10 discrete groups (GLO1~GLO10), all belonging to the genus of Glomus Sensu Lato. Among them, GLO1 clade (clustering with uncultured Glomus) accounting for 54.43% clones was the most common in trifoliate orange roots, while GLO6 clade (clustering with Glomus intraradices) accounting for 35.00% clones was the most common in red tangerine roots. Although, Shannon-Wiener indices exhibited no notable differences between both rootstocks, relative proportions of observed clades analysis revealed that composition of AMF communities colonizing two rootstocks varied severely. The results indicated that native AMF species in citrus rhizosphere had diverse colonization potential between two different rootstocks in the present orchards. PMID:25162057

  17. Genetic diversity for mycorrhizal symbiosis and phosphate transporters in rice.

    PubMed

    Jeong, Kwanho; Mattes, Nicolas; Catausan, Sheryl; Chin, Joong Hyoun; Paszkowski, Uta; Heuer, Sigrid

    2015-11-01

    Phosphorus (P) is a major plant nutrient and developing crops with higher P-use efficiency is an important breeding goal. In this context we have conducted a comparative study of irrigated and rainfed rice varieties to assess genotypic differences in colonization with arbuscular mycorrhizal (AM) fungi and expression of different P transporter genes. Plants were grown in three different soil samples from a rice farm in the Philippines. The data show that AM symbiosis in all varieties was established after 4 weeks of growth under aerobic conditions and that, in soil derived from a rice paddy, natural AM populations recovered within 6 weeks. The analysis of AM marker genes (AM1, AM3, AM14) and P transporter genes for the direct Pi uptake (PT2, PT6) and AM-mediated pathway (PT11, PT13) were largely in agreement with the observed root AM colonization providing a useful tool for diversity studies. Interestingly, delayed AM colonization was observed in the aus-type rice varieties which might be due to their different root structure and might confer an advantage for weed competition in the field. The data further showed that P-starvation induced root growth and expression of the high-affinity P transporter PT6 was highest in the irrigated variety IR66 which also maintained grain yield under P-deficient field conditions. PMID:26466747

  18. Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis.

    PubMed

    Fellbaum, Carl R; Gachomo, Emma W; Beesetty, Yugandhar; Choudhari, Sulbha; Strahan, Gary D; Pfeffer, Philip E; Kiers, E Toby; Bücking, Heike

    2012-02-14

    The arbuscular mycorrhizal (AM) symbiosis, formed between the majority of land plants and ubiquitous soil fungi of the phylum Glomeromycota, is responsible for massive nutrient transfer and global carbon sequestration. AM fungi take up nutrients from the soil and exchange them against photosynthetically fixed carbon (C) from the host. Recent studies have demonstrated that reciprocal reward strategies by plant and fungal partners guarantee a "fair trade" of phosphorus against C between partners [Kiers ET, et al. (2011) Science 333:880-882], but whether a similar reward mechanism also controls nitrogen (N) flux in the AM symbiosis is not known. Using mycorrhizal root organ cultures, we manipulated the C supply to the host and fungus and followed the uptake and transport of N sources in the AM symbiosis, the enzymatic activities of arginase and urease, and fungal gene expression in the extraradical and intraradical mycelium. We found that the C supply of the host plant triggers the uptake and transport of N in the symbiosis, and that the increase in N transport is orchestrated by changes in fungal gene expression. N transport in the symbiosis is stimulated only when the C is delivered by the host across the mycorrhizal interface, not when C is supplied directly to the fungal extraradical mycelium in the form of acetate. These findings support the importance of C flux from the root to the fungus as a key trigger for N uptake and transport and provide insight into the N transport regulation in the AM symbiosis. PMID:22308426

  19. Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis

    PubMed Central

    Fellbaum, Carl R.; Gachomo, Emma W.; Beesetty, Yugandhar; Choudhari, Sulbha; Strahan, Gary D.; Pfeffer, Philip E.; Kiers, E. Toby; Bücking, Heike

    2012-01-01

    The arbuscular mycorrhizal (AM) symbiosis, formed between the majority of land plants and ubiquitous soil fungi of the phylum Glomeromycota, is responsible for massive nutrient transfer and global carbon sequestration. AM fungi take up nutrients from the soil and exchange them against photosynthetically fixed carbon (C) from the host. Recent studies have demonstrated that reciprocal reward strategies by plant and fungal partners guarantee a “fair trade” of phosphorus against C between partners [Kiers ET, et al. (2011) Science 333:880–882], but whether a similar reward mechanism also controls nitrogen (N) flux in the AM symbiosis is not known. Using mycorrhizal root organ cultures, we manipulated the C supply to the host and fungus and followed the uptake and transport of N sources in the AM symbiosis, the enzymatic activities of arginase and urease, and fungal gene expression in the extraradical and intraradical mycelium. We found that the C supply of the host plant triggers the uptake and transport of N in the symbiosis, and that the increase in N transport is orchestrated by changes in fungal gene expression. N transport in the symbiosis is stimulated only when the C is delivered by the host across the mycorrhizal interface, not when C is supplied directly to the fungal extraradical mycelium in the form of acetate. These findings support the importance of C flux from the root to the fungus as a key trigger for N uptake and transport and provide insight into the N transport regulation in the AM symbiosis. PMID:22308426

  20. Lyso-phosphatidylcholine is a signal in the arbuscular mycorrhizal symbiosis.

    PubMed

    Drissner, David; Kunze, Gernot; Callewaert, Nico; Gehrig, Peter; Tamasloukht, M'barek; Boller, Thomas; Felix, Georg; Amrhein, Nikolaus; Bucher, Marcel

    2007-10-12

    The arbuscular mycorrhizal (AM) symbiosis represents the most widely distributed mutualistic root symbiosis. We report that root extracts of mycorrhizal plants contain a lipophilic signal capable of inducing the phosphate transporter genes StPT3 and StPT4 of potato (Solanum tuberosum L.), genes that are specifically induced in roots colonized by AM fungi. The same signal caused rapid extracellular alkalinization in suspension-cultured tomato (Solanum lycopersicum L.) cells and induction of the mycorrhiza-specific phosphate transporter gene LePT4 in these cells. The active principle was characterized as the lysolipid lyso-phosphatidylcholine (LPC) via a combination of gene expression studies, alkalinization assays in cell cultures, and chromatographic and mass spectrometric analyses. Our results highlight the importance of lysophospholipids as signals in plants and in particular in the AM symbiosis. PMID:17932296

  1. Mycorrhizal symbiosis and local adaptation in Aster amellus: a field transplant experiment.

    PubMed

    Pánková, Hana; Raabová, Jana; Münzbergová, Zuzana

    2014-01-01

    Many plant populations have adapted to local soil conditions. However, the role of arbuscular mycorrhizal fungi is often overlooked in this context. Only a few studies have used reciprocal transplant experiments to study the relationships between soil conditions, mycorrhizal colonisation and plant growth. Furthermore, most of the studies were conducted under controlled greenhouse conditions. However, long-term field experiments can provide more realistic insights into this issue. We conducted a five-year field reciprocal transplant experiment to study the relationships between soil conditions, arbuscular mycorrhizal fungi and plant growth in the obligate mycotrophic herb Aster amellus. We conducted this study in two regions in the Czech Republic that differ significantly in their soil nutrient content, namely Czech Karst (region K) and Ceske Stredohori (region S). Plants that originated from region S had significantly higher mycorrhizal colonisation than plants from region K, indicating that the percentage of mycorrhizal colonisation has a genetic basis. We found no evidence of local adaptation in Aster amellus. Instead, plants from region S outperformed the plants from region K in both target regions. Similarly, plants from region S showed more mycorrhizal colonisation in all cases, which was likely driven by the lower nutrient content in the soil from that region. Thus, plant aboveground biomass and mycorrhizal colonisation exhibited corresponding differences between the two target regions and regions of origin. Higher mycorrhizal colonisation in the plants from region with lower soil nutrient content (region S) in both target regions indicates that mycorrhizal colonisation is an adaptive trait. However, lower aboveground biomass in the plants with lower mycorrhizal colonisation suggests that the plants from region K are in fact maladapted by their low inherent mycorrhizal colonization. We conclude that including mycorrhizal symbiosis in local adaptation studies

  2. Common mycorrhizal networks and their effect on the bargaining power of the fungal partner in the arbuscular mycorrhizal symbiosis.

    PubMed

    Bücking, Heike; Mensah, Jerry A; Fellbaum, Carl R

    2016-01-01

    Arbuscular mycorrhizal (AM) fungi form mutualistic interactions with the majority of land plants, including some of the most important crop species. The fungus takes up nutrients from the soil, and transfers these nutrients to the mycorrhizal interface in the root, where these nutrients are exchanged against carbon from the host. AM fungi form extensive hyphal networks in the soil and connect with their network multiple host plants. These common mycorrhizal networks (CMNs) play a critical role in the long-distance transport of nutrients through soil ecosystems and allow the exchange of signals between the interconnected plants. CMNs affect the survival, fitness, and competitiveness of the fungal and plant species that interact via these networks, but how the resource transport within these CMNs is controlled is largely unknown. We discuss the significance of CMNs for plant communities and for the bargaining power of the fungal partner in the AM symbiosis. PMID:27066184

  3. Common mycorrhizal networks and their effect on the bargaining power of the fungal partner in the arbuscular mycorrhizal symbiosis

    PubMed Central

    Bücking, Heike; Mensah, Jerry A.; Fellbaum, Carl R.

    2016-01-01

    ABSTRACT Arbuscular mycorrhizal (AM) fungi form mutualistic interactions with the majority of land plants, including some of the most important crop species. The fungus takes up nutrients from the soil, and transfers these nutrients to the mycorrhizal interface in the root, where these nutrients are exchanged against carbon from the host. AM fungi form extensive hyphal networks in the soil and connect with their network multiple host plants. These common mycorrhizal networks (CMNs) play a critical role in the long-distance transport of nutrients through soil ecosystems and allow the exchange of signals between the interconnected plants. CMNs affect the survival, fitness, and competitiveness of the fungal and plant species that interact via these networks, but how the resource transport within these CMNs is controlled is largely unknown. We discuss the significance of CMNs for plant communities and for the bargaining power of the fungal partner in the AM symbiosis. PMID:27066184

  4. Mycorrhizal symbiosis in leeks increases plant growth under low phosphorus and affects the levels of specific flavonoid glycosides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction- Mycorrhizae symbiosis is a universal phenomenon in nature that promotes plant growth and food quality in most plants, especially, under phosphorus deficiency and water stress. Objective- The objective of this study was to assess the effects of mycorrhizal symbiosis on changes in the le...

  5. Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists

    DOE PAGESBeta

    Kohler, Annegret; Kuo, Alan; Nagy, Laszlo G.; Morin, Emmanuelle; Barry, Kerrie W.; Buscot, Francois; Canbäck, Björn; Choi, Cindy; Cichocki, Nicolas; Clum, Alicia; et al

    2015-02-23

    To elucidate the genetic bases of mycorrhizal lifestyle evolution, we sequenced new fungal genomes, including 13 ectomycorrhizal (ECM), orchid (ORM) and ericoid (ERM) species, and five saprotrophs, which we analyzed along with other fungal genomes. Ectomycorrhizal fungi have a reduced complement of genes encoding plant cell wall-degrading enzymes (PCWDEs), as compared to their ancestral wood decayers. Nevertheless, they have retained a unique array of PCWDEs, thus suggesting that they possess diverse abilities to decompose lignocellulose. Similar functional categories of nonorthologous genes are induced in symbiosis. Of induced genes, 7-38% are orphan genes, including genes that encode secreted effector-like proteins. Convergentmore » evolution of the mycorrhizal habit in fungi occurred via the repeated evolution of a 'symbiosis toolkit', with reduced numbers of PCWDEs and lineage-specific suites of mycorrhiza-induced genes.« less

  6. Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists

    SciTech Connect

    Kohler, Annegret; Kuo, Alan; Nagy, Laszlo G.; Morin, Emmanuelle; Barry, Kerrie W.; Buscot, Francois; Canbäck, Björn; Choi, Cindy; Cichocki, Nicolas; Clum, Alicia; Colpaert, Jan; Copeland, Alex; Costa, Mauricio D.; Doré, Jeanne; Floudas, Dimitrios; Gay, Gilles; Girlanda, Mariangela; Henrissat, Bernard; Herrmann, Sylvie; Hess, Jaqueline; Högberg, Nils; Johansson, Tomas; Khouja, Hassine-Radhouane; LaButti, Kurt; Lahrmann, Urs; Levasseur, Anthony; Lindquist, Erika A.; Lipzen, Anna; Marmeisse, Roland; Martino, Elena; Murat, Claude; Ngan, Chew Y.; Nehls, Uwe; Plett, Jonathan M.; Pringle, Anne; Ohm, Robin A.; Perotto, Silvia; Peter, Martina; Riley, Robert; Rineau, Francois; Ruytinx, Joske; Salamov, Asaf; Shah, Firoz; Sun, Hui; Tarkka, Mika; Tritt, Andrew; Veneault-Fourrey, Claire; Zuccaro, Alga; Tunlid, Anders; Grigoriev, Igor V.; Hibbett, David S.; Martin, Francis

    2015-02-23

    To elucidate the genetic bases of mycorrhizal lifestyle evolution, we sequenced new fungal genomes, including 13 ectomycorrhizal (ECM), orchid (ORM) and ericoid (ERM) species, and five saprotrophs, which we analyzed along with other fungal genomes. Ectomycorrhizal fungi have a reduced complement of genes encoding plant cell wall-degrading enzymes (PCWDEs), as compared to their ancestral wood decayers. Nevertheless, they have retained a unique array of PCWDEs, thus suggesting that they possess diverse abilities to decompose lignocellulose. Similar functional categories of nonorthologous genes are induced in symbiosis. Of induced genes, 7-38% are orphan genes, including genes that encode secreted effector-like proteins. Convergent evolution of the mycorrhizal habit in fungi occurred via the repeated evolution of a 'symbiosis toolkit', with reduced numbers of PCWDEs and lineage-specific suites of mycorrhiza-induced genes.

  7. Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists.

    PubMed

    Kohler, Annegret; Kuo, Alan; Nagy, Laszlo G; Morin, Emmanuelle; Barry, Kerrie W; Buscot, Francois; Canbäck, Björn; Choi, Cindy; Cichocki, Nicolas; Clum, Alicia; Colpaert, Jan; Copeland, Alex; Costa, Mauricio D; Doré, Jeanne; Floudas, Dimitrios; Gay, Gilles; Girlanda, Mariangela; Henrissat, Bernard; Herrmann, Sylvie; Hess, Jaqueline; Högberg, Nils; Johansson, Tomas; Khouja, Hassine-Radhouane; LaButti, Kurt; Lahrmann, Urs; Levasseur, Anthony; Lindquist, Erika A; Lipzen, Anna; Marmeisse, Roland; Martino, Elena; Murat, Claude; Ngan, Chew Y; Nehls, Uwe; Plett, Jonathan M; Pringle, Anne; Ohm, Robin A; Perotto, Silvia; Peter, Martina; Riley, Robert; Rineau, Francois; Ruytinx, Joske; Salamov, Asaf; Shah, Firoz; Sun, Hui; Tarkka, Mika; Tritt, Andrew; Veneault-Fourrey, Claire; Zuccaro, Alga; Tunlid, Anders; Grigoriev, Igor V; Hibbett, David S; Martin, Francis

    2015-04-01

    To elucidate the genetic bases of mycorrhizal lifestyle evolution, we sequenced new fungal genomes, including 13 ectomycorrhizal (ECM), orchid (ORM) and ericoid (ERM) species, and five saprotrophs, which we analyzed along with other fungal genomes. Ectomycorrhizal fungi have a reduced complement of genes encoding plant cell wall-degrading enzymes (PCWDEs), as compared to their ancestral wood decayers. Nevertheless, they have retained a unique array of PCWDEs, thus suggesting that they possess diverse abilities to decompose lignocellulose. Similar functional categories of nonorthologous genes are induced in symbiosis. Of induced genes, 7-38% are orphan genes, including genes that encode secreted effector-like proteins. Convergent evolution of the mycorrhizal habit in fungi occurred via the repeated evolution of a 'symbiosis toolkit', with reduced numbers of PCWDEs and lineage-specific suites of mycorrhiza-induced genes. PMID:25706625

  8. Something old, something new: auxin and strigolactone interact in the ancient mycorrhizal symbiosis.

    PubMed

    Foo, Eloise

    2013-04-01

    Arbuscular mycorrhizal symbiosis, formed between more than 80% of land plants and fungi from the phylum Glomeromycota, is an ancient association that is believed to have evolved as plants moved onto land more than 400 mya. Similarly ancient, the plant hormones auxin and strigolactone are thought to have been present in the plant lineage since before the divergence of the bryophytes in the case of auxin and before the colonisation of land in the case of strigolactones. The discovery of auxin in the 1930s predates the discovery of strigolactones as a plant hormone in 2008 by over 70 y. Recent studies in pea suggest that these two signals may interact to regulate mycorrhizal symbiosis. Furthermore, the first quantitative studies are presented that show that low auxin content of the root is correlated with low strigolactone production, an interaction that has implications for how these plant hormones regulate several developmental programs including shoot branching, secondary growth and root development. With recent advances in our understanding of auxin and strigolactone biosynthesis, together with the discovery of the fungal signals that activate the plant host, the stage is set for real breakthroughs in our understanding of the interactions between plant and fungal signals in mycorrhizal symbiosis. PMID:23333973

  9. The importance of integration and scale in the arbuscular mycorrhizal symbiosis.

    SciTech Connect

    Miller, R. M.; Kling, M.; Environmental Research; Swedish Univ. of Agricultural Sciences

    2000-01-01

    The arbuscular mycorrhizal (AM) fungus contributes to system processes and functions at various hierarchical organizational levels, through their establishment of linkages and feedbacks between whole-plants and nutrient cycles. Even though these fungal mediated feedbacks and linkages involve lower-organizational level processes (e.g. photo-assimilate partitioning, interfacial assimilate uptake and transport mechanisms, intraradical versus extraradical fungal growth), they influence higher-organizational scales that affect community and ecosystem behavior (e.g. whole-plant photosynthesis, biodiversity, nutrient and carbon cycling, soil structure). Hence, incorporating AM fungi into research directed at understanding many of the diverse environmental issues confronting society will require knowledge of how these fungi respond to or initiate changes in vegetation dynamics, soil fertility or both. Within the last few years, the rapid advancement in the development of analytical tools has increased the resolution by which we are able to quantify the mycorrhizal symbiosis. It is important that these tools are applied within a conceptual framework that is temporally and spatially relevant to fungus and host. Unfortunately, many of the studies being conducted on the mycorrhizal symbiosis at lower organizational scales are concerned with questions directed solely at understanding fungus or host without awareness of what the plant physiologist or ecologist needs for integrating the mycorrhizal association into larger organizational scales or process levels. We show by using the flow of C from plant-to-fungus-to-soil, that through thoughtful integration, we have the ability to bridge different organizational scales. Thus, an essential need of mycorrhizal research is not only to better integrate the various disciplines of mycorrhizal research, but also to identify those relevant links and scales needing further investigation for understanding the larger-organizational level

  10. Arbuscular mycorrhizal symbiosis-mediated tomato tolerance to drought.

    PubMed

    Chitarra, Walter; Maserti, Biancaelena; Gambino, Giorgio; Guerrieri, Emilio; Balestrini, Raffaella

    2016-07-01

    A multidisciplinary approach, involving eco-physiological, morphometric, biochemical and molecular analyses, has been used to study the impact of two different AM fungi, i.e. Funneliformis mosseae and Rhizophagus intraradices, on tomato response to water stress. Overall, results show that AM symbiosis positively affects the tolerance to drought in tomato with a different plant response depending on the involved AM fungal species. PMID:27359066

  11. The Genome of Laccaria Bi color Provides Insights into Mycorrhizal Symbiosis

    SciTech Connect

    Martin, F; Aerts, A.; Ahren, D; Brun, A; Duchaussoy, F; Gibon, J; Kohler, A; Lindquist, E; Pereda, V; Salamov, A.; Shapiro, HJ; Wuyts, J; Blaudez, D; Buee, M; Brokstein, P; Canbeck, B; Cohen, D; Courty, PE; Coutinho, PM; Danchin, E; Delaruelle, C; Detter, J C; Deveau, A; DiFazio, Stephen P; Duplessis, S; Fraissinet-Tachet, L; Lucic, E; Frey-Klett, P; Fourrey, C; Feussner, I; Gay, G; Grimwood, Jane; Hoegger, P J; Jain, P; Kilaru, S; Labbe, J; Lin, Y C; Legue, V; Le Tacon, F; Marmeisse, R; Melayah, D; Montanini, B; Muratet, M; Nehls, U; Niculita-Hirzel, H; Oudot-Le Secq, M P; Peter, M; Quesneville, H; Rajashekar, B; Reich, M; Rouhler, N; Schmutz, Jeremy; Yin, Tongming; Chalot, M; Henrissat, B; Kues, U; Lucas, S; Van de Peer, Y; Podila, G; Polle, A; Pukkila, P J; Richardson, P M; Rouze, P; Sanders, I R; Stajich, J E; Tunlid, A; Tuskan, Gerald A; Grigoriev, I.

    2008-01-01

    Mycorrhizal symbioses the union of roots and soil fungi are universal in terrestrial ecosystems and may have been fundamental to land colonization by plants1,2. Boreal, temperate and montane forests all depend on ectomycorrhizae1. Identification of the primary factors that regulate symbiotic development and metabolic activity will therefore open the door to understanding the role of ectomycorrhizae in plant development and physiology, allowing the full ecological significance of this symbiosis to be explored. Here we report the genome sequence of the ectomycorrhizal basidiomycete Laccaria bicolor (Fig. 1) and highlight gene sets involved in rhizosphere colonization and symbiosis. This 65-megabase genome assembly contains 20,000 predicted protein-encoding genes and a very large number of transposons and repeated sequences. We detected unexpected genomic features, most notably a battery of effector-type small secreted proteins (SSPs) with unknown function, several of which are only expressed in symbiotic tissues. The most highly expressed SSP accumulates in the proliferating hyphae colonizing the host root. The ectomycorrhizae-specific SSPs probably have a decisive role in the establishment of the symbiosis. The unexpected observation that the genome of L. bicolor lacks carbohydrate-active enzymes involved in degradation of plant cell walls, but maintains the ability to degrade non-plant cell wall polysaccharides, reveals the dual saprotrophic and biotrophic lifestyle of the mycorrhizal fungus that enables it to grow within both soil and living plant roots. The predicted gene inventory of the L. bicolor genome, therefore, points to previously unknown mechanisms of symbiosis operating in biotrophic mycorrhizal fungi. The availability of this genome provides an unparalleled opportunity to develop a deeper understanding of the processes by which symbionts interact with plants within their ecosystem to perform vital functions in the carbon and

  12. The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling events

    PubMed Central

    Balzergue, Coline; Puech-Pagès, Virginie; Bécard, Guillaume; Rochange, Soizic F.

    2011-01-01

    Most plants form root symbioses with arbuscular mycorrhizal (AM) fungi, which provide them with phosphate and other nutrients. High soil phosphate levels are known to affect AM symbiosis negatively, but the underlying mechanisms are not understood. This report describes experimental conditions which triggered a novel mycorrhizal phenotype under high phosphate supply: the interaction between pea and two different AM fungi was almost completely abolished at a very early stage, prior to the formation of hyphopodia. As demonstrated by split-root experiments, down-regulation of AM symbiosis occurred at least partly in response to plant-derived signals. Early signalling events were examined with a focus on strigolactones, compounds which stimulate pre-symbiotic fungal growth and metabolism. Strigolactones were also recently identified as novel plant hormones contributing to the control of shoot branching. Root exudates of plants grown under high phosphate lost their ability to stimulate AM fungi and lacked strigolactones. In addition, a systemic down-regulation of strigolactone release by high phosphate supply was demonstrated using split-root systems. Nevertheless, supplementation with exogenous strigolactones failed to restore root colonization under high phosphate. This observation does not exclude a contribution of strigolactones to the regulation of AM symbiosis by phosphate, but indicates that they are not the only factor involved. Together, the results suggest the existence of additional early signals that may control the differentiation of hyphopodia. PMID:21045005

  13. A biological market analysis of the plant-mycorrhizal symbiosis.

    PubMed

    Wyatt, Gregory A K; Kiers, E Toby; Gardner, Andy; West, Stuart A

    2014-09-01

    It has been argued that cooperative behavior in the plant-mycorrhizal mutualism resembles trade in a market economy and can be understood using economic tools. Here, we assess the validity of this "biological market" analogy by investigating whether a market mechanism--that is, competition between partners over the price at which they provide goods--could be the outcome of natural selection. Then, we consider the conditions under which this market mechanism is sufficient to maintain mutualistic trade. We find that: (i) as in a market, individuals are favored to divide resources among trading partners in direct relation to the relative amount of resources received, termed linear proportional discrimination; (ii) mutualistic trade is more likely to be favored when individuals are able to interact with more partners of both species, and when there is a greater relative difference between the species in their ability to directly acquire different resources; (iii) if trade is favored, then either one or both species is favored to give up acquiring one resource directly, and vice versa. We then formulate testable predictions as to how environmental changes and coevolved responses of plants and mycorrhizal fungi will influence plant fitness (crop yields) in agricultural ecosystems. PMID:24909843

  14. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis.

    PubMed

    Kiers, E Toby; Duhamel, Marie; Beesetty, Yugandhar; Mensah, Jerry A; Franken, Oscar; Verbruggen, Erik; Fellbaum, Carl R; Kowalchuk, George A; Hart, Miranda M; Bago, Alberto; Palmer, Todd M; West, Stuart A; Vandenkoornhuyse, Philippe; Jansa, Jan; Bücking, Heike

    2011-08-12

    Plants and their arbuscular mycorrhizal fungal symbionts interact in complex underground networks involving multiple partners. This increases the potential for exploitation and defection by individuals, raising the question of how partners maintain a fair, two-way transfer of resources. We manipulated cooperation in plants and fungal partners to show that plants can detect, discriminate, and reward the best fungal partners with more carbohydrates. In turn, their fungal partners enforce cooperation by increasing nutrient transfer only to those roots providing more carbohydrates. On the basis of these observations we conclude that, unlike many other mutualisms, the symbiont cannot be "enslaved." Rather, the mutualism is evolutionarily stable because control is bidirectional, and partners offering the best rate of exchange are rewarded. PMID:21836016

  15. Activation of Symbiosis Signaling by Arbuscular Mycorrhizal Fungi in Legumes and Rice[OPEN

    PubMed Central

    Sun, Jongho; Miller, J. Benjamin; Granqvist, Emma; Wiley-Kalil, Audrey; Gobbato, Enrico; Maillet, Fabienne; Cottaz, Sylvain; Samain, Eric; Venkateshwaran, Muthusubramanian; Fort, Sébastien; Morris, Richard J.; Ané, Jean-Michel; Dénarié, Jean; Oldroyd, Giles E.D.

    2015-01-01

    Establishment of arbuscular mycorrhizal interactions involves plant recognition of diffusible signals from the fungus, including lipochitooligosaccharides (LCOs) and chitooligosaccharides (COs). Nitrogen-fixing rhizobial bacteria that associate with leguminous plants also signal to their hosts via LCOs, the so-called Nod factors. Here, we have assessed the induction of symbiotic signaling by the arbuscular mycorrhizal (Myc) fungal-produced LCOs and COs in legumes and rice (Oryza sativa). We show that Myc-LCOs and tetra-acetyl chitotetraose (CO4) activate the common symbiosis signaling pathway, with resultant calcium oscillations in root epidermal cells of Medicago truncatula and Lotus japonicus. The nature of the calcium oscillations is similar for LCOs produced by rhizobial bacteria and by mycorrhizal fungi; however, Myc-LCOs activate distinct gene expression. Calcium oscillations were activated in rice atrichoblasts by CO4, but not the Myc-LCOs, whereas a mix of CO4 and Myc-LCOs activated calcium oscillations in rice trichoblasts. In contrast, stimulation of lateral root emergence occurred following treatment with Myc-LCOs, but not CO4, in M. truncatula, whereas both Myc-LCOs and CO4 were active in rice. Our work indicates that legumes and non-legumes differ in their perception of Myc-LCO and CO signals, suggesting that different plant species respond to different components in the mix of signals produced by arbuscular mycorrhizal fungi. PMID:25724637

  16. Two putative-aquaporin genes are differentially expressed during arbuscular mycorrhizal symbiosis in Lotus japonicus

    PubMed Central

    2012-01-01

    Background Arbuscular mycorrhizas (AM) are widespread symbioses that provide great advantages to the plant, improving its nutritional status and allowing the fungus to complete its life cycle. Nevertheless, molecular mechanisms that lead to the development of AM symbiosis are not yet fully deciphered. Here, we have focused on two putative aquaporin genes, LjNIP1 and LjXIP1, which resulted to be upregulated in a transcriptomic analysis performed on mycorrhizal roots of Lotus japonicus. Results A phylogenetic analysis has shown that the two putative aquaporins belong to different functional families: NIPs and XIPs. Transcriptomic experiments have shown the independence of their expression from their nutritional status but also a close correlation with mycorrhizal and rhizobial interaction. Further transcript quantification has revealed a good correlation between the expression of one of them, LjNIP1, and LjPT4, the phosphate transporter which is considered a marker gene for mycorrhizal functionality. By using laser microdissection, we have demonstrated that one of the two genes, LjNIP1, is expressed exclusively in arbuscule-containing cells. LjNIP1, in agreement with its putative role as an aquaporin, is capable of transferring water when expressed in yeast protoplasts. Confocal analysis have demonstrated that eGFP-LjNIP1, under its endogenous promoter, accumulates in the inner membrane system of arbusculated cells. Conclusions Overall, the results have shown different functionality and expression specificity of two mycorrhiza-inducible aquaporins in L. japonicus. One of them, LjNIP1 can be considered a novel molecular marker of mycorrhizal status at different developmental stages of the arbuscule. At the same time, LjXIP1 results to be the first XIP family aquaporin to be transcriptionally regulated during symbiosis. PMID:23046713

  17. Insights on the Impact of Arbuscular Mycorrhizal Symbiosis on Tomato Tolerance to Water Stress.

    PubMed

    Chitarra, Walter; Pagliarani, Chiara; Maserti, Biancaelena; Lumini, Erica; Siciliano, Ilenia; Cascone, Pasquale; Schubert, Andrea; Gambino, Giorgio; Balestrini, Raffaella; Guerrieri, Emilio

    2016-06-01

    Arbuscular mycorrhizal (AM) fungi, which form symbioses with the roots of the most important crop species, are usually considered biofertilizers, whose exploitation could represent a promising avenue for the development in the future of a more sustainable next-generation agriculture. The best understood function in symbiosis is an improvement in plant mineral nutrient acquisition, as exchange for carbon compounds derived from the photosynthetic process: this can enhance host growth and tolerance to environmental stresses, such as water stress (WS). However, physiological and molecular mechanisms occurring in arbuscular mycorrhiza-colonized plants and directly involved in the mitigation of WS effects need to be further investigated. The main goal of this work is to verify the potential impact of AM symbiosis on the plant response to WS To this aim, the effect of two AM fungi (Funneliformis mosseae and Rhizophagus intraradices) on tomato (Solanum lycopersicum) under the WS condition was studied. A combined approach, involving ecophysiological, morphometric, biochemical, and molecular analyses, has been used to highlight the mechanisms involved in plant response to WS during AM symbiosis. Gene expression analyses focused on a set of target genes putatively involved in the plant response to drought, and in parallel, we considered the expression changes induced by the imposed stress on a group of fungal genes playing a key role in the water-transport process. Taken together, the results show that AM symbiosis positively affects the tolerance to WS in tomato, with a different plant response depending on the AM fungi species involved. PMID:27208301

  18. Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato.

    PubMed

    Ruiz-Lozano, Juan Manuel; Aroca, Ricardo; Zamarreño, Ángel María; Molina, Sonia; Andreo-Jiménez, Beatriz; Porcel, Rosa; García-Mina, José María; Ruyter-Spira, Carolien; López-Ráez, Juan Antonio

    2016-02-01

    Arbuscular mycorrhizal (AM) symbiosis alleviates drought stress in plants. However, the intimate mechanisms involved, as well as its effect on the production of signalling molecules associated with the host plant-AM fungus interaction remains largely unknown. In the present work, the effects of drought on lettuce and tomato plant performance and hormone levels were investigated in non-AM and AM plants. Three different water regimes were applied, and their effects were analysed over time. AM plants showed an improved growth rate and efficiency of photosystem II than non-AM plants under drought from very early stages of plant colonization. The levels of the phytohormone abscisic acid, as well as the expression of the corresponding marker genes, were influenced by drought stress in non-AM and AM plants. The levels of strigolactones and the expression of corresponding marker genes were affected by both AM symbiosis and drought. The results suggest that AM symbiosis alleviates drought stress by altering the hormonal profiles and affecting plant physiology in the host plant. In addition, a correlation between AM root colonization, strigolactone levels and drought severity is shown, suggesting that under these unfavourable conditions, plants might increase strigolactone production in order to promote symbiosis establishment to cope with the stress. PMID:26305264

  19. Insights on the Impact of Arbuscular Mycorrhizal Symbiosis on Tomato Tolerance to Water Stress1[OPEN

    PubMed Central

    Siciliano, Ilenia

    2016-01-01

    Arbuscular mycorrhizal (AM) fungi, which form symbioses with the roots of the most important crop species, are usually considered biofertilizers, whose exploitation could represent a promising avenue for the development in the future of a more sustainable next-generation agriculture. The best understood function in symbiosis is an improvement in plant mineral nutrient acquisition, as exchange for carbon compounds derived from the photosynthetic process: this can enhance host growth and tolerance to environmental stresses, such as water stress (WS). However, physiological and molecular mechanisms occurring in arbuscular mycorrhiza-colonized plants and directly involved in the mitigation of WS effects need to be further investigated. The main goal of this work is to verify the potential impact of AM symbiosis on the plant response to WS. To this aim, the effect of two AM fungi (Funneliformis mosseae and Rhizophagus intraradices) on tomato (Solanum lycopersicum) under the WS condition was studied. A combined approach, involving ecophysiological, morphometric, biochemical, and molecular analyses, has been used to highlight the mechanisms involved in plant response to WS during AM symbiosis. Gene expression analyses focused on a set of target genes putatively involved in the plant response to drought, and in parallel, we considered the expression changes induced by the imposed stress on a group of fungal genes playing a key role in the water-transport process. Taken together, the results show that AM symbiosis positively affects the tolerance to WS in tomato, with a different plant response depending on the AM fungi species involved. PMID:27208301

  20. Possible Benefits of Mycorrhizal Symbiosis, in Reducing CO2 from Environment

    NASA Astrophysics Data System (ADS)

    Azmat, Rafia

    2013-12-01

    It is a fact that the relationship between a fungus and a plant can have a great impact on the environment, especially under drought conditions. Experiments conducted at the laboratory scale suggested that in mycorrhizal symbiosis; plants usually provide their fungal partners with carbohydrates from photosynthesis and receive mineral nutrients. It is observed that mycorrhizal inoculated plants observed large surface area of leaves and outsized root sections which were helpful in increasing the rate of photosynthetic processes. This may be attributed to the rapid production of carbohydrate for their fungal mate. The same phenomena can be observed in environments of high traffic density or waste burning, industrial zones (where there are emissions of CO2 from chimneys) or the areas that are lack nutrients such as nitrogen and phosphorus. It may be observed that the plants that have this association with mycorrhizal fungi may obligate a better chance in inhabiting this area. These plants can be helpful in reducing the CO2 from the polluted atmosphere. The large length of the roots were related to the absorption of water molecules for survival as well as formation of first organic complex CHO for providing the energy to the plant in biotic stress and C and nutrient exchange between fungal partner and plants.

  1. Arbuscular mycorrhizal symbiosis increases host plant acceptance and population growth rates of the two-spotted spider mite Tetranychus urticae.

    PubMed

    Hoffmann, Daniela; Vierheilig, Horst; Riegler, Petra; Schausberger, Peter

    2009-01-01

    Most terrestrial plants live in symbiosis with arbuscular mycorrhizal (AM) fungi. Studies on the direct interaction between plants and mycorrhizal fungi are numerous whereas studies on the indirect interaction between such fungi and herbivores feeding on aboveground plant parts are scarce. We studied the impact of AM symbiosis on host plant choice and life history of an acarine surface piercing-sucking herbivore, the polyphagous two-spotted spider mite Tetranychus urticae. Experiments were performed on detached leaflets taken from common bean plants (Phaseolus vulgaris) colonized or not colonized by the AM fungus Glomus mosseae. T. urticae females were subjected to choice tests between leaves from mycorrhizal and non-mycorrhizal plants. Juvenile survival and development, adult female survival, oviposition rate and offspring sex ratio were measured in order to estimate the population growth parameters of T. urticae on either substrate. Moreover, we analyzed the macro- and micronutrient concentration of the aboveground plant parts. Adult T. urticae females preferentially resided and oviposited on mycorrhizal versus non-mycorrhizal leaflets. AM symbiosis significantly decreased embryonic development time and increased the overall oviposition rate as well as the proportion of female offspring produced during peak oviposition. Altogether, the improved life history parameters resulted in significant changes in net reproductive rate, intrinsic rate of increase, doubling time and finite rate of increase. Aboveground parts of colonized plants showed higher concentrations of P and K whereas Mn and Zn were both found at lower levels. This is the first study documenting the effect of AM symbiosis on the population growth rates of a herbivore, tracking the changes in life history characteristics throughout the life cycle. We discuss the AM-plant-herbivore interaction in relation to plant quality, herbivore feeding type and site and the evolutionary implications in a multi

  2. Enhanced production of steviol glycosides in mycorrhizal plants: a concerted effect of arbuscular mycorrhizal symbiosis on transcription of biosynthetic genes.

    PubMed

    Mandal, Shantanu; Upadhyay, Shivangi; Singh, Ved Pal; Kapoor, Rupam

    2015-04-01

    Stevia rebaudiana (Bertoni) produces steviol glycosides (SGs)--stevioside (stev) and rebaudioside-A (reb-A) that are valued as low calorie sweeteners. Inoculation with arbuscular mycorrhizal fungi (AMF) augments SGs production, though the effect of this interaction on SGs biosynthesis has not been studied at molecular level. In this study transcription profiles of eleven key genes grouped under three stages of the SGs biosynthesis pathway were compared. The transcript analysis showed upregulation of genes encoding 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway enzymes viz.,1-deoxy-D-xylulose 5-phospate synthase (DXS), 1-deoxy-D-xylulose 5-phospate reductoisomerase (DXR) and 2-C-methyl-D-erytrithol 2,4-cyclodiphosphate synthase (MDS) in mycorrhizal (M) plants. Zn and Mn are imperative for the expression of MDS and their enhanced uptake in M plants could be responsible for the increased transcription of MDS. Furthermore, in the second stage of SGs biosynthesis pathway, mycorrhization enhanced the transcription of copalyl diphosphate synthase (CPPS) and kaurenoic acid hydroxylase (KAH). Their expression is decisive for SGs biosynthesis as CPPS regulates flow of metabolites towards synthesis of kaurenoid precursors and KAH directs these towards steviol synthesis instead of gibberellins. In the third stage glucosylation of steviol to reb-A by four specific uridine diphosphate (UDP)-dependent glycosyltransferases (UGTs) occurs. While higher transcription of all the three characterized UGTs in M plants explains augmented production of SGs; higher transcript levels of UGT76G1, specifically improved reb-A to stev ratio implying increased sweetness. The work signifies that AM symbiosis upregulates the transcription of all eleven SGs biosynthesis genes as a result of improved nutrition and enhanced sugar concentration due to increased photosynthesis in M plants. PMID:25734328

  3. Interrelationships between mycorrhizal symbiosis, soil pH and plant sex modify the performance of Antennaria dioica

    NASA Astrophysics Data System (ADS)

    Varga, Sandra; Kytöviita, Minna-Maarit

    2010-05-01

    AM symbiosis is usually beneficial for plants, but the benefits gained may depend on the soil abiotic factors. In dioecious plants, female and male individuals have different resource demands and allocation patterns. As a consequence of these differences, it is logical to assume that female and male plants differ in their relationship with arbuscular mycorrhizal (AM) fungi, although this has rarely been examined. We used a factorial greenhouse experiment to investigate whether female and male plants in the dioecious model species Antennaria dioica have a different relationship with their AM symbionts under two soil pH levels. In particular, we asked: (1) Do the sexes in A. dioica have sex-specific benefits from AM symbiosis? (2) If so, which sex gains the highest benefit? (3) How does soil pH affect the sex - AM fungal relationship? Our results indicate that the sexes responded similarly to AM symbiosis and pH when mycorrhizal benefit was examined as growth and phosphorus accumulation. However, the sexes differed in response to AM symbiosis in terms of survival, as mortality was increased due to AM symbiosis in female plants whilst the opposite effect was detected in males. The plant-AM fungus relationship was significantly affected by soil pH as lowering the soil pH decreased the benefits gained by the plants from the mycorrhizal fungus. Taken together, our findings indicate that AM symbiosis is beneficial for plants depending on the life history trait considered. In addition, interactions between plants and their AM symbionts are modified by soil factors and the sex of the plant.

  4. Auxin Perception Is Required for Arbuscule Development in Arbuscular Mycorrhizal Symbiosis1[W

    PubMed Central

    Etemadi, Mohammad; Gutjahr, Caroline; Couzigou, Jean-Malo; Zouine, Mohamed; Lauressergues, Dominique; Timmers, Antonius; Audran, Corinne; Bouzayen, Mondher; Bécard, Guillaume; Combier, Jean-Philippe

    2014-01-01

    Most land plant species live in symbiosis with arbuscular mycorrhizal fungi. These fungi differentiate essential functional structures called arbuscules in root cortical cells from which mineral nutrients are released to the plant. We investigated the role of microRNA393 (miR393), an miRNA that targets several auxin receptors, in arbuscular mycorrhizal root colonization. Expression of the precursors of the miR393 was down-regulated during mycorrhization in three different plant species: Solanum lycopersicum, Medicago truncatula, and Oryza sativa. Treatment of S. lycopersicum, M. truncatula, and O. sativa roots with concentrations of synthetic auxin analogs that did not affect root development stimulated mycorrhization, particularly arbuscule formation. DR5-GUS, a reporter for auxin response, was preferentially expressed in root cells containing arbuscules. Finally, overexpression of miR393 in root tissues resulted in down-regulation of auxin receptor genes (transport inhibitor response1 and auxin-related F box) and underdeveloped arbuscules in all three plant species. These results support the conclusion that miR393 is a negative regulator of arbuscule formation by hampering auxin perception in arbuscule-containing cells. PMID:25096975

  5. Expression of phenazine biosynthetic genes during the arbuscular mycorrhizal symbiosis of Glomus intraradices

    PubMed Central

    León-Martínez, Dionicia Gloria; Vielle-Calzada, Jean-Philippe; Olalde-Portugal, Víctor

    2012-01-01

    To explore the molecular mechanisms that prevail during the establishment of the arbuscular mycorrhiza symbiosis involving the genus Glomus, we transcriptionally analysed spores of Glomus intraradices BE3 during early hyphal growth. Among 458 transcripts initially identified as being expressed at presymbiotic stages, 20% of sequences had homology to previously characterized eukaryotic genes, 30% were homologous to fungal coding sequences, and 9% showed homology to previously characterized bacterial genes. Among them, GintPbr1a encodes a homolog to Phenazine Biosynthesis Regulator (Pbr) of Burkholderia cenocepacia, an pleiotropic regulatory protein that activates phenazine production through transcriptional activation of the protein D isochorismatase biosynthetic enzyme phzD (Ramos et al., 2010). Whereas GintPbr1a is expressed during the presymbiotic phase, the G. intraradices BE3 homolog of phzD (BGintphzD) is transcriptionally active at the time of the establishment of the arbuscular mycorrhizal symbiosis. DNA from isolated bacterial cultures found in spores of G. intraradices BE3 confirmed that both BGintPbr1a and BGintphzD are present in the genome of its potential endosymbionts. Taken together, our results indicate that spores of G. intraradices BE3 express bacterial phenazine biosynthetic genes at the onset of the fungal-plant symbiotic interaction. PMID:24031884

  6. Expression of phenazine biosynthetic genes during the arbuscular mycorrhizal symbiosis of Glomus intraradices.

    PubMed

    León-Martínez, Dionicia Gloria; Vielle-Calzada, Jean-Philippe; Olalde-Portugal, Víctor

    2012-04-01

    To explore the molecular mechanisms that prevail during the establishment of the arbuscular mycorrhiza symbiosis involving the genus Glomus, we transcriptionally analysed spores of Glomus intraradices BE3 during early hyphal growth. Among 458 transcripts initially identified as being expressed at presymbiotic stages, 20% of sequences had homology to previously characterized eukaryotic genes, 30% were homologous to fungal coding sequences, and 9% showed homology to previously characterized bacterial genes. Among them, GintPbr1a encodes a homolog to Phenazine Biosynthesis Regulator (Pbr) of Burkholderia cenocepacia, an pleiotropic regulatory protein that activates phenazine production through transcriptional activation of the protein D isochorismatase biosynthetic enzyme phzD (Ramos et al., 2010). Whereas GintPbr1a is expressed during the presymbiotic phase, the G. intraradices BE3 homolog of phzD (BGintphzD) is transcriptionally active at the time of the establishment of the arbuscular mycorrhizal symbiosis. DNA from isolated bacterial cultures found in spores of G. intraradices BE3 confirmed that both BGintPbr1a and BGintphzD are present in the genome of its potential endosymbionts. Taken together, our results indicate that spores of G. intraradices BE3 express bacterial phenazine biosynthetic genes at the onset of the fungal-plant symbiotic interaction. PMID:24031884

  7. Mycorrhizal-Mediated Lower Proline Accumulation in Poncirus trifoliata under Water Deficit Derives from the Integration of Inhibition of Proline Synthesis with Increase of Proline Degradation

    PubMed Central

    Zou, Ying-Ning; Wu, Qiang-Sheng; Huang, Yong-Ming; Ni, Qiu-Dan; He, Xin-Hua

    2013-01-01

    Proline accumulation was often correlated with drought tolerance of plants infected by arbuscular mycorrhizal fungi (AMF), whereas lower proline in some AM plants including citrus was also found under drought stress and the relevant mechanisms have not been fully elaborated. In this study proline accumulation and activity of key enzymes relative to proline biosynthesis (▵1-pyrroline-5-carboxylate synthetase, P5CS; ornithine-δ-aminotransferase, OAT) and degradation (proline dehydrogenase, ProDH) were determined in trifoliate orange (Poncirus trifoliata, a widely used citrus rootstock) inoculated with or without Funneliformis mosseae and under well-watered (WW) or water deficit (WD). AMF colonization significantly increased plant height, stem diameter, leaf number, root volume, biomass production of both leaves and roots and leaf relative water content, irrespectively of water status. Water deficit induced more tissue proline accumulation, in company with an increase of P5CS activity, but a decrease of OAT and ProDH activity, no matter whether under AM or no-AM. Compared with no-AM treatment, AM treatment resulted in lower proline concentration and content in leaf, root, and total plant under both WW and WD. The AMF colonization significantly decreased the activity of both P5CS and OAT in leaf, root, and total plant under WW and WD, except for an insignificant difference of root OAT under WD. The AMF inoculation also generally increased tissue ProDH activity under WW and WD. Plant proline content significantly positively correlated with plant P5CS activity, negatively with plant ProDH activity, but not with plant OAT activity. These results suggest that AM plants may suffer less from WD, thereby inducing lower proline accumulation, which derives from the integration of an inhibition of proline synthesis with an enhancement of proline degradation. PMID:24260421

  8. Mycorrhizal-mediated lower proline accumulation in Poncirus trifoliata under water deficit derives from the integration of inhibition of proline synthesis with increase of proline degradation.

    PubMed

    Zou, Ying-Ning; Wu, Qiang-Sheng; Huang, Yong-Ming; Ni, Qiu-Dan; He, Xin-Hua

    2013-01-01

    Proline accumulation was often correlated with drought tolerance of plants infected by arbuscular mycorrhizal fungi (AMF), whereas lower proline in some AM plants including citrus was also found under drought stress and the relevant mechanisms have not been fully elaborated. In this study proline accumulation and activity of key enzymes relative to proline biosynthesis (▵(1)-pyrroline-5-carboxylate synthetase, P5CS; ornithine-δ-aminotransferase, OAT) and degradation (proline dehydrogenase, ProDH) were determined in trifoliate orange (Poncirus trifoliata, a widely used citrus rootstock) inoculated with or without Funneliformis mosseae and under well-watered (WW) or water deficit (WD). AMF colonization significantly increased plant height, stem diameter, leaf number, root volume, biomass production of both leaves and roots and leaf relative water content, irrespectively of water status. Water deficit induced more tissue proline accumulation, in company with an increase of P5CS activity, but a decrease of OAT and ProDH activity, no matter whether under AM or no-AM. Compared with no-AM treatment, AM treatment resulted in lower proline concentration and content in leaf, root, and total plant under both WW and WD. The AMF colonization significantly decreased the activity of both P5CS and OAT in leaf, root, and total plant under WW and WD, except for an insignificant difference of root OAT under WD. The AMF inoculation also generally increased tissue ProDH activity under WW and WD. Plant proline content significantly positively correlated with plant P5CS activity, negatively with plant ProDH activity, but not with plant OAT activity. These results suggest that AM plants may suffer less from WD, thereby inducing lower proline accumulation, which derives from the integration of an inhibition of proline synthesis with an enhancement of proline degradation. PMID:24260421

  9. Arbuscular mycorrhizal symbiosis elicits shoot proteome changes that are modified during cadmium stress alleviation in Medicago truncatula

    PubMed Central

    2011-01-01

    Background Arbuscular mycorrhizal (AM) fungi, which engage a mutualistic symbiosis with the roots of most plant species, have received much attention for their ability to alleviate heavy metal stress in plants, including cadmium (Cd). While the molecular bases of Cd tolerance displayed by mycorrhizal plants have been extensively analysed in roots, very little is known regarding the mechanisms by which legume aboveground organs can escape metal toxicity upon AM symbiosis. As a model system to address this question, we used Glomus irregulare-colonised Medicago truncatula plants, which were previously shown to accumulate and tolerate heavy metal in their shoots when grown in a substrate spiked with 2 mg Cd kg-1. Results The measurement of three indicators for metal phytoextraction showed that shoots of mycorrhizal M. truncatula plants have a capacity for extracting Cd that is not related to an increase in root-to-shoot translocation rate, but to a high level of allocation plasticity. When analysing the photosynthetic performance in metal-treated mycorrhizal plants relative to those only Cd-supplied, it turned out that the presence of G. irregulare partially alleviated the negative effects of Cd on photosynthesis. To test the mechanisms by which shoots of Cd-treated mycorrhizal plants avoid metal toxicity, we performed a 2-DE/MALDI/TOF-based comparative proteomic analysis of the M. truncatula shoot responses upon mycorrhization and Cd exposure. Whereas the metal-responsive shoot proteins currently identified in non-mycorrhizal M. truncatula indicated that Cd impaired CO2 assimilation, the mycorrhiza-responsive shoot proteome was characterised by an increase in photosynthesis-related proteins coupled to a reduction in glugoneogenesis/glycolysis and antioxidant processes. By contrast, Cd was found to trigger the opposite response coupled the up-accumulation of molecular chaperones in shoot of mycorrhizal plants relative to those metal-free. Conclusion Besides drawing a

  10. Arbuscular mycorrhizal symbiosis influences arsenic accumulation and speciation in Medicago truncatula L. in arsenic-contaminated soil.

    PubMed

    Zhang, Xin; Ren, Bai-Hui; Wu, Song-Lin; Sun, Yu-Qing; Lin, Ge; Chen, Bao-Dong

    2015-01-01

    In two pot experiments, wild type and a non-mycorrhizal mutant (TR25:3-1) of Medicago truncatula were grown in arsenic (As)-contaminated soil to investigate the influences of arbuscular mycorrhizal fungi (AMF) on As accumulation and speciation in host plants. The results indicated that the plant biomass of M. truncatula was dramatically increased by AM symbiosis. Mycorrhizal colonization significantly increased phosphorus concentrations and decreased As concentrations in plants. Moreover, mycorrhizal colonization generally increased the percentage of arsenite in total As both in shoots and roots, while dimethylarsenic acid (DMA) was only detected in shoots of mycorrhizal plants. The results suggested that AMF are most likely to get involved in the methylating of inorganic As into less toxic organic DMA and also in the reduction of arsenate to arsenite. The study allowed a deeper insight into the As detoxification mechanisms in AM associations. By using the mutant M. truncatula, we demonstrated the importance of AMF in plant As tolerance under natural conditions. PMID:25016555

  11. Symbiosis with an endobacterium increases the fitness of a mycorrhizal fungus, raising its bioenergetic potential.

    PubMed

    Salvioli, Alessandra; Ghignone, Stefano; Novero, Mara; Navazio, Lorella; Venice, Francesco; Bagnaresi, Paolo; Bonfante, Paola

    2016-01-01

    Arbuscular mycorrhizal fungi (AMF) occur in the rhizosphere and in plant tissues as obligate symbionts, having key roles in plant evolution and nutrition. AMF possess endobacteria, and genome sequencing of the endobacterium Candidatus Glomeribacter gigasporarum revealed a reduced genome and a dependence on the fungal host. To understand the effect of bacteria on fungal fitness, we used next-generation sequencing to analyse the transcriptional profile of Gigaspora margarita in the presence and in the absence of its endobacterium. Genomic data on AMF are limited; therefore, we first generated a gene catalogue for G. margarita. Transcriptome analysis revealed that the endobacterium has a stronger effect on the pre-symbiotic phase of the fungus. Coupling transcriptomics with cell biology and physiological approaches, we demonstrate that the bacterium increases the fungal sporulation success, raises the fungal bioenergetic capacity, increasing ATP production, and eliciting mechanisms to detoxify reactive oxygen species. By using TAT peptide to translocate the bioluminescent calcium reporter aequorin, we demonstrated that the line with endobacteria had a lower basal intracellular calcium concentration than the cured line. Lastly, the bacteria seem to enhance the fungal responsiveness to strigolactones, the plant molecules that AMF perceive as branching factors. Although the endobacterium exacts a nutritional cost on the AMF, endobacterial symbiosis improves the fungal ecological fitness by priming mitochondrial metabolic pathways and giving the AMF more tools to face environmental stresses. Thus, we hypothesise that, as described for the human microbiota, endobacteria may increase AMF innate immunity. PMID:26046255

  12. Upscaling Arbuscular Mycorrhizal Symbiosis and Related Agroecosystems Services in Smallholder Farming Systems

    PubMed Central

    Oruru, Marjorie Bonareri; Njeru, Ezekiel Mugendi

    2016-01-01

    Smallholder farming systems form unique ecosystems that can protect beneficial soil biota and form an important source of useful genetic resources. They are characterized by high level of agricultural diversity mainly focused on meeting farmers' needs. Unfortunately, these systems often experience poor crop production mainly associated with poor planning and resource scarcity. Soil fertility is among the primary challenges faced by smallholder farmers, which necessitate the need to come up with affordable and innovative ways of replenishing soils. One such way is the use of microbial symbionts such as arbuscular mycorrhizal fungi (AMF), a beneficial group of soil microbiota that form symbiotic associations with majority of cultivated crops and play a vital role in biological soil fertility, plant nutrition, and protection. AMF can be incorporated in smallholder farming systems to help better exploit chemical fertilizers inputs which are often unaffordable to many smallholder farmers. The present review highlights smallholder farming practices that could be innovatively redesigned to increase AMF symbiosis and related agroecosystem services. Indeed, the future of global food security depends on the success of smallholder farming systems, whose crop productivity depends on the services provided by well-functioning ecosystems, including soil fertility. PMID:26942194

  13. Upscaling Arbuscular Mycorrhizal Symbiosis and Related Agroecosystems Services in Smallholder Farming Systems.

    PubMed

    Oruru, Marjorie Bonareri; Njeru, Ezekiel Mugendi

    2016-01-01

    Smallholder farming systems form unique ecosystems that can protect beneficial soil biota and form an important source of useful genetic resources. They are characterized by high level of agricultural diversity mainly focused on meeting farmers' needs. Unfortunately, these systems often experience poor crop production mainly associated with poor planning and resource scarcity. Soil fertility is among the primary challenges faced by smallholder farmers, which necessitate the need to come up with affordable and innovative ways of replenishing soils. One such way is the use of microbial symbionts such as arbuscular mycorrhizal fungi (AMF), a beneficial group of soil microbiota that form symbiotic associations with majority of cultivated crops and play a vital role in biological soil fertility, plant nutrition, and protection. AMF can be incorporated in smallholder farming systems to help better exploit chemical fertilizers inputs which are often unaffordable to many smallholder farmers. The present review highlights smallholder farming practices that could be innovatively redesigned to increase AMF symbiosis and related agroecosystem services. Indeed, the future of global food security depends on the success of smallholder farming systems, whose crop productivity depends on the services provided by well-functioning ecosystems, including soil fertility. PMID:26942194

  14. High phosphate reduces host ability to develop arbuscular mycorrhizal symbiosis without affecting root calcium spiking responses to the fungus

    PubMed Central

    Balzergue, Coline; Chabaud, Mireille; Barker, David G.; Bécard, Guillaume; Rochange, Soizic F.

    2013-01-01

    The arbuscular mycorrhizal symbiosis associates soil fungi with the roots of the majority of plants species and represents a major source of soil phosphorus acquisition. Mycorrhizal interactions begin with an exchange of molecular signals between the two partners. A root signaling pathway is recruited, for which the perception of fungal signals triggers oscillations of intracellular calcium concentration. High phosphate availability is known to inhibit the establishment and/or persistence of this symbiosis, thereby favoring the direct, non-symbiotic uptake of phosphorus by the root system. In this study, Medicago truncatula plants were used to investigate the effects of phosphate supply on the early stages of the interaction. When plants were supplied with high phosphate fungal attachment to the roots was drastically reduced. An experimental system was designed to individually study the effects of phosphate supply on the fungus, on the roots, and on root exudates. These experiments revealed that the most important effects of high phosphate supply were on the roots themselves, which became unable to host mycorrhizal fungi even when these had been appropriately stimulated. The ability of the roots to perceive their fungal partner was then investigated by monitoring nuclear calcium spiking in response to fungal signals. This response did not appear to be affected by high phosphate supply. In conclusion, high levels of phosphate predominantly impact the plant host, but apparently not in its ability to perceive the fungal partner. PMID:24194742

  15. The role of carbon in fungal nutrient uptake and transport: implications for resource exchange in the arbuscular mycorrhizal symbiosis.

    PubMed

    Fellbaum, Carl R; Mensah, Jerry A; Pfeffer, Philip E; Kiers, E Toby; Bücking, Heike

    2012-11-01

    The arbuscular mycorrhizal (AM) symbiosis, which forms between plant hosts and ubiquitous soil fungi of the phylum Glomeromycota, plays a key role for the nutrient uptake of the majority of land plants, including many economically important crop species. AM fungi take up nutrients from the soil and exchange them for photosynthetically fixed carbon from the host. While our understanding of the exact mechanisms controlling carbon and nutrient exchange is still limited, we recently demonstrated that (i) carbon acts as an important trigger for fungal N uptake and transport, (ii) the fungus changes its strategy in response to an exogenous supply of carbon, and that (iii) both plants and fungi reciprocally reward resources to those partners providing more benefit. Here, we summarize recent research findings and discuss the implications of these results for fungal and plant control of resource exchange in the AM symbiosis. PMID:22990447

  16. Ecto- and arbuscular mycorrhizal symbiosis can induce tolerance to toxic pulses of phosphorus in jarrah (Eucalyptus marginata) seedlings.

    PubMed

    Kariman, Khalil; Barker, Susan J; Finnegan, Patrick M; Tibbett, Mark

    2014-10-01

    In common with many plants native to low P soils, jarrah (Eucalyptus marginata) develops toxicity symptoms upon exposure to elevated phosphorus (P). Jarrah plants can establish arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) associations, along with a non-colonizing symbiosis described recently. AM colonization is known to influence the pattern of expression of genes required for P uptake of host plants and our aim was to investigate this phenomenon in relation to P sensitivity. Therefore, we examined the effect on hosts of the presence of AM and ECM fungi in combination with toxic pulses of P and assessed possible correlations between the induced tolerance and the shoot P concentration. The P transport dynamics of AM (Rhizophagus irregularis and Scutellospora calospora), ECM (Scleroderma sp.), non-colonizing symbiosis (Austroboletus occidentalis), dual mycorrhizal (R. irregularis and Scleroderma sp.), and non-mycorrhizal (NM) seedlings were monitored following two pulses of P. The ECM and A. occidentalis associations significantly enhanced the shoot P content of jarrah plants growing under P-deficient conditions. In addition, S. calospora, A. occidentalis, and Scleroderma sp. all stimulated plant growth significantly. All inoculated plants had significantly lower phytotoxicity symptoms compared to NM controls 7 days after addition of an elevated P dose (30 mg P kg(-1) soil). Following exposure to toxicity-inducing levels of P, the shoot P concentration was significantly lower in R. irregularis-inoculated and dually inoculated plants compared to NM controls. Although all inoculated plants had reduced toxicity symptoms and there was a positive linear relationship between rank and shoot P concentration, the protective effect was not necessarily explained by the type of fungal association or the extent of mycorrhizal colonization. PMID:24584781

  17. Mycorrhizal symbiosis produces changes in specific flavonoids in leaves of pepper plant (Capsicum annum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, experiments were performed to investigate if mycorrhizal plants grown under optimal growth conditions would improve crop quality compared to the non-mycorrhizal control. The results clearly showed that while mycorrhizal plants grown under an optimal nutrient supply did not increase t...

  18. Arbuscular mycorrhizal symbiosis and osmotic adjustment in response to NaCl stress: a meta-analysis

    PubMed Central

    Augé, Robert M.; Toler, Heather D.; Saxton, Arnold M.

    2014-01-01

    Arbuscular mycorrhizal (AM) symbiosis can enhance plant resistance to NaCl stress in several ways. Two fundamental roles involve osmotic and ionic adjustment. By stimulating accumulation of solutes, the symbiosis can help plants sustain optimal water balance and diminish Na+ toxicity. The size of the AM effect on osmolytes has varied widely and is unpredictable. We conducted a meta-analysis to determine the size of the AM effect on 22 plant solute characteristics after exposure to NaCl and to examine how experimental conditions have influenced the AM effect. Viewed across studies, AM symbioses have had marked effects on plant K+, increasing root and shoot K+ concentrations by an average of 47 and 42%, respectively, and root and shoot K+/Na+ ratios by 47 and 58%, respectively. Among organic solutes, soluble carbohydrates have been most impacted, with AM-induced increases of 28 and 19% in shoots and roots. The symbiosis has had no consistent effect on several characteristics, including root glycine betaine concentration, root or shoot Cl− concentrations, leaf Ψπ, or shoot proline or polyamine concentrations. The AM effect has been very small for shoot Ca++ concentration and root concentrations of Na+, Mg++ and proline. Interpretations about AM-conferred benefits regarding these compounds may be best gauged within the context of the individual studies. Shoot and root K+/Na+ ratios and root proline concentration showed significant between-study heterogeneity, and we examined nine moderator variables to explore what might explain the differences in mycorrhizal effects on these parameters. Moderators with significant impacts included AM taxa, host type, presence or absence of AM growth promotion, stress severity, and whether NaCl constituted part or all of the experimental saline stress treatment. Meta-regression of shoot K+/Na+ ratio showed a positive response to root colonization, and root K+/Na+ ratio a negative response to time of exposure to NaCl. PMID:25368626

  19. Expression analysis of aquaporins from desert truffle mycorrhizal symbiosis reveals a fine-tuned regulation under drought.

    PubMed

    Navarro-Ródenas, Alfonso; Bárzana, Gloria; Nicolás, Emilio; Carra, Andrea; Schubert, Andrea; Morte, Asunción

    2013-09-01

    We have performed the isolation, functional characterization, and expression analysis of aquaporins in roots and leaves of Helianthemum almeriense, in order to evaluate their roles in tolerance to water deficit. Five cDNAs, named HaPIP1;1, HaPIP1;2, HaPIP2;1, HaPIP2;2, and HaTIP1;1, were isolated from H. almeriense. A phylogenetic analysis of deduced proteins confirmed that they belong to the water channel proteins family. The HaPIP1;1, HaPIP2;1, and HaTIP1;1 genes encode functional water channel proteins, as indicated by expression assays in Saccharomyces cerevisiae, showing divergent roles in the transport of water, CO2, and NH3. The expression patterns of the genes isolated from H. almeriense and of a previously described gene from Terfezia claveryi (TcAQP1) were analyzed in mycorrhizal and nonmycorrhizal plants cultivated under well-watered or drought-stress conditions. Some of the studied aquaporins were subjected to fine-tuned expression only under drought-stress conditions. A beneficial effect on plant physiological parameters was observed in mycorrhizal plants with respect to nonmycorrhizal ones. Moreover, stress induced a change in the mycorrhizal type formed, which was more intracellular under drought stress. The combination of a high intracellular colonization, together with the fine-tuned expression of aquaporins could result in a morphophysiological adaptation of this symbiosis to drought conditions. PMID:23656332

  20. Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis

    PubMed Central

    Gomez, S Karen; Javot, Hélène; Deewatthanawong, Prasit; Torres-Jerez, Ivone; Tang, Yuhong; Blancaflor, Elison B; Udvardi, Michael K; Harrison, Maria J

    2009-01-01

    Background Most vascular flowering plants have the capacity to form symbiotic associations with arbuscular mycorrhizal (AM) fungi. The symbiosis develops in the roots where AM fungi colonize the root cortex and form arbuscules within the cortical cells. Arbuscules are enveloped in a novel plant membrane and their establishment requires the coordinated cellular activities of both symbiotic partners. The arbuscule-cortical cell interface is the primary functional interface of the symbiosis and is of central importance in nutrient exchange. To determine the molecular events the underlie arbuscule development and function, it is first necessary to identify genes that may play a role in this process. Toward this goal we used the Affymetrix GeneChip® Medicago Genome Array to document the M. truncatula transcript profiles associated with AM symbiosis, and then developed laser microdissection (LM) of M. truncatula root cortical cells to enable analyses of gene expression in individual cell types by RT-PCR. Results This approach led to the identification of novel M. truncatula and G. intraradices genes expressed in colonized cortical cells and in arbuscules. Within the arbuscule, expression of genes associated with the urea cycle, amino acid biosynthesis and cellular autophagy was detected. Analysis of gene expression in the colonized cortical cell revealed up-regulation of a lysine motif (LysM)-receptor like kinase, members of the GRAS transcription factor family and a symbiosis-specific ammonium transporter that is a likely candidate for mediating ammonium transport in the AM symbiosis. Conclusion Transcript profiling using the Affymetrix GeneChip® Medicago Genome Array provided new insights into gene expression in M. truncatula roots during AM symbiosis and revealed the existence of several G. intraradices genes on the M. truncatula GeneChip®. A laser microdissection protocol that incorporates low-melting temperature Steedman's wax, was developed to enable laser

  1. Mycothallic/mycorrhizal symbiosis of chlorophyllous gametophytes and sporophytes of a fern, Pellaea viridis (Forsk.) Prantl (Pellaeaceae, Pteridales).

    PubMed

    Turnau, K; Anielska, T; Jurkiewicz, A

    2005-03-01

    Gametophytes of Pellaea viridis that appeared spontaneously on the surface of substratum originating from an ultramafic area were found to form mycothallic symbiosis with arbuscular mycorrhizal fungi (AMF) under laboratory conditions. In gametophytes and sporophytes grown with Glomus tenue, abundant arbuscule formation was observed at both stages. In gametophytes, the fungus was found in the region where the rhizoids are initiated. If G. intraradices was added to the soil, the gametophytes were colonised mostly by G. tenue, and roots of sporophytes were colonised by G. intraradices. The presence of AM fungi in both gametophytes and sporophytes of P. viridis resulted in the development of larger leaf area and root length of the sporophyte. The analysis of gametophytes from the Botanical Garden in Krakow (Poland) showed that cordate gametophytes of Pteridales, namely Pellaea viridis (Pellaeaceae), Adiantum raddianum and A. formosum (Adiantaceae), were also mycothallic. PMID:15103546

  2. Elemental stoichiometry indicates predominant influence of potassium and phosphorus limitation on arbuscular mycorrhizal symbiosis in acidic soil at high altitude.

    PubMed

    Khan, Mohammad Haneef; Meghvansi, Mukesh K; Gupta, Rajeev; Veer, Vijay

    2015-09-15

    The functioning of high-altitude agro-ecosystems is constrained by the harsh environmental conditions, such as low temperatures, acidic soil, and low nutrient supply. It is therefore imperative to investigate the site-specific ecological stoichiometry with respect to AM symbiosis in order to maximize the arbuscular mycorrhizal (AM) benefits for the plants in such ecosystems. Here, we assess the elemental stoichiometry of four Capsicum genotypes grown on acidic soil at high altitude in Arunachal Pradesh, India. Further, we try to identify the predominant resource limitations influencing the symbioses of different Capsicum genotypes with the AM fungi. Foliar and soil elemental stoichiometric relations of Capsicum genotypes were evaluated with arbuscular mycorrhizal (AM) colonization and occurrence under field conditions. AM fungal diversity in rhizosphere, was estimated through PCR-DGGE profiling. Results demonstrated that the symbiotic interaction of various Capsicum genotypes with the AM fungi in acidic soil was not prominent in the study site as evident from the low range of root colonization (21-43.67%). In addition, despite the rich availability of carbon in plant leaves as well as in soil, the carbon-for-phosphorus trade between AMF and plants appeared to be limited. Our results provide strong evidences of predominant influence of the potassium-limitation, in addition to phosphorus-limitation, on AM symbiosis with Capsicum in acidic soil at high altitude. We also conclude that the potassium should be considered in addition to carbon, nitrogen, and phosphorus in further studies investigating the stoichiometric relationships with the AMF symbioses in high altitude agro-ecosystems. PMID:26555273

  3. Model systems to unravel the molecular mechanisms of heavy metal tolerance in the ericoid mycorrhizal symbiosis.

    PubMed

    Daghino, Stefania; Martino, Elena; Perotto, Silvia

    2016-05-01

    Ericoid mycorrhizal plants dominate in harsh environments where nutrient-poor, acidic soil conditions result in a higher availability of potentially toxic metals. Although metal-tolerant plant species and ecotypes are known in the Ericaceae, metal tolerance in these plants has been mainly attributed to their association with ericoid mycorrhizal fungi. The mechanisms underlying plant protection by the fungal symbiont are poorly understood, whereas some insights have been achieved regarding the molecular mechanisms of heavy metal tolerance in the fungal symbiont. This review will briefly introduce the general features of heavy metal tolerance in mycorrhizal fungi and will then focus on the use of "omics" approaches and heterologous expression in model organisms to reveal the molecular bases of fungal response to heavy metals. Functional complementation in Saccharomyces cerevisiae has allowed the identification of several ericoid mycorrhizal fungi genes (i.e., antioxidant enzymes, metal transporters, and DNA damage repair proteins) that may contribute to metal tolerance in a metal-tolerant ericoid Oidiodendron maius isolate. Although a powerful system, the use of the yeast complementation assay to study metal tolerance in mycorrhizal symbioses has limitations. Thus, O. maius has been developed as a model system to study heavy metal tolerance mechanisms in mycorrhizal fungi, thanks to its high metal tolerance, easy handling and in vitro mycorrhization, stable genetic transformation, genomics, transcriptomic and proteomic resources. PMID:26710764

  4. Symbiosis of Arbuscular Mycorrhizal Fungi and Robinia pseudoacacia L. Improves Root Tensile Strength and Soil Aggregate Stability.

    PubMed

    Zhang, Haoqiang; Liu, Zhenkun; Chen, Hui; Tang, Ming

    2016-01-01

    Robinia pseudoacacia L. (black locust) is a widely planted tree species on Loess Plateau for revegetation. Due to its symbiosis forming capability with arbuscular mycorrhizal (AM) fungi, we explored the influence of arbuscular mycorrhizal fungi on plant biomass, root morphology, root tensile strength and soil aggregate stability in a pot experiment. We inoculated R. pseudoacacia with/without AM fungus (Rhizophagus irregularis or Glomus versiforme), and measured root colonization, plant growth, root morphological characters, root tensile force and tensile strength, and parameters for soil aggregate stability at twelve weeks after inoculation. AM fungi colonized more than 70% plant root, significantly improved plant growth. Meanwhile, AM fungi elevated root morphological parameters, root tensile force, root tensile strength, Glomalin-related soil protein (GRSP) content in soil, and parameters for soil aggregate stability such as water stable aggregate (WSA), mean weight diameter (MWD) and geometric mean diameter (GMD). Root length was highly correlated with WSA, MWD and GMD, while hyphae length was highly correlated with GRSP content. The improved R. pseudoacacia growth, root tensile strength and soil aggregate stability indicated that AM fungi could accelerate soil fixation and stabilization with R. pseudoacacia, and its function in revegetation on Loess Plateau deserves more attention. PMID:27064570

  5. Extraradical development and contribution to plant performance of an arbuscular mycorrhizal symbiosis exposed to complete or partial rootzone drying.

    PubMed

    Neumann, Elke; Schmid, Barbara; Römheld, Volker; George, Eckhard

    2009-11-01

    Sweet potato plants were grown with or without Glomus intraradices in split-root pots with adjacent root compartments containing a soil with a low availability of phosphate. One fungal tube, from which root growth was excluded, was inserted into each root compartment. During 4 weeks before harvest, the soil moisture level in either both or only one of the two root-compartments of each pot was decreased. Controls remained well watered. Low soil moisture generally had a negative effect on the amount of extraradical mycelium of G. intraradices extracted from the fungal tubes. Sporulation in the fungal tubes was much higher compared with the soil in the root compartment, but remained unaffected by the soil moisture regime. Concentrations of P in extraradical mycelium were much lower than usually found in plants and fungi, while P concentrations in associated mycorrhizal host plant tissues were in an optimum range. This suggests efficient transfer of P from the extraradical mycelium to the host plant. Despite the negative effect of a low soil moisture regime on extraradical G. intraradices development, the symbiosis indeed contributed significantly to P uptake of plants exposed to partial rootzone drying. The possibility that extraradical arbuscular mycorrhizal fungal development was limited by P availability under dry soil conditions is discussed. PMID:19499252

  6. Symbiosis of Arbuscular Mycorrhizal Fungi and Robinia pseudoacacia L. Improves Root Tensile Strength and Soil Aggregate Stability

    PubMed Central

    Zhang, Haoqiang; Liu, Zhenkun; Chen, Hui; Tang, Ming

    2016-01-01

    Robinia pseudoacacia L. (black locust) is a widely planted tree species on Loess Plateau for revegetation. Due to its symbiosis forming capability with arbuscular mycorrhizal (AM) fungi, we explored the influence of arbuscular mycorrhizal fungi on plant biomass, root morphology, root tensile strength and soil aggregate stability in a pot experiment. We inoculated R. pseudoacacia with/without AM fungus (Rhizophagus irregularis or Glomus versiforme), and measured root colonization, plant growth, root morphological characters, root tensile force and tensile strength, and parameters for soil aggregate stability at twelve weeks after inoculation. AM fungi colonized more than 70% plant root, significantly improved plant growth. Meanwhile, AM fungi elevated root morphological parameters, root tensile force, root tensile strength, Glomalin-related soil protein (GRSP) content in soil, and parameters for soil aggregate stability such as water stable aggregate (WSA), mean weight diameter (MWD) and geometric mean diameter (GMD). Root length was highly correlated with WSA, MWD and GMD, while hyphae length was highly correlated with GRSP content. The improved R. pseudoacacia growth, root tensile strength and soil aggregate stability indicated that AM fungi could accelerate soil fixation and stabilization with R. pseudoacacia, and its function in revegetation on Loess Plateau deserves more attention. PMID:27064570

  7. Combined phosphate and nitrogen limitation generates a nutrient stress transcriptome favorable for arbuscular mycorrhizal symbiosis in Medicago truncatula.

    PubMed

    Bonneau, Laurent; Huguet, Stéphanie; Wipf, Daniel; Pauly, Nicolas; Truong, Hoai-Nam

    2013-07-01

    Arbuscular mycorrhizal (AM) symbiosis is stimulated by phosphorus (P) limitation and contributes to P and nitrogen (N) acquisition. However, the effects of combined P and N limitation on AM formation are largely unknown. Medicago truncatula plants were cultivated in the presence or absence of Rhizophagus irregularis (formerly Glomus intraradices) in P-limited (LP), N-limited (LN) or combined P- and N-limited (LPN) conditions, and compared with plants grown in sufficient P and N. The highest AM formation was observed in LPN, linked to systemic signaling by the plant nutrient status. Plant free phosphate concentrations were higher in LPN than in LP, as a result of cross-talk between P and N. Transcriptome analyses suggest that LPN induces the activation of NADPH oxidases in roots, concomitant with an altered profile of plant defense genes and a coordinate increase in the expression of genes involved in the methylerythritol phosphate and isoprenoid-derived pathways, including strigolactone synthesis genes. Taken together, these results suggest that low P and N fertilization systemically induces a physiological state of plants favorable for AM symbiosis despite their higher P status. Our findings highlight the importance of the plant nutrient status in controlling plant-fungus interaction. PMID:23506613

  8. Functional analysis of duplicated Symbiosis Receptor Kinase (SymRK) genes during nodulation and mycorrhizal infection in soybean (Glycine max).

    PubMed

    Indrasumunar, Arief; Wilde, Julia; Hayashi, Satomi; Li, Dongxue; Gresshoff, Peter M

    2015-03-15

    Association between legumes and rhizobia results in the formation of root nodules, where symbiotic nitrogen fixation occurs. The early stages of this association involve a complex of signalling events between the host and microsymbiont. Several genes dealing with early signal transduction have been cloned, and one of them encodes the leucine-rich repeat (LRR) receptor kinase (SymRK; also termed NORK). The Symbiosis Receptor Kinase gene is required by legumes to establish a root endosymbiosis with Rhizobium bacteria as well as mycorrhizal fungi. Using degenerate primer and BAC sequencing, we cloned duplicated SymRK homeologues in soybean called GmSymRKα and GmSymRKβ. These duplicated genes have high similarity of nucleotide (96%) and amino acid sequence (95%). Sequence analysis predicted a malectin-like domain within the extracellular domain of both genes. Several putative cis-acting elements were found in promoter regions of GmSymRKα and GmSymRKβ, suggesting a participation in lateral root development, cell division and peribacteroid membrane formation. The mutant of SymRK genes is not available in soybean; therefore, to know the functions of these genes, RNA interference (RNAi) of these duplicated genes was performed. For this purpose, RNAi construct of each gene was generated and introduced into the soybean genome by Agrobacterium rhizogenes-mediated hairy root transformation. RNAi of GmSymRKβ gene resulted in an increased reduction of nodulation and mycorrhizal infection than RNAi of GmSymRKα, suggesting it has the major activity of the duplicated gene pair. The results from the important crop legume soybean confirm the joint phenotypic action of GmSymRK genes in both mycorrhizal and rhizobial infection seen in model legumes. PMID:25617765

  9. The characterization of six auxin-induced tomato GH3 genes uncovers a member, SlGH3.4, strongly responsive to arbuscular mycorrhizal symbiosis.

    PubMed

    Liao, Dehua; Chen, Xiao; Chen, Aiqun; Wang, Huimin; Liu, Jianjian; Liu, Junli; Gu, Mian; Sun, Shubin; Xu, Guohua

    2015-04-01

    In plants, the GH3 gene family is widely considered to be involved in a broad range of plant physiological processes, through modulation of hormonal homeostasis. Multiple GH3 genes have been functionally characterized in several plant species; however, to date, limited works to study the GH3 genes in tomato have been reported. Here, we characterize the expression and regulatory profiles of six tomato GH3 genes, SlGH3.2, SlGH3.3, SlGH3.4, SlGH3.7, SlGH3.9 and SlGH3.15, in response to different phytohormone applications and arbuscular mycorrhizal (AM) fungal colonization. All six GH3 genes showed inducible responses to external IAA, and three members were significantly up-regulated in response to AM symbiosis. In particular, SlGH3.4, the transcripts of which were barely detectable under normal growth conditions, was strongly activated in the IAA-treated and AM fungal-colonized roots. A comparison of the SlGH3.4 expression in wild-type plants and M161, a mutant with a defect in AM symbiosis, confirmed that SlGH3.4 expression is highly correlated to mycorrhizal colonization. Histochemical staining demonstrated that a 2,258 bp SlGH3.4 promoter fragment could drive β-glucuronidase (GUS) expression strongly in root tips, steles and cortical cells of IAA-treated roots, but predominantly in the fungal-colonized cells of mycorrhizal roots. A truncated 654 bp promoter failed to direct GUS expression in IAA-treated roots, but maintained the symbiosis-induced activity in mycorrhizal roots. In summary, our results suggest that a mycorrhizal signaling pathway that is at least partially independent of the auxin signaling pathway has evolved for the co-regulation of the auxin- and mycorrhiza-activated GH3 genes in plants. PMID:25535196

  10. Gr and hp-1 tomato mutants unveil unprecedented interactions between arbuscular mycorrhizal symbiosis and fruit ripening

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The roots of plants interact with soil mycorrhizal fungi to facilitate soil nutrient acquisition by the plant and carbon transfer to the fungus. Here we use tomato fruit ripening mutations to demonstrate that this root interaction communicates with and supports genetic mechanisms associated with th...

  11. Mycorrhizal symbiosis effects on growth of chalk false-brome (Brachypodium pinnatum) are dependent on the environmental light regime.

    PubMed

    Füzy, Anna; Bothe, Hermann; Molnár, Edit; Biró, Borbála

    2014-03-01

    AMF (arbuscular mycorrhizal fungi) colonization of the grass chalk false-brome (Brachypodium pinnatum (L.) P. B.) was studied in selected habitats under spatially different light regimes: (a) shade condition under oak trees, (b) half shade in a shrubby area and (c) full-sun conditions on unshaded grassland. This study assessed the variations in AMF colonization of the grass dependent on the light supply in field habitats. Soil, root and shoot samples were collected four times during the vegetation period (in June, July, September and October). Root colonization, root and shoot biomass as well as soil water content were determined. The highest rate of AMF colonization was detected in June under half-sun and full-sun conditions, where about 50% of the roots were colonized. The average amount of arbuscules was less than 20% in the roots at the three sites, with the highest number of arbuscules in June, under half-sun and full-sun conditions, however, not under the trees. Overall, best mycorrhizal colonization occurred during summer, and its rate decreased in autumn. This tendency inversely correlated with the amount of precipitation, and thus with the water content of soils. The high colonization rate of the examined root samples, and also its seasonal fluctuation, might reflect the importance of the symbiosis where inorganic nutrients and water are the growth-limiting factors. The marginal AMF colonization of chalk false-brome under shade conditions indicates that plants do not use AMF under all stress conditions. When low light limits photosynthesis and thus growth of the plants, they dispense with the colonization of AMF in order to save the expenditure of organic carbon. PMID:24484951

  12. Cooperation through Competition—Dynamics and Microeconomics of a Minimal Nutrient Trade System in Arbuscular Mycorrhizal Symbiosis

    PubMed Central

    Schott, Stephan; Valdebenito, Braulio; Bustos, Daniel; Gomez-Porras, Judith L.; Sharma, Tripti; Dreyer, Ingo

    2016-01-01

    In arbuscular mycorrhizal (AM) symbiosis, fungi and plants exchange nutrients (sugars and phosphate, for instance) for reciprocal benefit. Until now it is not clear how this nutrient exchange system works. Here, we used computational cell biology to simulate the dynamics of a network of proton pumps and proton-coupled transporters that are upregulated during AM formation. We show that this minimal network is sufficient to describe accurately and realistically the nutrient trade system. By applying basic principles of microeconomics, we link the biophysics of transmembrane nutrient transport with the ecology of organismic interactions and straightforwardly explain macroscopic scenarios of the relations between plant and AM fungus. This computational cell biology study allows drawing far reaching hypotheses about the mechanism and the regulation of nutrient exchange and proposes that the “cooperation” between plant and fungus can be in fact the result of a competition between both for the same resources in the tiny periarbuscular space. The minimal model presented here may serve as benchmark to evaluate in future the performance of more complex models of AM nutrient exchange. As a first step toward this goal, we included SWEET sugar transporters in the model and show that their co-occurrence with proton-coupled sugar transporters results in a futile carbon cycle at the plant plasma membrane proposing that two different pathways for the same substrate should not be active at the same time. PMID:27446142

  13. Cooperation through Competition-Dynamics and Microeconomics of a Minimal Nutrient Trade System in Arbuscular Mycorrhizal Symbiosis.

    PubMed

    Schott, Stephan; Valdebenito, Braulio; Bustos, Daniel; Gomez-Porras, Judith L; Sharma, Tripti; Dreyer, Ingo

    2016-01-01

    In arbuscular mycorrhizal (AM) symbiosis, fungi and plants exchange nutrients (sugars and phosphate, for instance) for reciprocal benefit. Until now it is not clear how this nutrient exchange system works. Here, we used computational cell biology to simulate the dynamics of a network of proton pumps and proton-coupled transporters that are upregulated during AM formation. We show that this minimal network is sufficient to describe accurately and realistically the nutrient trade system. By applying basic principles of microeconomics, we link the biophysics of transmembrane nutrient transport with the ecology of organismic interactions and straightforwardly explain macroscopic scenarios of the relations between plant and AM fungus. This computational cell biology study allows drawing far reaching hypotheses about the mechanism and the regulation of nutrient exchange and proposes that the "cooperation" between plant and fungus can be in fact the result of a competition between both for the same resources in the tiny periarbuscular space. The minimal model presented here may serve as benchmark to evaluate in future the performance of more complex models of AM nutrient exchange. As a first step toward this goal, we included SWEET sugar transporters in the model and show that their co-occurrence with proton-coupled sugar transporters results in a futile carbon cycle at the plant plasma membrane proposing that two different pathways for the same substrate should not be active at the same time. PMID:27446142

  14. Nickel tolerance of serpentine and non-serpentine Knautia arvensis plants as affected by arbuscular mycorrhizal symbiosis.

    PubMed

    Doubková, Pavla; Sudová, Radka

    2014-04-01

    Serpentine soils have naturally elevated concentrations of certain heavy metals, including nickel. This study addressed the role of plant origin (serpentine vs. non-serpentine) and symbiosis with arbuscular mycorrhizal fungi (AMF) in plant Ni tolerance. A semi-hydroponic experiment involving three levels of Ni and serpentine and non-serpentine AMF isolates and populations of a model plant species (Knautia arvensis) revealed considerable negative effects of elevated Ni availability on both plant and fungal performance. Plant growth response to Ni was independent of edaphic origin; however, higher Ni tolerance of serpentine plants was indicated by a smaller decline in the concentrations of photosynthetic pigments and restricted root-to-shoot Ni translocation. Serpentine plants also retained relatively more Mg in their roots, resulting in a higher shoot Ca/Mg ratio. AMF inoculation, especially with the non-serpentine isolate, further aggravated Ni toxicity to host plants. Therefore, AMF do not appear to be involved in Ni tolerance of serpentine K. arvensis plants. PMID:24136374

  15. Arbuscular mycorrhizal symbiosis alleviates detrimental effects of saline reclaimed water in lettuce plants.

    PubMed

    Vicente-Sánchez, J; Nicolás, E; Pedrero, F; Alarcón, J J; Maestre-Valero, J F; Fernández, F

    2014-07-01

    The present study evaluated the effects of inoculation with arbuscular mycorrhizal fungi (AMF; Glomus iranicum var. tenuihypharum sp. nova) on the physiological performance and production of lettuce plants grown under greenhouse conditions and supplied with reclaimed water (RW; urban-treated wastewater with high electrical conductivity; 4.19 dS m(-1)). Four treatments, fresh water, fresh water plus AMF inoculation, RW and RW plus AMF inoculation, were applied and their effects, over time, analyzed. Root mycorrhizal colonization, plant biomass, leaf-ion content, stomatal conductance and net photosynthesis were assessed. Overall, our results highlight the significance of the AMF in alleviation of salt stress and their beneficial effects on plant growth and productivity. Inoculated plants increased the ability to acquire N, Ca, and K from both non-saline and saline media. Moreover, mycorrhization significantly reduced Na plant uptake. Under RW conditions, inoculated plants also showed a better performance of physiological parameters such as net photosynthesis, stomatal conductance and water-use efficiency than non-mycorrhizal plants. Additionally, the high concentration of nutrients already dissolved in reclaimed water suggested that adjustments in the calculation of the fertigation should be conducted by farmers. Finally, this experiment has proved that mycorrhization could be a suitable way to induce salt stress resistance in iceberg lettuce crops as plants supplied with reclaimed water satisfied minimum legal commercial size thresholds. Moreover, the maximum values of Escherichia coli in the reclaimed water were close to but never exceeded the international thresholds established (Spanish Royal Decree 1620/2007; Italian Decree, 2003) and hence lettuces were apt for sale. PMID:24287607

  16. Multiple control levels of root system remodeling in arbuscular mycorrhizal symbiosis

    PubMed Central

    Gutjahr, Caroline; Paszkowski, Uta

    2013-01-01

    In nature, the root systems of most plants develop intimate symbioses with glomeromycotan fungi that assist in the acquisition of mineral nutrients and water through uptake from the soil and direct delivery into the root cortex. Root systems are endowed with a strong, environment-responsive architectural plasticity that also manifests itself during the establishment of arbuscular mycorrhizal (AM) symbioses, predominantly in lateral root proliferation. In this review, we collect evidence for the idea that AM-induced root system remodeling is regulated at several levels: by AM fungal signaling molecules and by changes in plant nutrient status and distribution within the root system. PMID:23785383

  17. Integrated multi-omics analysis supports role of lysophosphatidylcholine and related glycerophospholipids in the Lotus japonicus-Glomus intraradices mycorrhizal symbiosis.

    PubMed

    Vijayakumar, Vinod; Liebisch, Gerhard; Buer, Benjamin; Xue, Li; Gerlach, Nina; Blau, Samira; Schmitz, Jessica; Bucher, Marcel

    2016-02-01

    Interaction of plant roots with arbuscular mycorrhizal fungi (AMF) is a complex trait resulting in cooperative interactions among the two symbionts including bidirectional exchange of resources. To study arbuscular mycorrhizal symbiosis (AMS) trait variation in the model plant Lotus japonicus, we performed an integrated multi-omics analysis with a focus on plant and fungal phospholipid (PL) metabolism and biological significance of lysophosphatidylcholine (LPC). Our results support the role of LPC as a bioactive compound eliciting cellular and molecular response mechanisms in Lotus. Evidence is provided for large interspecific chemical diversity of LPC species among mycorrhizae with related AMF species. Lipid, gene expression and elemental profiling emphasize the Lotus-Glomus intraradices interaction as distinct from other arbuscular mycorrhizal (AM) interactions. In G. intraradices, genes involved in fatty acid (FA) elongation and biosynthesis of unsaturated FAs were enhanced, while in Lotus, FA synthesis genes were up-regulated during AMS. Furthermore, FAS protein localization to mitochondria suggests FA biosynthesis and elongation may also occur in AMF. Our results suggest the existence of interspecific partitioning of PL resources for generation of LPC and novel candidate bioactive PLs in the Lotus-G. intraradices symbiosis. Moreover, the data advocate research with phylogenetically diverse Glomeromycota species for a broader understanding of the molecular underpinnings of AMS. PMID:26297195

  18. Diversity Effects on Productivity Are Stronger within than between Trophic Groups in the Arbuscular Mycorrhizal Symbiosis

    PubMed Central

    Koch, Alexander M.; Antunes, Pedro M.; Klironomos, John N.

    2012-01-01

    Background The diversity of plants and arbuscular mycorrhizal fungi (AMF) has been experimentally shown to alter plant and AMF productivity. However, little is known about how plant and AMF diversity interact to shape their respective productivity. Methodology/Principal Findings We co-manipulated the diversity of both AMF and plant communities in two greenhouse studies to determine whether the productivity of each trophic group is mainly influenced by plant or AMF diversity, respectively, and whether there is any interaction between plant and fungal diversity. In both experiments we compared the productivity of three different plant species monocultures, or their respective 3-species mixtures. Similarly, in both studies these plant treatments were crossed with an AMF diversity gradient that ranged from zero (non-mycorrhizal controls) to a maximum of three and five taxonomically distinct AMF taxa, respectively. We found that within both trophic groups productivity was significantly influenced by taxon identity, and increased with taxon richness. These main effects of AMF and plant diversity on their respective productivities did not depend on each other, even though we detected significant individual taxon effects across trophic groups. Conclusions/Significance Our results indicate that similar ecological processes regulate diversity-productivity relationships within trophic groups. However, productivity-diversity relationships are not necessarily correlated across interacting trophic levels, leading to asymmetries and possible biotic feedbacks. Thus, biotic interactions within and across trophic groups should be considered in predictive models of community assembly. PMID:22629347

  19. Dehydrogenase genes in the ectomycorrhizal fungus Tricholoma vaccinum: A role for Ald1 in mycorrhizal symbiosis.

    PubMed

    Henke, Catarina; Jung, Elke-Martina; Voit, Annekatrin; Kothe, Erika; Krause, Katrin

    2016-02-01

    Ectomycorrhizal symbiosis is important for forest ecosystem functioning with tree-fungal cooperation increasing performance and countering stress conditions. Aldehyde dehydrogenases (ALDHs) are key enzymes for detoxification and thus may play a role in stress response of the symbiotic association. With this focus, eight dehydrogenases, Ald1 through Ald7 and TyrA, of the ectomycorrhizal basidiomycete Tricholoma vaccinum were characterized and phylogenetically investigated. Functional analysis was performed through differential expression analysis by feeding different, environmentally important substances. A strong effect of indole-3-acetic acid (IAA) was identified, linking mycorrhiza formation and auxin signaling between the symbiosis partners. We investigated ald1 overexpressing strains for performance in mycorrhiza with the host tree spruce (Picea abies) and observed an increased width of the apoplast, accommodating the Hartig' net hyphae of the T. vaccinum over-expressing transformants. The results support a role for Ald1 in ectomycorrhiza formation and underline functional differentiation within fungal aldehyde dehydrogenases in the family 1 of ALDHs. PMID:26344933

  20. Arbuscular mycorrhizal symbiosis affects the grain proteome of Zea mays: a field study.

    PubMed

    Bona, Elisa; Scarafoni, Alessio; Marsano, Francesco; Boatti, Lara; Copetta, Andrea; Massa, Nadia; Gamalero, Elisa; D'Agostino, Giovanni; Cesaro, Patrizia; Cavaletto, Maria; Berta, Graziella

    2016-01-01

    Maize is one of the most important crops worldwide and is strongly dependent on arbuscular mycorrhiza (AM) fungi, organisms that form a mutualistic association with land plants. In maize, AM symbiosis enhances spike dry weight, spike length, spike circumference, and the dry weight and dimensions of the grain. Notwithstanding its ubiquitous nature, the detailed relationship between AM fungal colonization and plant development is not completely understood. To facilitate a better understanding of the effects of AM fungi on plants, the work reported here assessed the effects of a consortium of AM fungi on the kernel proteome of maize, cultivated in open-field conditions. To our knowledge, this is the first report of the modulation of a plant seed proteome following AM fungal inoculation in the field. Here, it was found that AM fungi modify the maize seed proteome by up-regulating enzymes involved in energetic metabolism, embryo development, nucleotide metabolism, seed storage and stress responses. PMID:27216714

  1. Arbuscular mycorrhizal symbiosis affects the grain proteome of Zea mays: a field study

    PubMed Central

    Bona, Elisa; Scarafoni, Alessio; Marsano, Francesco; Boatti, Lara; Copetta, Andrea; Massa, Nadia; Gamalero, Elisa; D’Agostino, Giovanni; Cesaro, Patrizia; Cavaletto, Maria; Berta, Graziella

    2016-01-01

    Maize is one of the most important crops worldwide and is strongly dependent on arbuscular mycorrhiza (AM) fungi, organisms that form a mutualistic association with land plants. In maize, AM symbiosis enhances spike dry weight, spike length, spike circumference, and the dry weight and dimensions of the grain. Notwithstanding its ubiquitous nature, the detailed relationship between AM fungal colonization and plant development is not completely understood. To facilitate a better understanding of the effects of AM fungi on plants, the work reported here assessed the effects of a consortium of AM fungi on the kernel proteome of maize, cultivated in open-field conditions. To our knowledge, this is the first report of the modulation of a plant seed proteome following AM fungal inoculation in the field. Here, it was found that AM fungi modify the maize seed proteome by up-regulating enzymes involved in energetic metabolism, embryo development, nucleotide metabolism, seed storage and stress responses. PMID:27216714

  2. The H+-ATPase HA1 of Medicago truncatula Is Essential for Phosphate Transport and Plant Growth during Arbuscular Mycorrhizal Symbiosis.

    PubMed

    Krajinski, Franziska; Courty, Pierre-Emmanuel; Sieh, Daniela; Franken, Philipp; Zhang, Haoqiang; Bucher, Marcel; Gerlach, Nina; Kryvoruchko, Igor; Zoeller, Daniela; Udvardi, Michael; Hause, Bettina

    2014-04-29

    A key feature of arbuscular mycorrhizal symbiosis is improved phosphorus nutrition of the host plant via the mycorrhizal pathway, i.e., the fungal uptake of Pi from the soil and its release from arbuscules within root cells. Efficient transport of Pi from the fungus to plant cells is thought to require a proton gradient across the periarbuscular membrane (PAM) that separates fungal arbuscules from the host cell cytoplasm. Previous studies showed that the H(+)-ATPase gene HA1 is expressed specifically in arbuscule-containing root cells of Medicago truncatula. We isolated a ha1-2 mutant of M. truncatula and found it to be impaired in the development of arbuscules but not in root colonization by Rhizophagus irregularis hyphae. Artificial microRNA silencing of HA1 recapitulated this phenotype, resulting in small and truncated arbuscules. Unlike the wild type, the ha1-2 mutant failed to show a positive growth response to mycorrhizal colonization under Pi-limiting conditions. Uptake experiments confirmed that ha1-2 mutants are unable to take up phosphate via the mycorrhizal pathway. Increased pH in the apoplast of abnormal arbuscule-containing cells of the ha1-2 mutant compared with the wild type suggests that HA1 is crucial for building a proton gradient across the PAM and therefore is indispensible for the transfer of Pi from the fungus to the plant. PMID:24781114

  3. The arbuscular mycorrhizal symbiosis promotes the systemic induction of regulatory defence-related genes in rice leaves and confers resistance to pathogen infection.

    PubMed

    Campos-Soriano, Lidia; García-Martínez, José; San Segundo, Blanca

    2012-08-01

    Arbuscular mycorrhizal (AM) symbioses are mutualistic associations between soil fungi and most vascular plants. Their association benefits the host plant by improving nutrition, mainly phosphorus nutrition, and by providing increased capability to cope with adverse conditions. In this study, we investigated the transcriptional changes triggered in rice leaves as a result of AM symbiosis, focusing on the relevance of the plant defence response. We showed that root colonization by the AM fungus Glomus intraradices is accompanied by the systemic induction of genes that play a regulatory role in the host defence response, such as OsNPR1, OsAP2, OsEREBP and OsJAmyb. Genes involved in signal transduction processes (OsDUF26 and OsMPK6) and genes that function in calcium-mediated signalling processes (OsCBP, OsCaM and OsCML4) are also up-regulated in leaves of mycorrhizal rice plants in the absence of pathogen infection. In addition, the mycorrhizal rice plants exhibit a stronger induction of defence marker genes [i.e. pathogenesis-related (PR) genes] in their leaves in response to infection by the blast fungus Magnaporthe oryzae. Evidence indicates that mycorrhizal rice plants show enhanced resistance to the rice blast fungus. Overall, these results suggest that the protective effect of the AM symbiosis in rice plants relies on both the systemic activation of defence regulatory genes in the absence of pathogen challenge and the priming for stronger expression of defence effector genes during pathogen infection. The possible mechanisms involved in the mycorrhiza-induced resistance to M. oryzae infection are discussed. PMID:22212404

  4. New insights into the regulation of aquaporins by the arbuscular mycorrhizal symbiosis in maize plants under drought stress and possible implications for plant performance.

    PubMed

    Bárzana, Gloria; Aroca, Ricardo; Bienert, Gerd Patrick; Chaumont, François; Ruiz-Lozano, Juan Manuel

    2014-04-01

    The relationship between modulation by arbuscular mycorrhizae (AM) of aquaporin expression in the host plant and changes in root hydraulic conductance, plant water status, and performance under stressful conditions is not well known. This investigation aimed to elucidate how the AM symbiosis modulates the expression of the whole set of aquaporin genes in maize plants under different growing and drought stress conditions, as well as to characterize some of these aquaporins in order to shed further light on the molecules that may be involved in the mycorrhizal responses to drought. The AM symbiosis regulated a wide number of aquaporins in the host plant, comprising members of the different aquaporin subfamilies. The regulation of these genes depends on the watering conditions and the severity of the drought stress imposed. Some of these aquaporins can transport water and also other molecules which are of physiological importance for plant performance. AM plants grew and developed better than non-AM plants under the different conditions assayed. Thus, for the first time, this study relates the well-known better performance of AM plants under drought stress to not only the water movement in their tissues but also the mobilization of N compounds, glycerol, signaling molecules, or metalloids with a role in abiotic stress tolerance. Future studies should elucidate the specific function of each aquaporin isoform regulated by the AM symbiosis in order to shed further light on how the symbiosis alters the plant fitness under stressful conditions. PMID:24593244

  5. A rice calcium-dependent protein kinase is expressed in cortical root cells during the presymbiotic phase of the arbuscular mycorrhizal symbiosis

    PubMed Central

    2011-01-01

    Background The arbuscular mycorrhizal (AM) symbiosis consists of a mutualistic relationship between soil fungi and roots of most plant species. This association provides the arbuscular mycorrhizal fungus with sugars while the fungus improves the uptake of water and mineral nutrients in the host plant. Then, the establishment of the arbuscular mycorrhizal (AM) symbiosis requires the fine tuning of host gene expression for recognition and accommodation of the fungal symbiont. In plants, calcium plays a key role as second messenger during developmental processes and responses to environmental stimuli. Even though calcium transients are known to occur in host cells during the AM symbiosis, the decoding of the calcium signal and the molecular events downstream are only poorly understood. Results The expression of seventeen Calcium-dependent Protein Kinase (CPK) genes representative of the four distinct phylogenetic groups of rice CPKs was monitored during the presymbiotic phase of the AM symbiosis. Among them, OsCPK18 and OsCPK4, were found to be transcriptionally activated in response to inoculation with the AM fungus Glomus intraradices. OsCPK18 and OsCPK4 gene expression was also up-regulated by fungal-produced diffusible molecules. Laser microdissection revealed expression of OsCPK18 in cortical cells, and not in epidermal cells of G. intraradices-inoculated rice roots, suggesting a preferential role of this gene in the root cortex. Moreover, a plasma membrane localization of OsCPK18 was observed by transient expression assays of green fluorescent protein-tagged OsCPK18 in onion epidermal cells. We also show that the myristoylation site of the OsCPK18 N-terminus is required for plasma membrane targeting. Conclusion The rapid activation of OsCPK18 expression in response to AM inoculation, its expression being also induced by fungal-secreted signals, together with the observed plasma membrane localization of OsCPK18, points to a role for OsCPK18 in perception of the

  6. Screening for differentially expressed genes in Anoectochilus roxburghii (Orchidaceae) during symbiosis with the mycorrhizal fungus Epulorhiza sp.

    PubMed

    Li, Biao; Tang, Mingjuan; Tang, Kun; Zhao, Lifang; Guo, Shunxing

    2012-02-01

    Mycorrhizal fungi promote the growth and development of plants, including medicinal plants. The mechanisms by which this growth promotion occurs are of theoretical interest and practical importance to agriculture. Here, an endophytic fungus (AR-18) was isolated from roots of the orchid Anoectochilus roxburghii growing in the wild, and identified as Epulorhiza sp. Tissue-cultured seedlings of A. roxburghii were inoculated with AR-18 and co-cultured for 60 d. Endotrophic mycorrhiza formed and the growth of A. roxburghii was markedly promoted by the fungus. To identify genes in A. roxburghii that were differentially expressed during the symbiosis with AR-18, we used the differential display reverse transcription polymerase chain reaction (DDRT-PCR) method to compare the transcriptomes between seedlings inoculated with the fungus and control seedlings. We amplified 52 DDRT-PCR bands using 15 primer combinations of three anchor primers and five arbitrary primers, and nine bands were re-amplified by double primers. Reverse Northern blot analyses were used to further screen the bands. Five clones were up-regulated in the symbiotic interaction, including genes encoding a uracil phosphoribosyltransferase (UPRTs; EC 2.4.2.9) and a hypothetical protein. One gene encoding an amino acid transmembrane transporter was down-regulated, and one gene encoding a tRNA-Lys (trnK) and a maturase K (matK) pseudogene were expressed only in the inoculated seedlings. The possible roles of the above genes, especially the UPRTs and matK genes, are discussed in relation to the fungal interaction. This study is the first of its type in A. roxburghii. PMID:22415688

  7. Promiscuous arbuscular mycorrhizal symbiosis of yam (Dioscorea spp.), a key staple crop in West Africa.

    PubMed

    Tchabi, Atti; Burger, Stefanie; Coyne, Danny; Hountondji, Fabien; Lawouin, Louis; Wiemken, Andres; Oehl, Fritz

    2009-08-01

    Yam (Dioscorea spp.) is a tuberous staple food crop of major importance in the sub-Saharan savannas of West Africa. Optimal yields commonly are obtained only in the first year following slash-and-burn in the shifting cultivation systems. It appears that the yield decline in subsequent years is not merely caused by soil nutrient depletion but might be due to a loss of the beneficial soil microflora, including arbuscular mycorrhizal fungi (AMF), associated with tropical "tree-aspect" savannas and dry forests that are the natural habitats of the wild relatives of yam. Our objective was to study the AMF communities of natural savannas and adjacent yam fields in the Southern Guinea savanna of Benin. AMF were identified by morphotyping spores in the soil from the field sites and in AMF trap cultures with Sorghum bicolor and yam (Dioscorea rotundata and Dioscorea cayenensis) as bait plants. AMF species richness was higher in the savanna than in the yam-field soils (18-25 vs. 11-16 spp.), but similar for both ecosystems (29-36 spp.) according to the observations in trap cultures. Inoculation of trap cultures with soil sampled during the dry season led to high AMF root colonization, spore production, and species richness (overall 45 spp.) whereas inoculation with wet-season soil was inefficient (two spp. only). The use of D. cayenensis and D. rotundata as baits yielded 28 and 29 AMF species, respectively, and S. bicolor 37 species. AMF root colonization, however, was higher in yam than in sorghum (70-95 vs. 11-20%). After 8 months of trap culturing, the mycorrhizal yam had a higher tuber biomass than the nonmycorrhizal controls. The AMF actually colonizing D. rotundata roots in the field were also studied using a novel field sampling procedure for molecular analyses. Multiple phylotaxa were detected that corresponded with the spore morphotypes observed. It is, therefore, likely that the legacy of indigenous AMF from the natural savanna plays a crucial role for yam

  8. RNA silencing in the model mycorrhizal fungus Laccaria bicolor: gene knock-down of nitrate reductase results in inhibition of symbiosis with Populus.

    PubMed

    Kemppainen, Minna; Duplessis, Sébastien; Martin, Francis; Pardo, Alejandro G

    2009-07-01

    Mycorrhizal symbioses are a rule in nature and may have been crucial in plant and fungal evolution. Ectomycorrhizas are mutualistic interactions between tree roots and soil fungi typical of temperate and boreal forests. The functional analysis of genes involved in developmental and metabolic processes, such as N nutrition, is important to understand the ontogeny of this mutualistic symbiosis. RNA silencing was accomplished in the model mycorrhizal fungus Laccaria bicolor by Agrobacterium-mediated gene transfer. Promoter-directed expression of double-stranded RNA with a partial coding sequence of the Laccaria nitrate reductase gene resulted in fungal transgenic strains strongly affected in growth with nitrate as N source in a medium with high concentration of an utilizable C source. The phenotype correlated with a clear reduction of the target gene mRNA level and this effect was not caused by homologous recombination of the T-DNA in the nitrate reductase locus. Transformation with the hairpin sequence resulted in specific CpG methylation of both the silenced transgene and the nitrate reductase encoding gene. The methylation in the target gene was restricted to the silencing trigger sequence and did not represent the entire genomic DNA in the dikaryon suggesting that the epigenetic changes accompanying RNA silencing affected only the transformed nucleus. Mycorrhization experiments of Populus with strongly silenced fungal strains revealed a systematic inhibition of symbiosis under mycorrhization conditions (C starvation) and nitrate as N source compared with the wild type. This inhibition of mycorrhization was reversed by an organic N source only utilizable by the fungus. These observations would indicate that the plant may be capable of monitoring and detecting the nutritional status of a potential symbiont avoiding the establishment of an unsatisfactory interaction. A probable control mechanism conducted by the plant would inhibit symbiosis when the metabolic

  9. Strigolactone-Induced Putative Secreted Protein 1 Is Required for the Establishment of Symbiosis by the Arbuscular Mycorrhizal Fungus Rhizophagus irregularis.

    PubMed

    Tsuzuki, Syusaku; Handa, Yoshihiro; Takeda, Naoya; Kawaguchi, Masayoshi

    2016-04-01

    Arbuscular mycorrhizal (AM) symbiosis is the most widespread association between plants and fungi. To provide novel insights into the molecular mechanisms of AM symbiosis, we screened and investigated genes of the AM fungus Rhizophagus irregularis that contribute to the infection of host plants. R. irregularis genes involved in the infection were explored by RNA-sequencing (RNA-seq) analysis. One of the identified genes was then characterized by a reverse genetic approach using host-induced gene silencing (HIGS), which causes RNA interference in the fungus via the host plant. The RNA-seq analysis revealed that 19 genes are up-regulated by both treatment with strigolactone (SL) (a plant symbiotic signal) and symbiosis. Eleven of the 19 genes were predicted to encode secreted proteins and, of these, SL-induced putative secreted protein 1 (SIS1) showed the largest induction under both conditions. In hairy roots of Medicago truncatula, SIS1 expression is knocked down by HIGS, resulting in significant suppression of colonization and formation of stunted arbuscules. These results suggest that SIS1 is a putative secreted protein that is induced in a wide spatiotemporal range including both the presymbiotic and symbiotic stages and that SIS1 positively regulates colonization of host plants by R. irregularis. PMID:26757243

  10. The symbiosis with the arbuscular mycorrhizal fungus Rhizophagus irregularis drives root water transport in flooded tomato plants.

    PubMed

    Calvo-Polanco, Monica; Molina, Sonia; Zamarreño, Angel María; García-Mina, Jose María; Aroca, Ricardo

    2014-05-01

    It is known that the presence of arbuscular mycorrhizal fungi within the plant roots enhances the tolerance of the host plant to different environmental stresses, although the positive effect of the fungi in plants under waterlogged conditions has not been well studied. Tolerance of plants to flooding can be achieved through different molecular, physiological and anatomical adaptations, which will affect their water uptake capacity and therefore their root hydraulic properties. Here, we investigated the root hydraulic properties under non-flooded and flooded conditions in non-mycorrhizal tomato plants and plants inoculated with the arbuscular mycorrhizal fungus Rhizophagus irregularis. Only flooded mycorrhizal plants increased their root hydraulic conductivity, and this effect was correlated with a higher expression of the plant aquaporin SlPIP1;7 and the fungal aquaporin GintAQP1. There was also a higher abundance of the PIP2 protein phoshorylated at Ser280 in mycorrhizal flooded plants. The role of plant hormones (ethylene, ABA and IAA) in root hydraulic properties was also taken into consideration, and it was concluded that, in mycorrhizal flooded plants, ethylene has a secondary role regulating root hydraulic conductivity whereas IAA may be the key hormone that allows the enhancement of root hydraulic conductivity in mycorrhizal plants under low oxygen conditions. PMID:24553847

  11. Arbuscular mycorrhizal symbiosis increases relative apoplastic water flow in roots of the host plant under both well-watered and drought stress conditions

    PubMed Central

    Bárzana, Gloria; Aroca, Ricardo; Paz, José Antonio; Chaumont, François; Martinez-Ballesta, Mari Carmen; Carvajal, Micaela; Ruiz-Lozano, Juan Manuel

    2012-01-01

    Background and Aims The movement of water through mycorrhizal fungal tissues and between the fungus and roots is little understood. It has been demonstrated that arbuscular mycorrhizal (AM) symbiosis regulates root hydraulic properties, including root hydraulic conductivity. However, it is not clear whether this effect is due to a regulation of root aquaporins (cell-to-cell pathway) or to enhanced apoplastic water flow. Here we measured the relative contributions of the apoplastic versus the cell-to-cell pathway for water movement in roots of AM and non-AM plants. Methods We used a combination of two experiments using the apoplastic tracer dye light green SF yellowish and sodium azide as an inhibitor of aquaporin activity. Plant water and physiological status, root hydraulic conductivity and apoplastic water flow were measured. Key Results Roots of AM plants enhanced significantly relative apoplastic water flow as compared with non-AM plants and this increase was evident under both well-watered and drought stress conditions. The presence of the AM fungus in the roots of the host plants was able to modulate the switching between apoplastic and cell-to-cell water transport pathways. Conclusions The ability of AM plants to switch between water transport pathways could allow a higher flexibility in the response of these plants to water shortage according to the demand from the shoot. PMID:22294476

  12. Difference in Striga-susceptibility is reflected in strigolactone secretion profile, but not in compatibility and host preference in arbuscular mycorrhizal symbiosis in two maize cultivars.

    PubMed

    Yoneyama, Kaori; Arakawa, Ryota; Ishimoto, Keiko; Kim, Hyun Il; Kisugi, Takaya; Xie, Xiaonan; Nomura, Takahito; Kanampiu, Fred; Yokota, Takao; Ezawa, Tatsuhiro; Yoneyama, Koichi

    2015-05-01

    Strigolactones released from plant roots trigger both seed germination of parasitic weeds such as Striga spp. and hyphal branching of the symbionts arbuscular mycorrhizal (AM) fungi. Generally, strigolactone composition in exudates is quantitatively and qualitatively different among plants, which may be involved in susceptibility and host specificity in the parasite-plant interactions. We hypothesized that difference in strigolactone composition would have a significant impact on compatibility and host specificity/preference in AM symbiosis. Strigolactones in root exudates of Striga-susceptible (Pioneer 3253) and -resistant (KST 94) maize (Zea mays) cultivars were characterized by LC-MS/MS combined with germination assay using Striga hermonthica seeds. Levels of colonization and community compositions of AM fungi in the two cultivars were investigated in field and glasshouse experiments. 5-Deoxystrigol was exuded exclusively by the susceptible cultivar, while the resistant cultivar mainly exuded sorgomol. Despite the distinctive difference in strigolactone composition, the levels of AM colonization and the community compositions were not different between the cultivars. The present study demonstrated that the difference in strigolactone composition has no appreciable impact on AM symbiosis, at least in the two maize cultivars, and further suggests that the traits involved in Striga-resistance are not necessarily accompanied by reduction in compatibility to AM fungi. PMID:25754513

  13. Impact of Bt corn on rhizospheric and soil eubacterial communities and on beneficial mycorrhizal symbiosis in experimental microcosms.

    PubMed

    Castaldini, M; Turrini, A; Sbrana, C; Benedetti, A; Marchionni, M; Mocali, S; Fabiani, A; Landi, S; Santomassimo, F; Pietrangeli, B; Nuti, M P; Miclaus, N; Giovannetti, M

    2005-11-01

    A polyphasic approach has been developed to gain knowledge of suitable key indicators for the evaluation of environmental impact of genetically modified Bt 11 and Bt 176 corn lines on soil ecosystems. We assessed the effects of Bt corn (which constitutively expresses the insecticidal toxin from Bacillus thuringiensis, encoded by the truncated Cry1Ab gene) and non-Bt corn plants and their residues on rhizospheric and bulk soil eubacterial communities by means of denaturing gradient gel electrophoresis analyses of 16S rRNA genes, on the nontarget mycorrhizal symbiont Glomus mosseae, and on soil respiration. Microcosm experiments showed differences in rhizospheric eubacterial communities associated with the three corn lines and a significantly lower level of mycorrhizal colonization in Bt 176 corn roots. In greenhouse experiments, differences between Bt and non-Bt corn plants were detected in rhizospheric eubacterial communities (both total and active), in culturable rhizospheric heterotrophic bacteria, and in mycorrhizal colonization. Plant residues of transgenic plants, plowed under at harvest and kept mixed with soil for up to 4 months, affected soil respiration, bacterial communities, and mycorrhizal establishment by indigenous endophytes. The multimodal approach utilized in our work may be applied in long-term field studies aimed at monitoring the real hazard of genetically modified crops and their residues on nontarget soil microbial communities. PMID:16269702

  14. Gibberellins interfere with symbiosis signaling and gene expression and alter colonization by arbuscular mycorrhizal fungi in Lotus japonicus.

    PubMed

    Takeda, Naoya; Handa, Yoshihiro; Tsuzuki, Syusaku; Kojima, Mikiko; Sakakibara, Hitoshi; Kawaguchi, Masayoshi

    2015-02-01

    Arbuscular mycorrhiza is a mutualistic plant-fungus interaction that confers great advantages for plant growth. Arbuscular mycorrhizal (AM) fungi enter the host root and form symbiotic structures that facilitate nutrient supplies between the symbionts. The gibberellins (GAs) are phytohormones known to inhibit AM fungal infection. However, our transcriptome analysis and phytohormone quantification revealed GA accumulation in the roots of Lotus japonicus infected with AM fungi, suggesting that de novo GA synthesis plays a role in arbuscular mycorrhiza development. We found pleiotropic effects of GAs on the AM fungal infection. In particular, the morphology of AM fungal colonization was drastically altered by the status of GA signaling in the host root. Exogenous GA treatment inhibited AM hyphal entry into the host root and suppressed the expression of Reduced Arbuscular Mycorrhization1 (RAM1) and RAM2 homologs that function in hyphal entry and arbuscule formation. On the other hand, inhibition of GA biosynthesis or suppression of GA signaling also affected arbuscular mycorrhiza development in the host root. Low-GA conditions suppressed arbuscular mycorrhiza-induced subtilisin-like serine protease1 (SbtM1) expression that is required for AM fungal colonization and reduced hyphal branching in the host root. The reduced hyphal branching and SbtM1 expression caused by the inhibition of GA biosynthesis were recovered by GA treatment, supporting the theory that insufficient GA signaling causes the inhibitory effects on arbuscular mycorrhiza development. Most studies have focused on the negative role of GA signaling, whereas our study demonstrates that GA signaling also positively interacts with symbiotic responses and promotes AM colonization of the host root. PMID:25527715

  15. Gibberellins Interfere with Symbiosis Signaling and Gene Expression and Alter Colonization by Arbuscular Mycorrhizal Fungi in Lotus japonicus1

    PubMed Central

    Takeda, Naoya; Handa, Yoshihiro; Tsuzuki, Syusaku; Kojima, Mikiko; Sakakibara, Hitoshi; Kawaguchi, Masayoshi

    2015-01-01

    Arbuscular mycorrhiza is a mutualistic plant-fungus interaction that confers great advantages for plant growth. Arbuscular mycorrhizal (AM) fungi enter the host root and form symbiotic structures that facilitate nutrient supplies between the symbionts. The gibberellins (GAs) are phytohormones known to inhibit AM fungal infection. However, our transcriptome analysis and phytohormone quantification revealed GA accumulation in the roots of Lotus japonicus infected with AM fungi, suggesting that de novo GA synthesis plays a role in arbuscular mycorrhiza development. We found pleiotropic effects of GAs on the AM fungal infection. In particular, the morphology of AM fungal colonization was drastically altered by the status of GA signaling in the host root. Exogenous GA treatment inhibited AM hyphal entry into the host root and suppressed the expression of Reduced Arbuscular Mycorrhization1 (RAM1) and RAM2 homologs that function in hyphal entry and arbuscule formation. On the other hand, inhibition of GA biosynthesis or suppression of GA signaling also affected arbuscular mycorrhiza development in the host root. Low-GA conditions suppressed arbuscular mycorrhiza-induced subtilisin-like serine protease1 (SbtM1) expression that is required for AM fungal colonization and reduced hyphal branching in the host root. The reduced hyphal branching and SbtM1 expression caused by the inhibition of GA biosynthesis were recovered by GA treatment, supporting the theory that insufficient GA signaling causes the inhibitory effects on arbuscular mycorrhiza development. Most studies have focused on the negative role of GA signaling, whereas our study demonstrates that GA signaling also positively interacts with symbiotic responses and promotes AM colonization of the host root. PMID:25527715

  16. Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis.

    PubMed

    Augé, Robert M; Toler, Heather D; Saxton, Arnold M

    2015-01-01

    Stomata regulate rates of carbon assimilation and water loss. Arbuscular mycorrhizal (AM) symbioses often modify stomatal behavior and therefore play pivotal roles in plant productivity. The size of the AM effect on stomatal conductance to water vapor (g s ) has varied widely, has not always been apparent, and is unpredictable. We conducted a meta-analysis of 460 studies to determine the size of the AM effect under ample watering and drought and to examine how experimental conditions have influenced the AM effect. Across all host and symbiont combinations under all soil moisture conditions, AM plants have shown 24 % higher g s than nonmycorrhizal (NM) controls. The promotion of g s has been over twice as great during moderate drought than under amply watered conditions. The AM influence on g s has been even more pronounced under severe drought, with over four times the promotion observed with ample water. Members of the Claroideoglomeraceae, Glomeraceae, and other AM families stimulated g s by about the same average amount. Colonization by native AM fungi has produced the largest promotion. Among single-AM symbionts, Glomus deserticola, Claroideoglomus etunicatum, and Funneliformis mosseae have had the largest average effects on g s across studies. Dicotyledonous hosts, especially legumes, have been slightly more responsive to AM symbiosis than monocotyledonous hosts, and C3 plants have shown over twice the AM-induced promotion of C4 plants. The extent of root colonization is important, with heavily colonized plants showing ×10 the g s promotion of lightly colonized plants. AM promotion of g s has been larger in growth chambers and in the field than in greenhouse studies, almost ×3 as large when plants were grown under high light than low light, and ×2.5 as large in purely mineral soils than in soils having an organic component. When AM plants have been compared with NM controls given NM pot culture, they have shown only half the promotion of g s as NM plants

  17. On-farm production and utilization of mycorrhizal fungus inoculum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arbuscular mycorrhizal fungi are naturally occurring soil fungi that form a symbiosis with the roots of most crop plants. Among the benefits plants receive from the symbiosis are enhanced nutrient uptake, water relations, and disease resistance. Farmers can better take advantage of the symbiosis e...

  18. Partner selection in the mycorrhizal mutualism.

    PubMed

    Werner, Gijsbert D A; Kiers, E Toby

    2015-03-01

    Partner selection in the mycorrhizal symbiosis is thought to be a key factor stabilising the mutualism. Both plant hosts and mycorrhizal fungi have been shown to preferentially allocate resources to higher quality partners. This can help maintain underground cooperation, although it is likely that different plant species vary in the spatial precision with which they can select partners. Partner selection in the mycorrhizal symbiosis is presumably context-dependent and can be mediated by factors like (relative) resource abundance and resource fluctuations, competition among mycorrhizas, arrival order and cultivation history. Such factors complicate our current understanding of the importance of partner selection and its effectiveness in stimulating mutualistic cooperation. PMID:25421912

  19. Aquaporin-mediated long-distance polyphosphate translocation directed towards the host in arbuscular mycorrhizal symbiosis: application of virus-induced gene silencing.

    PubMed

    Kikuchi, Yusuke; Hijikata, Nowaki; Ohtomo, Ryo; Handa, Yoshihiro; Kawaguchi, Masayoshi; Saito, Katsuharu; Masuta, Chikara; Ezawa, Tatsuhiro

    2016-09-01

    Arbuscular mycorrhizal fungi translocate polyphosphate through hyphae over a long distance to deliver to the host. More than three decades ago, suppression of host transpiration was found to decelerate phosphate delivery of the fungal symbiont, leading us to hypothesize that transpiration provides a primary driving force for polyphosphate translocation, probably via creating hyphal water flow in which fungal aquaporin(s) may be involved. The impact of transpiration suppression on polyphosphate translocation through hyphae of Rhizophagus clarus was evaluated. An aquaporin gene expressed in intraradical mycelia was characterized and knocked down by virus-induced gene silencing to investigate the involvement of the gene in polyphosphate translocation. Rhizophagus clarus aquaporin 3 (RcAQP3) that was most highly expressed in intraradical mycelia encodes an aquaglyceroporin responsible for water transport across the plasma membrane. Knockdown of RcAQP3 as well as the suppression of host transpiration decelerated polyphosphate translocation in proportion to the levels of knockdown and suppression, respectively. These results provide the first insight into the mechanism underlying long-distance polyphosphate translocation in mycorrhizal associations at the molecular level, in which host transpiration and the fungal aquaporin play key roles. A hypothetical model of the translocation is proposed for further elucidation of the mechanism. PMID:27136716

  20. Schoolyard Symbiosis.

    ERIC Educational Resources Information Center

    Allard, David W.

    1996-01-01

    Discusses different types of symbiosis--mutualism, commensalism, and parasitism--and examples of each type including lichens, legumes, mistletoe, and epiphytes. Describes how teachers can use these examples in the study of symbiosis which allows teachers to focus on many basic concepts in evolution, cell biology, ecology, and other fields of…

  1. Metabolic transition in mycorrhizal tomato roots.

    PubMed

    Rivero, Javier; Gamir, Jordi; Aroca, Ricardo; Pozo, María J; Flors, Víctor

    2015-01-01

    Beneficial plant-microorganism interactions are widespread in nature. Among them, the symbiosis between plant roots and arbuscular mycorrhizal fungi (AMF) is of major importance, commonly improving host nutrition and tolerance against environmental and biotic challenges. Metabolic changes were observed in a well-established symbiosis between tomato and two common AMF: Rhizophagus irregularis and Funneliformis mosseae. Principal component analysis of metabolites, determined by non-targeted liquid chromatography-mass spectrometry, showed a strong metabolic rearrangement in mycorrhizal roots. There was generally a negative impact of mycorrhizal symbiosis on amino acid content, mainly on those involved in the biosynthesis of phenylpropanoids. On the other hand, many intermediaries in amino acid and sugar metabolism and the oxylipin pathway were among the compounds accumulating more in mycorrhizal roots. The metabolic reprogramming also affected other pathways in the secondary metabolism, mainly phenyl alcohols (lignins and lignans) and vitamins. The results showed that source metabolites of these pathways decreased in mycorrhizal roots, whilst the products derived from α-linolenic and amino acids presented higher concentrations in AMF-colonized roots. Mycorrhization therefore increased the flux into those pathways. Venn-diagram analysis showed that there are many induced signals shared by both mycorrhizal interactions, pointing to general mycorrhiza-associated changes in the tomato metabolome. Moreover, fungus-specific fingerprints were also found, suggesting that specific molecular alterations may underlie the reported functional diversity of the symbiosis. Since most positively regulated pathways were related to stress response mechanisms, their potential contribution to improved host stress tolerance is discussed. PMID:26157423

  2. Metabolic transition in mycorrhizal tomato roots

    PubMed Central

    Rivero, Javier; Gamir, Jordi; Aroca, Ricardo; Pozo, María J.; Flors, Víctor

    2015-01-01

    Beneficial plant–microorganism interactions are widespread in nature. Among them, the symbiosis between plant roots and arbuscular mycorrhizal fungi (AMF) is of major importance, commonly improving host nutrition and tolerance against environmental and biotic challenges. Metabolic changes were observed in a well-established symbiosis between tomato and two common AMF: Rhizophagus irregularis and Funneliformis mosseae. Principal component analysis of metabolites, determined by non-targeted liquid chromatography–mass spectrometry, showed a strong metabolic rearrangement in mycorrhizal roots. There was generally a negative impact of mycorrhizal symbiosis on amino acid content, mainly on those involved in the biosynthesis of phenylpropanoids. On the other hand, many intermediaries in amino acid and sugar metabolism and the oxylipin pathway were among the compounds accumulating more in mycorrhizal roots. The metabolic reprogramming also affected other pathways in the secondary metabolism, mainly phenyl alcohols (lignins and lignans) and vitamins. The results showed that source metabolites of these pathways decreased in mycorrhizal roots, whilst the products derived from α-linolenic and amino acids presented higher concentrations in AMF-colonized roots. Mycorrhization therefore increased the flux into those pathways. Venn-diagram analysis showed that there are many induced signals shared by both mycorrhizal interactions, pointing to general mycorrhiza-associated changes in the tomato metabolome. Moreover, fungus-specific fingerprints were also found, suggesting that specific molecular alterations may underlie the reported functional diversity of the symbiosis. Since most positively regulated pathways were related to stress response mechanisms, their potential contribution to improved host stress tolerance is discussed. PMID:26157423

  3. Teaching Symbiosis.

    ERIC Educational Resources Information Center

    Harper, G. H.

    1985-01-01

    Argues that the meaning of the word "symbiosis" be standardized and that it should be used in a broad sense. Also criticizes the orthodox teaching of general principles in this subject and recommends that priority be given to continuity, intimacy, and associated adaptations, rather than to the harm/benefit relationship. (Author/JN)

  4. NADPH oxidases in the arbuscular mycorrhizal symbiosis.

    PubMed

    Belmondo, Simone; Calcagno, Cristina; Genre, Andrea; Puppo, Alain; Pauly, Nicolas; Lanfranco, Luisa

    2016-04-01

    Plant NADPH oxidases are the major source of reactive oxygen species (ROS) that plays key roles as both signal and stressor in several plant processes, including defense responses against pathogens. ROS accumulation in root cells during arbuscular mycorrhiza (AM) development has raised the interest in understanding how ROS-mediated defense programs are modulated during the establishment of this mutualistic interaction. We have recently analyzed the expression pattern of 5 NADPH oxidase (also called RBOH) encoding genes in Medicago truncatula, showing that only one of them (MtRbohE) is specifically upregulated in arbuscule-containing cells. In line with this result, RNAi silencing of MtRbohE generated a strong alteration in root colonization, with a significant reduction in the number of arbusculated cells. On this basis, we propose that MtRBOHE-mediated ROS production plays a crucial role in the intracellular accommodation of arbuscules. PMID:27018627

  5. Symbiosis: An Evolutionary Innovator.

    ERIC Educational Resources Information Center

    Case, Emily

    2003-01-01

    Defines symbiosis and describes the connection between symbiosis and evolution, how it is described in science textbooks, and genetic variability. Discusses educational policy and science curriculum content. (YDS)

  6. Identification of genes controlling development of arbuscules in AM symbiosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most vascular flowering plants have the capacity to form mutualistic symbioses with arbuscular mycorrhizal (AM) fungi. These associations develop in the roots where the fungus delivers phosphate to the root cortical cells and receives carbon from its plant host. During the symbiosis, the fungus prol...

  7. Potential to breed for mycorrhizal association in durum wheat.

    PubMed

    Ellouze, Walid; Hamel, Chantal; DePauw, R M; Knox, R E; Cuthbert, Richard D; Singh, Asheesh K

    2016-03-01

    The selection of genotypes under high soil fertility may alter the effectiveness of mycorrhizal symbioses naturally forming between crop plants and the mycorrhizal fungi residing in cultivated fields. We tested the hypothesis that the mycorrhizal symbiosis of 5 landraces functions better than the mycorrhizal symbiosis of 27 cultivars of durum wheat that were bred after the development of the fertilizer industry. We examined the development of mycorrhiza and the response of these genotypes to mycorrhiza formation after 4 weeks of growth under high and low soil fertility levels in the greenhouse. The durum wheat genotypes were seeded in an established extraradical hyphal network of Rhizophagus irregularis and in a control soil free of mycorrhizal fungi. The percentage of root length colonized by mycorrhizal fungi was lower in landraces (21%) than in cultivars (27%; P = 0.04) and in the most recent releases (29%; P = 0.02), which were selected under high soil fertility levels. Plant growth response to mycorrhiza varied from -36% to +19%. Overall, durum wheat plant breeding in Canada has increased the mycorrhizal development in wheat grown at a low soil fertility level. However, breeding had inconsistent effects on mycorrhizal development and has led to the production of cultivars with patterns of regulation ranging from unimproved to inefficient. PMID:26825726

  8. Take advantage of mycorrhizal fungi for improved soil fertility and plant health

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arbuscular mycorrhizal [AM] fungi are naturally-occurring soil fungi that form a beneficial symbiosis with the roots of most crops. The plants benefit because the symbiosis increases mineral nutrient uptake, drought resistance, and disease resistance. These characteristics make utilization of AM f...

  9. On-farm production and utilization of arbusclar mycorrhizal fungus inoculum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arbuscular mycorrhizal [AM] fungi are naturally occuring soil fungi that form a mutualistic symbiosis with the majority of crop plants. Among the benefits to the plant that are accredited to living in this symbiosis are: increased mineral nutrient uptake, drought resistance, and disease resistance....

  10. Effect of poplar genotypes on mycorrhizal infection and secreted enzyme activities in mycorrhizal and non-mycorrhizal roots.

    PubMed

    Courty, P E; Labbé, J; Kohler, A; Marçais, B; Bastien, C; Churin, J L; Garbaye, J; Le Tacon, F

    2011-01-01

    The impact of ectomycorrhiza formation on the secretion of exoenzymes by the host plant and the symbiont is unknown. Thirty-eight F(1) individuals from an interspecific Populus deltoides (Bartr.)×Populus trichocarpa (Torr. & A. Gray) controlled cross were inoculated with the ectomycorrhizal fungus Laccaria bicolor. The colonization of poplar roots by L. bicolor dramatically modified their ability to secrete enzymes involved in organic matter breakdown or organic phosphorus mobilization, such as N-acetylglucosaminidase, β-glucuronidase, cellobiohydrolase, β-glucosidase, β-xylosidase, laccase, and acid phosphatase. The expression of genes coding for laccase, N-acetylglucosaminidase, and acid phosphatase was studied in mycorrhizal and non-mycorrhizal root tips. Depending on the genes, their expression was regulated upon symbiosis development. Moreover, it appears that poplar laccases or phosphatases contribute poorly to ectomycorrhiza metabolic activity. Enzymes secreted by poplar roots were added to or substituted by enzymes secreted by L. bicolor. The enzymatic activities expressed in mycorrhizal roots differed significantly between the two parents, while it did not differ in non-mycorrhizal roots. Significant differences were found between poplar genotypes for all enzymatic activities measured on ectomycorrhizas except for laccases activity. In contrast, no significant differences were found between poplar genotypes for enzymatic activities of non-mycorrhizal root tips except for acid phosphatase activity. The level of enzymes secreted by the ectomycorrhizal root tips is under the genetic control of the host. Moreover, poplar heterosis was expressed through the enzymatic activities of the fungal partner. PMID:20881013

  11. Effect of poplar genotypes on mycorrhizal infection and secreted enzyme activities in mycorrhizal and non-mycorrhizal roots

    PubMed Central

    Courty, P. E.; Labbé, J.; Kohler, A.; Marçais, B.; Bastien, C.; Churin, J. L.; Garbaye, J.; Le Tacon, F.

    2011-01-01

    The impact of ectomycorrhiza formation on the secretion of exoenzymes by the host plant and the symbiont is unknown. Thirty-eight F1 individuals from an interspecific Populus deltoides (Bartr.)×Populus trichocarpa (Torr. & A. Gray) controlled cross were inoculated with the ectomycorrhizal fungus Laccaria bicolor. The colonization of poplar roots by L. bicolor dramatically modified their ability to secrete enzymes involved in organic matter breakdown or organic phosphorus mobilization, such as N-acetylglucosaminidase, β-glucuronidase, cellobiohydrolase, β-glucosidase, β-xylosidase, laccase, and acid phosphatase. The expression of genes coding for laccase, N-acetylglucosaminidase, and acid phosphatase was studied in mycorrhizal and non-mycorrhizal root tips. Depending on the genes, their expression was regulated upon symbiosis development. Moreover, it appears that poplar laccases or phosphatases contribute poorly to ectomycorrhiza metabolic activity. Enzymes secreted by poplar roots were added to or substituted by enzymes secreted by L. bicolor. The enzymatic activities expressed in mycorrhizal roots differed significantly between the two parents, while it did not differ in non-mycorrhizal roots. Significant differences were found between poplar genotypes for all enzymatic activities measured on ectomycorrhizas except for laccases activity. In contrast, no significant differences were found between poplar genotypes for enzymatic activities of non-mycorrhizal root tips except for acid phosphatase activity. The level of enzymes secreted by the ectomycorrhizal root tips is under the genetic control of the host. Moreover, poplar heterosis was expressed through the enzymatic activities of the fungal partner. PMID:20881013

  12. Soil Solution Phosphorus Status and Mycorrhizal Dependency in Leucaena leucocephala.

    PubMed

    Habte, M; Manjunath, A

    1987-04-01

    A phosphorus sorption isotherm was used to establish concentrations of P in a soil solution ranging from 0.002 to 0.807 mug/ml. The influence of P concentration on the symbiotic interaction between the tropical tree legume Leucaena leucocephala and the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum was evaluated in pot experiments. The level of mycorrhizal infection in Leucaena roots increased as the concentration of P was raised from 0.002 to 0.153 mug/ml. Higher levels of P depressed mycorrhizal infection, but the level of infection never declined below 50%. Periodic monitoring of P contents of Leucaena subleaflets indicated that significant mycorrhizal activity was detected as early as 17 days after planting, with the activity peaking 12 to 16 days thereafter. The highest level of mycorrhizal activity was associated with a soil solution P level of 0.021 mug/ml. Even though the mycorrhizal inoculation effect diminished as the concentration of P in the soil solution was increased, mycorrhizal inoculation significantly increased P uptake and dry-matter yield of Leucaena at all levels of soil solution P examined. The concentration of P required by nonmycorrhizal L. leucocephala for maximum yield was 27 to 38 times higher than that required by mycorrhizal L. leucocephala. The results illustrate the very high dependence of L. leucocephala on VAM fungi and the significance of optimizing soil solution phosphorus for enhancing the benefits of the VAM symbiosis. PMID:16347323

  13. Soil Solution Phosphorus Status and Mycorrhizal Dependency in Leucaena leucocephala†

    PubMed Central

    Habte, Mitiku; Manjunath, Aswathanarayan

    1987-01-01

    A phosphorus sorption isotherm was used to establish concentrations of P in a soil solution ranging from 0.002 to 0.807 μg/ml. The influence of P concentration on the symbiotic interaction between the tropical tree legume Leucaena leucocephala and the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum was evaluated in pot experiments. The level of mycorrhizal infection in Leucaena roots increased as the concentration of P was raised from 0.002 to 0.153 μg/ml. Higher levels of P depressed mycorrhizal infection, but the level of infection never declined below 50%. Periodic monitoring of P contents of Leucaena subleaflets indicated that significant mycorrhizal activity was detected as early as 17 days after planting, with the activity peaking 12 to 16 days thereafter. The highest level of mycorrhizal activity was associated with a soil solution P level of 0.021 μg/ml. Even though the mycorrhizal inoculation effect diminished as the concentration of P in the soil solution was increased, mycorrhizal inoculation significantly increased P uptake and dry-matter yield of Leucaena at all levels of soil solution P examined. The concentration of P required by nonmycorrhizal L. leucocephala for maximum yield was 27 to 38 times higher than that required by mycorrhizal L. leucocephala. The results illustrate the very high dependence of L. leucocephala on VAM fungi and the significance of optimizing soil solution phosphorus for enhancing the benefits of the VAM symbiosis. PMID:16347323

  14. Mycorrhizal fungi affect root stele tissue in grasses.

    SciTech Connect

    Miller, R. M.; Hetrick, B. A. D.; Wilson, G. W. T.; Environmental Research; Northern Iowa Univ.; Kansas State Univ.

    1997-01-01

    Although arbuscular mycorrhizal symbiosis was initially believed to have little or no impact on root morphology, we now recognize that subtle changes do occur and that these changes may be of considerable consequence to host growth and nutrition, as well as functional growth strategy. In examining the stele and root diameters of C3 and C4 grasses, C4 grasses were demonstrated to have a significantly larger proportion of their fibrous roots occupied by stele tissue than do C3 grasses. In fact, functional growth strategy (C3 versus C4) was observed to be a relatively good predictor of stele area. Mycorrhizal fungi also influenced the amount of stele tissue, but the effect was not the same for both C3 and C4 grasses. The stele area of all C4 grasses except for Sorghastrum nutans was greater in the presence of mycorrhizal colonization. Among the C3 grasses, only Bromus inermis showed a significant increase, although Elymus cinereus and Lolium perenne displayed significant decreases in response to arbuscular mycorrhizal colonization. Changes in the stele area of the plant species were closely related to their responsiveness to mycorrhizal symbiosis and might in part explain both beneficial and detrimental responses of plants to mycorrhizae. An increase in stele circumference induced by mycorrhizae would allow for greater uptake and passage of water and nutrients to the vascular cylinder, and growth depressions could be a direct outcome of reduced stele circumference. Thus, differences in stele circumference represent a possible mechanism for mycorrhizal impacts on host plants. These findings indicate that structural differences among grasses are related to different functional capabilities and further emphasize the need for better integration of comparative anatomy and morphology procedures in the study of mycorrhizal symbiosis.

  15. Ultrastructural localization of acid phosphatase in arbusculate coils of mycorrhizal Phoenix canariensis roots.

    PubMed

    Dreyer, Beatriz; Pérez-Gilabert, Manuela; Olmos, Enrique; Honrubia, Mario; Morte, Asunción

    2008-04-01

    Acid phosphatase (ACP) activity has been detected in roots of mycorrhizal and non-mycorrhizal Phoenix canariensis. This enzyme was ultrastructurally localized in arbusculate coils for the first time. This localization was carried out using a cerium-based method, which minimizes non-specific precipitation. The ACP was localized in inter- and intracellular hyphae, in the fungal cytoplasm as well as at the interface and the fungal cell wall and the periarbuscular membrane limiting it. The novel localization of an ACP in the arbuscular mycorrhizal (AM) interface of arbusculate coils suggests that this enzyme may be involved in the phosphorus efflux from the mycorrhizal fungus to the host. The results presented in this article indicate that the role played by ACP in AM symbiosis may be more important than was previously thought and that arbusculate coils are highly relevant when considering nutrient transfer through AM symbiosis. PMID:18334003

  16. Mycorrhizal mediated feedbacks influence net carbon gain and nutrient uptake in Andropogon gerardii.

    SciTech Connect

    Miller, R. M.; Miller, S. P.; Jastrow, J. D.; Rivetta, C. B.; Environmental Research

    2002-07-01

    The carbon sink strength of arbuscular mycorrhizal fungi (AMF) was investigated by comparing the growth dynamics of mycorrhizal and nonmycorrhizal Andropogon gerardii plants over a wide range of equivalent tissue phosphorus : nitrogen (P : N) ratios. Host growth, apparent photosynthesis (A{sub net}), net C gain (C{sub n}) and P and N uptake were evaluated in sequential harvests of mycorrhizal and nonmycorrhizal A. gerardii plants. Response curves were used to assess the effect of assimilate supply on the mycorrhizal symbiosis in relation to the association of C with N and P. Mycorrhizal plants had higher C{sub n} than nonmycorrhizal plants at equivalent shoot P : N ratios even though colonization did not affect plant dry mass. The higher C{sub n} in mycorrhizal plants was related to both an increase in specific leaf area and enhanced photosynthesis. The additional carbon gain associated with the mycorrhizal condition was not allocated to root biomass. The C{sub n} in the mycorrhizal plants was positively related to the proportion of active colonization in the roots. The calculated difference between C{sub n} values in mycorrhizal and nonmycorrhizal plants, C{sub diff}, appeared to correspond to the sink strength of the AMF and was not an indirect result of enhanced nutrition in mycorrhizal plants.

  17. How Symbiosis Creates Diversity

    ERIC Educational Resources Information Center

    Lord, Joshua

    2010-01-01

    Diversity in habitats on Earth is astounding--whether on land or in the sea--and this is in part due to symbiosis. The lesson described in this article helps students understand how symbiosis affects different organisms through a fun and engaging game where they match hosts and symbionts based on their respective needs. This 45-minute lesson is…

  18. Recent developments in arbuscular mycorrhizal signaling.

    PubMed

    Gobbato, Enrico

    2015-08-01

    Plants can establish root endosymbioses with both arbuscular mycorrhizal fungi and rhizobial bacteria to improve their nutrition. Our understanding of the molecular events underlying the establishment of these symbioses has significantly advanced in the last few years. Here I highlight major recent findings in the field of endosymbiosis signaling. Despite the identification of new signaling components and the definition, or in some cases better re-definition of the molecular functions of previously known players, major questions still remain that need to be addressed. Most notably the mechanisms defining signaling specificities within either symbiosis remain unclear. PMID:26043435

  19. Multi-Omics Approach Identifies Molecular Mechanisms of Plant-Fungus Mycorrhizal Interaction

    PubMed Central

    Larsen, Peter E.; Sreedasyam, Avinash; Trivedi, Geetika; Desai, Shalaka; Dai, Yang; Cseke, Leland J.; Collart, Frank R.

    2016-01-01

    In mycorrhizal symbiosis, plant roots form close, mutually beneficial interactions with soil fungi. Before this mycorrhizal interaction can be established however, plant roots must be capable of detecting potential beneficial fungal partners and initiating the gene expression patterns necessary to begin symbiosis. To predict a plant root—mycorrhizal fungi sensor systems, we analyzed in vitro experiments of Populus tremuloides (aspen tree) and Laccaria bicolor (mycorrhizal fungi) interaction and leveraged over 200 previously published transcriptomic experimental data sets, 159 experimentally validated plant transcription factor binding motifs, and more than 120-thousand experimentally validated protein-protein interactions to generate models of pre-mycorrhizal sensor systems in aspen root. These sensor mechanisms link extracellular signaling molecules with gene regulation through a network comprised of membrane receptors, signal cascade proteins, transcription factors, and transcription factor biding DNA motifs. Modeling predicted four pre-mycorrhizal sensor complexes in aspen that interact with 15 transcription factors to regulate the expression of 1184 genes in response to extracellular signals synthesized by Laccaria. Predicted extracellular signaling molecules include common signaling molecules such as phenylpropanoids, salicylate, and jasmonic acid. This multi-omic computational modeling approach for predicting the complex sensory networks yielded specific, testable biological hypotheses for mycorrhizal interaction signaling compounds, sensor complexes, and mechanisms of gene regulation. PMID:26834754

  20. Multi-omics approach identifies molecular mechanisms of plant-fungus mycorrhizal interaction

    DOE PAGESBeta

    Larsen, Peter E.; Sreedasyam, Avinash; Trivedi, Geetika; Desai, Shalaka D.; Dai, Yang; Cseke, Leland; Collart, Frank R.

    2016-01-19

    In mycorrhizal symbiosis, plant roots form close, mutually beneficial interactions with soil fungi. Before this mycorrhizal interaction can be established however, plant roots must be capable of detecting potential beneficial fungal partners and initiating the gene expression patterns necessary to begin symbiosis. To predict a plant root – mycorrhizal fungi sensor systems, we analyzed in vitro experiments of Populus tremuloides (aspen tree) and Laccaria bicolor (mycorrhizal fungi) interaction and leveraged over 200 previously published transcriptomic experimental data sets, 159 experimentally validated plant transcription factor binding motifs, and more than 120-thousand experimentally validated protein-protein interactions to generate models of pre-mycorrhizal sensormore » systems in aspen root. These sensor mechanisms link extracellular signaling molecules with gene regulation through a network comprised of membrane receptors, signal cascade proteins, transcription factors, and transcription factor biding DNA motifs. Modeling predicted four pre-mycorrhizal sensor complexes in aspen that interact with fifteen transcription factors to regulate the expression of 1184 genes in response to extracellular signals synthesized by Laccaria. Predicted extracellular signaling molecules include common signaling molecules such as phenylpropanoids, salicylate, and, jasmonic acid. Lastly, this multi-omic computational modeling approach for predicting the complex sensory networks yielded specific, testable biological hypotheses for mycorrhizal interaction signaling compounds, sensor complexes, and mechanisms of gene regulation.« less

  1. Ectomycorrhizins - symbiosis-specific or artitactual polypeptides from ectomycorrhizas?

    PubMed

    Guttenberger, M; Hampp, R

    1992-08-01

    Fungal mycelium of the fly agaric (Amanita muscaria [L. ex Fr.] Hooker), and inoculated or noninoculated seedlings of Norway spruce (Picea abies [L.] Karst.) were grown aseptically under controlled conditions. In order to detect symbiosis-specific polypeptides ('ectomycorrhizins', see Hubert and Martin, 1988, New Phytol. 110, 339-346) the protein patterns of (i) fungal mycelium, (ii) mycorrhizal, and (iii) non-mycorrhizal root tips were compared by means of one- and twodimensional electrophoresis on a microscale. Because of the sensitivity of these micromethods (50 and 200 ng of protein, respectively), single mycorrhizal root tips and even the minute quantities of extramatrical mycelium growing between the roots of inoculated plants could be analysed. Differences in the protein patterns of root tips could be shown within the root system of an individual plant (mycorrhizal as well as non-mycorrhizal). In addition, the protein pattern of fungal mycelium grown on a complex medium (malt extract and casein hydrolysate) differed from that of extramatrical mycelium collected from the mycorrhiza culture (pure mineral medium). Such differences in protein patterns are obviously due to the composition of the media and/or different developmental stages. Consequently, conventional analyses which use extracts of a large number of root tips, are not suitable for differentiating between these effects and symbiosis-specific differences in protein patterns. In order to detect ectomycorrhizins, it is suggested that roots and mycelium from individual, inoculated plants should be analysed. This approach eliminates the influence of differing media, and at the same time allows a correct discrimination between developmental and symbiosisspecific changes. In our gels we could only detect changes in spot intensity but could not detect any ectomycorrhizins or the phenomenon of polypeptide 'cleansing', which both characterize the Eucalyptus-Pisolithus symbiosis (Martin and Hubert, 1991

  2. Ectomycorrhizins - symbiosis-specific or artifactual polypeptides from ectomycorrhizas?

    PubMed

    Guttenberger, M; Hampp, R

    1992-03-01

    Fungal mycelium of the fly agaric (Amanita muscaria [L. ex Fr.] Hooker), and inoculated or noninoculated seedlings of Norway spruce (Picea abies [L.] Karst.) were grown aseptically under controlled conditions. In order to detect symbiosis-specific polypeptides ('ectomycorrhizins', see Hubert and Martin, 1988, New Phytol.110, 339-346) the protein patterns of (i) fungal mycelium, (ii) mycorrhizal, and (iii) non-mycorrhizal root tips were compared by means of one- and twodimensional electrophoresis on a microscale. Because of the sensitivity of these micromethods (50 and 200 ng of protein, respectively), single mycorrhizal root tips and even the minute quantities of extramatrical mycelium growing between the roots of inoculated plants could be analysed. Differences in the protein patterns of root tips could be shown within the root system of an individual plant (mycorrhizal as well as non-mycorrhizal). In addition, the protein pattern of fungal mycelium grown on a complex medium (malt extract and casein hydrolysate) differed from that of extramatrical mycelium collected from the mycorrhiza culture (pure mineral medium). Such differences in protein patterns are obviously due to the composition of the media and/or different developmental stages. Consequently, conventional analyses which use extracts of a large number of root tips, are not suitable for differentiating between these effects and symbiosis-specific differences in protein patterns. In order to detect ectomycorrhizins, it is suggested that roots and mycelium from individual, inoculated plants should be analysed. This approach eliminates the influence of differing media, and at the same time allows a correct discrimination between developmental and symbiosisspecific changes. In our gels we could only detect changes in spot intensity but could not detect any ectomycorrhizins or the phenomenon of polypeptide 'cleansing', which both characterize theEucalyptus-Pisolithus symbiosis (Martin and Hubert, 1991

  3. Medicago truncatula Mtha1-2 mutants loose metabolic responses to mycorrhizal colonization.

    PubMed

    Hubberten, Hans-Michael; Sieh, Daniela; Zöller, Daniela; Hoefgen, Rainer; Krajinski, Franziska

    2015-01-01

    Bidirectional nutrient transfer is one of the key features of the arbuscular mycorrhizal symbiosis. Recently we were able to identify a Medicago truncatula mutant (mtha1-2) that is defective in the uptake of phosphate from the periarbuscular space due to a lack of the energy providing proton gradient provided by the symbiosis specific proton ATPase MtHA1 In order to further characterize the impact of fungal colonization on the plant metabolic status, without the beneficial aspect of improved mineral nutrition, we performed leaf ion analyses in mutant and wildtype plants with and without fungal colonization. Although frequency of fungal colonization was unaltered, the mutant did not show a positive growth response to mycorrhizal colonization. This indicates that nutrient transfer into the plant cell fails in the truncated arbuscules due to lacking expression of a functional MtHA1 protein. The leaves of wildtype plants showed clear metabolic responses to root mycorrhizal colonization, whereas no changes of leaf metabolite levels of mycorrhizal mtha1-2 plants were detected, even though they were colonized. These results show that MtHa1 is indispensable for a functional mycorrhizal symbiosis and, moreover, suggest that fungal root colonization per se does not depend on nutrient transfer to the plant host. PMID:25751449

  4. Forests trapped in nitrogen limitation – an ecological market perspective on ectomycorrhizal symbiosis

    PubMed Central

    Franklin, Oskar; Näsholm, Torgny; Högberg, Peter; Högberg, Mona N

    2014-01-01

    Ectomycorrhizal symbiosis is omnipresent in boreal forests, where it is assumed to benefit plant growth. However, experiments show inconsistent benefits for plants and volatility of individual partnerships, which calls for a re-evaluation of the presumed role of this symbiosis. We reconcile these inconsistencies by developing a model that demonstrates how mycorrhizal networking and market mechanisms shape the strategies of individual plants and fungi to promote symbiotic stability at the ecosystem level. The model predicts that plants switch abruptly from a mixed strategy with both mycorrhizal and nonmycorrhizal roots to a purely mycorrhizal strategy as soil nitrogen availability declines, in agreement with the frequency distribution of ectomycorrhizal colonization intensity across a wide-ranging data set. In line with observations in field-scale isotope labeling experiments, the model explains why ectomycorrhizal symbiosis does not alleviate plant nitrogen limitation. Instead, market mechanisms may generate self-stabilization of the mycorrhizal strategy via nitrogen depletion feedback, even if plant growth is ultimately reduced. We suggest that this feedback mechanism maintains the strong nitrogen limitation ubiquitous in boreal forests. The mechanism may also have the capacity to eliminate or even reverse the expected positive effect of rising CO2 on tree growth in strongly nitrogen-limited boreal forests. PMID:24824576

  5. Forests trapped in nitrogen limitation--an ecological market perspective on ectomycorrhizal symbiosis.

    PubMed

    Franklin, Oskar; Näsholm, Torgny; Högberg, Peter; Högberg, Mona N

    2014-07-01

    Ectomycorrhizal symbiosis is omnipresent in boreal forests, where it is assumed to benefit plant growth. However, experiments show inconsistent benefits for plants and volatility of individual partnerships, which calls for a re-evaluation of the presumed role of this symbiosis. We reconcile these inconsistencies by developing a model that demonstrates how mycorrhizal networking and market mechanisms shape the strategies of individual plants and fungi to promote symbiotic stability at the ecosystem level. The model predicts that plants switch abruptly from a mixed strategy with both mycorrhizal and nonmycorrhizal roots to a purely mycorrhizal strategy as soil nitrogen availability declines, in agreement with the frequency distribution of ectomycorrhizal colonization intensity across a wide-ranging data set. In line with observations in field-scale isotope labeling experiments, the model explains why ectomycorrhizal symbiosis does not alleviate plant nitrogen limitation. Instead, market mechanisms may generate self-stabilization of the mycorrhizal strategy via nitrogen depletion feedback, even if plant growth is ultimately reduced. We suggest that this feedback mechanism maintains the strong nitrogen limitation ubiquitous in boreal forests. The mechanism may also have the capacity to eliminate or even reverse the expected positive effect of rising CO2 on tree growth in strongly nitrogen-limited boreal forests. PMID:24824576

  6. Symbiosis: Rich, Exciting, Neglected Topic

    ERIC Educational Resources Information Center

    Rowland, Jane Thomas

    1974-01-01

    Argues that the topic of symbiosis has been greatly neglected and underemphasized in general-biology textbooks. Discusses many types and examples of symbiosis, and provides an extensive bibliography of the literature related to this topic. (JR)

  7. The role of phosphorus in the ectendomycorrhiza continuum of desert truffle mycorrhizal plants.

    PubMed

    Navarro-Ródenas, Alfonso; Pérez-Gilabert, Manuela; Torrente, Pilar; Morte, Asunción

    2012-10-01

    The influence of inorganic and organic phosphorus (P) and the absence of P in the culture medium on the type of mycorrhizal colonization formed (ecto-, ectendo-, or endomycorrhiza) during Helianthemum almeriense x Terfezia claveryi symbiosis in in vitro conditions was analyzed. This is the first time that the relative proportions of the different mycorrhizal types in mycorrhizal roots of H. almeriense have been quantified and statistically analyzed. The relative proportions of the mycorrhizal types depended on the P source in the medium, suggesting that it is the organic P form that induces the formation of intracellular colonization. The above association should be considered as a continuum between intra- and intercellular colonizations, the most appropriate term for defining it being ectendomycorrhiza. The influence of the endogenous concentration of P on plant growth was also analyzed. P translocation was observed from shoot to roots, especially in mycorrhizal plants because mycorrhizal roots showed higher growth than non-mycorrhizal roots and/or because of an extra P demand from mycelium inside the roots. Soluble and cell wall acid phosphatases activities from H. almeriense roots were kinetically characterized at optimum pH (5.0), using p-nitrophenyl phosphate as substrate, with K (m) values of 3.4 and 1.8 mM, respectively. Moreover, the plant acid phosphatase and fungal alkaline phosphatases activities were histochemically localised in mycorrhizal H. almeriense roots by fluorescence with enzyme-labelled fluorescence substrate. PMID:22391804

  8. Assembly, Annotation, and Analysis of Multiple Mycorrhizal Fungal Genomes

    SciTech Connect

    Initiative Consortium, Mycorrhizal Genomics; Kuo, Alan; Grigoriev, Igor; Kohler, Annegret; Martin, Francis

    2013-03-08

    Mycorrhizal fungi play critical roles in host plant health, soil community structure and chemistry, and carbon and nutrient cycling, all areas of intense interest to the US Dept. of Energy (DOE) Joint Genome Institute (JGI). To this end we are building on our earlier sequencing of the Laccaria bicolor genome by partnering with INRA-Nancy and the mycorrhizal research community in the MGI to sequence and analyze dozens of mycorrhizal genomes of all Basidiomycota and Ascomycota orders and multiple ecological types (ericoid, orchid, and ectomycorrhizal). JGI has developed and deployed high-throughput sequencing techniques, and Assembly, RNASeq, and Annotation Pipelines. In 2012 alone we sequenced, assembled, and annotated 12 draft or improved genomes of mycorrhizae, and predicted ~;;232831 genes and ~;;15011 multigene families, All of this data is publicly available on JGI MycoCosm (http://jgi.doe.gov/fungi/), which provides access to both the genome data and tools with which to analyze the data. Preliminary comparisons of the current total of 14 public mycorrhizal genomes suggest that 1) short secreted proteins potentially involved in symbiosis are more enriched in some orders than in others amongst the mycorrhizal Agaricomycetes, 2) there are wide ranges of numbers of genes involved in certain functional categories, such as signal transduction and post-translational modification, and 3) novel gene families are specific to some ecological types.

  9. Rice arbuscular mycorrhiza as a tool to study the molecular mechanisms of fungal symbiosis and a potential target to increase productivity.

    PubMed

    Nakagawa, Tomomi; Imaizumi-Anraku, Haruko

    2015-12-01

    Rice (Oryza sativa L.) is a monocot model crop for cereal molecular biology. Following the emergence of molecular genetics of arbuscular mycorrhizal (AM) symbiosis in model legumes in the 1990s, studies on rice genetic resources have considerably contributed to our understanding of the molecular mechanisms and evolution of root intracellular symbioses.In this review, we trace the history of these studies and suggest the potential utility of AM symbiosis for improvement in rice productivity. PMID:26516078

  10. Symbiosis-mediated outbreaks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Symbiosis simply means "living together" and in its narrowest form can mean two species deriving mutual benefit from the association. Recent studies have made evident that insect associations with microorganisms can range the gamut from casual associations to obligate or context-dependent mutualisms...

  11. Survival through Symbiosis.

    ERIC Educational Resources Information Center

    Abdi, S. Wali

    1992-01-01

    Describes symbiosis and its significance in the day-to-day lives of plants and animals. Gives specific examples of mutualism, commensalism, and parasitism in the relationships among fungus and plant roots, animals and bacteria, birds and animals, fish, and predator and prey. (MDH)

  12. Assess suitability of hydroaeroponic culture to establish tripartite symbiosis between different AMF species, beans, and rhizobia

    PubMed Central

    Tajini, Fatma; Suriyakup, Porntip; Vailhe, Hélène; Jansa, Jan; Drevon, Jean-Jacques

    2009-01-01

    Background Like other species of the Phaseoleae tribe, common bean (Phaseolus vulgaris L.) has the potential to establish symbiosis with rhizobia and to fix the atmospheric dinitrogen (N2) for its N nutrition. Common bean has also the potential to establish symbiosis with arbuscular mycorrhizal fungi (AMF) that improves the uptake of low mobile nutrients such as phosphorus, from the soil. Both rhizobial and mycorrhizal symbioses can act synergistically in benefits on plant. Results The tripartite symbiosis of common bean with rhizobia and arbuscular mycorrhizal fungi (AMF) was assessed in hydroaeroponic culture with common bean (Phaseolus vulgaris L.), by comparing the effects of three fungi spp. on growth, nodulation and mycorrhization of the roots under sufficient versus deficient P supplies, after transfer from initial sand culture. Although Glomus intraradices Schenck & Smith colonized intensely the roots of common bean in both sand and hydroaeroponic cultures, Gigaspora rosea Nicolson & Schenck only established well under sand culture conditions, and no root-colonization was found with Acaulospora mellea Spain & Schenck under either culture conditions. Interestingly, mycorrhization by Glomus was also obtained by contact with mycorrhized Stylosanthes guianensis (Aubl.) sw in sand culture under deficient P before transfer into hydroaeroponic culture. The effect of bean genotype on both rhizobial and mycorrhizal symbioses with Glomus was subsequently assessed with the common bean recombinant inbreed line 7, 28, 83, 115 and 147, and the cultivar Flamingo. Significant differences among colonization and nodulation of the roots and growth among genotypes were found. Conclusion The hydroaeroponic culture is a valuable tool for further scrutinizing the physiological interactions and nutrient partitioning within the tripartite symbiosis. PMID:19534785

  13. Rice perception of symbiotic arbuscular mycorrhizal fungi requires the karrikin receptor complex.

    PubMed

    Gutjahr, Caroline; Gobbato, Enrico; Choi, Jeongmin; Riemann, Michael; Johnston, Matthew G; Summers, William; Carbonnel, Samy; Mansfield, Catherine; Yang, Shu-Yi; Nadal, Marina; Acosta, Ivan; Takano, Makoto; Jiao, Wen-Biao; Schneeberger, Korbinian; Kelly, Krystyna A; Paszkowski, Uta

    2015-12-18

    In terrestrial ecosystems, plants take up phosphate predominantly via association with arbuscular mycorrhizal fungi (AMF). We identified loss of responsiveness to AMF in the rice (Oryza sativa) mutant hebiba, reflected by the absence of physical contact and of characteristic transcriptional responses to fungal signals. Among the 26 genes deleted in hebiba, DWARF 14 LIKE is, the one responsible for loss of symbiosis . It encodes an alpha/beta-fold hydrolase, that is a component of an intracellular receptor complex involved in the detection of the smoke compound karrikin. Our finding reveals an unexpected plant recognition strategy for AMF and a previously unknown signaling link between symbiosis and plant development. PMID:26680197

  14. Effects of organic farming on communities of arbuscular mycorrhizal fungi.

    PubMed

    Lee, Si-Woo; Lee, Eun-Hwa; Eom, Ahn-Heum

    2008-03-01

    Red pepper (Capsicum annum L.) roots and soils representing different agricultural management practices such as conventional (CON), no-chemical (NOC), and organic farming systems (ORG) were collected from 32 farm field sites in Kyunggi, Korea to investigate the effects of these agricultural practices on arbuscular mycorrhizal (AM) symbiosis. ORG inoculum significantly increased plant growth compared to inoculum from CON and NOC. A community analysis of AM fungi (AMF) using morphological features of spores revealed that AMF spore abundance and species diversity were significantly higher in ORG than in CON. Additionally, a community analysis of AMF colonizing roots using a molecular technique revealed higher AMF diversity in ORG than in CON. These results suggest that agricultural practices significantly influence AM fungal community structure and mycorrhizal inoculum potential. PMID:23997602

  15. Arbuscular mycorrhizal fungi in alleviation of salt stress: a review

    PubMed Central

    Evelin, Heikham; Kapoor, Rupam; Giri, Bhoopander

    2009-01-01

    Background Salt stress has become a major threat to plant growth and productivity. Arbuscular mycorrhizal fungi colonize plant root systems and modulate plant growth in various ways. Scope This review addresses the significance of arbuscular mycorrhiza in alleviation of salt stress and their beneficial effects on plant growth and productivity. It also focuses on recent progress in unravelling biochemical, physiological and molecular mechanisms in mycorrhizal plants to alleviate salt stress. Conclusions The role of arbuscular mycorrhizal fungi in alleviating salt stress is well documented. This paper reviews the mechanisms arbuscular mycorrhizal fungi employ to enhance the salt tolerance of host plants such as enhanced nutrient acquisition (P, N, Mg and Ca), maintenance of the K+ : Na+ ratio, biochemical changes (accumulation of proline, betaines, polyamines, carbohydrates and antioxidants), physiological changes (photosynthetic efficiency, relative permeability, water status, abscissic acid accumulation, nodulation and nitrogen fixation), molecular changes (the expression of genes: PIP, Na+/H+ antiporters, Lsnced, Lslea and LsP5CS) and ultra-structural changes. Theis review identifies certain lesser explored areas such as molecular and ultra-structural changes where further research is needed for better understanding of symbiosis with reference to salt stress for optimum usage of this technology in the field on a large scale. This review paper gives useful benchmark information for the development and prioritization of future research programmes. PMID:19815570

  16. EST-SSR genetic maps for Citrus sinensis and Poncirus trifoliata

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The segregation of 141 polymorphic EST-SSR (expressed sequence tag - simple sequence repeat) markers in an F1 intergeneric citrus population was studied to build the first extensive EST maps for the maternal sweet orange and paternal Poncirus genomes. Of these markers, 122 were found segregating in ...

  17. New Glabretal Triterpenes from the Immature Fruits of Poncirus trifoliata and Their Selective Cytotoxicity.

    PubMed

    Choi, Ae-Ran; Lee, In-Kyoung; Woo, E-Eum; Kwon, Jin-Won; Yun, Bong-Sik; Park, Hae-Ryong

    2015-01-01

    Two new glabretal triterpenes, pancastatins A (1) and B (2), were isolated from the immature fruits of Poncirus trifoliata. Their chemical structures were elucidated by spectroscopic analyses including one- and two-dimensional NMR and high-resolution electrospray ionization mass spectrometry. Compounds 1 and 2 exhibited selective cytotoxicity against PANC-1 pancreatic cancer cells under low-glucose stress conditions. PMID:26633028

  18. Plant-fungus competition for nitrogen erases mycorrhizal growth benefits of Andropogon gerardii under limited nitrogen supply.

    PubMed

    Püschel, David; Janoušková, Martina; Hujslová, Martina; Slavíková, Renata; Gryndlerová, Hana; Jansa, Jan

    2016-07-01

    Considered to play an important role in plant mineral nutrition, arbuscular mycorrhizal (AM) symbiosis is a common relationship between the roots of a great majority of plant species and glomeromycotan fungi. Its effects on the plant host are highly context dependent, with the greatest benefits often observed in phosphorus (P)-limited environments. Mycorrhizal contribution to plant nitrogen (N) nutrition is probably less important under most conditions. Moreover, inasmuch as both plant and fungi require substantial quantities of N for their growth, competition for N could potentially reduce net mycorrhizal benefits to the plant under conditions of limited N supply. Further compounded by increased belowground carbon (C) drain, the mycorrhizal costs could outweigh the benefits under severe N limitation. Using a field AM fungal community or a laboratory culture of Rhizophagus irregularis as mycorrhizal inoculants, we tested the contribution of mycorrhizal symbiosis to the growth, C allocation, and mineral nutrition of Andropogon gerardii growing in a nutrient-poor substrate under variable N and P supplies. The plants unambiguously competed with the fungi for N when its supply was low, resulting in no or negative mycorrhizal growth and N-uptake responses under such conditions. The field AM fungal communities manifested their potential to improve plant P nutrition only upon N fertilization, whereas the R. irregularis slightly yet significantly increased P uptake of its plant host (but not the host's growth) even without N supply. Coincident with increasing levels of root colonization by the AM fungal structures, both inoculants invariably increased nutritional and growth benefits to the host with increasing N supply. This, in turn, resulted in relieving plant P deficiency, which was persistent in non-mycorrhizal plants across the entire range of nutrient supplies. PMID:27386079

  19. Morphological and functional stasis in mycorrhizal root nodules as exhibited by a Triassic conifer.

    PubMed

    Schwendemann, Andrew B; Decombeix, Anne-Laure; Taylor, Thomas N; Taylor, Edith L; Krings, Michael

    2011-08-16

    Mycorrhizal root nodules occur in the conifer families Araucariaceae, Podocarpaceae, and Sciadopityaceae. Although the fossil record of these families can be traced back into the early Mesozoic, the oldest fossil evidence of root nodules previously came from the Cretaceous. Here we report on cellularly preserved root nodules of the early conifer Notophytum from Middle Triassic permineralized peat of Antarctica. These fossil root nodules contain fungal arbuscules, hyphal coils, and vesicles in their cortex. Numerous glomoid-type spores are found in the peat matrix surrounding the nodules. This discovery indicates that mutualistic associations between conifer root nodules and arbuscular mycorrhizal fungi date back to at least the early Mesozoic, the period during which most of the modern conifer families first appeared. Notophytum root nodules predate the next known appearance of this association by 100 million years, indicating that this specialized form of mycorrhizal symbiosis has ancient origins. PMID:21808011

  20. Morphological and functional stasis in mycorrhizal root nodules as exhibited by a Triassic conifer

    PubMed Central

    Schwendemann, Andrew B.; Decombeix, Anne-Laure; Taylor, Thomas N.; Krings, Michael

    2011-01-01

    Mycorrhizal root nodules occur in the conifer families Araucariaceae, Podocarpaceae, and Sciadopityaceae. Although the fossil record of these families can be traced back into the early Mesozoic, the oldest fossil evidence of root nodules previously came from the Cretaceous. Here we report on cellularly preserved root nodules of the early conifer Notophytum from Middle Triassic permineralized peat of Antarctica. These fossil root nodules contain fungal arbuscules, hyphal coils, and vesicles in their cortex. Numerous glomoid-type spores are found in the peat matrix surrounding the nodules. This discovery indicates that mutualistic associations between conifer root nodules and arbuscular mycorrhizal fungi date back to at least the early Mesozoic, the period during which most of the modern conifer families first appeared. Notophytum root nodules predate the next known appearance of this association by 100 million years, indicating that this specialized form of mycorrhizal symbiosis has ancient origins. PMID:21808011

  1. The role of mycorrhizal associations in plant potassium nutrition

    PubMed Central

    Garcia, Kevin; Zimmermann, Sabine D.

    2014-01-01

    Potassium (K+) is one of the most abundant elements of soil composition but it's very low availability limits plant growth and productivity of ecosystems. Because this cation participates in many biological processes, its constitutive uptake from soil solution is crucial for the plant cell machinery. Thus, the understanding of strategies responsible of K+ nutrition is a major issue in plant science. Mycorrhizal associations occurring between roots and hyphae of underground fungi improve hydro-mineral nutrition of the majority of terrestrial plants. The contribution of this mutualistic symbiosis to the enhancement of plant K+ nutrition is not well understood and poorly studied so far. This mini-review examines the current knowledge about the impact of both arbuscular mycorrhizal and ectomycorrhizal symbioses on the transfer of K+ from the soil to the plants. A model summarizing plant and fungal transport systems identified and hypothetically involved in K+ transport is proposed. In addition, some data related to benefits for plants provided by the improvement of K+ nutrition thanks to mycorrhizal symbioses are presented. PMID:25101097

  2. The role of mycorrhizal associations in plant potassium nutrition.

    PubMed

    Garcia, Kevin; Zimmermann, Sabine D

    2014-01-01

    Potassium (K(+)) is one of the most abundant elements of soil composition but it's very low availability limits plant growth and productivity of ecosystems. Because this cation participates in many biological processes, its constitutive uptake from soil solution is crucial for the plant cell machinery. Thus, the understanding of strategies responsible of K(+) nutrition is a major issue in plant science. Mycorrhizal associations occurring between roots and hyphae of underground fungi improve hydro-mineral nutrition of the majority of terrestrial plants. The contribution of this mutualistic symbiosis to the enhancement of plant K(+) nutrition is not well understood and poorly studied so far. This mini-review examines the current knowledge about the impact of both arbuscular mycorrhizal and ectomycorrhizal symbioses on the transfer of K(+) from the soil to the plants. A model summarizing plant and fungal transport systems identified and hypothetically involved in K(+) transport is proposed. In addition, some data related to benefits for plants provided by the improvement of K(+) nutrition thanks to mycorrhizal symbioses are presented. PMID:25101097

  3. Mycorrhizal Stimulation of Leaf Gas Exchange in Relation to Root Colonization, Shoot Size, Leaf Phosphorus and Nitrogen: A Quantitative Analysis of the Literature Using Meta-Regression.

    PubMed

    Augé, Robert M; Toler, Heather D; Saxton, Arnold M

    2016-01-01

    Arbuscular mycorrhizal (AM) symbiosis often stimulates gas exchange rates of the host plant. This may relate to mycorrhizal effects on host nutrition and growth rate, or the influence may occur independently of these. Using meta-regression, we tested the strength of the relationship between AM-induced increases in gas exchange, and AM size and leaf mineral effects across the literature. With only a few exceptions, AM stimulation of carbon exchange rate (CER), stomatal conductance (g s), and transpiration rate (E) has been significantly associated with mycorrhizal stimulation of shoot dry weight, leaf phosphorus, leaf nitrogen:phosphorus ratio, and percent root colonization. The sizeable mycorrhizal stimulation of CER, by 49% over all studies, has been about twice as large as the mycorrhizal stimulation of g s and E (28 and 26%, respectively). CER has been over twice as sensitive as g s and four times as sensitive as E to mycorrhizal colonization rates. The AM-induced stimulation of CER increased by 19% with each AM-induced doubling of shoot size; the AM effect was about half as large for g s and E. The ratio of leaf N to leaf P has been more closely associated with mycorrhizal influence on leaf gas exchange than leaf P alone. The mycorrhizal influence on CER has declined markedly over the 35 years of published investigations. PMID:27524989

  4. Mycorrhizal Stimulation of Leaf Gas Exchange in Relation to Root Colonization, Shoot Size, Leaf Phosphorus and Nitrogen: A Quantitative Analysis of the Literature Using Meta-Regression

    PubMed Central

    Augé, Robert M.; Toler, Heather D.; Saxton, Arnold M.

    2016-01-01

    Arbuscular mycorrhizal (AM) symbiosis often stimulates gas exchange rates of the host plant. This may relate to mycorrhizal effects on host nutrition and growth rate, or the influence may occur independently of these. Using meta-regression, we tested the strength of the relationship between AM-induced increases in gas exchange, and AM size and leaf mineral effects across the literature. With only a few exceptions, AM stimulation of carbon exchange rate (CER), stomatal conductance (gs), and transpiration rate (E) has been significantly associated with mycorrhizal stimulation of shoot dry weight, leaf phosphorus, leaf nitrogen:phosphorus ratio, and percent root colonization. The sizeable mycorrhizal stimulation of CER, by 49% over all studies, has been about twice as large as the mycorrhizal stimulation of gs and E (28 and 26%, respectively). CER has been over twice as sensitive as gs and four times as sensitive as E to mycorrhizal colonization rates. The AM-induced stimulation of CER increased by 19% with each AM-induced doubling of shoot size; the AM effect was about half as large for gs and E. The ratio of leaf N to leaf P has been more closely associated with mycorrhizal influence on leaf gas exchange than leaf P alone. The mycorrhizal influence on CER has declined markedly over the 35 years of published investigations. PMID:27524989

  5. Symbiosis, Empathy, Suicidal Behavior, and the Family.

    ERIC Educational Resources Information Center

    Richman, Joseph

    1978-01-01

    This paper discusses the theoretical concept of symbiosis, as described by Mahler and her co-workers, and its clinical applications in suicidal situations. Also, the practical implications of the concept of symbiosis for assessment and treatment are discussed (Author)

  6. Chromium immobilization by extra- and intraradical fungal structures of arbuscular mycorrhizal symbioses.

    PubMed

    Wu, Songlin; Zhang, Xin; Sun, Yuqing; Wu, Zhaoxiang; Li, Tao; Hu, Yajun; Lv, Jitao; Li, Gang; Zhang, Zhensong; Zhang, Jing; Zheng, Lirong; Zhen, Xiangjun; Chen, Baodong

    2016-10-01

    Arbuscular mycorrhizal (AM) fungi can enhance plant Cr tolerance through immobilizing Cr in mycorrhizal roots. However, the detailed processes and mechanisms are unclear. The present study focused on cellular distribution and speciation of Cr in both extraradical mycelium (ERM) and mycorrhizal roots exposed to Cr(VI) by using field emission scanning electron microscopy equipped with energy dispersive X-ray spectrometer (FE-SEM-EDS), scanning transmission soft X-ray microscopy (STXM) and X-ray absorption fine structure (XAFS) spectroscopy techniques. We found that amounts of particles (possibly extracellular polymeric substances, EPS) were produced on the AM fungal surface upon Cr(VI) stress, which contributed greatly to Cr(VI) reduction and immobilization. With EDS of the surface of AM fungi exposed to various Cr(VI) levels, a positive correlation between Cr and P was revealed, suggesting that phosphate groups might act as counter ions of Cr(III), which was also confirmed by the XAFS analysis. Besides, STXM and XAFS analyses showed that Cr(VI) was reduced to Cr(III) in AM fungal structures (arbuscules, intraradical mycelium, etc.) and cell walls in mycorrhizal roots, and complexed possibly with carboxyl groups or histidine analogues. The present work provided evidence of Cr immobilization on fungal surface and in fungal structures in mycorrhizal roots at a cellular level, and thus unraveled the underlying mechanisms by which AM symbiosis immobilize Cr. PMID:27209517

  7. Effect of Rhizobium and arbuscular mycorrhizal fungi inoculation on electrolyte leakage in Phaseolus vulgaris roots overexpressing RbohB.

    PubMed

    Arthikala, Manoj-Kumar; Nava, Noreide; Quinto, Carmen

    2015-01-01

    Respiratory oxidative burst homolog (RBOH)-mediated reactive oxygen species (ROS) regulate a wide range of biological functions in plants. They play a critical role in the symbiosis between legumes and nitrogen-fixing bacteria or arbuscular mycorrhizal (AM) fungi. For instance, overexpression of PvRbohB enhances nodule numbers, but reduces mycorrhizal colonization in Phaseolus vulgaris hairy roots and downregulation has the opposite effect. In the present study, we assessed the effect of both rhizobia and AM fungi on electrolyte leakage in transgenic P. vulgaris roots overexpressing (OE) PvRbohB. We demonstrate that elevated levels of electrolyte leakage in uninoculated PvRbohB-OE transgenic roots were alleviated by either Rhizobium or AM fungi symbiosis, with the latter interaction having the greater effect. These results suggest that symbiont colonization reduces ROS elevated electrolyte leakage in P. vulgaris root cells. PMID:25946118

  8. Direct and indirect effects of glomalin, mycorrhizal hyphae, and roots on aggregate stability in rhizosphere of trifoliate orange.

    PubMed

    Wu, Qiang-Sheng; Cao, Ming-Qin; Zou, Ying-Ning; He, Xin-hua

    2014-01-01

    To test direct and indirect effects of glomalin, mycorrhizal hyphae, and roots on aggregate stability, perspex pots separated by 37-μm nylon mesh in the middle were used to form root-free hyphae and root/hyphae chambers, where trifoliate orange (Poncirus trifoliata) seedlings were colonized by Funneliformis mosseae or Paraglomus occultum in the root/hyphae chamber. Both fungal species induced significantly higher plant growth, root total length, easily-extractable glomalin-related soil protein (EE-GRSP) and total GRSP (T-GRSP), and mean weight diameter (an aggregate stability indicator). The Pearson correlation showed that root colonization or soil hyphal length significantly positively correlated with EE-GRSP, difficultly-extractable GRSP (DE-GRSP), T-GRSP, and water-stable aggregates in 2.00-4.00, 0.50-1.00, and 0.25-0.50 mm size fractions. The path analysis indicated that in the root/hyphae chamber, aggregate stability derived from a direct effect of root colonization, EE-GRSP or DE-GRSP. Meanwhile, the direct effect was stronger by EE-GRSP or DE-GRSP than by mycorrhizal colonization. In the root-free hyphae chamber, mycorrhizal-mediated aggregate stability was due to total effect but not direct effect of soil hyphal length, EE-GRSP and T-GRSP. Our results suggest that GRSP among these tested factors may be the primary contributor to aggregate stability in the citrus rhizosphere. PMID:25059396

  9. Intraradical colonization by arbuscular mycorrhizal fungi triggers induction of a lipochitooligosaccharide receptor.

    PubMed

    Rasmussen, S R; Füchtbauer, W; Novero, M; Volpe, V; Malkov, N; Genre, A; Bonfante, P; Stougaard, J; Radutoiu, S

    2016-01-01

    Functional divergence of paralogs following gene duplication is one of the mechanisms leading to evolution of novel pathways and traits. Here we show that divergence of Lys11 and Nfr5 LysM receptor kinase paralogs of Lotus japonicus has affected their specificity for lipochitooligosaccharides (LCOs) decorations, while the innate capacity to recognize and induce a downstream signalling after perception of rhizobial LCOs (Nod factors) was maintained. Regardless of this conserved ability, Lys11 was found neither expressed, nor essential during nitrogen-fixing symbiosis, providing an explanation for the determinant role of Nfr5 gene during Lotus-rhizobia interaction. Lys11 was expressed in root cortex cells associated with intraradical colonizing arbuscular mycorrhizal fungi. Detailed analyses of lys11 single and nfr1nfr5lys11 triple mutants revealed a functional arbuscular mycorrhizal symbiosis, indicating that Lys11 alone, or its possible shared function with the Nod factor receptors is not essential for the presymbiotic phases of AM symbiosis. Hence, both subfunctionalization and specialization appear to have shaped the function of these paralogs where Lys11 acts as an AM-inducible gene, possibly to fine-tune later stages of this interaction. PMID:27435342

  10. Intraradical colonization by arbuscular mycorrhizal fungi triggers induction of a lipochitooligosaccharide receptor

    PubMed Central

    Rasmussen, S. R.; Füchtbauer, W.; Novero, M.; Volpe, V.; Malkov, N.; Genre, A.; Bonfante, P.; Stougaard, J.; Radutoiu, S.

    2016-01-01

    Functional divergence of paralogs following gene duplication is one of the mechanisms leading to evolution of novel pathways and traits. Here we show that divergence of Lys11 and Nfr5 LysM receptor kinase paralogs of Lotus japonicus has affected their specificity for lipochitooligosaccharides (LCOs) decorations, while the innate capacity to recognize and induce a downstream signalling after perception of rhizobial LCOs (Nod factors) was maintained. Regardless of this conserved ability, Lys11 was found neither expressed, nor essential during nitrogen-fixing symbiosis, providing an explanation for the determinant role of Nfr5 gene during Lotus-rhizobia interaction. Lys11 was expressed in root cortex cells associated with intraradical colonizing arbuscular mycorrhizal fungi. Detailed analyses of lys11 single and nfr1nfr5lys11 triple mutants revealed a functional arbuscular mycorrhizal symbiosis, indicating that Lys11 alone, or its possible shared function with the Nod factor receptors is not essential for the presymbiotic phases of AM symbiosis. Hence, both subfunctionalization and specialization appear to have shaped the function of these paralogs where Lys11 acts as an AM-inducible gene, possibly to fine-tune later stages of this interaction. PMID:27435342

  11. Intraradical colonization by arbuscular mycorrhizal fungi triggers induction of a lipochitooligosaccharide receptor

    NASA Astrophysics Data System (ADS)

    Rasmussen, S. R.; Füchtbauer, W.; Novero, M.; Volpe, V.; Malkov, N.; Genre, A.; Bonfante, P.; Stougaard, J.; Radutoiu, S.

    2016-07-01

    Functional divergence of paralogs following gene duplication is one of the mechanisms leading to evolution of novel pathways and traits. Here we show that divergence of Lys11 and Nfr5 LysM receptor kinase paralogs of Lotus japonicus has affected their specificity for lipochitooligosaccharides (LCOs) decorations, while the innate capacity to recognize and induce a downstream signalling after perception of rhizobial LCOs (Nod factors) was maintained. Regardless of this conserved ability, Lys11 was found neither expressed, nor essential during nitrogen-fixing symbiosis, providing an explanation for the determinant role of Nfr5 gene during Lotus-rhizobia interaction. Lys11 was expressed in root cortex cells associated with intraradical colonizing arbuscular mycorrhizal fungi. Detailed analyses of lys11 single and nfr1nfr5lys11 triple mutants revealed a functional arbuscular mycorrhizal symbiosis, indicating that Lys11 alone, or its possible shared function with the Nod factor receptors is not essential for the presymbiotic phases of AM symbiosis. Hence, both subfunctionalization and specialization appear to have shaped the function of these paralogs where Lys11 acts as an AM-inducible gene, possibly to fine-tune later stages of this interaction.

  12. The reduced mycorrhizal colonisation (rmc) mutation of tomato disrupts five gene sequences including the CYCLOPS/IPD3 homologue.

    PubMed

    Larkan, Nicholas J; Ruzicka, Dan R; Edmonds-Tibbett, Tamara; Durkin, Jonathan M H; Jackson, Louise E; Smith, F Andrew; Schachtman, Daniel P; Smith, Sally E; Barker, Susan J

    2013-10-01

    Arbuscular mycorrhizal (AM) symbiosis in vascular plant roots is an ancient mutualistic interaction that evolved with land plants. More recently evolved root mutualisms have recruited components of the AM signalling pathway as identified with molecular approaches in model legume research. Earlier we reported that the reduced mycorrhizal colonisation (rmc) mutation of tomato mapped to chromosome 8. Here we report additional functional characterisation of the rmc mutation using genotype grafts and proteomic and transcriptomic analyses. Our results led to identification of the precise genome location of the Rmc locus from which we identified the mutation by sequencing. The rmc phenotype results from a deletion that disrupts five predicted gene sequences, one of which has close sequence match to the CYCLOPS/IPD3 gene identified in legumes as an essential intracellular regulator of both AM and rhizobial symbioses. Identification of two other genes not located at the rmc locus but with altered expression in the rmc genotype is also described. Possible roles of the other four disrupted genes in the deleted region are discussed. Our results support the identification of CYCLOPS/IPD3 in legumes and rice as a key gene required for AM symbiosis. The extensive characterisation of rmc in comparison with its 'parent' 76R, which has a normal mycorrhizal phenotype, has validated these lines as an important comparative model for glasshouse and field studies of AM and non-mycorrhizal plants with respect to plant competition and microbial interactions with vascular plant roots. PMID:23572326

  13. The Combined Effects of Arbuscular Mycorrhizal Fungi (AMF) and Lead (Pb) Stress on Pb Accumulation, Plant Growth Parameters, Photosynthesis, and Antioxidant Enzymes in Robinia pseudoacacia L.

    SciTech Connect

    Yang, Yurong; Han, Xiaozhen; Liang, Yan; Ghosh, Amit; Chen, Jie; Tang, Ming

    2015-12-23

    Arbuscular mycorrhizal fungi (AMF) are considered as a potential biotechnological tool for improving phytostabilization efficiency and plant tolerance to heavy metal-contaminated soils. However, the mechanisms through which AMF help to alleviate metal toxicity in plants are still poorly understood. A greenhouse experiment was conducted to evaluate the effects of two AMF species (Funneliformis mosseae and Rhizophagus intraradices) on the growth, Pb accumulation, photosynthesis and antioxidant enzyme activities of a leguminous tree (Robinia pseudoacacia L.) at Pb addition levels of 0, 500, 1000 and 2000 mg kg-1 soil. AMF symbiosis decreased Pb concentrations in the leaves and promoted the accumulation of biomass as well as photosynthetic pigment contents. Mycorrhizal plants had higher gas exchange capacity, non-photochemistry efficiency, and photochemistry efficiency compared with non-mycorrhizal plants. The enzymatic activities of superoxide dismutase (SOD), ascorbate peroxidases (APX) and glutathione peroxidase (GPX) were enhanced, and hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents were reduced in mycorrhizal plants. These findings suggested that AMF symbiosis could protect plants by alleviating cellular oxidative damage in response to Pb stress. Furthermore, mycorrhizal dependency on plants increased with increasing Pb stress levels, indicating that AMF inoculation likely played a more important role in plant Pb tolerance in heavily contaminated soils. Overall, both F. mosseae and R. intraradices were able to maintain efficient symbiosis with R. pseudoacacia in Pb polluted soils. AMF symbiosis can improve photosynthesis and reactive oxygen species (ROS) scavenging capabilities and decrease Pb concentrations in leaves to alleviate Pb toxicity in R. pseudoacacia. In conclusion, our results suggest that the application of the two AMF species associated with R. pseudoacacia could be a promising strategy for enhancing the

  14. The Combined Effects of Arbuscular Mycorrhizal Fungi (AMF) and Lead (Pb) Stress on Pb Accumulation, Plant Growth Parameters, Photosynthesis, and Antioxidant Enzymes in Robinia pseudoacacia L.

    PubMed Central

    Liang, Yan; Ghosh, Amit; Chen, Jie; Tang, Ming

    2015-01-01

    Arbuscular mycorrhizal fungi (AMF) are considered as a potential biotechnological tool for improving phytostabilization efficiency and plant tolerance to heavy metal-contaminated soils. However, the mechanisms through which AMF help to alleviate metal toxicity in plants are still poorly understood. A greenhouse experiment was conducted to evaluate the effects of two AMF species (Funneliformis mosseae and Rhizophagus intraradices) on the growth, Pb accumulation, photosynthesis and antioxidant enzyme activities of a leguminous tree (Robinia pseudoacacia L.) at Pb addition levels of 0, 500, 1000 and 2000 mg kg-1 soil. AMF symbiosis decreased Pb concentrations in the leaves and promoted the accumulation of biomass as well as photosynthetic pigment contents. Mycorrhizal plants had higher gas exchange capacity, non-photochemistry efficiency, and photochemistry efficiency compared with non-mycorrhizal plants. The enzymatic activities of superoxide dismutase (SOD), ascorbate peroxidases (APX) and glutathione peroxidase (GPX) were enhanced, and hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents were reduced in mycorrhizal plants. These findings suggested that AMF symbiosis could protect plants by alleviating cellular oxidative damage in response to Pb stress. Furthermore, mycorrhizal dependency on plants increased with increasing Pb stress levels, indicating that AMF inoculation likely played a more important role in plant Pb tolerance in heavily contaminated soils. Overall, both F. mosseae and R. intraradices were able to maintain efficient symbiosis with R. pseudoacacia in Pb polluted soils. AMF symbiosis can improve photosynthesis and reactive oxygen species (ROS) scavenging capabilities and decrease Pb concentrations in leaves to alleviate Pb toxicity in R. pseudoacacia. Our results suggest that the application of the two AMF species associated with R. pseudoacacia could be a promising strategy for enhancing the phytostabilization efficiency of Pb contaminated

  15. The Combined Effects of Arbuscular Mycorrhizal Fungi (AMF) and Lead (Pb) Stress on Pb Accumulation, Plant Growth Parameters, Photosynthesis, and Antioxidant Enzymes in Robinia pseudoacacia L.

    DOE PAGESBeta

    Yang, Yurong; Han, Xiaozhen; Liang, Yan; Ghosh, Amit; Chen, Jie; Tang, Ming

    2015-12-23

    Arbuscular mycorrhizal fungi (AMF) are considered as a potential biotechnological tool for improving phytostabilization efficiency and plant tolerance to heavy metal-contaminated soils. However, the mechanisms through which AMF help to alleviate metal toxicity in plants are still poorly understood. A greenhouse experiment was conducted to evaluate the effects of two AMF species (Funneliformis mosseae and Rhizophagus intraradices) on the growth, Pb accumulation, photosynthesis and antioxidant enzyme activities of a leguminous tree (Robinia pseudoacacia L.) at Pb addition levels of 0, 500, 1000 and 2000 mg kg-1 soil. AMF symbiosis decreased Pb concentrations in the leaves and promoted the accumulation ofmore » biomass as well as photosynthetic pigment contents. Mycorrhizal plants had higher gas exchange capacity, non-photochemistry efficiency, and photochemistry efficiency compared with non-mycorrhizal plants. The enzymatic activities of superoxide dismutase (SOD), ascorbate peroxidases (APX) and glutathione peroxidase (GPX) were enhanced, and hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents were reduced in mycorrhizal plants. These findings suggested that AMF symbiosis could protect plants by alleviating cellular oxidative damage in response to Pb stress. Furthermore, mycorrhizal dependency on plants increased with increasing Pb stress levels, indicating that AMF inoculation likely played a more important role in plant Pb tolerance in heavily contaminated soils. Overall, both F. mosseae and R. intraradices were able to maintain efficient symbiosis with R. pseudoacacia in Pb polluted soils. AMF symbiosis can improve photosynthesis and reactive oxygen species (ROS) scavenging capabilities and decrease Pb concentrations in leaves to alleviate Pb toxicity in R. pseudoacacia. In conclusion, our results suggest that the application of the two AMF species associated with R. pseudoacacia could be a promising strategy for enhancing the phytostabilization

  16. Transformation of the mycorrhizal fungus Laccaria bicolor using Agrobacterium tumefaciens.

    PubMed

    Kemppainen, Minna J; Pardo, Alejandro G

    2011-01-01

    Most boreal and temperate forest trees form a mutualistic symbiosis with soil borne fungi called ectomycorrhiza (ECM). In this association both partners benefit due to nutrient exchange at the symbiotic interface. Laccaria bicolor is the first mycorrhizal fungus with its genome sequenced thus making possible for the first time to analyze genome scale gene expression profiles of a mutualistic fungus. However, in order to be able to take full advantage of the genome sequence, reverse genetic tools are needed. Among them a high throughput transformation system is crucial. Herein we present a detailed protocol for genetic transformation of L. bicolor by means of Agrobacterium tumefaciens with emphasis on critical steps affecting the success and efficiency of the approach. PMID:21636986

  17. From mycoheterotrophy to mutualism: mycorrhizal specificity and functioning in Ophioglossum vulgatum sporophytes.

    PubMed

    Field, Katie J; Leake, Jonathan R; Tille, Stefanie; Allinson, Kate E; Rimington, William R; Bidartondo, Martin I; Beerling, David J; Cameron, Duncan D

    2015-03-01

    Mycorrhizal functioning in the fern Ophioglossum is complex and poorly understood. It is unknown whether mature O. vulgatum sporophytes form mutualistic associations with fungi of the Glomeromycota and with what specificity. Are green sporophytes able to 'repay' fungal carbon (C) invested in them by mycorrhizal partners during the initially heterotrophic gametophyte and early sporophyte stages of the lifecycle? We identified fungal partners of O. vulgatum sporophytes using molecular techniques and supplied them with (33) P-orthophosphate and O. vulgatum sporophytes with (14) CO2 . We traced the movement of fungal-acquired nutrients and plant-fixed C between symbionts and analysed natural abundance (13) C and (15) N isotope signatures to assess nutritional interactions. We found fungal specificity of O. vulgatum sporophytes towards a mycorrhizal fungus closely related to Glomus macrocarpum. Our radioisotope tracers revealed reciprocal C-for-phosphorus exchange between fern sporophytes and fungal partners, despite competition from surrounding vegetation. Monocultures of O. vulgatum were enriched in (13) C and (15) N, providing inconclusive evidence of mycoheterotrophy when experiencing competition from the surrounding plant community. We show mutualistic and specific symbiosis between a eusporangiate fern and fungi of the Glomeromycota. Our findings suggest a 'take now, pay later' strategy of mycorrhizal functioning through the lifecycle O. vulgatum, from mycoheterotrophic gametophyte to mutualistic aboveground sporophyte. PMID:25615559

  18. Life histories of symbiotic rhizobia and mycorrhizal fungi.

    PubMed

    Denison, R Ford; Kiers, E Toby

    2011-09-27

    Research on life history strategies of microbial symbionts is key to understanding the evolution of cooperation with hosts, but also their survival between hosts. Rhizobia are soil bacteria known for fixing nitrogen inside legume root nodules. Arbuscular mycorrhizal (AM) fungi are ubiquitous root symbionts that provide plants with nutrients and other benefits. Both kinds of symbionts employ strategies to reproduce during symbiosis using host resources; to repopulate the soil; to survive in the soil between hosts; and to find and infect new hosts. Here we focus on the fitness of the microbial symbionts and how interactions at each of these stages has shaped microbial life-history strategies. During symbiosis, microbial fitness could be increased by diverting more resources to individual reproduction, but that may trigger fitness-reducing host sanctions. To survive in the soil, symbionts employ sophisticated strategies, such as persister formation for rhizobia and reversal of spore germination by mycorrhizae. Interactions among symbionts, from rhizobial quorum sensing to fusion of genetically distinct fungal hyphae, increase adaptive plasticity. The evolutionary implications of these interactions and of microbial strategies to repopulate and survive in the soil are largely unexplored. PMID:21959168

  19. Effect of Agrobacterium culture and inoculation density on transformation efficiency of a citrange (Citrus reticulata x Poncirus trifoliata).

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of Agrobacterium growth phase and density on transformation of citrus rootstock US-812 (Citrus reticulata x Poncirus trifoliata) epicotyl explants was determined. In the first experiment, Agrobacterium EHA105 containing pBINGUSint was grown in YEP medium to an OD600 of 1 and glycerol sto...

  20. Candidatus Liberibacter asiaticus (CLas)Titer in Poncirus trifoliata and P. trifoliata Hybrids: Inferences on Components of HLB Tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poncirus trifoliata hybrids grown in the USHRL variety block on Sun Chu Sha were tested for CLas 16S rDNA and Citrus dehydrin by qPCR, assessing random quadrant samples, a diagnostic “worst” sample, and rootstock suckers (November 2009). Resulting data were expressed as abundance of CLas relative t...

  1. Arbuscular mycorrhizal fungal inoculation protects Miscanthus × giganteus against trace element toxicity in a highly metal-contaminated site.

    PubMed

    Firmin, Stéphane; Labidi, Sonia; Fontaine, Joël; Laruelle, Frédéric; Tisserant, Benoit; Nsanganwimana, Florian; Pourrut, Bertrand; Dalpé, Yolande; Grandmougin, Anne; Douay, Francis; Shirali, Pirouz; Verdin, Anthony; Lounès-Hadj Sahraoui, Anissa

    2015-09-15

    Arbuscular mycorrhizal fungus (AMF)-assisted phytoremediation could constitute an ecological and economic method in polluted soil rehabilitation programs. The aim of this work was to characterize the trace element (TE) phytoremediation potential of mycorrhizal Miscanthus × giganteus. To understand the mechanisms involved in arbuscular mycorrhizal symbiosis tolerance to TE toxicity, the fatty acid compositions and several stress oxidative biomarkers were compared in the roots and leaves of Miscanthus × giganteus cultivated under field conditions in either TE-contaminated or control soils. TEs were accumulated in greater amounts in roots, but the leaves were the organ most affected by TE contamination and were characterized by a strong decrease in fatty acid contents. TE-induced oxidative stress in leaves was confirmed by an increase in the lipid peroxidation biomarker malondialdehyde (MDA). TE contamination decreased the GSSG/GSH ratio in the leaves of exposed plants, while peroxidase (PO) and superoxide dismutase (SOD) activities were increased in leaves and in whole plants, respectively. AMF inoculation also increased root colonization in the presence of TE contamination. The mycorrhizal colonization determined a decrease in SOD activity in the whole plant and PO activities in leaves and induced a significant increase in the fatty acid content in leaves and a decrease in MDA formation in whole plants. These results suggested that mycorrhization is able to confer protection against oxidative stress induced by soil pollution. Our findings suggest that mycorrhizal inoculation could be used as a bioaugmentation technique, facilitating Miscanthus cultivation on highly TE-contaminated soil. PMID:25958358

  2. Arbuscular mycorrhizal wheat inoculation promotes alkane and polycyclic aromatic hydrocarbon biodegradation: Microcosm experiment on aged-contaminated soil.

    PubMed

    Ingrid, Lenoir; Lounès-Hadj Sahraoui, Anissa; Frédéric, Laruelle; Yolande, Dalpé; Joël, Fontaine

    2016-06-01

    Very few studies reported the potential of arbuscular mycorrhizal symbiosis to dissipate hydrocarbons in aged polluted soils. The present work aims to study the efficiency of arbuscular mycorrhizal colonized wheat plants in the dissipation of alkanes and polycyclic aromatic hydrocarbons (PAHs). Our results demonstrated that the inoculation of wheat with Rhizophagus irregularis allowed a better dissipation of PAHs and alkanes after 16 weeks of culture by comparison to non-inoculated condition. These dissipations observed in the inoculated soil resulted from several processes: (i) a light adsorption on roots (0.5% for PAHs), (ii) a bioaccumulation in roots (5.7% for PAHs and 6.6% for alkanes), (iii) a transfer in shoots (0.4 for PAHs and 0.5% for alkanes) and mainly a biodegradation. Whereas PAHs and alkanes degradation rates were respectively estimated to 12 and 47% with non-inoculated wheat, their degradation rates reached 18 and 48% with inoculated wheat. The mycorrhizal inoculation induced an increase of Gram-positive and Gram-negative bacteria by 56 and 37% compared to the non-inoculated wheat. Moreover, an increase of peroxidase activity was assessed in mycorrhizal roots. Taken together, our findings suggested that mycorrhization led to a better hydrocarbon biodegradation in the aged-contaminated soil thanks to a stimulation of telluric bacteria and hydrocarbon metabolization in mycorrhizal roots. PMID:26995451

  3. Flavonol Glucoside and Antioxidant Enzyme Biosynthesis Affected by Mycorrhizal Fungi in Various Cultivars of Onion (Allium cepa L.).

    PubMed

    Mollavali, Mohanna; Bolandnazar, Saheb Ali; Schwarz, Dietmar; Rohn, Sascha; Riehle, Peer; Zaare Nahandi, Fariborz

    2016-01-13

    The objective of this study was to investigate the impact of mycorrhizal symbiosis on qualitative characteristics of onion (Allium cepa L.). For this reason, five onion cultivars with different scale color and three different strains of arbuscular mycorrhizal fungi (Diversispora versiformis, Rhizophagus intraradices, Funneliformis mosseae) were used. Red cultivars, mainly 'Red Azar-shahr', showed the highest content in vitamin C, flavonols, and antioxidant enzymes. Mycorrhizal inoculation increased total phenolic, pyruvic acid, and vitamin C of onion plants. Considerable increase was observed in quercetin-4'-O-monoglucoside and isorhamnetin-4'-O-monoglucoside content in plants inoculated with Diversispora versiformis, but quercetin-3,4'-O-diglucoside was not significantly influenced. Analyses for phenylalanine ammonia-lyase (PAL) and antioxiodant enzyme activities such as polyphenol oxidase (PPO), catalase (CAT), and peroxidase (POD) revealed that all except PPO were enhanced by mycorrhizal inoculation. Overall, these findings suggested that mycorrhizal inoculation influenced biosynthesis of flavonol glucosides and antioxidant enzymes by increasing nutrient uptake or by induction of the plant defense system. PMID:26694086

  4. Different levels of hyphal self-incompatibility modulate interconnectedness of mycorrhizal networks in three arbuscular mycorrhizal fungi within the Glomeraceae.

    PubMed

    Pepe, Alessandra; Giovannetti, Manuela; Sbrana, Cristiana

    2016-05-01

    Arbuscular mycorrhizal fungi (AMF) live in symbiosis with most plant species and produce underground extraradical hyphal networks functional in the uptake and translocation of mineral nutrients from the soil to host plants. This work investigated whether fungal genotype can affect patterns of interconnections and structural traits of extraradical mycelium (ERM), by comparing three Glomeraceae species growing in symbiosis with five plant hosts. An isolate of Funneliformis coronatus consistently showed low ability to form interconnected ERM and self-incompatibility that represented up to 21 % of hyphal contacts. The frequency of post-fusion self-incompatible interactions, never detected before in AMF extraradical networks, was 8.9 %. In F. coronatus ERM, the percentage of hyphal contacts leading to perfect hyphal fusions was 1.2-7.7, while it ranged from 25.8-48 to 35.6-53.6 in Rhizophagus intraradices and Funneliformis mosseae, respectively. Low interconnectedness of F. coronatus ERM resulted also from a very high number of non-interacting contacts (83.2 %). Such findings show that AMF genotypes in Glomeraceae can differ significantly in anastomosis behaviour and that ERM interconnectedness is modulated by the fungal symbiont, as F. coronatus consistently formed poorly interconnected networks when growing in symbiosis with five different host plants and in the asymbiotic stage. Structural traits, such as extent, density and hyphal self-compatibility/incompatibility, may represent key factors for the differential performance of AMF, by affecting fungal absorbing surface and foraging ability and thus nutrient flow from soil to host roots. PMID:26630971

  5. Cell Biology of Cnidarian-Dinoflagellate Symbiosis

    PubMed Central

    Allemand, Denis; Weis, Virginia M.

    2012-01-01

    Summary: The symbiosis between cnidarians (e.g., corals or sea anemones) and intracellular dinoflagellate algae of the genus Symbiodinium is of immense ecological importance. In particular, this symbiosis promotes the growth and survival of reef corals in nutrient-poor tropical waters; indeed, coral reefs could not exist without this symbiosis. However, our fundamental understanding of the cnidarian-dinoflagellate symbiosis and of its links to coral calcification remains poor. Here we review what we currently know about the cell biology of cnidarian-dinoflagellate symbiosis. In doing so, we aim to refocus attention on fundamental cellular aspects that have been somewhat neglected since the early to mid-1980s, when a more ecological approach began to dominate. We review the four major processes that we believe underlie the various phases of establishment and persistence in the cnidarian/coral-dinoflagellate symbiosis: (i) recognition and phagocytosis, (ii) regulation of host-symbiont biomass, (iii) metabolic exchange and nutrient trafficking, and (iv) calcification. Where appropriate, we draw upon examples from a range of cnidarian-alga symbioses, including the symbiosis between green Hydra and its intracellular chlorophyte symbiont, which has considerable potential to inform our understanding of the cnidarian-dinoflagellate symbiosis. Ultimately, we provide a comprehensive overview of the history of the field, its current status, and where it should be going in the future. PMID:22688813

  6. A novel reef coral symbiosis

    NASA Astrophysics Data System (ADS)

    Pantos, O.; Bythell, J. C.

    2010-09-01

    Reef building corals form close associations with unicellular microalgae, fungi, bacteria and archaea, some of which are symbiotic and which together form the coral holobiont. Associations with multicellular eukaryotes such as polychaete worms, bivalves and sponges are not generally considered to be symbiotic as the host responds to their presence by forming physical barriers with an active growth edge in the exoskeleton isolating the invader and, at a subcellular level, activating innate immune responses such as melanin deposition. This study describes a novel symbiosis between a newly described hydrozoan ( Zanclea margaritae sp. nov.) and the reef building coral Acropora muricata (= A. formosa), with the hydrozoan hydrorhiza ramifying throughout the coral tissues with no evidence of isolation or activation of the immune systems of the host. The hydrorhiza lacks a perisarc, which is typical of symbiotic species of this and related genera, including species that associate with other cnidarians such as octocorals. The symbiosis was observed at all sites investigated from two distant locations on the Great Barrier Reef, Australia, and appears to be host species specific, being found only in A. muricata and in none of 30 other species investigated at these sites. Not all colonies of A. muricata host the hydrozoans and both the prevalence within the coral population (mean = 66%) and density of emergent hydrozoan hydranths on the surface of the coral (mean = 4.3 cm-2, but up to 52 cm-2) vary between sites. The form of the symbiosis in terms of the mutualism-parasitism continuum is not known, although the hydrozoan possesses large stenotele nematocysts, which may be important for defence from predators and protozoan pathogens. This finding expands the known A. muricata holobiont and the association must be taken into account in future when determining the corals’ abilities to defend against predators and withstand stress.

  7. Algal ancestor of land plants was preadapted for symbiosis.

    PubMed

    Delaux, Pierre-Marc; Radhakrishnan, Guru V; Jayaraman, Dhileepkumar; Cheema, Jitender; Malbreil, Mathilde; Volkening, Jeremy D; Sekimoto, Hiroyuki; Nishiyama, Tomoaki; Melkonian, Michael; Pokorny, Lisa; Rothfels, Carl J; Sederoff, Heike Winter; Stevenson, Dennis W; Surek, Barbara; Zhang, Yong; Sussman, Michael R; Dunand, Christophe; Morris, Richard J; Roux, Christophe; Wong, Gane Ka-Shu; Oldroyd, Giles E D; Ané, Jean-Michel

    2015-10-27

    Colonization of land by plants was a major transition on Earth, but the developmental and genetic innovations required for this transition remain unknown. Physiological studies and the fossil record strongly suggest that the ability of the first land plants to form symbiotic associations with beneficial fungi was one of these critical innovations. In angiosperms, genes required for the perception and transduction of diffusible fungal signals for root colonization and for nutrient exchange have been characterized. However, the origin of these genes and their potential correlation with land colonization remain elusive. A comprehensive phylogenetic analysis of 259 transcriptomes and 10 green algal and basal land plant genomes, coupled with the characterization of the evolutionary path leading to the appearance of a key regulator, a calcium- and calmodulin-dependent protein kinase, showed that the symbiotic signaling pathway predated the first land plants. In contrast, downstream genes required for root colonization and their specific expression pattern probably appeared subsequent to the colonization of land. We conclude that the most recent common ancestor of extant land plants and green algae was preadapted for symbiotic associations. Subsequent improvement of this precursor stage in early land plants through rounds of gene duplication led to the acquisition of additional pathways and the ability to form a fully functional arbuscular mycorrhizal symbiosis. PMID:26438870

  8. Algal ancestor of land plants was preadapted for symbiosis

    PubMed Central

    Delaux, Pierre-Marc; Radhakrishnan, Guru V.; Jayaraman, Dhileepkumar; Cheema, Jitender; Malbreil, Mathilde; Volkening, Jeremy D.; Sekimoto, Hiroyuki; Nishiyama, Tomoaki; Melkonian, Michael; Pokorny, Lisa; Rothfels, Carl J.; Sederoff, Heike Winter; Stevenson, Dennis W.; Surek, Barbara; Zhang, Yong; Sussman, Michael R.; Dunand, Christophe; Morris, Richard J.; Roux, Christophe; Wong, Gane Ka-Shu; Oldroyd, Giles E. D.; Ané, Jean-Michel

    2015-01-01

    Colonization of land by plants was a major transition on Earth, but the developmental and genetic innovations required for this transition remain unknown. Physiological studies and the fossil record strongly suggest that the ability of the first land plants to form symbiotic associations with beneficial fungi was one of these critical innovations. In angiosperms, genes required for the perception and transduction of diffusible fungal signals for root colonization and for nutrient exchange have been characterized. However, the origin of these genes and their potential correlation with land colonization remain elusive. A comprehensive phylogenetic analysis of 259 transcriptomes and 10 green algal and basal land plant genomes, coupled with the characterization of the evolutionary path leading to the appearance of a key regulator, a calcium- and calmodulin-dependent protein kinase, showed that the symbiotic signaling pathway predated the first land plants. In contrast, downstream genes required for root colonization and their specific expression pattern probably appeared subsequent to the colonization of land. We conclude that the most recent common ancestor of extant land plants and green algae was preadapted for symbiotic associations. Subsequent improvement of this precursor stage in early land plants through rounds of gene duplication led to the acquisition of additional pathways and the ability to form a fully functional arbuscular mycorrhizal symbiosis. PMID:26438870

  9. [Effects of growth regulators and growth media on root-hair development of Poncirus trifoliate].

    PubMed

    Zhang, De-Jian; Xia, Ren-Xue; Cao, Xiu; Wang, Peng; Shu, Bo

    2011-06-01

    By using river sand and mixed soil as growth media, and treating with different concentration IBA, ETH, and NAA, this paper studied the root-hair development of Poncirus trifoliate seedlings, and the development cycle and distribution pattern of the root-hairs under phosphorus deficiency in sand culture. The root-hairs had a development cycle of about 4 days, and formed block-shaped and clumped, mainly around root, and with uneven distribution. Sand culture gave rise to the production of more root hairs, with an average of 486.3 per tap root, and treating with 1.0 micromol x L(-1) of IBA and ETH notablypromoted root-hair development. The phosphorous deficiency in sand culture induced more roothair formation (636.3 per tap root). Mixed soil culture produced lesser root-hairs (212.3 per taproot), and all the test growth regulators had no obvious effects on the root-hair development. PMID:21941742

  10. The relaxing effect of Poncirus fructus and its flavonoid content on porcine coronary artery

    PubMed Central

    Yu, Dong-Jun; Jun, Jin-Hong; Kim, Tae-Jun; Suh, Dong-Kyun; Youn, Dong-ho

    2015-01-01

    Coronary artery disease is a common occurrence in human, and causes enormous social cost. Poncirus fructus (PF), the dried immature fruits of Poncirus trifoliata Rafinesquem, is used in the treatment of womb contraction and dyspepsia, as a prokinetic, and in improving blood circulation. This study was performed to investigate the effects of PF and some of its flavonoids components on the coronary from the pig. The arterial ring was suspended by a pair of stainless steel stirrups in an organ bath. The end of the upper stirrup was connected to an isometric force transducer. A dose-dependent induction of relaxation was observed by both water and 70% ethanol extracts of PF in the porcine coronary artery precontracted with U46619 (100 nM), a stable analogue of the potent vasoconstrictor thromboxane A2. The 70% ethanol extract showed more efficacy than the water extract. Pretreatment of the artery with L-NAME (100 µM), a nitric oxide synthase inhibitor, resulted in a significant reduction in the relaxation induced by PF extract. In addition, ODQ (10 µM), a soluble guanylate cyclase inhibitor, also significantly reduced the effects of PF extracts. Hesperidin, a flavonoid present in PF, induced very weak relaxation of the porcine coronary artery at a high concentration (100 µM), while its aglycone, hesperetin, demonstrated a dose-dependent relaxation. In conclusion, PF extracts induced relaxation in the porcine coronary artery, partially through the nitric oxide-cGMP pathway, and the aglycones of flavonoids might be also involved in the relaxation of the same artery. PMID:25806081

  11. The relaxing effect of Poncirus fructus and its flavonoid content on porcine coronary artery.

    PubMed

    Yu, Dong-Jun; Jun, Jin-Hong; Kim, Tae-Jun; Suh, Dong-Kyun; Youn, Dong-Ho; Kim, Tae-Wan

    2015-03-01

    Coronary artery disease is a common occurrence in human, and causes enormous social cost. Poncirus fructus (PF), the dried immature fruits of Poncirus trifoliata Rafinesquem, is used in the treatment of womb contraction and dyspepsia, as a prokinetic, and in improving blood circulation. This study was performed to investigate the effects of PF and some of its flavonoids components on the coronary from the pig. The arterial ring was suspended by a pair of stainless steel stirrups in an organ bath. The end of the upper stirrup was connected to an isometric force transducer. A dose-dependent induction of relaxation was observed by both water and 70% ethanol extracts of PF in the porcine coronary artery precontracted with U46619 (100 nM), a stable analogue of the potent vasoconstrictor thromboxane A2. The 70% ethanol extract showed more efficacy than the water extract. Pretreatment of the artery with L-NAME (100 µM), a nitric oxide synthase inhibitor, resulted in a significant reduction in the relaxation induced by PF extract. In addition, ODQ (10 µM), a soluble guanylate cyclase inhibitor, also significantly reduced the effects of PF extracts. Hesperidin, a flavonoid present in PF, induced very weak relaxation of the porcine coronary artery at a high concentration (100 µM), while its aglycone, hesperetin, demonstrated a dose-dependent relaxation. In conclusion, PF extracts induced relaxation in the porcine coronary artery, partially through the nitric oxide-cGMP pathway, and the aglycones of flavonoids might be also involved in the relaxation of the same artery. PMID:25806081

  12. Presence of three mycorrhizal genes in the common ancestor of land plants suggests a key role of mycorrhizas in the colonization of land by plants.

    PubMed

    Wang, Bin; Yeun, Li Huey; Xue, Jia-Yu; Liu, Yang; Ané, Jean-Michel; Qiu, Yin-Long

    2010-04-01

    *The colonization of land by plants fundamentally altered environmental conditions on earth. Plant-mycorrhizal fungus symbiosis likely played a key role in this process by assisting plants to absorb water and nutrients from soil. *Here, in a diverse set of land plants, we investigated the evolutionary histories and functional conservation of three genes required for mycorrhiza formation in legumes and rice (Oryza sativa), DMI1, DMI3 and IPD3. *The genes were isolated from nearly all major plant lineages. Phylogenetic analyses showed that they had been vertically inherited since the origin of land plants. Further, cross-species mutant rescue experiments demonstrated that DMI3 genes from liverworts and hornworts could rescue Medicago truncatula dmi3 mutants for mycorrhiza formation. Yeast two-hybrid assays also showed that bryophyte DMI3 proteins could bind to downstream-acting M. trunculata IPD3 protein. Finally, molecular evolutionary analyses revealed that these genes were under purifying selection for maintenance of their ancestral functions in all mycorrhizal plant lineages. *These results indicate that the mycorrhizal genes were present in the common ancestor of land plants, and that their functions were largely conserved during land plant evolution. The evidence presented here strongly suggests that plant-mycorrhizal fungus symbiosis was one of the key processes that contributed to the origin of land flora. PMID:20059702

  13. Arbuscular mycorrhizal infection in two morphological root types of Araucaria araucana (Molina) K. Koch.

    PubMed

    Diehl, P; Fontenla, S B

    2010-01-01

    Araucaria araucana (Molina) K. Koch is a conifer distributed in the Andean-Patagonian forests in the south of Argentina and Chile. The main objective of this work was to relate the different root classes appearing in A. araucana to mycorrhizal behavior. Samples were collected in three different sites in the Lanín National Park (NW Patagonia, Argentina). Two different root classes were present in A. araucana: longitudinal fine roots (LFR) and globular short roots (GSR). Both had extensive mycorrhizal arbuscular symbiosis (AM) and presented abundant hyphae and coils in root cells, a characteristic of the anatomical Paris-type. Dark septate fungal endophytes were also observed. Values of total AM colonization were high, with similar partial AM% values for each root class. Seasonal differences were found for total and partial colonization, with higher values in spring compared to autumn. Regarding the percentage of fungal structures between root classes, values were similar for vesicles and arbuscules, but higher coil percentages were observed in GSR compared to LFR. The percentages of vesicles increased in autumn, whereas the arbuscule percentages increased in spring, coinciding with the plant growth peak. Results show that both root classes of A. araucana in Andean-Patagonian forests are associated with AM fungi, which may have ecological relevance in terms of the importance of this symbiosis, in response to soil nutrient-deficiencies, especially high P-retention. PMID:20589337

  14. Identification of genes that regulate phosphate acquisition and plant performance during arbuscular my corrhizal symbiosis in medicago truncatula and brachypodium distachyon

    SciTech Connect

    Harrison, Maria J; Hudson, Matthew E

    2015-11-24

    Most vascular flowering plants have the ability to form symbiotic associations with arbuscular mycorrhizal (AM) fungi. The symbiosis develops in the roots and can have a profound effect on plant productivity, largely through improvements in plant mineral nutrition. Within the root cortical cells, the plant and fungus create novel interfaces specialized for nutrient transfer, while the fungus also develops a network of hyphae in the rhizosphere. Through this hyphal network, the fungus acquires and delivers phosphate and nitrogen to the root. In return, the plant provides the fungus with carbon. In addition, to enhancing plant mineral nutrition, the AM symbiosis has an important role in the carbon cycle, and positive effects on soil health. Here we identified and characterized plant genes involved in the regulation and functioning of the AM symbiosis in Medicago truncatula and Brachypodium distachyon. This included the identification and and characterization of a M. truncatula transcription factors that are required for symbiosis. Additionally, we investigated the molecular basis of functional diversity among AM symbioses in B. distachyon and analysed the transcriptome of Brachypodium distachyon during symbiosis.

  15. Novel Root-Fungus Symbiosis in Ericaceae: Sheathed Ericoid Mycorrhiza Formed by a Hitherto Undescribed Basidiomycete with Affinities to Trechisporales

    PubMed Central

    Vohník, Martin; Sadowsky, Jesse J.; Kohout, Petr; Lhotáková, Zuzana; Nestby, Rolf; Kolařík, Miroslav

    2012-01-01

    Ericaceae (the heath family) are widely distributed calcifuges inhabiting soils with inherently poor nutrient status. Ericaceae overcome nutrient limitation through symbiosis with ericoid mycorrhizal (ErM) fungi that mobilize nutrients complexed in recalcitrant organic matter. At present, recognized ErM fungi include a narrow taxonomic range within the Ascomycota, and the Sebacinales, basal Hymenomycetes with unclamped hyphae and imperforate parenthesomes. Here we describe a novel type of basidiomycetous ErM symbiosis, termed ‘sheathed ericoid mycorrhiza’, discovered in two habitats in mid-Norway as a co-dominant mycorrhizal symbiosis in Vaccinium spp. The basidiomycete forming sheathed ErM possesses clamped hyphae with perforate parenthesomes, produces 1- to 3-layer sheaths around terminal parts of hair roots and colonizes their rhizodermis intracellularly forming hyphal coils typical for ErM symbiosis. Two basidiomycetous isolates were obtained from sheathed ErM and molecular and phylogenetic tools were used to determine their identity; they were also examined for the ability to form sheathed ErM and lignocellulolytic potential. Surprisingly, ITS rDNA of both conspecific isolates failed to amplify with the most commonly used primer pairs, including ITS1 and ITS1F + ITS4. Phylogenetic analysis of nuclear LSU, SSU and 5.8S rDNA indicates that the basidiomycete occupies a long branch residing in the proximity of Trechisporales and Hymenochaetales, but lacks a clear sequence relationship (>90% similarity) to fungi currently placed in these orders. The basidiomycete formed the characteristic sheathed ErM symbiosis and enhanced growth of Vaccinium spp. in vitro, and degraded a recalcitrant aromatic substrate that was left unaltered by common ErM ascomycetes. Our findings provide coherent evidence that this hitherto undescribed basidiomycete forms a morphologically distinct ErM symbiosis that may occur at significant levels under natural conditions, yet remain

  16. A symbiosis-dedicated SYNTAXIN OF PLANTS 13II isoform controls the formation of a stable host-microbe interface in symbiosis.

    PubMed

    Huisman, Rik; Hontelez, Jan; Mysore, Kirankumar S; Wen, Jiangqi; Bisseling, Ton; Limpens, Erik

    2016-09-01

    Arbuscular mycorrhizal (AM) fungi and rhizobium bacteria are accommodated in specialized membrane compartments that form a host-microbe interface. To better understand how these interfaces are made, we studied the regulation of exocytosis during interface formation. We used a phylogenetic approach to identify target soluble N-ethylmaleimide-sensitive factor-attachment protein receptors (t-SNAREs) that are dedicated to symbiosis and used cell-specific expression analysis together with protein localization to identify t-SNAREs that are present on the host-microbe interface in Medicago truncatula. We investigated the role of these t-SNAREs during the formation of a host-microbe interface. We showed that multiple syntaxins are present on the peri-arbuscular membrane. From these, we identified SYNTAXIN OF PLANTS 13II (SYP13II) as a t-SNARE that is essential for the formation of a stable symbiotic interface in both AM and rhizobium symbiosis. In most dicot plants, the SYP13II transcript is alternatively spliced, resulting in two isoforms, SYP13IIα and SYP13IIβ. These splice-forms differentially mark functional and degrading arbuscule branches. Our results show that vesicle traffic to the symbiotic interface is specialized and required for its maintenance. Alternative splicing of SYP13II allows plants to replace a t-SNARE involved in traffic to the plasma membrane with a t-SNARE that is more stringent in its localization to functional arbuscules. PMID:27110912

  17. Symbiosis.

    ERIC Educational Resources Information Center

    Bicevskis, Rob

    2002-01-01

    Exposing today's students to a balance of science and the outside world is critical. The outdoors provides a context for practical applications of science, exposing the relevance of science to everyday life. Outdoor education instills an awareness that the health of the environment is directly coupled with our own health, enabling us to make…

  18. Transcriptome diversity among rice root types during asymbiosis and interaction with arbuscular mycorrhizal fungi

    PubMed Central

    Gutjahr, Caroline; Sawers, Ruairidh J. H.; Marti, Guillaume; Andrés-Hernández, Liliana; Yang, Shu-Yi; Casieri, Leonardo; Angliker, Herbert; Oakeley, Edward J.; Wolfender, Jean-Luc; Abreu-Goodger, Cei; Paszkowski, Uta

    2015-01-01

    Root systems consist of different root types (RTs) with distinct developmental and functional characteristics. RTs may be individually reprogrammed in response to their microenvironment to maximize adaptive plasticity. Molecular understanding of such specific remodeling—although crucial for crop improvement—is limited. Here, RT-specific transcriptomes of adult rice crown, large and fine lateral roots were assessed, revealing molecular evidence for functional diversity among individual RTs. Of the three rice RTs, crown roots displayed a significant enrichment of transcripts associated with phytohormones and secondary cell wall (SCW) metabolism, whereas lateral RTs showed a greater accumulation of transcripts related to mineral transport. In nature, arbuscular mycorrhizal (AM) symbiosis represents the default state of most root systems and is known to modify root system architecture. Rice RTs become heterogeneously colonized by AM fungi, with large laterals preferentially entering into the association. However, RT-specific transcriptional responses to AM symbiosis were quantitatively most pronounced for crown roots despite their modest physical engagement in the interaction. Furthermore, colonized crown roots adopted an expression profile more related to mycorrhizal large lateral than to noncolonized crown roots, suggesting a fundamental reprogramming of crown root character. Among these changes, a significant reduction in SCW transcripts was observed that was correlated with an alteration of SCW composition as determined by mass spectrometry. The combined change in SCW, hormone- and transport-related transcript profiles across the RTs indicates a previously overlooked switch of functional relationships among RTs during AM symbiosis, with a potential impact on root system architecture and functioning. PMID:25947154

  19. Transcriptome diversity among rice root types during asymbiosis and interaction with arbuscular mycorrhizal fungi.

    PubMed

    Gutjahr, Caroline; Sawers, Ruairidh J H; Marti, Guillaume; Andrés-Hernández, Liliana; Yang, Shu-Yi; Casieri, Leonardo; Angliker, Herbert; Oakeley, Edward J; Wolfender, Jean-Luc; Abreu-Goodger, Cei; Paszkowski, Uta

    2015-05-26

    Root systems consist of different root types (RTs) with distinct developmental and functional characteristics. RTs may be individually reprogrammed in response to their microenvironment to maximize adaptive plasticity. Molecular understanding of such specific remodeling--although crucial for crop improvement--is limited. Here, RT-specific transcriptomes of adult rice crown, large and fine lateral roots were assessed, revealing molecular evidence for functional diversity among individual RTs. Of the three rice RTs, crown roots displayed a significant enrichment of transcripts associated with phytohormones and secondary cell wall (SCW) metabolism, whereas lateral RTs showed a greater accumulation of transcripts related to mineral transport. In nature, arbuscular mycorrhizal (AM) symbiosis represents the default state of most root systems and is known to modify root system architecture. Rice RTs become heterogeneously colonized by AM fungi, with large laterals preferentially entering into the association. However, RT-specific transcriptional responses to AM symbiosis were quantitatively most pronounced for crown roots despite their modest physical engagement in the interaction. Furthermore, colonized crown roots adopted an expression profile more related to mycorrhizal large lateral than to noncolonized crown roots, suggesting a fundamental reprogramming of crown root character. Among these changes, a significant reduction in SCW transcripts was observed that was correlated with an alteration of SCW composition as determined by mass spectrometry. The combined change in SCW, hormone- and transport-related transcript profiles across the RTs indicates a previously overlooked switch of functional relationships among RTs during AM symbiosis, with a potential impact on root system architecture and functioning. PMID:25947154

  20. Influence of nitrogen and phosphorus sources on mycorrhizal lettuces under organic farming

    NASA Astrophysics Data System (ADS)

    Scotti, Riccardo; Seguel, Alex; Cornejo, Pablo; Rao, Maria A.; Borie, Fernando

    2010-05-01

    Arbuscular mycorrhizal fungi (AMF) develop symbiotic associations with plants roots. These associations are very common in the natural environment and can provide a range of benefits to the host plant. AMF improve nutrition, enhance resistance to soil-borne pests and disease, increase resistance to drought and tolerance to heavy metals, and contribute to a better soil structure. However, agricultural intensive managements, such as the use of mineral fertilizes, pesticides, mouldboard tillage, monocultures and use of non-mycorrhizal crops, are detrimental to AMF. As a consequence, agroecosystems are impoverished in AMF and may not provide the full range of benefits to the crop. Organic farming systems may be less unfavourable to AMF because they exclude the use of water-soluble fertilisers and most pesticides, and generally they plan diverse crop rotations. The AMF develop the most common type of symbiosis in nature: about 90% of the plants are mycorrhizal and many agricultural crops are mycorrhizal. One of more mycorrhizal crops is lettuce, that is very widespread in intensive agricultural under greenhouse. Therefore, cultivated lettuce is know to be responsive to mycorrhizal colonization which can reach 80% of root length and contribute to phosphorus and nitrogen absorption by this plant specie. For this work four different lettuce cultivars (Romana, Milanesa, Grande Lagos and Escarola) were used to study mycorrhization under organic agricultural system, supplying compost from agricultural waste (1 kg m-2) as background fertilization for all plots, red guano as phosphorus source (75 U ha-1 and 150 U ha-1 of P2O5), lupine flour as nitrogen source (75 and 150 U/ha of N) and a combination of both. Lettuce plants were cultivated under greenhouse and after two months of growing, plants were harvested and dried and fresh weight of lettuce roots and shoots were evaluated. The number of spores, percentage of colonization, total mycelium and glomalin content were also

  1. Arbuscular mycorrhiza-induced shifts in foliar metabolism and photosynthesis mirror the developmental stage of the symbiosis and are only partly driven by improved phosphate uptake.

    PubMed

    Schweiger, Rabea; Baier, Markus C; Müller, Caroline

    2014-12-01

    In arbuscular mycorrhizal (AM) plants, the plant delivers photoassimilates to the arbuscular mycorrhizal fungus (AMF), whereas the mycosymbiont contributes, in addition to other beneficial effects, to phosphate (PO4(3-)) uptake from the soil. Thereby, the additional fungal carbon (C) sink strength in roots and improved plant PO4(3-) nutrition may influence aboveground traits. We investigated how the foliar metabolome of Plantago major is affected along with the development of root symbiosis, whether the photosynthetic performance is affected by AM, and whether these effects are mediated by improved PO4(3-) nutrition. Therefore, we studied PO4(3-)-limited and PO4(3-)-supplemented controls in comparison with mycorrhizal plants at 20, 30, and 62 days postinoculation with the AMF Rhizophagus irregularis. Foliar metabolome modifications were determined by the developmental stage of symbiosis, with changes becoming more pronounced over time. In a well-established stage of mature mutualism, about 60% of the metabolic changes and an increase in foliar CO2 assimilation were unrelated to the significantly increased foliar phosphorus (P) content. We propose a framework relating the time-dependent metabolic changes to the shifts in C costs and P benefits for the plant. Besides P-mediated effects, the strong fungal C sink activity may drive the changes in the leaf traits. PMID:25162317

  2. Effects of Common Mycorrhizal Network on Plant Carbohydrates and Soil Properties in Trifoliate Orange-White Clover Association.

    PubMed

    Zhang, Ze-Zhi; Lou, You-Gen; Deng, Dao-Juan; Rahman, Mohammed Mahabubur; Wu, Qiang-Sheng

    2015-01-01

    Common mycorrhizal network (CMN) allows nutrients and signals to pass between two or more plants. In this study, trifoliate orange (Poncirus trifoliata) and white clover (Trifolium repens) were planted in a two-compartmented rootbox, separated by a 37-μm nylon mesh and then inoculated with an arbuscular mycorrhizal fungus (AMF), Diversispora spurca. Inoculation with D. spurca resulted in formation of a CMN between trifoliate orange and white clover, whilst the best AM colonization occurred in the donor trifoliate orange-receptor white clover association. In the trifoliate orange-white clover association, the mycorrhizal colonization of receptor plant by extraradical hyphae originated from the donor plant significantly increased shoot and root fresh weight and chlorophyll concentration of the receptor plant. Enzymatic activity of soil β-glucoside hydrolase, protease, acid and neutral phosphatase, water-stable aggregate percentage at 2-4 and 0.5-1 mm size, and mean weight diameter in the rhizosphere of the receptor plant also increased. The hyphae of CMN released more easily-extractable glomalin-related soil protein and total glomalin-related soil protein into the receptor rhizosphere, which represented a significantly positive correlation with aggregate stability. AMF inoculation exhibited diverse changes in leaf and root sucrose concentration in the donor plant, and AM colonization by CMN conferred a significant increase of root glucose in the receptor plant. These results suggested that CMN formed in the trifoliate orange-white clover association, and root AM colonization by CMN promoted plant growth, root glucose accumulation, and rhizospheric soil properties in the receptor plant. PMID:26556792

  3. Effects of Common Mycorrhizal Network on Plant Carbohydrates and Soil Properties in Trifoliate Orange–White Clover Association

    PubMed Central

    Zhang, Ze-Zhi; Lou, You-Gen; Deng, Dao-Juan; Rahman, Mohammed Mahabubur; Wu, Qiang-Sheng

    2015-01-01

    Common mycorrhizal network (CMN) allows nutrients and signals to pass between two or more plants. In this study, trifoliate orange (Poncirus trifoliata) and white clover (Trifolium repens) were planted in a two-compartmented rootbox, separated by a 37–μm nylon mesh and then inoculated with an arbuscular mycorrhizal fungus (AMF), Diversispora spurca. Inoculation with D. spurca resulted in formation of a CMN between trifoliate orange and white clover, whilst the best AM colonization occurred in the donor trifoliate orange–receptor white clover association. In the trifoliate orange–white clover association, the mycorrhizal colonization of receptor plant by extraradical hyphae originated from the donor plant significantly increased shoot and root fresh weight and chlorophyll concentration of the receptor plant. Enzymatic activity of soil β-glucoside hydrolase, protease, acid and neutral phosphatase, water-stable aggregate percentage at 2–4 and 0.5–1 mm size, and mean weight diameter in the rhizosphere of the receptor plant also increased. The hyphae of CMN released more easily-extractable glomalin-related soil protein and total glomalin-related soil protein into the receptor rhizosphere, which represented a significantly positive correlation with aggregate stability. AMF inoculation exhibited diverse changes in leaf and root sucrose concentration in the donor plant, and AM colonization by CMN conferred a significant increase of root glucose in the receptor plant. These results suggested that CMN formed in the trifoliate orange–white clover association, and root AM colonization by CMN promoted plant growth, root glucose accumulation, and rhizospheric soil properties in the receptor plant. PMID:26556792

  4. Reduced germination of Orobanche cumana seeds in the presence of Arbuscular Mycorrhizal fungi or their exudates.

    PubMed

    Louarn, Johann; Carbonne, Francis; Delavault, Philippe; Bécard, Guillaume; Rochange, Soizic

    2012-01-01

    Broomrapes (Orobanche and Phelipanche spp) are parasitic plants responsible for important crop losses, and efficient procedures to control these pests are scarce. Biological control is one of the possible strategies to tackle these pests. Arbuscular Mycorrhizal (AM) fungi are widespread soil microorganisms that live symbiotically with the roots of most plant species, and they have already been tested on sorghum for their ability to reduce infestation by witchweeds, another kind of parasitic plants. In this work AM fungi were evaluated as potential biocontrol agents against Orobanche cumana, a broomrape species that specifically attacks sunflower. When inoculated simultaneously with O. cumana seeds, AM fungi could offer a moderate level of protection against the broomrape. Interestingly, this protection did not only rely on a reduced production of parasitic seed germination stimulants, as was proposed in previous studies. Rather, mycorrhizal root exudates had a negative impact on the germination of O. cumana induced by germination stimulants. A similar effect could be obtained with AM spore exudates, establishing the fungal origin of at least part of the active compounds. Together, our results demonstrate that AM fungi themselves can lead to a reduced rate of parasitic seed germination, in addition to possible effects mediated by the mycorrhizal plant. Combined with the other benefits of AM symbiosis, these effects make AM fungi an attractive option for biological control of O. cumana. PMID:23145139

  5. The Glyoxylate Cycle in an Arbuscular Mycorrhizal Fungus. Carbon Flux and Gene Expression

    PubMed Central

    Lammers, Peter J.; Jun, Jeongwon; Abubaker, Jehad; Arreola, Raul; Gopalan, Anjali; Bago, Berta; Hernandez-Sebastia, Cinta; Allen, James W.; Douds, David D.; Pfeffer, Philip E.; Shachar-Hill, Yair

    2001-01-01

    The arbuscular mycorrhizal (AM) symbiosis is responsible for huge fluxes of photosynthetically fixed carbon from plants to the soil. Lipid, which is the dominant form of stored carbon in the fungal partner and which fuels spore germination, is made by the fungus within the root and is exported to the extraradical mycelium. We tested the hypothesis that the glyoxylate cycle is central to the flow of carbon in the AM symbiosis. The results of 13C labeling of germinating spores and extraradical mycelium with 13C2-acetate and 13C2-glycerol and analysis by nuclear magnetic resonance spectroscopy indicate that there are very substantial fluxes through the glyoxylate cycle in the fungal partner. Full-length sequences obtained by polymerase chain reaction from a cDNA library from germinating spores of the AM fungus Glomus intraradices showed strong homology to gene sequences for isocitrate lyase and malate synthase from plants and other fungal species. Quantitative real-time polymerase chain reaction measurements show that these genes are expressed at significant levels during the symbiosis. Glyoxysome-like bodies were observed by electron microscopy in fungal structures where the glyoxylate cycle is expected to be active, which is consistent with the presence in both enzyme sequences of motifs associated with glyoxysomal targeting. We also identified among several hundred expressed sequence tags several enzymes of primary metabolism whose expression during spore germination is consistent with previous labeling studies and with fluxes into and out of the glyoxylate cycle. PMID:11706207

  6. Mid-Infrared and Near Infrared Spectral Properties of Mycorrhizal and Non-Mycorrhizal Root Cultures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated the Fourier-transformed mid-infrared (MidIR) and near infrared (NIR) spectroscopic properties of mycorrhizal (M) and non-mycorrhizal (NM) Ri T-DNA transformed carrot roots with the goal of finding infrared markers for colonization by arbuscular mycorrhizal (AM) fungi. The roots were...

  7. Abscisic Acid Promotion of Arbuscular Mycorrhizal Colonization Requires a Component of the PROTEIN PHOSPHATASE 2A Complex1[W][OPEN

    PubMed Central

    Charpentier, Myriam; Sun, Jongho; Wen, Jiangqi; Mysore, Kirankumar S.; Oldroyd, Giles E.D.

    2014-01-01

    Legumes can establish intracellular interactions with symbiotic microbes to enhance their fitness, including the interaction with arbuscular mycorrhizal (AM) fungi. AM fungi colonize root epidermal cells to gain access to the root cortex, and this requires the recognition by the host plant of fungus-made mycorrhizal factors. Genetic dissection has revealed the symbiosis signaling pathway that allows the recognition of AM fungi, but the downstream processes that are required to promote fungal infection are poorly understood. Abscisic acid (ABA) has been shown to promote arbuscule formation in tomato (Solanum lycopersicum). Here, we show that ABA modulates the establishment of the AM symbiosis in Medicago truncatula by promoting fungal colonization at low concentrations and impairing it at high concentrations. We show that the positive regulation of AM colonization via ABA requires a PROTEIN PHOSPHATASE 2A (PP2A) holoenzyme subunit, PP2AB′1. Mutations in PP2AB′1 cause reduced levels of AM colonization that cannot be rescued with permissive ABA application. The action of PP2AB′1 in response to ABA is unlinked to the generation of calcium oscillations, as the pp2aB′1 mutant displays a normal calcium response. This contrasts with the application of high concentrations of ABA that impairs mycorrhizal factor-induced calcium oscillations, suggesting different modes of action of ABA on the AM symbiosis. Our work reveals that ABA functions at multiple levels to regulate the AM symbiosis and that a PP2A phosphatase is required for the ABA promotion of AM colonization. PMID:25293963

  8. In vitro control of plant pathogenic Xanthomonas spp. using Poncirus trifoliata Rafin.

    PubMed

    Rahman, Atiqur; Islam, Rafiquel; Al-Reza, Sharif M; Kang, Sun Chul

    2014-01-01

    The secondary metabolites such as essential oil and pure compounds (limonin and imperatorin) from Poncirus trifoliata Rafin were tested for in vitro control of phytopathogenic bacteria of Xanthomonas spp. In vitro studies showed that the oil had inhibitory effect on Xanthomonas campestris pv. compestris KC94-17-XCC, Xanthomonas campestris pv. vesicatoria YK93-4-XCV, Xanthomonas oryzae pv. oryzae KX019-XCO and Xanthomonas sp. SK12 with their inhibition zones and minimum inhibitory concentration (MIC) values ranging from 13.1~22.1 mm and 62.5~125 μg/ml, respectively. Limonin and imperatorin also had in vitro antibacterial potential (MIC: 15.62~62.5 μg/ml) against all the tested Xanthomonas spp. Furthermore, the SEM studies demonstrated that limonin and imperatorin caused morphological changes of Xanthomonas sp. SK12 at the minimum inhibitory concentration (15.62 μg/ml). These results of this study support the possible use of essential oil and natural compounds from P. Trifoliata in agriculture and agro-industries to control plant pathogenic microorganisms. PMID:26417325

  9. Volatile organic sulfur-containing constituents in Poncirus trifoliata (L.) Raf. (Rutaceae).

    PubMed

    Starkenmann, Christian; Niclass, Yvan; Escher, Sina

    2007-05-30

    During our screening of plant materials to find new natural fragrance and flavor ingredients, we discovered two series of 3-sulfanylalkyl alkanoates in a peel extract of fruits of wild-growing Poncirus trifoliata (L.) Raf. (Rutaceae), a species closely related to Citrus. The two series belong to alkanoates of 3-methyl-3-sulfanylbutan-1-ol and 3-sulfanylhexan-1-ol, respectively, and thus are members of a family of natural molecules having in common a 1,3-positioned O,S moiety. The alkanoate residues comprise all even-numbered saturated fatty acids from C2 (acetate) to C18 (octadecanoate). Among the 20 sulfur-containing compounds identified, 14 are described for the first time as naturally occurring in a botanical species. Several cysteine-S-conjugates were synthesized as hypothetical precursors of the new volatile sulfur-containing constituents, where after S-(3-hydroxy-1,1-dimethylpropyl)-L-cysteine, S-[3-(acetyloxy)-1,1-dimethylpropyl]-L-cysteine, and S-[1-(2-hydroxyethyl)butyl]-L-cysteine were identified in the fruit peel. No cysteine-S-conjugates were detected in the fruit juice. PMID:17488024

  10. In vitro control of plant pathogenic Xanthomonas spp. using Poncirus trifoliata Rafin

    PubMed Central

    Rahman, Atiqur; Islam, Rafiquel; Al-Reza, Sharif M.; Kang, Sun Chul

    2014-01-01

    The secondary metabolites such as essential oil and pure compounds (limonin and imperatorin) from Poncirus trifoliata Rafin were tested for in vitro control of phytopathogenic bacteria of Xanthomonas spp. In vitro studies showed that the oil had inhibitory effect on Xanthomonas campestris pv. compestris KC94-17-XCC, Xanthomonas campestris pv. vesicatoria YK93-4-XCV, Xanthomonas oryzae pv. oryzae KX019-XCO and Xanthomonas sp. SK12 with their inhibition zones and minimum inhibitory concentration (MIC) values ranging from 13.1~22.1 mm and 62.5~125 μg/ml, respectively. Limonin and imperatorin also had in vitro antibacterial potential (MIC: 15.62~62.5 μg/ml) against all the tested Xanthomonas spp. Furthermore, the SEM studies demonstrated that limonin and imperatorin caused morphological changes of Xanthomonas sp. SK12 at the minimum inhibitory concentration (15.62 μg/ml). These results of this study support the possible use of essential oil and natural compounds from P. Trifoliata in agriculture and agro-industries to control plant pathogenic microorganisms. PMID:26417325

  11. Arbuscular mycorrhizal fungi: effects on plant terpenoid accumulation.

    PubMed

    Welling, M T; Liu, L; Rose, T J; Waters, D L E; Benkendorff, K

    2016-07-01

    Arbuscular mycorrhizal fungi (AMF) are a diverse group of soil-dwelling fungi that form symbiotic associations with land plants. AMF-plant associations promote the accumulation of plant terpenoids beneficial to human health, although how AMF mediate terpenoid accumulation is not fully understood. A critical assessment and discussion of the literature relating to mechanisms by which AMF influence plant terpenoid accumulation, and whether this symbiosis can be harnessed in horticultural ecosystems was performed. Modification of plant morphology, phosphorus availability and gene transcription involved with terpenoid biosynthetic pathways were identified as key mechanisms associated with terpenoid accumulation in AMF-colonised plants. In order to exploit AMF-plant symbioses in horticultural ecosystems it is important to consider the specificity of the AMF-plant association, the predominant factor affecting terpenoid accumulation, as well as the end use application of the harvested plant material. Future research should focus on resolving the relationship between ecologically matched AMF genotypes and terpenoid accumulation in plants to establish if these associations are effective in promoting mechanisms favourable for plant terpenoid accumulation. PMID:26499392

  12. Mycorrhizal aspects in slope stabilisation

    NASA Astrophysics Data System (ADS)

    Graf, Frank

    2016-04-01

    In order to re-colonise and stabilise slopes affected by superficial soil failure with plants essential requirements have to be met: the plants must grow the plants must survive sustainably plant succession must start and continuously develop These requirements, however, are anything but easy given, particularly under the often hostile environmental conditions dominating on bare and steep slopes. Mycorrhizal fungi, the symbiotic partners of almost all plants used in eco-engineering, are said to improve the plants' ability to overcome periods governed by strongly (growth) limiting factors. Subsequently, results of investigations are presented of mycorrhizal effects on different plant and soil functions related to eco-engineering in general and soil and slope stabilisation in particular. Generally, inoculation yielded higher biomass of the host plants above as well as below ground. Furthermore, the survival rate was higher for mycorrhized compared to non-mycorrhized plants, particularly under extreme environmental conditions. However, the scale of the mycorrhizal impact may be species specific of both the plant host as well as the fungal partner(s) and often becomes evident only after a certain time lag. Depending on the plant-fungus combination the root length per soil volume was found to be between 0 and 2.5 times higher for inoculated compared to non-inoculated specimens. On an alpine graded ski slope the survival of inoculated compared to non-treated Salix herbacea cuttings was significant after one vegetation period only for one of the three added mycorrhizal fungus species. However, after three years all of the inoculated plantlets performed significantly better than the non-inoculated controls. The analysis of the potential for producing and stabilising soil aggregates of five different ectomycorrhizal fungi showed high variation and, for the species Inocybe lacera, no significant difference compared to untreated soil. Furthermore, inoculation of Salix

  13. Differential Localization of Carbohydrate Epitopes in Plant Cell Walls in the Presence and Absence of Arbuscular Mycorrhizal Fungi.

    PubMed Central

    Balestrini, R.; Hahn, M. G.; Faccio, A.; Mendgen, K.; Bonfante, P.

    1996-01-01

    Two monoclonal antibodies (McAbs) generated against rhamnogalacturonan I and characterized as specific for a terminal [alpha]-(1->2)-linked fucosyl-containing epitope (CCRC-M1) and for an arabinosylated [beta]-(1,6)-galactan epitope (CCRC-M7) were used in immunogold experiments to determine the distribution of the epitopes in four plants. Allium porrum, Zea mays, Trifolium repens, and Nicotiana tabacum plants were chosen as representatives of monocots and dicots with different wall structures. Analyses were performed on root tissues in the presence and absence of arbuscular mycorrhizal fungi. A differential localization of the two cell wall epitopes was found between tissues and between species: for example, in leek, CCRC-M1 labeled epidermal and hypodermal cells, whereas CCRC-M7 labeled cortical cells only. Clover walls were labeled by both McAbs, whereas maize and tobacco were only labeled by CCRC-M7. In the presence of the arbuscular mycorrhizal fungi, labeling was additionally found in an apoplastic compartment typical of the symbiosis (the interface) occurring around the intracellular hyphae. Epitopes binding both McAbs were found in the interfacial material, and their distribution mirrored the pattern found in the host cell wall. These findings demonstrate that the composition of the interface zone in a fungus-plant symbiosis reflects the composition of the wall of the host cell. PMID:12226286

  14. A simple chromosomal marker can reliably distinguishes Poncirus from Citrus species.

    PubMed

    Brasileiro-Vidal, A C; Dos Santos-Serejo, J A; Soares Filho, W Dos S; Guerra, M

    2007-03-01

    Several chromosome types have been recognized in Citrus and related genera by chromomycin A(3 )(CMA) banding patterns and fluorescent in situ hybridization (FISH). They can be used to characterize cultivars and species or as markers in hybridization and backcrossing experiments. In the present work, characterization of six cultivars of P. trifoliata ("Barnes", "Fawcett", "Flying Dragon", "Pomeroy", "Rubidoux", "USDA") and one P. trifoliata x C. limonia hybrid was performed by sequential analyses of CMA banding and FISH using 5S and 45S rDNA as probes. All six cultivars showed a similar CMA(+) banding pattern with the karyotype formula 4B + 8D + 6F. The capital letters indicate chromosomal types: B, a chromosome with one telomeric and one proximal band; D, with only one telomeric band; F, without bands. In situ hybridization labeling was also similar among cultivars. Three chromosome pairs displayed a closely linked set of 5S and 45S rDNA sites, two of them co-located with the proximal band of the B type chromosomes (B/5S-45S) and the third one co-located with the terminal band of a D pair (D/5S-45S). The B/5S-45S chromosome has never been found in any citrus accessions investigated so far. Therefore, this B chromosome can be used as a marker to recognize the intergeneric Poncirus x Citrus hybrids. The intergeneric hybrid analyzed here displayed the karyotype formula 4B + 8D + 6F, with two chromosome types B/5S-45S and two D/5S-45S. The karyotype formula and the presence of two B/5S-45S chromosomes clearly indicate that the plant investigated is a symmetric hybrid. It also demonstrates the suitability of karyotype analyses to differentiate zygotic embryos or somatic cell fusions involving trifoliate orange germplasm. PMID:16897447

  15. Options of partners improve carbon for phosphorus trade in the arbuscular mycorrhizal mutualism.

    PubMed

    Argüello, Alicia; O'Brien, Michael J; van der Heijden, Marcel G A; Wiemken, Andres; Schmid, Bernhard; Niklaus, Pascal A

    2016-06-01

    The mutualism between plants and arbuscular mycorrhizal fungi (AMF) is widespread and has persisted for over 400 million years. Although this mutualism depends on fair resource exchange between plants and fungi, inequality exists among partners despite mechanisms that regulate trade. Here, we use (33) P and (14) C isotopes and a split-root system to test for preferential allocation and reciprocal rewards in the plant-AMF symbiosis by presenting a plant with two AMF that differ in cooperativeness. We found that plants received more (33) P from less cooperative AMF in the presence of another AMF species. This increase in (33) P resulted in a reduced (14) C cost per unit of (33) P from less cooperative AMF when alternative options were available. Our results indicate that AMF diversity promotes cooperation between plants and AMF, which may be an important mechanism maintaining the evolutionary persistence of and diversity within the plant-AMF mutualism. PMID:27074533

  16. Mycorrhizal-induced calmodulin mediated changes in antioxidant enzymes and growth response of drought-stressed trifoliate orange

    PubMed Central

    Huang, Yong-Ming; Srivastava, A. K.; Zou, Ying-Ning; Ni, Qiu-Dan; Han, Yu; Wu, Qiang-Sheng

    2014-01-01

    Trifoliate orange [Poncirus trifoliata (L) Raf.] is considered highly arbuscular mycorrhizal (AM) dependent for growth responses through a series of signal transductions in form of various physiological responses. The proposed study was carried out to evaluate the effect of an AM fungus (Funneliformis mosseae) on growth, antioxidant enzyme (catalase, CAT; superoxide dismutase, SOD) activities, leaf relative water content (RWC), calmodulin (CaM), superoxide anion (O2•−), and hydrogen peroxide (H2O2) concentrations in leaves of the plants exposed to both well-watered (WW) and drought stress (DS) conditions. A 58-day of DS significantly decreased mycorrhizal colonization by 60% than WW. Compared to non-AM seedlings, AM seedlings displayed significantly higher shoot morphological properties (plant height, stem diameter, and leaf number), biomass production (shoot and root fresh weight) and leaf RWC, regardless of soil water status. AM inoculation significantly increased CaM and soluble protein concentrations and CAT activity, whereas significantly decreased O2•− and H2O2 concentration under both WW and DS conditions. The AM seedlings also exhibited significantly higher Cu/Zn-SOD and Mn-SOD activities than the non-AM seedlings under DS but not under WW, which are triggered by higher CaM levels in AM plants on the basis of correlation studies. Further, the negative correlation of Cu/Zn-SOD and Mn-SOD activities with O2•− and H2O2 concentration showed the DS-induced ROS scavenging ability of CaM mediated SODs under mycorrhization. Our results demonstrated that AM-inoculation elevated the synthesis of CaM in leaves and up-regulated activities of the antioxidant enzymes, thereby, repairing the possible oxidative damage to plants by lowering the ROS accumulation under DS condition. PMID:25538696

  17. Mycorrhizal-induced calmodulin mediated changes in antioxidant enzymes and growth response of drought-stressed trifoliate orange.

    PubMed

    Huang, Yong-Ming; Srivastava, A K; Zou, Ying-Ning; Ni, Qiu-Dan; Han, Yu; Wu, Qiang-Sheng

    2014-01-01

    Trifoliate orange [Poncirus trifoliata (L) Raf.] is considered highly arbuscular mycorrhizal (AM) dependent for growth responses through a series of signal transductions in form of various physiological responses. The proposed study was carried out to evaluate the effect of an AM fungus (Funneliformis mosseae) on growth, antioxidant enzyme (catalase, CAT; superoxide dismutase, SOD) activities, leaf relative water content (RWC), calmodulin (CaM), superoxide anion ([Formula: see text]), and hydrogen peroxide (H2O2) concentrations in leaves of the plants exposed to both well-watered (WW) and drought stress (DS) conditions. A 58-day of DS significantly decreased mycorrhizal colonization by 60% than WW. Compared to non-AM seedlings, AM seedlings displayed significantly higher shoot morphological properties (plant height, stem diameter, and leaf number), biomass production (shoot and root fresh weight) and leaf RWC, regardless of soil water status. AM inoculation significantly increased CaM and soluble protein concentrations and CAT activity, whereas significantly decreased [Formula: see text] and H2O2 concentration under both WW and DS conditions. The AM seedlings also exhibited significantly higher Cu/Zn-SOD and Mn-SOD activities than the non-AM seedlings under DS but not under WW, which are triggered by higher CaM levels in AM plants on the basis of correlation studies. Further, the negative correlation of Cu/Zn-SOD and Mn-SOD activities with [Formula: see text] and H2O2 concentration showed the DS-induced ROS scavenging ability of CaM mediated SODs under mycorrhization. Our results demonstrated that AM-inoculation elevated the synthesis of CaM in leaves and up-regulated activities of the antioxidant enzymes, thereby, repairing the possible oxidative damage to plants by lowering the ROS accumulation under DS condition. PMID:25538696

  18. The in vitro mass-produced model mycorrhizal fungus, Rhizophagus irregularis, significantly increases yields of the globally important food security crop cassava.

    PubMed

    Ceballos, Isabel; Ruiz, Michael; Fernández, Cristhian; Peña, Ricardo; Rodríguez, Alia; Sanders, Ian R

    2013-01-01

    The arbuscular mycorrhizal symbiosis is formed between arbuscular mycorrhizal fungi (AMF) and plant roots. The fungi provide the plant with inorganic phosphate (P). The symbiosis can result in increased plant growth. Although most global food crops naturally form this symbiosis, very few studies have shown that their practical application can lead to large-scale increases in food production. Application of AMF to crops in the tropics is potentially effective for improving yields. However, a main problem of using AMF on a large-scale is producing cheap inoculum in a clean sterile carrier and sufficiently concentrated to cheaply transport. Recently, mass-produced in vitro inoculum of the model mycorrhizal fungus Rhizophagus irregularis became available, potentially making its use viable in tropical agriculture. One of the most globally important food plants in the tropics is cassava. We evaluated the effect of in vitro mass-produced R. irregularis inoculum on the yield of cassava crops at two locations in Colombia. A significant effect of R. irregularis inoculation on yield occurred at both sites. At one site, yield increases were observed irrespective of P fertilization. At the other site, inoculation with AMF and 50% of the normally applied P gave the highest yield. Despite that AMF inoculation resulted in greater food production, economic analyses revealed that AMF inoculation did not give greater return on investment than with conventional cultivation. However, the amount of AMF inoculum used was double the recommended dose and was calculated with European, not Colombian, inoculum prices. R. irregularis can also be manipulated genetically in vitro, leading to improved plant growth. We conclude that application of in vitro R. irregularis is currently a way of increasing cassava yields, that there is a strong potential for it to be economically profitable and that there is enormous potential to improve this efficiency further in the future. PMID:23950975

  19. Effects of silver sulfide nanomaterials on mycorrhizal colonization of tomato plants and soil microbial communities in biosolid-amended soil.

    PubMed

    Judy, Jonathan D; Kirby, Jason K; Creamer, Courtney; McLaughlin, Mike J; Fiebiger, Cathy; Wright, Claire; Cavagnaro, Timothy R; Bertsch, Paul M

    2015-11-01

    We investigated effects of Ag2S engineered nanomaterials (ENMs), polyvinylpyrrolidone (PVP) coated Ag ENMs (PVP-Ag), and Ag(+) on arbuscular mycorrhizal fungi (AMF), their colonization of tomato (Solanum lycopersicum), and overall microbial community structure in biosolids-amended soil. Concentration-dependent uptake was measured in all treatments. Plants exposed to 100 mg kg(-1) PVP-Ag ENMs and 100 mg kg(-1) Ag(+) exhibited reduced biomass and greatly reduced mycorrhizal colonization. Bacteria, actinomycetes and fungi were inhibited by all treatment classes, with the largest reductions measured in 100 mg kg(-1) PVP-Ag ENMs and 100 mg kg(-1) Ag(+). Overall, Ag2S ENMs were less toxic to plants, less disruptive to plant-mycorrhizal symbiosis, and less inhibitory to the soil microbial community than PVP-Ag ENMs or Ag(+). However, significant effects were observed at 1 mg kg(-1) Ag2S ENMs, suggesting that the potential exists for microbial communities and the ecosystem services they provide to be disrupted by environmentally relevant concentrations of Ag2S ENMs. PMID:26196315

  20. Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake.

    PubMed

    Vogel-Mikus, Katarina; Pongrac, Paula; Kump, Peter; Necemer, Marijan; Regvar, Marjana

    2006-01-01

    Plants of the Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen (Brassicaceae) inoculated or not with indigenous arbuscular mycorrhizal (AM) fungal mixture were grown in a highly Cd, Zn and Pb contaminated substrate in order to evaluate the functionality of symbiosis and assess the possible impact of AM colonisation on heavy metal uptake and tolerance. The results suggest AM development in the metal hyperaccumulating T. praecox is favoured at elevated nutrient demands, e.g. during the reproductive period. AM colonisation parameters positively correlated with total soil Cd and Pb. Colonised plants showed significantly improved nutrient and a decreased Cd and Zn uptake as revealed by TRXRF, thus confirming the functionality of the symbiosis. Reduced heavy metal uptake, especially at higher soil metal contents, indicates a changed metal tolerance strategy in colonised T. praecox plants. This is to our knowledge the first report on AM colonisation of the Zn, Cd and Pb hyperaccumulator T. praecox in a greenhouse experiment. PMID:15998561

  1. Global gene expression of Poncirus trifoliata, Citrus sunki and their hybrids under infection of Phytophthora parasitica

    PubMed Central

    2011-01-01

    Background Gummosis and root rot caused by Phytophthora are among the most economically important diseases in citrus. Four F1 resistant hybrids (Pool R), and four F1 susceptible hybrids (Pool S) to P. parasitica, were selected from a cross between susceptible Citrus sunki and resistant Poncirus trifoliata cv. Rubidoux. We investigated gene expression in pools of four resistant and four susceptible hybrids in comparison with their parents 48 hours after P. parasitica inoculation. We proposed that genes differentially expressed between resistant and susceptible parents and between their resistant and susceptible hybrids provide promising candidates for identifying transcripts involved in disease resistance. A microarray containing 62,876 UniGene transcripts selected from the CitEST database and prepared by NimbleGen Systems was used for analyzing global gene expression 48 hours after infection with P. parasitica. Results Three pairs of data comparisons (P. trifoliata/C. sunki, Pool R/C. sunki and Pool R/Pool S) were performed. With a filter of false-discovery rate less than 0.05 and fold change greater than 3.0, 21 UniGene transcripts common to the three pairwise comparative were found to be up-regulated, and 3 UniGene transcripts were down-regulated. Among them, our results indicated that the selected transcripts were probably involved in the whole process of plant defense responses to pathogen attack, including transcriptional regulation, signaling, activation of defense genes participating in HR, single dominant genes (R gene) such as TIR-NBS-LRR and RPS4 and switch of defense-related metabolism pathway. Differentially expressed genes were validated by RT-qPCR in susceptible and resistant plants and between inoculated and uninoculated control plants Conclusions Twenty four UniGene transcripts were identified as candidate genes for Citrus response to P. parasitica. UniGene transcripts were likely to be involved in disease resistance, such as genes potentially

  2. Is there an association between root architecture and mycorrhizal growth response?

    PubMed

    Maherali, Hafiz

    2014-10-01

    The symbiosis between arbuscular mycorrhizal (AM) fungi and plants is evolutionarily widespread. The response of plant growth to inoculation by these fungi (mycorrhizal growth response; MGR) is highly variable, ranging from positive to negative. Some of this variation is hypothesized to be associated with root structure and function. Specifically, species with a coarse root architecture, and thus a limited intrinsic capacity to absorb soil nutrients, are expected to derive the greatest growth benefit from inoculation with AM fungi. To test this hypothesis, previously published literature and phylogenetic information were combined in a meta-analysis to examine the magnitude and direction of relationships among several root architectural traits and MGR. Published studies differed in the magnitude and direction of relationships between root architecture and MGR. However, when combined, the overall relationship between MGR and allocation to roots, root diameter, root hair length and root hair density did not differ significantly from zero. These findings indicate that possessing coarse roots is not necessarily a predictor of plant growth response to AM fungal colonization. Root architecture is therefore unlikely to limit the evolution of variation in MGR. PMID:25041241

  3. Prospects for arbuscular mycorrhizal fungi (AMF) to assist in phytoremediation of soil hydrocarbon contaminants.

    PubMed

    Rajtor, Monika; Piotrowska-Seget, Zofia

    2016-11-01

    Arbuscular mycorrhizal fungi (AMF) form mutualistic associations with the roots of 80-90% of vascular plant species and may constitute up to 50% of the total soil microbial biomass. AMF have been considered to be a tool to enhance phytoremediation, as their mycelium create a widespread underground network that acts as a bridge between plant roots, soil and rhizosphere microorganisms. Abundant extramatrical hyphae extend the rhizosphere thus creating the hyphosphere, which significantly increases the area of a plant's access to nutrients and contaminants. The paper presents and evaluates the role and significance of AMF in phytoremediation of hydrocarbon contaminated sites. We focused on (1) an impact of hydrocarbons on arbuscular mycorrhizal symbiosis, (2) a potential of AMF to enhance phytoremediation, (3) determinants that influence effectiveness of hydrocarbon removal from contaminated soils. This knowledge may be useful for selection of proper plant and fungal symbionts and crucial to optimize environmental conditions for effective AMF-mediated phytoremediation. It has been concluded that three-component phytoremediation systems based on synergistic interactions between plant roots, AMF and hydrocarbon-degrading microorganisms demonstrated high effectiveness in dissipation of organic pollutants in soil. PMID:27487095

  4. Arbuscular mycorrhizal association enhances drought tolerance potential of promising bioenergy grass (Saccharum arundinaceum retz.).

    PubMed

    Mirshad, P P; Puthur, Jos T

    2016-07-01

    The influence of arbuscular mycorrhizal fungi (AMF) (Glomus spp.) on some physiological and biochemical characteristics of bioenergy grass Saccharum arundinaceum subjected to drought stress was studied. The symbiotic association of Glomus spp. was established with S. arundinaceum, a potential bioenergy grass as evident from the increase in percentage of root infection and distribution frequency of vesicles when compared with non-arbuscular mycorrhizal plants. AMF-treated plants exhibited an enhanced accumulation of osmolytes such as sugars and proline and also increased protein content under drought. AMF association significantly increased the accumulation of non-enzymatic antioxidants like phenols, ascorbate and glutathione as well as enhanced the activities of antioxidant enzymes such as SOD (superoxide dismutase), APX (ascorbate peroxidase) and GPX (guaiacol peroxidase) resulting in reduced lipid peroxidation in S. arundinaceum. AMF symbiosis also ameliorated the drought-induced reduction of total chlorophyll content and activities of photosystem I and II. The maximum quantum efficiency of PS II (F v/F m) and potential photochemical efficiency (F v/F o) were higher in AMF plants as compared to non-AMF plants under drought stress. These results indicate that AMF association alleviate drought stress in S. arundinaceum by the accumulation of osmolytes and non-enzymatic antioxidants and enhanced activities of antioxidant enzymes, and hence, the photosynthetic efficiency is improved resulting in increased biomass production. AMF association with energy grasses also improves the acclimatization of S. arundinaceum for growing in marginal lands of drought-affected soils. PMID:27329476

  5. Saprotrophic fungal mycorrhizal symbionts in achlorophyllous orchids

    PubMed Central

    Martos, Florent; Perry, Brian A; Padamsee, Mahajabeen; Roy, Mélanie; Pailler, Thierry

    2010-01-01

    Mycoheterotrophic plants are achlorophyllous plants that obtain carbon from their mycorrhizal fungi. They are usually considered to associate with fungi that are (1) specific of each mycoheterotrophic species and (2) mycorrhizal on surrounding green plants, which are the ultimate carbon source of the entire system. Here we review recent works revealing that some mycoheterotrophic plants are not fungal-specific, and that some mycoheterotrophic orchids associate with saprophytic fungi. A re-examination of earlier data suggests that lower specificity may be less rare than supposed in mycoheterotrophic plants. Association between mycoheterotrophic orchids and saprophytic fungi arose several times in the evolution of the two partners. We speculate that this indirectly illustrates why transition from saprotrophy to mycorrhizal status is common in fungal evolution. Moreover, some unexpected fungi occasionally encountered in plant roots should not be discounted as ‘molecular scraps’, since these facultatively biotrophic encounters may evolve into mycorrhizal symbionts in some other plants. PMID:20061806

  6. Interaction of vesicular-arbuscular mycorrhizal fungi with erosion in an oxisol.

    PubMed

    Habte, M; Fox, R L; Aziz, T; El-Swaify, S A

    1988-04-01

    The development of vesicular-arbuscular mycorrhizal (VAM) symbiosis was monitored in Leucaena leucocephala grown in an Oxisol subjected to incremental simulated erosion. The density of VAM infective propagules in the soil diminished as the level of simulated erosion (removal of surface soil) was increased from 0 to 50 cm. The level of infection on L. leucocephala roots observed at harvest was not significantly influenced by simulated erosion unless removal of surface soil exceeded 25 cm. Inoculation of this soil and the uneroded soil with Glomus aggregatum enhanced the early onset of infection but did not significantly influence the level of infection observed at the time of harvest. Simulated erosion in excess of 7.5 cm of surface soil removal significantly delayed the development of VAM effectiveness monitored in terms of the P status of L. leucocephala subleaflets and also curtailed the level of maximum effectiveness observed. Decreases in VAM effectiveness were significantly correlated with decreases in soil chemical constituents. However, VAM effectiveness in a soil subjected to 30 cm of surface soil removal was not restored to a significant extent unless the soil was amended with P, even though other nutrients were restored to sufficiency levels. Our results demonstrate that the development of VAM effectiveness is the phase of the VAM symbiosis that is most adversely influenced by simulated erosion and that this effect appears to be caused primarily by insufficient P in the soil solution. PMID:16347615

  7. Interaction of Vesicular-Arbuscular Mycorrhizal Fungi with Erosion in an Oxisol †

    PubMed Central

    Habte, M.; Fox, R. L.; Aziz, T.; El-Swaify, S. A.

    1988-01-01

    The development of vesicular-arbuscular mycorrhizal (VAM) symbiosis was monitored in Leucaena leucocephala grown in an Oxisol subjected to incremental simulated erosion. The density of VAM infective propagules in the soil diminished as the level of simulated erosion (removal of surface soil) was increased from 0 to 50 cm. The level of infection on L. leucocephala roots observed at harvest was not significantly influenced by simulated erosion unless removal of surface soil exceeded 25 cm. Inoculation of this soil and the uneroded soil with Glomus aggregatum enhanced the early onset of infection but did not significantly influence the level of infection observed at the time of harvest. Simulated erosion in excess of 7.5 cm of surface soil removal significantly delayed the development of VAM effectiveness monitored in terms of the P status of L. leucocephala subleaflets and also curtailed the level of maximum effectiveness observed. Decreases in VAM effectiveness were significantly correlated with decreases in soil chemical constituents. However, VAM effectiveness in a soil subjected to 30 cm of surface soil removal was not restored to a significant extent unless the soil was amended with P, even though other nutrients were restored to sufficiency levels. Our results demonstrate that the development of VAM effectiveness is the phase of the VAM symbiosis that is most adversely influenced by simulated erosion and that this effect appears to be caused primarily by insufficient P in the soil solution. PMID:16347615

  8. DELLA proteins are common components of symbiotic rhizobial and mycorrhizal signalling pathways.

    PubMed

    Jin, Yue; Liu, Huan; Luo, Dexian; Yu, Nan; Dong, Wentao; Wang, Chao; Zhang, Xiaowei; Dai, Huiling; Yang, Jun; Wang, Ertao

    2016-01-01

    Legumes form symbiotic associations with either nitrogen-fixing bacteria or arbuscular mycorrhizal fungi. Formation of these two symbioses is regulated by a common set of signalling components that act downstream of recognition of rhizobia or mycorrhizae by host plants. Central to these pathways is the calcium and calmodulin-dependent protein kinase (CCaMK)-IPD3 complex which initiates nodule organogenesis following calcium oscillations in the host nucleus. However, downstream signalling events are not fully understood. Here we show that Medicago truncatula DELLA proteins, which are the central regulators of gibberellic acid signalling, positively regulate rhizobial symbiosis. Rhizobia colonization is impaired in della mutants and we provide evidence that DELLAs can promote CCaMK-IPD3 complex formation and increase the phosphorylation state of IPD3. DELLAs can also interact with NSP2-NSP1 and enhance the expression of Nod-factor-inducible genes in protoplasts. We show that DELLA is able to bridge a protein complex containing IPD3 and NSP2. Our results suggest a transcriptional framework for regulation of root nodule symbiosis. PMID:27514472

  9. DELLA proteins are common components of symbiotic rhizobial and mycorrhizal signalling pathways

    PubMed Central

    Jin, Yue; Liu, Huan; Luo, Dexian; Yu, Nan; Dong, Wentao; Wang, Chao; Zhang, Xiaowei; Dai, Huiling; Yang, Jun; Wang, Ertao

    2016-01-01

    Legumes form symbiotic associations with either nitrogen-fixing bacteria or arbuscular mycorrhizal fungi. Formation of these two symbioses is regulated by a common set of signalling components that act downstream of recognition of rhizobia or mycorrhizae by host plants. Central to these pathways is the calcium and calmodulin-dependent protein kinase (CCaMK)–IPD3 complex which initiates nodule organogenesis following calcium oscillations in the host nucleus. However, downstream signalling events are not fully understood. Here we show that Medicago truncatula DELLA proteins, which are the central regulators of gibberellic acid signalling, positively regulate rhizobial symbiosis. Rhizobia colonization is impaired in della mutants and we provide evidence that DELLAs can promote CCaMK–IPD3 complex formation and increase the phosphorylation state of IPD3. DELLAs can also interact with NSP2–NSP1 and enhance the expression of Nod-factor-inducible genes in protoplasts. We show that DELLA is able to bridge a protein complex containing IPD3 and NSP2. Our results suggest a transcriptional framework for regulation of root nodule symbiosis. PMID:27514472

  10. Mycorrhizal Fungi Provide Most of the Nitrogen for Symbiotic Arctic Plants: 15N Evidence

    NASA Astrophysics Data System (ADS)

    Hobbie, J. E.; Hobbie, E. A.

    2004-12-01

    When soil nitrogen is in short supply, most terrestrial plants form symbioses with fungi (mycorrhizae) in which fine hyphal threads take up soil nitrogen, transport it into plant roots, and in return receive plant sugars. Because the transfer rates are very difficult to measure in nature, ecologists need new tools by which to assess the role of mycorrhizal fungi in carbon and nitrogen cycling. Recent studies indicate that the natural abundance of 15N taken up from the soil by hyphae is changed during transfer of nitrogen to roots; the result is large differences among the natural abundance of 15N in soil, symbiotic plants, and symbiotic fungi that depend on the mass balance of nitrogen in the mycorrhizal symbiosis. Measurements were carried out in acidic tussock tundra at the Toolik Lake LTER site in Arctic Alaska (68\\deg N 149\\deg W). The \\delta15N of soil N was 1.5%, of soil ammonium was 1.5%, of ericoid and ectomycorrhizal plants was -5.0%, and of ectomycorrhizal fungi was 7.0 parts per mille%. The mass balance of the 15N shows that the plants received 61-86% of their nitrogen from the fungal hyphae. These values, when combined with known plant growth rates, reveal that the plants provided 7-16% of their photosynthetic carbon to the fungi for growth and respiration, or about 25% of all carbon allocated to belowground processes. This analytical technique could be readily applied to other nitrogen-limited ecosystems such as many temperate and boreal forests to quantify the importance for terrestrial carbon and nitrogen cycling of mycorrhizally mediated transfers at the plant-soil interface.

  11. Speciation by Symbiosis: the Microbiome and Behavior

    PubMed Central

    Shropshire, J. Dylan

    2016-01-01

    ABSTRACT Species are fundamental units of comparison in biology. The newly discovered importance and ubiquity of host-associated microorganisms are now stimulating work on the roles that microbes can play in animal speciation. We previously synthesized the literature and advanced concepts of speciation by symbiosis with notable attention to hybrid sterility and lethality. Here, we review recent studies and relevant data on microbes as players in host behavior and behavioral isolation, emphasizing the patterns seen in these analyses and highlighting areas worthy of additional exploration. We conclude that the role of microbial symbionts in behavior and speciation is gaining exciting traction and that the holobiont and hologenome concepts afford an evolving intellectual framework to promote research and intellectual exchange between disciplines such as behavior, microbiology, genetics, symbiosis, and speciation. Given the increasing centrality of microbiology in macroscopic life, microbial symbiosis is arguably the most neglected aspect of animal and plant speciation, and studying it should yield a better understanding of the origin of species. PMID:27034284

  12. Speciation by Symbiosis: the Microbiome and Behavior.

    PubMed

    Shropshire, J Dylan; Bordenstein, Seth R

    2016-01-01

    Species are fundamental units of comparison in biology. The newly discovered importance and ubiquity of host-associated microorganisms are now stimulating work on the roles that microbes can play in animal speciation. We previously synthesized the literature and advanced concepts of speciation by symbiosis with notable attention to hybrid sterility and lethality. Here, we review recent studies and relevant data on microbes as players in host behavior and behavioral isolation, emphasizing the patterns seen in these analyses and highlighting areas worthy of additional exploration. We conclude that the role of microbial symbionts in behavior and speciation is gaining exciting traction and that the holobiont and hologenome concepts afford an evolving intellectual framework to promote research and intellectual exchange between disciplines such as behavior, microbiology, genetics, symbiosis, and speciation. Given the increasing centrality of microbiology in macroscopic life, microbial symbiosis is arguably the most neglected aspect of animal and plant speciation, and studying it should yield a better understanding of the origin of species. PMID:27034284

  13. Computer symbiosis: Emergence of symbiotic behavior through evolution

    SciTech Connect

    Ikegami, Takashi; Kaneko, Kunihiko

    1989-01-01

    Symbiosis is altruistic cooperation between distinct species. It is one of the most effective evolutionary processes, but its dynamics are not well understood as yet. A simple model of symbiosis is introduced, where we consider interactions between hosts and parasites and also mutations of hosts and parasites. It is found that a symbiotic state emerges for a suitable range of mutation rates. The symbiotic state is not static, but dynamically oscillates. Harmful parasites violating symbiosis appear periodically, but are rapidly extinguished by hosts and other parasites, and the symbiotic state is recovered. The emergence of ''Tit for Tat'' strategy to maintain symbiosis is discussed. 4 figs.

  14. Arbuscular mycorrhiza Symbiosis Induces a Major Transcriptional Reprogramming of the Potato SWEET Sugar Transporter Family

    PubMed Central

    Manck-Götzenberger, Jasmin; Requena, Natalia

    2016-01-01

    Biotrophic microbes feeding on plants must obtain carbon from their hosts without killing the cells. The symbiotic Arbuscular mycorrhizal (AM) fungi colonizing plant roots do so by inducing major transcriptional changes in the host that ultimately also reprogram the whole carbon partitioning of the plant. AM fungi obtain carbohydrates from the root cortex apoplast, in particular from the periarbuscular space that surrounds arbuscules. However, the mechanisms by which cortical cells export sugars into the apoplast for fungal nutrition are unknown. Recently a novel type of sugar transporter, the SWEET, able to perform not only uptake but also efflux from cells was identified. Plant SWEETs have been shown to be involved in the feeding of pathogenic microbes and are, therefore, good candidates to play a similar role in symbiotic associations. Here we have carried out the first phylogenetic and expression analyses of the potato SWEET family and investigated its role during mycorrhiza symbiosis. The potato genome contains 35 SWEETs that cluster into the same four clades defined in Arabidopsis. Colonization of potato roots by the AM fungus Rhizophagus irregularis imposes major transcriptional rewiring of the SWEET family involving, only in roots, changes in 22 of the 35 members. None of the SWEETs showed mycorrhiza-exclusive induction and most of the 12 induced genes belong to the putative hexose transporters of clade I and II, while only two are putative sucrose transporters from clade III. In contrast, most of the repressed transcripts (10) corresponded to clade III SWEETs. Promoter-reporter assays for three of the induced genes, each from one cluster, showed re-localization of expression to arbuscule-containing cells, supporting a role for SWEETs in the supply of sugars at biotrophic interfaces. The complex transcriptional regulation of SWEETs in roots in response to AM fungal colonization supports a model in which symplastic sucrose in cortical cells could be cleaved

  15. Arbuscular mycorrhiza Symbiosis Induces a Major Transcriptional Reprogramming of the Potato SWEET Sugar Transporter Family.

    PubMed

    Manck-Götzenberger, Jasmin; Requena, Natalia

    2016-01-01

    Biotrophic microbes feeding on plants must obtain carbon from their hosts without killing the cells. The symbiotic Arbuscular mycorrhizal (AM) fungi colonizing plant roots do so by inducing major transcriptional changes in the host that ultimately also reprogram the whole carbon partitioning of the plant. AM fungi obtain carbohydrates from the root cortex apoplast, in particular from the periarbuscular space that surrounds arbuscules. However, the mechanisms by which cortical cells export sugars into the apoplast for fungal nutrition are unknown. Recently a novel type of sugar transporter, the SWEET, able to perform not only uptake but also efflux from cells was identified. Plant SWEETs have been shown to be involved in the feeding of pathogenic microbes and are, therefore, good candidates to play a similar role in symbiotic associations. Here we have carried out the first phylogenetic and expression analyses of the potato SWEET family and investigated its role during mycorrhiza symbiosis. The potato genome contains 35 SWEETs that cluster into the same four clades defined in Arabidopsis. Colonization of potato roots by the AM fungus Rhizophagus irregularis imposes major transcriptional rewiring of the SWEET family involving, only in roots, changes in 22 of the 35 members. None of the SWEETs showed mycorrhiza-exclusive induction and most of the 12 induced genes belong to the putative hexose transporters of clade I and II, while only two are putative sucrose transporters from clade III. In contrast, most of the repressed transcripts (10) corresponded to clade III SWEETs. Promoter-reporter assays for three of the induced genes, each from one cluster, showed re-localization of expression to arbuscule-containing cells, supporting a role for SWEETs in the supply of sugars at biotrophic interfaces. The complex transcriptional regulation of SWEETs in roots in response to AM fungal colonization supports a model in which symplastic sucrose in cortical cells could be cleaved

  16. Mycorrhizal phosphate uptake pathway in maize: vital for growth and cob development on nutrient poor agricultural and greenhouse soils

    PubMed Central

    Willmann, Martin; Gerlach, Nina; Buer, Benjamin; Polatajko, Aleksandra; Nagy, Réka; Koebke, Eva; Jansa, Jan; Flisch, René; Bucher, Marcel

    2013-01-01

    Arbuscular mycorrhizal fungi (AMF) form a mutually beneficial symbiosis with plant roots providing predominantly phosphorus in the form of orthophosphate (Pi) in exchange for plant carbohydrates on low P soils. The goal of this work was to generate molecular-genetic evidence in support of a major impact of the mycorrhizal Pi uptake (MPU) pathway on the productivity of the major crop plant maize under field and controlled conditions. Here we show, that a loss-of-function mutation in the mycorrhiza-specific Pi transporter gene Pht1;6 correlates with a dramatic reduction of above-ground biomass and cob production in agro-ecosystems with low P soils. In parallel mutant pht1;6 plants exhibited an altered fingerprint of chemical elements in shoots dependent on soil P availability. In controlled environments mycorrhiza development was impaired in mutant plants when grown alone. The presence of neighboring mycorrhizal nurse plants enhanced the reduced mycorrhiza formation in pht1;6 roots. Uptake of 33P-labeled orthophosphate via the MPU pathway was strongly impaired in colonized mutant plants. Moreover, repression of the MPU pathway resulted in a redirection of Pi to neighboring plants. In line with previous results, our data highlight the relevance of the MPU pathway in Pi allocation within plant communities and in particular the role of Pht1;6 for the establishment of symbiotic Pi uptake and for maize productivity and nutritional value in low-input agricultural systems. In a first attempt to identify cellular pathways which are affected by Pht1;6 activity, gene expression profiling via RNA-Seq was performed and revealed a set of maize genes involved in cellular signaling which exhibited differential regulation in mycorrhizal pht1;6 and control plants. The RNA data provided support for the hypothesis that fungal supply of Pi and/or Pi transport across Pht1;6 affects cell wall biosynthesis and hormone metabolism in colonized root cells. PMID:24409191

  17. Metal toxicity differently affects the Iris pseudacorus-arbuscular mycorrhiza fungi symbiosis in terrestrial and semi-aquatic habitats.

    PubMed

    Wężowicz, K; Turnau, K; Anielska, T; Zhebrak, I; Gołuszka, K; Błaszkowski, J; Rozpądek, P

    2015-12-01

    Phytoremediation offers an environmental friendly alternative to conventional cleanup techniques. In this study, mycorrhizal fungi isolated from the roots of Mentha longifolia grown in the basin of the Centuria River (S Poland) were used. Iris pseudacorus was grown in substratum from an industrial waste, enriched in Pb, Fe, Zn, and Cd in a terrestrial and water-logged habitat. Plant yield and photosynthetic performance was the highest in the aquatic environment; however, the presence of toxic metals (TM) negatively affected photosystem II (PSII) photochemistry as shown by the JIP test. Fungi colonization and Cd accumulation within plant tissues was decreased. In the terrestrial habitat, neither arbuscular mycorrhizal fungi (AMF) nor metal toxicity affected plant growth, although metal uptake, Cd in particular, as well as photosynthesis were affected. Inoculated plants accumulated significantly more Cd, and photosynthesis was downregulated. The results presented in this study clearly indicate that the I. pseudacorus-AMF symbiosis adapts itself to the presence of toxic metals in the environment, optimizing resource supply, energy fluxes, and possibly stress tolerance mechanisms. Plant/AMF consortia grown in terrestrial and water-logged habitats utilize different strategies to cope with metal toxicity. The use of AMF in improving the phytoremediation potential of I. pseudacorus needs, however, further research. PMID:26585452

  18. Studying Genome Heterogeneity within the Arbuscular Mycorrhizal Fungal Cytoplasm

    PubMed Central

    Halary, Sébastien; Bapteste, Eric; Hijri, Mohamed

    2015-01-01

    Although heterokaryons have been reported in nature, multicellular organisms are generally assumed genetically homogeneous. Here, we investigate the case of arbuscular mycorrhizal fungi (AMF) that form symbiosis with plant roots. The growth advantages they confer to their hosts are of great potential benefit to sustainable agricultural practices. However, measuring genetic diversity for these coenocytes is a major challenge: Within the same cytoplasm, AMF contain thousands of nuclei and show extremely high levels of genetic variation for some loci. The extent and physical location of polymorphism within and between AMF genomes is unclear. We used two complementary strategies to estimate genetic diversity in AMF, investigating polymorphism both on a genome scale and in putative single copy loci. First, we used data from whole-genome pyrosequencing of four AMF isolates to describe genetic diversity, based on a conservative network-based clustering approach. AMF isolates showed marked differences in genome-wide diversity patterns in comparison to a panel of control fungal genomes. This clustering approach further allowed us to provide conservative estimates of Rhizophagus spp. genomes sizes. Second, we designed new putative single copy genomic markers, which we investigated by massive parallel amplicon sequencing for two Rhizophagus irregularis and one Rhizophagus sp. isolates. Most loci showed high polymorphism, with up to 103 alleles per marker. This polymorphism could be distributed within or between nuclei. However, we argue that the Rhizophagus isolates under study might be heterokaryotic, at least for the putative single copy markers we studied. Considering that genetic information is the main resource for identification of AMF, we suggest that special attention is warranted for the study of these ecologically important organisms. PMID:25573960

  19. Frost hardiness of mycorrhizal and non-mycorrhizal Scots pine under two fertilization treatments.

    PubMed

    Korhonen, Anna; Lehto, Tarja; Repo, Tapani

    2015-07-01

    Survival and functioning of mycorrhizal associations at low temperatures are not known well. In an earlier study, ectomycorrhizas did not affect the frost hardiness of Scots pine (Pinus sylvestris L.) roots, but here we studied whether differential nutrient availability would change the result and additionally, alter frost hardiness aboveground. The aim in this experiment was to compare the frost hardiness of roots and needles of mycorrhizal (Hebeloma sp.) and non-mycorrhizal Scots pine seedlings raised using two fertilization treatments and two cold-hardening regimes. The fertilization treatments were low (LF) and high (HF) application of a complete nutrient solution. Three hundred mycorrhizal and non-mycorrhizal seedlings were cultivated in growth chambers in four blocks for 16 weeks. For the first 9 weeks, the seedlings grew in long-day and high-temperature (LDHT) with low fertilization and then they were raised for 3 weeks in LDHT with either low or high fertilization. After this, half of the plants in each treatment combination remained in LDHT, and half were transferred to short-day and low-temperature (SDLT) conditions to cold acclimatize. The frost hardiness of the roots and needles was assessed using controlled freezing tests followed by electrolyte leakage tests (REL). Mycorrhizal roots were slightly more frost hardy than non-mycorrhizal roots, but only in the growing-season conditions (LDHT) in low-nutrient treatment. In LDHT and LF, the frost hardiness of the non-mycorrhizal roots was about -9 °C, and that of the non-mycorrhizal HF roots and the mycorrhizal roots in both fertilization levels was about -11 °C. However, no difference was found in the roots within the SDLT regime, and in needles, there was no difference between mycorrhizal and fertilization treatments. The frost hardiness of needles increased by SDLT treatment, being -8.5 and -14.1 °C in LDHT and SDLT, respectively. The dry mass of roots, stems, and needles was lower in LF than in

  20. TEMPERATURE-RESPIRATION RELATIONSHIPS DIFFER IN MYCORRHIZAL AND NON-MYCORRHIZAL ROOT SYSTEMS OF PICEA ABIES (L.) KARST.

    EPA Science Inventory

    Root respiration has been shown to increase with temperature, but less is known about how this relation ship is affected by the fungal partner in mycorrhizal root systems. In order to test respiratory temperature dependence, in particular Q10 of mycorrhizal and non-mycorrhizal r...

  1. Regulation of Plant Growth, Photosynthesis, Antioxidation and Osmosis by an Arbuscular Mycorrhizal Fungus in Watermelon Seedlings under Well-Watered and Drought Conditions.

    PubMed

    Mo, Yanling; Wang, Yongqi; Yang, Ruiping; Zheng, Junxian; Liu, Changming; Li, Hao; Ma, Jianxiang; Zhang, Yong; Wei, Chunhua; Zhang, Xian

    2016-01-01

    Drought stress has become an increasingly serious environmental issue that influences the growth and production of watermelon. Previous studies found that arbuscular mycorrhizal (AM) colonization improved the fruit yield and water use efficiency (WUE) of watermelon grown under water stress; however, the exact mechanisms remain unknown. In this study, the effects of Glomus versiforme symbiosis on the growth, physio-biochemical attributes, and stress-responsive gene expressions of watermelon seedlings grown under well-watered and drought conditions were investigated. The results showed that AM colonization did not significantly influence the shoot growth of watermelon seedlings under well-watered conditions but did promote root development irrespective of water treatment. Drought stress decreased the leaf relative water content and chlorophyll concentration, but to a lesser extent in the AM plants. Compared with the non-mycorrhizal seedlings, mycorrhizal plants had higher non-photochemical quenching values, which reduced the chloroplast ultrastructural damage in the mesophyll cells and thus maintained higher photosynthetic efficiency. Moreover, AM inoculation led to significant enhancements in the enzyme activities and gene expressions of superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase, and monodehydroascorbate reductase in watermelon leaves upon drought imposition. Consequently, AM plants exhibited lower accumulation of MDA, H2O2 and [Formula: see text] compared with non-mycorrhizal plants. Under drought stress, the soluble sugar and proline contents were significantly increased, and further enhancements were observed by pre-treating the drought-stressed plants with AM. Taken together, our findings indicate that mycorrhizal colonization enhances watermelon drought tolerance through a stronger root system, greater protection of photosynthetic apparatus, a more efficient antioxidant system and improved osmoregulation. This study contributes

  2. Regulation of Plant Growth, Photosynthesis, Antioxidation and Osmosis by an Arbuscular Mycorrhizal Fungus in Watermelon Seedlings under Well-Watered and Drought Conditions

    PubMed Central

    Mo, Yanling; Wang, Yongqi; Yang, Ruiping; Zheng, Junxian; Liu, Changming; Li, Hao; Ma, Jianxiang; Zhang, Yong; Wei, Chunhua; Zhang, Xian

    2016-01-01

    Drought stress has become an increasingly serious environmental issue that influences the growth and production of watermelon. Previous studies found that arbuscular mycorrhizal (AM) colonization improved the fruit yield and water use efficiency (WUE) of watermelon grown under water stress; however, the exact mechanisms remain unknown. In this study, the effects of Glomus versiforme symbiosis on the growth, physio-biochemical attributes, and stress-responsive gene expressions of watermelon seedlings grown under well-watered and drought conditions were investigated. The results showed that AM colonization did not significantly influence the shoot growth of watermelon seedlings under well-watered conditions but did promote root development irrespective of water treatment. Drought stress decreased the leaf relative water content and chlorophyll concentration, but to a lesser extent in the AM plants. Compared with the non-mycorrhizal seedlings, mycorrhizal plants had higher non-photochemical quenching values, which reduced the chloroplast ultrastructural damage in the mesophyll cells and thus maintained higher photosynthetic efficiency. Moreover, AM inoculation led to significant enhancements in the enzyme activities and gene expressions of superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase, and monodehydroascorbate reductase in watermelon leaves upon drought imposition. Consequently, AM plants exhibited lower accumulation of MDA, H2O2 and O2− compared with non-mycorrhizal plants. Under drought stress, the soluble sugar and proline contents were significantly increased, and further enhancements were observed by pre-treating the drought-stressed plants with AM. Taken together, our findings indicate that mycorrhizal colonization enhances watermelon drought tolerance through a stronger root system, greater protection of photosynthetic apparatus, a more efficient antioxidant system and improved osmoregulation. This study contributes to advances

  3. Modeling symbiosis by interactions through species carrying capacities

    NASA Astrophysics Data System (ADS)

    Yukalov, V. I.; Yukalova, E. P.; Sornette, D.

    2012-08-01

    We introduce a mathematical model of symbiosis between different species by taking into account the influence of each species on the carrying capacities of the others. The modeled entities can pertain to biological and ecological societies or to social, economic and financial societies. Our model includes three basic types: symbiosis with direct mutual interactions, symbiosis with asymmetric interactions, and symbiosis without direct interactions. In all cases, we provide a complete classification of all admissible dynamical regimes. The proposed model of symbiosis turned out to be very rich, as it exhibits four qualitatively different regimes: convergence to stationary states, unbounded exponential growth, finite-time singularity, and finite-time death or extinction of species.

  4. Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway

    PubMed Central

    López-Ráez, Juan A.; Verhage, Adriaan; Fernández, Iván; García, Juan M.; Azcón-Aguilar, Concepción; Flors, Victor; Pozo, María J.

    2010-01-01

    Arbuscular mycorrhizal (AM) symbioses are mutualistic associations between soil fungi and most vascular plants. The symbiosis significantly affects the host physiology in terms of nutrition and stress resistance. Despite the lack of host range specificity of the interaction, functional diversity between AM fungal species exists. The interaction is finely regulated according to plant and fungal characters, and plant hormones are believed to orchestrate the modifications in the host plant. Using tomato as a model, an integrative analysis of the host response to different mycorrhizal fungi was performed combining multiple hormone determination and transcriptional profiling. Analysis of ethylene-, abscisic acid-, salicylic acid-, and jasmonate-related compounds evidenced common and divergent responses of tomato roots to Glomus mosseae and Glomus intraradices, two fungi differing in their colonization abilities and impact on the host. Both hormonal and transcriptional analyses revealed, among others, regulation of the oxylipin pathway during the AM symbiosis and point to a key regulatory role for jasmonates. In addition, the results suggest that specific responses to particular fungi underlie the differential impact of individual AM fungi on plant physiology, and particularly on its ability to cope with biotic stresses. PMID:20378666

  5. Differential effects of fenpropimorph and fenhexamid, two sterol biosynthesis inhibitor fungicides, on arbuscular mycorrhizal development and sterol metabolism in carrot roots.

    PubMed

    Campagnac, Estelle; Fontaine, Joël; Sahraoui, Anissa Lounès-Hadj; Laruelle, Frédéric; Durand, Roger; Grandmougin-Ferjani, Anne

    2008-12-01

    Sterols composition of transformed carrot roots incubated in presence of increasing concentrations of fenpropimorph (0.02; 0.2; 2mgl(-1)) and fenhexamid (0.02; 0.2; 2; 20mgl(-1)), colonized or not by Glomus intraradices was determined. In mycorrhizal roots treated with fenpropimorph, normal Delta(5)-sterols were replaced by unusual compounds such as 9beta,19-cyclopropylsterols (24-methylpollinastanol), Delta(8,14)-sterols (ergosta-8,14-dienol, stigmasta-8,14-dienol), Delta(8)-sterols (Delta(8) sitosterol) and Delta(7)-sterols (ergosta-7,22-dienol). After application of fenpropimorph, a drastic reduction of the mycorrhizal root growth, root colonization and extraradical fungal development was observed. Application of fenhexamid did not modify sterol profiles and the total colonization of roots. But the arbuscule frequency of the fungal partner was significantly affected. Comparison of the effects caused by the tested fungicides indicates that the usual phytosterols may be involved in symbiosis development. Indeed, observed modifications of root sterols composition could explain the high fenpropimorph toxicity to the AM symbiosis. However, the absence of sterolic modifications in the roots treated with fenhexamid could account for its more limited impact on mycorrhization. PMID:19007946

  6. Convergence in mycorrhizal fungal communities due to drought, plant competition, parasitism, and susceptibility to herbivory: consequences for fungi and host plants

    PubMed Central

    Gehring, Catherine A.; Mueller, Rebecca C.; Haskins, Kristin E.; Rubow, Tine K.; Whitham, Thomas G.

    2014-01-01

    Plants and mycorrhizal fungi influence each other’s abundance, diversity, and distribution. How other biotic interactions affect the mycorrhizal symbiosis is less well understood. Likewise, we know little about the effects of climate change on the fungal component of the symbiosis or its function. We synthesized our long-term studies on the influence of plant parasites, insect herbivores, competing trees, and drought on the ectomycorrhizal fungal communities associated with a foundation tree species of the southwestern United States, pinyon pine (Pinus edulis), and described how these changes feed back to affect host plant performance. We found that drought and all three of the biotic interactions studied resulted in similar shifts in ectomycorrhizal fungal community composition, demonstrating a convergence of the community towards dominance by a few closely related fungal taxa. Ectomycorrhizal fungi responded similarly to each of these stressors resulting in a predictable trajectory of community disassembly, consistent with ecological theory. Although we predicted that the fungal communities associated with trees stressed by drought, herbivory, competition, and parasitism would be poor mutualists, we found the opposite pattern in field studies. Our results suggest that climate change and the increased importance of herbivores, competitors, and parasites that can be associated with it, may ultimately lead to reductions in ectomycorrhizal fungal diversity, but that the remaining fungal community may be beneficial to host trees under the current climate and the warmer, drier climate predicted for the future. PMID:25009537

  7. Convergence in mycorrhizal fungal communities due to drought, plant competition, parasitism, and susceptibility to herbivory: consequences for fungi and host plants.

    PubMed

    Gehring, Catherine A; Mueller, Rebecca C; Haskins, Kristin E; Rubow, Tine K; Whitham, Thomas G

    2014-01-01

    Plants and mycorrhizal fungi influence each other's abundance, diversity, and distribution. How other biotic interactions affect the mycorrhizal symbiosis is less well understood. Likewise, we know little about the effects of climate change on the fungal component of the symbiosis or its function. We synthesized our long-term studies on the influence of plant parasites, insect herbivores, competing trees, and drought on the ectomycorrhizal fungal communities associated with a foundation tree species of the southwestern United States, pinyon pine (Pinus edulis), and described how these changes feed back to affect host plant performance. We found that drought and all three of the biotic interactions studied resulted in similar shifts in ectomycorrhizal fungal community composition, demonstrating a convergence of the community towards dominance by a few closely related fungal taxa. Ectomycorrhizal fungi responded similarly to each of these stressors resulting in a predictable trajectory of community disassembly, consistent with ecological theory. Although we predicted that the fungal communities associated with trees stressed by drought, herbivory, competition, and parasitism would be poor mutualists, we found the opposite pattern in field studies. Our results suggest that climate change and the increased importance of herbivores, competitors, and parasites that can be associated with it, may ultimately lead to reductions in ectomycorrhizal fungal diversity, but that the remaining fungal community may be beneficial to host trees under the current climate and the warmer, drier climate predicted for the future. PMID:25009537

  8. Arbuscular mycorrhizal associations in Lycopodiaceae.

    PubMed

    Winther, Jennifer L; Friedman, William E

    2008-01-01

    This study characterizes the molecular and phylogenetic identity of fungi involved in arbuscular mycorrhizal (AM) associations in extant Huperzia and Lycopodium (Lycopodiaceae). Huperzia and Lycopodium are characterized by a life cycle with long-lived autotrophic sporophytes and long-lived mycoheterotrophic (obtain all organic carbon from fungal symbionts) gametophytes. 18S ribosomal DNA was isolated and sequenced from Glomus symbionts in autotrophic sporophytes of seven species of Huperzia and Lycopodium and mycoheterotrophic Huperzia gametophytes collected from the Páramos of Ecuador. Phylogenetic analyses recovered four Glomus A phylotypes in a single clade (MH3) that form AM associations with Huperzia and Lycopodium. In addition, phylogenetic analyses of Glomus symbionts from other nonphotosynthetic plants demonstrate that most AM fungi that form mycoheterotrophic associations belong to at least four specific clades of Glomus A. These results suggest that most mycoheterotrophic plants that form AM associations do so with restricted clades of Glomus A. Moreover, the correspondence of identity of AM symbionts in Huperzia sporophytes and gametophytes raises the possibility that photosynthetic sporophytes are a source of carbon to conspecific mycoheterotrophic gametophytes via shared fungal networks. PMID:17971070

  9. Mycorrhizal fungi and global land surface models?

    NASA Astrophysics Data System (ADS)

    Brzostek, E. R.; Fisher, J. B.; Shi, M.; Phillips, R.

    2013-12-01

    In the current generation of Land Surface Models (LSMs), the representation of coupled carbon (C) and nutrient cycles does not account for allocation of C by plants to mycorrhizal fungi in exchange for limiting nutrients. Given that the amount of C transferred to mycorrhizae can exceed 20% of net primary production (NPP), mycorrhizae can supply over half of the nitrogen (N) needed to support NPP, and that large majority of plants form associations with mycorrhizae; integrating these mechanisms into LSMs may significantly alter our understanding of the role of the terrestrial biosphere in mitigating climate change. Here, we present results from the integration of a mycorrhizal framework into a cutting-edge global plant nitrogen model -- Fixation & Uptake of Nitrogen (FUN; Fisher et al., 2010) -- that can be coupled into existing LSMs. In this mycorrhizal framework, the C cost of N acquisition varies as a function of mycorrhizal type with: (1) plants that support arbuscular mycorrhizae (AM) benefiting when N is plentiful and (2) plants that support ectomycorrhizae (ECM) benefiting when N is limiting. At the plot scale (15 x 15m), the My-FUN model improved predictions of retranslocation, N uptake, and the amount of C transferred into the soil relative to the base model across 45 plots that vary in mycorrhizal type in Indiana, USA. At the ecosystem scale, when we coupled this new framework into the Community Land Model (CLM-CN), the model estimated lower C uptake than the base model and more accurately predicted C uptake at the Morgan Monroe State Forest AmeriFlux site. These results suggest that the inclusion of a mycorrhizal framework into LSMs will enhance our ability to predict feedbacks between global change and the terrestrial biosphere.

  10. Network analysis of eight industrial symbiosis systems

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Zheng, Hongmei; Shi, Han; Yu, Xiangyi; Liu, Gengyuan; Su, Meirong; Li, Yating; Chai, Yingying

    2016-06-01

    Industrial symbiosis is the quintessential characteristic of an eco-industrial park. To divide parks into different types, previous studies mostly focused on qualitative judgments, and failed to use metrics to conduct quantitative research on the internal structural or functional characteristics of a park. To analyze a park's structural attributes, a range of metrics from network analysis have been applied, but few researchers have compared two or more symbioses using multiple metrics. In this study, we used two metrics (density and network degree centralization) to compare the degrees of completeness and dependence of eight diverse but representative industrial symbiosis networks. Through the combination of the two metrics, we divided the networks into three types: weak completeness, and two forms of strong completeness, namely "anchor tenant" mutualism and "equality-oriented" mutualism. The results showed that the networks with a weak degree of completeness were sparse and had few connections among nodes; for "anchor tenant" mutualism, the degree of completeness was relatively high, but the affiliated members were too dependent on core members; and the members in "equality-oriented" mutualism had equal roles, with diverse and flexible symbiotic paths. These results revealed some of the systems' internal structure and how different structures influenced the exchanges of materials, energy, and knowledge among members of a system, thereby providing insights into threats that may destabilize the network. Based on this analysis, we provide examples of the advantages and effectiveness of recent improvement projects in a typical Chinese eco-industrial park (Shandong Lubei).

  11. Microfungal "weeds" in the leafcutter ant symbiosis.

    PubMed

    Rodrigues, A; Bacci, M; Mueller, U G; Ortiz, A; Pagnocca, F C

    2008-11-01

    Leafcutter ants (Formicidae: tribe Attini) are well-known insects that cultivate basidiomycete fungi (Agaricales: Lepiotaceae) as their principal food. Fungus gardens are monocultures of a single cultivar strain, but they also harbor a diverse assemblage of additional microbes with largely unknown roles in the symbiosis. Cultivar-attacking microfungi in the genus Escovopsis are specialized parasites found only in association with attine gardens. Evolutionary theory predicts that the low genetic diversity in monocultures should render ant gardens susceptible to a wide range of diseases, and additional parasites with roles similar to that of Escovopsis are expected to exist. We profiled the diversity of cultivable microfungi found in 37 nests from ten Acromyrmex species from Southern Brazil and compared this diversity to published surveys. Our study revealed a total of 85 microfungal strains. Fusarium oxysporum and Escovopsis were the predominant species in the surveyed gardens, infecting 40.5% and 27% of the nests, respectively. No specific relationship existed regarding microfungal species and ant-host species, ant substrate preference (dicot versus grass) or nesting habit. Molecular data indicated high genetic diversity among Escovopsis isolates. In contrast to the garden parasite, F. oxysporum strains are not specific parasites of the cultivated fungus because strains isolated from attine gardens have similar counterparts found in the environment. Overall, the survey indicates that saprophytic microfungi are prevalent in South American leafcutter ants. We discuss the antagonistic potential of these microorganisms as "weeds" in the ant-fungus symbiosis. PMID:18369523

  12. Mastering ectomycorrhizal symbiosis: the impact of carbohydrates.

    PubMed

    Nehls, Uwe

    2008-01-01

    Mycorrhiza formation is the consequence of a mutualistic interaction between certain soil fungi and plant roots that helps to overcome nutritional limitations faced by the respective partners. In symbiosis, fungi contribute to tree nutrition by means of mineral weathering and mobilization of nutrients from organic matter, and obtain plant-derived carbohydrates as a response. Support with easily degradable carbohydrates seems to be the driving force for fungi to undergo this type of interaction. As a consequence, the fungal hexose uptake capacity is strongly increased in Hartig net hyphae of the model fungi Amanita muscaria and Laccaria bicolor. Next to fast carbohydrate uptake and metabolism, storage carbohydrates are of special interest. In functional A. muscaria ectomycorrhizas, expression and activity of proteins involved in trehalose biosynthesis is mainly localized in hyphae of the Hartig net, indicating an important function of trehalose in generation of a strong carbon sink by fungal hyphae. In symbiosis, fungal partners receive up to approximately 19 times more carbohydrates from their hosts than normal leakage of the root system would cause, resulting in a strong carbohydrate demand of infected roots and, as a consequence, a more efficient plant photosynthesis. To avoid fungal parasitism, the plant seems to have developed mechanisms to control carbohydrate drain towards the fungal partner and link it to the fungus-derived mineral nutrition. In this contribution, current knowledge on fungal strategies to obtain carbohydrates from its host and plant strategies to enable, but also to control and restrict (under certain conditions), carbon transfer are summarized. PMID:18272925

  13. The Microbiota, Chemical Symbiosis, and Human Disease

    PubMed Central

    Redinbo, Matthew R.

    2014-01-01

    Our understanding of mammalian-microbial mutualism has expanded by combing microbial sequencing with evolving molecular and cellular methods, and unique model systems. Here, the recent literature linking the microbiota to diseases of three of the key mammalian mucosal epithelial compartments – nasal, lung and gastrointestinal (GI) tract – is reviewed with a focus on new knowledge about the taxa, species, proteins and chemistry that promote health and impact progression toward disease. The information presented is further organized by specific diseases now associated with the microbiota:, Staphylococcus aureus infection and rhinosinusitis in the nasal-sinus mucosa; cystic fibrosis (CF), chronic obstructive pulmonary disorder (COPD), and asthma in the pulmonary tissues. For the vast and microbially dynamic GI compartment, several disorders are considered, including obesity, atherosclerosis, Crohn’s disease, ulcerative colitis, drug toxicity, and even autism. Our appreciation of the chemical symbiosis ongoing between human systems and the microbiota continues to grow, and suggest new opportunities for modulating this symbiosis using designed interventions. PMID:25305474

  14. Diversity of Arbuscular Mycorrhizal Fungi Associated with a Sb Accumulator Plant, Ramie (Boehmeria nivea), in an Active Sb Mining.

    PubMed

    Wei, Yuan; Chen, ZhiPeng; Wu, FengChang; Li, JiNing; ShangGuan, YuXian; Li, FaSheng; Zeng, Qing Ru; Hou, Hong

    2015-08-01

    Arbuscular mycorrhizal fungi (AMF) have great potential for assisting heavy metal hyperaccumulators in the remediation of contaminated soils. However, little information is available about the symbiosis of AMF associated with an antimony (Sb) accumulator plant under natural conditions. Therefore, the objective of this study was to investigate the colonization and molecular diversity of AMF associated with the Sb accumulator ramie (Boehmeria nivea) growing in Sb-contaminated soils. Four Sb mine spoils and one adjacent reference area were selected from Xikuangshan in southern China. PCR-DGGE was used to analyze the AMF community composition in ramie roots. Morphological identification was also used to analyze the species in the rhizosphere soil of ramie. Results obtained showed that mycorrhizal symbiosis was established successfully even in the most heavily polluted sites. From the unpolluted site Ref to the highest polluted site T4, the spore numbers and AMF diversity increased at first and then decreased. Colonization increased consistently with the increasing Sb concentrations in the soil. A total of 14 species were identified by morphological analysis. From the total number of species, 4 (29%) belonged to Glomus, 2 (14%) belonged to Acaulospora, 2 (14%) belonged to Funneliformis, 1 (7%) belonged to Claroideoglomus, 1 (7%) belonged to Gigaspora, 1 (7%) belonged to Paraglomus, 1 (7%) belonging to Rhizophagus, 1 (7%) belonging to Sclervocystis, and 1 (7%) belonged to Scutellospora. Some AMF sequences were present even in the most polluted site. Morphological identification and phylogenetic analysis both revealed that most species were affiliated withGlomus, suggesting that Glomus was the dominant genus in this AMF community. This study demonstrated that ramie associated with AMF may have great potential for remediation of Sb-contaminated soils. PMID:25876600

  15. Disruption of mycorrhizal extraradical mycelium and changes in leaf water status and soil aggregate stability in rootbox-grown trifoliate orange.

    PubMed

    Zou, Ying-Ning; Srivastava, A K; Ni, Qiu-Dan; Wu, Qiang-Sheng

    2015-01-01

    Arbuscular mycorrhizas possess well developed extraradical mycelium (ERM) network that enlarge the surrounding soil for better acquisition of water and nutrients, besides soil aggregation. Distinction in ERM functioning was studied under a rootbox system, which consisted of root+hyphae and root-free hyphae compartments separated by 37-μm nylon mesh with an air gap. Trifoliate orange (Poncirus trifoliata) seedlings were inoculated with Funneliformis mosseae in root+hyphae compartment, and the ERM network was established between the two compartments. The ERM network of air gap was disrupted before 8 h of the harvest (one time disruption) or multiple disruptions during seedlings acclimation. Our results showed that mycorrhizal inoculation induced a significant increase in growth (plant height, stem diameter, and leaf, stem, and root biomass) and physiological characters (leaf relative water content, leaf water potential, and transpiration rate), irrespective of ERM status. Easily-extractable glomalin-related soil protein (EE-GRSP) and total GRSP (T-GRSP) concentration and mean weight diameter (MWD, an indicator of soil aggregate stability) were significantly higher in mycorrhizosphere of root+hyphae and root-free hyphae compartments than non-mycorrhizosphere. One time disruption of ERM network did not influence plant growth and soil properties but only notably decreased leaf water. Periodical disruption of ERM network at weekly interval markedly inhibited the mycorrhizal roles on plant growth, leaf water, GRSP production, and MWD in root+hyphae and hyphae chambers. EE-GRSP was the most responsive GRSP fraction to changes in leaf water and MWD under root+hyphae and hyphae conditions. It suggests that effect of peridical disruption of ERM network was more impactful than one-time disruption of ERM network with regard to leaf water, plant growth, and aggregate stability responses, thereby, implying ERM network aided in developing the host plant metabolically more active

  16. Disruption of mycorrhizal extraradical mycelium and changes in leaf water status and soil aggregate stability in rootbox-grown trifoliate orange

    PubMed Central

    Zou, Ying-Ning; Srivastava, A. K.; Ni, Qiu-Dan; Wu, Qiang-Sheng

    2015-01-01

    Arbuscular mycorrhizas possess well developed extraradical mycelium (ERM) network that enlarge the surrounding soil for better acquisition of water and nutrients, besides soil aggregation. Distinction in ERM functioning was studied under a rootbox system, which consisted of root+hyphae and root-free hyphae compartments separated by 37-μm nylon mesh with an air gap. Trifoliate orange (Poncirus trifoliata) seedlings were inoculated with Funneliformis mosseae in root+hyphae compartment, and the ERM network was established between the two compartments. The ERM network of air gap was disrupted before 8 h of the harvest (one time disruption) or multiple disruptions during seedlings acclimation. Our results showed that mycorrhizal inoculation induced a significant increase in growth (plant height, stem diameter, and leaf, stem, and root biomass) and physiological characters (leaf relative water content, leaf water potential, and transpiration rate), irrespective of ERM status. Easily-extractable glomalin-related soil protein (EE-GRSP) and total GRSP (T-GRSP) concentration and mean weight diameter (MWD, an indicator of soil aggregate stability) were significantly higher in mycorrhizosphere of root+hyphae and root-free hyphae compartments than non-mycorrhizosphere. One time disruption of ERM network did not influence plant growth and soil properties but only notably decreased leaf water. Periodical disruption of ERM network at weekly interval markedly inhibited the mycorrhizal roles on plant growth, leaf water, GRSP production, and MWD in root+hyphae and hyphae chambers. EE-GRSP was the most responsive GRSP fraction to changes in leaf water and MWD under root+hyphae and hyphae conditions. It suggests that effect of peridical disruption of ERM network was more impactful than one-time disruption of ERM network with regard to leaf water, plant growth, and aggregate stability responses, thereby, implying ERM network aided in developing the host plant metabolically more active

  17. Soil nutritional status, not inoculum identity, primarily determines the effect of arbuscular mycorrhizal fungi on the growth of Knautia arvensis plants.

    PubMed

    Doubková, Pavla; Kohout, Petr; Sudová, Radka

    2013-10-01

    Arbuscular mycorrhizal (AM) symbiosis is among the factors contributing to plant survival in serpentine soils characterised by unfavourable physicochemical properties. However, AM fungi show a considerable functional diversity, which is further modified by host plant identity and edaphic conditions. To determine the variability among serpentine AM fungal isolates in their effects on plant growth and nutrition, a greenhouse experiment was conducted involving two serpentine and two non-serpentine populations of Knautia arvensis plants grown in their native substrates. The plants were inoculated with one of the four serpentine AM fungal isolates or with a complex AM fungal community native to the respective plant population. At harvest after 6-month cultivation, intraradical fungal development was assessed, AM fungal taxa established from native fungal communities were determined and plant growth and element uptake evaluated. AM symbiosis significantly improved the performance of all the K. arvensis populations. The extent of mycorrhizal growth promotion was mainly governed by nutritional status of the substrate, while the effect of AM fungal identity was negligible. Inoculation with the native AM fungal communities was not more efficient than inoculation with single AM fungal isolates in any plant population. Contrary to the growth effects, a certain variation among AM fungal isolates was revealed in terms of their effects on plant nutrient uptake, especially P, Mg and Ca, with none of the AM fungi being generally superior in this respect. Regardless of AM symbiosis, K. arvensis populations significantly differed in their relative nutrient accumulation ratios, clearly showing the plant's ability to adapt to nutrient deficiency/excess. PMID:23568184

  18. Symbiosis as a mechanism of evolution: status of cell symbiosis theory.

    PubMed

    Margulis, L; Bermudes, D

    1985-01-01

    Several theories for the origin of eukaryotic (nucleated) cells from prokaryotic (bacterial) ancestors have been published: the progenote, the direct filiation and the serial endosymbiotic theory (SET). Compelling evidence for two aspects of the SET is now available suggesting that both mitochondria and plastids originated by symbioses with a third type of microbe, probably a Thermoplasma-like archaebacterium ancestral to the nucleocytoplasm. We conclude that not enough information is available to negate or substantiate another SET hypothesis: that the undulipodia (cilia, eukaryotic flagella) evolved from spirochetes. Recognizing the power of symbiosis to recombine in single individual semes from widely differing partners, we develop the idea that symbiosis has been important in the origin of species and higher taxa. The abrupt origin of novel life forms through the formation of stable symbioses is consistent with certain patterns of evolution (e.g punctuated equilibria) described by some paleontologists. PMID:11543608

  19. Phosphate Treatment Strongly Inhibits New Arbuscule Development But Not the Maintenance of Arbuscule in Mycorrhizal Rice Roots.

    PubMed

    Kobae, Yoshihiro; Ohmori, Yoshihiro; Saito, Chieko; Yano, Koji; Ohtomo, Ryo; Fujiwara, Toru

    2016-05-01

    Phosphorus (P) is a crucial nutrient for plant growth, but its availability to roots is limited in soil. Arbuscular mycorrhizal (AM) symbiosis is a promising strategy for improving plant P acquisition. However, P fertilizer reduces fungal colonization (P inhibition) and compromises mycorrhizal P uptake, warranting studies on the mechanistic basis of P inhibition. In this study, early morphological changes in P inhibition were identified in rice (Oryza sativa) using fungal cell wall staining and live-cell imaging of plant membranes that were associated with arbuscule life cycles. Arbuscule density decreased, and aberrant hyphal branching was observed in roots at 5 h after P treatment. Although new arbuscule development was severely inhibited, preformed arbuscules remained intact and longevity remained constant. P inhibition was accelerated in the rice pt11-1 mutant, which lacks P uptake from arbuscule branches, suggesting that mature arbuscules are stabilized by the symbiotic P transporter under high P condition. Moreover, P treatment led to increases in the number of vesicles, in which lipid droplets accumulated and then decreased within a few days. The development of new arbuscules resumed within by 2 d. Our data established that P strongly and temporarily inhibits new arbuscule development, but not intraradical accommodation of AM fungi. PMID:26979330

  20. L-System model for the growth of arbuscular mycorrhizal fungi, both within and outside of their host roots.

    PubMed

    Schnepf, A; Leitner, D; Schweiger, P F; Scholl, P; Jansa, J

    2016-04-01

    Development of arbuscular mycorrhizal fungal colonization of roots and the surrounding soil is the central process of mycorrhizal symbiosis, important for ecosystem functioning and commercial inoculum applications. To improve mechanistic understanding of this highly spatially and temporarily dynamic process, we developed a three-dimensional model taking into account growth of the roots and hyphae. It is for the first time that infection within the root system is simulated dynamically and in a spatially resolved way. Comparison between data measured in a calibration experiment and simulated results showed a good fit. Our simulations showed that the position of the fungal inoculum affects the sensitivity of hyphal growth parameters. Variation in speed of secondary infection and hyphal lifetime had a different effect on root infection and hyphal length, respectively, depending on whether the inoculum was concentrated or dispersed. For other parameters (branching rate, distance between entry points), the relative effect was the same independent of inoculum placement. The model also indicated that maximum root colonization levels well below 100%, often observed experimentally, may be a result of differential spread of roots and hyphae, besides intrinsic plant control, particularly upon localized placement of inoculum and slow secondary infection. PMID:27097653

  1. Autophagic Cell Death by Poncirus trifoliata Rafin., a Traditional Oriental Medicine, in Human Oral Cancer HSC-4 Cells

    PubMed Central

    Han, Hye-Yeon; Park, Bong-Soo; Lee, Guem San; Jeong, Seung-Hwa; Kim, Hyungwoo; Ryu, Mi Heon

    2015-01-01

    Poncirus trifoliata Rafin. has long been used as anti-inflammatory and antiallergic agent to treat gastrointestinal disorders and pulmonary diseases such as indigestion, constipation, chest fullness, chest pain, bronchitis, and sputum in Korea. P. trifoliata extract has recently been reported to possess anticancer properties; however, its mechanisms of action remain unclear. In this study, its antiproliferative effects and possible mechanisms were investigated in HSC-4 cells. The methanol extract of P. trifoliata (MEPT) significantly decreased the proliferation of HSC-4 cells (inhibitory concentration (IC)50 = 142.7 μg/mL) in a dose-dependent manner. While there were no significant changes observed upon cell cycle analysis and ANNEXIN V and 7-AAD double staining in the MEPT-treated groups, the intensity of acidic vesicular organelle (AVO) staining and microtubule-associated protein 1 light chain (LC) 3-II protein expression increased in response to MEPT treatment. Furthermore, 3-methyladenine (3-MA, autophagy inhibitor) effectively blocked the MEPT-induced cytotoxicity of HSC-4 cells and triggered the activation of p38 and extracellular signal-regulated kinases (ERK) proteins. Taken together, our results indicate that MEPT is a potent autophagy agonist in oral cancer cells with antitumor therapeutic potential that acts through the mitogen-activated protein kinase (MAPK) pathway. PMID:26221173

  2. Evaluation of codon biology in citrus and Poncirus trifoliata based on genomic features and frame corrected expressed sequence tags.

    PubMed

    Ahmad, Touqeer; Sablok, Gaurav; Tatarinova, Tatiana V; Xu, Qiang; Deng, Xiu-Xin; Guo, Wen-Wu

    2013-04-01

    Citrus, as one of the globally important fruit trees, has been an object of interest for understanding genetics and evolutionary process in fruit crops. Meta-analyses of 19 Citrus species, including 4 globally and economically important Citrus sinensis, Citrus clementina, Citrus reticulata, and 1 Citrus relative Poncirus trifoliata, were performed. We observed that codons ending with A- or T- at the wobble position were preferred in contrast to C- or G- ending codons, indicating a close association with AT richness of Citrus species and P. trifoliata. The present study postulates a large repertoire of a set of optimal codons for the Citrus genus and P. trifoliata and demonstrates that GCT and GGT are evolutionary conserved optimal codons. Our observation suggested that mutational bias is the dominating force in shaping the codon usage bias (CUB) in Citrus and P. trifoliata. Correspondence analysis (COA) revealed that the principal axis [axis 1; COA/relative synonymous codon usage (RSCU)] contributes only a minor portion (∼10.96%) of the recorded variance. In all analysed species, except P. trifoliata, Gravy and aromaticity played minor roles in resolving CUB. Compositional constraints were found to be strongly associated with the amino acid signatures in Citrus species and P. trifoliata. Our present analysis postulates compositional constraints in Citrus species and P. trifoliata and plausible role of the stress with GC3 and coevolution pattern of amino acid. PMID:23315666

  3. ICE1 of Poncirus trifoliata functions in cold tolerance by modulating polyamine levels through interacting with arginine decarboxylase

    PubMed Central

    Huang, Xiao-San; Zhang, Qinghua; Zhu, Dexin; Fu, Xingzheng; Wang, Min; Zhang, Qian; Moriguchi, Takaya; Liu, Ji-Hong

    2015-01-01

    ICE1 (Inducer of CBF Expression 1) encodes a MYC-like basic helix–loop–helix transcription factor that acts as a central regulator of cold response. In this study, we elucidated the function and underlying mechanisms of PtrICE1 from trifoliate orange [Poncirus trifoliata (L.) Raf.]. PtrICE1 was upregulated by cold, dehydration, and salt, with the greatest induction under cold conditions. PtrICE1 was localized in the nucleus and could bind to a MYC-recognizing sequence. Ectopic expression of PtrICE1 in tobacco and lemon conferred enhanced tolerance to cold stresses at either chilling or freezing temperatures. Yeast two-hybrid screening revealed that 21 proteins belonged to the PtrICE1 interactome, in which PtADC (arginine decarboxylase) was confirmed as a bona fide protein interacting with PtrICE1. Transcript levels of ADC genes in the transgenic lines were slightly elevated under normal growth condition but substantially increased under cold conditions, consistent with changes in free polyamine levels. By contrast, accumulation of the reactive oxygen species, H2O2 and O2 –, was appreciably alleviated in the transgenic lines under cold stress. Higher activities of antioxidant enzymes, such as superoxide dismutase and catalase, were detected in the transgenic lines under cold conditions. Taken together, these results demonstrated that PtrICE1 plays a positive role in cold tolerance, which may be due to modulation of polyamine levels through interacting with the ADC gene. PMID:25873670

  4. Evaluation of Codon Biology in Citrus and Poncirus trifoliata Based on Genomic Features and Frame Corrected Expressed Sequence Tags

    PubMed Central

    Ahmad, Touqeer; Sablok, Gaurav; Tatarinova, Tatiana V.; Xu, Qiang; Deng, Xiu-Xin; Guo, Wen-Wu

    2013-01-01

    Citrus, as one of the globally important fruit trees, has been an object of interest for understanding genetics and evolutionary process in fruit crops. Meta-analyses of 19 Citrus species, including 4 globally and economically important Citrus sinensis, Citrus clementina, Citrus reticulata, and 1 Citrus relative Poncirus trifoliata, were performed. We observed that codons ending with A- or T- at the wobble position were preferred in contrast to C- or G- ending codons, indicating a close association with AT richness of Citrus species and P. trifoliata. The present study postulates a large repertoire of a set of optimal codons for the Citrus genus and P. trifoliata and demonstrates that GCT and GGT are evolutionary conserved optimal codons. Our observation suggested that mutational bias is the dominating force in shaping the codon usage bias (CUB) in Citrus and P. trifoliata. Correspondence analysis (COA) revealed that the principal axis [axis 1; COA/relative synonymous codon usage (RSCU)] contributes only a minor portion (∼10.96%) of the recorded variance. In all analysed species, except P. trifoliata, Gravy and aromaticity played minor roles in resolving CUB. Compositional constraints were found to be strongly associated with the amino acid signatures in Citrus species and P. trifoliata. Our present analysis postulates compositional constraints in Citrus species and P. trifoliata and plausible role of the stress with GC3 and coevolution pattern of amino acid. PMID:23315666

  5. ICE1 of Poncirus trifoliata functions in cold tolerance by modulating polyamine levels through interacting with arginine decarboxylase.

    PubMed

    Huang, Xiao-San; Zhang, Qinghua; Zhu, Dexin; Fu, Xingzheng; Wang, Min; Zhang, Qian; Moriguchi, Takaya; Liu, Ji-Hong

    2015-06-01

    ICE1 (Inducer of CBF Expression 1) encodes a MYC-like basic helix-loop-helix transcription factor that acts as a central regulator of cold response. In this study, we elucidated the function and underlying mechanisms of PtrICE1 from trifoliate orange [Poncirus trifoliata (L.) Raf.]. PtrICE1 was upregulated by cold, dehydration, and salt, with the greatest induction under cold conditions. PtrICE1 was localized in the nucleus and could bind to a MYC-recognizing sequence. Ectopic expression of PtrICE1 in tobacco and lemon conferred enhanced tolerance to cold stresses at either chilling or freezing temperatures. Yeast two-hybrid screening revealed that 21 proteins belonged to the PtrICE1 interactome, in which PtADC (arginine decarboxylase) was confirmed as a bona fide protein interacting with PtrICE1. Transcript levels of ADC genes in the transgenic lines were slightly elevated under normal growth condition but substantially increased under cold conditions, consistent with changes in free polyamine levels. By contrast, accumulation of the reactive oxygen species, H2O2 and O2 (-), was appreciably alleviated in the transgenic lines under cold stress. Higher activities of antioxidant enzymes, such as superoxide dismutase and catalase, were detected in the transgenic lines under cold conditions. Taken together, these results demonstrated that PtrICE1 plays a positive role in cold tolerance, which may be due to modulation of polyamine levels through interacting with the ADC gene. PMID:25873670

  6. [Effects of zinc- and iron deficiency on physiological indices, mineral contents, and leaf ultrastructure of Poncirus trifoliata].

    PubMed

    Xiao, Jia-Xin; Qi, Xiao-Xiao; Zhang, Shao-Ling

    2010-08-01

    By using hydroponics, this paper studied the physiological responses of trifoliate orange (Poncirus trifoliata) seedlings to the deficiency of zinc (0 micromol x L(-1) Zn2+) and/or iron (0 micromol x L(-1) Fe-EDTA). The deficiency of both Zn and Fe decreased the plant biomass and root viability, and increased the leaf-and root SOD activity significantly. Zinc deficiency increased the leaf-and root POD significantly, while Fe deficiency had an adverse effect. The root CAT activity increased significantly under Zn deficiency, but had less difference with the control under Fe deficiency. Fe- and Zn deficiency induced a significant decrease of root potassium (K), magnesium (Mg), and phosphorus (P) contents and of shoot K content, respectively, but resulted in a significant increase in the root- and shoot Zn and Cu contents and in the root Fe and Mn contents and shoot Mn content, respectively. Ultrastructural observation of leaf structure and chloroplast showed that under Fe deficiency, the organelle was damaged seriously, which was revealed by the vacuolization of chloroplast and mitochondria, vague chloroplast membrane and thylakoid lamella, drastic increase of platoglobuli number, and absence of starch grain in the chloroplast. Under Zn deficiency, the thylakoid lamella of chloroplast was loosely distributed with less lamella, but the platoglobuli number was increased. PMID:21043103

  7. Symbiosis and the origin of eukaryotic motility

    NASA Technical Reports Server (NTRS)

    Margulis, L.; Hinkle, G.

    1991-01-01

    Ongoing work to test the hypothesis of the origin of eukaryotic cell organelles by microbial symbioses is discussed. Because of the widespread acceptance of the serial endosymbiotic theory (SET) of the origin of plastids and mitochondria, the idea of the symbiotic origin of the centrioles and axonemes for spirochete bacteria motility symbiosis was tested. Intracellular microtubular systems are purported to derive from symbiotic associations between ancestral eukaryotic cells and motile bacteria. Four lines of approach to this problem are being pursued: (1) cloning the gene of a tubulin-like protein discovered in Spirocheata bajacaliforniesis; (2) seeking axoneme proteins in spirochets by antibody cross-reaction; (3) attempting to cultivate larger, free-living spirochetes; and (4) studying in detail spirochetes (e.g., Cristispira) symbiotic with marine animals. Other aspects of the investigation are presented.

  8. Arbuscular mycorrhizal fungi and rhizobium facilitate nitrogen uptake and transfer in soybean/maize intercropping system

    PubMed Central

    Meng, Lingbo; Zhang, Aiyuan; Wang, Fei; Han, Xiaoguang; Wang, Dejiang; Li, Shumin

    2015-01-01

    The tripartite symbiosis between legumes, rhizobia and mycorrhizal fungi are generally considered to be beneficial for the nitrogen (N) uptake of legumes, but the facilitation of symbiosis in legume/non-legume intercropping systems is not clear. Therefore, the aims of the research are as follows: (1) to verify if the dual inoculation can facilitate the N uptake and N transfer in maize/soybean intercropping systems and (2) to calculate how much N will be transferred from soybean to maize. A pot experiment with different root separations [solid barrier, mesh (30 μm) barrier and no barrier] was conducted, and the 15N isotopic tracing method was used to calculate how much N transferred from soybean to maize inoculated with arbuscular mycorrhizal fungi (AMF) and rhizobium in a soybean (Glycine max L.cv. Dongnong No. 42)/maize (Zea mays L.cv. Dongnong No. 48) intercropping system. Compared with the Glomus mosseae inoculation (G.m.), Rhizobium SH212 inoculation (SH212), no inoculation (NI), the dual inoculation (SH212+G.m.) increased the N uptake of soybean by 28.69, 39.58, and 93.07% in a solid barrier system. N uptake of maize inoculated with both G. mosseae and rhizobium was 1.20, 1.28, and 1.68 times more than that of G.m., SH212 and NI, respectively, in solid barrier treatments. In addition, the amount of N transferred from soybean to maize in a dual inoculation system with a mesh barrier was 7.25, 7.01, and 11.45 mg more than that of G.m., SH212 and NI and similarly, 6.40, 7.58, and 12.46 mg increased in no barrier treatments. Inoculating with both AMF and rhizobium in the soybean/maize intercropping system improved the N fixation efficiency of soybean and promoted N transfer from soybean to maize, resulting in the improvement of yield advantages of legume/non-legume intercropping. PMID:26029236

  9. Host and non-host roots in rice: cellular and molecular approaches reveal differential responses to arbuscular mycorrhizal fungi

    PubMed Central

    Fiorilli, Valentina; Vallino, Marta; Biselli, Chiara; Faccio, Antonella; Bagnaresi, Paolo; Bonfante, Paola

    2015-01-01

    Oryza sativa, a model plant for Arbuscular Mycorrhizal (AM) symbiosis, has both host and non-host roots. Large lateral (LLR) and fine lateral (FLR) roots display opposite responses: LLR support AM colonization, but FLR do not. Our research aimed to study the molecular, morphological and physiological aspects related to the non-host behavior of FLR. RNA-seq analysis revealed that LLR and FLR displayed divergent expression profiles, including changes in many metabolic pathways. Compared with LLR, FLR showed down-regulation of genes instrumental for AM establishment and gibberellin signaling, and a higher expression of nutrient transporters. Consistent with the transcriptomic data, FLR had higher phosphorus content. Light and electron microscopy demonstrated that, surprisingly, in the Selenio cultivar, FLR have a two-layered cortex, which is theoretically compatible with AM colonization. According to RNA-seq, a gibberellin inhibitor treatment increased anticlinal divisions leading to a higher number of cortex cells in FLR. We propose that some of the differentially regulated genes that lead to the anatomical and physiological properties of the two root types also function as genetic factors regulating fungal colonization. The rice root apparatus offers a unique tool to study AM symbiosis, allowing direct comparisons of host and non-host roots in the same individual plant. PMID:26322072

  10. Structure and expression profile of the phosphate Pht1 transporter gene family in mycorrhizal Populus trichocarpa.

    PubMed

    Loth-Pereda, Verónica; Orsini, Elena; Courty, Pierre-Emmanuel; Lota, Frédéric; Kohler, Annegret; Diss, Loic; Blaudez, Damien; Chalot, Michel; Nehls, Uwe; Bucher, Marcel; Martin, Francis

    2011-08-01

    Gene networks involved in inorganic phosphate (Pi) acquisition and homeostasis in woody perennial species able to form mycorrhizal symbioses are poorly known. Here, we describe the features of the 12 genes coding for Pi transporters of the Pht1 family in poplar (Populus trichocarpa). Individual Pht1 transporters play distinct roles in acquiring and translocating Pi in different tissues of mycorrhizal and nonmycorrhizal poplar during different growth conditions and developmental stages. Pi starvation triggered the up-regulation of most members of the Pht1 family, especially PtPT9 and PtPT11. PtPT9 and PtPT12 showed a striking up-regulation in ectomycorrhizas and endomycorrhizas, whereas PtPT1 and PtPT11 were strongly down-regulated. PtPT10 transcripts were highly abundant in arbuscular mycorrhiza (AM) roots only. PtPT8 and PtPT10 are phylogenetically associated to the AM-inducible Pht1 subfamily I. The analysis of promoter sequences revealed conserved motifs similar to other AM-inducible orthologs in PtPT10 only. To gain more insight into gene regulatory mechanisms governing the AM symbiosis in woody plant species, the activation of the poplar PtPT10 promoter was investigated and detected in AM of potato (Solanum tuberosum) roots. These results indicated that the regulation of AM-inducible Pi transporter genes is conserved between perennial woody and herbaceous plant species. Moreover, poplar has developed an alternative Pi uptake pathway distinct from AM plants, allowing ectomycorrhizal poplar to recruit PtPT9 and PtPT12 to cope with limiting Pi concentrations in forest soils. PMID:21705655