Science.gov

Sample records for myeloma mm cells

  1. Ectopic MicroRNA-150-5p Transcription Sensitizes Glucocorticoid Therapy Response in MM1S Multiple Myeloma Cells but Fails to Overcome Hormone Therapy Resistance in MM1R Cells

    PubMed Central

    Palagani, Ajay; Op de Beeck, Ken; Naulaerts, Stefan; Diddens, Jolien; Sekhar Chirumamilla, Chandra; Van Camp, Guy; Laukens, Kris; Heyninck, Karen; Gerlo, Sarah; Mestdagh, Pieter; Vandesompele, Joke; Berghe, Wim Vanden

    2014-01-01

    Glucocorticoids (GCs) selectively trigger cell death in the multiple myeloma cell line MM1S which express NR3C1/Glucocorticoid Receptor (GR) protein, but fail to kill MM1R cells which lack GR protein. Given recent demonstrations of altered microRNA profiles in a diverse range of haematological malignancies and drug resistance, we characterized GC inducible mRNA and microRNA transcription profiles in GC sensitive MM1S as compared to GC resistant MM1R cells. Transcriptome analysis revealed that GCs regulate expression of multiple genes involved in cell cycle control, cell organization, cell death and immunological disease in MM1S cells, which remain unaffected in MM1R cells. With respect to microRNAs, mir-150-5p was identified as the most time persistent GC regulated microRNA, out of 5 QPCR validated microRNAs (mir-26b, mir-125a-5p, mir-146-5p, mir-150-5p, and mir-184), which are GC inducible in MM1S but not in MM1R cells. Functional studies further revealed that ectopic transfection of a synthetic mir-150-5p mimics GR dependent gene expression changes involved in cell death and cell proliferation pathways. Remarkably, despite the gene expression changes observed, overexpression of mir-150-5p in absence of GCs did not trigger significant cytotoxicity in MM1S or MM1R cells. This suggests the requirement of additional steps in GC induced cell death, which can not be mimicked by mir-150-5p overexpression alone. Interestingly, a combination of mir-150-5p transfection with low doses GC in MM1S cells was found to sensitize therapy response, whereas opposite effects could be observed with a mir-150-5p specific antagomir. Although mir-150-5p overexpression did not substantially change GR expression levels, it was found that mir-150-5p evokes GR specific effects through indirect mRNA regulation of GR interacting transcription factors and hormone receptors, GR chaperones, as well as various effectors of unfolded protein stress and chemokine signalling. Altogether GC

  2. Targeting Mcl-1 for multiple myeloma (MM) therapy: drug-induced generation of Mcl-1 fragment Mcl-1(128-350) triggers MM cell death via c-Jun upregulation.

    PubMed

    Fan, Fengjuan; Tonon, Giovanni; Bashari, Muhammad Hasan; Vallet, Sonia; Antonini, Elena; Goldschmidt, Hartmut; Schulze-Bergkamen, Henning; Opferman, Joseph T; Sattler, Martin; Anderson, Kenneth C; Jäger, Dirk; Podar, Klaus

    2014-02-28

    Myeloid cell leukemia-1 (Mcl-1, HGNC: 6943), a pro-survival member of the Bcl-2 family, plays a crucial role in Multiple Myeloma (MM) pathogenesis and drug resistance, thus representing a promising therapeutic target in MM. A novel strategy to inhibit Mcl-1 activity is the induction of ubiquitin-independent Mcl-1 degradation. Our own and other previous studies have demonstrated caspase-dependent generation of a 28kDa Mcl-1 fragment, Mcl-1(128-350), which inhibits MM cell proliferation and survival. Here, we show that similar to bortezomib, the novel proteasome inhibitors carfilzomib and ixazomib, as well as staurosporine and adaphostin, induce the generation of Mcl-1(128-350) in MM cells. Next, the molecular sequelae downstream of Mcl-1(128-350), which mediate its pro-apoptotic activity, were delineated. Surprisingly, we observed nuclear accumulation of drug-induced or exogenously overexpressed Mcl-1(128-350), followed by elevated mRNA and protein levels of c-Jun, as well as enhanced AP-1 reporter activity. Moreover, drug-induced AP-1 activity was blocked after introducing a point mutation into the highly conserved Mcl-1 caspase-cleavage site Asp127, but not Asp157. Consequently, drug-triggered cell death was significantly decreased in MM cells transfected with Mcl-1 D127A, but not with Mcl-1 D157A. Consistent with these data, treatment with bortezomib triggered c-Jun upregulation followed by apoptosis in Mcl-1(wt/wt), but not Mcl-1(Δ/null) murine embryonic fibroblasts (MEFs). Transfection of a plasmid carrying Mcl-1(wt) into Mcl-1(Δ/null) MEFs restored bortezomib-induced Mcl-1 fragmentation, c-Jun upregulation and AP-1 reporter activity. Finally, our data indicate that drug-induced generation of a pro-apoptotic Mcl-1 fragment followed by c-Jun upregulation may also be a novel therapeutic approach in other tumor entities. PMID:24120758

  3. Biology and bioinformatics of myeloma cell.

    PubMed

    Abroun, Saeid; Saki, Najmaldin; Fakher, Rahim; Asghari, Farahnaz

    2012-12-01

    Multiple myeloma (MM) is a plasma cell disorder that occurs in about 10% of all hematologic cancers. The majority of patients (99%) are over 50 years of age when diagnosed. In the bone marrow (BM), stromal and hematopoietic stem cells (HSCs) are responsible for the production of blood cells. Therefore any destruction or/and changes within the BM undesirably impacts a wide range of hematopoiesis, causing diseases and influencing patient survival. In order to establish an effective therapeutic strategy, recognition of the biology and evaluation of bioinformatics models for myeloma cells are necessary to assist in determining suitable methods to cure or prevent disease complications in patients. This review presents the evaluation of molecular and cellular aspects of MM such as genetic translocation, genetic analysis, cell surface marker, transcription factors, and chemokine signaling pathways. It also briefly reviews some of the mechanisms involved in MM in order to develop a better understanding for use in future studies. PMID:23253865

  4. Primary Bioassay of Human Myeloma Stem Cells

    PubMed Central

    Hamburger, Anne; Salmon, Sydney E.

    1977-01-01

    The ability to clone primary tumors in soft agar has proven useful in the study of the kinetics and biological properties of tumor stem cells. We report the development of an in vitro assay which permits formation of colonies of human monoclonal plasma cells in soft agar. Colony growth has been observed from bone marrow aspirates from 75% of the 70 patients with multiple myeloma or related monoclonal disorders studied. Growth was induced with either 0.02 ml of human type O erythrocytes or 0.25 ml of medium conditioned by the adherent spleen cells of mineral oil-primed BALB/c mice. 5-500 colonies appeared after 2-3 wk in culture yielding a plating efficiency of 0.001-0.1%. The number of myeloma colonies was proportional to the number of cells plated between concentrations of 105-106 and back-extrapolated through zero, suggesting that colonies were clones derived from single myeloma stem cells. Morphological, histochemical, and functional criteria showed the colonies to consist of immature plasmablasts and mature plasma cells. 60-80% of cells picked from colonies contained intracytoplasmic monoclonal immunoglobulin. Colony growth was most easily achieved from the bone marrow cells of untreated patients or those in relapse. Only 50% of bone marrow samples from patients in remission were successfully cultured. Tritiated thymidine suicide studies provided evidence that for most myeloma patients, a very high proportion of myeloma colony-forming cells was actively in transit through the cell cycle. Velocity sedimentation at 1 g showed myeloma stem cells sedimented in a broad band with a peak at 13 mm/h. Antibody to granulocyte colony-stimulating factor did not reduce the number or size of the colonies. Increased numbers of myeloma colonies were seen when the marrow was depleted of colony-stimulating factor elaborating adherent cells before plating. This bioassay should prove useful in studying the in vitro biological behavior of certain bone marrow-derived (B)-cell

  5. Multiple Myeloma Cancer Stem Cells

    PubMed Central

    Huff, Carol Ann; Matsui, William

    2008-01-01

    Multiple myeloma is characterized by the clonal expansion of neoplastic plasma cells within the bone marrow, elevated serum immunoglobulin, and osteolytic bone disease. The disease is highly responsive to a wide variety of anticancer treatments including conventional cytotoxic chemotherapy, corticosteroids, radiation therapy, and a growing number of agents with novel mechanisms of action. However, few if any patients are cured with these modalities and relapse remains a critical issue. A better understanding of clonogenic multiple myleoma cells is essential to ultimately improving long-term outcomes, but the nature of the cells responsible for myeloma regrowth and disease relapse is unclear. We review evidence that functional heterogeneity exists in multiple myeloma and discuss potential strategies and clinical implications of the stem-cell model of cancer in this disease. PMID:18539970

  6. Identify multiple myeloma stem cells: Utopia?

    PubMed Central

    Saltarella, Ilaria; Lamanuzzi, Aurelia; Reale, Antonia; Vacca, Angelo; Ria, Roberto

    2015-01-01

    Multiple myeloma (MM) is a hematologic malignancy of monoclonal plasma cells which remains incurable despite recent advances in therapies. The presence of cancer stem cells (CSCs) has been demonstrated in many solid and hematologic tumors, so the idea of CSCs has been proposed for MM, even if MM CSCs have not been define yet. The existence of myeloma CSCs with clonotypic B and clonotypic non B cells was postulated by many groups. This review aims to focus on these distinct clonotypic subpopulations and on their ability to develop and sustain MM. The bone marrow microenvironment provides to MM CSCs self-renewal, survival and drug resistance thanks to the presence of normal and cancer stem cell niches. The niches and CSCs interact each other through adhesion molecules and the interplay between ligands and receptors activates stemness signaling (Hedgehog, Wnt and Notch pathways). MM CSCs are also supposed to be responsible for drug resistance that happens in three steps from the initial cancer cell homing microenvironment-mediated to development of microenvironment-independent drug resistance. In this review, we will underline all these aspects of MM CSCs. PMID:25621108

  7. Identify multiple myeloma stem cells: Utopia?

    PubMed

    Saltarella, Ilaria; Lamanuzzi, Aurelia; Reale, Antonia; Vacca, Angelo; Ria, Roberto

    2015-01-26

    Multiple myeloma (MM) is a hematologic malignancy of monoclonal plasma cells which remains incurable despite recent advances in therapies. The presence of cancer stem cells (CSCs) has been demonstrated in many solid and hematologic tumors, so the idea of CSCs has been proposed for MM, even if MM CSCs have not been define yet. The existence of myeloma CSCs with clonotypic B and clonotypic non B cells was postulated by many groups. This review aims to focus on these distinct clonotypic subpopulations and on their ability to develop and sustain MM. The bone marrow microenvironment provides to MM CSCs self-renewal, survival and drug resistance thanks to the presence of normal and cancer stem cell niches. The niches and CSCs interact each other through adhesion molecules and the interplay between ligands and receptors activates stemness signaling (Hedgehog, Wnt and Notch pathways). MM CSCs are also supposed to be responsible for drug resistance that happens in three steps from the initial cancer cell homing microenvironment-mediated to development of microenvironment-independent drug resistance. In this review, we will underline all these aspects of MM CSCs. PMID:25621108

  8. Preclinical development of hybrid cell vaccines for multiple myeloma.

    PubMed

    Walewska, Renata; Teobald, Iryna; Dunnion, Debbie; Abdulmajed, Hind; Aldred, Micheala; Sadler, Jean; Chapman, Claire; Browning, Michael

    2007-01-01

    Immunotherapy may provide alternative or supplementary treatment of multiple myeloma (MM). We propose that hybrid cells, formed by fusing professional antigen-presenting cells with malignant plasma cells, would induce immune responses capable of mediating tumour regression. The human B-lymphoblastoid cell line, HMy2, was fused in vitro with CD138+ bead-separated myeloma plasma cells from five patients with MM. The hybrid cell lines generated in these studies grew stably in tissue culture, and maintained their phenotypic and functional characteristics, providing self-renewing cell lines with potential for therapeutic vaccination. The hybrid cells stimulated allogeneic and autologous T-cell proliferative responses in vitro to a considerably greater degree than their respective parent myeloma plasma cells, and directly activated both CD4+ and CD8+ T-cell responses. The enhanced T-cell stimulation correlated with expression of CD80 on the hybrid cells, and was inhibited by CTLA4-Ig fusion protein. The hybrid cell lines expressed several tumour-associated antigens known to be expressed in myeloma. These data show that self-replicating cell lines with enhanced immunostimulatory properties and potential for therapeutic vaccination can be generated by in vitro fusion of ex vivo myeloma cells and B-lymphoblastoid cell lines. PMID:17302859

  9. Up-regulation of hexokinaseII in myeloma cells: targeting myeloma cells with 3-bromopyruvate.

    PubMed

    Nakano, Ayako; Miki, Hirokazu; Nakamura, Shingen; Harada, Takeshi; Oda, Asuka; Amou, Hiroe; Fujii, Shiro; Kagawa, Kumiko; Takeuchi, Kyoko; Ozaki, Shuji; Matsumoto, Toshio; Abe, Masahiro

    2012-02-01

    Hexokinase II (HKII), a key enzyme of glycolysis, is widely over-expressed in cancer cells. However, HKII levels and its roles in ATP production and ATP-dependent cellular process have not been well studied in hematopoietic malignant cells including multiple myeloma (MM) cells.We demonstrate herein that HKII is constitutively over-expressed in MM cells. 3-bromopyruvate (3BrPA), an inhibitor of HKII, promptly and substantially suppresses ATP production and induces cell death in MM cells. Interestingly, cocultures with osteoclasts (OCs) but not bone marrow stromal cells (BMSCs) enhanced the phosphorylation of Akt along with an increase in HKII levels and lactate production in MM cells. The enhancement of HKII levels and lactate production in MM cells by OCs were mostly abrogated by the PI3K inhibitor LY294002, suggesting activation of glycolysis in MM cells by OCs via the PI3K-Akt-HKII pathway. Although BMSCs and OCs stimulate MM cell growth and survival, 3BrPA induces cell death in MM cells even in cocultures with OCs as well as BMSCs. Furthermore, 3BrPA was able to diminish ATP-dependent ABC transporter activity to restore drug retention in MM cells in the presence of OCs. These results may underpin possible clinical application of 3BrPA in patients with MM. PMID:22298254

  10. Heparanase promotes myeloma progression by inducing mesenchymal features and motility of myeloma cells

    PubMed Central

    Trotter, Timothy N.; Peker, Deniz; Regal, Kellie M.; Javed, Amjad; Suva, Larry J.; Yang, Yang

    2016-01-01

    Bone dissemination and bone disease occur in approximately 80% of patients with multiple myeloma (MM) and are a major cause of patient mortality. We previously demonstrated that MM cell-derived heparanase (HPSE) is a major driver of MM dissemination to and progression in new bone sites. However the mechanism(s) by which HPSE promotes MM progression remains unclear. In the present study, we investigated the involvement of mesenchymal features in HPSE-promoted MM progression in bone. Using a combination of molecular, biochemical, cellular, and in vivo approaches, we demonstrated that (1) HPSE enhanced the expression of mesenchymal markers in both MM and vascular endothelial cells; (2) HPSE expression in patient myeloma cells positively correlated with the expression of the mesenchymal markers vimentin and fibronectin. Additional mechanistic studies revealed that the enhanced mesenchymal-like phenotype induced by HPSE in MM cells is due, at least in part, to the stimulation of the ERK signaling pathway. Finally, knockdown of vimentin in HPSE expressing MM cells resulted in significantly attenuated MM cell dissemination and tumor growth in vivo. Collectively, these data demonstrate that the mesenchymal features induced by HPSE in MM cells contribute to enhanced tumor cell motility and bone-dissemination. PMID:26849235

  11. HOXB7 expression by myeloma cells regulates their pro-angiogenic properties in multiple myeloma patients.

    PubMed

    Storti, P; Donofrio, G; Colla, S; Airoldi, I; Bolzoni, M; Agnelli, L; Abeltino, M; Todoerti, K; Lazzaretti, M; Mancini, C; Ribatti, D; Bonomini, S; Franceschi, V; Pistoia, V; Lisignoli, G; Pedrazzini, A; Cavicchi, O; Neri, A; Rizzoli, V; Giuliani, N

    2011-03-01

    The deregulation of the homeobox genes as homeoboxB (HOXB)-7 has been previously associated to tumor progression and angiogenesis; here we investigated the potential role of HOXB7 in the pro-angiogenic properties of multiple myeloma (MM) cells. We found that HOXB7 was expressed in 10 out of 22 MM patients analyzed at the diagnosis related to high bone marrow angiogenesis and overexpressed in about 40% of myeloma cell lines compared with normal plasma cells. Enforced HOXB7 expression in MM cells by a lentiviral vector significantly modified their transcriptional and angiogenic profile, checked by combined microarray and angiogenesis PCR analyses, upregulating VEGFA, FGF2, MMP2, WNT5a and PDGFA and downregulating thrombospoindin-2. The pro- and anti-angiogenic HOXB7-related gene signature was also validated in a large independent dataset of MM patients. Accordingly, MM-induced vessel formation was significantly increased by HOXB7 overexpression both in vitro angiogenic and chorioallantoic membrane assays, as well as the HOXB7 silencing by small interfering RNA inhibited the production of angiogenic factors, and the pro-angiogenic properties of MM cells. Finally, in SCID-NOD mice we confirmed that HOXB7 overexpression by MM cells stimulated tumor growth, increased MM-associated angiogenesis and the expression of pro-angiogenic genes by microarray analysis supporting the critical role of HOXB7 in the angiogenic switch in MM. PMID:21183939

  12. Cancer stem cells in multiple myeloma.

    PubMed

    Ghosh, Nilanjan; Matsui, William

    2009-05-01

    Several key observations providing evidence for the cancer stem cell hypothesis and insights into the unique biology of these cells have come from the study of multiple myeloma. These include evidence that cancer cells may be functionally heterogeneous in spite of their genetic homogeneity and that malignant progenitors share many biological features with normal adult stem cells including drug resistance and regulatory processes governing self-renewal. We review studies that have examined clonogenic cells in multiple myeloma, highlight controversies regarding the cell of origin in multiple myeloma, and discuss potential targeting strategies. PMID:18809245

  13. Bruton tyrosine kinase is a therapeutic target in stem-like cells from multiple myeloma

    PubMed Central

    Yang, Ye; Shi, Jumei; Gu, Zhimin; Salama, Mohamed E; Das, Satyabrata; Wendlandt, Erik; Xu, Hongwei; Huang, Junwei; Tao, Yi; Hao, Mu; Franqui, Reinaldo; Levasseur, Dana; Janz, Siegfried; Tricot, Guido; Zhan, Fenghuang

    2015-01-01

    Ibrutinib (Imbruvica®), a small-drug inhibitor of Bruton tyrosine kinase (BTK), is currently undergoing clinical testing in patients with multiple myeloma (MM), yet important questions on the role of BTK in myeloma biology and treatment are outstanding. Using flow-sorted side population (SP) cells from human myeloma cell lines (HMCLs) and MM primary samples as surrogate fort the elusive multiple myeloma stem cell (MMSC), we found that elevated expression of BTK in myeloma cells leads to AKT/WNT/β-catenin-dependent up-regulation of key stemness genes (OCT4, SOX2, NANOG, MYC) and enhanced self-renewal. Enforced transgenic expression of BTK in myeloma cells increased features of cancer stemness, including clonogenicity and resistance to widely used myeloma drugs, whereas inducible knockdown of BTK abolished them. Furthermore, over-expression of BTK in myeloma cells promoted tumor growth in laboratory mice and rendered SP-derived tumors that contained high levels of BTK more sensitive to the selective, second-generation BTK inhibitor, CGI1746, than SP-derived tumors that harbored low levels of BTK. Taken together, these findings implicate BTK as a positive regulator of myeloma stemness and provide additional support for the clinical testing of BTK-targeted therapies in patients with myeloma. PMID:25589346

  14. [Hematopoietic stem cell transplantation in multiple myeloma].

    PubMed

    Vela-Ojeda, Jorge; Ruiz-Esparza, Miriam A García

    2005-01-01

    Multiple myeloma (MM) is the second most common hematologic malignancy, affecting approximately 14,000 new patients per year in the United States. For over four decades, the standard treatment for MM has been a regimen of melphalan combined with prednisone. Using this treatment modality, complete responses are rare, and 50% of patients have had disease that was resistant to chemotherapy. Attempts have been made to improve the outcome of MM by administering combinations of i.v. poli-chemotherapy, but these treatments are equivalent in terms of overall survival. High-dose therapy with peripheral blood stem cell support can be applied safely in these patients and achieves significantly higher complete remission rates as well as better event-free survival and overall survival. However, neither tumor-cell purging, positive selection, intensification of conditioning with additional chemotherapeutic agents, nor total body irradiation have been shown to improve outcome. The role of tandem transplantation with high-dose melphalan seems to be a good selection of treatment in hospitals having all resources. Future research will include the combination of the best remission-induction regimen with tandem transplants and maintenance treatments (thalidomide, idiotype or dendritic cell vaccination) that will sustain complete remission. Development of non-myeloablative allogeneic transplantation in order to exploit the graft-versus myeloma effect provides an alternative for patients who have a compatible donor. Combining all of these modalities with the new drugs developed few years ago (thalidomide, bortezomib, revlimid), we hope that MM will become a manageable chronic disease and perhaps a curable disease at least for 30% to 40% of the patients. PMID:16524072

  15. BCL-B (BCL2L10) is overexpressed in patients suffering from multiple myeloma (MM) and drives an MM-like disease in transgenic mice.

    PubMed

    Hamouda, Mohamed-Amine; Jacquel, Arnaud; Robert, Guillaume; Puissant, Alexandre; Richez, Valentine; Cassel, Romeo; Fenouille, Nina; Roulland, Sandrine; Gilleron, Jerome; Griessinger, Emmanuel; Dubois, Alix; Bailly-Maitre, Beatrice; Goncalves, Diogo; Mallavialle, Aude; Colosetti, Pascal; Marchetti, Sandrine; Amiot, Martine; Gomez-Bougie, Patricia; Rochet, Nathalie; Deckert, Marcel; Avet-Loiseau, Herve; Hofman, Paul; Karsenti, Jean-Michel; Jeandel, Pierre-Yves; Blin-Wakkach, Claudine; Nadel, Bertrand; Cluzeau, Thomas; Anderson, Kenneth C; Fuzibet, Jean-Gabriel; Auberger, Patrick; Luciano, Frederic

    2016-08-22

    Multiple myeloma (MM) evolves from a premalignant condition known as monoclonal gammopathy of undetermined significance (MGUS). However, the factors underlying the malignant transformation of plasmocytes in MM are not fully characterized. We report here that Eµ-directed expression of the antiapoptotic Bcl-B protein in mice drives an MM phenotype that reproduces accurately the human disease. Indeed, with age, Eµ-bcl-b transgenic mice develop the characteristic features of human MM, including bone malignant plasma cell infiltration, a monoclonal immunoglobulin peak, immunoglobulin deposit in renal tubules, and highly characteristic bone lytic lesions. In addition, the tumors are serially transplantable in irradiated wild-type mice, underlying the tumoral origin of the disease. Eµ-bcl-b plasmocytes show increased expression of a panel of genes known to be dysregulated in human MM pathogenesis. Treatment of Eµ-bcl-b mice with drugs currently used to treat patients such as melphalan and VELCADE efficiently kills malignant plasmocytes in vivo. Finally, we find that Bcl-B is overexpressed in plasmocytes from MM patients but neither in MGUS patients nor in healthy individuals, suggesting that Bcl-B may drive MM. These findings suggest that Bcl-B could be an important factor in MM disease and pinpoint Eµ-bcl-b mice as a pertinent model to validate new therapies in MM. PMID:27455953

  16. Drugs Approved for Multiple Myeloma and Other Plasma Cell Neoplasms

    MedlinePlus

    ... Professionals Questions to Ask about Your Treatment Research Drugs Approved for Multiple Myeloma and Other Plasma Cell ... plasma cell neoplasms that are not listed here. Drugs Approved for Multiple Myeloma and Other Plasma Cell ...

  17. RBQ3 participates in multiple myeloma cell proliferation, adhesion and chemoresistance.

    PubMed

    Liu, Hong; Ding, Linlin; Shen, Yaodong; Zhong, Fei; Wang, Qiru; Xu, Xiaohong

    2016-10-01

    Cell adhesion mediated drug resistance (CAM-DR) is a major factor that impedes the effect of chemotherapy in multiple myeloma (MM). RBQ3, which is a RB-binding protein, played a crucial role in cell cycle process. Here, we reported that RBQ3 expression was increased gradually during the proliferation process of myeloma cells. Knocking down of RBQ3 resulted in cell cycle arrest in G1 phase and increased myeloma cells adherent to fibronectin or bone marrow stromal cells (BMSCs). Furthermore, silencing of RBQ3 reduced sensitivity to chemotherapeutic drugs in myeloma cell lines adherent to BMSCs and reduced two apoptotic marker proteins cleaved caspase-3 and cleaved PARP expression. Besides, we also found that RBQ3 participated in MAPK/ERK signal transduction pathway. In summary, these results may shed new insights into the role of RBQ3 in the development of multiple myeloma. PMID:27189701

  18. Thymidine secretion by hybridoma and myeloma cells

    SciTech Connect

    Spilsberg, Bjorn . E-mail: bjorn.spilsberg@biokjemi.uio.no; Rise, Frode; Petersen, Dirk; Nissen-Meyer, Jon

    2006-03-31

    Secretion of thymidine appeared to be a common property of hybridoma and myeloma cells, but not of other cell types, which were tested. Of three hybridoma cell lines tested, all secreted thymidine in amounts resulting in the accumulation of thymidine to concentrations of 10-20 {mu}M in the culture medium. Also three of five myeloma cell lines that were analyzed secrete thymidine, but none of the other cell types that were studied. Thymidine was purified to homogeneity (4 mg purified from 3 l of culture medium) and identified as such by nuclear magnetic resonance spectroscopy. The cells that secreted thymidine showed high resistance to the growth inhibitory effect of thymidine.

  19. The antigenic landscape of multiple myeloma: mass spectrometry (re)defines targets for T-cell-based immunotherapy.

    PubMed

    Walz, Simon; Stickel, Juliane S; Kowalewski, Daniel Johannes; Schuster, Heiko; Weisel, Katja; Backert, Linus; Kahn, Stefan; Nelde, Annika; Stroh, Tatjana; Handel, Martin; Kohlbacher, Oliver; Kanz, Lothar; Salih, Helmut Rainer; Rammensee, Hans-Georg; Stevanović, Stefan

    2015-09-01

    Direct analysis of HLA-presented antigens by mass spectrometry provides a comprehensive view on the antigenic landscape of different tissues/malignancies and enables the identification of novel, pathophysiologically relevant T-cell epitopes. Here, we present a systematic and comparative study of the HLA class I and II presented, nonmutant antigenome of multiple myeloma (MM). Quantification of HLA surface expression revealed elevated HLA molecule counts on malignant plasma cells compared with normal B cells, excluding relevant HLA downregulation in MM. Analyzing the presentation of established myeloma-associated T-cell antigens on the HLA ligandome level, we found a substantial proportion of antigens to be only infrequently presented on primary myelomas or to display suboptimal degrees of myeloma specificity. However, unsupervised analysis of our extensive HLA ligand data set delineated a panel of 58 highly specific myeloma-associated antigens (including multiple myeloma SET domain containing protein) which are characterized by frequent and exclusive presentation on myeloma samples. Functional characterization of these target antigens revealed peptide-specific, preexisting CD8(+) T-cell responses exclusively in myeloma patients, which is indicative of pathophysiological relevance. Furthermore, in vitro priming experiments revealed that peptide-specific T-cell responses can be induced in response-naive myeloma patients. Together, our results serve to guide antigen selection for T-cell-based immunotherapy of MM. PMID:26138685

  20. Dendritic Cell-Based Cancer Immunotherapy against Multiple Myeloma: From Bench to Clinic

    PubMed Central

    Hoang, My-Dung; Jung, Sung-Hoon; Lee, Hyun-Ju; Lee, Youn-Kyung; Nguyen-Pham, Thanh-Nhan; Choi, Nu-Ri; Vo, Manh-Cuong; Lee, Seung-Shin; Ahn, Jae-Sook; Yang, Deok-Hwan; Kim, Yeo-Kyeoung; Kim, Hyeoung-Joon

    2015-01-01

    Although the introduction of stem cell transplantation and novel agents has improved survival, multiple myeloma (MM) is still difficult to cure. Alternative approaches are clearly needed to prolong the survival of patients with MM. Dendritic cell (DC) therapy is a very promising tool immunologically in MM. We developed a method to generate potent DCs with increased Th1 polarization and migration ability for inducing strong myeloma-specific cytotoxic T lymphocytes. In this review, we discuss how the efficacy of cancer immunotherapy using DCs can be improved in MM. PMID:25914874

  1. Induction of potent NK cell-dependent anti-myeloma cytotoxic T cells in response to combined mapatumumab and bortezomib

    PubMed Central

    Neeson, Paul J; Hsu, Andy K; Chen, Yin R; Halse, Heloise M; Loh, Joanna; Cordy, Reece; Fielding, Kate; Davis, Joanne; Noske, Josh; Davenport, Alex J; Lindqvist-Gigg, Camilla A; Humphreys, Robin; Tai, Tsin; Prince, H Miles; Trapani, Joseph A; Smyth, Mark J; Ritchie, David S

    2015-01-01

    There is increasing evidence that some cancer therapies can promote tumor immunogenicity to boost the endogenous antitumor immune response. In this study, we used the novel combination of agonistic anti-TRAIL-R1 antibody (mapatumumab, Mapa) with low dose bortezomib (LDB) for this purpose. The combination induced profound myeloma cell apoptosis, greatly enhanced the uptake of myeloma cell apoptotic bodies by dendritic cell (DC) and induced anti-myeloma cytotoxicity by both CD8+ T cells and NK cells. Cytotoxic lymphocyte expansion was detected within 24 h of commencing therapy and was maximized when myeloma-pulsed DC were co-treated with low dose bortezomib and mapatumumab (LDB+Mapa) in the presence of NK cells. This study shows that Mapa has two distinct but connected modes of action against multiple myeloma (MM). First, when combined with LDB, Mapa produced powerful myeloma cell apoptosis; secondly, it promoted DC priming and an NK cell-mediated expansion of anti-myeloma cytotoxic lymphocyte (CTL). Overall, this study indicates that Mapa can be used to drive potent anti-MM immune responses. PMID:26405606

  2. Multiple myeloma

    MedlinePlus

    Plasma cell dyscrasia; Plasma cell myeloma; Malignant plasmacytoma; Plasmacytoma of bone; Myeloma - multiple ... Multiple myeloma most commonly causes: Low red blood cell count ( anemia ), which can lead to fatigue and ...

  3. Multiple myeloma

    MedlinePlus

    Plasma cell dyscrasia; Plasma cell myeloma; Malignant plasmacytoma; Plasmacytoma of bone; Myeloma - multiple ... myeloma most commonly causes a low red blood cell count ( anemia ), which can lead to fatigue and ...

  4. Combination of International Scoring System 3, High Lactate Dehydrogenase, and t(4;14) and/or del(17p) Identifies Patients With Multiple Myeloma (MM) Treated With Front-Line Autologous Stem-Cell Transplantation at High Risk of Early MM Progression–Related Death

    PubMed Central

    Moreau, Philippe; Cavo, Michele; Sonneveld, Pieter; Rosinol, Laura; Attal, Michel; Pezzi, Annalisa; Goldschmidt, Hartmut; Lahuerta, Juan Jose; Marit, Gerald; Palumbo, Antonio; van der Holt, Bronno; Bladé, Joan; Petrucci, Maria Teresa; Neben, Kai; san Miguel, Jesus; Patriarca, Francesca; Lokhorst, Henk; Zamagni, Elena; Hulin, Cyrille; Gutierrez, Norma; Facon, Thierry; Caillot, Denis; Benboubker, Lotfi; Harousseau, Jean-Luc; Leleu, Xavier; Avet-Loiseau, Hervé; Mary, Jean-Yves

    2014-01-01

    Purpose To construct and validate among patients with multiple myeloma (MM) who were treated with intensive therapy a prognostic index of early MM progression–related death. Patients and Methods Patient-level data from the Intergroupe Francophone du Myélome (IFM) 2005-01 trial (N = 482) were used to construct the prognostic index. The event was MM progression–related death within 2 years from treatment initiation. The index was validated using data from three other trials: the Gruppo Italiano Malattie Ematologiche dell' Adulto (GIMEMA) 26866138-MMY-3006 trial (N = 480), the Programa para el Estudio de la Terapéutica en Hemopatía Maligna (PETHEMA)–GEMMENOS65 trial (N = 390), and the Hemato-Oncologie voor Volwassenen Nederland (HOVON) –65/German-Speaking Myeloma Multicenter Group (GMMG) –HD4 trial (N = 827). Results The risk of early MM progression–related death was related to three independent prognostic variables: lactate dehydrogenase (LDH) higher than than normal, International Staging System 3 (ISS3), and adverse cytogenetics [t(4;14) and/or del(17p)]. These three variables enabled the definition of an ordinal prognostic classification composed of four scores (0 to 3). Patients with a score of 3, defined by the presence of t(4;14) and/or del(17p) in addition to ISS3 and/or high LDH, comprised 5% (20 of 387 patients) to 8% (94 of 1,139 patients) of the patients in the learning and validation samples, respectively, and they had a very poor prognosis. When applied to the population of 855 patients who had received bortezomib-based induction therapy in the four trials, the prognostic classification was also able to segregate patients into four categories, with a very poor prognosis attributed to patients with a score of 3. Conclusion Our model allows the simple definition of a subgroup of MM patients at high risk of early MM progression–related death despite the use of the most modern and effective strategies. PMID:24888806

  5. Decreased ferroportin promotes myeloma cell growth and osteoclast differentiation.

    PubMed

    Gu, Zhimin; Wang, He; Xia, Jiliang; Yang, Ye; Jin, Zhendong; Xu, Hongwei; Shi, Jumei; De Domenico, Ivana; Tricot, Guido; Zhan, Fenghuang

    2015-06-01

    Iron homeostasis is disrupted in multiple myeloma, a difficult-to-cure plasma cell malignancy with lytic bone lesions. Here, we systematically analyzed iron gene expression signature and demonstrated that mRNA expression of iron exporter ferroportin (FPN1) is significantly downregulated in myeloma cells and correlates negatively with clinic outcome. Restoring expression of FPN1 reduces intracellular liable iron pool, inhibits STAT3-MCL-1 signaling, and suppresses myeloma cells growth. Furthermore, we demonstrated that mRNA of FPN1 is also downregulated at the initial stages of osteoclast differentiation and suppresses myeloma cell-induced osteoclast differentiation through regulating iron regulator TFRC, NF-κB, and JNK pathways. Altogether, we demonstrated that downregulation of FPN1 plays critical roles in promoting myeloma cell growth and bone resorption in multiple myeloma. PMID:25855377

  6. Effects of IL-8 Up-Regulation on Cell Survival and Osteoclastogenesis in Multiple Myeloma.

    PubMed

    Herrero, Ana B; García-Gómez, Antonio; Garayoa, Mercedes; Corchete, Luis A; Hernández, José M; San Miguel, Jesús; Gutierrez, Norma C

    2016-08-01

    IL-8 promotes cancer cell growth, survival, angiogenesis, and metastasis in several tumors. Herein, we investigated the sources of IL-8 production in multiple myeloma (MM) and its potential roles in MM pathogenesis. We found that bone marrow cells from patients with MM secreted higher amounts of IL-8 than healthy donors. IL-8 production was detected in cultures of CD138(+) plasma cells and CD138(-) cells isolated from bone marrows of MM patients, and in three of seven human myeloma cell lines (HMCLs) analyzed. Interactions between MM and stromal cells increased IL-8 secretion by stromal cells through cell-cell adhesion and soluble factors. Interestingly, IL8 expression also increased in HMCLs, stromal cells, and osteoclasts after treatment with the antimyeloma drugs melphalan and bortezomib. In fact, the effect of bortezomib on IL-8 production was higher than that exerted by stromal-MM cell interactions. Addition of exogenous IL-8 did not affect growth of HMCLs, although it protected cells from death induced by serum starvation through a caspase-independent mechanism. Furthermore, IL-8 induced by stromal-MM cell interactions strongly contributed to osteoclast formation in vitro, because osteoclastogenesis was markedly reduced by IL-8-specific neutralizing antibodies. In conclusion, our results implicate IL-8 in myeloma bone disease and point to the potential utility of an anti-IL-8 therapy to prevent unwanted effects of IL-8 up-regulation on survival, angiogenesis, and osteolysis in MM. PMID:27301357

  7. EEN regulates the proliferation and survival of multiple myeloma cells by potentiating IGF-1 secretion

    SciTech Connect

    Huang, Er-Wen; Xue, Sheng-Jiang; Li, Xiao-Yan; Xu, Suo-Wen; Cheng, Jian-Ding; Zheng, Jin-Xiang; Shi, He; Lv, Guo-Li; Li, Zhi-Gang; Li, Yue; Liu, Chang-Hui; Chen, Xiao-Hui; Liu, Hong; Li, Jie; Liu, Chao

    2014-05-02

    Highlights: • Levels of EEN expression paralleled with the rate of cell proliferation. • EEN was involved in the proliferation and survival of multiple myeloma (MM) cells. • EEN regulated the activity of IGF-1-Akt/mTOR pathway. • EEN regulated proliferation and survival of MM cells by enhancing IGF-1 secretion. - Abstract: The molecular mechanisms of multiple myeloma are not well defined. EEN is an endocytosis-regulating molecule. Here we report that EEN regulates the proliferation and survival of multiple myeloma cells, by regulating IGF-1 secretion. In the present study, we observed that EEN expression paralleled with cell proliferation, EEN accelerated cell proliferation, facilitated cell cycle transition from G1 to S phase by regulating cyclin-dependent kinases (CDKs) pathway, and delayed cell apoptosis via Bcl2/Bax-mitochondrial pathway. Mechanistically, we found that EEN was indispensable for insulin-like growth factor-1 (IGF-1) secretion and the activation of protein kinase B-mammalian target of rapamycin (Akt-mTOR) pathway. Exogenous IGF-1 overcame the phenotype of EEN depletion, while IGF-1 neutralization overcame that of EEN over-expression. Collectively, these data suggest that EEN may play a pivotal role in excessive cell proliferation and insufficient cell apoptosis of bone marrow plasma cells in multiple myeloma. Therefore, EEN may represent a potential diagnostic marker or therapeutic target for multiple myeloma.

  8. Plasma cell maturity as a predictor of prognosis in multiple myeloma.

    PubMed

    Iriyama, Noriyoshi; Miura, Katsuhiro; Hatta, Yoshihiro; Uchino, Yoshihito; Kurita, Daisuke; Takahashi, Hiromichi; Sakagami, Hitomi; Sakagami, Masashi; Kobayashi, Yujin; Nakagawa, Masaru; Ohtake, Shimon; Iizuka, Yoshikazu; Takei, Masami

    2016-08-01

    In this study, the impact of plasma cell maturity on the prognoses of multiple myeloma (MM) patients in the era of novel agents was investigated. Myeloma cell maturity was classified via immunophenotyping: myeloma cells showing mature plasma cell 1 (MPC-1)-positive and CD49e-positive cells were considered mature type; MPC-1-positive and CD49e-negative cells were considered intermediate type; and MPC-1-negative cells were considered immature type. This study included 87 newly diagnosed MM patients who were initially treated with bortezomib and/or chemotherapy. Myeloma cell maturity was a critical factor affecting overall survival (OS) in the cohort, with median OS not reached in mature-type, 50 months in intermediate-type, and 20 months in immature-type cells. Multivariate analysis showed that immature type and stage III according to the International Staging System were both independent prognostic factors affecting OS. The findings of this study demonstrate the clinical importance of myeloma cell classification according to immunophenotyping using MPC-1 and CD49e antibodies to determine patient prognosis in this era of novel therapeutic agents. PMID:27383407

  9. HDAC inhibitor AR-42 decreases CD44 expression and sensitizes myeloma cells to lenalidomide

    PubMed Central

    Sborov, Douglas W.; Cascione, Luciano; Radomska, Hanna S.; Smith, Emily; Stiff, Andrew; Consiglio, Jessica; Caserta, Enrico; Rizzotto, Lara; Zanesi, Nicola; Stefano, Volinia; Kaur, Balveen; Mo, Xiaokui; Byrd, John C.; Efebera, Yvonne A.

    2015-01-01

    Multiple myeloma (MM) is a hematological malignancy of plasma cells in the bone marrow. Despite multiple treatment options, MM is inevitably associated with drug resistance and poor outcomes. Histone deacetylase inhibitors (HDACi's) are promising novel chemotherapeutics undergoing evaluation in clinical trials for the potential treatment of patients with MM. Although in preclinical studies HDACi's have proven anti-myeloma activity, but in the clinic single-agent HDACi treatments have been limited due to low tolerability. Improved clinical outcomes were reported only when HDACi's were combined with other drugs. Here, we show that a novel pan-HDACi AR-42 downregulates CD44, a glycoprotein that has been associated with lenalidomide and dexamethasone resistance in myeloma both in vitro and in vivo. We also show that this CD44 downregulation is in part mediated by miR-9–5p, targeting insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3), which directly binds to CD44 mRNA and increases its stability. Importantly, we also demonstrate that AR-42 enhances anti-myeloma activity of lenalidomide in primary MM cells isolated from lenalidomide resistant patients and in in vivo MM mouse model. Thus, our findings shed light on potential novel combinatorial therapeutic approaches modulating CD44 expression, which may help overcome lenalidomide resistance in myeloma patients. PMID:26429859

  10. [Multiple myeloma and other plasma cell dyscrasias].

    PubMed

    Nagy, Zsolt

    2016-06-01

    Multiple myeloma is the most common primary malignant disease of bone marrow. It mainly occurs among elderly people and, according to international databases, it is twice as frequent in men, however in our country this fact cannot be observed because of the high male mortality rate. The presence of this disease increased by more than one and the half times during the last 60 years. The five year survival for multiple myeloma has increased from 25% to 40% since the seventies due to high-dose chemotherapy followed by autologous stem cell transplantation and the new anti-myeloma drugs which were introduced in the last decade, such as immunomodulators (IMiD) like thalidomide, lenalidomide, pomalidomide and proteasome inhibitors (PI) like bortezomib, carfilzomib, ixazomib. The number of treatment options are growing fast, and not only because of using new combinations of medications, but also due to the development of investigational products which are available for the patients by participating in a clinical trial. PMID:27275642

  11. Fact or fiction - identifying the elusive multiple myeloma stem cell

    PubMed Central

    2013-01-01

    Multiple Myeloma (MM) is a debilitating disease of proliferating and malignant plasma cells that is currently incurable. The ability of monoclonal recurrence of disease suggests it might arise from a stem cell-like population capable of self-renewal. The difficulty to isolate the cancer stem-like cell in MM has introduced confusion toward this hypothesis. However, recent evidence has suggested that MM originates from the B cell lineage with memory-B cell like features, allowing for self-renewal of the progenitor-like status and differentiation to a monoclonal plasma cell population. Furthermore, this tumor-initiating cell uses signaling pathways and microenvironment similar to the hematopoietic stem cell, though hijacking these mechanisms to create and favor a more tumorigenic environment. The bone marrow niche allows for pertinent evasion, either through avoiding immunosurveillance or through direct interaction with the stroma, inducing quiescence and thus drug resistance. Understanding the interaction of the MM stem cell to the microenvironment and the mechanisms utilized by various stem cell-like populations to allow persistence and therapy-resistance can enable for better targeting of this cell population and potential eradication of the disease. PMID:24314019

  12. Mesenchymal stem cells secretomes' affect multiple myeloma translation initiation.

    PubMed

    Marcus, H; Attar-Schneider, O; Dabbah, M; Zismanov, V; Tartakover-Matalon, S; Lishner, M; Drucker, L

    2016-06-01

    Bone marrow mesenchymal stem cells' (BM-MSCs) role in multiple myeloma (MM) pathogenesis is recognized. Recently, we have published that co-culture of MM cell lines with BM-MSCs results in mutual modulation of phenotype and proteome (via translation initiation (TI) factors eIF4E/eIF4GI) and that there are differences between normal donor BM-MSCs (ND-MSCs) and MM BM-MSCs (MM-MSCs) in this crosstalk. Here, we aimed to assess the involvement of soluble BM-MSCs' (ND, MM) components, more easily targeted, in manipulation of MM cell lines phenotype and TI with specific focus on microvesicles (MVs) capable of transferring critical biological material. We applied ND and MM-MSCs 72h secretomes to MM cell lines (U266 and ARP-1) for 12-72h and then assayed the cells' (viability, cell count, cell death, proliferation, cell cycle, autophagy) and TI (factors: eIF4E, teIF4GI; regulators: mTOR, MNK1/2, 4EBP; targets: cyclin D1, NFκB, SMAD5, cMyc, HIF1α). Furthermore, we dissected the secretome into >100kDa and <100kDa fractions and repeated the experiments. Finally, MVs were isolated from the ND and MM-MSCs secretomes and applied to MM cell lines. Phenotype and TI were assessed. Secretomes of BM-MSCs (ND, MM) significantly stimulated MM cell lines' TI, autophagy and proliferation. The dissected secretome yielded different effects on MM cell lines phenotype and TI according to fraction (>100kDa- repressed; <100kDa- stimulated) but with no association to source (ND, MM). Finally, in analyses of MVs extracted from BM-MSCs (ND, MM) we witnessed differences in accordance with source: ND-MSCs MVs inhibited proliferation, autophagy and TI whereas MM-MSCs MVs stimulated them. These observations highlight the very complex communication between MM and BM-MSCs and underscore its significance to major processes in the malignant cells. Studies into the influential MVs cargo are underway and expected to uncover targetable signals in the regulation of the TI/proliferation/autophagy cascade

  13. Nifuroxazide inhibits survival of multiple myeloma cells by directly inhibiting STAT3.

    PubMed

    Nelson, Erik A; Walker, Sarah R; Kepich, Alicia; Gashin, Laurie B; Hideshima, Teru; Ikeda, Hiroshi; Chauhan, Dharminder; Anderson, Kenneth C; Frank, David A

    2008-12-15

    Constitutive activation of the transcription factor STAT3 contributes to the pathogenesis of many cancers, including multiple myeloma (MM). Since STAT3 is dispensable in most normal tissue, targeted inhibition of STAT3 is an attractive therapy for patients with these cancers. To identify STAT3 inhibitors, we developed a transcriptionally based assay and screened a library of compounds known to be safe in humans. We found the drug nifuroxazide to be an effective inhibitor of STAT3 function. Nifuroxazide inhibits the constitutive phosphorylation of STAT3 in MM cells by reducing Jak kinase autophosphorylation, and leads to down-regulation of the STAT3 target gene Mcl-1. Nifuroxazide causes a decrease in viability of primary myeloma cells and myeloma cell lines containing STAT3 activation, but not normal peripheral blood mononuclear cells. Although bone marrow stromal cells provide survival signals to myeloma cells, nifuroxazide can overcome this survival advantage. Reflecting the interaction of STAT3 with other cellular pathways, nifuroxazide shows enhanced cytotoxicity when combined with either the histone deacetylase inhibitor depsipeptide or the MEK inhibitor UO126. Therefore, using a mechanistic-based screen, we identified the clinically relevant drug nifuroxazide as a potent inhibitor of STAT signaling that shows cytotoxicity against myeloma cells that depend on STAT3 for survival. PMID:18824601

  14. Nifuroxazide inhibits survival of multiple myeloma cells by directly inhibiting STAT3

    PubMed Central

    Nelson, Erik A.; Walker, Sarah R.; Kepich, Alicia; Gashin, Laurie B.; Hideshima, Teru; Ikeda, Hiroshi; Chauhan, Dharminder; Anderson, Kenneth C.

    2008-01-01

    Constitutive activation of the transcription factor STAT3 contributes to the pathogenesis of many cancers, including multiple myeloma (MM). Since STAT3 is dispensable in most normal tissue, targeted inhibition of STAT3 is an attractive therapy for patients with these cancers. To identify STAT3 inhibitors, we developed a transcriptionally based assay and screened a library of compounds known to be safe in humans. We found the drug nifuroxazide to be an effective inhibitor of STAT3 function. Nifuroxazide inhibits the constitutive phosphorylation of STAT3 in MM cells by reducing Jak kinase autophosphorylation, and leads to down-regulation of the STAT3 target gene Mcl-1. Nifuroxazide causes a decrease in viability of primary myeloma cells and myeloma cell lines containing STAT3 activation, but not normal peripheral blood mononuclear cells. Although bone marrow stromal cells provide survival signals to myeloma cells, nifuroxazide can overcome this survival advantage. Reflecting the interaction of STAT3 with other cellular pathways, nifuroxazide shows enhanced cytotoxicity when combined with either the histone deacetylase inhibitor depsipeptide or the MEK inhibitor UO126. Therefore, using a mechanistic-based screen, we identified the clinically relevant drug nifuroxazide as a potent inhibitor of STAT signaling that shows cytotoxicity against myeloma cells that depend on STAT3 for survival. PMID:18824601

  15. Bone marrow stromal cells from multiple myeloma patients uniquely induce bortezomib resistant NF-κB activity in myeloma cells

    PubMed Central

    2010-01-01

    Background Components of the microenvironment such as bone marrow stromal cells (BMSCs) are well known to support multiple myeloma (MM) disease progression and resistance to chemotherapy including the proteasome inhibitor bortezomib. However, functional distinctions between BMSCs in MM patients and those in disease-free marrow are not completely understood. We and other investigators have recently reported that NF-κB activity in primary MM cells is largely resistant to the proteasome inhibitor bortezomib, and that further enhancement of NF-κB by BMSCs is similarly resistant to bortezomib and may mediate resistance to this therapy. The mediating factor(s) of this bortezomib-resistant NF-κB activity is induced by BMSCs is not currently understood. Results Here we report that BMSCs specifically derived from MM patients are capable of further activating bortezomib-resistant NF-κB activity in MM cells. This induced activity is mediated by soluble proteinaceous factors secreted by MM BMSCs. Among the multiple factors evaluated, interleukin-8 was secreted by BMSCs from MM patients at significantly higher levels compared to those from non-MM sources, and we found that IL-8 contributes to BMSC-induced NF-κB activity. Conclusions BMSCs from MM patients uniquely enhance constitutive NF-κB activity in MM cells via a proteinaceous secreted factor in part in conjunction with IL-8. Since NF-κB is known to potentiate MM cell survival and confer resistance to drugs including bortezomib, further identification of the NF-κB activating factors produced specifically by MM-derived BMSCs may provide a novel biomarker and/or drug target for the treatment of this commonly fatal disease. PMID:20604947

  16. A Rare Case of Multple Myeloma (Mm) Presented With Pancytopaenia in A Patient of HIV – At Very Early Age

    PubMed Central

    Soren, Manoj; Das, Anjan Kumar; Mangal, Srishtidhar

    2015-01-01

    Non-hodgkin`s lymphoma (NHL) is the most common haematological malignancy which is seen in HIV infected patients. Among NHLs, immunoblastic lymphomas are most common and a majority of these are diffuse large B-cell lymphomas. Multiple myeloma is a disease of the elderly. It is extremely rare below 30 years of age. On the other hand, in HIV infected individuals, the average age of presentation with plasma cell disorders is 33 years, which is far younger than the average age of presentation in general population. The incidence of AIDS defining malignancies has declined markedly, whereas non-AIDS defining cancers are being increasingly diagnosed in patients with HIV infection during the HAART-era and they may be the presenting manifestations of AIDS. Multiple myeloma, however, usually is not a first presenting feature of AIDS. The usual clinical presentation of multiple myeloma is bone pain and pallor. Pancytopaenia is a rare presenting feature of multiple myeloma. Here, we are reporting a case of pancytopaenia which occurred in a 28-year-old, newly diagnosed, HIV-1 positive female, who with the help of bone marrow examination and further investigations, was subsequently diagnosed as multiple myeloma. PMID:25737998

  17. Functional interaction of plasmacytoid dendritic cells with multiple myeloma cells: a therapeutic target.

    PubMed

    Chauhan, Dharminder; Singh, Ajita V; Brahmandam, Mohan; Carrasco, Ruben; Bandi, Madhavi; Hideshima, Teru; Bianchi, Giada; Podar, Klaus; Tai, Yu-Tzu; Mitsiades, Constantine; Raje, Noopur; Jaye, David L; Kumar, Shaji K; Richardson, Paul; Munshi, Nikhil; Anderson, Kenneth C

    2009-10-01

    Multiple myeloma (MM) remains incurable despite novel therapies, suggesting the need for further identification of factors mediating tumorigenesis and drug resistance. Using both in vitro and in vivo MM xenograft models, we show that plasmacytoid dendritic cells (pDCs) in the bone marrow (BM) microenvironment both mediate immune deficiency characteristic of MM and promote MM cell growth, survival, and drug resistance. Microarray, cell signaling, cytokine profile, and immunohistochemical analysis delineate the mechanisms mediating these sequelae. Although pDCs are resistant to novel therapies, targeting toll-like receptors with CpG oligodeoxynucleotides both restores pDC immune function and abrogates pDC-induced MM cell growth. Our study therefore validates targeting pDC-MM interactions as a therapeutic strategy to overcome drug resistance in MM. PMID:19800576

  18. Thyroid hormone regulates adhesion, migration and matrix metalloproteinase 9 activity via αvβ3 integrin in myeloma cells

    PubMed Central

    Cohen, Keren; Flint, Nir; Shalev, Shachar; Erez, Daniel; Baharal, Tal; Davis, Paul J.; Hercbergs, Aleck; Ellis, Martin; Ashur-Fabian, Osnat

    2014-01-01

    Thyroid hormone (3,5,3′-triiodothyronine, T3; L-thyroxine, T4) enhances cancer cell proliferation, invasion and angiogenesis via a discrete receptor located near the RGD recognition site on αvβ3 integrin. Tetraiodothyroacetic acid (tetrac) and its nanoparticulate formulation interfere with binding of T3/T4 to the integrin. This integrin is overexpressed in multiple myeloma (MM) and other cancers. MM cells interact with αvβ3 integrin to support growth and invasion. Matrix metalloproteinases (MMPs) are a family of enzymes active in tissue remodeling and cancer. The association between integrins and MMPs secretion and action is well established. In the current study, we examined the effects of thyroid hormone on myeloma cell adhesion, migration and MMP activity. We show that T3 and T4 increased myeloma adhesion to fibronectin and induced αvβ3 clustering. In addition, the hormones induced MMP-9 expression and activation via αvβ3 and MAPK induction. Bortezomib, a standard myeloma treatment, caused a decrease in activity/quantity of MMPs and thyroid hormone opposed this effect. RGD peptide and tetrac impaired the production of MMP-9 in cell lines and in primary BM cells from myeloma patients. In conclusion, thyroid hormone-dependent regulation via αvβ3 of myeloma cell adhesion and MMP-9 production may play a role in myeloma migration and progression. PMID:25071016

  19. Thyroid hormone regulates adhesion, migration and matrix metalloproteinase 9 activity via αvβ3 integrin in myeloma cells.

    PubMed

    Cohen, Keren; Flint, Nir; Shalev, Shachar; Erez, Daniel; Baharal, Tal; Davis, Paul J; Hercbergs, Aleck; Ellis, Martin; Ashur-Fabian, Osnat

    2014-08-15

    Thyroid hormone (3,5,3'-triiodothyronine, T3; L-thyroxine, T4) enhances cancer cell proliferation, invasion and angiogenesis via a discrete receptor located near the RGD recognition site on αvβ3 integrin. Tetraiodothyroacetic acid (tetrac) and its nanoparticulate formulation interfere with binding of T3/T4 to the integrin. This integrin is overexpressed in multiple myeloma (MM) and other cancers. MM cells interact with αvβ3 integrin to support growth and invasion. Matrix metalloproteinases (MMPs) are a family of enzymes active in tissue remodeling and cancer. The association between integrins and MMPs secretion and action is well established. In the current study, we examined the effects of thyroid hormone on myeloma cell adhesion, migration and MMP activity. We show that T3 and T4 increased myeloma adhesion to fibronectin and induced αvβ3 clustering. In addition, the hormones induced MMP-9 expression and activation via αvβ3 and MAPK induction. Bortezomib, a standard myeloma treatment, caused a decrease in activity/quantity of MMPs and thyroid hormone opposed this effect. RGD peptide and tetrac impaired the production of MMP-9 in cell lines and in primary BM cells from myeloma patients. In conclusion, thyroid hormone-dependent regulation via αvβ3 of myeloma cell adhesion and MMP-9 production may play a role in myeloma migration and progression. PMID:25071016

  20. Cancer stem cells are the cause of drug resistance in multiple myeloma: fact or fiction?

    PubMed

    Franqui-Machin, Reinaldo; Wendlandt, Erik B; Janz, Siegfried; Zhan, Fenghuang; Tricot, Guido

    2015-12-01

    Multiple myeloma (MM) remains a largely incurable, genetically heterogeneous plasma-cell malignancy that contains - just like many other cancers - a small fraction of clonogenic stem cell-like cells that exhibit pronounced self-renewal and differentiation capacities, but also pronounced drug resistance. These MM stem cells (MMSCs) are a controversial but highly significant issue in myeloma research because, in our opinion, they are at the root of the failure of anti-neoplastic chemotherapies to transform myeloma to a manageable chronic disease. Several markers including CD138-, ALDH1+ and SP have been used to identify MMSCs; however, no single marker is reliable for the isolation of MMSC. Nonetheless, it is now known that MMSCs depend on self-renewal and pro-survival pathways, such as AKT, Wnt/β-catenin, Notch and Hedgehog, which can be targeted with novel drugs that have shown promise in pre-clinical and clinical trials. Here, we review the pathways of myeloma "stemness", the interactions with the bone marrow microenvironment that promote drug resistance, and the obstacles that must be overcome to eradicate MMSCs and make myeloma a curable disease. PMID:26415231

  1. Cancer stem cells are the cause of drug resistance in multiple myeloma: fact or fiction?

    PubMed Central

    Janz, Siegfried; Zhan, Fenghuang; Tricot, Guido

    2015-01-01

    Multiple myeloma (MM) remains a largely incurable, genetically heterogeneous plasma-cell malignancy that contains – just like many other cancers – a small fraction of clonogenic stem cell-like cells that exhibit pronounced self-renewal and differentiation capacities, but also pronounced drug resistance. These MM stem cells (MMSCs) are a controversial but highly significant issue in myeloma research because, in our opinion, they are at the root of the failure of anti-neoplastic chemotherapies to transform myeloma to a manageable chronic disease. Several markers including CD138−, ALDH1+ and SP have been used to identify MMSCs; however, no single marker is reliable for the isolation of MMSC. Nonetheless, it is now known that MMSCs depend on self-renewal and pro-survival pathways, such as AKT, Wnt/β-catenin, Notch and Hedgehog, which can be targeted with novel drugs that have shown promise in pre-clinical and clinical trials. Here, we review the pathways of myeloma “stemness”, the interactions with the bone marrow microenvironment that promote drug resistance, and the obstacles that must be overcome to eradicate MMSCs and make myeloma a curable disease. PMID:26415231

  2. Correlation of proliferative and clonogenic tumor cells in multiple myeloma

    SciTech Connect

    Karp, J.E.; Burke, P.J.; Saylor, P.L.; Humphrey, R.L.

    1984-09-01

    To expand on the findings from previous clinical trials that the growth of residual tumor is increased at a predictable time following initial drug administration, malignant plasma cells from bone marrows of patients with multiple myeloma (MM) were examined for changes in proliferation and clonogenicity induced in vivo by cyclophosphamide and in vitro by drug-induced humoral stimulatory activity. Peak plasma cell (/sup 3/H)thymidine labeling index (LI) occurred predictably following drug and paralleled changes in agar colony formation by marrow cells obtained during therapy. Colony-forming capacity of pretreatment MM marrow populations was enhanced when those cells were cultured with humoral stimulatory activity, similar to the increased colony formation detected in Day 9 postcyclophosphamide marrows at the time of peak plasma cell LI. To further define a relationship between proliferative plasma cells and colony-forming tumor cells, MM marrows were fractionated by sedimentation on an isokinetic gradient. Enrichment of a proliferative tumor cell cohort was achieved, evidenced by (/sup 3/H)thymidine LI. Colony-forming cells were also enriched by isokinetic gradient sedimentation, and agar colony formation by MM marrow cell fractions correlated with the kinetic characteristics of the isolated subpopulations. These studies of whole and fractionated human MM marrow cell populations suggest that the kinetically active cells which are induced to proliferate in vivo and in vitro are closely related to the clonogenic tumor cells which produce colonies in agar and which, like those cells measured by (/sup 3/H)thymidine LI, respond to growth stimulation by drug-induced humoral stimulatory activity.

  3. KRN5500, a spicamycin derivative, exerts anti-myeloma effects through impairing both myeloma cells and osteoclasts.

    PubMed

    Miki, Hirokazu; Ozaki, Shuji; Nakamura, Shingen; Oda, Asuka; Amou, Hiroe; Ikegame, Akishige; Watanabe, Keiichiro; Hiasa, Masahiro; Cui, Qu; Harada, Takeshi; Fujii, Shiro; Nakano, Ayako; Kagawa, Kumiko; Takeuchi, Kyoko; Yata, Ken-Ichiro; Sakai, Akira; Abe, Masahiro; Matsumoto, Toshio

    2011-11-01

    The spicamycin analogue KRN5500 alters glycoprotein processing and induces damage in the endoplasmic reticulum (ER)-Golgi apparatus in cancer cells. In the present study, we explored the cytotoxic effects of KRN5500 on multiple myeloma (MM) cells and the bone marrow microenvironment with special reference to ER stress. Cell proliferation assay showed that KRN5500 induced G1 arrest and apoptosis in MM cells in a time- and dose-dependent manner. KRN5500 enhanced ER stress independently of caspase activation in MM cells. This cell death was observed even in the presence of bone marrow stroma cells or osteoclasts. Notably, KRN5500 induced cell death also in osteoclasts. In vivo effects of KRN5500 were evaluated using two xenograft models established in severe combined immunodeficient (SCID) mice by either subcutaneous injection of RPMI 8226 cells or intra-bone injection of INA-6 cells to subcutaneously implanted rabbit bones (SCID-rab model). KRN5500 significantly inhibited tumour growth in both animal models, and decreased the number of osteoclasts, which resulted in prevention of bone destruction in the SCID-rab model. These results suggest that KRN5500 exerts anti-MM effects through impairing both MM cells and osteoclasts. Therefore, this unique mechanism of KRN5500 might be a useful therapeutic option in patients with MM. PMID:21902681

  4. Induction of class II major histocompatibility complex expression in human multiple myeloma cells by retinoid.

    PubMed

    Sanda, Takaomi; Iida, Shinsuke; Kayukawa, Satoshi; Ueda, Ryuzo

    2007-01-01

    Class II major histocompatibility complex (MHC II) is normally silenced in plasma/multiple myeloma (MM) cells at the transcriptional level through downregulation of class II transactivator (CIITA), allowing MM cells to escape from immunological responses. Here we demonstrate that a retinoic acid receptor-alpha/beta-selective retinoid Am80 (tamibarotene) could induce the expression of functional MHC II molecules in human MM cell lines. Am80 upregulated expression of the interferon regulatory factor-1 gene, followed by enhancement of CIITA expression. This is the first report demonstrating that retinoid can induce the expression of MHC II in terminally-differentiated plasma/MM cells. PMID:17229644

  5. A patient with Multiple myeloma and Renal cell carcinoma

    PubMed Central

    Shahi, Farhad; Ghalamkari, Marziye; Mirzania, Mehrzad; Khatuni, Mahdi

    2016-01-01

    The coexistence of two malignancies is rarely seen. A little association between hematologic malignancies especially multiple myeloma and renal cell carcinoma has been reported in the recent past. Several case series revealed a bidirectional association between these two malignancies which may be due to the common risk factors, similar cytokine growth requirements and clinical presentation. Here, we aim to describe a patient who had multiple myeloma and in his work up renal cell carcinoma was found out incidentally. We would like to create awareness among clinicians for the coincidence of Renal cell carcinoma and Multiple myeloma. PMID:27047652

  6. Robust isolation of malignant plasma cells in multiple myeloma.

    PubMed

    Frigyesi, Ildikó; Adolfsson, Jörgen; Ali, Mina; Christophersen, Mikael Kronborg; Johnsson, Ellinor; Turesson, Ingemar; Gullberg, Urban; Hansson, Markus; Nilsson, Björn

    2014-02-27

    Molecular characterization of malignant plasma cells is increasingly important for diagnostic and therapeutic stratification in multiple myeloma. However, the malignant plasma cells represent a relatively small subset of bone marrow cells, and need to be enriched prior to analysis. Currently, the cell surface marker CD138 (SDC1) is used for this enrichment, but has an important limitation in that its expression decreases rapidly after sampling. Seeking alternatives to CD138, we performed a computational screen for myeloma plasma cell markers and systematically evaluated 7 candidates. Our results conclusively show that the markers CD319 (SLAMF7/CS1) and CD269 (TNFRSF17/BCMA) are considerably more robust than CD138 and enable isolation of myeloma plasma cells under more diverse conditions, including the samples that have been delayed or frozen. Our results form the basis of improved procedures for characterizing cases of multiple myeloma in clinical practice. PMID:24385542

  7. Myeloma

    MedlinePlus

    ... at a Glance Show More At a Glance Estimated New Cases in 2016 30,330 % of All New Cancer Cases 1.8% Estimated Deaths in 2016 12,650 % of All Cancer ... of This Cancer : In 2013, there were an estimated 95,688 people living with myeloma in the ...

  8. General Information about Plasma Cell Neoplasms (Including Multiple Myeloma)

    MedlinePlus

    ... Including Multiple Myeloma) Treatment (PDQ®)–Patient Version General Information About Plasma Cell Neoplasms Go to Health Professional ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  9. Multiple myeloma mesenchymal stromal cells: Contribution to myeloma bone disease and therapeutics

    PubMed Central

    Garcia-Gomez, Antonio; Sanchez-Guijo, Fermin; del Cañizo, M Consuelo; San Miguel, Jesus F; Garayoa, Mercedes

    2014-01-01

    Multiple myeloma is a hematological malignancy in which clonal plasma cells proliferate and accumulate within the bone marrow. The presence of osteolytic lesions due to increased osteoclast (OC) activity and suppressed osteoblast (OB) function is characteristic of the disease. The bone marrow mesenchymal stromal cells (MSCs) play a critical role in multiple myeloma pathophysiology, greatly promoting the growth, survival, drug resistance and migration of myeloma cells. Here, we specifically discuss on the relative contribution of MSCs to the pathophysiology of osteolytic lesions in light of the current knowledge of the biology of myeloma bone disease (MBD), together with the reported genomic, functional and gene expression differences between MSCs derived from myeloma patients (pMSCs) and their healthy counterparts (dMSCs). Being MSCs the progenitors of OBs, pMSCs primarily contribute to the pathogenesis of MBD because of their reduced osteogenic potential consequence of multiple OB inhibitory factors and direct interactions with myeloma cells in the bone marrow. Importantly, pMSCs also readily contribute to MBD by promoting OC formation and activity at various levels (i.e., increasing RANKL to OPG expression, augmenting secretion of activin A, uncoupling ephrinB2-EphB4 signaling, and through augmented production of Wnt5a), thus further contributing to OB/OC uncoupling in osteolytic lesions. In this review, we also look over main signaling pathways involved in the osteogenic differentiation of MSCs and/or OB activity, highlighting amenable therapeutic targets; in parallel, the reported activity of bone-anabolic agents (at preclinical or clinical stage) targeting those signaling pathways is commented. PMID:25126382

  10. S-phase cells of the lymphoplasmocytic compartment in hyperdiploid multiple myeloma are diploid cells

    SciTech Connect

    Haraldsdottir, V.; Haanen, C.; Kalsbeek-Batenburg, E.; Olthuis, F.

    1995-10-01

    In vivo S-phase cell labeling with iododeoxyuridine (IdUrd) was performed in six multiple myeloma (MM) patients. Myeloma cells from four patients were hyperploid. In three out of four patients, DNA/IdUrd flow cytometry revealed that most of the labeled cells, which had divided during the period, elapsed between flash labeling and sampling, had returned to the diploid G0/G1 compartment and not to the hyperdiploid peak. To eliminate contaminating cells belonging to the normal hematopoiesis, plasmocytic and lymphocytic cells were fractionated and analyzed separately. Cell enrichment was performed with use of murine monoclonal antibodies (MoAbs) against plasmocytic and lymphocytic cell markers and subsequent magnetic activated cell sorting with immunobeads, i.e., polystyrene magnetic particles coated with sheep anti-mouse IgG. The IdUrd-labeled cells were predominantly lymphocytic cells, returning after mitosis to the diploid G0/G1 peak. Although this pattern of S-phase cells in hyperdiploid MM, belonging to the diploid cell compartment, was observed in three out of four hyperploid cases and although the number of observations is small, S-phase cells may demonstrate an aspect of tumor cell kinetics in hyperploid MM, which has been debated for many years and which indicates the existence of a non-plasmocytic stem cell compartment that feeds the plasmocytoma. The behavior of the labeled cells as observed in a few cases of MM provides another, hitherto undescribed, argument that, at least in some MM patients, a part of the proliferating tumor cells may be diploid lymphocytic (precursor) cells. These findings should be considered when targeting and monitoring treatment of MM and also in purging procedures of bone marrow in patients to be treated by ablative cytotoxic therapy and autologous bone marrow transplantation. 57 refs., 3 figs., 1 tab.

  11. Molecular sequelae of proteasome inhibition in human multiple myeloma cells

    PubMed Central

    Mitsiades, Nicholas; Mitsiades, Constantine S.; Poulaki, Vassiliki; Chauhan, Dharminder; Fanourakis, Galinos; Gu, Xuesong; Bailey, Charles; Joseph, Marie; Libermann, Towia A.; Treon, Steven P.; Munshi, Nikhil C.; Richardson, Paul G.; Hideshima, Teru; Anderson, Kenneth C.

    2002-01-01

    The proteasome inhibitor PS-341 inhibits IκB degradation, prevents NF-κB activation, and induces apoptosis in several types of cancer cells, including chemoresistant multiple myeloma (MM) cells. PS-341 has marked clinical activity even in the setting of relapsed refractory MM. However, PS-341-induced apoptotic cascade(s) are not yet fully defined. By using gene expression profiling, we characterized the molecular sequelae of PS-341 treatment in MM cells and further focused on molecular pathways responsible for the anticancer actions of this promising agent. The transcriptional profile of PS-341-treated cells involved down-regulation of growth/survival signaling pathways, and up-regulation of molecules implicated in proapoptotic cascades (which are both consistent with the proapoptotic effect of proteasome inhibition), as well as up-regulation of heat-shock proteins and ubiquitin/proteasome pathway members (which can correspond to stress responses against proteasome inhibition). Further studies on these pathways showed that PS-341 decreases the levels of several antiapoptotic proteins and triggers a dual apoptotic pathway of mitochondrial cytochrome c release and caspase-9 activation, as well as activation of Jun kinase and a Fas/caspase-8-dependent apoptotic pathway [which is inhibited by a dominant negative (decoy) Fas construct]. Stimulation with IGF-1, as well as overexpression of Bcl-2 or constitutively active Akt in MM cells also modestly attenuates PS-341-induced cell death, whereas inhibitors of the BH3 domain of Bcl-2 family members or the heat-shock protein 90 enhance tumor cell sensitivity to proteasome inhibition. These data provide both insight into the molecular mechanisms of antitumor activity of PS-341 and the rationale for future clinical trials of PS-341, in combination with conventional and novel therapies, to improve patient outcome in MM. PMID:12391322

  12. CD138-negative myeloma cells regulate mechanical properties of bone marrow stromal cells through SDF-1/CXCR4/AKT signaling pathway

    PubMed Central

    Wu, Dan; Guo, Xinyi; Su, Jing; Chen, Ruoying; Berenzon, Dmitriy; Guthold, Martin; Bonin, Keith; Zhao, Weiling; Zhou, Xiaobo

    2014-01-01

    As the second most prevalent hematologic malignancy, multiple myeloma (MM) remains incurable and relapses due to intrinsic or acquired drug resistance. Therefore, new therapeutic strategies that target molecular mechanisms responsible for drug resistance are attractive. Interactions of tumor cells with their surrounding microenvironment impact tumor initiation, progression and metastasis, as well as patient prognosis. This cross-talk is bidirectional. Tumor cells can also attract or activate tumor-associated stromal cells by releasing cytokines to facilitate their growth, invasion and metastasis. The effect of myeloma cells on bone marrow stromal cells (BMSCs) has not been well studied. In our study, we found that higher stiffness of BMSCs was not a unique characteristic of BMSCs from MM patients (M-BMSCs). BMSCs from MGUS (Monoclonal gammopathy of undetermined significance) patients were also stiffer than the BMSCs from healthy volunteers (N-BMSCs). The stiffness of M-BMSCs was enhanced when cocultured with myeloma cells. In contrast, no changes were seen in myeloma cell-primed MGUS- and N-BMSCs. Interestingly, our data indicated that CD138− myeloma cells, but not CD138+ cells, regulated M-BMSC stiffness. SDF-1 was highly expressed in the CD138− myeloma subpopulation compared with that in CD138+ cells. Inhibition of SDF-1 using AMD3100 or knocking-down CXCR4 in M-BMSCs blocked CD138− myeloma cells-induced increase in M-BMSC stiffness, suggesting a crucial role of SDF-1/CXCR4. AKT inhibition attenuated SDF-1-induced increases in M-BMSC stiffness. These findings demonstrate, for the first time, CD138− myeloma cell-directed cross-talk with BMSCs and reveal that CD138− myeloma cells regulate M-BMSC stiffness through SDF-1/CXCR4/AKT signaling. PMID:25450979

  13. Quantification of Clonal Circulating Plasma cells in Relapsed Multiple Myeloma

    PubMed Central

    Gonsalves, Wilson I; Morice, William G; Rajkumar, S. Vincent; Gupta, Vinay; Timm, Michael M; Dispenzieri, Angela; Buadi, Francis K; Lacy, Martha Q; Singh, Preet P; Kapoor, Prashant; Gertz, Morie A; Kumar, Shaji K

    2014-01-01

    The presence of clonal circulating plasma cells (cPCs) remains a marker of high-risk disease in newly diagnosed multiple myeloma (MM) patients. However, its prognostic utility in MM patients with previously treated disease is unknown. We studied 647 consecutive patients with previously treated MM seen at the Mayo Clinic, Rochester who had their peripheral blood evaluated for cPCs by multi-parameter flow cytometry. Of these patients, 145 had actively relapsing disease while the remaining 502 had disease that was in a plateau and included 68 patients in complete remission (CR) and 434 patients with stable disease. Patients with actively relapsing disease were more likely to have clonal cPCs than those in a plateau (P < 0.001). None of the patients in CR had any clonal cPCs detected. Among patients whose disease was in a plateau, the presence of clonal cPCs predicted for a worse median survival (22 months vs. not reached; P=0.004). Among actively relapsing patients, the presence of ≥100 cPCs predicted for a worse survival after flow cytometry analysis (12 months vs. 33 months; P<0.001). Future studies are needed to determine the role of these findings in developing a risk-adapted treatment approach in MM patients with actively relapsing disease. PMID:25113422

  14. Epigenetic mechanisms of cell adhesion-mediated drug resistance in multiple myeloma.

    PubMed

    Furukawa, Yusuke; Kikuchi, Jiro

    2016-09-01

    Multiple myeloma cells acquire the resistance to anti-cancer drugs through physical and functional interactions with the bone marrow microenvironment via two overlapping mechanisms. First, bone marrow stromal cells (BMSCs) produce soluble factors, such as interleukin-6 and insulin-like growth factor-1, to activate signal transduction pathways leading to drug resistance (soluble factor-mediated drug resistance). Second, BMSCs up-regulate the expression of cell cycle inhibitors, anti-apoptotic members of the Bcl-2 family and ABC drug transporters in myeloma cells upon direct adhesion [cell adhesion-mediated drug resistance (CAM-DR)]. Elucidation of the mechanisms underlying drug resistance may greatly contribute to the advancement of cancer therapies. Recent investigations, including ours, have revealed the involvement of epigenetic alterations in drug resistance especially CAM-DR. For example, we found that class I histone deacetylases (HDACs) determine the sensitivity of proteasome inhibitors and the histone methyltransferase EZH2 regulates the transcription of anti-apoptotic genes during the acquisition of CAM-DR by myeloma cells. In addition, another histone methyltransferase MMSET was shown to confer drug resistance to myeloma cells by facilitating DNA repair. These findings provide a rationale for the inclusion of epigenetic drugs, such as HDAC inhibitors and histone methylation modifiers, in combination chemotherapy for MM patients to increase the therapeutic index. PMID:27411688

  15. FGF23 is elevated in multiple myeloma and increases heparanase expression by tumor cells.

    PubMed

    Suvannasankha, Attaya; Tompkins, Douglas R; Edwards, Daniel F; Petyaykina, Katarina V; Crean, Colin D; Fournier, Pierrick G; Parker, Jamie M; Sandusky, George E; Ichikawa, Shoji; Imel, Erik A; Chirgwin, John M

    2015-08-14

    Multiply myeloma (MM) grows in and destroys bone, where osteocytes secrete FGF23, a hormone which affects phosphate homeostasis and aging. We report that multiple myeloma (MM) cells express receptors for and respond to FGF23. FGF23 increased mRNA for EGR1 and its target heparanase, a pro-osteolytic factor in MM. FGF23 signals through a complex of klotho and a classical FGF receptor (FGFR); both were expressed by MM cell lines and patient samples. Bone marrow plasma cells from 42 MM patients stained positively for klotho, while plasma cells from 8 patients with monoclonal gammopathy of undetermined significance (MGUS) and 6 controls were negative. Intact, active FGF23 was increased 2.9X in sera of MM patients compared to controls. FGF23 was not expressed by human MM cells, but co-culture with mouse bone increased its mRNA. The FGFR inhibitor NVP-BGJ398 blocked the heparanase response to FGF23. NVP-BGJ398 did not inhibit 8226 growth in vitro but significantly suppressed growth in bone and induction of the osteoclast regulator RANK ligand, while decreasing heparanase mRNA. The bone microenvironment provides resistance to some anti-tumor drugs but increased the activity of NVP-BGJ398 against 8226 cells. The FGF23/klotho/heparanase signaling axis may offer targets for treatment of MM in bone. PMID:25944690

  16. FGF23 is elevated in multiple myeloma and increases heparanase expression by tumor cells

    PubMed Central

    Suvannasankha, Attaya; Tompkins, Douglas R.; Edwards, Daniel F.; Petyaykina, Katarina V.; Crean, Colin D.; Fournier, Pierrick G.; Parker, Jamie M.; Sandusky, George E.; Ichikawa, Shoji; Imel, Erik A.; Chirgwin, John M.

    2015-01-01

    Multiply myeloma (MM) grows in and destroys bone, where osteocytes secrete FGF23, a hormone which affects phosphate homeostasis and aging. We report that multiple myeloma (MM) cells express receptors for and respond to FGF23. FGF23 increased mRNA for EGR1 and its target heparanase, a pro-osteolytic factor in MM. FGF23 signals through a complex of klotho and a classical FGF receptor (FGFR); both were expressed by MM cell lines and patient samples. Bone marrow plasma cells from 42 MM patients stained positively for klotho, while plasma cells from 8 patients with monoclonal gammopathy of undetermined significance (MGUS) and 6 controls were negative. Intact, active FGF23 was increased 2.9X in sera of MM patients compared to controls. FGF23 was not expressed by human MM cells, but co-culture with mouse bone increased its mRNA. The FGFR inhibitor NVP-BGJ398 blocked the heparanase response to FGF23. NVP-BGJ398 did not inhibit 8226 growth in vitro but significantly suppressed growth in bone and induction of the osteoclast regulator RANK ligand, while decreasing heparanase mRNA. The bone microenvironment provides resistance to some anti-tumor drugs but increased the activity of NVP-BGJ398 against 8226 cells. The FGF23/klotho/heparanase signaling axis may offer targets for treatment of MM in bone. PMID:25944690

  17. Whole-epigenome analysis in multiple myeloma reveals DNA hypermethylation of B cell-specific enhancers

    PubMed Central

    Castellano, Giancarlo; Pascual, Marien; Heath, Simon; Kulis, Marta; Segura, Victor; Bergmann, Anke; Esteve, Anna; Merkel, Angelika; Raineri, Emanuele; Agueda, Lidia; Blanc, Julie; Richardson, David; Clarke, Laura; Datta, Avik; Russiñol, Nuria; Queirós, Ana C.; Beekman, Renée; Rodríguez-Madoz, Juan R.; José-Enériz, Edurne San; Fang, Fang; Gutiérrez, Norma C.; García-Verdugo, José M.; Robson, Michael I.; Schirmer, Eric C.; Guruceaga, Elisabeth; Martens, Joost H.A.; Gut, Marta; Calasanz, Maria J.; Flicek, Paul; Siebert, Reiner; Campo, Elías; Miguel, Jesús F. San; Melnick, Ari; Stunnenberg, Hendrik G.; Gut, Ivo G.

    2015-01-01

    While analyzing the DNA methylome of multiple myeloma (MM), a plasma cell neoplasm, by whole-genome bisulfite sequencing and high-density arrays, we observed a highly heterogeneous pattern globally characterized by regional DNA hypermethylation embedded in extensive hypomethylation. In contrast to the widely reported DNA hypermethylation of promoter-associated CpG islands (CGIs) in cancer, hypermethylated sites in MM, as opposed to normal plasma cells, were located outside CpG islands and were unexpectedly associated with intronic enhancer regions defined in normal B cells and plasma cells. Both RNA-seq and in vitro reporter assays indicated that enhancer hypermethylation is globally associated with down-regulation of its host genes. ChIP-seq and DNase-seq further revealed that DNA hypermethylation in these regions is related to enhancer decommissioning. Hypermethylated enhancer regions overlapped with binding sites of B cell-specific transcription factors (TFs) and the degree of enhancer methylation inversely correlated with expression levels of these TFs in MM. Furthermore, hypermethylated regions in MM were methylated in stem cells and gradually became demethylated during normal B-cell differentiation, suggesting that MM cells either reacquire epigenetic features of undifferentiated cells or maintain an epigenetic signature of a putative myeloma stem cell progenitor. Overall, we have identified DNA hypermethylation of developmentally regulated enhancers as a new type of epigenetic modification associated with the pathogenesis of MM. PMID:25644835

  18. HIF-1α inhibition blocks the cross talk between multiple myeloma plasma cells and tumor microenvironment

    SciTech Connect

    Borsi, Enrica; Perrone, Giulia; Terragna, Carolina; Martello, Marina; Zamagni, Elena; Tacchetti, Paola; Pantani, Lucia; Brioli, Annamaria; Dico, Angela Flores; Zannetti, Beatrice Anna; Rocchi, Serena; Cavo, Michele

    2014-11-01

    Multiple myeloma (MM) is a malignant disorder of post-germinal center B cells, characterized by the clonal proliferation of malignant plasma cells (PCs) within the bone marrow (BM). The reciprocal and complex interactions that take place between the different compartments of BM and the MM cells result in tumor growth, angiogenesis, bone disease, and drug resistance. Given the importance of the BM microenvironment in MM pathogenesis, we investigated the possible involvement of Hypoxia-Inducible transcription Factor-1 alpha (HIF-1α) in the PCs-bone marrow stromal cells interplay. To test this hypothesis, we used EZN-2968, a 3rd generation antisense oligonucleotide against HIF-1α, to inhibit HIF-1α functions. Herein, we provide evidence that the interaction between MM cells and BM stromal cells is drastically reduced upon HIF-1α down-modulation. Notably, we showed that upon exposure to HIF-1α inhibitor, neither the incubation with IL-6 nor the co-culture with BM stromal cells were able to revert the anti-proliferative effect induced by EZN-2968. Moreover, we observed a down-modulation of cytokine-induced signaling cascades and a reduction of MM cells adhesion capability to the extracellular matrix proteins in EZN-2968-treated samples. Taken together, these results strongly support the concept that HIF-1α plays a critical role in the interactions between bone BM cells and PCs in Multiple Myeloma. - Highlights: • HIF-1α inhibition induces a mild apoptotic cell death. • Down-modulation of cytokine-induced signaling cascades upon HIF-1α inhibition. • Reduced interaction between MM cells and BMSCs upon HIF-1α down-modulation. • Reduced PCs adhesion to the extracellular matrix protein induced by EZN-2968. • HIF-1α inhibition may be an attractive therapeutic strategy for Multiple Myeloma.

  19. The novel immunotoxin HM1.24-ETA′ induces apoptosis in multiple myeloma cells

    PubMed Central

    Staudinger, M; Glorius, P; Burger, R; Kellner, C; Klausz, K; Günther, A; Repp, R; Klapper, W; Gramatzki, M; Peipp, M

    2014-01-01

    Despite new treatment modalities, the clinical outcome in a substantial number of patients with multiple myeloma (MM) has yet to be improved. Antibody-based targeted therapies for myeloma patients could make use of the HM1.24 antigen (CD317), a surface molecule overexpressed on malignant plasma cells and efficiently internalized. Here, a novel immunotoxin, HM1.24-ETA′, is described. HM1.24-ETA′ was generated by genetic fusion of a CD317-specific single-chain Fv (scFv) antibody and a truncated variant of Pseudomonas aeruginosa exotoxin A (ETA′). HM1.24-ETA′ inhibited growth of interleukin 6 (IL-6)-dependent and -independent myeloma cell lines. Half-maximal growth inhibition was observed at concentrations as low as 0.3 nM. Target cell killing occurred via induction of apoptosis and was unaffected in co-culture experiments with bone marrow stromal cells. HM1.24-ETA′ efficiently triggered apoptosis of freshly isolated/cryopreserved cells of patients with plasma cell leukemia and MM and was active in a preclinical severe combined immunodeficiency (SCID) mouse xenograft model. Importantly, HM1.24-ETA′ was not cytotoxic against CD317-positive cells from healthy tissue (monocytes, human umbilical vein endothelial cells). These results indicate that CD317 may represent a promising target structure for specific and efficient immunotoxin therapy for patients with plasma cell tumors. PMID:24927408

  20. Mature adipocytes in bone marrow protect myeloma cells against chemotherapy through autophagy activation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A major problem in patients with multiple myeloma is chemotherapy resistance, which develops in myeloma cells upon interaction with bone marrow stromal cells. However, few studies have determined the role of bone marrow adipocytes, a major component of stromal cells in the bone marrow, in myeloma ch...

  1. Killing multiple myeloma cells with the small molecule 3-bromopyruvate: implications for therapy.

    PubMed

    Majkowska-Skrobek, Grażyna; Augustyniak, Daria; Lis, Paweł; Bartkowiak, Anna; Gonchar, Mykhailo; Ko, Young H; Pedersen, Peter L; Goffeau, Andre; Ułaszewski, Stanisław

    2014-07-01

    The small molecule 3-bromopyruvate (3-BP), which has emerged recently as the first member of a new class of potent anticancer agents, was tested for its capacity to kill multiple myeloma (MM) cancer cells. Human MM cells (RPMI 8226) begin to lose viability significantly within 8 h of incubation in the presence of 3-BP. The Km (0.3 mmol/l) for intracellular accumulation of 3-BP in MM cells is 24 times lower than that in control cells (7.2 mmol/l). Therefore, the uptake of 3-BP by MM cells is significantly higher than that by peripheral blood mononuclear cells. Further, the IC50 values for human MM cells and control peripheral blood mononuclear cells are 24 and 58 µmol/l, respectively. Therefore, specificity and selectivity of 3-BP toward MM cancer cells are evident on the basis of the above. In MM cells the transcription levels of the gene encoding the monocarboxylate transporter MCT1 is significantly amplified compared with control cells. The level of intracellular ATP in MM cells decreases by over 90% within 1 h after addition of 100 µmol/l 3-BP. The cytotoxicity of 3-BP, exemplified by a marked decrease in viability of MM cells, is potentiated by the inhibitor of glutathione synthesis buthionine sulfoximine. In addition, the lack of mutagenicity and its superior capacity relative to Glivec to kill MM cancer cells are presented in this study. PMID:24557015

  2. Osteoclasts control reactivation of dormant myeloma cells by remodelling the endosteal niche.

    PubMed

    Lawson, Michelle A; McDonald, Michelle M; Kovacic, Natasa; Hua Khoo, Weng; Terry, Rachael L; Down, Jenny; Kaplan, Warren; Paton-Hough, Julia; Fellows, Clair; Pettitt, Jessica A; Neil Dear, T; Van Valckenborgh, Els; Baldock, Paul A; Rogers, Michael J; Eaton, Colby L; Vanderkerken, Karin; Pettit, Allison R; Quinn, Julian M W; Zannettino, Andrew C W; Phan, Tri Giang; Croucher, Peter I

    2015-01-01

    Multiple myeloma is largely incurable, despite development of therapies that target myeloma cell-intrinsic pathways. Disease relapse is thought to originate from dormant myeloma cells, localized in specialized niches, which resist therapy and repopulate the tumour. However, little is known about the niche, and how it exerts cell-extrinsic control over myeloma cell dormancy and reactivation. In this study, we track individual myeloma cells by intravital imaging as they colonize the endosteal niche, enter a dormant state and subsequently become activated to form colonies. We demonstrate that dormancy is a reversible state that is switched 'on' by engagement with bone-lining cells or osteoblasts, and switched 'off' by osteoclasts remodelling the endosteal niche. Dormant myeloma cells are resistant to chemotherapy that targets dividing cells. The demonstration that the endosteal niche is pivotal in controlling myeloma cell dormancy highlights the potential for targeting cell-extrinsic mechanisms to overcome cell-intrinsic drug resistance and prevent disease relapse. PMID:26632274

  3. International Myeloma Working Group guidelines for the management of multiple myeloma patients ineligible for standard high-dose chemotherapy with autologous stem cell transplantation.

    PubMed

    Palumbo, A; Sezer, O; Kyle, R; Miguel, J S; Orlowski, R Z; Moreau, P; Niesvizky, R; Morgan, G; Comenzo, R; Sonneveld, P; Kumar, S; Hajek, R; Giralt, S; Bringhen, S; Anderson, K C; Richardson, P G; Cavo, M; Davies, F; Bladé, J; Einsele, H; Dimopoulos, M A; Spencer, A; Dispenzieri, A; Reiman, T; Shimizu, K; Lee, J H; Attal, M; Boccadoro, M; Mateos, M; Chen, W; Ludwig, H; Joshua, D; Chim, J; Hungria, V; Turesson, I; Durie, B G M; Lonial, S

    2009-10-01

    In 2005, the first guidelines were published on the management of patients with multiple myeloma (MM). An expert panel reviewed the currently available literature as the basis for a set of revised and updated consensus guidelines for the diagnosis and management of patients with MM who are not eligible for autologous stem cell transplantation. Here we present recommendations on the diagnosis, treatment of newly diagnosed non-transplant-eligible patients and the management of complications occurring during induction therapy among these patients. These guidelines will aid the physician in daily clinical practice and will ensure optimal care for patients with MM. PMID:19494840

  4. Role of Bruton's tyrosine kinase (BTK) in growth and metastasis of INA6 myeloma cells

    PubMed Central

    Bam, R; Venkateshaiah, S U; Khan, S; Ling, W; Randal, S S; Li, X; Zhang, Q; van Rhee, F; Barlogie, B; Epstein, J; Yaccoby, S

    2014-01-01

    Bruton's tyrosine kinase (BTK) and the chemokine receptor CXCR4 are linked in various hematologic malignancies. The aim of the study was to understand the role of BTK in myeloma cell growth and metastasis using the stably BTK knockdown luciferase-expressing INA6 myeloma line. BTK knockdown had reduced adhesion to stroma and migration of myeloma cells toward stromal cell-derived factor-1. BTK knockdown had no effect on short-term in vitro growth of myeloma cells, although clonogenicity was inhibited and myeloma cell growth was promoted in coculture with osteoclasts. In severe combined immunodeficient-rab mice with contralaterally implanted pieces of bones, BTK knockdown in myeloma cells promoted their proliferation and growth in the primary bone but suppressed metastasis to the contralateral bone. BTK knockdown myeloma cells had altered the expression of genes associated with adhesion and proliferation and increased mammalian target of rapamycin signaling. In 176 paired clinical samples, BTK and CXCR4 expression was lower in myeloma cells purified from a focal lesion than from a random site. BTK expression in random-site samples was correlated with proportions of myeloma cells expressing cell surface CXCR4. Our findings highlight intratumoral heterogeneity of myeloma cells in the bone marrow microenvironment and suggest that BTK is involved in determining proliferative, quiescent or metastatic phenotypes of myeloma cells. PMID:25083818

  5. Role of Bruton's tyrosine kinase in myeloma cell migration and induction of bone disease.

    PubMed

    Bam, Rakesh; Ling, Wen; Khan, Sharmin; Pennisi, Angela; Venkateshaiah, Sathisha Upparahalli; Li, Xin; van Rhee, Frits; Usmani, Saad; Barlogie, Bart; Shaughnessy, John; Epstein, Joshua; Yaccoby, Shmuel

    2013-06-01

    Myeloma cells typically grow in bone, recruit osteoclast precursors and induce their differentiation and activity in areas adjacent to tumor foci. Bruton's tyrosine kinase (BTK), of the TEC family, is expressed in hematopoietic cells and is particularly involved in B-lymphocyte function and osteoclastogenesis. We demonstrated BTK expression in clinical myeloma plasma cells, interleukin (IL)-6- or stroma-dependent cell lines and osteoclasts. SDF-1 induced BTK activation in myeloma cells and BTK inhibition by small hairpin RNA or the small molecule inhibitor, LFM-A13, reduced their migration toward stromal cell-derived factor-1 (SDF-1). Pretreatment with LFM-A13 also reduced in vivo homing of myeloma cells to bone using bioluminescence imaging in the SCID-rab model. Enforced expression of BTK in myeloma cell line enhanced cell migration toward SDF-1 but had no effect on short-term growth. BTK expression was correlated with cell-surface CXCR4 expression in myeloma cells (n = 33, r = 0.81, P < 0.0001), and BTK gene and protein expression was more profound in cell-surface CXCR4-expressing myeloma cells. BTK was not upregulated by IL-6 while its inhibition had no effect on IL-6 signaling in myeloma cells. Human osteoclast precursors also expressed BTK and cell-surface CXCR4 and migrated toward SDF-1. LFM-A13 suppressed migration and differentiation of osteoclast precursors as well as bone-resorbing activity of mature osteoclasts. In primary myeloma-bearing SCID-rab mice, LFM-A13 inhibited osteoclast activity, prevented myeloma-induced bone resorption and moderately suppressed myeloma growth. These data demonstrate BTK and cell-surface CXCR4 association in myeloma cells and that BTK plays a role in myeloma cell homing to bone and myeloma-induced bone disease. Am. J. Hematol. 88:463-471, 2013. © 2013 Wiley Periodicals, Inc. PMID:23456977

  6. Role of Bruton’s tyrosine kinase in myeloma cell migration and induction of bone disease

    PubMed Central

    Bam, Rakesh; Ling, Wen; Khan, Sharmin; Pennisi, Angela; Venkateshaiah, Sathisha Upparahalli; Li, Xin; van Rhee, Frits; Usmani, Saad; Barlogie, Bart; Shaughnessy, John; Epstein, Joshua; Yaccoby, Shmuel

    2014-01-01

    Myeloma cells typically grow in bone, recruit osteoclast precursors and induce their differentiation and activity in areas adjacent to tumor foci. Bruton’s tyrosine kinase (BTK), of the TEC family, is expressed in hematopoietic cells and is particularly involved in B-lymphocyte function and osteoclastogenesis. We demonstrated BTK expression in clinical myeloma plasma cells, interleukin (IL) –6– or stroma–dependent cell lines and osteoclasts. SDF-1 induced BTK activation in myeloma cells and BTK inhibition by small hairpin RNA or the small molecule inhibitor, LFM-A13, reduced their migration toward stromal cell-derived factor-1 (SDF-1). Pretreatment with LFM-A13 also reduced in vivo homing of myeloma cells to bone using bioluminescence imaging in the SCID-rab model. Enforced expression of BTK in myeloma cell line enhanced cell migration toward SDF-1 but had no effect on short-term growth. BTK expression was correlated with cell-surface CXCR4 expression in myeloma cells (n = 33, r = 0.81, P < 0.0001), and BTK gene and protein expression was more profound in cell-surface CXCR4-expressing myeloma cells. BTK was not upregulated by IL-6 while its inhibition had no effect on IL-6 signaling in myeloma cells. Human osteoclast precursors also expressed BTK and cell-surface CXCR4 and migrated toward SDF-1. LFM-A13 suppressed migration and differentiation of osteoclast precursors as well as bone-resorbing activity of mature osteoclasts. In primary myeloma-bearing SCID-rab mice, LFM-A13 inhibited osteoclast activity, prevented myeloma-induced bone resorption and moderately suppressed myeloma growth. These data demonstrate BTK and cell-surface CXCR4 association in myeloma cells and that BTK plays a role in myeloma cell homing to bone and myeloma-induced bone disease. PMID:23456977

  7. Autophagy in drug resistance of the multiple myeloma cell line RPMI8226 to doxorubicin.

    PubMed

    Pan, Y-Z; Wang, X; Bai, H; Wang, C-B; Zhang, Q; Xi, R

    2015-01-01

    We investigated the effect of autophagy on drug resistance of multiple myeloma (MM) to doxorubicin (DOX). A DOX-resistant MM cell line (RPMI8226/DOX) was developed by progressively increasing the DOX concentration gradient. The drug resistance index was determined using the MTT method. Transmission electron microscopy, anti-light chain 3-fluorescein isothiocyanate immunofluorescence, and Western blotting were used to detect autophagy of MM cells. Flow cytometry was applied to detect changes in apoptosis of RPMI8226/DOX cells (stained with annexin-V/propidium iodide) caused by inhibition by hydroxychloroquine and 3-methyladenine on autophagy. The drug resistance index of RPMI8226/DOX to DOX was 10.8, and autophagy/lysosomal was clearly observed in RPMI8226/DOX cells under transmission electron microscopy, while immunofluorescence showed granular immunofluorescence in cells. Western blot analysis showed that light chain 3-II protein expression level was higher in RPMI8226/DOX cells than in RPMI8226/S cells. The apoptosis test showed that hydroxychloroquine or 3-methyladenine partially reversed the drug resistance of RPMI8226/DOX cells by inhibiting autophagy. Activation of autophagy in MM cells may explain the drug resistance of myeloma. PMID:26125760

  8. Deazaneplanocin A Is a Promising Drug to Kill Multiple Myeloma Cells in Their Niche

    PubMed Central

    Gaudichon, Jérémie; Milano, Francesco; Cahu, Julie; DaCosta, Lætitia; Martens, Anton C.; Renoir, Jack-Michel; Sola, Brigitte

    2014-01-01

    Tumoral plasma cells has retained stemness features and in particular, a polycomb-silenced gene expression signature. Therefore, epigenetic therapy could be a mean to fight for multiple myeloma (MM), still an incurable pathology. Deazaneplanocin A (DZNep), a S-adenosyl-L-homocysteine hydrolase inhibitor, targets enhancer of zest homolog 2 (EZH2), a component of polycomb repressive complex 2 (PRC2) and is capable to induce the death of cancer cells. We show here that, in some MM cell lines, DZNep induced both caspase-dependent and -independent apoptosis. However, the induction of cell death was not mediated through its effect on EZH2 and the trimethylation on lysine 27 of histone H3 (H3K27me3). DZNep likely acted through non-epigenetic mechanisms in myeloma cells. In vivo, in xenograft models, and in vitro DZNep showed potent antimyeloma activity alone or in combination with bortezomib. These preclinical data let us to envisage new therapeutic strategies for myeloma. PMID:25255316

  9. A peptide nucleic acid targeting nuclear RAD51 sensitizes multiple myeloma cells to melphalan treatment.

    PubMed

    Alagpulinsa, David Abasiwani; Yaccoby, Shmuel; Ayyadevara, Srinivas; Shmookler Reis, Robert Joseph

    2015-01-01

    RAD51-mediated recombinational repair is elevated in multiple myeloma (MM) and predicts poor prognosis. RAD51 has been targeted to selectively sensitize and/or kill tumor cells. Here, we employed a peptide nucleic acid (PNA) to inhibit RAD51 expression in MM cells. We constructed a PNA complementary to a unique segment of the RAD51 gene promoter, spanning the transcription start site, and conjugated it to a nuclear localization signal (PKKKRKV) to enhance cellular uptake and nuclear delivery without transfection reagents. This synthetic construct, (PNArad51_nls), significantly reduced RAD51 transcripts in MM cells, and markedly reduced the number and intensity of de novo and melphalan-induced nuclear RAD51 foci, while increasing the level of melphalan-induced γH2AX foci. Melphalan alone markedly induced the expression of 5 other genes involved in homologous-recombination repair, yet suppression of RAD51 by PNArad51_nls was sufficient to synergize with melphalan, producing significant synthetic lethality of MM cells in vitro. In a SCID-rab mouse model mimicking the MM bone marrow microenvironment, treatment with PNArad51_nls ± melphalan significantly suppressed tumor growth after 2 weeks, whereas melphalan plus control PNArad4µ_nls was ineffectual. This study highlights the importance of RAD51 in myeloma growth and is the first to demonstrate that anti-RAD51 PNA can potentiate conventional MM chemotherapy. PMID:25996477

  10. Mature adipocytes in bone marrow protect myeloma cells against chemotherapy through autophagy activation.

    PubMed

    Liu, Zhiqiang; Xu, Jingda; He, Jin; Liu, Huan; Lin, Pei; Wan, Xinhai; Navone, Nora M; Tong, Qiang; Kwak, Larry W; Orlowski, Robert Z; Yang, Jing

    2015-10-27

    A major problem in patients with multiple myeloma is chemotherapy resistance, which develops in myeloma cells upon interaction with bone marrow stromal cells. However, few studies have determined the role of bone marrow adipocytes, a major component of stromal cells in the bone marrow, in myeloma chemotherapy resistance. We reveal that mature human adipocytes activate autophagy and upregulate the expression of autophagic proteins, thereby suppressing chemotherapy-induced caspase cleavage and apoptosis in myeloma cells. We found that adipocytes secreted known and novel adipokines, such as leptin and adipsin. The addition of these adipokines enhanced the expression of autophagic proteins and reduced apoptosis in myeloma cells. In vivo studies further demonstrated the importance of bone marrow-derived adipocytes in the reduced response of myeloma cells to chemotherapy. Our findings suggest that adipocytes, adipocyte-secreted adipokines, and adipocyte-activated autophagy are novel targets for combatting chemotherapy resistance and enhancing treatment efficacy in myeloma patients. PMID:26455377

  11. SENP1 inhibition induces apoptosis and growth arrest of multiple myeloma cells through modulation of NF-κB signaling

    SciTech Connect

    Xu, Jun; Sun, Hui-Yan; Xiao, Feng-Jun; Wang, Hua; Yang, Yang; Wang, Lu; Gao, Chun-Ji; Guo, Zi-Kuan; Wu, Chu-Tse; Wang, Li-Sheng

    2015-05-01

    SUMO/sentrin specific protease 1 (Senp1) is an important regulation protease in the protein sumoylation, which affects the cell cycle, proliferation and differentiation. The role of Senp1 mediated protein desumoylation in pathophysiological progression of multiple myeloma is unknown. In this study, we demonstrated that Senp1 is overexpressed and induced by IL-6 in multiple myeloma cells. Lentivirus-mediated Senp1 knockdown triggers apoptosis and reduces viability, proliferation and colony forming ability of MM cells. The NF-κB family members including P65 and inhibitor protein IkBα play important roles in regulation of MM cell survival and proliferation. We further demonstrated that Senp1 inhibition decreased IL-6-induced P65 and IkBα phosphorylation, leading to inactivation of NF-kB signaling in MM cells. These results delineate a key role for Senp1in IL-6 induced proliferation and survival of MM cells, suggesting it may be a potential new therapeutic target in MM. - Highlights: • Senp1 is overexpressed and induced by IL-6 in multiple myeloma cells. • Senp1 knockdown triggers apoptosis and reduces proliferation of MM cells. • Senp1 inhibition decreased IL-6-induced P65 and IkBα phosphorylation.

  12. Stem Cell Harvesting after Bortezomib-Based Reinduction for Myeloma Relapsing after Autologous Transplantation: Results from the British Society of Blood and Marrow Transplantation/United Kingdom Myeloma Forum Myeloma X (Intensive) Trial.

    PubMed

    Parrish, Christopher; Morris, Curly T C M; Williams, Cathy D; Cairns, David A; Cavenagh, Jamie; Snowden, John A; Ashcroft, John; Cavet, Jim; Hunter, Hannah; Bird, Jenny M; Chalmers, Anna; Brown, Julia M; Yong, Kwee; Schey, Steve; Chown, Sally; Cook, Gordon

    2016-06-01

    The phase III British Society of Blood and Marrow Transplantation/United Kingdom Myeloma Forum Myeloma X trial (MMX) demonstrated prospectively, for the first time, superiority of salvage autologous stem cell transplantation over chemotherapy maintenance for multiple myeloma (MM) in first relapse after previous ASCT. However, many patients have stored insufficient stem cells (PBSC) for second ASCT and robust evidence for remobilization after first ASCT is lacking. We report the feasibility, safety, and efficacy of remobilization after bortezomib-doxorubicin-dexamethasone reinduction in MMX and outcomes of second ASCT with these cells. One hundred ten patients underwent ≥1 remobilization with 32 and 4, undergoing second and third attempts, respectively. Toxicities of remobilization were similar to those seen in first-line mobilization. After all attempts, 52% of those with insufficient previously stored PBSC had harvested a sufficient quantity to proceed to second ASCT. Median PBSC doses infused, neutrophil engraftment, and time to discharge after second ASCT were similar regardless of stem cell source, as were the toxicities of second ASCT. No significant differences between PBSC sources were noted in depth of response to ASCT or time to progression. Harvesting after bortezomib-doxorubicin-dexamethasone reinduction for MM at first relapse is safe and feasible and yields a reliable cell product for second ASCT. The study is registered with ClinicalTrials.gov (NCT00747877) and EudraCT (2006-005890-24). PMID:26827659

  13. Involvement of multiple myeloma cell-derived exosomes in osteoclast differentiation

    PubMed Central

    Raimondi, Lavinia; De Luca, Angela; Amodio, Nicola; Manno, Mauro; Raccosta, Samuele; Taverna, Simona; Bellavia, Daniele; Naselli, Flores; Fontana, Simona; Schillaci, Odessa; Giardino, Roberto; Fini, Milena; Tassone, Pierfrancesco; Santoro, Alessandra; De Leo, Giacomo; Giavaresi, Gianluca; Alessandro, Riccardo

    2015-01-01

    Bone disease is the most frequent complication in multiple myeloma (MM) resulting in osteolytic lesions, bone pain, hypercalcemia and renal failure. In MM bone disease the perfect balance between bone-resorbing osteoclasts (OCs) and bone-forming osteoblasts (OBs) activity is lost in favour of OCs, thus resulting in skeletal disorders. Since exosomes have been described for their functional role in cancer progression, we here investigate whether MM cell-derived exosomes may be involved in OCs differentiation. We show that MM cells produce exosomes which are actively internalized by Raw264.7 cell line, a cellular model of osteoclast formation. MM cell-derived exosomes positively modulate pre-osteoclast migration, through the increasing of CXCR4 expression and trigger a survival pathway. MM cell-derived exosomes play a significant pro-differentiative role in murine Raw264.7 cells and human primary osteoclasts, inducing the expression of osteoclast markers such as Cathepsin K (CTSK), Matrix Metalloproteinases 9 (MMP9) and Tartrate-resistant Acid Phosphatase (TRAP). Pre-osteoclast treated with MM cell-derived exosomes differentiate in multinuclear OCs able to excavate authentic resorption lacunae. Similar results were obtained with exosomes derived from MM patient's sera. Our data indicate that MM-exosomes modulate OCs function and differentiation. Further studies are needed to identify the OCs activating factors transported by MM cell-derived exosomes. PMID:25944696

  14. The natural compound forskolin synergizes with dexamethasone to induce cell death in myeloma cells via BIM

    PubMed Central

    Follin-Arbelet, Virginie; Misund, Kristine; Hallan Naderi, Elin; Ugland, Hege; Sundan, Anders; Kiil Blomhoff, Heidi

    2015-01-01

    We have previously demonstrated that activation of the cyclic adenosine monophosphate (cAMP) pathway kills multiple myeloma (MM) cells both in vitro and in vivo. In the present study we have investigated the potential of enhancing the killing of MM cell lines and primary MM cells by combining the cAMP-elevating compound forskolin with the commonly used MM therapeutic drugs melphalan, cyclophosphamide, doxorubicin, bortezomib and dexamethasone. We observed that forskolin potentiated the killing induced by all the tested agents as compared to treatment with the single agents alone. In particular, forskolin had a synergistic effect on the dexamethasone-responsive cell lines H929 and OM-2. By knocking down the proapoptotic BCL-2 family member BIM, we proved this protein to be involved in the synergistic induction of apoptosis by dexamethasone and forskolin. The ability of forskolin to maintain the killing of MM cells even at lower concentrations of the conventional agents suggests that forskolin may be used to diminish treatment-associated side effects. Our findings support a potential role of forskolin in combination with current conventional agents in the treatment of MM. PMID:26306624

  15. Frequent occurrence of highly expanded but unrelated B-cell clones in patients with multiple myeloma.

    PubMed

    Kriangkum, Jitra; Motz, Sarah N; Debes Marun, Carina S; Lafarge, Sandrine T; Gibson, Spencer B; Venner, Christopher P; Johnston, James B; Belch, Andrew R; Pilarski, Linda M

    2013-01-01

    Clonal diversity in multiple myeloma (MM) includes both MM-related and MM-unrelated clonal expansions which are subject to dominance exerted by the MM clone. Here we show evidence for the existence of minor but highly expanded unrelated B-cell clones in patients with MM defined by their complementary determining region 3 (CDR3) peak. We further characterize these clones over the disease and subsequent treatment. Second clones were identified by their specific IgH-VDJ sequences that are distinct from those of dominant MM clones. Clonal frequencies were determined through semi-quantitative PCR, quantitative PCR and single-cell polymerase chain reaction of the clone-specific sequence. In 13/74 MM patients, more than one dominant CDR3 peak was identified with 12 patients (16%) being truly biclonal. Second clones had different frequencies, were found in different locations and were found in different cell types from the dominant MM clone. Where analysis was possible, they were shown to have chromosomal characteristic distinct from those of the MM clone. The frequency of the second clone also changed over the course of the disease and often persisted despite treatment. Molecularly-defined second clones are infrequent in monoclonal gammopathy of undetermined significance (MGUS, 1/43 individuals or 2%), suggesting that they may arise at relatively late stages of myelomagenesis. In further support of our findings, biclonal gammopathy and concomitant MM and CLL (chronic lymphocytic leukemia) were confirmed to originate from two unrelated clones. Our data supports the idea that the clone giving rise to symptomatic myeloma exerts clonal dominance to prevent expansion of other clones. MM and second clones may arise from an underlying niche permissive of clonal expansion. The clinical significance of these highly expanded but unrelated clones remains to be confirmed. Overall, our findings add new dimensions to evaluating related and unrelated clonal expansions in MM and the

  16. Frequent Occurrence of Highly Expanded but Unrelated B-Cell Clones in Patients with Multiple Myeloma

    PubMed Central

    Kriangkum, Jitra; Motz, Sarah N.; Debes Marun, Carina S.; Lafarge, Sandrine T.; Gibson, Spencer B.; Venner, Christopher P.; Johnston, James B.; Belch, Andrew R.; Pilarski, Linda M.

    2013-01-01

    Clonal diversity in multiple myeloma (MM) includes both MM-related and MM-unrelated clonal expansions which are subject to dominance exerted by the MM clone. Here we show evidence for the existence of minor but highly expanded unrelated B-cell clones in patients with MM defined by their complementary determining region 3 (CDR3) peak. We further characterize these clones over the disease and subsequent treatment. Second clones were identified by their specific IgH-VDJ sequences that are distinct from those of dominant MM clones. Clonal frequencies were determined through semi-quantitative PCR, quantitative PCR and single-cell polymerase chain reaction of the clone-specific sequence. In 13/74 MM patients, more than one dominant CDR3 peak was identified with 12 patients (16%) being truly biclonal. Second clones had different frequencies, were found in different locations and were found in different cell types from the dominant MM clone. Where analysis was possible, they were shown to have chromosomal characteristic distinct from those of the MM clone. The frequency of the second clone also changed over the course of the disease and often persisted despite treatment. Molecularly-defined second clones are infrequent in monoclonal gammopathy of undetermined significance (MGUS, 1/43 individuals or 2%), suggesting that they may arise at relatively late stages of myelomagenesis. In further support of our findings, biclonal gammopathy and concomitant MM and CLL (chronic lymphocytic leukemia) were confirmed to originate from two unrelated clones. Our data supports the idea that the clone giving rise to symptomatic myeloma exerts clonal dominance to prevent expansion of other clones. MM and second clones may arise from an underlying niche permissive of clonal expansion. The clinical significance of these highly expanded but unrelated clones remains to be confirmed. Overall, our findings add new dimensions to evaluating related and unrelated clonal expansions in MM and the

  17. Single-cell analysis of targeted transcriptome predicts drug sensitivity of single cells within human myeloma tumors.

    PubMed

    Mitra, A K; Mukherjee, U K; Harding, T; Jang, J S; Stessman, H; Li, Y; Abyzov, A; Jen, J; Kumar, S; Rajkumar, V; Van Ness, B

    2016-05-01

    Multiple myeloma (MM) is characterized by significant genetic diversity at subclonal levels that have a defining role in the heterogeneity of tumor progression, clinical aggressiveness and drug sensitivity. Although genome profiling studies have demonstrated heterogeneity in subclonal architecture that may ultimately lead to relapse, a gene expression-based prediction program that can identify, distinguish and quantify drug response in sub-populations within a bulk population of myeloma cells is lacking. In this study, we performed targeted transcriptome analysis on 528 pre-treatment single cells from 11 myeloma cell lines and 418 single cells from 8 drug-naïve MM patients, followed by intensive bioinformatics and statistical analysis for prediction of proteasome inhibitor sensitivity in individual cells. Using our previously reported drug response gene expression profile signature at the single-cell level, we developed an R Statistical analysis package available at https://github.com/bvnlabSCATTome, SCATTome (single-cell analysis of targeted transcriptome), that restructures the data obtained from Fluidigm single-cell quantitative real-time-PCR analysis run, filters missing data, performs scaling of filtered data, builds classification models and predicts drug response of individual cells based on targeted transcriptome using an assortment of machine learning methods. Application of SCATT should contribute to clinically relevant analysis of intratumor heterogeneity, and better inform drug choices based on subclonal cellular responses. PMID:26710886

  18. Novel epitope evoking CD138 antigen-specific cytotoxic T lymphocytes targeting multiple myeloma and other plasma cell disorders

    PubMed Central

    Bae, Jooeun; Tai, Yu-Tzu; Anderson, Kenneth C.; Munshi, Nikhil C.

    2012-01-01

    The development of an immunotherapeutic strategy targeting CD138 antigen could potentially represent a new treatment option for multiple myeloma (MM). This study evaluated the immune function of CD138 peptide-specific cytotoxic T lymphocytes (CTL), generated ex vivo using an HLA-A2-specific CD138 epitope against MM cells. A novel immunogenic HLA-A2-specific CD138260-268 (GLVGLIFAV) peptide was identified from the full-length protein sequence of the CD138 antigen, which induced CTL specific to primary CD138+ MM cells. The peptide-induced CD138-CTL contained a high percentage of CD8+ activated/memory T cells with a low percentage of CD4+ T cell and naive CD8+ T cell subsets. The CTL displayed HLA-A2-restricted and CD138 antigen-specific cytotoxicity against MM cell lines. In addition, CD138-CTL demonstrated increased degranulation, proliferation and γ–interferon secretion to HLA-A2+/CD138+ myeloma cells, but not HLA-A2−/CD138+ or HLA-A2+/CD138− cells. The immune functional properties of the CD138-CTL were also demonstrated using primary HLA-A2+/CD138+ cells isolated from myeloma patients. In conclusion, a novel immunogenic CD138260-268 (GLVGLIFAV) peptide can induce antigen-specific CTL, which might be useful for the treatment of MM patients with peptide-based vaccine or cellular immunotherapy strategies. PMID:21902685

  19. Targeted Therapy for HM1.24 (CD317) on Multiple Myeloma Cells

    PubMed Central

    Harada, Takeshi

    2014-01-01

    Multiple myeloma (MM) still remains an incurable disease, at least because of the existence of cell-adhesion mediated drug-resistant MM cells and/or continuous recruitment of presumed MM cancer stem cell-like cells (CSCs). As a new alternative treatment modality, immunological approaches using monoclonal antibodies (mAbs) and/or cytotoxic T lymphocytes (CTLs) are now attracting much attention as a novel strategy attacking MM cells. We have identified that HM1.24 [also known as bone marrow stromal cell antigen 2 (BST2) or CD317] is overexpressed on not only mature MM cells but also MM CSCs. We then have developed a humanized mAb to HM1.24 and defucosylated version of the mAb to adapt to clinical practice. Moreover, we have successfully induced HM1.24-specific CTLs against MM cells. The combination of these innovative therapeutic modalities may likely exert an anti-MM activity by evading the drug resistance mechanism and eliminating presumed CSCs in MM. PMID:25143955

  20. T cell-based targeted immunotherapies for patients with multiple myeloma.

    PubMed

    Wang, Lei; Jin, Nan; Schmitt, Anita; Greiner, Jochen; Malcherek, Georg; Hundemer, Michael; Mani, Jiju; Hose, Dirk; Raab, Marc S; Ho, Anthony D; Chen, Bao-An; Goldschmidt, Hartmut; Schmitt, Michael

    2015-04-15

    Despite high-dose chemotherapy followed by autologs stem-cell transplantation as well as novel therapeutic agents, multiple myeloma (MM) remains incurable. Following the general trend towards personalized therapy, targeted immunotherapy as a new approach in the therapy of MM has emerged. Better progression-free survival and overall survival after tandem autologs/allogeneic stem cell transplantation suggest a graft versus myeloma effect strongly supporting the usefulness of immunological therapies for MM patients. How to induce a powerful antimyeloma effect is the key issue in this field. Pivotal is the definition of appropriate tumor antigen targets and effective methods for expansion of T cells with clinical activity. Besides a comprehensive list of tumor antigens for T cell-based approaches, eight promising antigens, CS1, Dickkopf-1, HM1.24, Human telomerase reverse transcriptase, MAGE-A3, New York Esophageal-1, Receptor of hyaluronic acid mediated motility and Wilms' tumor gene 1, are described in detail to provide a background for potential clinical use. Results from both closed and on-going clinical trials are summarized in this review. On the basis of the preclinical and clinical data, we elaborate on three encouraging therapeutic options, vaccine-enhanced donor lymphocyte infusion, chimeric antigen receptors-transfected T cells as well as vaccines with multiple antigen peptides, to pave the way towards clinically significant immune responses against MM. PMID:25195787

  1. Targeting PYK2 mediates microenvironment-specific cell death in multiple myeloma

    PubMed Central

    Meads, MB; Fang, B; Mathews, L; Gemmer, J; Nong, L; Rosado-Lopez, I; Nguyen, T; Ring, JE; Matsui, W; MacLeod, AR; Pachter, JA; Hazlehurst, LA; Koomen, JM; Shain, KH

    2015-01-01

    Multiple myeloma (MM) remains an incurable malignancy due, in part, to the influence of the bone marrow microenvironment on survival and drug response. Identification of microenvironment-specific survival signaling determinants is critical for the rational design of therapy and elimination of MM. Previously, we have shown that collaborative signaling between β1 integrin-mediated adhesion to fibronectin and interleukin-6 confers a more malignant phenotype via amplification of signal transducer and activator of transcription 3 (STAT3) activation. Further characterization of the events modulated under these conditions with quantitative phosphotyrosine profiling identified 193 differentially phosphorylated peptides. Seventy-seven phosphorylations were upregulated upon adhesion, including PYK2/FAK2, Paxillin, CASL and p130CAS consistent with focal adhesion (FA) formation. We hypothesized that the collaborative signaling between β1 integrin and gp130 (IL-6 beta receptor, IL-6 signal transducer) was mediated by FA formation and proline-rich tyrosine kinase 2 (PYK2) activity. Both pharmacological and molecular targeting of PYK2 attenuated the amplification of STAT3 phosphorylation under co-stimulatory conditions. Co-culture of MM cells with patient bone marrow stromal cells (BMSC) showed similar β1 integrin-specific enhancement of PYK2 and STAT3 signaling. Molecular and pharmacological targeting of PYK2 specifically induced cell death and reduced clonogenic growth in BMSC-adherent myeloma cell lines, aldehyde dehydrogenase-positive MM cancer stem cells and patient specimens. Finally, PYK2 inhibition similarly attenuated MM progression in vivo. These data identify a novel PYK2-mediated survival pathway in MM cells and MM cancer stem cells within the context of microenvironmental cues, providing preclinical support for the use of the clinical stage FAK/PYK2 inhibitors for treatment of MM, especially in a minimal residual disease setting. PMID:26387544

  2. Targeting PYK2 mediates microenvironment-specific cell death in multiple myeloma.

    PubMed

    Meads, M B; Fang, B; Mathews, L; Gemmer, J; Nong, L; Rosado-Lopez, I; Nguyen, T; Ring, J E; Matsui, W; MacLeod, A R; Pachter, J A; Hazlehurst, L A; Koomen, J M; Shain, K H

    2016-05-01

    Multiple myeloma (MM) remains an incurable malignancy due, in part, to the influence of the bone marrow microenvironment on survival and drug response. Identification of microenvironment-specific survival signaling determinants is critical for the rational design of therapy and elimination of MM. Previously, we have shown that collaborative signaling between β1 integrin-mediated adhesion to fibronectin and interleukin-6 confers a more malignant phenotype via amplification of signal transducer and activator of transcription 3 (STAT3) activation. Further characterization of the events modulated under these conditions with quantitative phosphotyrosine profiling identified 193 differentially phosphorylated peptides. Seventy-seven phosphorylations were upregulated upon adhesion, including PYK2/FAK2, Paxillin, CASL and p130CAS consistent with focal adhesion (FA) formation. We hypothesized that the collaborative signaling between β1 integrin and gp130 (IL-6 beta receptor, IL-6 signal transducer) was mediated by FA formation and proline-rich tyrosine kinase 2 (PYK2) activity. Both pharmacological and molecular targeting of PYK2 attenuated the amplification of STAT3 phosphorylation under co-stimulatory conditions. Co-culture of MM cells with patient bone marrow stromal cells (BMSC) showed similar β1 integrin-specific enhancement of PYK2 and STAT3 signaling. Molecular and pharmacological targeting of PYK2 specifically induced cell death and reduced clonogenic growth in BMSC-adherent myeloma cell lines, aldehyde dehydrogenase-positive MM cancer stem cells and patient specimens. Finally, PYK2 inhibition similarly attenuated MM progression in vivo. These data identify a novel PYK2-mediated survival pathway in MM cells and MM cancer stem cells within the context of microenvironmental cues, providing preclinical support for the use of the clinical stage FAK/PYK2 inhibitors for treatment of MM, especially in a minimal residual disease setting. PMID:26387544

  3. Autologous Hematopoietic Stem Cell Transplantation for Multiple Myeloma without Cryopreservation

    PubMed Central

    Al-Anazi, Khalid Ahmed

    2012-01-01

    High-dose chemotherapy followed by autologous hematopoietic stem cell transplantation is considered the standard of care for multiple myeloma patients who are eligible for transplantation. The process of autografting comprises the following steps: control of the primary disease by using a certain induction therapeutic protocol, mobilization of stem cells, collection of mobilized stem cells by apheresis, cryopreservation of the apheresis product, administration of high-dose pretransplant conditioning therapy, and finally infusion of the cryopreserved stem cells after thawing. However, in cancer centers that treat patients with multiple myeloma and have transplantation capabilities but lack or are in the process of acquiring cryopreservation facilities, alternatively noncryopreserved autologous stem cell therapy has been performed with remarkable success as the pretransplant conditioning therapy is usually brief. PMID:22693672

  4. Novel myeloma-associated antigens revealed in the context of syngeneic hematopoietic stem cell transplantation

    PubMed Central

    Biernacki, Melinda A.; Tai, Yu-tzu; Zhang, Guang Lan; Alonso, Anselmo; Zhang, Wandi; Prabhala, Rao; Zhang, Li; Munshi, Nikhil; Neuberg, Donna; Soiffer, Robert J.; Ritz, Jerome; Alyea, Edwin P.; Brusic, Vladimir; Anderson, Kenneth C.

    2012-01-01

    Targets of curative donor-derived graft-versus-myeloma (GVM) responses after allogeneic hematopoietic stem cell transplantation (HSCT) remain poorly defined, partly because immunity against minor histocompatibility Ags (mHAgs) complicates the elucidation of multiple myeloma (MM)–specific targets. We hypothesized that syngeneic HSCT would facilitate the identification of GVM-associated Ags because donor immune responses in this setting should exclusively target unique tumor Ags in the absence of donor-host genetic disparities. Therefore, in the present study, we investigated the development of tumor immunity in an HLA-A0201+ MM patient who achieved durable remission after myeloablative syngeneic HSCT. Using high-density protein microarrays to screen post-HSCT plasma, we identified 6 Ags that elicited high-titer (1:5000-1:10 000) Abs that correlated with clinical tumor regression. Two Ags (DAPK2 and PIM1) had enriched expression in primary MM tissues. Both elicited Ab responses in other MM patients after chemotherapy or HSCT (11 and 6 of 32 patients for DAPK2 and PIM1, respectively). The index patient also developed specific CD8+ T-cell responses to HLA-A2–restricted peptides derived from DAPK2 and PIM1. Peptide-specific T cells recognized HLA-A2+ MM-derived cell lines and primary MM tumor cells. Coordinated T- and B-cell immunity develops against MM-associated Ags after syngeneic HSCT. DAPK1 and PIM1 are promising target Ags for MM-directed immunotherapy. PMID:22267603

  5. Small compound 6-O-angeloylplenolin induces caspase-dependent apoptosis in human multiple myeloma cells

    PubMed Central

    LIU, YING; DONG, YING; ZHANG, BO; CHENG, YONG-XIAN

    2013-01-01

    6-O-angeloylplenolin (6-OAP) is a sesquiterpene lactone agent that has been previously demonstrated to inhibit the growth of multiple myeloma (MM) cells through mitotic arrest with accumulated cyclin B1. In the present study, the levels of apoptosis were analyzed in dexamethasone-sensitive (MM.1S), dexamethasone-resistant (U266) and chemotherapy-sensitive (RPMI 8226) myeloma cell lines. Enhanced apoptosis was identified following a 48-h incubation with 6-OAP (0–10 μM) that induced a dose-dependent decrease in pro-casp-3 and the cleavage of its substrate, anti-poly (ADP-ribose) polymerase (PARP). In addition, time-dependent cleavage of PARP was also detected in U266 and MM.1S cells. The mechanism of 6-OAP cytotoxicity in all cell lines was associated with the induction of apoptosis with the presence of cleaved caspase-3 and PARP. In conclusion, 6-OAP-induced apoptosis is caspase-dependent. These observations are likely to provide a framework for future studies of 6-OAP therapy in MM. PMID:24137368

  6. Dependence on glutamine uptake and glutamine addiction characterize myeloma cells: a new attractive target.

    PubMed

    Bolzoni, Marina; Chiu, Martina; Accardi, Fabrizio; Vescovini, Rosanna; Airoldi, Irma; Storti, Paola; Todoerti, Katia; Agnelli, Luca; Missale, Gabriele; Andreoli, Roberta; Bianchi, Massimiliano G; Allegri, Manfredi; Barilli, Amelia; Nicolini, Francesco; Cavalli, Albertina; Costa, Federica; Marchica, Valentina; Toscani, Denise; Mancini, Cristina; Martella, Eugenia; Dall'Asta, Valeria; Donofrio, Gaetano; Aversa, Franco; Bussolati, Ovidio; Giuliani, Nicola

    2016-08-01

    The importance of glutamine (Gln) metabolism in multiple myeloma (MM) cells and its potential role as a therapeutic target are still unknown, although it has been reported that human myeloma cell lines (HMCLs) are highly sensitive to Gln depletion. In this study, we found that both HMCLs and primary bone marrow (BM) CD138(+) cells produced large amounts of ammonium in the presence of Gln. MM patients have lower BM plasma Gln with higher ammonium and glutamate than patients with indolent monoclonal gammopathies. Interestingly, HMCLs expressed glutaminase (GLS1) and were sensitive to its inhibition, whereas they exhibited negligible expression of glutamine synthetase (GS). High GLS1 and low GS expression were also observed in primary CD138(+) cells. Gln-free incubation or treatment with the glutaminolytic enzyme l-asparaginase depleted the cell contents of Gln, glutamate, and the anaplerotic substrate 2-oxoglutarate, inhibiting MM cell growth. Consistent with the dependence of MM cells on extracellular Gln, a gene expression profile analysis, on both proprietary and published datasets, showed an increased expression of the Gln transporters SNAT1, ASCT2, and LAT1 by CD138(+) cells across the progression of monoclonal gammopathies. Among these transporters, only ASCT2 inhibition in HMCLs caused a marked decrease in Gln uptake and a significant fall in cell growth. Consistently, stable ASCT2 downregulation by a lentiviral approach inhibited HMCL growth in vitro and in a murine model. In conclusion, MM cells strictly depend on extracellular Gln and show features of Gln addiction. Therefore, the inhibition of Gln uptake is a new attractive therapeutic strategy for MM. PMID:27268090

  7. Andrographolide inhibits multiple myeloma cells by inhibiting the TLR4/NF-κB signaling pathway.

    PubMed

    Gao, Hui; Wang, Jianrong

    2016-02-01

    Andrographolide is an active component from the extract of Andrographis paniculata [(Burm.f) Nees], a medicinal plant from the Acanthaceae family. Pharmacological studies have revealed that andrographolide possesses anti-bacterial, anti-inflammatory, anti-viral, immune regulatory and hepatoprotective properties, and is efficacious in the treatment of cardiovascular diseases, while exhibiting low toxicity and low cost. The present study aimed to determine the inhibitory effects of andrographolide on the growth of multiple myeloma (MM) cells and its possible impact on the Toll-like receptor (TLR)4/nuclear factor (NF)-κB signaling pathway. Cell proliferation was detected using an MTT assay, cellular apoptosis was measured using flow cytometry, and caspase-9/3 activation were assessed using colorimetric assay kits. Furthermore, TLR4 and NF-κB protein expression was determined by western blot analysis. The results revealed that andrographolide reduced the proliferation, while increasing cellular apoptosis and caspase-9/3 activation of MM cells, in addition to downregulating the expression of TLR4 and NF-κB protein. Of note, TLR4- or NF-κB-targeting small-interfering (si)RNA enhanced the andrographolide-induced inhibition of cell proliferation and induction of apoptosis of MM cells. The results of the present study therefore suggested that andrographolide inhibited multiple myeloma cells via the TLR4/NF-κB signaling pathway. PMID:26707811

  8. Bortezomib reduces the tumorigenicity of multiple myeloma via downregulation of upregulated targets in clonogenic side population cells.

    PubMed

    Nara, Miho; Teshima, Kazuaki; Watanabe, Atsushi; Ito, Mitsugu; Iwamoto, Keiko; Kitabayashi, Atsushi; Kume, Masaaki; Hatano, Yoshiaki; Takahashi, Naoto; Iida, Shinsuke; Sawada, Kenichi; Tagawa, Hiroyuki

    2013-01-01

    Side population (SP) cells in cancers, including multiple myeloma, exhibit tumor-initiating characteristics. In the present study, we isolated SP cells from human myeloma cell lines and primary tumors to detect potential therapeutic targets specifically expressed in SP cells. We found that SP cells from myeloma cell lines (RPMI 8226, AMO1, KMS-12-BM, KMS-11) express CD138 and that non-SP cells include a CD138-negative population. Serial transplantation of SP and non-SP cells into NOD/Shi-scid IL-2γnul mice revealed that clonogenic myeloma SP cells are highly tumorigenic and possess a capacity for self-renewal. Gene expression analysis showed that SP cells from five MM cell lines (RPMI 8226, AMO1, KMS-12-BM, KMS-11, JJN3) express genes involved in the cell cycle and mitosis (e.g., CCNB1, CDC25C, CDC2, BIRC5, CENPE, SKA1, AURKB, KIFs, TOP2A, ASPM), polycomb (e.g., EZH2, EPC1) and ubiquitin-proteasome (e.g., UBE2D3, UBE3C, PSMA5) more strongly than do non-SP cells. Moreover, CCNB1, AURKB, EZH2 and PSMA5 were also upregulated in the SPs from eight primary myeloma samples. On that basis, we used an aurora kinase inhibitor (VX-680) and a proteasome inhibitor (bortezomib) with RPMI 8226 and AMO1 cells to determine whether these agents could be used to selectively target the myeloma SP. We found that both these drugs reduced the SP fraction, though bortezomib did so more effectively than VX-680 due to its ability to reduce levels of both phospho-histone H3 (p-hist. H3) and EZH2; VX-680 reduced only p-hist. H3. This is the first report to show that certain oncogenes are specifically expressed in the myeloma SP, and that bortezomib effectively downregulates expression of their products. Our approach may be useful for screening new agents with which to target a cell population possessing strong tumor initiating potential in multiple myeloma. PMID:23469177

  9. Bortezomib Reduces the Tumorigenicity of Multiple Myeloma via Downregulation of Upregulated Targets in Clonogenic Side Population Cells

    PubMed Central

    Nara, Miho; Teshima, Kazuaki; Watanabe, Atsushi; Ito, Mitsugu; Iwamoto, Keiko; Kitabayashi, Atsushi; Kume, Masaaki; Hatano, Yoshiaki; Takahashi, Naoto; Iida, Shinsuke; Sawada, Kenichi; Tagawa, Hiroyuki

    2013-01-01

    Side population (SP) cells in cancers, including multiple myeloma, exhibit tumor-initiating characteristics. In the present study, we isolated SP cells from human myeloma cell lines and primary tumors to detect potential therapeutic targets specifically expressed in SP cells. We found that SP cells from myeloma cell lines (RPMI 8226, AMO1, KMS-12-BM, KMS-11) express CD138 and that non-SP cells include a CD138-negative population. Serial transplantation of SP and non-SP cells into NOD/Shi-scid IL-2γnul mice revealed that clonogenic myeloma SP cells are highly tumorigenic and possess a capacity for self-renewal. Gene expression analysis showed that SP cells from five MM cell lines (RPMI 8226, AMO1, KMS-12-BM, KMS-11, JJN3) express genes involved in the cell cycle and mitosis (e.g., CCNB1, CDC25C, CDC2, BIRC5, CENPE, SKA1, AURKB, KIFs, TOP2A, ASPM), polycomb (e.g., EZH2, EPC1) and ubiquitin-proteasome (e.g., UBE2D3, UBE3C, PSMA5) more strongly than do non-SP cells. Moreover, CCNB1, AURKB, EZH2 and PSMA5 were also upregulated in the SPs from eight primary myeloma samples. On that basis, we used an aurora kinase inhibitor (VX-680) and a proteasome inhibitor (bortezomib) with RPMI 8226 and AMO1 cells to determine whether these agents could be used to selectively target the myeloma SP. We found that both these drugs reduced the SP fraction, though bortezomib did so more effectively than VX-680 due to its ability to reduce levels of both phospho-histone H3 (p-hist. H3) and EZH2; VX-680 reduced only p-hist. H3. This is the first report to show that certain oncogenes are specifically expressed in the myeloma SP, and that bortezomib effectively downregulates expression of their products. Our approach may be useful for screening new agents with which to target a cell population possessing strong tumor initiating potential in multiple myeloma. PMID:23469177

  10. Multiple myeloma and bone marrow mesenchymal stem cells' crosstalk: Effect on translation initiation.

    PubMed

    Attar-Schneider, Oshrat; Zismanov, Victoria; Dabbah, Mahmoud; Tartakover-Matalon, Shelly; Drucker, Liat; Lishner, Michael

    2016-09-01

    Multiple myeloma (MM) malignant plasma cells reside in the bone marrow (BM) and convert it into a specialized pre-neoplastic niche that promotes the proliferation and survival of the cancer cells. BM resident mesenchymal stem cells (BM-MSCs) are altered in MM and in vitro studies indicate their transformation by MM proximity is within hours. The response time frame suggested that protein translation may be implicated. Thus, we assembled a co-culture model of MM cell lines with MSCs from normal donors (ND) and MM patients to test our hypothesis. The cell lines (U266, ARP-1) and BM-MSCs (ND, MM) were harvested separately after 72 h of co-culture and assayed for proliferation, death, levels of major translation initiation factors (eIF4E, eIF4GI), their targets, and regulators. Significant changes were observed: BM-MSCs (ND and MM) co-cultured with MM cell lines displayed elevated proliferation and death as well as increased expression/activity of eIF4E/eIF4GI; MM cell lines co-cultured with MM-MSCs also displayed higher proliferation and death rates coupled with augmented translation initiation factors; in contrast, MM cell lines co-cultured with ND-MSCs did not display elevated proliferation only death and had no changes in eIF4GI levels/activity. eIF4E expression was increased in one of the cell lines. Our study demonstrates that there is direct dialogue between the MM and BM-MSCs populations that includes translation initiation manipulation and critically affects cell fate. Future research should be aimed at identifying therapeutic targets that may be used to minimize the collateral damage to the cancer microenvironment and limit its recruitment into the malignant process. © 2015 Wiley Periodicals, Inc. PMID:26293751

  11. Combined therapeutic effects of bortezomib and anacardic acid on multiple myeloma cells via activation of the endoplasmic reticulum stress response.

    PubMed

    Dong, Xiaoxian; Liao, Yuning; Liu, Ningning; Hua, Xianliang; Cai, Jianyu; Liu, Jinbao; Huang, Hongbiao

    2016-09-01

    Bortezomib (Bor), a proteasome inhibitor, has marked therapeutic effects in multiple myeloma (MM), and its synergistic effects with other anticancer agents have been widely investigated. In the present study, endoplasmic reticulum (ER) stress was the target of the treatment strategy; anacardic acid (AA) and Bor induce ER stress, resulting in apoptosis of multiple myeloma cells. AA/Bor combination therapy exhibited overt cytotoxicity in MM cells, by synergistically reducing cell growth and promoting cell death. Notably, expression levels of the stress‑associated molecules binding protein, phosphorylated eukaryotic initiation factor 2α, activating transcription factor 4 (ATF4) and CCAAT‑enhancer binding protein homologous protein (CHOP) were increased following treatment. AA/Bor combination therapy‑induced U266 cell cytotoxicity was partially reversed by ATF4 gene silencing and slightly enhanced by CHOP knockdown. The results of the present study suggest that AA/Bor combination may be a potential therapeutic strategy for MM treatment. PMID:27430733

  12. Inhibiting the anaphase promoting complex/cyclosome induces a metaphase arrest and cell death in multiple myeloma cells

    PubMed Central

    Lub, Susanne; Maes, Anke; Maes, Ken; De Veirman, Kim; De Bruyne, Elke; Menu, Eline; Fostier, Karel; Kassambara, Alboukadel; Moreaux, Jérôme; Hose, Dirk; Leleu, Xavier; King, Randall W.

    2016-01-01

    The anaphase promoting complex/cyclosome (APC/C) is an ubiquitin ligase involved in cell cycle. During the metaphase-anaphase transition the APC/C is activated by Cdc20. The aim of this study is to elucidate the importance and therapeutic potential of APC/C and its co-activator Cdc20 in multiple myeloma (MM). Gene expression analysis revealed that Cdc20 was expressed at higher levels in gene expression-based high-risk MM patients. Moreover, high Cdc20 expression correlated with poor prognosis. Treatment of human myeloma cell lines with proTAME, an APC/C inhibitor, resulted in an accumulation of APC/CCdc20 substrate cyclin B1 and an accumulation of cells in metaphase. Moreover we observed a significant dose-dependent decrease in viability and increase in apoptosis in MM cells upon proTAME treatment. The induction of apoptosis was accompanied with caspase 3, 8, 9 and PARP cleavage. A similar metaphase arrest and induction of apoptosis were obtained with specific knockdown of Cdc20. In addition, we demonstrated the accumulation of Bim was partially responsible for the observed cell death. Combining proTAME with another APC/C inhibitor apcin or the alkylating agent melphalan resulted in enhanced anti-MM activity. This study suggests that the APC/C and its co-activator Cdc20 could be a new and promising target especially in high-risk MM patients. PMID:26716651

  13. Dielectrophoresis and electrorotation of neurospora slime and murine myeloma cells.

    PubMed Central

    Gimsa, J; Marszalek, P; Loewe, U; Tsong, T Y

    1991-01-01

    Dielectrophoresis and electrorotation are commonly used to measure dielectric properties and membrane electrical parameters of biological cells. We have derived quantitative relationships for several critical points, defined in Fig. A 1, which characterize the dielectrophoretic spectrum and the electrorotational spectrum of a cell, based on the single-shell model (Pauly, H., and H.P. Schwan, 1959. Z. Naturforsch. 14b:125-131; Sauer, F.A. 1985. Interactions between Electromagnetic Field and Cells. A. Chiabrera, C. Nicolini, and H.P. Schwan, editors. Plenum Publishing Corp., New York. 181-202). To test these equations and to obtain membrane electrical parameters, a technique which allowed simultaneous measurements of the dielectrophoresis and the electrorotation of single cells in the same chamber, was developed and applied to the study of Neurospora slime and the Myeloma Tib9 cell line. Membrane electrical parameters were determined by the dependence of the first critical frequency of dielectrophoresis (fct1) and the first characteristic frequency of electrorotation (fc1) on the conductivity of the suspending medium. Membrane conductances of Neurospora slime and Myeloma also were found to be 500 and 380 S m-2, respectively. Several observations indicate that these cells are more complex than that described by the single-shell model. First, the membrane capacities from fct1 (0.81 x 10(-2) and 1.55 x 10(-2) F m-2 for neurospora slime and Myeloma, respectively) were at least twice those derived from fc1. Second, the electrorotation spectrum of Myeloma cells deviated from the single-shell like behavior. These discrepancies could be eliminated by adapting a three-shell model (Furhr, G., J. Gimsa, and R. Glaser. 1985. Stud. Biophys. 108:149-164). Apparently, there was more than one membrane relaxation process which could influence the lower frequency region of the beta-dispersion. fct1 of Myeloma in a medium of given external conductivity were found to be similar for most

  14. A novel signaling pathway associated with Lyn, PI 3-kinase and Akt supports the proliferation of myeloma cells

    SciTech Connect

    Iqbal, Mohd S.; Tsuyama, Naohiro; Obata, Masanori; Ishikawa, Hideaki

    2010-02-12

    Interleukin-6 (IL-6) is a growth factor for human myeloma cells. We have recently found that in myeloma cells the activation of both signal transducer and activator of transcription (STAT) 3 and extracellular signal-regulated kinase (ERK) 1/2 is not sufficient for the IL-6-induced proliferation, which further requires the activation of the src family kinases, such as Lyn. Here we showed that the Lyn-overexpressed myeloma cell lines had the higher proliferative rate with IL-6 and the enhanced activation of the phosphatidylinositol (PI) 3-kinase and Akt. The IL-6-induced phosphorylation of STAT3 and ERK1/2 was not up-regulated in the Lyn-overexpressed cells, indicating that the Lyn-PI 3-kinase-Akt pathway is independent of these pathways. The PI 3-kinase was co-precipitated with Lyn in the Lyn-overexpressed cells of which proliferation with IL-6 was abrogated by the specific inhibitors for PI 3-kinase or Akt, suggesting that the activation of the PI 3-kinase-Akt pathway associated with Lyn is indeed related to the concomitant augmentation of myeloma cell growth. Furthermore, the decreased expression of p53 and p21{sup Cip1} proteins was observed in the Lyn-overexpressed cells, implicating a possible downstream target of Akt. This study identifies a novel IL-6-mediated signaling pathway that certainly plays a role in the proliferation of myeloma cells and this novel mechanism of MM tumor cell growth associated with Lyn would eventually contribute to the development of MM treatment.

  15. Toll-Like Receptor (TLR)-1/2 Triggering of Multiple Myeloma Cells Modulates Their Adhesion to Bone Marrow Stromal Cells and Enhances Bortezomib-Induced Apoptosis

    PubMed Central

    Abdi, Jahangir; Mutis, Tuna; Garssen, Johan; Redegeld, Frank A.

    2014-01-01

    In multiple myeloma (MM), the malignant plasma cells usually localize to the bone marrow where they develop drug resistance due to adhesion to stromal cells and various environmental signals. Hence, modulation of this interaction is expected to influence drug sensitivity of MM cells. Toll-like receptor (TLR) ligands have displayed heterogeneous effects on B-cell malignancies and also on MM cells in a few recent studies, but effects on adhesion and drug sensitivity of myeloma cells in the context of bone marrow stromal cells (BMSCs) have never been investigated. In the present study, we explored the modulatory effects of TLR1/2 ligand (Pam3CSK4) on adhesion of human myeloma cells to BMSCs. It is shown that TLR1/2 triggering has opposite effects in different HMCLs on their adhesion to BMSCs. Fravel, L363, UM-6, UM-9 and U266 showed increased adhesion to BMSC in parallel with an increased surface expression of integrin molecules α4 and αVβ3. OPM-1, OPM-2 and NCI-H929 showed a dose-dependent decrease in adhesion upon TLR activation following a downregulation of β7 integrin expression. Importantly, TLR1/2 triggering increased cytotoxic and apoptotic effects of bortezomib in myeloma cells independent of the effect on stromal cell adhesion. Moreover, the apoptosis-enhancing effect of Pam3CSK4 paralleled induction of cleaved caspase-3 protein in FACS analysis suggesting a caspase-dependent mechanism. Our findings uncover a novel role of TLR activation in MM cells in the context of bone marrow microenvironment. Stimulation of TLR1/2 bypasses the protective shield of BMSCs and may be an interesting strategy to enhance drug sensitivity of multiple myeloma cells. PMID:24794258

  16. Multiple Myeloma

    MedlinePlus

    ... myeloma is a cancer that begins in plasma cells, a type of white blood cell. These cells are part of your immune system, which helps ... germs and other harmful substances. In time, myeloma cells collect in the bone marrow and in the ...

  17. Preclinical evaluation of a novel SIRT1 modulator SRT1720 in multiple myeloma cells.

    PubMed

    Chauhan, Dharminder; Bandi, Madhavi; Singh, Ajita V; Ray, Arghya; Raje, Noopur; Richardson, Paul; Anderson, Kenneth C

    2011-12-01

    SIRT1 belongs to the silent information regulator 2 (Sir2) protein family of enzymes and functions as a NAD(+) -dependent class III histone deacetylase. Here, we examined the anti-multiple myeloma (MM) activity of a novel oral agent, SRT1720, which targets SIRT1. Treatment of MM cells with SRT1720 inhibited growth and induced apoptosis in MM cells resistant to conventional and bortezomib therapies without significantly affecting the viability of normal cells. Mechanistic studies showed that anti-MM activity of SRT1720 is associated with: (i) activation of caspase-8, caspase-9, caspase-3, poly(ADP) ribose polymerase; (ii) increase in reactive oxygen species; (iii) induction of phosphorylated ataxia telangiectasia mutated/checkpoint kinase 2 signalling; (iv) decrease in vascular endothelial growth factor-induced migration of MM cells and associated angiogenesis; and (v) inhibition of nuclear factor-κB. Blockade of ATM attenuated SRT1720-induced MM cell death. In animal tumour model studies, SRT1720 inhibited MM tumour growth. Finally, SRT1720 enhanced the cytotoxic activity of bortezomib or dexamethasone. Our preclinical studies provide the rationale for novel therapeutics targeting SIRT1 in MM. PMID:21950728

  18. Loss of p53 exacerbates multiple myeloma phenotype by facilitating the reprogramming of hematopoietic stem/progenitor cells to malignant plasma cells by MafB

    PubMed Central

    Vicente-Dueñas, Carolina; González-Herrero, Inés; Cenador, María Begoña García; Criado, Francisco Javier García; Sánchez-García, Isidro

    2012-01-01

    Multiple myeloma (MM) is a serious, mostly incurable human cancer of malignant plasma cells. Chromosomal translocations affecting MAFB are present in a significant percentage of multiple myeloma patients. Genetically engineered Sca1-MafB mice, in which MafB expression is limited to hematopoietic stem/progenitor cells (HS/P-Cs), display the phenotypic features of MM. Contrary to many other types of cancer, it is not yet known if the p53 gene plays any essential role in the pathogenesis of this disease. Here, we show, taking advantage of the Sca1-MafB MM mouse model, that loss of p53 does not rescue the multiple myeloma disease, but instead accelerates its development and exacerbates the MM phenotype. Therefore, the efficiency of the MafB-induced MM reprogramming of normal HS/P-Cs to terminally differentiated malignant plasma cells is enhanced by p53 deficiency, in analogy to what happens in reprogramming to pluripotency. These results raise caution about interfering with p53 function when treating multiple myeloma. PMID:22983007

  19. Compromising the Unfolded Protein Response Induces Autophagy-Mediated Cell Death in Multiple Myeloma Cells

    PubMed Central

    Michallet, Anne-Sophie; Mondiere, Paul; Taillardet, Morgan; Leverrier, Yann; Genestier, Laurent; Defrance, Thierry

    2011-01-01

    Objective To determine whether the Unfolded Protein Response (UPR) sensors (PERK, ATF6 and IRE-1) can be targeted to promote death of Multiple Myeloma (MM) cells. Methods We have knocked-down separately each UPR stress sensor in human MM cell lines using RNA interference and followed MM cell death by monitoring the membrane, mitochondrial and nuclear alterations. Involvement of caspases in MM cell death consecutive to UPR sensor knock-down was analyzed by western blotting, measurement of their enzymatic activity using fluorigenic substrates and susceptibility to a pan-caspase inhibitor. Activation of the autophagic process was measured directly by detection of autophagosomes (electronic microscopy), monodansylcadaverine staining, production of the cleaved form of the microtubule-associated protein 1A/1B light chain 3 (LC3) and indirectly by analyzing the impact of pharmacological inhibitors of autophagy such as 3MA and bafilomycin A1. Results We show that extinction of a single UPR stress sensor (PERK) induces a non-apoptotic form of cell death in MM cells that requires autophagy for its execution. We also show that this cytotoxic autophagic process represses the apoptosis program by reducing the cytosolic release of the apoptogenic factors Smac/DIABLO and cytochrome c. Interpretation Altogether our findings suggest that autophagy can contribute to execution of death in mammalian cells that are exposed to mild ER stress. They also suggest that the autophagic process can regulate the intrinsic apoptotic pathway by inhibiting production of death effectors by the mitochondria, thus preventing formation of a functional apoptosome. Altogether these findings give credit to the idea that UPR sensors can be envisaged as therapeutic targets for the treatment of MM. PMID:22028791

  20. Antitumoral Effect of Hibiscus sabdariffa on Human Squamous Cell Carcinoma and Multiple Myeloma Cells.

    PubMed

    Malacrida, Alessio; Maggioni, Daniele; Cassetti, Arianna; Nicolini, Gabriella; Cavaletti, Guido; Miloso, Mariarosaria

    2016-10-01

    Cancer is a leading cause of death worldwide. Despite therapeutic improvements, some cancers are still untreatable. Recently there has been an increasing interest in the use of natural substances for cancer prevention and treatment. Hibiscus sabdariffa (HS) is a plant, belonging to Malvaceae family, widespread in South Asia and Central Africa. HS extract (HSE) used in folk medicine, gained researchers' interest thanks to its antioxidant, anti-inflammatory, and chemopreventive properties. In the present study, we initially assessed HSE effect on a panel of human tumor cell lines. Then we focused our study on the following that are most sensitive to HSE action cell lines: Multiple Myeloma (MM) cells (RPMI 8226) and Oral Squamous Cell Carcinoma (OSCC) cells (SCC-25). In both RPMI 8226 and SCC-25 cells, HSE impaired cell growth, exerted a reversible cytostatic effect, and reduced cell motility and invasiveness. We evaluated the involvement of MAPKs ERK1/2 and p38 in HSE effects by using specific inhibitors, U0126 and SB203580, respectively. For both SCC-25 and RPMI 8226, HSE cytostatic effect depends on p38 activation, whereas ERK1/2 modulation is crucial for cell motility and invasiveness. Our results suggest that HSE may be a potential therapeutic agent against MM and OSCC. PMID:27618152

  1. Cilengitide restrains the osteoclast-like bone resorbing activity of myeloma plasma cells.

    PubMed

    Tucci, Marco; Stucci, Stefania; Felici, Claudia; Cafforio, Paola; Resta, Leonardo; Rossi, Roberta; Silvestris, Franco

    2016-04-01

    Cilengitide (CLG) is an inhibitor of both αv β3 and αv β5 integrins, with a defined anti-tumour effect in glioblastoma. Pre-clinical studies demonstrate its ability to restrain the bone resorbing property of metastatic osteotropic tumours and we have previously shown that the disablement of αv β3 in multiple myeloma (MM) plasma cells results in exhaustion of their in vitro osteoclast (OC)-like activity on bone substrate. Here, we investigated the effect of CLG on this functional property of MM cells. Both αv β3 and αv β5 were measured on primary marrow MM cells from 19 patients, and the effect of CLG on proliferation, apoptosis and adhesion was investigated in parallel with MM cell lines and OCs from healthy donors. In addition, the effect of CLG on the capability of malignant plasma cells to produce erosive lacunae on calcium phosphate was explored in relation to the activation of intracellular kinases of molecular pathways of both integrins. Ultrastructural microscopy was used to evaluate the morphological changes in MM cells due to the effect of CLG on cell adhesion. The data from our study demonstrate that CLG restrains the bone resorbing function of MM cells by disabling their adhesion properties. Further investigations in pre-clinical studies of osteotropic tumours are warranted. PMID:26728969

  2. Subcutaneous versus intravenous bortezomib in two different induction therapies for newly diagnosed multiple myeloma: an interim analysis from the prospective GMMG-MM5 trial

    PubMed Central

    Merz, Maximilian; Salwender, Hans; Haenel, Mathias; Mai, Elias K.; Bertsch, Uta; Kunz, Christina; Hielscher, Thomas; Blau, Igor W.; Scheid, Christof; Hose, Dirk; Seckinger, Anja; Jauch, Anna; Hillengass, Jens; Raab, Marc S.; Schurich, Baerbel; Munder, Markus; Schmidt-Wolf, Ingo G.H.; Gerecke, Christian; Lindemann, Hans-Walter; Zeis, Matthias; Weisel, Katja; Duerig, Jan; Goldschmidt, Hartmut

    2015-01-01

    We investigated the impact of subcutaneous versus intravenous bortezomib in the MM5 trial of the German-Speaking Myeloma Multicenter Group which compared bortezomib, doxorubicin, and dexamethasone with bortezomib, cyclophosphamide, and dexamethasone induction therapy in newly diagnosed multiple myeloma. Based on data from relapsed myeloma, the route of administration for bortezomib was changed from intravenous to subcutaneous after 314 of 604 patients had been enrolled. We analyzed 598 patients who received at least one dose of trial medication. Adverse events were reported more frequently in patients treated with intravenous bortezomib (intravenous=65%; subcutaneous=56%, P=0.02). Rates of grade 2 or more peripheral neuropathy were higher in patients treated with intravenous bortezomib during the third cycle (intravenous=8%; subcutaneous=2%, P=0.001). Overall response rates were similar in patients treated intravenously or subcutaneously. The presence of International Staging System stage III disease, renal impairment or adverse cytogenetic abnormalities did not have a negative impact on overall response rates in either group. To our knowledge this is the largest study to present data comparing subcutaneous with intravenous bortezomib in newly diagnosed myeloma. We show better tolerance and similar overall response rates for subcutaneous compared to intravenous bortezomib. The clinical trial is registered at eudract.ema.europa.eu as n. 2010-019173-16. PMID:25840597

  3. Peroxidase-positive Auer bodies in plasma cells in multiple myeloma: a case report

    PubMed Central

    Zhu, Lin; An, Li; Zhang, Xiao-Yan; Ren, Xue-Rui; Song, Jing-Wen

    2015-01-01

    Reports of clinical cases with Auer bodies in the plasma cells in multiple myeloma (MM) are rare; however, most of those reported contain peroxidase (POX)-negative Auer bodies rather than the POX-positive Auer bodies observed in myeloid progenitors, indicating differences in their chemical properties. Furthermore, the cases with POX-positive Auer bodies similar to those observed in myeloid cells are extremely rare in non-myeloid cells. Here, we report the clinical features, laboratory investigations, diagnosis and treatment of a case of MM with POX-positive Auer bodies in plasma cells and review related the literature to advance the prognostic evaluation, diagnosis and treatment of similar cases. PMID:26823884

  4. CD4+CD25+ cells in multiple myeloma related renal impairment

    PubMed Central

    Huang, Hongdong; Luo, Yang; Liang, Yumei; Long, Xi-Dai; Peng, Youming; Liu, Zhihua; Wen, Xiaojun; Jia, Meng; Tian, Ru; Bai, Chengli; Li, Cui; Dong, Xiaoqun

    2015-01-01

    CD4+CD25+ cells are critical regulators in almost all of the animal models of human organ-specific autoimmune diseases, transplant rejection and allergic diseases. We aimed to explore the role of CD4+CD25+ cells in the pathogenesis of multiple myeloma (MM) related renal impairment (RI). Thirty patients with MM related RI and 30 healthy volunteers were studied. The number of CD4+CD25+ cells was examined by flow cytometry. Clinical and laboratory data were collected from each subject. Glomerular injury was assessed by histopathology. Serum IL-2, IL-4 and IL-6 were analyzed by ELISA. CD4+CD25+ cells significantly decreased in MM related RI patients compared to the controls (P<0.05). CD4+CD25+ cell number was negatively associated with blood urea nitrogen (BUN), supernatant IL-4, serum IL-6, monoclonal immunoglobulin and β2-microglobulin, as well as bone marrow plasma cell percentage and proteinuria; whereas positively associated with estimated glomerular filtration rate (eGFR) (all P < 0.05). CD4+CD25+ cells gradually decreased as the Clinic Stage increased. The number of CD4+CD25+ cells reduced in MM related RI patients, and was correlated with disease severity. CD4+CD25+ cells may play an important role in the pathogenesis of MM related RI. PMID:26564056

  5. Phenotypic, genomic and functional characterization reveals no differences between CD138++ and CD138low subpopulations in multiple myeloma cell lines.

    PubMed

    Paíno, Teresa; Sarasquete, María E; Paiva, Bruno; Krzeminski, Patryk; San-Segundo, Laura; Corchete, Luis A; Redondo, Alba; Garayoa, Mercedes; García-Sanz, Ramón; Gutiérrez, Norma C; Ocio, Enrique M; San-Miguel, Jesús F

    2014-01-01

    Despite recent advances in the treatment of multiple myeloma (MM), it remains an incurable disease potentially due to the presence of resistant myeloma cancer stem cells (MM-CSC). Although the presence of clonogenic cells in MM was described three decades ago, the phenotype of MM-CSC is still controversial, especially with respect to the expression of syndecan-1 (CD138). Here, we demonstrate the presence of two subpopulations--CD138++ (95-99%) and CD138low (1-5%)--in eight MM cell lines. To find out possible stem-cell-like features, we have phenotypically, genomic and functionally characterized the two subpopulations. Our results show that the minor CD138low subpopulation is morphologically identical to the CD138++ fraction and does not represent a more immature B-cell compartment (with lack of CD19, CD20 and CD27 expression). Moreover, both subpopulations have similar gene expression and genomic profiles. Importantly, both CD138++ and CD138low subpopulations have similar sensitivity to bortezomib, melphalan and doxorubicin. Finally, serial engraftment in CB17-SCID mice shows that CD138++ as well as CD138low cells have self-renewal potential and they are phenotypically interconvertible. Overall, our results differ from previously published data in MM cell lines which attribute a B-cell phenotype to MM-CSC. Future characterization of clonal plasma cell subpopulations in MM patients' samples will guarantee the discovery of more reliable markers able to discriminate true clonogenic myeloma cells. PMID:24658332

  6. COMPARABLE OUTCOMES IN NON-SECRETORY AND SECRETORY MULTIPLE MYELOMA AFTER AUTOLOGOUS STEM CELL TRANSPLANTATION

    PubMed Central

    Kumar, Shaji; Pérez, Waleska S.; Zhang, Mei-Jie; Ballen, Karen; Bashey, Asad; To, L. Bik; Bredeson, Christopher N.; Cairo, Mitchell S.; Elfenbein, Gerald J.; Freytes, César O.; Gale, Robert Peter; Gibson, John; Kyle, Robert A.; Lacy, Martha Q.; Lazarus, Hillard M.; McCarthy, Philip L.; Milone, Gustavo A.; Moreb, Jan S.; Pavlovsky, Santiago; Reece, Donna E.; Vesole, David H.; Wiernik, Peter H.; Hari, Parameswaran

    2008-01-01

    Non-secretory myeloma (NSM) accounts for <5% of cases of multiple myeloma (MM). The outcome of these patients following autologous stem cell transplantation (ASCT) has not been evaluated in clinical trials. We compared the outcomes after ASCT for patients with NSM reported to the CIBMTR between 1989 and 2003, to a matched group of 438 patients (4 controls for each patient) with secretory myeloma (SM). The patients were matched using propensity scores calculated using age, Durie-Salmon stage, sensitivity to pre-transplant therapy, time from diagnosis to transplant and year of transplant. Disease characteristics were similar in both groups at diagnosis and at transplant except higher risk of anemia, hypoalbuminemia and marrow plasmacytosis (in SM) and plasmacytoma (more in NSM). Cumulative incidence of TRM, relapse, PFS and OS were similar between the groups. In multivariate analysis, based on a Cox model stratified on matched pairs and adjusted for covariates not considered in the propensity score, we found no difference in outcome between the NSM and SM groups. In this large cohort of patients undergoing ASCT, we found no difference in outcomes of patients with NSM compared to those with SM. PMID:18804043

  7. Mechanisms for autophagy modulation by isoprenoid biosynthetic pathway inhibitors in multiple myeloma cells

    PubMed Central

    Dykstra, Kaitlyn M.; Allen, Cheryl; Born, Ella J.; Tong, Huaxiang; Holstein, Sarah A.

    2015-01-01

    Multiple myeloma (MM) is characterized by the production of monoclonal protein (MP). We have shown previously that disruption of the isoprenoid biosynthetic pathway (IBP) causes a block in MP secretion through a disruption of Rab GTPase activity, leading to an enhanced unfolded protein response and subsequent apoptosis in MM cells. Autophagy is induced by cellular stressors including nutrient deprivation and ER stress. IBP inhibitors have been shown to have disparate effects on autophagy. Here we define the mechanisms underlying the differential effects of IBP inhibitors on autophagic flux in MM cells utilizing specific pharmacological inhibitors. We demonstrate that IBP inhibition induces a net increase in autophagy as a consequence of disruption of isoprenoid biosynthesis which is not recapitulated by direct geranylgeranyl transferase inhibition. IBP inhibitor-induced autophagy is a cellular defense mechanism as treatment with the autophagy inhibitor bafilomycin A1 enhances the cytotoxic effects of GGPP depletion, but not geranylgeranyl transferase inhibition. Immunofluorescence microscopy studies revealed that IBP inhibitors disrupt ER to Golgi trafficking of monoclonal light chain protein and that this protein is not a substrate for alternative degradative pathways such as aggresomes and autophagosomes. These studies support further development of specific GGTase II inhibitors as anti-myeloma agents. PMID:26595805

  8. Clinicopathological correlates of plasma cell CD56 (NCAM) expression in multiple myeloma.

    PubMed

    Kraj, Maria; Sokołowska, Urszula; Kopeć-Szlezak, Joanna; Pogłód, Ryszard; Kruk, Barbara; Woźniak, Jolanta; Szpila, Tomasz

    2008-02-01

    The aim of this prospective, long-term study was to define the flow cytometric characteristics of plasma cell CD56 expression as well as determine the clinical characteristics of 204 multiple myeloma (MM) patients and 26 plasma cell leukemia (PCL) patients with regard to CD56 expression. CD56 expression intensity was determined by measurement of antigen molecules on the cell defined as Antibodies Bound per Cell (ABC) and calculation of Relative Fluorescence Intensity (RFI). CD56 expression was found in 66% of MM and 54% of PCL cases. The RFI values for individual MM patients ranged from 7.6 to 27.4 while ABC values on MM plasma cells from 2255 to 58469. There was a correlation between the proportion of all bone marrow CD38(++)/CD138(+) cells with CD56 expression and ABC and RFI indices. With regard to CD56 expression positive patients, the CD56(-) MM patients presented lower frequency of osteolysis (p = 0.01). The median survival was 48 months in CD56(+) patients and 43 months (p = 0.84) in CD56(-) cases. In conclusion, CD56 expression carries no distinct adverse prognosis and the lack of CD56 expression does not define a unique clinicopathological or prognostic entity in MM. A remarkable heterogeneity of CD56 expression intensity in CD56(+) patients imposes the necessity of determining CD56 expression intensity in candidates to antibody-based therapy. PMID:18231917

  9. Pim2 is important for regulating DNA damage response in multiple myeloma cells.

    PubMed

    Ramachandran, J; Santo, L; Siu, K T; Panaroni, C; Raje, N

    2016-01-01

    Pan proviral integrations of Moloney virus (PIM) inhibition in multiple myeloma (MM) results in reduced cell viability in tested human-derived MM cell lines and reduces tumor burden in xenograft mouse models, making PIMs important therapeutic targets for the disease. PIM kinase inhibitors are currently being tested clinically in MM. We sought to elucidate the role of the various PIMs in MM. Our data demonstrate that Pim2 has a significant role in MM cell cytotoxicity. Our data provide evidence for a novel role for Pim2 in the regulation of the DNA damage response (DDR). Knockdown of Pim2 upregulates several downstream DDR markers, mimicking the effects of doxorubicin (Dox) treatment of MM cells, and suggesting a role for the kinase as a negative regulator of this pathway. Dox-induced DNA damage results in a decrease in Pim2 levels, placing the kinase directly downstream of the site of Dox-DNA binding. Overexpression of Pim2 confers a slight survival advantage against Dox through antiapoptotic activity, further underscoring its relevance in the DDR pathway. These data provide insights into a novel mechanism of PIM kinase activity and provide the framework for designing therapeutic approaches in MM. PMID:27564460

  10. Shear flow-induced formation of tubular cell protrusions in multiple myeloma cells

    PubMed Central

    Porat, Ziv; Yaron, Itamar; Katz, Ben-Zion; Kam, Zvi; Geiger, Benjamin

    2011-01-01

    Exposure of live cells to shear flow induces major changes in cell shape, adhesion to the extracellular matrix, and migration. In the present study, we show that exposure of cultured multiple myeloma (MM) cells to shear flow of 4–36 dynes/cm2 triggers the extension of long tubular protrusions (denoted FLow-Induced Protrusions, or FLIPs) in the direction of the flow. These FLIPs were found to be rich in actin, contain few or no microtubules and, apart from endoplasmic reticulum (ER)-like membranal structures, are devoid of organelles. Studying the dynamics of this process revealed that FLIPs elongate at their tips in a shear force-dependent manner, and retract at their bases. Examination of this force dependence revealed considerable heterogeneity in the mechanosensitivity of individual cells, most likely reflecting the diversity of the malignant B-cell population. The mechanisms underlying FLIP formation following mechanical perturbation, and their relevance to the cellular trafficking of MM cells, are discussed. PMID:21344380

  11. Transmissible cytotoxicity of multiple myeloma cells by cord blood-derived NK cells is mediated by vesicle trafficking

    PubMed Central

    Martin-Antonio, B; Najjar, A; Robinson, S N; Chew, C; Li, S; Yvon, E; Thomas, M W; Mc Niece, I; Orlowski, R; Muñoz-Pinedo, C; Bueno, C; Menendez, P; Fernández de Larrea, C; Urbano-Ispizua, A; Shpall, E J; Shah, N

    2015-01-01

    Natural killer cells (NK) are important effectors of anti-tumor immunity, activated either by the downregulation of HLA-I molecules on tumor cells and/or the interaction of NK-activating receptors with ligands that are overexpressed on target cells upon tumor transformation (including NKG2D and NKP30). NK kill target cells by the vesicular delivery of cytolytic molecules such as Granzyme-B and Granulysin activating different cell death pathways, which can be Caspase-3 dependent or Caspase-3 independent. Multiple myeloma (MM) remains an incurable neoplastic plasma-cell disorder. However, we previously reported the encouraging observation that cord blood-derived NK (CB-NK), a new source of NK, showed anti-tumor activity in an in vivo murine model of MM and confirmed a correlation between high levels of NKG2D expression by MM cells and increased efficacy of CB-NK in reducing tumor burden. We aimed to characterize the mechanism of CB-NK-mediated cytotoxicity against MM cells. We show a Caspase-3- and Granzyme-B-independent cell death, and we reveal a mechanism of transmissible cell death between cells, which involves lipid–protein vesicle transfer from CB-NK to MM cells. These vesicles are secondarily transferred from recipient MM cells to neighboring MM cells amplifying the initial CB-NK cytotoxicity achieved. This indirect cytotoxicity involves the transfer of NKG2D and NKP30 and leads to lysosomal cell death and decreased levels of reactive oxygen species in MM cells. These findings suggest a novel and unique mechanism of CB-NK cytotoxicity against MM cells and highlight the importance of lipids and lipid transfer in this process. Further, these data provide a rationale for the development of CB-NK-based cellular therapies in the treatment of MM. PMID:25168239

  12. [Mechanisms of myeloma-induced bone disease].

    PubMed

    Abe, Masahiro

    2016-05-01

    Multiple myeloma(MM)develops and expands almost exclusively in the bone marrow, and generates devastating bone destruction. MM cells produce a variety of cytokines to stimulate RANKL-mediated osteoclastogenesis and suppress osteoblastic differentiation from bone marrow stromal cells, leading to extensive bone destruction with rapid loss of bone. Furthermore, osteocyte apoptosis has been demonstrated to be induced in parallel with enhanced osteoclast recruitment and osteoclastogenesis in myeloma bone lesions. Of note, osteocytes physically interact with myeloma cells to skew their signaling pathways and thereby production of mediators responsible for exacerbated bone resorption and suppressed bone formation in myeloma. The role of osteocytes in myeloma-induced bone lesions remains to be further clarified. PMID:27117615

  13. Cell-surface serglycin promotes adhesion of myeloma cells to collagen type I and affects the expression of matrix metalloproteinases.

    PubMed

    Skliris, Antonis; Labropoulou, Vassiliki T; Papachristou, Dionysios J; Aletras, Alexios; Karamanos, Nikos K; Theocharis, Achilleas D

    2013-05-01

    Serglycin (SG) is mainly expressed by hematopoetic cells as an intracellular proteoglycan. Multiple myeloma cells constitutively secrete SG, which is also localized on the cell surface in some cell lines. In this study, SG isolated from myeloma cells was found to interact with collagen type I (Col I), which is a major bone matrix component. Notably, myeloma cells positive for cell-surface SG (csSG) adhered significantly to Col I, compared to cells lacking csSG. Removal of csSG by treatment of the cells with chondroitinase ABC or blocking of csSG by an SG-specific polyclonal antibody significantly reduced the adhesion of myeloma cells to Col I. Significant up-regulation of expression of the matrix metalloproteinases MMP-2 and MMP-9 at both the mRNA and protein levels was observed when culturing csSG-positive myeloma cells on Col I-coated dishes or in the presence of soluble Col I. MMP-9 and MMP-2 were also expressed in increased amounts by myeloma cells in the bone marrow of patients with multiple myeloma. Our data indicate that csSG of myeloma cells affects key functional properties, such as adhesion to Col I and the expression of MMPs, and imply that csSG may serve as a potential prognostic factor and/or target for pharmacological interventions in multiple myeloma. PMID:23387827

  14. Shikonin, dually functions as a proteasome inhibitor and a necroptosis inducer in multiple myeloma cells.

    PubMed

    Wada, Naoko; Kawano, Yawara; Fujiwara, Shiho; Kikukawa, Yoshitaka; Okuno, Yutaka; Tasaki, Masayoshi; Ueda, Mitsuharu; Ando, Yukio; Yoshinaga, Kazuya; Ri, Masaki; Iida, Shinsuke; Nakashima, Takayuki; Shiotsu, Yukimasa; Mitsuya, Hiroaki; Hata, Hiroyuki

    2015-03-01

    Shikonin (SHK), a natural small agent (MW 288.3), reportedly induces cell death in various tumor cells. We have found that SHK also exerts potent cytocidal effects on human multiple myeloma (MM) cells, but its anticancer mechanism in MM cells remains to be elucidated. SHK at 2.5-5 µM induced apoptosis in seven MM cell lines, including the bortezomib-resistant cell line KMS11/BTZ. The IC50 value of SHK against KMS11/BTZ was comparable to that of a parental cell line KMS11 (1.1 and 1.56 µM, respectively). SHK induces accumulation of ubiquitinated proteins and activates XBP-1 in MM cells, suggesting that SHK functions as a proteasome inhibitor, eventually inducing ER stress-associated apoptosis. SHK increases levels of HSP70/72, which protects cells from apoptosis, and exerts greater cytocidal effects in combination with the HSP70/72 inhibitor VER-155008. At higher concentrations (10-20 µM), SHK induced cell death, which was completely inhibited by a necroptosis inhibitor, necrostatin-1 (Nec-1), while the cytocidal activity was unaffected by Z-VAD-FMK, strongly suggesting that cell death is induced by SHK at high concentrations through necroptosis. The present data show for the first time that SHK induces cell death in MM cells. SHK efficiently induces apoptosis and combination of heat shock protein inhibitor with low dose SHK enhances apoptosis, while high dose SHK induces necroptosis in MM cells. These findings together support the use of SHK as a potential therapeutic agent for MM. PMID:25530098

  15. A Novel Phthalimide Derivative, TC11, Has Preclinical Effects on High-Risk Myeloma Cells and Osteoclasts

    PubMed Central

    Matsushita, Maiko; Ozaki, Yoshie; Hasegawa, Yuka; Terada, Fukiko; Tabata, Noriko; Shiheido, Hirokazu; Yanagawa, Hiroshi; Oikawa, Tsukasa; Matsuo, Koichi; Du, Wenlin; Yamada, Taketo; Hozumi, Masashi; Ichikawa, Daiju; Hattori, Yutaka

    2015-01-01

    Despite the recent advances in the treatment of multiple myeloma (MM), MM patients with high-risk cytogenetic changes such as t(4;14) translocation or deletion of chromosome 17 still have extremely poor prognoses. With the goal of helping these high-risk MM patients, we previously developed a novel phthalimide derivative, TC11. Here we report the further characterization of TC11 including anti-myeloma effects in vitro and in vivo, a pharmacokinetic study in mice, and anti-osteoclastogenic activity. Intraperitoneal injections of TC11 significantly delayed the growth of subcutaneous tumors in human myeloma-bearing SCID mice. Immunohistochemical analyses showed that TC11 induced apoptosis of MM cells in vivo. In the pharmacokinetic analyses, the Cmax was 2.1 μM at 1 h after the injection of TC11, with 1.2 h as the half-life. TC11 significantly inhibited the differentiation and function of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated osteoclasts in mouse osteoclast cultures using M-CSF and RANKL. We also revealed that TC11 induced the apoptosis of myeloma cells accompanied by α-tubulin fragmentation. In addition, TC11 and lenalidomide, another phthalimide derivative, directly bound to nucleophosmin 1 (NPM1), whose role in MM is unknown. Thus, through multiple molecular interactions, TC11 is a potentially effective drug for high-risk MM patients with bone lesions. The present results suggest the possibility of the further development of novel thalidomide derivatives by drug designing. PMID:25617756

  16. Effective impairment of myeloma cells and their progenitors by blockade of monocarboxylate transportation

    PubMed Central

    Hanson, Derek James; Nakamura, Shingen; Amachi, Ryota; Hiasa, Masahiro; Oda, Asuka; Tsuji, Daisuke; Itoh, Kohji; Harada, Takeshi; Horikawa, Kazuki; Teramachi, Jumpei; Miki, Hirokazu; Matsumoto, Toshio; Abe, Masahiro

    2015-01-01

    Cancer cells robustly expel lactate produced through enhanced glycolysis via monocarboxylate transporters (MCTs) and maintain alkaline intracellular pH. To develop a novel therapeutic strategy against multiple myeloma (MM), which still remains incurable, we explored the impact of perturbing a metabolism via inhibiting MCTs. All MM cells tested constitutively expressed MCT1 and MCT4, and most expressed MCT2. Lactate export was substantially suppressed to induce death along with lowering intracellular pH in MM cells by blockade of all three MCT molecules with α-cyano-4-hydroxy cinnamate (CHC) or the MCT1 and MCT2 inhibitor AR-C155858 in combination with MCT4 knockdown, although only partially by knockdown of each MCT. CHC lowered intracellular pH and severely curtailed lactate secretion even when combined with metformin, which further lowered intracellular pH and enhanced cytotoxicity. Interestingly, an ambient acidic pH markedly enhanced CHC-mediated cytotoxicity, suggesting preferential targeting of MM cells in acidic MM bone lesions. Furthermore, treatment with CHC suppressed hexokinase II expression and ATP production to reduce side populations and colony formation. Finally, CHC caused downregulation of homing receptor CXCR4 and abrogated SDF-1-induced migration. Targeting tumor metabolism by MCT blockade therefore may become an effective therapeutic option for drug-resistant MM cells with elevated glycolysis. PMID:26384349

  17. The novel JAK inhibitor AZD1480 blocks STAT3 and FGFR3 signaling, resulting in suppression of human myeloma cell growth and survival.

    PubMed

    Scuto, A; Krejci, P; Popplewell, L; Wu, J; Wang, Y; Kujawski, M; Kowolik, C; Xin, H; Chen, L; Wang, Y; Kretzner, L; Yu, H; Wilcox, W R; Yen, Y; Forman, S; Jove, R

    2011-03-01

    IL-6 and downstream JAK-dependent signaling pathways have critical roles in the pathophysiology of multiple myeloma (MM). We investigated the effects of a novel small-molecule JAK inhibitor (AZD1480) on IL-6/JAK signal transduction and its biological consequences on the human myeloma-derived cell lines U266 and Kms.11. At low micromolar concentrations, AZD1480 blocks cell proliferation and induces apoptosis of myeloma cell lines. These biological responses to AZD1480 are associated with concomitant inhibition of phosphorylation of JAK2, STAT3 and MAPK signaling proteins. In addition, there is inhibition of expression of STAT3 target genes, particularly Cyclin D2. Examination of a wider variety of myeloma cells (RPMI 8226, OPM-2, NCI-H929, Kms.18, MM1.S and IM-9), as well as primary myeloma cells, showed that AZD1480 has broad efficacy. In contrast, viability of normal peripheral blood (PB) mononuclear cells and CD138(+) cells derived from healthy controls was not significantly inhibited. Importantly, AZD1480 induces cell death of Kms.11 cells grown in the presence of HS-5 bone marrow (BM)-derived stromal cells and inhibits tumor growth in a Kms.11 xenograft mouse model, accompanied with inhibition of phospho-FGFR3, phospho-JAK2, phospho-STAT3 and Cyclin D2 levels. In sum, AZD1480 blocks proliferation, survival, FGFR3 and JAK/STAT3 signaling in myeloma cells cultured alone or cocultured with BM stromal cells, and in vivo. Thus, AZD1480 represents a potential new therapeutic agent for patients with MM. PMID:21164517

  18. Elotuzumab for the treatment of multiple myeloma.

    PubMed

    Wang, Yucai; Sanchez, Larysa; Siegel, David S; Wang, Michael L

    2016-01-01

    Elotuzumab is one of the first two monoclonal antibodies that gained FDA approval for the treatment of multiple myeloma (MM). It targets SLAMF7, which is highly expressed in normal plasma and MM cells as well as natural killer (NK) cells. Elotuzumab demonstrated significant anti-myeloma activity in preclinical studies, and its mechanisms of action include mediating antibody-dependent cell-mediated cytotoxicity, enhancing cytotoxicity of NK cells, and inhibiting MM cell interaction with bone marrow stromal cells. In clinical trials, elotuzumab in combination with immunomodulatory drugs and proteasome inhibitors has demonstrated an excellent efficacy and safety profile in treating MM. PMID:27417553

  19. MicroRNA-451 regulates stemness of side population cells via PI3K/Akt/mTOR signaling pathway in multiple myeloma

    PubMed Central

    He, Jie; Liu, Xi; Qu, Ying; Yan, Wenqing; Fan, Jianling; Li, Rong; Xi, Hao; Fu, Weijun; Zhang, Chunyang; Yang, Jing; Hou, Jian

    2015-01-01

    Side population (SP) cells are an enriched source of cancer-initiating cells with stemness characteristics, generated by increased ABC transporter activity, which has served as a unique hallmark for multiple myeloma (MM) stem cell studies. Here we isolated and identified MM SP cells via Hoechst 33342 staining. Furthermore, we demonstrate that SP cells possess abnormal cell cycle, clonogenicity, and high drug efflux characteristics-all of which are features commonly seen in stem cells. Interestingly, we found that bortezomib, As2O3, and melphalan all affected apoptosis and clonogenicity in SP cells. We followed by characterizing the miRNA signature of MM SP cells and validated the specific miR-451 target tuberous sclerosis 1 (TSC1) gene to reveal that it activates the PI3K/Akt/mTOR signaling in MM SP cells. Inhibition of miR-451 enhanced anti-myeloma novel agents' effectiveness, through increasing cells apoptosis, decreasing clonogenicity, and reducing MDR1 mRNA expression. Moreover, the novel specific PI3K/Akt/mTOR signaling inhibitor S14161 displayed its prowess as a potential therapeutic agent by targeting MM SP cells. Our findings offer insights into the mechanisms regulating MM SP cells and provide a novel strategy to overcome resistance to existing therapies against myeloma. PMID:25915427

  20. The frequency of T regulatory cells modulates the survival of multiple myeloma patients: detailed characterisation of immune status in multiple myeloma

    PubMed Central

    Giannopoulos, K; Kaminska, W; Hus, I; Dmoszynska, A

    2012-01-01

    Background: Multiple myeloma (MM) is an immunoproliferative disease characterised by the uncontrolled proliferation of plasma cells, which is accompanied by defects in the immune system. Methods: This study aimed to characterise the frequency of T regulatory cells (Tregs), dendritic cells (DCs) as well as sub-populations of T cells bearing regulatory properties like CD4+GITR+, CD4+CD62L+, CD3+TCRγδ+ along with the concentrations of IL-10, TGFβ, IL-6 in 66 patients with MM. Subsequently, the influence of therapy on those components of immune system was assessed. Results: The percentage of both myeloid and plasmacytoid DC was lower in MM compared with control group while Treg (CD4+CD25highFOXP3+) frequencies were significantly higher in MM patients compared with healthy control (6.16% vs 0.05%, respectively). Also, the percentages of CD4+GITR+, CD4+CD62L+ were increased compared with healthy volunteers. We found that patients with higher percentages of Treg live shorter (median overall survival 21 months vs not-reached, P=0.013). Conclusion: This study identifies several abnormalities of immune system in MM, which only partly could be normalised after successful therapy. The dysfunction of immune system such as decreased antigen presentation along with increased frequencies of suppressive cells and cytokines might facilitate progression of the disease and infectious complications limiting survival of MM patients. PMID:22223085

  1. MicroRNAs: Novel Crossroads between Myeloma Cells and the Bone Marrow Microenvironment.

    PubMed

    Raimondi, Lavinia; De Luca, Angela; Morelli, Eugenio; Giavaresi, Gianluca; Tagliaferri, Pierosandro; Tassone, Pierfrancesco; Amodio, Nicola

    2016-01-01

    Multiple myeloma (MM) is a hematologic malignancy of differentiated plasma cells that accumulate in the bone marrow, where a complex microenvironment made by different cell types supports proliferation, survival, and drug resistance of tumor cells. MicroRNAs (miRNAs) are short non-coding RNAs that regulate gene expression at posttranscriptional level. Emerging evidence indicates that miRNAs are aberrantly expressed or functionally deregulated in MM cells as the result of multiple genetic or epigenetic mechanisms and that also the tumor microenvironment regulates MM cell functions by miRNAs. Consistently, modulation of miRNA levels in MM cells has been demonstrated to impair their functional interaction with the bone marrow microenvironment and to produce significant antitumor activity even able to overcome the protective bone marrow milieu. This review will describe the most recent findings on miRNA function in the context of MM bone marrow microenvironment, focusing on the therapeutic potential of miRNA-based approaches. PMID:26881223

  2. MicroRNAs: Novel Crossroads between Myeloma Cells and the Bone Marrow Microenvironment

    PubMed Central

    Raimondi, Lavinia; De Luca, Angela; Morelli, Eugenio; Giavaresi, Gianluca; Tagliaferri, Pierosandro; Tassone, Pierfrancesco; Amodio, Nicola

    2016-01-01

    Multiple myeloma (MM) is a hematologic malignancy of differentiated plasma cells that accumulate in the bone marrow, where a complex microenvironment made by different cell types supports proliferation, survival, and drug resistance of tumor cells. MicroRNAs (miRNAs) are short non-coding RNAs that regulate gene expression at posttranscriptional level. Emerging evidence indicates that miRNAs are aberrantly expressed or functionally deregulated in MM cells as the result of multiple genetic or epigenetic mechanisms and that also the tumor microenvironment regulates MM cell functions by miRNAs. Consistently, modulation of miRNA levels in MM cells has been demonstrated to impair their functional interaction with the bone marrow microenvironment and to produce significant antitumor activity even able to overcome the protective bone marrow milieu. This review will describe the most recent findings on miRNA function in the context of MM bone marrow microenvironment, focusing on the therapeutic potential of miRNA-based approaches. PMID:26881223

  3. B-cell Maturation Antigen is a Promising Target for Adoptive T-cell Therapy of Multiple Myeloma

    PubMed Central

    Carpenter, Robert O.; Evbuomwan, Moses O.; Pittaluga, Stefania; Rose, Jeremy J.; Raffeld, Mark; Yang, Shicheng; Gress, Ronald E.; Hakim, Frances T.; Kochenderfer, James N.

    2013-01-01

    Purpose Multiple myeloma (MM) is a usually incurable malignancy of plasma cells. New therapies are urgently needed for MM. Adoptive transfer of chimeric antigen receptor (CAR)-expressing T cells is a promising new therapy for hematologic malignancies, but an ideal target antigen for CAR-expressing T cell therapies of MM has not been identified. B-cell maturation antigen (BCMA) is a protein that has been reported to be selectively expressed by B-lineage cells including MM cells. Our goal was to determine if BCMA is a suitable target for CAR-expressing T cells. Experimental Design We conducted an assessment of BCMA expression in normal human tissues and MM cells by flow cytometry, quantitative PCR, and immunohistochemistry. We designed and tested novel anti-BCMA CARs. Results BCMA had a restricted RNA expression pattern. Except for expression on plasma cells, BCMA protein was not detected in normal human tissues. BCMA was not detected on primary human CD34+ hematopoietic cells. We detected uniform BCMA cell-surface expression on primary MM cells from 5 of 5 patients. We designed the first anti-BCMA CARs to be reported, and we transduced T cells with lentiviral vectors encoding these CARs. The CARs gave T cells the ability to specifically recognize BCMA. The anti-BCMA-CAR-transduced T cells exhibited BCMA-specific functions including cytokine production, proliferation, cytotoxicity, and in vivo tumor eradication. Importantly, anti-BCMA-CAR-transduced T cells recognized and killed primary MM cells. Conclusions BCMA is a suitable target for CAR-expressing T cells, and adoptive transfer of anti-BCMA-CAR-expressing T cells is a promising new strategy for treating MM. PMID:23344265

  4. EZH2 Inhibition Blocks Multiple Myeloma Cell Growth through Upregulation of Epithelial Tumor Suppressor Genes.

    PubMed

    Hernando, Henar; Gelato, Kathy A; Lesche, Ralf; Beckmann, Georg; Koehr, Silke; Otto, Saskia; Steigemann, Patrick; Stresemann, Carlo

    2016-02-01

    Multiple myeloma is a plasma cell malignancy characterized by marked heterogeneous genomic instability including frequent genetic alterations in epigenetic enzymes. In particular, the histone methyltransferase Enhancer of Zeste Homolog 2 (EZH2) is overexpressed in multiple myeloma. EZH2 is the catalytic component of the polycomb repressive complex 2 (PRC2), a master transcriptional regulator of differentiation. EZH2 catalyzes methylation of lysine 27 on histone H3 and its deregulation in cancer has been reported to contribute to silencing of tumor suppressor genes, resulting in a more undifferentiated state, and thereby contributing to the multiple myeloma phenotype. In this study, we propose the use of EZH2 inhibitors as a new therapeutic approach for the treatment of multiple myeloma. We demonstrate that EZH2 inhibition causes a global reduction of H3K27me3 in multiple myeloma cells, promoting reexpression of EZH2-repressed tumor suppressor genes in a subset of cell lines. As a result of this transcriptional activation, multiple myeloma cells treated with EZH2 inhibitors become more adherent and less proliferative compared with untreated cells. The antitumor efficacy of EZH2 inhibitors is also confirmed in vivo in a multiple myeloma xenograft model in mice. Together, our data suggest that EZH2 inhibition may provide a new therapy for multiple myeloma treatment and a promising addition to current treatment options. Mol Cancer Ther; 15(2); 287-98. ©2015 AACR. PMID:26590165

  5. Osteoclasts control reactivation of dormant myeloma cells by remodelling the endosteal niche

    PubMed Central

    Lawson, Michelle A.; McDonald, Michelle M.; Kovacic, Natasa; Hua Khoo, Weng; Terry, Rachael L.; Down, Jenny; Kaplan, Warren; Paton-Hough, Julia; Fellows, Clair; Pettitt, Jessica A.; Neil Dear, T.; Van Valckenborgh, Els; Baldock, Paul A.; Rogers, Michael J.; Eaton, Colby L.; Vanderkerken, Karin; Pettit, Allison R.; Quinn, Julian M. W.; Zannettino, Andrew C. W.; Phan, Tri Giang; Croucher, Peter I.

    2015-01-01

    Multiple myeloma is largely incurable, despite development of therapies that target myeloma cell-intrinsic pathways. Disease relapse is thought to originate from dormant myeloma cells, localized in specialized niches, which resist therapy and repopulate the tumour. However, little is known about the niche, and how it exerts cell-extrinsic control over myeloma cell dormancy and reactivation. In this study, we track individual myeloma cells by intravital imaging as they colonize the endosteal niche, enter a dormant state and subsequently become activated to form colonies. We demonstrate that dormancy is a reversible state that is switched ‘on' by engagement with bone-lining cells or osteoblasts, and switched ‘off' by osteoclasts remodelling the endosteal niche. Dormant myeloma cells are resistant to chemotherapy that targets dividing cells. The demonstration that the endosteal niche is pivotal in controlling myeloma cell dormancy highlights the potential for targeting cell-extrinsic mechanisms to overcome cell-intrinsic drug resistance and prevent disease relapse. PMID:26632274

  6. Novel anti–B-cell maturation antigen antibody-drug conjugate (GSK2857916) selectively induces killing of multiple myeloma

    PubMed Central

    Mayes, Patrick A.; Acharya, Chirag; Zhong, Mike Y.; Cea, Michele; Cagnetta, Antonia; Craigen, Jenny; Yates, John; Gliddon, Louise; Fieles, William; Hoang, Bao; Tunstead, James; Christie, Amanda L.; Kung, Andrew L.; Richardson, Paul; Munshi, Nikhil C.; Anderson, Kenneth C.

    2014-01-01

    B-cell maturation antigen (BCMA), highly expressed on malignant plasma cells in human multiple myeloma (MM), has not been effectively targeted with therapeutic monoclonal antibodies. We here show that BCMA is universally expressed on the MM cell surface and determine specific anti-MM activity of J6M0-mcMMAF (GSK2857916), a novel humanized and afucosylated antagonistic anti-BCMA antibody-drug conjugate via a noncleavable linker. J6M0-mcMMAF specifically blocks cell growth via G2/M arrest and induces caspase 3–dependent apoptosis in MM cells, alone and in coculture with bone marrow stromal cells or various effector cells. It strongly inhibits colony formation by MM cells while sparing surrounding BCMA-negative normal cells. J6M0-mcMMAF significantly induces effector cell-mediated lysis against allogeneic or autologous patient MM cells, with increased potency and efficacy compared with the wild-type J6M0 without Fc enhancement. The antibody-dependent cell-mediated cytotoxicity and apoptotic activity of J6M0-mcMMAF is further enhanced by lenalidomide. Importantly, J6M0-mcMMAF rapidly eliminates myeloma cells in subcutaneous and disseminated mouse models, and mice remain tumor-free up to 3.5 months. Furthermore, J6M0-mcMMAF recruits macrophages and mediates antibody-dependent cellular phagocytosis of MM cells. Together, these results demonstrate that GSK2857916 has potent and selective anti-MM activities via multiple cytotoxic mechanisms, providing a promising next-generation immunotherapeutic in this cancer. PMID:24569262

  7. Novel anti-B-cell maturation antigen antibody-drug conjugate (GSK2857916) selectively induces killing of multiple myeloma.

    PubMed

    Tai, Yu-Tzu; Mayes, Patrick A; Acharya, Chirag; Zhong, Mike Y; Cea, Michele; Cagnetta, Antonia; Craigen, Jenny; Yates, John; Gliddon, Louise; Fieles, William; Hoang, Bao; Tunstead, James; Christie, Amanda L; Kung, Andrew L; Richardson, Paul; Munshi, Nikhil C; Anderson, Kenneth C

    2014-05-15

    B-cell maturation antigen (BCMA), highly expressed on malignant plasma cells in human multiple myeloma (MM), has not been effectively targeted with therapeutic monoclonal antibodies. We here show that BCMA is universally expressed on the MM cell surface and determine specific anti-MM activity of J6M0-mcMMAF (GSK2857916), a novel humanized and afucosylated antagonistic anti-BCMA antibody-drug conjugate via a noncleavable linker. J6M0-mcMMAF specifically blocks cell growth via G2/M arrest and induces caspase 3-dependent apoptosis in MM cells, alone and in coculture with bone marrow stromal cells or various effector cells. It strongly inhibits colony formation by MM cells while sparing surrounding BCMA-negative normal cells. J6M0-mcMMAF significantly induces effector cell-mediated lysis against allogeneic or autologous patient MM cells, with increased potency and efficacy compared with the wild-type J6M0 without Fc enhancement. The antibody-dependent cell-mediated cytotoxicity and apoptotic activity of J6M0-mcMMAF is further enhanced by lenalidomide. Importantly, J6M0-mcMMAF rapidly eliminates myeloma cells in subcutaneous and disseminated mouse models, and mice remain tumor-free up to 3.5 months. Furthermore, J6M0-mcMMAF recruits macrophages and mediates antibody-dependent cellular phagocytosis of MM cells. Together, these results demonstrate that GSK2857916 has potent and selective anti-MM activities via multiple cytotoxic mechanisms, providing a promising next-generation immunotherapeutic in this cancer. PMID:24569262

  8. Differential downregulation of telomerase activity by bortezomib in multiple myeloma cells-multiple regulatory pathways in vitro and ex vivo

    PubMed Central

    Weiss, C; Uziel, O; Wolach, O; Nordenberg, J; Beery, E; Bulvick, S; Kanfer, G; Cohen, O; Ram, R; Bakhanashvili, M; Magen-Nativ, H; Shilo, N; Lahav, M

    2012-01-01

    Background: The importance of telomerase in multiple myeloma (MM) is well established; however, its response to bortezomib has not been addressed. Methods: The effect of bortezomib on telomerase activity and cell proliferation was evaluated in four MM cell lines and in myeloma cells obtained from eight patients. The mechanism of telomerase regulation on epigenetic, transcriptional, and post-translational levels was further assessed in two selected cell lines: ARP-1 and CAG. Clinical data were correlated with the laboratory findings. Results: Bortezomib downregulated telomerase activity and decreased proliferation in all cell lines and cells obtained from patients, albeit in two different patterns of kinetics. ARP-1 cells demonstrated higher and earlier sensitivity than CAG cells due to differential phosphorylation of hTERT by PKCα. Methylation of hTERT promoter was not affected. Transcription of hTERT was similarly inhibited in both lines by decreased binding of SP-1 and not of C-Myc and NFκB. The ex vivo results confirmed the in vitro findings and suggested existence of clinical relevance. Conclusion: Bortezomib downregulates telomerase activity in MM cells both transcriptionally and post-translationally. MM cells, both in vitro and in patients, exhibit different sensitivity to the drug due to different post-translational response. The effect of bortezomib on telomerase activity may correlate with resistance to bortezomib in patients, suggesting its potential utility as a pre-treatment assessment. PMID:23169337

  9. Targeting miR-21 inhibits in vitro and in vivo multiple myeloma cell growth

    PubMed Central

    Leone, Emanuela; Morelli, Eugenio; Di Martino, Maria T.; Amodio, Nicola; Foresta, Umberto; Gullà, Annamaria; Rossi, Marco; Neri, Antonino; Giordano, Antonio; Munshi, Nikhil C.; Anderson, Kenneth C.; Tagliaferri, Pierosandro; Tassone, Pierfrancesco

    2014-01-01

    Purpose Deregulated expression of microRNAs (miRNAs) plays a role in the pathogenesis and progression of multiple myeloma (MM). Among upregulated miRNAs, miR-21 has oncogenic potential and therefore represents an attractive target for the treatment of MM. Experimental design Here, we investigated the in vitro and in vivo anti-MM activity of miR-21 inhibitors. Results Either transient enforced expression or lentivirus-based constitutive expression of miR-21 inhibitors triggered significant growth inhibition of primary patient MM cells or IL-6-dependent/independent MM cell lines and overcame the protective activity of human bone marrow stromal cells. Conversely, transfection of miR-21 mimics significantly increased proliferation of MM cells, demonstrating its tumor promoting potential in MM. Importantly, upregulation of miR-21 canonical validated targets (PTEN, Rho-B and BTG2), together with functional impairment of both AKT and ERK signaling, were achieved by transfection of miR-21 inhibitors into MM cells. In vivo delivery of miR-21 inhibitors in SCID mice bearing human MM xenografts expressing miR-21 induced significant anti-tumor activity. Upregulation of PTEN and downregulation of p-AKT were observed in retrieved xenografts following treatment with miR-21 inhibitors. Conclusions Our findings show the first evidence that in vivo antagonism of miR-21 exerts anti-MM activity, providing the rationale for clinical development of miR-21 inhibitors in this still incurable disease. PMID:23446999

  10. The novel JAK inhibitor AZD1480 blocks STAT3 and FGFR3 signaling, resulting in suppression of human myeloma cell growth and survival

    PubMed Central

    Scuto, Anna; Krejci, Pavel; Popplewell, Leslie; Wu, Jun; Wang, Yan; Kujawski, Maciej; Kowolik, Claudia; Xin, Hong; Chen, Linling; Wang, Yafan; Kretzner, Leo; Yu, Hua; Wilcox, William R.; Yen, Yun; Forman, Stephen; Jove, Richard

    2011-01-01

    IL-6 and downstream JAK-dependent signaling pathways have critical roles in the pathophysiology of multiple myeloma. We investigated the effects of a novel small-molecule JAK inhibitor (AZD1480) on IL-6/JAK signal transduction and its biological consequences on the human myeloma-derived cell lines U266 and Kms.11. At low micromolar concentrations, AZD1480 blocks cell proliferation and induces apoptosis of myeloma cell lines. These biological responses to AZD1480 are associated with concomitant inhibition of phosphorylation of JAK2, STAT3 and MAPK signaling proteins. In addition, there is inhibition of expression of STAT3 target genes, particularly Cyclin D2. Examination of a wider variety of myeloma cells (RPMI 8226, OPM-2, NCI-H929, Kms.18, MM1.S, IM-9) as well as primary myeloma cells showed that AZD1480 has broad efficacy. By contrast, viability of normal PBMCs and CD138+ cells derived from healthy controls was not significantly inhibited. Importantly, AZD1480 induces cell death of Kms.11 cells grown in the presence of HS-5 bone marrow-derived stromal cells and inhibits tumor growth in a Kms.11 xenograft mouse model, accompanied with inhibition of phospho-FGFR3, phospho-JAK2, phospho-STAT3 and Cyclin D2 levels. In sum, AZD1480 blocks proliferation, survival, FGFR3 and JAK/STAT3 signaling in myeloma cells cultured alone or co-cultured with bone marrow stromal cells and in vivo. Thus, AZD1480 represents a potential new therapeutic agent for patients with multiple myeloma. PMID:21164517

  11. Study on the Association Between miRNA-202 Expression and Drug Sensitivity in Multiple Myeloma Cells.

    PubMed

    Shen, Xianjuan; Guo, Yuehua; Qi, Jing; Shi, Wei; Wu, Xinhua; Ni, Hongbing; Ju, Shaoqing

    2016-07-01

    An increasing amount of experimental evidence has shown that miRNAs play a causal role in hematologic tumorigenesis. In this study, we characterized the role of miR-202 in multiple myeloma (MM) drug sensitivity. The potential binding site of miR-202 and B cell-activating factor (BAFF) was confirmed by luciferase reporter assay. MM cells were transfected with miR-202 mimics and inhibitor. Cells growth was measured by WST-1 cell proliferation assay and Annexin V-FLUOS apoptosis assay. BAFF and miR-202 mRNA levels were measured by real-time PCR. Meanwhile, BAFF, Bcl-2 family survival proteins and MAPK pathway proteins were measured by Western blot. It was found that miR-202 was functioned as a modulator of BAFF expression. miR-202 over-expression sensitized MM cells to bortezomib (Bort) but less to Thalidomide (Thal) and dexamethasone (Dex). miR-202 mimics in combination with Bort inhibited MM cell survival more effectively as compared with Bort treatment alone. Our study also provided experimental evidence that JNK/SAPK signaling pathway was involved in the regulatory effect of miR-202 on drug resistance of MM cells. These results suggest that the regulatory mechanism of miR-202 expression may be a promising target for fine-tuning anti-myeloma therapy. PMID:26689580

  12. miR-23b/SP1/c-myc forms a feed-forward loop supporting multiple myeloma cell growth

    PubMed Central

    Fulciniti, M; Amodio, N; Bandi, R L; Cagnetta, A; Samur, M K; Acharya, C; Prabhala, R; D'Aquila, P; Bellizzi, D; Passarino, G; Adamia, S; Neri, A; Hunter, Z R; Treon, S P; Anderson, K C; Tassone, P; Munshi, N C

    2016-01-01

    Deregulated microRNA (miR)/transcription factor (TF)-based networks represent a hallmark of cancer. We report here a novel c-Myc/miR-23b/Sp1 feed-forward loop with a critical role in multiple myeloma (MM) and Waldenstrom's macroglobulinemia (WM) cell growth and survival. We have found miR-23b to be downregulated in MM and WM cells especially in the presence of components of the tumor bone marrow milieu. Promoter methylation is one mechanism of miR-23b suppression in myeloma. In gain-of-function studies using miR-23b mimics-transfected or in miR-23b-stably expressing MM and WM cell lines, we observed a significant decrease in cell proliferation and survival, along with induction of caspase-3/7 activity over time, thus supporting a tumor suppressor role for miR-23b. At the molecular level, miR-23b targeted Sp1 3′UTR and significantly reduced Sp1-driven nuclear factor-κB activity. Finally, c-Myc, an important oncogenic transcription factor known to stimulate MM cell proliferation, transcriptionally repressed miR-23b. Thus MYC-dependent miR-23b repression in myeloma cells may promote activation of oncogenic Sp1-mediated signaling, representing the first feed-forward loop with critical growth and survival role in myeloma. PMID:26771806

  13. The requirement for DNAM-1, NKG2D, and NKp46 in the natural killer cell-mediated killing of myeloma cells.

    PubMed

    El-Sherbiny, Yasser M; Meade, Josephine L; Holmes, Tim D; McGonagle, Dennis; Mackie, Sarah L; Morgan, Ann W; Cook, Gordon; Feyler, Sylvia; Richards, Stephen J; Davies, Faith E; Morgan, Gareth J; Cook, Graham P

    2007-09-15

    Recent evidence suggests a role for natural killer (NK) cells in the control of multiple myeloma. We show that expression of the NK cell receptor DNAM-1 (CD226) is reduced on CD56(dim) NK cells from myeloma patients with active disease compared with patients in remission and healthy controls. This suggested that this receptor might play a role in NK-myeloma interactions. The DNAM-1 ligands Nectin-2 (CD112) and the poliovirus receptor (PVR; CD155) were expressed by most patient myeloma samples analyzed. NK killing of patient-derived myelomas expressing PVR and/or Nectin-2 was DNAM-1 dependent, revealing a functional role for DNAM-1 in myeloma cell killing. In myeloma cell lines, cell surface expression of PVR was associated with low levels of NKG2D ligands, whereas cells expressing high levels of NKG2D ligands did not express PVR protein or mRNA. Furthermore, NK cell-mediated killing of myeloma cell lines was dependent on either DNAM-1 or NKG2D but not both molecules. In contrast, the natural cytotoxicity receptor NKp46 was required for the killing of all myeloma cell lines analyzed. Thus, DNAM-1 is important in the NK cell-mediated killing of myeloma cells expressing the cognate ligands. The importance of NKp46, NKG2D, and DNAM-1 in myeloma killing mirrors the differential expression of NK cell ligands by myeloma cells, reflecting immune selection during myeloma disease progression. PMID:17875681

  14. Multiple myeloma.

    PubMed

    Raab, Marc S; Podar, Klaus; Breitkreutz, Iris; Richardson, Paul G; Anderson, Kenneth C

    2009-07-25

    Multiple myeloma is characterised by clonal proliferation of malignant plasma cells, and mounting evidence indicates that the bone marrow microenvironment of tumour cells has a pivotal role in myeloma pathogenesis. This knowledge has already expanded treatment options for patients with multiple myeloma. Prototypic drugs thalidomide, bortezomib, and lenalidomide have each been approved for the treatment of this disease by targeting both multiple myeloma cells and the bone marrow microenvironment. Although benefit was first shown in relapsed and refractory disease, improved overall response, duration of response, and progression-free and overall survival can be achieved when these drugs are part of first-line regimens. This treatment framework promises to improve outcome not only for patients with multiple myeloma, but also with other haematological malignancies and solid tumours. PMID:19541364

  15. Immunomodulatory drugs improve the immune environment for dendritic cell-based immunotherapy in multiple myeloma patients after autologous stem cell transplantation.

    PubMed

    De Keersmaecker, Brenda; Fostier, Karel; Corthals, Jurgen; Wilgenhof, Sofie; Heirman, Carlo; Aerts, Joeri L; Thielemans, Kris; Schots, Rik

    2014-10-01

    Multiple myeloma (MM) is characterized by a malignant proliferation of plasma cells in the bone marrow with associated organ damage. Although the prognosis of MM has improved recently, the disease remains incurable for the large majority of patients. The eradication of residual disease in the bone marrow is a main target on the road toward cure. Immune cells play a role in the control of cancer and can be tools to attack residual MM cells. However, the myeloma-associated immune deficiency is a major hurdle to immunotherapy. We evaluated ex vivo the effects of low doses of the immunomodulatory drugs (IMiDs) lenalidomide and pomalidomide on several immune cell types from MM patients after autologous stem cell transplantation and with low tumor burden. We observed that these drugs increased CD4(+) and CD8(+) T-cell proliferation and cytokine production, enhanced the lytic capacity of cytotoxic T lymphocytes and reduced the suppressive effects of regulatory T cells on CD8(+) T-cell responses. In addition, we found that functional dendritic cells (DCs) can be generated from mononuclear cells from MM patients. The presence of IMiDs improved the quality of antigen-specific T cells induced or expanded by these DCs as evidenced by a higher degree of T-cell polyfunctionality. Our results provide a rationale for the design of early phase clinical studies to assess the efficacy of DC-based immunotherapy in combination with posttransplant maintenance treatment with IMiDs in MM. PMID:24947180

  16. Aiolos collaborates with Blimp-1 to regulate the survival of multiple myeloma cells.

    PubMed

    Hung, K-H; Su, S-T; Chen, C-Y; Hsu, P-H; Huang, S-Y; Wu, W-J; Chen, M-J M; Chen, H-Y; Wu, P-C; Lin, F-R; Tsai, M-D; Lin, K-I

    2016-07-01

    The transcriptional repressor B lymphocyte-induced maturation protein-1 (Blimp-1) has crucial roles in the control of plasma cell differentiation and in maintaining survival of plasma cells. However, how Blimp-1 ensures the survival of plasma cell malignancy, multiple myeloma (MM), has remained elusive. Here we identified Aiolos, an anti-apoptotic transcription factor of MM cells, as a Blimp-1-interacting protein by mass spectrometry. ChIP coupled with DNA microarray was used to profile the global binding of Aiolos and Blimp-1 to endogenous targets in MM cells, which revealed their co-binding to a large number of genes, including apoptosis-related genes. Accordingly, Blimp-1 and Aiolos regulate similar transcriptomes in MM cells. Analysis of the binding motifs for Blimp-1 and Aiolos uncovered a partial motif that was similar across sites for both proteins. Aiolos promotes the binding of Blimp-1 to target genes and thereby enhances Blimp-1-dependent transcriptional repression. Furthermore, treatment with an anti-MM agent, lenalidomide, caused ubiquitination and proteasomal degradation of Blimp-1, leading to the de-repression of a new Blimp-1 direct target, CULLIN 4A (CUL4A), and reduced Aiolos levels. Accordingly, lenalidomide-induced cell death was partially rescued by reintroduction of Blimp-1 or knockdown of CUL4A. Thus, we demonstrated the functional impacts and underlying mechanisms of the interaction between Aiolos and Blimp-1 in maintaining MM cell survival. We also showed that interruption of Blimp-1/Aiolos regulatory pathways contributes to lenalidomide-mediated anti-MM activity. PMID:26823144

  17. RANK-RANKL interactions are involved in cell adhesion-mediated drug resistance in multiple myeloma cell lines.

    PubMed

    Tsubaki, Masanobu; Takeda, Tomoya; Yoshizumi, Misako; Ueda, Emi; Itoh, Tatsuki; Imano, Motohiro; Satou, Takao; Nishida, Shozo

    2016-07-01

    Interaction between multiple myeloma (MM) cells and the bone marrow microenvironment plays a critical role in MM pathogenesis and the development of drug resistance. Recently, it has been reported that MM cells express the receptor activator of nuclear factor-κB (NF-κB) (RANK). However, the role of the RANK/RANK ligand (RANKL) system in drug resistance remains unclear. In this study, we demonstrated a novel function of the RANK/RANKL system in promoting drug resistance in MM. We found that RANKL treatment induced drug resistance in RANK-expressing but not RANK-negative cell lines. RANKL stimulation of RANK-expressing cells increased multidrug resistance protein 1 (MDR1), breast cancer resistance protein (BCRP), and lung resistance protein 1 (LRP1) expression and decreased Bim expression through various signaling molecules. RNA silencing of Bim expression induced drug resistance, but the RANKL-mediated drug resistance could not be overcome through the RNA silencing of MDR1, BCRP, and LRP1 expression. These results indicate that the RANK/RANKL system induces chemoresistance through the activation of multiple signal transduction pathways and by decreasing Bim expression in RANK-positive MM cells. These findings may prove to be useful in the development of cell adhesion-mediated drug resistance inhibitors in RANK-positive MM cells. PMID:26762414

  18. CRM1 inhibition induces tumor cell cytotoxicity and impairs osteoclastogenesis in multiple myeloma: molecular mechanisms and therapeutic implications.

    PubMed

    Tai, Y-T; Landesman, Y; Acharya, C; Calle, Y; Zhong, M Y; Cea, M; Tannenbaum, D; Cagnetta, A; Reagan, M; Munshi, A A; Senapedis, W; Saint-Martin, J R; Kashyap, T; Shacham, S; Kauffman, M; Gu, Y; Wu, L; Ghobrial, I; Zhan, F; Kung, A L; Schey, S A; Richardson, P; Munshi, N C; Anderson, K C

    2014-01-01

    The key nuclear export protein CRM1/XPO1 may represent a promising novel therapeutic target in human multiple myeloma (MM). Here we showed that chromosome region maintenance 1 (CRM1) is highly expressed in patients with MM, plasma cell leukemia cells and increased in patient cells resistant to bortezomib treatment. CRM1 expression also correlates with increased lytic bone and shorter survival. Importantly, CRM1 knockdown inhibits MM cell viability. Novel, oral, irreversible selective inhibitors of nuclear export (SINEs) targeting CRM1 (KPT-185, KPT-330) induce cytotoxicity against MM cells (ED50<200 nM), alone and cocultured with bone marrow stromal cells (BMSCs) or osteoclasts (OC). SINEs trigger nuclear accumulation of multiple CRM1 cargo tumor suppressor proteins followed by growth arrest and apoptosis in MM cells. They further block c-myc, Mcl-1, and nuclear factor κB (NF-κB) activity. SINEs induce proteasome-dependent CRM1 protein degradation; concurrently, they upregulate CRM1, p53-targeted, apoptosis-related, anti-inflammatory and stress-related gene transcripts in MM cells. In SCID mice with diffuse human MM bone lesions, SINEs show strong anti-MM activity, inhibit MM-induced bone lysis and prolong survival. Moreover, SINEs directly impair osteoclastogenesis and bone resorption via blockade of RANKL-induced NF-κB and NFATc1, with minimal impact on osteoblasts and BMSCs. These results support clinical development of SINE CRM1 antagonists to improve patient outcome in MM. PMID:23588715

  19. CRM1 inhibition induces tumor cell cytotoxicity and impairs osteoclastogenesis in multiple myeloma: molecular mechanisms and therapeutic implications

    PubMed Central

    Tai, Y-T; Landesman, Y; Acharya, C; Calle, Y; Zhong, MY; Cea, M; Tannenbaum, D; Cagnetta, A; Reagan, M; Munshi, AA; Senapedis, W; Saint-Martin, J-R; Kashyap, T; Shacham, S; Kauffman, M; Gu, Y; Wu, L; Ghobrial, I; Zhan, F; Kung, AL; Schey, SA; Richardson, P; Munshi, NC; Anderson, KC

    2013-01-01

    The key nuclear export protein CRM1/XPO1 may represent a promising novel therapeutic target in human multiple myeloma (MM). Here we showed that chromosome region maintenance 1 (CRM1) is highly expressed in patients with MM, plasma cell leukemia cells and increased in patient cells resistant to bortezomib treatment. CRM1 expression also correlates with increased lytic bone and shorter survival. Importantly, CRM1 knockdown inhibits MM cell viability. Novel, oral, irreversible selective inhibitors of nuclear export (SINEs) targeting CRM1 (KPT-185, KPT-330) induce cytotoxicity against MM cells (ED50<200 nM), alone and cocultured with bone marrow stromal cells (BMSCs) or osteoclasts (OC). SINEs trigger nuclear accumulation of multiple CRM1 cargo tumor suppressor proteins followed by growth arrest and apoptosis in MM cells. They further block c-myc, Mcl-1, and nuclear factor κB (NF-κB) activity. SINEs induce proteasome-dependent CRM1 protein degradation; concurrently, they upregulate CRM1, p53-targeted, apoptosis-related, anti-inflammatory and stress-related gene transcripts in MM cells. In SCID mice with diffuse human MM bone lesions, SINEs show strong anti-MM activity, inhibit MM-induced bone lysis and prolong survival. Moreover, SINEs directly impair osteoclastogenesis and bone resorption via blockade of RANKL-induced NF-κB and NFATc1, with minimal impact on osteoblasts and BMSCs. These results support clinical development of SINE CRM1 antagonists to improve patient outcome in MM. PMID:23588715

  20. Murine 5T multiple myeloma cells induce angiogenesis in vitro and in vivo

    PubMed Central

    Van Valckenborgh, E; De Raeve, H; Devy, L; Blacher, S; Munaut, C; Noël, A; Van Marck, E; Van Riet, I; Van Camp, B; Vanderkerken, K

    2002-01-01

    Multiple myeloma is a B cell malignancy. Recently, it has been demonstrated that bone marrow samples of patients with multiple myeloma display an enhanced angiogenesis. The mechanisms involved seem to be multiple and complex. We here demonstrate that the murine 5T multiple myeloma models are able to induce angiogenesis in vitro by using a rat aortic ring assay and in vivo by determining the microvessel density. The rat aortic rings cultured in 5T multiple myeloma conditioned medium exhibit a higher number of longer and more branched microvessels than the rings cultured in control medium. In bone marrow samples from 5T multiple myeloma diseased mice, a statistically significant increase of the microvessel density was observed when compared to bone marrow samples from age-matched controls. The angiogenic phenotype of both 5T multiple myeloma cells could be related, at least in part, to their capacity to produce vascular endothelial growth factor. These data clearly demonstrate that the 5T multiple myeloma models are good models to study angiogenesis in multiple myeloma and will allow to unravel the mechanisms of neovascularisation, as well as to test new putative inhibitors of angiogenesis. British Journal of Cancer (2002) 86, 796–802. DOI: 10.1038/sj/bjc/6600137 www.bjcancer.com © 2002 Cancer Research UK PMID:11875745

  1. A reversible and highly selective inhibitor of the proteasomal ubiquitin receptor rpn13 is toxic to multiple myeloma cells.

    PubMed

    Trader, Darci J; Simanski, Scott; Kodadek, Thomas

    2015-05-20

    The proteasome is a multisubunit complex responsible for most nonlysosomal turnover of proteins in eukaryotic cells. Proteasome inhibitors are of great interest clinically, particularly for the treatment of multiple myeloma (MM). Unfortunately, resistance arises almost inevitably to these active site-targeted drugs. One strategy to overcome this resistance is to inhibit other steps in the protein turnover cascade mediated by the proteasome. Previously, Anchoori et al. identified Rpn13 as the target of an electrophilic compound (RA-190) that was selectively toxic to MM cells (Cancer Cell 2013, 24, 791-805), suggesting that this subunit of the proteasome is also a viable cancer drug target. Here we describe the discovery of the first highly selective, reversible Rpn13 ligands and show that they are also selectively toxic to MM cells. These data strongly support the hypothesis that Rpn13 is a viable target for the development of drugs to treat MM and other cancers. PMID:25914958

  2. A plastic SQSTM1/p62-dependent autophagic reserve maintains proteostasis and determines proteasome inhibitor susceptibility in multiple myeloma cells

    PubMed Central

    Milan, Enrico; Perini, Tommaso; Resnati, Massimo; Orfanelli, Ugo; Oliva, Laura; Raimondi, Andrea; Cascio, Paolo; Bachi, Angela; Marcatti, Magda; Ciceri, Fabio; Cenci, Simone

    2015-01-01

    Multiple myeloma (MM) is the paradigmatic proteasome inhibitor (PI) responsive cancer, but many patients fail to respond. An attractive target to enhance sensitivity is (macro)autophagy, recently found essential to bone marrow plasma cells, the normal counterpart of MM. Here, integrating proteomics with hypothesis-driven strategies, we identified the autophagic cargo receptor and adapter protein, SQSTM1/p62 as an essential component of an autophagic reserve that not only synergizes with the proteasome to maintain proteostasis, but also mediates a plastic adaptive response to PIs, and faithfully reports on inherent PI sensitivity. Lentiviral engineering revealed that SQSTM1 is essential for MM cell survival and affords specific PI protection. Under basal conditions, SQSTM1-dependent autophagy alleviates the degradative burden on the proteasome by constitutively disposing of substantial amounts of ubiquitinated proteins. Indeed, its inhibition or stimulation greatly sensitized to, or protected from, PI-induced protein aggregation and cell death. Moreover, under proteasome stress, myeloma cells selectively enhanced SQSTM1 de novo expression and reset its vast endogenous interactome, diverting SQSTM1 from signaling partners to maximize its association with ubiquitinated proteins. Saturation of such autophagic reserve, as indicated by intracellular accumulation of undigested SQSTM1-positive aggregates, specifically discriminated patient-derived myelomas inherently susceptible to PIs from primarily resistant ones. These aggregates correlated with accumulation of the endoplasmic reticulum, which comparative proteomics identified as the main cell compartment targeted by autophagy in MM. Altogether, the data integrate autophagy into our previously established proteasome load-versus-capacity model, and reveal SQSTM1 aggregation as a faithful marker of defective proteostasis, defining a novel prognostic and therapeutic framework for MM. PMID:26043024

  3. Carfilzomib alters the HLA-presented peptidome of myeloma cells and impairs presentation of peptides with aromatic C-termini

    PubMed Central

    Kowalewski, D J; Walz, S; Backert, L; Schuster, H; Kohlbacher, O; Weisel, K; Rittig, S M; Kanz, L; Salih, H R; Rammensee, H-G; Stevanović, S; Stickel, J S

    2016-01-01

    Recent studies suggest that multiple myeloma is an immunogenic disease, which might be effectively targeted by antigen-specific T-cell immunotherapy. As standard of care in myeloma includes proteasome inhibitor therapy, it is of great importance to characterize the effects of this treatment on HLA-restricted antigen presentation and implement only robustly presented targets for immunotherapeutic intervention. Here, we present a study that longitudinally and semi-quantitatively maps the effects of the proteasome inhibitor carfilzomib on HLA-restricted antigen presentation. The relative presentation levels of 4780 different HLA ligands were quantified in an in vitro model employing carfilzomib treatment of MM.1S and U266 myeloma cells, which revealed significant modulation of a substantial fraction of the HLA-presented peptidome. Strikingly, we detected selective down-modulation of HLA ligands with aromatic C-terminal anchor amino acids. This particularly manifested as a marked reduction in the presentation of HLA ligands through the HLA allotypes A*23:01 and A*24:02 on MM.1S cells. These findings implicate that carfilzomib mediates a direct, peptide motif-specific inhibitory effect on HLA ligand processing and presentation. As a substantial proportion of HLA allotypes present peptides with aromatic C-termini, our results may have broad implications for the implementation of antigen-specific treatment approaches in patients undergoing carfilzomib treatment. PMID:27058226

  4. [Value of hematopoietic stem cell autotransplantation in the treatment of multiple myeloma: initial experience at the National Bone Marrow Transplantation Center and review of the literature].

    PubMed

    Abdelkefi, A; Ladeb, S; Ben Othman, T; Torjman, L; Jeddi, R; Ben Abdeladhim, A

    2000-10-01

    Alkylating agents administered with predisone have been the standard therapy for myeloma over the lost three decades. Intensive treatment with autologous hematopoietic support has become the treatment of choice for multiple myeloma patients up to 60 years of age. From march 1999 to january 2000, seven patients with multiple myeloma (stage III) with a median age of 43 years (34-56) received an autologous stem cell transplantation. The myeloablative treatment regimen consisted of high-dose melphalan. All patients had sustained engraftment. The median duration of neutropenia (< 500/mm3) was 12 days (11-140) and the median duration of thrombocytopenia (< 20,000/mm3) was 13 days (11-110). One patient had a complete remission, one a very good partial remission, and 5 patients had a partial remission. With a median follow-up of 8 months (2-12), all patients are alive, without relapse. PMID:11190737

  5. Class IIa HDAC inhibition enhances ER stress-mediated cell death in multiple myeloma.

    PubMed

    Kikuchi, S; Suzuki, R; Ohguchi, H; Yoshida, Y; Lu, D; Cottini, F; Jakubikova, J; Bianchi, G; Harada, T; Gorgun, G; Tai, Y-T; Richardson, P G; Hideshima, T; Anderson, K C

    2015-09-01

    Histone deacetylase (HDAC) inhibitors have been extensively investigated as therapeutic agents in cancer. However, the biological role of class IIa HDACs (HDAC4, 5, 7 and 9) in cancer cells, including multiple myeloma (MM), remains unclear. Recent studies show HDAC4 interacts with activating transcription factor 4 (ATF4) and inhibits activation of endoplasmic reticulum (ER) stress-associated proapoptotic transcription factor C/EBP homologous protein (CHOP). In this study, we hypothesized that HDAC4 knockdown and/or inhibition could enhance apoptosis in MM cells under ER stress condition by upregulating ATF4, followed by CHOP. HDAC4 knockdown showed modest cell growth inhibition; however, it markedly enhanced cytotoxicity induced by either tunicamycin or carfilzomib (CFZ), associated with upregulating ATF4 and CHOP. For pharmacological inhibition of HDAC4, we employed a novel and selective class IIa HDAC inhibitor TMP269, alone and in combination with CFZ. As with HDAC4 knockdown, TMP269 significantly enhanced cytotoxicity induced by CFZ in MM cell lines, upregulating ATF4 and CHOP and inducing apoptosis. Conversely, enhanced cytotoxicity was abrogated by ATF4 knockdown, confirming that ATF4 has a pivotal role mediating cytotoxicity in this setting. These results provide the rationale for novel treatment strategies combining class IIa HDAC inhibitors with ER stressors, including proteasome inhibitors, to improve patient outcome in MM. PMID:25801913

  6. Synergistic interactions between the synthetic retinoid tamibarotene and glucocorticoids in human myeloma cells.

    PubMed

    Fukui, Tomoya; Kodera, Yasuo; Nishio, Kazuto; Masuda, Noriyuki; Tamura, Tomohide; Koizumi, Fumiaki

    2009-06-01

    Tamibarotene (TM411) is a synthetic retinoic acid receptor-alpha/-beta selective retinoid that is chemically more stable than all-trans retinoic acid. This study was designed to evaluate the activity of TM411 in multiple myeloma (MM) and the effects of TM411 combined with a glucocorticoid (GC). In vitro, five human myeloma cells were treated with TM411 alone, GC alone, or TM411 + GC. Cell survival was analyzed by the tetrazolium dye assay and the Hoechst 33342/propidium iodide double-staining method. The effect of TM411 + GC was assessed by the isobologram method. In vivo, the growth-inhibitory effects of the drugs on RPMI-8226 cell xenografts established in SCID mice were examined. The effects of the agents on IL-6-mediated signaling pathways were also analyzed by Western blotting. TM411 was 2- to 10-fold more potent, in terms of its growth-inhibitory effect, than all-trans retinoic acid. The combination of TM411 and GC was found to show a markedly synergistic interaction. While increased expressions of the IL-6 receptor, phosphorylated MAPK, and Akt were observed after exposure to GC, TM411 attenuated this increase in the expressions, suggesting that such modification of the effect of GC by TM411 might be the possible mechanism underlying the synergistic interaction. Furthermore, TM411 + GC showed a supra-additive inhibitory effect in a xenograft model as compared with TM411 or GC alone. These results imply that the combination of TM411 + GC might be highly effective against MM, and suggest the need for clinical evaluation of TM411 + GC for the treatment of MM. PMID:19514122

  7. Silica Nanoparticles Sensitize Human Multiple Myeloma Cells to Snake (Walterinnesia aegyptia) Venom-Induced Apoptosis and Growth Arrest

    PubMed Central

    Sayed, Douaa; Al-Sadoon, Mohamed K.

    2012-01-01

    Background. Multiple myeloma (MM), an almost incurable disease, is the second most common blood cancer. Initial chemotherapeutic treatment could be successful; however, resistance development urges the use of higher toxic doses accompanied by hematopoietic stem cell transplantation. The establishment of more effective treatments that can overcome or circumvent chemoresistance has become a priority. We recently demonstrated that venom extracted from Walterinnesia aegyptia (WEV) either alone or in combination with silica nanoparticles (WEV+NPs) mediated the growth arrest and apoptosis of prostate cancer cells. In the present study, we evaluated the impact of WEV alone and WEV+NP on proliferation and apoptosis of MM cells. Methods. The impacts of WEV alone and WEV+NP were monitored in MM cells from 70 diagnosed patients. The influences of WEV and WEV+NP were assessed with flow cytometry analysis. Results. WEV alone and WEV+NP decreased the viability of MM cells. Using a CFSE proliferation assay, we found that WEV+NP strongly inhibited MM cell proliferation. Furthermore, analysis of the cell cycle using the propidium iodide (PI) staining method indicated that WEV+NP strongly altered the cell cycle of MM cells and enhanced the induction of apoptosis. Conclusions. Our data reveal the biological effects of WEV and WEV+NP on MM cells that enable these compounds to function as effective treatments for MM. PMID:23304253

  8. Bortezomib induces canonical nuclear factor-kappaB activation in multiple myeloma cells.

    PubMed

    Hideshima, Teru; Ikeda, Hiroshi; Chauhan, Dharminder; Okawa, Yutaka; Raje, Noopur; Podar, Klaus; Mitsiades, Constantine; Munshi, Nikhil C; Richardson, Paul G; Carrasco, Ruben D; Anderson, Kenneth C

    2009-07-30

    Bortezomib is a proteasome inhibitor with remarkable preclinical and clinical antitumor activity in multiple myeloma (MM) patients. The initial rationale for its use in MM was inhibition of nuclear factor (NF)-kappaB activity by blocking proteasomal degradation of inhibitor of kappaBalpha (IkappaBalpha). Bortezomib inhibits inducible NF-kappaB activity; however, its impact on constitutive NF-kappaB activity in MM cells has not yet been defined. In this study, we demonstrate that bortezomib significantly down-regulated IkappaBalpha expression and triggered NF-kappaB activation in MM cell lines and primary tumor cells from MM patients. Importantly, no inhibition of p65 (RelA) nuclear translocation was recognized after bortezomib treatment in a murine xenograft model bearing human MM cells. Bortezomib-induced NF-kappaB activation was mediated via the canonical pathway. Moreover, other classes of proteasome inhibitors also induced IkappaBalpha down-regulation associated with NF-kappaB activation. Molecular mechanisms whereby bortezomib induced IkappaBalpha down-regulation were further examined. Bortezomib triggered phosphorylation of IkappaB kinase (IKKbeta) and its upstream receptor-interacting protein 2, whereas IKKbeta inhibitor MLN120B blocked bortezomib-induced IkappaBalpha down-regulation and NF-kappaB activation, indicating receptor-interacting protein 2/IKKbeta signaling plays crucial role in bortezomib-induced NF-kappaB activation. Moreover, IKKbeta inhibitors enhanced bortezomib-induced cytotoxicity. Our studies therefore suggest that bortezomib-induced cytotoxicity cannot be fully attributed to inhibition of canonical NF-kappaB activity in MM cells. PMID:19436050

  9. Lenalidomide maintenance for high-risk multiple myeloma after allogeneic hematopoietic cell transplantation.

    PubMed

    Alsina, Melissa; Becker, Pamela S; Zhong, Xiaobo; Adams, Alexia; Hari, Parameswaran; Rowley, Scott; Stadtmauer, Edward A; Vesole, David H; Logan, Brent; Weisdorf, Daniel; Qazilbash, Muzaffar; Popplewell, Leslie L; McClune, Brian; Bensinger, William; Riches, Marcie; Giralt, Sergio A; Pasquini, Marcelo C

    2014-08-01

    Allogeneic hematopoietic cell transplantation (alloHCT) with reduced-intensity conditioning is an appealing option for patients with high-risk multiple myeloma (MM). However, progression after alloHCT remains a challenge. Maintenance therapy after alloHCT may offer additional disease control and allow time for a graft-versus-myeloma effect. The primary objective of this clinical trial was to determine the tolerability and safety profile of maintenance lenalidomide (LEN) given on days 1 to 21 of 28 days cycles, with intrapatient dose escalation during 12 months/cycles after alloHCT. Thirty alloHCT recipients (median age, 54 years) with high-risk MM were enrolled at 8 centers between 2009 and 2012. The median time from alloHCT to LEN initiation was 96 days (range, 66 to 171 days). Eleven patients (37%) completed maintenance and 10 mg daily was the most commonly delivered dose (44%). Most common reasons for discontinuation were acute graft-versus-host disease (GVHD) (37%) and disease progression (37%). Cumulative incidence of grades III to IV acute GVHD from time of initiation of LEN was 17%. Outcomes at 18 months after initiation of maintenance were MM progression, 28%; transplantation-related mortality, 11%; and progression-free and overall survival, 63% and 78%, respectively. The use of LEN after alloHCT is feasible at lower doses, although it is associated with a 38% incidence of acute GVHD. Survival outcomes observed in this high-risk MM population warrant further study of this approach. PMID:24769014

  10. Role of Flow Cytometry in the Diagnosis and Prognosis of Plasma Cell Myeloma.

    PubMed

    Olteanu, Horatiu

    2016-03-01

    This article provides an overview of the role of flow cytometry in the diagnosis and follow-up of plasma cell myeloma. A brief introduction to the general immunophenotypic features of normal and myeloma plasma cells is provided, followed by a discussion of technical issues as they relate to the application of flow cytometry in this entity. The prognostic and therapeutic utility of flow cytometric immunophenotyping in myeloma is also analyzed, with an emphasis on the growing role of minimal residual analysis as potential biomarker for evaluating treatment efficacy and for tailoring risk-adapted treatment, in prospective clinical trials. PMID:26940271

  11. Growth differentiating factor 15 enhances the tumor-initiating and self-renewal potential of multiple myeloma cells

    PubMed Central

    Tanno, Toshihiko; Lim, Yiting; Wang, Qiuju; Chesi, Marta; Bergsagel, P. Leif; Matthews, Geoff; Johnstone, Ricky W.; Ghosh, Nilanjan; Borrello, Ivan; Huff, Carol Ann

    2014-01-01

    Disease relapse remains a major factor limiting the survival of cancer patients. In the plasma cell malignancy multiple myeloma (MM), nearly all patients ultimately succumb to disease relapse and progression despite new therapies that have improved remission rates. Tumor regrowth indicates that clonogenic growth potential is continually maintained, but the determinants of self-renewal in MM are not well understood. Normal stem cells are regulated by extrinsic niche factors, and the tumor microenvironment (TME) may similarly influence tumor cell clonogenic growth and self-renewal. Growth differentiation factor 15 (GDF15) is aberrantly secreted by bone marrow stromal cells (BMSCs) in MM. We found that GDF15 is produced by BMSCs after direct contact with plasma cells and enhances the tumor-initiating potential and self-renewal of MM cells in a protein kinase B- and SRY (sex-determining region Y)-box–dependent manner. Moreover, GDF15 induces the expansion of MM tumor-initiating cells (TICs), and changes in the serum levels of GDF15 were associated with changes in the frequency of clonogenic MM cells and the progression-free survival of MM patients. These findings demonstrate that GDF15 plays a critical role in mediating the interaction among mature tumor cells, the TME, and TICs, and strategies targeting GDF15 may affect long-term clinical outcomes in MM. PMID:24345755

  12. Telomerase inhibitor GRN163L inhibits myeloma cell growth in vitro and in vivo.

    PubMed

    Shammas, M A; Koley, H; Bertheau, R C; Neri, P; Fulciniti, M; Tassone, P; Blotta, S; Protopopov, A; Mitsiades, C; Batchu, R B; Anderson, K C; Chin, A; Gryaznov, S; Munshi, N C

    2008-07-01

    Human telomerase, the reverse transcriptase which extends the life span of a cell by adding telomeric repeats to chromosome ends, is expressed in most cancer cells but not in the majority of normal somatic cells. Inhibition of telomerase therefore holds great promise as anticancer therapy. We have synthesized a novel telomerase inhibitor GRN163L, a lipid-attached phosphoramidate oligonucleotide complementary to template region of the RNA subunit of telomerase. Here, we report that GRN163L is efficiently taken up by human myeloma cells without any need of transfection and is resistant to nucleolytic degradation. The exposure of myeloma cells to GRN163L led to an effective inhibition of telomerase activity, reduction of telomere length and apoptotic cell death after a lag period of 2-3 weeks. Mismatch control oligonucleotides had no effect on growth of myeloma cells. The in vivo efficacy of GRN163L was confirmed in two murine models of human multiple myeloma. In three independent experiments, significant reduction in tumor cell growth and better survival than control mice was observed. Furthermore, GRN163L-induced myeloma cell death could be significantly enhanced by Hsp90 inhibitor 17AAG. These data provide the preclinical rationale for clinical evaluation of GRN163L in myeloma and in combination with 17AAG. PMID:18449204

  13. PU.1 induces apoptosis in myeloma cells through direct transactivation of TRAIL

    PubMed Central

    Ueno, S; Tatetsu, H; Hata, H; Iino, T; Niiro, H; Akashi, K; Tenen, DG.; Mitsuya, H; Okuno, Y

    2010-01-01

    We previously reported that PU.1 was down-regulated in myeloma cell lines and myeloma cells in a subset of myeloma patients, and that conditional PU.1 expression in PU.1-negative myeloma cell lines, U266 and KMS12PE, induced growth arrest and apoptosis. To elucidate the molecular mechanisms of the growth arrest and apoptosis, we performed DNA microarray analyses to compare the difference in gene expression before and after PU.1 induction in U266 cells. Among cell cycle-related genes, cyclin A2, cyclin B1, CDK2 and CDK4 were down-regulated and p21 was up-regulated, while among apoptosis-related genes, TRAIL was found highly up-regulated. When TRAIL was knocked down by siRNAs, apoptosis of PU-1-expressing cells was inhibited, suggesting that TRAIL plays a critical role in PU.1-induced apoptosis in both U266 and KMS12PE myeloma cells. In both U266 and KMS12PE cells expressing PU.1, PU.1 directly bound to a region 30 bp downstream of the transcription start site of the TRAIL gene. Up-regulation of PU.1 induced transactivation of the TRAIL promoter in reporter assays, and disruption of the PU.1-binding site in the TRAIL promoter eliminated this transactivation. Therefore, we conclude that PU.1 is capable of inducing apoptosis in certain myeloma cells by direct transactivation of TRAIL. PMID:19749795

  14. Involvement of the arachidonic acid cytochrome P450 epoxygenase pathway in the proliferation and invasion of human multiple myeloma cells

    PubMed Central

    Shao, Jing; Wang, Hongxiang; Yuan, Guolin; Chen, Zhichao

    2016-01-01

    Cytochrome P450 (CYP) epoxygenases and the metabolites epoxyeicosatrienoic acids (EETs) exert multiple biological effects in various malignancies. We have previously found EETs to be secreted by multiple myeloma (MM) cells and to be involved in MM angiogenesis, but the role of the arachidonic acid cytochrome P450 epoxygenase pathway in the proliferation and mobility of MM cells remains unknown. In the present study, we found that MM cell lines generated detectable levels of 11,12-EET/14,15-EET and that increased levels of EETs were found in the serum of MM patients compared to healthy donors. The addition of exogenous EETs induced significantly enhanced proliferation of MM cells, whereas 17-octadecynoic acid (17-ODYA), an inhibitor of the CYP epoxygenase pathway, inhibited the viability and proliferation of MM cells. Moreover, this inhibitory effect could be successfully reversed by exogenous EETs. 17-ODYA also inhibited the motility of MM cells in a time-dependent manner, with a reduction of the gelatinolytic activity and protein expression of the matrix metalloproteinases (MMP)-2 and MMP-9. These results suggest the CYP epoxygenase pathway to be involved in the proliferation and invasion of MM cells, for which 17-ODYA could be a promising therapeutic drug. PMID:27077015

  15. Signaling Interplay between Bone Marrow Adipose Tissue and Multiple Myeloma cells.

    PubMed

    Falank, Carolyne; Fairfield, Heather; Reagan, Michaela R

    2016-01-01

    In the year 2000, Hanahan and Weinberg (1) defined the six Hallmarks of Cancer as: self-sufficiency in growth signals, evasion of apoptosis, insensitivity to antigrowth mechanisms, tissue invasion and metastasis, limitless replicative potential, and sustained angiogenesis. Eleven years later, two new Hallmarks were added to the list (avoiding immune destruction and reprograming energy metabolism) and two new tumor characteristics (tumor-promoting inflammation and genome instability and mutation) (2). In multiple myeloma (MM), a destructive cancer of the plasma cell that grows predominantly in the bone marrow (BM), it is clear that all these hallmarks and characteristics are in play, contributing to tumor initiation, drug resistance, disease progression, and relapse. Bone marrow adipose tissue (BMAT) is a newly recognized contributor to MM oncogenesis and disease progression, potentially affecting MM cell metabolism, immune action, inflammation, and influences on angiogenesis. In this review, we discuss the confirmed and hypothetical contributions of BMAT to MM development and disease progression. BMAT has been understudied due to technical challenges and a previous lack of appreciation for the endocrine function of this tissue. In this review, we define the dynamic, responsive, metabolically active BM adipocyte. We then describe how BMAT influences MM in terms of: lipids/metabolism, hypoxia/angiogenesis, paracrine or endocrine signaling, and bone disease. We then discuss the connection between BMAT and systemic inflammation and potential treatments to inhibit the feedback loops between BM adipocytes and MM cells that support MM progression. We aim for researchers to use this review to guide and help prioritize their experiments to develop better treatments or a cure for cancers, such as MM, that associate with and may depend on BMAT. PMID:27379019

  16. Signaling Interplay between Bone Marrow Adipose Tissue and Multiple Myeloma cells

    PubMed Central

    Falank, Carolyne; Fairfield, Heather; Reagan, Michaela R.

    2016-01-01

    In the year 2000, Hanahan and Weinberg (1) defined the six Hallmarks of Cancer as: self-sufficiency in growth signals, evasion of apoptosis, insensitivity to antigrowth mechanisms, tissue invasion and metastasis, limitless replicative potential, and sustained angiogenesis. Eleven years later, two new Hallmarks were added to the list (avoiding immune destruction and reprograming energy metabolism) and two new tumor characteristics (tumor-promoting inflammation and genome instability and mutation) (2). In multiple myeloma (MM), a destructive cancer of the plasma cell that grows predominantly in the bone marrow (BM), it is clear that all these hallmarks and characteristics are in play, contributing to tumor initiation, drug resistance, disease progression, and relapse. Bone marrow adipose tissue (BMAT) is a newly recognized contributor to MM oncogenesis and disease progression, potentially affecting MM cell metabolism, immune action, inflammation, and influences on angiogenesis. In this review, we discuss the confirmed and hypothetical contributions of BMAT to MM development and disease progression. BMAT has been understudied due to technical challenges and a previous lack of appreciation for the endocrine function of this tissue. In this review, we define the dynamic, responsive, metabolically active BM adipocyte. We then describe how BMAT influences MM in terms of: lipids/metabolism, hypoxia/angiogenesis, paracrine or endocrine signaling, and bone disease. We then discuss the connection between BMAT and systemic inflammation and potential treatments to inhibit the feedback loops between BM adipocytes and MM cells that support MM progression. We aim for researchers to use this review to guide and help prioritize their experiments to develop better treatments or a cure for cancers, such as MM, that associate with and may depend on BMAT. PMID:27379019

  17. Reelin promotes the adhesion and drug resistance of multiple myeloma cells via integrin β1 signaling and STAT3

    PubMed Central

    Lv, Meng; Liang, Xiaodong; Dai, Hui; Qin, Xiaodan; Zhang, Yan; Hao, Jie; Sun, Xiuyuan; Yin, Yanhui; Huang, Xiaojun; Zhang, Jun; Lu, Jin; Ge, Qing

    2016-01-01

    Reelin is an extracellular matrix (ECM) protein that is essential for neuron migration and positioning. The expression of reelin in multiple myeloma (MM) cells and its association with cell adhesion and survival were investigated. Overexpression, siRNA knockdown, and the addition of recombinant protein of reelin were used to examine the function of reelin in MM cells. Clinically, high expression of reelin was negatively associated with progression-free survival and overall survival. Functionally, reelin promoted the adhesion of MM cells to fibronectin via activation of α5β1 integrin. The resulting phosphorylation of Focal Adhesion Kinase (FAK) led to the activation of Src/Syk/STAT3 and Akt, crucial signaling molecules involved in enhancing cell adhesion and protecting cells from drug-induced cell apoptosis. These findings indicate reelin's important role in the activation of integrin-β1 and STAT3/Akt pathways in multiple myeloma and highlight the therapeutic potential of targeting reelin/integrin/FAK axis. PMID:26848618

  18. Myeloid-derived suppressor cells in multiple myeloma: pre-clinical research and translational opportunities.

    PubMed

    Botta, Cirino; Gullà, Annamaria; Correale, Pierpaolo; Tagliaferri, Pierosandro; Tassone, Pierfrancesco

    2014-01-01

    Immunosuppressive cells have been reported to play an important role in tumor-progression mainly because of their capability to promote immune-escape, angiogenesis, and metastasis. Among them, myeloid-derived suppressor cells (MDSCs) have been recently identified as immature myeloid cells, induced by tumor-associated inflammation, able to impair both innate and adaptive immunity. While murine MDSCs are usually identified by the expression of CD11b and Gr1, human MDSCs represent a more heterogeneous population characterized by the expression of CD33 and CD11b, low or no HLA-DR, and variable CD14 and CD15. In particular, the last two may alternatively identify monocyte-like or granulocyte-like MDSC subsets with different immunosuppressive properties. Recently, a substantial increase of MDSCs has been found in peripheral blood and bone marrow (BM) of multiple myeloma (MM) patients with a role in disease progression and/or drug resistance. Pre-clinical models recapitulating the complexity of the MM-related BM microenvironment (BMM) are major tools for the study of the interactions between MM cells and cells of the BMM (including MDSCs) and for the development of new agents targeting MM-associated immune-suppressive cells. This review will focus on current strategies for human MDSCs generation and investigation of their immunosuppressive function in vitro and in vivo, taking into account the relevant relationship occurring within the MM-BMM. We will then provide trends in MDSC-associated research and suggest potential application for the treatment of MM. PMID:25538892

  19. Multiple Myeloma, Version 2.2016

    PubMed Central

    Anderson, Kenneth C.; Alsina, Melissa; Atanackovic, Djordje; Biermann, J. Sybil; Chandler, Jason C.; Costello, Caitlin; Djulbegovic, Benjamin; Fung, Henry C.; Gasparetto, Cristina; Godby, Kelly; Hofmeister, Craig; Holmberg, Leona; Holstein, Sarah; Huff, Carol Ann; Kassim, Adetola; Krishnan, Amrita Y.; Kumar, Shaji K.; Liedtke, Michaela; Lunning, Matthew; Raje, Noopur; Singhal, Seema; Smith, Clayton; Somlo, George; Stockerl-Goldstein, Keith; Treon, Steven P.; Weber, Donna; Yahalom, Joachim; Shead, Dorothy A.; Kumar, Rashmi

    2016-01-01

    Multiple myeloma (MM) is a malignant neoplasm of plasma cells that accumulate in bone marrow, leading to bone destruction and marrow failure. Recent statistics from the American Cancer Society indicate that the incidence of MM is increasing. The NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) included in this issue address management of patients with solitary plasmacytoma and newly diagnosed MM. PMID:26553768

  20. Cyclin K and cyclin D1b are oncogenic in myeloma cells

    PubMed Central

    2010-01-01

    Background Aberrant expression of cyclin D1 is a common feature in multiple myeloma (MM) and always associated with mantle cell lymphoma (MCL). CCND1 gene is alternatively spliced to produce two cyclin D1 mRNA isoforms which are translated in two proteins: cyclin D1a and cyclin D1b. Both isoforms are present in MM cell lines and primary cells but their relative role in the tumorigenic process is still elusive. Results To test the tumorigenic potential of cyclin D1b in vivo, we generated cell clones derived from the non-CCND1 expressing MM LP-1 cell line, synthesizing either cyclin D1b or cyclin K, a structural homolog and viral oncogenic form of cyclin D1a. Immunocompromised mice injected s.c. with LP-1K or LP-1D1b cells develop tumors at the site of injection. Genome-wide analysis of LP-1-derived cells indicated that several cellular processes were altered by cyclin D1b and/or cyclin K expression such as cell metabolism, signal transduction, regulation of transcription and translation. Importantly, cyclin K and cyclin D1b have no major action on cell cycle or apoptosis regulatory genes. Moreover, they impact differently cell functions. Cyclin K-expressing cells have lost their migration properties and display enhanced clonogenic capacities. Cyclin D1b promotes tumorigenesis through the stimulation of angiogenesis. Conclusions Our study indicates that cyclin D1b participates into MM pathogenesis via previously unrevealed actions. PMID:20459741

  1. Immunophenotyping in multiple myeloma and related plasma cell disorders

    PubMed Central

    Kumar, Shaji; Kimlinger, Teresa; Morice, William

    2010-01-01

    SUMMARY Plasma cell disorders form a spectrum ranging from the asymptomatic presence of small monoclonal populations of plasma cells to conditions like plasma cell leukemia and multiple myeloma, in which the bone marrow can be replaced by the accumulation of neoplastic plasma cells. Immunophenotyping has become an invaluable tool in the management of hematological malignancies and is increasingly finding a role in the diagnosis and monitoring of plasma cell disorders. Multiparameter flow cytometry has evolved considerably during the past decade with an increasing ability to screen large numbers of events and to detect multiple antigens at the same time. This, along with a better understanding of the phenotypic heterogeneity of the clonal plasma cells in different disorders, has made immunophenotyping an indispensible tool in the diagnosis, prognostic classification and management of plasma cell disorders. This book chapter addresses the approaches taken to evaluate monoclonal plasma cell disorders, and the different markers and techniques that are important for the study of these diseases. PMID:21112041

  2. Upregulation of CD38 expression on multiple myeloma cells by all-trans retinoic acid improves the efficacy of daratumumab.

    PubMed

    Nijhof, I S; Groen, R W J; Lokhorst, H M; van Kessel, B; Bloem, A C; van Velzen, J; de Jong-Korlaar, R; Yuan, H; Noort, W A; Klein, S K; Martens, A C M; Doshi, P; Sasser, K; Mutis, T; van de Donk, N W C J

    2015-10-01

    Daratumumab is an anti-CD38 monoclonal antibody with lytic activity against multiple myeloma (MM) cells, including ADCC (antibody-dependent cellular cytotoxicity) and CDC (complement-dependent cytotoxicity). Owing to a marked heterogeneity of response to daratumumab therapy in MM, we investigated determinants of the sensitivity of MM cells toward daratumumab-mediated ADCC and CDC. In bone marrow samples from 144 MM patients, we observed no difference in daratumumab-mediated lysis between newly diagnosed or relapsed/refractory patients. However, we discovered, next to an expected effect of effector (natural killer cells/monocytes) to target (MM cells) ratio on ADCC, a significant association between CD38 expression and daratumumab-mediated ADCC (127 patients), as well as CDC (56 patients). Similarly, experiments with isogenic MM cell lines expressing different levels of CD38 revealed that the level of CD38 expression is an important determinant of daratumumab-mediated ADCC and CDC. Importantly, all-trans retinoic acid (ATRA) increased CD38 expression levels but also reduced expression of the complement-inhibitory proteins CD55 and CD59 in both cell lines and primary MM samples. This resulted in a significant enhancement of the activity of daratumumab in vitro and in a humanized MM mouse model as well. Our results provide the preclinical rationale for further evaluation of daratumumab combined with ATRA in MM patients. PMID:25975191

  3. A proto-oncogene BCL6 is up-regulated in the bone marrow microenvironment in multiple myeloma cells.

    PubMed

    Hideshima, Teru; Mitsiades, Constantine; Ikeda, Hiroshi; Chauhan, Dharminder; Raje, Noopur; Gorgun, Gullu; Hideshima, Hiromasa; Munshi, Nikhil C; Richardson, Paul G; Carrasco, Daniel R; Anderson, Kenneth C

    2010-05-01

    Constitutive B-cell lymphoma 6 (Bcl-6) expression was undetectable in multiple myeloma (MM) cell lines, except U266 cells. However, it was up-regulated by coculture with bone marrow (BM) stromal cell-culture supernatant (SCCS). Bcl-6 expression in patient MM cells in the BM was positive. Anti-interleukin-6 (IL-6)-neutralizing antibody significantly blocked SCCS-induced Bcl-6 in MM cells. Indeed, IL-6 strongly triggered Bcl-6 expression in MM cells, whereas Janus kinase inhibitor and STAT3 siRNA down-regulated Bcl-6. Tumor necrosis factor-alpha (TNF-alpha) also triggered Bcl-6, but independently of STAT3, whereas IkappaB kinasebeta inhibitor down-regulated TNF-alpha-induced Bcl-6, indicating that the canonical nuclear factor-kappaB pathway mediates TNF-alpha-induced Bcl-6 expression. Importantly, down-regulation of Bcl-6 by shRNA significantly inhibited MM cell growth in the presence of SCCS. Our results therefore suggest that Bcl-6 expression in MM cells is modulated, at least in part, via Janus kinase/STAT3 and canonical nuclear factor-kappaB pathways and that targeting Bcl-6, either directly or via these cascades, inhibits MM cell growth in the BM milieu. PMID:20228272

  4. Race and Outcomes of Autologous Hematopoietic Cell Transplantation for Multiple Myeloma

    PubMed Central

    Hari, PN; Majhail, NS; Zhang, M-J; Hassebroek, A; Siddiqui, F; Ballen, K; Bashey, A; Bird, J; Freytes, CO; Gibson, J; Hale, G; Holmberg, L; Kamble, R; Kyle, RA; Lazarus, HM; LeMaistre, CF; Loberiza, F; Maiolino, A; McCarthy, PL; Milone, G; Omondi, N; Reece, DE; Seftel, M; Trigg, M; Vesole, D; Weiss, B; Wiernik, P; Lee, SJ; Rizzo, JD; Mehta, P

    2010-01-01

    Blacks are twice as likely to develop and die from multiple myeloma (MM) and are less likely to receive an autologous hematopoietic-cell transplant (AHCT) for MM compared to whites. The influence of race on outcomes of AHCT for MM is not well described. We compared the probability of overall survival, progression-free survival, disease progression and non-relapse mortality among black (N=303) and white (N=1892) recipients of AHCT for MM, who were reported to the Center for International Blood and Marrow Transplant Research (CIBMTR) from 1995 to 2005. The black cohort was more likely to be female, had better Karnofsky performance scores but lower hemoglobin and albumin levels at diagnosis. Black recipients were younger and more likely to be transplanted later in their disease course. Disease stage and treatment characteristics prior to AHCT were similar between the two groups. Black and white recipients had similar probabilities of 5-year overall survival (52% vs. 47%, P=0.19) and progression-free survival (19% vs. 21%, P=0.64) as well as cumulative incidences of disease progression (72% vs. 72%, P=0.97) and non-relapse mortality (9% vs. 8%, P=0.52). In multivariate analyses, race was not associated with any of these endpoints. Black recipients of AHCT for MM have similar outcomes compared to whites, suggesting that the reasons underlying lower rates of AHCT in blacks need to be studied further to ensure equal access to effective therapy. PMID:19922808

  5. Dimethylarsinothioyl Glutathione as a Metabolite in Human Multiple Myeloma Cell Lines upon Exposure to Darinaparsin

    PubMed Central

    2015-01-01

    Here, we report the identification of dimethylarsinothioyl glutathione (DMMTAV(GS)) as a metabolite in cellular extracts of dimethyarsinous glutathione (Darinaparsin, DMAIII(GS)) treated human multiple myeloma (MM) cell lines. Co-elution of sulfur and arsenic on the inductively coupled plasma mass spectrometer (ICP-MS) indicated the presence of sulfur along with arsenic in the newly observed unidentified molecule on the speciation chromatograms of cell lines treated with DMAIII(GS). Liquid chromatography–electrospray ionization–mass spectrometry of the unknown peak in the MS and tandem MS modes revealed molecular ion peaks at m/z = 443.9 and 466.0, corresponding to [DMMTAV(GS) + H]+ and [DMMTAV(GS) + Na]+, as well as peaks at 314.8 for the loss of glutamic acid and 231.1 for the loss of glycine. In addition, peaks were observed at 176.9 corresponding to cysteine and glycine adducts and at 137.1 for the [C2H6AsS]+ ion. An increase in the peak area of the unidentified peak was observed upon spiking the cell extracts with a standard of DMMTAV(GS). Heat deactivation of MM cells prevented the formation of DMMTAV(GS) raising the possibility of its formation via an enzymatic reaction. Formation studies in DMAIII(GS) treated MM cells revealed the dependence of DMMTAV(GS) formation on the depletion of DMAIII(GS). The presence of 5 mM glutathione prevented its formation, indicating that DMAIII, a dissociation product of DMAIII(GS), is likely a precursor for the formation of DMMTAV(GS). DMMTAV(GS) was observed to form under acidic and neutral pH conditions (pH 3.0–7.4). In addition, DMMTAV(GS) was found to be stable in cell extracts at both acidic and neutral pH conditions. When assessing the toxicity by exposing multiple myeloma cells to arsenicals externally, DMMTAV(GS) was found to be much less toxic than DMAIII(GS) and DMMTAV, potentially due to its limited uptake in the cells (10 and 16% of the uptakes of DMAIII(GS) and DMMTAV, respectively). PMID:24624948

  6. Signaling mechanisms of bortezomib in TRAF3-deficient mouse B lymphoma and human multiple myeloma cells.

    PubMed

    Edwards, Shanique K E; Han, Yeming; Liu, Yingying; Kreider, Benjamin Z; Liu, Yan; Grewal, Sukhdeep; Desai, Anand; Baron, Jacqueline; Moore, Carissa R; Luo, Chang; Xie, Ping

    2016-02-01

    Bortezomib, a clinical drug for multiple myeloma (MM) and mantle cell lymphoma, exhibits complex mechanisms of action, which vary depending on the cancer type and the critical genetic alterations of each cancer. Here we investigated the signaling mechanisms of bortezomib in mouse B lymphoma and human MM cells deficient in a new tumor suppressor gene, TRAF3. We found that bortezomib consistently induced up-regulation of the cell cycle inhibitor p21(WAF1) and the pro-apoptotic protein Noxa as well as cleavage of the anti-apoptotic protein Mcl-1. Interestingly, bortezomib induced the activation of NF-κB1 and the accumulation of the oncoprotein c-Myc, but inhibited the activation of NF-κB2. Furthermore, we demonstrated that oridonin (an inhibitor of NF-κB1 and NF-κB2) or AD 198 (a drug targeting c-Myc) drastically potentiated the anti-cancer effects of bortezomib in TRAF3-deficient malignant B cells. Taken together, our findings increase the understanding of the mechanisms of action of bortezomib, which would aid the design of novel bortezomib-based combination therapies. Our results also provide a rationale for clinical evaluation of the combinations of bortezomib and oridonin (or other inhibitors of NF-κB1/2) or AD 198 (or other drugs targeting c-Myc) in the treatment of lymphoma and MM, especially in patients containing TRAF3 deletions or relevant mutations. PMID:26740054

  7. Rapidly enlarging cutaneous nodules on a full-thickness skin graft following an excision of a squamous cell carcinoma – a diagnostic clue for multiple myeloma

    PubMed Central

    Sugrue, Conor M.; McInerney, Niall M.; Aalto, Laura; Joyce, Cormac W.; Kelly, Jack L.

    2014-01-01

    Abstract Cutaneous extramedullary plasmacytomas (EMPs) are rare plasma cell neoplasms of the skin occurring in 2–4% of patients with multiple myeloma (MM). We describe a man diagnosed with IgA lambda MM (Stage III) after rapidly enlarging cutaneous nodules developed in the surgical site of recently excised skin malignancies. Cutaneous EMP must be considered for expanding cutaneous nodules at sites of surgery or trauma.

  8. The bone marrow microenvironment enhances multiple myeloma progression by exosome-mediated activation of myeloid-derived suppressor cells

    PubMed Central

    Wang, Jinheng; De Veirman, Kim; De Beule, Nathan; Maes, Ken; De Bruyne, Elke; Van Valckenborgh, Els

    2015-01-01

    Exosomes, extracellular nanovesicles secreted by various cell types, modulate the bone marrow (BM) microenvironment by regulating angiogenesis, cytokine release, immune response, inflammation, and metastasis. Interactions between bone marrow stromal cells (BMSCs) and multiple myeloma (MM) cells play crucial roles in MM development. We previously reported that BMSC-derived exosomes directly promote MM cell growth, whereas the other possible mechanisms for supporting MM progression by these exosomes are still not clear. Here, we investigated the effect of BMSC-derived exosomes on the MM BM cells with specific emphasis on myeloid-derived suppressor cells (MDSCs). BMSC-derived exosomes were able to be taken up by MM MDSCs and induced their expansion in vitro. Moreover, these exosomes directly induced the survival of MDSCs through activating STAT3 and STAT1 pathways and increasing the anti-apoptotic proteins Bcl-xL and Mcl-1. Inhibition of these pathways blocked the enhancement of MDSC survival. Furthermore, these exosomes increased the nitric oxide release from MM MDSCs and enhanced their suppressive activity on T cells. Taken together, our results demonstrate that BMSC-derived exosomes activate MDSCs in the BM through STAT3 and STAT1 pathways, leading to increased immunosuppression which favors MM progression. PMID:26556857

  9. Gamabufotalin triggers c-Myc degradation via induction of WWP2 in multiple myeloma cells.

    PubMed

    Yu, Zhenlong; Li, Tao; Wang, Chao; Deng, Sa; Zhang, Baojing; Huo, Xiaokui; Zhang, Bo; Wang, Xiaobo; Zhong, Yuping; Ma, Xiaochi

    2016-03-29

    Deciding appropriate therapy for multiple myeloma (MM) is challenging because of the occurrence of multiple chromosomal changes and the fatal nature of the disease. In the current study, gamabufotalin (GBT) was isolated from toad venom, and its tumor-specific cytotoxicity was investigated in human MM cells. We found GBT inhibited cell growth and induced apoptosis with the IC50 values <50 nM. Mechanistic studies using functional approaches identified GBT as an inhibitor of c-Myc. Further analysis showed that GBT especially evoked the ubiquitination and degradation of c-Myc protein, thereby globally repressing the expression of c-Myc target genes. GBT treatment inhibited ERK and AKT signals, while stimulating the activation of JNK cascade. An E3 ubiquitin-protein ligase, WWP2, was upregulated following JNK activation and played an important role in c-Myc ubiquitination and degradation through direct protein-protein interaction. The antitumor effect of GBT was validated in a xenograft mouse model and the suppression of MM-induced osteolysis was verified in a SCID-hu model in vivo. Taken together, our study identified the potential of GBT as a promising therapeutic agent in the treatment of MM. PMID:26894970

  10. Gamabufotalin triggers c-Myc degradation via induction of WWP2 in multiple myeloma cells

    PubMed Central

    Wang, Chao; Deng, Sa; Zhang, Baojing; Huo, Xiaokui; Zhang, Bo; Wang, Xiaobo; Zhong, Yuping; Ma, Xiaochi

    2016-01-01

    Deciding appropriate therapy for multiple myeloma (MM) is challenging because of the occurrence of multiple chromosomal changes and the fatal nature of the disease. In the current study, gamabufotalin (GBT) was isolated from toad venom, and its tumor-specific cytotoxicity was investigated in human MM cells. We found GBT inhibited cell growth and induced apoptosis with the IC50 values <50 nM. Mechanistic studies using functional approaches identified GBT as an inhibitor of c-Myc. Further analysis showed that GBT especially evoked the ubiquitination and degradation of c-Myc protein, thereby globally repressing the expression of c-Myc target genes. GBT treatment inhibited ERK and AKT signals, while stimulating the activation of JNK cascade. An E3 ubiquitin-protein ligase, WWP2, was upregulated following JNK activation and played an important role in c-Myc ubiquitination and degradation through direct protein-protein interaction. The antitumor effect of GBT was validated in a xenograft mouse model and the suppression of MM-induced osteolysis was verified in a SCID-hu model in vivo. Taken together, our study identified the potential of GBT as a promising therapeutic agent in the treatment of MM. PMID:26894970

  11. Italian consensus conference for the outpatient autologous stem cell transplantation management in multiple myeloma.

    PubMed

    Martino, M; Lemoli, R M; Girmenia, C; Castagna, L; Bruno, B; Cavallo, F; Offidani, M; Scortechini, I; Montanari, M; Milone, G; Postacchini, L; Olivieri, A

    2016-08-01

    Multiple myeloma (MM) is the leading indication for autologous stem cell transplantation (ASCT) worldwide. The safety and efficacy of reducing hospital stay for MM patients undergoing ASCT have been widely explored, and different outpatient models have been proposed. However, there is no agreement on the criteria for selecting patients eligible for this strategy as well as the standards for their clinical management. On the basis of this rationale, the Italian Group for Stem Cell Transplantation (GITMO) endorsed a project to develop guidelines for the management of outpatient ASCT in MM, using evidence-based knowledge and consensus-formation techniques. An expert panel convened to discuss the currently available data on the practice of outpatient ASCT management and formulated recommendations according to the supporting evidence. Evidence gaps were filled with consensus-based statements. Three main topics were addressed: (1) the identification of criteria for selecting MM patients eligible for outpatient ASCT management; (2) the definition of standard procedures for performing outpatient ASCT (model, supportive care and monitoring during the aplastic phase); (3) the definition of the standard criteria and procedures for re-hospitalization during the aplastic phase at home. Herein, we report the summary and the results of the discussion and the consensus. PMID:27042841

  12. Drug metabolism and clearance system in tumor cells of patients with multiple myeloma

    PubMed Central

    Hassen, Wafa; Kassambara, Alboukadel; Reme, Thierry; Sahota, Surinder; Seckinger, Anja; Vincent, Laure; Cartron, Guillaume; Moreaux, Jérôme; Hose, Dirk; Klein, Bernard

    2015-01-01

    Resistance to chemotherapy is a major limitation of cancer treatments with several molecular mechanisms involved, in particular altered local drug metabolism and detoxification process. The role of drug metabolism and clearance system has not been satisfactorily investigated in Multiple Myeloma (MM), a malignant plasma cell cancer for which a majority of patients escapes treatment. The expression of 350 genes encoding for uptake carriers, xenobiotic receptors, phase I and II Drug Metabolizing Enzymes (DMEs) and efflux transporters was interrogated in MM cells (MMCs) of newly-diagnosed patients in relation to their event free survival. MMCs of patients with a favourable outcome have an increased expression of genes coding for xenobiotic receptors (RXRα, LXR, CAR and FXR) and accordingly of their gene targets, influx transporters and phase I/II DMEs. On the contrary, MMCs of patients with unfavourable outcome displayed a global down regulation of genes coding for xenobiotic receptors and the downstream detoxification genes but had a high expression of genes coding for ARNT and Nrf2 pathways and ABC transporters. Altogether, these data suggests ARNT and Nrf2 pathways could be involved in MM primary resistance and that targeting RXRα, PXR, LXR and FXR through agonists could open new perspectives to alleviate or reverse MM drug resistance. PMID:25669983

  13. In vitro sensitization of human lymphocytes to a myeloma cell-related antigen

    SciTech Connect

    Whitson, M.E.; Griffin, G.D.; Novelli, G.D.; Solomon, A.

    1981-01-01

    Peripheral blood lymphocytes from normal human donors were cocultivated with cells from two established human multiple myeloma cell lines, RPMI 8226 and K-737, and with lymphoblastoid cells from a third B cell line, RAMM. After a comparison of three methods of lymphocyte sensitization, a 6-day incubation protocol with equal numbers of normal lymphocytes and mitomycin C-treated tumor cells was selected. Cells fom the RPMI 8226 myeloma line stimulated the differentiation of lymphocytes into cytotoxic effector cells as measured by /sup 51/Cr release from labeled target cells. The RPMI 8226-sensitized lymphocytes were cytotoxic for myeloma cells (RPMI 8226 and K-737) and for lymphoblastoid cells (RAMM) but not for cells from human lung tumor lines (A549, A427, MB9812), a breast carcinoma line (ALAB), a normal diploid fibroblast line (HSBP), or normal lymphocytes.

  14. A novel alkylating agent Melflufen induces irreversible DNA damage and cytotoxicity in multiple myeloma cells.

    PubMed

    Ray, Arghya; Ravillah, Durgadevi; Das, Deepika S; Song, Yan; Nordström, Eva; Gullbo, Joachim; Richardson, Paul G; Chauhan, Dharminder; Anderson, Kenneth C

    2016-08-01

    Our prior study utilized both in vitro and in vivo multiple myeloma (MM) xenograft models to show that a novel alkylator melphalan-flufenamide (Melflufen) is a more potent anti-MM agent than melphalan and overcomes conventional drug resistance. Here we examined whether this potent anti-MM activity of melflufen versus melphalan is due to their differential effect on DNA damage and repair signalling pathways via γ-H2AX/ATR/CHK1/Ku80. Melflufen-induced apoptosis was associated with dose- and time-dependent rapid phosphorylation of γ-H2AX. Melflufen induces γ-H2AX, ATR, and CHK1 as early as after 2 h exposure in both melphalan-sensitive and -resistant cells. However, melphalan induces γ-H2AX in melphalan-sensitive cells at 6 h and 24 h; no γ-H2AX induction was observed in melphalan-resistant cells even after 24 h exposure. Similar kinetics was observed for ATR and CHK1 in meflufen- versus melphalan-treated cells. DNA repair is linked to melphalan-resistance; and importantly, we found that melphalan, but not melflufen, upregulates Ku80 that repairs DNA double-strand breaks. Washout experiments showed that a brief (2 h) exposure of MM cells to melflufen is sufficient to initiate an irreversible DNA damage and cytotoxicity. Our data therefore suggest that melflufen triggers a rapid, robust, and an irreversible DNA damage which may account for its ability to overcome melphalan-resistance in MM cells. PMID:27098276

  15. Myeloid-Derived Suppressor Cells in Multiple Myeloma: Pre-Clinical Research and Translational Opportunities

    PubMed Central

    Botta, Cirino; Gullà, Annamaria; Correale, Pierpaolo; Tagliaferri, Pierosandro; Tassone, Pierfrancesco

    2014-01-01

    Immunosuppressive cells have been reported to play an important role in tumor-progression mainly because of their capability to promote immune-escape, angiogenesis, and metastasis. Among them, myeloid-derived suppressor cells (MDSCs) have been recently identified as immature myeloid cells, induced by tumor-associated inflammation, able to impair both innate and adaptive immunity. While murine MDSCs are usually identified by the expression of CD11b and Gr1, human MDSCs represent a more heterogeneous population characterized by the expression of CD33 and CD11b, low or no HLA-DR, and variable CD14 and CD15. In particular, the last two may alternatively identify monocyte-like or granulocyte-like MDSC subsets with different immunosuppressive properties. Recently, a substantial increase of MDSCs has been found in peripheral blood and bone marrow (BM) of multiple myeloma (MM) patients with a role in disease progression and/or drug resistance. Pre-clinical models recapitulating the complexity of the MM-related BM microenvironment (BMM) are major tools for the study of the interactions between MM cells and cells of the BMM (including MDSCs) and for the development of new agents targeting MM-associated immune-suppressive cells. This review will focus on current strategies for human MDSCs generation and investigation of their immunosuppressive function in vitro and in vivo, taking into account the relevant relationship occurring within the MM–BMM. We will then provide trends in MDSC-associated research and suggest potential application for the treatment of MM. PMID:25538892

  16. Decreased level of phosphatidylcholine (16:0/20:4) in multiple myeloma cells compared to plasma cells: a single-cell MALDI-IMS approach.

    PubMed

    Hossen, Md Amir; Nagata, Yasuyuki; Waki, Michihiko; Ide, Yoshimi; Takei, Shiro; Fukano, Hana; Romero-Perez, Gustavo A; Tajima, Shogo; Yao, Ikuko; Ohnishi, Kazunori; Setou, Mitsutoshi

    2015-07-01

    Lipid metabolic changes under diseased conditions, particularly in solid tumors, are attracting increased attention. However, in non-solid tumors, including most hematopoietic tumors, lipid analyses are scarce. Multiple myeloma (MM) is a plasma cell disorder arising from bone marrow, and the lipid status of MM cells has not been reported yet. In this study, we analyzed flow cytometry-sorted single MM cells and normal plasma cells (NPCs) using matrix-assisted laser desorption/ionization-imaging mass spectrometry (MALDI-IMS), a two-dimensional label-free mass spectrometry technique for biomolecular analysis, to obtain specific lipid information. We isolated 1.31-5.77% of MM cells and 0.03-0.24% of NPCs using fluorescence-activated cell sorting (FACS). Analysis of purified cells using MALDI-IMS at the single-cell level revealed that the peak intensity and ion signals of phosphatidylcholine [PC (16:0/20:4) + H](+) at m/z 782.5 were significantly decreased in MM cells compared to NPCs. By examining particular cell populations rather than cell mixtures, our method can become a suitable tool for the analysis of rare cell populations at the single-cell level and advance the understanding of MM progression. PMID:25957845

  17. Separation of Ascites Myeloma Cells, Lymphocytes and Macrophages by Zonal Centrifugation on an Isokinetic Gradient

    PubMed Central

    Stewart, M. J.; Pretlow, T. G.; Hiramoto, Raymond

    1972-01-01

    In attempting to quantitate immunoglobulin synthesis by ascites myeloma cells, we were surprised to note that malignant appearing cells never exceeded 35.9 = 28.0% of ascitic cells and exceeded 22.4 ± 23.8% of ascitic cells on only one day between the transplantation of the tumor and the death of the host. The ascites tumor suspensions were separated primarily according to diameter, using a previously described isokinetic density gradient of Ficoll in tissue culture medium. This separation resulted in four modal populations of cells: red blood cells, lymphoid cells, macrophages and myeloma cells. The modal populations of macrophages and lymphoid cells always contained less than 0.2% myeloma cells. The purified cells were tested for tumorigenicity. The animal which received the largest number of cells from the macrophage zone received 296 times the number of cells which had been determined to be tumorigenic for myeloma cells. The animal which received the largest number of cells from the lymphoid zone received 1600 times the tumorigenic dose for myeloma cells. Neither of these animals has become ill 4 months after receiving the purified cells. We conclude that: a) Experimentalists who use ascites tumors are not justified in assuming that even easily detected quantitative differences between benign and malignant tissues would be reflected in analyses performed using unstandardized unexamined ascites tumor suspensions. b) In the case of the MOPC 104 mouse myeloma, cytologic criteria are adequate for distinguishing malignant cells from the inflammatory cells in the ascites suspension with a high degree of correspondence between cytologic appearance and biologic activity. c) Programmed gradient sedimentation in an isokinetic gradient of Ficoll in tissue culture medium is an effective means of separating malignant cells from benign cells in this particular ascites tumor. ImagesFig 1Fig 2Fig 3Fig 4 PMID:5080697

  18. What Is Multiple Myeloma?

    MedlinePlus

    ... other tissues. If someone has only a single plasma cell tumor, the disease is called an isolated (or solitary ) plasmacytoma . If someone has more than one plasmacytoma, they have multiple myeloma . Multiple myeloma is ...

  19. Negative regulation of erythroblast maturation by Fas-L(+)/TRAIL(+) highly malignant plasma cells: a major pathogenetic mechanism of anemia in multiple myeloma.

    PubMed

    Silvestris, Franco; Cafforio, Paola; Tucci, Marco; Dammacco, Franco

    2002-02-15

    Multiple myeloma (MM) is associated with severe normochromic/normocytic anemia. This study demonstrates that the abnormal up-regulation of apoptogenic receptors, including both Fas ligand (L) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), by highly malignant myeloma cells is involved in the pathogenesis of the ineffective erythropoiesis and chronic exhaustion of the erythroid matrix. By measuring Fas-L and TRAIL in plasma cells and the content of glycophorin A (GpA) in erythroblasts from a cohort of 28 untreated, newly diagnosed patients with MM and 7 with monoclonal gammopathy of undetermined significance (MGUS), selected in relation to their peripheral hemoglobin values, results showed that both receptors occurred at high levels in 15 severely anemic MM patients. Their marrow erythropoietic component was low and included predominantly immature GpA(+dim) erythroblasts, in contrast with the higher relative numbers of mature GpA(+bright) erythroid cells observed in the nonanemic patients and those with MGUS. In cocultures with autologous Fas-L(+)/TRAIL(+) myeloma cells, the expanded GpA(+dim) erythroid population underwent prompt apoptosis after direct exposure to malignant plasma cells, whereas erythroblasts from nonanemic patients were scarcely affected. The evidence that Fas-L(+)/TRAIL(+) malignant plasma cells prime erythroblast apoptosis by direct cytotoxicity was also supported by the increase of FLICE in fresh immature GpA(+dim) erythroid cells, whereas ICE and caspase-10 increased in subsequent maturative forms. In addition, GATA-1, a survival factor for erythroid precursors, was remarkably down-regulated in fresh erythroblasts from the severely anemic patients. These results indicate that progressive destruction of the erythroid matrix in aggressive MM is due to cytotoxic mechanisms based on the up-regulation in myeloma cells of Fas-L, TRAIL, or both. It is conceivable that the altered regulation of these receptors defines a peculiar

  20. An Organotypic High Throughput System for Characterization of Drug Sensitivity of Primary Multiple Myeloma Cells.

    PubMed

    Silva, Ariosto; Jacobson, Timothy; Meads, Mark; Distler, Allison; Shain, Kenneth

    2015-01-01

    In this work we describe a novel approach that combines ex vivo drug sensitivity assays and digital image analysis to estimate chemosensitivity and heterogeneity of patient-derived multiple myeloma (MM) cells. This approach consists in seeding primary MM cells freshly extracted from bone marrow aspirates into microfluidic chambers implemented in multi-well plates, each consisting of a reconstruction of the bone marrow microenvironment, including extracellular matrix (collagen or basement membrane matrix) and stroma (patient-derived mesenchymal stem cells) or human-derived endothelial cells (HUVECs). The chambers are drugged with different agents and concentrations, and are imaged sequentially for 96 hr through bright field microscopy, in a motorized microscope equipped with a digital camera. Digital image analysis software detects live and dead cells from presence or absence of membrane motion, and generates curves of change in viability as a function of drug concentration and exposure time. We use a computational model to determine the parameters of chemosensitivity of the tumor population to each drug, as well as the number of sub-populations present as a measure of tumor heterogeneity. These patient-tailored models can then be used to simulate therapeutic regimens and estimate clinical response. PMID:26274375

  1. Multiple myeloma cell lines and primary tumors proteoma: protein biosynthesis and immune system as potential therapeutic targets

    PubMed Central

    Mazzotti, Diego Robles; Evangelista, Adriane Feijó; Braga, Walter Moisés Tobias; de Lourdes Chauffaille, Maria; Leme, Adriana Franco Paes; Colleoni, Gisele Wally Braga

    2015-01-01

    Despite great advance in multiple myeloma (MM) treatment since 2000s, it is still an incurable disease and novel therapies are welcome. Therefore, the purpose of this study was to explore MM plasma cells' (MM-PC) proteome, in comparison with their normal counterparts (derived from palatine tonsils of normal donors, ND-PC), in order to find potential therapeutic targets expressed on the surface of these cells. We also aimed to evaluate the proteome of MM cell lines with different genetic alterations, to confirm findings obtained with primary tumor cells. Bone marrow (BM) samples from eight new cases of MM and palatine tonsils from seven unmatched controls were submitted to PC separation and, in addition to two MM cell lines (U266, RPMI-8226), were submitted to protein extraction for mass spectrometry analyses. A total of 81 proteins were differentially expressed between MM-PC and ND-PC - 72 upregulated and nine downregulated; U266 vs. RPMI 8226 cell lines presented 61 differentially expressed proteins - 51 upregulated and 10 downregulated. On primary tumors, bioinformatics analyses highlighted upregulation of protein biosynthesis machinery, as well as downregulation of immune response components, such as MHC class I and II, and complement receptors. We also provided comprehensive information about U266 and RPMI-8226 cell lines' proteome and could confirm some patients' findings. PMID:26807199

  2. A 54-Year-Old Woman with Donor Cell Origin of Multiple Myeloma after Allogeneic Hematopoietic Stem Cell Transplantation for the Treatment of CML

    PubMed Central

    Maestas, Erika; Jain, Shikha; Stiff, Patrick

    2016-01-01

    Chronic myeloid leukemia is a myeloproliferative disorder that may be treated with hematopoietic stem cell transplantation (HSCT). While posttransplantation relapse of disease resulting from a failure to eradicate the patient's original leukemia could occur, patients may also rarely develop a secondary malignancy or myelodysplastic syndrome (MDS) of donor origin termed donor cell leukemia (DCL). Cases of donor-derived acute myeloid leukemia (AML) or MDS after HSCT or solid tumor transplantation have been published. However, very few cases of donor-derived multiple myeloma (MM) exist. We describe a patient who developed a donor-derived MM following allogeneic HSCT from a sibling donor. PMID:26989529

  3. A Novel TLR-9 Agonist C792 Inhibits Plasmacytoid Dendritic Cell-induced Myeloma Cell Growth and Enhance Cytotoxicity of Bortezomib

    PubMed Central

    Ray, Arghya; Tian, Ze; Das, Deepika Sharma; Coffman, Robert L.; Richardson, Paul; Chauhan, Dharminder; Anderson, Kenneth C.

    2014-01-01

    Our prior study in multiple myeloma (MM) patients showed increased numbers of plasmacytoid dendritic cells (pDCs) in the bone marrow (BM) which both contribute to immune dysfunction as well as promote tumor cell growth, survival, and drug resistance. Here we show that a novel Toll-Like Receptor (TLR-9) agonist C792 restores the ability of MM patient-pDCs to stimulate T cell proliferation. Co-culture of pDCs with MM cells induces MM cell growth; and importantly, C792 inhibits pDC-induced MM cell growth and triggers apoptosis. In contrast, treatment of either MM cells or pDCs alone with C792 does not affect the viability of either cell type. In agreement with our in vitro data, C792 inhibits pDC-induced MM cell growth in vivo in a murine xenograft model of human MM. Mechanistic studies show that C792 triggers maturation of pDCs, enhances interferon-α and interferon-λ secretion, and activates TLR-9/MyD88 signaling axis. Finally, C792 enhances the anti-MM activity of bortezomib, lenalidomide, pomalidomide, SAHA, or melphalan. Collectively, our preclinical studies provide the basis for clinical trials of C792, either alone or in combination, to both improve immune function and overcome drug resistance in MM. PMID:24476765

  4. A novel TLR-9 agonist C792 inhibits plasmacytoid dendritic cell-induced myeloma cell growth and enhance cytotoxicity of bortezomib.

    PubMed

    Ray, A; Tian, Z; Das, D S; Coffman, R L; Richardson, P; Chauhan, D; Anderson, K C

    2014-08-01

    Our prior study in multiple myeloma (MM) patients showed increased numbers of plasmacytoid dendritic cells (pDCs) in the bone marrow (BM), which both contribute to immune dysfunction as well as promote tumor cell growth, survival and drug resistance. Here we show that a novel Toll-like receptor (TLR-9) agonist C792 restores the ability of MM patient-pDCs to stimulate T-cell proliferation. Coculture of pDCs with MM cells induces MM cell growth; and importantly, C792 inhibits pDC-induced MM cell growth and triggers apoptosis. In contrast, treatment of either MM cells or pDCs alone with C792 does not affect the viability of either cell type. In agreement with our in vitro data, C792 inhibits pDC-induced MM cell growth in vivo in a murine xenograft model of human MM. Mechanistic studies show that C792 triggers maturation of pDCs, enhances interferon-α and interferon-λ secretion and activates TLR-9/MyD88 signaling axis. Finally, C792 enhances the anti-MM activity of bortezomib, lenalidomide, SAHA or melphalan. Collectively, our preclinical studies provide the basis for clinical trials of C792, either alone or in combination, to both improve immune function and overcome drug resistance in MM. PMID:24476765

  5. A small molecule inhibitor of ubiquitin-specific protease-7 induces apoptosis in multiple myeloma cells and overcomes bortezomib resistance.

    PubMed

    Chauhan, Dharminder; Tian, Ze; Nicholson, Benjamin; Kumar, K G Suresh; Zhou, Bin; Carrasco, Ruben; McDermott, Jeffrey L; Leach, Craig A; Fulcinniti, Mariaterresa; Kodrasov, Matthew P; Weinstock, Joseph; Kingsbury, William D; Hideshima, Teru; Shah, Parantu K; Minvielle, Stephane; Altun, Mikael; Kessler, Benedikt M; Orlowski, Robert; Richardson, Paul; Munshi, Nikhil; Anderson, Kenneth C

    2012-09-11

    Bortezomib therapy has proven successful for the treatment of relapsed/refractory, relapsed, and newly diagnosed multiple myeloma (MM); however, dose-limiting toxicities and the development of resistance limit its long-term utility. Here, we show that P5091 is an inhibitor of deubiquitylating enzyme USP7, which induces apoptosis in MM cells resistant to conventional and bortezomib therapies. Biochemical and genetic studies show that blockade of HDM2 and p21 abrogates P5091-induced cytotoxicity. In animal tumor model studies, P5091 is well tolerated, inhibits tumor growth, and prolongs survival. Combining P5091 with lenalidomide, HDAC inhibitor SAHA, or dexamethasone triggers synergistic anti-MM activity. Our preclinical study therefore supports clinical evaluation of USP7 inhibitor, alone or in combination, as a potential MM therapy. PMID:22975377

  6. Immunotherapeutic approaches to treat multiple myeloma

    PubMed Central

    Roeven, Mieke WH; Hobo, Willemijn; Schaap, Nicolaas; Dolstra, Harry

    2014-01-01

    Cellular immunotherapy can be an effective adjuvant treatment for multiple myeloma (MM), as demonstrated by induction of durable remissions after allogeneic stem cell transplantation. However, anti-myeloma immunity is often hampered by suppressive mechanisms in the tumor micro-environment resulting in relapse or disease progression. To overcome this immunosuppression, new cellular immunotherapies have been developed, based on the important effector cells in anti-myeloma immunity, namely T cells and natural killer cells. These effectors can be modulated to improve their functionality, activated by dendritic cell vaccines, or combined with immune stimulating antibodies or immunomodulatory drugs to enhance their efficacy. In this review, we discuss promising pre-clinical and clinical data in the field of cellular immunotherapy in MM. In addition, we address the potential of combining these strategies with other therapies to maximize clinical effects without increasing toxicity. The reviewed therapies might pave the way to effective personalized treatments for MM patients. PMID:24335570

  7. Targeting MUC1-C is synergistic with bortezomib in downregulating TIGAR and inducing ROS-mediated myeloma cell death

    PubMed Central

    Yin, Li; Kufe, Turner; Avigan, David

    2014-01-01

    The proteosome inhibitor bortezomib (BTZ) induces endoplasmic reticulum and oxidative stress in multiple myeloma (MM) cells. The mucin 1 C-terminal subunit (MUC1-C) oncoprotein is aberrantly expressed in most MM cells, and targeting MUC1-C with GO-203, a cell-penetrating peptide inhibitor of MUC1-C homodimerization, is effective in inducing reactive oxygen species (ROS)-mediated MM cell death. The present results demonstrate that GO-203 and BTZ synergistically downregulate expression of the p53-inducible regulator of glycolysis and apoptosis (TIGAR), which promotes shunting of glucose-6-phosphate into the pentose phosphate pathway to generate reduced glutathione (GSH). In turn, GO-203 blocks BTZ-induced increases in GSH and results in synergistic increases in ROS and MM cell death. The results also demonstrate that GO-203 is effective against BTZ-resistant MM cells. We show that BTZ resistance is associated with BTZ-induced increases in TIGAR and GSH levels, and that GO-203 resensitizes BTZ-resistant cells to BTZ treatment by synergistically downregulating TIGAR and GSH. The GO-203/BTZ combination is thus highly effective in killing BTZ-resistant MM cells. These findings support a model in which targeting MUC1-C is synergistic with BTZ in suppressing TIGAR-mediated regulation of ROS levels and provide an experimental rationale for combining GO-203 with BTZ in certain settings of BTZ resistance. PMID:24632713

  8. Immune Cell Inhibition by SLAMF7 Is Mediated by a Mechanism Requiring Src Kinases, CD45, and SHIP-1 That Is Defective in Multiple Myeloma Cells

    PubMed Central

    Guo, Huaijian; Cruz-Munoz, Mario-Ernesto; Wu, Ning; Robbins, Michael

    2014-01-01

    Signaling lymphocytic activation molecule F7 (SLAMF7) is a receptor present on immune cells, including natural killer (NK) cells. It is also expressed on multiple myeloma (MM) cells. This led to development of an anti-SLAMF7 antibody, elotuzumab, showing efficacy against MM. SLAMF7 mediates activating or inhibitory effects in NK cells, depending on whether cells express or do not express the adaptor EAT-2. Since MM cells lack EAT-2, we elucidated the inhibitory effectors of SLAMF7 in EAT-2-negative NK cells and tested whether these effectors were triggered in MM cells. SLAMF7-mediated inhibition in NK cells lacking EAT-2 was mediated by SH2 domain-containing inositol phosphatase 1 (SHIP-1), which was recruited via tyrosine 261 of SLAMF7. Coupling of SLAMF7 to SHIP-1 required Src kinases, which phosphorylated SLAMF7. Although MM cells lack EAT-2, elotuzumab did not induce inhibitory signals in these cells. This was at least partly due to a lack of CD45, a phosphatase required for Src kinase activation. A defect in SLAMF7 function was also observed in CD45-deficient NK cells. Hence, SLAMF7-triggered inhibition is mediated by a mechanism involving Src kinases, CD45, and SHIP-1 that is defective in MM cells. This defect might explain why elotuzumab eliminates MM cells by an indirect mechanism involving the activation of NK cells. PMID:25312647

  9. Anti-CS1 humanized monoclonal antibody HuLuc63 inhibits myeloma cell adhesion and induces antibody-dependent cellular cytotoxicity in the bone marrow milieu.

    PubMed

    Tai, Yu-Tzu; Dillon, Myles; Song, Weihua; Leiba, Merav; Li, Xian-Feng; Burger, Peter; Lee, Alfred I; Podar, Klaus; Hideshima, Teru; Rice, Audie G; van Abbema, Anne; Jesaitis, Lynne; Caras, Ingrid; Law, Debbie; Weller, Edie; Xie, Wanling; Richardson, Paul; Munshi, Nikhil C; Mathiot, Claire; Avet-Loiseau, Hervé; Afar, Daniel E H; Anderson, Kenneth C

    2008-08-15

    Currently, no approved monoclonal antibody (mAb) therapies exist for human multiple myeloma (MM). Here we characterized cell surface CS1 as a novel MM antigen and further investigated the potential therapeutic utility of HuLuc63, a humanized anti-CS1 mAb, for treating human MM. CS1 mRNA and protein was highly expressed in CD138-purified primary tumor cells from the majority of MM patients (more than 97%) with low levels of circulating CS1 detectable in MM patient sera, but not in healthy donors. CS1 was expressed at adhesion-promoting uropod membranes of polarized MM cells, and short interfering RNA (siRNA) targeted to CS1 inhibited MM cell adhesion to bone marrow stromal cells (BMSCs). HuLuc63 inhibited MM cell binding to BMSCs and induced antibody-dependent cellular cytotoxicity (ADCC) against MM cells in dose-dependent and CS1-specific manners. HuLuc63 triggered autologous ADCC against primary MM cells resistant to conventional or novel therapies, including bortezomib and HSP90 inhibitor; and pretreatment with conventional or novel anti-MM drugs markedly enhanced HuLuc63-induced MM cell lysis. Administration of HuLuc63 significantly induces tumor regression in multiple xenograft models of human MM. These results thus define the functional significance of CS1 in MM and provide the preclinical rationale for testing HuLuc63 in clinical trials, either alone or in combination. PMID:17906076

  10. A novel vascular disrupting agent plinabulin triggers JNK-mediated apoptosis and inhibits angiogenesis in multiple myeloma cells.

    PubMed

    Singh, Ajita V; Bandi, Madhavi; Raje, Noopur; Richardson, Paul; Palladino, Michael A; Chauhan, Dharminder; Anderson, Kenneth C

    2011-05-26

    Previous studies have established a role of vascular-disrupting agents as anti- cancer agents. Plinabulin is a novel vascular-disrupting agent that exhibits potent interruption of tumor blood flow because of the disruption of tumor vascular endothelial cells, resulting in tumor necrosis. In addition, plinabulin exerts a direct action on tumor cells, resulting in apoptosis. In the present study, we examined the anti-multiple myeloma (MM) activity of plinabulin. We show that low concentrations of plinabulin exhibit a potent antiangiogenic action on vascular endothelial cells. Importantly, plinabulin also induces apoptotic cell death in MM cell lines and tumor cells from patients with MM, associated with mitotic growth arrest. Plinabulin-induced apoptosis is mediated through activation of caspase-3, caspase-8, caspase-9, and poly(ADP-ribose) polymerase cleavage. Moreover, plinabulin triggered phosphorylation of stress response protein JNK, as a primary target, whereas blockade of JNK with a biochemical inhibitor or small interfering RNA strategy abrogated plinabulin-induced mitotic block or MM cell death. Finally, in vivo studies show that plinabulin was well tolerated and significantly inhibited tumor growth and prolonged survival in a human MM.1S plasmacytoma murine xenograft model. Our study therefore provides the rationale for clinical evaluation of plinabulin to improve patient outcome in MM. PMID:21454451

  11. SDF-1α stiffens myeloma bone marrow mesenchymal stromal cells through the activation of RhoA-ROCK-Myosin II.

    PubMed

    Choi, Dong Soon; Stark, Daniel J; Raphael, Robert M; Wen, Jianguo; Su, Jing; Zhou, Xiaobo; Chang, Chung-Che; Zu, Youli

    2015-03-01

    Multiple myeloma (MM) is a B lymphocyte malignancy that remains incurable despite extensive research efforts. This is due, in part, to frequent disease recurrences associated with the persistence of myeloma cancer stem cells (mCSCs). Bone marrow mesenchymal stromal cells (BMSCs) play critical roles in supporting mCSCs through genetic or biochemical alterations. Previously, we identified mechanical distinctions between BMSCs isolated from MM patients (mBMSCs) and those present in the BM of healthy individuals (nBMSCs). These properties of mBMSC contributed to their ability to preferentially support mCSCs. To further illustrate mechanisms underlying the differences between mBMSCs and nBMSCs, here we report that (i) mBMSCs express an abnormal, constitutively high level of phosphorylated Myosin II, which leads to stiffer membrane mechanics, (ii) mBMSCs are more sensitive to SDF-1α-induced activation of MYL2 through the G(i./o)-PI3K-RhoA-ROCK-Myosin II signaling pathway, affecting Young's modulus in BMSCs and (iii) activated Myosin II confers increased cell contractile potential, leading to enhanced collagen matrix remodeling and promoting the cell-cell interaction between mCSCs and mBMSCs. Together, our findings suggest that interfering with SDF-1α signaling may serve as a new therapeutic approach for eliminating mCSCs by disrupting their interaction with mBMSCs. PMID:25137150

  12. Normalizing the bone marrow microenvironment with p38 inhibitor reduces multiple myeloma cell proliferation and adhesion and suppresses osteoclast formation

    SciTech Connect

    Nguyen, Aaron N.; Stebbins, Elizabeth G.; Henson, Margaret; O'Young, Gilbert; Choi, Sun J.; Quon, Diana; Damm, Debby; Reddy, Mamatha; Ma, Jing Y.; Haghnazari, Edwin; Kapoun, Ann M.; Medicherla, Satyanarayana; Protter, Andy; Schreiner, George F.; Kurihara, Noriyoshi; Anderson, Judy; Roodman, G. David; Navas, Tony A.; Higgins, Linda S. . E-mail: lhiggin3@scius.jnj.com

    2006-06-10

    The multiple myeloma (MM) bone marrow (BM) microenvironment plays a critical role in supporting tumor growth and survival as well as in promoting formation of osteolytic lesions. Recent results suggest that the p38 mitogen-activated protein kinase (MAPK) is an important factor in maintaining this activated environment. In this report, we demonstrate that the p38{alpha} MAPK inhibitor, SCIO-469, suppresses secretion of the tumor-supportive factors IL-6 and VEGF from BM stromal cells (BMSCs) as well as cocultures of BMSCs with MM cells, resulting in reduction in MM cell proliferation. Additionally, we show that SCIO-469 prevents TNF{alpha}-induced adhesion of MM cells to BMSCs through an ICAM-1- and VCAM-1-independent mechanism. Microarray analysis revealed a novel set of TNF{alpha}-induced chemokines in BMSCs that is strongly inhibited by SCIO-469. Furthermore, reintroduction of chemokines CXCL10 and CCL8 to BMSCs overcomes the inhibitory effect of SCIO-469 on TNF{alpha}-induced MM adhesion. Lastly, we show that SCIO-469 inhibits secretion and expression of the osteoclast-activating factors IL-11, RANKL, and MIP-1{alpha} as well as prevents human osteoclast formation in vitro. Collectively, these results suggest that SCIO-469 treatment can suppress factors in the bone marrow microenvironment to inhibit MM cell proliferation and adhesion and also to alleviate osteolytic activation in MM.

  13. Naltrindole inhibits human multiple myeloma cell proliferation in vitro and in a murine xenograft model in vivo.

    PubMed

    Mundra, Jyoti Joshi; Terskiy, Alexandra; Howells, Richard D

    2012-08-01

    It has been demonstrated previously that immune cell activation and proliferation were sensitive to the effects of naltrindole, a nonpeptidic δ-opioid receptor-selective antagonist; therefore, we hypothesized that human multiple myeloma (MM) would be a valuable model for studying potential antineoplastic properties of naltrindole. [(3)H]naltrindole exhibited saturable, low-affinity binding to intact human MM cells; however, the pharmacological profile of the binding site differed considerably from the properties of δ-, κ-, and μ-opioid receptors, and opioid receptor mRNA was not detected in MM cells by reverse transcriptase-polymerase chain reaction. Naltrindole inhibited the proliferation of cultured human U266 MM cells in a time- and dose-dependent manner with an EC(50) of 16 μM. The naltrindole-induced inhibition of U266 cell proliferation was not blocked by a 10-fold molar excess of naltrexone, a nonselective opioid antagonist. Additive inhibition of MM cell proliferation was observed when using a combination of naltrindole with the histone deacetylase inhibitor sodium valproate, the proteasome inhibitor bortezomib, the glucocorticoid receptor agonist dexamethasone, and the HMG CoA reductase inhibitor simvastatin. Treatment of U266 cells with naltrindole significantly decreased the level of the active, phosphorylated form of the kinases, extracellular signal-regulated kinase and Akt, which may be related to its antiproliferative activity. The antiproliferative activity of naltrindole toward MM cells was maintained in cocultures of MM and bone marrow-derived stromal cells, mimicking the bone marrow microenvironment. In vivo, naltrindole significantly decreased tumor cell volumes in human MM cell xenografts in severe combined immunodeficient mice. We hypothesize that naltrindole inhibits the proliferation of MM cells through a nonopioid receptor-dependent mechanism. PMID:22537770

  14. Naltrindole Inhibits Human Multiple Myeloma Cell Proliferation In Vitro and in a Murine Xenograft Model In Vivo

    PubMed Central

    Mundra, Jyoti Joshi; Terskiy, Alexandra

    2012-01-01

    It has been demonstrated previously that immune cell activation and proliferation were sensitive to the effects of naltrindole, a nonpeptidic δ-opioid receptor-selective antagonist; therefore, we hypothesized that human multiple myeloma (MM) would be a valuable model for studying potential antineoplastic properties of naltrindole. [3H]naltrindole exhibited saturable, low-affinity binding to intact human MM cells; however, the pharmacological profile of the binding site differed considerably from the properties of δ-, κ-, and μ-opioid receptors, and opioid receptor mRNA was not detected in MM cells by reverse transcriptase-polymerase chain reaction. Naltrindole inhibited the proliferation of cultured human U266 MM cells in a time- and dose-dependent manner with an EC50 of 16 μM. The naltrindole-induced inhibition of U266 cell proliferation was not blocked by a 10-fold molar excess of naltrexone, a nonselective opioid antagonist. Additive inhibition of MM cell proliferation was observed when using a combination of naltrindole with the histone deacetylase inhibitor sodium valproate, the proteasome inhibitor bortezomib, the glucocorticoid receptor agonist dexamethasone, and the HMG CoA reductase inhibitor simvastatin. Treatment of U266 cells with naltrindole significantly decreased the level of the active, phosphorylated form of the kinases, extracellular signal-regulated kinase and Akt, which may be related to its antiproliferative activity. The antiproliferative activity of naltrindole toward MM cells was maintained in cocultures of MM and bone marrow-derived stromal cells, mimicking the bone marrow microenvironment. In vivo, naltrindole significantly decreased tumor cell volumes in human MM cell xenografts in severe combined immunodeficient mice. We hypothesize that naltrindole inhibits the proliferation of MM cells through a nonopioid receptor-dependent mechanism. PMID:22537770

  15. In vitro and In vivo Antitumor Activity of a Novel Alkylating Agent Melphalan-flufenamide Against Multiple Myeloma Cells

    PubMed Central

    Chauhan, Dharminder; Ray, Arghya; Viktorsson, Kristina; Spira, Jack; Paba-Prada, Claudia; Munshi, Nikhil; Richardson, Paul; Lewensohn, Rolf; Anderson, Kenneth C.

    2014-01-01

    Purpose The alkylating agent melphalan prolongs survival in multiple myeloma (MM) patients; however, it is associated with toxicities and development of drug-resistance. Here, we evaluated the efficacy of melphalan-flufenamide (Mel-flufen), a novel dipeptide prodrug of melphalan in MM. Experimental Design MM cell lines, primary patient cells, and the human MM xenograft animal model were utilized to study the antitumor activity of mel-flufen. Results Low doses of mel-flufen triggers a more rapid and higher intracellular concentrations of melphalan in MM cells than is achievable by free melphalan. Cytotoxicity analysis showed significantly lower IC50 of mel-flufen than melphalan in MM cells. Importantly, mel-flufen induces apoptosis even in melphalan-, and bortezomib-resistant MM cells. Mechanistic studies show that siRNA knockdown of aminopeptidase N, a key enzyme mediating intracellular conversion of mel-flufen to melphalan, attenuates anti-MM activity of mel-flufen. Furthermore, mel-flufen-induced apoptosis was associated with: 1) activation of caspases and PARP cleavage; 2) ROS generation; 3) mitochondrial dysfunction and release of cytochrome-c; and 4) induction of DNA damage. Moreover, mel-flufen inhibits MM cell migration and tumor-associated angiogenesis. Human MM xenograft studies showed a more potent inhibition of tumor growth in mice treated with mel-flufen than mice receiving equimolar doses of melphalan. Finally, combining mel-flufen with lenalidomide, bortezomib, or dexamethasone triggers synergistic anti-MM activity. Conclusion Our preclinical study supports clinical evaluation of mel-flufen to enhance therapeutic potential of melphalan, overcome drug-resistance, and improve MM patient outcome. PMID:23584492

  16. PSMB4 promotes multiple myeloma cell growth by activating NF-κB-miR-21 signaling

    SciTech Connect

    Zheng, Peihao; Guo, Honggang; Li, Guangchao; Han, Siqi; Luo, Fei; Liu, Yi

    2015-03-06

    Proteasomal subunit PSMB4, was recently identified as potential cancer driver genes in several tumors. However, the regulatory mechanism of PSMB4 on carcinogenesis process remains unclear. In this study, we investigated the expression and roles of PSMB4 in multiple myeloma (MM). We found a significant up-regulation of PSMB4 in MM plasma and cell lines. Ectopic overexpression of PSMB4 promoted cell growth and colony forming ability of MM cells, whereas inhibition of PSMB4 led to a decrease of such events. Furthermore, our results demonstrated the up-regulation of miR-21 and a positive correlation between the levels of miR-21 and PSMB4 in MM. Re-expression of miR-21 markedly rescued PSMB4 knockdown-mediated suppression of cell proliferation and clone-formation. Additionally, while enforced expression of PSMB4 profoundly increased NF-κB activity and the level of miR-21, PSMB4 knockdown or NF-κB inhibition suppressed miR-21 expression in MM cells. Taken together, our results demonstrated that PSMB4 regulated MM cell growth in part by activating NF-κB-miR-21 signaling, which may represent promising targets for novel specific therapies. - Highlights: • First reported upregulation of PSMB4 in MM plasma and cell lines. • PSMB4 promoted MM cell growth and colony forming ability. • Further found miR-21 was up-regulated by PSMB4 in MM plasma and cell lines. • PSMB4-induced miR-21 expression was modulated by NF-κB. • PSMB4-NF-κB-miR-21 axis may be potential therapeutic targets of MM.

  17. Mechanisms of G1 cell cycle arrest and apoptosis in myeloma cells induced by hybrid-compound histone deacetylase inhibitor

    SciTech Connect

    Fujii, Seiko; Okinaga, Toshinori; Ariyoshi, Wataru; Takahashi, Osamu; Iwanaga, Kenjiro; Nishino, Norikazu; Tominaga, Kazuhiro; Nishihara, Tatsuji

    2013-05-10

    Highlights: •Novel histone deacetylase inhibitor Ky-2, remarkably inhibits myeloma cell growth. •Ky-2 demonstrates no cytotoxicity against normal lymphocytic cells. •Ky-2 induces cell cycle arrest through the cell cycle-associated proteins. •Ky-2 induces Bcl-2-inhibitable apoptosis through a caspase-dependent cascade. -- Abstract: Objectives: Histone deacetylase (HDAC) inhibitors are new therapeutic agents, used to treat various types of malignant cancers. In the present study, we investigated the effects of Ky-2, a hybrid-compound HDAC inhibitor, on the growth of mouse myeloma cells. Materials and methods: Myeloma cells, HS-72, P3U1, and mouse normal cells were used in this study. Effect of HDAC inhibitors on cell viability was determined by WST-assay and trypan blue assay. Cell cycle was analyzed using flow cytometer. The expression of cell cycle regulatory and the apoptosis associated proteins were examined by Western blot analysis. Hoechst’s staining was used to detect apoptotic cells. Results: Our findings showed that Ky-2 decreased the levels of HDACs, while it enhanced acetylation of histone H3. Myeloma cell proliferation was inhibited by Ky-2 treatment. Interestingly, Ky-2 had no cytotoxic effects on mouse normal cells. Ky-2 treatment induced G1-phase cell cycle arrest and accumulation of a sub-G1 phase population, while Western blotting analysis revealed that expressions of the cell cycle-associated proteins were up-regulated. Also, Ky-2 enhanced the cleavage of caspase-9 and -3 in myeloma cells, followed by DNA fragmentation. In addition, Ky-2 was not found to induce apoptosis in bcl-2 overexpressing myeloma cells. Conclusion: These findings suggest that Ky-2 induces apoptosis via a caspase-dependent cascade and Bcl-2-inhibitable mechanism in myeloma cells.

  18. Induction of miR-146a by multiple myeloma cells in mesenchymal stromal cells stimulates their pro-tumoral activity.

    PubMed

    De Veirman, Kim; Wang, Jinheng; Xu, Song; Leleu, Xavier; Himpe, Eddy; Maes, Ken; De Bruyne, Elke; Van Valckenborgh, Els; Vanderkerken, Karin; Menu, Eline; Van Riet, Ivan

    2016-07-10

    Mutual communication between multiple myeloma (MM) cells and mesenchymal stromal cells (MSC) plays a pivotal role in supporting MM progression. In MM, MSC exhibit a different genomic profile and dysregulated cytokine secretion compared to normal MSC, however the mechanisms involved in these changes are not fully understood. Here, we examined the miRNA changes in human MSC after culture with conditioned medium of MM cells and found 19 dysregulated miRNAs, including upregulated miR-146a. Moreover, exosomes derived from MM cells contained miR-146a and could be transferred into MSC. After overexpressing miR-146a in MSC, secretion of several cytokines and chemokines including CXCL1, IL6, IL-8, IP-10, MCP-1, and CCL-5 was elevated, resulting in the enhancement of MM cell viability and migration. DAPT, an inhibitor of the endogenous Notch pathway, was able to abrogate the miR-146a-induced increase of cytokines in MSC, suggesting the involvement of the Notch pathway. Taken together, our results demonstrate a positive feedback loop between MM cells and MSC: MM cells promote the increase of miR146a in MSC which leads to more cytokine secretion, which in turn favors MM cell growth and migration. PMID:27102001

  19. Isoprenoid biosynthetic pathway inhibition disrupts monoclonal protein secretion and induces the unfolded protein response pathway in multiple myeloma cells

    PubMed Central

    Holstein, Sarah A.; Hohl, Raymond J.

    2010-01-01

    Myeloma is characterized by the overproduction and secretion of monoclonal protein. Inhibitors of the isoprenoid biosynthetic pathway (IBP) have pleiotropic effects in myeloma cells. To investigate whether IBP inhibition interferes with monoclonal protein secretion, human myeloma cells were treated with specific inhibitors of the IBP or prenyltransferases. These studies demonstrate that agents that inhibit Rab geranylgeranylation disrupt light chain trafficking, lead to accumulation of light chain in the endoplasmic reticulum, activate the unfolded protein response pathway and induce apoptosis. These studies provide a novel mechanism of action for IBP inhibitors and suggest that further exploration of Rab-targeted agents in myeloma is warranted. PMID:20828814

  20. Identification of the key genes connected with plasma cells of multiple myeloma using expression profiles

    PubMed Central

    Zhang, Kefeng; Xu, Zhongyang; Sun, Zhaoyun

    2015-01-01

    Objective To uncover the potential regulatory mechanisms of the relevant genes that contribute to the prognosis and prevention of multiple myeloma (MM). Methods Microarray data (GSE13591) were downloaded, including five plasma cell samples from normal donors and 133 plasma cell samples from MM patients. Differentially expressed genes (DEGs) were identified by Student’s t-test. Functional enrichment analysis was performed for DEGs using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Transcription factors and tumor-associated genes were also explored by mapping genes in the TRANSFAC, the tumor suppressor gene (TSGene), and tumor-associated gene (TAG) databases. A protein–protein interaction (PPI) network and PPI subnetworks were constructed by Cytoscape software using the Search Tool for the Retrieval of Interacting Genes (STRING) database. Results A total of 63 DEGs (42 downregulated, 21 upregulated) were identified. Functional enrichment analysis showed that HLA-DRB1 and VCAM1 might be involved in the positive regulation of immune system processes, and HLA-DRB1 might be related to the intestinal immune network for IgA production pathway. The genes CEBPD, JUND, and ATF3 were identified as transcription factors. The top ten nodal genes in the PPI network were revealed including HLA-DRB1, VCAM1, and TFRC. In addition, genes in the PPI subnetwork, such as HLA-DRB1 and VCAM1, were enriched in the cell adhesion molecules pathway, whereas CD4 and TFRC were both enriched in the hematopoietic cell pathway. Conclusion Several crucial genes correlated to MM were identified, including CD4, HLA-DRB1, TFRC, and VCAM1, which might exert their roles in MM progression via immune-mediated pathways. There might be certain regulatory correlations between HLA-DRB1, CD4, and TFRC. PMID:26229487

  1. Input of DNA microarrays to identify novel mechanisms in multiple myeloma biology and therapeutic applications

    PubMed Central

    Mahtouk, Karène; Hose, Dirk; De Vos, John; Moreaux, Jérôme; Jourdan, Michel; Rossi, Jean François; Rème, Thierry; Goldschmidt, Harmut; Klein, Bernard

    2007-01-01

    Multiple myeloma (MM) is a B cell neoplasia characterized by the proliferation of a clone of malignant plasma cells in the bone marrow. We review here the input of gene expression profiling (GEP) of myeloma cells and of their tumor microenvironment to develop new tumor classifiers, to better understand the biology of myeloma cells, to identify some mechanisms of drug sensitivity and resistance, to identify new myeloma growth factors, and to depict the complex interactions between tumor cells and their microenvironment. We discuss how these findings may improve the clinical outcome of this still incurable disease. PMID:18094409

  2. International Myeloma Working Group consensus approach to the treatment of multiple myeloma patients who are candidates for autologous stem cell transplantation

    PubMed Central

    Palumbo, Antonio; Moreau, Philippe; Orlowski, Robert; Bladé, Joan; Sezer, Orhan; Ludwig, Heinz; Dimopoulos, Meletios A.; Attal, Michel; Sonneveld, Pieter; Boccadoro, Mario; Anderson, Kenneth C.; Richardson, Paul G.; Bensinger, William; Johnsen, Hans E.; Kroeger, Nicolaus; Gahrton, Gösta; Bergsagel, P. Leif; Vesole, David H.; Einsele, Hermann; Jagannath, Sundar; Niesvizky, Ruben; Durie, Brian G. M.; San Miguel, Jesus; Lonial, Sagar

    2011-01-01

    The role of high-dose therapy followed by autologous stem cell transplantation (ASCT) in the treatment of multiple myeloma (MM) continues to evolve in the novel agent era. The choice of induction therapy has moved from conventional chemotherapy to newer regimens incorporating the immunomodulatory derivatives thalidomide or lenalidomide and the proteasome inhibitor bortezomib. These drugs combine well with traditional therapies and with one another to form various doublet, triplet, and quadruplet regimens. Up-front use of these induction treatments, in particular 3-drug combinations, has affected unprecedented rates of complete response that rival those previously seen with conventional chemotherapy and subsequent ASCT. Autotransplantation applied after novel-agent-based induction regimens provides further improvement in the depth of response, a gain that translates into extended progression-free survival and, potentially, overall survival. High activity shown by immunomodulatory derivatives and bortezomib before ASCT has recently led to their use as consolidation and maintenance therapies after autotransplantation. Novel agents and ASCT are complementary treatment strategies for MM. This article reviews the current literature and provides important perspectives and guidance on the major issues surrounding the optimal current management of younger, transplantation-eligible MM patients. PMID:21447828

  3. Omega-3 fatty acids, EPA and DHA induce apoptosis and enhance drug sensitivity in multiple myeloma cells but not in normal peripheral mononuclear cells.

    PubMed

    Abdi, J; Garssen, J; Faber, J; Redegeld, F A

    2014-12-01

    The n-3 polyunsaturated fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been shown to enhance the effect of chemotherapeutic drugs in clinical studies in cancer patients and to induce apoptotic tumor cell death in vitro. Until now, EPA and DHA have never been investigated in multiple myeloma (MM). Human myeloma cells (L363, OPM-1, OPM-2 and U266) and normal peripheral blood mononuclear cells were exposed to EPA and DHA, and effects on mitochondrial function and apoptosis, caspase-3 activation, gene expression and drug toxicity were measured. Exposure to EPA and DHA induced apoptosis and increased sensitivity to bortezomib in MM cells. Importantly, they did not affect viability of normal human peripheral mononuclear cells. Messenger RNA expression arrays showed that EPA and DHA modulated genes involved in multiple signaling pathways including nuclear factor (NF) κB, Notch, Hedgehog, oxidative stress and Wnt. EPA and DHA inhibited NFκB activity and induced apoptosis through mitochondrial perturbation and caspase-3 activation. Our study suggests that EPA and DHA induce selective cytotoxic effects in MM and increase sensitivity to bortezomib and calls for further exploration into a potential application of these n-3 polyunsaturated fatty acids in the therapy of MM. PMID:25277647

  4. Identification of malignant plasma cell precursors in the bone marrow of multiple myeloma.

    PubMed Central

    Caligaris-Cappio, F; Bergui, L; Tesio, L; Pizzolo, G; Malavasi, F; Chilosi, M; Campana, D; van Camp, B; Janossy, G

    1985-01-01

    Precursors of plasma cells were studied in the bone marrow of 28 patients with multiple myeloma, plasma cell leukemia, and benign monoclonal gammopathy. Pre-B and B cell populations were analyzed with anti-B monoclonal antibodies corresponding to the clusters standardized at the Leucocyte Typing Workshops in Paris and Boston (CD9, CD10, CD19-22, CD24). In advanced forms of plasma cell malignancies, such as cases of multiple myeloma in stages II and III and of plasma cell leukemia, some cells of lymphoid morphology expressed common acute lymphoblastic leukemia antigen (CALLA, CD10) and HLA-DR, but contained no detectable terminal deoxynucleotidyl transferase enzyme. These CALLA+ cells were absent in benign monoclonal gammopathies. In multiple myeloma, the CALLA+ cells were negative for surface and cytoplasmic immunoglobulins (Ig), and, unlike CALLA+, terminal deoxynucleotidyl transferase (TdT+) pre-B cells in the normal bone marrow also failed to react with antibodies to B cell-associated antigens such as CD9, CD19, CD22, and CD24. The CALLA+, Ig- cells could be regarded as preplasmacytic since, after having been separated and stimulated with the phorbol ester 12-0-tetradecanoyl-phorbol-13 acetate in vitro, they transformed into plasma cells and synthesized the same heavy and light chains as myeloma cells. Images PMID:2931452

  5. Autologous Stem Cell Transplant Followed By Maintenance Therapy in Treating Elderly Patients With Multiple Myeloma

    ClinicalTrials.gov

    2014-11-18

    Extramedullary Plasmacytoma; Isolated Plasmacytoma of Bone; Light Chain Deposition Disease; Primary Systemic Amyloidosis; Stage I Multiple Myeloma; Stage II Multiple Myeloma; Stage III Multiple Myeloma

  6. SnapShot: Multiple Myeloma.

    PubMed

    Braggio, Esteban; Kortüm, K Martin; Stewart, A Keith

    2015-11-01

    Multiple myeloma (MM) is a plasma cell malignancy characterized by a heterogeneous clinical presentation. Genetic abnormalities are not only key events in the origin and progression of the disease but are also useful tools for prognosis, risk stratification, and therapeutic decision making. Although still incurable, a revolution in the treatment of MM is currently ongoing, leading to a significant improvement of clinical outcome and survival. To view this SnapShot, open or download the PDF. PMID:26555176

  7. [High dosage chemotherapy with autologous stem cell transplantation in multiple myeloma].

    PubMed

    Ruckser, R; Kier, P; Buxhofer, V; Kittl, E; Tatzreiter, G; Vedovelli, H; Zelenka, P; Hübl, G; Hinterberger, W

    2000-01-01

    Between 1992 and 1999 15 patients (pts.) suffering from multiple myeloma (MM) were treated with high-dose chemotherapy and consecutive autologous stem-cell transplantation (ASTx). 10/15 pts underwent two courses of ASTx (tandem- or double ASTx). So 25 ASTx were performed in these 15 pts. in total. All pts. were under 60 a. of age. 13/15 pts. received 6 cycles of chemotherapy on an average according to the VAD-protocol (Vincristin, Adriamycin, Dexamethason). Mobilisation of peripheral hematopoietic stem cells was performed with high-dose cyclophosphamide and hematopoietic growth-factors (CSFs). The conditioning protocol consisted of high-dose melphalan (200-225 mg/m2) in 24/25 ASTx. In one single case total body irradiation (TBI) plus melphalan 140 mg/m2 was used. 2/15 pts. died within 30 days from ASTx; one patient from interstitial pneumonia after TBI, and the other, who was in a very advanced stage of his disease with multiple pretreatment courses before ASTx. The overall survival (OS) was in the mean 68 months, the progression-free survival (PFS) after ASTx 21 m respectively. In pts. with MM high-dose melphalan (up to 225 mg/m2) without TBI plus ASTx is a safe and effective procedure when performed in the early course of the disease. PMID:11261278

  8. Withaferin A Inhibits STAT3 and Induces Tumor Cell Death in Neuroblastoma and Multiple Myeloma

    PubMed Central

    Yco, Lisette P; Mocz, Gabor; Opoku-Ansah, John; Bachmann, André S

    2014-01-01

    Signal transducer and activator of transcription 3 (STAT3) is an oncogenic transcription factor that has been implicated in many human cancers and has emerged as an ideal target for cancer therapy. Withaferin A (WFA) is a natural product with promising antiproliferative properties through its association with a number of molecular targets including STAT3. However, the effect of WFA in pediatric neuroblastoma (NB) and its interaction with STAT3 have not been reported. In this study, we found that WFA effectively induces dose-dependent cell death in high-risk and drug-resistant NB as well as multiple myeloma (MM) tumor cells, prevented interleukin-6 (IL-6)–mediated and persistently activated STAT3 phosphorylation at Y705, and blocked the transcriptional activity of STAT3. We further provide computational models that show that WFA binds STAT3 near the Y705 phospho-tyrosine residue of the STAT3 Src homology 2 (SH2) domain, suggesting that WFA prevents STAT3 dimer formation similar to BP-1-102, a well-established STAT3 inhibitor. Our findings propose that the antitumor activity of WFA is mediated at least in part through inhibition of STAT3 and provide a rationale for further drug development and clinical use in NB and MM. PMID:25452693

  9. Logic-Based and Cellular Pharmacodynamic Modeling of Bortezomib Responses in U266 Human Myeloma Cells.

    PubMed

    Chudasama, Vaishali L; Ovacik, Meric A; Abernethy, Darrell R; Mager, Donald E

    2015-09-01

    Systems models of biological networks show promise for informing drug target selection/qualification, identifying lead compounds and factors regulating disease progression, rationalizing combinatorial regimens, and explaining sources of intersubject variability and adverse drug reactions. However, most models of biological systems are qualitative and are not easily coupled with dynamical models of drug exposure-response relationships. In this proof-of-concept study, logic-based modeling of signal transduction pathways in U266 multiple myeloma (MM) cells is used to guide the development of a simple dynamical model linking bortezomib exposure to cellular outcomes. Bortezomib is a commonly used first-line agent in MM treatment; however, knowledge of the signal transduction pathways regulating bortezomib-mediated cell cytotoxicity is incomplete. A Boolean network model of 66 nodes was constructed that includes major survival and apoptotic pathways and was updated using responses to several chemical probes. Simulated responses to bortezomib were in good agreement with experimental data, and a reduction algorithm was used to identify key signaling proteins. Bortezomib-mediated apoptosis was not associated with suppression of nuclear factor κB (NFκB) protein inhibition in this cell line, which contradicts a major hypothesis of bortezomib pharmacodynamics. A pharmacodynamic model was developed that included three critical proteins (phospho-NFκB, BclxL, and cleaved poly (ADP ribose) polymerase). Model-fitted protein dynamics and cell proliferation profiles agreed with experimental data, and the model-predicted IC50 (3.5 nM) is comparable to the experimental value (1.5 nM). The cell-based pharmacodynamic model successfully links bortezomib exposure to MM cellular proliferation via protein dynamics, and this model may show utility in exploring bortezomib-based combination regimens. PMID:26163548

  10. Targeting cannabinoid receptor-2 pathway by phenylacetylamide suppresses the proliferation of human myeloma cells through mitotic dysregulation and cytoskeleton disruption.

    PubMed

    Feng, Rentian; Tong, Qin; Xie, Zhaojun; Cheng, Haizi; Wang, Lirong; Lentzsch, Suzanne; Roodman, G David; Xie, Xiang-Qun

    2015-12-01

    Cannabinoid receptor-2 (CB2) is expressed dominantly in the immune system, especially on plasma cells. Cannabinergic ligands with CB2 selectivity emerge as a class of promising agents to treat CB2-expressing malignancies without psychotropic concerns. In this study, we found that CB2 but not CB1 was highly expressed in human multiple myeloma (MM) and primary CD138+ cells. A novel inverse agonist of CB2, phenylacetylamide but not CB1 inverse agonist SR141716, inhibited the proliferation of human MM cells (IC50 : 0.62 ∼ 2.5 μM) mediated by apoptosis induction, but exhibited minor cytotoxic effects on human normal mononuclear cells. CB2 gene silencing or pharmacological antagonism markedly attenuated phenylacetylamide's anti-MM effects. Phenylacetylamide triggered the expression of C/EBP homologous protein at the early treatment stage, followed by death receptor-5 upregulation, caspase activation, and β-actin/tubulin degradation. Cell cycle related protein cdc25C and mitotic regulator Aurora A kinase were inactivated by phenylacetylamide treatment, leading to an increase in the ratio inactive/active cdc2 kinase. As a result, phosphorylation of CDK substrates was decreased, and the MM cell mitotic division was largely blocked by treatment. Importantly, phenylacetylamide could overcome the chemoresistance of MM cells against dexamethasone or melphalan. Thus, targeting CB2 may represent an attractive approach to treat cancers of immune origin. PMID:25640641

  11. Small-lymphoid cells and myeloid antigen expression in a patient with IgG myeloma: A case report

    PubMed Central

    JIANG, PENGJUN; XIA, WEN; SUN, XUEMEI; DAI, XINGBIN; LI, LIN

    2016-01-01

    Multiple myeloma is defined as a malignant proliferation of a single clone of plasma cells resulting in monoclonal immunoglobulin production. Due to the number of plasma cell morphological variants, difficulty is often faced during morphological diagnosis. The current study describes the case of a 49-year-old woman presenting with atypical plasma cell morphology detected by a bone marrow examination. Flow cytometric immunophenotyping determined the nature of the neoplastic cells as monoclonal myeloma cells with myeloid antigen expression. Serum electrophoresis with immunofixation and subsequent clinical findings confirmed this diagnosis. Therefore, the immunophenotyping of plasma cells in myelomas may be useful for the diagnosis of cases with atypical plasma cell morphology. PMID:26998140

  12. Multiple myeloma: managing a complex blood cancer.

    PubMed

    Dowling, Maura; Kelly, Mary; Meenaghan, Teresa

    2016-09-01

    This article gives a comprehensive overview of multiple myeloma (MM), a complex blood cancer involving overproduction of plasma cells. Although MM remains incurable, patients are living longer as a result of multiple treatment options. However, MM patients are also living with a higher symptom burden. The overall aims in managing MM are therefore to control disease progression, prolong survival and improve quality of life. PMID:27615537

  13. Cost analysis of a randomized stem cell mobilization study in multiple myeloma.

    PubMed

    Varmavuo, Ville; Silvennoinen, Raija; Anttila, Pekka; Säily, Marjaana; Sankelo, Marja; Putkonen, Mervi; Ahonen, Jouni; Mahlamäki, Eija; Mäntymaa, Pentti; Savolainen, Eeva-Riitta; Remes, Kari; Jantunen, Esa

    2016-10-01

    Upfront autologous stem cell transplantation (ASCT) is the standard therapy for younger multiple myeloma (MM) patients. MM patients usually undergo stem cell mobilization with cyclophosphamide (CY) followed by granulocyte colony-stimulating factor (G-CSF), or with G-CSF alone. A limited number of randomized studies are available comparing costs of different mobilization strategies. Eighty transplant-eligible patients aged up to 70 years with untreated MM were included in this prospective study. The patients were treated with RVD induction for three 21-day cycles and randomized 1:1 at inclusion into one of the two mobilization arms CY 2 g/m(2) + G-CSF [arm A] vs. G-CSF alone [arm B]. Plerixafor was given according to a specific algorithm if needed. Sixty-nine patients who received mobilization followed by blood graft collection were included in the cost analysis. The median total costs of the mobilization phase were significantly higher in arm A than in arm B (3855 € vs. 772 €, p ≤ 0.001). The cumulative median cost of the mobilization and collection phases was significantly lower in arm B than in arm A (8524 € vs. 11,622 €, p = 0.012). There was no significant difference between the arms in the total median costs of ASCT (n = 59) (34,997 € in arm A vs. 31,981 € in arm B, p = 0.118). Mobilization with G-CSF alone seems to be a preferable mobilization method for MM patients in terms of mobilization and apheresis costs. In addition, it requires less hospital resource utilization. PMID:27485453

  14. A Peculiar Molecular Profile of Umbilical Cord-Mesenchymal Stromal Cells Drives Their Inhibitory Effects on Multiple Myeloma Cell Growth and Tumor Progression

    PubMed Central

    Ciavarella, Sabino; Caselli, Anna; Tamma, Antonella Valentina; Savonarola, Annalisa; Loverro, Giuseppe; Paganelli, Roberto; Tucci, Marco

    2015-01-01

    Bone marrow-derived mesenchymal stromal cells (BM-MSCs) are under intensive investigation in preclinical models of cytotherapies against cancer, including multiple myeloma (MM). However, the therapeutic use of stromal progenitors holds critical safety concerns due to their potential MM-supporting activity in vivo. Here, we explored whether MSCs from sources other than BM, such as adipose tissue (AD-MSCs) and umbilical cord (UC-MSCs), affect MM cell growth in comparison to either normal (nBM-MSCs) or myelomatous marrow MSCs (MM-BM-MSCs). Results from both proliferation and clonogenic assays indicated that, in contrast to nBM- and MM-BM-MSCs, both AD and particularly UC-MSCs significantly inhibit MM cell clonogenicity and growth in vitro. Furthermore, when co-injected with UC-MSCs into mice, RPMI-8226 MM cells formed smaller subcutaneous tumor masses, while peritumoral injections of the same MSC subtype significantly delayed the tumor burden growing in subcutaneous plasmocytoma-bearing mice. Finally, both microarrays and ELISA revealed different expression of several genes and soluble factors in UC-MSCs as compared with other MSCs. Our data suggest that UC-MSCs have a distinct molecular profile that correlates with their intrinsic anti-MM activity and emphasize the UCs as ideal sources of MSCs for future cell-based therapies against MM. PMID:25758779

  15. Multiple myeloma

    PubMed Central

    Rajkumar, S. Vincent

    2008-01-01

    Multiple myeloma is a clonal plasma cell malignancy that accounts for slightly more than 10% of all hematologic cancers. In this paper, we present a historically focused review of the disease, from the description of the first case in 1844 to the present. The evolution of drug therapy and stem-cell transplantation for the treatment of myeloma, as well as the development of new agents, is discussed. We also provide an update on current concepts of diagnosis and therapy, with an emphasis on how treatments have emerged from a historical perspective after certain important discoveries and the results of experimental studies. PMID:18332230

  16. Therapeutic potential of targeting IRES-dependent c-myc translation in multiple myeloma cells during ER stress.

    PubMed

    Shi, Y; Yang, Y; Hoang, B; Bardeleben, C; Holmes, B; Gera, J; Lichtenstein, A

    2016-02-25

    Protein translation is inhibited by the unfolded protein response (UPR)-induced eIF-2α phosphorylation to protect against endoplasmic reticulum (ER) stress. In addition, we found additional inhibition of protein translation owing to diminished mTORC1 (mammalian target of rapamycin complex1) activity in ER-stressed multiple myeloma (MM) cells. However, c-myc protein levels and myc translation was maintained. To ascertain how c-myc was maintained, we studied myc IRES (internal ribosome entry site) function, which does not require mTORC1 activity. Myc IRES activity was upregulated in MM cells during ER stress induced by thapsigargin, tunicamycin or the myeloma therapeutic bortezomib. IRES activity was dependent on upstream MAPK (mitogen-activated protein kinase) and MNK1 (MAPK-interacting serine/threonine kinase 1) signaling. A screen identified hnRNP A1 (A1) and RPS25 as IRES-binding trans-acting factors required for ER stress-activated activity. A1 associated with RPS25 during ER stress and this was prevented by an MNK inhibitor. In a proof of principle, we identified a compound that prevented binding of A1 to the myc IRES and specifically inhibited myc IRES activity in MM cells. This compound, when used alone, was not cytotoxic nor did it inhibit myc translation or protein expression. However, when combined with ER stress inducers, especially bortezomib, a remarkable synergistic cytotoxicity ensued with associated inhibition of myc translation and expression. These results underscore the potential for targeting A1-mediated myc IRES activity in MM cells during ER stress. PMID:25961916

  17. Downregulation of myeloma-induced ICOS-L and regulatory T cell generation by lenalidomide and dexamethasone therapy.

    PubMed

    Scott, Gina B; Carter, Clive; Parrish, Christopher; Wood, Philip M; Cook, Gordon

    2015-09-01

    Multiple myeloma (MM) produces significant cellular and humoral immune defects. We have previously reported that MM induces CD4(+)CD25(+)FoxP3(+) cells (TRegs), via tumour expression of the immune checkpoint regulator, ICOS-L. We sought to define what impact the immunomodulatory drug lenalidomide, alone or with dexamethasone, has on TReg cell generation. Lenalidomide pre-treatment of MM cell lines reduced TReg generation and the concomitant TReg:TEff (CD4(+)CD25(+)FoxP3(-): effector T cells) ratio, as a consequence of reduced ICOSL transcription. Dexamethasone did not affect surface ICOS-L expression but did induce TReg cell apoptosis without impacting on TEff cell survival. Combined lenalidomide and dexamethasone significantly reduced both TReg induction and the TReg:TEff cell ratio. In vivo, serial analysis of the TReg:TEff ratio in MM patients on lenalidomide-dexamethasone therapy revealed a progressive reduction towards age-matched control values, though not complete correction. Our data demonstrate for the first time immune synergism to explain the observed immune-modulation associated with lenalidomide-dexamethasone therapy. PMID:26051632

  18. Investigational agent MLN9708/2238 targets tumor-suppressor miR33b in MM cells.

    PubMed

    Tian, Ze; Zhao, Jian-jun; Tai, Yu-Tzu; Amin, Samir B; Hu, Yiguo; Berger, Allison J; Richardson, Paul; Chauhan, Dharminder; Anderson, Kenneth C

    2012-11-01

    miRs play a critical role in tumor pathogenesis as either oncogenes or tumor-suppressor genes. However, the role of miRs and their regulation in response to proteasome inhibitors in multiple myeloma (MM) is unclear. In the current study, miR profiling in proteasome inhibitor MLN2238-treated MM.1S MM cells shows up-regulation of miR33b. Mechanistic studies indicate that the induction of miR33b is predominantly via transcriptional regulation. Examination of miR33b in patient MM cells showed a constitutively low expression. Overexpression of miR33b decreased MM cell viability, migration, colony formation, and increased apoptosis and sensitivity of MM cells to MLN2238 treatment. In addition, overexpression of miR33b or MLN2238 exposure negatively regulated oncogene PIM-1 and blocked PIM-1 wild-type, but not PIM-1 mutant, luciferase activity. Moreover, PIM-1 overexpression led to significant abrogation of miR33b- or MLN2238-induced cell death. SGI-1776, a biochemical inhibitor of PIM-1, triggered apoptosis in MM. Finally, overexpression of miR33b inhibited tumor growth and prolonged survival in both subcutaneous and disseminated human MM xenograft models. Our results show that miR33b is a tumor suppressor that plays a role during MLN2238-induced apoptotic signaling in MM cells, and these data provide the basis for novel therapeutic strategies targeting miR33b in MM. PMID:22983447

  19. C/EBPβ regulates transcription factors critical for proliferation and survival of multiple myeloma cells

    PubMed Central

    Pal, Rekha; Janz, Martin; Galson, Deborah L.; Gries, Margarete; Li, Shirong; Jöhrens, Korinna; Anagnostopoulos, Ioannis; Dörken, Bernd; Mapara, Markus Y.; Borghesi, Lisa; Kardava, Lela; Roodman, G. David; Milcarek, Christine

    2009-01-01

    CCAAT/enhancer-binding protein β (C/EBPβ), also known as nuclear factor–interleukin-6 (NF-IL6), is a transcription factor that plays an important role in the regulation of growth and differentiation of myeloid and lymphoid cells. Mice deficient in C/EBPβ show impaired generation of B lymphocytes. We show that C/EBPβ regulates transcription factors critical for proliferation and survival in multiple myeloma. Multiple myeloma cell lines and primary multiple myeloma cells strongly expressed C/EBPβ, whereas normal B cells and plasma cells had little or no detectable levels of C/EBPβ. Silencing of C/EBPβ led to down-regulation of transcription factors such as IRF4, XBP1, and BLIMP1 accompanied by a strong inhibition of proliferation. Further, silencing of C/EBPβ led to a complete down-regulation of antiapoptotic B-cell lymphoma 2 (BCL2) expression. In chromatin immunoprecipitation assays, C/EBPβ directly bound to the promoter region of IRF4, BLIMP1, and BCL2. Our data indicate that C/EBPβ is involved in the regulatory network of transcription factors that are critical for plasma cell differentiation and survival. Targeting C/EBPβ may provide a novel therapeutic strategy in the treatment of multiple myeloma. PMID:19717648

  20. Establishment of stable multiple myeloma cell line with overexpressed PDCD5 and its proapoptosis mechanism

    PubMed Central

    Feng, Wenchang; Fu, Yunfeng; Zhang, Yanan; Lv, Ben; Li, Xin; Zhang, Fan; Gui, Rong; Liu, Jing

    2015-01-01

    Objective: The transfected multiple myeloma cell line showing a stable doxycycline (DOX)-induced expression of PDCD5 was established. PDCD5 overexpression in the transfected cell line was analyzed for its effect on the dexamethasone (DXM)-induced apoptosis along with a discussion on the mechanism. Methods: (1) Lentiviral plasmid was used for the transfection of PDCD5 gene into the multiple myeloma cells. The screening was done by applying puromycin, and PDCD5 expression was induced by DOX. Real-time fluorescence quantitative PCR and Western Blot were performed to detect the expression levels of the target gene in the stable transfection group and the empty vector group; (2) The cell apoptosis rates of stable transfection group, blank group and empty vector group were measured by Annexin-APC/PI double staining flow cytometry; (3) Real-time fluorescence quantitative PCR and Western Blot were carried out to detect the expression levels of survivin, casepase-3 and Bcl-2 genes and proteins. Results: PDCD5 expression was significantly increased in the stably tranfected multiple myeloma cells compared with blank group and empty vector group. The cells in the transfection group were more sensitive to DXM, and the proportion of apoptotic cells was obviously higher than that of the blank group and the empty vector group (P<0.05). Survivin and Bcl-2 were considerably downregulated in U266/PDCD5 cells and combined DXM group than in the single agent group. However, caspase-3 was significantly upregulated. Conclusion: Multiple myeloma cell line transfected with endogenous PDCD5 gene was established. The endogenous PDCD5 overexpression accelerated the cell apoptosis under DXM induction. The proapoptotic action of PDCD5 gene had the effect of activating casepase-3 and downregulating survivin and Bcl-2, which further promoted the apoptosis of multiple myeloma cells. PMID:26617773

  1. NF-Kappa B Modulation Is Involved in Celastrol Induced Human Multiple Myeloma Cell Apoptosis

    PubMed Central

    Ni, Haiwen; Zhao, Wanzhou; Kong, Xiangtu; Li, Haitao; Ouyang, Jian

    2014-01-01

    Celastrol is an active compound extracted from the root bark of the traditional Chinese medicine Tripterygium wilfordii Hook F. To investigate the effect of celastrol on human multiple myeloma cell cycle arrest and apoptosis and explore its molecular mechanism of action. The activity of celastrol on LP-1 cell proliferation was detected by WST-8 assay. The celastrol-induced cell cycle arrest was analyzed by flow cytometry after propidium iodide staining. Nuclear translocation of the nuclear factor kappa B (NF-κB) was observed by fluorescence microscope. Celastrol inhibited cell proliferation of LP-1 myeloma cell in a dose-dependent manner with IC50 values of 0.8817 µM, which was mediated through G1 cell cycle arrest and p27 induction. Celastrol induced apoptosis in LP-1 and RPMI 8226 myeloma cells in a time and dose dependent manner, and it involved Caspase-3 activation and NF-κB pathway. Celastrol down-modulated antiapoptotic proteins including Bcl-2 and survivin expression. The expression of NF-κB and IKKa were decreased after celastrol treatment. Celastrol effectively blocked the nuclear translocation of the p65 subunit and induced human multiple myeloma cell cycle arrest and apoptosis by p27 upregulation and NF-kB modulation. It has been demonstrated that the effect of celastrol on NF-kB was HO-1-independent by using zinc protoporphyrin-9 (ZnPPIX), a selective heme oxygenase inhibitor. From the results, it could be inferred that celastrol may be used as a NF-kB inhibitor to inhibit myeloma cell proliferation. PMID:24755677

  2. The establishment of a human myeloma cell line elaborating lambda-light chain protein.

    PubMed

    Niho, Y; Shibuya, T; Yamasaki, K; Kimura, N

    1984-05-01

    A human myeloma cell line (KMM-56) producing lambda-light chain protein was established in vitro by cultivation of the cells in the pleural effusion obtained from a patient with IgD-lambda-myeloma. The cells proliferate in suspension and do not aggregate or attach to the culture dish. Surface marker analysis revealed that the cells were negative for E-rosette, and surface immunoglobulin. Immunoelectrophoresis, immunodiffusion, and immunofluorescence with various antibodies demonstrated no heavy chains, while lambda-light chains were detected in the cytoplasm of the cells. Using the immunodiffusion technique, only lambda-light chains were detected in the frozen and thawed cell extract, the concentrated supernatant of the cell culture, and the urine of the patient. Electron microscopic examination revealed the plasmablastoid appearance of the cells. This cell line may be useful for future studies of human immunoglobulin genes and for the material of human-human hybridoma, which could produce monoclonal human immunoglobulin. PMID:6429256

  3. Analysis of renal impairment in MM-003, a phase III study of pomalidomide + low - dose dexamethasone versus high - dose dexamethasone in refractory or relapsed and refractory multiple myeloma.

    PubMed

    Weisel, Katja C; Dimopoulos, Meletios A; Moreau, Philippe; Lacy, Martha Q; Song, Kevin W; Delforge, Michel; Karlin, Lionel; Goldschmidt, Hartmut; Banos, Anne; Oriol, Albert; Alegre, Adrian; Chen, Christine; Cavo, Michele; Garderet, Laurent; Ivanova, Valentina; Martinez-Lopez, Joaquin; Knop, Stefan; Yu, Xin; Hong, Kevin; Sternas, Lars; Jacques, Christian; Zaki, Mohamed H; San Miguel, Jesus

    2016-07-01

    Pomalidomide + low-dose dexamethasone is effective and well tolerated for refractory or relapsed and refractory multiple myeloma after bortezomib and lenalidomide failure. The phase III trial MM-003 compared pomalidomide + low-dose dexamethasone with high-dose dexamethasone. This subanalysis grouped patients by baseline creatinine clearance ≥ 30 - < 60 mL/min (n=93, pomalidomide + low-dose dexamethasone; n=56, high-dose dexamethasone) or ≥ 60 mL/min (n=205, pomalidomide + low-dose dexamethasone; n=93, high-dose dexamethasone). Median progression-free survival was similar for both subgroups and favored pomalidomide + low-dose dexamethasone versus high-dose dexamethasone: 4.0 versus 1.9 months in the group with baseline creatinine clearance ≥ 30 - < 60 mL/min (P<0.001) and 4.0 versus 2.0 months in the group with baseline creatinine clearance ≥ 60 mL/min (P<0.001). Median overall survival for pomalidomide + low-dose dexamethasone versus high-dose dexamethasone was 10.4 versus 4.9 months (P=0.030) and 15.5 versus 9.2 months (P=0.133), respectively. Improved renal function, defined as an increase in creatinine clearance from < 60 to ≥ 60 mL/min, was similar in pomalidomide + low-dose dexamethasone and high-dose dexamethasone patients (42% and 47%, respectively). Improvement in progression-free and overall survival in these patients was comparable with that in patients without renal impairment. There was no increase in discontinuations of therapy, dose modifications, and adverse events in patients with moderate renal impairment. Pomalidomide at a starting dose of 4 mg + low-dose dexamethasone is well tolerated in patients with refractory or relapsed and refractory multiple myeloma, and of comparable efficacy if moderate renal impairment is present. This trial was registered with clinicaltrials.gov identifier 01311687 and EudraCT identifier 2010-019820-30. PMID:27081177

  4. Analysis of renal impairment in MM-003, a phase III study of pomalidomide + low - dose dexamethasone versus high - dose dexamethasone in refractory or relapsed and refractory multiple myeloma

    PubMed Central

    Weisel, Katja C.; Dimopoulos, Meletios A.; Moreau, Philippe; Lacy, Martha Q.; Song, Kevin W.; Delforge, Michel; Karlin, Lionel; Goldschmidt, Hartmut; Banos, Anne; Oriol, Albert; Alegre, Adrian; Chen, Christine; Cavo, Michele; Garderet, Laurent; Ivanova, Valentina; Martinez-Lopez, Joaquin; Knop, Stefan; Yu, Xin; Hong, Kevin; Sternas, Lars; Jacques, Christian; Zaki, Mohamed H.; Miguel, Jesus San

    2016-01-01

    Pomalidomide + low-dose dexamethasone is effective and well tolerated for refractory or relapsed and refractory multiple myeloma after bortezomib and lenalidomide failure. The phase III trial MM-003 compared pomalidomide + low-dose dexamethasone with high-dose dexamethasone. This subanalysis grouped patients by baseline creatinine clearance ≥ 30 − < 60 mL/min (n=93, pomalidomide + low-dose dexamethasone; n=56, high-dose dexamethasone) or ≥ 60 mL/min (n=205, pomalidomide + low-dose dexamethasone; n=93, high-dose dexamethasone). Median progression-free survival was similar for both subgroups and favored pomalidomide + low-dose dexamethasone versus high-dose dexamethasone: 4.0 versus 1.9 months in the group with baseline creatinine clearance ≥ 30 − < 60 mL/min (P<0.001) and 4.0 versus 2.0 months in the group with baseline creatinine clearance ≥ 60 mL/min (P<0.001). Median overall survival for pomalidomide + low-dose dexamethasone versus high-dose dexamethasone was 10.4 versus 4.9 months (P=0.030) and 15.5 versus 9.2 months (P=0.133), respectively. Improved renal function, defined as an increase in creatinine clearance from < 60 to ≥ 60 mL/min, was similar in pomalidomide + low-dose dexamethasone and high-dose dexamethasone patients (42% and 47%, respectively). Improvement in progression-free and overall survival in these patients was comparable with that in patients without renal impairment. There was no increase in discontinuations of therapy, dose modifications, and adverse events in patients with moderate renal impairment. Pomalidomide at a starting dose of 4 mg + low-dose dexamethasone is well tolerated in patients with refractory or relapsed and refractory multiple myeloma, and of comparable efficacy if moderate renal impairment is present. This trial was registered with clinicaltrials.gov identifier 01311687 and EudraCT identifier 2010-019820-30. PMID:27081177

  5. Contribution of chemotherapy mobilization to disease control in multiple myeloma treated with autologous hematopoietic cell transplantation.

    PubMed

    Uy, G L; Costa, L J; Hari, P N; Zhang, M-J; Huang, J-X; Anderson, K C; Bredeson, C N; Callander, N S; Cornell, R F; Perez, M A D; Dispenzieri, A; Freytes, C O; Gale, R P; Garfall, A; Gertz, M A; Gibson, J; Hamadani, M; Lazarus, H M; Kalaycio, M E; Kamble, R T; Kharfan-Dabaja, M A; Krishnan, A Y; Kumar, S K; Kyle, R A; Landau, H J; Lee, C H; Maiolino, A; Marks, D I; Mark, T M; Munker, R; Nishihori, T; Olsson, R F; Ramanathan, M; Rodriguez, T E; Saad, A A; Savani, B N; Schiller, G J; Schouten, H C; Schriber, J R; Scott, E; Seo, S; Sharma, M; Ganguly, S; Stadtmauer, E A; Tay, J; To, L B; Vesole, D H; Vogl, D T; Wagner, J L; Wirk, B; Wood, W A; D'Souza, A

    2015-12-01

    In patients with multiple myeloma (MM) undergoing autologous hematopoietic cell transplantation (auto-HCT), peripheral blood progenitor cells may be collected following mobilization with growth factor alone (GF) or cytotoxic chemotherapy plus GF (CC+GF). It is uncertain whether the method of mobilization affects post-transplant outcomes. We compared these mobilization strategies in a retrospective analysis of 968 patients with MM from the Center for International Blood and Marrow Transplant Research database who received an auto-HCT in the US and Canada between 2007 and 2012. The kinetics of neutrophil engraftment (⩾0.5 × 10(9)/L) was similar between groups (13 vs 13 days, P=0.69) while platelet engraftment (⩾20 × 10(9)/L) was slightly faster with CC+GF (19 vs 18 days, P=0.006). Adjusted 3-year PFS was 43% (95% confidence interval (CI) 38-48) in GF and 40% (95% CI 35-45) in CC+GF, P=0.33. Adjusted 3-year OS was 82% (95% CI 78-86) vs 80% (95% CI 75-84), P=0.43 and adjusted 5-year OS was 62% (95% CI 54-68) vs 60% (95% CI 52-67), P=0.76, for GF and CC+GF, respectively. We conclude that MM patients undergoing auto-HCT have similar outcomes irrespective of the method of mobilization and found no evidence that the addition of chemotherapy to mobilization contributes to disease control. PMID:26301967

  6. Contribution of chemotherapy mobilization to disease control in multiple myeloma treated with autologous hematopoietic cell transplantation

    PubMed Central

    Uy, Geoffrey L.; Costa, Luciano J.; Hari, Parameswaran N.; Zhang, Mei-Jie; Huang, Jia-Xing; Anderson, Kenneth C.; Bredeson, Christopher N.; Callander, Natalie S.; Cornell, Robert Frank; Perez, Miguel Angel Diaz; Dispenzieri, Angela; Freytes, César O.; Gale, Robert Peter; Garfall, Alfred; Gertz, Morie A.; Gibson, John; Hamadani, Mehdi; Lazarus, Hillard M.; Kalaycio, Matt E.; Kamble, Rammurti T.; Kharfan-Dabaja, Mohamed A.; Krishnan, Amrita Y.; Kumar, Shaji K.; Kyle, Robert A.; Landau, Heather J.; Lee, Cindy H.; Maiolino, Angelo; Marks, David I.; Mark, Tomer M.; Munker, Reinhold; Nishihori, Taiga; Olsson, Richard F.; Ramanathan, Muthalagu; Rodriguez, Tulio E.; Saad, Ayman A.; Savani, Bipin N.; Schiller, Gary J.; Schouten, Harry C.; Schriber, Jeffrey R.; Scott, Emma; Seo, Sachiko; Sharma, Manish; Ganguly, Siddhartha; Stadtmauer, Edward A.; Tay, Jason; To, L. Bik; Vesole, David H.; Vogl, Dan T.; Wagner, John L.; Wirk, Baldeep; Wood, William A.; D’Souza, Anita

    2015-01-01

    In patients with multiple myeloma (MM) undergoing autologous hematopoietic cell transplantation (auto-HCT), peripheral blood progenitor cells (PBPCs) may be collected following mobilization with growth factor alone (GF) or cytotoxic chemotherapy plus GF ( (CC+GF). It is uncertain whether the method of mobilization affects post-transplant outcomes. We compared these mobilization strategies in a retrospective analysis of 968 patients with MM from the Center for International Blood and Marrow Transplant Research database who received an auto-HCT in the US and Canada between 2007 and 2012. The kinetics of neutrophil engraftment (≥ 0.5 × 109/L) was similar between groups (13 vs. 13 days, P=0.69) while platelet engraftment (≥ 20 × 109/L) was slightly faster with CC+GF (19 vs. 18 days, P=0.006). Adjusted 3-years PFS was 43% (95% C.I. 38–48) in GF and 40% (95% C.I. 35–45) in CC+GF, P=0.33. Adjusted 3-years OS was 82% (95% C.I. 78–86) vs. 80% (95% C.I. 75–84), P=0.43 and adjusted 5-year OS was 62% (95C.I. 54–68) vs. 60% (95% C.I. 52–67), P=0.76, for GF and CC+GF respectively. We conclude that MM patients undergoing auto-HCT have similar outcomes irrespective of the method of mobilization and found no evidence that the addition of chemotherapy to mobilization contributes to disease control. PMID:26301967

  7. Inhibition of P-Selectin and PSGL-1 Using Humanized Monoclonal Antibodies Increases the Sensitivity of Multiple Myeloma Cells to Bortezomib.

    PubMed

    Muz, Barbara; Azab, Feda; de la Puente, Pilar; Rollins, Scott; Alvarez, Richard; Kawar, Ziad; Azab, Abdel Kareem

    2015-01-01

    Multiple myeloma (MM) is a plasma cell malignancy localized in the bone marrow. Despite the introduction of novel therapies majority of MM patients relapse. We have previously shown that inhibition of P-selectin and P-selectin glycoprotein ligand-1 (PSGL-1) play a key role in proliferation of MM and using small-molecule inhibitors of P-selectin/PSGL-1 sensitized MM cells to therapy. However, these small-molecule inhibitors had low specificity to P-selectin and showed poor pharmacokinetics. Therefore, we tested blocking of P-selectin and PSGL-1 using functional monoclonal antibodies in order to sensitize MM cells to therapy. We have demonstrated that inhibiting the interaction between MM cells and endothelial and stromal cells decreased proliferation in MM cells and in parallel induced loose-adhesion to the primary tumor site to facilitate egress. At the same time, blocking this interaction in vivo led to MM cells retention in the circulation and delayed homing to the bone marrow, thus exposing MM cells to bortezomib which contributed to reduced tumor growth and better mice survival. This study provides a better understanding of the biology of P-selectin and PSGL-1 and their roles in dissemination and resensitization of MM to treatment. PMID:26539491

  8. TNFα Mediated IL-6 Secretion Is Regulated by JAK/STAT Pathway but Not by MEK Phosphorylation and AKT Phosphorylation in U266 Multiple Myeloma Cells

    PubMed Central

    Lee, Chansu; Oh, Jeong-In; Park, Juwon; Choi, Jee-Hye; Bae, Eun-Kyung; Lee, Hyun Jung; Jung, Woo June; Lee, Dong Soon; Ahn, Kwang-Sung; Yoon, Sung-Soo

    2013-01-01

    IL-6 and TNFα were significantly increased in the bone marrow aspirate samples of patients with active multiple myeloma (MM) compared to those of normal controls. Furthermore, MM patients with advanced aggressive disease had significantly higher levels of IL-6 and TNFα than those with MM in plateau phase. TNFα increased interleukin-6 (IL-6) production from MM cells. However, the detailed mechanisms involved in signaling pathways by which TNFα promotes IL-6 secretion from MM cells are largely unknown. In our study, we found that TNFα treatments induce MEK and AKT phosphorylation. TNFα-stimulated IL-6 production was abolished by inhibition of JAK2 and IKKβ or by small interfering RNA (siRNA) targeting TNF receptors (TNFR) but not by MEK, p38, and PI3K inhibitors. Also, TNFα increased phosphorylation of STAT3 (ser727) including c-Myc and cyclin D1. Three different types of JAK inhibitors decreased the activation of the previously mentioned pathways. In conclusion, blockage of JAK/STAT-mediated NF-κB activation was highly effective in controlling the growth of MM cells and, consequently, an inhibitor of TNFα-mediated IL-6 secretion would be a potential new therapeutic agent for patients with multiple myeloma. PMID:24151609

  9. Cyclin D type does not influence cell cycle response to DNA damage caused by ionizing radiation in multiple myeloma tumours.

    PubMed

    Smith, Dean; Mann, David; Yong, Kwee

    2016-06-01

    Multiple myeloma (MM) is characterized by over-expression of cyclin D1 (CCND1) or D2 (CCND2), which control G1 phase cell-cycle progression. Proteolytic degradation of CCND1 (but not CCND2), resulting in G1 arrest, is reported in non-MM cells post-DNA damage, affecting DNA repair and survival. We examined the effect of ionizing radiation (IR) on D-cyclin levels and cell-cycle kinetics of MM cells, exploring differences based on D-cyclin expression. We showed that CCND1 is downregulated, whereas CCND2 is not, following IR. This did not lead to hypo-phosphorylation of retinoblastoma protein or G1 arrest. Both CCND1- and CCND2-expressing MM cells arrested in S/G2/M, and did not differ in other cell-cycle proteins or sensitivity to IR. When treated with a CDK4/6 inhibitor, both CCND1 and CCND2 MM cells arrested in G1 and therefore are subject to physiological regulation at this checkpoint. Immunoprecipitation showed that, despite CCND1 degradation following IR, sufficient protein remains bound to CDK4/6 to prevent G1 arrest. Aberrant expression of CCND1 driven from the IGH promoter in t(11;14) MM cells maintains progression through G1 to arrest in S/G2/M. Differential expression of D-cyclin does not appear to affect cell-cycle response to IR, and is unlikely to underlie differential sensitivity to DNA damage. PMID:27146121

  10. Scavenger receptor class A member 3 (SCARA3) in disease progression and therapy resistance in multiple myeloma

    PubMed Central

    Brown, Charles O.; Schibler, Jeanine; Fitzgerald, Matthew P.; Singh, Neeraj; Salem, Kelley; Zhan, Fenghuang; Goel, Apollina

    2013-01-01

    This study evaluates the role of scavenger receptor class A member 3 (SCARA3) in multiple myeloma (MM). SCARA3 expression was induced upon treatment with oxidative stressors (ionizing radiation and chemotherapeutic drugs). An epigenetic inactivation of SCARA3 was noted in MM.1S myeloma cells. Myeloma cell killing by dexamethasone and bortezomib was inhibited by up-regulation of SCARA3 while SCARA3 knockdown sensitized myeloma cells to the drugs. Clinical samples showed an inverse correlation between SCARA3 gene expression, myeloma progression, and favorable clinical prognosis. In MM, SCARA3 protects against oxidative stress-induced cell killing and can serve as predictor of MM progression and therapeutic response. PMID:23537707

  11. The effects of cannabidiol and its synergism with bortezomib in multiple myeloma cell lines. A role for transient receptor potential vanilloid type-2.

    PubMed

    Morelli, Maria Beatrice; Offidani, Massimo; Alesiani, Francesco; Discepoli, Giancarlo; Liberati, Sonia; Olivieri, Attilio; Santoni, Matteo; Santoni, Giorgio; Leoni, Pietro; Nabissi, Massimo

    2014-06-01

    Multiple myeloma (MM) is a plasma cell (PC) malignancy characterised by the accumulation of a monoclonal PC population in the bone marrow (BM). Cannabidiol (CBD) is a non-psychoactive cannabinoid with antitumoural activities, and the transient receptor potential vanilloid type-2 (TRPV2) channel has been reported as a potential CBD receptor. TRPV2 activation by CBD decreases proliferation and increases susceptibility to drug-induced cell death in human cancer cells. However, no functional role has been ascribed to CBD and TRPV2 in MM. In this study, we identified the presence of heterogeneous CD138+TRPV2+ and CD138+TRPV2- PC populations in MM patients, whereas only the CD138+ TRPV2- population was present in RPMI8226 and U266 MM cell lines. Because bortezomib (BORT) is commonly used in MM treatment, we investigated the effects of CBD and BORT in CD138+TRPV2- MM cells and in MM cell lines transfected with TRPV2 (CD138+TRPV2+). These results showed that CBD by itself or in synergy with BORT strongly inhibited growth, arrested cell cycle progression and induced MM cells death by regulating the ERK, AKT and NF-κB pathways with major effects in TRPV2+ cells. These data provide a rationale for using CBD to increase the activity of proteasome inhibitors in MM. PMID:24293211

  12. Combination with a Defucosylated Anti-HM1.24 Monoclonal Antibody plus Lenalidomide Induces Marked ADCC against Myeloma Cells and Their Progenitors

    PubMed Central

    Harada, Takeshi; Ozaki, Shuji; Oda, Asuka; Tsuji, Daisuke; Ikegame, Akishige; Iwasa, Masami; Udaka, Kengo; Fujii, Shiro; Nakamura, Shingen; Miki, Hirokazu; Kagawa, Kumiko; Kuroda, Yoshiaki; Kawai, Shigeto; Itoh, Kohji; Yamada-Okabe, Hisafumi; Matsumoto, Toshio; Abe, Masahiro

    2013-01-01

    The immunomodulatory drug lenalidomide (Len) has drawn attention to potentiate antibody-dependent cellular cytotoxicity (ADCC)-mediated immunotherapies. We developed the defucosylated version (YB-AHM) of humanized monoclonal antibody against HM1.24 (CD317) overexpressed in multiple myeloma (MM) cells. In this study, we evaluated ADCC by YB-AHM and Len in combination against MM cells and their progenitors. YB-AHM was able to selectively kill via ADCC MM cells in bone marrow samples from patients with MM with low effector/target ratios, which was further enhanced by treatment with Len. Interestingly, Len also up-regulated HM1.24 expression on MM cells in an effector-dependent manner. HM1.24 was found to be highly expressed in a drug-resistant clonogenic “side population” in MM cells; and this combinatory treatment successfully reduced SP fractions in RPMI 8226 and KMS-11 cells in the presence of effector cells, and suppressed a clonogenic potential of MM cells in colony-forming assays. Collectively, the present study suggests that YB-AHM and Len in combination may become an effective therapeutic strategy in MM, warranting further study to target drug-resistant MM clonogenic cells. PMID:24386306

  13. SAR650984 directly induces multiple myeloma cell death via lysosomal-associated and apoptotic pathways, which is further enhanced by pomalidomide.

    PubMed

    Jiang, H; Acharya, C; An, G; Zhong, M; Feng, X; Wang, L; Dasilva, N; Song, Z; Yang, G; Adrian, F; Qiu, L; Richardson, P; Munshi, N C; Tai, Y-T; Anderson, K C

    2016-02-01

    The anti-CD38 monoclonal antibody SAR650984 (SAR) is showing promising clinical activity in treatment of relapsed and refractory multiple myeloma (MM). Besides effector-mediated antibody-dependent cellular cytotoxicity and complement-mediated cytotoxicity, we here define molecular mechanisms of SAR-directed MM cell death and enhanced anti-MM activity triggered by SAR with Pomalidomide (Pom). Without Fc-cross-linking agents or effector cells, SAR specifically induces homotypic aggregation (HA)-associated cell death in MM cells dependent on the level of cell surface CD38 expression, actin cytoskeleton and membrane lipid raft. SAR and its F(ab)'2 fragments trigger caspase 3/7-dependent apoptosis in MM cells highly expressing CD38, even with p53 mutation. Importantly, SAR specifically induces lysosome-dependent cell death (LCD) by enlarging lysosomes and increasing lysosomal membrane permeabilization associated with leakage of cathepsin B and LAMP-1, regardless of the presence of interleukin-6 or bone marrow stromal cells. Conversely, the lysosomal vacuolar H+-ATPase inhibitor blocks SAR-induced LCD. SAR further upregulates reactive oxygen species. Pom enhances SAR-induced direct and indirect killing even in MM cells resistant to Pom/Len. Taken together, SAR is the first therapeutic monoclonal antibody mediating direct cytotoxicity against MM cells via multiple mechanisms of action. Our data show that Pom augments both direct and effector cell-mediated MM cytotoxicity of SAR, providing the framework for combination clinical trials. PMID:26338273

  14. Plasma cell myeloma--new biological insights and advances in therapy.

    PubMed

    Barlogie, B; Epstein, J; Selvanayagam, P; Alexanian, R

    1989-03-01

    Plasma cell myeloma is a more complex neoplasm than suggested by the relative uniformity of its dominant plasma cells, which represent the terminal stage of normal B-cell differentiation. Phenotypic, molecular, and cellular genetic data favor the presence of a myeloma stem cell early in hematopoietic development so that, as in chronic myelogenous leukemia (CML), a far distance exists between the primordial malignant cell that was the target of malignant transformation and the dominant clinical phenotype. Traces of pre-B, myeloid, and T cells are coexpressed with the mature B-cell phenotype, an occurrence unknown in normal B-cell differentiation. Analogous to CML, disease progression is marked by disease dedifferentiation, occasionally with cessation of myeloma protein production and development instead of extramedullary lymphomalike features with high LDH or myelodysplasia/acute myelogenous leukemia (AML) syndromes. The prognostic importance of serum LDH levels even in newly diagnosed myeloma suggests the early presence of tumor cells with "LDH phenotype," which, as a result of drug resistance and proliferative advantage, expand preferentially during disease progression. Further characterization of these cells may provide important clues about the ontogeny of multiple myeloma. Myeloma cells express many receptors for different biological signals that might be exploitable for therapy with immunotoxins or radioisotopes. Plasma cells and their precursors also produce a variety of cytokines, some of which have putatively autostimulatory functions (eg, IL-1, IL-5, IL-6) and/or are related to disease manifestations (eg, IL-1 and TNF-beta as OAF). The wealth of cellular expression by plasma cells provides clues for understanding the mechanisms of gene activation and the nature of abnormal growth and differentiation. The accuracy of prognostically relevant staging systems has been refined with the use of new quantitative parameters that reflect tumor mass (ie, serum B2M

  15. Fractionated stem cell infusions for patients with plasma cell myeloma undergoing autologous hematopoietic cell transplantation.

    PubMed

    Landau, Heather; Wood, Kevin; Chung, David J; Koehne, Guenther; Lendvai, Nikoletta; Hassoun, Hani; Lesokhin, Alexander; Hoover, Elizabeth; Zheng, Junting; Devlin, Sean M; Giralt, Sergio

    2016-08-01

    We conducted a phase II trial investigating the impact of fractionated hematopoietic cell infusions on engraftment kinetics and symptom burden in patients with plasma cell myeloma (PCM) undergoing autologous hematopoietic cell transplant (AHCT). We hypothesized that multiple hematopoietic cell infusions would reduce duration of neutropenia and enhance immune recovery resulting in a better tolerated procedure. Twenty-six patients received high-dose melphalan followed by multiple cell infusions (Days 0, +2, +4, +6) and were compared to PCM patients (N = 77) who received high-dose melphalan and a single infusion (Day 0) (concurrent control group). The primary endpoint was number of days with ANC <500K/mcL. Symptom burden was assessed using the MSK-modified MD Anderson Symptom Inventory. Median duration of neutropenia was similar in study (4 days, range 3-5) and control patients (4 days, range 3-9) (p = 0.654). There was no significant difference in the number of red cell or platelet transfusions, days of fever, diarrhea, antibiotics, number of documented infections, or length of admission. Symptom burden surveys showed that AHCT was well-tolerated in both study and control patients. We conclude that fractionated stem cell infusions following high-dose melphalan do not enhance engraftment kinetics or significantly alter patients' clinical course following AHCT in PCM. PMID:26758672

  16. Cell-cell contact between marrow stromal cells and myeloma cells via VCAM-1 and alpha(4)beta(1)-integrin enhances production of osteoclast-stimulating activity.

    PubMed

    Michigami, T; Shimizu, N; Williams, P J; Niewolna, M; Dallas, S L; Mundy, G R; Yoneda, T

    2000-09-01

    Myeloma is a unique hematologic malignancy that exclusively homes in the bone marrow and induces massive osteoclastic bone destruction presumably by producing cytokines that promote the differentiation of the hematopoietic progenitors to osteoclasts (osteoclastogenesis). It is recognized that neighboring bone marrow stromal cells influence the expression of the malignant phenotype in myeloma cells. This study examined the role of the interactions between myeloma cells and neighboring stromal cells in the production of osteoclastogenic factors to elucidate the mechanism underlying extensive osteoclastic bone destruction. A murine myeloma cell line 5TGM1, which causes severe osteolysis, expresses alpha(4)beta(1)-integrin and tightly adheres to the mouse marrow stromal cell line ST2, which expresses the vascular cell adhesion molecule-1 (VCAM-1), a ligand for alpha(4)beta(1)-integrin. Co-cultures of 5TGM1 with primary bone marrow cells generated tartrate-resistant acid phosphatase-positive multinucleated bone-resorbing osteoclasts. Co-cultures of 5TGM1 with ST2 showed increased production of bone-resorbing activity and neutralizing antibodies against VCAM-1 or alpha(4)beta(1)-integrin inhibited this. The 5TGM1 cells contacting recombinant VCAM-1 produced increased osteoclastogenic and bone-resorbing activity. The activity was not blocked by the neutralizing antibody to known osteoclastogenic cytokines including interleukin (IL)-1, IL-6, tumor necrosis factor, or parathyroid hormone-related peptide. These data suggest that myeloma cells are responsible for producing osteoclastogenic activity and that establishment of direct contact with marrow stromal cells via alpha(4)beta(1)-integrin/VCAM-1 increases the production of this activity by myeloma cells. They also suggest that the presence of stromal cells may provide a microenvironment that allows exclusive colonization of myeloma cells in the bone marrow. (Blood. 2000;96:1953-1960) PMID:10961900

  17. The effects of cold atmospheric plasma on cell adhesion, differentiation, migration, apoptosis and drug sensitivity of multiple myeloma.

    PubMed

    Xu, Dehui; Luo, Xiaohui; Xu, Yujing; Cui, Qingjie; Yang, Yanjie; Liu, Dingxin; Chen, Hailan; Kong, Michael G

    2016-05-13

    Cold atmospheric plasma was shown to induce cell apoptosis in numerous tumor cells. Recently, some other biological effects, such as induction of membrane permeation and suppression of migration, were discovered by plasma treatment in some types of tumor cells. In this study, we investigated the biological effects of plasma treatment on multiple myeloma cells. We detected the detachment of adherent myeloma cells by plasma, and the detachment area was correlated with higher density of hydroxyl radical in the gas phase of the plasma. Meanwhile, plasma could promote myeloma differentiation by up-regulating Blimp-1 and XBP-1 expression. The migration ability was suppressed by plasma treatment through decreasing of MMP-2 and MMP-9 secretion. In addition, plasma could increase bortezomib sensitivity and induce myeloma cell apoptosis. Taking together, combination with plasma treatment may enhance current chemotherapy and probably improve the outcomes. PMID:27067049

  18. CXCR4 inhibitor AMD3100 disrupts the interaction of multiple myeloma cells with the bone marrow microenvironment and enhances their sensitivity to therapy

    PubMed Central

    Azab, Abdel Kareem; Runnels, Judith M.; Pitsillides, Costas; Moreau, Anne-Sophie; Azab, Feda; Leleu, Xavier; Jia, Xiaoying; Wright, Renee; Ospina, Beatriz; Carlson, Alicia L.; Alt, Clemens; Burwick, Nicholas; Roccaro, Aldo M.; Ngo, Hai T.; Farag, Mena; Melhem, Molly R.; Sacco, Antonio; Munshi, Nikhil C.; Hideshima, Teru; Rollins, Barrett J.; Anderson, Kenneth C.; Kung, Andrew L.

    2009-01-01

    The interaction of multiple myeloma (MM) cells with their microenvironment in the bone marrow (BM) provides a protective environment and resistance to therapeutic agents. We hypothesized that disruption of the interaction of MM cells with their BM milieu would lead to their sensitization to therapeutic agents such as bortezomib, melphalan, doxorubicin, and dexamethasone. We report that the CXCR4 inhibitor AMD3100 induces disruption of the interaction of MM cells with the BM reflected by mobilization of MM cells into the circulation in vivo, with kinetics that differed from that of hematopoietic stem cells. AMD3100 enhanced sensitivity of MM cell to multiple therapeutic agents in vitro by disrupting adhesion of MM cells to bone marrow stromal cells (BMSCs). Moreover, AMD3100 increased mobilization of MM cells to the circulation in vivo, increased the ratio of apoptotic circulating MM cells, and enhanced the tumor reduction induced by bortezomib. Mechanistically, AMD3100 significantly inhibited Akt phosphorylation and enhanced poly(ADP-ribose) polymerase (PARP) cleavage as a result of bortezomib, in the presence of BMSCs in coculture. These experiments provide a proof of concept for the use of agents that disrupt interaction with the microenvironment for enhancement of efficacy of cytotoxic agents in cancer therapy. PMID:19139079

  19. Smoldering Multiple Myeloma

    PubMed Central

    Gao, Minjie; Yang, Guang; Kong, Yuanyuan; Wu, Xiaosong; Shi, Jumei

    2015-01-01

    Smoldering multiple myeloma (SMM) is an asymptomatic precursor stage of multiple myeloma (MM) characterized by clonal bone marrow plasma cells (BMPC) ≥ 10% and/or M protein level ≥ 30 g/L in the absence of end organ damage. It represents an intermediate stage between monoclonal gammopathy of undetermined significance (MGUS) and symptomatic MM. The risk of progression to symptomatic MM is not uniform, and several parameters have been reported to predict the risk of progression. These include the level of M protein and the percentage of BMPC, the proportion of immunophenotypically aberrant plasma cells, and the presence of immunoparesis, free light-chain (FLC) ratio, peripheral blood plasma cells (PBPC), pattern of serum M protein evolution, abnormal magnetic resonance imaging (MRI), cytogenetic abnormalities, IgA isotype, and Bence Jones proteinuria. So far treatment is still not recommended for SMM, because several trials suggested that patients with SMM do not benefit from early treatment. However, the Mateos et al. trial showed a survival benefit after early treatment with lenalidomide plus dexamethasone in patients with high-risk SMM. This trial has prompted a reevaluation of early treatment in an asymptomatic patient population. PMID:26000300

  20. Mass cytometry analysis shows that a novel memory phenotype B cell is expanded in multiple myeloma

    PubMed Central

    Hansmann, Leo; Blum, Lisa; Ju, Chia-Hsin; Liedtke, Michaela; Robinson, William H.; Davis, Mark M.

    2015-01-01

    It would be very beneficial if the status of cancers could be determined from a blood specimen. However, peripheral blood leukocytes are very heterogeneous between individuals and thus high resolution technologies are likely required. We used cytometry by time-of-flight (CyTOF) and next generation sequencing to ask whether a plasma cell cancer (multiple myeloma) and related pre-cancerous states had any consistent effect on the peripheral blood mononuclear cell phenotypes of patients. Analysis of peripheral blood samples from 13 cancer patients, 9 pre-cancer patients, and 9 healthy individuals revealed significant differences in the frequencies of the T, B, and natural killer cell compartments. Most strikingly, we identified a novel B-cell population that normally accounts for 4.0±0.7% (mean±SD) of total B cells and is up to 13-fold expanded in multiple myeloma patients with active disease. This population expressed markers previously associated with both memory (CD27+) and naïve (CD24loCD38+) phenotypes. Single-cell immunoglobulin gene sequencing showed polyclonality, indicating that these cells are not precursors to the myeloma, and somatic mutations, a characteristic of memory cells. SYK, ERK, and p38 phosphorylation responses, and the fact that most of these cells expressed isotypes other than IgM or IgD, confirmed the memory character of this population, defining it as a novel type of memory B cells. PMID:25711758

  1. The antigenic landscape of multiple myeloma: mass spectrometry (re)defines targets for T-cell–based immunotherapy

    PubMed Central

    Walz, Simon; Kowalewski, Daniel Johannes; Schuster, Heiko; Weisel, Katja; Backert, Linus; Kahn, Stefan; Nelde, Annika; Stroh, Tatjana; Handel, Martin; Kohlbacher, Oliver; Kanz, Lothar; Salih, Helmut Rainer; Rammensee, Hans-Georg; Stevanović, Stefan

    2015-01-01

    Direct analysis of HLA-presented antigens by mass spectrometry provides a comprehensive view on the antigenic landscape of different tissues/malignancies and enables the identification of novel, pathophysiologically relevant T-cell epitopes. Here, we present a systematic and comparative study of the HLA class I and II presented, nonmutant antigenome of multiple myeloma (MM). Quantification of HLA surface expression revealed elevated HLA molecule counts on malignant plasma cells compared with normal B cells, excluding relevant HLA downregulation in MM. Analyzing the presentation of established myeloma-associated T-cell antigens on the HLA ligandome level, we found a substantial proportion of antigens to be only infrequently presented on primary myelomas or to display suboptimal degrees of myeloma specificity. However, unsupervised analysis of our extensive HLA ligand data set delineated a panel of 58 highly specific myeloma-associated antigens (including multiple myeloma SET domain containing protein) which are characterized by frequent and exclusive presentation on myeloma samples. Functional characterization of these target antigens revealed peptide-specific, preexisting CD8+ T-cell responses exclusively in myeloma patients, which is indicative of pathophysiological relevance. Furthermore, in vitro priming experiments revealed that peptide-specific T-cell responses can be induced in response-naive myeloma patients. Together, our results serve to guide antigen selection for T-cell–based immunotherapy of MM. PMID:26138685

  2. Ex vivo evaluation of the effect of regulatory T cells on the anti-tumor activity of bortezomib in multiple myeloma.

    PubMed

    Ercetin, Ayse Pinar; Ozcan, Mehmet Ali; Aktas, Safiye; Yuksel, Faize; Solmaz, Serife Medeni; Sevindik, Gokmen Omur; Katgi, Abdullah; Piskin, Ozden; Undar, Bulent

    2016-04-01

    Multiple myeloma (MM) is a hematologic cancer characterized by malignant proliferation of plasma cells and their precursors. Immunosuppressive CD4+CD25+Foxp3+ regulatory T (Treg) cells are increased in the peripheral blood of patients with MM. On the basis of this finding, we sought to evaluate the ex vivo effect of CD4+CD25+Foxp3+ Treg cells on the anti-tumor effect of the proteosome inhibitor bortezomib on MM cells. We collected peripheral blood and bone marrow aspiration samples from 20 patients with newly diagnosed MM and isolated CD4+CD25+Foxp3+ Treg cells from peripheral blood mononuclear cells. The bone marrow mononuclear cells were cultivated in RPMI at 37°C and 5% CO2 for 72 hours. The LD50 doses of bortezomib, isolated Treg cells, and their combination were added. After 24 hours, the viability of CD138+ myeloma cells was evaluated by WST-1. We compared the anti-tumor effect of bortezomib alone and in combination with Treg expansion and statistically analyzed the measured differences with respect to the clinical parameters of the patients. Treg cells had varied effects on bortezomib, increasing, decreasing, or not changing its anti-tumor effect. The increased in vitro anti-tumor effect of bortezomib after Treg cell expansion was correlated in patients who did not develop bortezomib resistance in vivo (p = 0.022). These patients with in vivo non-bortezomib-resistant MM also responded to Treg expansion with decreased cell viability (p = 0.024). Our data indicate that the ex vivo expansion of Treg cells increased the cytotoxic effect of bortezomib in clinically sensitive cases. PMID:26774384

  3. Bone marrow mastocytosis associated with IgM kappa plasma cell myeloma.

    PubMed

    Stellmacher, Florian; Sotlar, Karl; Balleisen, Leopold; Valent, Peter; Horny, Hans-Peter

    2004-04-01

    An association between mastocytosis and monoclonal gammopathy is a relatively rare but well recognized clinical finding. In the majority of cases, however, overt myeloma or lymphoma is not detectable morphologically. Here we describe the case of a 51 year-old male patient first presenting with paresis of the right facial nerve and the serological finding of IgM kappa paraproteinemia. The patient did not have organomegaly, lytic bone lesions, or urticaria pigmentosa-type skin lesions. Histological examination of a trephine biopsy specimen revealed the unusual coexistence of plasma cell myeloma and mastocytosis. Immunohistochemically, plasma cells were found to exhibit a monotypic staining for Ig heavy chain mu and Ig light chain kappa, thus confirming their neoplastic nature. Mast cells showed prominent spindling and formed dense multifocal infiltrates, thus enabling the diagnosis of bone marrow mastocytosis. Immunohistochemically, mast cells expressed tryptase, chymase, and KIT (CD117). In addition, aberrant expression of CD25 on mast cells was detected, confirming the coexistence of a neoplastic mast cell-proliferative disorder. According to the WHO proposal for classification of hematopoietic malignancies, this unique case, showing the association of two very rare haematologic neoplasms, can therefore best be referred to as bone marrow mastocytosis associated with IgM kappa plasma cell myeloma (SM-AHNMD). PMID:15160959

  4. Thromboxane A2 Receptor Inhibition Suppresses Multiple Myeloma Cell Proliferation by Inducing p38/c-Jun N-terminal Kinase (JNK) Mitogen-activated Protein Kinase (MAPK)-mediated G2/M Progression Delay and Cell Apoptosis.

    PubMed

    Liu, Qian; Tao, Bo; Liu, Guizhu; Chen, Guilin; Zhu, Qian; Yu, Ying; Yu, Yu; Xiong, Hong

    2016-02-26

    Multiple myeloma (MM) is a plasma cell malignancy without effective therapeutics. Thromboxane A2 (TxA2)/TxA2 receptor (T prostanoid receptor (TP)) modulates the progression of some carcinomas; however, its effects on MM cell proliferation remain unclear. In this study, we evaluated cyclooxygenase (COX) enzymes and downstream prostaglandin profiles in human myeloma cell lines RPMI-8226 and U-266 and analyzed the effects of COX-1/-2 inhibitors SC-560 and NS-398 on MM cell proliferation. Our observations implicate COX-2 as being involved in modulating cell proliferation. We further incubated MM cells with prostaglandin receptor antagonists or agonists and found that only the TP antagonist, SQ29548, suppressed MM cell proliferation. TP silencing and the TP agonist, U46619, further confirmed this finding. Moreover, SQ29548 and TP silencing promoted MM cell G2/M phase delay accompanied by reducing cyclin B1/cyclin-dependent kinase-1 (CDK1) mRNA and protein expression. Notably, cyclin B1 overexpression rescued MM cells from G2/M arrest. We also found that the TP agonist activated JNK and p38 MAPK phosphorylation, and inhibitors of JNK and p38 MAPK depressed U46619-induced proliferation and cyclin B1/CDK1 protein expression. In addition, SQ29548 and TP silencing led to the MM cell apoptotic rate increasing with improving caspase 3 activity. The knockdown of caspase 3 reversed the apoptotic rate. Taken together, our results suggest that TxA2/TP promotes MM cell proliferation by reducing cell delay at G2/M phase via elevating p38 MAPK/JNK-mediated cyclin B1/CDK1 expression and hindering cell apoptosis. The TP inhibitor has potential as a novel agent to target kinase cascades for MM therapy. PMID:26724804

  5. Post-Autologous (ASCT) Stem Cell Transplant Therapy in Multiple Myeloma

    PubMed Central

    Al-Mansour, Zeina

    2014-01-01

    Autologous stem cell transplant (ASCT) is the standard of care in transplant-eligible multiple myeloma patients and is associated with significant improvement in progression-free survival (PFS), complete remission rates (CR), and overall survival (OS). However, majority of patients eventually relapse, with a median PFS of around 36 months. Relapses are harder to treat and prognosis declines with each relapse. Achieving and maintaining “best response” to initial therapy is the ultimate goal of first-line treatment and sustained CR is a powerful surrogate for extended survival especially in high-risk multiple myeloma. ASCT is often followed by consolidation/maintenance phase to deepen and/or maintain the response achieved by induction and ASCT. Novel agents like thalidomide, lenalidomide, and bortezomib have been used as single agents or in combination. Thalidomide use has been associated with a meaningful improvement in PFS and EFS, however, with substantial side effects. Data with lenalidomide maintenance after-ASCT is favorable, but the optimal duration of lenalidomide maintenance is still unclear. Bortezomib use has been associated with superior outcomes, predominantly in high-risk myeloma patients. Combination regimens utilizing a proteasome inhibitor (i.e., bortezomib) with an immunomodulatory drug (thalidomide or lenalidomide) have provided the best outcomes. This review article serves as a review of the best available evidence in post-ASCT approaches in multiple myeloma. PMID:25525435

  6. Osteoclast cytomorphometry demonstrates an abnormal population in B cell malignancies but not in multiple myeloma.

    PubMed

    Chappard, D; Rossi, J F; Bataille, R; Alexandre, C

    1991-01-01

    Increased bone resorption in the vicinity of myeloma cells is mediated by local stimulating factors. Other malignancies of the B cell lineage are also able to produce resorbing factors responsible for increased bone resorption. We have studied three groups of subjects: 10 patients with overt multiple myeloma, 10 patients with a B cell malignancy, and 10 healthy human subjects as controls. Patients were studied at the time of diagnosis and had a transiliac bone biopsy. Osteoclasts were evident on histological sections by their acid phosphatase activity. A software was developed on an automatic image analyzer (Leitz TAS+) for measuring the maximal Feret's diameter (Oc.Le) of each osteoclast (corresponding to the osteoclast length). The histogram of Oc.Le frequency distribution was supplied in each group. In myeloma patients, the Oc.Le frequency distribution was similar to that in normal subjects and showed the histogram to be asymetric with a positive skew (maximum peak at 20-25 microns). With a graphical analysis, this distribution was shown to follow a lognormal distribution corresponding to a homogeneous osteoclast population. In other B cell malignancies, Oc.Le displayed a bimodal distribution with a peak at 20-25 microns and a lower peak at 10-15 microns. The graphical analysis showed that small (mononucleated?) osteoclasts are present in B cell malignancies with normal osteoclasts. This might reflect the secretion of different soluble factors by malignant cells of the B lymphocyte lineage. PMID:1706639

  7. Positive regulatory domain I binding factor 1 silences class II transactivator expression in multiple myeloma cells.

    PubMed

    Ghosh, N; Gyory, I; Wright, G; Wood, J; Wright, K L

    2001-05-01

    The major histocompatibility complex (MHC) class II transactivator (CIITA) acts as a master switch to activate expression of the genes required for MHC-II antigen presentation. During B-cell to plasma cell differentiation, MHC-II expression is actively silenced, but the mechanism has been unknown. In plasma cell tumors such as multiple myeloma the repression of MHC-II is associated with the loss of CIITA. We have identified that positive regulatory domain I binding factor 1 (PRDI-BF1), a transcriptional repressor, inhibits CIITA expression in multiple myeloma cell lines. Repression of CIITA depends on the DNA binding activity of PRDI-BF1 and its specific binding site in the CIITA promoter. Deletion of a histone deacetylase recruitment domain in PRDI-BF1 does not inhibit repression of CIITA nor does blocking histone deacetylase activity. This is in contrast to PRDI-BF1 repression of the c-myc promoter. Repression of CIITA requires either the N-terminal acidic and conserved PR motif or the proline-rich domain. PRDI-BF1 has been shown to be a key regulator of B-cell and macrophage differentiation. These findings now indicate that PRDI-BF1 has at least two mechanisms of repression whose function is dependent on the nature of the target promoter. Importantly, PRDI-BF1 is defined as the key molecule in silencing CIITA and thus MHC-II in multiple myeloma cells. PMID:11279146

  8. Human Placenta-Derived Adherent Cells Prevent Bone loss, Stimulate Bone formation, and Suppress Growth of Multiple Myeloma in Bone

    PubMed Central

    Li, Xin; Ling, Wen; Pennisi, Angela; Wang, Yuping; Khan, Sharmin; Heidaran, Mohammad; Pal, Ajai; Zhang, Xiaokui; He, Shuyang; Zeitlin, Andy; Abbot, Stewart; Faleck, Herbert; Hariri, Robert; Shaughnessy, John D.; van Rhee, Frits; Nair, Bijay; Barlogie, Bart; Epstein, Joshua; Yaccoby, Shmuel

    2011-01-01

    Human placenta has emerged as a valuable source of transplantable cells of mesenchymal and hematopoietic origin for multiple cytotherapeutic purposes, including enhanced engraftment of hematopoietic stem cells, modulation of inflammation, bone repair, and cancer. Placenta-derived adherent cells (PDACs) are mesenchymal-like stem cells isolated from postpartum human placenta. Multiple myeloma is closely associated with induction of bone disease and large lytic lesions, which are often not repaired and are usually the sites of relapses. We evaluated the antimyeloma therapeutic potential, in vivo survival, and trafficking of PDACs in the severe combined immunodeficiency (SCID)–rab model of medullary myeloma-associated bone loss. Intrabone injection of PDACs into non-myelomatous and myelomatous implanted bone in SCID-rab mice promoted bone formation by stimulating endogenous osteoblastogenesis, and most PDACs disappeared from bone within 4 weeks. PDACs inhibitory effects on myeloma bone disease and tumor growth were dose-dependent and comparable with those of fetal human mesenchymal stem cells (MSCs). Intrabone, but not subcutaneous, engraftment of PDACs inhibited bone disease and tumor growth in SCID-rab mice. Intratumor injection of PDACs had no effect on subcutaneous growth of myeloma cells. A small number of intravenously injected PDACs trafficked into myelomatous bone. Myeloma cell growth rate in vitro was lower in coculture with PDACs than with MSCs from human fetal bone or myeloma patients. PDACs also promoted apoptosis in osteoclast precursors and inhibited their differentiation. This study suggests that altering the bone marrow microenvironment with PDAC cytotherapy attenuates growth of myeloma and that PDAC cytotherapy is a promising therapeutic approach for myeloma osteolysis. PMID:21732484

  9. Optimal selection of natural killer cells to kill myeloma: the role of HLA-E and NKG2A.

    PubMed

    Sarkar, Subhashis; van Gelder, Michel; Noort, Willy; Xu, Yunping; Rouschop, Kasper M A; Groen, Richard; Schouten, Harry C; Tilanus, Marcel G J; Germeraad, Wilfred T V; Martens, Anton C M; Bos, Gerard M J; Wieten, Lotte

    2015-08-01

    Immunotherapy with allogeneic natural killer (NK) cells offers therapeutic perspectives for multiple myeloma patients. Here, we aimed to refine NK cell therapy by evaluation of the relevance of HLA-class I and HLA-E for NK anti-myeloma reactivity. We show that HLA-class I was strongly expressed on the surface of patient-derived myeloma cells and on myeloma cell lines. HLA-E was highly expressed by primary myeloma cells but only marginally by cell lines. HLA-E(low) expression on U266 cells observed in vitro was strongly upregulated after in vivo (bone marrow) growth in RAG-2(-/-) γc(-/-) mice, suggesting that in vitro HLA-E levels poorly predict the in vivo situation. Concurrent analysis of inhibitory receptors (KIR2DL1, KIR2DL2/3, KIR3DL1 and NKG2A) and NK cell degranulation upon co-culture with myeloma cells revealed that KIR-ligand-mismatched NK cells degranulate more than matched subsets and that HLA-E abrogates degranulation of NKG2A+ subsets. Inhibition by HLA-class I and HLA-E was also observed with IL-2-activated NK cells and at low oxygen levels (0.6 %) mimicking hypoxic bone marrow niches where myeloma cells preferentially reside. Our study demonstrates that NKG2A-negative, KIR-ligand-mismatched NK cells are the most potent subset for clinical application. We envision that infusion of high numbers of this subclass will enhance clinical efficacy. PMID:25920521

  10. Macrolide antibiotics block autophagy flux and sensitize to bortezomib via endoplasmic reticulum stress-mediated CHOP induction in myeloma cells

    PubMed Central

    MORIYA, SHOTA; CHE, XIAO-FANG; KOMATSU, SEIICHIRO; ABE, AKIHISA; KAWAGUCHI, TOMOHIRO; GOTOH, AKIHIKO; INAZU, MASATO; TOMODA, AKIO; MIYAZAWA, KEISUKE

    2013-01-01

    The specific 26S proteasome inhibitor bortezomib (BZ) potently induces autophagy, endoplasmic reticulum (ER) stress and apoptosis in multiple myeloma (MM) cell lines (U266, IM-9 and RPMI8226). The macrolide antibiotics including concanamycin A, erythromycin (EM), clarithromycin (CAM) and azithromycin (AZM) all blocked autophagy flux, as assessed by intracellular accumulation of LC3B-II and p62. Combined treatment of BZ and CAM or AZM enhanced cytotoxicity in MM cell lines, although treatment with either CAM or AZM alone exhibited almost no cytotoxicity. This combination also substantially enhanced aggresome formation, intracellular ubiquitinated proteins and induced the proapoptotic transcription factor CHOP (CADD153). Expression levels of the proapoptotic genes transcriptionally regulated by CHOP (BIM, BAX, DR5 and TRB3) were all enhanced by combined treatment with BZ plus CAM, compared with treatment with each reagent alone. Like the MM cell lines, the CHOP+/+ murine embryonic fibroblast (MEF) cell line exhibited enhanced cytotoxicity and upregulation of CHOP and its transcriptional targets with a combination of BZ and one of the macrolides. In contrast, CHOP−/− MEF cells exhibited resistance against BZ and almost completely canceled enhanced cytotoxicity with a combination of BZ and a macrolide. These data suggest that ER stress-mediated CHOP induction is involved in pronounced cytotoxicity. Simultaneously targeting two major intracellular protein degradation systems such as the ubiquitin-proteasome system by BZ and the autophagy-lysosome system by a macrolide antibiotic enhances ER stress-mediated apoptosis in MM cells. This result suggests the therapeutic possibility of using a macrolide antibiotic with a proteasome inhibitor for MM therapy. PMID:23546223