Science.gov

Sample records for myoblastic c2c12 cells

  1. Modeling Myotonic Dystrophy 1 in C2C12 Myoblast Cells.

    PubMed

    Liang, Rui; Dong, Wei; Shen, Xiaopeng; Peng, Xiaoping; Aceves, Angie G; Liu, Yu

    2016-01-01

    Myotonic dystrophy 1 (DM1) is a common form of muscular dystrophy. Although several animal models have been established for DM1, myoblast cell models are still important because they offer an efficient cellular alternative for studying cellular and molecular events. Though C2C12 myoblast cells have been widely used to study myogenesis, resistance to gene transfection, or viral transduction, hinders research in C2C12 cells. Here, we describe an optimized protocol that includes daily maintenance, transfection and transduction procedures to introduce genes into C2C12 myoblasts and the induction of myocyte differentiation. Collectively, these procedures enable best transfection/transduction efficiencies, as well as consistent differentiation outcomes. The protocol described in establishing DM1 myoblast cell models would benefit the study of myotonic dystrophy, as well as other muscular diseases. PMID:27501221

  2. The Mouse C2C12 Myoblast Cell Surface N-Linked Glycoproteome

    PubMed Central

    Gundry, Rebekah L.; Raginski, Kimberly; Tarasova, Yelena; Tchernyshyov, Irina; Bausch-Fluck, Damaris; Elliott, Steven T.; Boheler, Kenneth R.; Van Eyk, Jennifer E.; Wollscheid, Bernd

    2009-01-01

    Endogenous regeneration and repair mechanisms are responsible for replacing dead and damaged cells to maintain or enhance tissue and organ function, and one of the best examples of endogenous repair mechanisms involves skeletal muscle. Although the molecular mechanisms that regulate the differentiation of satellite cells and myoblasts toward myofibers are not fully understood, cell surface proteins that sense and respond to their environment play an important role. The cell surface capturing technology was used here to uncover the cell surface N-linked glycoprotein subproteome of myoblasts and to identify potential markers of myoblast differentiation. 128 bona fide cell surface-exposed N-linked glycoproteins, including 117 transmembrane, four glycosylphosphatidylinositol-anchored, five extracellular matrix, and two membrane-associated proteins were identified from mouse C2C12 myoblasts. The data set revealed 36 cluster of differentiation-annotated proteins and confirmed the occupancy for 235 N-linked glycosylation sites. The identification of the N-glycosylation sites on the extracellular domain of the proteins allowed for the determination of the orientation of the identified proteins within the plasma membrane. One glycoprotein transmembrane orientation was found to be inconsistent with Swiss-Prot annotations, whereas ambiguous annotations for 14 other proteins were resolved. Several of the identified N-linked glycoproteins, including aquaporin-1 and β-sarcoglycan, were found in validation experiments to change in overall abundance as the myoblasts differentiate toward myotubes. Therefore, the strategy and data presented shed new light on the complexity of the myoblast cell surface subproteome and reveal new targets for the clinically important characterization of cell intermediates during myoblast differentiation into myotubes. PMID:19656770

  3. Actin-associated protein palladin is required for migration behavior and differentiation potential of C2C12 myoblast cells

    SciTech Connect

    Nguyen, Ngoc Uyen Nhi; Liang, Vincent Roderick; Wang, Hao-Ven

    2014-09-26

    Highlights: • Palladin is involved in myogenesis in vitro. • Palladin knockdown by siRNA increases myoblast proliferation, viability and differentiation. • Palladin knockdown decreases C2C12 myoblast migration ability. - Abstract: The actin-associated protein palladin has been shown to be involved in differentiation processes in non-muscle tissues. However, but its function in skeletal muscle has rarely been studied. Palladin plays important roles in the regulation of diverse actin-related signaling in a number of cell types. Since intact actin-cytoskeletal remodeling is necessary for myogenesis, in the present study, we pursue to investigate the role of actin-associated palladin in skeletal muscle differentiation. Palladin in C2C12 myoblasts is knocked-down using specific small interfering RNA (siRNA). The results show that down-regulation of palladin decreased migratory activity of mouse skeletal muscle C2C12 myoblasts. Furthermore, the depletion of palladin enhances C2C12 vitality and proliferation. Of note, the loss of palladin promotes C2C12 to express the myosin heavy chain, suggesting that palladin has a role in the modulation of C2C12 differentiation. It is thus proposed that palladin is required for normal C2C12 myogenesis in vitro.

  4. Photobiomodulation Protects and Promotes Differentiation of C2C12 Myoblast Cells Exposed to Snake Venom

    PubMed Central

    da Silva, Aline; Vieira, Rodolfo Paula; Mesquita-Ferrari, Raquel Agnelli; Cogo, José Carlos; Zamuner, Stella Regina

    2016-01-01

    Background Snakebites is a neglected disease and in Brazil is considered a serious health problem, with the majority of the snakebites caused by the genus Bothrops. Antivenom therapy and other first-aid treatments do not reverse local myonecrose which is the main sequel caused by the envenomation. Several studies have shown the effectiveness of low level laser (LLL) therapy in reducing local myonecrosis induced by Bothropic venoms, however the mechanism involved in this effect is unknown. In this in vitro study, we aimed to analyze the effect of LLL irradiation against cytotoxicity induced by Bothrops jararacussu venom on myoblast C2C12 cells. Methodology C2C12 were utilized as a model target and were incubated with B. jararacussu venom (12.5 μg/mL) and immediately irradiated with LLL at wavelength of red 685 nm or infrared 830 nm with energy density of 2.0, 4.6 and 7.0 J/cm2. Effects of LLL on cellular responses of venom-induced cytotoxicity were examined, including cell viability, measurement of cell damage and intra and extracellular ATP levels, expression of myogenic regulatory factors, as well as cellular differentiation. Results In non-irradiated cells, the venom caused a decrease in cell viability and a massive release of LDH and CK levels indicating myonecrosis. Infrared and red laser at all energy densities were able to considerably decrease venom-induced cytotoxicity. Laser irradiation induced myoblasts to differentiate into myotubes and this effect was accompanied by up regulation of MyoD and specially myogenin. Moreover, LLL was able to reduce the extracellular while increased the intracellular ATP content after venom exposure. In addition, no difference in the intensity of cytotoxicity was shown by non-irradiated and irradiated venom. Conclusion LLL irradiation caused a protective effect on C2C12 cells against the cytotoxicity caused by B. jararacussu venom and promotes differentiation of these cells by up regulation of myogenic factors. A modulatory

  5. Retardation of C2C12 myoblast cell proliferation by exposure to low-temperature atmospheric plasma.

    PubMed

    Nakai, Naoya; Fujita, Ryo; Kawano, Fuminori; Takahashi, Kazuo; Ohira, Takashi; Shibaguchi, Tsubasa; Nakata, Ken; Ohira, Yoshinobu

    2014-09-01

    As the first step in evaluating the possibility of low-temperature atmospheric plasma for clinical applications in the treatment of rhabdomyosarcoma (RMS), we determined the effects of plasma exposure on C2C12 myoblasts. The low-temperature atmospheric plasma was generated through an electrical discharge in argon gas. One minute of plasma exposure every 24 h inhibited the cell proliferation, whereas myoblast differentiation was not affected. Plasma exposure increased the phosphorylation of ERK and JNK at 30 min after the exposure, but the phosphorylation of both was decreased to less than control levels at 1 and 4 h after the exposure. Plasma exposure increased the percentage of cells in the G2/M phase at 8 h after the exposure. In conclusion, plasma exposure retarded the proliferation of C2C12 myoblasts by G2/M arrest. Therefore, plasma exposure can be a possible treatment for the anti-proliferative effects of malignant tumors, such as RMS, without affecting differentiated skeletal muscle cells. PMID:25034108

  6. Conessine Interferes with Oxidative Stress-Induced C2C12 Myoblast Cell Death through Inhibition of Autophagic Flux

    PubMed Central

    Kim, Hyunju; Lee, Kang Il; Jang, Minsu; Namkoong, Sim; Park, Rackhyun; Ju, Hyunwoo; Choi, Inho; Oh, Won Keun

    2016-01-01

    Conessine, a steroidal alkaloid isolated from Holarrhena floribunda, has anti-malarial activity and interacts with the histamine H3 receptor. However, the cellular effects of conessine are poorly understood. Accordingly, we evaluated the involvement of conessine in the regulation of autophagy. We searched natural compounds that modulate autophagy, and conessine was identified as an inhibitor of autophagic flux. Conessine treatment induced the formation of autophagosomes, and p62, an autophagic adapter, accumulated in the autophagosomes. Reactive oxygen species such as hydrogen peroxide (H2O2) result in muscle cell death by inducing excessive autophagic flux. Treatment with conessine inhibited H2O2-induced autophagic flux in C2C12 myoblast cells and also interfered with cell death. Our results indicate that conessine has the potential effect to inhibit muscle cell death by interfering with autophagic flux. PMID:27257813

  7. Downregulated microRNA-23b promotes BMP9-mediated osteogenesis in C2C12 myoblast cells by targeting Runx2

    PubMed Central

    CHEN, CHU; TANG, ZUCHUAN; SONG, QILING; YANG, MIN; SHI, QIONG; WENG, YAGUANG

    2016-01-01

    MicroRNAs are identified as negative regulators in gene expression through silencing gene expression at the post-transcriptional and translational levels. Bone morphogenetic protein 9 (BMP9) is the most effective in inducing osteogenesis in the BMP family, the members of which were originally identified as osteoinductive cytokines. In the current study, the role of miR-23b in the progression of BMP9-induced C2C12 myoblasts was investigated. The results indicated that miR-23b was significantly downregulated in C2C12 myoblasts induced by BMP9. Overexpression of miR-23b significantly inhibited osteogenesis in the C2C12 myoblasts. In addition, it was observed that Runx2 was negatively regulated by miR-23b at the post-transcriptional level, via a specific target site within the 3′UTR of Runx2. Knockdown of Runx2 promoted miR-23b-induced inhibition of osteogenesis in C2C12 myoblasts. The expression of Runx2 was observed to be frequently upregulated in osteoblast cell lines and inversely correlated with miR-23b expression. Thus, the results of the present study suggest that miR-23b inhibits BMP9-induced C2C12 myoblast osteogenesis via targeting of the Runx2 gene, acting as a suppressor. The current study contributes to the understanding of the functions of BMP9 in ossification. PMID:26820568

  8. Setdb1 Is Required for Myogenic Differentiation of C2C12 Myoblast Cells via Maintenance of MyoD Expression

    PubMed Central

    Song, Young Joon; Choi, Jang Hyun; Lee, Hansol

    2015-01-01

    Setdb1, an H3-K9 specific histone methyltransferase, is associated with transcriptional silencing of euchromatic genes through chromatin modification. Functions of Setdb1 during development have been extensively studied in embryonic and mesenchymal stem cells as well as neurogenic progenitor cells. But the role of Sedtdb1 in myogenic differentiation remains unknown. In this study, we report that Setdb1 is required for myogenic potential of C2C12 myoblast cells through maintaining the expressions of MyoD and muscle-specific genes. We find that reduced Setdb1 expression in C2C12 myoblast cells severely delayed differentiation of C2C12 myoblast cells, whereas exogenous Setdb1 expression had little effect on. Gene expression profiling analysis using oligonucleotide micro-array and RNA-Seq technologies demonstrated that depletion of Setdb1 results in downregulation of MyoD as well as the components of muscle fiber in proliferating C2C12 cells. In addition, exogenous expression of MyoD reversed transcriptional repression of MyoD promoter-driven lucif-erase reporter by Setdb1 shRNA and rescued myogenic differentiation of C2C12 myoblast cells depleted of endogenous Setdb1. Taken together, these results provide new insights into how levels of key myogenic regulators are maintained prior to induction of differentiation. PMID:25715926

  9. Reduction of myoblast differentiation following multiple population doublings in mouse C2 C12 cells: a model to investigate ageing?

    PubMed

    Sharples, Adam P; Al-Shanti, Nasser; Lewis, Mark P; Stewart, Claire E

    2011-12-01

    Ageing skeletal muscle displays declines in size, strength, and functional capacity. Given the acknowledged role that the systemic environment plays in reduced regeneration (Conboy et al. [2005] Nature 433: 760-764), the role of resident satellite cells (termed myoblasts upon activation) is relatively dismissed, where, multiple cellular divisions in-vivo throughout the lifespan could also impact on muscular deterioration. Using a model of multiple population doublings (MPD) in-vitro thus provided a system in which to investigate the direct impact of extensive cell duplications on muscle cell behavior. C(2) C(12) mouse skeletal myoblasts (CON) were used fresh or following 58 population doublings (MPD). As a result of multiple divisions, reduced morphological and biochemical (creatine kinase, CK) differentiation were observed. Furthermore, MPD cells had significantly increased cells in the S and decreased cells in the G1 phases of the cell cycle versus CON, following serum withdrawal. These results suggest continued cycling rather than G1 exit and thus reduced differentiation (myotube atrophy) occurs in MPD muscle cells. These changes were underpinned by significant reductions in transcript expression of: IGF-I and myogenic regulatory factors (myoD and myogenin) together with elevated IGFBP5. Signaling studies showed that decreased differentiation in MPD was associated with decreased phosphorylation of Akt, and with later increased phosphorylation of JNK1/2. Chemical inhibition of JNK1/2 (SP600125) in MPD cells increased IGF-I expression (non-significantly), however, did not enhance differentiation. This study provides a potential model and molecular mechanisms for deterioration in differentiation capacity in skeletal muscle cells as a consequence of multiple population doublings that would potentially contribute to the ageing process. PMID:21826704

  10. Sirtuin 1 promotes the proliferation of C2C12 myoblast cells via the myostatin signaling pathway.

    PubMed

    Wang, Liang; Zhang, Ting; Xi, Yongyong; Yang, Cuili; Sun, Chengcao; Li, Dejia

    2016-08-01

    Accumulating evidence suggests that Sirtuin (Sirt)1 serves a significant role in proliferation and differentiation of myoblast cells; however the signaling mechanisms involved remain to be established. Myostatin (MSTN), a member of transforming growth factor‑β family, is an vital regulator of myoblast, fibroblast growth and differentiation. To determine if MSTN is involved in the regulation of myoblast cell proliferation by Sirt1, the present study administrated the Sirt1 activator resveratrol, inhibitor nicotinamide (NAM) and MSTN inhibitor SB431542 to C2C12 myoblast cells. It was demonstrated that the Sirt1 activator, resveratrol, repressed, whereas the Sirt1 inhibitor, NAM, enhanced C2C12 myoblast cells proliferation in a Sirt1‑dependent manner. SB431542 promoted the proliferation of C2C12 myoblast cells and reversed the inhibition effect of NAM on C2C12 myoblast cell proliferation. Additionally, resveratrol upregulated the mRNA expression of MyoD, but inhibited the expression of MSTN. Additionally, NAM significantly repressed the expression of MyoD and the phosphorylation of P107 (p‑P107), but enhanced the expression of MSTN and the protein expression of P107. SB431542 significantly mitigated the effect of NAM on the expression of MyoD, P107 and p‑P107. Taken together, these results indicated that Sirt1 promotes the proliferation of C2C12 myoblast cells via the MSTN signaling pathway. PMID:27279047

  11. Myostatin stimulates, not inihibits, C2C12 myoblast proliferation.

    PubMed

    Rodgers, Buel D; Wiedeback, Benjamin D; Hoversten, Knut E; Jackson, Melissa F; Walker, Ryan G; Thompson, Thomas B

    2014-03-01

    The immortal C2C12 cell line originates from dystrophic mouse thigh muscle and has been used to study the endocrine control of muscle cell growth, development, and function, including those actions regulated by myostatin. Previous studies suggest that high concentrations of recombinant myostatin generated in bacteria inhibit C2C12 proliferation and differentiation. Recombinant myostatin generated in eukaryotic systems similarly inhibits the proliferation of primary myosatellite cells, but consequently initiates, rather than inhibits, their differentiation and is bioactive at far lower concentrations. Our studies indicate that 2 different sources of recombinant myostatin made in eukaryotes stimulate, not inhibit, C2C12 proliferation. This effect occurred at different cell densities and serum concentrations and in the presence of IGF-I, a potent myoblast mitogen. This stimulatory effect was comparable to that obtained with TGFβ1, a related factor that also inhibits primary myosatellite cell proliferation. Attenuating the myostatin/activin (ie, Acvr2b) and TGFβ1 receptor signaling pathways with the Alk4/5 and Alk5 inhibitors, SB431542 and SB505142, respectively, similarly attenuated proliferation induced by serum, myostatin or TGFβ1 and in a dose-dependent manner. In serum-free medium, both myostatin and TGFβ1 stimulated Smad2 phosphorylation, but not that of Smad3, and a Smad3 inhibitor (SIS3) only inhibited proliferation in cells cultured in high serum. Thus, myostatin and TGFβ1 stimulate C2C12 proliferation primarily via Smad2. These results together question the physiological relevance of the C2C12 model and previous studies using recombinant myostatin generated in bacteria. They also support the alternative use of primary myosatellite cells and recombinant myostatin generated in eukaryotes. PMID:24424069

  12. A new cell-based assay to evaluate myogenesis in mouse myoblast C2C12 cells

    SciTech Connect

    Kodaka, Manami; Yang, Zeyu; Nakagawa, Kentaro; Maruyama, Junichi; Xu, Xiaoyin; Sarkar, Aradhan; Ichimura, Ayana; Nasu, Yusuke; Ozawa, Takeaki; Iwasa, Hiroaki; Ishigami-Yuasa, Mari; Ito, Shigeru; Kagechika, Hiroyuki; and others

    2015-08-15

    The development of the efficient screening system of detecting compounds that promote myogenesis and prevent muscle atrophy is important. Mouse C2C12 cells are widely used to evaluate myogenesis but the procedures of the assay are not simple and the quantification is not easy. We established C2C12 cells expressing the N-terminal green fluorescence protein (GFP) and the C-terminal GFP (GFP1–10 and GFP11 cells). GFP1–10 and GFP11 cells do not exhibit GFP signals until they are fused. The signal intensity correlates with the expression of myogenic markers and myofusion. Myogenesis-promoting reagents, such as insulin-like growth factor-1 (IGF1) and β-guanidinopropionic acid (GPA), enhance the signals, whereas the poly-caspase inhibitor, z-VAD-FMK, suppresses it. GFP signals are observed when myotubes formed by GFP1–10 cells are fused with single nuclear GFP11 cells, and enhanced by IGF1, GPA, and IBS008738, a recently-reported myogenesis-promoting reagent. Fusion between myotubes formed by GFP1–10 and GFP11 cells is associated with the appearance of GFP signals. IGF1 and GPA augment these signals, whereas NSC23766, Rac inhibitor, decreases them. The conditioned medium of cancer cells suppresses GFP signals during myogenesis and reduces the width of GFP-positive myotubes after differentiation. Thus the novel split GFP-based assay will provide the useful method for the study of myogenesis, myofusion, and atrophy. - Highlights: • C2C12 cells expressing split GFP proteins show GFP signals when mix-cultured. • The GFP signals correlate with myogenesis and myofusion. • The GFP signals attenuate under the condition that muscle atrophy is induced.

  13. Stimulatory effect of isoferulic acid on alpha1A-adrenoceptor to increase glucose uptake into cultured myoblast C2C12 cell of mice.

    PubMed

    Liu, I M; Tsai, C C; Lai, T Y; Cheng, J T

    2001-05-14

    In an attempt to elucidate the effect of isoferulic acid on alpha1-adrenoceptor (AR), the myoblast C2C12 cells of mice were employed to investigate the change of glucose uptake in the present study. Isoferulic acid enhanced the uptake of radioactive glucose into C2C12 cells in a concentration-dependent manner, which were abolished by pretreatment with prazosin. Effect of isoferulic acid on alpha1-AR was further characterized using the displacement of [3H]YM617 binding in C2C12 cells. The radioactive glucose uptake increasing action of isoferulic acid was abolished by tamsulosin or WB 4101 at concentration sufficient to block alpha1A-adrenoceptor (alpha1A-AR) but it was not modified by chlorethylclonidine (CEC) at the concentration sufficient to abolish alpha1B-AR. An activation of alpha1A-AR by isoferulic acid in C2C12 cells can thus be considered. Pharmacological inhibition of phospholipase C (PLC) by U73312 resulted in a concentration-dependent reduction of isoferulic acid-stimulated glucose uptake in C2C12 cells. This inhibition by U73112 was specific because the inactive congener, U73343, failed to modify the action of isoferulic acid. Also, chelerythrine and GF 109203X diminished the action of isoferulic acid at concentration sufficient to inhibit the activity of protein kinase C (PKC). The obtained data suggest that an activation of alpha1A-AR by isoferulic acid may increase the glucose uptake via PLC-PKC pathway in C2C12 cells. PMID:11474559

  14. Berberine Hydrochloride Protects C2C12 Myoblast Cells Against Oxidative Stress-Induced Damage via Induction of Nrf-2-Mediated HO-1 Expression.

    PubMed

    Choi, Yung Hyun

    2016-09-01

    Preclinical Research The aim of the present study was to evaluate the effects of berberine hydrochloride (BBH), an isoquinoline alkaloid that can be isolated from a variety of herbs, on hydrogen peroxide (H2 O2 )-induced oxidative stress in C2C12 myoblasts and to investigate the molecular mechanisms involved in this process, especially the expression of the Nrf2/HO-1 pathway. BBH preconditioning attenuated H2 O2 -induced growth inhibition and DNA damage as well as apoptosis in C2C12 cells via suppression of the accumulation of intracellular reactive oxygen species (ROS). Treatment with BBHride alone effectively upregulated the expression of nuclear factor-erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) and elevated HO-1 activity. However, the protective effects of BBH against H2 O2 -induced ROS generation and cell growth reduction were abolished by an HO-1 inhibitor. Moreover, BBH-mediated induction and activation of HO-1 were reduced by genetic silencing of Nrf2 using small interfering RNA (siRNA). In addition, the effects of BBH against H2 O2 -induced ROS accumulation and growth inhibition were abrogated in C2C12 cells transfected with Nrf2 siRNA. Therefore, the present study demonstrated that BBH could protect C2C12 cells against oxidative stress-induced injury and this effect involved activation of the Nrf2/HO-1 pathway. Drug Dev Res, 2016. © 2016 Wiley Periodicals, Inc. PMID:27535021

  15. Effective myotube formation in human adipose tissue-derived stem cells expressing dystrophin and myosin heavy chain by cellular fusion with mouse C2C12 myoblasts

    SciTech Connect

    Eom, Young Woo; Lee, Jong Eun; Yang, Mal Sook; Jang, In Keun; Kim, Hyo Eun; Lee, Doo Hoon; Kim, Young Jin; Park, Won Jin; Kong, Jee Hyun; Shim, Kwang Yong; Lee, Jong In; Kim, Hyun Soo

    2011-04-29

    Highlights: {yields} hASCs were differentiated into skeletal muscle cells by treatment with 5-azacytidine, FGF-2, and the supernatant of cultured hASCs. {yields} Dystrophin and MyHC were expressed in late differentiation step by treatment with the supernatant of cultured hASCs. {yields} hASCs expressing dystrophin and MyHC contributed to myotube formation during co-culture with mouse myoblast C2C12 cells. -- Abstract: Stem cell therapy for muscular dystrophies requires stem cells that are able to participate in the formation of new muscle fibers. However, the differentiation steps that are the most critical for this process are not clear. We investigated the myogenic phases of human adipose tissue-derived stem cells (hASCs) step by step and the capability of myotube formation according to the differentiation phase by cellular fusion with mouse myoblast C2C12 cells. In hASCs treated with 5-azacytidine and fibroblast growth factor-2 (FGF-2) for 1 day, the early differentiation step to express MyoD and myogenin was induced by FGF-2 treatment for 6 days. Dystrophin and myosin heavy chain (MyHC) expression was induced by hASC conditioned medium in the late differentiation step. Myotubes were observed only in hASCs undergoing the late differentiation step by cellular fusion with C2C12 cells. In contrast, hASCs that were normal or in the early stage were not involved in myotube formation. Our results indicate that stem cells expressing dystrophin and MyHC are more suitable for myotube formation by co-culture with myoblasts than normal or early differentiated stem cells expressing MyoD and myogenin.

  16. Sodium arsenite represses the expression of myogenin in C2C12 mouse myoblast cells through histone modifications and altered expression of Ezh2, Glp, and Igf-1

    SciTech Connect

    Hong, Gia-Ming

    2012-05-01

    Arsenic is a toxicant commonly found in water systems and chronic exposure can result in adverse developmental effects including increased neonatal death, stillbirths, and miscarriages, low birth weight, and altered locomotor activity. Previous studies indicate that 20 nM sodium arsenite exposure to C2C12 mouse myocyte cells delayed myoblast differentiation due to reduced myogenin expression, the transcription factor that differentiates myoblasts into myotubes. In this study, several mechanisms by which arsenic could alter myogenin expression were examined. Exposing differentiating C2C12 cells to 20 nM arsenic increased H3K9 dimethylation (H3K9me2) and H3K9 trimethylation (H3K9me3) by 3-fold near the transcription start site of myogenin, which is indicative of increased repressive marks, and reduced H3K9 acetylation (H3K9Ac) by 0.5-fold, indicative of reduced permissive marks. Protein expression of Glp or Ehmt1, a H3-K9 methyltransferase, was also increased by 1.6-fold in arsenic-exposed cells. In addition to the altered histone remodeling status on the myogenin promoter, protein and mRNA levels of Igf-1, a myogenic growth factor, were significantly repressed by arsenic exposure. Moreover, a 2-fold induction of Ezh2 expression, and an increased recruitment of Ezh2 (3.3-fold) and Dnmt3a (∼ 2-fold) to the myogenin promoter at the transcription start site (− 40 to + 42), were detected in the arsenic-treated cells. Together, we conclude that the repressed myogenin expression in arsenic-exposed C2C12 cells was likely due to a combination of reduced expression of Igf-1, enhanced nuclear expression and promoter recruitment of Ezh2, and altered histone remodeling status on myogenin promoter (− 40 to + 42). -- Highlights: ► Igf-1 expression is decreased in C2C12 cells after 20 nM arsenite exposure. ► Arsenic exposure alters histone remodeling on the myogenin promoter. ► Glp expression, a H3–K9 methyltransferase, was increased in arsenic-exposed cells. ► Ezh2

  17. Sodium arsenite delays the differentiation of C2C12 mouse myoblast cells and alters methylation patterns on the transcription factor myogenin

    SciTech Connect

    Steffens, Amanda A.; Hong Giaming; Bain, Lisa J.

    2011-01-15

    Epidemiological studies have correlated arsenic exposure with cancer, skin diseases, and adverse developmental outcomes such as spontaneous abortions, neonatal mortality, low birth weight, and delays in the use of musculature. The current study used C2C12 mouse myoblast cells to examine whether low concentrations of arsenic could alter their differentiation into myotubes, indicating that arsenic can act as a developmental toxicant. Myoblast cells were exposed to 20 nM sodium arsenite, allowed to differentiate into myotubes, and expression of the muscle-specific transcription factor myogenin, along with the expression of tropomyosin, suppressor of cytokine signaling 3 (Socs3), prostaglandin I2 synthesis (Ptgis), and myocyte enhancer 2 (Mef2), was investigated using QPCR and immunofluorescence. Exposing C2C12 cells to 20 nM sodium arsenite delayed the differentiation process, as evidenced by a significant reduction in the number of multinucleated myotubes, a decrease in myogenin mRNA expression, and a decrease in the total number of nuclei expressing myogenin protein. The expression of mRNA involved in myotube formation, such as Ptgis and Mef2 mRNA, was also significantly reduced by 1.6-fold and 4-fold during differentiation. This was confirmed by immunofluorescence for Mef2, which showed a 2.6-fold reduction in nuclear translocation. Changes in methylation patterns in the promoter region of myogenin (-473 to + 90) were examined by methylation-specific PCR and bisulfite genomic sequencing. Hypermethylated CpGs were found at -236 and -126 bp, whereas hypomethylated CpGs were found at -207 bp in arsenic-exposed cells. This study indicates that 20 nM sodium arsenite can alter myoblast differentiation by reducing the expression of the transcription factors myogenin and Mef2c, which is likely due to changes in promoter methylation patterns. The delay in muscle differentiation may lead to developmental abnormalities.

  18. Internalization and fate of silica nanoparticles in C2C12 skeletal muscle cells: evidence of a beneficial effect on myoblast fusion

    PubMed Central

    Poussard, Sylvie; Decossas, Marion; Le Bihan, Olivier; Mornet, Stéphane; Naudin, Grégoire; Lambert, Olivier

    2015-01-01

    The use of silica nanoparticles for their cellular uptake capability opens up new fields in biomedical research. Among the toxicological effects associated with their internalization, silica nanoparticles induce apoptosis that has been recently reported as a biochemical cue required for muscle regeneration. To assess whether silica nanoparticles could affect muscle regeneration, we used the C2C12 muscle cell line to study the uptake of fluorescently labeled NPs and their cellular trafficking over a long period. Using inhibitors of endocytosis, we determined that the NP uptake was an energy-dependent process mainly involving macropinocytosis and clathrin-mediated pathway. NPs were eventually clustered in lysosomal structures. Myoblasts containing NPs were capable of differentiation into myotubes, and after 7 days, electron microscopy revealed that the NPs remained primarily within lysosomes. The presence of NPs stimulated the formation of myotubes in a dose-dependent manner. NP internalization induced an increase of apoptotic myoblasts required for myoblast fusion. At noncytotoxic doses, the NP uptake by skeletal muscle cells did not prevent their differentiation into myotubes but, instead, enhanced the cell fusion. PMID:25733836

  19. Ethanol extract of Cyclolepis genistoides D. Don (palo azul) induces formation of myotubes, which involves differentiation of C2C12 myoblast cells.

    PubMed

    Sato, Hiromi; Funaki, Asami; Kimura, Yuki; Sumitomo, Mai; Yoshida, Hiroya; Fukata, Hideki; Ueno, Koichi

    2016-07-01

    In this study, we examined the cell differentiation effect of an ethanol extract of Cyclolepis genistoides D. Don, a herbaceous perennial belonging to the family Asteraceae (vernacular name: palo azul). Palo azul has numerous physiological effects that contribute to the prevention of metabolic syndromes, although the mechanism remains unclear. We previously suggested that palo azul has antidiabetic activity via an adipose differentiation effect. Here, we focused on whether palo azul promoted the differentiation of myoblasts. The mouse muscle myoblast cell line C2C12 was cultured and differentiated using horse serum with or without an ethanol extract of palo azul (12.5-200 μg/mL). Quantitative real-time polymerase chain reaction was performed to evaluate differentiation markers, including insulin-like growth factor-1 and myogenin. To evaluate myotube formation, myosin heavy-chain (MHC) expression and localization were detected by immunohistochemistry. Palo azul increased the expression of the differentiation markers. Furthermore, immunohistochemistry analysis revealed increased formation of MHC myotubes after palo azul treatment along with increased diameter and fusion indices of the myotubes. The expression level of MHC was also increased. In conclusion, palo azul may increase muscle mass in the body and improve insulin resistance conditions by facilitating the formation of myotubes by promoting myocyte differentiation. PMID:27262535

  20. Chromatin plasticity as a differentiation index during muscle differentiation of C2C12 myoblasts

    SciTech Connect

    Watanabe, Tomonobu M.; Higuchi, Sayaka; Kawauchi, Keiko; Tsukasaki, Yoshikazu; Ichimura, Taro; Fujita, Hideaki

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer Change in the epigenetic landscape during myogenesis was optically investigated. Black-Right-Pointing-Pointer Mobility of nuclear proteins was used to state the epigenetic status of the cell. Black-Right-Pointing-Pointer Mobility of nuclear proteins decreased as myogenesis progressed in C2C12. Black-Right-Pointing-Pointer Differentiation state diagram was developed using parameters obtained. -- Abstract: Skeletal muscle undergoes complicated differentiation steps that include cell-cycle arrest, cell fusion, and maturation, which are controlled through sequential expression of transcription factors. During muscle differentiation, remodeling of the epigenetic landscape is also known to take place on a large scale, determining cell fate. In an attempt to determine the extent of epigenetic remodeling during muscle differentiation, we characterized the plasticity of the chromatin structure using C2C12 myoblasts. Differentiation of C2C12 cells was induced by lowering the serum concentration after they had reached full confluence, resulting in the formation of multi-nucleated myotubes. Upon induction of differentiation, the nucleus size decreased whereas the aspect ratio increased, indicating the presence of force on the nucleus during differentiation. Movement of the nucleus was also suppressed when differentiation was induced, indicating that the plasticity of chromatin changed upon differentiation. To evaluate the histone dynamics during differentiation, FRAP experiment was performed, which showed an increase in the immobile fraction of histone proteins when differentiation was induced. To further evaluate the change in the histone dynamics during differentiation, FCS was performed, which showed a decrease in histone mobility on differentiation. We here show that the plasticity of chromatin decreases upon differentiation, which takes place in a stepwise manner, and that it can be used as an index for the differentiation stage

  1. Hes6 is required for actin cytoskeletal organization in differentiating C2C12 myoblasts

    SciTech Connect

    Malone, Caroline M.P.; Domaschenz, Renae; Amagase, Yoko; Dunham, Ian; Murai, Kasumi; Jones, Philip H.

    2011-07-01

    Hes6 is a member of the hairy-enhancer-of-split family of transcription factors that regulate proliferating cell fate in development and is known to be expressed in developing muscle. Here we investigate its function in myogenesis in vitro. We show that Hes6 is a direct transcriptional target of the myogenic transcription factors MyoD and Myf5, indicating that it is integral to the myogenic transcriptional program. The localization of Hes6 protein changes during differentiation, becoming predominantly nuclear. Knockdown of Hes6 mRNA levels by siRNA has no effect on cell cycle exit or induction of myosin heavy chain expression in differentiating C2C12 myoblasts, but F-actin filament formation is disrupted and both cell motility and myoblast fusion are reduced. The knockdown phenotype is rescued by expression of Hes6 cDNA resistant to siRNA. These results define a novel role for Hes6 in actin cytoskeletal dynamics in post mitotic myoblasts.

  2. Transforming growth factor-beta1 upregulates myostatin expression in mouse C2C12 myoblasts.

    PubMed

    Budasz-Rwiderska, M; Jank, M; Motyl, T

    2005-06-01

    Myostatin (MSTN) and transforming growth factor-beta1 (TGF-beta1) belong to the same TGF-beta superfamily of proteins. They are involved in regulation of skeletal muscle growth and development as well as muscle catabolism. The aim of the present study was to investigate the relationship between MSTN and TGF-beta1 expression in proliferating and differentiating mouse C2C12 myoblasts cultured in normal and catabolic conditions and to evaluate the effect of exogenous TGF-beta1 as well as "knock down" of TGF-beta1 receptor type II on MSTN expression in proliferating and differentiating myogenic cells. The direct effect of TGF-beta1 on myostatin was also examined. Myostatin expression increased gradually with cell confluency in proliferating cultures, while the level of TGF-beta1, detected in the form of a 100 kDa small latent complex diminished. Myostatin expression was accompanied by a partial cell cycle arrest. Three forms of myostatin were found: a 52 kDa precursor, a 40 kDa latency associated propeptide, and a 26 kDa active peptide. A decrease in myostatin and TGF-beta1 levels was observed during the first three days of differentiation, which was subsequently followed by significant increase of their expression during next three to four days of differentiation. Catabolic state induced by dexamethasone significantly increased the level of all forms of myostatin as well as latent (100 kDa) and active (25 kDa) forms of TGF-beta1 in differentiating myoblasts in a dose dependent manner. Exogenous TGF-beta1 (2 ng/ml) significantly increased myostatin levels both in proliferating and differentiating C2C12 myoblasts, whereas silencing of the TGF-beta1 receptor II gene significantly lowered myostatin level in examined cells. The presented results indicate that TGF-beta1 may control myostatin-related regulation of myogenesis through up-regulation of myostatin, predominantly in the course of terminal differentiation and glucocorticoid-dependent catabolic stimulation. PMID

  3. Change in viability of C2C12 myoblasts under compression, shear and oxidative challenges.

    PubMed

    Hong, Ye; Yao, Yifei; Wong, Singwan; Bian, Liming; Mak, Arthur F T

    2016-05-24

    Skeletal and epidermal loadings can damage muscle cells and contribute to the development of deep tissue injury (DTI) - a severe kind of pressure ulcers affecting many people with disability. Important predisposing factors include the multiaxial stress and strain fields in the internal tissues, particularly the vulnerable muscles around bony prominences. A careful study of the mechanical damage thresholds for muscle cell death is critical not only to the understanding of the formation of DTI, but also to the design of various body support surfaces for prevention. In this paper, we measured the mechanical damage thresholds of C2C12 myoblasts under prescribed compressive strains (15% and 30%) and shear strains (from 0% to 100%), and studied how oxidative stress, as caused potentially by reperfusion or inflammation, may affect such damage thresholds. A flat plate was used to apply a uniform compressive strain and a radially increasing shear strain on disks of Gelatin-methacrylate (GelMA) hydrogel with myoblasts encapsulated within. The percentages of cell death were estimated with propidium iodide (PI) and calcein AM staining. Results suggested that cell death depended on both the level and duration of the applied strain. There seemed to be a non-linear coupling between compression and shear. Muscle cells often need to function biomechanically in challenging oxidative environments. To study how oxidative stress may affect the mechanical damage thresholds of myoblasts, cell viability under compressive and shear strains was also studied after the cells were pre-treated for different durations (1h and 20h) with different concentrations (0.1mM and 0.5mM) of hydrogen peroxide (H2O2). Oxidative stress can either compromise or enhance the cellular resistance to shear damage, depending on the level and duration of the oxidative exposure. PMID:27017299

  4. Wnt/{beta}-catenin signaling changes C2C12 myoblast proliferation and differentiation by inducing Id3 expression

    SciTech Connect

    Zhang, Long; Shi, Songting; Zhang, Juan; Zhou, Fangfang; Dijke, Peter ten

    2012-03-02

    Highlights: Black-Right-Pointing-Pointer Expression of Id3 but not Id1 is induced by Wnt3a stimulation in C2C12 cells. Black-Right-Pointing-Pointer Wnt3a induces Id3 expression via canonical Wnt/{beta}-catenin pathway. Black-Right-Pointing-Pointer Wnt3a-induced Id3 expression does not depend on BMP signaling activation. Black-Right-Pointing-Pointer Induction of Id3 expression is critical determinant in Wnt3a-induced cell proliferation and differentiation. -- Abstract: Canonical Wnt signaling plays important roles in regulating cell proliferation and differentiation. In this study, we report that inhibitor of differentiation (Id)3 is a Wnt-inducible gene in mouse C2C12 myoblasts. Wnt3a induced Id3 expression in a {beta}-catenin-dependent manner. Bone morphogenetic protein (BMP) also potently induced Id3 expression. However, Wnt-induced Id3 expression occurred independent of the BMP/Smad pathway. Functional studies showed that Id3 depletion in C2C12 cells impaired Wnt3a-induced cell proliferation and alkaline phosphatase activity, an early marker of osteoblast cells. Id3 depletion elevated myogenin induction during myogenic differentiation and partially impaired Wnt3a suppressed myogenin expression in C2C12 cells. These results suggest that Id3 is an important Wnt/{beta}-catenin induced gene in myoblast cell fate determination.

  5. Interleukin 17 inhibits myogenic and promotes osteogenic differentiation of C2C12 myoblasts by activating ERK1,2.

    PubMed

    Kocić, Jelena; Santibañez, Juan F; Krstić, Aleksandra; Mojsilović, Slavko; Dorđević, Ivana Okić; Trivanović, Drenka; Ilić, Vesna; Bugarski, Diana

    2012-04-01

    The present study evaluated the role of interleukin (IL) 17 in multilineage commitment of C2C12 myoblastic cells and investigated associated signaling pathways. The results concerning the effects on cell function showed that IL-17 inhibits the migration of C2C12 cells, while not affecting their proliferation. The data regarding the influence on differentiation demonstrated that IL-17 inhibits myogenic differentiation of C2C12 cells by down-regulating the myogenin mRNA level, myosin heavy chain expression and myotube formation, but promotes their osteogenic differentiation by up-regulating the Runt-related transcription factor 2 mRNA level, cyclooxygenase-2 expression and alkaline phosphatase activity. IL-17 exerted these effects by activating ERK1,2 mitogen activated protein kinase signaling pathway, which in turn regulated the expression of relevant genes and proteins to inhibit myogenic differentiation and induce osteogenic differentiation. Additional analysis showed that the induction of osteogenic differentiation by IL-17 is independent of BMP signaling. The results obtained demonstrate the potential of IL-17 not only to inhibit the myogenic differentiation of C2C12 myoblasts but also to convert their differentiation pathway into that of osteoblast lineage providing new insight into the capacities of IL-17 to modulate the differentiation commitment. PMID:22285818

  6. Astragalus Polysaccharide Inhibits Autophagy and Apoptosis from Peroxide-Induced Injury in C2C12 Myoblasts.

    PubMed

    Yin, Yi; Lu, Lu; Wang, Dongtao; Shi, Ying; Wang, Ming; Huang, Yanfeng; Chen, Dexiu; Deng, Cong; Chen, Jiebin; Lv, Peijia; Wang, Yanjing; Li, Chengjie; Wei, Lian-Bo

    2015-11-01

    The aim is to study the effects and underlying mechanisms of astragalus polysaccharide (APS) on the peroxide-induced injury in C2C12 myoblasts in vitro. Cell viability in the presence or absence of APS was detected by the methyl thiazolyl tetrazolium colorimetric assay. The autophagosomes were observed by electron microscopy to examine the influence of APS on autophagy caused by H2O2 in C2C12 cells, and the percentage of apoptosis cells was measured by flow cytometry. To further confirm the effect of H2O2 on C2C12 cells, the protein expression of LC3 and RARP, which are the markers of autophagy and apoptosis, respectively, was analyzed by Western blot, as well as the expression levels of p-p70S6K, p70S6K, Bcl-2, Bax, cyto-C, and Caspase-3, to reveal the underlying mechanisms. We observed multiple effects of APS on C2C12 functionality. APS treatment of C2C12 cells at 1 mg/mL reduced cell viability to less than 70 %, and analysis by electron microscopy revealed that APS also reduced the number of H2O2-induced autophagosome formation. Similarly, APS abated the H2O2-mediated increase in cell apoptosis, which was accompanied by the inhibition of LC3 II and RARP that are normally upregulated by H2O2. The expression of p-p70S6K and p70S6K, however, remained unchanged in C2C12 cells in the Control, H2O2 and H2O2 + APS groups. In addition, APS promoted the expression of protein Bcl-2 in H2O2-treated C2C12 cells, but did not change Bax, thus reducing the Bax/Bcl-2 ratio that in turn prevented the release of cytochrome c and the activation of caspase-3. APS inhibits the autophagy and apoptosis induced by peroxide injury in C2C12 myoblasts through two independent signaling pathways: the mTOR-independent pathway for the inhibition of autophagy, and the caspase-3-dependent pathway for the suppression of apoptosis. PMID:27352334

  7. Melatonin behavior in restoring chemical damaged C2C12 myoblasts.

    PubMed

    Salucci, Sara; Baldassarri, Valentina; Canonico, Barbara; Burattini, Sabrina; Battistelli, Michela; Guescini, Michele; Papa, Stefano; Stocchi, Vilberto; Falcieri, Elisabetta

    2016-06-01

    It is known that, besides a wide range of functions, melatonin provides protection against oxidative stress, thanks to its ability to act, directly, as a free radical scavenger and, indirectly, by stimulating antioxidant enzymes production and mitochondrial electron transport chain efficiency. Oxidative stress is one of the major players in initiating apoptotic cell death in skeletal muscle, as well as in other tissues. Apoptosis is essential for skeletal muscle development and homeostasis; nevertheless, its misregulation has been frequently observed in several myopathies, in sarcopenia, as well as in denervation and disuse. Melatonin activity was investigated in undifferentiated C2C12 skeletal muscle cells, after exposure to various apoptotic chemical triggers, chosen for their different mechanisms of action. Cells were pretreated with melatonin and then exposed to hydrogen peroxide, etoposide and staurosporine. Morphofunctional and molecular analyses show that in myoblasts melatonin prevents oxidative stress and apoptosis induced by chemicals following, at least in part, the mitochondria pathway. These results confirm melatonin ability to act as an antioxidant and antiapoptotic molecule in skeletal muscle cells, thus suggesting a possible therapeutic strategy for myopathies involving apoptosis misregulation. Microsc. Res. Tech. 79:532-540, 2016. © 2016 Wiley Periodicals, Inc. PMID:27059940

  8. Nanoparticle-mediated intracellular lipid accumulation during C2C12 cell differentiation

    SciTech Connect

    Tsukahara, Tamotsu; Haniu, Hisao

    2011-03-25

    Research highlights: {yields} HTT2800 has a significant effect on intracellular lipid accumulation. {yields} HTT2800 reduced muscle-specific genes and led to the emergence of adipocyte-related genes. {yields} HT2800 converts the differentiation pathway of C2C12 myoblasts to that of adipoblast-like cells. -- Abstract: In this report, we sought to elucidate whether multiwall carbon nanotubes are involved in the modulation of the proliferation and differentiation of the skeletal muscle cell line C2C12. Skeletal muscle is a major mass peripheral tissue that accounts for 40% of total body weight and 50% of energy consumption. We focused on the differentiation pathway of myoblasts after exposure to a vapor-grown carbon fiber, HTT2800, which is one of the most highly purified carbon nanotubes. This treatment leads in parallel to the expression of a typical adipose differentiation program. We found that HTT2800 stimulated intracellular lipid accumulation in C2C12 cells. We have also shown by quantified PCR analysis that the expression of adipose-related genes was markedly upregulated during HTT2800 exposure. Taken together, these results suggest that HTT2800 specifically converts the differentiation pathway of C2C12 myoblasts to that of adipoblast-like cells.

  9. Hypomorphic Smn knockdown C2C12 myoblasts reveal intrinsic defects in myoblast fusion and myotube morphology

    SciTech Connect

    Shafey, Dina; Cote, Patrice D.; Kothary, Rashmi . E-mail: rkothary@ohri.ca

    2005-11-15

    Dosage of the survival motor neuron (SMN) protein has been directly correlated with the severity of disease in patients diagnosed with spinal muscular atrophy (SMA). It is also clear that SMA is a neurodegenerative disorder characterized by the degeneration of the {alpha}-motor neurons in the anterior horn of the spinal cord and atrophy of the associated skeletal muscle. What is more controversial is whether it is neuronal and/or muscle-cell-autonomous defects that are responsible for the disease per se. Although motor neuron degeneration is generally accepted as the primary event in SMA, intrinsic muscle defects in this disease have not been ruled out. To gain a better understanding of the influence of SMN protein dosage in muscle, we have generated a hypomorphic series of myoblast (C2C12) stable cell lines with variable Smn knockdown. We show that depletion of Smn in these cells resulted in a decrease in the number of nuclear 'gems' (gemini of coiled bodies), reduced proliferation with no increase in cell death, defects in myoblast fusion, and malformed myotubes. Importantly, the severity of these abnormalities is directly correlated with the decrease in Smn dosage. Taken together, our work supports the view that there is an intrinsic defect in skeletal muscle cells of SMA patients and that this defect contributes to the overall pathogenesis in this devastating disease.

  10. Nandrolone, an anabolic steroid, stabilizes Numb protein through inhibition of mdm2 in C2C12 myoblasts.

    PubMed

    Liu, Xin-Hua; Yao, Shen; Levine, Alice C; Kirschenbaum, Alexander; Pan, Jiangping; Wu, Yong; Qin, Weiping; Collier, Lauren; Bauman, William A; Cardozo, Christopher P

    2012-01-01

    Nandrolone, an anabolic steroid, slows denervation atrophy of rat muscle, prevents denervation-induced nuclear accumulation of intracellular domain of the Notch receptor, and elevates expression of Numb. Numb acts as an inhibitor of Notch signaling and promotes myogenic differentiation of satellite cells. Turnover of Numb is regulated by mdm2, an E3 ubiquitin ligase. With these considerations in mind, we investigated the effects of nandrolone on the expression of Numb and mdm2 proteins and determined the effect of mdm2 on nandrolone-induced alterations in Numb protein in C2C12 myoblasts. When C2C12 cells were cultured in a medium favoring differentiation (Dulbecco modified Eagle medium containing 2% horse serum), nandrolone up-regulated Numb protein levels in a time-dependent manner and prolonged Numb protein half-life from 10 to 18 hours. In contrast, nandrolone reduced the expression of mdm2 protein. To determine whether the decreased mdm2 expression induced by nandrolone was responsible for the increased levels and prolonged half-life of Numb protein in this cell line, mdm2-small interfering RNA (siRNA) was employed to inhibit mdm2 expression. Compared to cells transfected with scrambled siRNA (negative control), transfection with mdm2-siRNA increased basal Numb protein expression but abolished the further increase in Numb protein levels by nandrolone. In addition, transfection of mdm2-siRNA mimicked the effect of nandrolone to prolong the half-life of Numb protein. Moreover, when C2C12 cells were forced to overexpress mdm2, there was a significant decline in the expression of both basal and inducible Numb protein. Our data suggest that nandrolone, by a novel mechanism for this agent in a muscle cell type, increases Numb protein levels in C2C12 myoblasts by stabilizing Numb protein against degradation, at least in part, via suppression of mdm2 expression. PMID:22700758

  11. Propolis Ethanol Extract Stimulates Cytokine and Chemokine Production through NF-κB Activation in C2C12 Myoblasts

    PubMed Central

    Washio, Kohei; Kobayashi, Mao; Saito, Natsuko; Amagasa, Misato; Kitamura, Hiroshi

    2015-01-01

    Myoblast activation is a triggering event for muscle remodeling. We assessed the stimulatory effects of propolis, a beehive product, on myoblasts. After an 8 h treatment with 100 μg/mL of Brazilian propolis ethanol extract, expression of various chemokines, including CCL-2 and CCL-5, and cytokines, such as IL-6, increased. This propolis-induced cytokine production appears to depend on NF-κB activation, because the IKK inhibitor BMS-345541 repressed mRNA levels of CCL-2 by ~66%, CCL-5 by ~81%, and IL-6 by ~69% after propolis treatment. Supernatant from propolis-conditioned C2C12 cells upregulated RAW264 macrophage migration. The supernatant also stimulated RAW264 cells to produce angiogenic factors, including VEGF-A and MMP-12. Brazilian green propolis therefore causes myoblasts to secrete cytokines and chemokines, which might contribute to tissue remodeling of skeletal muscle. PMID:26604971

  12. CRF Type 2 Receptors Mediate the Metabolic Effects of Ghrelin in C2C12 cells

    PubMed Central

    Gershon, Eran; Vale, Wylie W

    2014-01-01

    Objective Ghrelin is known to regulate appetite control and cellular metabolism. The Corticotropin-Releasing Factor (CRF) family is also known to regulate energy balance. In this study, we investigated the links between ghrelin and the CRF family in C2C12 cells, a mouse myoblast cell line. Design and methods C2C12 cells were treated with ghrelin in the presence or absence of CRF receptor antagonists and then subjected to different metabolic analyses. Results Ghrelin enhanced glucose uptake by C2C12 cells, induced GLUT4 translocation to the cell surface and decreased RBP4 expression. A CRF-R2 selective antagonist, anti-sauvagine-30, blocked ghrelin-induced glucose uptake, Ghrelin upregulated CRF-R2 but not CRF-R1 levels. Moreover, ghrelin-treated C2C12 cells displayed a cAMP and pERK activation in response to Ucn3, a CRF-R2 specific ligand, but not in response to CRF or stressin, CRF-R1 specific ligands. Ghrelin also induced UCP2 and UCP3 expression, which were blocked by anti-sauvagine-30. Ghrelin did not induce fatty acids uptake by C2C12 cells or ACC expression. Even though C2C12 cells clearly exhibited responses to ghrelin, the known ghrelin receptor, GHSR1a, was not detectable in C2C12 cells. Conclusion Our results suggest that, ghrelin plays a role in regulating muscle glucose and, raise the possibility that suppression of the CRF-R2 pathway might provide benefits in high ghrelin states. PMID:23804489

  13. Prevention of oxidative stress-induced apoptosis of C2C12 myoblasts by a Cichorium intybus root extract.

    PubMed

    Lee, Yong-Hyeon; Kim, Dae-Hyun; Kim, Yoon Suk; Kim, Tack-Joong

    2013-01-01

    Cell injury associated with reactive oxygen species (ROS) has been reported in various muscular disorders. We found that a Cichorium intybus (Cii) extract reduced H(2)O(2)-induced viability loss in C2C12 myoblasts, inhibited oxidative stress-induced apoptosis and increased intracellular heat shock protein 70 (Hsp 70) expression. Cii also inhibited the level of intracellular ceramide. These results indicate that Cii may prevent skeletal muscle atrophy by inducing the expression of Hsp 70 and inhibiting the level of ceramide. PMID:23391909

  14. Subnuclear localization and differentiation-dependent increased expression of DGK-zeta in C2C12 mouse myoblasts.

    PubMed

    Evangelisti, Camilla; Riccio, Massimo; Faenza, Irene; Zini, Nicoletta; Hozumi, Yasukazu; Goto, Kaoru; Cocco, L; Martelli, Alberto M

    2006-11-01

    Diacylglycerol kinases (DGKs) catalyze phosphorylation of diacylglycerol (DG) to yield phosphatidic acid (PA). Previous evidence has shown that the nucleus contains several DGK isoforms. In this study, we have analyzed the expression and subnuclear localization of DGK-zeta employing C2C12 mouse myoblasts. Immunocytochemistry coupled to confocal laser scanning microscopy showed that both endogenous and green fluorescent protein-tagged overexpressed DGK-zeta localized mostly to the nucleus. In contrast, overexpressed DGK-alpha, -beta, -delta, and -iota did not migrate to the nucleus. DGK-zeta was present in the nuclear speckle domains, as also revealed by immuno-electron microscopy analysis. Moreover, DGK-zeta co-localized and interacted with phosphoinositide-specific phospholipase Cbeta1 (PLCbeta1), that is involved in inositide-dependent signaling pathways important for the regulation of cell proliferation and differentiation. Furthermore, we report that DGK-zeta associated with nuclear matrix, the fundamental organizing principle of the nucleus where many cell functions take place, including DNA replication, gene expression, and protein phosphorylation. Nuclear DGK-zeta increased during myogenic differentiation of C2C12 cells, while DGK-zeta down-regulation by siRNA markedly impaired differentiation. Overall, our findings further support the importance of speckles and nuclear matrix in lipid-dependent signaling and suggest that nuclear DGK-zeta might play some fundamental role during myogenic differentiation of C2C12 cells. PMID:16897754

  15. Selective androgen receptor modulator, YK11, regulates myogenic differentiation of C2C12 myoblasts by follistatin expression.

    PubMed

    Kanno, Yuichiro; Ota, Rumi; Someya, Kousuke; Kusakabe, Taichi; Kato, Keisuke; Inouye, Yoshio

    2013-01-01

    The myogenic differentiation of C2C12 myoblast cells is induced by the novel androgen receptor (AR) partial agonist, (17α,20E)-17,20-[(1-methoxyethylidene)bis-(oxy)]-3-oxo-19-norpregna-4,20-diene-21-carboxylic acid methyl ester (YK11), as well as by dihydrotestosterone (DHT). YK11 is a selective androgen receptor modulator (SARM), which activates AR without the N/C interaction. In this study, we further investigated the mechanism by which YK11 induces myogenic differentiation of C2C12 cells. The induction of key myogenic regulatory factors (MRFs), such as myogenic differentiation factor (MyoD), myogenic factor 5 (Myf5) and myogenin, was more significant in the presence of YK11 than in the presence of DHT. YK11 treatment of C2C12 cells, but not DHT, induced the expression of follistatin (Fst), and the YK11-mediated myogenic differentiation was reversed by anti-Fst antibody. These results suggest that the induction of Fst is important for the anabolic effect of YK11. PMID:23995658

  16. Lysophosphatidic Acid Stimulates MCP-1 Secretion from C2C12 Myoblast.

    PubMed

    Tsukahara, Tamotsu; Haniu, Hisao

    2012-01-01

    Chemokines are regulatory proteins that play an important role in muscle cell migration and proliferation. In this study, C2C12 cells treated with lysophosphatidic acid (LPA) showed an increase in endogenous monocyte chemotactic protein-1 (MCP-1) expression and secretion. LPA is a naturally occurring bioactive lysophospholipid with hormone- and growth-factor-like activities. LPA is produced by activated platelets, cytokine-stimulated leukocytes, and possibly by other cell types. However, the LPA analog cyclic phosphatidic acid (cPA) had no effect on the expression and secretion of MCP-1. LPA, although similar in structure to cPA, had potent inducing effects on MCP-1 expression in C2C12 cells. In this study, we showed that LPA enhanced MCP-1 mRNA expression and protein secretion in a dose-dependent manner. Taken together, these results suggest that LPA enhances MCP-1 secretion in C2C12 cells and thus may play an important role in cell proliferation. PMID:24049655

  17. Glycogenome expression dynamics during mouse C2C12 myoblast differentiation suggests a sequential reorganization of membrane glycoconjugates

    PubMed Central

    Janot, Mathilde; Audfray, Aymeric; Loriol, Céline; Germot, Agnès; Maftah, Abderrahman; Dupuy, Fabrice

    2009-01-01

    Background Several global transcriptomic and proteomic approaches have been applied in order to obtain new molecular insights on skeletal myogenesis, but none has generated any specific data on glycogenome expression, and thus on the role of glycan structures in this process, despite the involvement of glycoconjugates in various biological events including differentiation and development. In the present study, a quantitative real-time RT-PCR technology was used to profile the dynamic expression of 375 glycogenes during the differentiation of C2C12 myoblasts into myotubes. Results Of the 276 genes expressed, 95 exhibited altered mRNA expression when C2C12 cells differentiated and 37 displayed more than 4-fold up- or down-regulations. Principal Component Analysis and Hierarchical Component Analysis of the expression dynamics identified three groups of coordinately and sequentially regulated genes. The first group included 12 down-regulated genes, the second group four genes with an expression peak at 24 h of differentiation, and the last 21 up-regulated genes. These genes mainly encode cell adhesion molecules and key enzymes involved in the biosynthesis of glycosaminoglycans and glycolipids (neolactoseries, lactoseries and ganglioseries), providing a clearer indication of how the plasma membrane and extracellular matrix may be modified prior to cell fusion. In particular, an increase in the quantity of ganglioside GM3 at the cell surface of myoblasts is suggestive of its potential role during the initial steps of myogenic differentiation. Conclusion For the first time, these results provide a broad description of the expression dynamics of glycogenes during C2C12 differentiation. Among the 37 highly deregulated glycogenes, 29 had never been associated with myogenesis. Their biological functions suggest new roles for glycans in skeletal myogenesis. PMID:19843320

  18. MicroRNAs Regulate Cellular ATP Levels by Targeting Mitochondrial Energy Metabolism Genes during C2C12 Myoblast Differentiation

    PubMed Central

    Siengdee, Puntita; Trakooljul, Nares; Murani, Eduard; Schwerin, Manfred; Wimmers, Klaus; Ponsuksili, Siriluck

    2015-01-01

    In our previous study, we identified an miRNA regulatory network involved in energy metabolism in porcine muscle. To better understand the involvement of miRNAs in cellular ATP production and energy metabolism, here we used C2C12 myoblasts, in which ATP levels increase during differentiation, to identify miRNAs modulating these processes. ATP level, miRNA and mRNA microarray expression profiles during C2C12 differentiation into myotubes were assessed. The results suggest 14 miRNAs (miR-423-3p, miR-17, miR-130b, miR-301a/b, miR-345, miR-15a, miR-16a, miR-128, miR-615, miR-1968, miR-1a/b, and miR-194) as cellular ATP regulators targeting genes involved in mitochondrial energy metabolism (Cox4i2, Cox6a2, Ndufb7, Ndufs4, Ndufs5, and Ndufv1) during C2C12 differentiation. Among these, miR-423-3p showed a high inverse correlation with increasing ATP levels. Besides having implications in promoting cell growth and cell cycle progression, its function in cellular ATP regulation is yet unknown. Therefore, miR-423-3p was selected and validated for the function together with its potential target, Cox6a2. Overexpression of miR-423-3p in C2C12 myogenic differentiation lead to decreased cellular ATP level and decreased expression of Cox6a2 compared to the negative control. These results suggest miR-423-3p as a novel regulator of ATP/energy metabolism by targeting Cox6a2. PMID:26010876

  19. Developmental Changes is Expression of Beta-Adrenergic Receptors in Cultures of C2C12 Skeletal Muscle Cells

    NASA Technical Reports Server (NTRS)

    Young, Ronald B.; Bridge, K. Y.; Vaughn, J. R.

    2000-01-01

    beta-Adrenergic receptor (bAR) agonists have been reported to modulate growth in several mammalian and avian species, and bAR agonists presumably exert their physiological action on skeletal muscle cells through this receptor. Because of the importance of bAR regulation on muscle protein metabolism in muscle cells, the objectives of this study were to determine the developmental expression pattern of the bAR population in C2C12 skeletal muscle cells, and to analyze changes in both the quantity and isoform expression of the major muscle protein, myosin. The number of bAR in mononucleated C2C12 cells was approximately 8,000 bAR per cell, which is comparable with the population reported in several other nonmuscle cell types. However, the bar population increased after myoblast fusion to greater than 50,000 bAR per muscle cell equivalent. The reasons for this apparent over-expression of bAR in C2C12 cells is not known. The quantity of myosin also increased after C2C12 myoblast fusion, but the quantity of myosin was less than that reported in primary muscle cell cultures. Finally, at least five different isoforms of myosin heavy chain could be resolved in C2C12 cells, and three of these exhibited either increased or decreased developmental regulation relative to the others. Thus, C2C12 myoblasts undergo developmental regulation of bAR population and myosin heavy chain isoform expression.

  20. Folic acid promotes the myogenic differentiation of C2C12 murine myoblasts through the Akt signaling pathway.

    PubMed

    Hwang, Seong Yeon; Kang, Yong Jung; Sung, Bokyung; Kim, Minjung; Kim, Dong Hwan; Lee, Yujin; Yoo, Mi-Ae; Kim, Cheol Min; Chung, Hae Young; Kim, Nam Deuk

    2015-10-01

    Folic acid is a water-soluble vitamin in the B-complex group, and an exogenous intake is required for health, growth and development. As a precursor to co-factors, folic acid is required for one-carbon donors in the synthesis of DNA bases and other essential biomolecules. A lack of dietary folic acid can lead to folic acid deficiency and can therefore result in several health problems, including macrocytic anemia, elevated plasma homocysteine levels, cardiovascular disease, birth defects, carcinogenesis, muscle weakness and difficulty in walking. Previous studies have indicated that folic acid exerts a positive effect on skeletal muscle functions. However, the precise role of folic acid in skeletal muscle cell differentiation remains poorly understood. Thus, in the present study, we examined the effects of folic acid on neo-myotube maturation and differentiation using C2C12 murine myoblasts. We found that folic acid promoted the formation of multinucleated myotubes, and increased the fusion index and creatine kinase (CK) activity in a concentration-dependent manner. In addition, western blot analysis revealed that the expression levels of the muscle-specific marker, myosin heavy chain (MyHC), as well as those of the myogenic regulatory factors (MRFs), MyoD and myogenin, were increased in the folic acid-treated myotubes during myogenic differentiation. Folic acid also promoted the activation of the Akt pathway, and this effect was inhibited by treatment of the C2C12 cells with LY294002 (Akt inhibitor). Blocking of the Akt pathway with a specific inhibitor revealed that it was necessary for mediating the stimulatory effects of folic acid on muscle cell differentiation and fusion. Taken together, our data suggest that folic acid promotes the differentiation of C2C12 cells through the activation of the Akt pathway. PMID:26310574

  1. Docosahexaenoyl ethanolamide improves glucose uptake and alters endocannabinoid system gene expression in proliferating and differentiating C2C12 myoblasts

    PubMed Central

    Kim, Jeffrey; Carlson, Morgan E.; Watkins, Bruce A.

    2014-01-01

    Skeletal muscle is a major storage site for glycogen and a focus for understanding insulin resistance and type-2-diabetes. New evidence indicates that overactivation of the peripheral endocannabinoid system (ECS) in skeletal muscle diminishes insulin sensitivity. Specific n-6 and n-3 polyunsaturated fatty acids (PUFA) are precursors for the biosynthesis of ligands that bind to and activate the cannabinoid receptors. The function of the ECS and action of PUFA in skeletal muscle glucose uptake was investigated in proliferating and differentiated C2C12 myoblasts treated with either 25 μM of arachidonate (AA) or docosahexaenoate (DHA), 25 μM of EC [anandamide (AEA), 2-arachidonoylglycerol (2-AG), docosahexaenoylethanolamide (DHEA)], 1 μM of CB1 antagonist NESS0327, and CB2 inverse agonist AM630. Compared to the BSA vehicle control cell cultures in both proliferating and differentiated myoblasts those treated with DHEA, the EC derived from the n-3 PUFA DHA, had higher 24 h glucose uptake, while AEA and 2-AG, the EC derived from the n-6 PUFA AA, had lower basal glucose uptake. Adenylyl cyclase mRNA was higher in myoblasts treated with DHA in both proliferating and differentiated states while those treated with AEA or 2-AG were lower compared to the control cell cultures. Western blot and qPCR analysis showed higher expression of the cannabinoid receptors in differentiated myoblasts treated with DHA while the opposite was observed with AA. These findings indicate a compensatory effect of DHA and DHEA compared to AA-derived ligands on the ECS and associated ECS gene expression and higher glucose uptake in myoblasts. PMID:24711795

  2. Recombinant adenoviral microRNA-206 induces myogenesis in C2C12 cells

    PubMed Central

    Zhang, Weiwei; Wang, Tao; Su, Yongping; Li, Wang; Frame, Lynn T.; Ai, Guoping

    2011-01-01

    Summary Background The expression of microRNA-206 (miR-206) is high in skeletal muscle but low in most other tissues. The expression of miR-206 is increased in muscular dystrophy, suggesting its involvement in the pathogenesis of muscle diseases. To determine the role of miR-206 in muscle cell differentiation and explore a possible gene therapy vector, we constructed a miR-206 adenoviral expression vector (AdvmiR-206) and tested for transfection into C2C12 stem cells. Material/Methods A 355-bp PCR amplicon from C57B6 mouse skeletal muscle genomic DNA was inserted into the adenoviral shuttle vector pAdTrack-CMV, which was then co-transformed with the adenoviral backbone plasmid pAdEasy-1 into competent E. coli BJ5183 bacteria. The specificity and function of this recombinant adenoviral MiR-206 were studied in C2C12 cells by Northern blot, immunofluorescence, Western blot, and flow cytometry. Results Increased expression of miR-206 in AdvmiR-206 transfected C2C12 cells (P<0.001) and resulted in morphological and biochemical changes over time that were similar to serum deprivation, including elongated cells and increased myosin heavy chain proteins. Even in the absence of serum deprivation, miR-206 overexpression accounted for a 50% reduction of S-phase cells (P<0.01). Moreover, in untransfected C2C12 cells, the introduction of miR-206-specific antisense oligoribonucleotides inhibited the normal response to serum deprivation. Twenty-four hours after lipofection of antisense oligoribonucleotides, the number of elongated cells was reduced by half (P<0.01). Conclusions Collectively, these data support a role for miR-206 in myoblast differentiation. We foresee potential applications for the AdvmiR-206 vector in research and therapy. PMID:22129894

  3. Nrf2-Mediated HO-1 Induction Contributes to Antioxidant Capacity of a Schisandrae Fructus Ethanol Extract in C2C12 Myoblasts

    PubMed Central

    Kang, Ji Sook; Han, Min Ho; Kim, Gi-Young; Kim, Cheol Min; Kim, Byung Woo; Hwang, Hye Jin; Choi, Yung Hyun

    2014-01-01

    This study was designed to confirm the protective effect of Schisandrae Fructus, which are the dried fruits of Schisandra chinensis (Turcz.) Baill, against oxidative stress-induced cellular damage and to elucidate the underlying mechanisms in C2C12 myoblasts. Preincubating C2C12 cells with a Schisandrae Fructus ethanol extract (SFEE) significantly attenuated hydrogen peroxide (H2O2)-induced inhibition of growth and induced scavenging activity against intracellular reactive oxygen species (ROS) induced by H2O2. SFEE also inhibited comet tail formation and phospho-histone γH2A.X expression, suggesting that it prevents H2O2-induced cellular DNA damage. Furthermore, treating C2C12 cells with SFEE significantly induced heme oxygenase-1 (HO-1) and phosphorylation of nuclear factor-erythroid 2 related factor 2 (Nrf2). However, zinc protoporphyrin IX, a potent inhibitor of HO-1 activity, significantly reversed the protective effects of SFEE against H2O2-induced growth inhibition and ROS generation in C2C12 cells. Additional experiments revealed that the potential of the SFEE to induce HO-1 expression and protect against H2O2-mediated cellular damage was abrogated by transient transfection with Nrf2-specific small interfering RNA, suggesting that the SFEE protected C2C12 cells against oxidative stress-induced injury through the Nrf2/HO-1 pathway. PMID:25493944

  4. Proteomic Analysis of C2C12 Myoblast and Myotube Exosome-Like Vesicles: A New Paradigm for Myoblast-Myotube Cross Talk?

    PubMed Central

    Forterre, Alexis; Jalabert, Audrey; Chikh, Karim; Errazuriz, Elisabeth; De Larichaudy, Joffrey; Chanon, Stéphanie; Weiss-Gayet, Michèle; Hesse, Anne-Marie; Record, Michel; Geloen, Alain; Lefai, Etienne; Vidal, Hubert; Couté, Yohann; Rome, Sophie

    2014-01-01

    Exosomes are nanometer-sized microvesicles formed in multivesicular bodies (MVBs) during endosome maturation. Exosomes are released from cells into the microenvironment following fusion of MVBs with the plasma membrane. During the last decade, skeletal muscle-secreted proteins have been identified with important roles in intercellular communications. To investigate whether muscle-derived exosomes participate in this molecular dialog, we determined and compared the protein contents of the exosome-like vesicles (ELVs) released from C2C12 murine myoblasts during proliferation (ELV-MB), and after differentiation into myotubes (ELV-MT). Using a proteomic approach combined with electron microscopy, western-blot and bioinformatic analyses, we compared the protein repertoires within ELV-MB and ELV-MT. We found that these vesicles displayed the classical properties of exosomes isolated from other cell types containing components of the ESCRT machinery of the MVBs, as well as numerous tetraspanins. Specific muscle proteins were also identified confirming that ELV composition also reflects their muscle origin. Furthermore quantitative analysis revealed stage-preferred expression of 31 and 78 proteins in ELV-MB and ELV-MT respectively. We found that myotube-secreted ELVs, but not ELV-MB, reduced myoblast proliferation and induced differentiation, through, respectively, the down-regulation of Cyclin D1 and the up-regulation of myogenin. We also present evidence that proteins from ELV-MT can be incorporated into myoblasts by using the GFP protein as cargo within ELV-MT. Taken together, our data provide a useful database of proteins from C2C12-released ELVs throughout myogenesis and reveals the importance of exosome-like vesicles in skeletal muscle biology. PMID:24392111

  5. Proteomic analysis of C2C12 myoblast and myotube exosome-like vesicles: a new paradigm for myoblast-myotube cross talk?

    PubMed

    Forterre, Alexis; Jalabert, Audrey; Berger, Emmanuelle; Baudet, Mathieu; Chikh, Karim; Errazuriz, Elisabeth; De Larichaudy, Joffrey; Chanon, Stéphanie; Weiss-Gayet, Michèle; Hesse, Anne-Marie; Record, Michel; Geloen, Alain; Lefai, Etienne; Vidal, Hubert; Couté, Yohann; Rome, Sophie

    2014-01-01

    Exosomes are nanometer-sized microvesicles formed in multivesicular bodies (MVBs) during endosome maturation. Exosomes are released from cells into the microenvironment following fusion of MVBs with the plasma membrane. During the last decade, skeletal muscle-secreted proteins have been identified with important roles in intercellular communications. To investigate whether muscle-derived exosomes participate in this molecular dialog, we determined and compared the protein contents of the exosome-like vesicles (ELVs) released from C2C12 murine myoblasts during proliferation (ELV-MB), and after differentiation into myotubes (ELV-MT). Using a proteomic approach combined with electron microscopy, western-blot and bioinformatic analyses, we compared the protein repertoires within ELV-MB and ELV-MT. We found that these vesicles displayed the classical properties of exosomes isolated from other cell types containing components of the ESCRT machinery of the MVBs, as well as numerous tetraspanins. Specific muscle proteins were also identified confirming that ELV composition also reflects their muscle origin. Furthermore quantitative analysis revealed stage-preferred expression of 31 and 78 proteins in ELV-MB and ELV-MT respectively. We found that myotube-secreted ELVs, but not ELV-MB, reduced myoblast proliferation and induced differentiation, through, respectively, the down-regulation of Cyclin D1 and the up-regulation of myogenin. We also present evidence that proteins from ELV-MT can be incorporated into myoblasts by using the GFP protein as cargo within ELV-MT. Taken together, our data provide a useful database of proteins from C2C12-released ELVs throughout myogenesis and reveals the importance of exosome-like vesicles in skeletal muscle biology. PMID:24392111

  6. An exploration of the antioxidant effects of garlic saponins in mouse-derived C2C12 myoblasts.

    PubMed

    Kang, Ji Sook; Kim, Sung Ok; Kim, Gi-Young; Hwang, Hye Jin; Kim, Byung Woo; Chang, Young-Chae; Kim, Wun-Jae; Kim, Cheol Min; Yoo, Young Hyun; Choi, Yung Hyun

    2016-01-01

    In this study, we aimed to confirm the protective effects of garlic saponins against oxidative stress-induced cellular damage and to further elucidate the underlying mechanisms in mouse-derived C2C12 myoblasts. Relative cell viability was determined by 3-(4.5-dimethylthiazol-2-yl)-2.5 diphenyltetrazolium bromide assay. Comet assay was used to measure DNA damage and oxidative stress was determined using 2',7'-dichlorofluorescein diacetate to measure intracellular reactive oxygen species (ROS) generation. Western blot analysis and small interfering RNA (siRNA)-based knockdown were used in order to investigate the possible molecular mechanisms. Our results revealed that garlic saponins prevented hydrogen peroxide (H2O2)-induced growth inhibition and exhibited scavenging activity against intracellular ROS. We also observed that garlic saponins prevented H2O2-induced comet tail formation and decreased the phosphorylation levels of γH2AX expression, suggesting that they can prevent H2O2-induced DNA damage. In addition, garlic saponins increased the levels of heme oxygenase-1 (HO-1), a potent antioxidant enzyme associated with the induction and phosphorylation of nuclear factor erythroid 2-related factor 2 (Nrf2) and the translocation of Nrf2 from the cytosol into the nucleus. However, the protective effects of garlic saponins on H2O2-induced ROS generation and growth inhibition were significantly reduced by zinc protoporphyrin Ⅸ, an HO-1 competitive inhibitor. In addition, the potential of garlic saponins to mediate HO-1 induction and protect against H2O2‑mediated growth inhibition was adversely affected by transient transfection with Nrf2-specific siRNA. Garlic saponins activated extracellular signal‑regulated kinase (ERK) signaling, whereas a specific ERK inhibitor was able to inhibit HO-1 upregulation, as well as Nrf2 induction and phosphorylation. Taken together, the findings of our study suggest that garlic saponins activate the Nrf2/HO-1 pathway by enabling

  7. Cyclic Stretch Facilitates Myogenesis in C2C12 Myoblasts and Rescues Thiazolidinedione-Inhibited Myotube Formation.

    PubMed

    Chang, Ya-Ju; Chen, Yun-Ju; Huang, Chia-Wei; Fan, Shih-Chen; Huang, Bu-Miin; Chang, Wen-Tsan; Tsai, Yau-Sheng; Su, Fong-Chin; Wu, Chia-Ching

    2016-01-01

    Thiazolidinedione (TZD), a specific peroxisome proliferator-activated receptor γ (PPARγ) agonist, was developed to control blood glucose in diabetes patients. However, several side effects were reported that increased the risk of heart failure. We used C2C12 myoblasts to investigate the role of PPARs and their transcriptional activity during myotube formation. The role of mechanical stretch during myogenesis was also explored by applying cyclic stretch to the differentiating C2C12 myoblasts with 10% strain deformation at 1 Hz. The myogenesis medium (MM), composed of Dulbecco's modified Eagle's medium with 2% horse serum, facilitated myotube formation with increased myosin heavy chain and α-smooth muscle actin (α-SMA) protein expression. The PPARγ protein and PPAR response element (PPRE) promoter activity decreased during MM induction. Cyclic stretch further facilitated the myogenesis in MM with increased α-SMA and decreased PPARγ protein expression and inhibited PPRE promoter activity. Adding a PPARγ agonist (TZD) to the MM stopped the myogenesis and restored the PPRE promoter activity, whereas a PPARγ antagonist (GW9662) significantly increased the myotube number and length. During the myogenesis induction, application of cyclic stretch rescued the inhibitory effects of TZD. These results provide novel perspectives for mechanical stretch to interplay and rescue the dysfunction of myogenesis with the involvement of PPARγ and its target drugs. PMID:27047938

  8. Cyclic Stretch Facilitates Myogenesis in C2C12 Myoblasts and Rescues Thiazolidinedione-Inhibited Myotube Formation

    PubMed Central

    Chang, Ya-Ju; Chen, Yun-Ju; Huang, Chia-Wei; Fan, Shih-Chen; Huang, Bu-Miin; Chang, Wen-Tsan; Tsai, Yau-Sheng; Su, Fong-Chin; Wu, Chia-Ching

    2016-01-01

    Thiazolidinedione (TZD), a specific peroxisome proliferator-activated receptor γ (PPARγ) agonist, was developed to control blood glucose in diabetes patients. However, several side effects were reported that increased the risk of heart failure. We used C2C12 myoblasts to investigate the role of PPARs and their transcriptional activity during myotube formation. The role of mechanical stretch during myogenesis was also explored by applying cyclic stretch to the differentiating C2C12 myoblasts with 10% strain deformation at 1 Hz. The myogenesis medium (MM), composed of Dulbecco’s modified Eagle’s medium with 2% horse serum, facilitated myotube formation with increased myosin heavy chain and α-smooth muscle actin (α-SMA) protein expression. The PPARγ protein and PPAR response element (PPRE) promoter activity decreased during MM induction. Cyclic stretch further facilitated the myogenesis in MM with increased α-SMA and decreased PPARγ protein expression and inhibited PPRE promoter activity. Adding a PPARγ agonist (TZD) to the MM stopped the myogenesis and restored the PPRE promoter activity, whereas a PPARγ antagonist (GW9662) significantly increased the myotube number and length. During the myogenesis induction, application of cyclic stretch rescued the inhibitory effects of TZD. These results provide novel perspectives for mechanical stretch to interplay and rescue the dysfunction of myogenesis with the involvement of PPARγ and its target drugs. PMID:27047938

  9. Micropatterned polyelectrolyte nanofilms promote alignment and myogenic differentiation of C2C12 cells in standard growth media.

    PubMed

    Palamà, Ilaria E; D'Amone, Stefania; Coluccia, Addolorata M L; Gigli, Giuseppe

    2013-02-01

    Alignment of skeletal myoblasts is considered a critical step during myotube formation. The C2C12 cell line is frequently used as a model of skeletal muscle differentiation that can be induced by lowering the serum concentration in standard culture flasks. In order to mimic the striated architectures of skeletal muscles in vitro, micro-patterning techniques and surface engineering have been proven as useful approaches for promoting elongation and alignment of C2C12 myoblasts, thereby enhancing the outgrowth of multi-nucleated myotubes upon switching from growth media (GM) to differentiative media (DM). Herein, a layer-by-layer (LbL) polyelectrolyte multilayer deposition was combined with a micro-molding in capillaries (MIMIC) method to simultaneously provide biochemical and geometrical instructive cues that induced the formation of tightly apposed and parallel arrays of differentiating myotubes from C2C12 cells maintained in GM media for 15 days. This study focuses on two different types of patterned/self-assembled nanofilms based on alternated layers of poly (allylamine hydrochloride) (PAH)/poly(sodium 4-styrene-sulfonate) (PSS) as biocompatible but not biodegradable polymeric structures, or poly-L-arginine sulfate salt (pARG)/dextran sulfate sodium salt (DXS) as both biocompatible and biodegradable surfaces. The influence of these microstructures as well as of the nanofilm composition on C2C12 skeletal muscle cells' differentiation and viability was evaluated and quantified, pointing to give a reference for skeletal muscle regenerative potential in culture conditions that do not promote it. At this regard, our results validate PEM microstructured devices, to a greater extent for (PAH/PSS)₅-coated microgrooves, as biocompatible and innovative tools for tissue engineering applications and molecular dissection of events controlling C2C12 skeletal muscle regeneration without switching to their optimal differentiative culture media in vitro. PMID:22886558

  10. Sprouty-2 Overexpression in C2C12 Cells Confers Myogenic Differentiation Properties in the Presence of FGF2D⃞

    PubMed Central

    de Alvaro, Cristina; Martinez, Natalia; Rojas, Jose M.; Lorenzo, Margarita

    2005-01-01

    Myoblast C2C12 cells cultured in the presence of FGF2 actively proliferate and showed a differentiation-defective phenotype compared with cells cultured in low serum or in the presence of insulin. These FGF2 effects are associated with sustained activation of p44/p42-MAPK and lack of activation of AKT. Here we demonstrate that Sprouty-2, a protein involved in the negative feedback of receptor tyrosine kinase signaling, when stably overexpressed in C2C12 cells and in the presence of FGF2 produces growth arrest (precluding the expression of PCNA and the phosphorylation of retinoblastoma and inducing the expression of p21CIP) and myogenesis (multinucleated myotubes formation, induction of creatine kinase and expression of myosin heavy chain protein). These events were accompanied by repression of p44/p42-MAPK and activation of AKT. When C2C12 cells were stably transfected with a Sprouty-2 (Y55F) mutant defective in inhibiting p44/p42-MAPK activation by FGF, myoblasts in the presence of FGF continue to grow and completely fail to form myotubes. This work is the first evidence of the contribution of sprouty genes to myogenic differentiation in the presence of FGF2. PMID:16000370

  11. Response of C2C12 Myoblasts to Hypoxia: The Relative Roles of Glucose and Oxygen in Adaptive Cellular Metabolism

    PubMed Central

    Li, Wei; Hu, Zhen-Fu; Chen, Bin; Ni, Guo-Xin

    2013-01-01

    Background. Oxygen and glucose are two important nutrients for mammalian cell function. In this study, the effect of glucose and oxygen concentrations on C2C12 cellular metabolism was characterized with an emphasis on detecting whether cells show oxygen conformance (OC) in response to hypoxia. Methods. After C2C12 cells being cultured in the levels of glucose at 0.6 mM (LG), 5.6 mM (MG), or 23.3 mM(HG) under normoxic or hypoxic (1% oxygen) condition, cellular oxygen consumption, glucose consumption, lactate production, and metabolic status were determined. Short-term oxygen consumption was measured with a novel oxygen biosensor technique. Longer-term measurements were performed with standard glucose, lactate, and cell metabolism assays. Results. It was found that oxygen depletion in normoxia is dependent on the glucose concentration in the medium. Cellular glucose uptake and lactate production increased significantly in hypoxia than those in normoxia. In hypoxia the cellular response to the level of glucose was different to that in normoxia. The metabolic activities decreased while glucose concentration increased in normoxia, while in hypoxia, metabolic activity was reduced in LG and MG, but unchanged in HG condition. The OC phenomenon was not observed in the present study. Conclusions. Our findings suggested that a combination of low oxygen and low glucose damages the viability of C2C12 cells more seriously than low oxygen alone. In addition, when there is sufficient glucose, C2C12 cells will respond to hypoxia by upregulating anaerobic respiration, as shown by lactate production. PMID:24294605

  12. Investigation of interactions between poly-l-lysine-coated boron nitride nanotubes and C2C12 cells: up-take, cytocompatibility, and differentiation

    PubMed Central

    Ciofani, G; Ricotti, L; Danti, S; Moscato, S; Nesti, C; D’Alessandro, D; Dinucci, D; Chiellini, F; Pietrabissa, A; Petrini, M; Menciassi, A

    2010-01-01

    Boron nitride nanotubes (BNNTs) have generated considerable interest within the scientific community by virtue of their unique physical properties, which can be exploited in the biomedical field. In the present in vitro study, we investigated the interactions of poly-l-lysine-coated BNNTs with C2C12 cells, as a model of muscle cells, in terms of cytocompatibility and BNNT internalization. The latter was performed using both confocal and transmission electron microscopy. Finally, we investigated myoblast differentiation in the presence of BNNTs, evaluating the protein synthesis of differentiating cells, myotube formation, and expression of some constitutive myoblastic markers, such as MyoD and Cx43, by reverse transcription – polymerase chain reaction and Western blot analysis. We demonstrated that BNNTs are highly internalized by C2C12 cells, with neither adversely affecting C2C12 myoblast viability nor significantly interfering with myotube formation. PMID:20463944

  13. Mechanical-Stretch of C2C12 Myoblasts Inhibits Expression of Toll-Like Receptor 3 (TLR3) and of Autoantigens Associated with Inflammatory Myopathies

    PubMed Central

    Liu, Xinghui; Adriouch, Sahil; Liao, Hua

    2013-01-01

    Recent studies in patients suffering from inflammatory autoimmune myopathies suggested that moderate exercise training improves or at least stabilizes muscle strength and function without inducing disease flares. However, the precise mechanisms involved in this beneficial effect have not been extensively studied. Here we used a model of in vitro stretched C2C12 myoblasts to investigate whether mechanical stretch could influence myoblast proliferation or the expression of proinflammatory genes. Our results demonstrated that cyclic mechanical stretch stimulated C2C12 cell cycling and early up-regulation of the molecules related to mechanical-stretch pathway in muscle (calmodulin, nNOS, MMP-2, HGF and c-Met). Unexpectedly, mechanical stretch also reduced the expression of TLR3 and of proteins known to represent autoantigens in inflammatory autoimmune myopathies (Mi-2, HRS, DNA-PKcs, U1-70). Interestingly, stimulation or inhibition of calmodulin, NOS, HGF or c-Met molecules in vitro affected the expression of autoantigens and TLR3 proteins confirming their role in the inhibition of autoantigens and TLR3 during mechanical stretch. Overall, this study demonstrates for the first time that mechanical stretch could be beneficial by reducing expression of muscle autoantigens and of pro-inflammatory TLR3 and may provide new insight to understand how resistance training can reduce the symptoms associated with myositis. PMID:24224022

  14. Effect of beta-alanyl-L-histidinato zinc on the differentiation of C2C12 cells.

    PubMed

    Takada, Tsuyoshi; Suzuki, Naoto; Ito-Kato, Emi; Noguchi, Yoshihiro; Ito, Mitsuyasu; Maeno, Masao; Otsuka, Kichibee

    2004-12-17

    Although beta-alanyl-L-histidinato zinc (AHZ) can promote osteoblast differentiation, the molecular mechanism responsible is not fully understood. The purpose of this study was to determine the effect of AHZ on undifferentiating mesenchymal cells. C2C12, a typical pluripotential mesenchymal cell line, was used. The cells were cultured in 5% serum-containing medium to induce differentiation, either with or without the addition of AHZ. Cell lineage was determined by immunostaining of type II myosin heavy chains, alkaline phosphatase (ALPase) activity, mRNA expression of cellular phenotype-specific markers using semi-quantitative reverse transcriptase-polymerase chain reaction, and core binding factor alpha1/runt-related transcription factor-2 (Cbfa1/Runx2) protein synthesis using Western blot analysis. C2C12 cells cultured in the presence of AHZ were strongly inhibited from developing into myoblasts, and showed high ALPase activity that was approximately double that in the vehicle. The expression of mRNA for Cbfa1/Runx2, ALPase, Sox9 and type X collagen was increased markedly by the AHZ-stimulated medium, whereas that of desmin and MyoD mRNA was drastically decreased. AHZ increased Cbfa1/Runx2 protein expression substantially. These results provide clear evidence that AHZ converts the differentiation pathway of C2C12 cells to the osteoblast and/or chondroblast lineage. PMID:15556164

  15. Graphene oxide-stimulated myogenic differentiation of C2C12 cells on PLGA/RGD peptide nanofiber matrices

    NASA Astrophysics Data System (ADS)

    Shin, Y. C.; Lee, J. H.; Kim, M. J.; Hong, S. W.; Oh, J.-W.; Kim, C.-S.; Kim, B.; Hyun, J. K.; Kim, Y.-J.; Han, D.-W.

    2015-07-01

    During the last decade, much attention has been paid to graphene-based nanomaterials because they are considered as potential candidates for biomedical applications such as scaffolds for tissue engineering and substrates for the differentiation of stem cells. Until now, electrospun matrices composed of various biodegradable copolymers have been extensively developed for tissue engineering and regeneration; however, their use in combination with graphene oxide (GO) is novel and challenging. In this study, nanofiber matrices composed of poly(lactic-co-glycolic acid, PLGA) and M13 phage with RGD peptide displayed on its surface (RGD peptide-M13 phage) were prepared as extracellular matrix (ECM)-mimicking substrates. RGD peptide is a tripeptide (Arg-Gly-Asp) found on ECM proteins that promotes various cellular behaviors. The physicochemical properties of PLGA and RGD peptide-M13 phage (PLGA/RGD peptide) nanofiber matrices were characterized by atomic force microscopy, Fourier-transform infrared spectroscopy and thermogravimetric analysis. In addition, the growth of C2C12 mouse myoblasts on the PLGA/RGD peptide matrices was examined by measuring the metabolic activity. Moreover, the differentiation of C2C12 mouse myoblasts on the matrices when treated with GO was evaluated. The cellular behaviors, including growth and differentiation of C2C12 mouse myoblasts, were substantially enhanced on the PLGA/RGD peptide nanofiber matrices when treated with GO. Overall, these findings suggest that the PLGA/RGD peptide nanofiber matrices can be used in combination with GO as a novel strategy for skeletal tissue regeneration.

  16. Identification of novel GH-regulated genes in C2C12 cells.

    PubMed

    Resmini, E; Morte, B; Sorianello, E; Gallardo, E; de Luna, N; Illa, I; Zorzano, A; Bernal, J; Webb, S M

    2011-12-01

    Growth hormone (GH) is the main regulator of longitudinal growth before puberty, and treatment with human recombinant (rh) GH can increase muscle strength. Nevertheless, molecular mechanisms responsible remain mostly unknown. Many physiological effects of GH require hormone-mediated changes in gene expression. In an attempt to gain insight into the mechanism of GH action in muscle cells we evaluated the effects of rhGH on gene expression profile in a murine skeletal muscle cell line C2C12. The objective of the work was to identify changes in gene expression in the murine skeletal muscle cell line C2C12 after rGH treatment using microarray assays. C2C12 murine skeletal muscle cell cultures were differentiated during 4 days. After 16 h growing in serum-free medium, C2C12 myotubes were stimulated during 6 h with 500 ng/ml rhGH. Four independent sets of experiments were performed to identify GH-regulated genes. Total RNA was isolated and subjected to analysis. To validate changes candidate genes were analyzed by real-time quantitative polymerase chain reaction. One hundred and fifty-four differentially expressed genes were identified; 90 upregulated and 64 downregulated. Many had not been previously identified as GH-responsive. Real-time PCR in biological replicates confirmed the effect of rGH on 15 genes: Cish, Serpina3g, Socs2, Bmp4, Tnfrsf11b, Rgs2, Tgfbr3, Ugdh, Npy1r, Gbp6, Tgfbi, Tgtp, Btc, Clec3b, and Bcl6. This study shows modifications in the gene expression profile of the C2C12 cell line after rhGH exposure. In vitro and gene function analysis revealed genes involved in skeletal and muscle system as well as cardiovascular system development and function. PMID:22072432

  17. The Myoblast C2C12 Transfected with Mutant Valosin-Containing Protein Exhibits Delayed Stress Granule Resolution on Oxidative Stress.

    PubMed

    Rodriguez-Ortiz, Carlos J; Flores, Julio C; Valenzuela, Joanna A; Rodriguez, Gema J; Zumkehr, Joannee; Tran, Diana N; Kimonis, Virginia E; Kitazawa, Masashi

    2016-06-01

    Valosin-containing protein (VCP) mutations cause inclusion body myopathy with Paget disease and frontotemporal dementia. However, the mechanisms by which mutant VCP triggers degeneration remain unknown. Here, we investigated the role of VCP in cellular stress and found that the oxidative stressor arsenite and heat shock-activated stress responses evident by T-intracellular antigen-1-positive granules in C2C12 myoblasts. Granules also contained phosphorylated transactive response DNA-binding protein 43, ubiquitin, microtubule-associated protein 1A/1B light chains 3, and lysosome-associated membrane protein 2. Mutant VCP produced more T-intracellular antigen-1-positive granules than wild-type in the postarsenite exposure period. Similar results were observed for other granule components, indicating that mutant VCP delayed clearance of stress granules. Furthermore, stress granule resolution was impaired on differentiated C2C12 cells expressing mutant VCP. To address whether mutant VCP triggers dysregulation of the stress granule pathway in vivo, we analyzed skeletal muscle of aged VCPR155H-knockin mice. We found significant increments in oxidated proteins but observed the stress granule markers RasGAP SH3-binding protein and phosphorylated eukaryotic translation initiation factor 2α unchanged. The mixed results indicate that mutant VCP together with aging lead to higher oxidative stress in skeletal muscle but were insufficient to disrupt the stress granule pathway. Our findings support that deficiencies in recovery from stressors may result in attenuated tolerance to stress that could trigger muscle degeneration. PMID:27106764

  18. Cobalt triggers necrotic cell death and atrophy in skeletal C2C12 myotubes

    SciTech Connect

    Rovetta, Francesca; Stacchiotti, Alessandra; Faggi, Fiorella; Catalani, Simona; Apostoli, Pietro; Fanzani, Alessandro; Aleo, Maria Francesca

    2013-09-01

    Severe poisoning has recently been diagnosed in humans having hip implants composed of cobalt–chrome alloys due to the release of particulate wear debris on polyethylene and ceramic implants which stimulates macrophagic infiltration and destroys bone and soft tissue, leading to neurological, sensorial and muscular impairments. Consistent with this premise, in this study, we focused on the mechanisms underlying the toxicity of Co(II) ions on skeletal muscle using mouse skeletal C2C12 myotubes as an in vitro model. As detected using propidium iodide incorporation, increasing CoCl{sub 2} doses (from 5 to 200 μM) affected the viability of C2C12 myotubes, mainly by cell necrosis, which was attenuated by necrostatin-1, an inhibitor of the necroptotic branch of the death domain receptor signaling pathway. On the other hand, apoptosis was hardly detectable as supported by the lack of caspase-3 and -8 activation, the latter resulting in only faint activation after exposure to higher CoCl{sub 2} doses for prolonged time points. Furthermore, CoCl{sub 2} treatment resulted in atrophy of the C2C12 myotubes which was characterized by the increased expression of HSP25 and GRP94 stress proteins and other typical 'pro-atrophic molecular hallmarks, such as early activation of the NF-kB pathway and down-regulation of AKT phosphorylation, followed by the activation of the proteasome and autophagy systems. Overall, these results suggested that cobalt may impact skeletal muscle homeostasis as an inducer of cell necrosis and myofiber atrophy. - Highlights: • The effects of cobalt on muscle myofibers in vitro were investigated. • Cobalt treatment mainly causes cell necrosis in skeletal C2C12 myotubes. • Cobalt impacts the PI3K/AKT and NFkB pathways and induces cell stress markers. • Cobalt induces atrophy of C2C12 myotubes through the activation of proteasome and autophagy systems. • Co treatment triggers NF-kB and PI3K/AKT pathways in C2C12 myotubes.

  19. Leptin rapidly activates PPARs in C2C12 muscle cells

    SciTech Connect

    Bendinelli, Paola; Piccoletti, Roberta . E-mail: Roberta.Piccoletti@unimi.it; Maroni, Paola

    2005-07-08

    Experimental evidence suggests that leptin operates on the tissues, including skeletal muscle, also by modulating gene expression. Using electrophoretic mobility shift assays, we have shown that physiological doses of leptin promptly increase the binding of C2C12 cell nuclear extracts to peroxisome proliferator-activated receptor (PPAR) response elements in oligonucleotide probes and that all three PPAR isoforms participate in DNA-binding complexes. We pre-treated C2C12 cells with AACOCF{sub 3}, a specific inhibitor of cytosolic phospholipase A{sub 2} (cPLA{sub 2}), an enzyme that supplies ligands to PPARs, and found that it abrogates leptin-induced PPAR DNA-binding activity. Leptin treatment significantly increased cPLA{sub 2} activity, evaluated as the release of [{sup 3}H]arachidonic acid from pre-labelled C2C12 cells, as well as phosphorylation. Further, using MEK1 inhibitor PD-98059 we showed that leptin activates cPLA{sub 2} through ERK induction. These results support a direct effect of leptin on skeletal muscle cells, and suggest that the hormone may modulate muscle transcription also by precocious activation of PPARs through ERK-cPLA{sub 2} pathway.

  20. Protein O-Fucosyltransferase 1 Expression Impacts Myogenic C2C12 Cell Commitment via the Notch Signaling Pathway

    PubMed Central

    Der Vartanian, Audrey; Audfray, Aymeric; Al Jaam, Bilal; Janot, Mathilde; Legardinier, Sébastien; Maftah, Abderrahman

    2014-01-01

    The Notch signaling pathway plays a crucial role in skeletal muscle regeneration in mammals by controlling the transition of satellite cells from quiescence to an activated state, their proliferation, and their commitment toward myotubes or self-renewal. O-fucosylation on Notch receptor epidermal growth factor (EGF)-like repeats is catalyzed by the protein O-fucosyltransferase 1 (Pofut1) and primarily controls Notch interaction with its ligands. To approach the role of O-fucosylation in myogenesis, we analyzed a murine myoblastic C2C12 cell line downregulated for Pofut1 expression by short hairpin RNA (shRNA) inhibition during the time course of differentiation. Knockdown of Pofut1 affected the signaling pathway activation by a reduction of the amount of cleaved Notch intracellular domain and a decrease in downstream Notch target gene expression. Depletion in Pax7+/MyoD− cells and earlier myogenic program entrance were observed, leading to an increase in myotube quantity with a small number of nuclei, reflecting fusion defects. The rescue of Pofut1 expression in knockdown cells restored Notch signaling activation and a normal course in C2C12 differentiation. Our results establish the critical role of Pofut1 on Notch pathway activation during myogenic differentiation. PMID:25384974

  1. Effects of 1,25(OH)2 D3 and 25(OH)D3 on C2C12 Myoblast Proliferation, Differentiation, and Myotube Hypertrophy.

    PubMed

    van der Meijden, K; Bravenboer, N; Dirks, N F; Heijboer, A C; den Heijer, M; de Wit, G M J; Offringa, C; Lips, P; Jaspers, R T

    2016-11-01

    An adequate vitamin D status is essential to optimize muscle strength. However, whether vitamin D directly reduces muscle fiber atrophy or stimulates muscle fiber hypertrophy remains subject of debate. A mechanism that may affect the role of vitamin D in the regulation of muscle fiber size is the local conversion of 25(OH)D to 1,25(OH)2 D by 1α-hydroxylase. Therefore, we investigated in a murine C2C12 myoblast culture whether both 1,25(OH)2 D3 and 25(OH)D3 affect myoblast proliferation, differentiation, and myotube size and whether these cells are able to metabolize 25(OH)D3 and 1,25(OH)2 D3 . We show that myoblasts not only responded to 1,25(OH)2 D3 , but also to the precursor 25(OH)D3 by increasing their VDR mRNA expression and reducing their proliferation. In differentiating myoblasts and myotubes 1,25(OH)2 D3 as well as 25(OH)D3 stimulated VDR mRNA expression and in myotubes 1,25(OH)2 D3 also stimulated MHC mRNA expression. However, this occurred without notable effects on myotube size. Moreover, no effects on the Akt/mTOR signaling pathway as well as MyoD and myogenin mRNA levels were observed. Interestingly, both myoblasts and myotubes expressed CYP27B1 and CYP24 mRNA which are required for vitamin D3 metabolism. Although 1α-hydroxylase activity could not be shown in myotubes, after treatment with 1,25(OH)2 D3 or 25(OH)D3 myotubes showed strongly elevated CYP24 mRNA levels compared to untreated cells. Moreover, myotubes were able to convert 25(OH)D3 to 24R,25(OH)2 D3 which may play a role in myoblast proliferation and differentiation. These data suggest that skeletal muscle is not only a direct target for vitamin D3 metabolites, but is also able to metabolize 25(OH)D3 and 1,25(OH)2 D3 . J. Cell. Physiol. 231: 2517-2528, 2016. © 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc. PMID:27018098

  2. Methylcobalamin promotes proliferation and migration and inhibits apoptosis of C2C12 cells via the Erk1/2 signaling pathway

    SciTech Connect

    Okamoto, Michio; Tanaka, Hiroyuki; Okada, Kiyoshi; Kuroda, Yusuke; Nishimoto, Shunsuke; Murase, Tsuyoshi; Yoshikawa, Hideki

    2014-01-17

    Highlights: •Methylcobalamin activated the Erk1/2 signaling pathway in C2C12 cells. •Methylcobalamin promoted the proliferation and migration in C2C12 cells. •C2C12 cell apoptosis during differentiation was inhibited by methylcobalamin. -- Abstract: Methylcobalamin (MeCbl) is a vitamin B12 analog that has some positive effects on peripheral nervous disorders. Although some previous studies revealed the effects of MeCbl on neurons, its effect on the muscle, which is the final target of motoneuron axons, remains to be elucidated. This study aimed to determine the effect of MeCbl on the muscle. We found that MeCbl promoted the proliferation and migration of C2C12 myoblasts in vitro and that these effects are mediated by the Erk1/2 signaling pathway without affecting the activity of the Akt signaling pathway. We also demonstrated that MeCbl inhibits C2C12 cell apoptosis during differentiation. Our results suggest that MeCbl has beneficial effects on the muscle in vitro. MeCbl administration may provide a novel therapeutic approach for muscle injury or degenerating muscle after denervation.

  3. PUGNAc induces protein ubiquitination in C2C12 myotube cells.

    PubMed

    Park, Ja-Hye; Lee, Jeong-Eun; Moon, Pyong-Gon; Baek, Moon-Chang

    2015-12-01

    O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) regulates many cellular processes including the cell cycle, cell signaling, and protein trafficking. Dysregulation of O-GlcNAcylation may be involved in the development of insulin resistance and type 2 diabetes. Therefore, it is necessary to identify cellular proteins that are induced by elevated O-GlcNAcylation. Here, using adenosine 5'-triphosphate affinity chromatography, we employed a proteomic approach in order to identify differentially expressed proteins in response to treatment with the O-GlcNAcase inhibitor, O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino-N-phenylcarbamate (PUGNAc), in mouse C2C12 myotube cells. Among 205 selected genes, we identified 68 nucleotide-binding proteins, 14 proteins that have adenosinetriphosphatase activity, and 10 proteins with ligase activity. Upregulation of proteins, including ubiquitin-activating enzyme E1, proteasome subunit 20S, cullin-associated NEDD8-dissociated protein 1, ezrin, and downregulation of the protein nucleoside diphosphate kinase B, were confirmed by western blot analysis. In particular, we found that the protein ubiquitination level in C2C12 cells was increased by PUGNAc treatment. This is the first report of quantitative proteomic profiles of myotube cells after treatment with PUGNAc, and our results demonstrate the potential to enhance understanding of the relationship between insulin resistance, O-GlcNAc, and PUGNAc in the future. PMID:26531776

  4. Phospho-tyrosine phosphatase inhibitor Bpv(Hopic) enhances C2C12 myoblast migration in vitro. Requirement of PI3K/AKT and MAPK/ERK pathways.

    PubMed

    Dimchev, Georgi A; Al-Shanti, Nasser; Stewart, Claire E

    2013-05-01

    Muscle progenitor cell migration is an important step in skeletal muscle myogenesis and regeneration. Migration is required for muscle precursors to reach the site of damage and for the alignment of myoblasts prior to their fusion, which ultimately contributes to muscle regeneration. Limited spreading and migration of donor myoblasts are reported problems of myoblast transfer therapy, a proposed therapeutic strategy for Duchenne Muscular Dystrophy, warranting further investigation into different approaches for improving the motility and homing of these cells. In this article, the effect of protein phospho-tyrosine phosphatase and PTEN inhibitor BpV(Hopic) on C2C12 myoblast migration and differentiation was investigated. Applying a wound healing migration model, it is reported that 1 μM BpV(Hopic) is capable of enhancing the migration of C2C12 myoblasts by approximately 40 % in the presence of myotube conditioned media, without significantly affecting their capacity to differentiate and fuse into multinucleated myotubes. Improved migration of myoblasts treated with 1 μM BpV(Hopic) was associated with activation of PI3K/AKT and MAPK/ERK pathways, while their inhibition with either LY294002 or UO126, respectively, resulted in a reduction of C2C12 migration back to control levels. These results propose that bisperoxovanadium compounds may be considered as potential tools for enhancing the migration of myoblasts, while not reducing their differentiation capacity and underpin the importance of PI3K/AKT and MAPK/ERK signalling for the process of myogenic progenitor migration. PMID:23553034

  5. Cultured C2C12 cell lines as a model for assessment of bacterial attachment to bovine primary muscle cells.

    PubMed

    Zulfakar, Siti Shahara; White, Jason D; Ross, Tom; Tamplin, Mark L

    2013-06-01

    The mechanisms of bacterial attachment to meat tissues need to be understood to enhance meat safety interventions. However, little is known about attachment of foodborne pathogens to meat muscle cells. In this study, attachment of six Escherichia coli and two Salmonella strains to primary bovine muscle cells and a cultured muscle cell line, C2C12, was measured, including the effect of temperature. At 37°C, all but one strain (EC623) attached to C2C12 cells, whereas only five of eight strains (M23Sr, H10407, EC473, Sal1729a and Sal691) attached to primary cells. At 10 °C, two strains (H10407 and EC473) attached to C2C12 cells, compared to four strains (M23Sr, EC614, H10407 and Sal1729a) of primary cells. Comparing all strains at both temperatures, EC614 displayed the highest CFU per C2C12 cell (4.60±2.02CFU/muscle cell at 37 °C), whereas greater numbers of M23Sr attached per primary cell (51.88±39.43CFU/muscle cell at 37 °C). This study indicates that primary bovine muscle cells may provide a more relevant model system to study bacterial attachment to beef carcasses compared to cell lines such as C2C12. PMID:23501253

  6. Metalloprotease-disintegrin ADAM 12 binds to the SH3 domain of Src and activates Src tyrosine kinase in C2C12 cells.

    PubMed Central

    Kang, Q; Cao, Y; Zolkiewska, A

    2000-01-01

    ADAM 12, a member of the ADAM (protein containing a disintegrin and metalloprotease) family of metalloprotease-disintegrins, has been implicated in the differentiation and fusion of skeletal myoblasts, and its expression is dramatically up-regulated in many cancer cells. While the extracellular portion of ADAM 12 contains an active metalloprotease and a cell-adhesion domain, the function of the cytoplasmic portion is much less clear. In this paper, we show that the cytoplasmic tail of ADAM 12 mediates interactions with the non-receptor protein tyrosine kinase Src. The interaction is direct, specific, and involves the N-terminal proline-rich region in the cytoplasmic tail of ADAM 12 and the Src homology 3 (SH3) domain of Src. ADAM 12 and Src co-immunoprecipitate from transfected C2C12 cells, suggesting that the two proteins form a complex in vivo. Co-expression of Src and ADAM 12, but not ADAM 9, in C2C12 cells results in activation of the recombinant Src. Moreover, endogenous ADAM 12 associates with and activates endogenous Src in differentiating C2C12 cells. These results indicate that ADAM 12 may mediate adhesion-induced signalling during myoblast differentiation. PMID:11104699

  7. Potentiated Osteoinductivity via Cotransfection with BMP-2 and VEGF Genes in Microencapsulated C2C12 Cells

    PubMed Central

    Shen, Yang; Qiao, Han; Fan, Qiming; Zhang, Shuhong; Tang, Tingting

    2015-01-01

    Microcapsules with entrapped cells hold great promise for repairing bone defects. Unfortunately, the osteoinductivity of microcapsules has been restricted by many factors, among which the deficiency of functional proteins is a significant priority. We potentiated the osteoinductivity of microencapsulated cells via cotransfection with BMP-2 and VEGF genes. Various tissue-derived mesenchymal stem cells and cell lines were compared for BMP-2 and VEGF cotransfection. Ethidium bromide (EB)/Calcein AM staining revealed that all of the cell categories could survive for 4 weeks after microencapsulation. An ELISA assay indicated that all microencapsulated BMP-2 or VEGF transfected cells could secrete gene products constitutively for 1 month. Particularly, the recombinant microencapsulated C2C12 cells released the most desirable level of BMP-2 and VEGF. Further experiments demonstrated that microencapsulated BMP-2 and VEGF cotransfected C2C12 cells generated both BMP-2 and VEGF for 4 weeks. Additionally, the cotransfection of BMP-2 and VEGF in microencapsulated C2C12 cells showed a stronger osteogenic induction against BMSCs than individual BMP-2-transfected microencapsulated C2C12 cells. These results demonstrated that the cotransfection of BMP-2 and VEGF into microencapsulated C2C12 cells is of potent utility for the potentiation of bone regeneration, which would provide a promising clinical strategy for cellular therapy in bone defects. PMID:26451370

  8. Rotenone induces reductive stress and triacylglycerol deposition in C2C12 cells.

    PubMed

    He, Quan; Wang, Miao; Petucci, Christopher; Gardell, Stephen J; Han, Xianlin

    2013-12-01

    Environmental rotenone is associated with Parkinson's disease due to its inhibitory property to the complex I of mitochondrial respiration chain. Although environmental pollution has been postulated as a causal factor for the increasing prevalence of obesity, the role of rotenone in the pathogenesis of obesity has not been studied. We employed muscle-derived cell C2C12 as a model and shotgun lipidomics as a tool for lipid analysis and found that treatment with rotenone led to the profound deposition of intracellular triacylglycerol (TAG) in a time- and dose-dependent fashion. The TAG deposition resulted from complex I inhibition. Further studies revealed that rotenone induced mitochondrial stress as shown by decreased mitochondrial oxygen consumption rate, increased NADH/NAD+ ratio (i.e., reductive stress) and mitochondrial metabolites. We demonstrated that rotenone activated fatty acid de novo synthesis and TAG synthesis and ultimately resulted in intracellular TAG deposition. These studies suggested that increased mitochondrial stresses might be an underlying mechanism responsible for TAG accumulation manifest in obesity. PMID:24104397

  9. Leptin impairs myogenesis in C2C12 cells through JAK/STAT and MEK signaling pathways.

    PubMed

    Pijet, Maja; Pijet, Barbara; Litwiniuk, Anna; Pajak, Beata; Gajkowska, Barbara; Orzechowski, Arkadiusz

    2013-02-01

    Reduced lean body mass in genetically obese (ob/ob) or anorectic/cachectic subjects prompted us to verify the hypothesis whether leptin, white adipose tissue cytokine, might be a negative organizer of myogenesis. Recombinant leptin (100 ng/mL) stimulated mitogenesis together with the raise in T(202/)Y(204)P-ERK1/2 protein expression. Concomitantly, it impaired cell viability and muscle fiber formation from C2C12 mouse myoblasts. Detailed acute and chronic studies with the use of metabolic inhibitors revealed that both JAK/STAT3 and MEK/MAPK but not PI3-K/AKT/GSK-3β signaling pathways were activated by leptin, and that STAT3 (Y(705)P-STAT3) and MEK (T(202/)Y(204)P-ERK1/2) mediate these effects. In contrary, insulin evoked PI3-K-dependent phosphorylation of AKT (S(473)) and GSK-3β (S(9)) and insulin surpassed leptin-dependent inhibition of myogenic differentiation in PI3-K-dependent manner. GSK-3β seems to play dual role in muscle development. Insulin-dependent effect on GSK-3β (S(9)P-GSK-3β) led to accelerated myotube construction. In contrary, leptin through MEK-dependent manner caused GSK-3β phosphorylation (Y(216)P-GSK-3β) with resultant drop in myoblast fusion. Summing up, partially opposite effects of insulin and leptin on skeletal muscle growth emphasize the importance of interplay between these cytokines. They determine how muscle mass is gained or lost. PMID:23201486

  10. Methylcobalamin promotes proliferation and migration and inhibits apoptosis of C2C12 cells via the Erk1/2 signaling pathway.

    PubMed

    Okamoto, Michio; Tanaka, Hiroyuki; Okada, Kiyoshi; Kuroda, Yusuke; Nishimoto, Shunsuke; Murase, Tsuyoshi; Yoshikawa, Hideki

    2014-01-17

    Methylcobalamin (MeCbl) is a vitamin B12 analog that has some positive effects on peripheral nervous disorders. Although some previous studies revealed the effects of MeCbl on neurons, its effect on the muscle, which is the final target of motoneuron axons, remains to be elucidated. This study aimed to determine the effect of MeCbl on the muscle. We found that MeCbl promoted the proliferation and migration of C2C12 myoblasts in vitro and that these effects are mediated by the Erk1/2 signaling pathway without affecting the activity of the Akt signaling pathway. We also demonstrated that MeCbl inhibits C2C12 cell apoptosis during differentiation. Our results suggest that MeCbl has beneficial effects on the muscle in vitro. MeCbl administration may provide a novel therapeutic approach for muscle injury or degenerating muscle after denervation. PMID:24342621

  11. Three-dimensional co-culture of C2C12/PC12 cells improves skeletal muscle tissue formation and function.

    PubMed

    Ostrovidov, Serge; Ahadian, Samad; Ramon-Azcon, Javier; Hosseini, Vahid; Fujie, Toshinori; Parthiban, S Prakash; Shiku, Hitoshi; Matsue, Tomokazu; Kaji, Hirokazu; Ramalingam, Murugan; Bae, Hojae; Khademhosseini, Ali

    2014-11-13

    Engineered muscle tissues demonstrate properties far from native muscle tissue. Therefore, fabrication of muscle tissues with enhanced functionalities is required to enable their use in various applications. To improve the formation of mature muscle tissues with higher functionalities, we co-cultured C2C12 myoblasts and PC12 neural cells. While alignment of the myoblasts was obtained by culturing the cells in micropatterned methacrylated gelatin (GelMA) hydrogels, we studied the effects of the neural cells (PC12) on the formation and maturation of muscle tissues. Myoblasts cultured in the presence of neural cells showed improved differentiation, with enhanced myotube formation. Myotube alignment, length and coverage area were increased. In addition, the mRNA expression of muscle differentiation markers (Myf-5, myogenin, Mefc2, MLP), muscle maturation markers (MHC-IId/x, MHC-IIa, MHC-IIb, MHC-pn, α-actinin, sarcomeric actinin) and the neuromuscular markers (AChE, AChR-ε) were also upregulated. All these observations were amplified after further muscle tissue maturation under electrical stimulation. Our data suggest a synergistic effect on the C2C12 differentiation induced by PC12 cells, which could be useful for creating improved muscle tissue. Copyright © 2014 John Wiley & Sons, Ltd. PMID:25393357

  12. MicroRNA-27a is induced by leucine and contributes to leucine-induced proliferation promotion in C2C12 cells.

    PubMed

    Chen, Xiaoling; Huang, Zhiqing; Chen, Daiwen; Yang, Ting; Liu, Guangmang

    2013-01-01

    Leucine, a branched chain amino acid, is well known to stimulate protein synthesis in skeletal muscle. However, the role of leucine in myoblast proliferation remains unclear. In this study, we found that leucine could promote proliferation of C2C12 cells. Moreover, expressions of miR-27a and myostatin (a bona fide target of miR-27a) were upregulated and downregulated, respectively, following leucine treatment. We also found that miR-27a loss-of-function by transfection of a miR-27a inhibitor suppressed the promotion of myoblast proliferation caused by leucine. Our results suggest that miR-27a is induced by leucine and contributes to leucine-induced proliferation promotion of myoblast. PMID:23880856

  13. Fad24, a Positive Regulator of Adipogenesis, Is Required for S Phase Re-entry of C2C12 Myoblasts Arrested in G0 Phase and Involved in p27(Kip1) Expression at the Protein Level.

    PubMed

    Ochiai, Natsuki; Nishizuka, Makoto; Osada, Shigehiro; Imagawa, Masayoshi

    2016-05-01

    Factor for adipocyte differentiation 24 (fad24) is a positive regulator of adipogenesis. We previously found that human fad24 is abundantly expressed in skeletal muscle. However, the function of fad24 in skeletal muscle remains largely unknown. Because skeletal muscle is a highly regenerative tissue, we focused on the function of fad24 in skeletal muscle regeneration. In this paper, we investigated the role of fad24 in the cell cycle re-entry of quiescent C2C12 myoblasts-mimicked satellite cells. The expression levels of fad24 and histone acetyltransferase binding to ORC1 (hbo1), a FAD24-interacting factor, were elevated at the early phase of the regeneration process in response to cardiotoxin-induced muscle injury. The knockdown of fad24 inhibited the proliferation of quiescent myoblasts, whereas fad24 knockdown did not affect differentiation. S phase entry following serum activation is abrogated by fad24 knockdown in quiescent cells. Furthermore, fad24 knockdown cells show a marked accumulation of p27(Kip1) protein. These results suggest that fad24 may have an important role in the S phase re-entry of quiescent C2C12 cells through the regulation of p27(Kip1) at the protein level. PMID:26902224

  14. ANKRD1 modulates inflammatory responses in C2C12 myoblasts through feedback inhibition of NF-κB signaling activity

    SciTech Connect

    Liu, Xin-Hua; Bauman, William A.; Cardozo, Christopher

    2015-08-14

    Transcription factors of the nuclear factor-kappa B (NF-κB) family play a pivotal role in inflammation, immunity and cell survival responses. Recent studies revealed that NF-κB also regulates the processes of muscle atrophy. NF-κB activity is regulated by various factors, including ankyrin repeat domain 2 (AnkrD2), which belongs to the muscle ankyrin repeat protein family. Another member of this family, AnkrD1 is also a transcriptional effector. The expression levels of AnkrD1 are highly upregulated in denervated skeletal muscle, suggesting an involvement of AnkrD1 in NF-κB mediated cellular responses to paralysis. However, the molecular mechanism underlying the interactive role of AnkrD1 in NF-κB mediated cellular responses is not well understood. In the current study, we examined the effect of AnkrD1 on NF-κB activity and determined the interactions between AnkrD1 expression and NF-κB signaling induced by TNFα in differentiating C2C12 myoblasts. TNFα upregulated AnkrD1 mRNA and protein levels. AnkrD1-siRNA significantly increased TNFα-induced transcriptional activation of NF-κB, whereas overexpression of AnkrD1 inhibited TNFα-induced NF-κB activity. Co-immunoprecipitation studies demonstrated that AnkrD1 was able to bind p50 subunit of NF-κB and vice versa. Finally, CHIP assays revealed that AnkrD1 bound chromatin at a NF-κB binding site in the AnrkD2 promoter and required NF-κB to do so. These results provide evidence of signaling integration between AnkrD1 and NF-κB pathways, and suggest a novel anti-inflammatory role of AnkrD1 through feedback inhibition of NF-κB transcriptional activity by which AnkrD1 modulates the balance between physiological and pathological inflammatory responses in skeletal muscle. - Highlights: • AnkrD1 is upregulated by TNFα and represses NF-κB-induced transcriptional activity. • AnkrD1 binds to p50 subunit of NF-κB and is recruited to NF-κB bound to chromatin. • AnkrD1 mediates a feed-back inhibitory loop

  15. ANKRD1 modulates inflammatory responses in C2C12 myoblasts through feedback inhibition of NF-κB signaling activity.

    PubMed

    Liu, Xin-Hua; Bauman, William A; Cardozo, Christopher

    2015-08-14

    Transcription factors of the nuclear factor-kappa B (NF-κB) family play a pivotal role in inflammation, immunity and cell survival responses. Recent studies revealed that NF-κB also regulates the processes of muscle atrophy. NF-κB activity is regulated by various factors, including ankyrin repeat domain 2 (AnkrD2), which belongs to the muscle ankyrin repeat protein family. Another member of this family, AnkrD1 is also a transcriptional effector. The expression levels of AnkrD1 are highly upregulated in denervated skeletal muscle, suggesting an involvement of AnkrD1 in NF-κB mediated cellular responses to paralysis. However, the molecular mechanism underlying the interactive role of AnkrD1 in NF-κB mediated cellular responses is not well understood. In the current study, we examined the effect of AnkrD1 on NF-κB activity and determined the interactions between AnkrD1 expression and NF-κB signaling induced by TNFα in differentiating C2C12 myoblasts. TNFα upregulated AnkrD1 mRNA and protein levels. AnkrD1-siRNA significantly increased TNFα-induced transcriptional activation of NF-κB, whereas overexpression of AnkrD1 inhibited TNFα-induced NF-κB activity. Co-immunoprecipitation studies demonstrated that AnkrD1 was able to bind p50 subunit of NF-κB and vice versa. Finally, CHIP assays revealed that AnkrD1 bound chromatin at a NF-κB binding site in the AnrkD2 promoter and required NF-κB to do so. These results provide evidence of signaling integration between AnkrD1 and NF-κB pathways, and suggest a novel anti-inflammatory role of AnkrD1 through feedback inhibition of NF-κB transcriptional activity by which AnkrD1 modulates the balance between physiological and pathological inflammatory responses in skeletal muscle. PMID:26102030

  16. Cartilage-derived morphogenetic proteins enhance the osteogenic protein-1-induced osteoblastic cell differentiation of C2C12 cells.

    PubMed

    Yeh, Lee-Chuan C; Tsai, Alicia D; Zavala, Michelle C; Lee, John C

    2004-12-01

    Previous studies have shown that osteogenic protein-1 (OP-1; also known as BMP-7) induces differentiation of the pluripotent mesenchymal cell line C2C12 into osteoblastic cells. OP-1 also alters the steady-state levels of messenger RNA (mRNA) encoding for the cartilage-derived morphogenetic proteins (CDMPs) in C2C12 cells. In the present study, the effects of exogenous CDMPs on bone cell differentiation induced by OP-1 in C2C12 cells were examined. Exogenous CDMP-1, -2, and -3 synergistically and dose-dependently enhanced OP-1 action in stimulating alkaline phosphatase (AP) activity and osteocalcin (OC) mRNA expression. AP staining studies revealed that the combination of OP-1 and CDMP enhanced OP-1 action by stimulating those cells that had responded to OP-1 and not by activating additional cells. The combination did not change the mRNA expression of the BMPs and their receptors. CDMP-1 enhanced the suppression of the OP-1-induced expression of the myogeneic differentiation regulator MyoD. CDMP-1 and OP-1 alone stimulated Smad5 protein expression, but the combination of OP-1 and CDMP-1 stimulated synergistically Smad5 protein expression. Thus, one mechanism of the observed synergy involved enhancement of the induced Smad5 protein expression. At the same protein concentration, CDMP-1 is most potent in enhancing OP-1 activity in inducing osteoblastic cell differentiation of C2C12 cells. CDMP-3 is about 80% as potent as CDMP-1, and CDMP-2 is the least potent (about 50% of CDMP-1). PMID:15389555

  17. Glutathione Depletion Impairs Myogenic Differentiation of Murine Skeletal Muscle C2C12 Cells through Sustained NF-κB Activation

    PubMed Central

    Ardite, Esther; Albert Barbera, Joan; Roca, Josep; Fernández-Checa, Jose C.

    2004-01-01

    Skeletal muscle differentation is a complex process regulated at multiple levels. This study addressed the effect of glutathione (GSH) depletion on the transition of murine skeletal muscle C2C12 myoblasts into myocytes induced by growth factor inactivation. Cellular GSH levels increased within 24 hours on myogenic stimulation of myoblasts due to enhanced GSH synthetic rate accounted for by stimulated glutamate-L-cysteine ligase (also known as γ-glutamylcysteine synthetase) activity. In contrast, the synthesis rate of GSH using γ-glutamylcysteine and glutamate as precursors, which reflects the activity of the GSH synthetase, did not change during differentiation. The stimulation of GSH stores preceded the myogenic differentiation of C2C12 myoblasts monitored by expression of muscle-specific genes, creatine kinase (CK), myosin heavy chain (MyHC), and MyoD. The pattern of DNA binding activity of NF-κB and AP-1 in differentiating cells was similar both displaying an activation peak at 24 hours after myogenic stimulation. Depletion of cellular GSH levels 24 hours after stimulation of differentiation abrogated myogenesis as reflected by lower CK activity, MyHC levels, MyoD expression, and myotubes formation, effects that were reversible on GSH replenishment by GSH ethyl ester (GHSEE). Moreover, GSH depletion led to sustained activation of NF-κB, while GSHEE prevented it. Furthermore, inhibition of NF-κB activation restored myogenesis despite GSH depletion. Thus, GSH contributes to the formation of myotubes from satellite myoblasts by ensuring inactivation of NF-κB, and hence maintaining optimal GSH levels may be beneficial in restoring muscle mass in chronic inflammatory disorders. PMID:15331397

  18. Caspase activity and apoptotic signaling in proliferating C2C12 cells following cisplatin or A23187 exposure

    PubMed Central

    Bloemberg, Darin; Quadrilatero, Joe

    2016-01-01

    Investigating cell death signaling using cell culture is commonly performed to examine the effects of novel pharmaceuticals or to further characterize discrete cellular signaling pathways. Here, we provide data regarding the cell death response to either cisplatin or A23187 in sub-confluent C2C12 cells, by utilizing several concentrations and incubation times for each chemical. These data include an assessment of the activation of the proteolytic enzymes caspase-3, caspase-8, caspase-9, calpain, and cathepsin B/L. Additionally, the expression of the apoptosis-regulating proteins Bax, Bcl2, and p53 are presented. PMID:27104214

  19. Caspase activity and apoptotic signaling in proliferating C2C12 cells following cisplatin or A23187 exposure.

    PubMed

    Bloemberg, Darin; Quadrilatero, Joe

    2016-06-01

    Investigating cell death signaling using cell culture is commonly performed to examine the effects of novel pharmaceuticals or to further characterize discrete cellular signaling pathways. Here, we provide data regarding the cell death response to either cisplatin or A23187 in sub-confluent C2C12 cells, by utilizing several concentrations and incubation times for each chemical. These data include an assessment of the activation of the proteolytic enzymes caspase-3, caspase-8, caspase-9, calpain, and cathepsin B/L. Additionally, the expression of the apoptosis-regulating proteins Bax, Bcl2, and p53 are presented. PMID:27104214

  20. Development of Insulin Resistance through Induction of miRNA-135 in C2C12 Cells

    PubMed Central

    Honardoost, Maryam; Arefian, Ehsan; Soleimani, Masoud; Soudi, Sara; Sarookhani, Mohammad Reza

    2016-01-01

    Objective Micro-RNAs (miRNAs) are a class of posttranscriptional regulators that play crucial roles in various biological processes. Emerging evidence suggests a direct link between miRNAs and development of several diseases including type 2 diabetes (T2D). In this study, we aimed to investigate the effect of predicted miRNA and target genes on insulin resistance. Materials and Methods This experimental study was conducted on the C2C12 cell line. Using bioinformatics tools miRNA-135 and two respective target genes-insulin receptor (Insr) and vesicle associated membrane protein 2 (Vamp2)were selected as potential factors involved in insulin resistance process. Levels of glucose uptake miRNA expression and respective gene targets were determined after cell transfaction by miR-135. Results It was determined that Insr gene expression was significantly down-regulated in miR-135 transfected C2C12 cell line (P≤0.05). Interestingly; these transfected cells have shown a significant difference in glucose uptake incomparision the positive control cells, while it was similar to the insulin resistant cell line (P≤0.05). In contrast, no significant alteration of Vamp2 gene expression was observed. Conclusion Our data indicated no change on the Vamp2 expression level after miRNA transfection, while expression level of Insr was reduced and miR-135 expression was contrarily increased leading to poor stimulation of glucose uptake through insulin, and development of insulin resistance phenotype in C2C12 cell line. PMID:27602317

  1. Creatine Prevents the Structural and Functional Damage to Mitochondria in Myogenic, Oxidatively Stressed C2C12 Cells and Restores Their Differentiation Capacity

    PubMed Central

    Guescini, Michele; Calcabrini, Cinzia; Vallorani, Luciana; Diaz, Anna Rita; Canonico, Barbara; Luchetti, Francesca; Papa, Stefano; Battistelli, Michela; Falcieri, Elisabetta; Romanello, Vanina; Sandri, Marco; Stocchi, Vilberto; Ciacci, Caterina

    2016-01-01

    Creatine (Cr) is a nutritional supplement promoting a number of health benefits. Indeed Cr has been shown to be beneficial in disease-induced muscle atrophy, improve rehabilitation, and afford mild antioxidant activity. The beneficial effects are likely to derive from pleiotropic interactions. In accord with this notion, we previously demonstrated that multiple pleiotropic effects, including preservation of mitochondrial damage, account for the capacity of Cr to prevent the differentiation arrest caused by oxidative stress in C2C12 myoblasts. Given the importance of mitochondria in supporting the myogenic process, here we further explored the protective effects of Cr on the structure, function, and networking of these organelles in C2C12 cells differentiating under oxidative stressing conditions; the effects on the energy sensor AMPK, on PGC-1α, which is involved in mitochondrial biogenesis and its downstream effector Tfam were also investigated. Our results indicate that damage to mitochondria is crucial in the differentiation imbalance caused by oxidative stress and that the Cr-prevention of these injuries is invariably associated with the recovery of the normal myogenic capacity. We also found that Cr activates AMPK and induces an upregulation of PGC-1α expression, two events which are likely to contribute to the protection of mitochondrial quality and function. PMID:27610211

  2. Creatine Prevents the Structural and Functional Damage to Mitochondria in Myogenic, Oxidatively Stressed C2C12 Cells and Restores Their Differentiation Capacity.

    PubMed

    Barbieri, Elena; Guescini, Michele; Calcabrini, Cinzia; Vallorani, Luciana; Diaz, Anna Rita; Fimognari, Carmela; Canonico, Barbara; Luchetti, Francesca; Papa, Stefano; Battistelli, Michela; Falcieri, Elisabetta; Romanello, Vanina; Sandri, Marco; Stocchi, Vilberto; Ciacci, Caterina; Sestili, Piero

    2016-01-01

    Creatine (Cr) is a nutritional supplement promoting a number of health benefits. Indeed Cr has been shown to be beneficial in disease-induced muscle atrophy, improve rehabilitation, and afford mild antioxidant activity. The beneficial effects are likely to derive from pleiotropic interactions. In accord with this notion, we previously demonstrated that multiple pleiotropic effects, including preservation of mitochondrial damage, account for the capacity of Cr to prevent the differentiation arrest caused by oxidative stress in C2C12 myoblasts. Given the importance of mitochondria in supporting the myogenic process, here we further explored the protective effects of Cr on the structure, function, and networking of these organelles in C2C12 cells differentiating under oxidative stressing conditions; the effects on the energy sensor AMPK, on PGC-1α, which is involved in mitochondrial biogenesis and its downstream effector Tfam were also investigated. Our results indicate that damage to mitochondria is crucial in the differentiation imbalance caused by oxidative stress and that the Cr-prevention of these injuries is invariably associated with the recovery of the normal myogenic capacity. We also found that Cr activates AMPK and induces an upregulation of PGC-1α expression, two events which are likely to contribute to the protection of mitochondrial quality and function. PMID:27610211

  3. Overexpression of Striated Muscle Activator of Rho Signaling (STARS) Increases C2C12 Skeletal Muscle Cell Differentiation

    PubMed Central

    Wallace, Marita A.; Della Gatta, Paul A.; Ahmad Mir, Bilal; Kowalski, Greg M.; Kloehn, Joachim; McConville, Malcom J.; Russell, Aaron P.; Lamon, Séverine

    2016-01-01

    Background: Skeletal muscle growth and regeneration depend on the activation of satellite cells, which leads to myocyte proliferation, differentiation and fusion with existing muscle fibers. Skeletal muscle cell proliferation and differentiation are tightly coordinated by a continuum of molecular signaling pathways. The striated muscle activator of Rho signaling (STARS) is an actin binding protein that regulates the transcription of genes involved in muscle cell growth, structure and function via the stimulation of actin polymerization and activation of serum-response factor (SRF) signaling. STARS mediates cell proliferation in smooth and cardiac muscle models; however, whether STARS overexpression enhances cell proliferation and differentiation has not been investigated in skeletal muscle cells. Results: We demonstrate for the first time that STARS overexpression enhances differentiation but not proliferation in C2C12 mouse skeletal muscle cells. Increased differentiation was associated with an increase in the gene levels of the myogenic differentiation markers Ckm, Ckmt2 and Myh4, the differentiation factor Igf2 and the myogenic regulatory factors (MRFs) Myf5 and Myf6. Exposing C2C12 cells to CCG-1423, a pharmacological inhibitor of SRF preventing the nuclear translocation of its co-factor MRTF-A, had no effect on myotube differentiation rate, suggesting that STARS regulates differentiation via a MRTF-A independent mechanism. Conclusion: These findings position STARS as an important regulator of skeletal muscle growth and regeneration. PMID:26903873

  4. Effects of Hoechst 33342 on C2C12 and PC12 cell differentiation.

    PubMed

    Adamski, Danièle; Mayol, Jean-François; Platet, Nadine; Berger, François; Hérodin, Francis; Wion, Didier

    2007-06-26

    Accumulative evidence demonstrates that normal as well as cancer stem cells can be identified as a side population following Hoechst 33342 staining and flow cytometric analysis. This popular method is based on the ability of stem cells to efflux this fluorescent vital dye. We demonstrate that Hoechst 33342 can affect cell differentiation, suggesting potential complications in the interpretation of data. PMID:17560574

  5. The Cytoprotective Effect of Petalonia binghamiae Methanol Extract against Oxidative Stress in C2C12 Myoblasts: Mediation by Upregulation of Heme Oxygenase-1 and Nuclear Factor-Erythroid 2 Related Factor 2.

    PubMed

    Kang, Ji Sook; Choi, Il-Whan; Han, Min Ho; Lee, Dae-Sung; Kim, Gi-Young; Hwang, Hye Jin; Kim, Byung Woo; Kim, Cheol Min; Yoo, Young Hyun; Choi, Yung Hyun

    2015-05-01

    This study was designed to examine the protective effects of the marine brown algae Petalonia binghamiae against oxidative stress-induced cellular damage and to elucidate the underlying mechanisms. P. binghamiae methanol extract (PBME) prevented hydrogen peroxide (H2O2)-induced growth inhibition and exhibited scavenging activity against intracellular reactive oxygen species (ROS) induced by H2O2 in mouse-derived C2C12 myoblasts. PBME also significantly attenuated H2O2-induced comet tail formation in a comet assay, histone γH2A.X phosphorylation, and annexin V-positive cells, suggesting that PBME prevented H2O2-induced cellular DNA damage and apoptotic cell death. Furthermore, PBME increased the levels of heme oxygenase-1 (HO-1), a potent antioxidant enzyme, associated with the induction of nuclear factor-erythroid 2 related factor 2 (Nrf2). However, zinc protoporphyrin IX, a HO-1 competitive inhibitor, significantly abolished the protective effects of PBME on H2O2-induced ROS generation, growth inhibition, and apoptosis. Collectively, these results demonstrate that PBME augments the antioxidant defense capacity through activation of the Nrf2/HO-1 pathway. PMID:25939035

  6. The Cytoprotective Effect of Petalonia binghamiae Methanol Extract against Oxidative Stress in C2C12 Myoblasts: Mediation by Upregulation of Heme Oxygenase-1 and Nuclear Factor-Erythroid 2 Related Factor 2

    PubMed Central

    Kang, Ji Sook; Choi, Il-Whan; Han, Min Ho; Lee, Dae-Sung; Kim, Gi-Young; Hwang, Hye Jin; Kim, Byung Woo; Kim, Cheol Min; Yoo, Young Hyun; Choi, Yung Hyun

    2015-01-01

    This study was designed to examine the protective effects of the marine brown algae Petalonia binghamiae against oxidative stress-induced cellular damage and to elucidate the underlying mechanisms. P. binghamiae methanol extract (PBME) prevented hydrogen peroxide (H2O2)-induced growth inhibition and exhibited scavenging activity against intracellular reactive oxygen species (ROS) induced by H2O2 in mouse-derived C2C12 myoblasts. PBME also significantly attenuated H2O2-induced comet tail formation in a comet assay, histone γH2A.X phosphorylation, and annexin V-positive cells, suggesting that PBME prevented H2O2-induced cellular DNA damage and apoptotic cell death. Furthermore, PBME increased the levels of heme oxygenase-1 (HO-1), a potent antioxidant enzyme, associated with the induction of nuclear factor-erythroid 2 related factor 2 (Nrf2). However, zinc protoporphyrin IX, a HO-1 competitive inhibitor, significantly abolished the protective effects of PBME on H2O2-induced ROS generation, growth inhibition, and apoptosis. Collectively, these results demonstrate that PBME augments the antioxidant defense capacity through activation of the Nrf2/HO-1 pathway. PMID:25939035

  7. Cytotoxicity of zinc oxide nanoparticles on antioxidant enzyme activities and mRNA expression in the cocultured C2C12 and 3T3-L1 cells.

    PubMed

    Pandurangan, Muthuraman; Veerappan, Muthuviveganandavel; Kim, Doo Hwan

    2015-02-01

    The present study was aimed to investigate the dose-dependent effect of zinc oxide (ZnO) nanoparticles on antioxidant enzyme activities and messenger RNA (mRNA) expression in the cocultured C2C12 and 3T3-L1 cells. Coculturing experiments are 3D and more reliable compared to mono-culture (2D) experiment. Even though, there are several studies on ZnO nanoparticle-mediated cytotoxicity, but there are no studies on the effect of ZnO nanoparticle on antioxidant enzyme activities and mRNA expression in the cocultured C2C12 and 3T3-L1 cells. A cytotoxicity assay was carried out to determine the effect of ZnO nanoparticles on the C2C12 and 3T3-L1 cell viability. At higher concentration of ZnO nanoparticles, C2C12 and 3T3-L1 cells almost die. ZnO nanoparticles increased reactive oxygen species (ROS) and lipid peroxidation and reduced glutathione (GSH) levels in a dose-dependent manner in the C2C12 and 3T3-L1 cells. In addition, ZnO nanoparticles increased antioxidant enzyme activities and their mRNA expression in the C2C12 and 3T3-L1 cells. In conclusion, the present study showed that ZnO nanoparticles increased oxidative stress, antioxidant enzyme activities, and their mRNA expression in the cocultured C2C12 and 3T3-L1 cells. PMID:25380643

  8. Expressional studies of the aldehyde oxidase (AOX1) gene during myogenic differentiation in C2C12 cells

    SciTech Connect

    Kamli, Majid Rasool; Kim, Jihoe; Pokharel, Smritee; Jan, Arif Tasleem; Lee, Eun Ju; Choi, Inho

    2014-08-08

    Highlights: • AOX1 contributes to the formation of myotube. • Silencing of AOX1 reduces myotube formation. • AOX1 regulates MyoG gene expression. • AOX1 contributes to myogenesis via H{sub 2}O{sub 2}. - Abstract: Aldehyde oxidases (AOXs), which catalyze the hydroxylation of heterocycles and oxidation of a wide variety of aldehydic compounds, have been present throughout evolution from bacteria to humans. While humans have only a single functional aldehyde oxidase (AOX1) gene, rodents are endowed with four AOXs; AOX1 and three aldehyde oxidase homologs (AOH1, AOH2 and AOH3). In continuation of our previous study conducted to identify genes differentially expressed during myogenesis using a microarray approach, we investigated AOX1 with respect to its role in myogenesis to conceptualize how it is regulated in C2C12 cells. The results obtained were validated by silencing of the AOX1 gene. Analysis of their fusion index revealed that formation of myotubes showed a marked reduction of up to 40% in AOX1{sub kd} cells. Expression of myogenin (MYOG), one of the marker genes used to study myogenesis, was also found to be reduced in AOX1{sub kd} cells. AOX1 is an enzyme of pharmacological and toxicological importance that metabolizes numerous xenobiotics to their respective carboxylic acids. Hydrogen peroxide (H{sub 2}O{sub 2}) produced as a by-product in this reaction is considered to be involved as a part of the signaling mechanism during differentiation. An observed reduction in the level of H{sub 2}O{sub 2} among AOX1{sub kd} cells confirmed production of H{sub 2}O{sub 2} in the reaction catalyzed by AOX1. Taken together, these findings suggest that AOX1 acts as a contributor to the process of myogenesis by influencing the level of H{sub 2}O{sub 2}.

  9. Contraction-related stimuli regulate GLUT4 traffic in C2C12-GLUT4myc skeletal muscle cells.

    PubMed

    Niu, Wenyan; Bilan, Philip J; Ishikura, Shuhei; Schertzer, Jonathan D; Contreras-Ferrat, Ariel; Fu, Zhengxiang; Liu, Jie; Boguslavsky, Shlomit; Foley, Kevin P; Liu, Zhi; Li, Jinru; Chu, Guilan; Panakkezhum, Thomas; Lopaschuk, Gary D; Lavandero, Sergio; Yao, Zhi; Klip, Amira

    2010-05-01

    Muscle contraction stimulates glucose uptake acutely to increase energy supply, but suitable cellular models that faithfully reproduce this complex phenomenon are lacking. To this end, we have developed a cellular model of contracting C(2)C(12) myotubes overexpressing GLUT4 with an exofacial myc-epitope tag (GLUT4myc) and explored stimulation of GLUT4 traffic by physiologically relevant agents. Carbachol (an acetylcholine receptor agonist) induced a gain in cell surface GLUT4myc that was mediated by nicotinic acetylcholine receptors. Carbachol also activated AMPK, and this response was sensitive to the contractile myosin ATPase inhibitor N-benzyl-p-toluenesulfonamide. The gain in surface GLUT4myc elicited by carbachol or by the AMPK activator 5-amino-4-carboxamide-1 beta-ribose was sensitive to chemical inhibition of AMPK activity by compound C and partially reduced by siRNA-mediated knockdown of AMPK catalytic subunits or LKB1. In addition, the carbachol-induced gain in cell surface GLUT4myc was partially sensitive to chelation of intracellular calcium with BAPTA-AM. However, the carbachol-induced gain in cell surface GLUT4myc was not sensitive to the CaMKK inhibitor STO-609 despite expression of both isoforms of this enzyme and a rise in cytosolic calcium by carbachol. Therefore, separate AMPK- and calcium-dependent signals contribute to mobilizing GLUT4 in response to carbachol, providing an in vitro cell model that recapitulates the two major signals whereby acute contraction regulates glucose uptake in skeletal muscle. This system will be ideal to further analyze the underlying molecular events of contraction-regulated GLUT4 traffic. PMID:20159855

  10. Dexamethasone-Induced Skeletal Muscle Atrophy Increases O-GlcNAcylation in C2C12 Cells.

    PubMed

    Massaccesi, Luca; Goi, Giancarlo; Tringali, Cristina; Barassi, Alessandra; Venerando, Bruno; Papini, Nadia

    2016-08-01

    Skeletal muscle atrophy is a well-known adverse effect of chronic treatment with glucocorticoids and it also occurs when stress conditions such as sepsis and cachexia increase the release of endogenous glucocorticoids. Although the mechanisms of action of these hormones have been elucidated, the possible molecular mechanisms causing atrophy are not yet fully understood. The involvement of the O-GlcNAcylation process has recently been reported in disuse atrophy. O-GlcNAcylation, a regulatory post-translational modification of nuclear and cytoplasmic proteins consists in the attachment of O-GlcNAc residues on cell proteins and is regulated by two enzymes: O-GlcNAc-transferase (OGT) and O-GlcNAcase (OGA). O-GlcNAcylation plays a crucial role in many cellular processes and it seems to be related to skeletal muscle physiological function. The aim of this study is to investigate the involvement of O-GlcNAcylation in glucocorticoid-induced atrophy by using an "in vitro" model, achieved by treatment of C2C12 with 10 μM dexamethasone for 48 h. In atrophic condition, we observed that O-GlcNAc levels in cell proteins increased and concomitantly protein phosphorylation on serine and threonine residues decreased. Analysis of OGA expression at mRNA and protein levels showed a reduction in this enzyme in atrophic myotubes, whereas no significant changes of OGT expression were found. Furthermore, inhibition of OGA activity by Thiamet G induced atrophy marker expression. Our current findings suggest that O-GlcNAcylation is involved in dexamethasone-induced atrophy. In particular, we propose that the decrease in OGA content causes an excessive and mostly durable level of O-GlcNAc residues on sarcomeric proteins that might modify their function and stability. J. Cell. Biochem. 117: 1833-1842, 2016. © 2016 Wiley Periodicals, Inc. PMID:26728070

  11. Effect of alkyl glycerophosphate on the activation of peroxisome proliferator-activated receptor gamma and glucose uptake in C2C12 cells

    SciTech Connect

    Tsukahara, Tamotsu; Haniu, Hisao; Matsuda, Yoshikazu

    2013-04-12

    Highlights: •Alkyl-LPA specifically interacts with PPARγ. •Alkyl-LPA treatments induces lipid accumulation in C2C12 cells. •Alkyl-LPA enhanced glucose uptake in C2C12 cells. •Alkyl-LPA-treated C2C12 cells express increased amounts of GLUT4 mRNA. •Alkyl-LPA is a novel therapeutic agent that can be used for the treatment of obesity and diabetes. -- Abstract: Studies on the effects of lipids on skeletal muscle cells rarely examine the effects of lysophospholipids. Through our recent studies, we identified select forms of phospholipids, such as alkyl-LPA, as ligands for the intracellular receptor peroxisome proliferator-activated receptor gamma (PPARγ). PPARγ is a nuclear hormone receptor implicated in many human diseases, including diabetes and obesity. We previously showed that alkyl-LPA is a specific agonist of PPARγ. However, the mechanism by which the alkyl-LPA–PPARγ axis affects skeletal muscle cells is poorly defined. Our objective in the present study was to determine whether alkyl-LPA and PPARγ activation promotes glucose uptake in skeletal muscle cells. Our findings indicate that PPARγ1 mRNA is more abundant than PPARγ2 mRNA in C2C12 cells. We showed that alkyl-LPA (3 μM) significantly activated PPARγ and increased intracellular glucose levels in skeletal muscle cells. We also showed that incubation of C2C12 cells with alkyl-LPA led to lipid accumulation in the cells. These findings suggest that alkyl-LPA activates PPARγ and stimulates glucose uptake in the absence of insulin in C2C12 cells. This may contribute to the plasma glucose-lowering effect in the treatment of insulin resistance.

  12. FOXO1 and GSK-3β Are Main Targets of Insulin-Mediated Myogenesis in C2C12 Muscle Cells

    PubMed Central

    Litwiniuk, Anna; Pijet, Barbara; Pijet-Kucicka, Maja; Gajewska, Małgorzata; Pająk, Beata; Orzechowski, Arkadiusz

    2016-01-01

    Myogenesis and muscle hypertrophy account for muscle growth and adaptation to work overload, respectively. In adults, insulin and insulin-like growth factor 1 stimulate muscle growth, although their links with cellular energy homeostasis are not fully explained. Insulin plays critical role in the control of mitochondrial activity in skeletal muscle cells, and mitochondria are essential for insulin action. The aim of this study was to elucidate molecular mechanism(s) involved in mitochondrial control of insulin-dependent myogenesis. The effects of several metabolic inhibitors (LY294002, PD98059, SB216763, LiCl, rotenone, oligomycin) on the differentiation of C2C12 myoblasts in culture were examined in the short-term (hours) and long-term (days) experiments. Muscle cell viability and mitogenicity were monitored and confronted with the activities of selected genes and proteins expression. These indices focus on the roles of insulin, glycogen synthase kinase 3 beta (GSK-3β) and forkhead box protein O1 (FOXO1) on myogenesis using a combination of treatments and inhibitors. Long-term insulin (10 nM) treatment in “normoglycemic” conditions led to increased myogenin expression and accelerated myogenesis in C2C12 cells. Insulin-dependent myogenesis was accompanied by the rise of mtTFA, MtSSB, Mfn2, and mitochondrially encoded Cox-1 gene expressions and elevated levels of proteins which control functions of mitochondria (kinase—PKB/AKT, mitofusin 2 protein—Mfn-2). Insulin, via the phosphatidylinositol 3-kinase (PI3-K)/AKT-dependent pathway reduced transcription factor FOXO1 activity and altered GSK-3β phosphorylation status. Once FOXO1 and GSK-3β activities were inhibited the rise in Cox-1 gene action and nuclear encoded cytochrome c oxidase subunit IV (COX IV) expressions were observed, even though some mRNA and protein results varied. In contrast to SB216763, LiCl markedly elevated Mfn2 and COX IV protein expression levels when given together with insulin. Thus

  13. FOXO1 and GSK-3β Are Main Targets of Insulin-Mediated Myogenesis in C2C12 Muscle Cells.

    PubMed

    Litwiniuk, Anna; Pijet, Barbara; Pijet-Kucicka, Maja; Gajewska, Małgorzata; Pająk, Beata; Orzechowski, Arkadiusz

    2016-01-01

    Myogenesis and muscle hypertrophy account for muscle growth and adaptation to work overload, respectively. In adults, insulin and insulin-like growth factor 1 stimulate muscle growth, although their links with cellular energy homeostasis are not fully explained. Insulin plays critical role in the control of mitochondrial activity in skeletal muscle cells, and mitochondria are essential for insulin action. The aim of this study was to elucidate molecular mechanism(s) involved in mitochondrial control of insulin-dependent myogenesis. The effects of several metabolic inhibitors (LY294002, PD98059, SB216763, LiCl, rotenone, oligomycin) on the differentiation of C2C12 myoblasts in culture were examined in the short-term (hours) and long-term (days) experiments. Muscle cell viability and mitogenicity were monitored and confronted with the activities of selected genes and proteins expression. These indices focus on the roles of insulin, glycogen synthase kinase 3 beta (GSK-3β) and forkhead box protein O1 (FOXO1) on myogenesis using a combination of treatments and inhibitors. Long-term insulin (10 nM) treatment in "normoglycemic" conditions led to increased myogenin expression and accelerated myogenesis in C2C12 cells. Insulin-dependent myogenesis was accompanied by the rise of mtTFA, MtSSB, Mfn2, and mitochondrially encoded Cox-1 gene expressions and elevated levels of proteins which control functions of mitochondria (kinase--PKB/AKT, mitofusin 2 protein--Mfn-2). Insulin, via the phosphatidylinositol 3-kinase (PI3-K)/AKT-dependent pathway reduced transcription factor FOXO1 activity and altered GSK-3β phosphorylation status. Once FOXO1 and GSK-3β activities were inhibited the rise in Cox-1 gene action and nuclear encoded cytochrome c oxidase subunit IV (COX IV) expressions were observed, even though some mRNA and protein results varied. In contrast to SB216763, LiCl markedly elevated Mfn2 and COX IV protein expression levels when given together with insulin. Thus

  14. Inflammation increases pyruvate dehydrogenase kinase 4 (PDK4) expression via the Jun N-Terminal Kinase (JNK) pathway in C2C12 cells.

    PubMed

    Park, Hana; Jeoung, Nam Ho

    2016-01-22

    Chronic inflammation augments the deleterious effects of several diseases, particularly diabetes, cancer, and sepsis. It is also involved in the process of metabolic shift from glucose oxidation to lactate production. Although several studies suggest that the change in activity of the pyruvate dehydrogenase complex (PDC) is a major factor causing this metabolic change, the exact mechanism of the inflammatory state remains unclear. In this study, we investigated the effect of lipopolysaccharide (LPS) on the expression of pyruvate dehydrogenase kinase 4 (PDK4), which is strongly associated with inactivation of the PDC in C2C12 myoblasts. In C2C12 myoblasts, LPS exposure led to increased PDK4 mRNA and protein expression levels as well as lactate production in culture medium. However, the expression levels of other PDK isoenzymes (PDK1 - 3) remained unchanged. Additionally, we observed that LPS treatment induced phosphorylation of Jun N-Terminal Kinases (JNK). To confirm the role of JNK, we inhibited the JNK pathway and observed that PDK4 expression and lactate production were decreased, but p38 and ERK were not significantly changed. Taken together, our results suggest that LPS induces PDK4 expression and alters glucose metabolism via the JNK pathway. PMID:26740179

  15. Low molecular weight guluronate prevents TNF-α-induced oxidative damage and mitochondrial dysfunction in C2C12 skeletal muscle cells.

    PubMed

    Dun, Yun-lou; Zhou, Xiao-lin; Guan, Hua-shi; Yu, Guang-li; Li, Chun-xia; Hu, Ting; Zhao, Xia; Cheng, Xiao-lei; He, Xiao-xi; Hao, Jie-jie

    2015-09-01

    Muscle wasting is associated with a variety of chronic or inflammatory disorders. Evidence suggests that inflammatory cytokines play a vital role in muscle inflammatory pathology and this may result in oxidative damage and mitochondrial dysfunction in skeletal muscle. In our study, we used microwave degradation to prepare a water-soluble low molecular weight guluronate (LMG) of 3000 Da from Fucus vesiculosus obtained from Canada, the Atlantic Ocean. We demonstrated the structural characteristics, using HPLC, FTIR and NMR of LMG and investigated its effects on oxidative damage and mitochondrial dysfunction in C2C12 skeletal muscle cells induced by tumor necrosis factor alpha (TNF-α), a cell inflammatory cytokine. The results indicated that LMG could alleviate mitochondrial reactive oxygen species (ROS) production, increase the activities of antioxidant enzymes (GSH and SOD), promote mitochondrial membrane potential (MMP) and upregulate the expression of mitochondrial respiratory chain protein in TNF-α-induced C2C12 cells. LMG supplement also increased the mitochondrial DNA copy number and mitochondrial biogenesis related genes in TNF-α-induced C2C12 cells. LMG may exert these protective effects through the nuclear factor kappa B (NF-κB) signaling pathway. These suggest that LMG is capable of protecting TNF-α-induced C2C12 cells against oxidative damage and mitochondrial dysfunction. PMID:26205038

  16. Effect of mitochondrial fission inhibition on C2C12 differentiation.

    PubMed

    Bloemberg, Darin; Quadrilatero, Joe

    2016-06-01

    The differentiation of skeletal muscle is commonly examined in cell culture using the C2C12 line of mouse skeletal myoblasts. This process shares many similarities with that which occurs during embryonic development, such as the transient activation of caspases. Here, we examined the effect of inhibiting mitochondrial fission, using mdivi-1, on the ability of C2C12 cells to terminally differentiate. This was performed using immunofluorescent identification of cell morphology and myosin expression, as well as immunoblotting for markers of muscle differentiation. Furthermore, the effect of mdivi-1 administration on activation of caspase-2 and -3 was assessed using spectrofluorometric measurement of specific enzyme activity. PMID:27054170

  17. Autophagic flux data in differentiated C2C12 myotubes following exposure to acetylcholine and caffeine.

    PubMed

    Bloemberg, Darin; Quadrilatero, Joe

    2016-06-01

    The C2C12 line of mouse myoblasts is a useful cell culture model in which to conduct in vitro analyses related to skeletal muscle. Here we present data regarding the autophagic response induced by two chemicals known to influence calcium release and contraction in skeletal muscles and C2C12 cells: acetylcholine and caffeine. More specifically, by concurrently administering acetylcholine or caffeine along with chloroquine to differentiated myotubes for various amounts of time and assessing the protein expression of LC3 and p62, we report data on the relative level of autophagic flux induced by these two calcium- and contraction-regulating chemicals. PMID:27054179

  18. Production of bioactive enkephalin from the nonendocrine cell lines COS-7, NIH3T3, Ltk-, and C2C12.

    PubMed

    Takahashi, K; Fujita, T; Takeuchi, T

    1995-01-01

    Enkephalin is synthesized from proenkephalin in neuroendocrine cells. For the attempt to induce nonneuroendocrine origin cells to produce enkephalin, we used a mammalian expression vector for fusion peptides, pMEproCT beta, in which a fused peptide is designed to be cleaved by a yeast Kex2-like endoprotease furin. Met-Enkephalin was expressed in four nonneuroendocrine cell lines: COS-7, C2C12, Ltk-, and NIH3T3. The four cell lines produced a marked amount of Met-enkephalin, which appeared as a single peak on reverse-phase HPLC. Because transplantation of adrenal medullary cells to the subarachnoid space has been used to alleviate terminal cancer pain, and enkephalin appears to play a central role in relieving pain, this enkephalin expression vector may be useful for direct enkephalin expression in pericancerous tissues. PMID:7479338

  19. Leucine-induced activation of translational initiation is partly regulated by the branched-chain {alpha}-keto acid dehydrogenase complex in C2C12 cells

    SciTech Connect

    Nakai, Naoya . E-mail: nakai@hss.osaka-u.ac.jp; Shimomura, Yoshiharu; Tamura, Tomohiro; Tamura, Noriko; Hamada, Koichiro; Kawano, Fuminori; Ohira, Yoshinobu

    2006-05-19

    Branched-chain amino acid leucine has been shown to activate the translational regulators through the mammalian target of rapamycin. However, the leucine's effects are self-limiting because leucine promotes its own disposal by an oxidative pathway. The irreversible and rate-limiting step in the leucine oxidation pathway is catalyzed by the branched-chain {alpha}-keto acid dehydrogenase (BCKDH) complex. The complex contains E1 ({alpha}2{beta}2), E2, and E3 subunits, and its activity is abolished by phosphorylation of the E1{alpha} subunit by BCKDH kinase. The relationship between the activity of BCKDH complex and leucine-mediated activation of the protein translation was investigated using the technique of RNA interference. The activity of BCKDH complex in C2C12 cell was modulated by transfection of small interfering RNA (siRNA) for BCKDH E2 subunit or BCKDH kinase. Transfection of siRNAs decreased the mRNA expression and protein amount of corresponding gene. Suppression of either E2 subunit or kinase produced opposite effects on the cell proliferation and the activation of translational regulators by leucine. Suppression of BCKDH kinase for 48 h resulted in decreasing cell proliferation. In contrast, E2 suppression led to increased amount of total cellular protein. The phosphorylation of p70 S6 kinase by leucine was increased in E2-siRNA transfected C2C12 cells, whereas the leucine's effect was diminished in kinase-siRNA transfected cells. These results suggest that the activation of the translational regulators by leucine was partly regulated by the activity of BCKDH complex.

  20. In Vitro Selective Anti-Proliferative Effect of Zinc Oxide Nanoparticles Against Co-Cultured C2C12 Myoblastoma Cancer and 3T3-L1 Normal Cells.

    PubMed

    Chandrasekaran, Murugesan; Pandurangan, Muthuraman

    2016-07-01

    The zinc oxide (ZnO) nanoparticle has been widely used in biomedical applications and cancer therapy and has been reported to induce a selective cytotoxic effect on cancer cell proliferation. The present study investigated the cytotoxicity of ZnO nanoparticles against co-cultured C2C12 myoblastoma cancer cells and 3T3-L1 adipocytes. Our results showed that the ZnO nanoparticles could be cytotoxic to C2C12 myoblastoma cancer cells than 3T3-L1 cells. The messenger RNA (mRNA) expressions of p53 and bax were significantly increased 114.3 and 118.2 % in the C2C12 cells, whereas 42.5 and 40 % were increased in 3T3-L1 cells, respectively. The mRNA expression of bcl-2 was reduced 38.2 and 28.5 % in the C2C12 and 3T3-L1 cells, respectively, whereas the mRNA expression of caspase-3 was increased 80.7 and 51.6 % in the C2C12 and 3T3-L1 cells, respectively. The protein expressions of p53, bax, and caspase-3 were significantly increased 40, 81.8, and 80 % in C2C12 cells, whereas 20.3, 28.2, and 37.9 % were increased in 3T3-L1 cells, respectively. The mRNA expression of bcl-2 was significantly reduced 32.2 and 22.7 % in C2C12 and 3T3-L1 cells, respectively. Caspase-3 enzyme activity and reactive oxygen species (ROS) were increased in co-cultured C2C12 cells compared to 3T3-L1 cells. Taking all these data together, it may suggest that ZnO nanoparticles severely induce apoptosis in C2C12 myoblastoma cancer cells than 3T3-L1 cells. PMID:26563419

  1. Muscle acellular scaffold as a biomaterial: effects on C2C12 cell differentiation and interaction with the murine host environment

    PubMed Central

    Perniconi, Barbara; Coletti, Dario; Aulino, Paola; Costa, Alessandra; Aprile, Paola; Santacroce, Luigi; Chiaravalloti, Ernesto; Coquelin, Laura; Chevallier, Nathalie; Teodori, Laura; Adamo, Sergio; Marrelli, Massimo; Tatullo, Marco

    2014-01-01

    The extracellular matrix (ECM) of decellularized organs possesses the characteristics of the ideal tissue-engineering scaffold (i.e., histocompatibility, porosity, degradability, non-toxicity). We previously observed that the muscle acellular scaffold (MAS) is a pro-myogenic environment in vivo. In order to determine whether MAS, which is basically muscle ECM, behaves as a myogenic environment, regardless of its location, we analyzed MAS interaction with both muscle and non-muscle cells and tissues, to assess the effects of MAS on cell differentiation. Bone morphogenetic protein treatment of C2C12 cells cultured within MAS induced osteogenic differentiation in vitro, thus suggesting that MAS does not irreversibly commit cells to myogenesis. In vivo MAS supported formation of nascent muscle fibers when replacing a muscle (orthotopic position). However, heterotopically grafted MAS did not give rise to muscle fibers when transplanted within the renal capsule. Also, no muscle formation was observed when MAS was transplanted under the xiphoid process, in spite of the abundant presence of cells migrating along the laminin-based MAS structure. Taken together, our results suggest that MAS itself is not sufficient to induce myogenic differentiation. It is likely that the pro-myogenic environment of MAS is not strictly related to the intrinsic properties of the muscle scaffold (e.g., specific muscle ECM proteins). Indeed, it is more likely that myogenic stem cells colonizing MAS recognize a muscle environment that ultimately allows terminal myogenic differentiation. In conclusion, MAS may represent a suitable environment for muscle and non-muscle 3D constructs characterized by a highly organized structure whose relative stability promotes integration with the surrounding tissues. Our work highlights the plasticity of MAS, suggesting that it may be possible to consider MAS for a wider range of tissue engineering applications than the mere replacement of volumetric muscle loss

  2. Differentiation of C2C12 myoblasts expressing lamin A mutated at a site responsible for Emery-Dreifuss muscular dystrophy is improved by inhibition of the MEK-ERK pathway and stimulation of the PI3-kinase pathway

    SciTech Connect

    Favreau, Catherine; Delbarre, Erwan; Courvalin, Jean-Claude; Buendia, Brigitte

    2008-04-01

    Mutation R453W in A-type lamins, that are major nuclear envelope proteins, generates Emery-Dreifuss muscular dystrophy. We previously showed that mouse myoblasts expressing R453W-lamin A incompletely exit the cell cycle and differentiate into myocytes with a low level of multinucleation. Here we attempted to improve differentiation by treating these cells with a mixture of PD98059, an extracellular-regulated kinase (ERK) kinase (also known as mitogen-activated kinase, MEK) inhibitor, and insulin-like growth factor-II, an activator of phosphoinositide 3-kinase. We show that mouse myoblasts expressing R453W-lamin A were sensitive to the drug treatment as shown by (i) an increase in multinucleation, (ii) downregulation of proliferation markers (cyclin D1, hyperphosphorylated Rb), (iii) upregulation of myogenin, and (iv) sustained activation of p21 and cyclin D3. However, nuclear matrix anchorage of p21 and cyclin D3 in a complex with hypophosphorylated Rb that is critical to trigger cell cycle arrest and myogenin induction was deficient and incompletely restored by drug treatment. As the turn-over of R453W-lamin A at the nuclear envelope was greatly enhanced, we propose that R453W-lamin A impairs the capacity of the nuclear lamina to serve as scaffold for substrates of the MEK-ERK pathway and for MyoD-induced proteins that play a role in the differentiation process.

  3. Hypoxia induces adipogenic differentitation of myoblastic cell lines

    SciTech Connect

    Itoigawa, Yoshiaki; Kishimoto, Koshi N.; Okuno, Hiroshi; Sano, Hirotaka; Kaneko, Kazuo; Itoi, Eiji

    2010-09-03

    Research highlights: {yields} C2C12 and G8 myogenic cell lines treated by hypoxia differentiate into adipocytes. {yields} The expression of C/EBP{beta}, {alpha} and PPAR{gamma} were increased under hypoxia. {yields} Myogenic differentiation of C2C12 was inhibited under hypoxia. -- Abstract: Muscle atrophy usually accompanies fat accumulation in the muscle. In such atrophic conditions as back muscles of kyphotic spine and the rotator cuff muscles with torn tendons, blood flow might be diminished. It is known that hypoxia causes trans-differentiation of mesenchymal stem cells derived from bone marrow into adipocytes. However, it has not been elucidated yet if hypoxia turned myoblasts into adipocytes. We investigated adipogenesis in C2C12 and G8 murine myogenic cell line treated by hypoxia. Cells were also treated with the cocktail of insulin, dexamethasone and IBMX (MDI), which has been known to inhibit Wnt signaling and promote adipogenesis. Adipogenic differentiation was seen in both hypoxia and MDI. Adipogenic marker gene expression was assessed in C2C12. CCAAT/enhancer-binding protein (C/EBP) {beta}, {alpha} and peroxisome proliferator activating receptor (PPAR) {gamma} were increased by both hypoxia and MDI. The expression profile of Wnt10b was different between hypoxia and MDI. The mechanism for adipogenesis of myoblasts in hypoxia might be regulated by different mechanism than the modification of Wnt signaling.

  4. The Effect of SERCA1b Silencing on the Differentiation and Calcium Homeostasis of C2C12 Skeletal Muscle Cells

    PubMed Central

    Vincze, János; Oláh, Tamás; Juhász, Tamás; Zákány, Róza; Csernoch, László; Zádor, Ernő

    2015-01-01

    The sarcoplasmic/endoplasmic reticulum Ca2+ATPases (SERCAs) are the main Ca2+ pumps which decrease the intracellular Ca2+ level by reaccumulating Ca2+ into the sarcoplasmic reticulum. The neonatal SERCA1b is the major Ca2+ pump in myotubes and young muscle fibers. To understand its role during skeletal muscle differentiation its synthesis has been interfered with specific shRNA sequence. Stably transfected clones showing significantly decreased SERCA1b expression (cloneC1) were selected for experiments. The expression of the regulatory proteins of skeletal muscle differentiation was examined either by Western-blot at the protein level for MyoD, STIM1, calsequestrin (CSQ), and calcineurin (CaN) or by RT-PCR for myostatin and MCIP1.4. Quantitative analysis revealed significant alterations in CSQ, STIM1, and CaN expression in cloneC1 as compared to control cells. To examine the functional consequences of the decreased expression of SERCA1b, repeated Ca2+-transients were evoked by applications of 120 mM KCl. The significantly higher [Ca2+]i measured at the 20th and 40th seconds after the beginning of KCl application (112±3 and 110±3 nM vs. 150±7 and 135±5 nM, in control and in cloneC1 cells, respectively) indicated a decreased Ca2+-uptake capability which was quantified by extracting the maximal pump rate (454±41 μM/s vs. 144±24 μM/s, in control and in cloneC1 cells). Furthermore, the rate of calcium release from the SR (610±60 vs. 377±64 μM/s) and the amount of calcium released (843±75 μM vs. 576±80 μM) were also significantly suppressed. These changes were also accompanied by a reduced activity of CaN in cells with decreased SERCA1b. In parallel, cloneC1 cells showed inhibited cell proliferation and decreased myotube nuclear numbers. Moreover, while cyclosporineA treatment suppressed the proliferation of parental cultures it had no effect on cloneC1 cells. SERCA1b is thus considered to play an essential role in the regulation of [Ca2+]i and its ab ovo

  5. Genome-wide examination of myoblast cell cycle withdrawal duringdifferentiation

    SciTech Connect

    Shen, Xun; Collier, John Michael; Hlaing, Myint; Zhang, Leanne; Delshad, Elizabeth H.; Bristow, James; Bernstein, Harold S.

    2002-12-02

    Skeletal and cardiac myocytes cease division within weeks of birth. Although skeletal muscle retains limited capacity for regeneration through recruitment of satellite cells, resident populations of adult myocardial stem cells have not been identified. Because cell cycle withdrawal accompanies myocyte differentiation, we hypothesized that C2C12 cells, a mouse myoblast cell line previously used to characterize myocyte differentiation, also would provide a model for studying cell cycle withdrawal during differentiation. C2C12 cells were differentiated in culture medium containing horse serum and harvested at various time points to characterize the expression profiles of known cell cycle and myogenic regulatory factors by immunoblot analysis. BrdU incorporation decreased dramatically in confluent cultures 48 hr after addition of horse serum, as cells started to form myotubes. This finding was preceded by up-regulation of MyoD, followed by myogenin, and activation of Bcl-2. Cyclin D1 was expressed in proliferating cultures and became undetectable in cultures containing 40 percent fused myotubes, as levels of p21(WAF1/Cip1) increased and alpha-actin became detectable. Because C2C12 myoblasts withdraw from the cell cycle during myocyte differentiation following a course that recapitulates this process in vivo, we performed a genome-wide screen to identify other gene products involved in this process. Using microarrays containing approximately 10,000 minimally redundant mouse sequences that map to the UniGene database of the National Center for Biotechnology Information, we compared gene expression profiles between proliferating, differentiating, and differentiated C2C12 cells and verified candidate genes demonstrating differential expression by RT-PCR. Cluster analysis of differentially expressed genes revealed groups of gene products involved in cell cycle withdrawal, muscle differentiation, and apoptosis. In addition, we identified several genes, including DDAH2 and Ly

  6. Arecoline inhibits and destabilizes agrin-induced acetylcholine receptor cluster formation in C2C12 myotubes.

    PubMed

    Chang, Yung-Fu; Liu, Ting-Yuan; Liu, Shao-Tung

    2013-10-01

    Areca nut (Areca catechu) is chewed as a medical and psychoactive food by roughly 10% of the world population. Areca nut chewing may lead to low birth weight, premature delivery and impaired muscle development. Our previous study showed that arecoline, a major alkaloid in the areca nut, inhibited the myogenic differentiation of C2C12 myoblastic cells. The clustering of acetylcholine receptors (AChRs) in the postsynaptic membrane at the neuromuscular junction (NMJ) by agrin, a signaling protein released by motor neurons, is critical for the development of functional muscles. Here, we further investigate whether arecoline affects the AChR clustering using cultured C2C12 myotubes. Rhodamine-conjugated α-bungarotoxin was used to detect the presence of AChR clusters. Our results showed that arecoline inhibited the formation of agrin-induced AChR clusters and destabilized agrin-induced or spontaneous AChR cluster formation. In addition, arecoline inhibited the expression of myogenin in C2C12 myotubes. These results shed light on the important role of arecoline on the detrimental effect of areca nut to muscle development. PMID:23933062

  7. Simple micropatterning method for enhancing fusion efficiency and responsiveness to electrical stimulation of C2C12 myotubes.

    PubMed

    Takayama, Yuzo; Wagatsuma, Akira; Hoshino, Takayuki; Mabuchi, Kunihiko

    2015-01-01

    Cultured myotubes induced in vitro from myoblast cell lines have been widely used to investigate muscle functional properties and disease-related biological phenotypes. Until now, several cell patterning techniques have been applied to regulate in vitro myotube structures. However, these previous studies required specific geometry patterns or soft materials for inducing efficient myotube formation. Thus, more simple and easy handling method will be promising. In this study, we aimed to provide a method to form C2C12 myotubes with regulated sizes and orientations in simple line patterns. We used a poly(dimethylsiloxane) (PDMS) stamp and a 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer solution to fabricate line patterns for myotube formation onto a culture dish. We confirmed that C2C12 myotubes of well-defined size and orientation were reproducibly formed. In particular, myotubes formed in the micropatterned lines showed the increased fusion efficiency. Then, functional dynamics in the micropatterned myotubes were detected and analyzed using a calcium imaging method. We confirmed micropatterning in line patterns enhanced the responsiveness of myotubes to external electrical stimulations. These results indicate that micropatterning myoblasts with the MPC polymer is a simple and effective method to form functional myotube networks. PMID:25311428

  8. JAZF1 promotes proliferation of C2C12 cells, but retards their myogenic differentiation through transcriptional repression of MEF2C and MRF4—Implications for the role of Jazf1 variants in oncogenesis and type 2 diabetes

    SciTech Connect

    Yuasa, Katsutoshi; Aoki, Natsumi; Hijikata, Takao

    2015-08-15

    Single-nucleotide polymorphisms associated with type 2 diabetes (T2D) have been identified in Jazf1, which is also involved in the oncogenesis of endometrial stromal tumors. To understand how Jazf1 variants confer a risk of tumorigenesis and T2D, we explored the functional roles of JAZF1 and searched for JAZF1 target genes in myogenic C2C12 cells. Consistent with an increase of Jazf1 transcripts during myoblast proliferation and their decrease during myogenic differentiation in regenerating skeletal muscle, JAZF1 overexpression promoted cell proliferation, whereas it retarded myogenic differentiation. Examination of myogenic genes revealed that JAZF1 overexpression transcriptionally repressed MEF2C and MRF4 and their downstream genes. AMP deaminase1 (AMPD1) was identified as a candidate for JAZF1 target by gene array analysis. However, promoter assays of Ampd1 demonstrated that mutation of the putative binding site for the TR4/JAZF1 complex did not alleviate the repressive effects of JAZF1 on promoter activity. Instead, JAZF1-mediated repression of Ampd1 occurred through the MEF2-binding site and E-box within the Ampd1 proximal regulatory elements. Consistently, MEF2C and MRF4 expression enhanced Ampd1 promoter activity. AMPD1 overexpression and JAZF1 downregulation impaired AMPK phosphorylation, while JAZF1 overexpression also reduced it. Collectively, these results suggest that aberrant JAZF1 expression contributes to the oncogenesis and T2D pathogenesis. - Highlights: • JAZF1 promotes cell cycle progression and proliferation of myoblasts. • JAZF1 retards myogenic differentiation and hypertrophy of myotubes. • JAZF1 transcriptionally represses Mef2C and Mrf4 expression. • JAZF1 has an impact on the phosphorylation of AMPK.

  9. Synthesis of Mitochondrial DNA Precursors during Myogenesis, an Analysis in Purified C2C12 Myotubes*

    PubMed Central

    Frangini, Miriam; Franzolin, Elisa; Chemello, Francesco; Laveder, Paolo; Romualdi, Chiara; Bianchi, Vera; Rampazzo, Chiara

    2013-01-01

    During myogenesis, myoblasts fuse into multinucleated myotubes that acquire the contractile fibrils and accessory structures typical of striated skeletal muscle fibers. To support the high energy requirements of muscle contraction, myogenesis entails an increase in mitochondrial (mt) mass with stimulation of mtDNA synthesis and consumption of DNA precursors (dNTPs). Myotubes are quiescent cells and as such down-regulate dNTP production despite a high demand for dNTPs. Although myogenesis has been studied extensively, changes in dNTP metabolism have not been examined specifically. In differentiating cultures of C2C12 myoblasts and purified myotubes, we analyzed expression and activities of enzymes of dNTP biosynthesis, dNTP pools, and the expansion of mtDNA. Myotubes exibited pronounced post-mitotic modifications of dNTP synthesis with a particularly marked down-regulation of de novo thymidylate synthesis. Expression profiling revealed the same pattern of enzyme down-regulation in adult murine muscles. The mtDNA increased steadily after myoblast fusion, turning over rapidly, as revealed after treatment with ethidium bromide. We individually down-regulated p53R2 ribonucleotide reductase, thymidine kinase 2, and deoxyguanosine kinase by siRNA transfection to examine how a further reduction of these synthetic enzymes impacted myotube development. Silencing of p53R2 had little effect, but silencing of either mt kinase caused 50% mtDNA depletion and an unexpected decrease of all four dNTP pools independently of the kinase specificity. We suggest that during development of myotubes the shortage of even a single dNTP may affect all four pools through dysregulation of ribonucleotide reduction and/or dissipation of the non-limiting dNTPs during unproductive elongation of new DNA chains. PMID:23297407

  10. Peptide separations by on-line MudPIT compared to isoelectric focusing in an off-gel format: Application to a membrane-enriched fraction from C2C12 mouse skeletal muscle cells

    PubMed Central

    Elschenbroich, Sarah; Ignatchenko, Vladimir; Sharma, Parveen; Schmitt-Ulms, Gerold; Gramolini, Anthony O.; Kislinger, Thomas

    2013-01-01

    High resolution peptide separation is pivotal for successful shot-gun proteomics. The need for capable techniques propels invention and improvement of ever more sophisticated approaches. Recently, Agilent Technologies has introduced the OFFGEL fractionator, which conducts peptide separation by isoelectric focusing in an off-gel setup. This platform has been shown to accomplish high resolution of peptides for diverse sample types, yielding valuable advantages over comparable separation techniques. In this study, we deliver the first comparison of the newly emerging OFFGEL approach to the well-established on-line MudPIT platform. Samples from a membrane-enriched fraction isolated from murine C2C12 cells were subjected to replicate analysis by OFFGEL (12 fractions, pH 3 – 10) followed by RP-LC-MS/MS or 12-step on-line MudPIT. OFFGEL analyses yielded 1398 proteins (identified by 10,269 peptides) while 1428 proteins (11,078 peptides) were detected with the MudPIT approach. Thus, our data shows that both platforms produce highly comparable results in terms of protein/peptide identifications and reproducibility for the sample type analyzed. We achieve more accurate peptide focusing after OFFGEL fractionation with 88 % of all peptides binned to a single fraction, as compared to 61 % of peptides detected in only one step in MudPIT analyses. Our study suggests that both platforms are equally capable of high quality peptide separation of a sample with medium complexity, rendering them comparably valuable for comprehensive proteomic analyses. PMID:19670906

  11. Biomarker-free dielectrophoretic sorting of differentiating myoblast multipotent progenitor cells and their membrane analysis by Raman spectroscopy.

    PubMed

    Muratore, Massimo; Srsen, Vlastimil; Waterfall, Martin; Downes, Andrew; Pethig, Ronald

    2012-09-01

    Myoblasts are muscle derived mesenchymal stem cell progenitors that have great potential for use in regenerative medicine, especially for cardiomyogenesis grafts and intracardiac cell transplantation. To utilise such cells for pre-clinical and clinical applications, and especially for personalized medicine, it is essential to generate a synchronised, homogenous, population of cells that display phenotypic and genotypic homogeneity within a population of cells. We demonstrate that the biomarker-free technique of dielectrophoresis (DEP) can be used to discriminate cells between stages of differentiation in the C2C12 myoblast multipotent mouse model. Terminally differentiated myotubes were separated from C2C12 myoblasts to better than 96% purity, a result validated by flow cytometry and Western blotting. To determine the extent to which cell membrane capacitance, rather than cell size, determined the DEP response of a cell, C2C12 myoblasts were co-cultured with GFP-expressing MRC-5 fibroblasts of comparable size distributions (mean diameter ∼10 μm). A DEP sorting efficiency greater than 98% was achieved for these two cell types, a result concluded to arise from the fibroblasts possessing a larger membrane capacitance than the myoblasts. It is currently assumed that differences in membrane capacitance primarily reflect differences in the extent of folding or surface features of the membrane. However, our finding by Raman spectroscopy that the fibroblast membranes contained a smaller proportion of saturated lipids than those of the myoblasts suggests that the membrane chemistry should also be taken into account. PMID:23940503

  12. Optogenetic induction of contractile ability in immature C2C12 myotubes

    PubMed Central

    Asano, Toshifumi; Ishizuka, Toru; Morishima, Keisuke; Yawo, Hiromu

    2015-01-01

    Myoblasts can be differentiated into multinucleated myotubes, which provide a well-established and reproducible muscle cell model for skeletal myogenesis in vitro. However, under conventional differentiation conditions, each myotube rarely exhibits robust contraction as well as sarcomere arrangement. Here, we applied trains of optical stimulation (OS) to C2C12 myotubes, which were genetically engineered to express a channelrhodopsin variant, channelrhodopsin-green receiver (ChRGR), to investigate whether membrane depolarization facilitates the maturation of myotubes. We found that light pulses induced membrane depolarization and evoked action potentials in ChRGR-expressing myotubes. Regular alignments of sarcomeric proteins were patterned periodically after OS training. In contrast, untrained control myotubes rarely exhibited the striated patterns. OS-trained and untrained myotubes also differed in terms of their resting potential. OS training significantly increased the number of contractile myotubes. Treatment with nifedipine during OS training significantly decreased the fraction of contractile myotubes, whereas tetrodotoxin was less effective. These results suggest that oscillations of membrane potential and intracellular Ca2+ accompanied by OS promoted sarcomere assembly and the development of contractility during the myogenic process. These results also suggest that optogenetic techniques could be used to manipulate the activity-dependent process during myogenic development. PMID:25661648

  13. Maduramicin Inhibits Proliferation and Induces Apoptosis in Myoblast Cells

    PubMed Central

    Chen, Xin; Gu, Ying; Singh, Karnika; Shang, Chaowei; Barzegar, Mansoureh; Jiang, Shanxiang; Huang, Shile

    2014-01-01

    Maduramicin, a polyether ionophore antibiotic derived from the bacterium Actinomadura yumaensis, is currently used as a feed additive against coccidiosis in poultry worldwide. It has been clinically observed that maduramicin can cause skeletal muscle and heart cell damage, resulting in skeletal muscle degeneration, heart failure, and even death in animals and humans, if improperly used. However, the mechanism of its toxic action in myoblasts is not well understood. Using mouse myoblasts (C2C12) and human rhabdomyosarcoma (RD and Rh30) cells as an experimental model for myoblasts, here we found that maduramicin inhibited cell proliferation and induced cell death in a concentration-dependent manner. Further studies revealed that maduramicin induced accumulation of the cells at G0/G1 phase of the cell cycle, and induced apoptosis in the cells. Concurrently, maduramicin downregulated protein expression of cyclin D1, cyclin-dependent kinases (CDK4 and CDK6), and CDC25A, and upregulated expression of the CDK inhibitors (p21Cip1 and p27Kip1), resulting in decreased phosphorylation of Rb. Maduramicin also induced expression of BAK, BAD, DR4, TRADD and TRAIL, leading to activation of caspases 8, 9 and 3 as well as cleavage of poly ADP ribose polymerase (PARP). Taken together, our results suggest that maduramicin executes its toxicity in myoblasts at least by inhibiting cell proliferation and inducing apoptotic cell death. PMID:25531367

  14. Maduramicin inhibits proliferation and induces apoptosis in myoblast cells.

    PubMed

    Chen, Xin; Gu, Ying; Singh, Karnika; Shang, Chaowei; Barzegar, Mansoureh; Jiang, Shanxiang; Huang, Shile

    2014-01-01

    Maduramicin, a polyether ionophore antibiotic derived from the bacterium Actinomadura yumaensis, is currently used as a feed additive against coccidiosis in poultry worldwide. It has been clinically observed that maduramicin can cause skeletal muscle and heart cell damage, resulting in skeletal muscle degeneration, heart failure, and even death in animals and humans, if improperly used. However, the mechanism of its toxic action in myoblasts is not well understood. Using mouse myoblasts (C2C12) and human rhabdomyosarcoma (RD and Rh30) cells as an experimental model for myoblasts, here we found that maduramicin inhibited cell proliferation and induced cell death in a concentration-dependent manner. Further studies revealed that maduramicin induced accumulation of the cells at G0/G1 phase of the cell cycle, and induced apoptosis in the cells. Concurrently, maduramicin downregulated protein expression of cyclin D1, cyclin-dependent kinases (CDK4 and CDK6), and CDC25A, and upregulated expression of the CDK inhibitors (p21Cip1 and p27Kip1), resulting in decreased phosphorylation of Rb. Maduramicin also induced expression of BAK, BAD, DR4, TRADD and TRAIL, leading to activation of caspases 8, 9 and 3 as well as cleavage of poly ADP ribose polymerase (PARP). Taken together, our results suggest that maduramicin executes its toxicity in myoblasts at least by inhibiting cell proliferation and inducing apoptotic cell death. PMID:25531367

  15. Characterization of an acute muscle contraction model using cultured C2C12 myotubes.

    PubMed

    Manabe, Yasuko; Miyatake, Shouta; Takagi, Mayumi; Nakamura, Mio; Okeda, Ai; Nakano, Taemi; Hirshman, Michael F; Goodyear, Laurie J; Fujii, Nobuharu L

    2012-01-01

    A cultured C2C12 myotube contraction system was examined for application as a model for acute contraction-induced phenotypes of skeletal muscle. C2C12 myotubes seeded into 4-well rectangular plates were placed in a contraction system equipped with a carbon electrode at each end. The myotubes were stimulated with electric pulses of 50 V at 1 Hz for 3 ms at 997-ms intervals. Approximately 80% of the myotubes were observed to contract microscopically, and the contractions lasted for at least 3 h with electrical stimulation. Calcium ion (Ca²⁺) transient evoked by the electric pulses was detected fluorescently with Fluo-8. Phosphorylation of protein kinase B/Akt (Akt), 5' AMP-activated protein kinase (AMPK), p38 mitogen-activated protein kinase (p38), and c-Jun NH2-terminal kinase (JNK)1/2, which are intracellular signaling proteins typically activated in exercised/contracted skeletal muscle, was observed in the electrically stimulated C2C12 myotubes. The contractions induced by the electric pulses increased glucose uptake and depleted glycogen in the C2C12 myotubes. C2C12 myotubes that differentiated after exogenous gene transfection by a lipofection or an electroporation method retained their normal contractile ability by electrical stimulation. These findings show that our C2C12 cell contraction system reproduces the muscle phenotypes that arise invivo (exercise), in situ (hindlimb muscles in an anesthetized animal), and invitro (dissected muscle tissues in incubation buffer) by acute muscle contraction, demonstrating that the system is applicable for the analysis of intracellular events evoked by acute muscle contraction. PMID:23300713

  16. Elastase levels and activity are increased in dystrophic muscle and impair myoblast cell survival, proliferation and differentiation

    PubMed Central

    Arecco, N.; Clarke, C. J.; Jones, F. K.; Simpson, D. M.; Mason, D.; Beynon, R. J.; Pisconti, A.

    2016-01-01

    In Duchenne muscular dystrophy, progressive loss of muscle tissue is accompanied by fibrosis, chronic inflammation and reduced muscle regenerative capacity. Although much is known about the development of fibrosis and chronic inflammation in muscular dystrophy, less is known about how they are mechanistically linked to loss of muscle regenerative capacity. We have developed a proteomics method to discover dystrophy-associated changes in the muscle progenitor cell niche, which identified serine proteases, and especially neutrophil elastase, as candidates. We show that elastase activity is increased in dystrophic (mdx4cv) muscle and impairs myoblast survival in culture. While the effect of elastase on C2C12 cell survival correlates with the kinetics of elastase-mediated degradation of the substrate to which the cells adhere, the effect of elastase on satellite cell-derived primary myoblast growth and differentiation is substrate-independent and even more dramatic than the effect on C2C12 cells, suggesting a detrimental role for elastase on myogenesis in vivo. Additionally, elastase impairs differentiation of both primary and C2C12 myoblasts into myotubes. Our findings evidence the importance of neutrophil-mediated inflammation in muscular dystrophy and indicate elastase-mediated regulation of myoblast behaviour as a potential mechanism underlying loss of regenerative capacity in dystrophic muscle. PMID:27241590

  17. Elastase levels and activity are increased in dystrophic muscle and impair myoblast cell survival, proliferation and differentiation.

    PubMed

    Arecco, N; Clarke, C J; Jones, F K; Simpson, D M; Mason, D; Beynon, R J; Pisconti, A

    2016-01-01

    In Duchenne muscular dystrophy, progressive loss of muscle tissue is accompanied by fibrosis, chronic inflammation and reduced muscle regenerative capacity. Although much is known about the development of fibrosis and chronic inflammation in muscular dystrophy, less is known about how they are mechanistically linked to loss of muscle regenerative capacity. We have developed a proteomics method to discover dystrophy-associated changes in the muscle progenitor cell niche, which identified serine proteases, and especially neutrophil elastase, as candidates. We show that elastase activity is increased in dystrophic (mdx(4cv)) muscle and impairs myoblast survival in culture. While the effect of elastase on C2C12 cell survival correlates with the kinetics of elastase-mediated degradation of the substrate to which the cells adhere, the effect of elastase on satellite cell-derived primary myoblast growth and differentiation is substrate-independent and even more dramatic than the effect on C2C12 cells, suggesting a detrimental role for elastase on myogenesis in vivo. Additionally, elastase impairs differentiation of both primary and C2C12 myoblasts into myotubes. Our findings evidence the importance of neutrophil-mediated inflammation in muscular dystrophy and indicate elastase-mediated regulation of myoblast behaviour as a potential mechanism underlying loss of regenerative capacity in dystrophic muscle. PMID:27241590

  18. Electrically induced contraction of C2C12 myotubes cultured on a porous membrane-based substrate with muscle tissue-like stiffness.

    PubMed

    Kaji, Hirokazu; Ishibashi, Takeshi; Nagamine, Kuniaki; Kanzaki, Makoto; Nishizawa, Matsuhiko

    2010-09-01

    A porous membrane-based cell culture device was developed to electrically stimulate a confluent monolayer of C2C12 myotubes. The device's cell culture substrate is a microporous alumina membrane-modified by attaching an atelocollagen membrane on the upperside and a hole-spotted poly(dimethylsiloxane) (PDMS) film on the underside. When electric current is generated between the device's Pt ring electrodes--one of which is placed above the cells and the other below the PDMS layer--the focused current at the PDMS hole can electrically stimulate the cells. C2C12 myoblasts were cultured on the substrate and differentiated into myotubes. When the electrical pulses were applied, myotubes started to contract slightly in and near the hole, and that the continuous stimulation increased both the number of stimuli-responding myotubes and the magnitude of the contraction considerably owing to the underlying atelocollagen membrane with muscle tissue-like stiffness. Also, the generation of contractile myotubes on a wider region of the membrane substrate was possible by applying the electrical pulses through the array of holes in the PDMS film. Using the present system, the glucose uptake by contractile myotubes was examined with fluorescence-labeled glucose, 2-NBDG, which displayed a positive correlation between the contractile activity of myotubes and the uptake of 2-NBDG. PMID:20561677

  19. Chitooligomer-Immobilized Biointerfaces with Micropatterned Geometries for Unidirectional Alignment of Myoblast Cells.

    PubMed

    Poosala, Pornthida; Kitaoka, Takuya

    2016-01-01

    Skeletal muscle possesses a robust capacity to regenerate functional architectures with a unidirectional orientation. In this study, we successfully arranged skeletal myoblast (C2C12) cells along micropatterned gold strips on which chitohexaose was deposited via a vectorial chain immobilization approach. Hexa-N-acetyl-D-glucosamine (GlcNAc6) was site-selectively modified at its reducing end with thiosemicarbazide, then immobilized on a gold substrate in striped micropatterns via S-Au chemisorption. Gold micropatterns ranged from 100 to 1000 µm in width. Effects of patterning geometries on C2C12 cell alignment, morphology, and gene expression were investigated. Unidirectional alignment of C2C12 cells having GlcNAc6 receptors was clearly observed along the micropatterns. Decreasing striped pattern width increased cell attachment and proliferation, suggesting that the fixed GlcNAc6 and micropatterns impacted cell function. Possibly, interactions between nonreducing end groups of fixed GlcNAc6 and cell surface receptors initiated cellular alignment. Our technique for mimicking native tissue organization should advance applications in tissue engineering. PMID:26784249

  20. Chitooligomer-Immobilized Biointerfaces with Micropatterned Geometries for Unidirectional Alignment of Myoblast Cells

    PubMed Central

    Poosala, Pornthida; Kitaoka, Takuya

    2016-01-01

    Skeletal muscle possesses a robust capacity to regenerate functional architectures with a unidirectional orientation. In this study, we successfully arranged skeletal myoblast (C2C12) cells along micropatterned gold strips on which chitohexaose was deposited via a vectorial chain immobilization approach. Hexa-N-acetyl-d-glucosamine (GlcNAc6) was site-selectively modified at its reducing end with thiosemicarbazide, then immobilized on a gold substrate in striped micropatterns via S–Au chemisorption. Gold micropatterns ranged from 100 to 1000 µm in width. Effects of patterning geometries on C2C12 cell alignment, morphology, and gene expression were investigated. Unidirectional alignment of C2C12 cells having GlcNAc6 receptors was clearly observed along the micropatterns. Decreasing striped pattern width increased cell attachment and proliferation, suggesting that the fixed GlcNAc6 and micropatterns impacted cell function. Possibly, interactions between nonreducing end groups of fixed GlcNAc6 and cell surface receptors initiated cellular alignment. Our technique for mimicking native tissue organization should advance applications in tissue engineering. PMID:26784249

  1. Effects of electrical stimulation in C2C12 muscle constructs

    PubMed Central

    Park, Hyoungshin; Bhalla, Rajat; Saigal, Rajiv; Radisic, Milica; Watson, Nicki; Langer, Robert; Vunjak-Novakovic, Gordana

    2009-01-01

    Electrical stimulation affects the deposition of extracellular matrices and cellular differentiation. Type I collagen is one of the most abundant extracellular matrix proteins; however, not much is known about the effects of electrical stimulation on collagen type I deposition in C2C12 cells. Thus, we studied the effects of electrical voltage and stimulation frequency in 3D cultured C2C12 muscle cells in terms of metabolic activity, type I collagen deposition and cell morphology. Electrically excitable C2C12 muscle cells were seeded in collagen scaffolds and stimulated with rectangular signals of voltage (2, 5, 7 V) and frequency (1, 2 Hz), using parallel carbon electrodes spaced 1 cm apart. Metabolic activity was quantified by the glucose: lactate concentration ratio in the medium. Apoptotic activity was assessed by TUNEL staining and changes in collagen deposition were identified by immunohistology. The ultrastructure of the tissue was examined by TEM. Glucose and lactate analysis indicated that all groups had similar metabolic activity. TUNEL stain showed no significant difference in apoptotic damage induced by electrical stimulation compared to the control. Samples stimulated at 2 Hz exhibited reduced collagen deposition compared to the control and 1 Hz stimulated samples. Muscle-protein marker desmin was highly expressed in constructs stimulated with 1 Hz/5 V sample. TEM revealed that the stimulated samples developed highly organized sarcomeres, which coincided with improved contractile properties in the 1 Hz/5 V- and 2 Hz/5 V-stimulated groups. Our data implicate that a specific electrical frequency may modulate type I collagen accumulation and a specific voltage may affect the differentiation of muscle sarcomeres in excitable cells. PMID:18512267

  2. Chronic reactive oxygen species exposure inhibits glucose uptake and causes insulin resistance in C2C12 myotubes.

    PubMed

    Ding, Hongwen; Heng, Baoli; He, Wenfang; Shi, Liping; Lai, Caiyong; Xiao, Long; Ren, Haolin; Mo, Shijie; Su, Zexuan

    2016-09-16

    Reactive oxygen species (ROS) is an important regulator in cellular signaling transduction, and many previous studies have indicated that acute ROS stimulation improves insulin sensitivity in skeletal muscle. In the study, we found that chronic ROS treatment caused serious insulin resistance in C2C12 myotubes. Glucose uptake and consumption assay indicated that pretreatment with 80 μM H2O2 for 2 h inhibited insulin-stimulated glucose uptake in C2C12 myotubes, and the reason for it, is that chronic H2O2 treatment decreased insulin-induced glucose transporter 4 (GLUT4) translocation from cell plasma to cell membrane. Moreover, Akt2 phosphorylation depended on insulin was reduced in C2C12 myotubes of chronic H2O2 treatment. Together, this study provides further demonstration that chronic ROS stress is associated with insulin resistance of skeletal muscle in the progression of type 2 diabetes. PMID:27501754

  3. Transcriptional activity of acetylcholinesterase gene is regulated by DNA methylation during C2C12 myogenesis.

    PubMed

    Lau, Kei M; Gong, Amy G W; Xu, Miranda L; Lam, Candy T W; Zhang, Laura M L; Bi, Cathy W C; Cui, D; Cheng, Anthony W M; Dong, Tina T X; Tsim, Karl W K; Lin, Huangquan

    2016-07-01

    The expression of acetylcholinesterase (AChE), an enzyme hydrolyzes neurotransmitter acetylcholine at vertebrate neuromuscular junction, is regulated during myogenesis, indicating the significance of muscle intrinsic factors in controlling the enzyme expression. DNA methylation is essential for temporal control of myogenic gene expression during myogenesis; however, its role in AChE regulation is not known. The promoter of vertebrate ACHE gene carries highly conserved CG-rich regions, implying its likeliness to be methylated for epigenetic regulation. A DNA methyltransferase inhibitor, 5-azacytidine (5-Aza), was applied onto C2C12 cells throughout the myotube formation. When DNA methylation was inhibited, the promoter activity, transcript expression and enzymatic activity of AChE were markedly increased after day 3 of differentiation, which indicated the putative role of DNA methylation. By bisulfite pyrosequencing, the overall methylation rate was found to peak at day 3 during C2C12 cell differentiation; a SP1 site located at -1826bp upstream of mouse ACHE gene was revealed to be heavily methylated. The involvement of transcriptional factor SP1 in epigenetic regulation of AChE was illustrated here: (i) the SP1-driven transcriptional activity was increased in 5-Aza-treated C2C12 culture; (ii) the binding of SP1 onto the SP1 site of ACHE gene was fully blocked by the DNA methylation; and (iii) the sequence flanking SP1 sites of ACHE gene was precipitated by chromatin immuno-precipitation assay. The findings suggested the role of DNA methylation on AChE transcriptional regulation and provided insight in elucidating the DNA methylation-mediated regulatory mechanism on AChE expression during muscle differentiation. PMID:27021952

  4. Systemic delivery of recombinant proteins by genetically modified myoblasts

    SciTech Connect

    Barr, E.; Leiden, J.M. )

    1991-12-06

    The ability to stably deliver recombinant proteins to the systemic circulation would facilitate the treatment of a variety of acquired and inherited diseases. To explore the feasibility of the use of genetically engineered myoblasts as a recombinant protein delivery system, stable transfectants of the murine C2C12 myoblast cell line were produced that synthesize and secrete high levels of human growth hormone (hGH) in vitro. Mice injected with hGH-transfected myoblasts had significant levels of hGH in both muscle and serum that were stable for at least 3 weeks after injection. Histological examination of muscles injected with {beta}-galactosidase-expressing C2C12 myoblasts demonstrated that many of the injected cells had fused to form multinucleated myotubes. Thus, genetically engineered myoblasts can be used for the stable delivery of recombinant proteins into the circulation.

  5. Genipin stimulates glucose transport in C2C12 myotubes via an IRS-1 and calcium-dependent mechanism.

    PubMed

    Ma, Chan-Juan; Nie, Ai-Fang; Zhang, Zhi-Jian; Zhang, Zhi-Guo; Du, Li; Li, Xiao-Ying; Ning, Guang

    2013-03-01

    Genipin, a compound derived from Gardenia jasminoides Ellis fruits, has been used over the years in traditional Chinese medicine to treat symptoms of type 2 diabetes. However, the molecular basis for its antidiabetic effect has not been fully revealed. In this study, we investigated the effects of genipin on glucose uptake and signaling pathways in C(2)C(12) myotubes. Our study demonstrates that genipin stimulated glucose uptake in a time- and dose-dependent manner. The maximal effect was achieved at 2 h with a concentration of 10 μM. In myotubes, genipin promoted glucose transporter 4 (GLUT4) translocation to the cell surface, which was observed by analyzing their distribution in subcellular membrane fraction, and increased the phosphorylation of insulin receptor substrate-1 (IRS-1), AKT, and GSK3β. Meanwhile, genipin increased ATP levels, closed K(ATP) channels, and then increased the concentration of calcium in the cytoplasm in C(2)C(12) myotubes. Genipin-stimulated glucose uptake could be blocked by both the PI3-K inhibitor wortmannin and calcium chelator EGTA. Moreover, genipin increases the level of reactive oxygen species and ATP in C(2)C(12) myotubes. These results suggest that genipin activates IRS-1, PI3-K, and downstream signaling pathway and increases concentrations of calcium, resulting in GLUT4 translocation and glucose uptake increase in C(2)C(12) myotubes. PMID:23257267

  6. Cytoprotective Role of Nrf2 in Electrical Pulse Stimulated C2C12 Myotube

    PubMed Central

    Horie, Masaki; Warabi, Eiji; Komine, Shoichi; Oh, Sechang; Shoda, Junichi

    2015-01-01

    Regular physical exercise is central to a healthy lifestyle. However, exercise-related muscle contraction can induce reactive oxygen species and reactive nitrogen species (ROS/RNS) production in skeletal muscle. The nuclear factor-E2-related factor-2 (Nrf2) transcription factor is a cellular sensor for oxidative stress. Regulation of nuclear Nrf2 signaling regulates antioxidant responses and protects organ structure and function. However, the role of Nrf2 in exercise- or contraction-induced ROS/RNS production in skeletal muscle is not clear. In this study, using differentiated C2C12 cells and electrical pulse stimulation (EPS) of muscle contraction, we explored whether Nrf2 plays a role in the skeletal muscle response to muscle contraction-induced ROS/RNS. We found that EPS (40 V, 1 Hz, 2 ms) stimulated ROS/RNS accumulation and Nrf2 activation. We also showed that expression of NQO1, HO-1 and GCLM increased after EPS-induced muscle contraction and was remarkably suppressed in cells with Nrf2 knockdown. We also found that the antioxidant N-acetylcysteine (NAC) significantly attenuated Nrf2 activation after EPS, whereas the nitric oxide synthetase inhibitor Nω-nitro-L-arginine methyl ester (L-NAME) did not. Furthermore, Nrf2 knockdown after EPS markedly decreased ROS/RNS redox potential and cell viability and increased expression of the apoptosis marker Annexin V in C2C12 myotubes. These results indicate that Nrf2 activation and expression of Nrf2 regulated-genes protected muscle against the increased ROS caused by EPS-induced muscle contraction. Thus, our findings suggest that Nrf2 may be a key factor for preservation of muscle function during muscle contraction. PMID:26658309

  7. Micropatterning C2C12 myotubes for orderly recording of intracellular calcium transients.

    PubMed

    Takayama, Yuzo; Wagatsuma, Akira; Hoshino, Takayuki; Mabuchi, Kunihiko

    2013-01-01

    Reconstruction of skeletal muscle myotubes in vitro using myogenic cell lines have been widely carried out to study functional properties and disease-related biological changes of myotubes, such as intracellular calcium dynamics. However, the analysis of biological signals in isolated single myotubes or interactions among several myotubes is quite difficult problem because of the randomness in size, morphology and orientation of differentiated myotubes cultured on a conventional tissue culture dish. In the present study, we attempted to form uniform-size myotubes and detect intracellular calcium dynamics from the fabricated myotubes. We modified surfaces of culture dishes using a poly(-dimethylsiloxane) (PDMS) stamp and a 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer solution to form line patterns for myotube formation. We could form uniform-size and -orientation C2C12 myotubes and detect intracellular calcium dynamics from it. This simple method would be a useful for studying properties in myotubes with specific sizes and morphologies. PMID:24111271

  8. Cell viability, reactive oxygen species, apoptosis, and necrosis in myoblast cultures exposed to low-level infrared laser.

    PubMed

    Alexsandra da Silva Neto Trajano, Larissa; da Silva, Camila Luna; de Carvalho, Simone Nunes; Cortez, Erika; Mencalha, André Luiz; de Souza da Fonseca, Adenilson; Stumbo, Ana Carolina

    2016-07-01

    Low-level infrared laser is considered safe and effective for treatment of muscle injuries. However, the mechanism involved on beneficial effects of laser therapy are not understood. The aim was to evaluate cell viability, reactive oxygen species, apoptosis, and necrosis in myoblast cultures exposed to low-level infrared laser at therapeutic fluences. C2C12 myoblast cultures at different (2 and 10 %) fetal bovine serum (FBS) concentrations were exposed to low-level infrared laser (808 nm, 100 mW) at different fluences (10, 35, and 70 J/cm(2)) and evaluated after 24, 48, and 72 h. Cell viability was evaluated by WST-1 assay; reactive oxygen species (ROS), apoptosis, and necrosis were evaluated by flow cytometry. Cell viability was decreased atthe lowest FBS concentration. Laser exposure increased the cell viability in myoblast cultures at 2 % FBS after 48 and 72 h, but no significant increase in ROS was observed. Apoptosis was decreased at the higher fluence and necrosis was increased at lower fluence in myoblast cultures after 24 h of laser exposure at 2 % FBS. No laser-induced alterations were obtained at 10 % FBS. Results show that level of reactive oxygen species is not altered, at least to those evaluated in this study, but low-level infrared laser exposure affects cell viability, apoptosis, and necrosis in myoblast cultures depending on laser fluence and physiologic conditions of cells. PMID:26886589

  9. Photolithographic Patterning of C2C12 Myotubes using Vitronectin as Growth Substrate in Serum-Free Medium

    PubMed Central

    Molnar, Peter; Wang, Weishi; Natarajan, Anupama; Rumsey, John W.; Hickman, James J.

    2008-01-01

    The C2C12 cell line is frequently used as a model of skeletal muscle differentiation. In our serum-free defined culture system differentiation of C2C12 cells into myotubes required surface-bound signals such as substrate adsorbed vitronectin or laminin. Based on this substrate-requirement of myotube formation, we developed a photolithography-based method to pattern C2C12 myotubes, where myotubes formed exclusively on vitronectin surface patterns. We have determined that the optimal line width to form single myotubes is approximately 30 μm. In order to illustrate a possible application of this method, we patterned myotubes on the top of commercial substrate-embedded microelectrodes. In contrast to previous experiments where cell patterning was achieved by selective attachment of the cells to patterned surfaces in a medium that contained all the factors necessary for differentiation, this study illustrates that surface patterning of a signaling molecule, which is essential for skeletal muscle differentiation in a defined system, can result in the formation of aligned myotubes on the patterns. This technique is being developed for applications in cell biology, tissue engineering and robotics. PMID:17269697

  10. Expression of Non-acetylatable H2A.Z in Myoblast Cells Blocks Myoblast Differentiation through Disruption of MyoD Expression*

    PubMed Central

    Law, Cindy; Cheung, Peter

    2015-01-01

    H2A.Z is a histone H2A variant that is essential for viability in Tetrahymena and Drosophila and also during embryonic development of mice. Although implicated in diverse cellular processes, including transcriptional regulation, chromosome segregation, and heterochromatin formation, its essential function in cells remains unknown. Cellular differentiation is part of the developmental process of multicellular organisms. To elucidate the roles of H2A.Z and H2A.Z acetylation in cellular differentiation, we examined the effects of expressing wild type (WT) or a non-acetylatable form of H2A.Z in the growth and differentiation of the myoblast C2C12 cell line. Ectopic expression of wild type or mutant H2A.Z resulted in distinct phenotypes in the differentiation of the C2C12 cells and the formation of myotubes. Most strikingly, expression of the H2A.Z non-acetylatable mutant (H2A.Z-Ac-mut) resulted in a complete block of myoblast differentiation. We determined that this phenotype is caused by a loss of MyoD expression in the Ac-mut-expressing cells prior to and after induction of differentiation. Moreover, chromatin accessibility assays showed that the promoter region of MyoD is less accessible in the differentiation-defective cells. Altogether, these new findings show that expression of the Ac-mut form of H2A.Z resulted in a dominant phenotype that blocked differentiation due to chromatin changes at the MyoD promoter. PMID:25839232

  11. Mitochondria dysfunction in lung cancer-induced muscle wasting in C2C12 myotubes

    PubMed Central

    McLean, Julie B.; Moylan, Jennifer S.; Andrade, Francisco H.

    2014-01-01

    Aims: Cancer cachexia is a syndrome which results in severe loss of muscle mass and marked fatigue. Conditioned media from cachexia-inducing cancer cells triggers metabolic dysfunction in skeletal muscle, including decreased mitochondrial respiration, which may contribute to fatigue. We hypothesized that Lewis lung carcinoma conditioned medium (LCM) would impair the mitochondrial electron transport chain (ETC) and increase production of reactive oxygen species, ultimately leading to decreased mitochondrial respiration. We incubated C2C12 myotubes with LCM for 30 min, 2, 4, 24 or 48 h. We measured protein content by western blot; oxidant production by 2′,7′-dichlorofluorescin diacetate (DCF), 4-amino-5-methylamino-2′,7′-difluorofluorescein diacetate (DAF), and MitoSox; cytochrome c oxidase activity by oxidation of cytochrome c substrate; and oxygen consumption rate (OCR) of intact myotubes by Seahorse XF Analyzer. Results: LCM treatment for 2 or 24 h decreased basal OCR and ATP-related OCR, but did not alter the content of mitochondrial complexes I, III, IV and V. LCM treatment caused a transient rise in reactive oxygen species (ROS). In particular, mitochondrial superoxide (MitoSOX) was elevated at 2 h. 4-Hydroxynonenal, a marker of oxidative stress, was elevated in both cytosolic and mitochondrial fractions of cell lysates after LCM treatment. Conclusion: These data show that lung cancer-conditioned media alters electron flow in the ETC and increases mitochondrial ROS production, both of which may ultimately impair aerobic metabolism and decrease muscle endurance. PMID:25566096

  12. Regulation of nonmuscle myosin II during 3-methylcholanthrene induced dedifferentiation of C2C12 myotubes

    SciTech Connect

    Dey, Sumit K.; Saha, Shekhar; Das, Provas; Das, Mahua R.; Jana, Siddhartha S.

    2014-08-01

    3-Methylcholanthrene (3MC) induces tumor formation at the site of injection in the hind leg of mice within 110 days. Recent reports reveal that the transformation of normal muscle cells to atypical cells is one of the causes for tumor formation, however the molecular mechanism behind this process is not well understood. Here, we show in an in vitro study that 3MC induces fragmentation of multinucleate myotubes into viable mononucleates. These mononucleates form colonies when they are seeded into soft agar, indicative of cellular transformation. Immunoblot analysis reveals that phosphorylation of myosin regulatory light chain (RLC{sub 20}) is 5.6±0.5 fold reduced in 3MC treated myotubes in comparison to vehicle treated myotubes during the fragmentation of myotubes. In contrast, levels of myogenic factors such as MyoD, Myogenin and cell cycle regulators such as Cyclin D, Cyclin E1 remain unchanged as assessed by real-time PCR array and reverse transcriptase PCR analysis, respectively. Interestingly, addition of the myosin light chain kinase inhibitor, ML-7, enhances the fragmentation, whereas phosphatase inhibitor perturbs the 3MC induced fragmentation of myotubes. These results suggest that decrease in RLC{sub 20} phosphorylation may be associated with the fragmentation step of dedifferentiation. - Highlights: • 3-Methylcholanthrene induces fragmentation of C2C12-myotubes. • Dedifferentiation can be divided into two steps – fragmentation and proliferation. • Fragmentation is associated with rearrangement of nonmuscle myosin II. • Genes associated with differentiation and proliferation are not altered during fragmentation. • Phosphorylation of myosin regulatory light chain is reduced during fragmentation.

  13. The PGC-1α-related coactivator promotes mitochondrial and myogenic adaptations in C2C12 myotubes

    PubMed Central

    Philp, Andrew; Belew, Micah Y.; Evans, Ashleigh; Pham, Don; Sivia, Itwinder; Chen, Ai; Schenk, Simon

    2011-01-01

    The transcriptional coactivator PGC-1α is a potent regulator of skeletal muscle metabolism. Less is known about the structurally similar PGC-1α-related coactivator (PRC) that is enriched in myoblasts and adult skeletal muscle. The present study was designed to determine the effect of PRC on the metabolic profile of C2C12 myotubes. Overexpression of full-length PRC increased PRC gene expression by 2.7 ± 0.3-fold and protein content by 108 ± 5.3%. This modest elevation in PRC resulted in an increased rate of myoblast proliferation (61.5 ± 2.7%) and resulted in myotubes characterized by increased MyoD (18.2 ± 0.52%) and myosin heavy chain (15.4 ± 3.13%) protein. PRC overexpressing myotubes showed increases in mRNA for some—COX4 (2.6 ± 0.18-fold), ATP5B (2.7 ± 0.34-fold) cytochrome c (5.1 ± 0.68-fold)—but not all, MTCO1 (0.61 ± 0.18-fold) and HAD (0.98 ± 0.36-fold) mitochondrial genes, as well as a significant increase in cytochrome–c (28.7 ± 7.02%) protein content. The enzyme activity of the electron transport chain (ETC) complex IV (3.7 ± 0.01-fold) and citrate synthase (2.1 ± 0.14-fold) was increased by PRC, as was the mtDNA:nucDNA ratio (11 ± 0.3%). PRC increased cellular respiration (142%), basal (197%) and insulin-stimulated (253%) glucose uptake, as well as palmitate uptake (28.6 ± 3.31%) and oxidation (31.1 ± 2.17%). Associated with these changes in function, PRC overexpression increased GLUT4 mRNA (4.5 ± 0.22-fold) and protein (13.8 ± 2.08%) and CPT1 protein (28.9 ± 4.23%). Electrical stimulation of C2C12 myotubes resulted in a transient increase in PRC mRNA that was smaller (2.1 ± 0.3-fold vs. 4.4 ± 0.23-fold) and occurred earlier (3 h vs. 6 h) than PGC-1α. Collectively, our data show that PRC promotes skeletal muscle myogenesis and metabolism in vitro, thus identifying PRC as a functional skeletal muscle coactivator capable of regulating mitochondrial substrate utilization and respiration. PMID:21795630

  14. p75NTR-mediated signaling promotes the survival of myoblasts and influences muscle strength.

    PubMed

    Reddypalli, Shailaja; Roll, Kristin; Lee, Hyung-Kook; Lundell, Martha; Barea-Rodriguez, Edwin; Wheeler, Esther F

    2005-09-01

    During muscle development, the p75(NTR) is expressed transiently on myoblasts. The temporal expression pattern of the receptor raises the possibility that the receptor is influencing muscle development. To test this hypothesis, p75(NTR)-deficient mutant mice were tested for muscle strength by using a standard wire gripe strength test and were found to have significantly decreased strength relative to that of normal mice. When normal mybolasts were examined in vivo for expression of NGF receptors, p75(NTR) was detected on myoblasts but the high affinity NGF receptor, trk A, was not co-expressed with p75(NTR). In vitro, proliferating C2C12 and primary myoblasts co-expressed the p75(NTR) and MyoD, but immunofluorescent analysis of primary myoblasts and RT-PCR analysis of C2C12 mRNA revealed that myoblasts were devoid of trk A. In contrast to the cell death functions that characterize the p75(NTR) in neurons, p75(NTR)-positive primary and C2C12 myoblasts did not differentiate or undergo apoptosis in response to neurotrophins. Rather, myoblasts survived and even proliferated when grown at subconfluent densities in the presence of the neurotrophins. Furthermore, when myoblasts treated with NGF were lysed and immunoprecipitated with antibodies against phosphorylated I-kappaB and AKT, the cells contained increased levels of both phospho-proteins, both of which promote cell survival. By contrast, neurotrophin-treated myoblasts did not induce phosphorylation of Map Kinase p42/44 or p38, indicating the survival was not mediated by the trk A receptor. Taken together, the data indicate that the p75(NTR) mediates survival of myoblasts prior to differentiation and that the activity of this receptor during myogenesis is important for developing muscle. PMID:15754321

  15. C2C12 myotubes inhibit the proliferation and differentiation of 3T3-L1 preadipocytes by reducing the expression of glucocorticoid receptor gene.

    PubMed

    Chu, Weiwei; Wei, Wei; Yu, Shigang; Han, Haiyin; Shi, Xiaoli; Sun, Wenxing; Gao, Ying; Zhang, Lifan; Chen, Jie

    2016-03-25

    Obesity is a well-established risk factor to health for its relationship with insulin resistance, diabetes and metabolic syndrome. Myocyte-adipocyte crosstalk model plays a significant role in studying the interaction of muscle and adipose development. Previous related studies mainly focus on the effects of adipocytes on the myocytes activity, however, the influence of myotubes on the preadipocytes development remains unclear. The present study was carried out to settle this issue. Firstly, the co-culture experiment showed that the proliferation, cell cycle, and differentiation of 3T3-L1 preadipocytes were arrested, and the apoptosis was induced, by differentiated C2C12 myotubes. Next, the sensitivity of 3T3-L1 preadipocytes to glucocorticoids (GCs), which was well known as cell proliferation, differentiation, apoptosis factor, was decreased after co-cultured with C2C12 myotubes. What's more, our results showed that C2C12 myotubes suppressed the mRNA and protein expression of glucocorticoid receptor (GR) in 3T3-L1 preadipocytes, indicating the potential mechanism of GCs sensitivity reduction. Taken together, we conclude that C2C12 myotubes inhibited 3T3-L1 preadipocytes proliferation and differentiation by reducing the expression of GR. These data suggest that decreasing GR by administration of myokines may be a promising therapy for treating patients with obesity or diabetes. PMID:26896766

  16. Photovoltaic surfaces enable clonal myoblastic cell release using visible light as external stimulation.

    PubMed

    Bhuyan, Mohammod Kabir; Rodriguez, Jorge; Tseng, Tzu-Liang Bill; Boland, Thomas

    2016-03-01

    Many new biomedical approaches to treating disease require the supply of cells delivered to an injured or diseased organ either individually, collectively as aggregates or sheets, or encapsulated with a scaffold. The collection of cells is accomplished by using enzymatic digestion witch suffer from the need to remove the enzymes after digestion. In addition, enzymatic methods are not applicable for all cells, cell aggregates, cell sheets or 3D structures. The objective of this study was to investigate the release of cultured cells from silicon based Photovoltaic (PV) surfaces using a light source as external stimulation. C2C12 myoblasts were cultured on the negative surface of a PV device and upon confluence they were exposed to light. The amount of released cells was quantified as a function light exposure. It was found that light exposure at 25 000 lux for one hour caused equivalent cell release from the PV surface than trypsination. The released cells are viable and can be re-cultured if needed. This mechanism may offer an alternative method to release excitable cells without using an enzymatic agent. This may be important for cell therapy if larger cell structures such as sheets need to be collected. PMID:26710125

  17. The effect of eicosapentaenoic and docosahexaenoic acid on protein synthesis and breakdown in murine C2C12 myotubes

    SciTech Connect

    Kamolrat, Torkamol; Gray, Stuart R.

    2013-03-22

    Highlights: ► EPA can enhance protein synthesis and retard protein breakdown in muscle cells. ► These effects were concurrent with increases in p70s6k and FOXO3a phosphorylation. ► EPA may be a useful tool in the treatment of muscle wasting conditions. -- Abstract: Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been found to stimulate protein synthesis with little information regarding their effects on protein breakdown. Furthermore whether there are distinct effects of EPA and DHA remains to be established. The aim of the current study was to determine the distinct effects of EPA and DHA on protein synthesis, protein breakdown and signalling pathways in C2C12 myotubes. Fully differentiated C2C12 cells were incubated for 24 h with 0.1% ethanol (control), 50 μM EPA or 50 μM DHA prior to experimentation. After serum (4 h) and amino acid (1 h) starvation cells were stimulated with 2 mM L-leucine and protein synthesis measured using {sup 3}H-labelled phenylalanine. Protein breakdown was measured using {sup 3}H-labelled phenylalanine and signalling pathways (Akt, mTOR, p70S6k, 4EBP1, rps6 and FOXO3a) via Western blots. Data revealed that after incubation with EPA protein synthesis was 25% greater (P < 0.05) compared to control cells, with no effect of DHA. Protein breakdown was 22% (P < 0.05) lower, compared to control cells, after incubation with EPA, with no effect of DHA. Analysis of signalling pathways revealed that both EPA and DHA incubation increased (P < 0.05) p70s6k phosphorylation, EPA increased (P < 0.05) FOXO3a phosphorylation, with no alteration in other signalling proteins. The current study has demonstrated distinct effects of EPA and DHA on protein metabolism with EPA showing a greater ability to result in skeletal muscle protein accretion.

  18. Proteome Profiling and Ultrastructural Characterization of the Human RCMH Cell Line: Myoblastic Properties and Suitability for Myopathological Studies.

    PubMed

    Kollipara, Laxmikanth; Buchkremer, Stephan; Weis, Joachim; Brauers, Eva; Hoss, Mareike; Rütten, Stephan; Caviedes, Pablo; Zahedi, René P; Roos, Andreas

    2016-03-01

    Studying (neuro)muscular disorders is a major topic in biomedicine with a demand for suitable model systems. Continuous cell culture (in vitro) systems have several technical advantages over in vivo systems and became widely used tools for discovering physiological/pathophysiological mechanisms in muscle. In particular, myoblast cell lines are suitable model systems to study complex biochemical adaptations occurring in skeletal muscle and cellular responses to altered genetic/environmental conditions. Whereas most in vitro studies use extensively characterized murine C2C12 cells, a comprehensive description of an equivalent human cell line, not genetically manipulated for immortalization, is lacking. Therefore, we characterized human immortal myoblastic RCMH cells using scanning (SEM) and transmission electron microscopy (TEM) and proteomics. Among more than 6200 identified proteins we confirm the known expression of proteins important for muscle function. Comparing the RCMH proteome with two well-defined nonskeletal muscle cells lines (HeLa, U2OS) revealed a considerable enrichment of proteins important for muscle function. SEM/TEM confirmed the presence of agglomerates of cytoskeletal components/intermediate filaments and a prominent rough ER. In conclusion, our results indicate RMCH as a suitable in vitro model for investigating muscle function-related processes such as mechanical stress burden and mechanotransduction, EC coupling, cytoskeleton, muscle cell metabolism and development, and (ER-associated) myopathic disorders. PMID:26781476

  19. Possible role of TIEG1 as a feedback regulator of myostatin and TGF-{beta} in myoblasts

    SciTech Connect

    Miyake, Masato; Hayashi, Shinichiro; Iwasaki, Shunsuke; Chao, Guozheng; Takahashi, Hideyuki; Watanabe, Kouichi; Ohwada, Shyuichi; Aso, Hisashi; Yamaguchi, Takahiro

    2010-03-19

    Myostatin and TGF-{beta} negatively regulate skeletal muscle development and growth. Both factors signal through the Smad2/3 pathway. However, the regulatory mechanism of myostatin and TGF-{beta} signaling remains unclear. TGF-{beta} inducible early gene (TIEG) 1 is highly expressed in skeletal muscle and has been implicated in the modulation of TGF-{beta} signaling. These findings prompted us to investigate the effect of TIEG1 on myostatin and TGF-{beta} signaling using C2C12 myoblasts. Myostatin and TGF-{beta} induced the expression of TIEG1 and Smad7 mRNAs, but not TIEG2 mRNA, in proliferating C2C12 cells. When differentiating C2C12 myoblasts were stimulated by myostatin, TIEG1 mRNA was up-regulated at a late stage of differentiation. In contrast, TGF-{beta} enhanced TIEG1 expression at an early stage. Overexpression of TIEG1 prevented the transcriptional activation of Smad by myostatin and TGF-{beta} in both proliferating or differentiating C2C12 cells, but the expression of Smad2 and Smad7 mRNAs was not affected. Forced expression of TIEG1 inhibited myogenic differentiation but did not cause more inhibition than the empty vector in the presence of myostatin or TGF-{beta}. These results demonstrate that TIEG1 is one possible feedback regulator of myostatin and TGF-{beta} that prevents excess action in myoblasts.

  20. Cisplatin triggers atrophy of skeletal C2C12 myotubes via impairment of Akt signalling pathway and subsequent increment activity of proteasome and autophagy systems

    SciTech Connect

    Fanzani, Alessandro Zanola, Alessandra; Rovetta, Francesca; Rossi, Stefania; Aleo, Maria Francesca

    2011-02-01

    Cisplatin (cisPt) is an antineoplastic drug which causes an array of adverse effects on different organs and tissues, including skeletal muscle. In this work we show that cisPt behaves as a potent trigger to activate protein hypercatabolism in skeletal C2C12 myotubes. Within 24 h of 50 {mu}M cisPt administration, C2C12 myotubes displayed unchanged cell viability but showed a subset of hallmark signs typically recognized during atrophy, including severe reduction in body size, repression of Akt phosphorylation, transcriptional up-regulation of atrophy-related genes, such as atrogin-1, gabarap, beclin-1 and bnip-3, and loss of myogenic markers. As a consequence, proteasomal activity and formation of autophagosomes were remarkably increased in cisPt-treated myotubes, but forced stimulation of Akt pathway, as obtained through insulin administration or delivery of a constitutively activated Akt form, was sufficient to counter the cisPt-induced protein breakdown, leading to rescue of atrophic size. Overall, these results indicate that cisPt induces atrophy of C2C12 myotubes via activation of proteasome and autophagy systems, suggesting that the Akt pathway represents one sensitive target of cisPt molecular action in skeletal muscle.

  1. Cyclic stretch induced miR-146a upregulation delays C2C12 myogenic differentiation through inhibition of Numb

    SciTech Connect

    Kuang Wei; Tan Jiali; Duan Yinzhong; Duan Jianmin; Wang Weijian; Jin Fang; Jin Zuolin; Yuan Xiao Liu Yanpu

    2009-01-09

    Proliferation and differentiation of muscle stem cells must be tightly regulated by intrinsic and extrinsic signals for effective regeneration and adaptive response. MicroRNAs have been implicated as potent regulators in diverse biological processes at the level of posttranscriptional repression. In this study, we found that miR-146a was significantly upregulated upon a 48-h cyclic stretch of 5% elongation/10cycles/min. Importantly, miR-146 was predicted to base-pair with sequences in the 3' UTR of Numb, which promotes satellite cell differentiation towards muscle cells by inhibiting Notch signaling. Through reporter assay and exogenous expression experiment, we confirmed Numb was inhibited by miR-146a. Inhibition of miR-146a by antago-miR-146a rescued the expression of Numb and facilitated the differentiation of C2C12 at a cost of compromised proliferation. Thus, for the first time, we propose a role of miR-146a in skewing the balance of muscle differentiation and proliferation through inhibiting the expression of Numb.

  2. Glypican-1 regulates myoblast response to HGF via Met in a lipid raft-dependent mechanism: effect on migration of skeletal muscle precursor cells

    PubMed Central

    2014-01-01

    Background Via the hepatocyte growth factor receptor (Met), hepatocyte growth factor (HGF) exerts key roles involving skeletal muscle development and regeneration. Heparan sulfate proteoglycans (HSPGs) are critical modulators of HGF activity, but the role of specific HSPGs in HGF regulation is poorly understood. Glypican-1 is the only HSPG expressed in myoblasts that localize in lipid raft membrane domains, controlling cell responses to extracellular stimuli. We determined if glypican-1 in these domains is necessary to stabilize the HGF-Met signaling complex and myoblast response to HGF. Methods C2C12 myoblasts and a derived clone (C6) with low glypican-1 expression were used as an experimental model. The activation of Met, ERK1/2 and AKT in response to HGF was evaluated. The distribution of Met and its activated form in lipid raft domains, as well as its dependence on glypican-1, were characterized by sucrose density gradient fractionation in both cell types. Rescue experiments reexpressing glypican-1 or a chimeric glypican-1 fused to the transmembrane and cytoplasmic domains of mouse syndecan-1 or myoblast pretreatment with MβCD were conducted. In vitro and in vivo myoblast migration assays in response to HGF were also performed. Results Glypican-1 localization in membrane raft domains was required for a maximum cell response to HGF. It stabilized Met and HGF in lipid raft domains, forming a signaling complex where the active phospho-Met receptor was concentrated. Glypican-1 also stabilized CD44 in a HGF-dependent manner. In addition, glypican-1 was required for in vitro and in vivo HGF-dependent myoblast migration. Conclusions Glypican-1 is a regulator of HGF-dependent signaling via Met in lipid raft domains. PMID:24517345

  3. Mesoporous silica nanoparticle-based substrates for cell directed delivery of Notch signalling modulators to control myoblast differentiation

    NASA Astrophysics Data System (ADS)

    Böcking, Dominique; Wiltschka, Oliver; Niinimäki, Jenni; Shokry, Hussein; Brenner, Rolf; Lindén, Mika; Sahlgren, Cecilia

    2014-01-01

    MSNs allows for a free standing substrate for cell directed drug delivery. Electronic supplementary information (ESI) available: (1) Particle characterization. (2) Immunohistochemistry and SEM analyses of C2C12 cells grown on films for 3, 6, 24 and 72 h. Light microscopy and WST1 analyses of cells grown on cover slips and films for 6, 24 and 72 h (3) Quantification of protein levels of C2C12 cells differentiating on cover slips versus MSN films. (4) Stability of MSN films in biological solution and the influence on cell viability. (5) Cell internalization of particles from MSN films and intracellular drug release at 12 and 24 h (6) Cell internalization and intracellular DiI release of MSNs from (3Dtro®) fiber scaffolds impregnated with MSNs. See DOI: 10.1039/c3nr04022d

  4. Spatial Geometries of Self-Assembled Chitohexaose Monolayers Regulate Myoblast Fusion.

    PubMed

    Poosala, Pornthida; Ichinose, Hirofumi; Kitaoka, Takuya

    2016-01-01

    Myoblast fusion into functionally-distinct myotubes to form in vitro skeletal muscle constructs under differentiation serum-free conditions still remains a challenge. Herein, we report that our microtopographical carbohydrate substrates composed of bioactive hexa-N-acetyl-d-glucosamine (GlcNAc6) modulated the efficiency of myoblast fusion without requiring horse serum or any differentiation medium during cell culture. Promotion of the differentiation of dissociated mononucleated skeletal myoblasts (C2C12; a mouse myoblast cell line) into robust myotubes was found only on GlcNAc6 micropatterns, whereas the myoblasts on control, non-patterned GlcNAc6 substrates or GlcNAc6-free patterns exhibited an undifferentiated form. We also examined the possible role of GlcNAc6 micropatterns with various widths in the behavior of C2C12 cells in early and late stages of myogenesis through mRNA expression of myosin heavy chain (MyHC) isoforms. The spontaneous contraction of myotubes was investigated via the regulation of glucose transporter type 4 (GLUT4), which is involved in stimulating glucose uptake during cellular contraction. Narrow patterns demonstrated enhanced glucose uptake rate and generated a fast-twitch muscle fiber type, whereas the slow-twitch muscle fiber type was dominant on wider patterns. Our findings indicated that GlcNAc6-mediated integrin interactions are responsible for guiding myoblast fusion forward along with myotube formation. PMID:27164094

  5. Spatial Geometries of Self-Assembled Chitohexaose Monolayers Regulate Myoblast Fusion

    PubMed Central

    Poosala, Pornthida; Ichinose, Hirofumi; Kitaoka, Takuya

    2016-01-01

    Myoblast fusion into functionally-distinct myotubes to form in vitro skeletal muscle constructs under differentiation serum-free conditions still remains a challenge. Herein, we report that our microtopographical carbohydrate substrates composed of bioactive hexa-N-acetyl-d-glucosamine (GlcNAc6) modulated the efficiency of myoblast fusion without requiring horse serum or any differentiation medium during cell culture. Promotion of the differentiation of dissociated mononucleated skeletal myoblasts (C2C12; a mouse myoblast cell line) into robust myotubes was found only on GlcNAc6 micropatterns, whereas the myoblasts on control, non-patterned GlcNAc6 substrates or GlcNAc6-free patterns exhibited an undifferentiated form. We also examined the possible role of GlcNAc6 micropatterns with various widths in the behavior of C2C12 cells in early and late stages of myogenesis through mRNA expression of myosin heavy chain (MyHC) isoforms. The spontaneous contraction of myotubes was investigated via the regulation of glucose transporter type 4 (GLUT4), which is involved in stimulating glucose uptake during cellular contraction. Narrow patterns demonstrated enhanced glucose uptake rate and generated a fast-twitch muscle fiber type, whereas the slow-twitch muscle fiber type was dominant on wider patterns. Our findings indicated that GlcNAc6-mediated integrin interactions are responsible for guiding myoblast fusion forward along with myotube formation. PMID:27164094

  6. Metabolic profiling of heat or anoxic stress in mouse C2C12 myotubes using multinuclear magnetic resonance spectroscopy.

    PubMed

    Straadt, Ida K; Young, Jette F; Petersen, Bent O; Duus, Jens Ø; Gregersen, Niels; Bross, Peter; Oksbjerg, Niels; Bertram, Hanne C

    2010-06-01

    In the present study, the metabolic effects of heat and anoxic stress in myotubes from the mouse cell line C2C12 were investigated by using a combination of (13)C, (1)H, and (31)P nuclear magnetic resonance (NMR) spectroscopy and enrichment with [(13)C]-glucose. Both the (13)C and the (1)H NMR spectra showed reduced levels of the amino acids alanine, glutamate, and aspartate after heat or anoxic stress. The decreases were smallest at 42 degrees C, larger at 45 degrees C, and most pronounced after anoxic conditions. In addition, in both the (1)H and the (31)P NMR spectra, decreases in the high-energy phosphate compounds adenosine triphosphate and phosphocreatine with increasing severity of stress were identified. At anoxic conditions, an increase in (13)C-labeled lactate and appearance of glycerol-3-phosphate were observed. Accumulation of lactate and glycerol-3-phosphate is in agreement with a shift to anaerobic metabolism due to inhibition of the aerobic pathway in the mitochondria. Conversely, lower levels of unlabeled ((12)C) lactate were apparent at increasing severity of stress, which indicate that lactate is released from the myotubes to the medium. In conclusion, the metabolites identified in the present study may be useful markers for identifying severity of stress in muscles. PMID:20005546

  7. MicroRNA-27a promotes myoblast proliferation by targeting myostatin

    SciTech Connect

    Huang, Zhiqing; Chen, Xiaoling; Yu, Bing; He, Jun; Chen, Daiwen

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer We identified a myogenic role for miR-27a and a new target, myostatin. Black-Right-Pointing-Pointer The miR-27a was confirmed to target myostatin 3 Prime UTR. Black-Right-Pointing-Pointer miR-27a is upregulated and myostatin is downregulated during myoblast proliferation. Black-Right-Pointing-Pointer miR-27a promotes myoblast proliferation by reducing the expression of myostatin. -- Abstract: MicroRNAs (miRNAs) are a class of endogenous non-coding RNAs that play critical roles in skeletal muscle development as well as in regulation of muscle cell proliferation and differentiation. However, the role of miRNAs in myoblast proliferation remains poorly understood. Here we found that the expression of miR-27a was increased during proliferation of C2C12 myoblasts. Moreover, overexpression of miR-27a in C2C12 cells promoted myoblast proliferation by reducing the expression of myostatin, a critical inhibitor of skeletal myogenesis. In addition, the miR-27a was confirmed to target myostatin 3 Prime UTR by a luciferase reporter analysis. Together, these results suggest that miR-27a promotes myoblast proliferation through targeting myostatin.

  8. Vascular Endothelial Growth Factor Modulates Skeletal Myoblast Function

    PubMed Central

    Germani, Antonia; Di Carlo, Anna; Mangoni, Antonella; Straino, Stefania; Giacinti, Cristina; Turrini, Paolo; Biglioli, Paolo; Capogrossi, Maurizio C.

    2003-01-01

    Vascular endothelial growth factor (VEGF) expression is enhanced in ischemic skeletal muscle and is thought to play a key role in the angiogenic response to ischemia. However, it is still unknown whether, in addition to new blood vessel growth, VEGF modulates skeletal muscle cell function. In the present study immunohistochemical analysis showed that, in normoperfused mouse hindlimb, VEGF and its receptors Flk-1 and Flt-1 were expressed mostly in quiescent satellite cells. Unilateral hindlimb ischemia was induced by left femoral artery ligation. At day 3 and day 7 after the induction of ischemia, Flk-1 and Flt-1 were expressed in regenerating muscle fibers and VEGF expression by these fibers was markedly enhanced. Additional in vitro experiments showed that in growing medium both cultured satellite cells and myoblast cell line C2C12 expressed VEGF and its receptors. Under these conditions, Flk-1 receptor exhibited constitutive tyrosine phosphorylation that was increased by VEGF treatment. During myogenic differentiation Flk-1 and Flt-1 were down-regulated. In a modified Boyden Chamber assay, VEGF enhanced C2C12 myoblasts migration approximately fivefold. Moreover, VEGF administration to differentiating C2C12 myoblasts prevented apoptosis, while inhibition of VEGF signaling either with selective VEGF receptor inhibitors (SU1498 and CB676475) or a neutralizing Flk-1 antibody, enhanced cell death approximately 3.5-fold. Finally, adenovirus-mediated VEGF165 gene transfer inhibited ischemia-induced apoptosis in skeletal muscle. These results support a role for VEGF in myoblast migration and survival, and suggest a novel autocrine role of VEGF in skeletal muscle repair during ischemia. PMID:14507649

  9. Administration of insulin to newly hatched chicks improves growth performance via impairment of MyoD gene expression and enhancement of cell proliferation in chicken myoblasts.

    PubMed

    Sato, Kan; Aoki, Michiru; Kondo, Ryota; Matsushita, Kohichi; Akiba, Yukio; Kamada, Tosihiko

    2012-02-01

    The insulin/PI3K/Akt signaling pathway is strongly involved in the differentiation of C2C12 cells, as has been demonstrated by the addition of IGFs and insulin to culture media. In this study, we have characterized the role of insulin in chick myoblast proliferation and differentiation in vitro and in vivo, and have revealed novel details of how this exogenous hormone influences myogenic genes during differentiation. Chick myoblast cells cultured in differentiation medium (DMEM containing 2% FBS) supplemented with insulin exhibited a significant decrease in MyoD and myogenin mRNA expression after 12h of culture compared to cells cultured in differentiation media alone. MyoD and myogenin immunoreactive proteins in cells cultured in differentiation medium supplemented with insulin were quite low compared to those in control culture. Supplementation of the differentiation media containing insulin with LY294002 (a PI3K inhibitor) induced myoblast differentiation. A significant increase in MyoD and myogenin mRNA expression was observed in these cells after incubation for 12h, and the level of expression was similar to that of control cells incubated with differentiation media alone. The DNA content and the phosphor-Erk1/2 protein level were increased by the addition of insulin to the differentiation medium. These results suggest that insulin and its signaling pathway play an inhibitory role in chick myoblast differentiation. A high level of Pax7 mRNA was observed in the skeletal muscle of 3-day-old chicks administered insulin or tolbutamide at 1-day-of-age. In addition, body weight at 21 and 50 days-of-age was significantly greater for chickens administered insulin or tolbutamide at 1-day-of-age than for control chickens. These results detail not only species-specific differences in insulin action for myoblasts but also provide novel information that may be used for the improvement of chicken meat production. PMID:22172340

  10. SIRT3, a Mitochondrial NAD+-Dependent Deacetylase, Is Involved in the Regulation of Myoblast Differentiation

    PubMed Central

    Abdel Khalek, Waed; Cortade, Fabienne; Ollendorff, Vincent; Lapasset, Laure; Tintignac, Lionel

    2014-01-01

    Sirtuin 3 (SIRT3), one of the seven mammalian sirtuins, is a mitochondrial NAD+-dependent deacetylase known to control key metabolic pathways. SIRT3 deacetylases and activates a large number of mitochondrial enzymes involved in the respiratory chain, in ATP production, and in both the citric acid and urea cycles. We have previously shown that the regulation of myoblast differentiation is tightly linked to mitochondrial activity. Since SIRT3 modulates mitochondrial activity, we decide to address its role during myoblast differentiation. For this purpose, we first investigated the expression of endogenous SIRT3 during C2C12 myoblast differentiation. We further studied the impact of SIRT3 silencing on both the myogenic potential and the mitochondrial activity of C2C12 cells. We showed that SIRT3 protein expression peaked at the onset of myoblast differentiation. The inhibition of SIRT3 expression mediated by the stable integration of SIRT3 short inhibitory RNA (SIRT3shRNA) in C2C12 myoblasts, resulted in: 1) abrogation of terminal differentiation - as evidenced by a marked decrease in the myoblast fusion index and a significant reduction of Myogenin, MyoD, Sirtuin 1 and Troponin T protein expression - restored upon MyoD overexpression; 2) a decrease in peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and citrate synthase protein expression reflecting an alteration of mitochondrial density; and 3) an increased production of reactive oxygen species (ROS) mirrored by the decreased activity of manganese superoxide dismutase (MnSOD). Altogether our data demonstrate that SIRT3 mainly regulates myoblast differentiation via its influence on mitochondrial activity. PMID:25489948

  11. FOXO1 delays skeletal muscle regeneration and suppresses myoblast proliferation.

    PubMed

    Yamashita, Atsushi; Hatazawa, Yukino; Hirose, Yuma; Ono, Yusuke; Kamei, Yasutomi

    2016-08-01

    Unloading stress, such as bed rest, inhibits the regenerative potential of skeletal muscles; however, the underlying mechanisms remain largely unknown. FOXO1 expression, which induces the upregulated expression of the cell cycle inhibitors p57 and Gadd45α, is known to be increased in the skeletal muscle under unloading conditions. However, there is no report addressing FOXO1-induced inhibition of myoblast proliferation. Therefore, we induced muscle injury by cardiotoxin in transgenic mice overexpressing FOXO1 in the skeletal muscle (FOXO1-Tg mice) and observed regeneration delay in skeletal muscle mass and cross-sectional area in FOXO1-Tg mice. Increased p57 and Gadd45α mRNA levels, and decreased proliferation capacity were observed in C2C12 myoblasts expressing a tamoxifen-inducible active form of FOXO1. These results suggest that decreased proliferation capacity of myoblasts by FOXO1 disrupts skeletal muscle regeneration under FOXO1-increased conditions, such as unloading. PMID:27010781

  12. Ductile electroactive biodegradable hyperbranched polylactide copolymers enhancing myoblast differentiation.

    PubMed

    Xie, Meihua; Wang, Ling; Guo, Baolin; Wang, Zhong; Chen, Y Eugene; Ma, Peter X

    2015-12-01

    Myotube formation is crucial to restoring muscular functions, and biomaterials that enhance the myoblast differentiation into myotubes are highly desirable for muscular repair. Here, we report the synthesis of electroactive, ductile, and degradable copolymers and their application in enhancing the differentiation of myoblasts to myotubes. A hyperbranched ductile polylactide (HPLA) was synthesized and then copolymerized with aniline tetramer (AT) to produce a series of electroactive, ductile and degradable copolymers (HPLAAT). The HPLA and HPLAAT showed excellent ductility with strain to failure from 158.9% to 42.7% and modulus from 265.2 to 758.2 MPa. The high electroactivity of the HPLAAT was confirmed by UV spectrometer and cyclic voltammogram measurements. These HPLAAT polymers also showed improved thermal stability and controlled biodegradation rate compared to HPLA. Importantly, when applying these polymers for myotube formation, the HPLAAT significantly improved the proliferation of C2C12 myoblasts in vitro compared to HPLA. Furthermore, these polymers greatly promoted myogenic differentiation of C2C12 cells as measured by quantitative analysis of myotube number, length, diameter, maturation index, and gene expression of MyoD and TNNT. Together, our study shows that these electroactive, ductile and degradable HPLAAT copolymers represent significantly improved biomaterials for muscle tissue engineering compared to HPLA. PMID:26335860

  13. Macrophage migration inhibitory factor in the regulation of myoblast proliferation and differentiation.

    PubMed

    Wen, Fengyun; Zheng, Jin; Yu, Jing; Gao, Mingju; Gao, Sumin; Zhou, Yingying; Liu, Jianyu; Yang, Zaiqing

    2016-07-01

    Obesity is documented to be a state of chronic mild inflammation associated with increased macrophage infiltration into adipose tissue and liver and skeletal muscle. As a pleiotropic inflammatory mediator, macrophage migration inhibitory factor (MIF) is associated with metabolic disease, so MIF may signal molecular links between adipocytes and myocytes. MIF expression was modified during myoblast differentiation, but the role of MIF during this process is unclear. C2C12 cells were transfected with MIF to investigate their role during differentiation. MIF expression attenuated C2C12 differentiation. It did not change proliferation, but downregulated cyclin D1 and CDK4, causing cell accumulation in the G1 phase. p21 protein was increased significantly and MyoD, MyoG, and p21 mRNA also increased significantly in the C2C12 cells treated with ISO-1, suggesting that inhibition of MIF promotes differentiation. MIF inhibits the myoblast differentiation by affecting the cell cycle progression, but does not affect proliferation. PMID:26927414

  14. Lipoic Acid Exerts Antioxidant and Anti-inflammatory Effects in Response to Heat Shock in C2C12 Myotubes.

    PubMed

    Lee, Cheng-Tse; Chang, Li-Ching; Wu, Pei-Fung

    2016-06-01

    This study explored that lipoic acid treatment for 24 h significantly upregulated and promoted heat shock-induced catalase expression and downregulated GPx1 messenger RNA (mRNA) expression, indicating that lipoic acid exhibits antioxidant activity in the decomposition of hydrogen peroxide by upregulating catalase expression. Moreover, lipoic acid treatment for 3 h increased and promoted heat shock-induced interleukin (IL)-6 mRNA and protein levels and that for 24 h downregulated IL-6 mRNA expression, suggesting a dual effect of lipoic acid on IL-6 regulation. Lipoic acid alone failed to increase or reduce tumor necrosis factor (TNF)-α mRNA and protein levels, whereas heat shock alone downregulated TNF-α mRNA and protein expression. These data suggest that lipoic acid does not have a proinflammatory role and that heat shock acts as an anti-inflammatory agent by downregulating TNF-α expression in C2C12 myotubes. Moreover, lipoic acid or heat shock alone upregulated the IL-6 receptor (IL-6R-α) and glycoprotein 130 (gp130) mRNA expression followed by IL-6 expression; these data indicate that the regulation of lipoic acid or heat shock is mediated by IL-6R signaling, thus suggesting that C2C12 myotubes possesses a mechanism for regulating IL-6R and gp130 expression following lipoic acid treatment or heat shock. PMID:27086282

  15. Thyroid Hormone Receptor α Plays an Essential Role in Male Skeletal Muscle Myoblast Proliferation, Differentiation, and Response to Injury.

    PubMed

    Milanesi, Anna; Lee, Jang-Won; Kim, Nam-Ho; Liu, Yan-Yun; Yang, An; Sedrakyan, Sargis; Kahng, Andrew; Cervantes, Vanessa; Tripuraneni, Nikita; Cheng, Sheue-yann; Perin, Laura; Brent, Gregory A

    2016-01-01

    Thyroid hormone plays an essential role in myogenesis, the process required for skeletal muscle development and repair, although the mechanisms have not been established. Skeletal muscle develops from the fusion of precursor myoblasts into myofibers. We have used the C2C12 skeletal muscle myoblast cell line, primary myoblasts, and mouse models of resistance to thyroid hormone (RTH) α and β, to determine the role of thyroid hormone in the regulation of myoblast differentiation. T3, which activates thyroid hormone receptor (TR) α and β, increased myoblast differentiation whereas GC1, a selective TRβ agonist, was minimally effective. Genetic approaches confirmed that TRα plays an important role in normal myoblast proliferation and differentiation and acts through the Wnt/β-catenin signaling pathway. Myoblasts with TRα knockdown, or derived from RTH-TRα PV (a frame-shift mutation) mice, displayed reduced proliferation and myogenic differentiation. Moreover, skeletal muscle from the TRα1PV mutant mouse had impaired in vivo regeneration after injury. RTH-TRβ PV mutant mouse model skeletal muscle and derived primary myoblasts did not have altered proliferation, myogenic differentiation, or response to injury when compared with control. In conclusion, TRα plays an essential role in myoblast homeostasis and provides a potential therapeutic target to enhance skeletal muscle regeneration. PMID:26451739

  16. Modulation of alignment and differentiation of skeletal myoblasts by submicron ridges/grooves surface structure.

    PubMed

    Wang, Peng-Yuan; Yu, Hung-Te; Tsai, Wei-Bor

    2010-06-01

    Alignment and fusion of myoblasts into parallel arrays of multinucleated myotubes are critical in skeletal muscle tissue engineering. It is well known that contact guidance by grooves/ridges structures induces myoblasts to align and to migrate along the anisotropic direction. In this study, two series of grooved substrata with different widths (450 and 900 nm) and different depths (100, 350, and 550 nm) were studied on their effects on myoblast adhesion, proliferation, and differentiation into myotubes. We found that C2C12 cells were aligned and elongated along the direction of grooves. Groove depth was more influential on cellular morphology, proliferation, and differentiation than groove width. While cell proliferation was retarded on the grooved surfaces especially on the substrate with 900/550 nm (width/depth), differentiation was also enhanced on the patterned surfaces compared to the flat control. Our results demonstrated the potential of grooved substrata with submicron scale in skeletal muscle tissue engineering. PMID:20148416

  17. Dehydroepiandrosterone activates AMP kinase and regulates GLUT4 and PGC-1α expression in C2C12 myotubes

    SciTech Connect

    Yokokawa, Takumi; Sato, Koji; Iwanaka, Nobumasa; Honda, Hiroki; Higashida, Kazuhiko; Iemitsu, Motoyuki; Hayashi, Tatsuya; Hashimoto, Takeshi

    2015-07-17

    Exercise and caloric restriction (CR) have been reported to have anti-ageing, anti-obesity, and health-promoting effects. Both interventions increase the level of dehydroepiandrosterone (DHEA) in muscle and blood, suggesting that DHEA might partially mediate these effects. In addition, it is thought that either 5′-adenosine monophosphate-activated protein kinase (AMPK) or peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) mediates the beneficial effects of exercise and CR. However, the effects of DHEA on AMPK activity and PGC-1α expression remain unclear. Therefore, we explored whether DHEA in myotubes acts as an activator of AMPK and increases PGC-1α. DHEA exposure increased glucose uptake but not the phosphorylation levels of Akt and PKCζ/λ in C2C12 myotubes. In contrast, the phosphorylation levels of AMPK were elevated by DHEA exposure. Finally, we found that DHEA induced the expression of the genes PGC-1α and GLUT4. Our current results might reveal a previously unrecognized physiological role of DHEA; the activation of AMPK and the induction of PGC-1α by DHEA might mediate its anti-obesity and health-promoting effects in living organisms. - Highlights: • We assessed whether dehydroepiandrosterone (DHEA) activates AMPK and PGC-1α. • DHEA exposure increased glucose uptake in C2C12 myotubes. • The phosphorylation levels of AMPK were elevated by DHEA exposure. • DHEA induced the expression of the genes PGC-1α and GLUT4. • AMPK might mediate the anti-obesity and health-promoting effects of DHEA.

  18. 18-carbon polyunsaturated fatty acids ameliorate palmitate-induced inflammation and insulin resistance in mouse C2C12 myotubes.

    PubMed

    Chen, Pei-Yin; Wang, John; Lin, Yi-Chin; Li, Chien-Chun; Tsai, Chia-Wen; Liu, Te-Chung; Chen, Haw-Wen; Huang, Chin-Shiu; Lii, Chong-Kuei; Liu, Kai-Li

    2015-05-01

    Skeletal muscle is a major site of insulin action. Intramuscular lipid accumulation results in inflammation, which has a strong correlation with skeletal muscle insulin resistance (IR). The aim of this study was to explore the effects of linoleic acid, alpha-linolenic acid, and gamma-linolenic acid (GLA), 18-carbon polyunsaturated fatty acids (PUFAs), on palmitic acid (PA)-induced inflammatory responses and IR in C2C12 myotubes. Our data demonstrated that these three test 18-carbon PUFAs can inhibit PA-induced interleukin-6 and tumor necrosis factor-α messenger RNA (mRNA) expression and IR as evidenced by increases in phosphorylated AKT and the 160-kD AKT substrate, mRNA and plasma membrane protein expression of glucose transporter 4, and glucose uptake. Moreover, the 18-carbon PUFAs blocked the effects of PA on activation of mitogen-activated protein kinases (MAPKs), protein kinase C-θ (PKC-θ), AMP-activated protein kinase (AMPK) and nuclear factor-κB (NF-κB). Of note, supplementation with GLA-rich borage oil decreased proinflammatory cytokine production and hindered the activation of MAPKs, PKC-θ and NF-κB in the skeletal muscles of diabetic mice. The 18-carbon PUFAs did not reverse PA-induced inflammation or IR in C2C12 myotubes transfected with a constitutively active mutant IκB kinase-β plasmid, which suggests the importance of the inhibition of NF-κB activation by the 18-carbon PUFAs. Moreover, blockade of AMPK activation by short hairpin RNA annulled the inhibitory effects of the 18-carbon PUFAs on PA-induced IR but not inflammation. Our findings suggest that the 18-carbon PUFAs may be useful in the management of PA-induced inflammation and IR in myotubes. PMID:25687616

  19. IGF-1-induced phosphorylation and altered distribution of TSC1/TSC2 in C2C12 myotubes

    PubMed Central

    Miyazaki, Mitsunori; McCarthy, John J; Esser, Karyn A

    2010-01-01

    Insulin like growth factor-1 (IGF-1) is established as an anabolic factor that can induce skeletal muscle growth through activating the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway. While this signaling pathway has been heavily studied, the molecular mechanisms linking IGF-1 binding to mTOR activation are still poorly defined in muscle. The purpose of this study was to test the hypothesis that IGF-1 activation of mTOR in C2C12 myotubes requires a phosphorylation dependent, altered distribution of the tuberous sclerosis complex (TSC)1/TSC2 complex from the membrane to the cytosol. We found that IGF-1 treatment does not affect complex formation between TSC1 and TSC2, but rather IGF-1 induces an altered distribution of the TSC1/TSC2 complex in C2C12 myotubes. In response to IGF-1 treatment, there was a relative re-distribution of the TSC1/TSC2 complex, composed of TSC1 and phosphorylated TSC2, from the membrane to the cytosol. IGF-1 stimulated TSC1/TSC2 phosphorylation and re-distribution were completely prevented by the PI3K inhibitor wortmannin, but were not with the downstream mTOR inhibitor, rapamycin. When a non-phosphorylatable form of TSC2 (S939A) was overexpressed, phosphorylation-dependent binding of the scaffold protein 14-3-3 to TSC2 was diminished and no re-distribution of the TSC1/TSC2 complex was observed following IGF-1 stimulation. These results indicate that TSC2 phosphorylation in response to IGF-1 treatment is necessary for the altered distribution of the TSC1/TSC2 complex to the cytosol and we suggest that this translocation is likely critical for mTOR activation by dissociating the interaction between the GAP activity of the TSC1/TSC2 complex and its downstream target Rheb. PMID:20412061

  20. Plasma membrane characterization, by scanning electron microscopy, of multipotent myoblasts-derived populations sorted using dielectrophoresis.

    PubMed

    Muratore, Massimo; Mitchell, Steve; Waterfall, Martin

    2013-09-01

    Multipotent progenitor cells have shown promise for use in biomedical applications and regenerative medicine. The implementation of such cells for clinical application requires a synchronized, phenotypically and/or genotypically, homogenous cell population. Here we have demonstrated the implementation of a biological tag-free dielectrophoretic device used for discrimination of multipotent myoblastic C2C12 model. The multipotent capabilities in differentiation, for these cells, diminishes with higher passage number, so for cultures above 70 passages only a small percentage of cells is able to differentiate into terminal myotubes. In this work we demonstrated that we could recover, above 96% purity, specific cell types from a mixed population of cells at high passage number without any biological tag using dielectrophoresis. The purity of the samples was confirmed by cytometric analysis using the cell specific marker embryonic myosin. To further investigate the dielectric properties of the cell plasma membrane we co-culture C2C12 with similar size, when in suspension, GFP-positive fibroblast as feeder layer. The level of separation between the cell types was above 98% purity which was confirmed by flow cytometry. These levels of separation are assumed to account for cell size and for the plasma membrane morphological differences between C2C12 and fibroblast unrelated to the stages of the cell cycle which was assessed by immunofluorescence staining. Plasma membrane conformational differences were further confirmed by scanning electron microscopy. PMID:23933253

  1. The effects of propionate and valerate on insulin responsiveness for glucose uptake in 3T3-L1 adipocytes and C2C12 myotubes via G protein-coupled receptor 41.

    PubMed

    Han, Joo-Hui; Kim, In-Su; Jung, Sang-Hyuk; Lee, Sang-Gil; Son, Hwa-Young; Myung, Chang-Seon

    2014-01-01

    Since insulin resistance can lead to hyperglycemia, improving glucose uptake into target tissues is critical for regulating blood glucose levels. Among the free fatty acid receptor (FFAR) family of G protein-coupled receptors, GPR41 is known to be the Gαi/o-coupled receptor for short-chain fatty acids (SCFAs) such as propionic acid (C3) and valeric acid (C5). This study aimed to investigate the role of GPR41 in modulating basal and insulin-stimulated glucose uptake in insulin-sensitive cells including adipocytes and skeletal muscle cells. Expression of GPR41 mRNA and protein was increased with maximal expression at differentiation day 8 for 3T3-L1 adipocytes and day 6 for C2C12 myotubes. GPR41 protein was also expressed in adipose tissues and skeletal muscle. After analyzing dose-response relationship, 300 µM propionic acid or 500 µM valeric acid for 30 min incubation was used for the measurement of glucose uptake. Both propionic acid and valeric acid increased insulin-stimulated glucose uptake in 3T3-L1 adipocyte, which did not occur in cells transfected with siRNA for GPR41 (siGPR41). In C2C12 myotubes, these SCFAs increased basal glucose uptake, but did not potentiate insulin-stimulated glucose uptake, and siGPR41 treatment reduced valerate-stimulated basal glucose uptake. Therefore, these findings indicate that GPR41 plays a role in insulin responsiveness enhanced by both propionic and valeric acids on glucose uptake in 3T3-L1 adipocytes and C2C12 myotubes, and in valerate-induced increase in basal glucose uptake in C2C12 myotubes. PMID:24748202

  2. Desmin Mutation in the C-Terminal Domain Impairs Traction Force Generation in Myoblasts.

    PubMed

    Charrier, Elisabeth E; Asnacios, Atef; Milloud, Rachel; De Mets, Richard; Balland, Martial; Delort, Florence; Cardoso, Olivier; Vicart, Patrick; Batonnet-Pichon, Sabrina; Hénon, Sylvie

    2016-01-19

    The cytoskeleton plays a key role in the ability of cells to both resist mechanical stress and generate force, but the precise involvement of intermediate filaments in these processes remains unclear. We focus here on desmin, a type III intermediate filament, which is specifically expressed in muscle cells and serves as a skeletal muscle differentiation marker. By using several complementary experimental techniques, we have investigated the impact of overexpressing desmin and expressing a mutant desmin on the passive and active mechanical properties of C2C12 myoblasts. We first show that the overexpression of wild-type-desmin increases the overall rigidity of the cells, whereas the expression of a mutated E413K desmin does not. This mutation in the desmin gene is one of those leading to desminopathies, a subgroup of myopathies associated with progressive muscular weakness that are characterized by the presence of desmin aggregates and a disorganization of sarcomeres. We show that the expression of this mutant desmin in C2C12 myoblasts induces desmin network disorganization, desmin aggregate formation, and a small decrease in the number and total length of stress fibers. We finally demonstrate that expression of the E413K mutant desmin also alters the traction forces generation of single myoblasts lacking organized sarcomeres. PMID:26789769

  3. Dehydroepiandrosterone activates AMP kinase and regulates GLUT4 and PGC-1α expression in C2C12 myotubes.

    PubMed

    Yokokawa, Takumi; Sato, Koji; Iwanaka, Nobumasa; Honda, Hiroki; Higashida, Kazuhiko; Iemitsu, Motoyuki; Hayashi, Tatsuya; Hashimoto, Takeshi

    Exercise and caloric restriction (CR) have been reported to have anti-ageing, anti-obesity, and health-promoting effects. Both interventions increase the level of dehydroepiandrosterone (DHEA) in muscle and blood, suggesting that DHEA might partially mediate these effects. In addition, it is thought that either 5'-adenosine monophosphate-activated protein kinase (AMPK) or peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) mediates the beneficial effects of exercise and CR. However, the effects of DHEA on AMPK activity and PGC-1α expression remain unclear. Therefore, we explored whether DHEA in myotubes acts as an activator of AMPK and increases PGC-1α. DHEA exposure increased glucose uptake but not the phosphorylation levels of Akt and PKCζ/λ in C2C12 myotubes. In contrast, the phosphorylation levels of AMPK were elevated by DHEA exposure. Finally, we found that DHEA induced the expression of the genes PGC-1α and GLUT4. Our current results might reveal a previously unrecognized physiological role of DHEA; the activation of AMPK and the induction of PGC-1α by DHEA might mediate its anti-obesity and health-promoting effects in living organisms. PMID:25983323

  4. Plasma membrane characterization, by scanning electron microscopy, of multipotent myoblasts-derived populations sorted using dielectrophoresis

    SciTech Connect

    Muratore, Massimo; Mitchell, Steve; Waterfall, Martin

    2013-09-06

    Highlights: •Dielectrophoretic separation/sorting of multipotent cells. •Plasma membrane microvilli structure of C2C12 and fibroblasts by SEM microscopy. •Cell cycle determination by Ki-67 in DEP-sorted cells. •Plasma membrane differences responsible for changes in membrane capacitance. -- Abstract: Multipotent progenitor cells have shown promise for use in biomedical applications and regenerative medicine. The implementation of such cells for clinical application requires a synchronized, phenotypically and/or genotypically, homogenous cell population. Here we have demonstrated the implementation of a biological tag-free dielectrophoretic device used for discrimination of multipotent myoblastic C2C12 model. The multipotent capabilities in differentiation, for these cells, diminishes with higher passage number, so for cultures above 70 passages only a small percentage of cells is able to differentiate into terminal myotubes. In this work we demonstrated that we could recover, above 96% purity, specific cell types from a mixed population of cells at high passage number without any biological tag using dielectrophoresis. The purity of the samples was confirmed by cytometric analysis using the cell specific marker embryonic myosin. To further investigate the dielectric properties of the cell plasma membrane we co-culture C2C12 with similar size, when in suspension, GFP-positive fibroblast as feeder layer. The level of separation between the cell types was above 98% purity which was confirmed by flow cytometry. These levels of separation are assumed to account for cell size and for the plasma membrane morphological differences between C2C12 and fibroblast unrelated to the stages of the cell cycle which was assessed by immunofluorescence staining. Plasma membrane conformational differences were further confirmed by scanning electron microscopy.

  5. Induced differentiation of adipose-derived stromal cells into myoblasts.

    PubMed

    Wu, Guizhu; Zheng, Xiu; Jiang, Zhongqing; Wang, Jinhua; Song, Yanfeng

    2010-06-01

    This study aimed to induce the differentiation of isolated and purified adipose-derived stromal cells (ADSCs) into myoblasts, which may provide a new strategy for tissue engineering in patients with stress urinary incontinence (SUI). ADSCs, isolated and cultured ex vivo, were identified by flow cytometry and induced to differentiate into myoblasts in the presence of an induction solution consisting of DMEM supplemented with 5-azacytidine (5-aza), 5% FBS, and 5% horse serum. Cellular morphology was observed under an inverted microscope. Ultrastructural changes occurring during the differentiation were observed by transmission electron microscopy and confocal laser scanning microscopy. Cellular immunohistochemical staining was applied to determine the expression of desmin protein in cells with and without induced differentiation. Reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting were used to detect mRNA and protein expression, respectively, of sarcomeric and desmin smooth muscle proteins. The results showed that ADSCs were mainly of a spindle or polygon shape. Flow cytometry analysis revealed that ADSCs did not express CD34, CD45, and CD106 but high levels of CD44 and CD90, which confirmed that the cultured cells were indeed ADSCs. After induction with a 5-aza-containing solution, morphological changes in ADSCs, including irregular cell size, were observed. Cells gradually changed from long spindles to polygons and star-shaped cells with microvilli on the cell surface. Many organelles were observed and the cytoplasm was found to contain many mitochondria, rough endoplasmic reticulum (rER), and myofilament-like structures. Cell immunohistochemical staining revealed different levels of desmin expression in each phase of the induction process, with the highest expression level found on day 28 of induction. RT-PCR and Western blot results confirmed significantly higher desmin gene expression in induced cells compared with control cells, but no

  6. Activation of the phospholipase C pathway by ATP is mediated exclusively through nucleotide type P2-purinoceptors in C2C12 myotubes.

    PubMed Central

    Henning, R. H.; Duin, M.; den Hertog, A.; Nelemans, A.

    1993-01-01

    1. The presence of a nucleotide receptor and a discrete ATP-sensitive receptor on C2C12 myotubes has been shown by electrophysiological experiments. In this study, the ATP-sensitive receptors of C2C12 myotubes were further characterized by measuring the formation of inositol(1,4,5)trisphosphate (Ins(1,4,5)P3) and internal Ca2+. 2. The nucleotides ATP and UTP caused a concentration-dependent increase in Ins(1,4,5)P3 content with comparable time courses (EC50: ATP 33 +/- 2 microM, UTP 80 +/- 4 microM). ADP was less effective in increasing Ins(1,4,5)P3 content of the cells, while selective agonists for P1-, P2X- and P2Y-purinoceptors, adenosine, alpha,beta-methylene ATP and 2-methylthio ATP, appeared to be ineffective. 3. Under Ca(2+)-free conditions, the basal level of Ins(1,4,5)P3 was lower than in the presence of Ca2+, and the ATP- and UTP-induced formation of Ins(1,4,5)P3 was diminished. 4. The Ins(1,4,5)P3 formation induced by optimal ATP and UTP concentrations was not additive. ATP- and UTP-induced Ins(1,4,5)P3 formation showed cross-desensitization, whereas cross-desensitization was absent in responses elicited by one of the nucleotides and bradykinin. 5. The change in Ins(1,4,5)P3 content induced by effective nucleotides was inhibited by suramin. Schild plots for suramin inhibition of Ins(1,4,5)P3 formation in ATP- and UTP-stimulated myotubes showed slopes greater than unity (1.63 +/- 0.09 and 1.37 +/- 0.11, respectively). Apparent pA2 values were 4.50 +/- 0.48 and 4.41 +/- 0.63 for ATP and UTP, respectively. 6. Stimulation of the cells with ATP or UTP induced a rapid increase in intracellular Ca2+, followed by a slow decline to basal levels. Ca2+ responses reached lower maximal values and did not show the slow phase in the absence of extracellular Ca2+.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8242247

  7. Serum Amyloid A Induces Toll-Like Receptor 2-Dependent Inflammatory Cytokine Expression and Atrophy in C2C12 Skeletal Muscle Myotubes

    PubMed Central

    Passey, Samantha L.; Bozinovski, Steven; Vlahos, Ross; Anderson, Gary P.; Hansen, Michelle J.

    2016-01-01

    Background Skeletal muscle wasting is an important comorbidity of Chronic Obstructive Pulmonary Disease (COPD) and is strongly correlated with morbidity and mortality. Patients who experience frequent acute exacerbations of COPD (AECOPD) have more severe muscle wasting and reduced recovery of muscle mass and function after each exacerbation. Serum levels of the pro-inflammatory acute phase protein Serum Amyloid A (SAA) can rise more than 1000-fold in AECOPD and are predictively correlated with exacerbation severity. The direct effects of SAA on skeletal muscle are poorly understood. Here we have examined SAA effects on pro-inflammatory cachectic cytokine expression (IL-6 and TNFα) and atrophy in C2C12 myotubes. Results SAA increased IL-6 (31-fold) and TNFα (6.5-fold) mRNA levels compared to control untreated cells after 3h of SAA treatment, and increased secreted IL-6 protein at 24h. OxPAPC, a dual TLR2 and TLR4 inhibitor, reduced the response to SAA by approximately 84% compared to SAA alone, and the TLR2 neutralising antibody T2.5 abolished SAA-induced expression of IL-6, indicating that SAA signalling in C2C12 myotubes is primarily via TLR2. SAA also reduced myotube width by 10–13% and induced a 2.5-fold increase in the expression of the muscle atrophy gene Atrogin-1, suggesting direct effects of SAA on muscle wasting. Blocking of TLR2 inhibited the SAA-induced decrease in myotube width and Atrogin-1 gene expression, indicating that SAA induces atrophy through TLR2. Conclusions These data demonstrate that SAA stimulates a robust pro-inflammatory response in skeletal muscle myotubes via the TLR2-dependent release of IL-6 and TNFα. Furthermore, the observed atrophy effects indicate that SAA could also be directly contributing to the wasting and poor recovery of muscle mass. Therapeutic strategies targeting this SAA-TLR2 axis may therefore ameliorate muscle wasting in AECOPD and a range of other inflammatory conditions associated with loss of muscle mass. PMID

  8. Capric Acid Up-Regulates UCP3 Expression without PDK4 Induction in Mouse C2C12 Myotubes.

    PubMed

    Abe, Tomoki; Hirasaka, Katsuya; Kohno, Shohei; Tomida, Chisato; Haruna, Marie; Uchida, Takayuki; Ohno, Ayako; Oarada, Motoko; Teshima-Kondo, Shigetada; Okumura, Yuushi; Choi, Inho; Aoyama, Toshiaki; Terao, Junji; Nikawa, Takeshi

    2016-01-01

    Uncoupling protein 3 (UCP3) and pyruvate dehydrogenase kinase 4 (PDK4) in skeletal muscle are key regulators of the glucose and lipid metabolic processes that are involved in insulin resistance. Medium-chain fatty acids (MCFAs) have anti-obesogenic effects in rodents and humans, while long-chain fatty acids (LCFAs) cause increases in body weight and insulin resistance. To clarify the beneficial effects of MCFAs, we examined UCP3 and PDK4 expression in skeletal muscles of mice fed a MCFA- or LCFA-enriched high-fat diet (HFD). Five-week feeding of the LCFA-enriched HFD caused high body weight gain and induced glucose intolerance in mice, compared with those in mice fed the MCFA-enriched HFD. However, the amounts of UCP3 and PDK4 transcripts in the skeletal muscle of mice fed the MCFA- or LCFA-enriched HFD were similar. To further elucidate the specific effects of MCFAs, such as capric acid (C10:0), on lipid metabolism in skeletal muscles, we examined the effects of various FAs on expression of UCP3 and PDK4, in mouse C2C12 myocytes. Although palmitic acid (C16:0) and lauric acid (C12:0) significantly induced expression of both UCP3 and PDK4, capric acid (C10:0) upregulated only UCP3 expression via activation of peroxisome proliferator-activated receptor-δ. Furthermore, palmitic acid (C16:0) disturbed the insulin-induced phosphorylation of Akt, while MCFAs, including lauric (C12:0), capric (C10:0), and caprylic acid (C12:0), did not. These results suggest that capric acid (C10:0) increases the capacity for fatty acid oxidation without inhibiting glycolysis in skeletal muscle. PMID:27117849

  9. Cell-Adhesive Matrices Composed of RGD Peptide-Displaying M13 Bacteriophage/Poly(lactic-co-glycolic acid) Nanofibers Beneficial to Myoblast Differentiation.

    PubMed

    Shin, Yong Cheol; Lee, Jong Ho; Jin, Linhua; Kim, Min Jeong; Kim, Chuntae; Hong, Suck Won; Oh, Jin Woo; Han, Dong-Wook

    2015-10-01

    Recently, there has been considerable effort to develop suitable scaffolds for tissue engineering applications. Cell adhesion is a prerequisite for cells to survive. In nature, the extracellular matrix (ECM) plays this role. Therefore, an ideal scaffold should be structurally similar to the natural ECM and have biocompatibility and biodegradability. In addition, the scaffold should have biofunctionality, which provides the potent ability to enhance the cellular behaviors, such as adhesion, proliferation and differentiation. This study concentrates on fabricating cell-adhesive matrices composed of RGD peptide-displaying M13 bacteriophage (RGD-M13 phage) and poly(lactic-co-glycolic acid, PLGA) nanofibers. Long rod-shaped M13 bacteriophages are non-toxic and can express many desired proteins on their surface. A genetically engineered M13 phage was constructed to display RGD peptides on its surface. PLGA is a biodegradable polymer with excellent biocompatibility and suitable physicochemical property for adhesive matrices. In this study, RGD-M13 phage/PLGA hybrid nanofiber matrices were fabricated by electrospinning. The physicochemical properties of these matrices were characterized by scanning electron microscopy, atomic force microscopy, Raman spectroscopy, and contact angle measurement. In addition, the cellular behaviors, such as the initial attachment, proliferation and differentiation, were analyzed by a CCK-8 assay and immunofluorescence staining to evaluate the potential application of these matrices to tissue engineering scaffolds. The RGD-M13 phage/PLGA nanofiber matrices could enhance the cellular behaviors and promote the differentiation of C2C12 myoblasts. These results suggest that the RGD-M13 phage/PLGA nanofiber matrices are beneficial to myoblast differentiation and can serve as effective tissue engineering scaffolds. PMID:26726438

  10. Interactions between Skeletal Muscle Myoblasts and their Extracellular Matrix Revealed by a Serum Free Culture System

    PubMed Central

    Chaturvedi, Vishal; Dye, Danielle E.; Kinnear, Beverley F.; van Kuppevelt, Toin H.; Grounds, Miranda D.; Coombe, Deirdre R.

    2015-01-01

    Decellularisation of skeletal muscle provides a system to study the interactions of myoblasts with muscle extracellular matrix (ECM). This study describes the efficient decellularisation of quadriceps muscle with the retention of matrix components and the use of this matrix for myoblast proliferation and differentiation under serum free culture conditions. Three decellularisation approaches were examined; the most effective was phospholipase A2 treatment, which removed cellular material while maximizing the retention of ECM components. Decellularised muscle matrices were then solubilized and used as substrates for C2C12 mouse myoblast serum free cultures. The muscle matrix supported myoblast proliferation and differentiation equally as well as collagen and fibronectin. Immunofluorescence analyses revealed that myoblasts seeded on muscle matrix and fibronectin differentiated to form long, well-aligned myotubes, while myoblasts seeded on collagen were less organized. qPCR analyses showed a time dependent increase in genes involved in skeletal muscle differentiation and suggested that muscle-derived matrix may stimulate an increased rate of differentiation compared to collagen and fibronectin. Decellularized whole muscle three-dimensional scaffolds also supported cell adhesion and spreading, with myoblasts aligning along specific tracts of matrix proteins within the scaffolds. Thus, under serum free conditions, intact acellular muscle matrices provided cues to direct myoblast adhesion and migration. In addition, myoblasts were shown to rapidly secrete and organise their own matrix glycoproteins to create a localized ECM microenvironment. This serum free culture system has revealed that the correct muscle ECM facilitates more rapid cell organisation and differentiation than single matrix glycoprotein substrates. PMID:26030912

  11. AlphaB-crystallin is involved in oxidative stress protection determined by VEGF in skeletal myoblasts.

    PubMed

    Mercatelli, Neri; Dimauro, Ivan; Ciafré, Silvia Anna; Farace, Maria Giulia; Caporossi, Daniela

    2010-08-01

    Recent studies suggest that the effects of VEGF-A, the prototype VEGF ligand, may extend to a variety of cell types other than endothelial cells. The expression of VEGF-A and its main receptors, Flt-1/VEGFR-1 and KDR/Flk-1/VEGFR-2, was indeed detected in several cell types, including cardiac myocytes and regenerating myotubes. In addition to its proangiogenic activity, evidence indicates that VEGF-A can sustain skeletal muscle regeneration by enhancing the survival and migration of myogenic cells and by promoting the growth of myogenic fibers. In this study, our aim was to investigate whether VEGF could protect skeletal muscle satellite cells from apoptotic cell death triggered by reactive oxygen species and to identify the main molecular mechanisms. C2C12 mouse myoblasts, cultured in vitro in the presence of exogenous VEGF or stably transfected with a plasmid vector expressing VEGF-A, were subjected to oxidative stress and analyzed for cell growth and survival, induction of apoptosis, and molecular signaling. The results of our study demonstrated that VEGF protects C2C12 myoblasts from apoptosis induced by oxidative or hypoxic-like stress. This protection did not correlate with the modulation of the expression of VEGF receptors, but is clearly linked to the phosphorylation of the KDR/Flk-1 receptor, the activation of NF-kappaB, and/or the overexpression of the antiapoptotic protein alphaB-crystallin. PMID:20441791

  12. Linker of nucleoskeleton and cytoskeleton (LINC) complex-mediated actin-dependent nuclear positioning orients centrosomes in migrating myoblasts

    PubMed Central

    Chang, Wakam; Antoku, Susumu; Östlund, Cecilia; Worman, Howard J; Gundersen, Gregg G

    2015-01-01

    Myoblast migration is essential for muscle development and repair; however, the factors that contribute to the polarity of migrating myoblasts are relatively unknown. We find that randomly migrating C2C12 myoblasts orient their centrosomes in the direction of migration. Using wounded monolayers, we further show that centrosome orientation is stimulated by the serum factor lysophosphatidic acid (LPA) and involves the rearward movement of the nucleus while the centrosome is maintained at the cell centroid. The rate of nuclear movement correlated with that of actin retrograde flow and both cytochalasin D and blebbistatin prevented nuclear movement and centrosome orientation. Actin-dependent rearward nuclear movement in fibroblasts is mediated by assembly of nuclear membrane nesprin-2G and SUN2 LINC complexes into transmembrane actin-associated nuclear (TAN) lines anchored by A-type lamins and emerin. In C2C12 myoblasts, depletion of nesprin-2G, SUN2 or lamin A/C prevented nuclear movement and endogenous nesprin-2G and a chimeric GFP-mini-nesprin-2G formed TAN lines during nuclear movement. Depleting nesprin-2G strongly interfered with directed cell migration and reduced the efficiency of myoblast fusion into multinucleated myotubes. Our results show that nuclear movement contributes to centrosome orientation and polarity for efficient migration and fusion of myoblasts. Given that mutations in the genes encoding A-type lamins, nesprin-2 and SUN2 cause Emery-Dreifuss muscular dystrophy and related myopathies, our results have implications for understanding the mechanism of disease pathogenesis. PMID:25587885

  13. RNAi Screen Reveals Potentially Novel Roles of Cytokines in Myoblast Differentiation

    PubMed Central

    Ge, Yejing; Waldemer, Rachel J.; Nalluri, Ramakrishna; Nuzzi, Paul D.; Chen, Jie

    2013-01-01

    Cytokines are cell-secreted signaling molecules that modulate various cellular functions, with the best-characterized roles in immune responses. The expression of numerous cytokines in skeletal muscle tissues and muscle cells has been reported, but their function in skeletal myogenesis, the formation of skeletal muscle, has been largely underexplored. To systematically examine the potential roles of cytokines in skeletal myogenesis, we undertook an RNAi screen of 134 mouse cytokine genes for their involvement in the differentiation of C2C12 myoblasts. Our results have uncovered 29 cytokines as strong candidates for novel myogenic regulators, potentially conferring positive and negative regulation at distinct stages of myogenesis. These candidates represent a diverse collection of cytokine families, including interleukins, TNF-related factors, and chemokines. Our findings suggest the fundamental importance of cytokines in the cell-autonomous regulation of myoblast differentiation, and may facilitate future identification of novel therapeutic targets for improving muscle regeneration and growth in health and diseases. PMID:23844157

  14. α-Lipoic Acids Promote the Protein Synthesis of C2C12 Myotubes by the TLR2/PI3K Signaling Pathway.

    PubMed

    Jing, Yuanyuan; Cai, Xingcai; Xu, Yaqiong; Zhu, Canjun; Wang, Lina; Wang, Songbo; Zhu, Xiaotong; Gao, Ping; Zhang, Yongliang; Jiang, Qingyan; Shu, Gang

    2016-03-01

    Skeletal muscle protein turnover is regulated by endocrine hormones, nutrients, and inflammation. α-Lipoic acid (ALA) plays an important role in energy homeostasis. Therefore, the aim of this study was to investigate the effects of ALA on protein synthesis in skeletal muscles and reveal the underlying mechanism. ALA (25 μM) significantly increased the protein synthesis and phosphorylation of Akt, mTOR, and S6 in C2C12 myotubes with attenuated phosphorylation of AMPK, Ikkα/β, and eIF2α. Intraperitoneal injection of 50 mg/kg ALA also produced the same results in mouse gastrocnemius. Both the PI3K (LY294002) and mTOR (rapamycin) inhibitors abolished the effects of ALA on protein synthesis in the C2C12 myotubes. However, AICAR (AMPK agonist) failed to block the activation of mTOR and S6 by ALA. ALA increased TLR2 and MyD88 mRNA expression in the C2C12 myotubes. TLR2 knockdown by siRNA almost eliminated the effects of ALA on protein synthesis and the Akt/mTOR pathway in the C2C12 myotubes. Immunoprecipitation data showed that ALA enhanced the p85 subunit of PI3K binding to MyD88. These findings indicate that ALA induces protein synthesis and the PI3K/Akt signaling pathway by TLR2. PMID:26855124

  15. GH-Releasing Hormone Promotes Survival and Prevents TNF-α-Induced Apoptosis and Atrophy in C2C12 Myotubes.

    PubMed

    Gallo, Davide; Gesmundo, Iacopo; Trovato, Letizia; Pera, Giulia; Gargantini, Eleonora; Minetto, Marco Alessandro; Ghigo, Ezio; Granata, Riccarda

    2015-09-01

    Skeletal muscle atrophy is a consequence of different chronic diseases, including cancer, heart failure, and diabetes, and also occurs in aging and genetic myopathies. It results from an imbalance between anabolic and catabolic processes, and inflammatory cytokines, such as TNF-α, have been found elevated in muscle atrophy and implicated in its pathogenesis. GHRH, in addition to stimulating GH secretion from the pituitary, exerts survival and antiapoptotic effects in different cell types. Moreover, we and others have recently shown that GHRH displays antiapoptotic effects in isolated cardiac myocytes and protects the isolated heart from ischemia/reperfusion injury and myocardial infarction in vivo. On these bases, we investigated the effects of GHRH on survival and apoptosis of TNF-α-treated C2C12 myotubes along with the underlying mechanisms. GHRH increased myotube survival and prevented TNF-α-induced apoptosis through GHRH receptor-mediated mechanisms. These effects involved activation of phosphoinositide 3-kinase/Akt pathway and inactivation of glycogen synthase kinase-3β, whereas mammalian target of rapamycin was unaffected. GHRH also increased the expression of myosin heavy chain and the myogenic transcription factor myogenin, which were both reduced by the cytokine. Furthermore, GHRH inhibited TNF-α-induced expression of nuclear factor-κB, calpain, and muscle ring finger1, which are all involved in muscle protein degradation. In summary, these results indicate that GHRH exerts survival and antiapoptotic effects in skeletal muscle cells through the activation of anabolic pathways and the inhibition of proteolytic routes. Overall, our findings suggest a novel therapeutic role for GHRH in the treatment of muscle atrophy-associated diseases. PMID:26110916

  16. Myostatin acts as an autocrine/paracrine negative regulator in myoblast differentiation from human induced pluripotent stem cells

    SciTech Connect

    Gao, Fei; Kishida, Tsunao; Ejima, Akika; Gojo, Satoshi; Mazda, Osam

    2013-02-08

    Highlights: ► iPS-derived cells express myostatin and its receptor upon myoblast differentiation. ► Myostatin inhibits myoblast differentiation by inhibiting MyoD and Myo5a induction. ► Silencing of myostatin promotes differentiation of human iPS cells into myoblasts. -- Abstract: Myostatin, also known as growth differentiation factor (GDF-8), regulates proliferation of muscle satellite cells, and suppresses differentiation of myoblasts into myotubes via down-regulation of key myogenic differentiation factors including MyoD. Recent advances in stem cell biology have enabled generation of myoblasts from pluripotent stem cells, but it remains to be clarified whether myostatin is also involved in regulation of artificial differentiation of myoblasts from pluripotent stem cells. Here we show that the human induced pluripotent stem (iPS) cell-derived cells that were induced to differentiate into myoblasts expressed myostatin and its receptor during the differentiation. An addition of recombinant human myostatin (rhMyostatin) suppressed induction of MyoD and Myo5a, resulting in significant suppression of myoblast differentiation. The rhMyostatin treatment also inhibited proliferation of the cells at a later phase of differentiation. RNAi-mediated silencing of myostatin promoted differentiation of human iPS-derived embryoid body (EB) cells into myoblasts. These results strongly suggest that myostatin plays an important role in regulation of myoblast differentiation from iPS cells of human origin. The present findings also have significant implications for potential regenerative medicine for muscular diseases.

  17. Contracting C2C12 myotubes release CCL2 in an NF-κB-dependent manner to induce monocyte chemoattraction.

    PubMed

    Miyatake, Shouta; Bilan, Philip J; Pillon, Nicolas J; Klip, Amira

    2016-01-15

    Muscle inflammation following exercise is characterized by expression of inflammatory cytokines and chemokines. Exercise also increases muscle macrophages derived from circulating monocytes. However, it is unknown whether muscle cells themselves attract circulating monocytes, or what is the underlying mechanism. We used an in vitro system of electrical stimulation (ES) causing C2C12 myotube contraction to explore whether monocyte chemoattraction ensues and investigated the mediating chemoattractants. Conditioned medium from ES-contracted myotubes caused robust chemoattraction of THP-1 monocytes across Boyden chambers. Following ES, expression of several known monocyte chemokines [C-C motif ligand 2 (CCL2) and C-X-C motif ligand (CXCL)1, -2, and -5] was elevated, but of these, only recombinant CCL2 effectively reproduced monocyte migration. Electrically stimulated myotubes secreted CCL2, and neutralization of CCL2 in conditioned medium or antagonizing the CCL2 receptor (CCR2) in THP-1 monocytes inhibited ES-induced monocyte migration. N-benzyl-p-toluene sulfonamide (BTS), a myosin II-ATPase inhibitor, prevented ES-induced myotube contraction but not CCL2 gene expression and secretion. The membrane-permeant calcium chelator BAPTA-AM reduced ES-induced CCL2 secretion. Hence, electrical depolarization, rather than mechanical contraction, drives the rise in CCL2, with partial calcium input. ES activated the NF-κB pathway; NF-κB inhibitors reduced ES-induced CCL2 gene expression and secretion and repressed ES-induced THP-1 chemoattraction. Thus, electrically stimulated myotubes chemoattract monocytes through NF-κB-regulated CCL2 secretion. PMID:26554595

  18. CD36 is required for myoblast fusion during myogenic differentiation

    SciTech Connect

    Park, Seung-Yoon; Yun, Youngeun; Kim, In-San

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer CD36 expression was induced during myogenic differentiation. Black-Right-Pointing-Pointer CD36 expression was localized in multinucleated myotubes. Black-Right-Pointing-Pointer The expression of myogenic markers is attenuated in CD36 knockdown C2C12 cells. Black-Right-Pointing-Pointer Knockdown of CD36 significantly inhibited myotube formation during differentiation. -- Abstract: Recently, CD36 has been found to be involved in the cytokine-induced fusion of macrophage. Myoblast fusion to form multinucleated myotubes is required for myogenesis and muscle regeneration. Because a search of gene expression database revealed the attenuation of CD36 expression in the muscles of muscular dystrophy patients, the possibility that CD36 could be required for myoblast fusion was investigated. CD36 expression was markedly up-regulated during myoblast differentiation and localized in multinucleated myotubes. Knockdown of endogenous CD36 significantly decreased the expression of myogenic markers as well as myotube formation. These results support the notion that CD36 plays an important role in cell fusion during myogenic differentiation. Our finding will aid the elucidation of the common mechanism governing cell-to-cell fusion in various fusion models.

  19. miR-411 is up-regulated in FSHD myoblasts and suppresses myogenic factors

    PubMed Central

    2013-01-01

    Background Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant muscle disorder, which is linked to the contraction of the D4Z4 array at chromosome 4q35. Recent studies suggest that this shortening of the D4Z4 array leads to aberrant expression of double homeobox protein 4 (DUX4) and causes FSHD. In addition, misregulation of microRNAs (miRNAs) has been reported in muscular dystrophies including FSHD. In this study, we identified a miRNA that is differentially expressed in FSHD myoblasts and investigated its function. Methods To identify misregulated miRNAs and their potential targets in FSHD myoblasts, we performed expression profiling of both miRNA and mRNA using TaqMan Human MicroRNA Arrays and Affymetrix Human Genome U133A plus 2.0 microarrays, respectively. In addition, we over-expressed miR-411 in C2C12 cells to determine the effect of miR-411 on myogenic markers. Results Using miRNA and mRNA expression profiling, we identified 8 miRNAs and 1,502 transcripts that were differentially expressed in FSHD myoblasts during cell proliferation. One of the 8 differentially expressed miRNAs, miR-411, was validated by quantitative RT-PCR in both primary (2.1 fold, p<0.01) and immortalized (2.7 fold, p<0.01) myoblasts. In situ hybridization showed cytoplasmic localization of miR-411 in FSHD myoblasts. By analyzing both miRNA and mRNA data using Partek Genomics Suite, we identified 4 mRNAs potentially regulated by miR-411 including YY1 associated factor 2 (YAF2). The down-regulation of YAF2 in immortalized myoblasts was validated by immunoblotting (−3.7 fold, p<0.01). C2C12 cells were transfected with miR-411 to determine whether miR-411 affects YAF2 expression in myoblasts. The results showed that over-expression of miR-411 reduced YAF2 mRNA expression. In addition, expression of myogenic markers including Myod, myogenin, and myosin heavy chain 1 (Myh1) were suppressed by miR-411. Conclusions The study demonstrated that miR-411 was differentially

  20. The Hippo effector TAZ (WWTR1) transforms myoblasts and TAZ abundance is associated with reduced survival in embryonal rhabdomyosarcoma.

    PubMed

    Mohamed, Abdalla; Sun, Congshan; De Mello, Vanessa; Selfe, Joanna; Missiaglia, Edoardo; Shipley, Janet; Murray, Graeme I; Zammit, Pete S; Wackerhage, Henning

    2016-09-01

    The Hippo effector YAP has recently been identified as a potent driver of embryonal rhabdomyosarcoma (ERMS). Most reports suggest that the YAP paralogue TAZ (gene symbol WWTR1) functions as YAP but, in skeletal muscle, TAZ has been reported to promote myogenic differentiation, whereas YAP inhibits it. Here, we investigated whether TAZ is also a rhabdomyosarcoma oncogene or whether TAZ acts as a YAP antagonist. Immunostaining of rhabdomyosarcoma tissue microarrays revealed that TAZ is significantly associated with poor survival in ERMS. In 12% of fusion gene-negative rhabdomyosarcomas, the TAZ locus is gained, which is correlated with increased expression. Constitutively active TAZ S89A significantly increased proliferation of C2C12 myoblasts and, importantly, colony formation on soft agar, suggesting transformation. However, TAZ then switches to enhance myogenic differentiation in C2C12 myoblasts, unlike YAP. Conversely, lentiviral shRNA-mediated TAZ knockdown in human ERMS cells reduced proliferation and anchorage-independent growth. While TAZ S89A or YAP1 S127A similarly activated the 8XGTIIC-Luc Hippo reporter, only YAP1 S127A activated the Brachyury (T-box) reporter. Consistent with its oncogene function, TAZ S89A induced expression of the ERMS cancer stem cell gene Myf5 and the serine biosynthesis pathway (Phgdh, Psat1, Psph) in C2C12 myoblasts. Thus, TAZ is associated with poor survival in ERMS and could act as an oncogene in rhabdomyosarcoma. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. PMID:27184927

  1. Modulation of Cell Cycle Progression by 5-Azacytidine Is Associated with Early Myogenesis Induction in Murine Myoblasts

    PubMed Central

    Montesano, Anna; Luzi, Livio; Senesi, Pamela; Terruzzi, Ileana

    2013-01-01

    Myogenesis is a multistep process, in which myoblasts withdraw from the cell cycle, cease to divide, elongate and fuse to form multinucleated myotubes. Cell cycle transition is controlled by a family of cyclin-dependent protein kinases (CDKs) regulated by association with cyclins, negative regulatory subunits and phosphorylation. Muscle differentiation is orchestrated by myogenic regulatory factors (MRFs), such as MyoD and Myf-5. DNA methylation is crucial in transcriptional control of genes involved in myogenesis. Previous work has indicated that treatment of fibroblasts with the DNA-demethylating agent 5-azacytidine (AZA) promotes MyoD expression. We studied the effects of AZA on cell cycle regulation and MRFs synthesis during myoblast proliferation and early myogenesis phases in C2C12 cells. During the proliferation phase, cells were incubated in growth medium with 5µM AZA (GMAZA) or without AZA (GM) for 24 hours. At 70% confluence, cells were kept in growth medium in order to spontaneously achieve differentiation or transferred to differentiation medium with 5μM AZA (DMAZA) or without AZA (DM) for 12 and 24 hours. Cells used as control were unstimulated. In the proliferation phase, AZA-treated cells seemed to lose their characteristic circular shape and become elongated. The presence of AZA resulted in significant increases in the protein contents of Cyclin-D (FC:1.23 GMAZA vs GM p≤0.05), p21 (FC: 1.23 GMAZA vs GM p≤0.05), Myf-5 (FC: 1.21 GMAZA vs GM p≤0.05) and MyoD (FC: 1.20 GMAZA vs GM p≤0.05). These results propose that AZA could inhibit cell proliferation. During 12 hours of differentiation, AZA decreased the downregulation of genes involved in cell cycle arrest and in restriction point (G1 and G1/S phase) and the expression of several cyclins, E2F Transcription Factors, cyclin-dependent kinase inhibitors, specific genes responsible of cell cycle negative regulation. During 24 hours of differentiation, AZA induced an increment in the protein

  2. Modulation of cell cycle progression by 5-azacytidine is associated with early myogenesis induction in murine myoblasts.

    PubMed

    Montesano, Anna; Luzi, Livio; Senesi, Pamela; Terruzzi, Ileana

    2013-01-01

    Myogenesis is a multistep process, in which myoblasts withdraw from the cell cycle, cease to divide, elongate and fuse to form multinucleated myotubes. Cell cycle transition is controlled by a family of cyclin-dependent protein kinases (CDKs) regulated by association with cyclins, negative regulatory subunits and phosphorylation. Muscle differentiation is orchestrated by myogenic regulatory factors (MRFs), such as MyoD and Myf-5. DNA methylation is crucial in transcriptional control of genes involved in myogenesis. Previous work has indicated that treatment of fibroblasts with the DNA-demethylating agent 5-azacytidine (AZA) promotes MyoD expression. We studied the effects of AZA on cell cycle regulation and MRFs synthesis during myoblast proliferation and early myogenesis phases in C2C12 cells. During the proliferation phase, cells were incubated in growth medium with 5µM AZA (GMAZA) or without AZA (GM) for 24 hours. At 70% confluence, cells were kept in growth medium in order to spontaneously achieve differentiation or transferred to differentiation medium with 5μM AZA (DMAZA) or without AZA (DM) for 12 and 24 hours. Cells used as control were unstimulated. In the proliferation phase, AZA-treated cells seemed to lose their characteristic circular shape and become elongated. The presence of AZA resulted in significant increases in the protein contents of Cyclin-D (FC:1.23 GMAZA vs GM p≤0.05), p21 (FC: 1.23 GMAZA vs GM p≤0.05), Myf-5 (FC: 1.21 GMAZA vs GM p≤0.05) and MyoD (FC: 1.20 GMAZA vs GM p≤0.05). These results propose that AZA could inhibit cell proliferation. During 12 hours of differentiation, AZA decreased the downregulation of genes involved in cell cycle arrest and in restriction point (G1 and G1/S phase) and the expression of several cyclins, E2F Transcription Factors, cyclin-dependent kinase inhibitors, specific genes responsible of cell cycle negative regulation. During 24 hours of differentiation, AZA induced an increment in the protein

  3. Effect of High Temperature- and High Pressure-Treated Red Ginseng on Lipolysis and Lipid Oxidation in C2C12 Myotubes.

    PubMed

    Yu, Seok-Yeong; Lee, Jin-Ha; Cho, MyoungLae; Lee, Jong Seok; Hong, Hee-Do; Lee, Young-Chul; Kim, Young-Chan; Cho, Chang-Won; Kim, Kyung-Tack; Lee, Ok-Hwan

    2016-01-01

    Korean red ginseng (KRG), a highly valuable medicinal herb in oriental societies, has biological activity similar to that of Panax ginseng. Recently, it has been discovered that the biological activities of red ginseng can vary according to heating and steaming processes under different conditions that change the principal components of KRG and result in changes in biological activity. This study evaluated and compared the effects of high temperature- and high pressure-treated red ginseng (HRG) and commercial red ginseng (RG) on β-oxidation in C2C12 myotubes. HRG enhanced the phosphorylation levels of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC), but RG did not affect the phosphorylation of AMPK in C2C12 myotubes. HRG also promoted the nuclear translocation of forkhead box protein O1 (FoxO1), and the translocation exerted an increase in the protein expression of adipose triglyceride lipase (ATGL). As a consequence, HRG increased the mRNA expression level of carnitine palmitoyltransferase 1 (CPT-1) compared to the control. Taken together, our results indicated that HRG promotes the lipolysis of triglycerides and mitochondrial β-oxidation of fatty acids in C2C12 myotubes, suggesting that alterations to the principal components by high temperature and pressure may positively influence the nutraceutical functions of HRG. PMID:26501225

  4. Restoration of anal sphincter function after myoblast cell therapy in incontinent rats.

    PubMed

    Bisson, Aurélie; Fréret, Manuel; Drouot, Laurent; Jean, Laetitia; Le Corre, Stéphanie; Gourcerol, Guillaume; Doucet, Christelle; Michot, Francis; Boyer, Olivier; Lamacz, Marek

    2015-01-01

    Fecal incontinence (FI) remains a socially isolating condition with profound impact on quality of life for which autologous myoblast cell therapy represents an attractive treatment option. We developed an animal model of FI and investigated the possibility of improving sphincter function by intrasphincteric injection of syngeneic myoblasts. Several types of anal cryoinjuries were evaluated on anesthetized Fischer rats receiving analgesics. The minimal lesion yielding sustainable anal sphincter deficiency was a 90° cryoinjury of the sphincter, repeated after a 24-h interval. Anal sphincter pressure was evaluated longitudinally by anorectal manometry under local electrostimulation. Myoblasts were prepared using a protocol mimicking a clinical-grade process and further transduced with a GFP-encoding lentiviral vector before intrasphincteric injection. Experimental groups were uninjured controls, cryoinjured + PBS, and cryoinjured + myoblasts (different doses or injection site). Myoblast injection was well tolerated. Transferred myoblasts expressing GFP integrated into the sphincter and differentiated in situ into dystrophin-positive mature myofibers. Posttreatment sphincter pressures increased over time. At day 60, pressures in the treated group were significantly higher than those of PBS-injected controls and not significantly different from those of normal rats. Longitudinal follow-up showed stability of the therapeutic effect on sphincter function over a period of 6 months. Intrasphincteric myoblast injections at the lesion borders were equally as effective as intralesion administration, but an injection opposite to the lesion was not. These results provide proof of principle for myoblast cell therapy to treat FI in a rat model. This strategy is currently being evaluated in humans in a randomized double-blind placebo-controlled clinical trial. PMID:24143883

  5. Betaine supplement enhances skeletal muscle differentiation in murine myoblasts via IGF-1 signaling activation

    PubMed Central

    2013-01-01

    Background Betaine (BET) is a component of many foods, including spinach and wheat. It is an essential osmolyte and a source of methyl groups. Recent studies have hypothesized that BET might play a role in athletic performance. However, BET effects on skeletal muscle differentiation and hypertrophy are still poorly understood. Methods We examined BET action on neo myotubes maturation and on differentiation process, using C2C12 murine myoblastic cells. We used RT2-PCR array, Western blot and immunofluorescence analysis to study the BET effects on morphological features of C2C12 and on signaling pathways involved in muscle differentiation and hypertrophy. Results We performed a dose–response study, establishing that 10 mM BET was the dose able to stimulate morphological changes and hypertrophic process in neo myotubes. RT2-PCR array methodology was used to identify the expression profile of genes encoding proteins involved in IGF-1 pathway. A dose of 10 mM BET was found to promote IGF-1 receptor (IGF-1 R) expression. Western blot and immunofluorescence analysis, performed in neo myotubes, pointed out that 10 mM BET improved IGF-1 signaling, synthesis of Myosin Heavy Chain (MyHC) and neo myotubes length. In addition, we investigated BET role on myoblasts proliferation and differentiation. During proliferation, BET did not modify C2C12 proliferative rate, but promoted myogenic induction, enhancing MyoD protein content and cellular elongation. During differentiation, BET caused an increase of muscle-specific markers and IGF-1 R protein levels. Conclusions Our findings provide the first evidence that BET could promote muscle fibers differentiation and increase myotubes size by IGF-1 pathway activation, suggesting that BET might represent a possible new drug/integrator strategy, not only in sport performance but also in clinical conditions characterized by muscle function impairment. PMID:23870626

  6. Further considerations on in vitro skeletal muscle cell death

    PubMed Central

    Battistelli, Michela; Salucci, Sara; Burattini, Sabrina; Falcieri, Elisabetta

    2013-01-01

    Summary The present review discusses the apoptotic behavior induced by chemical and physical triggers in C2C12 skeletal muscle cells, comparing myoblast to myotube sensitivity, and investigating it by means of morphological, biochemical and cytofluorimetric analyses. After all treatments, myotubes, differently from myoblasts, showed a poor sensitivity to cell death. Intriguingly, in cells exposed to staurosporine, etoposide and UVB radiation, apoptotic and normal nuclei within the same fibercould be revealed. The presence of nuclear-dependent “territorial” death domains in the syncytium could explain a delayed cell death of myotubes compared to mononucleated cells. Moreover, autophagic granules abundantly appeared in myotubes after each treatment. Autophagy could protect muscle cell integrity against chemical and physical stimuli, making C2C12 myotubes, more resistant to cell death induction. PMID:24596689

  7. The effect of palmitate supplementation on gene expression profile in proliferating myoblasts.

    PubMed

    Grabiec, K; Majewska, A; Wicik, Z; Milewska, M; Błaszczyk, M; Grzelkowska-Kowalczyk, K

    2016-06-01

    High-fat diet, exposure to saturated fatty acids, or the presence of adipocytes in myoblast microenvironment affects skeletal muscle growth and function. The aim of the present study was to investigate the effect of palmitate supplementation on transcriptomic profile of mouse C2C12 myoblasts. Global gene expression was evaluated using whole mouse genome oligonucleotide microarrays, and the results were validated through qPCR. A total of 4047 genes were identified as differentially expressed, including 3492 downregulated and 555 upregulated genes, during a 48-h exposure to palmitate (0.1 mmol/l). Functional classification showed the involvement of these genes in several processes which regulate cell growth. In conclusion, the addition of palmitate modifies the expression of genes associated with (1) myoblast responsiveness to hormones and growth factors, (2) cytokine and growth factor expression, and (3) regulation of cell-cell and cell-matrix communication. Such alterations can affect myoblast growth and differentiation; however, further studies in this field are required. PMID:27114085

  8. Spatial coordination of cell orientation directed by nanoribbon sheets.

    PubMed

    Fujie, Toshinori; Shi, Xuetao; Ostrovidov, Serge; Liang, Xiaobin; Nakajima, Ken; Chen, Yin; Wu, Hongkai; Khademhosseini, Ali

    2015-06-01

    Spatial coordination of cell orientation is of central importance in tissue/organ construction. In this study, we developed microfabricated poly(lactic-co-glycolic acid) (PLGA) nanoribbon sheets with unique structures, using spin-coating and micropatterning techniques, in order to generate a hierarchically assembled cellular structure consisting of murine skeletal myoblasts (C2C12). The nanoribbon sheets were composed of aligned PLGA nanoribbons in the center, and strips on four sides which take a role as bridges to connect and immobilize the aligned nanoribbons. Such unique structures facilitated the alignment of C2C12 cells into bilayer cell sheets, and cellular alignment was directed by the aligned direction of nanoribbons. The nanoribbon sheets also facilitated the construction of multilayer cell sheets with anisotropic (orthogonal) and isotropic (parallel) orientations. The enhanced expression of myogenic genes of C2C12 cells on the bilayer cell sheets demonstrated that the nanoribbons induced C2C12 cell differentiation into mature myoblasts. The micropatterned nanoribbon sheets may be a useful tool for directing cellular organization with defined alignment for regenerative medicine and drug screening applications. PMID:25890709

  9. miR-145a-5p Promotes Myoblast Differentiation

    PubMed Central

    Du, Jingjing; Li, Qiang; Shen, Linyuan; Lei, Huaigang; Luo, Jia; Liu, Yihui; Zhang, Peiwen; Pu, Qiang; Zhang, Yi; Shuai, Surong; Li, Xuewei; Zhang, Shunhua; Zhu, Li

    2016-01-01

    MicroRNAs are a class of 18–22-nucleotide noncoding RNAs that posttranscriptionally regulate gene expression and have been shown to play an important role during myoblast differentiation. In this study, we found that the expression of miR-145a-5p was gradually increased during C2C12 myoblast differentiation, and miR-145a-5p inhibitors or mimics significantly suppressed or promoted the relative expression of specific myogenesis related marker genes. Moreover, overexpression or inhibition of miR-145a-5p enhanced or repressed the expression of some special genes involved in the endogenous Wnt signaling pathway during C2C12 myoblast differentiation, including Wnt5a, LRP5, Axin2, and β-catenin. These results indicated that miR-145a-5p might be considered as a new myogenic differentiation-associated microRNA that can promote C2C12 myoblast differentiation by enhancing genes related to myoblasts differentiation. PMID:27239472

  10. A comparative study of magnetic-activated cell sorting, cytotoxicity and preplating for the purification of human myoblasts.

    PubMed

    Park, Yoon Ghil; Moon, Jae Ho; Kim, Jin

    2006-04-30

    Although cultured myoblast transplantation has been extensively studied as a gene complementation approach to muscular dystrophy treatment, clinical success has still been limited. The inability to adequately isolate and purify myoblasts presents a major limitation to the production of sufficient myoblasts for engrafting purposes. This study attempted to purify myoblasts from primary culture by magnetic-activated cell sorting (MACS), complement-mediated cytotoxicity, and a preplating technique. As a result of positive myoblasts selection by MACS, the average percentage of myoblasts in mixed culture was increased from 30.0% to 41.7%. We observed both myoblast lysis and fibroblast lysis after complement-mediated cytotoxicity. Enrichment of myoblasts in mixed culture was found to increase to 83.1% by using the preplating technique. In addition, higher purification (92.8%) was achieved by following the preplating technique with MACS. Thus, preplating in combination with magnetic-activated cell sorting allows for a rapid and effective isolation of myoblasts from human muscle tissue. PMID:16642545

  11. Development of gas chromatography-flame ionization detection system with a single column and liquid nitrogen-free for measuring atmospheric C2-C12 hydrocarbons.

    PubMed

    Liu, Chengtang; Mu, Yujing; Zhang, Chenglong; Zhang, Zhibo; Zhang, Yuanyuan; Liu, Junfeng; Sheng, Jiujiang; Quan, Jiannong

    2016-01-01

    A liquid nitrogen-free GC-FID system equipped with a single column has been developed for measuring atmospheric C2-C12 hydrocarbons. The system is consisted of a cooling unit, a sampling unit and a separation unit. The cooling unit is used to meet the temperature needs of the sampling unit and the separation unit. The sampling unit includes a dehydration tube and an enrichment tube. No breakthrough of the hydrocarbons was detected when the temperature of the enrichment tube was kept at -90 °C and sampling volume was 400 mL. The separation unit is a small round oven attached on the cooling column. A single capillary column (OV-1, 30 m × 0.32 mm I.D.) was used to separate the hydrocarbons. An optimal program temperature (-60 ∼ 170 °C) of the oven was achieved to efficiently separate C2-C12 hydrocarbons. There were good linear correlations (R(2)=0.993-0.999) between the signals of the hydrocarbons and the enrichment amount of hydrocarbons, and the relative standard deviation (RSD) was less than 5%, and the method detection limits (MDLs) for the hydrocarbons were in the range of 0.02-0.10 ppbv for sampling volume of 400 mL. Field measurements were also conducted and more than 50 hydrocarbons from C2 to C12 were detected in Beijing city. PMID:26687163

  12. Rab35 regulates cadherin-mediated adherens junction formation and myoblast fusion

    PubMed Central

    Charrasse, Sophie; Comunale, Franck; De Rossi, Sylvain; Echard, Arnaud; Gauthier-Rouvière, Cécile

    2013-01-01

    Cadherins are homophilic cell–cell adhesion molecules implicated in many fundamental processes, such as morphogenesis, cell growth, and differentiation. They accumulate at cell–cell contact sites and assemble into large macromolecular complexes named adherens junctions (AJs). Cadherin targeting and function are regulated by various cellular processes, many players of which remain to be uncovered. Here we identify the small GTPase Rab35 as a new regulator of cadherin trafficking and stabilization at cell–cell contacts in C2C12 myoblasts and HeLa cells. We find that Rab35 accumulates at cell–cell contacts in a cadherin-dependent manner. Knockdown of Rab35 or expression of a dominant-negative form of Rab35 impaired N- and M-cadherin recruitment to cell–cell contacts, their stabilization at the plasma membrane, and association with p120 catenin and led to their accumulation in transferrin-, clathrin-, and AP-2–positive intracellular vesicles. We also find that Rab35 function is required for PIP5KIγ accumulation at cell–cell contacts and phosphatidyl inositol 4,5-bisphosphate production, which is involved in cadherin stabilization at contact sites. Finally, we show that Rab35 regulates myoblast fusion, a major cellular process under the control of cadherin-dependent signaling. Taken together, these results reveal that Rab35 regulates cadherin-dependent AJ formation and myoblast fusion. PMID:23197472

  13. Network formation through active migration of human vascular endothelial cells in a multilayered skeletal myoblast sheet.

    PubMed

    Nagamori, Eiji; Ngo, Trung Xuan; Takezawa, Yasunori; Saito, Atsuhiro; Sawa, Yoshiki; Shimizu, Tatsuya; Okano, Teruo; Taya, Masahito; Kino-oka, Masahiro

    2013-01-01

    Autologous transplantation of myoblast sheet has attracted attention as a new technique for curing myocardial infarction. Myoblast sheet has the ability to secret cytokines that improve heart function via the facilitation of angiogenesis on affected part. To mimic the in vivo angiogenesis in the myoblast sheet after transplantation, a five-layered cell sheet of human skeletal muscle myoblasts (HSMMs) was overlaid on human umbilical vein endothelial cells (HUVECs) which enables evaluation of dynamic HUVEC behavior. HUVECs existing initially at the bottom of the sheet changed to be a stretched shape and migrated upward compared with the surrounding HSMMs in the sheet. Prolonged incubation resulted in network formation of HUVECs in the middle of the sheet, although non-networked HUVECs continued to migrate to the top of the sheet, which meant the spatial habitation of HUVECs in the cell sheet. Image processing was performed to determine the variation in the extent of network formation at different HUVEC densities. It was found that the extent of formed network depended on the frequency of encounters among HUVECs in the middle of the sheet. The present system, which can evaluate network formation, is considered to be a promising in vitro angiogenesis model. PMID:23117213

  14. Low-level infrared laser modulates muscle repair and chromosome stabilization genes in myoblasts.

    PubMed

    da Silva Neto Trajano, Larissa Alexsandra; Stumbo, Ana Carolina; da Silva, Camila Luna; Mencalha, Andre Luiz; Fonseca, Adenilson S

    2016-08-01

    Infrared laser therapy is used for skeletal muscle repair based on its biostimulative effect on satellite cells. However, shortening of telomere length limits regenerative potential in satellite cells, which occurs after each cell division cycle. Also, laser therapy could be more effective on non-physiologic tissues. This study evaluated low-level infrared laser exposure effects on mRNA expression from muscle injury repair and telomere stabilization genes in myoblasts in normal and stressful conditions. Laser fluences were those used in clinical protocols. C2C12 myoblast cultures were exposed to low-level infrared laser (10, 35, and 70 J/cm(2)) in standard or normal (10 %) and reduced (2 %) fetal bovine serum concentrations; total RNA was extracted for mRNA expression evaluation from muscle injury repair (MyoD and Pax7) and chromosome stabilization (TRF1 and TRF2) genes by real time quantitative polymerization chain reaction. Data show that low-level infrared laser increases the expression of MyoD and Pax7 in 10 J/cm(2) fluence, TRF1 expression in all fluences, and TRF2 expression in 70 J/cm(2) fluence in both 10 and 2 % fetal bovine serum. Low-level infrared laser increases mRNA expression from genes related to muscle repair and telomere stabilization in myoblasts in standard or normal and stressful conditions. PMID:27220530

  15. Construction and Myogenic Differentiation of 3D Myoblast Tissues Fabricated by Fibronectin-Gelatin Nanofilm Coating

    PubMed Central

    Gribova, Varvara; Liu, Chen Yun; Nishiguchi, Akihiro; Matsusaki, Michiya; Boudou, Thomas; Picart, Catherine; Akashi, Mitsuru

    2016-01-01

    In this study, we used a recently developed approach of coating the cells with fibronectin-gelatin nanofilms to build 3D skeletal muscle tissue models. We constructed the microtissues from C2C12 myoblasts and subsequently differentiated them to form muscle-like tissue. The thickness of the constructs could be successfully controlled by altering the number of seeded cells. We were able to build up to ~ 76 µm thick 3D constructs that formed multinucleated myotubes. We also found that Rho-kinase inhibitor Y27632 improved myotube formation in thick constructs. Our approach makes it possible to rapidly form 3D muscle tissues and is promising for the in vitro construction of physiologically relevant human skeletal muscle tissue models. PMID:27125461

  16. Construction and myogenic differentiation of 3D myoblast tissues fabricated by fibronectin-gelatin nanofilm coating.

    PubMed

    Gribova, Varvara; Liu, Chun-Yen; Nishiguchi, Akihiro; Matsusaki, Michiya; Boudou, Thomas; Picart, Catherine; Akashi, Mitsuru

    2016-06-01

    In this study, we used a recently developed approach of coating the cells with fibronectin-gelatin nanofilms to build 3D skeletal muscle tissue models. We constructed the microtissues from C2C12 myoblasts and subsequently differentiated them to form muscle-like tissue. The thickness of the constructs could be successfully controlled by altering the number of seeded cells. We were able to build up to ∼76 μm thick 3D constructs that formed multinucleated myotubes. We also found that Rho-kinase inhibitor Y27632 improved myotube formation in thick constructs. Our approach makes it possible to rapidly form 3D muscle tissues and is promising for the in vitro construction of physiologically relevant human skeletal muscle tissue models. PMID:27125461

  17. Surface apposition and multiple cell contacts promote myoblast fusion in Drosophila flight muscles

    PubMed Central

    Dhanyasi, Nagaraju; Segal, Dagan; Shimoni, Eyal; Shinder, Vera

    2015-01-01

    Fusion of individual myoblasts to form multinucleated myofibers constitutes a widely conserved program for growth of the somatic musculature. We have used electron microscopy methods to study this key form of cell–cell fusion during development of the indirect flight muscles (IFMs) of Drosophila melanogaster. We find that IFM myoblast–myotube fusion proceeds in a stepwise fashion and is governed by apparent cross talk between transmembrane and cytoskeletal elements. Our analysis suggests that cell adhesion is necessary for bringing myoblasts to within a minimal distance from the myotubes. The branched actin polymerization machinery acts subsequently to promote tight apposition between the surfaces of the two cell types and formation of multiple sites of cell–cell contact, giving rise to nascent fusion pores whose expansion establishes full cytoplasmic continuity. Given the conserved features of IFM myogenesis, this sequence of cell interactions and membrane events and the mechanistic significance of cell adhesion elements and the actin-based cytoskeleton are likely to represent general principles of the myoblast fusion process. PMID:26459604

  18. ClipR-59 Interacts with Elmo2 and Modulates Myoblast Fusion*

    PubMed Central

    Sun, Yingmin; Ren, Wenying; Côté, Jean-François; Hinds, Philip W.; Hu, Xiaoxiang; Du, Keyong

    2015-01-01

    Recent studies using ClipR-59 knock-out mice implicated this protein in the regulation of muscle function. In this report, we have examined the role of ClipR-59 in muscle differentiation and found that ClipR-59 knockdown in C2C12 cells suppressed myoblast fusion. To elucidate the molecular mechanism whereby ClipR-59 regulates myoblast fusion, we carried out a yeast two-hybrid screen using ClipR-59 as the bait and identified Elmo2, a member of the Engulfment and cell motility protein family, as a novel ClipR-59-associated protein. We showed that the interaction between ClipR-59 and Elmo2 was mediated by the atypical PH domain of Elmo2 and the Glu-Pro-rich domain of ClipR-59 and regulated by Rho-GTPase. We have examined the impact of ClipR-59 on Elmo2 downstream signaling and found that interaction of ClipR-59 with Elmo2 enhanced Rac1 activation. Collectively, our studies demonstrate that formation of an Elmo2·ClipR-59 complex plays an important role in myoblast fusion. PMID:25572395

  19. Rigidity-patterned polyelectrolyte films to control myoblast cell adhesion and spatial organization

    PubMed Central

    Monge, Claire; Saha, Naresh; Boudou, Thomas; Pózos-Vásquez, Cuauhtemoc; Dulong, Virginie; Glinel, Karine; Picart, Catherine

    2014-01-01

    In vivo, cells are sensitive to the stiffness of their micro-environment and especially to the spatial organization of the stiffness. In vitro studies of this phenomenon can help to better understand the mechanisms of the cell response to spatial variations of the matrix stiffness. In this work, we design polelyelectrolyte multilayer films made of poly(L-lysine) and a photo-reactive hyaluronan derivative. These films can be photo-crosslinked through a photomask to create spatial patterns of rigidity. Quartz substrates incorporating a chromium mask are prepared to expose selectively the film to UV light (in a physiological buffer), without any direct contact between the photomask and the soft film. We show that these micropatterns are chemically homogeneous and flat, without any preferential adsorption of adhesive proteins. Three groups of pattern geometries differing by their shape (circles or lines), size (form 2 to 100 μm) or interspacing distance between the motifs are used to study the adhesion and spatial organization of myoblast cells. On large circular micropatterns, the cells form large assemblies that are confined to the stiffest parts. Conversely, when the size of the rigidity patterns is subcellular, the cells respond by forming protrusions. Finally, on linear micropatterns of rigidity, myoblasts align and their nuclei drastically elongate in specific conditions. These results pave the way for the study of the different steps of myoblast fusion in response to matrix rigidity in well-defined geometrical conditions. PMID:25100929

  20. Microwave frequency effects on dielectric properties of some common solvents and on microwave-assisted syntheses: 2-Allylphenol and the C12-C2-C12 Gemini surfactant

    NASA Astrophysics Data System (ADS)

    Horikoshi, Satoshi; Matsuzaki, Shohei; Mitani, Tomohiko; Serpone, Nick

    2012-12-01

    Microwave radiation emitted at a frequency of 915 MHz and 5.8 GHz from a newly fabricated single-mode resonance microwave apparatus is herein proposed for use in microwave-assisted organic syntheses. The usefulness of 5.8-GHz microwaves is demonstrated by the solvent-free synthesis of 2-allylphenol through a Claisen rearrangement process, and by the synthesis of the C12-C2-C12 Gemini surfactant in ethanol solvent undertaken to verify the usefulness of the 915-MHz frequency. These two model reactions have shown the advantage of these two microwave frequencies in that the observed efficiencies were greater than when employing the more commonly used 2.45-GHz microwaves. Dielectric parameters (dissipation factor: tan δ, dielectric constant: ɛ', and dielectric loss: ɛ'') have also been assessed for water and 22 common organic solvents typically used in organic syntheses, together with the temperature dependence of the dielectric parameters. Temperature-time profiles have been determined and rates of increase of temperature computed. The 5.8-GHz microwaves were effective in heating non-polar solvents, while the 915-MHz microwave frequency was most suitable for heating the alcohols.

  1. The Mutual Interactions between Mesenchymal Stem Cells and Myoblasts in an Autologous Co-Culture Model

    PubMed Central

    Szczepanska, Izabela; Zarychta-Wisniewska, Weronika; Pajak, Beata; Bojarczuk, Kamil; Dybowski, Bartosz; Paczek, Leszek

    2016-01-01

    Both myoblasts and mesenchymal stem cells (MSC) take part in the muscle tissue regeneration and have been used as experimental cellular therapy in muscular disorders treatment. It is possible that co-transplantation approach could improve the efficacy of this treatment. However, the relations between those two cell types are not clearly defined. The aim of this study was to determine the reciprocal interactions between myoblasts and MSC in vitro in terms of the features important for the muscle regeneration process. Primary caprine muscle-derived cells (MDC) and bone marrow-derived MSC were analysed in autologous settings. We found that MSC contribute to myotubes formation by fusion with MDC when co-cultured directly, but do not acquire myogenic phenotype if exposed to MDC-derived soluble factors only. Experiments with exposure to hydrogen peroxide showed that MSC are significantly more resistant to oxidative stress than MDC, but a direct co-culture with MSC does not diminish the cytotoxic effect of H2O2 on MDC. Cell migration assay demonstrated that MSC possess significantly greater migration ability than MDC which is further enhanced by MDC-derived soluble factors, whereas the opposite effect was not found. MSC-derived soluble factors significantly enhanced the proliferation of MDC, whereas MDC inhibited the division rate of MSC. To conclude, presented results suggest that myogenic precursors and MSC support each other during muscle regeneration and therefore myoblasts-MSC co-transplantation could be an attractive approach in the treatment of muscular disorders. PMID:27551730

  2. The Mutual Interactions between Mesenchymal Stem Cells and Myoblasts in an Autologous Co-Culture Model.

    PubMed

    Kulesza, Agnieszka; Burdzinska, Anna; Szczepanska, Izabela; Zarychta-Wisniewska, Weronika; Pajak, Beata; Bojarczuk, Kamil; Dybowski, Bartosz; Paczek, Leszek

    2016-01-01

    Both myoblasts and mesenchymal stem cells (MSC) take part in the muscle tissue regeneration and have been used as experimental cellular therapy in muscular disorders treatment. It is possible that co-transplantation approach could improve the efficacy of this treatment. However, the relations between those two cell types are not clearly defined. The aim of this study was to determine the reciprocal interactions between myoblasts and MSC in vitro in terms of the features important for the muscle regeneration process. Primary caprine muscle-derived cells (MDC) and bone marrow-derived MSC were analysed in autologous settings. We found that MSC contribute to myotubes formation by fusion with MDC when co-cultured directly, but do not acquire myogenic phenotype if exposed to MDC-derived soluble factors only. Experiments with exposure to hydrogen peroxide showed that MSC are significantly more resistant to oxidative stress than MDC, but a direct co-culture with MSC does not diminish the cytotoxic effect of H2O2 on MDC. Cell migration assay demonstrated that MSC possess significantly greater migration ability than MDC which is further enhanced by MDC-derived soluble factors, whereas the opposite effect was not found. MSC-derived soluble factors significantly enhanced the proliferation of MDC, whereas MDC inhibited the division rate of MSC. To conclude, presented results suggest that myogenic precursors and MSC support each other during muscle regeneration and therefore myoblasts-MSC co-transplantation could be an attractive approach in the treatment of muscular disorders. PMID:27551730

  3. Morphological changes and spatial regulation of diacylglycerol kinase-zeta, syntrophins, and Rac1 during myoblast fusion.

    PubMed

    Abramovici, Hanan; Gee, Stephen H

    2007-07-01

    The fusion of mononuclear myoblasts into multinucleated myofibers is essential for the formation and growth of skeletal muscle. Myoblast fusion follows a well-defined sequence of cellular events, from initial recognition and adhesion, to alignment, and finally plasma membrane fusion. These processes depend upon coordinated remodeling of the actin cytoskeleton. Our recent studies suggest diacylglycerol kinase-zeta (DGK-zeta), an enzyme that metabolizes diacylglycerol to yield phosphatidic acid, plays an important role in actin reorganization. Here, we investigated whether DGK-zeta has a role in the fusion of cultured C2C12 myoblasts. We show that DGK-zeta and syntrophins, scaffold proteins of the dystrophin glycoprotein complex that bind directly to DGK-zeta, are spatially regulated during fusion. Both proteins accumulated with the GTPase Rac1 at sites where fine filopodia mediate the initial contact between myoblasts. In addition, DGK-zeta codistributed with the Ca(2+)-dependent cell adhesion molecule N-cadherin at nascent, but not previously established cell contacts. We provide evidence that C2 cells are pulled together at cell-cell junctions by N-cadherin-containing filopodia reminiscent of epithelial adhesion zippers, which guide the advance of lamellipodia from apposing cells. At later times, vesicles with properties of macropinosomes formed close to cell-cell junctions. Reconstruction of confocal optical sections showed these form dome-like protrusions from the dorsal surface of contacting cells. Collectively, these results suggest DGK-zeta and syntrophins play a role at multiple stages of the fusion process. Moreover, our findings provide a potential link between changes in the lipid content of the membrane bilayer and reorganization of the actin cytoskeleton during myoblast fusion. PMID:17410543

  4. YB1/p32, a nuclear Y-box binding protein 1, is a novel regulator of myoblast differentiation that interacts with Msx1 homeoprotein

    SciTech Connect

    Song, Young Joon; Lee, Hansol

    2010-02-15

    Precisely controlled cellular differentiation is essential for the proper development of vertebrate embryo and deregulated differentiation is a major cause of many human congenital diseases as well as cancer. Msx1 is a member of the homeoprotein family implicated in these processes, which inhibits the differentiation of skeletal muscle and other cell types, presumably by regulating transcription of target genes through interaction with other cellular factors. We presently show that YB1/p32, a nuclear Y-box binding protein 1, interacts with Msx1 homeoprotein and functions as a regulator of C2C12 myoblast differentiation. We demonstrate that YB1/p32 functionally interacts with Msx1 through its N-terminal region and colocalizes with Msx1 at the nuclear periphery. Moreover, we find that YB1/p32 is competent for inhibition of C2C12 myoblast differentiation, which is correlated with its activity as a negative regulator of MyoD gene expression and binding to the MyoD core enhancer region (CER). Furthermore, YB1/p32 cooperates with Msx1 in transcriptional repression and knocking down the expression of endogenous YB1 attenuates the effects of Msx1. Taken together, our study has uncovered a new function of YB1/p32, a regulator of skeletal muscle differentiation.

  5. Characterization of a plasma membrane glycoprotein common to myoblasts, skeletal muscle satellite cells, and glia.

    PubMed

    Wakshull, E; Bayne, E K; Chiquet, M; Fambrough, D M

    1983-12-01

    A plasma membrane glycoprotein common to embryonic chick myoblasts and adult chicken skeletal muscle satellite cells is the antigen recognized by monoclonal antibody C3/1. Although traces of the same antigen are present on some muscle-derived fibroblasts, the density of antigenic sites on myoblasts and satellite cells is so high that these cell types can be identified in tissues by immunocytochemical techniques. The antigen is exposed on the surfaces of myogenic cells growing in tissue culture and can be solubilized with detergent. This and other criteria establish that the antigen is a plasma membrane protein. The antigen, purified by affinity techniques, consists of a single type of polypeptide chain which migrates as a relatively broad band of apparent molecular weight 38,000 Da in SDS-polyacrylamide gel electrophoresis. It has a very small sedimentation constant, suggesting that the solubilized form is either monomeric or dimeric. The concentration of antigenic sites increases during myogenesis in vitro; but during maturation the antigenic sites are lost from muscle fibers. Electron microscopic autoradiographic study of adult muscle labeled with iodinated monoclonal antibody demonstrated unequivocally that the antigenic sites in adult muscle are concentrated in the satellite cells. Although selective for myoblasts, immature myotubes and satellite cells in the myogenic lineage, the monoclonal antibody also binds at rather high levels to peripheral Schwann cells and teloglia, to some nonneuronal cells in cultures derived from embryonic spinal cord, to some glial elements of adult chicken brain, and to several cell types in the early embryo. PMID:6360753

  6. Adult stem cells for cardiac repair: a choice between skeletal myoblasts and bone marrow stem cells.

    PubMed

    Ye, Lei; Haider, Husnain Kh; Sim, Eugene K W

    2006-01-01

    The real promise of a stem cell-based approach for cardiac regeneration and repair lies in the promotion of myogenesis and angiogenesis at the site of the cell graft to achieve both structural and functional benefits. Despite all of the progress and promise in this field, many unanswered questions remain; the answers to these questions will provide the much-needed breakthrough to harness the real benefits of cell therapy for the heart in the clinical perspective. One of the major issues is the choice of donor cell type for transplantation. Multiple cell types with varying potentials have been assessed for their ability to repopulate the infarcted myocardium; however, only the adult stem cells, that is, skeletal myoblasts (SkM) and bone marrow-derived stem cells (BMC), have been translated from the laboratory bench to clinical use. Which of these two cell types will provide the best option for clinical application in heart cell therapy remains arguable. With results pouring in from the long-term follow-ups of previously conducted phase I clinical studies, and with the onset of phase II clinical trials involving larger population of patients, transplantation of stem cells as a sole therapy without an adjunct conventional revascularization procedure will provide a deeper insight into the effectiveness of this approach. The present article discusses the pros and cons of using SkM and BMC individually or in combination for cardiac repair, and critically analyzes the progress made with each cell type. PMID:16380640

  7. KAT5-mediated SOX4 acetylation orchestrates chromatin remodeling during myoblast differentiation.

    PubMed

    Jang, S-M; Kim, J-W; Kim, C-H; An, J-H; Johnson, A; Song, P I; Rhee, S; Choi, K-H

    2015-01-01

    Transcription factor SOX4 has been implicated in skeletal myoblast differentiation through the regulation of Cald1 gene expression; however, the detailed molecular mechanism underlying this process is largely unknown. Here, we demonstrate that SOX4 acetylation at lysine 95 by KAT5 (also known as Tip60) is essential for Cald1 promoter activity at the onset of C2C12 myoblast differentiation. KAT5 chromodomain was found to facilitate SOX4 recruitment to the Cald1 promoter, which is involved in chromatin remodeling at the promoter. Chromatin occupancy analysis of SOX4, KAT5, and HDAC1 indicated that the expression of putative SOX4 target genes during C2C12 myoblast differentiation is specifically regulated by the molecular switching of the co-activator KAT5 and the co-repressor HDAC1 on SOX4 transcriptional activation. PMID:26291311

  8. KAT5-mediated SOX4 acetylation orchestrates chromatin remodeling during myoblast differentiation

    PubMed Central

    Jang, S-M; Kim, J-W; Kim, C-H; An, J-H; Johnson, A; Song, P I; Rhee, S; Choi, K-H

    2015-01-01

    Transcription factor SOX4 has been implicated in skeletal myoblast differentiation through the regulation of Cald1 gene expression; however, the detailed molecular mechanism underlying this process is largely unknown. Here, we demonstrate that SOX4 acetylation at lysine 95 by KAT5 (also known as Tip60) is essential for Cald1 promoter activity at the onset of C2C12 myoblast differentiation. KAT5 chromodomain was found to facilitate SOX4 recruitment to the Cald1 promoter, which is involved in chromatin remodeling at the promoter. Chromatin occupancy analysis of SOX4, KAT5, and HDAC1 indicated that the expression of putative SOX4 target genes during C2C12 myoblast differentiation is specifically regulated by the molecular switching of the co-activator KAT5 and the co-repressor HDAC1 on SOX4 transcriptional activation. PMID:26291311

  9. Improvement of insulin signaling in myoblast cells by an addition of SKIP-binding peptide within Pak1 kinase domain.

    PubMed

    Ijuin, Takeshi; Takenawa, Tadaomi

    2015-01-01

    Abnormalities in insulin-induced glucose incorporation in skeletal muscle were observed in Type 2 diabetes. Our previous studies revealed that the binding between skeletal muscle and kidney-enriched inositol polyphosphate phosphatase (SKIP) and p21-activated protein kinase (Pak1) at the plasma membrane is induced insulin-dependently and that this binding mediated a rapid and efficient termination of insulin signaling and a subsequent glucose uptake into skeletal muscle cells. Here, we identified 11-amino-acids peptide within kinase domain of Pak1, necessary and sufficient for SKIP binding. Expression of this region in C2C12 cells resulted in an increase in insulin signaling. Supplementation of a synthetic peptide of this sequence increased insulin signaling and insulin-induced glucose uptake into skeletal muscle cell lines. These findings suggest the physiological role of Pak1-SKIP binding in the regulation of insulin signaling in skeletal muscle. PMID:25446075

  10. Ghrelin stimulates myogenic differentiation in a mouse muscle satellite cell line and in primary cultures of bovine myoblasts.

    PubMed

    Montoya-Flores, D; Mora, O; Tamariz, E; González-Dávalos, L; González-Gallardo, A; Antaramian, A; Shimada, A; Varela-Echavarría, A; Romano-Muñoz, J L

    2012-08-01

    Ghrelin is an acylated hormone that influences food intake, energy metabolism and reproduction, among others. Ghrelin may also stimulate proliferating myoblast cell differentiation and multinucleated myotube fusion. The aim of this work was to assess the effect of human ghrelin (hGHRL) and human ghrelin fragment 1-18 (hGHRL1-18) on myoblast differentiation by means of mRNA expression and protein level. Two types of cells were tested, the cell line i28 obtained from mouse skeletal muscle and primary cultures of bovine myoblasts. Both ghrelin and its N-terminal fragment hGHRL1-18 were used at concentrations of 0, 0.01, 0.1, 1, 10 and 100 nm. Treatments were applied to pre-confluent cultures and were maintained for 4 days. We determined that between 0.1 and 100 nm, hGHRL and hGRHL1-18 had similar effects on myogenic differentiation of i28 cells (p < 0.01). On the other hand, only the higher concentrations (10 and 100 nm) of hGHRL stimulated bovine myoblast differentiation. These results could be attributed to the presence, in both i28 cells and in bovine myoblasts, of the mRNA for GHS-R1a and CD36 receptors. The use of ghrelin in livestock production is still questionable because of the limited effects shown in this study, and additional research is needed in this field. PMID:21777295

  11. Space shuttle flight (STS-45) of L8 myoblast cells results in the isolation of a nonfusing cell line variant

    NASA Technical Reports Server (NTRS)

    Kulesh, D. A.; Anderson, L. H.; Wilson, B.; Otis, E. J.; Elgin, D. M.; Barker, M. J.; Mehm, W. J.; Kearney, G. P.

    1994-01-01

    Myoblast cell cultures have been widely employed in conventional (1g) studies of biological processes because characteristics of intact muscle can be readily observed in these cultured cells. We decided to investigate the effects of spaceflight on muscle by utilizing a well characterized myoblast cell line (L8 rat myoblasts) as cultured in the recently designed Space Tissue Loss Flight Module "A" (STL-A). The STL-A is a "state of the art," compact, fully contained, automated cell culture apparatus which replaces a single mid-deck locker on the Space Shuttle. The L8 cells were successfully flown in the STL-A on the Space Shuttle STS-45 mission. Upon return to earth, reculturing of these spaceflown L8 cells (L8SF) resulted in their unexpected failure to fuse and differentiate into myotubes. This inability of the L8SF cells to fuse was found to be a permanent phenotypic alteration. Scanning electron microscopic examination of L8SF cells growing at 1g on fibronectin-coated polypropylene fibers exhibited a strikingly different morphology as compared to control cells. In addition to their failure to fuse into myotubes, L8SF cells also piled up on top of each other. When assayed in fusion-promoting soft agar, L8SF cells gave rise to substantially more and larger colonies than did either preflight (L8AT) or ground control (L8GC) cells. All data to this point indicate that flying L8 rat myoblasts on the Space Shuttle for a duration of 7-10 d at subconfluent densities results in several permanent phenotypic alterations in these cells.

  12. TGF-{beta}'s delay skeletal muscle progenitor cell differentiation in an isoform-independent manner

    SciTech Connect

    Schabort, Elske J.; Merwe, Mathilde van der; Loos, Benjamin; Moore, Frances P.; Niesler, Carola U.

    2009-02-01

    Satellite cells are a quiescent heterogenous population of mononuclear stem and progenitor cells which, once activated, differentiate into myotubes and facilitate skeletal muscle repair or growth. The Transforming Growth Factor-{beta} (TGF-{beta}) superfamily members are elevated post-injury and their importance in the regulation of myogenesis and wound healing has been demonstrated both in vitro and in vivo. Most studies suggest a negative role for TGF-{beta} on satellite cell differentiation. However, none have compared the effect of these three isoforms on myogenesis in vitro. This is despite known isoform-specific effects of TGF-{beta}1, -{beta}2 and -{beta}3 on wound repair in other tissues. In the current study we compared the effect of TGF-{beta}1, -{beta}2 and -{beta}3 on proliferation and differentiation of the C2C12 myoblast cell-line. We found that, irrespective of the isoform, TGF-{beta} increased proliferation of C2C12 cells by changing the cellular localisation of PCNA to promote cell division and prevent cell cycle exit. Concomitantly, TGF-{beta}1, -{beta}2 and -{beta}3 delayed myogenic commitment by increasing MyoD degradation and decreasing myogenin expression. Terminal differentiation, as measured by a decrease in myosin heavy chain (MHC) expression, was also delayed. These results demonstrate that TGF-{beta} promotes proliferation and delays differentiation of C2C12 myoblasts in an isoform-independent manner.

  13. Effect of injecting primary myoblasts versus putative muscle-derived stem cells on mass and force generation in mdx mice.

    PubMed

    Mueller, Gunhild M; O'Day, Terry; Watchko, Jon F; Ontell, Marcia

    2002-06-10

    It is well established that the injection of normal myoblasts or of muscle-derived stem cells (MDSCs) into the muscle of dystrophin-deficient mdx mice results in the incorporation of a number of donor myoblasts into the host muscle. However, the effect of the injected exogenous cells on mdx muscle mass and functional capacity has not been evaluated. This study evaluates the mass and functional capacity of the extensor digitorum longus (EDL) muscles of adult, male mdx mice that received intramuscular injections of primary myoblasts or of MDSCs (isolated by a preplating technique; Qu, Z., Balkir, L., van Deutekom, J.C., Robbins, P.D., Pruchnic, R., and Huard, J., J. Cell Biol. 1998;142:1257-1267) derived from normal mice. Evaluations were made 9 weeks after cell transplantation. Uninjected mdx EDL muscles have a mass 50% greater than that of age-matched C57BL/10J (normal) EDL muscles. Injections of either primary myoblasts or MDSCs have no effect on the mass of mdx EDL muscles. EDL muscles of mdx mice generate 43% more absolute twitch tension and 43% less specific tetanic tension then do EDL muscles of C57BL/10J mice. However, the absolute tetanic and specific twitch tension of mdx and C57BL/10J EDL muscles are similar. Injection of either primary myoblasts or MDSCs has no effect on the absolute or specific twitch and tetanic tensions of mdx muscle. Approximately 25% of the myofibers in mdx EDL muscles that received primary myoblasts react positively with antibody to dystrophin. There is no significant difference in the number of dystrophin-positive myofibers when MDSCs are injected. Regardless of the source of donor cells, dystrophin is limited to short distances (60-900 microm) along the length of the myofibers. This may, in part, explain the failure of cellular therapy to alter the contractile properties of murine dystrophic muscle. PMID:12067441

  14. Potential Application of p-Coumaric Acid on Differentiation of C2C12 Skeletal Muscle and 3T3-L1 Preadipocytes-An in Vitro and in Silico Approach.

    PubMed

    Ilavenil, Soundharrajan; Kim, Da Hye; Srigopalram, Srisesharam; Arasu, Mariadhas Valan; Lee, Kyung Dong; Lee, Jeong Chae; Lee, Jong Suk; Renganathan, Senthil; Choi, Ki Choon

    2016-01-01

    Coumaric acid (CA) is a phenolic acid of the hydroxycinnamic acid family, and it has many biological functions such as anti-oxidant, anti-inflammatory, antidiabetic, anti-ulcer, anti-platelet, anti-cancer activities, etc. In the present study, we planned to analyse the potential molecular function of CA on skeletal muscle and preadipocytes differentiation using PCR and Western blot techniques. First, we analysed the impact of CA on C2C12 skeletal muscle differentiation. It revealed that CA treatment inhibited horse serum-induced skeletal muscle differentiation as evidenced by the decreased expression of early myogenic differentiation markers such as Myogenin and myoD via the AMP activated protein kinase- alpha AMPK-α mediated pathway. Furthermore, the level of lipid accumulation and changes in genes and protein expressions that are associated with lipogenesis and lipolysis were analyzed in 3T3-L1 cells. The Oil Red O staining evidenced that CA treatment inhibited lipid accumulation at the concentration of 0.1 and 0.2 mM. Furthermore, coumaric acid treatment decreased the expression of main transcriptional factors such as CCAAT/enhancer binding protein-alpha (C/EBP-α) and peroxisome proliferator-activated receptor gamma-2 (PPAR-γ2). Subsequently, CA treatment decreased the expression of sterol regulatory element binding protein-1 (SREBP-1), fatty acid synthase (FAS), acetyl CoA carboxylase (ACC) and adiponectin. Finally, we identified conformational changes induced by CA in PPAR-γ2 using computational biology tools. It revealed that CA might downregulate the PPAR-γ2 expression by directly binding with amino acids of PPAR-γ2 by hydrogen at 3.26 distance and hydrophobic interactions at 3.90 contact distances. These data indicated that CA suppressed skeletal muscle and preadipocytes differentiation through downregulation of the main transcriptional factors and their downstream targets. PMID:27490527

  15. Cell-Instructive Graphene-Containing Nanocomposites Induce Multinucleated Myotube Formation.

    PubMed

    Patel, Akhil; Xue, Yingfei; Mukundan, Shilpaa; Rohan, Lisa C; Sant, Vinayak; Stolz, Donna B; Sant, Shilpa

    2016-06-01

    Myoblast differentiation is a key step in myogenesis and has long been considered to be controlled mainly by biochemical cues such as growth factors. However, the tissue engineering approaches based on biochemical cues demonstrate low reproducibility as a precise spatial control over their bioactivity is challenging. Recently, substrate micro/nano-structure and electro-responsive properties are recognized for their important roles in myoblast differentiation. In this study, we hypothesized that engineering biophysical features such as nano/micro-fibrous structure and conductive properties into a single biomaterial scaffold will instruct the myoblasts to differentiate into multinucleated myotubes even in the absence of differentiation media. We fabricated nanocomposite scaffolds composed of conductive graphene nanosheets and polycaprolactone (PCL), a widely used biocompatible material. The resulting graphene-PCL scaffolds possess excellent conductivity due to graphene nanosheets and great processability, biodegradability and elastic mechanical properties conferred by PCL. Additionally, physicochemical and mechanical properties of nanocomposite scaffolds can be tuned by varying graphene concentration. Further, graphene-PCL nanocomposites and their 8-week degradation products exhibited remarkable cytocompatibility and promoted adhesion and proliferation of C2C12 mouse myoblast cells. Importantly, these nanocomposite scaffolds induced graphene concentration-dependent differentiation of C2C12 cells into multinucleated myotubes even in normal growth media suggesting their cell-instructive potential. Thus, graphene-PCL nanocomposite scaffolds can serve as a strategy to promote skeletal muscle regeneration without biochemical cues. PMID:26983841

  16. A synthetic compound that potentiates bone morphogenetic protein-2-induced transdifferentiation of myoblasts into the osteoblastic phenotype.

    PubMed

    Kato, Satoshi; Sangadala, Sreedhara; Tomita, Katsuro; Titus, Louisa; Boden, Scott D

    2011-03-01

    There is an urgent need to develop methods that lower costs of using recombinant human bone morphogenetic proteins (BMPs) to promote bone induction. In this study, we demonstrate the osteogenic effect of a low-molecular weight compound, SVAK-12, that potentiated the effects of BMP-2 in inducing transdifferentiation of C2C12 myoblasts into the osteoblastic phenotype. Here, we report a specific compound, SVAK-12, which was selected based on in silico screenings of small-molecule databases using the homology modeled interaction motif of Smurf1-WW2 domain. The enhancement of BMP-2 activity by SVAK-12 was characterized by evaluating a BMP-specific reporter activity and by monitoring the BMP-2-induced expression of mRNA for osteocalcin and alkaline phosphatase (ALP), which are widely accepted marker genes of osteoblast differentiation. Finally, we confirmed these results by also measuring the enhancement of BMP-2-induced activity of ALP. Smurf1 is an E3 ligase that targets osteogenic Smads for ubiquitin-mediated proteasomal degradation. Smurf1 is an interesting potential target to enhance bone formation based on the positive effects on bone of proteins that block Smurf1-binding to Smad targets or in Smurf1-/- knockout mice. Since Smads bind Smurf1 via its WW2 domain, we performed in silico screening to identify compounds that might interact with the Smurf1-WW2 domain. We recently reported the activity of a compound, SVAK-3. However, SVAK-3, while exhibiting BMP-potentiating activity, was not stable and thus warranted a new search for a more stable and efficacious compound among a selected group of candidates. In addition to being more stable, SVAK-12 exhibited a dose-dependent activity in inducing osteoblastic differentiation of myoblastic C2C12 cells even when multiple markers of the osteoblastic phenotype were parallelly monitored. PMID:21110071

  17. Long-chain acylcarnitines activate cell stress and myokine release in C2C12 myotubes: calcium-dependent and independent effects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acylcarnitines, important lipid biomarkers reflective of acyl-CoA status, are metabolites that possess bioactive and inflammatory properties. This study examined the potential for long-chain acylcarnitines to activate cellular inflammatory, stress and death pathways in a skeletal muscle model. Diffe...

  18. Adipose Tissue-Derived Stem Cell Secreted IGF-1 Protects Myoblasts from the Negative Effect of Myostatin

    PubMed Central

    Gehmert, Sebastian; Nerlich, Michael; Gosau, Martin; Klein, Silvan; Schreml, Stephan; Prantl, Lukas

    2014-01-01

    Myostatin, a TGF-β family member, is associated with inhibition of muscle growth and differentiation and might interact with the IGF-1 signaling pathway. Since IGF-1 is secreted at a bioactive level by adipose tissue-derived mesenchymal stem cells (ASCs), these cells (ASCs) provide a therapeutic option for Duchenne Muscular Dystrophy (DMD). But the protective effect of stem cell secreted IGF-1 on myoblast under high level of myostatin remains unclear. In the present study murine myoblasts were exposed to myostatin under presence of ASCs conditioned medium and investigated for proliferation and apoptosis. The protective effect of IGF-1 was further examined by using IGF-1 neutralizing and receptor antibodies as well as gene silencing RNAi technology. MyoD expression was detected to identify impact of IGF-1 on myoblasts differentiation when exposed to myostatin. IGF-1 was accountable for 43.6% of the antiapoptotic impact and 48.8% for the proliferative effect of ASCs conditioned medium. Furthermore, IGF-1 restored mRNA and protein MyoD expression of myoblasts under risk. Beside fusion and transdifferentiation the beneficial effect of ASCs is mediated by paracrine secreted cytokines, particularly IGF-1. The present study underlines the potential of ASCs as a therapeutic option for Duchenne muscular dystrophy and other dystrophic muscle diseases. PMID:24575400

  19. Preparation of primary myogenic precursor cell/myoblast cultures from basal vertebrate lineages.

    PubMed

    Froehlich, Jacob Michael; Seiliez, Iban; Gabillard, Jean-Charles; Biga, Peggy R

    2014-01-01

    Due to the inherent difficulty and time involved with studying the myogenic program in vivo, primary culture systems derived from the resident adult stem cells of skeletal muscle, the myogenic precursor cells (MPCs), have proven indispensible to our understanding of mammalian skeletal muscle development and growth. Particularly among the basal taxa of Vertebrata, however, data are limited describing the molecular mechanisms controlling the self-renewal, proliferation, and differentiation of MPCs. Of particular interest are potential mechanisms that underlie the ability of basal vertebrates to undergo considerable postlarval skeletal myofiber hyperplasia (i.e. teleost fish) and full regeneration following appendage loss (i.e. urodele amphibians). Additionally, the use of cultured myoblasts could aid in the understanding of regeneration and the recapitulation of the myogenic program and the differences between them. To this end, we describe in detail a robust and efficient protocol (and variations therein) for isolating and maintaining MPCs and their progeny, myoblasts and immature myotubes, in cell culture as a platform for understanding the evolution of the myogenic program, beginning with the more basal vertebrates. Capitalizing on the model organism status of the zebrafish (Danio rerio), we report on the application of this protocol to small fishes of the cyprinid clade Danioninae. In tandem, this protocol can be utilized to realize a broader comparative approach by isolating MPCs from the Mexican axolotl (Ambystoma mexicanum) and even laboratory rodents. This protocol is now widely used in studying myogenesis in several fish species, including rainbow trout, salmon, and sea bream(1-4). PMID:24835774

  20. Gravitational force modulates G2/M phase exit in mechanically unloaded myoblasts

    PubMed Central

    Benavides Damm, Tatiana; Franco-Obregón, Alfredo; Egli, Marcel

    2013-01-01

    Prolonged spaceflight gives rise to muscle loss and reduced strength, a condition commonly referred to as space atrophy. During exposure to microgravity, skeletal muscle myoblasts are mechanically unloaded and respond with attenuated cell proliferation, slowed cell cycle progression, and modified protein expression. To elucidate the underlying mechanisms by which muscle mass declines in response to prolonged microgravity exposure, we grew C2C12 mouse muscle cells under conditions of simulated microgravity (SM) and analyzed their proliferative capacity, cell cycle progression, and cyclin B and D expression. We demonstrated that the retarded cell growth observed in SM was correlated with an approximate 16 h delay in G2/M phase progression, where cells accumulated specifically between the G2 checkpoint and the onset of anaphase, concomitantly with a positive expression for cyclin B. The effect was specific for gravitational mechanical unloading as cells grown under conditions of hypergravity (HG, 4 g) for similar durations of time exhibited normal proliferation and normal cell cycle progression. Our results show that SM and HG exert phenomenological distinct responses over cell cycle progression. The deficits of SM can be restored by terrestrial gravitational force, whereas the effects of HG are indistinguishable from the 1 g control. This suggests that the mechanotransduction apparatus of cells responds differently to mechanical unloading and loading. PMID:23974110

  1. Astragaloside IV facilitates glucose transport in C2C12 myotubes through the IRS1/AKT pathway and suppresses the palmitate-induced activation of the IKK/IκBα pathway.

    PubMed

    Zhu, Rongfeng; Zheng, Jianjun; Chen, Lizhen; Gu, Bin; Huang, Shengli

    2016-06-01

    Astragaloside IV is a monomer isolated from Astragalus membranaceus (Fisch.) Bunge, which is one of the most widely used plant-derived drugs in traditional Chinese medicine for diabetes therapy. In the present study, we aimed to examine the effects of astragaloside IV on glucose in C2C12 myotubes and the underlying molecular mechanisms responsible for these effects. Four-day differentiated C2C12 myotubes were exposed to palmitate for 16 h in order to establish a model of insulin resistance and 3H glucose uptake, using 2-Deoxy‑D‑[1,2-3H(N)]-glucose (radiolabeled 2-DG), was detected. Astragaloside IV was added 2 h prior to palmitate exposure. The translocation of glucose transporter 4 (GLUT4) was evaluated by subcellular fractionation, and the expression of insulin signaling molecules such as insulin receptor β (IRβ), insulin receptor substrate (IRS)1/protein kinase B (AKT) and inhibitory κB kinase (IKK)/inhibitor-κBα (IκBα), which are associated with insulin signal transduction, were assessed in the basal or the insulin‑stimulated state using western blot analysis or RT-PCR. We also examined the mRNA expression of monocyte chemotactic protein 1 (MCP-1), interleukin 6 (IL-6), tumor necrosis factor α (TNFα) and Toll‑like receptor 4 (TLR4). Taken together, these findings demonstrated that astragaloside IV facilitates glucose transport in C2C12 myotubes through a mechanism involving the IRS1/AKT pathway, and suppresses the palmitate-induced activation of the IKK/IκBα pathway. PMID:27082050

  2. Effect of atrophy and contractions on myogenin mRNA concentration in chick and rat myoblast omega muscle cells

    NASA Technical Reports Server (NTRS)

    Krebs, J. M.; Denney, R. M.

    1997-01-01

    The skeletal rat myoblast omega (RMo) cell line forms myotubes that exhibit spontaneous contractions under appropriate conditions in culture. We examined if the RMo cells would provide a model for studying atrophy and muscle contraction. To better understand how to obtain contractile cultures, we examined levels of contraction under different growing conditions. The proliferation medium and density of plating affected the subsequent proportion of spontaneously contracting myotubes. Using a ribonuclease protection assay, we found that exponentially growing RMo myoblasts contained no detectable myogenin or herculin mRNA, while differentiating myoblasts contained high levels of myogenin mRNA but no herculin mRNA. There was no increase in myogenin mRNA concentration in either primary chick or RMo myotubes whose contractions were inhibited by depolarizing concentrations of potassium (K+). Thus, altered myogenin mRNA concentrations are not involved in atrophy of chick myotubes. Depolarizing concentrations of potassium inhibited spontaneous contractions in both RMo cultures and primary chick myotube cultures. However, we found that the myosin concentration of 6-d-old contracting RMo cells fed medium plus AraC was 11 +/- 3 micrograms myosin/microgram DNA, not significantly different from 12 +/- 4 micrograms myosin/microgram DNA (n = 3), the myosin concentration of noncontracting RMo cells (treated with 12 mM K+ for 6 d). Resolving how RMo cells maintained their myosin content when contraction is inhibited may be important for understanding atrophy.

  3. A Pilot Study of Ceramic Powder Far-Infrared Ray Irradiation (cFIR) on Physiology: Observation of Cell Cultures and Amphibian Skeletal Muscle.

    PubMed

    Leung, Ting-Kai; Lee, Chi-Ming; Tsai, Shih-Yin; Chen, Yi-Chien; Chao, Jo-Shui

    2011-08-31

    The purpose of this research was to assess the potential for far-infrared ray irradiation from ceramic powder to improve exercise performance at room temperature. We designed experiments with murine myoblast cells (C2C12) to study the effect of cFIR irradiation on cell viability and lactate dehydrogenase release under H2O2-mediated oxidative stress and evaluated intracellular levels of nitric oxide and calmodulin. We also used electro-stimulation of amphibian skeletal muscle. Our results show that cFIR strengthened C2C12 under oxidative stress and delayed onset of fatigue induced by muscle contractions. We discuss possible mechanisms including anti-oxidation and prevention of acid build-up in muscle tissue based, and expect to see more applications of cFIR in the future. PMID:22129823

  4. Stem cell antigen-1 regulates the tempo of muscle repair through effects on proliferation of {alpha}7 integrin-expressing myoblasts

    SciTech Connect

    Epting, Conrad L.; Lopez, Javier E.; Pedersen, Anissa; Brown, Courtney; Spitz, Paul; Ursell, Philip C.; Bernstein, Harold S.

    2008-03-10

    Skeletal muscle repair occurs through a programmed series of events including myogenic precursor activation, myoblast proliferation, and differentiation into new myofibers. We previously identified a role for Stem cell antigen-1 (Sca-1) in myoblast proliferation and differentiation in vitro. We demonstrated that blocking Sca-1 expression resulted in sustained myoblast cell division. Others have since demonstrated that Sca-1-null myoblasts display a similar phenotype when cultured ex vivo. To test the importance of Sca-1 during myogenesis in vivo, we employed a myonecrotic injury model in Sca-1{sup -/-} and Sca-1{sup +/+} mice. Our results demonstrate that Sca-1{sup -/-} myoblasts exhibit a hyperproliferative response consisting of prolonged and accelerated cell division in response to injury. This leads to delayed myogenic differentiation and muscle repair. These data provide the first in vivo evidence for Sca-1 as a regulator of myoblast proliferation during muscle regeneration. These studies also suggest that the balance between myogenic precursor proliferation and differentiation is critical to normal muscle repair.

  5. Differentiation and Monitoring of Cells Using a Biochip for Regenerative Medicine

    NASA Astrophysics Data System (ADS)

    Uchida, Tomoyuki; Arai, Fumihito; Suzuki, Osamu; Ichikawa, Akihiko; Fukuda, Toshio; Katagiri, Takenobu; Kamijo, Ryutaro; Nakamura, Masanori; Numata, Mamoru; Watanabe, Naruaki

    A novel biochip is developed for culturing stem cells. Biochip is made of Polymer (PDMS), and cells can be loaded by gradient strains in one chip. They grow well on a hydrophilic membrane and differentiation is promoted by cyclic strains. In this paper, we propose the method for culturing and monitoring of stem cells such as bone marrow stromal cells (ST2 cells) and myoblasts (C2C12 cells), and the results of culture. First we analyzed strains on a membrane when an air hole is decompressed, and clarified their range. From experiment, bone marrow stromal cells grew well in a narrow range, and we quantified their ALP activity as a measure of differentiation. As myoblasts, the direction of their differentiation was perpendicular to a groove, that is, the same direction of uniaxial strains.

  6. Cdo Regulates Surface Expression of Kir2.1 K+ Channel in Myoblast Differentiation

    PubMed Central

    Koh, Jewoo; Kang, KyeongJin; Bae, Gyu-Un; Cho, Hana; Kang, Jong-Sun

    2016-01-01

    A potassium channel Kir2.1-associated membrane hyperpolarization is required for myogenic differentiation. However the molecular regulatory mechanisms modulating Kir2.1 channel activities in early stage of myogenesis are largely unknown. A cell surface protein, Cdo functions as a component of multiprotein cell surface complexes to promote myogenesis. In this study, we report that Cdo forms a complex with Kir2.1 during myogenic differentiation, and is required for the channel activity by enhancing the surface expression of Kir2.1 in the early stage of differentiation. The expression of a constitutively active form of the upstream kinase for p38MAPK, MKK6(EE) can restore Kir2.1 activities in Cdo-depleted C2C12 cells, while the treatment with a p38MAPK inhibitor, SB203580 exhibits a similar effect of Cdo depletion on Kir2.1 surface expression. Furthermore, Cdo-/- primary myoblasts, which display a defective differentiation program, exhibit a defective Kir2.1 activity. Taken together, our results suggest that a promyogenic Cdo signaling is critical for Kir2.1 activities in the induction of myogenic differentiation. PMID:27380411

  7. An NF-κB--EphrinA5-Dependent Communication between NG2(+) Interstitial Cells and Myoblasts Promotes Muscle Growth in Neonates.

    PubMed

    Gu, Jin-Mo; Wang, David J; Peterson, Jennifer M; Shintaku, Jonathan; Liyanarachchi, Sandya; Coppola, Vincenzo; Frakes, Ashley E; Kaspar, Brian K; Cornelison, Dawn D; Guttridge, Denis C

    2016-01-25

    Skeletal muscle growth immediately following birth is critical for proper body posture and locomotion. However, compared with embryogenesis and adulthood, the processes regulating the maturation of neonatal muscles is considerably less clear. Studies in the 1960s predicted that neonatal muscle growth results from nuclear accretion of myoblasts preferentially at the tips of myofibers. Remarkably, little information has been added since then to resolve how myoblasts migrate to the ends of fibers. Here, we provide insight into this process by revealing a unique NF-κB-dependent communication between NG2(+) interstitial cells and myoblasts. NF-κB in NG2(+) cells promotes myoblast migration to the tips of myofibers through cell-cell contact. This occurs through expression of ephrinA5 from NG2(+) cells, which we further deduce is an NF-κB target gene. Together, these results suggest that NF-κB plays an important role in the development of newborn muscles to ensure proper myoblast migration for fiber growth. PMID:26777211

  8. Reliable and versatile immortal muscle cell models from healthy and myotonic dystrophy type 1 primary human myoblasts.

    PubMed

    Pantic, Boris; Borgia, Doriana; Giunco, Silvia; Malena, Adriana; Kiyono, Tohru; Salvatori, Sergio; De Rossi, Anita; Giardina, Emiliano; Sangiuolo, Federica; Pegoraro, Elena; Vergani, Lodovica; Botta, Annalisa

    2016-03-01

    Primary human skeletal muscle cells (hSkMCs) are invaluable tools for deciphering the basic molecular mechanisms of muscle-related biological processes and pathological alterations. Nevertheless, their use is quite restricted due to poor availability, short life span and variable purity of the cells during in vitro culture. Here, we evaluate a recently published method of hSkMCs immortalization, relying on ectopic expression of cyclin D1 (CCND1), cyclin-dependent kinase 4 (CDK4) and telomerase (TERT) in myoblasts from healthy donors (n=3) and myotonic dystrophy type 1 (DM1) patients (n=2). The efficacy to maintain the myogenic and non-transformed phenotype, as well as the main pathogenetic hallmarks of DM1, has been assessed. Combined expression of the three genes i) maintained the CD56(NCAM)-positive myoblast population and differentiation potential; ii) preserved the non-transformed phenotype and iii) maintained the CTG repeat length, amount of nuclear foci and aberrant alternative splicing in immortal muscle cells. Moreover, immortal hSkMCs displayed attractive additional features such as structural maturation of sarcomeres, persistence of Pax7-positive cells during differentiation and complete disappearance of nuclear foci following (CAG)7 antisense oligonucleotide (ASO) treatment. Overall, the CCND1, CDK4 and TERT immortalization yields versatile, reliable and extremely useful human muscle cell models to investigate the basic molecular features of human muscle cell biology, to elucidate the molecular pathogenetic mechanisms and to test new therapeutic approaches for DM1 in vitro. PMID:26905645

  9. Myoblast fusion in Drosophila

    SciTech Connect

    Haralalka, Shruti; Abmayr, Susan M.

    2010-11-01

    The body wall musculature of a Drosophila larva is composed of an intricate pattern of 30 segmentally repeated muscle fibers in each abdominal hemisegment. Each muscle fiber has unique spatial and behavioral characteristics that include its location, orientation, epidermal attachment, size and pattern of innervation. Many, if not all, of these properties are dictated by founder cells, which determine the muscle pattern and seed the fusion process. Myofibers are then derived from fusion between a specific founder cell and several fusion competent myoblasts (FCMs) fusing with as few as 3-5 FCMs in the small muscles on the most ventral side of the embryo and as many as 30 FCMs in the larger muscles on the dorsal side of the embryo. The focus of the present review is the formation of the larval muscles in the developing embryo, summarizing the major issues and players in this process. We have attempted to emphasize experimentally-validated details of the mechanism of myoblast fusion and distinguish these from the theoretically possible details that have not yet been confirmed experimentally. We also direct the interested reader to other recent reviews that discuss myoblast fusion in Drosophila, each with their own perspective on the process . With apologies, we use gene nomenclature as specified by Flybase (http://flybase.org) but provide Table 1 with alternative names and references.

  10. Self-Healing Conductive Injectable Hydrogels with Antibacterial Activity as Cell Delivery Carrier for Cardiac Cell Therapy.

    PubMed

    Dong, Ruonan; Zhao, Xin; Guo, Baolin; Ma, Peter X

    2016-07-13

    Cell therapy is a promising strategy to regenerate cardiac tissue for myocardial infarction. Injectable hydrogels with conductivity and self-healing ability are highly desirable as cell delivery vehicles for cardiac regeneration. Here, we developed self-healable conductive injectable hydrogels based on chitosan-graft-aniline tetramer (CS-AT) and dibenzaldehyde-terminated poly(ethylene glycol) (PEG-DA) as cell delivery vehicles for myocardial infarction. Self-healed electroactive hydrogels were obtained after mixing CS-AT and PEG-DA solutions at physiological conditions. Rapid self-healing behavior was investigated by rheometer. Swelling behavior, morphology, mechanical strength, electrochemistry, conductivity, adhesiveness to host tissue and antibacterial property of the injectable hydrogels were fully studied. Conductivity of the hydrogels is ∼10(-3) S·cm(-1), which is quite close to native cardiac tissue. Proliferation of C2C12 myoblasts in the hydrogel showed its good biocompatibility. After injection, viability of C2C12 cells in the hydrogels showed no significant difference with that before injection. Two different cell types were successfully encapsulated in the hydrogels by self-healing effect. Cell delivery profile of C2C12 myoblasts and H9c2 cardiac cells showed a tunable release rate, and in vivo cell retention in the conductive hydrogels was also studied. Subcutaneous injection and in vivo degradation of the hydrogels demonstrated their injectability and biodegradability. Together, these self-healing conductive biodegradable injectable hydrogels are excellent candidates as cell delivery vehicle for cardiac repair. PMID:27311127

  11. Tissue-specific mechanical and geometrical control of cell viability and actin cytoskeleton alignment

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Zheng, Wenfu; Xie, Yunyan; Gong, Peiyuan; Zhao, Fang; Yuan, Bo; Ma, Wanshun; Cui, Yan; Liu, Wenwen; Sun, Yi; Piel, Matthieu; Zhang, Wei; Jiang, Xingyu

    2014-08-01

    Different tissues have specific mechanical properties and cells of different geometries, such as elongated muscle cells and polygonal endothelial cells, which are precisely regulated during embryo development. However, the mechanisms that underlie these processes are not clear. Here, we built an in vitro model to mimic the cellular microenvironment of muscle by combining both mechanical stretch and geometrical control. We found that mechanical stretch was a key factor that determined the optimal geometry of myoblast C2C12 cells under stretch, whereas vascular endothelial cells and fibroblasts had no such dependency. We presented the first experimental evidence that can explain why myoblasts are destined to take the elongated geometry so as to survive and maintain parallel actin filaments along the stretching direction. The study is not only meaningful for the research on myogenesis but also has potential application in regenerative medicine.

  12. Characterization of the Methylation Status of Pax7 and Myogenic Regulator Factors in Cell Myogenic Differentiation

    PubMed Central

    Chao, Zhe; Zheng, Xin-Li; Sun, Rui-Ping; Liu, Hai-Long; Huang, Li-Li; Cao, Zong-Xi; Deng, Chang-Yan; Wang, Feng

    2016-01-01

    Epigenetic processes in the development of skeletal muscle have been appreciated for over a decade. DNA methylation is a major epigenetic modification important for regulating gene expression and suppressing spurious transcription. Up to now, the importance of epigenetic marks in the regulation of Pax7 and myogenic regulatory factors (MRFs) expression is far less explored. In the present study, semi-quantitative the real-time polymerase chain reaction (RT-PCR) analyses showed MyoD and Myf5 were expressed in activated and quiescent C2C12 cells. MyoG was expressed in a later stage of myogenesis. Pax7 was weakly expressed in differentiated C2C12 cells. To further understand the regulation of expression of these genes, the DNA methylation status of Pax7, MyoD, and Myf5 was determined by bisulfite sequencing PCR. During the C2C12 myoblasts fusion process, the changes of promoter and exon 1 methylation of Pax7, MyoD, and Myf5 genes were observed. In addition, an inverse relationship of low methylation and high expression was found. These results suggest that DNA methylation may be an important mechanism regulating Pax7 and MRFs transcription in cell myogenic differentiation. PMID:26954143

  13. Characterization of the Methylation Status of Pax7 and Myogenic Regulator Factors in Cell Myogenic Differentiation.

    PubMed

    Chao, Zhe; Zheng, Xin-Li; Sun, Rui-Ping; Liu, Hai-Long; Huang, Li-Li; Cao, Zong-Xi; Deng, Chang-Yan; Wang, Feng

    2016-07-01

    Epigenetic processes in the development of skeletal muscle have been appreciated for over a decade. DNA methylation is a major epigenetic modification important for regulating gene expression and suppressing spurious transcription. Up to now, the importance of epigenetic marks in the regulation of Pax7 and myogenic regulatory factors (MRFs) expression is far less explored. In the present study, semi-quantitative the real-time polymerase chain reaction (RT-PCR) analyses showed MyoD and Myf5 were expressed in activated and quiescent C2C12 cells. MyoG was expressed in a later stage of myogenesis. Pax7 was weakly expressed in differentiated C2C12 cells. To further understand the regulation of expression of these genes, the DNA methylation status of Pax7, MyoD, and Myf5 was determined by bisulfite sequencing PCR. During the C2C12 myoblasts fusion process, the changes of promoter and exon 1 methylation of Pax7, MyoD, and Myf5 genes were observed. In addition, an inverse relationship of low methylation and high expression was found. These results suggest that DNA methylation may be an important mechanism regulating Pax7 and MRFs transcription in cell myogenic differentiation. PMID:26954143

  14. The homeobox transcription factor Irxl1 negatively regulates MyoD expression and myoblast differentiation.

    PubMed

    Chuang, Han-Ni; Hsiao, Kuang-Ming; Chang, Hui-Yi; Wu, Chia-Chi; Pan, Huichin

    2014-07-01

    Irxl1/Mkx (Iroquois homeobox-like 1/Mohawk) encodes a member of the TALE subfamily of homeodomain proteins. It is expressed in multiple mesoderm-derived tissues and has recently been shown to regulate tendon differentiation during mouse embryonic development. Previously we showed that knockdown of Irxl1 in zebrafish caused a deficit in neural crest cells which consequently resulted in deformation of craniofacial muscles and arch cartilages. Here, we further demonstrate that loss of Irxl1 function results in deformed somites with disordered muscle fibers and myotendinous junctions. Because expression of myoD is increased in the somites of Irxl1 knockdown morphants, we test whether Irxl1 negatively regulates myoD expression. When stable C2C12 myoblasts overexpressing Irxl1/Mkx were induced to differentiate, myotube formation was inhibited and protein levels of myoD and myosin heavy chain were decreased accordingly. A series of deletion constructs of myoD promoter fragments were tested by luciferase reporter assays, which identified a promoter fragment that is necessary and sufficient for Irxl1-mediated repression. Direct interaction of Irxl1 and myoD promoter was subsequently elucidated by yeast one-hybrid assays, electrophoretic mobility shift assays and chromatin immunoprecipitation analysis. Furthermore, mouse Mkx also binds to and represses myoD promoter. These results indicate that Irxl1/Mkx can repress myoD expression through direct binding to its promoter and may thus play a negative regulatory role in muscle differentiation. PMID:24814716

  15. Long-Term Endurance Exercise in Humans Stimulates Cell Fusion of Myoblasts along with Fusogenic Endogenous Retroviral Genes In Vivo

    PubMed Central

    Suhr, Frank; Konou, Thierry M.; Tappe, Kim A.; Toigo, Marco; Jung, Hans H.; Henke, Christine; Steigleder, Ruth; Strissel, Pamela L.; Huebner, Hanna; Beckmann, Matthias W.; van der Keylen, Piet; Schoser, Benedikt; Schiffer, Thorsten; Frese, Laura; Bloch, Wilhelm; Strick, Reiner

    2015-01-01

    Myogenesis is defined as growth, differentiation and repair of muscles where cell fusion of myoblasts to multinucleated myofibers is one major characteristic. Other cell fusion events in humans are found with bone resorbing osteoclasts and placental syncytiotrophoblasts. No unifying gene regulation for natural cell fusions has been found. We analyzed skeletal muscle biopsies of competitive cyclists for muscle-specific attributes and expression of human endogenous retrovirus (ERV) envelope genes due to their involvement in cell fusion of osteoclasts and syncytiotrophoblasts. Comparing muscle biopsies from post- with the pre-competitive seasons a significant 2.25-fold increase of myonuclei/mm fiber, a 2.38-fold decrease of fiber area/nucleus and a 3.1-fold decrease of satellite cells (SCs) occurred. We propose that during the pre-competitive season SC proliferation occurred following with increased cell fusion during the competitive season. Expression of twenty-two envelope genes of muscle biopsies demonstrated a significant increase of putative muscle-cell fusogenic genes Syncytin-1 and Syncytin-3, but also for the non-fusogenic erv3. Immunohistochemistry analyses showed that Syncytin-1 mainly localized to the sarcolemma of myofibers positive for myosin heavy-chain isotypes. Cellular receptors SLC1A4 and SLC1A5 of Syncytin-1 showed significant decrease of expression in post-competitive muscles compared with the pre-competitive season, but only SLC1A4 protein expression localized throughout the myofiber. Erv3 protein was strongly expressed throughout the myofiber, whereas envK1-7 localized to SC nuclei and myonuclei. Syncytin-1 transcription factors, PPARγ and RXRα, showed no protein expression in the myofiber, whereas the pCREB-Ser133 activator of Syncytin-1 was enriched to SC nuclei and myonuclei. Syncytin-1, Syncytin-3, SLC1A4 and PAX7 gene regulations along with MyoD1 and myogenin were verified during proliferating or actively-fusing human primary myoblast cell

  16. Overexpression of calpastatin inhibits L8 myoblast fusion

    SciTech Connect

    Barnoy, Sivia; E-mail: sivia@post.tau.ac.il; Maki, Masatoshi; Kosower, Nechama S.

    2005-07-08

    The formation of skeletal muscle fibers involves cessation of myoblast division, myoblast alignment, and fusion to multinucleated myofibers. Calpain is one of the factors shown to be involved in myoblast fusion. Using L8 rat myoblasts, we found that calpain levels did not change significantly during myoblast differentiation, whereas calpastatin diminished prior to myoblast fusion and reappeared after fusion. The transient diminution in calpastatin allows the Ca{sup 2+}-promoted activation of calpain and calpain-induced membrane proteolysis, which is required for myoblast fusion. Here we show that calpastatin overexpression in L8 myoblasts does not inhibit cell proliferation and alignment, but prevents myoblast fusion and fusion-associated protein degradation. In addition, calpastatin appears to modulate myogenic gene expression, as indicated by the lack of myogenin (a transcription factor expressed in differentiating myoblasts) in myoblasts overexpressing calpastatin. These results suggest that, in addition to the role in membrane disorganization in the fusing myoblasts, the calpain-calpastatin system may also modulate the levels of factors required for myoblast differentiation.

  17. Differences in the Expression and Distribution of Flotillin-2 in Chick, Mice and Human Muscle Cells

    PubMed Central

    Possidonio, Ana Claudia Batista; Soares, Carolina Pontes; Portilho, Débora Morueco; Midlej, Victor; Benchimol, Marlene; Butler-Browne, Gillian; Costa, Manoel Luis; Mermelstein, Claudia

    2014-01-01

    Myoblasts undergo a series of changes in the composition and dynamics of their plasma membranes during the initial steps of skeletal muscle differentiation. These changes are crucial requirements for myoblast fusion and allow the formation of striated muscle fibers. Membrane microdomains, or lipid rafts, have been implicated in myoblast fusion. Flotillins are scaffold proteins that are essential for the formation and dynamics of lipid rafts. Flotillins have been widely studied over the last few years, but still little is known about their role during skeletal muscle differentiation. In the present study, we analyzed the expression and distribution of flotillin-2 in chick, mice and human muscle cells grown in vitro. Primary cultures of chick myogenic cells showed a decrease in the expression of flotillin-2 during the first 72 hours of muscle differentiation. Interestingly, flotillin-2 was found to be highly expressed in chick myogenic fibroblasts and weakly expressed in chick myoblasts and multinucleated myotubes. Flotillin-2 was distributed in vesicle-like structures within the cytoplasm of chick myogenic fibroblasts, in the mouse C2C12 myogenic cell line, and in neonatal human muscle cells. Cryo-immunogold labeling revealed the presence of flotillin-2 in vesicles and in Golgi stacks in chick myogenic fibroblasts. Further, brefeldin A induced a major reduction in the number of flotillin-2 containing vesicles which correlates to a decrease in myoblast fusion. These results suggest the involvement of flotillin-2 during the initial steps of skeletal myogenesis. PMID:25105415

  18. Skeletal myoblasts for cardiac repair

    PubMed Central

    Durrani, Shazia; Konoplyannikov, Mikhail; Ashraf, Muhammad; Haider, Khawaja Husnain

    2011-01-01

    Stem cells provide an alternative curative intervention for the infarcted heart by compensating for the cardiomyocyte loss subsequent to myocardial injury. The presence of resident stem and progenitor cell populations in the heart, and nuclear reprogramming of somatic cells with genetic induction of pluripotency markers are the emerging new developments in stem cell-based regenerative medicine. However, until safety and feasibility of these cells are established by extensive experimentation in in vitro and in vivo experimental models, skeletal muscle-derived myoblasts, and bone marrow cells remain the most well-studied donor cell types for myocardial regeneration and repair. This article provides a critical review of skeletal myoblasts as donor cells for transplantation in the light of published experimental and clinical data, and indepth discussion of the advantages and disadvantages of skeletal myoblast-based therapeutic intervention for augmentation of myocardial function in the infarcted heart. Furthermore, strategies to overcome the problems of arrhythmogenicity and failure of the transplanted skeletal myoblasts to integrate with the host cardiomyocytes are discussed. PMID:21082891

  19. Automated High-Content Assay for Compounds Selectively Toxic to Trypanosoma cruzi in a Myoblastic Cell Line

    PubMed Central

    Alonso-Padilla, Julio; Cotillo, Ignacio; Presa, Jesús L.; Cantizani, Juan; Peña, Imanol; Bardera, Ana I.; Martín, Jose J.; Rodriguez, Ana

    2015-01-01

    Background Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, represents a very important public health problem in Latin America where it is endemic. Although mostly asymptomatic at its initial stage, after the disease becomes chronic, about a third of the infected patients progress to a potentially fatal outcome due to severe damage of heart and gut tissues. There is an urgent need for new drugs against Chagas disease since there are only two drugs available, benznidazole and nifurtimox, and both show toxic side effects and variable efficacy against the chronic stage of the disease. Methodology/Principal Findings Genetically engineered parasitic strains are used for high throughput screening (HTS) of large chemical collections in the search for new anti-parasitic compounds. These assays, although successful, are limited to reporter transgenic parasites and do not cover the wide T. cruzi genetic background. With the aim to contribute to the early drug discovery process against Chagas disease we have developed an automated image-based 384-well plate HTS assay for T. cruzi amastigote replication in a rat myoblast host cell line. An image analysis script was designed to inform on three outputs: total number of host cells, ratio of T. cruzi amastigotes per cell and percentage of infected cells, which respectively provides one host cell toxicity and two T. cruzi toxicity readouts. The assay was statistically robust (Z´ values >0.6) and was validated against a series of known anti-trypanosomatid drugs. Conclusions/Significance We have established a highly reproducible, high content HTS assay for screening of chemical compounds against T. cruzi infection of myoblasts that is amenable for use with any T. cruzi strain capable of in vitro infection. Our visual assay informs on both anti-parasitic and host cell toxicity readouts in a single experiment, allowing the direct identification of compounds selectively targeted to the parasite. PMID:25615687

  20. Tracking in real time the crawling dynamics of adherent living cells with a high resolution surface plasmon microscope

    NASA Astrophysics Data System (ADS)

    Streppa, L.; Berguiga, L.; Boyer Provera, E.; Ratti, F.; Goillot, E.; Martinez Torres, C.; Schaeffer, L.; Elezgaray, Juan; Arneodo, A.; Argoul, F.

    2016-03-01

    We introduce a high resolution scanning surface plasmon microscope for long term imaging of living adherent mouse myoblast cells. The coupling of a high numerical aperture objective lens with a fibered heterodyne interferometer provides both enhanced sensitivity and long term stability. This microscope takes advantage of the plasmon resonance excitation and the amplification of the electromagnetic field in near-field distance to the gold coated coverslip. This plasmon enhanced evanescent wave microscopy is particularly attractive for the study of cell adhesion and motility since it can be operated without staining of the biological sample. We show that this microscope allows very long-term imaging of living samples, and that it can capture and follow the temporal deformation of C2C12 myoblast cell protusions (lamellipodia), during their migration on a at surface.

  1. NDRG2 promotes myoblast proliferation and caspase 3/7 activities during differentiation, and attenuates hydrogen peroxide – But not palmitate-induced toxicity

    PubMed Central

    Anderson, Kimberley J.; Russell, Aaron P.; Foletta, Victoria C.

    2015-01-01

    The function of the stress-responsive N-myc downstream-regulated gene 2 (NDRG2) in the control of myoblast growth, and the amino acids contributing to its function, are not well characterized. Here, we investigated the effect of increased NDRG2 levels on the proliferation, differentiation and apoptosis in skeletal muscle cells under basal and stress conditions. NDRG2 overexpression increased C2C12 myoblast proliferation and the expression of positive cell cycle regulators, cdk2, cyclin B and cyclin D, and phosphorylation of Rb, while the serine/threonine-deficient NDRG2, 3A-NDRG2, had less effect. The onset of differentiation was enhanced by NDRG2 as determined through the myogenic regulatory factor expression profiles and myocyte fusion index. However, the overall level of differentiation in myotubes was not different. While NDRG2 up-regulated caspase 3/7 activities during differentiation, no increase in apoptosis was measured by TUNEL assay or through cleavage of caspase 3 and PARP proteins. During H2O2 treatment to induce oxidative stress, NDRG2 helped protect against the loss of proliferation and ER stress as measured by GRP78 expression with 3A-NDRG2 displaying less protection. NDRG2 also attenuated apoptosis by reducing cleavage of PARP and caspase 3 and expression of pro-apoptotic Bax while enhancing the pro-survival Bcl-2 and Bcl-xL levels. In contrast, Mcl-1 was not altered, and NDRG2 did not protect against palmitate-induced lipotoxicity. Our findings show that NDRG2 overexpression increases myoblast proliferation and caspase 3/7 activities without increasing overall differentiation. Furthermore, NDRG2 attenuates H2O2-induced oxidative stress and specific serine and threonine amino acid residues appear to contribute to its function in muscle cells. PMID:26380811

  2. Comparative Proteomic Study of Fatty Acid-treated Myoblasts Reveals Role of Cox-2 in Palmitate-induced Insulin Resistance

    PubMed Central

    Chen, Xiulan; Xu, Shimeng; Wei, Shasha; Deng, Yaqin; Li, Yiran; Yang, Fuquan; Liu, Pingsheng

    2016-01-01

    Accumulated studies demonstrate that saturated fatty acids (FAs) such as palmitic acid (PA) inhibit insulin signaling in skeletal muscle cells and monounsaturated fatty acids such as oleic acid (OA) reverse the effect of PA on insulin signaling. The detailed molecular mechanism of these opposite effects remains elusive. Here we provide a comparative proteomic study of skeletal myoblast cell line C2C12 that were untreated or treated with PA, and PA plus OA. A total of 3437 proteins were quantified using SILAC in this study and 29 proteins fall into the pattern that OA reverses PA effect. Expression of some these proteins were verified using qRT-PCR and Western blot. The most significant change was cyclooxygenase-2 (Cox-2). In addition to whole cell comparative proteomic study, we also compared lipid droplet (LD)-associated proteins and identified that Cox-2 was one of three major altered proteins under the FA treatment. This finding was then confirmed using immunofluorescence. Finally, Cox-2 selective inhibitor, celecoxib protected cells from PA-reduced insulin signaling Akt phosphorylation. Together, these results not only provide a dataset of protein expression change in FA treatment but also suggest that Cox-2 and lipid droplets (LDs) are potential players in PA- and OA-mediated cellular processes. PMID:26899878

  3. Foxk1 promotes cell proliferation and represses myogenic differentiation by regulating Foxo4 and Mef2.

    PubMed

    Shi, Xiaozhong; Wallis, Alicia M; Gerard, Robert D; Voelker, Kevin A; Grange, Robert W; DePinho, Ronald A; Garry, Mary G; Garry, Daniel J

    2012-11-15

    In response to severe injury, adult skeletal muscle exhibits a remarkable regenerative capacity due to a resident muscle stem/progenitor cell population. While a number of factors are expressed in the muscle progenitor cell (MPC) population, the molecular networks that govern this cell population remain an area of active investigation. In this study, utilizing knockdown techniques and overexpression of Foxk1 in the myogenic lineage, we observed dysregulation of Foxo and Mef2 downstream targets. Utilizing an array of technologies, we establish that Foxk1 represses the transcriptional activity of Foxo4 and Mef2 and physically interacts with Foxo4 and Mef2, thus promoting MPC proliferation and antagonizing the myogenic lineage differentiation program, respectively. Correspondingly, knockdown of Foxk1 in C2C12 myoblasts results in cell cycle arrest, and Foxk1 overexpression in C2C12CAR myoblasts retards muscle differentiation. Collectively, we have established that Foxk1 promotes MPC proliferation by repressing Foxo4 transcriptional activity and inhibits myogenic differentiation by repressing Mef2 activity. These studies enhance our understanding of the transcriptional networks that regulate the MPC population and muscle regeneration. PMID:22956541

  4. Paralogs of Atlantic salmon myoblast determination factor genes are distinctly regulated in proliferating and differentiating myogenic cells.

    PubMed

    Bower, Neil I; Johnston, Ian A

    2010-06-01

    The mRNA expression of myogenic regulatory factors, including myoD1 (myoblast determination factor) gene paralogs, and their regulation by amino acids and insulin-like growth factors were investigated in primary cell cultures isolated from fast myotomal muscle of Atlantic salmon (Salmo salar). The cell cycle and S phase were determined as 28.1 and 13.3 h, respectively, at 18 degrees C. Expression of myoD1b and myoD1c peaked at 8 days of culture in the initial proliferation phase and then declined more than sixfold as cells differentiated and was correlated with PCNA (proliferating cell nuclear antigen) expression (R = 0.88, P < 0.0001; R = 0.70, P < 0.0001). In contrast, myoD1a transcripts increased from 2 to 8 days and remained at elevated levels as myotubes were formed. mRNA levels of myoD1c were, on average, 3.1- and 5.7-fold higher than myoD1a and myoD1b, respectively. Depriving cells of amino acids and serum led to a rapid increase in pax7 and a decrease in myoD1c and PCNA expression, indicating a transition to a quiescent state. In contrast, amino acid replacement in starved cells produced significant increases in myoD1c (at 6 h), PCNA (at 12 h), and myoD1b (at 24 h) and decreases in pax7 expression as cells entered the cell cycle. Our results are consistent with temporally distinct patterns of myoD1c and myoD1b expression at the G(1) and S/G(2) phases of the cell cycle. Treatment of starved cells with insulin-like growth factor I or II did not alter expression of the myoD paralogs. It was concluded that, in vitro, amino acids alone are sufficient to stimulate expression of genes regulating myogenesis in myoblasts involving autocrine/paracrine pathways. The differential responses of myoD paralogs during myotube maturation and amino acid treatments suggest that myoD1b and myoD1c are primarily expressed in proliferating cells and myoD1a in differentiating cells, providing evidence for their subfunctionalization following whole genome and local duplications in

  5. The endocannabinoid 2-AG controls skeletal muscle cell differentiation via CB1 receptor-dependent inhibition of Kv7 channels

    PubMed Central

    Iannotti, Fabio A.; Silvestri, Cristoforo; Mazzarella, Enrico; Martella, Andrea; Calvigioni, Daniela; Piscitelli, Fabiana; Ambrosino, Paolo; Petrosino, Stefania; Czifra, Gabriella; Bíró, Tamás; Harkany, Tibor; Taglialatela, Maurizio; Di Marzo, Vincenzo

    2014-01-01

    Little is known of the involvement of endocannabinoids and cannabinoid receptors in skeletal muscle cell differentiation. We report that, due to changes in the expression of genes involved in its metabolism, the levels of the endocannabinoid 2-arachidonoylglycerol (2-AG) are decreased both during myotube formation in vitro from murine C2C12 myoblasts and during mouse muscle growth in vivo. The endocannabinoid, as well as the CB1 agonist arachidonoyl-2-chloroethylamide, prevent myotube formation in a manner antagonized by CB1 knockdown and by CB1 antagonists, which, per se, instead stimulate differentiation. Importantly, 2-AG also inhibits differentiation of primary human satellite cells. Muscle fascicles from CB1 knockout embryos contain more muscle fibers, and postnatal mice show muscle fibers of an increased diameter relative to wild-type littermates. Inhibition of Kv7.4 channel activity, which plays a permissive role in myogenesis and depends on phosphatidylinositol 4,5-bisphosphate (PIP2), underlies the effects of 2-AG. We find that CB1 stimulation reduces both total and Kv7.4-bound PIP2 levels in C2C12 cells and inhibits Kv7.4 currents in transfected CHO cells. We suggest that 2-AG is an endogenous repressor of myoblast differentiation via CB1-mediated inhibition of Kv7.4 channels. PMID:24927567

  6. Hyperthermia Differently Affects Connexin43 Expression and Gap Junction Permeability in Skeletal Myoblasts and HeLa Cells

    PubMed Central

    Antanavičiūtė, Ieva; Mildažienė, Vida; Stankevičius, Edgaras; Herdegen, Thomas; Skeberdis, Vytenis Arvydas

    2014-01-01

    Stress kinases can be activated by hyperthermia and modify the expression level and properties of membranous and intercellular channels. We examined the role of c-Jun NH2-terminal kinase (JNK) in hyperthermia-induced changes of connexin43 (Cx43) expression and permeability of Cx43 gap junctions (GJs) in the rabbit skeletal myoblasts (SkMs) and Cx43-EGFP transfected HeLa cells. Hyperthermia (42°C for 6 h) enhanced the activity of JNK and its target, the transcription factor c-Jun, in both SkMs and HeLa cells. In SkMs, hyperthermia caused a 3.2-fold increase in the total Cx43 protein level and enhanced the efficacy of GJ intercellular communication (GJIC). In striking contrast, hyperthermia reduced the total amount of Cx43 protein, the number of Cx43 channels in GJ plaques, the density of hemichannels in the cell membranes, and the efficiency of GJIC in HeLa cells. Both in SkMs and HeLa cells, these changes could be prevented by XG-102, a JNK inhibitor. In HeLa cells, the changes in Cx43 expression and GJIC under hyperthermic conditions were accompanied by JNK-dependent disorganization of actin cytoskeleton stress fibers while in SkMs, the actin cytoskeleton remained intact. These findings provide an attractive model to identify the regulatory players within signalosomes, which determine the cell-dependent outcomes of hyperthermia. PMID:25143668

  7. Electrolytic Valving Isolation for Cell Co-Culture Microenvironment with Controlled Cell Pairing Ratios

    PubMed Central

    Chen, Yu-Chih; Ingram, Patrick; Yoon, Euisik

    2016-01-01

    Cancer-stromal interaction is a critical process in tumorigenesis. Conventional dish-based co-culture assays simply mix two cell types in the same dish; thus, they are deficient in controlling cell locations and precisely tracking single cell behavior from heterogeneous cell populations. Microfluidic technology can provide a good spatial temporal control of microenvironments, but the control has been typically realized by using external pumps, making long-term cultures cumbersome and bulky. In this work, we present a cell-cell interaction microfluidic platform that can accurately control co-culture microenvironment by using a novel electrolytic cell isolation scheme without using any valves or pneumatic pumps. The proposed microfluidic platform can also precisely control the number of interacting cells and pairing ratios to emulate cancer niches. More than 80% of the chambers captured the desired number of cells. The duration of cell isolation can be adjusted by electrolytic bubble generation and removal. We verified that electrolytic process has a negligible effect on cell viability and proliferation in our platform. To the best of our knowledge, this work is the first attempt to incorporate electrolytic bubble generation as a cell isolation method in microfluidics. For proof of feasibility, we performed cell-cell interaction assays between prostate cancer (PC3) cells and myoblast (C2C12) cells. The preliminary results demonstrated the potential of using electrolysis for micro-environmental control during cell culture. Also, the ratio controlled cell-cell interaction assays was successfully performed showing that the cell pairing ratios of PC3 to C2C12 affected the proliferation rate of myoblast cells due to increased secretion of growth factors from prostate cancer cells. PMID:25118341

  8. Myoblast fusion: lessons from flies and mice

    PubMed Central

    Abmayr, Susan M.; Pavlath, Grace K.

    2012-01-01

    The fusion of myoblasts into multinucleate syncytia plays a fundamental role in muscle function, as it supports the formation of extended sarcomeric arrays, or myofibrils, within a large volume of cytoplasm. Principles learned from the study of myoblast fusion not only enhance our understanding of myogenesis, but also contribute to our perspectives on membrane fusion and cell-cell fusion in a wide array of model organisms and experimental systems. Recent studies have advanced our views of the cell biological processes and crucial proteins that drive myoblast fusion. Here, we provide an overview of myoblast fusion in three model systems that have contributed much to our understanding of these events: the Drosophila embryo; developing and regenerating mouse muscle; and cultured rodent muscle cells. PMID:22274696

  9. Specific deletion of CMF1 nuclear localization domain causes incomplete cell cycle withdrawal and impaired differentiation in avian skeletal myoblasts

    SciTech Connect

    Dees, Ellen . E-mail: ellen.dees@vanderbilt.edu; Robertson, J. Brian; Zhu, Tianli; Bader, David

    2006-10-01

    CMF1 is a protein expressed in embryonic striated muscle with onset of expression preceding that of contractile proteins. Disruption of CMF1 in myoblasts disrupts muscle-specific protein expression. Preliminary studies indicate both nuclear and cytoplasmic distribution of CMF1 protein, suggesting functional roles in both cellular compartments. Here we examine the nuclear function of CMF1, using a newly characterized antibody generated against the CMF1 nuclear localization domain and a CMF1 nuclear localization domain-deleted stable myocyte line. The antibody demonstrates nuclear distribution of the CMF1 protein both in vivo and in cell lines, with clustering of CMF1 protein around chromatin during mitosis. In more differentiated myocytes, the protein shifts to the cytoplasm. The CMF1 NLS-deleted cell lines have markedly impaired capacity to differentiate. Specifically, these cells express less contractile protein than wild-type or full-length CMF1 stably transfected cells, and do not fuse properly into multinucleate syncytia with linear nuclear alignment. In response to low serum medium, a signal to differentiate, CMF1 NLS-deleted cells enter G0, but continue to express proliferation markers and will reenter the cell cycle when stimulated by restoring growth medium. These data suggest that CMF1 is involved in regulation the transition from proliferation to differentiation in embryonic muscle.

  10. Transcription Factor ZBED6 Mediates IGF2 Gene Expression by Regulating Promoter Activity and DNA Methylation in Myoblasts

    NASA Astrophysics Data System (ADS)

    Huang, Yong-Zhen; Zhang, Liang-Zhi; Lai, Xin-Sheng; Li, Ming-Xun; Sun, Yu-Jia; Li, Cong-Jun; Lan, Xian-Yong; Lei, Chu-Zhao; Zhang, Chun-Lei; Zhao, Xin; Chen, Hong

    2014-04-01

    Zinc finger, BED-type containing 6 (ZBED6) is an important transcription factor in placental mammals, affecting development, cell proliferation and growth. In this study, we found that the expression of the ZBED6 and IGF2 were upregulated during C2C12 differentiation. The IGF2 expression levels were negatively associated with the methylation status in beef cattle (P < 0.05). A luciferase assay for the IGF2 intron 3 and P3 promoter showed that the mutant-type 439 A-SNP-pGL3 in driving reporter gene transcription is significantly higher than that of the wild-type 439 G-SNP-pGL3 construct (P < 0.05). An over-expression assay revealed that ZBED6 regulate IGF2 expression and promote myoblast differentiation. Furthermore, knockdown of ZBED6 led to IGF2 expression change in vitro. Taken together, these results suggest that ZBED6 inhibits IGF2 activity and expression via a G to A transition disrupts the interaction. Thus, we propose that ZBED6 plays a critical role in myogenic differentiation.