Science.gov

Sample records for myoblastic c2c12 cells

  1. Modeling Myotonic Dystrophy 1 in C2C12 Myoblast Cells.

    PubMed

    Liang, Rui; Dong, Wei; Shen, Xiaopeng; Peng, Xiaoping; Aceves, Angie G; Liu, Yu

    2016-01-01

    Myotonic dystrophy 1 (DM1) is a common form of muscular dystrophy. Although several animal models have been established for DM1, myoblast cell models are still important because they offer an efficient cellular alternative for studying cellular and molecular events. Though C2C12 myoblast cells have been widely used to study myogenesis, resistance to gene transfection, or viral transduction, hinders research in C2C12 cells. Here, we describe an optimized protocol that includes daily maintenance, transfection and transduction procedures to introduce genes into C2C12 myoblasts and the induction of myocyte differentiation. Collectively, these procedures enable best transfection/transduction efficiencies, as well as consistent differentiation outcomes. The protocol described in establishing DM1 myoblast cell models would benefit the study of myotonic dystrophy, as well as other muscular diseases. PMID:27501221

  2. The Mouse C2C12 Myoblast Cell Surface N-Linked Glycoproteome

    PubMed Central

    Gundry, Rebekah L.; Raginski, Kimberly; Tarasova, Yelena; Tchernyshyov, Irina; Bausch-Fluck, Damaris; Elliott, Steven T.; Boheler, Kenneth R.; Van Eyk, Jennifer E.; Wollscheid, Bernd

    2009-01-01

    Endogenous regeneration and repair mechanisms are responsible for replacing dead and damaged cells to maintain or enhance tissue and organ function, and one of the best examples of endogenous repair mechanisms involves skeletal muscle. Although the molecular mechanisms that regulate the differentiation of satellite cells and myoblasts toward myofibers are not fully understood, cell surface proteins that sense and respond to their environment play an important role. The cell surface capturing technology was used here to uncover the cell surface N-linked glycoprotein subproteome of myoblasts and to identify potential markers of myoblast differentiation. 128 bona fide cell surface-exposed N-linked glycoproteins, including 117 transmembrane, four glycosylphosphatidylinositol-anchored, five extracellular matrix, and two membrane-associated proteins were identified from mouse C2C12 myoblasts. The data set revealed 36 cluster of differentiation-annotated proteins and confirmed the occupancy for 235 N-linked glycosylation sites. The identification of the N-glycosylation sites on the extracellular domain of the proteins allowed for the determination of the orientation of the identified proteins within the plasma membrane. One glycoprotein transmembrane orientation was found to be inconsistent with Swiss-Prot annotations, whereas ambiguous annotations for 14 other proteins were resolved. Several of the identified N-linked glycoproteins, including aquaporin-1 and β-sarcoglycan, were found in validation experiments to change in overall abundance as the myoblasts differentiate toward myotubes. Therefore, the strategy and data presented shed new light on the complexity of the myoblast cell surface subproteome and reveal new targets for the clinically important characterization of cell intermediates during myoblast differentiation into myotubes. PMID:19656770

  3. Actin-associated protein palladin is required for migration behavior and differentiation potential of C2C12 myoblast cells

    SciTech Connect

    Nguyen, Ngoc Uyen Nhi; Liang, Vincent Roderick; Wang, Hao-Ven

    2014-09-26

    Highlights: • Palladin is involved in myogenesis in vitro. • Palladin knockdown by siRNA increases myoblast proliferation, viability and differentiation. • Palladin knockdown decreases C2C12 myoblast migration ability. - Abstract: The actin-associated protein palladin has been shown to be involved in differentiation processes in non-muscle tissues. However, but its function in skeletal muscle has rarely been studied. Palladin plays important roles in the regulation of diverse actin-related signaling in a number of cell types. Since intact actin-cytoskeletal remodeling is necessary for myogenesis, in the present study, we pursue to investigate the role of actin-associated palladin in skeletal muscle differentiation. Palladin in C2C12 myoblasts is knocked-down using specific small interfering RNA (siRNA). The results show that down-regulation of palladin decreased migratory activity of mouse skeletal muscle C2C12 myoblasts. Furthermore, the depletion of palladin enhances C2C12 vitality and proliferation. Of note, the loss of palladin promotes C2C12 to express the myosin heavy chain, suggesting that palladin has a role in the modulation of C2C12 differentiation. It is thus proposed that palladin is required for normal C2C12 myogenesis in vitro.

  4. Photobiomodulation Protects and Promotes Differentiation of C2C12 Myoblast Cells Exposed to Snake Venom

    PubMed Central

    da Silva, Aline; Vieira, Rodolfo Paula; Mesquita-Ferrari, Raquel Agnelli; Cogo, José Carlos; Zamuner, Stella Regina

    2016-01-01

    Background Snakebites is a neglected disease and in Brazil is considered a serious health problem, with the majority of the snakebites caused by the genus Bothrops. Antivenom therapy and other first-aid treatments do not reverse local myonecrose which is the main sequel caused by the envenomation. Several studies have shown the effectiveness of low level laser (LLL) therapy in reducing local myonecrosis induced by Bothropic venoms, however the mechanism involved in this effect is unknown. In this in vitro study, we aimed to analyze the effect of LLL irradiation against cytotoxicity induced by Bothrops jararacussu venom on myoblast C2C12 cells. Methodology C2C12 were utilized as a model target and were incubated with B. jararacussu venom (12.5 μg/mL) and immediately irradiated with LLL at wavelength of red 685 nm or infrared 830 nm with energy density of 2.0, 4.6 and 7.0 J/cm2. Effects of LLL on cellular responses of venom-induced cytotoxicity were examined, including cell viability, measurement of cell damage and intra and extracellular ATP levels, expression of myogenic regulatory factors, as well as cellular differentiation. Results In non-irradiated cells, the venom caused a decrease in cell viability and a massive release of LDH and CK levels indicating myonecrosis. Infrared and red laser at all energy densities were able to considerably decrease venom-induced cytotoxicity. Laser irradiation induced myoblasts to differentiate into myotubes and this effect was accompanied by up regulation of MyoD and specially myogenin. Moreover, LLL was able to reduce the extracellular while increased the intracellular ATP content after venom exposure. In addition, no difference in the intensity of cytotoxicity was shown by non-irradiated and irradiated venom. Conclusion LLL irradiation caused a protective effect on C2C12 cells against the cytotoxicity caused by B. jararacussu venom and promotes differentiation of these cells by up regulation of myogenic factors. A modulatory

  5. Retardation of C2C12 myoblast cell proliferation by exposure to low-temperature atmospheric plasma.

    PubMed

    Nakai, Naoya; Fujita, Ryo; Kawano, Fuminori; Takahashi, Kazuo; Ohira, Takashi; Shibaguchi, Tsubasa; Nakata, Ken; Ohira, Yoshinobu

    2014-09-01

    As the first step in evaluating the possibility of low-temperature atmospheric plasma for clinical applications in the treatment of rhabdomyosarcoma (RMS), we determined the effects of plasma exposure on C2C12 myoblasts. The low-temperature atmospheric plasma was generated through an electrical discharge in argon gas. One minute of plasma exposure every 24 h inhibited the cell proliferation, whereas myoblast differentiation was not affected. Plasma exposure increased the phosphorylation of ERK and JNK at 30 min after the exposure, but the phosphorylation of both was decreased to less than control levels at 1 and 4 h after the exposure. Plasma exposure increased the percentage of cells in the G2/M phase at 8 h after the exposure. In conclusion, plasma exposure retarded the proliferation of C2C12 myoblasts by G2/M arrest. Therefore, plasma exposure can be a possible treatment for the anti-proliferative effects of malignant tumors, such as RMS, without affecting differentiated skeletal muscle cells. PMID:25034108

  6. Conessine Interferes with Oxidative Stress-Induced C2C12 Myoblast Cell Death through Inhibition of Autophagic Flux

    PubMed Central

    Kim, Hyunju; Lee, Kang Il; Jang, Minsu; Namkoong, Sim; Park, Rackhyun; Ju, Hyunwoo; Choi, Inho; Oh, Won Keun

    2016-01-01

    Conessine, a steroidal alkaloid isolated from Holarrhena floribunda, has anti-malarial activity and interacts with the histamine H3 receptor. However, the cellular effects of conessine are poorly understood. Accordingly, we evaluated the involvement of conessine in the regulation of autophagy. We searched natural compounds that modulate autophagy, and conessine was identified as an inhibitor of autophagic flux. Conessine treatment induced the formation of autophagosomes, and p62, an autophagic adapter, accumulated in the autophagosomes. Reactive oxygen species such as hydrogen peroxide (H2O2) result in muscle cell death by inducing excessive autophagic flux. Treatment with conessine inhibited H2O2-induced autophagic flux in C2C12 myoblast cells and also interfered with cell death. Our results indicate that conessine has the potential effect to inhibit muscle cell death by interfering with autophagic flux. PMID:27257813

  7. Downregulated microRNA-23b promotes BMP9-mediated osteogenesis in C2C12 myoblast cells by targeting Runx2

    PubMed Central

    CHEN, CHU; TANG, ZUCHUAN; SONG, QILING; YANG, MIN; SHI, QIONG; WENG, YAGUANG

    2016-01-01

    MicroRNAs are identified as negative regulators in gene expression through silencing gene expression at the post-transcriptional and translational levels. Bone morphogenetic protein 9 (BMP9) is the most effective in inducing osteogenesis in the BMP family, the members of which were originally identified as osteoinductive cytokines. In the current study, the role of miR-23b in the progression of BMP9-induced C2C12 myoblasts was investigated. The results indicated that miR-23b was significantly downregulated in C2C12 myoblasts induced by BMP9. Overexpression of miR-23b significantly inhibited osteogenesis in the C2C12 myoblasts. In addition, it was observed that Runx2 was negatively regulated by miR-23b at the post-transcriptional level, via a specific target site within the 3′UTR of Runx2. Knockdown of Runx2 promoted miR-23b-induced inhibition of osteogenesis in C2C12 myoblasts. The expression of Runx2 was observed to be frequently upregulated in osteoblast cell lines and inversely correlated with miR-23b expression. Thus, the results of the present study suggest that miR-23b inhibits BMP9-induced C2C12 myoblast osteogenesis via targeting of the Runx2 gene, acting as a suppressor. The current study contributes to the understanding of the functions of BMP9 in ossification. PMID:26820568

  8. Setdb1 Is Required for Myogenic Differentiation of C2C12 Myoblast Cells via Maintenance of MyoD Expression

    PubMed Central

    Song, Young Joon; Choi, Jang Hyun; Lee, Hansol

    2015-01-01

    Setdb1, an H3-K9 specific histone methyltransferase, is associated with transcriptional silencing of euchromatic genes through chromatin modification. Functions of Setdb1 during development have been extensively studied in embryonic and mesenchymal stem cells as well as neurogenic progenitor cells. But the role of Sedtdb1 in myogenic differentiation remains unknown. In this study, we report that Setdb1 is required for myogenic potential of C2C12 myoblast cells through maintaining the expressions of MyoD and muscle-specific genes. We find that reduced Setdb1 expression in C2C12 myoblast cells severely delayed differentiation of C2C12 myoblast cells, whereas exogenous Setdb1 expression had little effect on. Gene expression profiling analysis using oligonucleotide micro-array and RNA-Seq technologies demonstrated that depletion of Setdb1 results in downregulation of MyoD as well as the components of muscle fiber in proliferating C2C12 cells. In addition, exogenous expression of MyoD reversed transcriptional repression of MyoD promoter-driven lucif-erase reporter by Setdb1 shRNA and rescued myogenic differentiation of C2C12 myoblast cells depleted of endogenous Setdb1. Taken together, these results provide new insights into how levels of key myogenic regulators are maintained prior to induction of differentiation. PMID:25715926

  9. Reduction of myoblast differentiation following multiple population doublings in mouse C2 C12 cells: a model to investigate ageing?

    PubMed

    Sharples, Adam P; Al-Shanti, Nasser; Lewis, Mark P; Stewart, Claire E

    2011-12-01

    Ageing skeletal muscle displays declines in size, strength, and functional capacity. Given the acknowledged role that the systemic environment plays in reduced regeneration (Conboy et al. [2005] Nature 433: 760-764), the role of resident satellite cells (termed myoblasts upon activation) is relatively dismissed, where, multiple cellular divisions in-vivo throughout the lifespan could also impact on muscular deterioration. Using a model of multiple population doublings (MPD) in-vitro thus provided a system in which to investigate the direct impact of extensive cell duplications on muscle cell behavior. C(2) C(12) mouse skeletal myoblasts (CON) were used fresh or following 58 population doublings (MPD). As a result of multiple divisions, reduced morphological and biochemical (creatine kinase, CK) differentiation were observed. Furthermore, MPD cells had significantly increased cells in the S and decreased cells in the G1 phases of the cell cycle versus CON, following serum withdrawal. These results suggest continued cycling rather than G1 exit and thus reduced differentiation (myotube atrophy) occurs in MPD muscle cells. These changes were underpinned by significant reductions in transcript expression of: IGF-I and myogenic regulatory factors (myoD and myogenin) together with elevated IGFBP5. Signaling studies showed that decreased differentiation in MPD was associated with decreased phosphorylation of Akt, and with later increased phosphorylation of JNK1/2. Chemical inhibition of JNK1/2 (SP600125) in MPD cells increased IGF-I expression (non-significantly), however, did not enhance differentiation. This study provides a potential model and molecular mechanisms for deterioration in differentiation capacity in skeletal muscle cells as a consequence of multiple population doublings that would potentially contribute to the ageing process. PMID:21826704

  10. Sirtuin 1 promotes the proliferation of C2C12 myoblast cells via the myostatin signaling pathway.

    PubMed

    Wang, Liang; Zhang, Ting; Xi, Yongyong; Yang, Cuili; Sun, Chengcao; Li, Dejia

    2016-08-01

    Accumulating evidence suggests that Sirtuin (Sirt)1 serves a significant role in proliferation and differentiation of myoblast cells; however the signaling mechanisms involved remain to be established. Myostatin (MSTN), a member of transforming growth factor‑β family, is an vital regulator of myoblast, fibroblast growth and differentiation. To determine if MSTN is involved in the regulation of myoblast cell proliferation by Sirt1, the present study administrated the Sirt1 activator resveratrol, inhibitor nicotinamide (NAM) and MSTN inhibitor SB431542 to C2C12 myoblast cells. It was demonstrated that the Sirt1 activator, resveratrol, repressed, whereas the Sirt1 inhibitor, NAM, enhanced C2C12 myoblast cells proliferation in a Sirt1‑dependent manner. SB431542 promoted the proliferation of C2C12 myoblast cells and reversed the inhibition effect of NAM on C2C12 myoblast cell proliferation. Additionally, resveratrol upregulated the mRNA expression of MyoD, but inhibited the expression of MSTN. Additionally, NAM significantly repressed the expression of MyoD and the phosphorylation of P107 (p‑P107), but enhanced the expression of MSTN and the protein expression of P107. SB431542 significantly mitigated the effect of NAM on the expression of MyoD, P107 and p‑P107. Taken together, these results indicated that Sirt1 promotes the proliferation of C2C12 myoblast cells via the MSTN signaling pathway. PMID:27279047

  11. Myostatin stimulates, not inihibits, C2C12 myoblast proliferation.

    PubMed

    Rodgers, Buel D; Wiedeback, Benjamin D; Hoversten, Knut E; Jackson, Melissa F; Walker, Ryan G; Thompson, Thomas B

    2014-03-01

    The immortal C2C12 cell line originates from dystrophic mouse thigh muscle and has been used to study the endocrine control of muscle cell growth, development, and function, including those actions regulated by myostatin. Previous studies suggest that high concentrations of recombinant myostatin generated in bacteria inhibit C2C12 proliferation and differentiation. Recombinant myostatin generated in eukaryotic systems similarly inhibits the proliferation of primary myosatellite cells, but consequently initiates, rather than inhibits, their differentiation and is bioactive at far lower concentrations. Our studies indicate that 2 different sources of recombinant myostatin made in eukaryotes stimulate, not inhibit, C2C12 proliferation. This effect occurred at different cell densities and serum concentrations and in the presence of IGF-I, a potent myoblast mitogen. This stimulatory effect was comparable to that obtained with TGFβ1, a related factor that also inhibits primary myosatellite cell proliferation. Attenuating the myostatin/activin (ie, Acvr2b) and TGFβ1 receptor signaling pathways with the Alk4/5 and Alk5 inhibitors, SB431542 and SB505142, respectively, similarly attenuated proliferation induced by serum, myostatin or TGFβ1 and in a dose-dependent manner. In serum-free medium, both myostatin and TGFβ1 stimulated Smad2 phosphorylation, but not that of Smad3, and a Smad3 inhibitor (SIS3) only inhibited proliferation in cells cultured in high serum. Thus, myostatin and TGFβ1 stimulate C2C12 proliferation primarily via Smad2. These results together question the physiological relevance of the C2C12 model and previous studies using recombinant myostatin generated in bacteria. They also support the alternative use of primary myosatellite cells and recombinant myostatin generated in eukaryotes. PMID:24424069

  12. A new cell-based assay to evaluate myogenesis in mouse myoblast C2C12 cells

    SciTech Connect

    Kodaka, Manami; Yang, Zeyu; Nakagawa, Kentaro; Maruyama, Junichi; Xu, Xiaoyin; Sarkar, Aradhan; Ichimura, Ayana; Nasu, Yusuke; Ozawa, Takeaki; Iwasa, Hiroaki; Ishigami-Yuasa, Mari; Ito, Shigeru; Kagechika, Hiroyuki; and others

    2015-08-15

    The development of the efficient screening system of detecting compounds that promote myogenesis and prevent muscle atrophy is important. Mouse C2C12 cells are widely used to evaluate myogenesis but the procedures of the assay are not simple and the quantification is not easy. We established C2C12 cells expressing the N-terminal green fluorescence protein (GFP) and the C-terminal GFP (GFP1–10 and GFP11 cells). GFP1–10 and GFP11 cells do not exhibit GFP signals until they are fused. The signal intensity correlates with the expression of myogenic markers and myofusion. Myogenesis-promoting reagents, such as insulin-like growth factor-1 (IGF1) and β-guanidinopropionic acid (GPA), enhance the signals, whereas the poly-caspase inhibitor, z-VAD-FMK, suppresses it. GFP signals are observed when myotubes formed by GFP1–10 cells are fused with single nuclear GFP11 cells, and enhanced by IGF1, GPA, and IBS008738, a recently-reported myogenesis-promoting reagent. Fusion between myotubes formed by GFP1–10 and GFP11 cells is associated with the appearance of GFP signals. IGF1 and GPA augment these signals, whereas NSC23766, Rac inhibitor, decreases them. The conditioned medium of cancer cells suppresses GFP signals during myogenesis and reduces the width of GFP-positive myotubes after differentiation. Thus the novel split GFP-based assay will provide the useful method for the study of myogenesis, myofusion, and atrophy. - Highlights: • C2C12 cells expressing split GFP proteins show GFP signals when mix-cultured. • The GFP signals correlate with myogenesis and myofusion. • The GFP signals attenuate under the condition that muscle atrophy is induced.

  13. Stimulatory effect of isoferulic acid on alpha1A-adrenoceptor to increase glucose uptake into cultured myoblast C2C12 cell of mice.

    PubMed

    Liu, I M; Tsai, C C; Lai, T Y; Cheng, J T

    2001-05-14

    In an attempt to elucidate the effect of isoferulic acid on alpha1-adrenoceptor (AR), the myoblast C2C12 cells of mice were employed to investigate the change of glucose uptake in the present study. Isoferulic acid enhanced the uptake of radioactive glucose into C2C12 cells in a concentration-dependent manner, which were abolished by pretreatment with prazosin. Effect of isoferulic acid on alpha1-AR was further characterized using the displacement of [3H]YM617 binding in C2C12 cells. The radioactive glucose uptake increasing action of isoferulic acid was abolished by tamsulosin or WB 4101 at concentration sufficient to block alpha1A-adrenoceptor (alpha1A-AR) but it was not modified by chlorethylclonidine (CEC) at the concentration sufficient to abolish alpha1B-AR. An activation of alpha1A-AR by isoferulic acid in C2C12 cells can thus be considered. Pharmacological inhibition of phospholipase C (PLC) by U73312 resulted in a concentration-dependent reduction of isoferulic acid-stimulated glucose uptake in C2C12 cells. This inhibition by U73112 was specific because the inactive congener, U73343, failed to modify the action of isoferulic acid. Also, chelerythrine and GF 109203X diminished the action of isoferulic acid at concentration sufficient to inhibit the activity of protein kinase C (PKC). The obtained data suggest that an activation of alpha1A-AR by isoferulic acid may increase the glucose uptake via PLC-PKC pathway in C2C12 cells. PMID:11474559

  14. Berberine Hydrochloride Protects C2C12 Myoblast Cells Against Oxidative Stress-Induced Damage via Induction of Nrf-2-Mediated HO-1 Expression.

    PubMed

    Choi, Yung Hyun

    2016-09-01

    Preclinical Research The aim of the present study was to evaluate the effects of berberine hydrochloride (BBH), an isoquinoline alkaloid that can be isolated from a variety of herbs, on hydrogen peroxide (H2 O2 )-induced oxidative stress in C2C12 myoblasts and to investigate the molecular mechanisms involved in this process, especially the expression of the Nrf2/HO-1 pathway. BBH preconditioning attenuated H2 O2 -induced growth inhibition and DNA damage as well as apoptosis in C2C12 cells via suppression of the accumulation of intracellular reactive oxygen species (ROS). Treatment with BBHride alone effectively upregulated the expression of nuclear factor-erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) and elevated HO-1 activity. However, the protective effects of BBH against H2 O2 -induced ROS generation and cell growth reduction were abolished by an HO-1 inhibitor. Moreover, BBH-mediated induction and activation of HO-1 were reduced by genetic silencing of Nrf2 using small interfering RNA (siRNA). In addition, the effects of BBH against H2 O2 -induced ROS accumulation and growth inhibition were abrogated in C2C12 cells transfected with Nrf2 siRNA. Therefore, the present study demonstrated that BBH could protect C2C12 cells against oxidative stress-induced injury and this effect involved activation of the Nrf2/HO-1 pathway. Drug Dev Res, 2016. © 2016 Wiley Periodicals, Inc. PMID:27535021

  15. Effective myotube formation in human adipose tissue-derived stem cells expressing dystrophin and myosin heavy chain by cellular fusion with mouse C2C12 myoblasts

    SciTech Connect

    Eom, Young Woo; Lee, Jong Eun; Yang, Mal Sook; Jang, In Keun; Kim, Hyo Eun; Lee, Doo Hoon; Kim, Young Jin; Park, Won Jin; Kong, Jee Hyun; Shim, Kwang Yong; Lee, Jong In; Kim, Hyun Soo

    2011-04-29

    Highlights: {yields} hASCs were differentiated into skeletal muscle cells by treatment with 5-azacytidine, FGF-2, and the supernatant of cultured hASCs. {yields} Dystrophin and MyHC were expressed in late differentiation step by treatment with the supernatant of cultured hASCs. {yields} hASCs expressing dystrophin and MyHC contributed to myotube formation during co-culture with mouse myoblast C2C12 cells. -- Abstract: Stem cell therapy for muscular dystrophies requires stem cells that are able to participate in the formation of new muscle fibers. However, the differentiation steps that are the most critical for this process are not clear. We investigated the myogenic phases of human adipose tissue-derived stem cells (hASCs) step by step and the capability of myotube formation according to the differentiation phase by cellular fusion with mouse myoblast C2C12 cells. In hASCs treated with 5-azacytidine and fibroblast growth factor-2 (FGF-2) for 1 day, the early differentiation step to express MyoD and myogenin was induced by FGF-2 treatment for 6 days. Dystrophin and myosin heavy chain (MyHC) expression was induced by hASC conditioned medium in the late differentiation step. Myotubes were observed only in hASCs undergoing the late differentiation step by cellular fusion with C2C12 cells. In contrast, hASCs that were normal or in the early stage were not involved in myotube formation. Our results indicate that stem cells expressing dystrophin and MyHC are more suitable for myotube formation by co-culture with myoblasts than normal or early differentiated stem cells expressing MyoD and myogenin.

  16. Sodium arsenite represses the expression of myogenin in C2C12 mouse myoblast cells through histone modifications and altered expression of Ezh2, Glp, and Igf-1

    SciTech Connect

    Hong, Gia-Ming

    2012-05-01

    Arsenic is a toxicant commonly found in water systems and chronic exposure can result in adverse developmental effects including increased neonatal death, stillbirths, and miscarriages, low birth weight, and altered locomotor activity. Previous studies indicate that 20 nM sodium arsenite exposure to C2C12 mouse myocyte cells delayed myoblast differentiation due to reduced myogenin expression, the transcription factor that differentiates myoblasts into myotubes. In this study, several mechanisms by which arsenic could alter myogenin expression were examined. Exposing differentiating C2C12 cells to 20 nM arsenic increased H3K9 dimethylation (H3K9me2) and H3K9 trimethylation (H3K9me3) by 3-fold near the transcription start site of myogenin, which is indicative of increased repressive marks, and reduced H3K9 acetylation (H3K9Ac) by 0.5-fold, indicative of reduced permissive marks. Protein expression of Glp or Ehmt1, a H3-K9 methyltransferase, was also increased by 1.6-fold in arsenic-exposed cells. In addition to the altered histone remodeling status on the myogenin promoter, protein and mRNA levels of Igf-1, a myogenic growth factor, were significantly repressed by arsenic exposure. Moreover, a 2-fold induction of Ezh2 expression, and an increased recruitment of Ezh2 (3.3-fold) and Dnmt3a (∼ 2-fold) to the myogenin promoter at the transcription start site (− 40 to + 42), were detected in the arsenic-treated cells. Together, we conclude that the repressed myogenin expression in arsenic-exposed C2C12 cells was likely due to a combination of reduced expression of Igf-1, enhanced nuclear expression and promoter recruitment of Ezh2, and altered histone remodeling status on myogenin promoter (− 40 to + 42). -- Highlights: ► Igf-1 expression is decreased in C2C12 cells after 20 nM arsenite exposure. ► Arsenic exposure alters histone remodeling on the myogenin promoter. ► Glp expression, a H3–K9 methyltransferase, was increased in arsenic-exposed cells. ► Ezh2

  17. Sodium arsenite delays the differentiation of C2C12 mouse myoblast cells and alters methylation patterns on the transcription factor myogenin

    SciTech Connect

    Steffens, Amanda A.; Hong Giaming; Bain, Lisa J.

    2011-01-15

    Epidemiological studies have correlated arsenic exposure with cancer, skin diseases, and adverse developmental outcomes such as spontaneous abortions, neonatal mortality, low birth weight, and delays in the use of musculature. The current study used C2C12 mouse myoblast cells to examine whether low concentrations of arsenic could alter their differentiation into myotubes, indicating that arsenic can act as a developmental toxicant. Myoblast cells were exposed to 20 nM sodium arsenite, allowed to differentiate into myotubes, and expression of the muscle-specific transcription factor myogenin, along with the expression of tropomyosin, suppressor of cytokine signaling 3 (Socs3), prostaglandin I2 synthesis (Ptgis), and myocyte enhancer 2 (Mef2), was investigated using QPCR and immunofluorescence. Exposing C2C12 cells to 20 nM sodium arsenite delayed the differentiation process, as evidenced by a significant reduction in the number of multinucleated myotubes, a decrease in myogenin mRNA expression, and a decrease in the total number of nuclei expressing myogenin protein. The expression of mRNA involved in myotube formation, such as Ptgis and Mef2 mRNA, was also significantly reduced by 1.6-fold and 4-fold during differentiation. This was confirmed by immunofluorescence for Mef2, which showed a 2.6-fold reduction in nuclear translocation. Changes in methylation patterns in the promoter region of myogenin (-473 to + 90) were examined by methylation-specific PCR and bisulfite genomic sequencing. Hypermethylated CpGs were found at -236 and -126 bp, whereas hypomethylated CpGs were found at -207 bp in arsenic-exposed cells. This study indicates that 20 nM sodium arsenite can alter myoblast differentiation by reducing the expression of the transcription factors myogenin and Mef2c, which is likely due to changes in promoter methylation patterns. The delay in muscle differentiation may lead to developmental abnormalities.

  18. Internalization and fate of silica nanoparticles in C2C12 skeletal muscle cells: evidence of a beneficial effect on myoblast fusion

    PubMed Central

    Poussard, Sylvie; Decossas, Marion; Le Bihan, Olivier; Mornet, Stéphane; Naudin, Grégoire; Lambert, Olivier

    2015-01-01

    The use of silica nanoparticles for their cellular uptake capability opens up new fields in biomedical research. Among the toxicological effects associated with their internalization, silica nanoparticles induce apoptosis that has been recently reported as a biochemical cue required for muscle regeneration. To assess whether silica nanoparticles could affect muscle regeneration, we used the C2C12 muscle cell line to study the uptake of fluorescently labeled NPs and their cellular trafficking over a long period. Using inhibitors of endocytosis, we determined that the NP uptake was an energy-dependent process mainly involving macropinocytosis and clathrin-mediated pathway. NPs were eventually clustered in lysosomal structures. Myoblasts containing NPs were capable of differentiation into myotubes, and after 7 days, electron microscopy revealed that the NPs remained primarily within lysosomes. The presence of NPs stimulated the formation of myotubes in a dose-dependent manner. NP internalization induced an increase of apoptotic myoblasts required for myoblast fusion. At noncytotoxic doses, the NP uptake by skeletal muscle cells did not prevent their differentiation into myotubes but, instead, enhanced the cell fusion. PMID:25733836

  19. Ethanol extract of Cyclolepis genistoides D. Don (palo azul) induces formation of myotubes, which involves differentiation of C2C12 myoblast cells.

    PubMed

    Sato, Hiromi; Funaki, Asami; Kimura, Yuki; Sumitomo, Mai; Yoshida, Hiroya; Fukata, Hideki; Ueno, Koichi

    2016-07-01

    In this study, we examined the cell differentiation effect of an ethanol extract of Cyclolepis genistoides D. Don, a herbaceous perennial belonging to the family Asteraceae (vernacular name: palo azul). Palo azul has numerous physiological effects that contribute to the prevention of metabolic syndromes, although the mechanism remains unclear. We previously suggested that palo azul has antidiabetic activity via an adipose differentiation effect. Here, we focused on whether palo azul promoted the differentiation of myoblasts. The mouse muscle myoblast cell line C2C12 was cultured and differentiated using horse serum with or without an ethanol extract of palo azul (12.5-200 μg/mL). Quantitative real-time polymerase chain reaction was performed to evaluate differentiation markers, including insulin-like growth factor-1 and myogenin. To evaluate myotube formation, myosin heavy-chain (MHC) expression and localization were detected by immunohistochemistry. Palo azul increased the expression of the differentiation markers. Furthermore, immunohistochemistry analysis revealed increased formation of MHC myotubes after palo azul treatment along with increased diameter and fusion indices of the myotubes. The expression level of MHC was also increased. In conclusion, palo azul may increase muscle mass in the body and improve insulin resistance conditions by facilitating the formation of myotubes by promoting myocyte differentiation. PMID:27262535

  20. Chromatin plasticity as a differentiation index during muscle differentiation of C2C12 myoblasts

    SciTech Connect

    Watanabe, Tomonobu M.; Higuchi, Sayaka; Kawauchi, Keiko; Tsukasaki, Yoshikazu; Ichimura, Taro; Fujita, Hideaki

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer Change in the epigenetic landscape during myogenesis was optically investigated. Black-Right-Pointing-Pointer Mobility of nuclear proteins was used to state the epigenetic status of the cell. Black-Right-Pointing-Pointer Mobility of nuclear proteins decreased as myogenesis progressed in C2C12. Black-Right-Pointing-Pointer Differentiation state diagram was developed using parameters obtained. -- Abstract: Skeletal muscle undergoes complicated differentiation steps that include cell-cycle arrest, cell fusion, and maturation, which are controlled through sequential expression of transcription factors. During muscle differentiation, remodeling of the epigenetic landscape is also known to take place on a large scale, determining cell fate. In an attempt to determine the extent of epigenetic remodeling during muscle differentiation, we characterized the plasticity of the chromatin structure using C2C12 myoblasts. Differentiation of C2C12 cells was induced by lowering the serum concentration after they had reached full confluence, resulting in the formation of multi-nucleated myotubes. Upon induction of differentiation, the nucleus size decreased whereas the aspect ratio increased, indicating the presence of force on the nucleus during differentiation. Movement of the nucleus was also suppressed when differentiation was induced, indicating that the plasticity of chromatin changed upon differentiation. To evaluate the histone dynamics during differentiation, FRAP experiment was performed, which showed an increase in the immobile fraction of histone proteins when differentiation was induced. To further evaluate the change in the histone dynamics during differentiation, FCS was performed, which showed a decrease in histone mobility on differentiation. We here show that the plasticity of chromatin decreases upon differentiation, which takes place in a stepwise manner, and that it can be used as an index for the differentiation stage

  1. Hes6 is required for actin cytoskeletal organization in differentiating C2C12 myoblasts

    SciTech Connect

    Malone, Caroline M.P.; Domaschenz, Renae; Amagase, Yoko; Dunham, Ian; Murai, Kasumi; Jones, Philip H.

    2011-07-01

    Hes6 is a member of the hairy-enhancer-of-split family of transcription factors that regulate proliferating cell fate in development and is known to be expressed in developing muscle. Here we investigate its function in myogenesis in vitro. We show that Hes6 is a direct transcriptional target of the myogenic transcription factors MyoD and Myf5, indicating that it is integral to the myogenic transcriptional program. The localization of Hes6 protein changes during differentiation, becoming predominantly nuclear. Knockdown of Hes6 mRNA levels by siRNA has no effect on cell cycle exit or induction of myosin heavy chain expression in differentiating C2C12 myoblasts, but F-actin filament formation is disrupted and both cell motility and myoblast fusion are reduced. The knockdown phenotype is rescued by expression of Hes6 cDNA resistant to siRNA. These results define a novel role for Hes6 in actin cytoskeletal dynamics in post mitotic myoblasts.

  2. Transforming growth factor-beta1 upregulates myostatin expression in mouse C2C12 myoblasts.

    PubMed

    Budasz-Rwiderska, M; Jank, M; Motyl, T

    2005-06-01

    Myostatin (MSTN) and transforming growth factor-beta1 (TGF-beta1) belong to the same TGF-beta superfamily of proteins. They are involved in regulation of skeletal muscle growth and development as well as muscle catabolism. The aim of the present study was to investigate the relationship between MSTN and TGF-beta1 expression in proliferating and differentiating mouse C2C12 myoblasts cultured in normal and catabolic conditions and to evaluate the effect of exogenous TGF-beta1 as well as "knock down" of TGF-beta1 receptor type II on MSTN expression in proliferating and differentiating myogenic cells. The direct effect of TGF-beta1 on myostatin was also examined. Myostatin expression increased gradually with cell confluency in proliferating cultures, while the level of TGF-beta1, detected in the form of a 100 kDa small latent complex diminished. Myostatin expression was accompanied by a partial cell cycle arrest. Three forms of myostatin were found: a 52 kDa precursor, a 40 kDa latency associated propeptide, and a 26 kDa active peptide. A decrease in myostatin and TGF-beta1 levels was observed during the first three days of differentiation, which was subsequently followed by significant increase of their expression during next three to four days of differentiation. Catabolic state induced by dexamethasone significantly increased the level of all forms of myostatin as well as latent (100 kDa) and active (25 kDa) forms of TGF-beta1 in differentiating myoblasts in a dose dependent manner. Exogenous TGF-beta1 (2 ng/ml) significantly increased myostatin levels both in proliferating and differentiating C2C12 myoblasts, whereas silencing of the TGF-beta1 receptor II gene significantly lowered myostatin level in examined cells. The presented results indicate that TGF-beta1 may control myostatin-related regulation of myogenesis through up-regulation of myostatin, predominantly in the course of terminal differentiation and glucocorticoid-dependent catabolic stimulation. PMID

  3. Change in viability of C2C12 myoblasts under compression, shear and oxidative challenges.

    PubMed

    Hong, Ye; Yao, Yifei; Wong, Singwan; Bian, Liming; Mak, Arthur F T

    2016-05-24

    Skeletal and epidermal loadings can damage muscle cells and contribute to the development of deep tissue injury (DTI) - a severe kind of pressure ulcers affecting many people with disability. Important predisposing factors include the multiaxial stress and strain fields in the internal tissues, particularly the vulnerable muscles around bony prominences. A careful study of the mechanical damage thresholds for muscle cell death is critical not only to the understanding of the formation of DTI, but also to the design of various body support surfaces for prevention. In this paper, we measured the mechanical damage thresholds of C2C12 myoblasts under prescribed compressive strains (15% and 30%) and shear strains (from 0% to 100%), and studied how oxidative stress, as caused potentially by reperfusion or inflammation, may affect such damage thresholds. A flat plate was used to apply a uniform compressive strain and a radially increasing shear strain on disks of Gelatin-methacrylate (GelMA) hydrogel with myoblasts encapsulated within. The percentages of cell death were estimated with propidium iodide (PI) and calcein AM staining. Results suggested that cell death depended on both the level and duration of the applied strain. There seemed to be a non-linear coupling between compression and shear. Muscle cells often need to function biomechanically in challenging oxidative environments. To study how oxidative stress may affect the mechanical damage thresholds of myoblasts, cell viability under compressive and shear strains was also studied after the cells were pre-treated for different durations (1h and 20h) with different concentrations (0.1mM and 0.5mM) of hydrogen peroxide (H2O2). Oxidative stress can either compromise or enhance the cellular resistance to shear damage, depending on the level and duration of the oxidative exposure. PMID:27017299

  4. Wnt/{beta}-catenin signaling changes C2C12 myoblast proliferation and differentiation by inducing Id3 expression

    SciTech Connect

    Zhang, Long; Shi, Songting; Zhang, Juan; Zhou, Fangfang; Dijke, Peter ten

    2012-03-02

    Highlights: Black-Right-Pointing-Pointer Expression of Id3 but not Id1 is induced by Wnt3a stimulation in C2C12 cells. Black-Right-Pointing-Pointer Wnt3a induces Id3 expression via canonical Wnt/{beta}-catenin pathway. Black-Right-Pointing-Pointer Wnt3a-induced Id3 expression does not depend on BMP signaling activation. Black-Right-Pointing-Pointer Induction of Id3 expression is critical determinant in Wnt3a-induced cell proliferation and differentiation. -- Abstract: Canonical Wnt signaling plays important roles in regulating cell proliferation and differentiation. In this study, we report that inhibitor of differentiation (Id)3 is a Wnt-inducible gene in mouse C2C12 myoblasts. Wnt3a induced Id3 expression in a {beta}-catenin-dependent manner. Bone morphogenetic protein (BMP) also potently induced Id3 expression. However, Wnt-induced Id3 expression occurred independent of the BMP/Smad pathway. Functional studies showed that Id3 depletion in C2C12 cells impaired Wnt3a-induced cell proliferation and alkaline phosphatase activity, an early marker of osteoblast cells. Id3 depletion elevated myogenin induction during myogenic differentiation and partially impaired Wnt3a suppressed myogenin expression in C2C12 cells. These results suggest that Id3 is an important Wnt/{beta}-catenin induced gene in myoblast cell fate determination.

  5. Interleukin 17 inhibits myogenic and promotes osteogenic differentiation of C2C12 myoblasts by activating ERK1,2.

    PubMed

    Kocić, Jelena; Santibañez, Juan F; Krstić, Aleksandra; Mojsilović, Slavko; Dorđević, Ivana Okić; Trivanović, Drenka; Ilić, Vesna; Bugarski, Diana

    2012-04-01

    The present study evaluated the role of interleukin (IL) 17 in multilineage commitment of C2C12 myoblastic cells and investigated associated signaling pathways. The results concerning the effects on cell function showed that IL-17 inhibits the migration of C2C12 cells, while not affecting their proliferation. The data regarding the influence on differentiation demonstrated that IL-17 inhibits myogenic differentiation of C2C12 cells by down-regulating the myogenin mRNA level, myosin heavy chain expression and myotube formation, but promotes their osteogenic differentiation by up-regulating the Runt-related transcription factor 2 mRNA level, cyclooxygenase-2 expression and alkaline phosphatase activity. IL-17 exerted these effects by activating ERK1,2 mitogen activated protein kinase signaling pathway, which in turn regulated the expression of relevant genes and proteins to inhibit myogenic differentiation and induce osteogenic differentiation. Additional analysis showed that the induction of osteogenic differentiation by IL-17 is independent of BMP signaling. The results obtained demonstrate the potential of IL-17 not only to inhibit the myogenic differentiation of C2C12 myoblasts but also to convert their differentiation pathway into that of osteoblast lineage providing new insight into the capacities of IL-17 to modulate the differentiation commitment. PMID:22285818

  6. Astragalus Polysaccharide Inhibits Autophagy and Apoptosis from Peroxide-Induced Injury in C2C12 Myoblasts.

    PubMed

    Yin, Yi; Lu, Lu; Wang, Dongtao; Shi, Ying; Wang, Ming; Huang, Yanfeng; Chen, Dexiu; Deng, Cong; Chen, Jiebin; Lv, Peijia; Wang, Yanjing; Li, Chengjie; Wei, Lian-Bo

    2015-11-01

    The aim is to study the effects and underlying mechanisms of astragalus polysaccharide (APS) on the peroxide-induced injury in C2C12 myoblasts in vitro. Cell viability in the presence or absence of APS was detected by the methyl thiazolyl tetrazolium colorimetric assay. The autophagosomes were observed by electron microscopy to examine the influence of APS on autophagy caused by H2O2 in C2C12 cells, and the percentage of apoptosis cells was measured by flow cytometry. To further confirm the effect of H2O2 on C2C12 cells, the protein expression of LC3 and RARP, which are the markers of autophagy and apoptosis, respectively, was analyzed by Western blot, as well as the expression levels of p-p70S6K, p70S6K, Bcl-2, Bax, cyto-C, and Caspase-3, to reveal the underlying mechanisms. We observed multiple effects of APS on C2C12 functionality. APS treatment of C2C12 cells at 1 mg/mL reduced cell viability to less than 70 %, and analysis by electron microscopy revealed that APS also reduced the number of H2O2-induced autophagosome formation. Similarly, APS abated the H2O2-mediated increase in cell apoptosis, which was accompanied by the inhibition of LC3 II and RARP that are normally upregulated by H2O2. The expression of p-p70S6K and p70S6K, however, remained unchanged in C2C12 cells in the Control, H2O2 and H2O2 + APS groups. In addition, APS promoted the expression of protein Bcl-2 in H2O2-treated C2C12 cells, but did not change Bax, thus reducing the Bax/Bcl-2 ratio that in turn prevented the release of cytochrome c and the activation of caspase-3. APS inhibits the autophagy and apoptosis induced by peroxide injury in C2C12 myoblasts through two independent signaling pathways: the mTOR-independent pathway for the inhibition of autophagy, and the caspase-3-dependent pathway for the suppression of apoptosis. PMID:27352334

  7. Melatonin behavior in restoring chemical damaged C2C12 myoblasts.

    PubMed

    Salucci, Sara; Baldassarri, Valentina; Canonico, Barbara; Burattini, Sabrina; Battistelli, Michela; Guescini, Michele; Papa, Stefano; Stocchi, Vilberto; Falcieri, Elisabetta

    2016-06-01

    It is known that, besides a wide range of functions, melatonin provides protection against oxidative stress, thanks to its ability to act, directly, as a free radical scavenger and, indirectly, by stimulating antioxidant enzymes production and mitochondrial electron transport chain efficiency. Oxidative stress is one of the major players in initiating apoptotic cell death in skeletal muscle, as well as in other tissues. Apoptosis is essential for skeletal muscle development and homeostasis; nevertheless, its misregulation has been frequently observed in several myopathies, in sarcopenia, as well as in denervation and disuse. Melatonin activity was investigated in undifferentiated C2C12 skeletal muscle cells, after exposure to various apoptotic chemical triggers, chosen for their different mechanisms of action. Cells were pretreated with melatonin and then exposed to hydrogen peroxide, etoposide and staurosporine. Morphofunctional and molecular analyses show that in myoblasts melatonin prevents oxidative stress and apoptosis induced by chemicals following, at least in part, the mitochondria pathway. These results confirm melatonin ability to act as an antioxidant and antiapoptotic molecule in skeletal muscle cells, thus suggesting a possible therapeutic strategy for myopathies involving apoptosis misregulation. Microsc. Res. Tech. 79:532-540, 2016. © 2016 Wiley Periodicals, Inc. PMID:27059940

  8. Nanoparticle-mediated intracellular lipid accumulation during C2C12 cell differentiation

    SciTech Connect

    Tsukahara, Tamotsu; Haniu, Hisao

    2011-03-25

    Research highlights: {yields} HTT2800 has a significant effect on intracellular lipid accumulation. {yields} HTT2800 reduced muscle-specific genes and led to the emergence of adipocyte-related genes. {yields} HT2800 converts the differentiation pathway of C2C12 myoblasts to that of adipoblast-like cells. -- Abstract: In this report, we sought to elucidate whether multiwall carbon nanotubes are involved in the modulation of the proliferation and differentiation of the skeletal muscle cell line C2C12. Skeletal muscle is a major mass peripheral tissue that accounts for 40% of total body weight and 50% of energy consumption. We focused on the differentiation pathway of myoblasts after exposure to a vapor-grown carbon fiber, HTT2800, which is one of the most highly purified carbon nanotubes. This treatment leads in parallel to the expression of a typical adipose differentiation program. We found that HTT2800 stimulated intracellular lipid accumulation in C2C12 cells. We have also shown by quantified PCR analysis that the expression of adipose-related genes was markedly upregulated during HTT2800 exposure. Taken together, these results suggest that HTT2800 specifically converts the differentiation pathway of C2C12 myoblasts to that of adipoblast-like cells.

  9. Hypomorphic Smn knockdown C2C12 myoblasts reveal intrinsic defects in myoblast fusion and myotube morphology

    SciTech Connect

    Shafey, Dina; Cote, Patrice D.; Kothary, Rashmi . E-mail: rkothary@ohri.ca

    2005-11-15

    Dosage of the survival motor neuron (SMN) protein has been directly correlated with the severity of disease in patients diagnosed with spinal muscular atrophy (SMA). It is also clear that SMA is a neurodegenerative disorder characterized by the degeneration of the {alpha}-motor neurons in the anterior horn of the spinal cord and atrophy of the associated skeletal muscle. What is more controversial is whether it is neuronal and/or muscle-cell-autonomous defects that are responsible for the disease per se. Although motor neuron degeneration is generally accepted as the primary event in SMA, intrinsic muscle defects in this disease have not been ruled out. To gain a better understanding of the influence of SMN protein dosage in muscle, we have generated a hypomorphic series of myoblast (C2C12) stable cell lines with variable Smn knockdown. We show that depletion of Smn in these cells resulted in a decrease in the number of nuclear 'gems' (gemini of coiled bodies), reduced proliferation with no increase in cell death, defects in myoblast fusion, and malformed myotubes. Importantly, the severity of these abnormalities is directly correlated with the decrease in Smn dosage. Taken together, our work supports the view that there is an intrinsic defect in skeletal muscle cells of SMA patients and that this defect contributes to the overall pathogenesis in this devastating disease.

  10. Nandrolone, an anabolic steroid, stabilizes Numb protein through inhibition of mdm2 in C2C12 myoblasts.

    PubMed

    Liu, Xin-Hua; Yao, Shen; Levine, Alice C; Kirschenbaum, Alexander; Pan, Jiangping; Wu, Yong; Qin, Weiping; Collier, Lauren; Bauman, William A; Cardozo, Christopher P

    2012-01-01

    Nandrolone, an anabolic steroid, slows denervation atrophy of rat muscle, prevents denervation-induced nuclear accumulation of intracellular domain of the Notch receptor, and elevates expression of Numb. Numb acts as an inhibitor of Notch signaling and promotes myogenic differentiation of satellite cells. Turnover of Numb is regulated by mdm2, an E3 ubiquitin ligase. With these considerations in mind, we investigated the effects of nandrolone on the expression of Numb and mdm2 proteins and determined the effect of mdm2 on nandrolone-induced alterations in Numb protein in C2C12 myoblasts. When C2C12 cells were cultured in a medium favoring differentiation (Dulbecco modified Eagle medium containing 2% horse serum), nandrolone up-regulated Numb protein levels in a time-dependent manner and prolonged Numb protein half-life from 10 to 18 hours. In contrast, nandrolone reduced the expression of mdm2 protein. To determine whether the decreased mdm2 expression induced by nandrolone was responsible for the increased levels and prolonged half-life of Numb protein in this cell line, mdm2-small interfering RNA (siRNA) was employed to inhibit mdm2 expression. Compared to cells transfected with scrambled siRNA (negative control), transfection with mdm2-siRNA increased basal Numb protein expression but abolished the further increase in Numb protein levels by nandrolone. In addition, transfection of mdm2-siRNA mimicked the effect of nandrolone to prolong the half-life of Numb protein. Moreover, when C2C12 cells were forced to overexpress mdm2, there was a significant decline in the expression of both basal and inducible Numb protein. Our data suggest that nandrolone, by a novel mechanism for this agent in a muscle cell type, increases Numb protein levels in C2C12 myoblasts by stabilizing Numb protein against degradation, at least in part, via suppression of mdm2 expression. PMID:22700758

  11. Propolis Ethanol Extract Stimulates Cytokine and Chemokine Production through NF-κB Activation in C2C12 Myoblasts

    PubMed Central

    Washio, Kohei; Kobayashi, Mao; Saito, Natsuko; Amagasa, Misato; Kitamura, Hiroshi

    2015-01-01

    Myoblast activation is a triggering event for muscle remodeling. We assessed the stimulatory effects of propolis, a beehive product, on myoblasts. After an 8 h treatment with 100 μg/mL of Brazilian propolis ethanol extract, expression of various chemokines, including CCL-2 and CCL-5, and cytokines, such as IL-6, increased. This propolis-induced cytokine production appears to depend on NF-κB activation, because the IKK inhibitor BMS-345541 repressed mRNA levels of CCL-2 by ~66%, CCL-5 by ~81%, and IL-6 by ~69% after propolis treatment. Supernatant from propolis-conditioned C2C12 cells upregulated RAW264 macrophage migration. The supernatant also stimulated RAW264 cells to produce angiogenic factors, including VEGF-A and MMP-12. Brazilian green propolis therefore causes myoblasts to secrete cytokines and chemokines, which might contribute to tissue remodeling of skeletal muscle. PMID:26604971

  12. CRF Type 2 Receptors Mediate the Metabolic Effects of Ghrelin in C2C12 cells

    PubMed Central

    Gershon, Eran; Vale, Wylie W

    2014-01-01

    Objective Ghrelin is known to regulate appetite control and cellular metabolism. The Corticotropin-Releasing Factor (CRF) family is also known to regulate energy balance. In this study, we investigated the links between ghrelin and the CRF family in C2C12 cells, a mouse myoblast cell line. Design and methods C2C12 cells were treated with ghrelin in the presence or absence of CRF receptor antagonists and then subjected to different metabolic analyses. Results Ghrelin enhanced glucose uptake by C2C12 cells, induced GLUT4 translocation to the cell surface and decreased RBP4 expression. A CRF-R2 selective antagonist, anti-sauvagine-30, blocked ghrelin-induced glucose uptake, Ghrelin upregulated CRF-R2 but not CRF-R1 levels. Moreover, ghrelin-treated C2C12 cells displayed a cAMP and pERK activation in response to Ucn3, a CRF-R2 specific ligand, but not in response to CRF or stressin, CRF-R1 specific ligands. Ghrelin also induced UCP2 and UCP3 expression, which were blocked by anti-sauvagine-30. Ghrelin did not induce fatty acids uptake by C2C12 cells or ACC expression. Even though C2C12 cells clearly exhibited responses to ghrelin, the known ghrelin receptor, GHSR1a, was not detectable in C2C12 cells. Conclusion Our results suggest that, ghrelin plays a role in regulating muscle glucose and, raise the possibility that suppression of the CRF-R2 pathway might provide benefits in high ghrelin states. PMID:23804489

  13. Prevention of oxidative stress-induced apoptosis of C2C12 myoblasts by a Cichorium intybus root extract.

    PubMed

    Lee, Yong-Hyeon; Kim, Dae-Hyun; Kim, Yoon Suk; Kim, Tack-Joong

    2013-01-01

    Cell injury associated with reactive oxygen species (ROS) has been reported in various muscular disorders. We found that a Cichorium intybus (Cii) extract reduced H(2)O(2)-induced viability loss in C2C12 myoblasts, inhibited oxidative stress-induced apoptosis and increased intracellular heat shock protein 70 (Hsp 70) expression. Cii also inhibited the level of intracellular ceramide. These results indicate that Cii may prevent skeletal muscle atrophy by inducing the expression of Hsp 70 and inhibiting the level of ceramide. PMID:23391909

  14. Subnuclear localization and differentiation-dependent increased expression of DGK-zeta in C2C12 mouse myoblasts.

    PubMed

    Evangelisti, Camilla; Riccio, Massimo; Faenza, Irene; Zini, Nicoletta; Hozumi, Yasukazu; Goto, Kaoru; Cocco, L; Martelli, Alberto M

    2006-11-01

    Diacylglycerol kinases (DGKs) catalyze phosphorylation of diacylglycerol (DG) to yield phosphatidic acid (PA). Previous evidence has shown that the nucleus contains several DGK isoforms. In this study, we have analyzed the expression and subnuclear localization of DGK-zeta employing C2C12 mouse myoblasts. Immunocytochemistry coupled to confocal laser scanning microscopy showed that both endogenous and green fluorescent protein-tagged overexpressed DGK-zeta localized mostly to the nucleus. In contrast, overexpressed DGK-alpha, -beta, -delta, and -iota did not migrate to the nucleus. DGK-zeta was present in the nuclear speckle domains, as also revealed by immuno-electron microscopy analysis. Moreover, DGK-zeta co-localized and interacted with phosphoinositide-specific phospholipase Cbeta1 (PLCbeta1), that is involved in inositide-dependent signaling pathways important for the regulation of cell proliferation and differentiation. Furthermore, we report that DGK-zeta associated with nuclear matrix, the fundamental organizing principle of the nucleus where many cell functions take place, including DNA replication, gene expression, and protein phosphorylation. Nuclear DGK-zeta increased during myogenic differentiation of C2C12 cells, while DGK-zeta down-regulation by siRNA markedly impaired differentiation. Overall, our findings further support the importance of speckles and nuclear matrix in lipid-dependent signaling and suggest that nuclear DGK-zeta might play some fundamental role during myogenic differentiation of C2C12 cells. PMID:16897754

  15. Selective androgen receptor modulator, YK11, regulates myogenic differentiation of C2C12 myoblasts by follistatin expression.

    PubMed

    Kanno, Yuichiro; Ota, Rumi; Someya, Kousuke; Kusakabe, Taichi; Kato, Keisuke; Inouye, Yoshio

    2013-01-01

    The myogenic differentiation of C2C12 myoblast cells is induced by the novel androgen receptor (AR) partial agonist, (17α,20E)-17,20-[(1-methoxyethylidene)bis-(oxy)]-3-oxo-19-norpregna-4,20-diene-21-carboxylic acid methyl ester (YK11), as well as by dihydrotestosterone (DHT). YK11 is a selective androgen receptor modulator (SARM), which activates AR without the N/C interaction. In this study, we further investigated the mechanism by which YK11 induces myogenic differentiation of C2C12 cells. The induction of key myogenic regulatory factors (MRFs), such as myogenic differentiation factor (MyoD), myogenic factor 5 (Myf5) and myogenin, was more significant in the presence of YK11 than in the presence of DHT. YK11 treatment of C2C12 cells, but not DHT, induced the expression of follistatin (Fst), and the YK11-mediated myogenic differentiation was reversed by anti-Fst antibody. These results suggest that the induction of Fst is important for the anabolic effect of YK11. PMID:23995658

  16. Lysophosphatidic Acid Stimulates MCP-1 Secretion from C2C12 Myoblast.

    PubMed

    Tsukahara, Tamotsu; Haniu, Hisao

    2012-01-01

    Chemokines are regulatory proteins that play an important role in muscle cell migration and proliferation. In this study, C2C12 cells treated with lysophosphatidic acid (LPA) showed an increase in endogenous monocyte chemotactic protein-1 (MCP-1) expression and secretion. LPA is a naturally occurring bioactive lysophospholipid with hormone- and growth-factor-like activities. LPA is produced by activated platelets, cytokine-stimulated leukocytes, and possibly by other cell types. However, the LPA analog cyclic phosphatidic acid (cPA) had no effect on the expression and secretion of MCP-1. LPA, although similar in structure to cPA, had potent inducing effects on MCP-1 expression in C2C12 cells. In this study, we showed that LPA enhanced MCP-1 mRNA expression and protein secretion in a dose-dependent manner. Taken together, these results suggest that LPA enhances MCP-1 secretion in C2C12 cells and thus may play an important role in cell proliferation. PMID:24049655

  17. Glycogenome expression dynamics during mouse C2C12 myoblast differentiation suggests a sequential reorganization of membrane glycoconjugates

    PubMed Central

    Janot, Mathilde; Audfray, Aymeric; Loriol, Céline; Germot, Agnès; Maftah, Abderrahman; Dupuy, Fabrice

    2009-01-01

    Background Several global transcriptomic and proteomic approaches have been applied in order to obtain new molecular insights on skeletal myogenesis, but none has generated any specific data on glycogenome expression, and thus on the role of glycan structures in this process, despite the involvement of glycoconjugates in various biological events including differentiation and development. In the present study, a quantitative real-time RT-PCR technology was used to profile the dynamic expression of 375 glycogenes during the differentiation of C2C12 myoblasts into myotubes. Results Of the 276 genes expressed, 95 exhibited altered mRNA expression when C2C12 cells differentiated and 37 displayed more than 4-fold up- or down-regulations. Principal Component Analysis and Hierarchical Component Analysis of the expression dynamics identified three groups of coordinately and sequentially regulated genes. The first group included 12 down-regulated genes, the second group four genes with an expression peak at 24 h of differentiation, and the last 21 up-regulated genes. These genes mainly encode cell adhesion molecules and key enzymes involved in the biosynthesis of glycosaminoglycans and glycolipids (neolactoseries, lactoseries and ganglioseries), providing a clearer indication of how the plasma membrane and extracellular matrix may be modified prior to cell fusion. In particular, an increase in the quantity of ganglioside GM3 at the cell surface of myoblasts is suggestive of its potential role during the initial steps of myogenic differentiation. Conclusion For the first time, these results provide a broad description of the expression dynamics of glycogenes during C2C12 differentiation. Among the 37 highly deregulated glycogenes, 29 had never been associated with myogenesis. Their biological functions suggest new roles for glycans in skeletal myogenesis. PMID:19843320

  18. MicroRNAs Regulate Cellular ATP Levels by Targeting Mitochondrial Energy Metabolism Genes during C2C12 Myoblast Differentiation

    PubMed Central

    Siengdee, Puntita; Trakooljul, Nares; Murani, Eduard; Schwerin, Manfred; Wimmers, Klaus; Ponsuksili, Siriluck

    2015-01-01

    In our previous study, we identified an miRNA regulatory network involved in energy metabolism in porcine muscle. To better understand the involvement of miRNAs in cellular ATP production and energy metabolism, here we used C2C12 myoblasts, in which ATP levels increase during differentiation, to identify miRNAs modulating these processes. ATP level, miRNA and mRNA microarray expression profiles during C2C12 differentiation into myotubes were assessed. The results suggest 14 miRNAs (miR-423-3p, miR-17, miR-130b, miR-301a/b, miR-345, miR-15a, miR-16a, miR-128, miR-615, miR-1968, miR-1a/b, and miR-194) as cellular ATP regulators targeting genes involved in mitochondrial energy metabolism (Cox4i2, Cox6a2, Ndufb7, Ndufs4, Ndufs5, and Ndufv1) during C2C12 differentiation. Among these, miR-423-3p showed a high inverse correlation with increasing ATP levels. Besides having implications in promoting cell growth and cell cycle progression, its function in cellular ATP regulation is yet unknown. Therefore, miR-423-3p was selected and validated for the function together with its potential target, Cox6a2. Overexpression of miR-423-3p in C2C12 myogenic differentiation lead to decreased cellular ATP level and decreased expression of Cox6a2 compared to the negative control. These results suggest miR-423-3p as a novel regulator of ATP/energy metabolism by targeting Cox6a2. PMID:26010876

  19. Developmental Changes is Expression of Beta-Adrenergic Receptors in Cultures of C2C12 Skeletal Muscle Cells

    NASA Technical Reports Server (NTRS)

    Young, Ronald B.; Bridge, K. Y.; Vaughn, J. R.

    2000-01-01

    beta-Adrenergic receptor (bAR) agonists have been reported to modulate growth in several mammalian and avian species, and bAR agonists presumably exert their physiological action on skeletal muscle cells through this receptor. Because of the importance of bAR regulation on muscle protein metabolism in muscle cells, the objectives of this study were to determine the developmental expression pattern of the bAR population in C2C12 skeletal muscle cells, and to analyze changes in both the quantity and isoform expression of the major muscle protein, myosin. The number of bAR in mononucleated C2C12 cells was approximately 8,000 bAR per cell, which is comparable with the population reported in several other nonmuscle cell types. However, the bar population increased after myoblast fusion to greater than 50,000 bAR per muscle cell equivalent. The reasons for this apparent over-expression of bAR in C2C12 cells is not known. The quantity of myosin also increased after C2C12 myoblast fusion, but the quantity of myosin was less than that reported in primary muscle cell cultures. Finally, at least five different isoforms of myosin heavy chain could be resolved in C2C12 cells, and three of these exhibited either increased or decreased developmental regulation relative to the others. Thus, C2C12 myoblasts undergo developmental regulation of bAR population and myosin heavy chain isoform expression.

  20. Folic acid promotes the myogenic differentiation of C2C12 murine myoblasts through the Akt signaling pathway.

    PubMed

    Hwang, Seong Yeon; Kang, Yong Jung; Sung, Bokyung; Kim, Minjung; Kim, Dong Hwan; Lee, Yujin; Yoo, Mi-Ae; Kim, Cheol Min; Chung, Hae Young; Kim, Nam Deuk

    2015-10-01

    Folic acid is a water-soluble vitamin in the B-complex group, and an exogenous intake is required for health, growth and development. As a precursor to co-factors, folic acid is required for one-carbon donors in the synthesis of DNA bases and other essential biomolecules. A lack of dietary folic acid can lead to folic acid deficiency and can therefore result in several health problems, including macrocytic anemia, elevated plasma homocysteine levels, cardiovascular disease, birth defects, carcinogenesis, muscle weakness and difficulty in walking. Previous studies have indicated that folic acid exerts a positive effect on skeletal muscle functions. However, the precise role of folic acid in skeletal muscle cell differentiation remains poorly understood. Thus, in the present study, we examined the effects of folic acid on neo-myotube maturation and differentiation using C2C12 murine myoblasts. We found that folic acid promoted the formation of multinucleated myotubes, and increased the fusion index and creatine kinase (CK) activity in a concentration-dependent manner. In addition, western blot analysis revealed that the expression levels of the muscle-specific marker, myosin heavy chain (MyHC), as well as those of the myogenic regulatory factors (MRFs), MyoD and myogenin, were increased in the folic acid-treated myotubes during myogenic differentiation. Folic acid also promoted the activation of the Akt pathway, and this effect was inhibited by treatment of the C2C12 cells with LY294002 (Akt inhibitor). Blocking of the Akt pathway with a specific inhibitor revealed that it was necessary for mediating the stimulatory effects of folic acid on muscle cell differentiation and fusion. Taken together, our data suggest that folic acid promotes the differentiation of C2C12 cells through the activation of the Akt pathway. PMID:26310574

  1. Docosahexaenoyl ethanolamide improves glucose uptake and alters endocannabinoid system gene expression in proliferating and differentiating C2C12 myoblasts

    PubMed Central

    Kim, Jeffrey; Carlson, Morgan E.; Watkins, Bruce A.

    2014-01-01

    Skeletal muscle is a major storage site for glycogen and a focus for understanding insulin resistance and type-2-diabetes. New evidence indicates that overactivation of the peripheral endocannabinoid system (ECS) in skeletal muscle diminishes insulin sensitivity. Specific n-6 and n-3 polyunsaturated fatty acids (PUFA) are precursors for the biosynthesis of ligands that bind to and activate the cannabinoid receptors. The function of the ECS and action of PUFA in skeletal muscle glucose uptake was investigated in proliferating and differentiated C2C12 myoblasts treated with either 25 μM of arachidonate (AA) or docosahexaenoate (DHA), 25 μM of EC [anandamide (AEA), 2-arachidonoylglycerol (2-AG), docosahexaenoylethanolamide (DHEA)], 1 μM of CB1 antagonist NESS0327, and CB2 inverse agonist AM630. Compared to the BSA vehicle control cell cultures in both proliferating and differentiated myoblasts those treated with DHEA, the EC derived from the n-3 PUFA DHA, had higher 24 h glucose uptake, while AEA and 2-AG, the EC derived from the n-6 PUFA AA, had lower basal glucose uptake. Adenylyl cyclase mRNA was higher in myoblasts treated with DHA in both proliferating and differentiated states while those treated with AEA or 2-AG were lower compared to the control cell cultures. Western blot and qPCR analysis showed higher expression of the cannabinoid receptors in differentiated myoblasts treated with DHA while the opposite was observed with AA. These findings indicate a compensatory effect of DHA and DHEA compared to AA-derived ligands on the ECS and associated ECS gene expression and higher glucose uptake in myoblasts. PMID:24711795

  2. Recombinant adenoviral microRNA-206 induces myogenesis in C2C12 cells

    PubMed Central

    Zhang, Weiwei; Wang, Tao; Su, Yongping; Li, Wang; Frame, Lynn T.; Ai, Guoping

    2011-01-01

    Summary Background The expression of microRNA-206 (miR-206) is high in skeletal muscle but low in most other tissues. The expression of miR-206 is increased in muscular dystrophy, suggesting its involvement in the pathogenesis of muscle diseases. To determine the role of miR-206 in muscle cell differentiation and explore a possible gene therapy vector, we constructed a miR-206 adenoviral expression vector (AdvmiR-206) and tested for transfection into C2C12 stem cells. Material/Methods A 355-bp PCR amplicon from C57B6 mouse skeletal muscle genomic DNA was inserted into the adenoviral shuttle vector pAdTrack-CMV, which was then co-transformed with the adenoviral backbone plasmid pAdEasy-1 into competent E. coli BJ5183 bacteria. The specificity and function of this recombinant adenoviral MiR-206 were studied in C2C12 cells by Northern blot, immunofluorescence, Western blot, and flow cytometry. Results Increased expression of miR-206 in AdvmiR-206 transfected C2C12 cells (P<0.001) and resulted in morphological and biochemical changes over time that were similar to serum deprivation, including elongated cells and increased myosin heavy chain proteins. Even in the absence of serum deprivation, miR-206 overexpression accounted for a 50% reduction of S-phase cells (P<0.01). Moreover, in untransfected C2C12 cells, the introduction of miR-206-specific antisense oligoribonucleotides inhibited the normal response to serum deprivation. Twenty-four hours after lipofection of antisense oligoribonucleotides, the number of elongated cells was reduced by half (P<0.01). Conclusions Collectively, these data support a role for miR-206 in myoblast differentiation. We foresee potential applications for the AdvmiR-206 vector in research and therapy. PMID:22129894

  3. Nrf2-Mediated HO-1 Induction Contributes to Antioxidant Capacity of a Schisandrae Fructus Ethanol Extract in C2C12 Myoblasts

    PubMed Central

    Kang, Ji Sook; Han, Min Ho; Kim, Gi-Young; Kim, Cheol Min; Kim, Byung Woo; Hwang, Hye Jin; Choi, Yung Hyun

    2014-01-01

    This study was designed to confirm the protective effect of Schisandrae Fructus, which are the dried fruits of Schisandra chinensis (Turcz.) Baill, against oxidative stress-induced cellular damage and to elucidate the underlying mechanisms in C2C12 myoblasts. Preincubating C2C12 cells with a Schisandrae Fructus ethanol extract (SFEE) significantly attenuated hydrogen peroxide (H2O2)-induced inhibition of growth and induced scavenging activity against intracellular reactive oxygen species (ROS) induced by H2O2. SFEE also inhibited comet tail formation and phospho-histone γH2A.X expression, suggesting that it prevents H2O2-induced cellular DNA damage. Furthermore, treating C2C12 cells with SFEE significantly induced heme oxygenase-1 (HO-1) and phosphorylation of nuclear factor-erythroid 2 related factor 2 (Nrf2). However, zinc protoporphyrin IX, a potent inhibitor of HO-1 activity, significantly reversed the protective effects of SFEE against H2O2-induced growth inhibition and ROS generation in C2C12 cells. Additional experiments revealed that the potential of the SFEE to induce HO-1 expression and protect against H2O2-mediated cellular damage was abrogated by transient transfection with Nrf2-specific small interfering RNA, suggesting that the SFEE protected C2C12 cells against oxidative stress-induced injury through the Nrf2/HO-1 pathway. PMID:25493944

  4. Proteomic Analysis of C2C12 Myoblast and Myotube Exosome-Like Vesicles: A New Paradigm for Myoblast-Myotube Cross Talk?

    PubMed Central

    Forterre, Alexis; Jalabert, Audrey; Chikh, Karim; Errazuriz, Elisabeth; De Larichaudy, Joffrey; Chanon, Stéphanie; Weiss-Gayet, Michèle; Hesse, Anne-Marie; Record, Michel; Geloen, Alain; Lefai, Etienne; Vidal, Hubert; Couté, Yohann; Rome, Sophie

    2014-01-01

    Exosomes are nanometer-sized microvesicles formed in multivesicular bodies (MVBs) during endosome maturation. Exosomes are released from cells into the microenvironment following fusion of MVBs with the plasma membrane. During the last decade, skeletal muscle-secreted proteins have been identified with important roles in intercellular communications. To investigate whether muscle-derived exosomes participate in this molecular dialog, we determined and compared the protein contents of the exosome-like vesicles (ELVs) released from C2C12 murine myoblasts during proliferation (ELV-MB), and after differentiation into myotubes (ELV-MT). Using a proteomic approach combined with electron microscopy, western-blot and bioinformatic analyses, we compared the protein repertoires within ELV-MB and ELV-MT. We found that these vesicles displayed the classical properties of exosomes isolated from other cell types containing components of the ESCRT machinery of the MVBs, as well as numerous tetraspanins. Specific muscle proteins were also identified confirming that ELV composition also reflects their muscle origin. Furthermore quantitative analysis revealed stage-preferred expression of 31 and 78 proteins in ELV-MB and ELV-MT respectively. We found that myotube-secreted ELVs, but not ELV-MB, reduced myoblast proliferation and induced differentiation, through, respectively, the down-regulation of Cyclin D1 and the up-regulation of myogenin. We also present evidence that proteins from ELV-MT can be incorporated into myoblasts by using the GFP protein as cargo within ELV-MT. Taken together, our data provide a useful database of proteins from C2C12-released ELVs throughout myogenesis and reveals the importance of exosome-like vesicles in skeletal muscle biology. PMID:24392111

  5. Proteomic analysis of C2C12 myoblast and myotube exosome-like vesicles: a new paradigm for myoblast-myotube cross talk?

    PubMed

    Forterre, Alexis; Jalabert, Audrey; Berger, Emmanuelle; Baudet, Mathieu; Chikh, Karim; Errazuriz, Elisabeth; De Larichaudy, Joffrey; Chanon, Stéphanie; Weiss-Gayet, Michèle; Hesse, Anne-Marie; Record, Michel; Geloen, Alain; Lefai, Etienne; Vidal, Hubert; Couté, Yohann; Rome, Sophie

    2014-01-01

    Exosomes are nanometer-sized microvesicles formed in multivesicular bodies (MVBs) during endosome maturation. Exosomes are released from cells into the microenvironment following fusion of MVBs with the plasma membrane. During the last decade, skeletal muscle-secreted proteins have been identified with important roles in intercellular communications. To investigate whether muscle-derived exosomes participate in this molecular dialog, we determined and compared the protein contents of the exosome-like vesicles (ELVs) released from C2C12 murine myoblasts during proliferation (ELV-MB), and after differentiation into myotubes (ELV-MT). Using a proteomic approach combined with electron microscopy, western-blot and bioinformatic analyses, we compared the protein repertoires within ELV-MB and ELV-MT. We found that these vesicles displayed the classical properties of exosomes isolated from other cell types containing components of the ESCRT machinery of the MVBs, as well as numerous tetraspanins. Specific muscle proteins were also identified confirming that ELV composition also reflects their muscle origin. Furthermore quantitative analysis revealed stage-preferred expression of 31 and 78 proteins in ELV-MB and ELV-MT respectively. We found that myotube-secreted ELVs, but not ELV-MB, reduced myoblast proliferation and induced differentiation, through, respectively, the down-regulation of Cyclin D1 and the up-regulation of myogenin. We also present evidence that proteins from ELV-MT can be incorporated into myoblasts by using the GFP protein as cargo within ELV-MT. Taken together, our data provide a useful database of proteins from C2C12-released ELVs throughout myogenesis and reveals the importance of exosome-like vesicles in skeletal muscle biology. PMID:24392111

  6. An exploration of the antioxidant effects of garlic saponins in mouse-derived C2C12 myoblasts.

    PubMed

    Kang, Ji Sook; Kim, Sung Ok; Kim, Gi-Young; Hwang, Hye Jin; Kim, Byung Woo; Chang, Young-Chae; Kim, Wun-Jae; Kim, Cheol Min; Yoo, Young Hyun; Choi, Yung Hyun

    2016-01-01

    In this study, we aimed to confirm the protective effects of garlic saponins against oxidative stress-induced cellular damage and to further elucidate the underlying mechanisms in mouse-derived C2C12 myoblasts. Relative cell viability was determined by 3-(4.5-dimethylthiazol-2-yl)-2.5 diphenyltetrazolium bromide assay. Comet assay was used to measure DNA damage and oxidative stress was determined using 2',7'-dichlorofluorescein diacetate to measure intracellular reactive oxygen species (ROS) generation. Western blot analysis and small interfering RNA (siRNA)-based knockdown were used in order to investigate the possible molecular mechanisms. Our results revealed that garlic saponins prevented hydrogen peroxide (H2O2)-induced growth inhibition and exhibited scavenging activity against intracellular ROS. We also observed that garlic saponins prevented H2O2-induced comet tail formation and decreased the phosphorylation levels of γH2AX expression, suggesting that they can prevent H2O2-induced DNA damage. In addition, garlic saponins increased the levels of heme oxygenase-1 (HO-1), a potent antioxidant enzyme associated with the induction and phosphorylation of nuclear factor erythroid 2-related factor 2 (Nrf2) and the translocation of Nrf2 from the cytosol into the nucleus. However, the protective effects of garlic saponins on H2O2-induced ROS generation and growth inhibition were significantly reduced by zinc protoporphyrin Ⅸ, an HO-1 competitive inhibitor. In addition, the potential of garlic saponins to mediate HO-1 induction and protect against H2O2‑mediated growth inhibition was adversely affected by transient transfection with Nrf2-specific siRNA. Garlic saponins activated extracellular signal‑regulated kinase (ERK) signaling, whereas a specific ERK inhibitor was able to inhibit HO-1 upregulation, as well as Nrf2 induction and phosphorylation. Taken together, the findings of our study suggest that garlic saponins activate the Nrf2/HO-1 pathway by enabling

  7. Cyclic Stretch Facilitates Myogenesis in C2C12 Myoblasts and Rescues Thiazolidinedione-Inhibited Myotube Formation.

    PubMed

    Chang, Ya-Ju; Chen, Yun-Ju; Huang, Chia-Wei; Fan, Shih-Chen; Huang, Bu-Miin; Chang, Wen-Tsan; Tsai, Yau-Sheng; Su, Fong-Chin; Wu, Chia-Ching

    2016-01-01

    Thiazolidinedione (TZD), a specific peroxisome proliferator-activated receptor γ (PPARγ) agonist, was developed to control blood glucose in diabetes patients. However, several side effects were reported that increased the risk of heart failure. We used C2C12 myoblasts to investigate the role of PPARs and their transcriptional activity during myotube formation. The role of mechanical stretch during myogenesis was also explored by applying cyclic stretch to the differentiating C2C12 myoblasts with 10% strain deformation at 1 Hz. The myogenesis medium (MM), composed of Dulbecco's modified Eagle's medium with 2% horse serum, facilitated myotube formation with increased myosin heavy chain and α-smooth muscle actin (α-SMA) protein expression. The PPARγ protein and PPAR response element (PPRE) promoter activity decreased during MM induction. Cyclic stretch further facilitated the myogenesis in MM with increased α-SMA and decreased PPARγ protein expression and inhibited PPRE promoter activity. Adding a PPARγ agonist (TZD) to the MM stopped the myogenesis and restored the PPRE promoter activity, whereas a PPARγ antagonist (GW9662) significantly increased the myotube number and length. During the myogenesis induction, application of cyclic stretch rescued the inhibitory effects of TZD. These results provide novel perspectives for mechanical stretch to interplay and rescue the dysfunction of myogenesis with the involvement of PPARγ and its target drugs. PMID:27047938

  8. Cyclic Stretch Facilitates Myogenesis in C2C12 Myoblasts and Rescues Thiazolidinedione-Inhibited Myotube Formation

    PubMed Central

    Chang, Ya-Ju; Chen, Yun-Ju; Huang, Chia-Wei; Fan, Shih-Chen; Huang, Bu-Miin; Chang, Wen-Tsan; Tsai, Yau-Sheng; Su, Fong-Chin; Wu, Chia-Ching

    2016-01-01

    Thiazolidinedione (TZD), a specific peroxisome proliferator-activated receptor γ (PPARγ) agonist, was developed to control blood glucose in diabetes patients. However, several side effects were reported that increased the risk of heart failure. We used C2C12 myoblasts to investigate the role of PPARs and their transcriptional activity during myotube formation. The role of mechanical stretch during myogenesis was also explored by applying cyclic stretch to the differentiating C2C12 myoblasts with 10% strain deformation at 1 Hz. The myogenesis medium (MM), composed of Dulbecco’s modified Eagle’s medium with 2% horse serum, facilitated myotube formation with increased myosin heavy chain and α-smooth muscle actin (α-SMA) protein expression. The PPARγ protein and PPAR response element (PPRE) promoter activity decreased during MM induction. Cyclic stretch further facilitated the myogenesis in MM with increased α-SMA and decreased PPARγ protein expression and inhibited PPRE promoter activity. Adding a PPARγ agonist (TZD) to the MM stopped the myogenesis and restored the PPRE promoter activity, whereas a PPARγ antagonist (GW9662) significantly increased the myotube number and length. During the myogenesis induction, application of cyclic stretch rescued the inhibitory effects of TZD. These results provide novel perspectives for mechanical stretch to interplay and rescue the dysfunction of myogenesis with the involvement of PPARγ and its target drugs. PMID:27047938

  9. Micropatterned polyelectrolyte nanofilms promote alignment and myogenic differentiation of C2C12 cells in standard growth media.

    PubMed

    Palamà, Ilaria E; D'Amone, Stefania; Coluccia, Addolorata M L; Gigli, Giuseppe

    2013-02-01

    Alignment of skeletal myoblasts is considered a critical step during myotube formation. The C2C12 cell line is frequently used as a model of skeletal muscle differentiation that can be induced by lowering the serum concentration in standard culture flasks. In order to mimic the striated architectures of skeletal muscles in vitro, micro-patterning techniques and surface engineering have been proven as useful approaches for promoting elongation and alignment of C2C12 myoblasts, thereby enhancing the outgrowth of multi-nucleated myotubes upon switching from growth media (GM) to differentiative media (DM). Herein, a layer-by-layer (LbL) polyelectrolyte multilayer deposition was combined with a micro-molding in capillaries (MIMIC) method to simultaneously provide biochemical and geometrical instructive cues that induced the formation of tightly apposed and parallel arrays of differentiating myotubes from C2C12 cells maintained in GM media for 15 days. This study focuses on two different types of patterned/self-assembled nanofilms based on alternated layers of poly (allylamine hydrochloride) (PAH)/poly(sodium 4-styrene-sulfonate) (PSS) as biocompatible but not biodegradable polymeric structures, or poly-L-arginine sulfate salt (pARG)/dextran sulfate sodium salt (DXS) as both biocompatible and biodegradable surfaces. The influence of these microstructures as well as of the nanofilm composition on C2C12 skeletal muscle cells' differentiation and viability was evaluated and quantified, pointing to give a reference for skeletal muscle regenerative potential in culture conditions that do not promote it. At this regard, our results validate PEM microstructured devices, to a greater extent for (PAH/PSS)₅-coated microgrooves, as biocompatible and innovative tools for tissue engineering applications and molecular dissection of events controlling C2C12 skeletal muscle regeneration without switching to their optimal differentiative culture media in vitro. PMID:22886558

  10. Sprouty-2 Overexpression in C2C12 Cells Confers Myogenic Differentiation Properties in the Presence of FGF2D⃞

    PubMed Central

    de Alvaro, Cristina; Martinez, Natalia; Rojas, Jose M.; Lorenzo, Margarita

    2005-01-01

    Myoblast C2C12 cells cultured in the presence of FGF2 actively proliferate and showed a differentiation-defective phenotype compared with cells cultured in low serum or in the presence of insulin. These FGF2 effects are associated with sustained activation of p44/p42-MAPK and lack of activation of AKT. Here we demonstrate that Sprouty-2, a protein involved in the negative feedback of receptor tyrosine kinase signaling, when stably overexpressed in C2C12 cells and in the presence of FGF2 produces growth arrest (precluding the expression of PCNA and the phosphorylation of retinoblastoma and inducing the expression of p21CIP) and myogenesis (multinucleated myotubes formation, induction of creatine kinase and expression of myosin heavy chain protein). These events were accompanied by repression of p44/p42-MAPK and activation of AKT. When C2C12 cells were stably transfected with a Sprouty-2 (Y55F) mutant defective in inhibiting p44/p42-MAPK activation by FGF, myoblasts in the presence of FGF continue to grow and completely fail to form myotubes. This work is the first evidence of the contribution of sprouty genes to myogenic differentiation in the presence of FGF2. PMID:16000370

  11. Response of C2C12 Myoblasts to Hypoxia: The Relative Roles of Glucose and Oxygen in Adaptive Cellular Metabolism

    PubMed Central

    Li, Wei; Hu, Zhen-Fu; Chen, Bin; Ni, Guo-Xin

    2013-01-01

    Background. Oxygen and glucose are two important nutrients for mammalian cell function. In this study, the effect of glucose and oxygen concentrations on C2C12 cellular metabolism was characterized with an emphasis on detecting whether cells show oxygen conformance (OC) in response to hypoxia. Methods. After C2C12 cells being cultured in the levels of glucose at 0.6 mM (LG), 5.6 mM (MG), or 23.3 mM(HG) under normoxic or hypoxic (1% oxygen) condition, cellular oxygen consumption, glucose consumption, lactate production, and metabolic status were determined. Short-term oxygen consumption was measured with a novel oxygen biosensor technique. Longer-term measurements were performed with standard glucose, lactate, and cell metabolism assays. Results. It was found that oxygen depletion in normoxia is dependent on the glucose concentration in the medium. Cellular glucose uptake and lactate production increased significantly in hypoxia than those in normoxia. In hypoxia the cellular response to the level of glucose was different to that in normoxia. The metabolic activities decreased while glucose concentration increased in normoxia, while in hypoxia, metabolic activity was reduced in LG and MG, but unchanged in HG condition. The OC phenomenon was not observed in the present study. Conclusions. Our findings suggested that a combination of low oxygen and low glucose damages the viability of C2C12 cells more seriously than low oxygen alone. In addition, when there is sufficient glucose, C2C12 cells will respond to hypoxia by upregulating anaerobic respiration, as shown by lactate production. PMID:24294605

  12. Investigation of interactions between poly-l-lysine-coated boron nitride nanotubes and C2C12 cells: up-take, cytocompatibility, and differentiation

    PubMed Central

    Ciofani, G; Ricotti, L; Danti, S; Moscato, S; Nesti, C; D’Alessandro, D; Dinucci, D; Chiellini, F; Pietrabissa, A; Petrini, M; Menciassi, A

    2010-01-01

    Boron nitride nanotubes (BNNTs) have generated considerable interest within the scientific community by virtue of their unique physical properties, which can be exploited in the biomedical field. In the present in vitro study, we investigated the interactions of poly-l-lysine-coated BNNTs with C2C12 cells, as a model of muscle cells, in terms of cytocompatibility and BNNT internalization. The latter was performed using both confocal and transmission electron microscopy. Finally, we investigated myoblast differentiation in the presence of BNNTs, evaluating the protein synthesis of differentiating cells, myotube formation, and expression of some constitutive myoblastic markers, such as MyoD and Cx43, by reverse transcription – polymerase chain reaction and Western blot analysis. We demonstrated that BNNTs are highly internalized by C2C12 cells, with neither adversely affecting C2C12 myoblast viability nor significantly interfering with myotube formation. PMID:20463944

  13. Mechanical-Stretch of C2C12 Myoblasts Inhibits Expression of Toll-Like Receptor 3 (TLR3) and of Autoantigens Associated with Inflammatory Myopathies

    PubMed Central

    Liu, Xinghui; Adriouch, Sahil; Liao, Hua

    2013-01-01

    Recent studies in patients suffering from inflammatory autoimmune myopathies suggested that moderate exercise training improves or at least stabilizes muscle strength and function without inducing disease flares. However, the precise mechanisms involved in this beneficial effect have not been extensively studied. Here we used a model of in vitro stretched C2C12 myoblasts to investigate whether mechanical stretch could influence myoblast proliferation or the expression of proinflammatory genes. Our results demonstrated that cyclic mechanical stretch stimulated C2C12 cell cycling and early up-regulation of the molecules related to mechanical-stretch pathway in muscle (calmodulin, nNOS, MMP-2, HGF and c-Met). Unexpectedly, mechanical stretch also reduced the expression of TLR3 and of proteins known to represent autoantigens in inflammatory autoimmune myopathies (Mi-2, HRS, DNA-PKcs, U1-70). Interestingly, stimulation or inhibition of calmodulin, NOS, HGF or c-Met molecules in vitro affected the expression of autoantigens and TLR3 proteins confirming their role in the inhibition of autoantigens and TLR3 during mechanical stretch. Overall, this study demonstrates for the first time that mechanical stretch could be beneficial by reducing expression of muscle autoantigens and of pro-inflammatory TLR3 and may provide new insight to understand how resistance training can reduce the symptoms associated with myositis. PMID:24224022

  14. Effect of beta-alanyl-L-histidinato zinc on the differentiation of C2C12 cells.

    PubMed

    Takada, Tsuyoshi; Suzuki, Naoto; Ito-Kato, Emi; Noguchi, Yoshihiro; Ito, Mitsuyasu; Maeno, Masao; Otsuka, Kichibee

    2004-12-17

    Although beta-alanyl-L-histidinato zinc (AHZ) can promote osteoblast differentiation, the molecular mechanism responsible is not fully understood. The purpose of this study was to determine the effect of AHZ on undifferentiating mesenchymal cells. C2C12, a typical pluripotential mesenchymal cell line, was used. The cells were cultured in 5% serum-containing medium to induce differentiation, either with or without the addition of AHZ. Cell lineage was determined by immunostaining of type II myosin heavy chains, alkaline phosphatase (ALPase) activity, mRNA expression of cellular phenotype-specific markers using semi-quantitative reverse transcriptase-polymerase chain reaction, and core binding factor alpha1/runt-related transcription factor-2 (Cbfa1/Runx2) protein synthesis using Western blot analysis. C2C12 cells cultured in the presence of AHZ were strongly inhibited from developing into myoblasts, and showed high ALPase activity that was approximately double that in the vehicle. The expression of mRNA for Cbfa1/Runx2, ALPase, Sox9 and type X collagen was increased markedly by the AHZ-stimulated medium, whereas that of desmin and MyoD mRNA was drastically decreased. AHZ increased Cbfa1/Runx2 protein expression substantially. These results provide clear evidence that AHZ converts the differentiation pathway of C2C12 cells to the osteoblast and/or chondroblast lineage. PMID:15556164

  15. Graphene oxide-stimulated myogenic differentiation of C2C12 cells on PLGA/RGD peptide nanofiber matrices

    NASA Astrophysics Data System (ADS)

    Shin, Y. C.; Lee, J. H.; Kim, M. J.; Hong, S. W.; Oh, J.-W.; Kim, C.-S.; Kim, B.; Hyun, J. K.; Kim, Y.-J.; Han, D.-W.

    2015-07-01

    During the last decade, much attention has been paid to graphene-based nanomaterials because they are considered as potential candidates for biomedical applications such as scaffolds for tissue engineering and substrates for the differentiation of stem cells. Until now, electrospun matrices composed of various biodegradable copolymers have been extensively developed for tissue engineering and regeneration; however, their use in combination with graphene oxide (GO) is novel and challenging. In this study, nanofiber matrices composed of poly(lactic-co-glycolic acid, PLGA) and M13 phage with RGD peptide displayed on its surface (RGD peptide-M13 phage) were prepared as extracellular matrix (ECM)-mimicking substrates. RGD peptide is a tripeptide (Arg-Gly-Asp) found on ECM proteins that promotes various cellular behaviors. The physicochemical properties of PLGA and RGD peptide-M13 phage (PLGA/RGD peptide) nanofiber matrices were characterized by atomic force microscopy, Fourier-transform infrared spectroscopy and thermogravimetric analysis. In addition, the growth of C2C12 mouse myoblasts on the PLGA/RGD peptide matrices was examined by measuring the metabolic activity. Moreover, the differentiation of C2C12 mouse myoblasts on the matrices when treated with GO was evaluated. The cellular behaviors, including growth and differentiation of C2C12 mouse myoblasts, were substantially enhanced on the PLGA/RGD peptide nanofiber matrices when treated with GO. Overall, these findings suggest that the PLGA/RGD peptide nanofiber matrices can be used in combination with GO as a novel strategy for skeletal tissue regeneration.

  16. Identification of novel GH-regulated genes in C2C12 cells.

    PubMed

    Resmini, E; Morte, B; Sorianello, E; Gallardo, E; de Luna, N; Illa, I; Zorzano, A; Bernal, J; Webb, S M

    2011-12-01

    Growth hormone (GH) is the main regulator of longitudinal growth before puberty, and treatment with human recombinant (rh) GH can increase muscle strength. Nevertheless, molecular mechanisms responsible remain mostly unknown. Many physiological effects of GH require hormone-mediated changes in gene expression. In an attempt to gain insight into the mechanism of GH action in muscle cells we evaluated the effects of rhGH on gene expression profile in a murine skeletal muscle cell line C2C12. The objective of the work was to identify changes in gene expression in the murine skeletal muscle cell line C2C12 after rGH treatment using microarray assays. C2C12 murine skeletal muscle cell cultures were differentiated during 4 days. After 16 h growing in serum-free medium, C2C12 myotubes were stimulated during 6 h with 500 ng/ml rhGH. Four independent sets of experiments were performed to identify GH-regulated genes. Total RNA was isolated and subjected to analysis. To validate changes candidate genes were analyzed by real-time quantitative polymerase chain reaction. One hundred and fifty-four differentially expressed genes were identified; 90 upregulated and 64 downregulated. Many had not been previously identified as GH-responsive. Real-time PCR in biological replicates confirmed the effect of rGH on 15 genes: Cish, Serpina3g, Socs2, Bmp4, Tnfrsf11b, Rgs2, Tgfbr3, Ugdh, Npy1r, Gbp6, Tgfbi, Tgtp, Btc, Clec3b, and Bcl6. This study shows modifications in the gene expression profile of the C2C12 cell line after rhGH exposure. In vitro and gene function analysis revealed genes involved in skeletal and muscle system as well as cardiovascular system development and function. PMID:22072432

  17. The Myoblast C2C12 Transfected with Mutant Valosin-Containing Protein Exhibits Delayed Stress Granule Resolution on Oxidative Stress.

    PubMed

    Rodriguez-Ortiz, Carlos J; Flores, Julio C; Valenzuela, Joanna A; Rodriguez, Gema J; Zumkehr, Joannee; Tran, Diana N; Kimonis, Virginia E; Kitazawa, Masashi

    2016-06-01

    Valosin-containing protein (VCP) mutations cause inclusion body myopathy with Paget disease and frontotemporal dementia. However, the mechanisms by which mutant VCP triggers degeneration remain unknown. Here, we investigated the role of VCP in cellular stress and found that the oxidative stressor arsenite and heat shock-activated stress responses evident by T-intracellular antigen-1-positive granules in C2C12 myoblasts. Granules also contained phosphorylated transactive response DNA-binding protein 43, ubiquitin, microtubule-associated protein 1A/1B light chains 3, and lysosome-associated membrane protein 2. Mutant VCP produced more T-intracellular antigen-1-positive granules than wild-type in the postarsenite exposure period. Similar results were observed for other granule components, indicating that mutant VCP delayed clearance of stress granules. Furthermore, stress granule resolution was impaired on differentiated C2C12 cells expressing mutant VCP. To address whether mutant VCP triggers dysregulation of the stress granule pathway in vivo, we analyzed skeletal muscle of aged VCPR155H-knockin mice. We found significant increments in oxidated proteins but observed the stress granule markers RasGAP SH3-binding protein and phosphorylated eukaryotic translation initiation factor 2α unchanged. The mixed results indicate that mutant VCP together with aging lead to higher oxidative stress in skeletal muscle but were insufficient to disrupt the stress granule pathway. Our findings support that deficiencies in recovery from stressors may result in attenuated tolerance to stress that could trigger muscle degeneration. PMID:27106764

  18. Cobalt triggers necrotic cell death and atrophy in skeletal C2C12 myotubes

    SciTech Connect

    Rovetta, Francesca; Stacchiotti, Alessandra; Faggi, Fiorella; Catalani, Simona; Apostoli, Pietro; Fanzani, Alessandro; Aleo, Maria Francesca

    2013-09-01

    Severe poisoning has recently been diagnosed in humans having hip implants composed of cobalt–chrome alloys due to the release of particulate wear debris on polyethylene and ceramic implants which stimulates macrophagic infiltration and destroys bone and soft tissue, leading to neurological, sensorial and muscular impairments. Consistent with this premise, in this study, we focused on the mechanisms underlying the toxicity of Co(II) ions on skeletal muscle using mouse skeletal C2C12 myotubes as an in vitro model. As detected using propidium iodide incorporation, increasing CoCl{sub 2} doses (from 5 to 200 μM) affected the viability of C2C12 myotubes, mainly by cell necrosis, which was attenuated by necrostatin-1, an inhibitor of the necroptotic branch of the death domain receptor signaling pathway. On the other hand, apoptosis was hardly detectable as supported by the lack of caspase-3 and -8 activation, the latter resulting in only faint activation after exposure to higher CoCl{sub 2} doses for prolonged time points. Furthermore, CoCl{sub 2} treatment resulted in atrophy of the C2C12 myotubes which was characterized by the increased expression of HSP25 and GRP94 stress proteins and other typical 'pro-atrophic molecular hallmarks, such as early activation of the NF-kB pathway and down-regulation of AKT phosphorylation, followed by the activation of the proteasome and autophagy systems. Overall, these results suggested that cobalt may impact skeletal muscle homeostasis as an inducer of cell necrosis and myofiber atrophy. - Highlights: • The effects of cobalt on muscle myofibers in vitro were investigated. • Cobalt treatment mainly causes cell necrosis in skeletal C2C12 myotubes. • Cobalt impacts the PI3K/AKT and NFkB pathways and induces cell stress markers. • Cobalt induces atrophy of C2C12 myotubes through the activation of proteasome and autophagy systems. • Co treatment triggers NF-kB and PI3K/AKT pathways in C2C12 myotubes.

  19. Leptin rapidly activates PPARs in C2C12 muscle cells

    SciTech Connect

    Bendinelli, Paola; Piccoletti, Roberta . E-mail: Roberta.Piccoletti@unimi.it; Maroni, Paola

    2005-07-08

    Experimental evidence suggests that leptin operates on the tissues, including skeletal muscle, also by modulating gene expression. Using electrophoretic mobility shift assays, we have shown that physiological doses of leptin promptly increase the binding of C2C12 cell nuclear extracts to peroxisome proliferator-activated receptor (PPAR) response elements in oligonucleotide probes and that all three PPAR isoforms participate in DNA-binding complexes. We pre-treated C2C12 cells with AACOCF{sub 3}, a specific inhibitor of cytosolic phospholipase A{sub 2} (cPLA{sub 2}), an enzyme that supplies ligands to PPARs, and found that it abrogates leptin-induced PPAR DNA-binding activity. Leptin treatment significantly increased cPLA{sub 2} activity, evaluated as the release of [{sup 3}H]arachidonic acid from pre-labelled C2C12 cells, as well as phosphorylation. Further, using MEK1 inhibitor PD-98059 we showed that leptin activates cPLA{sub 2} through ERK induction. These results support a direct effect of leptin on skeletal muscle cells, and suggest that the hormone may modulate muscle transcription also by precocious activation of PPARs through ERK-cPLA{sub 2} pathway.

  20. Protein O-Fucosyltransferase 1 Expression Impacts Myogenic C2C12 Cell Commitment via the Notch Signaling Pathway

    PubMed Central

    Der Vartanian, Audrey; Audfray, Aymeric; Al Jaam, Bilal; Janot, Mathilde; Legardinier, Sébastien; Maftah, Abderrahman

    2014-01-01

    The Notch signaling pathway plays a crucial role in skeletal muscle regeneration in mammals by controlling the transition of satellite cells from quiescence to an activated state, their proliferation, and their commitment toward myotubes or self-renewal. O-fucosylation on Notch receptor epidermal growth factor (EGF)-like repeats is catalyzed by the protein O-fucosyltransferase 1 (Pofut1) and primarily controls Notch interaction with its ligands. To approach the role of O-fucosylation in myogenesis, we analyzed a murine myoblastic C2C12 cell line downregulated for Pofut1 expression by short hairpin RNA (shRNA) inhibition during the time course of differentiation. Knockdown of Pofut1 affected the signaling pathway activation by a reduction of the amount of cleaved Notch intracellular domain and a decrease in downstream Notch target gene expression. Depletion in Pax7+/MyoD− cells and earlier myogenic program entrance were observed, leading to an increase in myotube quantity with a small number of nuclei, reflecting fusion defects. The rescue of Pofut1 expression in knockdown cells restored Notch signaling activation and a normal course in C2C12 differentiation. Our results establish the critical role of Pofut1 on Notch pathway activation during myogenic differentiation. PMID:25384974

  1. Effects of 1,25(OH)2 D3 and 25(OH)D3 on C2C12 Myoblast Proliferation, Differentiation, and Myotube Hypertrophy.

    PubMed

    van der Meijden, K; Bravenboer, N; Dirks, N F; Heijboer, A C; den Heijer, M; de Wit, G M J; Offringa, C; Lips, P; Jaspers, R T

    2016-11-01

    An adequate vitamin D status is essential to optimize muscle strength. However, whether vitamin D directly reduces muscle fiber atrophy or stimulates muscle fiber hypertrophy remains subject of debate. A mechanism that may affect the role of vitamin D in the regulation of muscle fiber size is the local conversion of 25(OH)D to 1,25(OH)2 D by 1α-hydroxylase. Therefore, we investigated in a murine C2C12 myoblast culture whether both 1,25(OH)2 D3 and 25(OH)D3 affect myoblast proliferation, differentiation, and myotube size and whether these cells are able to metabolize 25(OH)D3 and 1,25(OH)2 D3 . We show that myoblasts not only responded to 1,25(OH)2 D3 , but also to the precursor 25(OH)D3 by increasing their VDR mRNA expression and reducing their proliferation. In differentiating myoblasts and myotubes 1,25(OH)2 D3 as well as 25(OH)D3 stimulated VDR mRNA expression and in myotubes 1,25(OH)2 D3 also stimulated MHC mRNA expression. However, this occurred without notable effects on myotube size. Moreover, no effects on the Akt/mTOR signaling pathway as well as MyoD and myogenin mRNA levels were observed. Interestingly, both myoblasts and myotubes expressed CYP27B1 and CYP24 mRNA which are required for vitamin D3 metabolism. Although 1α-hydroxylase activity could not be shown in myotubes, after treatment with 1,25(OH)2 D3 or 25(OH)D3 myotubes showed strongly elevated CYP24 mRNA levels compared to untreated cells. Moreover, myotubes were able to convert 25(OH)D3 to 24R,25(OH)2 D3 which may play a role in myoblast proliferation and differentiation. These data suggest that skeletal muscle is not only a direct target for vitamin D3 metabolites, but is also able to metabolize 25(OH)D3 and 1,25(OH)2 D3 . J. Cell. Physiol. 231: 2517-2528, 2016. © 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc. PMID:27018098

  2. Methylcobalamin promotes proliferation and migration and inhibits apoptosis of C2C12 cells via the Erk1/2 signaling pathway

    SciTech Connect

    Okamoto, Michio; Tanaka, Hiroyuki; Okada, Kiyoshi; Kuroda, Yusuke; Nishimoto, Shunsuke; Murase, Tsuyoshi; Yoshikawa, Hideki

    2014-01-17

    Highlights: •Methylcobalamin activated the Erk1/2 signaling pathway in C2C12 cells. •Methylcobalamin promoted the proliferation and migration in C2C12 cells. •C2C12 cell apoptosis during differentiation was inhibited by methylcobalamin. -- Abstract: Methylcobalamin (MeCbl) is a vitamin B12 analog that has some positive effects on peripheral nervous disorders. Although some previous studies revealed the effects of MeCbl on neurons, its effect on the muscle, which is the final target of motoneuron axons, remains to be elucidated. This study aimed to determine the effect of MeCbl on the muscle. We found that MeCbl promoted the proliferation and migration of C2C12 myoblasts in vitro and that these effects are mediated by the Erk1/2 signaling pathway without affecting the activity of the Akt signaling pathway. We also demonstrated that MeCbl inhibits C2C12 cell apoptosis during differentiation. Our results suggest that MeCbl has beneficial effects on the muscle in vitro. MeCbl administration may provide a novel therapeutic approach for muscle injury or degenerating muscle after denervation.

  3. PUGNAc induces protein ubiquitination in C2C12 myotube cells.

    PubMed

    Park, Ja-Hye; Lee, Jeong-Eun; Moon, Pyong-Gon; Baek, Moon-Chang

    2015-12-01

    O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) regulates many cellular processes including the cell cycle, cell signaling, and protein trafficking. Dysregulation of O-GlcNAcylation may be involved in the development of insulin resistance and type 2 diabetes. Therefore, it is necessary to identify cellular proteins that are induced by elevated O-GlcNAcylation. Here, using adenosine 5'-triphosphate affinity chromatography, we employed a proteomic approach in order to identify differentially expressed proteins in response to treatment with the O-GlcNAcase inhibitor, O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino-N-phenylcarbamate (PUGNAc), in mouse C2C12 myotube cells. Among 205 selected genes, we identified 68 nucleotide-binding proteins, 14 proteins that have adenosinetriphosphatase activity, and 10 proteins with ligase activity. Upregulation of proteins, including ubiquitin-activating enzyme E1, proteasome subunit 20S, cullin-associated NEDD8-dissociated protein 1, ezrin, and downregulation of the protein nucleoside diphosphate kinase B, were confirmed by western blot analysis. In particular, we found that the protein ubiquitination level in C2C12 cells was increased by PUGNAc treatment. This is the first report of quantitative proteomic profiles of myotube cells after treatment with PUGNAc, and our results demonstrate the potential to enhance understanding of the relationship between insulin resistance, O-GlcNAc, and PUGNAc in the future. PMID:26531776

  4. Phospho-tyrosine phosphatase inhibitor Bpv(Hopic) enhances C2C12 myoblast migration in vitro. Requirement of PI3K/AKT and MAPK/ERK pathways.

    PubMed

    Dimchev, Georgi A; Al-Shanti, Nasser; Stewart, Claire E

    2013-05-01

    Muscle progenitor cell migration is an important step in skeletal muscle myogenesis and regeneration. Migration is required for muscle precursors to reach the site of damage and for the alignment of myoblasts prior to their fusion, which ultimately contributes to muscle regeneration. Limited spreading and migration of donor myoblasts are reported problems of myoblast transfer therapy, a proposed therapeutic strategy for Duchenne Muscular Dystrophy, warranting further investigation into different approaches for improving the motility and homing of these cells. In this article, the effect of protein phospho-tyrosine phosphatase and PTEN inhibitor BpV(Hopic) on C2C12 myoblast migration and differentiation was investigated. Applying a wound healing migration model, it is reported that 1 μM BpV(Hopic) is capable of enhancing the migration of C2C12 myoblasts by approximately 40 % in the presence of myotube conditioned media, without significantly affecting their capacity to differentiate and fuse into multinucleated myotubes. Improved migration of myoblasts treated with 1 μM BpV(Hopic) was associated with activation of PI3K/AKT and MAPK/ERK pathways, while their inhibition with either LY294002 or UO126, respectively, resulted in a reduction of C2C12 migration back to control levels. These results propose that bisperoxovanadium compounds may be considered as potential tools for enhancing the migration of myoblasts, while not reducing their differentiation capacity and underpin the importance of PI3K/AKT and MAPK/ERK signalling for the process of myogenic progenitor migration. PMID:23553034

  5. Cultured C2C12 cell lines as a model for assessment of bacterial attachment to bovine primary muscle cells.

    PubMed

    Zulfakar, Siti Shahara; White, Jason D; Ross, Tom; Tamplin, Mark L

    2013-06-01

    The mechanisms of bacterial attachment to meat tissues need to be understood to enhance meat safety interventions. However, little is known about attachment of foodborne pathogens to meat muscle cells. In this study, attachment of six Escherichia coli and two Salmonella strains to primary bovine muscle cells and a cultured muscle cell line, C2C12, was measured, including the effect of temperature. At 37°C, all but one strain (EC623) attached to C2C12 cells, whereas only five of eight strains (M23Sr, H10407, EC473, Sal1729a and Sal691) attached to primary cells. At 10 °C, two strains (H10407 and EC473) attached to C2C12 cells, compared to four strains (M23Sr, EC614, H10407 and Sal1729a) of primary cells. Comparing all strains at both temperatures, EC614 displayed the highest CFU per C2C12 cell (4.60±2.02CFU/muscle cell at 37 °C), whereas greater numbers of M23Sr attached per primary cell (51.88±39.43CFU/muscle cell at 37 °C). This study indicates that primary bovine muscle cells may provide a more relevant model system to study bacterial attachment to beef carcasses compared to cell lines such as C2C12. PMID:23501253

  6. Metalloprotease-disintegrin ADAM 12 binds to the SH3 domain of Src and activates Src tyrosine kinase in C2C12 cells.

    PubMed Central

    Kang, Q; Cao, Y; Zolkiewska, A

    2000-01-01

    ADAM 12, a member of the ADAM (protein containing a disintegrin and metalloprotease) family of metalloprotease-disintegrins, has been implicated in the differentiation and fusion of skeletal myoblasts, and its expression is dramatically up-regulated in many cancer cells. While the extracellular portion of ADAM 12 contains an active metalloprotease and a cell-adhesion domain, the function of the cytoplasmic portion is much less clear. In this paper, we show that the cytoplasmic tail of ADAM 12 mediates interactions with the non-receptor protein tyrosine kinase Src. The interaction is direct, specific, and involves the N-terminal proline-rich region in the cytoplasmic tail of ADAM 12 and the Src homology 3 (SH3) domain of Src. ADAM 12 and Src co-immunoprecipitate from transfected C2C12 cells, suggesting that the two proteins form a complex in vivo. Co-expression of Src and ADAM 12, but not ADAM 9, in C2C12 cells results in activation of the recombinant Src. Moreover, endogenous ADAM 12 associates with and activates endogenous Src in differentiating C2C12 cells. These results indicate that ADAM 12 may mediate adhesion-induced signalling during myoblast differentiation. PMID:11104699

  7. Potentiated Osteoinductivity via Cotransfection with BMP-2 and VEGF Genes in Microencapsulated C2C12 Cells

    PubMed Central

    Shen, Yang; Qiao, Han; Fan, Qiming; Zhang, Shuhong; Tang, Tingting

    2015-01-01

    Microcapsules with entrapped cells hold great promise for repairing bone defects. Unfortunately, the osteoinductivity of microcapsules has been restricted by many factors, among which the deficiency of functional proteins is a significant priority. We potentiated the osteoinductivity of microencapsulated cells via cotransfection with BMP-2 and VEGF genes. Various tissue-derived mesenchymal stem cells and cell lines were compared for BMP-2 and VEGF cotransfection. Ethidium bromide (EB)/Calcein AM staining revealed that all of the cell categories could survive for 4 weeks after microencapsulation. An ELISA assay indicated that all microencapsulated BMP-2 or VEGF transfected cells could secrete gene products constitutively for 1 month. Particularly, the recombinant microencapsulated C2C12 cells released the most desirable level of BMP-2 and VEGF. Further experiments demonstrated that microencapsulated BMP-2 and VEGF cotransfected C2C12 cells generated both BMP-2 and VEGF for 4 weeks. Additionally, the cotransfection of BMP-2 and VEGF in microencapsulated C2C12 cells showed a stronger osteogenic induction against BMSCs than individual BMP-2-transfected microencapsulated C2C12 cells. These results demonstrated that the cotransfection of BMP-2 and VEGF into microencapsulated C2C12 cells is of potent utility for the potentiation of bone regeneration, which would provide a promising clinical strategy for cellular therapy in bone defects. PMID:26451370

  8. Rotenone induces reductive stress and triacylglycerol deposition in C2C12 cells.

    PubMed

    He, Quan; Wang, Miao; Petucci, Christopher; Gardell, Stephen J; Han, Xianlin

    2013-12-01

    Environmental rotenone is associated with Parkinson's disease due to its inhibitory property to the complex I of mitochondrial respiration chain. Although environmental pollution has been postulated as a causal factor for the increasing prevalence of obesity, the role of rotenone in the pathogenesis of obesity has not been studied. We employed muscle-derived cell C2C12 as a model and shotgun lipidomics as a tool for lipid analysis and found that treatment with rotenone led to the profound deposition of intracellular triacylglycerol (TAG) in a time- and dose-dependent fashion. The TAG deposition resulted from complex I inhibition. Further studies revealed that rotenone induced mitochondrial stress as shown by decreased mitochondrial oxygen consumption rate, increased NADH/NAD+ ratio (i.e., reductive stress) and mitochondrial metabolites. We demonstrated that rotenone activated fatty acid de novo synthesis and TAG synthesis and ultimately resulted in intracellular TAG deposition. These studies suggested that increased mitochondrial stresses might be an underlying mechanism responsible for TAG accumulation manifest in obesity. PMID:24104397

  9. Leptin impairs myogenesis in C2C12 cells through JAK/STAT and MEK signaling pathways.

    PubMed

    Pijet, Maja; Pijet, Barbara; Litwiniuk, Anna; Pajak, Beata; Gajkowska, Barbara; Orzechowski, Arkadiusz

    2013-02-01

    Reduced lean body mass in genetically obese (ob/ob) or anorectic/cachectic subjects prompted us to verify the hypothesis whether leptin, white adipose tissue cytokine, might be a negative organizer of myogenesis. Recombinant leptin (100 ng/mL) stimulated mitogenesis together with the raise in T(202/)Y(204)P-ERK1/2 protein expression. Concomitantly, it impaired cell viability and muscle fiber formation from C2C12 mouse myoblasts. Detailed acute and chronic studies with the use of metabolic inhibitors revealed that both JAK/STAT3 and MEK/MAPK but not PI3-K/AKT/GSK-3β signaling pathways were activated by leptin, and that STAT3 (Y(705)P-STAT3) and MEK (T(202/)Y(204)P-ERK1/2) mediate these effects. In contrary, insulin evoked PI3-K-dependent phosphorylation of AKT (S(473)) and GSK-3β (S(9)) and insulin surpassed leptin-dependent inhibition of myogenic differentiation in PI3-K-dependent manner. GSK-3β seems to play dual role in muscle development. Insulin-dependent effect on GSK-3β (S(9)P-GSK-3β) led to accelerated myotube construction. In contrary, leptin through MEK-dependent manner caused GSK-3β phosphorylation (Y(216)P-GSK-3β) with resultant drop in myoblast fusion. Summing up, partially opposite effects of insulin and leptin on skeletal muscle growth emphasize the importance of interplay between these cytokines. They determine how muscle mass is gained or lost. PMID:23201486

  10. Methylcobalamin promotes proliferation and migration and inhibits apoptosis of C2C12 cells via the Erk1/2 signaling pathway.

    PubMed

    Okamoto, Michio; Tanaka, Hiroyuki; Okada, Kiyoshi; Kuroda, Yusuke; Nishimoto, Shunsuke; Murase, Tsuyoshi; Yoshikawa, Hideki

    2014-01-17

    Methylcobalamin (MeCbl) is a vitamin B12 analog that has some positive effects on peripheral nervous disorders. Although some previous studies revealed the effects of MeCbl on neurons, its effect on the muscle, which is the final target of motoneuron axons, remains to be elucidated. This study aimed to determine the effect of MeCbl on the muscle. We found that MeCbl promoted the proliferation and migration of C2C12 myoblasts in vitro and that these effects are mediated by the Erk1/2 signaling pathway without affecting the activity of the Akt signaling pathway. We also demonstrated that MeCbl inhibits C2C12 cell apoptosis during differentiation. Our results suggest that MeCbl has beneficial effects on the muscle in vitro. MeCbl administration may provide a novel therapeutic approach for muscle injury or degenerating muscle after denervation. PMID:24342621

  11. Three-dimensional co-culture of C2C12/PC12 cells improves skeletal muscle tissue formation and function.

    PubMed

    Ostrovidov, Serge; Ahadian, Samad; Ramon-Azcon, Javier; Hosseini, Vahid; Fujie, Toshinori; Parthiban, S Prakash; Shiku, Hitoshi; Matsue, Tomokazu; Kaji, Hirokazu; Ramalingam, Murugan; Bae, Hojae; Khademhosseini, Ali

    2014-11-13

    Engineered muscle tissues demonstrate properties far from native muscle tissue. Therefore, fabrication of muscle tissues with enhanced functionalities is required to enable their use in various applications. To improve the formation of mature muscle tissues with higher functionalities, we co-cultured C2C12 myoblasts and PC12 neural cells. While alignment of the myoblasts was obtained by culturing the cells in micropatterned methacrylated gelatin (GelMA) hydrogels, we studied the effects of the neural cells (PC12) on the formation and maturation of muscle tissues. Myoblasts cultured in the presence of neural cells showed improved differentiation, with enhanced myotube formation. Myotube alignment, length and coverage area were increased. In addition, the mRNA expression of muscle differentiation markers (Myf-5, myogenin, Mefc2, MLP), muscle maturation markers (MHC-IId/x, MHC-IIa, MHC-IIb, MHC-pn, α-actinin, sarcomeric actinin) and the neuromuscular markers (AChE, AChR-ε) were also upregulated. All these observations were amplified after further muscle tissue maturation under electrical stimulation. Our data suggest a synergistic effect on the C2C12 differentiation induced by PC12 cells, which could be useful for creating improved muscle tissue. Copyright © 2014 John Wiley & Sons, Ltd. PMID:25393357

  12. MicroRNA-27a is induced by leucine and contributes to leucine-induced proliferation promotion in C2C12 cells.

    PubMed

    Chen, Xiaoling; Huang, Zhiqing; Chen, Daiwen; Yang, Ting; Liu, Guangmang

    2013-01-01

    Leucine, a branched chain amino acid, is well known to stimulate protein synthesis in skeletal muscle. However, the role of leucine in myoblast proliferation remains unclear. In this study, we found that leucine could promote proliferation of C2C12 cells. Moreover, expressions of miR-27a and myostatin (a bona fide target of miR-27a) were upregulated and downregulated, respectively, following leucine treatment. We also found that miR-27a loss-of-function by transfection of a miR-27a inhibitor suppressed the promotion of myoblast proliferation caused by leucine. Our results suggest that miR-27a is induced by leucine and contributes to leucine-induced proliferation promotion of myoblast. PMID:23880856

  13. Fad24, a Positive Regulator of Adipogenesis, Is Required for S Phase Re-entry of C2C12 Myoblasts Arrested in G0 Phase and Involved in p27(Kip1) Expression at the Protein Level.

    PubMed

    Ochiai, Natsuki; Nishizuka, Makoto; Osada, Shigehiro; Imagawa, Masayoshi

    2016-05-01

    Factor for adipocyte differentiation 24 (fad24) is a positive regulator of adipogenesis. We previously found that human fad24 is abundantly expressed in skeletal muscle. However, the function of fad24 in skeletal muscle remains largely unknown. Because skeletal muscle is a highly regenerative tissue, we focused on the function of fad24 in skeletal muscle regeneration. In this paper, we investigated the role of fad24 in the cell cycle re-entry of quiescent C2C12 myoblasts-mimicked satellite cells. The expression levels of fad24 and histone acetyltransferase binding to ORC1 (hbo1), a FAD24-interacting factor, were elevated at the early phase of the regeneration process in response to cardiotoxin-induced muscle injury. The knockdown of fad24 inhibited the proliferation of quiescent myoblasts, whereas fad24 knockdown did not affect differentiation. S phase entry following serum activation is abrogated by fad24 knockdown in quiescent cells. Furthermore, fad24 knockdown cells show a marked accumulation of p27(Kip1) protein. These results suggest that fad24 may have an important role in the S phase re-entry of quiescent C2C12 cells through the regulation of p27(Kip1) at the protein level. PMID:26902224

  14. ANKRD1 modulates inflammatory responses in C2C12 myoblasts through feedback inhibition of NF-κB signaling activity.

    PubMed

    Liu, Xin-Hua; Bauman, William A; Cardozo, Christopher

    2015-08-14

    Transcription factors of the nuclear factor-kappa B (NF-κB) family play a pivotal role in inflammation, immunity and cell survival responses. Recent studies revealed that NF-κB also regulates the processes of muscle atrophy. NF-κB activity is regulated by various factors, including ankyrin repeat domain 2 (AnkrD2), which belongs to the muscle ankyrin repeat protein family. Another member of this family, AnkrD1 is also a transcriptional effector. The expression levels of AnkrD1 are highly upregulated in denervated skeletal muscle, suggesting an involvement of AnkrD1 in NF-κB mediated cellular responses to paralysis. However, the molecular mechanism underlying the interactive role of AnkrD1 in NF-κB mediated cellular responses is not well understood. In the current study, we examined the effect of AnkrD1 on NF-κB activity and determined the interactions between AnkrD1 expression and NF-κB signaling induced by TNFα in differentiating C2C12 myoblasts. TNFα upregulated AnkrD1 mRNA and protein levels. AnkrD1-siRNA significantly increased TNFα-induced transcriptional activation of NF-κB, whereas overexpression of AnkrD1 inhibited TNFα-induced NF-κB activity. Co-immunoprecipitation studies demonstrated that AnkrD1 was able to bind p50 subunit of NF-κB and vice versa. Finally, CHIP assays revealed that AnkrD1 bound chromatin at a NF-κB binding site in the AnrkD2 promoter and required NF-κB to do so. These results provide evidence of signaling integration between AnkrD1 and NF-κB pathways, and suggest a novel anti-inflammatory role of AnkrD1 through feedback inhibition of NF-κB transcriptional activity by which AnkrD1 modulates the balance between physiological and pathological inflammatory responses in skeletal muscle. PMID:26102030

  15. ANKRD1 modulates inflammatory responses in C2C12 myoblasts through feedback inhibition of NF-κB signaling activity

    SciTech Connect

    Liu, Xin-Hua; Bauman, William A.; Cardozo, Christopher

    2015-08-14

    Transcription factors of the nuclear factor-kappa B (NF-κB) family play a pivotal role in inflammation, immunity and cell survival responses. Recent studies revealed that NF-κB also regulates the processes of muscle atrophy. NF-κB activity is regulated by various factors, including ankyrin repeat domain 2 (AnkrD2), which belongs to the muscle ankyrin repeat protein family. Another member of this family, AnkrD1 is also a transcriptional effector. The expression levels of AnkrD1 are highly upregulated in denervated skeletal muscle, suggesting an involvement of AnkrD1 in NF-κB mediated cellular responses to paralysis. However, the molecular mechanism underlying the interactive role of AnkrD1 in NF-κB mediated cellular responses is not well understood. In the current study, we examined the effect of AnkrD1 on NF-κB activity and determined the interactions between AnkrD1 expression and NF-κB signaling induced by TNFα in differentiating C2C12 myoblasts. TNFα upregulated AnkrD1 mRNA and protein levels. AnkrD1-siRNA significantly increased TNFα-induced transcriptional activation of NF-κB, whereas overexpression of AnkrD1 inhibited TNFα-induced NF-κB activity. Co-immunoprecipitation studies demonstrated that AnkrD1 was able to bind p50 subunit of NF-κB and vice versa. Finally, CHIP assays revealed that AnkrD1 bound chromatin at a NF-κB binding site in the AnrkD2 promoter and required NF-κB to do so. These results provide evidence of signaling integration between AnkrD1 and NF-κB pathways, and suggest a novel anti-inflammatory role of AnkrD1 through feedback inhibition of NF-κB transcriptional activity by which AnkrD1 modulates the balance between physiological and pathological inflammatory responses in skeletal muscle. - Highlights: • AnkrD1 is upregulated by TNFα and represses NF-κB-induced transcriptional activity. • AnkrD1 binds to p50 subunit of NF-κB and is recruited to NF-κB bound to chromatin. • AnkrD1 mediates a feed-back inhibitory loop

  16. Cartilage-derived morphogenetic proteins enhance the osteogenic protein-1-induced osteoblastic cell differentiation of C2C12 cells.

    PubMed

    Yeh, Lee-Chuan C; Tsai, Alicia D; Zavala, Michelle C; Lee, John C

    2004-12-01

    Previous studies have shown that osteogenic protein-1 (OP-1; also known as BMP-7) induces differentiation of the pluripotent mesenchymal cell line C2C12 into osteoblastic cells. OP-1 also alters the steady-state levels of messenger RNA (mRNA) encoding for the cartilage-derived morphogenetic proteins (CDMPs) in C2C12 cells. In the present study, the effects of exogenous CDMPs on bone cell differentiation induced by OP-1 in C2C12 cells were examined. Exogenous CDMP-1, -2, and -3 synergistically and dose-dependently enhanced OP-1 action in stimulating alkaline phosphatase (AP) activity and osteocalcin (OC) mRNA expression. AP staining studies revealed that the combination of OP-1 and CDMP enhanced OP-1 action by stimulating those cells that had responded to OP-1 and not by activating additional cells. The combination did not change the mRNA expression of the BMPs and their receptors. CDMP-1 enhanced the suppression of the OP-1-induced expression of the myogeneic differentiation regulator MyoD. CDMP-1 and OP-1 alone stimulated Smad5 protein expression, but the combination of OP-1 and CDMP-1 stimulated synergistically Smad5 protein expression. Thus, one mechanism of the observed synergy involved enhancement of the induced Smad5 protein expression. At the same protein concentration, CDMP-1 is most potent in enhancing OP-1 activity in inducing osteoblastic cell differentiation of C2C12 cells. CDMP-3 is about 80% as potent as CDMP-1, and CDMP-2 is the least potent (about 50% of CDMP-1). PMID:15389555

  17. Glutathione Depletion Impairs Myogenic Differentiation of Murine Skeletal Muscle C2C12 Cells through Sustained NF-κB Activation

    PubMed Central

    Ardite, Esther; Albert Barbera, Joan; Roca, Josep; Fernández-Checa, Jose C.

    2004-01-01

    Skeletal muscle differentation is a complex process regulated at multiple levels. This study addressed the effect of glutathione (GSH) depletion on the transition of murine skeletal muscle C2C12 myoblasts into myocytes induced by growth factor inactivation. Cellular GSH levels increased within 24 hours on myogenic stimulation of myoblasts due to enhanced GSH synthetic rate accounted for by stimulated glutamate-L-cysteine ligase (also known as γ-glutamylcysteine synthetase) activity. In contrast, the synthesis rate of GSH using γ-glutamylcysteine and glutamate as precursors, which reflects the activity of the GSH synthetase, did not change during differentiation. The stimulation of GSH stores preceded the myogenic differentiation of C2C12 myoblasts monitored by expression of muscle-specific genes, creatine kinase (CK), myosin heavy chain (MyHC), and MyoD. The pattern of DNA binding activity of NF-κB and AP-1 in differentiating cells was similar both displaying an activation peak at 24 hours after myogenic stimulation. Depletion of cellular GSH levels 24 hours after stimulation of differentiation abrogated myogenesis as reflected by lower CK activity, MyHC levels, MyoD expression, and myotubes formation, effects that were reversible on GSH replenishment by GSH ethyl ester (GHSEE). Moreover, GSH depletion led to sustained activation of NF-κB, while GSHEE prevented it. Furthermore, inhibition of NF-κB activation restored myogenesis despite GSH depletion. Thus, GSH contributes to the formation of myotubes from satellite myoblasts by ensuring inactivation of NF-κB, and hence maintaining optimal GSH levels may be beneficial in restoring muscle mass in chronic inflammatory disorders. PMID:15331397

  18. Caspase activity and apoptotic signaling in proliferating C2C12 cells following cisplatin or A23187 exposure

    PubMed Central

    Bloemberg, Darin; Quadrilatero, Joe

    2016-01-01

    Investigating cell death signaling using cell culture is commonly performed to examine the effects of novel pharmaceuticals or to further characterize discrete cellular signaling pathways. Here, we provide data regarding the cell death response to either cisplatin or A23187 in sub-confluent C2C12 cells, by utilizing several concentrations and incubation times for each chemical. These data include an assessment of the activation of the proteolytic enzymes caspase-3, caspase-8, caspase-9, calpain, and cathepsin B/L. Additionally, the expression of the apoptosis-regulating proteins Bax, Bcl2, and p53 are presented. PMID:27104214

  19. Caspase activity and apoptotic signaling in proliferating C2C12 cells following cisplatin or A23187 exposure.

    PubMed

    Bloemberg, Darin; Quadrilatero, Joe

    2016-06-01

    Investigating cell death signaling using cell culture is commonly performed to examine the effects of novel pharmaceuticals or to further characterize discrete cellular signaling pathways. Here, we provide data regarding the cell death response to either cisplatin or A23187 in sub-confluent C2C12 cells, by utilizing several concentrations and incubation times for each chemical. These data include an assessment of the activation of the proteolytic enzymes caspase-3, caspase-8, caspase-9, calpain, and cathepsin B/L. Additionally, the expression of the apoptosis-regulating proteins Bax, Bcl2, and p53 are presented. PMID:27104214

  20. Development of Insulin Resistance through Induction of miRNA-135 in C2C12 Cells

    PubMed Central

    Honardoost, Maryam; Arefian, Ehsan; Soleimani, Masoud; Soudi, Sara; Sarookhani, Mohammad Reza

    2016-01-01

    Objective Micro-RNAs (miRNAs) are a class of posttranscriptional regulators that play crucial roles in various biological processes. Emerging evidence suggests a direct link between miRNAs and development of several diseases including type 2 diabetes (T2D). In this study, we aimed to investigate the effect of predicted miRNA and target genes on insulin resistance. Materials and Methods This experimental study was conducted on the C2C12 cell line. Using bioinformatics tools miRNA-135 and two respective target genes-insulin receptor (Insr) and vesicle associated membrane protein 2 (Vamp2)were selected as potential factors involved in insulin resistance process. Levels of glucose uptake miRNA expression and respective gene targets were determined after cell transfaction by miR-135. Results It was determined that Insr gene expression was significantly down-regulated in miR-135 transfected C2C12 cell line (P≤0.05). Interestingly; these transfected cells have shown a significant difference in glucose uptake incomparision the positive control cells, while it was similar to the insulin resistant cell line (P≤0.05). In contrast, no significant alteration of Vamp2 gene expression was observed. Conclusion Our data indicated no change on the Vamp2 expression level after miRNA transfection, while expression level of Insr was reduced and miR-135 expression was contrarily increased leading to poor stimulation of glucose uptake through insulin, and development of insulin resistance phenotype in C2C12 cell line. PMID:27602317

  1. Creatine Prevents the Structural and Functional Damage to Mitochondria in Myogenic, Oxidatively Stressed C2C12 Cells and Restores Their Differentiation Capacity

    PubMed Central

    Guescini, Michele; Calcabrini, Cinzia; Vallorani, Luciana; Diaz, Anna Rita; Canonico, Barbara; Luchetti, Francesca; Papa, Stefano; Battistelli, Michela; Falcieri, Elisabetta; Romanello, Vanina; Sandri, Marco; Stocchi, Vilberto; Ciacci, Caterina

    2016-01-01

    Creatine (Cr) is a nutritional supplement promoting a number of health benefits. Indeed Cr has been shown to be beneficial in disease-induced muscle atrophy, improve rehabilitation, and afford mild antioxidant activity. The beneficial effects are likely to derive from pleiotropic interactions. In accord with this notion, we previously demonstrated that multiple pleiotropic effects, including preservation of mitochondrial damage, account for the capacity of Cr to prevent the differentiation arrest caused by oxidative stress in C2C12 myoblasts. Given the importance of mitochondria in supporting the myogenic process, here we further explored the protective effects of Cr on the structure, function, and networking of these organelles in C2C12 cells differentiating under oxidative stressing conditions; the effects on the energy sensor AMPK, on PGC-1α, which is involved in mitochondrial biogenesis and its downstream effector Tfam were also investigated. Our results indicate that damage to mitochondria is crucial in the differentiation imbalance caused by oxidative stress and that the Cr-prevention of these injuries is invariably associated with the recovery of the normal myogenic capacity. We also found that Cr activates AMPK and induces an upregulation of PGC-1α expression, two events which are likely to contribute to the protection of mitochondrial quality and function. PMID:27610211

  2. Creatine Prevents the Structural and Functional Damage to Mitochondria in Myogenic, Oxidatively Stressed C2C12 Cells and Restores Their Differentiation Capacity.

    PubMed

    Barbieri, Elena; Guescini, Michele; Calcabrini, Cinzia; Vallorani, Luciana; Diaz, Anna Rita; Fimognari, Carmela; Canonico, Barbara; Luchetti, Francesca; Papa, Stefano; Battistelli, Michela; Falcieri, Elisabetta; Romanello, Vanina; Sandri, Marco; Stocchi, Vilberto; Ciacci, Caterina; Sestili, Piero

    2016-01-01

    Creatine (Cr) is a nutritional supplement promoting a number of health benefits. Indeed Cr has been shown to be beneficial in disease-induced muscle atrophy, improve rehabilitation, and afford mild antioxidant activity. The beneficial effects are likely to derive from pleiotropic interactions. In accord with this notion, we previously demonstrated that multiple pleiotropic effects, including preservation of mitochondrial damage, account for the capacity of Cr to prevent the differentiation arrest caused by oxidative stress in C2C12 myoblasts. Given the importance of mitochondria in supporting the myogenic process, here we further explored the protective effects of Cr on the structure, function, and networking of these organelles in C2C12 cells differentiating under oxidative stressing conditions; the effects on the energy sensor AMPK, on PGC-1α, which is involved in mitochondrial biogenesis and its downstream effector Tfam were also investigated. Our results indicate that damage to mitochondria is crucial in the differentiation imbalance caused by oxidative stress and that the Cr-prevention of these injuries is invariably associated with the recovery of the normal myogenic capacity. We also found that Cr activates AMPK and induces an upregulation of PGC-1α expression, two events which are likely to contribute to the protection of mitochondrial quality and function. PMID:27610211

  3. Overexpression of Striated Muscle Activator of Rho Signaling (STARS) Increases C2C12 Skeletal Muscle Cell Differentiation

    PubMed Central

    Wallace, Marita A.; Della Gatta, Paul A.; Ahmad Mir, Bilal; Kowalski, Greg M.; Kloehn, Joachim; McConville, Malcom J.; Russell, Aaron P.; Lamon, Séverine

    2016-01-01

    Background: Skeletal muscle growth and regeneration depend on the activation of satellite cells, which leads to myocyte proliferation, differentiation and fusion with existing muscle fibers. Skeletal muscle cell proliferation and differentiation are tightly coordinated by a continuum of molecular signaling pathways. The striated muscle activator of Rho signaling (STARS) is an actin binding protein that regulates the transcription of genes involved in muscle cell growth, structure and function via the stimulation of actin polymerization and activation of serum-response factor (SRF) signaling. STARS mediates cell proliferation in smooth and cardiac muscle models; however, whether STARS overexpression enhances cell proliferation and differentiation has not been investigated in skeletal muscle cells. Results: We demonstrate for the first time that STARS overexpression enhances differentiation but not proliferation in C2C12 mouse skeletal muscle cells. Increased differentiation was associated with an increase in the gene levels of the myogenic differentiation markers Ckm, Ckmt2 and Myh4, the differentiation factor Igf2 and the myogenic regulatory factors (MRFs) Myf5 and Myf6. Exposing C2C12 cells to CCG-1423, a pharmacological inhibitor of SRF preventing the nuclear translocation of its co-factor MRTF-A, had no effect on myotube differentiation rate, suggesting that STARS regulates differentiation via a MRTF-A independent mechanism. Conclusion: These findings position STARS as an important regulator of skeletal muscle growth and regeneration. PMID:26903873

  4. Effects of Hoechst 33342 on C2C12 and PC12 cell differentiation.

    PubMed

    Adamski, Danièle; Mayol, Jean-François; Platet, Nadine; Berger, François; Hérodin, Francis; Wion, Didier

    2007-06-26

    Accumulative evidence demonstrates that normal as well as cancer stem cells can be identified as a side population following Hoechst 33342 staining and flow cytometric analysis. This popular method is based on the ability of stem cells to efflux this fluorescent vital dye. We demonstrate that Hoechst 33342 can affect cell differentiation, suggesting potential complications in the interpretation of data. PMID:17560574

  5. The Cytoprotective Effect of Petalonia binghamiae Methanol Extract against Oxidative Stress in C2C12 Myoblasts: Mediation by Upregulation of Heme Oxygenase-1 and Nuclear Factor-Erythroid 2 Related Factor 2.

    PubMed

    Kang, Ji Sook; Choi, Il-Whan; Han, Min Ho; Lee, Dae-Sung; Kim, Gi-Young; Hwang, Hye Jin; Kim, Byung Woo; Kim, Cheol Min; Yoo, Young Hyun; Choi, Yung Hyun

    2015-05-01

    This study was designed to examine the protective effects of the marine brown algae Petalonia binghamiae against oxidative stress-induced cellular damage and to elucidate the underlying mechanisms. P. binghamiae methanol extract (PBME) prevented hydrogen peroxide (H2O2)-induced growth inhibition and exhibited scavenging activity against intracellular reactive oxygen species (ROS) induced by H2O2 in mouse-derived C2C12 myoblasts. PBME also significantly attenuated H2O2-induced comet tail formation in a comet assay, histone γH2A.X phosphorylation, and annexin V-positive cells, suggesting that PBME prevented H2O2-induced cellular DNA damage and apoptotic cell death. Furthermore, PBME increased the levels of heme oxygenase-1 (HO-1), a potent antioxidant enzyme, associated with the induction of nuclear factor-erythroid 2 related factor 2 (Nrf2). However, zinc protoporphyrin IX, a HO-1 competitive inhibitor, significantly abolished the protective effects of PBME on H2O2-induced ROS generation, growth inhibition, and apoptosis. Collectively, these results demonstrate that PBME augments the antioxidant defense capacity through activation of the Nrf2/HO-1 pathway. PMID:25939035

  6. The Cytoprotective Effect of Petalonia binghamiae Methanol Extract against Oxidative Stress in C2C12 Myoblasts: Mediation by Upregulation of Heme Oxygenase-1 and Nuclear Factor-Erythroid 2 Related Factor 2

    PubMed Central

    Kang, Ji Sook; Choi, Il-Whan; Han, Min Ho; Lee, Dae-Sung; Kim, Gi-Young; Hwang, Hye Jin; Kim, Byung Woo; Kim, Cheol Min; Yoo, Young Hyun; Choi, Yung Hyun

    2015-01-01

    This study was designed to examine the protective effects of the marine brown algae Petalonia binghamiae against oxidative stress-induced cellular damage and to elucidate the underlying mechanisms. P. binghamiae methanol extract (PBME) prevented hydrogen peroxide (H2O2)-induced growth inhibition and exhibited scavenging activity against intracellular reactive oxygen species (ROS) induced by H2O2 in mouse-derived C2C12 myoblasts. PBME also significantly attenuated H2O2-induced comet tail formation in a comet assay, histone γH2A.X phosphorylation, and annexin V-positive cells, suggesting that PBME prevented H2O2-induced cellular DNA damage and apoptotic cell death. Furthermore, PBME increased the levels of heme oxygenase-1 (HO-1), a potent antioxidant enzyme, associated with the induction of nuclear factor-erythroid 2 related factor 2 (Nrf2). However, zinc protoporphyrin IX, a HO-1 competitive inhibitor, significantly abolished the protective effects of PBME on H2O2-induced ROS generation, growth inhibition, and apoptosis. Collectively, these results demonstrate that PBME augments the antioxidant defense capacity through activation of the Nrf2/HO-1 pathway. PMID:25939035

  7. Cytotoxicity of zinc oxide nanoparticles on antioxidant enzyme activities and mRNA expression in the cocultured C2C12 and 3T3-L1 cells.

    PubMed

    Pandurangan, Muthuraman; Veerappan, Muthuviveganandavel; Kim, Doo Hwan

    2015-02-01

    The present study was aimed to investigate the dose-dependent effect of zinc oxide (ZnO) nanoparticles on antioxidant enzyme activities and messenger RNA (mRNA) expression in the cocultured C2C12 and 3T3-L1 cells. Coculturing experiments are 3D and more reliable compared to mono-culture (2D) experiment. Even though, there are several studies on ZnO nanoparticle-mediated cytotoxicity, but there are no studies on the effect of ZnO nanoparticle on antioxidant enzyme activities and mRNA expression in the cocultured C2C12 and 3T3-L1 cells. A cytotoxicity assay was carried out to determine the effect of ZnO nanoparticles on the C2C12 and 3T3-L1 cell viability. At higher concentration of ZnO nanoparticles, C2C12 and 3T3-L1 cells almost die. ZnO nanoparticles increased reactive oxygen species (ROS) and lipid peroxidation and reduced glutathione (GSH) levels in a dose-dependent manner in the C2C12 and 3T3-L1 cells. In addition, ZnO nanoparticles increased antioxidant enzyme activities and their mRNA expression in the C2C12 and 3T3-L1 cells. In conclusion, the present study showed that ZnO nanoparticles increased oxidative stress, antioxidant enzyme activities, and their mRNA expression in the cocultured C2C12 and 3T3-L1 cells. PMID:25380643

  8. Contraction-related stimuli regulate GLUT4 traffic in C2C12-GLUT4myc skeletal muscle cells.

    PubMed

    Niu, Wenyan; Bilan, Philip J; Ishikura, Shuhei; Schertzer, Jonathan D; Contreras-Ferrat, Ariel; Fu, Zhengxiang; Liu, Jie; Boguslavsky, Shlomit; Foley, Kevin P; Liu, Zhi; Li, Jinru; Chu, Guilan; Panakkezhum, Thomas; Lopaschuk, Gary D; Lavandero, Sergio; Yao, Zhi; Klip, Amira

    2010-05-01

    Muscle contraction stimulates glucose uptake acutely to increase energy supply, but suitable cellular models that faithfully reproduce this complex phenomenon are lacking. To this end, we have developed a cellular model of contracting C(2)C(12) myotubes overexpressing GLUT4 with an exofacial myc-epitope tag (GLUT4myc) and explored stimulation of GLUT4 traffic by physiologically relevant agents. Carbachol (an acetylcholine receptor agonist) induced a gain in cell surface GLUT4myc that was mediated by nicotinic acetylcholine receptors. Carbachol also activated AMPK, and this response was sensitive to the contractile myosin ATPase inhibitor N-benzyl-p-toluenesulfonamide. The gain in surface GLUT4myc elicited by carbachol or by the AMPK activator 5-amino-4-carboxamide-1 beta-ribose was sensitive to chemical inhibition of AMPK activity by compound C and partially reduced by siRNA-mediated knockdown of AMPK catalytic subunits or LKB1. In addition, the carbachol-induced gain in cell surface GLUT4myc was partially sensitive to chelation of intracellular calcium with BAPTA-AM. However, the carbachol-induced gain in cell surface GLUT4myc was not sensitive to the CaMKK inhibitor STO-609 despite expression of both isoforms of this enzyme and a rise in cytosolic calcium by carbachol. Therefore, separate AMPK- and calcium-dependent signals contribute to mobilizing GLUT4 in response to carbachol, providing an in vitro cell model that recapitulates the two major signals whereby acute contraction regulates glucose uptake in skeletal muscle. This system will be ideal to further analyze the underlying molecular events of contraction-regulated GLUT4 traffic. PMID:20159855

  9. Expressional studies of the aldehyde oxidase (AOX1) gene during myogenic differentiation in C2C12 cells

    SciTech Connect

    Kamli, Majid Rasool; Kim, Jihoe; Pokharel, Smritee; Jan, Arif Tasleem; Lee, Eun Ju; Choi, Inho

    2014-08-08

    Highlights: • AOX1 contributes to the formation of myotube. • Silencing of AOX1 reduces myotube formation. • AOX1 regulates MyoG gene expression. • AOX1 contributes to myogenesis via H{sub 2}O{sub 2}. - Abstract: Aldehyde oxidases (AOXs), which catalyze the hydroxylation of heterocycles and oxidation of a wide variety of aldehydic compounds, have been present throughout evolution from bacteria to humans. While humans have only a single functional aldehyde oxidase (AOX1) gene, rodents are endowed with four AOXs; AOX1 and three aldehyde oxidase homologs (AOH1, AOH2 and AOH3). In continuation of our previous study conducted to identify genes differentially expressed during myogenesis using a microarray approach, we investigated AOX1 with respect to its role in myogenesis to conceptualize how it is regulated in C2C12 cells. The results obtained were validated by silencing of the AOX1 gene. Analysis of their fusion index revealed that formation of myotubes showed a marked reduction of up to 40% in AOX1{sub kd} cells. Expression of myogenin (MYOG), one of the marker genes used to study myogenesis, was also found to be reduced in AOX1{sub kd} cells. AOX1 is an enzyme of pharmacological and toxicological importance that metabolizes numerous xenobiotics to their respective carboxylic acids. Hydrogen peroxide (H{sub 2}O{sub 2}) produced as a by-product in this reaction is considered to be involved as a part of the signaling mechanism during differentiation. An observed reduction in the level of H{sub 2}O{sub 2} among AOX1{sub kd} cells confirmed production of H{sub 2}O{sub 2} in the reaction catalyzed by AOX1. Taken together, these findings suggest that AOX1 acts as a contributor to the process of myogenesis by influencing the level of H{sub 2}O{sub 2}.

  10. Dexamethasone-Induced Skeletal Muscle Atrophy Increases O-GlcNAcylation in C2C12 Cells.

    PubMed

    Massaccesi, Luca; Goi, Giancarlo; Tringali, Cristina; Barassi, Alessandra; Venerando, Bruno; Papini, Nadia

    2016-08-01

    Skeletal muscle atrophy is a well-known adverse effect of chronic treatment with glucocorticoids and it also occurs when stress conditions such as sepsis and cachexia increase the release of endogenous glucocorticoids. Although the mechanisms of action of these hormones have been elucidated, the possible molecular mechanisms causing atrophy are not yet fully understood. The involvement of the O-GlcNAcylation process has recently been reported in disuse atrophy. O-GlcNAcylation, a regulatory post-translational modification of nuclear and cytoplasmic proteins consists in the attachment of O-GlcNAc residues on cell proteins and is regulated by two enzymes: O-GlcNAc-transferase (OGT) and O-GlcNAcase (OGA). O-GlcNAcylation plays a crucial role in many cellular processes and it seems to be related to skeletal muscle physiological function. The aim of this study is to investigate the involvement of O-GlcNAcylation in glucocorticoid-induced atrophy by using an "in vitro" model, achieved by treatment of C2C12 with 10 μM dexamethasone for 48 h. In atrophic condition, we observed that O-GlcNAc levels in cell proteins increased and concomitantly protein phosphorylation on serine and threonine residues decreased. Analysis of OGA expression at mRNA and protein levels showed a reduction in this enzyme in atrophic myotubes, whereas no significant changes of OGT expression were found. Furthermore, inhibition of OGA activity by Thiamet G induced atrophy marker expression. Our current findings suggest that O-GlcNAcylation is involved in dexamethasone-induced atrophy. In particular, we propose that the decrease in OGA content causes an excessive and mostly durable level of O-GlcNAc residues on sarcomeric proteins that might modify their function and stability. J. Cell. Biochem. 117: 1833-1842, 2016. © 2016 Wiley Periodicals, Inc. PMID:26728070

  11. Effect of alkyl glycerophosphate on the activation of peroxisome proliferator-activated receptor gamma and glucose uptake in C2C12 cells

    SciTech Connect

    Tsukahara, Tamotsu; Haniu, Hisao; Matsuda, Yoshikazu

    2013-04-12

    Highlights: •Alkyl-LPA specifically interacts with PPARγ. •Alkyl-LPA treatments induces lipid accumulation in C2C12 cells. •Alkyl-LPA enhanced glucose uptake in C2C12 cells. •Alkyl-LPA-treated C2C12 cells express increased amounts of GLUT4 mRNA. •Alkyl-LPA is a novel therapeutic agent that can be used for the treatment of obesity and diabetes. -- Abstract: Studies on the effects of lipids on skeletal muscle cells rarely examine the effects of lysophospholipids. Through our recent studies, we identified select forms of phospholipids, such as alkyl-LPA, as ligands for the intracellular receptor peroxisome proliferator-activated receptor gamma (PPARγ). PPARγ is a nuclear hormone receptor implicated in many human diseases, including diabetes and obesity. We previously showed that alkyl-LPA is a specific agonist of PPARγ. However, the mechanism by which the alkyl-LPA–PPARγ axis affects skeletal muscle cells is poorly defined. Our objective in the present study was to determine whether alkyl-LPA and PPARγ activation promotes glucose uptake in skeletal muscle cells. Our findings indicate that PPARγ1 mRNA is more abundant than PPARγ2 mRNA in C2C12 cells. We showed that alkyl-LPA (3 μM) significantly activated PPARγ and increased intracellular glucose levels in skeletal muscle cells. We also showed that incubation of C2C12 cells with alkyl-LPA led to lipid accumulation in the cells. These findings suggest that alkyl-LPA activates PPARγ and stimulates glucose uptake in the absence of insulin in C2C12 cells. This may contribute to the plasma glucose-lowering effect in the treatment of insulin resistance.

  12. FOXO1 and GSK-3β Are Main Targets of Insulin-Mediated Myogenesis in C2C12 Muscle Cells

    PubMed Central

    Litwiniuk, Anna; Pijet, Barbara; Pijet-Kucicka, Maja; Gajewska, Małgorzata; Pająk, Beata; Orzechowski, Arkadiusz

    2016-01-01

    Myogenesis and muscle hypertrophy account for muscle growth and adaptation to work overload, respectively. In adults, insulin and insulin-like growth factor 1 stimulate muscle growth, although their links with cellular energy homeostasis are not fully explained. Insulin plays critical role in the control of mitochondrial activity in skeletal muscle cells, and mitochondria are essential for insulin action. The aim of this study was to elucidate molecular mechanism(s) involved in mitochondrial control of insulin-dependent myogenesis. The effects of several metabolic inhibitors (LY294002, PD98059, SB216763, LiCl, rotenone, oligomycin) on the differentiation of C2C12 myoblasts in culture were examined in the short-term (hours) and long-term (days) experiments. Muscle cell viability and mitogenicity were monitored and confronted with the activities of selected genes and proteins expression. These indices focus on the roles of insulin, glycogen synthase kinase 3 beta (GSK-3β) and forkhead box protein O1 (FOXO1) on myogenesis using a combination of treatments and inhibitors. Long-term insulin (10 nM) treatment in “normoglycemic” conditions led to increased myogenin expression and accelerated myogenesis in C2C12 cells. Insulin-dependent myogenesis was accompanied by the rise of mtTFA, MtSSB, Mfn2, and mitochondrially encoded Cox-1 gene expressions and elevated levels of proteins which control functions of mitochondria (kinase—PKB/AKT, mitofusin 2 protein—Mfn-2). Insulin, via the phosphatidylinositol 3-kinase (PI3-K)/AKT-dependent pathway reduced transcription factor FOXO1 activity and altered GSK-3β phosphorylation status. Once FOXO1 and GSK-3β activities were inhibited the rise in Cox-1 gene action and nuclear encoded cytochrome c oxidase subunit IV (COX IV) expressions were observed, even though some mRNA and protein results varied. In contrast to SB216763, LiCl markedly elevated Mfn2 and COX IV protein expression levels when given together with insulin. Thus

  13. FOXO1 and GSK-3β Are Main Targets of Insulin-Mediated Myogenesis in C2C12 Muscle Cells.

    PubMed

    Litwiniuk, Anna; Pijet, Barbara; Pijet-Kucicka, Maja; Gajewska, Małgorzata; Pająk, Beata; Orzechowski, Arkadiusz

    2016-01-01

    Myogenesis and muscle hypertrophy account for muscle growth and adaptation to work overload, respectively. In adults, insulin and insulin-like growth factor 1 stimulate muscle growth, although their links with cellular energy homeostasis are not fully explained. Insulin plays critical role in the control of mitochondrial activity in skeletal muscle cells, and mitochondria are essential for insulin action. The aim of this study was to elucidate molecular mechanism(s) involved in mitochondrial control of insulin-dependent myogenesis. The effects of several metabolic inhibitors (LY294002, PD98059, SB216763, LiCl, rotenone, oligomycin) on the differentiation of C2C12 myoblasts in culture were examined in the short-term (hours) and long-term (days) experiments. Muscle cell viability and mitogenicity were monitored and confronted with the activities of selected genes and proteins expression. These indices focus on the roles of insulin, glycogen synthase kinase 3 beta (GSK-3β) and forkhead box protein O1 (FOXO1) on myogenesis using a combination of treatments and inhibitors. Long-term insulin (10 nM) treatment in "normoglycemic" conditions led to increased myogenin expression and accelerated myogenesis in C2C12 cells. Insulin-dependent myogenesis was accompanied by the rise of mtTFA, MtSSB, Mfn2, and mitochondrially encoded Cox-1 gene expressions and elevated levels of proteins which control functions of mitochondria (kinase--PKB/AKT, mitofusin 2 protein--Mfn-2). Insulin, via the phosphatidylinositol 3-kinase (PI3-K)/AKT-dependent pathway reduced transcription factor FOXO1 activity and altered GSK-3β phosphorylation status. Once FOXO1 and GSK-3β activities were inhibited the rise in Cox-1 gene action and nuclear encoded cytochrome c oxidase subunit IV (COX IV) expressions were observed, even though some mRNA and protein results varied. In contrast to SB216763, LiCl markedly elevated Mfn2 and COX IV protein expression levels when given together with insulin. Thus

  14. Inflammation increases pyruvate dehydrogenase kinase 4 (PDK4) expression via the Jun N-Terminal Kinase (JNK) pathway in C2C12 cells.

    PubMed

    Park, Hana; Jeoung, Nam Ho

    2016-01-22

    Chronic inflammation augments the deleterious effects of several diseases, particularly diabetes, cancer, and sepsis. It is also involved in the process of metabolic shift from glucose oxidation to lactate production. Although several studies suggest that the change in activity of the pyruvate dehydrogenase complex (PDC) is a major factor causing this metabolic change, the exact mechanism of the inflammatory state remains unclear. In this study, we investigated the effect of lipopolysaccharide (LPS) on the expression of pyruvate dehydrogenase kinase 4 (PDK4), which is strongly associated with inactivation of the PDC in C2C12 myoblasts. In C2C12 myoblasts, LPS exposure led to increased PDK4 mRNA and protein expression levels as well as lactate production in culture medium. However, the expression levels of other PDK isoenzymes (PDK1 - 3) remained unchanged. Additionally, we observed that LPS treatment induced phosphorylation of Jun N-Terminal Kinases (JNK). To confirm the role of JNK, we inhibited the JNK pathway and observed that PDK4 expression and lactate production were decreased, but p38 and ERK were not significantly changed. Taken together, our results suggest that LPS induces PDK4 expression and alters glucose metabolism via the JNK pathway. PMID:26740179

  15. Low molecular weight guluronate prevents TNF-α-induced oxidative damage and mitochondrial dysfunction in C2C12 skeletal muscle cells.

    PubMed

    Dun, Yun-lou; Zhou, Xiao-lin; Guan, Hua-shi; Yu, Guang-li; Li, Chun-xia; Hu, Ting; Zhao, Xia; Cheng, Xiao-lei; He, Xiao-xi; Hao, Jie-jie

    2015-09-01

    Muscle wasting is associated with a variety of chronic or inflammatory disorders. Evidence suggests that inflammatory cytokines play a vital role in muscle inflammatory pathology and this may result in oxidative damage and mitochondrial dysfunction in skeletal muscle. In our study, we used microwave degradation to prepare a water-soluble low molecular weight guluronate (LMG) of 3000 Da from Fucus vesiculosus obtained from Canada, the Atlantic Ocean. We demonstrated the structural characteristics, using HPLC, FTIR and NMR of LMG and investigated its effects on oxidative damage and mitochondrial dysfunction in C2C12 skeletal muscle cells induced by tumor necrosis factor alpha (TNF-α), a cell inflammatory cytokine. The results indicated that LMG could alleviate mitochondrial reactive oxygen species (ROS) production, increase the activities of antioxidant enzymes (GSH and SOD), promote mitochondrial membrane potential (MMP) and upregulate the expression of mitochondrial respiratory chain protein in TNF-α-induced C2C12 cells. LMG supplement also increased the mitochondrial DNA copy number and mitochondrial biogenesis related genes in TNF-α-induced C2C12 cells. LMG may exert these protective effects through the nuclear factor kappa B (NF-κB) signaling pathway. These suggest that LMG is capable of protecting TNF-α-induced C2C12 cells against oxidative damage and mitochondrial dysfunction. PMID:26205038

  16. Effect of mitochondrial fission inhibition on C2C12 differentiation.

    PubMed

    Bloemberg, Darin; Quadrilatero, Joe

    2016-06-01

    The differentiation of skeletal muscle is commonly examined in cell culture using the C2C12 line of mouse skeletal myoblasts. This process shares many similarities with that which occurs during embryonic development, such as the transient activation of caspases. Here, we examined the effect of inhibiting mitochondrial fission, using mdivi-1, on the ability of C2C12 cells to terminally differentiate. This was performed using immunofluorescent identification of cell morphology and myosin expression, as well as immunoblotting for markers of muscle differentiation. Furthermore, the effect of mdivi-1 administration on activation of caspase-2 and -3 was assessed using spectrofluorometric measurement of specific enzyme activity. PMID:27054170

  17. Autophagic flux data in differentiated C2C12 myotubes following exposure to acetylcholine and caffeine.

    PubMed

    Bloemberg, Darin; Quadrilatero, Joe

    2016-06-01

    The C2C12 line of mouse myoblasts is a useful cell culture model in which to conduct in vitro analyses related to skeletal muscle. Here we present data regarding the autophagic response induced by two chemicals known to influence calcium release and contraction in skeletal muscles and C2C12 cells: acetylcholine and caffeine. More specifically, by concurrently administering acetylcholine or caffeine along with chloroquine to differentiated myotubes for various amounts of time and assessing the protein expression of LC3 and p62, we report data on the relative level of autophagic flux induced by these two calcium- and contraction-regulating chemicals. PMID:27054179

  18. Production of bioactive enkephalin from the nonendocrine cell lines COS-7, NIH3T3, Ltk-, and C2C12.

    PubMed

    Takahashi, K; Fujita, T; Takeuchi, T

    1995-01-01

    Enkephalin is synthesized from proenkephalin in neuroendocrine cells. For the attempt to induce nonneuroendocrine origin cells to produce enkephalin, we used a mammalian expression vector for fusion peptides, pMEproCT beta, in which a fused peptide is designed to be cleaved by a yeast Kex2-like endoprotease furin. Met-Enkephalin was expressed in four nonneuroendocrine cell lines: COS-7, C2C12, Ltk-, and NIH3T3. The four cell lines produced a marked amount of Met-enkephalin, which appeared as a single peak on reverse-phase HPLC. Because transplantation of adrenal medullary cells to the subarachnoid space has been used to alleviate terminal cancer pain, and enkephalin appears to play a central role in relieving pain, this enkephalin expression vector may be useful for direct enkephalin expression in pericancerous tissues. PMID:7479338

  19. Leucine-induced activation of translational initiation is partly regulated by the branched-chain {alpha}-keto acid dehydrogenase complex in C2C12 cells

    SciTech Connect

    Nakai, Naoya . E-mail: nakai@hss.osaka-u.ac.jp; Shimomura, Yoshiharu; Tamura, Tomohiro; Tamura, Noriko; Hamada, Koichiro; Kawano, Fuminori; Ohira, Yoshinobu

    2006-05-19

    Branched-chain amino acid leucine has been shown to activate the translational regulators through the mammalian target of rapamycin. However, the leucine's effects are self-limiting because leucine promotes its own disposal by an oxidative pathway. The irreversible and rate-limiting step in the leucine oxidation pathway is catalyzed by the branched-chain {alpha}-keto acid dehydrogenase (BCKDH) complex. The complex contains E1 ({alpha}2{beta}2), E2, and E3 subunits, and its activity is abolished by phosphorylation of the E1{alpha} subunit by BCKDH kinase. The relationship between the activity of BCKDH complex and leucine-mediated activation of the protein translation was investigated using the technique of RNA interference. The activity of BCKDH complex in C2C12 cell was modulated by transfection of small interfering RNA (siRNA) for BCKDH E2 subunit or BCKDH kinase. Transfection of siRNAs decreased the mRNA expression and protein amount of corresponding gene. Suppression of either E2 subunit or kinase produced opposite effects on the cell proliferation and the activation of translational regulators by leucine. Suppression of BCKDH kinase for 48 h resulted in decreasing cell proliferation. In contrast, E2 suppression led to increased amount of total cellular protein. The phosphorylation of p70 S6 kinase by leucine was increased in E2-siRNA transfected C2C12 cells, whereas the leucine's effect was diminished in kinase-siRNA transfected cells. These results suggest that the activation of the translational regulators by leucine was partly regulated by the activity of BCKDH complex.

  20. In Vitro Selective Anti-Proliferative Effect of Zinc Oxide Nanoparticles Against Co-Cultured C2C12 Myoblastoma Cancer and 3T3-L1 Normal Cells.

    PubMed

    Chandrasekaran, Murugesan; Pandurangan, Muthuraman

    2016-07-01

    The zinc oxide (ZnO) nanoparticle has been widely used in biomedical applications and cancer therapy and has been reported to induce a selective cytotoxic effect on cancer cell proliferation. The present study investigated the cytotoxicity of ZnO nanoparticles against co-cultured C2C12 myoblastoma cancer cells and 3T3-L1 adipocytes. Our results showed that the ZnO nanoparticles could be cytotoxic to C2C12 myoblastoma cancer cells than 3T3-L1 cells. The messenger RNA (mRNA) expressions of p53 and bax were significantly increased 114.3 and 118.2 % in the C2C12 cells, whereas 42.5 and 40 % were increased in 3T3-L1 cells, respectively. The mRNA expression of bcl-2 was reduced 38.2 and 28.5 % in the C2C12 and 3T3-L1 cells, respectively, whereas the mRNA expression of caspase-3 was increased 80.7 and 51.6 % in the C2C12 and 3T3-L1 cells, respectively. The protein expressions of p53, bax, and caspase-3 were significantly increased 40, 81.8, and 80 % in C2C12 cells, whereas 20.3, 28.2, and 37.9 % were increased in 3T3-L1 cells, respectively. The mRNA expression of bcl-2 was significantly reduced 32.2 and 22.7 % in C2C12 and 3T3-L1 cells, respectively. Caspase-3 enzyme activity and reactive oxygen species (ROS) were increased in co-cultured C2C12 cells compared to 3T3-L1 cells. Taking all these data together, it may suggest that ZnO nanoparticles severely induce apoptosis in C2C12 myoblastoma cancer cells than 3T3-L1 cells. PMID:26563419

  1. Muscle acellular scaffold as a biomaterial: effects on C2C12 cell differentiation and interaction with the murine host environment

    PubMed Central

    Perniconi, Barbara; Coletti, Dario; Aulino, Paola; Costa, Alessandra; Aprile, Paola; Santacroce, Luigi; Chiaravalloti, Ernesto; Coquelin, Laura; Chevallier, Nathalie; Teodori, Laura; Adamo, Sergio; Marrelli, Massimo; Tatullo, Marco

    2014-01-01

    The extracellular matrix (ECM) of decellularized organs possesses the characteristics of the ideal tissue-engineering scaffold (i.e., histocompatibility, porosity, degradability, non-toxicity). We previously observed that the muscle acellular scaffold (MAS) is a pro-myogenic environment in vivo. In order to determine whether MAS, which is basically muscle ECM, behaves as a myogenic environment, regardless of its location, we analyzed MAS interaction with both muscle and non-muscle cells and tissues, to assess the effects of MAS on cell differentiation. Bone morphogenetic protein treatment of C2C12 cells cultured within MAS induced osteogenic differentiation in vitro, thus suggesting that MAS does not irreversibly commit cells to myogenesis. In vivo MAS supported formation of nascent muscle fibers when replacing a muscle (orthotopic position). However, heterotopically grafted MAS did not give rise to muscle fibers when transplanted within the renal capsule. Also, no muscle formation was observed when MAS was transplanted under the xiphoid process, in spite of the abundant presence of cells migrating along the laminin-based MAS structure. Taken together, our results suggest that MAS itself is not sufficient to induce myogenic differentiation. It is likely that the pro-myogenic environment of MAS is not strictly related to the intrinsic properties of the muscle scaffold (e.g., specific muscle ECM proteins). Indeed, it is more likely that myogenic stem cells colonizing MAS recognize a muscle environment that ultimately allows terminal myogenic differentiation. In conclusion, MAS may represent a suitable environment for muscle and non-muscle 3D constructs characterized by a highly organized structure whose relative stability promotes integration with the surrounding tissues. Our work highlights the plasticity of MAS, suggesting that it may be possible to consider MAS for a wider range of tissue engineering applications than the mere replacement of volumetric muscle loss

  2. Differentiation of C2C12 myoblasts expressing lamin A mutated at a site responsible for Emery-Dreifuss muscular dystrophy is improved by inhibition of the MEK-ERK pathway and stimulation of the PI3-kinase pathway

    SciTech Connect

    Favreau, Catherine; Delbarre, Erwan; Courvalin, Jean-Claude; Buendia, Brigitte

    2008-04-01

    Mutation R453W in A-type lamins, that are major nuclear envelope proteins, generates Emery-Dreifuss muscular dystrophy. We previously showed that mouse myoblasts expressing R453W-lamin A incompletely exit the cell cycle and differentiate into myocytes with a low level of multinucleation. Here we attempted to improve differentiation by treating these cells with a mixture of PD98059, an extracellular-regulated kinase (ERK) kinase (also known as mitogen-activated kinase, MEK) inhibitor, and insulin-like growth factor-II, an activator of phosphoinositide 3-kinase. We show that mouse myoblasts expressing R453W-lamin A were sensitive to the drug treatment as shown by (i) an increase in multinucleation, (ii) downregulation of proliferation markers (cyclin D1, hyperphosphorylated Rb), (iii) upregulation of myogenin, and (iv) sustained activation of p21 and cyclin D3. However, nuclear matrix anchorage of p21 and cyclin D3 in a complex with hypophosphorylated Rb that is critical to trigger cell cycle arrest and myogenin induction was deficient and incompletely restored by drug treatment. As the turn-over of R453W-lamin A at the nuclear envelope was greatly enhanced, we propose that R453W-lamin A impairs the capacity of the nuclear lamina to serve as scaffold for substrates of the MEK-ERK pathway and for MyoD-induced proteins that play a role in the differentiation process.

  3. Hypoxia induces adipogenic differentitation of myoblastic cell lines

    SciTech Connect

    Itoigawa, Yoshiaki; Kishimoto, Koshi N.; Okuno, Hiroshi; Sano, Hirotaka; Kaneko, Kazuo; Itoi, Eiji

    2010-09-03

    Research highlights: {yields} C2C12 and G8 myogenic cell lines treated by hypoxia differentiate into adipocytes. {yields} The expression of C/EBP{beta}, {alpha} and PPAR{gamma} were increased under hypoxia. {yields} Myogenic differentiation of C2C12 was inhibited under hypoxia. -- Abstract: Muscle atrophy usually accompanies fat accumulation in the muscle. In such atrophic conditions as back muscles of kyphotic spine and the rotator cuff muscles with torn tendons, blood flow might be diminished. It is known that hypoxia causes trans-differentiation of mesenchymal stem cells derived from bone marrow into adipocytes. However, it has not been elucidated yet if hypoxia turned myoblasts into adipocytes. We investigated adipogenesis in C2C12 and G8 murine myogenic cell line treated by hypoxia. Cells were also treated with the cocktail of insulin, dexamethasone and IBMX (MDI), which has been known to inhibit Wnt signaling and promote adipogenesis. Adipogenic differentiation was seen in both hypoxia and MDI. Adipogenic marker gene expression was assessed in C2C12. CCAAT/enhancer-binding protein (C/EBP) {beta}, {alpha} and peroxisome proliferator activating receptor (PPAR) {gamma} were increased by both hypoxia and MDI. The expression profile of Wnt10b was different between hypoxia and MDI. The mechanism for adipogenesis of myoblasts in hypoxia might be regulated by different mechanism than the modification of Wnt signaling.

  4. The Effect of SERCA1b Silencing on the Differentiation and Calcium Homeostasis of C2C12 Skeletal Muscle Cells

    PubMed Central

    Vincze, János; Oláh, Tamás; Juhász, Tamás; Zákány, Róza; Csernoch, László; Zádor, Ernő

    2015-01-01

    The sarcoplasmic/endoplasmic reticulum Ca2+ATPases (SERCAs) are the main Ca2+ pumps which decrease the intracellular Ca2+ level by reaccumulating Ca2+ into the sarcoplasmic reticulum. The neonatal SERCA1b is the major Ca2+ pump in myotubes and young muscle fibers. To understand its role during skeletal muscle differentiation its synthesis has been interfered with specific shRNA sequence. Stably transfected clones showing significantly decreased SERCA1b expression (cloneC1) were selected for experiments. The expression of the regulatory proteins of skeletal muscle differentiation was examined either by Western-blot at the protein level for MyoD, STIM1, calsequestrin (CSQ), and calcineurin (CaN) or by RT-PCR for myostatin and MCIP1.4. Quantitative analysis revealed significant alterations in CSQ, STIM1, and CaN expression in cloneC1 as compared to control cells. To examine the functional consequences of the decreased expression of SERCA1b, repeated Ca2+-transients were evoked by applications of 120 mM KCl. The significantly higher [Ca2+]i measured at the 20th and 40th seconds after the beginning of KCl application (112±3 and 110±3 nM vs. 150±7 and 135±5 nM, in control and in cloneC1 cells, respectively) indicated a decreased Ca2+-uptake capability which was quantified by extracting the maximal pump rate (454±41 μM/s vs. 144±24 μM/s, in control and in cloneC1 cells). Furthermore, the rate of calcium release from the SR (610±60 vs. 377±64 μM/s) and the amount of calcium released (843±75 μM vs. 576±80 μM) were also significantly suppressed. These changes were also accompanied by a reduced activity of CaN in cells with decreased SERCA1b. In parallel, cloneC1 cells showed inhibited cell proliferation and decreased myotube nuclear numbers. Moreover, while cyclosporineA treatment suppressed the proliferation of parental cultures it had no effect on cloneC1 cells. SERCA1b is thus considered to play an essential role in the regulation of [Ca2+]i and its ab ovo

  5. Genome-wide examination of myoblast cell cycle withdrawal duringdifferentiation

    SciTech Connect

    Shen, Xun; Collier, John Michael; Hlaing, Myint; Zhang, Leanne; Delshad, Elizabeth H.; Bristow, James; Bernstein, Harold S.

    2002-12-02

    Skeletal and cardiac myocytes cease division within weeks of birth. Although skeletal muscle retains limited capacity for regeneration through recruitment of satellite cells, resident populations of adult myocardial stem cells have not been identified. Because cell cycle withdrawal accompanies myocyte differentiation, we hypothesized that C2C12 cells, a mouse myoblast cell line previously used to characterize myocyte differentiation, also would provide a model for studying cell cycle withdrawal during differentiation. C2C12 cells were differentiated in culture medium containing horse serum and harvested at various time points to characterize the expression profiles of known cell cycle and myogenic regulatory factors by immunoblot analysis. BrdU incorporation decreased dramatically in confluent cultures 48 hr after addition of horse serum, as cells started to form myotubes. This finding was preceded by up-regulation of MyoD, followed by myogenin, and activation of Bcl-2. Cyclin D1 was expressed in proliferating cultures and became undetectable in cultures containing 40 percent fused myotubes, as levels of p21(WAF1/Cip1) increased and alpha-actin became detectable. Because C2C12 myoblasts withdraw from the cell cycle during myocyte differentiation following a course that recapitulates this process in vivo, we performed a genome-wide screen to identify other gene products involved in this process. Using microarrays containing approximately 10,000 minimally redundant mouse sequences that map to the UniGene database of the National Center for Biotechnology Information, we compared gene expression profiles between proliferating, differentiating, and differentiated C2C12 cells and verified candidate genes demonstrating differential expression by RT-PCR. Cluster analysis of differentially expressed genes revealed groups of gene products involved in cell cycle withdrawal, muscle differentiation, and apoptosis. In addition, we identified several genes, including DDAH2 and Ly

  6. Arecoline inhibits and destabilizes agrin-induced acetylcholine receptor cluster formation in C2C12 myotubes.

    PubMed

    Chang, Yung-Fu; Liu, Ting-Yuan; Liu, Shao-Tung

    2013-10-01

    Areca nut (Areca catechu) is chewed as a medical and psychoactive food by roughly 10% of the world population. Areca nut chewing may lead to low birth weight, premature delivery and impaired muscle development. Our previous study showed that arecoline, a major alkaloid in the areca nut, inhibited the myogenic differentiation of C2C12 myoblastic cells. The clustering of acetylcholine receptors (AChRs) in the postsynaptic membrane at the neuromuscular junction (NMJ) by agrin, a signaling protein released by motor neurons, is critical for the development of functional muscles. Here, we further investigate whether arecoline affects the AChR clustering using cultured C2C12 myotubes. Rhodamine-conjugated α-bungarotoxin was used to detect the presence of AChR clusters. Our results showed that arecoline inhibited the formation of agrin-induced AChR clusters and destabilized agrin-induced or spontaneous AChR cluster formation. In addition, arecoline inhibited the expression of myogenin in C2C12 myotubes. These results shed light on the important role of arecoline on the detrimental effect of areca nut to muscle development. PMID:23933062

  7. Simple micropatterning method for enhancing fusion efficiency and responsiveness to electrical stimulation of C2C12 myotubes.

    PubMed

    Takayama, Yuzo; Wagatsuma, Akira; Hoshino, Takayuki; Mabuchi, Kunihiko

    2015-01-01

    Cultured myotubes induced in vitro from myoblast cell lines have been widely used to investigate muscle functional properties and disease-related biological phenotypes. Until now, several cell patterning techniques have been applied to regulate in vitro myotube structures. However, these previous studies required specific geometry patterns or soft materials for inducing efficient myotube formation. Thus, more simple and easy handling method will be promising. In this study, we aimed to provide a method to form C2C12 myotubes with regulated sizes and orientations in simple line patterns. We used a poly(dimethylsiloxane) (PDMS) stamp and a 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer solution to fabricate line patterns for myotube formation onto a culture dish. We confirmed that C2C12 myotubes of well-defined size and orientation were reproducibly formed. In particular, myotubes formed in the micropatterned lines showed the increased fusion efficiency. Then, functional dynamics in the micropatterned myotubes were detected and analyzed using a calcium imaging method. We confirmed micropatterning in line patterns enhanced the responsiveness of myotubes to external electrical stimulations. These results indicate that micropatterning myoblasts with the MPC polymer is a simple and effective method to form functional myotube networks. PMID:25311428

  8. JAZF1 promotes proliferation of C2C12 cells, but retards their myogenic differentiation through transcriptional repression of MEF2C and MRF4—Implications for the role of Jazf1 variants in oncogenesis and type 2 diabetes

    SciTech Connect

    Yuasa, Katsutoshi; Aoki, Natsumi; Hijikata, Takao

    2015-08-15

    Single-nucleotide polymorphisms associated with type 2 diabetes (T2D) have been identified in Jazf1, which is also involved in the oncogenesis of endometrial stromal tumors. To understand how Jazf1 variants confer a risk of tumorigenesis and T2D, we explored the functional roles of JAZF1 and searched for JAZF1 target genes in myogenic C2C12 cells. Consistent with an increase of Jazf1 transcripts during myoblast proliferation and their decrease during myogenic differentiation in regenerating skeletal muscle, JAZF1 overexpression promoted cell proliferation, whereas it retarded myogenic differentiation. Examination of myogenic genes revealed that JAZF1 overexpression transcriptionally repressed MEF2C and MRF4 and their downstream genes. AMP deaminase1 (AMPD1) was identified as a candidate for JAZF1 target by gene array analysis. However, promoter assays of Ampd1 demonstrated that mutation of the putative binding site for the TR4/JAZF1 complex did not alleviate the repressive effects of JAZF1 on promoter activity. Instead, JAZF1-mediated repression of Ampd1 occurred through the MEF2-binding site and E-box within the Ampd1 proximal regulatory elements. Consistently, MEF2C and MRF4 expression enhanced Ampd1 promoter activity. AMPD1 overexpression and JAZF1 downregulation impaired AMPK phosphorylation, while JAZF1 overexpression also reduced it. Collectively, these results suggest that aberrant JAZF1 expression contributes to the oncogenesis and T2D pathogenesis. - Highlights: • JAZF1 promotes cell cycle progression and proliferation of myoblasts. • JAZF1 retards myogenic differentiation and hypertrophy of myotubes. • JAZF1 transcriptionally represses Mef2C and Mrf4 expression. • JAZF1 has an impact on the phosphorylation of AMPK.

  9. Synthesis of Mitochondrial DNA Precursors during Myogenesis, an Analysis in Purified C2C12 Myotubes*

    PubMed Central

    Frangini, Miriam; Franzolin, Elisa; Chemello, Francesco; Laveder, Paolo; Romualdi, Chiara; Bianchi, Vera; Rampazzo, Chiara

    2013-01-01

    During myogenesis, myoblasts fuse into multinucleated myotubes that acquire the contractile fibrils and accessory structures typical of striated skeletal muscle fibers. To support the high energy requirements of muscle contraction, myogenesis entails an increase in mitochondrial (mt) mass with stimulation of mtDNA synthesis and consumption of DNA precursors (dNTPs). Myotubes are quiescent cells and as such down-regulate dNTP production despite a high demand for dNTPs. Although myogenesis has been studied extensively, changes in dNTP metabolism have not been examined specifically. In differentiating cultures of C2C12 myoblasts and purified myotubes, we analyzed expression and activities of enzymes of dNTP biosynthesis, dNTP pools, and the expansion of mtDNA. Myotubes exibited pronounced post-mitotic modifications of dNTP synthesis with a particularly marked down-regulation of de novo thymidylate synthesis. Expression profiling revealed the same pattern of enzyme down-regulation in adult murine muscles. The mtDNA increased steadily after myoblast fusion, turning over rapidly, as revealed after treatment with ethidium bromide. We individually down-regulated p53R2 ribonucleotide reductase, thymidine kinase 2, and deoxyguanosine kinase by siRNA transfection to examine how a further reduction of these synthetic enzymes impacted myotube development. Silencing of p53R2 had little effect, but silencing of either mt kinase caused 50% mtDNA depletion and an unexpected decrease of all four dNTP pools independently of the kinase specificity. We suggest that during development of myotubes the shortage of even a single dNTP may affect all four pools through dysregulation of ribonucleotide reduction and/or dissipation of the non-limiting dNTPs during unproductive elongation of new DNA chains. PMID:23297407

  10. Peptide separations by on-line MudPIT compared to isoelectric focusing in an off-gel format: Application to a membrane-enriched fraction from C2C12 mouse skeletal muscle cells

    PubMed Central

    Elschenbroich, Sarah; Ignatchenko, Vladimir; Sharma, Parveen; Schmitt-Ulms, Gerold; Gramolini, Anthony O.; Kislinger, Thomas

    2013-01-01

    High resolution peptide separation is pivotal for successful shot-gun proteomics. The need for capable techniques propels invention and improvement of ever more sophisticated approaches. Recently, Agilent Technologies has introduced the OFFGEL fractionator, which conducts peptide separation by isoelectric focusing in an off-gel setup. This platform has been shown to accomplish high resolution of peptides for diverse sample types, yielding valuable advantages over comparable separation techniques. In this study, we deliver the first comparison of the newly emerging OFFGEL approach to the well-established on-line MudPIT platform. Samples from a membrane-enriched fraction isolated from murine C2C12 cells were subjected to replicate analysis by OFFGEL (12 fractions, pH 3 – 10) followed by RP-LC-MS/MS or 12-step on-line MudPIT. OFFGEL analyses yielded 1398 proteins (identified by 10,269 peptides) while 1428 proteins (11,078 peptides) were detected with the MudPIT approach. Thus, our data shows that both platforms produce highly comparable results in terms of protein/peptide identifications and reproducibility for the sample type analyzed. We achieve more accurate peptide focusing after OFFGEL fractionation with 88 % of all peptides binned to a single fraction, as compared to 61 % of peptides detected in only one step in MudPIT analyses. Our study suggests that both platforms are equally capable of high quality peptide separation of a sample with medium complexity, rendering them comparably valuable for comprehensive proteomic analyses. PMID:19670906

  11. Biomarker-free dielectrophoretic sorting of differentiating myoblast multipotent progenitor cells and their membrane analysis by Raman spectroscopy.

    PubMed

    Muratore, Massimo; Srsen, Vlastimil; Waterfall, Martin; Downes, Andrew; Pethig, Ronald

    2012-09-01

    Myoblasts are muscle derived mesenchymal stem cell progenitors that have great potential for use in regenerative medicine, especially for cardiomyogenesis grafts and intracardiac cell transplantation. To utilise such cells for pre-clinical and clinical applications, and especially for personalized medicine, it is essential to generate a synchronised, homogenous, population of cells that display phenotypic and genotypic homogeneity within a population of cells. We demonstrate that the biomarker-free technique of dielectrophoresis (DEP) can be used to discriminate cells between stages of differentiation in the C2C12 myoblast multipotent mouse model. Terminally differentiated myotubes were separated from C2C12 myoblasts to better than 96% purity, a result validated by flow cytometry and Western blotting. To determine the extent to which cell membrane capacitance, rather than cell size, determined the DEP response of a cell, C2C12 myoblasts were co-cultured with GFP-expressing MRC-5 fibroblasts of comparable size distributions (mean diameter ∼10 μm). A DEP sorting efficiency greater than 98% was achieved for these two cell types, a result concluded to arise from the fibroblasts possessing a larger membrane capacitance than the myoblasts. It is currently assumed that differences in membrane capacitance primarily reflect differences in the extent of folding or surface features of the membrane. However, our finding by Raman spectroscopy that the fibroblast membranes contained a smaller proportion of saturated lipids than those of the myoblasts suggests that the membrane chemistry should also be taken into account. PMID:23940503

  12. Optogenetic induction of contractile ability in immature C2C12 myotubes

    PubMed Central

    Asano, Toshifumi; Ishizuka, Toru; Morishima, Keisuke; Yawo, Hiromu

    2015-01-01

    Myoblasts can be differentiated into multinucleated myotubes, which provide a well-established and reproducible muscle cell model for skeletal myogenesis in vitro. However, under conventional differentiation conditions, each myotube rarely exhibits robust contraction as well as sarcomere arrangement. Here, we applied trains of optical stimulation (OS) to C2C12 myotubes, which were genetically engineered to express a channelrhodopsin variant, channelrhodopsin-green receiver (ChRGR), to investigate whether membrane depolarization facilitates the maturation of myotubes. We found that light pulses induced membrane depolarization and evoked action potentials in ChRGR-expressing myotubes. Regular alignments of sarcomeric proteins were patterned periodically after OS training. In contrast, untrained control myotubes rarely exhibited the striated patterns. OS-trained and untrained myotubes also differed in terms of their resting potential. OS training significantly increased the number of contractile myotubes. Treatment with nifedipine during OS training significantly decreased the fraction of contractile myotubes, whereas tetrodotoxin was less effective. These results suggest that oscillations of membrane potential and intracellular Ca2+ accompanied by OS promoted sarcomere assembly and the development of contractility during the myogenic process. These results also suggest that optogenetic techniques could be used to manipulate the activity-dependent process during myogenic development. PMID:25661648

  13. Maduramicin Inhibits Proliferation and Induces Apoptosis in Myoblast Cells

    PubMed Central

    Chen, Xin; Gu, Ying; Singh, Karnika; Shang, Chaowei; Barzegar, Mansoureh; Jiang, Shanxiang; Huang, Shile

    2014-01-01

    Maduramicin, a polyether ionophore antibiotic derived from the bacterium Actinomadura yumaensis, is currently used as a feed additive against coccidiosis in poultry worldwide. It has been clinically observed that maduramicin can cause skeletal muscle and heart cell damage, resulting in skeletal muscle degeneration, heart failure, and even death in animals and humans, if improperly used. However, the mechanism of its toxic action in myoblasts is not well understood. Using mouse myoblasts (C2C12) and human rhabdomyosarcoma (RD and Rh30) cells as an experimental model for myoblasts, here we found that maduramicin inhibited cell proliferation and induced cell death in a concentration-dependent manner. Further studies revealed that maduramicin induced accumulation of the cells at G0/G1 phase of the cell cycle, and induced apoptosis in the cells. Concurrently, maduramicin downregulated protein expression of cyclin D1, cyclin-dependent kinases (CDK4 and CDK6), and CDC25A, and upregulated expression of the CDK inhibitors (p21Cip1 and p27Kip1), resulting in decreased phosphorylation of Rb. Maduramicin also induced expression of BAK, BAD, DR4, TRADD and TRAIL, leading to activation of caspases 8, 9 and 3 as well as cleavage of poly ADP ribose polymerase (PARP). Taken together, our results suggest that maduramicin executes its toxicity in myoblasts at least by inhibiting cell proliferation and inducing apoptotic cell death. PMID:25531367

  14. Maduramicin inhibits proliferation and induces apoptosis in myoblast cells.

    PubMed

    Chen, Xin; Gu, Ying; Singh, Karnika; Shang, Chaowei; Barzegar, Mansoureh; Jiang, Shanxiang; Huang, Shile

    2014-01-01

    Maduramicin, a polyether ionophore antibiotic derived from the bacterium Actinomadura yumaensis, is currently used as a feed additive against coccidiosis in poultry worldwide. It has been clinically observed that maduramicin can cause skeletal muscle and heart cell damage, resulting in skeletal muscle degeneration, heart failure, and even death in animals and humans, if improperly used. However, the mechanism of its toxic action in myoblasts is not well understood. Using mouse myoblasts (C2C12) and human rhabdomyosarcoma (RD and Rh30) cells as an experimental model for myoblasts, here we found that maduramicin inhibited cell proliferation and induced cell death in a concentration-dependent manner. Further studies revealed that maduramicin induced accumulation of the cells at G0/G1 phase of the cell cycle, and induced apoptosis in the cells. Concurrently, maduramicin downregulated protein expression of cyclin D1, cyclin-dependent kinases (CDK4 and CDK6), and CDC25A, and upregulated expression of the CDK inhibitors (p21Cip1 and p27Kip1), resulting in decreased phosphorylation of Rb. Maduramicin also induced expression of BAK, BAD, DR4, TRADD and TRAIL, leading to activation of caspases 8, 9 and 3 as well as cleavage of poly ADP ribose polymerase (PARP). Taken together, our results suggest that maduramicin executes its toxicity in myoblasts at least by inhibiting cell proliferation and inducing apoptotic cell death. PMID:25531367

  15. Characterization of an acute muscle contraction model using cultured C2C12 myotubes.

    PubMed

    Manabe, Yasuko; Miyatake, Shouta; Takagi, Mayumi; Nakamura, Mio; Okeda, Ai; Nakano, Taemi; Hirshman, Michael F; Goodyear, Laurie J; Fujii, Nobuharu L

    2012-01-01

    A cultured C2C12 myotube contraction system was examined for application as a model for acute contraction-induced phenotypes of skeletal muscle. C2C12 myotubes seeded into 4-well rectangular plates were placed in a contraction system equipped with a carbon electrode at each end. The myotubes were stimulated with electric pulses of 50 V at 1 Hz for 3 ms at 997-ms intervals. Approximately 80% of the myotubes were observed to contract microscopically, and the contractions lasted for at least 3 h with electrical stimulation. Calcium ion (Ca²⁺) transient evoked by the electric pulses was detected fluorescently with Fluo-8. Phosphorylation of protein kinase B/Akt (Akt), 5' AMP-activated protein kinase (AMPK), p38 mitogen-activated protein kinase (p38), and c-Jun NH2-terminal kinase (JNK)1/2, which are intracellular signaling proteins typically activated in exercised/contracted skeletal muscle, was observed in the electrically stimulated C2C12 myotubes. The contractions induced by the electric pulses increased glucose uptake and depleted glycogen in the C2C12 myotubes. C2C12 myotubes that differentiated after exogenous gene transfection by a lipofection or an electroporation method retained their normal contractile ability by electrical stimulation. These findings show that our C2C12 cell contraction system reproduces the muscle phenotypes that arise invivo (exercise), in situ (hindlimb muscles in an anesthetized animal), and invitro (dissected muscle tissues in incubation buffer) by acute muscle contraction, demonstrating that the system is applicable for the analysis of intracellular events evoked by acute muscle contraction. PMID:23300713

  16. Elastase levels and activity are increased in dystrophic muscle and impair myoblast cell survival, proliferation and differentiation

    PubMed Central

    Arecco, N.; Clarke, C. J.; Jones, F. K.; Simpson, D. M.; Mason, D.; Beynon, R. J.; Pisconti, A.

    2016-01-01

    In Duchenne muscular dystrophy, progressive loss of muscle tissue is accompanied by fibrosis, chronic inflammation and reduced muscle regenerative capacity. Although much is known about the development of fibrosis and chronic inflammation in muscular dystrophy, less is known about how they are mechanistically linked to loss of muscle regenerative capacity. We have developed a proteomics method to discover dystrophy-associated changes in the muscle progenitor cell niche, which identified serine proteases, and especially neutrophil elastase, as candidates. We show that elastase activity is increased in dystrophic (mdx4cv) muscle and impairs myoblast survival in culture. While the effect of elastase on C2C12 cell survival correlates with the kinetics of elastase-mediated degradation of the substrate to which the cells adhere, the effect of elastase on satellite cell-derived primary myoblast growth and differentiation is substrate-independent and even more dramatic than the effect on C2C12 cells, suggesting a detrimental role for elastase on myogenesis in vivo. Additionally, elastase impairs differentiation of both primary and C2C12 myoblasts into myotubes. Our findings evidence the importance of neutrophil-mediated inflammation in muscular dystrophy and indicate elastase-mediated regulation of myoblast behaviour as a potential mechanism underlying loss of regenerative capacity in dystrophic muscle. PMID:27241590

  17. Elastase levels and activity are increased in dystrophic muscle and impair myoblast cell survival, proliferation and differentiation.

    PubMed

    Arecco, N; Clarke, C J; Jones, F K; Simpson, D M; Mason, D; Beynon, R J; Pisconti, A

    2016-01-01

    In Duchenne muscular dystrophy, progressive loss of muscle tissue is accompanied by fibrosis, chronic inflammation and reduced muscle regenerative capacity. Although much is known about the development of fibrosis and chronic inflammation in muscular dystrophy, less is known about how they are mechanistically linked to loss of muscle regenerative capacity. We have developed a proteomics method to discover dystrophy-associated changes in the muscle progenitor cell niche, which identified serine proteases, and especially neutrophil elastase, as candidates. We show that elastase activity is increased in dystrophic (mdx(4cv)) muscle and impairs myoblast survival in culture. While the effect of elastase on C2C12 cell survival correlates with the kinetics of elastase-mediated degradation of the substrate to which the cells adhere, the effect of elastase on satellite cell-derived primary myoblast growth and differentiation is substrate-independent and even more dramatic than the effect on C2C12 cells, suggesting a detrimental role for elastase on myogenesis in vivo. Additionally, elastase impairs differentiation of both primary and C2C12 myoblasts into myotubes. Our findings evidence the importance of neutrophil-mediated inflammation in muscular dystrophy and indicate elastase-mediated regulation of myoblast behaviour as a potential mechanism underlying loss of regenerative capacity in dystrophic muscle. PMID:27241590

  18. Electrically induced contraction of C2C12 myotubes cultured on a porous membrane-based substrate with muscle tissue-like stiffness.

    PubMed

    Kaji, Hirokazu; Ishibashi, Takeshi; Nagamine, Kuniaki; Kanzaki, Makoto; Nishizawa, Matsuhiko

    2010-09-01

    A porous membrane-based cell culture device was developed to electrically stimulate a confluent monolayer of C2C12 myotubes. The device's cell culture substrate is a microporous alumina membrane-modified by attaching an atelocollagen membrane on the upperside and a hole-spotted poly(dimethylsiloxane) (PDMS) film on the underside. When electric current is generated between the device's Pt ring electrodes--one of which is placed above the cells and the other below the PDMS layer--the focused current at the PDMS hole can electrically stimulate the cells. C2C12 myoblasts were cultured on the substrate and differentiated into myotubes. When the electrical pulses were applied, myotubes started to contract slightly in and near the hole, and that the continuous stimulation increased both the number of stimuli-responding myotubes and the magnitude of the contraction considerably owing to the underlying atelocollagen membrane with muscle tissue-like stiffness. Also, the generation of contractile myotubes on a wider region of the membrane substrate was possible by applying the electrical pulses through the array of holes in the PDMS film. Using the present system, the glucose uptake by contractile myotubes was examined with fluorescence-labeled glucose, 2-NBDG, which displayed a positive correlation between the contractile activity of myotubes and the uptake of 2-NBDG. PMID:20561677

  19. Chitooligomer-Immobilized Biointerfaces with Micropatterned Geometries for Unidirectional Alignment of Myoblast Cells.

    PubMed

    Poosala, Pornthida; Kitaoka, Takuya

    2016-01-01

    Skeletal muscle possesses a robust capacity to regenerate functional architectures with a unidirectional orientation. In this study, we successfully arranged skeletal myoblast (C2C12) cells along micropatterned gold strips on which chitohexaose was deposited via a vectorial chain immobilization approach. Hexa-N-acetyl-D-glucosamine (GlcNAc6) was site-selectively modified at its reducing end with thiosemicarbazide, then immobilized on a gold substrate in striped micropatterns via S-Au chemisorption. Gold micropatterns ranged from 100 to 1000 µm in width. Effects of patterning geometries on C2C12 cell alignment, morphology, and gene expression were investigated. Unidirectional alignment of C2C12 cells having GlcNAc6 receptors was clearly observed along the micropatterns. Decreasing striped pattern width increased cell attachment and proliferation, suggesting that the fixed GlcNAc6 and micropatterns impacted cell function. Possibly, interactions between nonreducing end groups of fixed GlcNAc6 and cell surface receptors initiated cellular alignment. Our technique for mimicking native tissue organization should advance applications in tissue engineering. PMID:26784249

  20. Chitooligomer-Immobilized Biointerfaces with Micropatterned Geometries for Unidirectional Alignment of Myoblast Cells

    PubMed Central

    Poosala, Pornthida; Kitaoka, Takuya

    2016-01-01

    Skeletal muscle possesses a robust capacity to regenerate functional architectures with a unidirectional orientation. In this study, we successfully arranged skeletal myoblast (C2C12) cells along micropatterned gold strips on which chitohexaose was deposited via a vectorial chain immobilization approach. Hexa-N-acetyl-d-glucosamine (GlcNAc6) was site-selectively modified at its reducing end with thiosemicarbazide, then immobilized on a gold substrate in striped micropatterns via S–Au chemisorption. Gold micropatterns ranged from 100 to 1000 µm in width. Effects of patterning geometries on C2C12 cell alignment, morphology, and gene expression were investigated. Unidirectional alignment of C2C12 cells having GlcNAc6 receptors was clearly observed along the micropatterns. Decreasing striped pattern width increased cell attachment and proliferation, suggesting that the fixed GlcNAc6 and micropatterns impacted cell function. Possibly, interactions between nonreducing end groups of fixed GlcNAc6 and cell surface receptors initiated cellular alignment. Our technique for mimicking native tissue organization should advance applications in tissue engineering. PMID:26784249

  1. Effects of electrical stimulation in C2C12 muscle constructs

    PubMed Central

    Park, Hyoungshin; Bhalla, Rajat; Saigal, Rajiv; Radisic, Milica; Watson, Nicki; Langer, Robert; Vunjak-Novakovic, Gordana

    2009-01-01

    Electrical stimulation affects the deposition of extracellular matrices and cellular differentiation. Type I collagen is one of the most abundant extracellular matrix proteins; however, not much is known about the effects of electrical stimulation on collagen type I deposition in C2C12 cells. Thus, we studied the effects of electrical voltage and stimulation frequency in 3D cultured C2C12 muscle cells in terms of metabolic activity, type I collagen deposition and cell morphology. Electrically excitable C2C12 muscle cells were seeded in collagen scaffolds and stimulated with rectangular signals of voltage (2, 5, 7 V) and frequency (1, 2 Hz), using parallel carbon electrodes spaced 1 cm apart. Metabolic activity was quantified by the glucose: lactate concentration ratio in the medium. Apoptotic activity was assessed by TUNEL staining and changes in collagen deposition were identified by immunohistology. The ultrastructure of the tissue was examined by TEM. Glucose and lactate analysis indicated that all groups had similar metabolic activity. TUNEL stain showed no significant difference in apoptotic damage induced by electrical stimulation compared to the control. Samples stimulated at 2 Hz exhibited reduced collagen deposition compared to the control and 1 Hz stimulated samples. Muscle-protein marker desmin was highly expressed in constructs stimulated with 1 Hz/5 V sample. TEM revealed that the stimulated samples developed highly organized sarcomeres, which coincided with improved contractile properties in the 1 Hz/5 V- and 2 Hz/5 V-stimulated groups. Our data implicate that a specific electrical frequency may modulate type I collagen accumulation and a specific voltage may affect the differentiation of muscle sarcomeres in excitable cells. PMID:18512267

  2. Chronic reactive oxygen species exposure inhibits glucose uptake and causes insulin resistance in C2C12 myotubes.

    PubMed

    Ding, Hongwen; Heng, Baoli; He, Wenfang; Shi, Liping; Lai, Caiyong; Xiao, Long; Ren, Haolin; Mo, Shijie; Su, Zexuan

    2016-09-16

    Reactive oxygen species (ROS) is an important regulator in cellular signaling transduction, and many previous studies have indicated that acute ROS stimulation improves insulin sensitivity in skeletal muscle. In the study, we found that chronic ROS treatment caused serious insulin resistance in C2C12 myotubes. Glucose uptake and consumption assay indicated that pretreatment with 80 μM H2O2 for 2 h inhibited insulin-stimulated glucose uptake in C2C12 myotubes, and the reason for it, is that chronic H2O2 treatment decreased insulin-induced glucose transporter 4 (GLUT4) translocation from cell plasma to cell membrane. Moreover, Akt2 phosphorylation depended on insulin was reduced in C2C12 myotubes of chronic H2O2 treatment. Together, this study provides further demonstration that chronic ROS stress is associated with insulin resistance of skeletal muscle in the progression of type 2 diabetes. PMID:27501754

  3. Transcriptional activity of acetylcholinesterase gene is regulated by DNA methylation during C2C12 myogenesis.

    PubMed

    Lau, Kei M; Gong, Amy G W; Xu, Miranda L; Lam, Candy T W; Zhang, Laura M L; Bi, Cathy W C; Cui, D; Cheng, Anthony W M; Dong, Tina T X; Tsim, Karl W K; Lin, Huangquan

    2016-07-01

    The expression of acetylcholinesterase (AChE), an enzyme hydrolyzes neurotransmitter acetylcholine at vertebrate neuromuscular junction, is regulated during myogenesis, indicating the significance of muscle intrinsic factors in controlling the enzyme expression. DNA methylation is essential for temporal control of myogenic gene expression during myogenesis; however, its role in AChE regulation is not known. The promoter of vertebrate ACHE gene carries highly conserved CG-rich regions, implying its likeliness to be methylated for epigenetic regulation. A DNA methyltransferase inhibitor, 5-azacytidine (5-Aza), was applied onto C2C12 cells throughout the myotube formation. When DNA methylation was inhibited, the promoter activity, transcript expression and enzymatic activity of AChE were markedly increased after day 3 of differentiation, which indicated the putative role of DNA methylation. By bisulfite pyrosequencing, the overall methylation rate was found to peak at day 3 during C2C12 cell differentiation; a SP1 site located at -1826bp upstream of mouse ACHE gene was revealed to be heavily methylated. The involvement of transcriptional factor SP1 in epigenetic regulation of AChE was illustrated here: (i) the SP1-driven transcriptional activity was increased in 5-Aza-treated C2C12 culture; (ii) the binding of SP1 onto the SP1 site of ACHE gene was fully blocked by the DNA methylation; and (iii) the sequence flanking SP1 sites of ACHE gene was precipitated by chromatin immuno-precipitation assay. The findings suggested the role of DNA methylation on AChE transcriptional regulation and provided insight in elucidating the DNA methylation-mediated regulatory mechanism on AChE expression during muscle differentiation. PMID:27021952

  4. Systemic delivery of recombinant proteins by genetically modified myoblasts

    SciTech Connect

    Barr, E.; Leiden, J.M. )

    1991-12-06

    The ability to stably deliver recombinant proteins to the systemic circulation would facilitate the treatment of a variety of acquired and inherited diseases. To explore the feasibility of the use of genetically engineered myoblasts as a recombinant protein delivery system, stable transfectants of the murine C2C12 myoblast cell line were produced that synthesize and secrete high levels of human growth hormone (hGH) in vitro. Mice injected with hGH-transfected myoblasts had significant levels of hGH in both muscle and serum that were stable for at least 3 weeks after injection. Histological examination of muscles injected with {beta}-galactosidase-expressing C2C12 myoblasts demonstrated that many of the injected cells had fused to form multinucleated myotubes. Thus, genetically engineered myoblasts can be used for the stable delivery of recombinant proteins into the circulation.

  5. Genipin stimulates glucose transport in C2C12 myotubes via an IRS-1 and calcium-dependent mechanism.

    PubMed

    Ma, Chan-Juan; Nie, Ai-Fang; Zhang, Zhi-Jian; Zhang, Zhi-Guo; Du, Li; Li, Xiao-Ying; Ning, Guang

    2013-03-01

    Genipin, a compound derived from Gardenia jasminoides Ellis fruits, has been used over the years in traditional Chinese medicine to treat symptoms of type 2 diabetes. However, the molecular basis for its antidiabetic effect has not been fully revealed. In this study, we investigated the effects of genipin on glucose uptake and signaling pathways in C(2)C(12) myotubes. Our study demonstrates that genipin stimulated glucose uptake in a time- and dose-dependent manner. The maximal effect was achieved at 2 h with a concentration of 10 μM. In myotubes, genipin promoted glucose transporter 4 (GLUT4) translocation to the cell surface, which was observed by analyzing their distribution in subcellular membrane fraction, and increased the phosphorylation of insulin receptor substrate-1 (IRS-1), AKT, and GSK3β. Meanwhile, genipin increased ATP levels, closed K(ATP) channels, and then increased the concentration of calcium in the cytoplasm in C(2)C(12) myotubes. Genipin-stimulated glucose uptake could be blocked by both the PI3-K inhibitor wortmannin and calcium chelator EGTA. Moreover, genipin increases the level of reactive oxygen species and ATP in C(2)C(12) myotubes. These results suggest that genipin activates IRS-1, PI3-K, and downstream signaling pathway and increases concentrations of calcium, resulting in GLUT4 translocation and glucose uptake increase in C(2)C(12) myotubes. PMID:23257267

  6. Cytoprotective Role of Nrf2 in Electrical Pulse Stimulated C2C12 Myotube

    PubMed Central

    Horie, Masaki; Warabi, Eiji; Komine, Shoichi; Oh, Sechang; Shoda, Junichi

    2015-01-01

    Regular physical exercise is central to a healthy lifestyle. However, exercise-related muscle contraction can induce reactive oxygen species and reactive nitrogen species (ROS/RNS) production in skeletal muscle. The nuclear factor-E2-related factor-2 (Nrf2) transcription factor is a cellular sensor for oxidative stress. Regulation of nuclear Nrf2 signaling regulates antioxidant responses and protects organ structure and function. However, the role of Nrf2 in exercise- or contraction-induced ROS/RNS production in skeletal muscle is not clear. In this study, using differentiated C2C12 cells and electrical pulse stimulation (EPS) of muscle contraction, we explored whether Nrf2 plays a role in the skeletal muscle response to muscle contraction-induced ROS/RNS. We found that EPS (40 V, 1 Hz, 2 ms) stimulated ROS/RNS accumulation and Nrf2 activation. We also showed that expression of NQO1, HO-1 and GCLM increased after EPS-induced muscle contraction and was remarkably suppressed in cells with Nrf2 knockdown. We also found that the antioxidant N-acetylcysteine (NAC) significantly attenuated Nrf2 activation after EPS, whereas the nitric oxide synthetase inhibitor Nω-nitro-L-arginine methyl ester (L-NAME) did not. Furthermore, Nrf2 knockdown after EPS markedly decreased ROS/RNS redox potential and cell viability and increased expression of the apoptosis marker Annexin V in C2C12 myotubes. These results indicate that Nrf2 activation and expression of Nrf2 regulated-genes protected muscle against the increased ROS caused by EPS-induced muscle contraction. Thus, our findings suggest that Nrf2 may be a key factor for preservation of muscle function during muscle contraction. PMID:26658309

  7. Micropatterning C2C12 myotubes for orderly recording of intracellular calcium transients.

    PubMed

    Takayama, Yuzo; Wagatsuma, Akira; Hoshino, Takayuki; Mabuchi, Kunihiko

    2013-01-01

    Reconstruction of skeletal muscle myotubes in vitro using myogenic cell lines have been widely carried out to study functional properties and disease-related biological changes of myotubes, such as intracellular calcium dynamics. However, the analysis of biological signals in isolated single myotubes or interactions among several myotubes is quite difficult problem because of the randomness in size, morphology and orientation of differentiated myotubes cultured on a conventional tissue culture dish. In the present study, we attempted to form uniform-size myotubes and detect intracellular calcium dynamics from the fabricated myotubes. We modified surfaces of culture dishes using a poly(-dimethylsiloxane) (PDMS) stamp and a 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer solution to form line patterns for myotube formation. We could form uniform-size and -orientation C2C12 myotubes and detect intracellular calcium dynamics from it. This simple method would be a useful for studying properties in myotubes with specific sizes and morphologies. PMID:24111271

  8. Cell viability, reactive oxygen species, apoptosis, and necrosis in myoblast cultures exposed to low-level infrared laser.

    PubMed

    Alexsandra da Silva Neto Trajano, Larissa; da Silva, Camila Luna; de Carvalho, Simone Nunes; Cortez, Erika; Mencalha, André Luiz; de Souza da Fonseca, Adenilson; Stumbo, Ana Carolina

    2016-07-01

    Low-level infrared laser is considered safe and effective for treatment of muscle injuries. However, the mechanism involved on beneficial effects of laser therapy are not understood. The aim was to evaluate cell viability, reactive oxygen species, apoptosis, and necrosis in myoblast cultures exposed to low-level infrared laser at therapeutic fluences. C2C12 myoblast cultures at different (2 and 10 %) fetal bovine serum (FBS) concentrations were exposed to low-level infrared laser (808 nm, 100 mW) at different fluences (10, 35, and 70 J/cm(2)) and evaluated after 24, 48, and 72 h. Cell viability was evaluated by WST-1 assay; reactive oxygen species (ROS), apoptosis, and necrosis were evaluated by flow cytometry. Cell viability was decreased atthe lowest FBS concentration. Laser exposure increased the cell viability in myoblast cultures at 2 % FBS after 48 and 72 h, but no significant increase in ROS was observed. Apoptosis was decreased at the higher fluence and necrosis was increased at lower fluence in myoblast cultures after 24 h of laser exposure at 2 % FBS. No laser-induced alterations were obtained at 10 % FBS. Results show that level of reactive oxygen species is not altered, at least to those evaluated in this study, but low-level infrared laser exposure affects cell viability, apoptosis, and necrosis in myoblast cultures depending on laser fluence and physiologic conditions of cells. PMID:26886589

  9. Photolithographic Patterning of C2C12 Myotubes using Vitronectin as Growth Substrate in Serum-Free Medium

    PubMed Central

    Molnar, Peter; Wang, Weishi; Natarajan, Anupama; Rumsey, John W.; Hickman, James J.

    2008-01-01

    The C2C12 cell line is frequently used as a model of skeletal muscle differentiation. In our serum-free defined culture system differentiation of C2C12 cells into myotubes required surface-bound signals such as substrate adsorbed vitronectin or laminin. Based on this substrate-requirement of myotube formation, we developed a photolithography-based method to pattern C2C12 myotubes, where myotubes formed exclusively on vitronectin surface patterns. We have determined that the optimal line width to form single myotubes is approximately 30 μm. In order to illustrate a possible application of this method, we patterned myotubes on the top of commercial substrate-embedded microelectrodes. In contrast to previous experiments where cell patterning was achieved by selective attachment of the cells to patterned surfaces in a medium that contained all the factors necessary for differentiation, this study illustrates that surface patterning of a signaling molecule, which is essential for skeletal muscle differentiation in a defined system, can result in the formation of aligned myotubes on the patterns. This technique is being developed for applications in cell biology, tissue engineering and robotics. PMID:17269697

  10. Expression of Non-acetylatable H2A.Z in Myoblast Cells Blocks Myoblast Differentiation through Disruption of MyoD Expression*

    PubMed Central

    Law, Cindy; Cheung, Peter

    2015-01-01

    H2A.Z is a histone H2A variant that is essential for viability in Tetrahymena and Drosophila and also during embryonic development of mice. Although implicated in diverse cellular processes, including transcriptional regulation, chromosome segregation, and heterochromatin formation, its essential function in cells remains unknown. Cellular differentiation is part of the developmental process of multicellular organisms. To elucidate the roles of H2A.Z and H2A.Z acetylation in cellular differentiation, we examined the effects of expressing wild type (WT) or a non-acetylatable form of H2A.Z in the growth and differentiation of the myoblast C2C12 cell line. Ectopic expression of wild type or mutant H2A.Z resulted in distinct phenotypes in the differentiation of the C2C12 cells and the formation of myotubes. Most strikingly, expression of the H2A.Z non-acetylatable mutant (H2A.Z-Ac-mut) resulted in a complete block of myoblast differentiation. We determined that this phenotype is caused by a loss of MyoD expression in the Ac-mut-expressing cells prior to and after induction of differentiation. Moreover, chromatin accessibility assays showed that the promoter region of MyoD is less accessible in the differentiation-defective cells. Altogether, these new findings show that expression of the Ac-mut form of H2A.Z resulted in a dominant phenotype that blocked differentiation due to chromatin changes at the MyoD promoter. PMID:25839232

  11. Mitochondria dysfunction in lung cancer-induced muscle wasting in C2C12 myotubes

    PubMed Central

    McLean, Julie B.; Moylan, Jennifer S.; Andrade, Francisco H.

    2014-01-01

    Aims: Cancer cachexia is a syndrome which results in severe loss of muscle mass and marked fatigue. Conditioned media from cachexia-inducing cancer cells triggers metabolic dysfunction in skeletal muscle, including decreased mitochondrial respiration, which may contribute to fatigue. We hypothesized that Lewis lung carcinoma conditioned medium (LCM) would impair the mitochondrial electron transport chain (ETC) and increase production of reactive oxygen species, ultimately leading to decreased mitochondrial respiration. We incubated C2C12 myotubes with LCM for 30 min, 2, 4, 24 or 48 h. We measured protein content by western blot; oxidant production by 2′,7′-dichlorofluorescin diacetate (DCF), 4-amino-5-methylamino-2′,7′-difluorofluorescein diacetate (DAF), and MitoSox; cytochrome c oxidase activity by oxidation of cytochrome c substrate; and oxygen consumption rate (OCR) of intact myotubes by Seahorse XF Analyzer. Results: LCM treatment for 2 or 24 h decreased basal OCR and ATP-related OCR, but did not alter the content of mitochondrial complexes I, III, IV and V. LCM treatment caused a transient rise in reactive oxygen species (ROS). In particular, mitochondrial superoxide (MitoSOX) was elevated at 2 h. 4-Hydroxynonenal, a marker of oxidative stress, was elevated in both cytosolic and mitochondrial fractions of cell lysates after LCM treatment. Conclusion: These data show that lung cancer-conditioned media alters electron flow in the ETC and increases mitochondrial ROS production, both of which may ultimately impair aerobic metabolism and decrease muscle endurance. PMID:25566096

  12. Regulation of nonmuscle myosin II during 3-methylcholanthrene induced dedifferentiation of C2C12 myotubes

    SciTech Connect

    Dey, Sumit K.; Saha, Shekhar; Das, Provas; Das, Mahua R.; Jana, Siddhartha S.

    2014-08-01

    3-Methylcholanthrene (3MC) induces tumor formation at the site of injection in the hind leg of mice within 110 days. Recent reports reveal that the transformation of normal muscle cells to atypical cells is one of the causes for tumor formation, however the molecular mechanism behind this process is not well understood. Here, we show in an in vitro study that 3MC induces fragmentation of multinucleate myotubes into viable mononucleates. These mononucleates form colonies when they are seeded into soft agar, indicative of cellular transformation. Immunoblot analysis reveals that phosphorylation of myosin regulatory light chain (RLC{sub 20}) is 5.6±0.5 fold reduced in 3MC treated myotubes in comparison to vehicle treated myotubes during the fragmentation of myotubes. In contrast, levels of myogenic factors such as MyoD, Myogenin and cell cycle regulators such as Cyclin D, Cyclin E1 remain unchanged as assessed by real-time PCR array and reverse transcriptase PCR analysis, respectively. Interestingly, addition of the myosin light chain kinase inhibitor, ML-7, enhances the fragmentation, whereas phosphatase inhibitor perturbs the 3MC induced fragmentation of myotubes. These results suggest that decrease in RLC{sub 20} phosphorylation may be associated with the fragmentation step of dedifferentiation. - Highlights: • 3-Methylcholanthrene induces fragmentation of C2C12-myotubes. • Dedifferentiation can be divided into two steps – fragmentation and proliferation. • Fragmentation is associated with rearrangement of nonmuscle myosin II. • Genes associated with differentiation and proliferation are not altered during fragmentation. • Phosphorylation of myosin regulatory light chain is reduced during fragmentation.

  13. The PGC-1α-related coactivator promotes mitochondrial and myogenic adaptations in C2C12 myotubes

    PubMed Central

    Philp, Andrew; Belew, Micah Y.; Evans, Ashleigh; Pham, Don; Sivia, Itwinder; Chen, Ai; Schenk, Simon

    2011-01-01

    The transcriptional coactivator PGC-1α is a potent regulator of skeletal muscle metabolism. Less is known about the structurally similar PGC-1α-related coactivator (PRC) that is enriched in myoblasts and adult skeletal muscle. The present study was designed to determine the effect of PRC on the metabolic profile of C2C12 myotubes. Overexpression of full-length PRC increased PRC gene expression by 2.7 ± 0.3-fold and protein content by 108 ± 5.3%. This modest elevation in PRC resulted in an increased rate of myoblast proliferation (61.5 ± 2.7%) and resulted in myotubes characterized by increased MyoD (18.2 ± 0.52%) and myosin heavy chain (15.4 ± 3.13%) protein. PRC overexpressing myotubes showed increases in mRNA for some—COX4 (2.6 ± 0.18-fold), ATP5B (2.7 ± 0.34-fold) cytochrome c (5.1 ± 0.68-fold)—but not all, MTCO1 (0.61 ± 0.18-fold) and HAD (0.98 ± 0.36-fold) mitochondrial genes, as well as a significant increase in cytochrome–c (28.7 ± 7.02%) protein content. The enzyme activity of the electron transport chain (ETC) complex IV (3.7 ± 0.01-fold) and citrate synthase (2.1 ± 0.14-fold) was increased by PRC, as was the mtDNA:nucDNA ratio (11 ± 0.3%). PRC increased cellular respiration (142%), basal (197%) and insulin-stimulated (253%) glucose uptake, as well as palmitate uptake (28.6 ± 3.31%) and oxidation (31.1 ± 2.17%). Associated with these changes in function, PRC overexpression increased GLUT4 mRNA (4.5 ± 0.22-fold) and protein (13.8 ± 2.08%) and CPT1 protein (28.9 ± 4.23%). Electrical stimulation of C2C12 myotubes resulted in a transient increase in PRC mRNA that was smaller (2.1 ± 0.3-fold vs. 4.4 ± 0.23-fold) and occurred earlier (3 h vs. 6 h) than PGC-1α. Collectively, our data show that PRC promotes skeletal muscle myogenesis and metabolism in vitro, thus identifying PRC as a functional skeletal muscle coactivator capable of regulating mitochondrial substrate utilization and respiration. PMID:21795630

  14. p75NTR-mediated signaling promotes the survival of myoblasts and influences muscle strength.

    PubMed

    Reddypalli, Shailaja; Roll, Kristin; Lee, Hyung-Kook; Lundell, Martha; Barea-Rodriguez, Edwin; Wheeler, Esther F

    2005-09-01

    During muscle development, the p75(NTR) is expressed transiently on myoblasts. The temporal expression pattern of the receptor raises the possibility that the receptor is influencing muscle development. To test this hypothesis, p75(NTR)-deficient mutant mice were tested for muscle strength by using a standard wire gripe strength test and were found to have significantly decreased strength relative to that of normal mice. When normal mybolasts were examined in vivo for expression of NGF receptors, p75(NTR) was detected on myoblasts but the high affinity NGF receptor, trk A, was not co-expressed with p75(NTR). In vitro, proliferating C2C12 and primary myoblasts co-expressed the p75(NTR) and MyoD, but immunofluorescent analysis of primary myoblasts and RT-PCR analysis of C2C12 mRNA revealed that myoblasts were devoid of trk A. In contrast to the cell death functions that characterize the p75(NTR) in neurons, p75(NTR)-positive primary and C2C12 myoblasts did not differentiate or undergo apoptosis in response to neurotrophins. Rather, myoblasts survived and even proliferated when grown at subconfluent densities in the presence of the neurotrophins. Furthermore, when myoblasts treated with NGF were lysed and immunoprecipitated with antibodies against phosphorylated I-kappaB and AKT, the cells contained increased levels of both phospho-proteins, both of which promote cell survival. By contrast, neurotrophin-treated myoblasts did not induce phosphorylation of Map Kinase p42/44 or p38, indicating the survival was not mediated by the trk A receptor. Taken together, the data indicate that the p75(NTR) mediates survival of myoblasts prior to differentiation and that the activity of this receptor during myogenesis is important for developing muscle. PMID:15754321

  15. C2C12 myotubes inhibit the proliferation and differentiation of 3T3-L1 preadipocytes by reducing the expression of glucocorticoid receptor gene.

    PubMed

    Chu, Weiwei; Wei, Wei; Yu, Shigang; Han, Haiyin; Shi, Xiaoli; Sun, Wenxing; Gao, Ying; Zhang, Lifan; Chen, Jie

    2016-03-25

    Obesity is a well-established risk factor to health for its relationship with insulin resistance, diabetes and metabolic syndrome. Myocyte-adipocyte crosstalk model plays a significant role in studying the interaction of muscle and adipose development. Previous related studies mainly focus on the effects of adipocytes on the myocytes activity, however, the influence of myotubes on the preadipocytes development remains unclear. The present study was carried out to settle this issue. Firstly, the co-culture experiment showed that the proliferation, cell cycle, and differentiation of 3T3-L1 preadipocytes were arrested, and the apoptosis was induced, by differentiated C2C12 myotubes. Next, the sensitivity of 3T3-L1 preadipocytes to glucocorticoids (GCs), which was well known as cell proliferation, differentiation, apoptosis factor, was decreased after co-cultured with C2C12 myotubes. What's more, our results showed that C2C12 myotubes suppressed the mRNA and protein expression of glucocorticoid receptor (GR) in 3T3-L1 preadipocytes, indicating the potential mechanism of GCs sensitivity reduction. Taken together, we conclude that C2C12 myotubes inhibited 3T3-L1 preadipocytes proliferation and differentiation by reducing the expression of GR. These data suggest that decreasing GR by administration of myokines may be a promising therapy for treating patients with obesity or diabetes. PMID:26896766

  16. Photovoltaic surfaces enable clonal myoblastic cell release using visible light as external stimulation.

    PubMed

    Bhuyan, Mohammod Kabir; Rodriguez, Jorge; Tseng, Tzu-Liang Bill; Boland, Thomas

    2016-03-01

    Many new biomedical approaches to treating disease require the supply of cells delivered to an injured or diseased organ either individually, collectively as aggregates or sheets, or encapsulated with a scaffold. The collection of cells is accomplished by using enzymatic digestion witch suffer from the need to remove the enzymes after digestion. In addition, enzymatic methods are not applicable for all cells, cell aggregates, cell sheets or 3D structures. The objective of this study was to investigate the release of cultured cells from silicon based Photovoltaic (PV) surfaces using a light source as external stimulation. C2C12 myoblasts were cultured on the negative surface of a PV device and upon confluence they were exposed to light. The amount of released cells was quantified as a function light exposure. It was found that light exposure at 25 000 lux for one hour caused equivalent cell release from the PV surface than trypsination. The released cells are viable and can be re-cultured if needed. This mechanism may offer an alternative method to release excitable cells without using an enzymatic agent. This may be important for cell therapy if larger cell structures such as sheets need to be collected. PMID:26710125

  17. The effect of eicosapentaenoic and docosahexaenoic acid on protein synthesis and breakdown in murine C2C12 myotubes

    SciTech Connect

    Kamolrat, Torkamol; Gray, Stuart R.

    2013-03-22

    Highlights: ► EPA can enhance protein synthesis and retard protein breakdown in muscle cells. ► These effects were concurrent with increases in p70s6k and FOXO3a phosphorylation. ► EPA may be a useful tool in the treatment of muscle wasting conditions. -- Abstract: Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been found to stimulate protein synthesis with little information regarding their effects on protein breakdown. Furthermore whether there are distinct effects of EPA and DHA remains to be established. The aim of the current study was to determine the distinct effects of EPA and DHA on protein synthesis, protein breakdown and signalling pathways in C2C12 myotubes. Fully differentiated C2C12 cells were incubated for 24 h with 0.1% ethanol (control), 50 μM EPA or 50 μM DHA prior to experimentation. After serum (4 h) and amino acid (1 h) starvation cells were stimulated with 2 mM L-leucine and protein synthesis measured using {sup 3}H-labelled phenylalanine. Protein breakdown was measured using {sup 3}H-labelled phenylalanine and signalling pathways (Akt, mTOR, p70S6k, 4EBP1, rps6 and FOXO3a) via Western blots. Data revealed that after incubation with EPA protein synthesis was 25% greater (P < 0.05) compared to control cells, with no effect of DHA. Protein breakdown was 22% (P < 0.05) lower, compared to control cells, after incubation with EPA, with no effect of DHA. Analysis of signalling pathways revealed that both EPA and DHA incubation increased (P < 0.05) p70s6k phosphorylation, EPA increased (P < 0.05) FOXO3a phosphorylation, with no alteration in other signalling proteins. The current study has demonstrated distinct effects of EPA and DHA on protein metabolism with EPA showing a greater ability to result in skeletal muscle protein accretion.

  18. Proteome Profiling and Ultrastructural Characterization of the Human RCMH Cell Line: Myoblastic Properties and Suitability for Myopathological Studies.

    PubMed

    Kollipara, Laxmikanth; Buchkremer, Stephan; Weis, Joachim; Brauers, Eva; Hoss, Mareike; Rütten, Stephan; Caviedes, Pablo; Zahedi, René P; Roos, Andreas

    2016-03-01

    Studying (neuro)muscular disorders is a major topic in biomedicine with a demand for suitable model systems. Continuous cell culture (in vitro) systems have several technical advantages over in vivo systems and became widely used tools for discovering physiological/pathophysiological mechanisms in muscle. In particular, myoblast cell lines are suitable model systems to study complex biochemical adaptations occurring in skeletal muscle and cellular responses to altered genetic/environmental conditions. Whereas most in vitro studies use extensively characterized murine C2C12 cells, a comprehensive description of an equivalent human cell line, not genetically manipulated for immortalization, is lacking. Therefore, we characterized human immortal myoblastic RCMH cells using scanning (SEM) and transmission electron microscopy (TEM) and proteomics. Among more than 6200 identified proteins we confirm the known expression of proteins important for muscle function. Comparing the RCMH proteome with two well-defined nonskeletal muscle cells lines (HeLa, U2OS) revealed a considerable enrichment of proteins important for muscle function. SEM/TEM confirmed the presence of agglomerates of cytoskeletal components/intermediate filaments and a prominent rough ER. In conclusion, our results indicate RMCH as a suitable in vitro model for investigating muscle function-related processes such as mechanical stress burden and mechanotransduction, EC coupling, cytoskeleton, muscle cell metabolism and development, and (ER-associated) myopathic disorders. PMID:26781476

  19. Possible role of TIEG1 as a feedback regulator of myostatin and TGF-{beta} in myoblasts

    SciTech Connect

    Miyake, Masato; Hayashi, Shinichiro; Iwasaki, Shunsuke; Chao, Guozheng; Takahashi, Hideyuki; Watanabe, Kouichi; Ohwada, Shyuichi; Aso, Hisashi; Yamaguchi, Takahiro

    2010-03-19

    Myostatin and TGF-{beta} negatively regulate skeletal muscle development and growth. Both factors signal through the Smad2/3 pathway. However, the regulatory mechanism of myostatin and TGF-{beta} signaling remains unclear. TGF-{beta} inducible early gene (TIEG) 1 is highly expressed in skeletal muscle and has been implicated in the modulation of TGF-{beta} signaling. These findings prompted us to investigate the effect of TIEG1 on myostatin and TGF-{beta} signaling using C2C12 myoblasts. Myostatin and TGF-{beta} induced the expression of TIEG1 and Smad7 mRNAs, but not TIEG2 mRNA, in proliferating C2C12 cells. When differentiating C2C12 myoblasts were stimulated by myostatin, TIEG1 mRNA was up-regulated at a late stage of differentiation. In contrast, TGF-{beta} enhanced TIEG1 expression at an early stage. Overexpression of TIEG1 prevented the transcriptional activation of Smad by myostatin and TGF-{beta} in both proliferating or differentiating C2C12 cells, but the expression of Smad2 and Smad7 mRNAs was not affected. Forced expression of TIEG1 inhibited myogenic differentiation but did not cause more inhibition than the empty vector in the presence of myostatin or TGF-{beta}. These results demonstrate that TIEG1 is one possible feedback regulator of myostatin and TGF-{beta} that prevents excess action in myoblasts.

  20. Cisplatin triggers atrophy of skeletal C2C12 myotubes via impairment of Akt signalling pathway and subsequent increment activity of proteasome and autophagy systems

    SciTech Connect

    Fanzani, Alessandro Zanola, Alessandra; Rovetta, Francesca; Rossi, Stefania; Aleo, Maria Francesca

    2011-02-01

    Cisplatin (cisPt) is an antineoplastic drug which causes an array of adverse effects on different organs and tissues, including skeletal muscle. In this work we show that cisPt behaves as a potent trigger to activate protein hypercatabolism in skeletal C2C12 myotubes. Within 24 h of 50 {mu}M cisPt administration, C2C12 myotubes displayed unchanged cell viability but showed a subset of hallmark signs typically recognized during atrophy, including severe reduction in body size, repression of Akt phosphorylation, transcriptional up-regulation of atrophy-related genes, such as atrogin-1, gabarap, beclin-1 and bnip-3, and loss of myogenic markers. As a consequence, proteasomal activity and formation of autophagosomes were remarkably increased in cisPt-treated myotubes, but forced stimulation of Akt pathway, as obtained through insulin administration or delivery of a constitutively activated Akt form, was sufficient to counter the cisPt-induced protein breakdown, leading to rescue of atrophic size. Overall, these results indicate that cisPt induces atrophy of C2C12 myotubes via activation of proteasome and autophagy systems, suggesting that the Akt pathway represents one sensitive target of cisPt molecular action in skeletal muscle.

  1. Cyclic stretch induced miR-146a upregulation delays C2C12 myogenic differentiation through inhibition of Numb

    SciTech Connect

    Kuang Wei; Tan Jiali; Duan Yinzhong; Duan Jianmin; Wang Weijian; Jin Fang; Jin Zuolin; Yuan Xiao Liu Yanpu

    2009-01-09

    Proliferation and differentiation of muscle stem cells must be tightly regulated by intrinsic and extrinsic signals for effective regeneration and adaptive response. MicroRNAs have been implicated as potent regulators in diverse biological processes at the level of posttranscriptional repression. In this study, we found that miR-146a was significantly upregulated upon a 48-h cyclic stretch of 5% elongation/10cycles/min. Importantly, miR-146 was predicted to base-pair with sequences in the 3' UTR of Numb, which promotes satellite cell differentiation towards muscle cells by inhibiting Notch signaling. Through reporter assay and exogenous expression experiment, we confirmed Numb was inhibited by miR-146a. Inhibition of miR-146a by antago-miR-146a rescued the expression of Numb and facilitated the differentiation of C2C12 at a cost of compromised proliferation. Thus, for the first time, we propose a role of miR-146a in skewing the balance of muscle differentiation and proliferation through inhibiting the expression of Numb.

  2. Glypican-1 regulates myoblast response to HGF via Met in a lipid raft-dependent mechanism: effect on migration of skeletal muscle precursor cells

    PubMed Central

    2014-01-01

    Background Via the hepatocyte growth factor receptor (Met), hepatocyte growth factor (HGF) exerts key roles involving skeletal muscle development and regeneration. Heparan sulfate proteoglycans (HSPGs) are critical modulators of HGF activity, but the role of specific HSPGs in HGF regulation is poorly understood. Glypican-1 is the only HSPG expressed in myoblasts that localize in lipid raft membrane domains, controlling cell responses to extracellular stimuli. We determined if glypican-1 in these domains is necessary to stabilize the HGF-Met signaling complex and myoblast response to HGF. Methods C2C12 myoblasts and a derived clone (C6) with low glypican-1 expression were used as an experimental model. The activation of Met, ERK1/2 and AKT in response to HGF was evaluated. The distribution of Met and its activated form in lipid raft domains, as well as its dependence on glypican-1, were characterized by sucrose density gradient fractionation in both cell types. Rescue experiments reexpressing glypican-1 or a chimeric glypican-1 fused to the transmembrane and cytoplasmic domains of mouse syndecan-1 or myoblast pretreatment with MβCD were conducted. In vitro and in vivo myoblast migration assays in response to HGF were also performed. Results Glypican-1 localization in membrane raft domains was required for a maximum cell response to HGF. It stabilized Met and HGF in lipid raft domains, forming a signaling complex where the active phospho-Met receptor was concentrated. Glypican-1 also stabilized CD44 in a HGF-dependent manner. In addition, glypican-1 was required for in vitro and in vivo HGF-dependent myoblast migration. Conclusions Glypican-1 is a regulator of HGF-dependent signaling via Met in lipid raft domains. PMID:24517345

  3. Mesoporous silica nanoparticle-based substrates for cell directed delivery of Notch signalling modulators to control myoblast differentiation

    NASA Astrophysics Data System (ADS)

    Böcking, Dominique; Wiltschka, Oliver; Niinimäki, Jenni; Shokry, Hussein; Brenner, Rolf; Lindén, Mika; Sahlgren, Cecilia

    2014-01-01

    MSNs allows for a free standing substrate for cell directed drug delivery. Electronic supplementary information (ESI) available: (1) Particle characterization. (2) Immunohistochemistry and SEM analyses of C2C12 cells grown on films for 3, 6, 24 and 72 h. Light microscopy and WST1 analyses of cells grown on cover slips and films for 6, 24 and 72 h (3) Quantification of protein levels of C2C12 cells differentiating on cover slips versus MSN films. (4) Stability of MSN films in biological solution and the influence on cell viability. (5) Cell internalization of particles from MSN films and intracellular drug release at 12 and 24 h (6) Cell internalization and intracellular DiI release of MSNs from (3Dtro®) fiber scaffolds impregnated with MSNs. See DOI: 10.1039/c3nr04022d

  4. Spatial Geometries of Self-Assembled Chitohexaose Monolayers Regulate Myoblast Fusion.

    PubMed

    Poosala, Pornthida; Ichinose, Hirofumi; Kitaoka, Takuya

    2016-01-01

    Myoblast fusion into functionally-distinct myotubes to form in vitro skeletal muscle constructs under differentiation serum-free conditions still remains a challenge. Herein, we report that our microtopographical carbohydrate substrates composed of bioactive hexa-N-acetyl-d-glucosamine (GlcNAc6) modulated the efficiency of myoblast fusion without requiring horse serum or any differentiation medium during cell culture. Promotion of the differentiation of dissociated mononucleated skeletal myoblasts (C2C12; a mouse myoblast cell line) into robust myotubes was found only on GlcNAc6 micropatterns, whereas the myoblasts on control, non-patterned GlcNAc6 substrates or GlcNAc6-free patterns exhibited an undifferentiated form. We also examined the possible role of GlcNAc6 micropatterns with various widths in the behavior of C2C12 cells in early and late stages of myogenesis through mRNA expression of myosin heavy chain (MyHC) isoforms. The spontaneous contraction of myotubes was investigated via the regulation of glucose transporter type 4 (GLUT4), which is involved in stimulating glucose uptake during cellular contraction. Narrow patterns demonstrated enhanced glucose uptake rate and generated a fast-twitch muscle fiber type, whereas the slow-twitch muscle fiber type was dominant on wider patterns. Our findings indicated that GlcNAc6-mediated integrin interactions are responsible for guiding myoblast fusion forward along with myotube formation. PMID:27164094

  5. Spatial Geometries of Self-Assembled Chitohexaose Monolayers Regulate Myoblast Fusion

    PubMed Central

    Poosala, Pornthida; Ichinose, Hirofumi; Kitaoka, Takuya

    2016-01-01

    Myoblast fusion into functionally-distinct myotubes to form in vitro skeletal muscle constructs under differentiation serum-free conditions still remains a challenge. Herein, we report that our microtopographical carbohydrate substrates composed of bioactive hexa-N-acetyl-d-glucosamine (GlcNAc6) modulated the efficiency of myoblast fusion without requiring horse serum or any differentiation medium during cell culture. Promotion of the differentiation of dissociated mononucleated skeletal myoblasts (C2C12; a mouse myoblast cell line) into robust myotubes was found only on GlcNAc6 micropatterns, whereas the myoblasts on control, non-patterned GlcNAc6 substrates or GlcNAc6-free patterns exhibited an undifferentiated form. We also examined the possible role of GlcNAc6 micropatterns with various widths in the behavior of C2C12 cells in early and late stages of myogenesis through mRNA expression of myosin heavy chain (MyHC) isoforms. The spontaneous contraction of myotubes was investigated via the regulation of glucose transporter type 4 (GLUT4), which is involved in stimulating glucose uptake during cellular contraction. Narrow patterns demonstrated enhanced glucose uptake rate and generated a fast-twitch muscle fiber type, whereas the slow-twitch muscle fiber type was dominant on wider patterns. Our findings indicated that GlcNAc6-mediated integrin interactions are responsible for guiding myoblast fusion forward along with myotube formation. PMID:27164094

  6. Metabolic profiling of heat or anoxic stress in mouse C2C12 myotubes using multinuclear magnetic resonance spectroscopy.

    PubMed

    Straadt, Ida K; Young, Jette F; Petersen, Bent O; Duus, Jens Ø; Gregersen, Niels; Bross, Peter; Oksbjerg, Niels; Bertram, Hanne C

    2010-06-01

    In the present study, the metabolic effects of heat and anoxic stress in myotubes from the mouse cell line C2C12 were investigated by using a combination of (13)C, (1)H, and (31)P nuclear magnetic resonance (NMR) spectroscopy and enrichment with [(13)C]-glucose. Both the (13)C and the (1)H NMR spectra showed reduced levels of the amino acids alanine, glutamate, and aspartate after heat or anoxic stress. The decreases were smallest at 42 degrees C, larger at 45 degrees C, and most pronounced after anoxic conditions. In addition, in both the (1)H and the (31)P NMR spectra, decreases in the high-energy phosphate compounds adenosine triphosphate and phosphocreatine with increasing severity of stress were identified. At anoxic conditions, an increase in (13)C-labeled lactate and appearance of glycerol-3-phosphate were observed. Accumulation of lactate and glycerol-3-phosphate is in agreement with a shift to anaerobic metabolism due to inhibition of the aerobic pathway in the mitochondria. Conversely, lower levels of unlabeled ((12)C) lactate were apparent at increasing severity of stress, which indicate that lactate is released from the myotubes to the medium. In conclusion, the metabolites identified in the present study may be useful markers for identifying severity of stress in muscles. PMID:20005546

  7. MicroRNA-27a promotes myoblast proliferation by targeting myostatin

    SciTech Connect

    Huang, Zhiqing; Chen, Xiaoling; Yu, Bing; He, Jun; Chen, Daiwen

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer We identified a myogenic role for miR-27a and a new target, myostatin. Black-Right-Pointing-Pointer The miR-27a was confirmed to target myostatin 3 Prime UTR. Black-Right-Pointing-Pointer miR-27a is upregulated and myostatin is downregulated during myoblast proliferation. Black-Right-Pointing-Pointer miR-27a promotes myoblast proliferation by reducing the expression of myostatin. -- Abstract: MicroRNAs (miRNAs) are a class of endogenous non-coding RNAs that play critical roles in skeletal muscle development as well as in regulation of muscle cell proliferation and differentiation. However, the role of miRNAs in myoblast proliferation remains poorly understood. Here we found that the expression of miR-27a was increased during proliferation of C2C12 myoblasts. Moreover, overexpression of miR-27a in C2C12 cells promoted myoblast proliferation by reducing the expression of myostatin, a critical inhibitor of skeletal myogenesis. In addition, the miR-27a was confirmed to target myostatin 3 Prime UTR by a luciferase reporter analysis. Together, these results suggest that miR-27a promotes myoblast proliferation through targeting myostatin.

  8. Vascular Endothelial Growth Factor Modulates Skeletal Myoblast Function

    PubMed Central

    Germani, Antonia; Di Carlo, Anna; Mangoni, Antonella; Straino, Stefania; Giacinti, Cristina; Turrini, Paolo; Biglioli, Paolo; Capogrossi, Maurizio C.

    2003-01-01

    Vascular endothelial growth factor (VEGF) expression is enhanced in ischemic skeletal muscle and is thought to play a key role in the angiogenic response to ischemia. However, it is still unknown whether, in addition to new blood vessel growth, VEGF modulates skeletal muscle cell function. In the present study immunohistochemical analysis showed that, in normoperfused mouse hindlimb, VEGF and its receptors Flk-1 and Flt-1 were expressed mostly in quiescent satellite cells. Unilateral hindlimb ischemia was induced by left femoral artery ligation. At day 3 and day 7 after the induction of ischemia, Flk-1 and Flt-1 were expressed in regenerating muscle fibers and VEGF expression by these fibers was markedly enhanced. Additional in vitro experiments showed that in growing medium both cultured satellite cells and myoblast cell line C2C12 expressed VEGF and its receptors. Under these conditions, Flk-1 receptor exhibited constitutive tyrosine phosphorylation that was increased by VEGF treatment. During myogenic differentiation Flk-1 and Flt-1 were down-regulated. In a modified Boyden Chamber assay, VEGF enhanced C2C12 myoblasts migration approximately fivefold. Moreover, VEGF administration to differentiating C2C12 myoblasts prevented apoptosis, while inhibition of VEGF signaling either with selective VEGF receptor inhibitors (SU1498 and CB676475) or a neutralizing Flk-1 antibody, enhanced cell death approximately 3.5-fold. Finally, adenovirus-mediated VEGF165 gene transfer inhibited ischemia-induced apoptosis in skeletal muscle. These results support a role for VEGF in myoblast migration and survival, and suggest a novel autocrine role of VEGF in skeletal muscle repair during ischemia. PMID:14507649

  9. Administration of insulin to newly hatched chicks improves growth performance via impairment of MyoD gene expression and enhancement of cell proliferation in chicken myoblasts.

    PubMed

    Sato, Kan; Aoki, Michiru; Kondo, Ryota; Matsushita, Kohichi; Akiba, Yukio; Kamada, Tosihiko

    2012-02-01

    The insulin/PI3K/Akt signaling pathway is strongly involved in the differentiation of C2C12 cells, as has been demonstrated by the addition of IGFs and insulin to culture media. In this study, we have characterized the role of insulin in chick myoblast proliferation and differentiation in vitro and in vivo, and have revealed novel details of how this exogenous hormone influences myogenic genes during differentiation. Chick myoblast cells cultured in differentiation medium (DMEM containing 2% FBS) supplemented with insulin exhibited a significant decrease in MyoD and myogenin mRNA expression after 12h of culture compared to cells cultured in differentiation media alone. MyoD and myogenin immunoreactive proteins in cells cultured in differentiation medium supplemented with insulin were quite low compared to those in control culture. Supplementation of the differentiation media containing insulin with LY294002 (a PI3K inhibitor) induced myoblast differentiation. A significant increase in MyoD and myogenin mRNA expression was observed in these cells after incubation for 12h, and the level of expression was similar to that of control cells incubated with differentiation media alone. The DNA content and the phosphor-Erk1/2 protein level were increased by the addition of insulin to the differentiation medium. These results suggest that insulin and its signaling pathway play an inhibitory role in chick myoblast differentiation. A high level of Pax7 mRNA was observed in the skeletal muscle of 3-day-old chicks administered insulin or tolbutamide at 1-day-of-age. In addition, body weight at 21 and 50 days-of-age was significantly greater for chickens administered insulin or tolbutamide at 1-day-of-age than for control chickens. These results detail not only species-specific differences in insulin action for myoblasts but also provide novel information that may be used for the improvement of chicken meat production. PMID:22172340

  10. SIRT3, a Mitochondrial NAD+-Dependent Deacetylase, Is Involved in the Regulation of Myoblast Differentiation

    PubMed Central

    Abdel Khalek, Waed; Cortade, Fabienne; Ollendorff, Vincent; Lapasset, Laure; Tintignac, Lionel

    2014-01-01

    Sirtuin 3 (SIRT3), one of the seven mammalian sirtuins, is a mitochondrial NAD+-dependent deacetylase known to control key metabolic pathways. SIRT3 deacetylases and activates a large number of mitochondrial enzymes involved in the respiratory chain, in ATP production, and in both the citric acid and urea cycles. We have previously shown that the regulation of myoblast differentiation is tightly linked to mitochondrial activity. Since SIRT3 modulates mitochondrial activity, we decide to address its role during myoblast differentiation. For this purpose, we first investigated the expression of endogenous SIRT3 during C2C12 myoblast differentiation. We further studied the impact of SIRT3 silencing on both the myogenic potential and the mitochondrial activity of C2C12 cells. We showed that SIRT3 protein expression peaked at the onset of myoblast differentiation. The inhibition of SIRT3 expression mediated by the stable integration of SIRT3 short inhibitory RNA (SIRT3shRNA) in C2C12 myoblasts, resulted in: 1) abrogation of terminal differentiation - as evidenced by a marked decrease in the myoblast fusion index and a significant reduction of Myogenin, MyoD, Sirtuin 1 and Troponin T protein expression - restored upon MyoD overexpression; 2) a decrease in peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and citrate synthase protein expression reflecting an alteration of mitochondrial density; and 3) an increased production of reactive oxygen species (ROS) mirrored by the decreased activity of manganese superoxide dismutase (MnSOD). Altogether our data demonstrate that SIRT3 mainly regulates myoblast differentiation via its influence on mitochondrial activity. PMID:25489948

  11. FOXO1 delays skeletal muscle regeneration and suppresses myoblast proliferation.

    PubMed

    Yamashita, Atsushi; Hatazawa, Yukino; Hirose, Yuma; Ono, Yusuke; Kamei, Yasutomi

    2016-08-01

    Unloading stress, such as bed rest, inhibits the regenerative potential of skeletal muscles; however, the underlying mechanisms remain largely unknown. FOXO1 expression, which induces the upregulated expression of the cell cycle inhibitors p57 and Gadd45α, is known to be increased in the skeletal muscle under unloading conditions. However, there is no report addressing FOXO1-induced inhibition of myoblast proliferation. Therefore, we induced muscle injury by cardiotoxin in transgenic mice overexpressing FOXO1 in the skeletal muscle (FOXO1-Tg mice) and observed regeneration delay in skeletal muscle mass and cross-sectional area in FOXO1-Tg mice. Increased p57 and Gadd45α mRNA levels, and decreased proliferation capacity were observed in C2C12 myoblasts expressing a tamoxifen-inducible active form of FOXO1. These results suggest that decreased proliferation capacity of myoblasts by FOXO1 disrupts skeletal muscle regeneration under FOXO1-increased conditions, such as unloading. PMID:27010781

  12. Ductile electroactive biodegradable hyperbranched polylactide copolymers enhancing myoblast differentiation.

    PubMed

    Xie, Meihua; Wang, Ling; Guo, Baolin; Wang, Zhong; Chen, Y Eugene; Ma, Peter X

    2015-12-01

    Myotube formation is crucial to restoring muscular functions, and biomaterials that enhance the myoblast differentiation into myotubes are highly desirable for muscular repair. Here, we report the synthesis of electroactive, ductile, and degradable copolymers and their application in enhancing the differentiation of myoblasts to myotubes. A hyperbranched ductile polylactide (HPLA) was synthesized and then copolymerized with aniline tetramer (AT) to produce a series of electroactive, ductile and degradable copolymers (HPLAAT). The HPLA and HPLAAT showed excellent ductility with strain to failure from 158.9% to 42.7% and modulus from 265.2 to 758.2 MPa. The high electroactivity of the HPLAAT was confirmed by UV spectrometer and cyclic voltammogram measurements. These HPLAAT polymers also showed improved thermal stability and controlled biodegradation rate compared to HPLA. Importantly, when applying these polymers for myotube formation, the HPLAAT significantly improved the proliferation of C2C12 myoblasts in vitro compared to HPLA. Furthermore, these polymers greatly promoted myogenic differentiation of C2C12 cells as measured by quantitative analysis of myotube number, length, diameter, maturation index, and gene expression of MyoD and TNNT. Together, our study shows that these electroactive, ductile and degradable HPLAAT copolymers represent significantly improved biomaterials for muscle tissue engineering compared to HPLA. PMID:26335860

  13. Macrophage migration inhibitory factor in the regulation of myoblast proliferation and differentiation.

    PubMed

    Wen, Fengyun; Zheng, Jin; Yu, Jing; Gao, Mingju; Gao, Sumin; Zhou, Yingying; Liu, Jianyu; Yang, Zaiqing

    2016-07-01

    Obesity is documented to be a state of chronic mild inflammation associated with increased macrophage infiltration into adipose tissue and liver and skeletal muscle. As a pleiotropic inflammatory mediator, macrophage migration inhibitory factor (MIF) is associated with metabolic disease, so MIF may signal molecular links between adipocytes and myocytes. MIF expression was modified during myoblast differentiation, but the role of MIF during this process is unclear. C2C12 cells were transfected with MIF to investigate their role during differentiation. MIF expression attenuated C2C12 differentiation. It did not change proliferation, but downregulated cyclin D1 and CDK4, causing cell accumulation in the G1 phase. p21 protein was increased significantly and MyoD, MyoG, and p21 mRNA also increased significantly in the C2C12 cells treated with ISO-1, suggesting that inhibition of MIF promotes differentiation. MIF inhibits the myoblast differentiation by affecting the cell cycle progression, but does not affect proliferation. PMID:26927414

  14. Lipoic Acid Exerts Antioxidant and Anti-inflammatory Effects in Response to Heat Shock in C2C12 Myotubes.

    PubMed

    Lee, Cheng-Tse; Chang, Li-Ching; Wu, Pei-Fung

    2016-06-01

    This study explored that lipoic acid treatment for 24 h significantly upregulated and promoted heat shock-induced catalase expression and downregulated GPx1 messenger RNA (mRNA) expression, indicating that lipoic acid exhibits antioxidant activity in the decomposition of hydrogen peroxide by upregulating catalase expression. Moreover, lipoic acid treatment for 3 h increased and promoted heat shock-induced interleukin (IL)-6 mRNA and protein levels and that for 24 h downregulated IL-6 mRNA expression, suggesting a dual effect of lipoic acid on IL-6 regulation. Lipoic acid alone failed to increase or reduce tumor necrosis factor (TNF)-α mRNA and protein levels, whereas heat shock alone downregulated TNF-α mRNA and protein expression. These data suggest that lipoic acid does not have a proinflammatory role and that heat shock acts as an anti-inflammatory agent by downregulating TNF-α expression in C2C12 myotubes. Moreover, lipoic acid or heat shock alone upregulated the IL-6 receptor (IL-6R-α) and glycoprotein 130 (gp130) mRNA expression followed by IL-6 expression; these data indicate that the regulation of lipoic acid or heat shock is mediated by IL-6R signaling, thus suggesting that C2C12 myotubes possesses a mechanism for regulating IL-6R and gp130 expression following lipoic acid treatment or heat shock. PMID:27086282

  15. Thyroid Hormone Receptor α Plays an Essential Role in Male Skeletal Muscle Myoblast Proliferation, Differentiation, and Response to Injury.

    PubMed

    Milanesi, Anna; Lee, Jang-Won; Kim, Nam-Ho; Liu, Yan-Yun; Yang, An; Sedrakyan, Sargis; Kahng, Andrew; Cervantes, Vanessa; Tripuraneni, Nikita; Cheng, Sheue-yann; Perin, Laura; Brent, Gregory A

    2016-01-01

    Thyroid hormone plays an essential role in myogenesis, the process required for skeletal muscle development and repair, although the mechanisms have not been established. Skeletal muscle develops from the fusion of precursor myoblasts into myofibers. We have used the C2C12 skeletal muscle myoblast cell line, primary myoblasts, and mouse models of resistance to thyroid hormone (RTH) α and β, to determine the role of thyroid hormone in the regulation of myoblast differentiation. T3, which activates thyroid hormone receptor (TR) α and β, increased myoblast differentiation whereas GC1, a selective TRβ agonist, was minimally effective. Genetic approaches confirmed that TRα plays an important role in normal myoblast proliferation and differentiation and acts through the Wnt/β-catenin signaling pathway. Myoblasts with TRα knockdown, or derived from RTH-TRα PV (a frame-shift mutation) mice, displayed reduced proliferation and myogenic differentiation. Moreover, skeletal muscle from the TRα1PV mutant mouse had impaired in vivo regeneration after injury. RTH-TRβ PV mutant mouse model skeletal muscle and derived primary myoblasts did not have altered proliferation, myogenic differentiation, or response to injury when compared with control. In conclusion, TRα plays an essential role in myoblast homeostasis and provides a potential therapeutic target to enhance skeletal muscle regeneration. PMID:26451739

  16. 18-carbon polyunsaturated fatty acids ameliorate palmitate-induced inflammation and insulin resistance in mouse C2C12 myotubes.

    PubMed

    Chen, Pei-Yin; Wang, John; Lin, Yi-Chin; Li, Chien-Chun; Tsai, Chia-Wen; Liu, Te-Chung; Chen, Haw-Wen; Huang, Chin-Shiu; Lii, Chong-Kuei; Liu, Kai-Li

    2015-05-01

    Skeletal muscle is a major site of insulin action. Intramuscular lipid accumulation results in inflammation, which has a strong correlation with skeletal muscle insulin resistance (IR). The aim of this study was to explore the effects of linoleic acid, alpha-linolenic acid, and gamma-linolenic acid (GLA), 18-carbon polyunsaturated fatty acids (PUFAs), on palmitic acid (PA)-induced inflammatory responses and IR in C2C12 myotubes. Our data demonstrated that these three test 18-carbon PUFAs can inhibit PA-induced interleukin-6 and tumor necrosis factor-α messenger RNA (mRNA) expression and IR as evidenced by increases in phosphorylated AKT and the 160-kD AKT substrate, mRNA and plasma membrane protein expression of glucose transporter 4, and glucose uptake. Moreover, the 18-carbon PUFAs blocked the effects of PA on activation of mitogen-activated protein kinases (MAPKs), protein kinase C-θ (PKC-θ), AMP-activated protein kinase (AMPK) and nuclear factor-κB (NF-κB). Of note, supplementation with GLA-rich borage oil decreased proinflammatory cytokine production and hindered the activation of MAPKs, PKC-θ and NF-κB in the skeletal muscles of diabetic mice. The 18-carbon PUFAs did not reverse PA-induced inflammation or IR in C2C12 myotubes transfected with a constitutively active mutant IκB kinase-β plasmid, which suggests the importance of the inhibition of NF-κB activation by the 18-carbon PUFAs. Moreover, blockade of AMPK activation by short hairpin RNA annulled the inhibitory effects of the 18-carbon PUFAs on PA-induced IR but not inflammation. Our findings suggest that the 18-carbon PUFAs may be useful in the management of PA-induced inflammation and IR in myotubes. PMID:25687616

  17. IGF-1-induced phosphorylation and altered distribution of TSC1/TSC2 in C2C12 myotubes

    PubMed Central

    Miyazaki, Mitsunori; McCarthy, John J; Esser, Karyn A

    2010-01-01

    Insulin like growth factor-1 (IGF-1) is established as an anabolic factor that can induce skeletal muscle growth through activating the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway. While this signaling pathway has been heavily studied, the molecular mechanisms linking IGF-1 binding to mTOR activation are still poorly defined in muscle. The purpose of this study was to test the hypothesis that IGF-1 activation of mTOR in C2C12 myotubes requires a phosphorylation dependent, altered distribution of the tuberous sclerosis complex (TSC)1/TSC2 complex from the membrane to the cytosol. We found that IGF-1 treatment does not affect complex formation between TSC1 and TSC2, but rather IGF-1 induces an altered distribution of the TSC1/TSC2 complex in C2C12 myotubes. In response to IGF-1 treatment, there was a relative re-distribution of the TSC1/TSC2 complex, composed of TSC1 and phosphorylated TSC2, from the membrane to the cytosol. IGF-1 stimulated TSC1/TSC2 phosphorylation and re-distribution were completely prevented by the PI3K inhibitor wortmannin, but were not with the downstream mTOR inhibitor, rapamycin. When a non-phosphorylatable form of TSC2 (S939A) was overexpressed, phosphorylation-dependent binding of the scaffold protein 14-3-3 to TSC2 was diminished and no re-distribution of the TSC1/TSC2 complex was observed following IGF-1 stimulation. These results indicate that TSC2 phosphorylation in response to IGF-1 treatment is necessary for the altered distribution of the TSC1/TSC2 complex to the cytosol and we suggest that this translocation is likely critical for mTOR activation by dissociating the interaction between the GAP activity of the TSC1/TSC2 complex and its downstream target Rheb. PMID:20412061

  18. Dehydroepiandrosterone activates AMP kinase and regulates GLUT4 and PGC-1α expression in C2C12 myotubes

    SciTech Connect

    Yokokawa, Takumi; Sato, Koji; Iwanaka, Nobumasa; Honda, Hiroki; Higashida, Kazuhiko; Iemitsu, Motoyuki; Hayashi, Tatsuya; Hashimoto, Takeshi

    2015-07-17

    Exercise and caloric restriction (CR) have been reported to have anti-ageing, anti-obesity, and health-promoting effects. Both interventions increase the level of dehydroepiandrosterone (DHEA) in muscle and blood, suggesting that DHEA might partially mediate these effects. In addition, it is thought that either 5′-adenosine monophosphate-activated protein kinase (AMPK) or peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) mediates the beneficial effects of exercise and CR. However, the effects of DHEA on AMPK activity and PGC-1α expression remain unclear. Therefore, we explored whether DHEA in myotubes acts as an activator of AMPK and increases PGC-1α. DHEA exposure increased glucose uptake but not the phosphorylation levels of Akt and PKCζ/λ in C2C12 myotubes. In contrast, the phosphorylation levels of AMPK were elevated by DHEA exposure. Finally, we found that DHEA induced the expression of the genes PGC-1α and GLUT4. Our current results might reveal a previously unrecognized physiological role of DHEA; the activation of AMPK and the induction of PGC-1α by DHEA might mediate its anti-obesity and health-promoting effects in living organisms. - Highlights: • We assessed whether dehydroepiandrosterone (DHEA) activates AMPK and PGC-1α. • DHEA exposure increased glucose uptake in C2C12 myotubes. • The phosphorylation levels of AMPK were elevated by DHEA exposure. • DHEA induced the expression of the genes PGC-1α and GLUT4. • AMPK might mediate the anti-obesity and health-promoting effects of DHEA.

  19. Modulation of alignment and differentiation of skeletal myoblasts by submicron ridges/grooves surface structure.

    PubMed

    Wang, Peng-Yuan; Yu, Hung-Te; Tsai, Wei-Bor

    2010-06-01

    Alignment and fusion of myoblasts into parallel arrays of multinucleated myotubes are critical in skeletal muscle tissue engineering. It is well known that contact guidance by grooves/ridges structures induces myoblasts to align and to migrate along the anisotropic direction. In this study, two series of grooved substrata with different widths (450 and 900 nm) and different depths (100, 350, and 550 nm) were studied on their effects on myoblast adhesion, proliferation, and differentiation into myotubes. We found that C2C12 cells were aligned and elongated along the direction of grooves. Groove depth was more influential on cellular morphology, proliferation, and differentiation than groove width. While cell proliferation was retarded on the grooved surfaces especially on the substrate with 900/550 nm (width/depth), differentiation was also enhanced on the patterned surfaces compared to the flat control. Our results demonstrated the potential of grooved substrata with submicron scale in skeletal muscle tissue engineering. PMID:20148416

  20. Plasma membrane characterization, by scanning electron microscopy, of multipotent myoblasts-derived populations sorted using dielectrophoresis.

    PubMed

    Muratore, Massimo; Mitchell, Steve; Waterfall, Martin

    2013-09-01

    Multipotent progenitor cells have shown promise for use in biomedical applications and regenerative medicine. The implementation of such cells for clinical application requires a synchronized, phenotypically and/or genotypically, homogenous cell population. Here we have demonstrated the implementation of a biological tag-free dielectrophoretic device used for discrimination of multipotent myoblastic C2C12 model. The multipotent capabilities in differentiation, for these cells, diminishes with higher passage number, so for cultures above 70 passages only a small percentage of cells is able to differentiate into terminal myotubes. In this work we demonstrated that we could recover, above 96% purity, specific cell types from a mixed population of cells at high passage number without any biological tag using dielectrophoresis. The purity of the samples was confirmed by cytometric analysis using the cell specific marker embryonic myosin. To further investigate the dielectric properties of the cell plasma membrane we co-culture C2C12 with similar size, when in suspension, GFP-positive fibroblast as feeder layer. The level of separation between the cell types was above 98% purity which was confirmed by flow cytometry. These levels of separation are assumed to account for cell size and for the plasma membrane morphological differences between C2C12 and fibroblast unrelated to the stages of the cell cycle which was assessed by immunofluorescence staining. Plasma membrane conformational differences were further confirmed by scanning electron microscopy. PMID:23933253

  1. The effects of propionate and valerate on insulin responsiveness for glucose uptake in 3T3-L1 adipocytes and C2C12 myotubes via G protein-coupled receptor 41.

    PubMed

    Han, Joo-Hui; Kim, In-Su; Jung, Sang-Hyuk; Lee, Sang-Gil; Son, Hwa-Young; Myung, Chang-Seon

    2014-01-01

    Since insulin resistance can lead to hyperglycemia, improving glucose uptake into target tissues is critical for regulating blood glucose levels. Among the free fatty acid receptor (FFAR) family of G protein-coupled receptors, GPR41 is known to be the Gαi/o-coupled receptor for short-chain fatty acids (SCFAs) such as propionic acid (C3) and valeric acid (C5). This study aimed to investigate the role of GPR41 in modulating basal and insulin-stimulated glucose uptake in insulin-sensitive cells including adipocytes and skeletal muscle cells. Expression of GPR41 mRNA and protein was increased with maximal expression at differentiation day 8 for 3T3-L1 adipocytes and day 6 for C2C12 myotubes. GPR41 protein was also expressed in adipose tissues and skeletal muscle. After analyzing dose-response relationship, 300 µM propionic acid or 500 µM valeric acid for 30 min incubation was used for the measurement of glucose uptake. Both propionic acid and valeric acid increased insulin-stimulated glucose uptake in 3T3-L1 adipocyte, which did not occur in cells transfected with siRNA for GPR41 (siGPR41). In C2C12 myotubes, these SCFAs increased basal glucose uptake, but did not potentiate insulin-stimulated glucose uptake, and siGPR41 treatment reduced valerate-stimulated basal glucose uptake. Therefore, these findings indicate that GPR41 plays a role in insulin responsiveness enhanced by both propionic and valeric acids on glucose uptake in 3T3-L1 adipocytes and C2C12 myotubes, and in valerate-induced increase in basal glucose uptake in C2C12 myotubes. PMID:24748202

  2. Desmin Mutation in the C-Terminal Domain Impairs Traction Force Generation in Myoblasts.

    PubMed

    Charrier, Elisabeth E; Asnacios, Atef; Milloud, Rachel; De Mets, Richard; Balland, Martial; Delort, Florence; Cardoso, Olivier; Vicart, Patrick; Batonnet-Pichon, Sabrina; Hénon, Sylvie

    2016-01-19

    The cytoskeleton plays a key role in the ability of cells to both resist mechanical stress and generate force, but the precise involvement of intermediate filaments in these processes remains unclear. We focus here on desmin, a type III intermediate filament, which is specifically expressed in muscle cells and serves as a skeletal muscle differentiation marker. By using several complementary experimental techniques, we have investigated the impact of overexpressing desmin and expressing a mutant desmin on the passive and active mechanical properties of C2C12 myoblasts. We first show that the overexpression of wild-type-desmin increases the overall rigidity of the cells, whereas the expression of a mutated E413K desmin does not. This mutation in the desmin gene is one of those leading to desminopathies, a subgroup of myopathies associated with progressive muscular weakness that are characterized by the presence of desmin aggregates and a disorganization of sarcomeres. We show that the expression of this mutant desmin in C2C12 myoblasts induces desmin network disorganization, desmin aggregate formation, and a small decrease in the number and total length of stress fibers. We finally demonstrate that expression of the E413K mutant desmin also alters the traction forces generation of single myoblasts lacking organized sarcomeres. PMID:26789769

  3. Dehydroepiandrosterone activates AMP kinase and regulates GLUT4 and PGC-1α expression in C2C12 myotubes.

    PubMed

    Yokokawa, Takumi; Sato, Koji; Iwanaka, Nobumasa; Honda, Hiroki; Higashida, Kazuhiko; Iemitsu, Motoyuki; Hayashi, Tatsuya; Hashimoto, Takeshi

    Exercise and caloric restriction (CR) have been reported to have anti-ageing, anti-obesity, and health-promoting effects. Both interventions increase the level of dehydroepiandrosterone (DHEA) in muscle and blood, suggesting that DHEA might partially mediate these effects. In addition, it is thought that either 5'-adenosine monophosphate-activated protein kinase (AMPK) or peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) mediates the beneficial effects of exercise and CR. However, the effects of DHEA on AMPK activity and PGC-1α expression remain unclear. Therefore, we explored whether DHEA in myotubes acts as an activator of AMPK and increases PGC-1α. DHEA exposure increased glucose uptake but not the phosphorylation levels of Akt and PKCζ/λ in C2C12 myotubes. In contrast, the phosphorylation levels of AMPK were elevated by DHEA exposure. Finally, we found that DHEA induced the expression of the genes PGC-1α and GLUT4. Our current results might reveal a previously unrecognized physiological role of DHEA; the activation of AMPK and the induction of PGC-1α by DHEA might mediate its anti-obesity and health-promoting effects in living organisms. PMID:25983323

  4. Plasma membrane characterization, by scanning electron microscopy, of multipotent myoblasts-derived populations sorted using dielectrophoresis

    SciTech Connect

    Muratore, Massimo; Mitchell, Steve; Waterfall, Martin

    2013-09-06

    Highlights: •Dielectrophoretic separation/sorting of multipotent cells. •Plasma membrane microvilli structure of C2C12 and fibroblasts by SEM microscopy. •Cell cycle determination by Ki-67 in DEP-sorted cells. •Plasma membrane differences responsible for changes in membrane capacitance. -- Abstract: Multipotent progenitor cells have shown promise for use in biomedical applications and regenerative medicine. The implementation of such cells for clinical application requires a synchronized, phenotypically and/or genotypically, homogenous cell population. Here we have demonstrated the implementation of a biological tag-free dielectrophoretic device used for discrimination of multipotent myoblastic C2C12 model. The multipotent capabilities in differentiation, for these cells, diminishes with higher passage number, so for cultures above 70 passages only a small percentage of cells is able to differentiate into terminal myotubes. In this work we demonstrated that we could recover, above 96% purity, specific cell types from a mixed population of cells at high passage number without any biological tag using dielectrophoresis. The purity of the samples was confirmed by cytometric analysis using the cell specific marker embryonic myosin. To further investigate the dielectric properties of the cell plasma membrane we co-culture C2C12 with similar size, when in suspension, GFP-positive fibroblast as feeder layer. The level of separation between the cell types was above 98% purity which was confirmed by flow cytometry. These levels of separation are assumed to account for cell size and for the plasma membrane morphological differences between C2C12 and fibroblast unrelated to the stages of the cell cycle which was assessed by immunofluorescence staining. Plasma membrane conformational differences were further confirmed by scanning electron microscopy.

  5. Induced differentiation of adipose-derived stromal cells into myoblasts.

    PubMed

    Wu, Guizhu; Zheng, Xiu; Jiang, Zhongqing; Wang, Jinhua; Song, Yanfeng

    2010-06-01

    This study aimed to induce the differentiation of isolated and purified adipose-derived stromal cells (ADSCs) into myoblasts, which may provide a new strategy for tissue engineering in patients with stress urinary incontinence (SUI). ADSCs, isolated and cultured ex vivo, were identified by flow cytometry and induced to differentiate into myoblasts in the presence of an induction solution consisting of DMEM supplemented with 5-azacytidine (5-aza), 5% FBS, and 5% horse serum. Cellular morphology was observed under an inverted microscope. Ultrastructural changes occurring during the differentiation were observed by transmission electron microscopy and confocal laser scanning microscopy. Cellular immunohistochemical staining was applied to determine the expression of desmin protein in cells with and without induced differentiation. Reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting were used to detect mRNA and protein expression, respectively, of sarcomeric and desmin smooth muscle proteins. The results showed that ADSCs were mainly of a spindle or polygon shape. Flow cytometry analysis revealed that ADSCs did not express CD34, CD45, and CD106 but high levels of CD44 and CD90, which confirmed that the cultured cells were indeed ADSCs. After induction with a 5-aza-containing solution, morphological changes in ADSCs, including irregular cell size, were observed. Cells gradually changed from long spindles to polygons and star-shaped cells with microvilli on the cell surface. Many organelles were observed and the cytoplasm was found to contain many mitochondria, rough endoplasmic reticulum (rER), and myofilament-like structures. Cell immunohistochemical staining revealed different levels of desmin expression in each phase of the induction process, with the highest expression level found on day 28 of induction. RT-PCR and Western blot results confirmed significantly higher desmin gene expression in induced cells compared with control cells, but no

  6. Activation of the phospholipase C pathway by ATP is mediated exclusively through nucleotide type P2-purinoceptors in C2C12 myotubes.

    PubMed Central

    Henning, R. H.; Duin, M.; den Hertog, A.; Nelemans, A.

    1993-01-01

    1. The presence of a nucleotide receptor and a discrete ATP-sensitive receptor on C2C12 myotubes has been shown by electrophysiological experiments. In this study, the ATP-sensitive receptors of C2C12 myotubes were further characterized by measuring the formation of inositol(1,4,5)trisphosphate (Ins(1,4,5)P3) and internal Ca2+. 2. The nucleotides ATP and UTP caused a concentration-dependent increase in Ins(1,4,5)P3 content with comparable time courses (EC50: ATP 33 +/- 2 microM, UTP 80 +/- 4 microM). ADP was less effective in increasing Ins(1,4,5)P3 content of the cells, while selective agonists for P1-, P2X- and P2Y-purinoceptors, adenosine, alpha,beta-methylene ATP and 2-methylthio ATP, appeared to be ineffective. 3. Under Ca(2+)-free conditions, the basal level of Ins(1,4,5)P3 was lower than in the presence of Ca2+, and the ATP- and UTP-induced formation of Ins(1,4,5)P3 was diminished. 4. The Ins(1,4,5)P3 formation induced by optimal ATP and UTP concentrations was not additive. ATP- and UTP-induced Ins(1,4,5)P3 formation showed cross-desensitization, whereas cross-desensitization was absent in responses elicited by one of the nucleotides and bradykinin. 5. The change in Ins(1,4,5)P3 content induced by effective nucleotides was inhibited by suramin. Schild plots for suramin inhibition of Ins(1,4,5)P3 formation in ATP- and UTP-stimulated myotubes showed slopes greater than unity (1.63 +/- 0.09 and 1.37 +/- 0.11, respectively). Apparent pA2 values were 4.50 +/- 0.48 and 4.41 +/- 0.63 for ATP and UTP, respectively. 6. Stimulation of the cells with ATP or UTP induced a rapid increase in intracellular Ca2+, followed by a slow decline to basal levels. Ca2+ responses reached lower maximal values and did not show the slow phase in the absence of extracellular Ca2+.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8242247

  7. Serum Amyloid A Induces Toll-Like Receptor 2-Dependent Inflammatory Cytokine Expression and Atrophy in C2C12 Skeletal Muscle Myotubes

    PubMed Central

    Passey, Samantha L.; Bozinovski, Steven; Vlahos, Ross; Anderson, Gary P.; Hansen, Michelle J.

    2016-01-01

    Background Skeletal muscle wasting is an important comorbidity of Chronic Obstructive Pulmonary Disease (COPD) and is strongly correlated with morbidity and mortality. Patients who experience frequent acute exacerbations of COPD (AECOPD) have more severe muscle wasting and reduced recovery of muscle mass and function after each exacerbation. Serum levels of the pro-inflammatory acute phase protein Serum Amyloid A (SAA) can rise more than 1000-fold in AECOPD and are predictively correlated with exacerbation severity. The direct effects of SAA on skeletal muscle are poorly understood. Here we have examined SAA effects on pro-inflammatory cachectic cytokine expression (IL-6 and TNFα) and atrophy in C2C12 myotubes. Results SAA increased IL-6 (31-fold) and TNFα (6.5-fold) mRNA levels compared to control untreated cells after 3h of SAA treatment, and increased secreted IL-6 protein at 24h. OxPAPC, a dual TLR2 and TLR4 inhibitor, reduced the response to SAA by approximately 84% compared to SAA alone, and the TLR2 neutralising antibody T2.5 abolished SAA-induced expression of IL-6, indicating that SAA signalling in C2C12 myotubes is primarily via TLR2. SAA also reduced myotube width by 10–13% and induced a 2.5-fold increase in the expression of the muscle atrophy gene Atrogin-1, suggesting direct effects of SAA on muscle wasting. Blocking of TLR2 inhibited the SAA-induced decrease in myotube width and Atrogin-1 gene expression, indicating that SAA induces atrophy through TLR2. Conclusions These data demonstrate that SAA stimulates a robust pro-inflammatory response in skeletal muscle myotubes via the TLR2-dependent release of IL-6 and TNFα. Furthermore, the observed atrophy effects indicate that SAA could also be directly contributing to the wasting and poor recovery of muscle mass. Therapeutic strategies targeting this SAA-TLR2 axis may therefore ameliorate muscle wasting in AECOPD and a range of other inflammatory conditions associated with loss of muscle mass. PMID

  8. Capric Acid Up-Regulates UCP3 Expression without PDK4 Induction in Mouse C2C12 Myotubes.

    PubMed

    Abe, Tomoki; Hirasaka, Katsuya; Kohno, Shohei; Tomida, Chisato; Haruna, Marie; Uchida, Takayuki; Ohno, Ayako; Oarada, Motoko; Teshima-Kondo, Shigetada; Okumura, Yuushi; Choi, Inho; Aoyama, Toshiaki; Terao, Junji; Nikawa, Takeshi

    2016-01-01

    Uncoupling protein 3 (UCP3) and pyruvate dehydrogenase kinase 4 (PDK4) in skeletal muscle are key regulators of the glucose and lipid metabolic processes that are involved in insulin resistance. Medium-chain fatty acids (MCFAs) have anti-obesogenic effects in rodents and humans, while long-chain fatty acids (LCFAs) cause increases in body weight and insulin resistance. To clarify the beneficial effects of MCFAs, we examined UCP3 and PDK4 expression in skeletal muscles of mice fed a MCFA- or LCFA-enriched high-fat diet (HFD). Five-week feeding of the LCFA-enriched HFD caused high body weight gain and induced glucose intolerance in mice, compared with those in mice fed the MCFA-enriched HFD. However, the amounts of UCP3 and PDK4 transcripts in the skeletal muscle of mice fed the MCFA- or LCFA-enriched HFD were similar. To further elucidate the specific effects of MCFAs, such as capric acid (C10:0), on lipid metabolism in skeletal muscles, we examined the effects of various FAs on expression of UCP3 and PDK4, in mouse C2C12 myocytes. Although palmitic acid (C16:0) and lauric acid (C12:0) significantly induced expression of both UCP3 and PDK4, capric acid (C10:0) upregulated only UCP3 expression via activation of peroxisome proliferator-activated receptor-δ. Furthermore, palmitic acid (C16:0) disturbed the insulin-induced phosphorylation of Akt, while MCFAs, including lauric (C12:0), capric (C10:0), and caprylic acid (C12:0), did not. These results suggest that capric acid (C10:0) increases the capacity for fatty acid oxidation without inhibiting glycolysis in skeletal muscle. PMID:27117849

  9. Cell-Adhesive Matrices Composed of RGD Peptide-Displaying M13 Bacteriophage/Poly(lactic-co-glycolic acid) Nanofibers Beneficial to Myoblast Differentiation.

    PubMed

    Shin, Yong Cheol; Lee, Jong Ho; Jin, Linhua; Kim, Min Jeong; Kim, Chuntae; Hong, Suck Won; Oh, Jin Woo; Han, Dong-Wook

    2015-10-01

    Recently, there has been considerable effort to develop suitable scaffolds for tissue engineering applications. Cell adhesion is a prerequisite for cells to survive. In nature, the extracellular matrix (ECM) plays this role. Therefore, an ideal scaffold should be structurally similar to the natural ECM and have biocompatibility and biodegradability. In addition, the scaffold should have biofunctionality, which provides the potent ability to enhance the cellular behaviors, such as adhesion, proliferation and differentiation. This study concentrates on fabricating cell-adhesive matrices composed of RGD peptide-displaying M13 bacteriophage (RGD-M13 phage) and poly(lactic-co-glycolic acid, PLGA) nanofibers. Long rod-shaped M13 bacteriophages are non-toxic and can express many desired proteins on their surface. A genetically engineered M13 phage was constructed to display RGD peptides on its surface. PLGA is a biodegradable polymer with excellent biocompatibility and suitable physicochemical property for adhesive matrices. In this study, RGD-M13 phage/PLGA hybrid nanofiber matrices were fabricated by electrospinning. The physicochemical properties of these matrices were characterized by scanning electron microscopy, atomic force microscopy, Raman spectroscopy, and contact angle measurement. In addition, the cellular behaviors, such as the initial attachment, proliferation and differentiation, were analyzed by a CCK-8 assay and immunofluorescence staining to evaluate the potential application of these matrices to tissue engineering scaffolds. The RGD-M13 phage/PLGA nanofiber matrices could enhance the cellular behaviors and promote the differentiation of C2C12 myoblasts. These results suggest that the RGD-M13 phage/PLGA nanofiber matrices are beneficial to myoblast differentiation and can serve as effective tissue engineering scaffolds. PMID:26726438

  10. Interactions between Skeletal Muscle Myoblasts and their Extracellular Matrix Revealed by a Serum Free Culture System

    PubMed Central

    Chaturvedi, Vishal; Dye, Danielle E.; Kinnear, Beverley F.; van Kuppevelt, Toin H.; Grounds, Miranda D.; Coombe, Deirdre R.

    2015-01-01

    Decellularisation of skeletal muscle provides a system to study the interactions of myoblasts with muscle extracellular matrix (ECM). This study describes the efficient decellularisation of quadriceps muscle with the retention of matrix components and the use of this matrix for myoblast proliferation and differentiation under serum free culture conditions. Three decellularisation approaches were examined; the most effective was phospholipase A2 treatment, which removed cellular material while maximizing the retention of ECM components. Decellularised muscle matrices were then solubilized and used as substrates for C2C12 mouse myoblast serum free cultures. The muscle matrix supported myoblast proliferation and differentiation equally as well as collagen and fibronectin. Immunofluorescence analyses revealed that myoblasts seeded on muscle matrix and fibronectin differentiated to form long, well-aligned myotubes, while myoblasts seeded on collagen were less organized. qPCR analyses showed a time dependent increase in genes involved in skeletal muscle differentiation and suggested that muscle-derived matrix may stimulate an increased rate of differentiation compared to collagen and fibronectin. Decellularized whole muscle three-dimensional scaffolds also supported cell adhesion and spreading, with myoblasts aligning along specific tracts of matrix proteins within the scaffolds. Thus, under serum free conditions, intact acellular muscle matrices provided cues to direct myoblast adhesion and migration. In addition, myoblasts were shown to rapidly secrete and organise their own matrix glycoproteins to create a localized ECM microenvironment. This serum free culture system has revealed that the correct muscle ECM facilitates more rapid cell organisation and differentiation than single matrix glycoprotein substrates. PMID:26030912

  11. AlphaB-crystallin is involved in oxidative stress protection determined by VEGF in skeletal myoblasts.

    PubMed

    Mercatelli, Neri; Dimauro, Ivan; Ciafré, Silvia Anna; Farace, Maria Giulia; Caporossi, Daniela

    2010-08-01

    Recent studies suggest that the effects of VEGF-A, the prototype VEGF ligand, may extend to a variety of cell types other than endothelial cells. The expression of VEGF-A and its main receptors, Flt-1/VEGFR-1 and KDR/Flk-1/VEGFR-2, was indeed detected in several cell types, including cardiac myocytes and regenerating myotubes. In addition to its proangiogenic activity, evidence indicates that VEGF-A can sustain skeletal muscle regeneration by enhancing the survival and migration of myogenic cells and by promoting the growth of myogenic fibers. In this study, our aim was to investigate whether VEGF could protect skeletal muscle satellite cells from apoptotic cell death triggered by reactive oxygen species and to identify the main molecular mechanisms. C2C12 mouse myoblasts, cultured in vitro in the presence of exogenous VEGF or stably transfected with a plasmid vector expressing VEGF-A, were subjected to oxidative stress and analyzed for cell growth and survival, induction of apoptosis, and molecular signaling. The results of our study demonstrated that VEGF protects C2C12 myoblasts from apoptosis induced by oxidative or hypoxic-like stress. This protection did not correlate with the modulation of the expression of VEGF receptors, but is clearly linked to the phosphorylation of the KDR/Flk-1 receptor, the activation of NF-kappaB, and/or the overexpression of the antiapoptotic protein alphaB-crystallin. PMID:20441791

  12. Linker of nucleoskeleton and cytoskeleton (LINC) complex-mediated actin-dependent nuclear positioning orients centrosomes in migrating myoblasts

    PubMed Central

    Chang, Wakam; Antoku, Susumu; Östlund, Cecilia; Worman, Howard J; Gundersen, Gregg G

    2015-01-01

    Myoblast migration is essential for muscle development and repair; however, the factors that contribute to the polarity of migrating myoblasts are relatively unknown. We find that randomly migrating C2C12 myoblasts orient their centrosomes in the direction of migration. Using wounded monolayers, we further show that centrosome orientation is stimulated by the serum factor lysophosphatidic acid (LPA) and involves the rearward movement of the nucleus while the centrosome is maintained at the cell centroid. The rate of nuclear movement correlated with that of actin retrograde flow and both cytochalasin D and blebbistatin prevented nuclear movement and centrosome orientation. Actin-dependent rearward nuclear movement in fibroblasts is mediated by assembly of nuclear membrane nesprin-2G and SUN2 LINC complexes into transmembrane actin-associated nuclear (TAN) lines anchored by A-type lamins and emerin. In C2C12 myoblasts, depletion of nesprin-2G, SUN2 or lamin A/C prevented nuclear movement and endogenous nesprin-2G and a chimeric GFP-mini-nesprin-2G formed TAN lines during nuclear movement. Depleting nesprin-2G strongly interfered with directed cell migration and reduced the efficiency of myoblast fusion into multinucleated myotubes. Our results show that nuclear movement contributes to centrosome orientation and polarity for efficient migration and fusion of myoblasts. Given that mutations in the genes encoding A-type lamins, nesprin-2 and SUN2 cause Emery-Dreifuss muscular dystrophy and related myopathies, our results have implications for understanding the mechanism of disease pathogenesis. PMID:25587885

  13. RNAi Screen Reveals Potentially Novel Roles of Cytokines in Myoblast Differentiation

    PubMed Central

    Ge, Yejing; Waldemer, Rachel J.; Nalluri, Ramakrishna; Nuzzi, Paul D.; Chen, Jie

    2013-01-01

    Cytokines are cell-secreted signaling molecules that modulate various cellular functions, with the best-characterized roles in immune responses. The expression of numerous cytokines in skeletal muscle tissues and muscle cells has been reported, but their function in skeletal myogenesis, the formation of skeletal muscle, has been largely underexplored. To systematically examine the potential roles of cytokines in skeletal myogenesis, we undertook an RNAi screen of 134 mouse cytokine genes for their involvement in the differentiation of C2C12 myoblasts. Our results have uncovered 29 cytokines as strong candidates for novel myogenic regulators, potentially conferring positive and negative regulation at distinct stages of myogenesis. These candidates represent a diverse collection of cytokine families, including interleukins, TNF-related factors, and chemokines. Our findings suggest the fundamental importance of cytokines in the cell-autonomous regulation of myoblast differentiation, and may facilitate future identification of novel therapeutic targets for improving muscle regeneration and growth in health and diseases. PMID:23844157

  14. α-Lipoic Acids Promote the Protein Synthesis of C2C12 Myotubes by the TLR2/PI3K Signaling Pathway.

    PubMed

    Jing, Yuanyuan; Cai, Xingcai; Xu, Yaqiong; Zhu, Canjun; Wang, Lina; Wang, Songbo; Zhu, Xiaotong; Gao, Ping; Zhang, Yongliang; Jiang, Qingyan; Shu, Gang

    2016-03-01

    Skeletal muscle protein turnover is regulated by endocrine hormones, nutrients, and inflammation. α-Lipoic acid (ALA) plays an important role in energy homeostasis. Therefore, the aim of this study was to investigate the effects of ALA on protein synthesis in skeletal muscles and reveal the underlying mechanism. ALA (25 μM) significantly increased the protein synthesis and phosphorylation of Akt, mTOR, and S6 in C2C12 myotubes with attenuated phosphorylation of AMPK, Ikkα/β, and eIF2α. Intraperitoneal injection of 50 mg/kg ALA also produced the same results in mouse gastrocnemius. Both the PI3K (LY294002) and mTOR (rapamycin) inhibitors abolished the effects of ALA on protein synthesis in the C2C12 myotubes. However, AICAR (AMPK agonist) failed to block the activation of mTOR and S6 by ALA. ALA increased TLR2 and MyD88 mRNA expression in the C2C12 myotubes. TLR2 knockdown by siRNA almost eliminated the effects of ALA on protein synthesis and the Akt/mTOR pathway in the C2C12 myotubes. Immunoprecipitation data showed that ALA enhanced the p85 subunit of PI3K binding to MyD88. These findings indicate that ALA induces protein synthesis and the PI3K/Akt signaling pathway by TLR2. PMID:26855124

  15. GH-Releasing Hormone Promotes Survival and Prevents TNF-α-Induced Apoptosis and Atrophy in C2C12 Myotubes.

    PubMed

    Gallo, Davide; Gesmundo, Iacopo; Trovato, Letizia; Pera, Giulia; Gargantini, Eleonora; Minetto, Marco Alessandro; Ghigo, Ezio; Granata, Riccarda

    2015-09-01

    Skeletal muscle atrophy is a consequence of different chronic diseases, including cancer, heart failure, and diabetes, and also occurs in aging and genetic myopathies. It results from an imbalance between anabolic and catabolic processes, and inflammatory cytokines, such as TNF-α, have been found elevated in muscle atrophy and implicated in its pathogenesis. GHRH, in addition to stimulating GH secretion from the pituitary, exerts survival and antiapoptotic effects in different cell types. Moreover, we and others have recently shown that GHRH displays antiapoptotic effects in isolated cardiac myocytes and protects the isolated heart from ischemia/reperfusion injury and myocardial infarction in vivo. On these bases, we investigated the effects of GHRH on survival and apoptosis of TNF-α-treated C2C12 myotubes along with the underlying mechanisms. GHRH increased myotube survival and prevented TNF-α-induced apoptosis through GHRH receptor-mediated mechanisms. These effects involved activation of phosphoinositide 3-kinase/Akt pathway and inactivation of glycogen synthase kinase-3β, whereas mammalian target of rapamycin was unaffected. GHRH also increased the expression of myosin heavy chain and the myogenic transcription factor myogenin, which were both reduced by the cytokine. Furthermore, GHRH inhibited TNF-α-induced expression of nuclear factor-κB, calpain, and muscle ring finger1, which are all involved in muscle protein degradation. In summary, these results indicate that GHRH exerts survival and antiapoptotic effects in skeletal muscle cells through the activation of anabolic pathways and the inhibition of proteolytic routes. Overall, our findings suggest a novel therapeutic role for GHRH in the treatment of muscle atrophy-associated diseases. PMID:26110916

  16. Myostatin acts as an autocrine/paracrine negative regulator in myoblast differentiation from human induced pluripotent stem cells

    SciTech Connect

    Gao, Fei; Kishida, Tsunao; Ejima, Akika; Gojo, Satoshi; Mazda, Osam

    2013-02-08

    Highlights: ► iPS-derived cells express myostatin and its receptor upon myoblast differentiation. ► Myostatin inhibits myoblast differentiation by inhibiting MyoD and Myo5a induction. ► Silencing of myostatin promotes differentiation of human iPS cells into myoblasts. -- Abstract: Myostatin, also known as growth differentiation factor (GDF-8), regulates proliferation of muscle satellite cells, and suppresses differentiation of myoblasts into myotubes via down-regulation of key myogenic differentiation factors including MyoD. Recent advances in stem cell biology have enabled generation of myoblasts from pluripotent stem cells, but it remains to be clarified whether myostatin is also involved in regulation of artificial differentiation of myoblasts from pluripotent stem cells. Here we show that the human induced pluripotent stem (iPS) cell-derived cells that were induced to differentiate into myoblasts expressed myostatin and its receptor during the differentiation. An addition of recombinant human myostatin (rhMyostatin) suppressed induction of MyoD and Myo5a, resulting in significant suppression of myoblast differentiation. The rhMyostatin treatment also inhibited proliferation of the cells at a later phase of differentiation. RNAi-mediated silencing of myostatin promoted differentiation of human iPS-derived embryoid body (EB) cells into myoblasts. These results strongly suggest that myostatin plays an important role in regulation of myoblast differentiation from iPS cells of human origin. The present findings also have significant implications for potential regenerative medicine for muscular diseases.

  17. Contracting C2C12 myotubes release CCL2 in an NF-κB-dependent manner to induce monocyte chemoattraction.

    PubMed

    Miyatake, Shouta; Bilan, Philip J; Pillon, Nicolas J; Klip, Amira

    2016-01-15

    Muscle inflammation following exercise is characterized by expression of inflammatory cytokines and chemokines. Exercise also increases muscle macrophages derived from circulating monocytes. However, it is unknown whether muscle cells themselves attract circulating monocytes, or what is the underlying mechanism. We used an in vitro system of electrical stimulation (ES) causing C2C12 myotube contraction to explore whether monocyte chemoattraction ensues and investigated the mediating chemoattractants. Conditioned medium from ES-contracted myotubes caused robust chemoattraction of THP-1 monocytes across Boyden chambers. Following ES, expression of several known monocyte chemokines [C-C motif ligand 2 (CCL2) and C-X-C motif ligand (CXCL)1, -2, and -5] was elevated, but of these, only recombinant CCL2 effectively reproduced monocyte migration. Electrically stimulated myotubes secreted CCL2, and neutralization of CCL2 in conditioned medium or antagonizing the CCL2 receptor (CCR2) in THP-1 monocytes inhibited ES-induced monocyte migration. N-benzyl-p-toluene sulfonamide (BTS), a myosin II-ATPase inhibitor, prevented ES-induced myotube contraction but not CCL2 gene expression and secretion. The membrane-permeant calcium chelator BAPTA-AM reduced ES-induced CCL2 secretion. Hence, electrical depolarization, rather than mechanical contraction, drives the rise in CCL2, with partial calcium input. ES activated the NF-κB pathway; NF-κB inhibitors reduced ES-induced CCL2 gene expression and secretion and repressed ES-induced THP-1 chemoattraction. Thus, electrically stimulated myotubes chemoattract monocytes through NF-κB-regulated CCL2 secretion. PMID:26554595

  18. CD36 is required for myoblast fusion during myogenic differentiation

    SciTech Connect

    Park, Seung-Yoon; Yun, Youngeun; Kim, In-San

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer CD36 expression was induced during myogenic differentiation. Black-Right-Pointing-Pointer CD36 expression was localized in multinucleated myotubes. Black-Right-Pointing-Pointer The expression of myogenic markers is attenuated in CD36 knockdown C2C12 cells. Black-Right-Pointing-Pointer Knockdown of CD36 significantly inhibited myotube formation during differentiation. -- Abstract: Recently, CD36 has been found to be involved in the cytokine-induced fusion of macrophage. Myoblast fusion to form multinucleated myotubes is required for myogenesis and muscle regeneration. Because a search of gene expression database revealed the attenuation of CD36 expression in the muscles of muscular dystrophy patients, the possibility that CD36 could be required for myoblast fusion was investigated. CD36 expression was markedly up-regulated during myoblast differentiation and localized in multinucleated myotubes. Knockdown of endogenous CD36 significantly decreased the expression of myogenic markers as well as myotube formation. These results support the notion that CD36 plays an important role in cell fusion during myogenic differentiation. Our finding will aid the elucidation of the common mechanism governing cell-to-cell fusion in various fusion models.

  19. miR-411 is up-regulated in FSHD myoblasts and suppresses myogenic factors

    PubMed Central

    2013-01-01

    Background Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant muscle disorder, which is linked to the contraction of the D4Z4 array at chromosome 4q35. Recent studies suggest that this shortening of the D4Z4 array leads to aberrant expression of double homeobox protein 4 (DUX4) and causes FSHD. In addition, misregulation of microRNAs (miRNAs) has been reported in muscular dystrophies including FSHD. In this study, we identified a miRNA that is differentially expressed in FSHD myoblasts and investigated its function. Methods To identify misregulated miRNAs and their potential targets in FSHD myoblasts, we performed expression profiling of both miRNA and mRNA using TaqMan Human MicroRNA Arrays and Affymetrix Human Genome U133A plus 2.0 microarrays, respectively. In addition, we over-expressed miR-411 in C2C12 cells to determine the effect of miR-411 on myogenic markers. Results Using miRNA and mRNA expression profiling, we identified 8 miRNAs and 1,502 transcripts that were differentially expressed in FSHD myoblasts during cell proliferation. One of the 8 differentially expressed miRNAs, miR-411, was validated by quantitative RT-PCR in both primary (2.1 fold, p<0.01) and immortalized (2.7 fold, p<0.01) myoblasts. In situ hybridization showed cytoplasmic localization of miR-411 in FSHD myoblasts. By analyzing both miRNA and mRNA data using Partek Genomics Suite, we identified 4 mRNAs potentially regulated by miR-411 including YY1 associated factor 2 (YAF2). The down-regulation of YAF2 in immortalized myoblasts was validated by immunoblotting (−3.7 fold, p<0.01). C2C12 cells were transfected with miR-411 to determine whether miR-411 affects YAF2 expression in myoblasts. The results showed that over-expression of miR-411 reduced YAF2 mRNA expression. In addition, expression of myogenic markers including Myod, myogenin, and myosin heavy chain 1 (Myh1) were suppressed by miR-411. Conclusions The study demonstrated that miR-411 was differentially

  20. The Hippo effector TAZ (WWTR1) transforms myoblasts and TAZ abundance is associated with reduced survival in embryonal rhabdomyosarcoma.

    PubMed

    Mohamed, Abdalla; Sun, Congshan; De Mello, Vanessa; Selfe, Joanna; Missiaglia, Edoardo; Shipley, Janet; Murray, Graeme I; Zammit, Pete S; Wackerhage, Henning

    2016-09-01

    The Hippo effector YAP has recently been identified as a potent driver of embryonal rhabdomyosarcoma (ERMS). Most reports suggest that the YAP paralogue TAZ (gene symbol WWTR1) functions as YAP but, in skeletal muscle, TAZ has been reported to promote myogenic differentiation, whereas YAP inhibits it. Here, we investigated whether TAZ is also a rhabdomyosarcoma oncogene or whether TAZ acts as a YAP antagonist. Immunostaining of rhabdomyosarcoma tissue microarrays revealed that TAZ is significantly associated with poor survival in ERMS. In 12% of fusion gene-negative rhabdomyosarcomas, the TAZ locus is gained, which is correlated with increased expression. Constitutively active TAZ S89A significantly increased proliferation of C2C12 myoblasts and, importantly, colony formation on soft agar, suggesting transformation. However, TAZ then switches to enhance myogenic differentiation in C2C12 myoblasts, unlike YAP. Conversely, lentiviral shRNA-mediated TAZ knockdown in human ERMS cells reduced proliferation and anchorage-independent growth. While TAZ S89A or YAP1 S127A similarly activated the 8XGTIIC-Luc Hippo reporter, only YAP1 S127A activated the Brachyury (T-box) reporter. Consistent with its oncogene function, TAZ S89A induced expression of the ERMS cancer stem cell gene Myf5 and the serine biosynthesis pathway (Phgdh, Psat1, Psph) in C2C12 myoblasts. Thus, TAZ is associated with poor survival in ERMS and could act as an oncogene in rhabdomyosarcoma. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. PMID:27184927

  1. Modulation of Cell Cycle Progression by 5-Azacytidine Is Associated with Early Myogenesis Induction in Murine Myoblasts

    PubMed Central

    Montesano, Anna; Luzi, Livio; Senesi, Pamela; Terruzzi, Ileana

    2013-01-01

    Myogenesis is a multistep process, in which myoblasts withdraw from the cell cycle, cease to divide, elongate and fuse to form multinucleated myotubes. Cell cycle transition is controlled by a family of cyclin-dependent protein kinases (CDKs) regulated by association with cyclins, negative regulatory subunits and phosphorylation. Muscle differentiation is orchestrated by myogenic regulatory factors (MRFs), such as MyoD and Myf-5. DNA methylation is crucial in transcriptional control of genes involved in myogenesis. Previous work has indicated that treatment of fibroblasts with the DNA-demethylating agent 5-azacytidine (AZA) promotes MyoD expression. We studied the effects of AZA on cell cycle regulation and MRFs synthesis during myoblast proliferation and early myogenesis phases in C2C12 cells. During the proliferation phase, cells were incubated in growth medium with 5µM AZA (GMAZA) or without AZA (GM) for 24 hours. At 70% confluence, cells were kept in growth medium in order to spontaneously achieve differentiation or transferred to differentiation medium with 5μM AZA (DMAZA) or without AZA (DM) for 12 and 24 hours. Cells used as control were unstimulated. In the proliferation phase, AZA-treated cells seemed to lose their characteristic circular shape and become elongated. The presence of AZA resulted in significant increases in the protein contents of Cyclin-D (FC:1.23 GMAZA vs GM p≤0.05), p21 (FC: 1.23 GMAZA vs GM p≤0.05), Myf-5 (FC: 1.21 GMAZA vs GM p≤0.05) and MyoD (FC: 1.20 GMAZA vs GM p≤0.05). These results propose that AZA could inhibit cell proliferation. During 12 hours of differentiation, AZA decreased the downregulation of genes involved in cell cycle arrest and in restriction point (G1 and G1/S phase) and the expression of several cyclins, E2F Transcription Factors, cyclin-dependent kinase inhibitors, specific genes responsible of cell cycle negative regulation. During 24 hours of differentiation, AZA induced an increment in the protein

  2. Modulation of cell cycle progression by 5-azacytidine is associated with early myogenesis induction in murine myoblasts.

    PubMed

    Montesano, Anna; Luzi, Livio; Senesi, Pamela; Terruzzi, Ileana

    2013-01-01

    Myogenesis is a multistep process, in which myoblasts withdraw from the cell cycle, cease to divide, elongate and fuse to form multinucleated myotubes. Cell cycle transition is controlled by a family of cyclin-dependent protein kinases (CDKs) regulated by association with cyclins, negative regulatory subunits and phosphorylation. Muscle differentiation is orchestrated by myogenic regulatory factors (MRFs), such as MyoD and Myf-5. DNA methylation is crucial in transcriptional control of genes involved in myogenesis. Previous work has indicated that treatment of fibroblasts with the DNA-demethylating agent 5-azacytidine (AZA) promotes MyoD expression. We studied the effects of AZA on cell cycle regulation and MRFs synthesis during myoblast proliferation and early myogenesis phases in C2C12 cells. During the proliferation phase, cells were incubated in growth medium with 5µM AZA (GMAZA) or without AZA (GM) for 24 hours. At 70% confluence, cells were kept in growth medium in order to spontaneously achieve differentiation or transferred to differentiation medium with 5μM AZA (DMAZA) or without AZA (DM) for 12 and 24 hours. Cells used as control were unstimulated. In the proliferation phase, AZA-treated cells seemed to lose their characteristic circular shape and become elongated. The presence of AZA resulted in significant increases in the protein contents of Cyclin-D (FC:1.23 GMAZA vs GM p≤0.05), p21 (FC: 1.23 GMAZA vs GM p≤0.05), Myf-5 (FC: 1.21 GMAZA vs GM p≤0.05) and MyoD (FC: 1.20 GMAZA vs GM p≤0.05). These results propose that AZA could inhibit cell proliferation. During 12 hours of differentiation, AZA decreased the downregulation of genes involved in cell cycle arrest and in restriction point (G1 and G1/S phase) and the expression of several cyclins, E2F Transcription Factors, cyclin-dependent kinase inhibitors, specific genes responsible of cell cycle negative regulation. During 24 hours of differentiation, AZA induced an increment in the protein

  3. Effect of High Temperature- and High Pressure-Treated Red Ginseng on Lipolysis and Lipid Oxidation in C2C12 Myotubes.

    PubMed

    Yu, Seok-Yeong; Lee, Jin-Ha; Cho, MyoungLae; Lee, Jong Seok; Hong, Hee-Do; Lee, Young-Chul; Kim, Young-Chan; Cho, Chang-Won; Kim, Kyung-Tack; Lee, Ok-Hwan

    2016-01-01

    Korean red ginseng (KRG), a highly valuable medicinal herb in oriental societies, has biological activity similar to that of Panax ginseng. Recently, it has been discovered that the biological activities of red ginseng can vary according to heating and steaming processes under different conditions that change the principal components of KRG and result in changes in biological activity. This study evaluated and compared the effects of high temperature- and high pressure-treated red ginseng (HRG) and commercial red ginseng (RG) on β-oxidation in C2C12 myotubes. HRG enhanced the phosphorylation levels of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC), but RG did not affect the phosphorylation of AMPK in C2C12 myotubes. HRG also promoted the nuclear translocation of forkhead box protein O1 (FoxO1), and the translocation exerted an increase in the protein expression of adipose triglyceride lipase (ATGL). As a consequence, HRG increased the mRNA expression level of carnitine palmitoyltransferase 1 (CPT-1) compared to the control. Taken together, our results indicated that HRG promotes the lipolysis of triglycerides and mitochondrial β-oxidation of fatty acids in C2C12 myotubes, suggesting that alterations to the principal components by high temperature and pressure may positively influence the nutraceutical functions of HRG. PMID:26501225

  4. Restoration of anal sphincter function after myoblast cell therapy in incontinent rats.

    PubMed

    Bisson, Aurélie; Fréret, Manuel; Drouot, Laurent; Jean, Laetitia; Le Corre, Stéphanie; Gourcerol, Guillaume; Doucet, Christelle; Michot, Francis; Boyer, Olivier; Lamacz, Marek

    2015-01-01

    Fecal incontinence (FI) remains a socially isolating condition with profound impact on quality of life for which autologous myoblast cell therapy represents an attractive treatment option. We developed an animal model of FI and investigated the possibility of improving sphincter function by intrasphincteric injection of syngeneic myoblasts. Several types of anal cryoinjuries were evaluated on anesthetized Fischer rats receiving analgesics. The minimal lesion yielding sustainable anal sphincter deficiency was a 90° cryoinjury of the sphincter, repeated after a 24-h interval. Anal sphincter pressure was evaluated longitudinally by anorectal manometry under local electrostimulation. Myoblasts were prepared using a protocol mimicking a clinical-grade process and further transduced with a GFP-encoding lentiviral vector before intrasphincteric injection. Experimental groups were uninjured controls, cryoinjured + PBS, and cryoinjured + myoblasts (different doses or injection site). Myoblast injection was well tolerated. Transferred myoblasts expressing GFP integrated into the sphincter and differentiated in situ into dystrophin-positive mature myofibers. Posttreatment sphincter pressures increased over time. At day 60, pressures in the treated group were significantly higher than those of PBS-injected controls and not significantly different from those of normal rats. Longitudinal follow-up showed stability of the therapeutic effect on sphincter function over a period of 6 months. Intrasphincteric myoblast injections at the lesion borders were equally as effective as intralesion administration, but an injection opposite to the lesion was not. These results provide proof of principle for myoblast cell therapy to treat FI in a rat model. This strategy is currently being evaluated in humans in a randomized double-blind placebo-controlled clinical trial. PMID:24143883

  5. Betaine supplement enhances skeletal muscle differentiation in murine myoblasts via IGF-1 signaling activation

    PubMed Central

    2013-01-01

    Background Betaine (BET) is a component of many foods, including spinach and wheat. It is an essential osmolyte and a source of methyl groups. Recent studies have hypothesized that BET might play a role in athletic performance. However, BET effects on skeletal muscle differentiation and hypertrophy are still poorly understood. Methods We examined BET action on neo myotubes maturation and on differentiation process, using C2C12 murine myoblastic cells. We used RT2-PCR array, Western blot and immunofluorescence analysis to study the BET effects on morphological features of C2C12 and on signaling pathways involved in muscle differentiation and hypertrophy. Results We performed a dose–response study, establishing that 10 mM BET was the dose able to stimulate morphological changes and hypertrophic process in neo myotubes. RT2-PCR array methodology was used to identify the expression profile of genes encoding proteins involved in IGF-1 pathway. A dose of 10 mM BET was found to promote IGF-1 receptor (IGF-1 R) expression. Western blot and immunofluorescence analysis, performed in neo myotubes, pointed out that 10 mM BET improved IGF-1 signaling, synthesis of Myosin Heavy Chain (MyHC) and neo myotubes length. In addition, we investigated BET role on myoblasts proliferation and differentiation. During proliferation, BET did not modify C2C12 proliferative rate, but promoted myogenic induction, enhancing MyoD protein content and cellular elongation. During differentiation, BET caused an increase of muscle-specific markers and IGF-1 R protein levels. Conclusions Our findings provide the first evidence that BET could promote muscle fibers differentiation and increase myotubes size by IGF-1 pathway activation, suggesting that BET might represent a possible new drug/integrator strategy, not only in sport performance but also in clinical conditions characterized by muscle function impairment. PMID:23870626

  6. Further considerations on in vitro skeletal muscle cell death

    PubMed Central

    Battistelli, Michela; Salucci, Sara; Burattini, Sabrina; Falcieri, Elisabetta

    2013-01-01

    Summary The present review discusses the apoptotic behavior induced by chemical and physical triggers in C2C12 skeletal muscle cells, comparing myoblast to myotube sensitivity, and investigating it by means of morphological, biochemical and cytofluorimetric analyses. After all treatments, myotubes, differently from myoblasts, showed a poor sensitivity to cell death. Intriguingly, in cells exposed to staurosporine, etoposide and UVB radiation, apoptotic and normal nuclei within the same fibercould be revealed. The presence of nuclear-dependent “territorial” death domains in the syncytium could explain a delayed cell death of myotubes compared to mononucleated cells. Moreover, autophagic granules abundantly appeared in myotubes after each treatment. Autophagy could protect muscle cell integrity against chemical and physical stimuli, making C2C12 myotubes, more resistant to cell death induction. PMID:24596689

  7. The effect of palmitate supplementation on gene expression profile in proliferating myoblasts.

    PubMed

    Grabiec, K; Majewska, A; Wicik, Z; Milewska, M; Błaszczyk, M; Grzelkowska-Kowalczyk, K

    2016-06-01

    High-fat diet, exposure to saturated fatty acids, or the presence of adipocytes in myoblast microenvironment affects skeletal muscle growth and function. The aim of the present study was to investigate the effect of palmitate supplementation on transcriptomic profile of mouse C2C12 myoblasts. Global gene expression was evaluated using whole mouse genome oligonucleotide microarrays, and the results were validated through qPCR. A total of 4047 genes were identified as differentially expressed, including 3492 downregulated and 555 upregulated genes, during a 48-h exposure to palmitate (0.1 mmol/l). Functional classification showed the involvement of these genes in several processes which regulate cell growth. In conclusion, the addition of palmitate modifies the expression of genes associated with (1) myoblast responsiveness to hormones and growth factors, (2) cytokine and growth factor expression, and (3) regulation of cell-cell and cell-matrix communication. Such alterations can affect myoblast growth and differentiation; however, further studies in this field are required. PMID:27114085

  8. Spatial coordination of cell orientation directed by nanoribbon sheets.

    PubMed

    Fujie, Toshinori; Shi, Xuetao; Ostrovidov, Serge; Liang, Xiaobin; Nakajima, Ken; Chen, Yin; Wu, Hongkai; Khademhosseini, Ali

    2015-06-01

    Spatial coordination of cell orientation is of central importance in tissue/organ construction. In this study, we developed microfabricated poly(lactic-co-glycolic acid) (PLGA) nanoribbon sheets with unique structures, using spin-coating and micropatterning techniques, in order to generate a hierarchically assembled cellular structure consisting of murine skeletal myoblasts (C2C12). The nanoribbon sheets were composed of aligned PLGA nanoribbons in the center, and strips on four sides which take a role as bridges to connect and immobilize the aligned nanoribbons. Such unique structures facilitated the alignment of C2C12 cells into bilayer cell sheets, and cellular alignment was directed by the aligned direction of nanoribbons. The nanoribbon sheets also facilitated the construction of multilayer cell sheets with anisotropic (orthogonal) and isotropic (parallel) orientations. The enhanced expression of myogenic genes of C2C12 cells on the bilayer cell sheets demonstrated that the nanoribbons induced C2C12 cell differentiation into mature myoblasts. The micropatterned nanoribbon sheets may be a useful tool for directing cellular organization with defined alignment for regenerative medicine and drug screening applications. PMID:25890709

  9. miR-145a-5p Promotes Myoblast Differentiation

    PubMed Central

    Du, Jingjing; Li, Qiang; Shen, Linyuan; Lei, Huaigang; Luo, Jia; Liu, Yihui; Zhang, Peiwen; Pu, Qiang; Zhang, Yi; Shuai, Surong; Li, Xuewei; Zhang, Shunhua; Zhu, Li

    2016-01-01

    MicroRNAs are a class of 18–22-nucleotide noncoding RNAs that posttranscriptionally regulate gene expression and have been shown to play an important role during myoblast differentiation. In this study, we found that the expression of miR-145a-5p was gradually increased during C2C12 myoblast differentiation, and miR-145a-5p inhibitors or mimics significantly suppressed or promoted the relative expression of specific myogenesis related marker genes. Moreover, overexpression or inhibition of miR-145a-5p enhanced or repressed the expression of some special genes involved in the endogenous Wnt signaling pathway during C2C12 myoblast differentiation, including Wnt5a, LRP5, Axin2, and β-catenin. These results indicated that miR-145a-5p might be considered as a new myogenic differentiation-associated microRNA that can promote C2C12 myoblast differentiation by enhancing genes related to myoblasts differentiation. PMID:27239472

  10. A comparative study of magnetic-activated cell sorting, cytotoxicity and preplating for the purification of human myoblasts.

    PubMed

    Park, Yoon Ghil; Moon, Jae Ho; Kim, Jin

    2006-04-30

    Although cultured myoblast transplantation has been extensively studied as a gene complementation approach to muscular dystrophy treatment, clinical success has still been limited. The inability to adequately isolate and purify myoblasts presents a major limitation to the production of sufficient myoblasts for engrafting purposes. This study attempted to purify myoblasts from primary culture by magnetic-activated cell sorting (MACS), complement-mediated cytotoxicity, and a preplating technique. As a result of positive myoblasts selection by MACS, the average percentage of myoblasts in mixed culture was increased from 30.0% to 41.7%. We observed both myoblast lysis and fibroblast lysis after complement-mediated cytotoxicity. Enrichment of myoblasts in mixed culture was found to increase to 83.1% by using the preplating technique. In addition, higher purification (92.8%) was achieved by following the preplating technique with MACS. Thus, preplating in combination with magnetic-activated cell sorting allows for a rapid and effective isolation of myoblasts from human muscle tissue. PMID:16642545

  11. Development of gas chromatography-flame ionization detection system with a single column and liquid nitrogen-free for measuring atmospheric C2-C12 hydrocarbons.

    PubMed

    Liu, Chengtang; Mu, Yujing; Zhang, Chenglong; Zhang, Zhibo; Zhang, Yuanyuan; Liu, Junfeng; Sheng, Jiujiang; Quan, Jiannong

    2016-01-01

    A liquid nitrogen-free GC-FID system equipped with a single column has been developed for measuring atmospheric C2-C12 hydrocarbons. The system is consisted of a cooling unit, a sampling unit and a separation unit. The cooling unit is used to meet the temperature needs of the sampling unit and the separation unit. The sampling unit includes a dehydration tube and an enrichment tube. No breakthrough of the hydrocarbons was detected when the temperature of the enrichment tube was kept at -90 °C and sampling volume was 400 mL. The separation unit is a small round oven attached on the cooling column. A single capillary column (OV-1, 30 m × 0.32 mm I.D.) was used to separate the hydrocarbons. An optimal program temperature (-60 ∼ 170 °C) of the oven was achieved to efficiently separate C2-C12 hydrocarbons. There were good linear correlations (R(2)=0.993-0.999) between the signals of the hydrocarbons and the enrichment amount of hydrocarbons, and the relative standard deviation (RSD) was less than 5%, and the method detection limits (MDLs) for the hydrocarbons were in the range of 0.02-0.10 ppbv for sampling volume of 400 mL. Field measurements were also conducted and more than 50 hydrocarbons from C2 to C12 were detected in Beijing city. PMID:26687163

  12. Rab35 regulates cadherin-mediated adherens junction formation and myoblast fusion

    PubMed Central

    Charrasse, Sophie; Comunale, Franck; De Rossi, Sylvain; Echard, Arnaud; Gauthier-Rouvière, Cécile

    2013-01-01

    Cadherins are homophilic cell–cell adhesion molecules implicated in many fundamental processes, such as morphogenesis, cell growth, and differentiation. They accumulate at cell–cell contact sites and assemble into large macromolecular complexes named adherens junctions (AJs). Cadherin targeting and function are regulated by various cellular processes, many players of which remain to be uncovered. Here we identify the small GTPase Rab35 as a new regulator of cadherin trafficking and stabilization at cell–cell contacts in C2C12 myoblasts and HeLa cells. We find that Rab35 accumulates at cell–cell contacts in a cadherin-dependent manner. Knockdown of Rab35 or expression of a dominant-negative form of Rab35 impaired N- and M-cadherin recruitment to cell–cell contacts, their stabilization at the plasma membrane, and association with p120 catenin and led to their accumulation in transferrin-, clathrin-, and AP-2–positive intracellular vesicles. We also find that Rab35 function is required for PIP5KIγ accumulation at cell–cell contacts and phosphatidyl inositol 4,5-bisphosphate production, which is involved in cadherin stabilization at contact sites. Finally, we show that Rab35 regulates myoblast fusion, a major cellular process under the control of cadherin-dependent signaling. Taken together, these results reveal that Rab35 regulates cadherin-dependent AJ formation and myoblast fusion. PMID:23197472

  13. Network formation through active migration of human vascular endothelial cells in a multilayered skeletal myoblast sheet.

    PubMed

    Nagamori, Eiji; Ngo, Trung Xuan; Takezawa, Yasunori; Saito, Atsuhiro; Sawa, Yoshiki; Shimizu, Tatsuya; Okano, Teruo; Taya, Masahito; Kino-oka, Masahiro

    2013-01-01

    Autologous transplantation of myoblast sheet has attracted attention as a new technique for curing myocardial infarction. Myoblast sheet has the ability to secret cytokines that improve heart function via the facilitation of angiogenesis on affected part. To mimic the in vivo angiogenesis in the myoblast sheet after transplantation, a five-layered cell sheet of human skeletal muscle myoblasts (HSMMs) was overlaid on human umbilical vein endothelial cells (HUVECs) which enables evaluation of dynamic HUVEC behavior. HUVECs existing initially at the bottom of the sheet changed to be a stretched shape and migrated upward compared with the surrounding HSMMs in the sheet. Prolonged incubation resulted in network formation of HUVECs in the middle of the sheet, although non-networked HUVECs continued to migrate to the top of the sheet, which meant the spatial habitation of HUVECs in the cell sheet. Image processing was performed to determine the variation in the extent of network formation at different HUVEC densities. It was found that the extent of formed network depended on the frequency of encounters among HUVECs in the middle of the sheet. The present system, which can evaluate network formation, is considered to be a promising in vitro angiogenesis model. PMID:23117213

  14. Low-level infrared laser modulates muscle repair and chromosome stabilization genes in myoblasts.

    PubMed

    da Silva Neto Trajano, Larissa Alexsandra; Stumbo, Ana Carolina; da Silva, Camila Luna; Mencalha, Andre Luiz; Fonseca, Adenilson S

    2016-08-01

    Infrared laser therapy is used for skeletal muscle repair based on its biostimulative effect on satellite cells. However, shortening of telomere length limits regenerative potential in satellite cells, which occurs after each cell division cycle. Also, laser therapy could be more effective on non-physiologic tissues. This study evaluated low-level infrared laser exposure effects on mRNA expression from muscle injury repair and telomere stabilization genes in myoblasts in normal and stressful conditions. Laser fluences were those used in clinical protocols. C2C12 myoblast cultures were exposed to low-level infrared laser (10, 35, and 70 J/cm(2)) in standard or normal (10 %) and reduced (2 %) fetal bovine serum concentrations; total RNA was extracted for mRNA expression evaluation from muscle injury repair (MyoD and Pax7) and chromosome stabilization (TRF1 and TRF2) genes by real time quantitative polymerization chain reaction. Data show that low-level infrared laser increases the expression of MyoD and Pax7 in 10 J/cm(2) fluence, TRF1 expression in all fluences, and TRF2 expression in 70 J/cm(2) fluence in both 10 and 2 % fetal bovine serum. Low-level infrared laser increases mRNA expression from genes related to muscle repair and telomere stabilization in myoblasts in standard or normal and stressful conditions. PMID:27220530

  15. Construction and Myogenic Differentiation of 3D Myoblast Tissues Fabricated by Fibronectin-Gelatin Nanofilm Coating

    PubMed Central

    Gribova, Varvara; Liu, Chen Yun; Nishiguchi, Akihiro; Matsusaki, Michiya; Boudou, Thomas; Picart, Catherine; Akashi, Mitsuru

    2016-01-01

    In this study, we used a recently developed approach of coating the cells with fibronectin-gelatin nanofilms to build 3D skeletal muscle tissue models. We constructed the microtissues from C2C12 myoblasts and subsequently differentiated them to form muscle-like tissue. The thickness of the constructs could be successfully controlled by altering the number of seeded cells. We were able to build up to ~ 76 µm thick 3D constructs that formed multinucleated myotubes. We also found that Rho-kinase inhibitor Y27632 improved myotube formation in thick constructs. Our approach makes it possible to rapidly form 3D muscle tissues and is promising for the in vitro construction of physiologically relevant human skeletal muscle tissue models. PMID:27125461

  16. Construction and myogenic differentiation of 3D myoblast tissues fabricated by fibronectin-gelatin nanofilm coating.

    PubMed

    Gribova, Varvara; Liu, Chun-Yen; Nishiguchi, Akihiro; Matsusaki, Michiya; Boudou, Thomas; Picart, Catherine; Akashi, Mitsuru

    2016-06-01

    In this study, we used a recently developed approach of coating the cells with fibronectin-gelatin nanofilms to build 3D skeletal muscle tissue models. We constructed the microtissues from C2C12 myoblasts and subsequently differentiated them to form muscle-like tissue. The thickness of the constructs could be successfully controlled by altering the number of seeded cells. We were able to build up to ∼76 μm thick 3D constructs that formed multinucleated myotubes. We also found that Rho-kinase inhibitor Y27632 improved myotube formation in thick constructs. Our approach makes it possible to rapidly form 3D muscle tissues and is promising for the in vitro construction of physiologically relevant human skeletal muscle tissue models. PMID:27125461

  17. Surface apposition and multiple cell contacts promote myoblast fusion in Drosophila flight muscles

    PubMed Central

    Dhanyasi, Nagaraju; Segal, Dagan; Shimoni, Eyal; Shinder, Vera

    2015-01-01

    Fusion of individual myoblasts to form multinucleated myofibers constitutes a widely conserved program for growth of the somatic musculature. We have used electron microscopy methods to study this key form of cell–cell fusion during development of the indirect flight muscles (IFMs) of Drosophila melanogaster. We find that IFM myoblast–myotube fusion proceeds in a stepwise fashion and is governed by apparent cross talk between transmembrane and cytoskeletal elements. Our analysis suggests that cell adhesion is necessary for bringing myoblasts to within a minimal distance from the myotubes. The branched actin polymerization machinery acts subsequently to promote tight apposition between the surfaces of the two cell types and formation of multiple sites of cell–cell contact, giving rise to nascent fusion pores whose expansion establishes full cytoplasmic continuity. Given the conserved features of IFM myogenesis, this sequence of cell interactions and membrane events and the mechanistic significance of cell adhesion elements and the actin-based cytoskeleton are likely to represent general principles of the myoblast fusion process. PMID:26459604

  18. ClipR-59 Interacts with Elmo2 and Modulates Myoblast Fusion*

    PubMed Central

    Sun, Yingmin; Ren, Wenying; Côté, Jean-François; Hinds, Philip W.; Hu, Xiaoxiang; Du, Keyong

    2015-01-01

    Recent studies using ClipR-59 knock-out mice implicated this protein in the regulation of muscle function. In this report, we have examined the role of ClipR-59 in muscle differentiation and found that ClipR-59 knockdown in C2C12 cells suppressed myoblast fusion. To elucidate the molecular mechanism whereby ClipR-59 regulates myoblast fusion, we carried out a yeast two-hybrid screen using ClipR-59 as the bait and identified Elmo2, a member of the Engulfment and cell motility protein family, as a novel ClipR-59-associated protein. We showed that the interaction between ClipR-59 and Elmo2 was mediated by the atypical PH domain of Elmo2 and the Glu-Pro-rich domain of ClipR-59 and regulated by Rho-GTPase. We have examined the impact of ClipR-59 on Elmo2 downstream signaling and found that interaction of ClipR-59 with Elmo2 enhanced Rac1 activation. Collectively, our studies demonstrate that formation of an Elmo2·ClipR-59 complex plays an important role in myoblast fusion. PMID:25572395

  19. Rigidity-patterned polyelectrolyte films to control myoblast cell adhesion and spatial organization

    PubMed Central

    Monge, Claire; Saha, Naresh; Boudou, Thomas; Pózos-Vásquez, Cuauhtemoc; Dulong, Virginie; Glinel, Karine; Picart, Catherine

    2014-01-01

    In vivo, cells are sensitive to the stiffness of their micro-environment and especially to the spatial organization of the stiffness. In vitro studies of this phenomenon can help to better understand the mechanisms of the cell response to spatial variations of the matrix stiffness. In this work, we design polelyelectrolyte multilayer films made of poly(L-lysine) and a photo-reactive hyaluronan derivative. These films can be photo-crosslinked through a photomask to create spatial patterns of rigidity. Quartz substrates incorporating a chromium mask are prepared to expose selectively the film to UV light (in a physiological buffer), without any direct contact between the photomask and the soft film. We show that these micropatterns are chemically homogeneous and flat, without any preferential adsorption of adhesive proteins. Three groups of pattern geometries differing by their shape (circles or lines), size (form 2 to 100 μm) or interspacing distance between the motifs are used to study the adhesion and spatial organization of myoblast cells. On large circular micropatterns, the cells form large assemblies that are confined to the stiffest parts. Conversely, when the size of the rigidity patterns is subcellular, the cells respond by forming protrusions. Finally, on linear micropatterns of rigidity, myoblasts align and their nuclei drastically elongate in specific conditions. These results pave the way for the study of the different steps of myoblast fusion in response to matrix rigidity in well-defined geometrical conditions. PMID:25100929

  20. Microwave frequency effects on dielectric properties of some common solvents and on microwave-assisted syntheses: 2-Allylphenol and the C12-C2-C12 Gemini surfactant

    NASA Astrophysics Data System (ADS)

    Horikoshi, Satoshi; Matsuzaki, Shohei; Mitani, Tomohiko; Serpone, Nick

    2012-12-01

    Microwave radiation emitted at a frequency of 915 MHz and 5.8 GHz from a newly fabricated single-mode resonance microwave apparatus is herein proposed for use in microwave-assisted organic syntheses. The usefulness of 5.8-GHz microwaves is demonstrated by the solvent-free synthesis of 2-allylphenol through a Claisen rearrangement process, and by the synthesis of the C12-C2-C12 Gemini surfactant in ethanol solvent undertaken to verify the usefulness of the 915-MHz frequency. These two model reactions have shown the advantage of these two microwave frequencies in that the observed efficiencies were greater than when employing the more commonly used 2.45-GHz microwaves. Dielectric parameters (dissipation factor: tan δ, dielectric constant: ɛ', and dielectric loss: ɛ'') have also been assessed for water and 22 common organic solvents typically used in organic syntheses, together with the temperature dependence of the dielectric parameters. Temperature-time profiles have been determined and rates of increase of temperature computed. The 5.8-GHz microwaves were effective in heating non-polar solvents, while the 915-MHz microwave frequency was most suitable for heating the alcohols.

  1. The Mutual Interactions between Mesenchymal Stem Cells and Myoblasts in an Autologous Co-Culture Model

    PubMed Central

    Szczepanska, Izabela; Zarychta-Wisniewska, Weronika; Pajak, Beata; Bojarczuk, Kamil; Dybowski, Bartosz; Paczek, Leszek

    2016-01-01

    Both myoblasts and mesenchymal stem cells (MSC) take part in the muscle tissue regeneration and have been used as experimental cellular therapy in muscular disorders treatment. It is possible that co-transplantation approach could improve the efficacy of this treatment. However, the relations between those two cell types are not clearly defined. The aim of this study was to determine the reciprocal interactions between myoblasts and MSC in vitro in terms of the features important for the muscle regeneration process. Primary caprine muscle-derived cells (MDC) and bone marrow-derived MSC were analysed in autologous settings. We found that MSC contribute to myotubes formation by fusion with MDC when co-cultured directly, but do not acquire myogenic phenotype if exposed to MDC-derived soluble factors only. Experiments with exposure to hydrogen peroxide showed that MSC are significantly more resistant to oxidative stress than MDC, but a direct co-culture with MSC does not diminish the cytotoxic effect of H2O2 on MDC. Cell migration assay demonstrated that MSC possess significantly greater migration ability than MDC which is further enhanced by MDC-derived soluble factors, whereas the opposite effect was not found. MSC-derived soluble factors significantly enhanced the proliferation of MDC, whereas MDC inhibited the division rate of MSC. To conclude, presented results suggest that myogenic precursors and MSC support each other during muscle regeneration and therefore myoblasts-MSC co-transplantation could be an attractive approach in the treatment of muscular disorders. PMID:27551730

  2. The Mutual Interactions between Mesenchymal Stem Cells and Myoblasts in an Autologous Co-Culture Model.

    PubMed

    Kulesza, Agnieszka; Burdzinska, Anna; Szczepanska, Izabela; Zarychta-Wisniewska, Weronika; Pajak, Beata; Bojarczuk, Kamil; Dybowski, Bartosz; Paczek, Leszek

    2016-01-01

    Both myoblasts and mesenchymal stem cells (MSC) take part in the muscle tissue regeneration and have been used as experimental cellular therapy in muscular disorders treatment. It is possible that co-transplantation approach could improve the efficacy of this treatment. However, the relations between those two cell types are not clearly defined. The aim of this study was to determine the reciprocal interactions between myoblasts and MSC in vitro in terms of the features important for the muscle regeneration process. Primary caprine muscle-derived cells (MDC) and bone marrow-derived MSC were analysed in autologous settings. We found that MSC contribute to myotubes formation by fusion with MDC when co-cultured directly, but do not acquire myogenic phenotype if exposed to MDC-derived soluble factors only. Experiments with exposure to hydrogen peroxide showed that MSC are significantly more resistant to oxidative stress than MDC, but a direct co-culture with MSC does not diminish the cytotoxic effect of H2O2 on MDC. Cell migration assay demonstrated that MSC possess significantly greater migration ability than MDC which is further enhanced by MDC-derived soluble factors, whereas the opposite effect was not found. MSC-derived soluble factors significantly enhanced the proliferation of MDC, whereas MDC inhibited the division rate of MSC. To conclude, presented results suggest that myogenic precursors and MSC support each other during muscle regeneration and therefore myoblasts-MSC co-transplantation could be an attractive approach in the treatment of muscular disorders. PMID:27551730

  3. Morphological changes and spatial regulation of diacylglycerol kinase-zeta, syntrophins, and Rac1 during myoblast fusion.

    PubMed

    Abramovici, Hanan; Gee, Stephen H

    2007-07-01

    The fusion of mononuclear myoblasts into multinucleated myofibers is essential for the formation and growth of skeletal muscle. Myoblast fusion follows a well-defined sequence of cellular events, from initial recognition and adhesion, to alignment, and finally plasma membrane fusion. These processes depend upon coordinated remodeling of the actin cytoskeleton. Our recent studies suggest diacylglycerol kinase-zeta (DGK-zeta), an enzyme that metabolizes diacylglycerol to yield phosphatidic acid, plays an important role in actin reorganization. Here, we investigated whether DGK-zeta has a role in the fusion of cultured C2C12 myoblasts. We show that DGK-zeta and syntrophins, scaffold proteins of the dystrophin glycoprotein complex that bind directly to DGK-zeta, are spatially regulated during fusion. Both proteins accumulated with the GTPase Rac1 at sites where fine filopodia mediate the initial contact between myoblasts. In addition, DGK-zeta codistributed with the Ca(2+)-dependent cell adhesion molecule N-cadherin at nascent, but not previously established cell contacts. We provide evidence that C2 cells are pulled together at cell-cell junctions by N-cadherin-containing filopodia reminiscent of epithelial adhesion zippers, which guide the advance of lamellipodia from apposing cells. At later times, vesicles with properties of macropinosomes formed close to cell-cell junctions. Reconstruction of confocal optical sections showed these form dome-like protrusions from the dorsal surface of contacting cells. Collectively, these results suggest DGK-zeta and syntrophins play a role at multiple stages of the fusion process. Moreover, our findings provide a potential link between changes in the lipid content of the membrane bilayer and reorganization of the actin cytoskeleton during myoblast fusion. PMID:17410543

  4. YB1/p32, a nuclear Y-box binding protein 1, is a novel regulator of myoblast differentiation that interacts with Msx1 homeoprotein

    SciTech Connect

    Song, Young Joon; Lee, Hansol

    2010-02-15

    Precisely controlled cellular differentiation is essential for the proper development of vertebrate embryo and deregulated differentiation is a major cause of many human congenital diseases as well as cancer. Msx1 is a member of the homeoprotein family implicated in these processes, which inhibits the differentiation of skeletal muscle and other cell types, presumably by regulating transcription of target genes through interaction with other cellular factors. We presently show that YB1/p32, a nuclear Y-box binding protein 1, interacts with Msx1 homeoprotein and functions as a regulator of C2C12 myoblast differentiation. We demonstrate that YB1/p32 functionally interacts with Msx1 through its N-terminal region and colocalizes with Msx1 at the nuclear periphery. Moreover, we find that YB1/p32 is competent for inhibition of C2C12 myoblast differentiation, which is correlated with its activity as a negative regulator of MyoD gene expression and binding to the MyoD core enhancer region (CER). Furthermore, YB1/p32 cooperates with Msx1 in transcriptional repression and knocking down the expression of endogenous YB1 attenuates the effects of Msx1. Taken together, our study has uncovered a new function of YB1/p32, a regulator of skeletal muscle differentiation.

  5. Characterization of a plasma membrane glycoprotein common to myoblasts, skeletal muscle satellite cells, and glia.

    PubMed

    Wakshull, E; Bayne, E K; Chiquet, M; Fambrough, D M

    1983-12-01

    A plasma membrane glycoprotein common to embryonic chick myoblasts and adult chicken skeletal muscle satellite cells is the antigen recognized by monoclonal antibody C3/1. Although traces of the same antigen are present on some muscle-derived fibroblasts, the density of antigenic sites on myoblasts and satellite cells is so high that these cell types can be identified in tissues by immunocytochemical techniques. The antigen is exposed on the surfaces of myogenic cells growing in tissue culture and can be solubilized with detergent. This and other criteria establish that the antigen is a plasma membrane protein. The antigen, purified by affinity techniques, consists of a single type of polypeptide chain which migrates as a relatively broad band of apparent molecular weight 38,000 Da in SDS-polyacrylamide gel electrophoresis. It has a very small sedimentation constant, suggesting that the solubilized form is either monomeric or dimeric. The concentration of antigenic sites increases during myogenesis in vitro; but during maturation the antigenic sites are lost from muscle fibers. Electron microscopic autoradiographic study of adult muscle labeled with iodinated monoclonal antibody demonstrated unequivocally that the antigenic sites in adult muscle are concentrated in the satellite cells. Although selective for myoblasts, immature myotubes and satellite cells in the myogenic lineage, the monoclonal antibody also binds at rather high levels to peripheral Schwann cells and teloglia, to some nonneuronal cells in cultures derived from embryonic spinal cord, to some glial elements of adult chicken brain, and to several cell types in the early embryo. PMID:6360753

  6. Adult stem cells for cardiac repair: a choice between skeletal myoblasts and bone marrow stem cells.

    PubMed

    Ye, Lei; Haider, Husnain Kh; Sim, Eugene K W

    2006-01-01

    The real promise of a stem cell-based approach for cardiac regeneration and repair lies in the promotion of myogenesis and angiogenesis at the site of the cell graft to achieve both structural and functional benefits. Despite all of the progress and promise in this field, many unanswered questions remain; the answers to these questions will provide the much-needed breakthrough to harness the real benefits of cell therapy for the heart in the clinical perspective. One of the major issues is the choice of donor cell type for transplantation. Multiple cell types with varying potentials have been assessed for their ability to repopulate the infarcted myocardium; however, only the adult stem cells, that is, skeletal myoblasts (SkM) and bone marrow-derived stem cells (BMC), have been translated from the laboratory bench to clinical use. Which of these two cell types will provide the best option for clinical application in heart cell therapy remains arguable. With results pouring in from the long-term follow-ups of previously conducted phase I clinical studies, and with the onset of phase II clinical trials involving larger population of patients, transplantation of stem cells as a sole therapy without an adjunct conventional revascularization procedure will provide a deeper insight into the effectiveness of this approach. The present article discusses the pros and cons of using SkM and BMC individually or in combination for cardiac repair, and critically analyzes the progress made with each cell type. PMID:16380640

  7. KAT5-mediated SOX4 acetylation orchestrates chromatin remodeling during myoblast differentiation.

    PubMed

    Jang, S-M; Kim, J-W; Kim, C-H; An, J-H; Johnson, A; Song, P I; Rhee, S; Choi, K-H

    2015-01-01

    Transcription factor SOX4 has been implicated in skeletal myoblast differentiation through the regulation of Cald1 gene expression; however, the detailed molecular mechanism underlying this process is largely unknown. Here, we demonstrate that SOX4 acetylation at lysine 95 by KAT5 (also known as Tip60) is essential for Cald1 promoter activity at the onset of C2C12 myoblast differentiation. KAT5 chromodomain was found to facilitate SOX4 recruitment to the Cald1 promoter, which is involved in chromatin remodeling at the promoter. Chromatin occupancy analysis of SOX4, KAT5, and HDAC1 indicated that the expression of putative SOX4 target genes during C2C12 myoblast differentiation is specifically regulated by the molecular switching of the co-activator KAT5 and the co-repressor HDAC1 on SOX4 transcriptional activation. PMID:26291311

  8. KAT5-mediated SOX4 acetylation orchestrates chromatin remodeling during myoblast differentiation

    PubMed Central

    Jang, S-M; Kim, J-W; Kim, C-H; An, J-H; Johnson, A; Song, P I; Rhee, S; Choi, K-H

    2015-01-01

    Transcription factor SOX4 has been implicated in skeletal myoblast differentiation through the regulation of Cald1 gene expression; however, the detailed molecular mechanism underlying this process is largely unknown. Here, we demonstrate that SOX4 acetylation at lysine 95 by KAT5 (also known as Tip60) is essential for Cald1 promoter activity at the onset of C2C12 myoblast differentiation. KAT5 chromodomain was found to facilitate SOX4 recruitment to the Cald1 promoter, which is involved in chromatin remodeling at the promoter. Chromatin occupancy analysis of SOX4, KAT5, and HDAC1 indicated that the expression of putative SOX4 target genes during C2C12 myoblast differentiation is specifically regulated by the molecular switching of the co-activator KAT5 and the co-repressor HDAC1 on SOX4 transcriptional activation. PMID:26291311

  9. Improvement of insulin signaling in myoblast cells by an addition of SKIP-binding peptide within Pak1 kinase domain.

    PubMed

    Ijuin, Takeshi; Takenawa, Tadaomi

    2015-01-01

    Abnormalities in insulin-induced glucose incorporation in skeletal muscle were observed in Type 2 diabetes. Our previous studies revealed that the binding between skeletal muscle and kidney-enriched inositol polyphosphate phosphatase (SKIP) and p21-activated protein kinase (Pak1) at the plasma membrane is induced insulin-dependently and that this binding mediated a rapid and efficient termination of insulin signaling and a subsequent glucose uptake into skeletal muscle cells. Here, we identified 11-amino-acids peptide within kinase domain of Pak1, necessary and sufficient for SKIP binding. Expression of this region in C2C12 cells resulted in an increase in insulin signaling. Supplementation of a synthetic peptide of this sequence increased insulin signaling and insulin-induced glucose uptake into skeletal muscle cell lines. These findings suggest the physiological role of Pak1-SKIP binding in the regulation of insulin signaling in skeletal muscle. PMID:25446075

  10. Ghrelin stimulates myogenic differentiation in a mouse muscle satellite cell line and in primary cultures of bovine myoblasts.

    PubMed

    Montoya-Flores, D; Mora, O; Tamariz, E; González-Dávalos, L; González-Gallardo, A; Antaramian, A; Shimada, A; Varela-Echavarría, A; Romano-Muñoz, J L

    2012-08-01

    Ghrelin is an acylated hormone that influences food intake, energy metabolism and reproduction, among others. Ghrelin may also stimulate proliferating myoblast cell differentiation and multinucleated myotube fusion. The aim of this work was to assess the effect of human ghrelin (hGHRL) and human ghrelin fragment 1-18 (hGHRL1-18) on myoblast differentiation by means of mRNA expression and protein level. Two types of cells were tested, the cell line i28 obtained from mouse skeletal muscle and primary cultures of bovine myoblasts. Both ghrelin and its N-terminal fragment hGHRL1-18 were used at concentrations of 0, 0.01, 0.1, 1, 10 and 100 nm. Treatments were applied to pre-confluent cultures and were maintained for 4 days. We determined that between 0.1 and 100 nm, hGHRL and hGRHL1-18 had similar effects on myogenic differentiation of i28 cells (p < 0.01). On the other hand, only the higher concentrations (10 and 100 nm) of hGHRL stimulated bovine myoblast differentiation. These results could be attributed to the presence, in both i28 cells and in bovine myoblasts, of the mRNA for GHS-R1a and CD36 receptors. The use of ghrelin in livestock production is still questionable because of the limited effects shown in this study, and additional research is needed in this field. PMID:21777295

  11. Space shuttle flight (STS-45) of L8 myoblast cells results in the isolation of a nonfusing cell line variant

    NASA Technical Reports Server (NTRS)

    Kulesh, D. A.; Anderson, L. H.; Wilson, B.; Otis, E. J.; Elgin, D. M.; Barker, M. J.; Mehm, W. J.; Kearney, G. P.

    1994-01-01

    Myoblast cell cultures have been widely employed in conventional (1g) studies of biological processes because characteristics of intact muscle can be readily observed in these cultured cells. We decided to investigate the effects of spaceflight on muscle by utilizing a well characterized myoblast cell line (L8 rat myoblasts) as cultured in the recently designed Space Tissue Loss Flight Module "A" (STL-A). The STL-A is a "state of the art," compact, fully contained, automated cell culture apparatus which replaces a single mid-deck locker on the Space Shuttle. The L8 cells were successfully flown in the STL-A on the Space Shuttle STS-45 mission. Upon return to earth, reculturing of these spaceflown L8 cells (L8SF) resulted in their unexpected failure to fuse and differentiate into myotubes. This inability of the L8SF cells to fuse was found to be a permanent phenotypic alteration. Scanning electron microscopic examination of L8SF cells growing at 1g on fibronectin-coated polypropylene fibers exhibited a strikingly different morphology as compared to control cells. In addition to their failure to fuse into myotubes, L8SF cells also piled up on top of each other. When assayed in fusion-promoting soft agar, L8SF cells gave rise to substantially more and larger colonies than did either preflight (L8AT) or ground control (L8GC) cells. All data to this point indicate that flying L8 rat myoblasts on the Space Shuttle for a duration of 7-10 d at subconfluent densities results in several permanent phenotypic alterations in these cells.

  12. TGF-{beta}'s delay skeletal muscle progenitor cell differentiation in an isoform-independent manner

    SciTech Connect

    Schabort, Elske J.; Merwe, Mathilde van der; Loos, Benjamin; Moore, Frances P.; Niesler, Carola U.

    2009-02-01

    Satellite cells are a quiescent heterogenous population of mononuclear stem and progenitor cells which, once activated, differentiate into myotubes and facilitate skeletal muscle repair or growth. The Transforming Growth Factor-{beta} (TGF-{beta}) superfamily members are elevated post-injury and their importance in the regulation of myogenesis and wound healing has been demonstrated both in vitro and in vivo. Most studies suggest a negative role for TGF-{beta} on satellite cell differentiation. However, none have compared the effect of these three isoforms on myogenesis in vitro. This is despite known isoform-specific effects of TGF-{beta}1, -{beta}2 and -{beta}3 on wound repair in other tissues. In the current study we compared the effect of TGF-{beta}1, -{beta}2 and -{beta}3 on proliferation and differentiation of the C2C12 myoblast cell-line. We found that, irrespective of the isoform, TGF-{beta} increased proliferation of C2C12 cells by changing the cellular localisation of PCNA to promote cell division and prevent cell cycle exit. Concomitantly, TGF-{beta}1, -{beta}2 and -{beta}3 delayed myogenic commitment by increasing MyoD degradation and decreasing myogenin expression. Terminal differentiation, as measured by a decrease in myosin heavy chain (MHC) expression, was also delayed. These results demonstrate that TGF-{beta} promotes proliferation and delays differentiation of C2C12 myoblasts in an isoform-independent manner.

  13. Effect of injecting primary myoblasts versus putative muscle-derived stem cells on mass and force generation in mdx mice.

    PubMed

    Mueller, Gunhild M; O'Day, Terry; Watchko, Jon F; Ontell, Marcia

    2002-06-10

    It is well established that the injection of normal myoblasts or of muscle-derived stem cells (MDSCs) into the muscle of dystrophin-deficient mdx mice results in the incorporation of a number of donor myoblasts into the host muscle. However, the effect of the injected exogenous cells on mdx muscle mass and functional capacity has not been evaluated. This study evaluates the mass and functional capacity of the extensor digitorum longus (EDL) muscles of adult, male mdx mice that received intramuscular injections of primary myoblasts or of MDSCs (isolated by a preplating technique; Qu, Z., Balkir, L., van Deutekom, J.C., Robbins, P.D., Pruchnic, R., and Huard, J., J. Cell Biol. 1998;142:1257-1267) derived from normal mice. Evaluations were made 9 weeks after cell transplantation. Uninjected mdx EDL muscles have a mass 50% greater than that of age-matched C57BL/10J (normal) EDL muscles. Injections of either primary myoblasts or MDSCs have no effect on the mass of mdx EDL muscles. EDL muscles of mdx mice generate 43% more absolute twitch tension and 43% less specific tetanic tension then do EDL muscles of C57BL/10J mice. However, the absolute tetanic and specific twitch tension of mdx and C57BL/10J EDL muscles are similar. Injection of either primary myoblasts or MDSCs has no effect on the absolute or specific twitch and tetanic tensions of mdx muscle. Approximately 25% of the myofibers in mdx EDL muscles that received primary myoblasts react positively with antibody to dystrophin. There is no significant difference in the number of dystrophin-positive myofibers when MDSCs are injected. Regardless of the source of donor cells, dystrophin is limited to short distances (60-900 microm) along the length of the myofibers. This may, in part, explain the failure of cellular therapy to alter the contractile properties of murine dystrophic muscle. PMID:12067441

  14. Potential Application of p-Coumaric Acid on Differentiation of C2C12 Skeletal Muscle and 3T3-L1 Preadipocytes-An in Vitro and in Silico Approach.

    PubMed

    Ilavenil, Soundharrajan; Kim, Da Hye; Srigopalram, Srisesharam; Arasu, Mariadhas Valan; Lee, Kyung Dong; Lee, Jeong Chae; Lee, Jong Suk; Renganathan, Senthil; Choi, Ki Choon

    2016-01-01

    Coumaric acid (CA) is a phenolic acid of the hydroxycinnamic acid family, and it has many biological functions such as anti-oxidant, anti-inflammatory, antidiabetic, anti-ulcer, anti-platelet, anti-cancer activities, etc. In the present study, we planned to analyse the potential molecular function of CA on skeletal muscle and preadipocytes differentiation using PCR and Western blot techniques. First, we analysed the impact of CA on C2C12 skeletal muscle differentiation. It revealed that CA treatment inhibited horse serum-induced skeletal muscle differentiation as evidenced by the decreased expression of early myogenic differentiation markers such as Myogenin and myoD via the AMP activated protein kinase- alpha AMPK-α mediated pathway. Furthermore, the level of lipid accumulation and changes in genes and protein expressions that are associated with lipogenesis and lipolysis were analyzed in 3T3-L1 cells. The Oil Red O staining evidenced that CA treatment inhibited lipid accumulation at the concentration of 0.1 and 0.2 mM. Furthermore, coumaric acid treatment decreased the expression of main transcriptional factors such as CCAAT/enhancer binding protein-alpha (C/EBP-α) and peroxisome proliferator-activated receptor gamma-2 (PPAR-γ2). Subsequently, CA treatment decreased the expression of sterol regulatory element binding protein-1 (SREBP-1), fatty acid synthase (FAS), acetyl CoA carboxylase (ACC) and adiponectin. Finally, we identified conformational changes induced by CA in PPAR-γ2 using computational biology tools. It revealed that CA might downregulate the PPAR-γ2 expression by directly binding with amino acids of PPAR-γ2 by hydrogen at 3.26 distance and hydrophobic interactions at 3.90 contact distances. These data indicated that CA suppressed skeletal muscle and preadipocytes differentiation through downregulation of the main transcriptional factors and their downstream targets. PMID:27490527

  15. Cell-Instructive Graphene-Containing Nanocomposites Induce Multinucleated Myotube Formation.

    PubMed

    Patel, Akhil; Xue, Yingfei; Mukundan, Shilpaa; Rohan, Lisa C; Sant, Vinayak; Stolz, Donna B; Sant, Shilpa

    2016-06-01

    Myoblast differentiation is a key step in myogenesis and has long been considered to be controlled mainly by biochemical cues such as growth factors. However, the tissue engineering approaches based on biochemical cues demonstrate low reproducibility as a precise spatial control over their bioactivity is challenging. Recently, substrate micro/nano-structure and electro-responsive properties are recognized for their important roles in myoblast differentiation. In this study, we hypothesized that engineering biophysical features such as nano/micro-fibrous structure and conductive properties into a single biomaterial scaffold will instruct the myoblasts to differentiate into multinucleated myotubes even in the absence of differentiation media. We fabricated nanocomposite scaffolds composed of conductive graphene nanosheets and polycaprolactone (PCL), a widely used biocompatible material. The resulting graphene-PCL scaffolds possess excellent conductivity due to graphene nanosheets and great processability, biodegradability and elastic mechanical properties conferred by PCL. Additionally, physicochemical and mechanical properties of nanocomposite scaffolds can be tuned by varying graphene concentration. Further, graphene-PCL nanocomposites and their 8-week degradation products exhibited remarkable cytocompatibility and promoted adhesion and proliferation of C2C12 mouse myoblast cells. Importantly, these nanocomposite scaffolds induced graphene concentration-dependent differentiation of C2C12 cells into multinucleated myotubes even in normal growth media suggesting their cell-instructive potential. Thus, graphene-PCL nanocomposite scaffolds can serve as a strategy to promote skeletal muscle regeneration without biochemical cues. PMID:26983841

  16. A synthetic compound that potentiates bone morphogenetic protein-2-induced transdifferentiation of myoblasts into the osteoblastic phenotype.

    PubMed

    Kato, Satoshi; Sangadala, Sreedhara; Tomita, Katsuro; Titus, Louisa; Boden, Scott D

    2011-03-01

    There is an urgent need to develop methods that lower costs of using recombinant human bone morphogenetic proteins (BMPs) to promote bone induction. In this study, we demonstrate the osteogenic effect of a low-molecular weight compound, SVAK-12, that potentiated the effects of BMP-2 in inducing transdifferentiation of C2C12 myoblasts into the osteoblastic phenotype. Here, we report a specific compound, SVAK-12, which was selected based on in silico screenings of small-molecule databases using the homology modeled interaction motif of Smurf1-WW2 domain. The enhancement of BMP-2 activity by SVAK-12 was characterized by evaluating a BMP-specific reporter activity and by monitoring the BMP-2-induced expression of mRNA for osteocalcin and alkaline phosphatase (ALP), which are widely accepted marker genes of osteoblast differentiation. Finally, we confirmed these results by also measuring the enhancement of BMP-2-induced activity of ALP. Smurf1 is an E3 ligase that targets osteogenic Smads for ubiquitin-mediated proteasomal degradation. Smurf1 is an interesting potential target to enhance bone formation based on the positive effects on bone of proteins that block Smurf1-binding to Smad targets or in Smurf1-/- knockout mice. Since Smads bind Smurf1 via its WW2 domain, we performed in silico screening to identify compounds that might interact with the Smurf1-WW2 domain. We recently reported the activity of a compound, SVAK-3. However, SVAK-3, while exhibiting BMP-potentiating activity, was not stable and thus warranted a new search for a more stable and efficacious compound among a selected group of candidates. In addition to being more stable, SVAK-12 exhibited a dose-dependent activity in inducing osteoblastic differentiation of myoblastic C2C12 cells even when multiple markers of the osteoblastic phenotype were parallelly monitored. PMID:21110071

  17. Long-chain acylcarnitines activate cell stress and myokine release in C2C12 myotubes: calcium-dependent and independent effects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acylcarnitines, important lipid biomarkers reflective of acyl-CoA status, are metabolites that possess bioactive and inflammatory properties. This study examined the potential for long-chain acylcarnitines to activate cellular inflammatory, stress and death pathways in a skeletal muscle model. Diffe...

  18. Adipose Tissue-Derived Stem Cell Secreted IGF-1 Protects Myoblasts from the Negative Effect of Myostatin

    PubMed Central

    Gehmert, Sebastian; Nerlich, Michael; Gosau, Martin; Klein, Silvan; Schreml, Stephan; Prantl, Lukas

    2014-01-01

    Myostatin, a TGF-β family member, is associated with inhibition of muscle growth and differentiation and might interact with the IGF-1 signaling pathway. Since IGF-1 is secreted at a bioactive level by adipose tissue-derived mesenchymal stem cells (ASCs), these cells (ASCs) provide a therapeutic option for Duchenne Muscular Dystrophy (DMD). But the protective effect of stem cell secreted IGF-1 on myoblast under high level of myostatin remains unclear. In the present study murine myoblasts were exposed to myostatin under presence of ASCs conditioned medium and investigated for proliferation and apoptosis. The protective effect of IGF-1 was further examined by using IGF-1 neutralizing and receptor antibodies as well as gene silencing RNAi technology. MyoD expression was detected to identify impact of IGF-1 on myoblasts differentiation when exposed to myostatin. IGF-1 was accountable for 43.6% of the antiapoptotic impact and 48.8% for the proliferative effect of ASCs conditioned medium. Furthermore, IGF-1 restored mRNA and protein MyoD expression of myoblasts under risk. Beside fusion and transdifferentiation the beneficial effect of ASCs is mediated by paracrine secreted cytokines, particularly IGF-1. The present study underlines the potential of ASCs as a therapeutic option for Duchenne muscular dystrophy and other dystrophic muscle diseases. PMID:24575400

  19. Preparation of primary myogenic precursor cell/myoblast cultures from basal vertebrate lineages.

    PubMed

    Froehlich, Jacob Michael; Seiliez, Iban; Gabillard, Jean-Charles; Biga, Peggy R

    2014-01-01

    Due to the inherent difficulty and time involved with studying the myogenic program in vivo, primary culture systems derived from the resident adult stem cells of skeletal muscle, the myogenic precursor cells (MPCs), have proven indispensible to our understanding of mammalian skeletal muscle development and growth. Particularly among the basal taxa of Vertebrata, however, data are limited describing the molecular mechanisms controlling the self-renewal, proliferation, and differentiation of MPCs. Of particular interest are potential mechanisms that underlie the ability of basal vertebrates to undergo considerable postlarval skeletal myofiber hyperplasia (i.e. teleost fish) and full regeneration following appendage loss (i.e. urodele amphibians). Additionally, the use of cultured myoblasts could aid in the understanding of regeneration and the recapitulation of the myogenic program and the differences between them. To this end, we describe in detail a robust and efficient protocol (and variations therein) for isolating and maintaining MPCs and their progeny, myoblasts and immature myotubes, in cell culture as a platform for understanding the evolution of the myogenic program, beginning with the more basal vertebrates. Capitalizing on the model organism status of the zebrafish (Danio rerio), we report on the application of this protocol to small fishes of the cyprinid clade Danioninae. In tandem, this protocol can be utilized to realize a broader comparative approach by isolating MPCs from the Mexican axolotl (Ambystoma mexicanum) and even laboratory rodents. This protocol is now widely used in studying myogenesis in several fish species, including rainbow trout, salmon, and sea bream(1-4). PMID:24835774

  20. Gravitational force modulates G2/M phase exit in mechanically unloaded myoblasts

    PubMed Central

    Benavides Damm, Tatiana; Franco-Obregón, Alfredo; Egli, Marcel

    2013-01-01

    Prolonged spaceflight gives rise to muscle loss and reduced strength, a condition commonly referred to as space atrophy. During exposure to microgravity, skeletal muscle myoblasts are mechanically unloaded and respond with attenuated cell proliferation, slowed cell cycle progression, and modified protein expression. To elucidate the underlying mechanisms by which muscle mass declines in response to prolonged microgravity exposure, we grew C2C12 mouse muscle cells under conditions of simulated microgravity (SM) and analyzed their proliferative capacity, cell cycle progression, and cyclin B and D expression. We demonstrated that the retarded cell growth observed in SM was correlated with an approximate 16 h delay in G2/M phase progression, where cells accumulated specifically between the G2 checkpoint and the onset of anaphase, concomitantly with a positive expression for cyclin B. The effect was specific for gravitational mechanical unloading as cells grown under conditions of hypergravity (HG, 4 g) for similar durations of time exhibited normal proliferation and normal cell cycle progression. Our results show that SM and HG exert phenomenological distinct responses over cell cycle progression. The deficits of SM can be restored by terrestrial gravitational force, whereas the effects of HG are indistinguishable from the 1 g control. This suggests that the mechanotransduction apparatus of cells responds differently to mechanical unloading and loading. PMID:23974110

  1. Astragaloside IV facilitates glucose transport in C2C12 myotubes through the IRS1/AKT pathway and suppresses the palmitate-induced activation of the IKK/IκBα pathway.

    PubMed

    Zhu, Rongfeng; Zheng, Jianjun; Chen, Lizhen; Gu, Bin; Huang, Shengli

    2016-06-01

    Astragaloside IV is a monomer isolated from Astragalus membranaceus (Fisch.) Bunge, which is one of the most widely used plant-derived drugs in traditional Chinese medicine for diabetes therapy. In the present study, we aimed to examine the effects of astragaloside IV on glucose in C2C12 myotubes and the underlying molecular mechanisms responsible for these effects. Four-day differentiated C2C12 myotubes were exposed to palmitate for 16 h in order to establish a model of insulin resistance and 3H glucose uptake, using 2-Deoxy‑D‑[1,2-3H(N)]-glucose (radiolabeled 2-DG), was detected. Astragaloside IV was added 2 h prior to palmitate exposure. The translocation of glucose transporter 4 (GLUT4) was evaluated by subcellular fractionation, and the expression of insulin signaling molecules such as insulin receptor β (IRβ), insulin receptor substrate (IRS)1/protein kinase B (AKT) and inhibitory κB kinase (IKK)/inhibitor-κBα (IκBα), which are associated with insulin signal transduction, were assessed in the basal or the insulin‑stimulated state using western blot analysis or RT-PCR. We also examined the mRNA expression of monocyte chemotactic protein 1 (MCP-1), interleukin 6 (IL-6), tumor necrosis factor α (TNFα) and Toll‑like receptor 4 (TLR4). Taken together, these findings demonstrated that astragaloside IV facilitates glucose transport in C2C12 myotubes through a mechanism involving the IRS1/AKT pathway, and suppresses the palmitate-induced activation of the IKK/IκBα pathway. PMID:27082050

  2. Effect of atrophy and contractions on myogenin mRNA concentration in chick and rat myoblast omega muscle cells

    NASA Technical Reports Server (NTRS)

    Krebs, J. M.; Denney, R. M.

    1997-01-01

    The skeletal rat myoblast omega (RMo) cell line forms myotubes that exhibit spontaneous contractions under appropriate conditions in culture. We examined if the RMo cells would provide a model for studying atrophy and muscle contraction. To better understand how to obtain contractile cultures, we examined levels of contraction under different growing conditions. The proliferation medium and density of plating affected the subsequent proportion of spontaneously contracting myotubes. Using a ribonuclease protection assay, we found that exponentially growing RMo myoblasts contained no detectable myogenin or herculin mRNA, while differentiating myoblasts contained high levels of myogenin mRNA but no herculin mRNA. There was no increase in myogenin mRNA concentration in either primary chick or RMo myotubes whose contractions were inhibited by depolarizing concentrations of potassium (K+). Thus, altered myogenin mRNA concentrations are not involved in atrophy of chick myotubes. Depolarizing concentrations of potassium inhibited spontaneous contractions in both RMo cultures and primary chick myotube cultures. However, we found that the myosin concentration of 6-d-old contracting RMo cells fed medium plus AraC was 11 +/- 3 micrograms myosin/microgram DNA, not significantly different from 12 +/- 4 micrograms myosin/microgram DNA (n = 3), the myosin concentration of noncontracting RMo cells (treated with 12 mM K+ for 6 d). Resolving how RMo cells maintained their myosin content when contraction is inhibited may be important for understanding atrophy.

  3. A Pilot Study of Ceramic Powder Far-Infrared Ray Irradiation (cFIR) on Physiology: Observation of Cell Cultures and Amphibian Skeletal Muscle.

    PubMed

    Leung, Ting-Kai; Lee, Chi-Ming; Tsai, Shih-Yin; Chen, Yi-Chien; Chao, Jo-Shui

    2011-08-31

    The purpose of this research was to assess the potential for far-infrared ray irradiation from ceramic powder to improve exercise performance at room temperature. We designed experiments with murine myoblast cells (C2C12) to study the effect of cFIR irradiation on cell viability and lactate dehydrogenase release under H2O2-mediated oxidative stress and evaluated intracellular levels of nitric oxide and calmodulin. We also used electro-stimulation of amphibian skeletal muscle. Our results show that cFIR strengthened C2C12 under oxidative stress and delayed onset of fatigue induced by muscle contractions. We discuss possible mechanisms including anti-oxidation and prevention of acid build-up in muscle tissue based, and expect to see more applications of cFIR in the future. PMID:22129823

  4. Stem cell antigen-1 regulates the tempo of muscle repair through effects on proliferation of {alpha}7 integrin-expressing myoblasts

    SciTech Connect

    Epting, Conrad L.; Lopez, Javier E.; Pedersen, Anissa; Brown, Courtney; Spitz, Paul; Ursell, Philip C.; Bernstein, Harold S.

    2008-03-10

    Skeletal muscle repair occurs through a programmed series of events including myogenic precursor activation, myoblast proliferation, and differentiation into new myofibers. We previously identified a role for Stem cell antigen-1 (Sca-1) in myoblast proliferation and differentiation in vitro. We demonstrated that blocking Sca-1 expression resulted in sustained myoblast cell division. Others have since demonstrated that Sca-1-null myoblasts display a similar phenotype when cultured ex vivo. To test the importance of Sca-1 during myogenesis in vivo, we employed a myonecrotic injury model in Sca-1{sup -/-} and Sca-1{sup +/+} mice. Our results demonstrate that Sca-1{sup -/-} myoblasts exhibit a hyperproliferative response consisting of prolonged and accelerated cell division in response to injury. This leads to delayed myogenic differentiation and muscle repair. These data provide the first in vivo evidence for Sca-1 as a regulator of myoblast proliferation during muscle regeneration. These studies also suggest that the balance between myogenic precursor proliferation and differentiation is critical to normal muscle repair.

  5. Differentiation and Monitoring of Cells Using a Biochip for Regenerative Medicine

    NASA Astrophysics Data System (ADS)

    Uchida, Tomoyuki; Arai, Fumihito; Suzuki, Osamu; Ichikawa, Akihiko; Fukuda, Toshio; Katagiri, Takenobu; Kamijo, Ryutaro; Nakamura, Masanori; Numata, Mamoru; Watanabe, Naruaki

    A novel biochip is developed for culturing stem cells. Biochip is made of Polymer (PDMS), and cells can be loaded by gradient strains in one chip. They grow well on a hydrophilic membrane and differentiation is promoted by cyclic strains. In this paper, we propose the method for culturing and monitoring of stem cells such as bone marrow stromal cells (ST2 cells) and myoblasts (C2C12 cells), and the results of culture. First we analyzed strains on a membrane when an air hole is decompressed, and clarified their range. From experiment, bone marrow stromal cells grew well in a narrow range, and we quantified their ALP activity as a measure of differentiation. As myoblasts, the direction of their differentiation was perpendicular to a groove, that is, the same direction of uniaxial strains.

  6. Cdo Regulates Surface Expression of Kir2.1 K+ Channel in Myoblast Differentiation

    PubMed Central

    Koh, Jewoo; Kang, KyeongJin; Bae, Gyu-Un; Cho, Hana; Kang, Jong-Sun

    2016-01-01

    A potassium channel Kir2.1-associated membrane hyperpolarization is required for myogenic differentiation. However the molecular regulatory mechanisms modulating Kir2.1 channel activities in early stage of myogenesis are largely unknown. A cell surface protein, Cdo functions as a component of multiprotein cell surface complexes to promote myogenesis. In this study, we report that Cdo forms a complex with Kir2.1 during myogenic differentiation, and is required for the channel activity by enhancing the surface expression of Kir2.1 in the early stage of differentiation. The expression of a constitutively active form of the upstream kinase for p38MAPK, MKK6(EE) can restore Kir2.1 activities in Cdo-depleted C2C12 cells, while the treatment with a p38MAPK inhibitor, SB203580 exhibits a similar effect of Cdo depletion on Kir2.1 surface expression. Furthermore, Cdo-/- primary myoblasts, which display a defective differentiation program, exhibit a defective Kir2.1 activity. Taken together, our results suggest that a promyogenic Cdo signaling is critical for Kir2.1 activities in the induction of myogenic differentiation. PMID:27380411

  7. An NF-κB--EphrinA5-Dependent Communication between NG2(+) Interstitial Cells and Myoblasts Promotes Muscle Growth in Neonates.

    PubMed

    Gu, Jin-Mo; Wang, David J; Peterson, Jennifer M; Shintaku, Jonathan; Liyanarachchi, Sandya; Coppola, Vincenzo; Frakes, Ashley E; Kaspar, Brian K; Cornelison, Dawn D; Guttridge, Denis C

    2016-01-25

    Skeletal muscle growth immediately following birth is critical for proper body posture and locomotion. However, compared with embryogenesis and adulthood, the processes regulating the maturation of neonatal muscles is considerably less clear. Studies in the 1960s predicted that neonatal muscle growth results from nuclear accretion of myoblasts preferentially at the tips of myofibers. Remarkably, little information has been added since then to resolve how myoblasts migrate to the ends of fibers. Here, we provide insight into this process by revealing a unique NF-κB-dependent communication between NG2(+) interstitial cells and myoblasts. NF-κB in NG2(+) cells promotes myoblast migration to the tips of myofibers through cell-cell contact. This occurs through expression of ephrinA5 from NG2(+) cells, which we further deduce is an NF-κB target gene. Together, these results suggest that NF-κB plays an important role in the development of newborn muscles to ensure proper myoblast migration for fiber growth. PMID:26777211

  8. Reliable and versatile immortal muscle cell models from healthy and myotonic dystrophy type 1 primary human myoblasts.

    PubMed

    Pantic, Boris; Borgia, Doriana; Giunco, Silvia; Malena, Adriana; Kiyono, Tohru; Salvatori, Sergio; De Rossi, Anita; Giardina, Emiliano; Sangiuolo, Federica; Pegoraro, Elena; Vergani, Lodovica; Botta, Annalisa

    2016-03-01

    Primary human skeletal muscle cells (hSkMCs) are invaluable tools for deciphering the basic molecular mechanisms of muscle-related biological processes and pathological alterations. Nevertheless, their use is quite restricted due to poor availability, short life span and variable purity of the cells during in vitro culture. Here, we evaluate a recently published method of hSkMCs immortalization, relying on ectopic expression of cyclin D1 (CCND1), cyclin-dependent kinase 4 (CDK4) and telomerase (TERT) in myoblasts from healthy donors (n=3) and myotonic dystrophy type 1 (DM1) patients (n=2). The efficacy to maintain the myogenic and non-transformed phenotype, as well as the main pathogenetic hallmarks of DM1, has been assessed. Combined expression of the three genes i) maintained the CD56(NCAM)-positive myoblast population and differentiation potential; ii) preserved the non-transformed phenotype and iii) maintained the CTG repeat length, amount of nuclear foci and aberrant alternative splicing in immortal muscle cells. Moreover, immortal hSkMCs displayed attractive additional features such as structural maturation of sarcomeres, persistence of Pax7-positive cells during differentiation and complete disappearance of nuclear foci following (CAG)7 antisense oligonucleotide (ASO) treatment. Overall, the CCND1, CDK4 and TERT immortalization yields versatile, reliable and extremely useful human muscle cell models to investigate the basic molecular features of human muscle cell biology, to elucidate the molecular pathogenetic mechanisms and to test new therapeutic approaches for DM1 in vitro. PMID:26905645

  9. Myoblast fusion in Drosophila

    SciTech Connect

    Haralalka, Shruti; Abmayr, Susan M.

    2010-11-01

    The body wall musculature of a Drosophila larva is composed of an intricate pattern of 30 segmentally repeated muscle fibers in each abdominal hemisegment. Each muscle fiber has unique spatial and behavioral characteristics that include its location, orientation, epidermal attachment, size and pattern of innervation. Many, if not all, of these properties are dictated by founder cells, which determine the muscle pattern and seed the fusion process. Myofibers are then derived from fusion between a specific founder cell and several fusion competent myoblasts (FCMs) fusing with as few as 3-5 FCMs in the small muscles on the most ventral side of the embryo and as many as 30 FCMs in the larger muscles on the dorsal side of the embryo. The focus of the present review is the formation of the larval muscles in the developing embryo, summarizing the major issues and players in this process. We have attempted to emphasize experimentally-validated details of the mechanism of myoblast fusion and distinguish these from the theoretically possible details that have not yet been confirmed experimentally. We also direct the interested reader to other recent reviews that discuss myoblast fusion in Drosophila, each with their own perspective on the process . With apologies, we use gene nomenclature as specified by Flybase (http://flybase.org) but provide Table 1 with alternative names and references.

  10. Self-Healing Conductive Injectable Hydrogels with Antibacterial Activity as Cell Delivery Carrier for Cardiac Cell Therapy.

    PubMed

    Dong, Ruonan; Zhao, Xin; Guo, Baolin; Ma, Peter X

    2016-07-13

    Cell therapy is a promising strategy to regenerate cardiac tissue for myocardial infarction. Injectable hydrogels with conductivity and self-healing ability are highly desirable as cell delivery vehicles for cardiac regeneration. Here, we developed self-healable conductive injectable hydrogels based on chitosan-graft-aniline tetramer (CS-AT) and dibenzaldehyde-terminated poly(ethylene glycol) (PEG-DA) as cell delivery vehicles for myocardial infarction. Self-healed electroactive hydrogels were obtained after mixing CS-AT and PEG-DA solutions at physiological conditions. Rapid self-healing behavior was investigated by rheometer. Swelling behavior, morphology, mechanical strength, electrochemistry, conductivity, adhesiveness to host tissue and antibacterial property of the injectable hydrogels were fully studied. Conductivity of the hydrogels is ∼10(-3) S·cm(-1), which is quite close to native cardiac tissue. Proliferation of C2C12 myoblasts in the hydrogel showed its good biocompatibility. After injection, viability of C2C12 cells in the hydrogels showed no significant difference with that before injection. Two different cell types were successfully encapsulated in the hydrogels by self-healing effect. Cell delivery profile of C2C12 myoblasts and H9c2 cardiac cells showed a tunable release rate, and in vivo cell retention in the conductive hydrogels was also studied. Subcutaneous injection and in vivo degradation of the hydrogels demonstrated their injectability and biodegradability. Together, these self-healing conductive biodegradable injectable hydrogels are excellent candidates as cell delivery vehicle for cardiac repair. PMID:27311127

  11. Tissue-specific mechanical and geometrical control of cell viability and actin cytoskeleton alignment

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Zheng, Wenfu; Xie, Yunyan; Gong, Peiyuan; Zhao, Fang; Yuan, Bo; Ma, Wanshun; Cui, Yan; Liu, Wenwen; Sun, Yi; Piel, Matthieu; Zhang, Wei; Jiang, Xingyu

    2014-08-01

    Different tissues have specific mechanical properties and cells of different geometries, such as elongated muscle cells and polygonal endothelial cells, which are precisely regulated during embryo development. However, the mechanisms that underlie these processes are not clear. Here, we built an in vitro model to mimic the cellular microenvironment of muscle by combining both mechanical stretch and geometrical control. We found that mechanical stretch was a key factor that determined the optimal geometry of myoblast C2C12 cells under stretch, whereas vascular endothelial cells and fibroblasts had no such dependency. We presented the first experimental evidence that can explain why myoblasts are destined to take the elongated geometry so as to survive and maintain parallel actin filaments along the stretching direction. The study is not only meaningful for the research on myogenesis but also has potential application in regenerative medicine.

  12. Characterization of the Methylation Status of Pax7 and Myogenic Regulator Factors in Cell Myogenic Differentiation

    PubMed Central

    Chao, Zhe; Zheng, Xin-Li; Sun, Rui-Ping; Liu, Hai-Long; Huang, Li-Li; Cao, Zong-Xi; Deng, Chang-Yan; Wang, Feng

    2016-01-01

    Epigenetic processes in the development of skeletal muscle have been appreciated for over a decade. DNA methylation is a major epigenetic modification important for regulating gene expression and suppressing spurious transcription. Up to now, the importance of epigenetic marks in the regulation of Pax7 and myogenic regulatory factors (MRFs) expression is far less explored. In the present study, semi-quantitative the real-time polymerase chain reaction (RT-PCR) analyses showed MyoD and Myf5 were expressed in activated and quiescent C2C12 cells. MyoG was expressed in a later stage of myogenesis. Pax7 was weakly expressed in differentiated C2C12 cells. To further understand the regulation of expression of these genes, the DNA methylation status of Pax7, MyoD, and Myf5 was determined by bisulfite sequencing PCR. During the C2C12 myoblasts fusion process, the changes of promoter and exon 1 methylation of Pax7, MyoD, and Myf5 genes were observed. In addition, an inverse relationship of low methylation and high expression was found. These results suggest that DNA methylation may be an important mechanism regulating Pax7 and MRFs transcription in cell myogenic differentiation. PMID:26954143

  13. Characterization of the Methylation Status of Pax7 and Myogenic Regulator Factors in Cell Myogenic Differentiation.

    PubMed

    Chao, Zhe; Zheng, Xin-Li; Sun, Rui-Ping; Liu, Hai-Long; Huang, Li-Li; Cao, Zong-Xi; Deng, Chang-Yan; Wang, Feng

    2016-07-01

    Epigenetic processes in the development of skeletal muscle have been appreciated for over a decade. DNA methylation is a major epigenetic modification important for regulating gene expression and suppressing spurious transcription. Up to now, the importance of epigenetic marks in the regulation of Pax7 and myogenic regulatory factors (MRFs) expression is far less explored. In the present study, semi-quantitative the real-time polymerase chain reaction (RT-PCR) analyses showed MyoD and Myf5 were expressed in activated and quiescent C2C12 cells. MyoG was expressed in a later stage of myogenesis. Pax7 was weakly expressed in differentiated C2C12 cells. To further understand the regulation of expression of these genes, the DNA methylation status of Pax7, MyoD, and Myf5 was determined by bisulfite sequencing PCR. During the C2C12 myoblasts fusion process, the changes of promoter and exon 1 methylation of Pax7, MyoD, and Myf5 genes were observed. In addition, an inverse relationship of low methylation and high expression was found. These results suggest that DNA methylation may be an important mechanism regulating Pax7 and MRFs transcription in cell myogenic differentiation. PMID:26954143

  14. The homeobox transcription factor Irxl1 negatively regulates MyoD expression and myoblast differentiation.

    PubMed

    Chuang, Han-Ni; Hsiao, Kuang-Ming; Chang, Hui-Yi; Wu, Chia-Chi; Pan, Huichin

    2014-07-01

    Irxl1/Mkx (Iroquois homeobox-like 1/Mohawk) encodes a member of the TALE subfamily of homeodomain proteins. It is expressed in multiple mesoderm-derived tissues and has recently been shown to regulate tendon differentiation during mouse embryonic development. Previously we showed that knockdown of Irxl1 in zebrafish caused a deficit in neural crest cells which consequently resulted in deformation of craniofacial muscles and arch cartilages. Here, we further demonstrate that loss of Irxl1 function results in deformed somites with disordered muscle fibers and myotendinous junctions. Because expression of myoD is increased in the somites of Irxl1 knockdown morphants, we test whether Irxl1 negatively regulates myoD expression. When stable C2C12 myoblasts overexpressing Irxl1/Mkx were induced to differentiate, myotube formation was inhibited and protein levels of myoD and myosin heavy chain were decreased accordingly. A series of deletion constructs of myoD promoter fragments were tested by luciferase reporter assays, which identified a promoter fragment that is necessary and sufficient for Irxl1-mediated repression. Direct interaction of Irxl1 and myoD promoter was subsequently elucidated by yeast one-hybrid assays, electrophoretic mobility shift assays and chromatin immunoprecipitation analysis. Furthermore, mouse Mkx also binds to and represses myoD promoter. These results indicate that Irxl1/Mkx can repress myoD expression through direct binding to its promoter and may thus play a negative regulatory role in muscle differentiation. PMID:24814716

  15. Long-Term Endurance Exercise in Humans Stimulates Cell Fusion of Myoblasts along with Fusogenic Endogenous Retroviral Genes In Vivo

    PubMed Central

    Suhr, Frank; Konou, Thierry M.; Tappe, Kim A.; Toigo, Marco; Jung, Hans H.; Henke, Christine; Steigleder, Ruth; Strissel, Pamela L.; Huebner, Hanna; Beckmann, Matthias W.; van der Keylen, Piet; Schoser, Benedikt; Schiffer, Thorsten; Frese, Laura; Bloch, Wilhelm; Strick, Reiner

    2015-01-01

    Myogenesis is defined as growth, differentiation and repair of muscles where cell fusion of myoblasts to multinucleated myofibers is one major characteristic. Other cell fusion events in humans are found with bone resorbing osteoclasts and placental syncytiotrophoblasts. No unifying gene regulation for natural cell fusions has been found. We analyzed skeletal muscle biopsies of competitive cyclists for muscle-specific attributes and expression of human endogenous retrovirus (ERV) envelope genes due to their involvement in cell fusion of osteoclasts and syncytiotrophoblasts. Comparing muscle biopsies from post- with the pre-competitive seasons a significant 2.25-fold increase of myonuclei/mm fiber, a 2.38-fold decrease of fiber area/nucleus and a 3.1-fold decrease of satellite cells (SCs) occurred. We propose that during the pre-competitive season SC proliferation occurred following with increased cell fusion during the competitive season. Expression of twenty-two envelope genes of muscle biopsies demonstrated a significant increase of putative muscle-cell fusogenic genes Syncytin-1 and Syncytin-3, but also for the non-fusogenic erv3. Immunohistochemistry analyses showed that Syncytin-1 mainly localized to the sarcolemma of myofibers positive for myosin heavy-chain isotypes. Cellular receptors SLC1A4 and SLC1A5 of Syncytin-1 showed significant decrease of expression in post-competitive muscles compared with the pre-competitive season, but only SLC1A4 protein expression localized throughout the myofiber. Erv3 protein was strongly expressed throughout the myofiber, whereas envK1-7 localized to SC nuclei and myonuclei. Syncytin-1 transcription factors, PPARγ and RXRα, showed no protein expression in the myofiber, whereas the pCREB-Ser133 activator of Syncytin-1 was enriched to SC nuclei and myonuclei. Syncytin-1, Syncytin-3, SLC1A4 and PAX7 gene regulations along with MyoD1 and myogenin were verified during proliferating or actively-fusing human primary myoblast cell

  16. Overexpression of calpastatin inhibits L8 myoblast fusion

    SciTech Connect

    Barnoy, Sivia; E-mail: sivia@post.tau.ac.il; Maki, Masatoshi; Kosower, Nechama S.

    2005-07-08

    The formation of skeletal muscle fibers involves cessation of myoblast division, myoblast alignment, and fusion to multinucleated myofibers. Calpain is one of the factors shown to be involved in myoblast fusion. Using L8 rat myoblasts, we found that calpain levels did not change significantly during myoblast differentiation, whereas calpastatin diminished prior to myoblast fusion and reappeared after fusion. The transient diminution in calpastatin allows the Ca{sup 2+}-promoted activation of calpain and calpain-induced membrane proteolysis, which is required for myoblast fusion. Here we show that calpastatin overexpression in L8 myoblasts does not inhibit cell proliferation and alignment, but prevents myoblast fusion and fusion-associated protein degradation. In addition, calpastatin appears to modulate myogenic gene expression, as indicated by the lack of myogenin (a transcription factor expressed in differentiating myoblasts) in myoblasts overexpressing calpastatin. These results suggest that, in addition to the role in membrane disorganization in the fusing myoblasts, the calpain-calpastatin system may also modulate the levels of factors required for myoblast differentiation.

  17. Differences in the Expression and Distribution of Flotillin-2 in Chick, Mice and Human Muscle Cells

    PubMed Central

    Possidonio, Ana Claudia Batista; Soares, Carolina Pontes; Portilho, Débora Morueco; Midlej, Victor; Benchimol, Marlene; Butler-Browne, Gillian; Costa, Manoel Luis; Mermelstein, Claudia

    2014-01-01

    Myoblasts undergo a series of changes in the composition and dynamics of their plasma membranes during the initial steps of skeletal muscle differentiation. These changes are crucial requirements for myoblast fusion and allow the formation of striated muscle fibers. Membrane microdomains, or lipid rafts, have been implicated in myoblast fusion. Flotillins are scaffold proteins that are essential for the formation and dynamics of lipid rafts. Flotillins have been widely studied over the last few years, but still little is known about their role during skeletal muscle differentiation. In the present study, we analyzed the expression and distribution of flotillin-2 in chick, mice and human muscle cells grown in vitro. Primary cultures of chick myogenic cells showed a decrease in the expression of flotillin-2 during the first 72 hours of muscle differentiation. Interestingly, flotillin-2 was found to be highly expressed in chick myogenic fibroblasts and weakly expressed in chick myoblasts and multinucleated myotubes. Flotillin-2 was distributed in vesicle-like structures within the cytoplasm of chick myogenic fibroblasts, in the mouse C2C12 myogenic cell line, and in neonatal human muscle cells. Cryo-immunogold labeling revealed the presence of flotillin-2 in vesicles and in Golgi stacks in chick myogenic fibroblasts. Further, brefeldin A induced a major reduction in the number of flotillin-2 containing vesicles which correlates to a decrease in myoblast fusion. These results suggest the involvement of flotillin-2 during the initial steps of skeletal myogenesis. PMID:25105415

  18. Skeletal myoblasts for cardiac repair

    PubMed Central

    Durrani, Shazia; Konoplyannikov, Mikhail; Ashraf, Muhammad; Haider, Khawaja Husnain

    2011-01-01

    Stem cells provide an alternative curative intervention for the infarcted heart by compensating for the cardiomyocyte loss subsequent to myocardial injury. The presence of resident stem and progenitor cell populations in the heart, and nuclear reprogramming of somatic cells with genetic induction of pluripotency markers are the emerging new developments in stem cell-based regenerative medicine. However, until safety and feasibility of these cells are established by extensive experimentation in in vitro and in vivo experimental models, skeletal muscle-derived myoblasts, and bone marrow cells remain the most well-studied donor cell types for myocardial regeneration and repair. This article provides a critical review of skeletal myoblasts as donor cells for transplantation in the light of published experimental and clinical data, and indepth discussion of the advantages and disadvantages of skeletal myoblast-based therapeutic intervention for augmentation of myocardial function in the infarcted heart. Furthermore, strategies to overcome the problems of arrhythmogenicity and failure of the transplanted skeletal myoblasts to integrate with the host cardiomyocytes are discussed. PMID:21082891

  19. Automated High-Content Assay for Compounds Selectively Toxic to Trypanosoma cruzi in a Myoblastic Cell Line

    PubMed Central

    Alonso-Padilla, Julio; Cotillo, Ignacio; Presa, Jesús L.; Cantizani, Juan; Peña, Imanol; Bardera, Ana I.; Martín, Jose J.; Rodriguez, Ana

    2015-01-01

    Background Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, represents a very important public health problem in Latin America where it is endemic. Although mostly asymptomatic at its initial stage, after the disease becomes chronic, about a third of the infected patients progress to a potentially fatal outcome due to severe damage of heart and gut tissues. There is an urgent need for new drugs against Chagas disease since there are only two drugs available, benznidazole and nifurtimox, and both show toxic side effects and variable efficacy against the chronic stage of the disease. Methodology/Principal Findings Genetically engineered parasitic strains are used for high throughput screening (HTS) of large chemical collections in the search for new anti-parasitic compounds. These assays, although successful, are limited to reporter transgenic parasites and do not cover the wide T. cruzi genetic background. With the aim to contribute to the early drug discovery process against Chagas disease we have developed an automated image-based 384-well plate HTS assay for T. cruzi amastigote replication in a rat myoblast host cell line. An image analysis script was designed to inform on three outputs: total number of host cells, ratio of T. cruzi amastigotes per cell and percentage of infected cells, which respectively provides one host cell toxicity and two T. cruzi toxicity readouts. The assay was statistically robust (Z´ values >0.6) and was validated against a series of known anti-trypanosomatid drugs. Conclusions/Significance We have established a highly reproducible, high content HTS assay for screening of chemical compounds against T. cruzi infection of myoblasts that is amenable for use with any T. cruzi strain capable of in vitro infection. Our visual assay informs on both anti-parasitic and host cell toxicity readouts in a single experiment, allowing the direct identification of compounds selectively targeted to the parasite. PMID:25615687

  20. Tracking in real time the crawling dynamics of adherent living cells with a high resolution surface plasmon microscope

    NASA Astrophysics Data System (ADS)

    Streppa, L.; Berguiga, L.; Boyer Provera, E.; Ratti, F.; Goillot, E.; Martinez Torres, C.; Schaeffer, L.; Elezgaray, Juan; Arneodo, A.; Argoul, F.

    2016-03-01

    We introduce a high resolution scanning surface plasmon microscope for long term imaging of living adherent mouse myoblast cells. The coupling of a high numerical aperture objective lens with a fibered heterodyne interferometer provides both enhanced sensitivity and long term stability. This microscope takes advantage of the plasmon resonance excitation and the amplification of the electromagnetic field in near-field distance to the gold coated coverslip. This plasmon enhanced evanescent wave microscopy is particularly attractive for the study of cell adhesion and motility since it can be operated without staining of the biological sample. We show that this microscope allows very long-term imaging of living samples, and that it can capture and follow the temporal deformation of C2C12 myoblast cell protusions (lamellipodia), during their migration on a at surface.

  1. NDRG2 promotes myoblast proliferation and caspase 3/7 activities during differentiation, and attenuates hydrogen peroxide – But not palmitate-induced toxicity

    PubMed Central

    Anderson, Kimberley J.; Russell, Aaron P.; Foletta, Victoria C.

    2015-01-01

    The function of the stress-responsive N-myc downstream-regulated gene 2 (NDRG2) in the control of myoblast growth, and the amino acids contributing to its function, are not well characterized. Here, we investigated the effect of increased NDRG2 levels on the proliferation, differentiation and apoptosis in skeletal muscle cells under basal and stress conditions. NDRG2 overexpression increased C2C12 myoblast proliferation and the expression of positive cell cycle regulators, cdk2, cyclin B and cyclin D, and phosphorylation of Rb, while the serine/threonine-deficient NDRG2, 3A-NDRG2, had less effect. The onset of differentiation was enhanced by NDRG2 as determined through the myogenic regulatory factor expression profiles and myocyte fusion index. However, the overall level of differentiation in myotubes was not different. While NDRG2 up-regulated caspase 3/7 activities during differentiation, no increase in apoptosis was measured by TUNEL assay or through cleavage of caspase 3 and PARP proteins. During H2O2 treatment to induce oxidative stress, NDRG2 helped protect against the loss of proliferation and ER stress as measured by GRP78 expression with 3A-NDRG2 displaying less protection. NDRG2 also attenuated apoptosis by reducing cleavage of PARP and caspase 3 and expression of pro-apoptotic Bax while enhancing the pro-survival Bcl-2 and Bcl-xL levels. In contrast, Mcl-1 was not altered, and NDRG2 did not protect against palmitate-induced lipotoxicity. Our findings show that NDRG2 overexpression increases myoblast proliferation and caspase 3/7 activities without increasing overall differentiation. Furthermore, NDRG2 attenuates H2O2-induced oxidative stress and specific serine and threonine amino acid residues appear to contribute to its function in muscle cells. PMID:26380811

  2. Comparative Proteomic Study of Fatty Acid-treated Myoblasts Reveals Role of Cox-2 in Palmitate-induced Insulin Resistance

    PubMed Central

    Chen, Xiulan; Xu, Shimeng; Wei, Shasha; Deng, Yaqin; Li, Yiran; Yang, Fuquan; Liu, Pingsheng

    2016-01-01

    Accumulated studies demonstrate that saturated fatty acids (FAs) such as palmitic acid (PA) inhibit insulin signaling in skeletal muscle cells and monounsaturated fatty acids such as oleic acid (OA) reverse the effect of PA on insulin signaling. The detailed molecular mechanism of these opposite effects remains elusive. Here we provide a comparative proteomic study of skeletal myoblast cell line C2C12 that were untreated or treated with PA, and PA plus OA. A total of 3437 proteins were quantified using SILAC in this study and 29 proteins fall into the pattern that OA reverses PA effect. Expression of some these proteins were verified using qRT-PCR and Western blot. The most significant change was cyclooxygenase-2 (Cox-2). In addition to whole cell comparative proteomic study, we also compared lipid droplet (LD)-associated proteins and identified that Cox-2 was one of three major altered proteins under the FA treatment. This finding was then confirmed using immunofluorescence. Finally, Cox-2 selective inhibitor, celecoxib protected cells from PA-reduced insulin signaling Akt phosphorylation. Together, these results not only provide a dataset of protein expression change in FA treatment but also suggest that Cox-2 and lipid droplets (LDs) are potential players in PA- and OA-mediated cellular processes. PMID:26899878

  3. Foxk1 promotes cell proliferation and represses myogenic differentiation by regulating Foxo4 and Mef2.

    PubMed

    Shi, Xiaozhong; Wallis, Alicia M; Gerard, Robert D; Voelker, Kevin A; Grange, Robert W; DePinho, Ronald A; Garry, Mary G; Garry, Daniel J

    2012-11-15

    In response to severe injury, adult skeletal muscle exhibits a remarkable regenerative capacity due to a resident muscle stem/progenitor cell population. While a number of factors are expressed in the muscle progenitor cell (MPC) population, the molecular networks that govern this cell population remain an area of active investigation. In this study, utilizing knockdown techniques and overexpression of Foxk1 in the myogenic lineage, we observed dysregulation of Foxo and Mef2 downstream targets. Utilizing an array of technologies, we establish that Foxk1 represses the transcriptional activity of Foxo4 and Mef2 and physically interacts with Foxo4 and Mef2, thus promoting MPC proliferation and antagonizing the myogenic lineage differentiation program, respectively. Correspondingly, knockdown of Foxk1 in C2C12 myoblasts results in cell cycle arrest, and Foxk1 overexpression in C2C12CAR myoblasts retards muscle differentiation. Collectively, we have established that Foxk1 promotes MPC proliferation by repressing Foxo4 transcriptional activity and inhibits myogenic differentiation by repressing Mef2 activity. These studies enhance our understanding of the transcriptional networks that regulate the MPC population and muscle regeneration. PMID:22956541

  4. Paralogs of Atlantic salmon myoblast determination factor genes are distinctly regulated in proliferating and differentiating myogenic cells.

    PubMed

    Bower, Neil I; Johnston, Ian A

    2010-06-01

    The mRNA expression of myogenic regulatory factors, including myoD1 (myoblast determination factor) gene paralogs, and their regulation by amino acids and insulin-like growth factors were investigated in primary cell cultures isolated from fast myotomal muscle of Atlantic salmon (Salmo salar). The cell cycle and S phase were determined as 28.1 and 13.3 h, respectively, at 18 degrees C. Expression of myoD1b and myoD1c peaked at 8 days of culture in the initial proliferation phase and then declined more than sixfold as cells differentiated and was correlated with PCNA (proliferating cell nuclear antigen) expression (R = 0.88, P < 0.0001; R = 0.70, P < 0.0001). In contrast, myoD1a transcripts increased from 2 to 8 days and remained at elevated levels as myotubes were formed. mRNA levels of myoD1c were, on average, 3.1- and 5.7-fold higher than myoD1a and myoD1b, respectively. Depriving cells of amino acids and serum led to a rapid increase in pax7 and a decrease in myoD1c and PCNA expression, indicating a transition to a quiescent state. In contrast, amino acid replacement in starved cells produced significant increases in myoD1c (at 6 h), PCNA (at 12 h), and myoD1b (at 24 h) and decreases in pax7 expression as cells entered the cell cycle. Our results are consistent with temporally distinct patterns of myoD1c and myoD1b expression at the G(1) and S/G(2) phases of the cell cycle. Treatment of starved cells with insulin-like growth factor I or II did not alter expression of the myoD paralogs. It was concluded that, in vitro, amino acids alone are sufficient to stimulate expression of genes regulating myogenesis in myoblasts involving autocrine/paracrine pathways. The differential responses of myoD paralogs during myotube maturation and amino acid treatments suggest that myoD1b and myoD1c are primarily expressed in proliferating cells and myoD1a in differentiating cells, providing evidence for their subfunctionalization following whole genome and local duplications in

  5. The endocannabinoid 2-AG controls skeletal muscle cell differentiation via CB1 receptor-dependent inhibition of Kv7 channels

    PubMed Central

    Iannotti, Fabio A.; Silvestri, Cristoforo; Mazzarella, Enrico; Martella, Andrea; Calvigioni, Daniela; Piscitelli, Fabiana; Ambrosino, Paolo; Petrosino, Stefania; Czifra, Gabriella; Bíró, Tamás; Harkany, Tibor; Taglialatela, Maurizio; Di Marzo, Vincenzo

    2014-01-01

    Little is known of the involvement of endocannabinoids and cannabinoid receptors in skeletal muscle cell differentiation. We report that, due to changes in the expression of genes involved in its metabolism, the levels of the endocannabinoid 2-arachidonoylglycerol (2-AG) are decreased both during myotube formation in vitro from murine C2C12 myoblasts and during mouse muscle growth in vivo. The endocannabinoid, as well as the CB1 agonist arachidonoyl-2-chloroethylamide, prevent myotube formation in a manner antagonized by CB1 knockdown and by CB1 antagonists, which, per se, instead stimulate differentiation. Importantly, 2-AG also inhibits differentiation of primary human satellite cells. Muscle fascicles from CB1 knockout embryos contain more muscle fibers, and postnatal mice show muscle fibers of an increased diameter relative to wild-type littermates. Inhibition of Kv7.4 channel activity, which plays a permissive role in myogenesis and depends on phosphatidylinositol 4,5-bisphosphate (PIP2), underlies the effects of 2-AG. We find that CB1 stimulation reduces both total and Kv7.4-bound PIP2 levels in C2C12 cells and inhibits Kv7.4 currents in transfected CHO cells. We suggest that 2-AG is an endogenous repressor of myoblast differentiation via CB1-mediated inhibition of Kv7.4 channels. PMID:24927567

  6. Hyperthermia Differently Affects Connexin43 Expression and Gap Junction Permeability in Skeletal Myoblasts and HeLa Cells

    PubMed Central

    Antanavičiūtė, Ieva; Mildažienė, Vida; Stankevičius, Edgaras; Herdegen, Thomas; Skeberdis, Vytenis Arvydas

    2014-01-01

    Stress kinases can be activated by hyperthermia and modify the expression level and properties of membranous and intercellular channels. We examined the role of c-Jun NH2-terminal kinase (JNK) in hyperthermia-induced changes of connexin43 (Cx43) expression and permeability of Cx43 gap junctions (GJs) in the rabbit skeletal myoblasts (SkMs) and Cx43-EGFP transfected HeLa cells. Hyperthermia (42°C for 6 h) enhanced the activity of JNK and its target, the transcription factor c-Jun, in both SkMs and HeLa cells. In SkMs, hyperthermia caused a 3.2-fold increase in the total Cx43 protein level and enhanced the efficacy of GJ intercellular communication (GJIC). In striking contrast, hyperthermia reduced the total amount of Cx43 protein, the number of Cx43 channels in GJ plaques, the density of hemichannels in the cell membranes, and the efficiency of GJIC in HeLa cells. Both in SkMs and HeLa cells, these changes could be prevented by XG-102, a JNK inhibitor. In HeLa cells, the changes in Cx43 expression and GJIC under hyperthermic conditions were accompanied by JNK-dependent disorganization of actin cytoskeleton stress fibers while in SkMs, the actin cytoskeleton remained intact. These findings provide an attractive model to identify the regulatory players within signalosomes, which determine the cell-dependent outcomes of hyperthermia. PMID:25143668

  7. Electrolytic Valving Isolation for Cell Co-Culture Microenvironment with Controlled Cell Pairing Ratios

    PubMed Central

    Chen, Yu-Chih; Ingram, Patrick; Yoon, Euisik

    2016-01-01

    Cancer-stromal interaction is a critical process in tumorigenesis. Conventional dish-based co-culture assays simply mix two cell types in the same dish; thus, they are deficient in controlling cell locations and precisely tracking single cell behavior from heterogeneous cell populations. Microfluidic technology can provide a good spatial temporal control of microenvironments, but the control has been typically realized by using external pumps, making long-term cultures cumbersome and bulky. In this work, we present a cell-cell interaction microfluidic platform that can accurately control co-culture microenvironment by using a novel electrolytic cell isolation scheme without using any valves or pneumatic pumps. The proposed microfluidic platform can also precisely control the number of interacting cells and pairing ratios to emulate cancer niches. More than 80% of the chambers captured the desired number of cells. The duration of cell isolation can be adjusted by electrolytic bubble generation and removal. We verified that electrolytic process has a negligible effect on cell viability and proliferation in our platform. To the best of our knowledge, this work is the first attempt to incorporate electrolytic bubble generation as a cell isolation method in microfluidics. For proof of feasibility, we performed cell-cell interaction assays between prostate cancer (PC3) cells and myoblast (C2C12) cells. The preliminary results demonstrated the potential of using electrolysis for micro-environmental control during cell culture. Also, the ratio controlled cell-cell interaction assays was successfully performed showing that the cell pairing ratios of PC3 to C2C12 affected the proliferation rate of myoblast cells due to increased secretion of growth factors from prostate cancer cells. PMID:25118341

  8. Myoblast fusion: lessons from flies and mice

    PubMed Central

    Abmayr, Susan M.; Pavlath, Grace K.

    2012-01-01

    The fusion of myoblasts into multinucleate syncytia plays a fundamental role in muscle function, as it supports the formation of extended sarcomeric arrays, or myofibrils, within a large volume of cytoplasm. Principles learned from the study of myoblast fusion not only enhance our understanding of myogenesis, but also contribute to our perspectives on membrane fusion and cell-cell fusion in a wide array of model organisms and experimental systems. Recent studies have advanced our views of the cell biological processes and crucial proteins that drive myoblast fusion. Here, we provide an overview of myoblast fusion in three model systems that have contributed much to our understanding of these events: the Drosophila embryo; developing and regenerating mouse muscle; and cultured rodent muscle cells. PMID:22274696

  9. Specific deletion of CMF1 nuclear localization domain causes incomplete cell cycle withdrawal and impaired differentiation in avian skeletal myoblasts

    SciTech Connect

    Dees, Ellen . E-mail: ellen.dees@vanderbilt.edu; Robertson, J. Brian; Zhu, Tianli; Bader, David

    2006-10-01

    CMF1 is a protein expressed in embryonic striated muscle with onset of expression preceding that of contractile proteins. Disruption of CMF1 in myoblasts disrupts muscle-specific protein expression. Preliminary studies indicate both nuclear and cytoplasmic distribution of CMF1 protein, suggesting functional roles in both cellular compartments. Here we examine the nuclear function of CMF1, using a newly characterized antibody generated against the CMF1 nuclear localization domain and a CMF1 nuclear localization domain-deleted stable myocyte line. The antibody demonstrates nuclear distribution of the CMF1 protein both in vivo and in cell lines, with clustering of CMF1 protein around chromatin during mitosis. In more differentiated myocytes, the protein shifts to the cytoplasm. The CMF1 NLS-deleted cell lines have markedly impaired capacity to differentiate. Specifically, these cells express less contractile protein than wild-type or full-length CMF1 stably transfected cells, and do not fuse properly into multinucleate syncytia with linear nuclear alignment. In response to low serum medium, a signal to differentiate, CMF1 NLS-deleted cells enter G0, but continue to express proliferation markers and will reenter the cell cycle when stimulated by restoring growth medium. These data suggest that CMF1 is involved in regulation the transition from proliferation to differentiation in embryonic muscle.

  10. Transcription Factor ZBED6 Mediates IGF2 Gene Expression by Regulating Promoter Activity and DNA Methylation in Myoblasts

    NASA Astrophysics Data System (ADS)

    Huang, Yong-Zhen; Zhang, Liang-Zhi; Lai, Xin-Sheng; Li, Ming-Xun; Sun, Yu-Jia; Li, Cong-Jun; Lan, Xian-Yong; Lei, Chu-Zhao; Zhang, Chun-Lei; Zhao, Xin; Chen, Hong

    2014-04-01

    Zinc finger, BED-type containing 6 (ZBED6) is an important transcription factor in placental mammals, affecting development, cell proliferation and growth. In this study, we found that the expression of the ZBED6 and IGF2 were upregulated during C2C12 differentiation. The IGF2 expression levels were negatively associated with the methylation status in beef cattle (P < 0.05). A luciferase assay for the IGF2 intron 3 and P3 promoter showed that the mutant-type 439 A-SNP-pGL3 in driving reporter gene transcription is significantly higher than that of the wild-type 439 G-SNP-pGL3 construct (P < 0.05). An over-expression assay revealed that ZBED6 regulate IGF2 expression and promote myoblast differentiation. Furthermore, knockdown of ZBED6 led to IGF2 expression change in vitro. Taken together, these results suggest that ZBED6 inhibits IGF2 activity and expression via a G to A transition disrupts the interaction. Thus, we propose that ZBED6 plays a critical role in myogenic differentiation.

  11. ErbB3 binding protein-1 (Ebp1) controls proliferation and myogenic differentiation of muscle stem cells.

    PubMed

    Figeac, Nicolas; Serralbo, Olivier; Marcelle, Christophe; Zammit, Peter S

    2014-02-01

    Satellite cells are resident stem cells of skeletal muscle, supplying myoblasts for post-natal muscle growth, hypertrophy and repair. Many regulatory networks control satellite cell function, which includes EGF signalling via the ErbB family of receptors. Here we investigated the role of ErbB3 binding protein-1 (Ebp1) in regulation of myogenic stem cell proliferation and differentiation. Ebp1 is a well-conserved DNA/RNA binding protein that is implicated in cell growth, apoptosis and differentiation in many cell types. Of the two main Ebp1 isoforms, only p48 was expressed in satellite cells and C2C12 myoblasts. Although not present in quiescent satellite cells, p48 was strongly induced during activation, remaining at high levels during proliferation and differentiation. While retroviral-mediated over-expression of Ebp1 had only minor effects, siRNA-mediated Ebp1 knockdown inhibited both proliferation and differentiation of satellite cells and C2C12 myoblasts, with a clear failure of myotube formation. Ebp1-knockdown significantly reduced ErbB3 receptor levels, yet over-expression of ErbB3 in Ebp1 knockdown cells did not rescue differentiation. Ebp1 was also expressed by muscle cells during developmental myogenesis in mouse. Since Ebp1 is well-conserved between mouse and chick, we switched to chick to examine its role in muscle formation. In chick embryo, Ebp1 was expressed in the dermomyotome, and myogenic differentiation of muscle progenitors was inhibited by specific Ebp1 down-regulation using shRNA electroporation. These observations demonstrate a conserved function of Ebp1 in the regulation of embryonic muscle progenitors and adult muscle stem cells, which likely operates independently of ErbB3 signaling. PMID:24275324

  12. Targeted expression of transforming growth factor-beta 1 in intracardiac grafts promotes vascular endothelial cell DNA synthesis.

    PubMed Central

    Koh, G Y; Kim, S J; Klug, M G; Park, K; Soonpaa, M H; Field, L J

    1995-01-01

    Intracardiac grafts comprised of genetically modified skeletal myoblasts were assessed for their ability to effect long-term delivery of recombinant transforming growth factor-beta (TGF-beta) to the heart. C2C12 myoblasts were stably transfected with a construct comprised of an inducible metallothionein promoter fused to a modified TGF-beta 1 cDNA. When cultured in medium supplemented with zinc sulfate, cells carrying this transgene constitutively secrete active TGF-beta 1. These genetically modified myoblasts were used to produce intracardiac grafts in syngeneic C3Heb/FeJ hosts. Viable grafts were observed as long as three months after implantation, and immunohistological analyses of mice maintained on water supplemented with zinc sulfate revealed the presence of grafted cells which stably expressed TGF-beta 1. Regions of apparent neovascularization, as evidenced by tritiated thymidine incorporation into vascular endothelial cells, were observed in the myocardium which bordered grafts expressing TGF-beta 1. The extent of vascular endothelial cell DNA synthesis could be modulated by altering dietary zinc. Similar effects on the vascular endothelial cells were not seen in mice with grafts comprised of nontransfected cells. This study indicates that genetically modified skeletal myoblast grafts can be used to effect the local, long-term delivery of recombinant molecules to the heart. Images PMID:7529257

  13. WHAMY is a novel actin polymerase promoting myoblast fusion, macrophage cell motility and sensory organ development in Drosophila.

    PubMed

    Brinkmann, Klaus; Winterhoff, Moritz; Önel, Susanne-Filiz; Schultz, Jörg; Faix, Jan; Bogdan, Sven

    2016-02-01

    Wiskott-Aldrich syndrome proteins (WASPs) are nucleation-promoting factors (NPF) that differentially control the Arp2/3 complex. In Drosophila, three different family members, SCAR (also known as WAVE), WASP and WASH (also known as CG13176), have been analyzed so far. Here, we characterized WHAMY, the fourth Drosophila WASP family member. whamy originated from a wasp gene duplication and underwent a sub-neofunctionalization. Unlike WASP, we found that WHAMY specifically interacted with activated Rac1 through its two CRIB domains, which were sufficient for targeting WHAMY to lamellipodial and filopodial tips. Biochemical analyses showed that WHAMY promoted exceptionally fast actin filament elongation, although it did not activate the Arp2/3 complex. Loss- and gain-of-function studies revealed an important function of WHAMY in membrane protrusions and cell migration in macrophages. Genetic data further implied synergistic functions between WHAMY and WASP during morphogenesis. Double mutants were late-embryonic lethal and showed severe defects in myoblast fusion. Trans-heterozygous mutant animals showed strongly increased defects in sensory cell fate specification. Thus, WHAMY is a novel actin polymerase with an initial partitioning of ancestral WASP functions in development and subsequent acquisition of a new function in cell motility during evolution. PMID:26675239

  14. Change of hyaluronic acid synthesis during differentiation of myogenic cells and its relation to transformation of myoblasts by Rous sarcoma virus.

    PubMed

    Yoshimura, M

    1985-05-01

    Hyaluronic acid synthesis was examined in cultures of differentiating chick embryo muscle cells before, during and after fusion. Prior to fusion, hyaluronic acid was synthesized and secreted into the medium, but once fusion began this synthesis was reduced significantly. Synthesis then increased again after completion of fusion. Thus, production of hyaluronic acid was lowest at the time of or right before cell fusion. When myoblasts were transformed by Rous sarcoma virus (RSV), a higher amount of hyaluronic acid was synthesized, and cells were not able to fuse. The turnover rate of hyaluronic acid might be different between myotubes and RSV-transformed myoblasts. The addition of exogenous hyaluronic acid to myoblast cultures resulted in the partial inhibition of fusion. The effect was reversible because fusion took place after removal of the exogenous hyaluronic acid. These observations suggest that hyaluronic acid plays an important role in the differentiation of myogenic cells, and that elevated hyaluronic acid synthesis may partly be the reason for inhibition of myotube formation upon transformation by Rous sarcoma virus. PMID:2988797

  15. Myosin heavy chain-like localizes at cell contact sites during Drosophila myoblast fusion and interacts in vitro with Rolling pebbles 7

    SciTech Connect

    Bonn, Bettina R.; Rudolf, Anja; Hornbruch-Freitag, Christina; Daum, Gabor; Kuckwa, Jessica; Kastl, Lena; Buttgereit, Detlev; Renkawitz-Pohl, Renate

    2013-02-15

    Besides representing the sarcomeric thick filaments, myosins are involved in many cellular transport and motility processes. Myosin heavy chains are grouped into 18 classes. Here we show that in Drosophila, the unconventional group XVIII myosin heavy chain-like (Mhcl) is transcribed in the mesoderm of embryos, most prominently in founder cells (FCs). An ectopically expressed GFP-tagged Mhcl localizes in the growing muscle at cell–cell contacts towards the attached fusion competent myoblast (FCM). We further show that Mhcl interacts in vitro with the essential fusion protein Rolling pebbles 7 (Rols7), which is part of a protein complex established at cell contact sites (Fusion-restricted Myogenic-Adhesive Structure or FuRMAS). Here, branched F-actin is likely needed to widen the fusion pore and to integrate the myoblast into the growing muscle. We show that the localization of Mhcl is dependent on the presence of Rols7, and we postulate that Mhcl acts at the FuRMAS as an actin motor protein. We further show that Mhcl deficient embryos develop a wild-type musculature. We thus propose that Mhcl functions redundantly to other myosin heavy chains in myoblasts. Lastly, we found that the protein is detectable adjacent to the sarcomeric Z-discs, suggesting an additional function in mature muscles. - Highlights: ► The class XVIII myosin encoding gene Mhcl is transcribed in the mesoderm. ► Mhcl localization at contact sites of fusing myoblasts depends on Rols7. ► Mhcl interacts in vitro with Rols7 which is essential for myogenesis. ► Functional redundancy with other myosins is likely as mutants show no muscle defects. ► Mhcl localizes adjacent to Z-discs of sarcomeres and might support muscle integrity.

  16. Zinc promotes proliferation and activation of myogenic cells via the PI3K/Akt and ERK signaling cascade

    SciTech Connect

    Ohashi, Kazuya; Nagata, Yosuke; Wada, Eiji; Zammit, Peter S.; Shiozuka, Masataka; Matsuda, Ryoichi

    2015-05-01

    Skeletal muscle stem cells named muscle satellite cells are normally quiescent but are activated in response to various stimuli, such as injury and overload. Activated satellite cells enter the cell cycle and proliferate to produce a large number of myogenic progenitor cells, and these cells then differentiate and fuse to form myofibers. Zinc is one of the essential elements in the human body, and has multiple roles, including cell growth and DNA synthesis. However, the role of zinc in myogenic cells is not well understood, and is the focus of this study. We first examined the effects of zinc on differentiation of murine C2C12 myoblasts and found that zinc promoted proliferation, with an increased number of cells incorporating EdU, but inhibited differentiation with reduced myogenin expression and myotube formation. Furthermore, we used the C2C12 reserve cell model of myogenic quiescence to investigate the role of zinc on activation of myogenic cells. The number of reserve cells incorporating BrdU was increased by zinc in a dose dependent manner, with the number dramatically further increased using a combination of zinc and insulin. Akt and extracellular signal-regulated kinase (ERK) are downstream of insulin signaling, and both were phosphorylated after zinc treatment. The zinc/insulin combination-induced activation involved the phosphoinositide 3-kinase (PI3K)/Akt and ERK cascade. We conclude that zinc promotes activation and proliferation of myogenic cells, and this activation requires phosphorylation of PI3K/Akt and ERK as part of the signaling cascade. - Highlights: • Zinc has roles for promoting proliferation and inhibition differentiation of C2C12. • Zinc promotes activation of reserve cells. • Insulin and zinc synergize activation of reserve cells. • PI3K/Akt and ERK cascade affect zinc/insulin-mediated activation of reserve cells.

  17. Network Analysis for the Identification of Differentially Expressed Hub Genes Using Myogenin Knock-down Muscle Satellite Cells

    PubMed Central

    Jan, Arif Tasleem; Ahmad, Sarafraz; Cho, Kyung-Hyun; Kim, Jihoe; Choi, Inho

    2015-01-01

    Muscle, a multinucleate syncytium formed by the fusion of mononuclear myoblasts, arises from quiescent progenitors (satellite cells) via activation of muscle-specific transcription factors (MyoD, Myf5, myogenin: MYOG, and MRF4). Subsequent to a decline in Pax7, induction in the expression of MYOG is a hallmark of myoblasts that have entered the differentiation phase following cell cycle withdrawal. It is evident that MYOG function cannot be compensated by any other myogenic regulatory factors (MRFs). Despite a plethora of information available regarding MYOG, the mechanism by which MYOG regulates muscle cell differentiation has not yet been identified. Using an RNA-Seq approach, analysis of MYOG knock-down muscle satellite cells (MSCs) have shown that genes associated with cell cycle and division, DNA replication, and phosphate metabolism are differentially expressed. By constructing an interaction network of differentially expressed genes (DEGs) using GeneMANIA, cadherin-associated protein (CTNNA2) was identified as the main hub gene in the network with highest node degree. Four functional clusters (modules or communities) were identified in the network and the functional enrichment analysis revealed that genes included in these clusters significantly contribute to skeletal muscle development. To confirm this finding, in vitro studies revealed increased expression of CTNNA2 in MSCs on day 12 compared to day 10. Expression of CTNNA2 was decreased in MYOG knock-down cells. However, knocking down CTNNA2, which leads to increased expression of extracellular matrix (ECM) genes (type I collagen α1 and type I collagen α2) along with myostatin (MSTN), was not found significantly affecting the expression of MYOG in C2C12 cells. We therefore propose that MYOG exerts its regulatory effects by acting upstream of CTNNA2, which in turn regulates the differentiation of C2C12 cells via interaction with ECM genes. Taken together, these findings highlight a new mechanism by which

  18. Alteration in Phospholipidome Profile of Myoblast H9c2 Cell Line in a Model of Myocardium Starvation and Ischemia.

    PubMed

    Sousa, Bebiana; Melo, Tânia; Campos, Ana; Moreira, Ana S P; Maciel, Elisabete; Domingues, Pedro; Carvalho, Rita Pereira; Rodrigues, Teresa Ribeiro; Girão, Henrique; Domingues, Maria Rosario M

    2016-10-01

    Myocardium infarction is one of the most deathly cardiovascular diseases. It is characterized by myocardium ischemia as a result of nutrients depletion and hypoxia. The cell can respond to this injury by autophagy or apoptosis, which determines the evolution and possible recovery of the myocardium infarction. Lipids play an important role in cardiovascular disease. However reports stating lipidome variations in cardiovascular disease are scarce and the role that lipids play in this pathological condition is not completely understood. The aim of this work was to identify changes in lipid profile of a myoblast H9c2 cell line under starvation and ischemia, to better understand and recognize new biomarkers for myocardial infarction. Lipidomic profile was evaluated by HILIC-LC-MS and GC-MS. Cardiac cells showed alterations in phosphatidylcholines PC (34:1) and PC (36:2), lysophosphatidylcholines lyso PC(16:0), lysoPC(18:1) and lysoPC(18:0), phosphatidylethanolamine PE (34:1), phosphatidylserine PS (36:1), phosphatidylinositol PI (36:2), PI (38:3) and PI (38:5), sphingomyelin SM (34:1) and cardiolipins CL(68:4), CL(72:5) and CL(74:7) in ischemia and/or starvation, in comparison with control. Specific differences observed only in starvation were decrease of SM (34:1) and FA (20:4), and increase of PS (36:1). Differences observed only in ischemia were decrease of PC (36:2), lyso PC (16:0) and FA (18:1) and simultaneous increase of FA (16:0), and FA (18:0). Interestingly, PC (34:1) increased in ischemia and decreased in starvation. In conclusion, our work suggests that lipids are potential markers for evaluation of cell fate, either cell death or recovery, which will be useful to improve diagnosis and prognostic of cardiovascular diseases. J. Cell. Physiol. 231: 2266-2274, 2016. © 2016 Wiley Periodicals, Inc. PMID:26887290

  19. A G-CSF functionalized scaffold for stem cells seeding: a differentiating device for cardiac purposes.

    PubMed

    Spadaccio, Cristiano; Rainer, Alberto; Trombetta, Marcella; Centola, Matteo; Lusini, Mario; Chello, Massimo; Covino, Elvio; De Marco, Federico; Coccia, Raffaella; Toyoda, Yoshiya; Genovese, Jorge A

    2011-05-01

    Myocardial infarction and its consequences represent one of the most demanding challenges in cell therapy and regenerative medicine. Transfer of skeletal myoblasts into decompensated hearts has been performed through intramyocardial injection. However, the achievements of both cardiomyocyte differentiation and precise integration of the injected cells into the myocardial wall, in order to augment synchronized contractility and avoid potentially life-threatening alterations in the electrical conduction of the heart, still remain a major target to be pursued. Recently, granulocytes colony-stimulating factor (G-CSF) fuelled the interest of researchers for its direct effect on cardiomyocytes, inhibiting both apoptosis and remodelling in the failing heart and protecting from ventricular arrhythmias through the up-regulation of connexin 43 (Cx43). We propose a tissue engineering approach concerning the fabrication of an electrospun cardiac graft functionalized with G-CSF, in order to provide the correct signalling sequence to orientate myoblast differentiation and exert important systemic and local effects, positively modulating the infarction microenvironment. Poly-(L-lactide) electrospun scaffolds were seeded with C2C12 murine skeletal myoblast for 48 hrs. Biological assays demonstrated the induction of Cx43 expression along with morphostructural changes resulting in cell elongation and appearance of cellular junctions resembling the usual cardiomyocyte arrangement at the ultrastructural level. The possibility of fabricating extracellular matrix-mimicking scaffolds able to promote myoblast pre-commitment towards myocardiocyte lineage and mitigate the hazardous environment of the damaged myocardium represents an interesting strategy in cardiac tissue engineering. PMID:20518852

  20. Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) activates promyogenic signaling pathways, thereby promoting myoblast differentiation.

    PubMed

    Lee, Sang-Jin; Go, Ga-Yeon; Yoo, Miran; Kim, Yong Kee; Seo, Dong-Wan; Kang, Jong-Sun; Bae, Gyu-Un

    2016-01-29

    Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) regulates postnatal myogenesis by alleviating myostatin activity, but the molecular mechanisms by which it regulates myogenesis are not fully understood. In this study, we investigate molecular mechanisms of PPARβ/δ in myoblast differentiation. C2C12 myoblasts treated with a PPARβ/δ agonist, GW0742 exhibit enhanced myotube formation and muscle-specific gene expression. GW0742 treatment dramatically activates promyogenic kinases, p38MAPK and Akt, in a dose-dependent manner. GW0742-stimulated myoblast differentiation is mediated by p38MAPK and Akt, since it failed to restore myoblast differentiation repressed by inhibition of p38MAPK and Akt. In addition, GW0742 treatment enhances MyoD-reporter activities. Consistently, overexpression of PPARβ/δ enhances myoblast differentiation accompanied by elevated activation of p38MAPK and Akt. Collectively, these results suggest that PPARβ/δ enhances myoblast differentiation through activation of promyogenic signaling pathways. PMID:26768366

  1. Lipogenesis in myoblasts and its regulation of CTRP6 by AdipoR1/Erk/PPARγ signaling pathway.

    PubMed

    Wu, Wenjing; Sun, Yunmei; Zhao, Chen; Zhao, Cunzhen; Chen, Xiaochang; Wang, Guoqiang; Pang, Weijun; Yang, Gongshe

    2016-06-01

    The induced lipogenesis and its regulation in C2C12 myoblasts remain largely unclear. Here, we found that the cocktail method could significantly induce lipogenesis through regulating lipid metabolic genes and Erk1/2 phosphorylation in myoblasts. Meanwhile, the expression and secretion of CTRP6 were increased during ectopic lipogenesis. Moreover, CTRP6 knockdown down-regulated the levels of lipogenic genes and phosphorylated Erk1/2 (p-Erk1/2) in the early lipogenic stage, whereas up-regulated p-Erk1/2 in the terminal differentiation. Interestingly, the effect of CTRP6 siRNA was attenuated by U0126 (a special p-Erk1/2 inhibitor) in myoblasts. Furthermore, AdipoR1, not AdipoR2, was first identified as a receptor of CTRP6 during the process of mitotic clonal expansion. Collectively, we suggest that CTRP6 mediates the ectopic lipogenesis through AdipoR1/Erk/PPARγ signaling pathway in myoblasts. Our findings will shed light on the novel biological function of CTRP6 during myoblast lipogenesis and provide a hopeful direction of improving meat quality of domestic animal by lipogenic regulation in skeletal muscle myoblasts. PMID:27125977

  2. The PARN Deadenylase Targets a Discrete Set of mRNAs for Decay and Regulates Cell Motility in Mouse Myoblasts

    PubMed Central

    Lee, Jerome E.; Lee, Ju Youn; Trembly, Jarrett; Wilusz, Jeffrey; Tian, Bin; Wilusz, Carol J.

    2012-01-01

    PARN is one of several deadenylase enzymes present in mammalian cells, and as such the contribution it makes to the regulation of gene expression is unclear. To address this, we performed global mRNA expression and half-life analysis on mouse myoblasts depleted of PARN. PARN knockdown resulted in the stabilization of 40 mRNAs, including that encoding the mRNA decay factor ZFP36L2. Additional experiments demonstrated that PARN knockdown induced an increase in Zfp36l2 poly(A) tail length as well as increased translation. The elements responsible for PARN-dependent regulation lie within the 3′ UTR of the mRNA. Surprisingly, changes in mRNA stability showed an inverse correlation with mRNA abundance; stabilized transcripts showed either no change or a decrease in mRNA abundance. Moreover, we found that stabilized mRNAs had reduced accumulation of pre–mRNA, consistent with lower transcription rates. This presents compelling evidence for the coupling of mRNA decay and transcription to buffer mRNA abundances. Although PARN knockdown altered decay of relatively few mRNAs, there was a much larger effect on global gene expression. Many of the mRNAs whose abundance was reduced by PARN knockdown encode factors required for cell migration and adhesion. The biological relevance of this observation was demonstrated by the fact that PARN KD cells migrate faster in wound-healing assays. Collectively, these data indicate that PARN modulates decay of a defined set of mRNAs in mammalian cells and implicate this deadenylase in coordinating control of genes required for cell movement. PMID:22956911

  3. Gene transfer and protein dynamics in stem cells using single cell electroporation in a microfluidic device.

    PubMed

    Valero, A; Post, J N; van Nieuwkasteele, J W; Ter Braak, P M; Kruijer, W; van den Berg, A

    2008-01-01

    There is great interest in genetic modification of bone marrow-derived mesenchymal stem cells (MSC), not only for research purposes but also for use in (autologous) patient-derived-patient-used transplantations. A major drawback of bulk methods for genetic modifications of (stem) cells, like bulk-electroporation, is its limited yield of DNA transfection (typically then 10%). This is even more limited when cells are present at very low numbers, as is the case for stem cells. Here we present an alternative technology to transfect cells with high efficiency (>75%), based on single cell electroporation in a microfluidic device. In a first experiment we show that we can successfully transport propidium iodide (PI) into single mouse myoblastic C2C12 cells. Subsequently, we show the use of this microfluidic device to perform successful electroporation of single mouse myoblastic C2C12 cells and single human MSC with vector DNA encoding a green fluorescent-erk1 fusion protein (EGFP-ERK1 (MAPK3)). Finally, we performed electroporation in combination with live imaging of protein expression and dynamics in response to extracellular stimuli, by fibroblast growth factor (FGF-2). We observed nuclear translocation of EGFP-ERK1 in both cell types within 15 min after FGF-2 stimulation. Due to the successful and promising results, we predict that microfluidic devices can be used for highly efficient small-scale 'genetic modification' of cells, and biological experimentation, offering possibilities to study cellular processes at the single cell level. Future applications might be small-scale production of cells for therapeutic application under controlled conditions. PMID:18094762

  4. Isolation and Characterization of Human Fetal Myoblasts

    PubMed Central

    Lapan, Ariya D.; Gussoni, Emanuela

    2011-01-01

    Dissociated human fetal skeletal muscle contains myogenic cells, as well as non-myogenic cells such as adipocytes, fibroblasts, and lymphocytes. It is therefore important to determine an efficient and reliable isolation method to obtain a purer population of myoblasts. Toward this end, fluorescence-activated cell sorting in conjunction with robust myogenic cell surface markers can be utilized to enrich for myoblasts in dissociated muscle. In this chapter, we describe a method to significantly enrich for myoblasts using melanoma cell adhesion molecule (MCAM), which we have determined to be an excellent marker of human fetal myoblasts. The myoblasts resulting from this isolation method can then be expanded in vitro and still retain significant myogenic activity as shown by an in vitro fusion assay. The ability to isolate a highly myogenic population from dissociated muscle facilitates the in vitro study of skeletal muscle development and muscle diseases. Furthermore, robust expansion of these cells will lead to new insights in the development of cell-based therapies for human muscle disorders. PMID:22130828

  5. Losartan enhances the success of myoblast transplantation.

    PubMed

    Fakhfakh, Raouia; Lamarre, Yann; Skuk, Daniel; Tremblay, Jacques P

    2012-01-01

    Duchenne muscular dystrophy is a recessive X-linked genetic disease caused by dystrophin gene mutations. Cell therapy can be a potential approach aiming to introduce a functional dystrophin in the dystrophic patient myofibers. However, this strategy produced so far limited results. Transforming growth factor-β (TGF-β) is a negative regulator of skeletal muscle development and is responsible for limiting myogenic regeneration. The combination of TGF-β signaling inhibition with myoblast transplantation can be an effective therapeutic approach in dystrophin-deficient patients. Our aim was to verify whether the success of human myoblast transplantation in immunodeficient dystrophic mice is enhanced with losartan, a molecule that downregulates TGF-β expression. In vitro, blocking TGF-β activity with losartan increased proliferation and fusion and decreased apoptosis in human myoblasts. In vivo, human myoblasts were transplanted in mice treated with oral losartan. Immunodetection of human dystrophin in tibialis anterior cross sections 1 month posttransplantation revealed more human dystrophin-positive myofibers in these mice than in nontreated dystrophic mice. Thus, blocking the TGF-β signal with losartan treatment improved the success of myoblast transplantation probably by increasing myoblast proliferation and fusion, decreasing macrophage activation, and changing the expression of myogenic regulator factors. PMID:21535912

  6. Skeletal Myoblast Cell Sheet Implantation Ameliorates Both Systolic and Diastolic Cardiac Performance in Canine Dilated Cardiomyopathy Model

    PubMed Central

    Shirasaka, Tomonori; Miyagawa, Shigeru; Fukushima, Satsuki; Kawaguchi, Naomasa; Nakatani, Satoshi; Daimon, Takashi; Okita, Yutaka; Sawa, Yoshiki

    2016-01-01

    Background Improving both systolic and diastolic function may be the most important factor in treating heart failure. In this study, we hypothesized that cell-sheet transplantation could improve these function in the damaged heart. Methods We generated a dilated cardiomyopathy model in beagles by continuous ventricle pacing at 240 beats per minute. After 4 weeks, the beagles underwent skeletal myoblast cell sheet transplantation (SMCST) or a sham operation, and rapid ventricle pacing continued for an additional 4 weeks. Six of the e8 beagles treated by SMCST were still alive 4 weeks after the procedure. We evaluated SMCST's cardiotherapeutic effects by comparing beagles treated by SMCST with beagles that underwent a sham operation (control, n = 5). Results Diastolic function, as well as systolic function improved significantly in the SMCST group as compared with the sham group (control vs SMCST group, median [interquartile range]: E/E', 16 [0.9] vs 11 [1.0]; P < 0.001; tau, 47 [6.0] vs 36 [4.4] ms: P = 0.005. Ejection fraction, 22 (6.0) versus 46 (7.5) %, P < 0.001; end-systolic elastance, 2.5 (0.4) versus 8.2 (3.5) mm Hg/ml, P = 0.001). Histological examination revealed that the volume of collagen I and the collagen I/III ratio in the myocardium were significantly higher in the control than that in the SMCST group (collagen I, 6.0 [0.8] vs 2.6 [1.3]; P = 0.006; collagen I/III ratio, 4.8 [1.7] vs 1.2 [0.4]; P = 0.010). Conclusions The potential of SMCST to ameliorate both systolic and diastolic performance was proven. The SMCST may be an alternative therapy of conventional medical treatment in the dilated cardiomyopathy heart. PMID:26636739

  7. Modulation of myoblast fusion by caveolin-3 in dystrophic skeletal muscle cells: implications for Duchenne muscular dystrophy and limb-girdle muscular dystrophy-1C.

    PubMed

    Volonte, Daniela; Peoples, Aaron J; Galbiati, Ferruccio

    2003-10-01

    Caveolae are vesicular invaginations of the plasma membrane. Caveolin-3 is the principal structural component of caveolae in skeletal muscle cells in vivo. We have recently generated caveolin-3 transgenic mice and demonstrated that overexpression of wild-type caveolin-3 in skeletal muscle fibers is sufficient to induce a Duchenne-like muscular dystrophy phenotype. In addition, we have shown that caveolin-3 null mice display mild muscle fiber degeneration and T-tubule system abnormalities. These data are consistent with the mild phenotype observed in Limb-girdle muscular dystrophy-1C (LGMD-1C) in humans, characterized by a approximately 95% reduction of caveolin-3 expression. Thus, caveolin-3 transgenic and null mice represent valid mouse models to study Duchenne muscular dystrophy (DMD) and LGMD-1C, respectively, in humans. Here, we derived conditionally immortalized precursor skeletal muscle cells from caveolin-3 transgenic and null mice. We show that overexpression of caveolin-3 inhibits myoblast fusion to multinucleated myotubes and lack of caveolin-3 enhances the fusion process. M-cadherin and microtubules have been proposed to mediate the fusion of myoblasts to myotubes. Interestingly, we show that M-cadherin is downregulated in caveolin-3 transgenic cells and upregulated in caveolin-3 null cells. For the first time, variations of M-cadherin expression have been linked to a muscular dystrophy phenotype. In addition, we demonstrate that microtubules are disorganized in caveolin-3 null myotubes, indicating the importance of the cytoskeleton network in mediating the phenotype observed in these cells. Taken together, these results propose caveolin-3 as a key player in myoblast fusion and suggest that defects of the fusion process may represent additional molecular mechanisms underlying the pathogenesis of DMD and LGMD-1C in humans. PMID:14517320

  8. Differentiation of mammalian skeletal muscle cells cultured on microcarrier beads in a rotating cell culture system

    NASA Technical Reports Server (NTRS)

    Torgan, C. E.; Burge, S. S.; Collinsworth, A. M.; Truskey, G. A.; Kraus, W. E.

    2000-01-01

    The growth and repair of adult skeletal muscle are due in part to activation of muscle precursor cells, commonly known as satellite cells or myoblasts. These cells are responsive to a variety of environmental cues, including mechanical stimuli. The overall goal of the research is to examine the role of mechanical signalling mechanisms in muscle growth and plasticity through utilisation of cell culture systems where other potential signalling pathways (i.e. chemical and electrical stimuli) are controlled. To explore the effects of decreased mechanical loading on muscle differentiation, mammalian myoblasts are cultured in a bioreactor (rotating cell culture system), a model that has been utilised to simulate microgravity. C2C12 murine myoblasts are cultured on microcarrier beads in a bioreactor and followed throughout differentiation as they form a network of multinucleated myotubes. In comparison with three-dimensional control cultures that consist of myoblasts cultured on microcarrier beads in teflon bags, myoblasts cultured in the bioreactor exhibit an attenuation in differentiation. This is demonstrated by reduced immunohistochemical staining for myogenin and alpha-actinin. Western analysis shows a decrease, in bioreactor cultures compared with control cultures, in levels of the contractile proteins myosin (47% decrease, p < 0.01) and tropomyosin (63% decrease, p < 0.01). Hydrodynamic measurements indicate that the decrease in differentiation may be due, at least in part, to fluid stresses acting on the myotubes. In addition, constraints on aggregate size imposed by the action of fluid forces in the bioreactor affect differentiation. These results may have implications for muscle growth and repair during spaceflight.

  9. Cytotoxic responses in BC3H1 myoblast cell lines exposed to 1-desulfoyessotoxin.

    PubMed

    Korsnes, Mónica Suárez; Espenes, Arild; Hermansen, Lene C; Loader, Jared I; Miles, Christopher O

    2013-09-01

    1-Desulfoyessotoxin (1-dsYTX) is a desulfated polyether compound belonging to the yessotoxin group of marine toxins. This analogue has been detected in mussels. There are so far no reports on the mechanisms of action of 1-dsYTX in in vitro cell systems. This work evaluates cytotoxic responses in BC3H1 cells exposed to 100 nM 1-dsYTX. The toxicity of 1-dsYTX seems to be similar to that of yessotoxin (YTX). 1-Desulfoyessotoxin induced morphological and biochemical traits typical of a non-apoptotic form of cell death resembling paraptosis. Treated BC3H1 cells showed extensive cytoplasmic vacuolation, enlargement of mitochondria and endoplasmic reticulum and lack of DNA fragmentation. Western blotting analysis revealed phosphorylation of the protein kinase p38 and involvement of the heat shock protein Hsp70. This activation suggests involvement of different signalling pathways for programmed cell death. PMID:23851005

  10. Compatibility of Superparamagnetic Iron Oxide Nanoparticle Labeling for 1H MRI Cell Tracking with 31P MRS for Bioenergetic Measurements

    PubMed Central

    Zhang, Zhuoli; Hancock, Brynne; Leen, Stephanie; Ramaswamy, Sharan; Sollott, Steven J.; Boheler, Kenneth R.; Juhaszova, Magdalena; Lakatta, Edward G.; Spencer, Richard G.; Fishbein, Kenneth W.

    2011-01-01

    Labeling of cells with superparamagnetic iron oxide nanoparticles permits cell tracking by 1H MRI while 31P MRS allows non-invasive evaluation of cellular bioenergetics. We evaluated the compatibility of these two techniques by obtaining 31P NMR spectra of iron-labeled and unlabeled immobilized C2C12 myoblast cells in vitro. Broadened but usable 31P spectra were obtained, and peak area ratios of resonances corresponding to intracellular metabolites showed no significant differences between labeled and unlabeled cell populations. We conclude that 31P NMR spectra can be obtained from cells labeled with sufficient iron to permit visualization by 1H imaging protocols and that these spectra have sufficient quality to be used in assessing metabolic status. This result introduces the possibility of using localized 31P MRS to evaluate the viability of iron-labeled therapeutic cells as well as surrounding host tissue in vivo. PMID:20853523

  11. Proliferation of Myoblast Skeletal Cells on Three-Dimensional Supermacroporous Cryogels

    PubMed Central

    Singh, Deepti; Nayak, Vijayashree; Kumar, Ashok

    2010-01-01

    Cardiac and skeletal muscle tissue engineering provides a smart approach to overcome problems associated with organ transplantation and cardiac tissue and also lays a platform for superior alternative approaches in muscle regeneration. The aim of the study was to demonstrate cryogel scaffold potential in the field of skeletal muscle and cardiac tissue engineering. Poly-hydroxyethyl methacrylate (pHEMA)-gelatin cryogel scaffold was synthesized using cryogelation technique and such a designed material is being reported first time. Rheology study of the pHEMA-gelatin (HG) suggested that the cryogel scaffolds were stable at different temperatures and phase angle remained constant in both dry and wet state. HG cryogel was able to bear increased stress without leading to deformation. Monitoring the hydration of HG scaffold showed shift from a stiff to a more pliable material and upon continuing hydration, shear modulus remained constant with no further change observed. However, the change in phase angle <0.24º indicates a gradual increase in stiffness of the material over time. Scaffold synthesised using such polymer combinations gave cells a native environment for proliferation and surface stiffness have shown to help in differentiation of the cells. Myoskeletal cell lines were cultured on these scaffolds to check the biocompatibility and cell proliferation. Alamar blue assay performed over a period of 3 weeks analysed the metabolic activity of cells which showed more than 60% increase in the total cellular activity. DNA content of cells was found to be directly related to number of cells present at a given time point and this was found to have increased by more than 50% in 3 weeks. Since in 3-D scaffold the surface area is more in comparison to 2-D, hence better cell proliferation is observed. Hoechst and DAPI staining showed tubular structure and alignment of the cells during formation of the tubules shows promising cellular response to the cryogel matrix. The

  12. Insulin-induced oxidative stress up-regulates heme oxygenase-1 via diverse signaling cascades in the C2 skeletal myoblast cell line.

    PubMed

    Aggeli, Ioanna-Katerina; Theofilatos, Dimitris; Beis, Isidoros; Gaitanaki, Catherine

    2011-04-01

    Impaired insulin sensitivity (insulin resistance) is a common denominator in many metabolic disorders, exerting pleiotropic effects on skeletal muscle, liver, and adipose tissue function. Heme oxygenase-1 (HOX-1), the rate-limiting enzyme in heme catabolism, has recently been shown to confer an antidiabetic effect while regulating cellular redox-buffering capacity. Therefore, in the present study, we probed into the mechanisms underlying the effect of insulin on HOX-1 in C2 skeletal myoblasts. Hence, insulin was found to suppress C2 myoblasts viability via stimulation of oxidative stress, with HOX-1 counteracting this action. Insulin induced HOX-1 expression in a time- and dose-dependent manner, an effect attenuated by selective inhibitors of ERK1/2 (PD98059), Src (4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d] pyrimidine), and c-Jun terminal kinases 1 and 2 (SP600125) pathways. Furthermore, nuclear factor-κB role in insulin-induced HOX-1 up-regulation was verified, with ERK1/2, Src, and c-Jun terminal kinases 1 and 2 mediating p65-nuclear factor-κB subunit phosphorylation. Overall, our novel findings highlight for the first time the transduction mechanisms mediating HOX-1 induction in insulin-treated C2 myoblasts. This effect was established to be cell type specific because insulin failed to promote HOX-1 expression in HepG2 hepatoma cells. Deciphering the signaling networks involved in insulin-stimulated HOX-1 up-regulation is of prominent significance because it may potentially contribute to elucidation of the mechanisms involved in associated metabolic pathologies. PMID:21325398

  13. Live cell tracking of symmetry break in actin cytoskeleton triggered by abrupt changes in micromechanical environments.

    PubMed

    Inoue, S; Frank, V; Hörning, M; Kaufmann, S; Yoshikawa, H Y; Madsen, J P; Lewis, A L; Armes, S P; Tanaka, M

    2015-12-01

    With the aid of stimulus-responsive hydrogel substrates composed of ABA triblock copolymer micelles, we monitored the morphological dynamics of myoblast (C2C12) cells in response to an abrupt change in the substrate elasticity by live cell imaging. The remodeling of actin cytoskeletons could be monitored by means of transient transfection with LifeAct-GFP. Dynamic changes in the orientational order of actin filaments were characterized by an order parameter, which enables one to generalize the mechanically induced actin cytoskeletons as a break of symmetry. The critical role that acto-myosin complexes play in the morphological transition was verified by the treatment of cells with myosin II inhibitor (blebbistatin) and the fluorescence localization of focal adhesion contacts. Such dynamically tunable hydrogels can be utilized as in vitro cellular micro-environments that can exert time-dependent stimuli to mechanically regulate target cells. PMID:26347909

  14. Intercellular adhesion molecule-1 expression by skeletal muscle cells augments myogenesis

    SciTech Connect

    Goh, Qingnian; Dearth, Christopher L.; Corbett, Jacob T.; Pierre, Philippe; Chadee, Deborah N.; Pizza, Francis X.

    2015-02-15

    We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast–myoblast adhesion, myotube formation, myonuclear number, myotube alignment, myotube–myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube–myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle. - Highlights: • We examined mechanisms through which skeletal muscle cell expression of ICAM-1 facilitates events of in vitro myogenesis. • Expression of ICAM-1 by cultured myoblasts did not influence their ability to proliferate or differentiate. • Skeletal muscle cell expression of ICAM-1 augmented myoblast fusion, myotube alignment, myotube–myotube fusion, and myotube size. • ICAM-1 augmented myogenic processes through

  15. Correction of the FSHD myoblast differentiation defect by fusion with healthy myoblasts.

    PubMed

    Dib, Carla; Bou Saada, Yara; Dmitriev, Petr; Richon, Catherine; Dessen, Philippe; Laoudj-Chenivesse, Dalila; Carnac, Gilles; Lipinski, Marc; Vassetzky, Yegor S

    2016-01-01

    Facioscapulohumeral dystrophy (FSHD) is a neuromuscular disease with a prevalence that could reach 1 in 8,000 characterized by progressive asymmetric muscle weakness. Myoblasts isolated from FSHD muscles exhibit morphological differentiation defects and show a distinct transcription profile. These abnormalities may be linked to the muscle weakness in FSHD patients. We have tested whether fusion of FSHD myoblasts with primary myoblasts isolated from healthy individuals could correct the differentiation defects. Our results show that the number of hybrid myotubes with normal phenotype increased with the percentage of normal myoblasts initially cultured. We demonstrated that a minimum of 50% of normal nuclei is required for a phenotypic correction of the FSHD phenotype. Moreover, transcriptomic profiles of phenotypically corrected hybrid myotubes showed that the expression of deregulated genes in FSHD myotubes became almost normal. The number of deregulated pathways also decreased from 39 in FSHD myotubes to one in hybrid myotubes formed with 40% FSHD and 60% normal myoblasts. We thus propose that while phenotypical and functional correction of FSHD is feasible, it requires more than 50% of normal myoblasts, it creates limitations for cell therapy in the FSHD context. PMID:26218298

  16. Living biointerfaces based on non-pathogenic bacteria to direct cell differentiation

    NASA Astrophysics Data System (ADS)

    Rodrigo-Navarro, Aleixandre; Rico, Patricia; Saadeddin, Anas; Garcia, Andres J.; Salmeron-Sanchez, Manuel

    2014-07-01

    Genetically modified Lactococcus lactis, non-pathogenic bacteria expressing the FNIII7-10 fibronectin fragment as a protein membrane have been used to create a living biointerface between synthetic materials and mammalian cells. This FNIII7-10 fragment comprises the RGD and PHSRN sequences of fibronectin to bind α5β1 integrins and triggers signalling for cell adhesion, spreading and differentiation. We used L. lactis strain to colonize material surfaces and produce stable biofilms presenting the FNIII7-10 fragment readily available to cells. Biofilm density is easily tunable and remains stable for several days. Murine C2C12 myoblasts seeded over mature biofilms undergo bipolar alignment and form differentiated myotubes, a process triggered by the FNIII7-10 fragment. This biointerface based on living bacteria can be further modified to express any desired biochemical signal, establishing a new paradigm in biomaterial surface functionalisation for biomedical applications.

  17. Transcription factor ZBED6 mediates IGF2 gene expression by regulating promoter activity and DNA methylation in myoblasts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Zinc finger, BED-type containing 6 (ZBED6) is an important transcription factor in placental mammals, affecting development, cell proliferation and growth. In this study, we found that the expression of the ZBED6 and IGF2 were up regulated during C2C12 differentiation. The IGF2 expression levels wer...

  18. Phosphatidylserine directly and positively regulates fusion of myoblasts into myotubes.

    PubMed

    Jeong, Jaemin; Conboy, Irina M

    2011-10-14

    Cell membrane consists of various lipids such as phosphatidylserine (PS), phosphatidylcholine (PC), and phosphatidylethanolamine (PE). Among them, PS is a molecular marker of apoptosis, because it is located to the inner leaflet of plasma membrane generally but it is moved to the outer leaflet during programmed cell death. The process of apoptosis has been implicated in the fusion of muscle progenitor cells, myoblasts, into myotubes. However, it remained unclear whether PS regulates muscle cell differentiation directly. In this paper, localization of PS to the outer leaflet of plasma membrane in proliferating primary myoblasts and during fusion of these myoblasts into myotubes is validated using Annexin V. Moreover, we show the presence of PS clusters at the cell-cell contact points, suggesting the importance of membrane ruffling and PS exposure for the myogenic cell fusion. Confirming this conclusion, experimentally constructed PS, but not PC liposomes dramatically enhance the formation of myotubes from myoblasts, thus demonstrating a direct positive effect of PS on the muscle cell fusion. In contrast, myoblasts exposed to PC liposomes produce long myotubes with low numbers of myonuclei. Moreover, pharmacological masking of PS on the myoblast surface inhibits fusion of these cells into myotubes in a dose-dependent manner. PMID:21910971

  19. G-protein coupled receptor BAI3 promotes myoblast fusion in vertebrates.

    PubMed

    Hamoud, Noumeira; Tran, Viviane; Croteau, Louis-Philippe; Kania, Artur; Côté, Jean-François

    2014-03-11

    Muscle fibers form as a result of myoblast fusion, yet the cell surface receptors regulating this process are unknown in vertebrates. In Drosophila, myoblast fusion involves the activation of the Rac pathway by the guanine nucleotide exchange factor Myoblast City and its scaffolding protein ELMO, downstream of cell-surface cell-adhesion receptors. We previously showed that the mammalian ortholog of Myoblast City, DOCK1, functions in an evolutionarily conserved manner to promote myoblast fusion in mice. In search for regulators of myoblast fusion, we identified the G-protein coupled receptor brain-specific angiogenesis inhibitor (BAI3) as a cell surface protein that interacts with ELMO. In cultured cells, BAI3 or ELMO1/2 loss of function severely impaired myoblast fusion without affecting differentiation and cannot be rescued by reexpression of BAI3 mutants deficient in ELMO binding. The related BAI protein family member, BAI1, is functionally distinct from BAI3, because it cannot rescue the myoblast fusion defects caused by the loss of BAI3 function. Finally, embryonic muscle precursor expression of a BAI3 mutant unable to bind ELMO was sufficient to block myoblast fusion in vivo. Collectively, our findings provide a role for BAI3 in the relay of extracellular fusion signals to their intracellular effectors, identifying it as an essential transmembrane protein for embryonic vertebrate myoblast fusion. PMID:24567399

  20. Fine-Tuning of the Actin Cytoskeleton and Cell Adhesion During Drosophila Development by the Unconventional Guanine Nucleotide Exchange Factors Myoblast City and Sponge

    PubMed Central

    Biersmith, Bridget; Wang, Zong-Heng; Geisbrecht, Erika R.

    2015-01-01

    The evolutionarily conserved Dock proteins function as unconventional guanine nucleotide exchange factors (GEFs). Upon binding to engulfment and cell motility (ELMO) proteins, Dock–ELMO complexes activate the Rho family of small GTPases to mediate a diverse array of biological processes, including cell motility, apoptotic cell clearance, and axon guidance. Overlapping expression patterns and functional redundancy among the 11 vertebrate Dock family members, which are subdivided into four families (Dock A, B, C, and D), complicate genetic analysis. In both vertebrate and invertebrate systems, the actin dynamics regulator, Rac, is the target GTPase of the Dock-A subfamily. However, it remains unclear whether Rac or Rap1 are the in vivo downstream GTPases of the Dock-B subfamily. Drosophila melanogaster is an excellent genetic model organism for understanding Dock protein function as its genome encodes one ortholog per subfamily: Myoblast city (Mbc; Dock A) and Sponge (Spg; Dock B). Here we show that the roles of Spg and Mbc are not redundant in the Drosophila somatic muscle or the dorsal vessel. Moreover, we confirm the in vivo role of Mbc upstream of Rac and provide evidence that Spg functions in concert with Rap1, possibly to regulate aspects of cell adhesion. Together these data show that Mbc and Spg can have different downstream GTPase targets. Our findings predict that the ability to regulate downstream GTPases is dependent on cellular context and allows for the fine-tuning of actin cytoskeletal or cell adhesion events in biological processes that undergo cell morphogenesis. PMID:25908317

  1. Large dynamic range digital nanodot gradients of biomolecules made by low-cost nanocontact printing for cell haptotaxis.

    PubMed

    Ricoult, Sébastien G; Pla-Roca, Mateu; Safavieh, Roozbeh; Lopez-Ayon, G Monserratt; Grütter, Peter; Kennedy, Timothy E; Juncker, David

    2013-10-11

    A novel method is introduced for ultrahigh throughput and ultralow cost patterning of biomolecules with nanometer resolution and novel 2D digital nanodot gradients (DNGs) with mathematically defined slopes are created. The technique is based on lift-off nanocontact printing while using high-resolution photopolymer stamps that are rapidly produced at a low cost through double replication from Si originals. Printed patterns with 100 nm features are shown. DNGs with varying spacing between the dots and a record dynamic range of 4400 are produced; 64 unique DNGs, each with hundreds of thousands of dots, are inked and printed in 5.5 min. The adhesive response and haptotaxis of C2C12 myoblast cells on DNGs demonstrated their biofunctionality. The great flexibility in pattern design, the massive parallel ability, the ultra low cost, and the extreme ease of polymer lift-off nanocontact printing will facilitate its use for various biological and medical applications. PMID:23606620

  2. Phosphatidylserine directly and positively regulates fusion of myoblasts into myotubes

    SciTech Connect

    Jeong, Jaemin; Conboy, Irina M.

    2011-10-14

    Highlights: {yields} PS broadly and persistently trans-locates to the outer leaflet of plasma membrane during myoblast fusion into myotubes. {yields} Robust myotubes are formed when PS liposomes are added exogenously. {yields} PS increases the width of de novo myotubes and the numbers of myonuclei, but not the myotube length. {yields} Annexin V or PS antibody inhibits myotube formation by masking exposed PS. -- Abstract: Cell membrane consists of various lipids such as phosphatidylserine (PS), phosphatidylcholine (PC), and phosphatidylethanolamine (PE). Among them, PS is a molecular marker of apoptosis, because it is located to the inner leaflet of plasma membrane generally but it is moved to the outer leaflet during programmed cell death. The process of apoptosis has been implicated in the fusion of muscle progenitor cells, myoblasts, into myotubes. However, it remained unclear whether PS regulates muscle cell differentiation directly. In this paper, localization of PS to the outer leaflet of plasma membrane in proliferating primary myoblasts and during fusion of these myoblasts into myotubes is validated using Annexin V. Moreover, we show the presence of PS clusters at the cell-cell contact points, suggesting the importance of membrane ruffling and PS exposure for the myogenic cell fusion. Confirming this conclusion, experimentally constructed PS, but not PC liposomes dramatically enhance the formation of myotubes from myoblasts, thus demonstrating a direct positive effect of PS on the muscle cell fusion. In contrast, myoblasts exposed to PC liposomes produce long myotubes with low numbers of myonuclei. Moreover, pharmacological masking of PS on the myoblast surface inhibits fusion of these cells into myotubes in a dose-dependent manner.

  3. Computerized microfluidic cell culture using elastomeric channels and Braille displays

    PubMed Central

    Gu, Wei; Zhu, Xiaoyue; Futai, Nobuyuki; Cho, Brenda S.; Takayama, Shuichi

    2004-01-01

    Computer-controlled microfluidics would advance many types of cellular assays and microscale tissue engineering studies wherever spatiotemporal changes in fluidics need to be defined. However, this goal has been elusive because of the limited availability of integrated, programmable pumps and valves. This paper demonstrates how a refreshable Braille display, with its grid of 320 vertically moving pins, can power integrated pumps and valves through localized deformations of channel networks within elastic silicone rubber. The resulting computerized fluidic control is able to switch among: (i) rapid and efficient mixing between streams, (ii) multiple laminar flows with minimal mixing between streams, and (iii) segmented plug-flow of immiscible fluids within the same channel architecture. The same control method is used to precisely seed cells, compartmentalize them into distinct subpopulations through channel reconfiguration, and culture each cell subpopulation for up to 3 weeks under perfusion. These reliable microscale cell cultures showed gradients of cellular behavior from C2C12 myoblasts along channel lengths, as well as differences in cell density of undifferentiated myoblasts and differentiation patterns, both programmable through different flow rates of serum-containing media. This technology will allow future microscale tissue or cell studies to be more accessible, especially for high-throughput, complex, and long-term experiments. The microfluidic actuation method described is versatile and computer programmable, yet simple, well packaged, and portable enough for personal use. PMID:15514025

  4. Nitric oxide donors, sodium nitroprusside and S-nitroso-N-acetylpencillamine, stimulate myoblast proliferation in vitro

    NASA Technical Reports Server (NTRS)

    Ulibarri, J. A.; Mozdziak, P. E.; Schultz, E.; Cook, C.; Best, T. M.

    1999-01-01

    Nitric oxide (NO) is an inter- and intracellular messenger involved in a variety of physiologic and pathophysiologic conditions. The effect of two NO donors, sodium nitroprusside (SNP) and S-nitroso-N-acetylpenicillamine (SNAP) and their effect on myoblast proliferation was examined. Both donors stimulated an increase in myoblast cell number over a range (1-10 microM) of donor concentrations. However, 50 microM SNAP inhibited myoblast proliferation. Cell numbers from cultures treated with degraded 10 microM SNAP were equivalent to the control. Therefore, it appears NO can stimulate as well as inhibit myoblast proliferation.

  5. Defining the role of mesenchymal stromal cells on the regulation of matrix metalloproteinases in skeletal muscle cells

    SciTech Connect

    Sassoli, Chiara; Nosi, Daniele; Tani, Alessia; Chellini, Flaminia; Mazzanti, Benedetta; Quercioli, Franco; Zecchi-Orlandini, Sandra; Formigli, Lucia

    2014-05-01

    Recent studies indicate that mesenchymal stromal cell (MSC) transplantation improves healing of injured and diseased skeletal muscle, although the mechanisms of benefit are poorly understood. In the present study, we investigated whether MSCs and/or their trophic factors were able to regulate matrix metalloproteinase (MMP) expression and activity in different cells of the muscle tissue. MSCs in co-culture with C2C12 cells or their conditioned medium (MSC-CM) up-regulated MMP-2 and MMP-9 expression and function in the myoblastic cells; these effects were concomitant with the down-regulation of the tissue inhibitor of metalloproteinases (TIMP)-1 and -2 and with increased cell motility. In the single muscle fiber experiments, MSC-CM administration increased MMP-2/9 expression in Pax-7{sup +} satellite cells and stimulated their mobilization, differentiation and fusion. The anti-fibrotic properties of MSC-CM involved also the regulation of MMPs by skeletal fibroblasts and the inhibition of their differentiation into myofibroblasts. The treatment with SB-3CT, a potent MMP inhibitor, prevented in these cells, the decrease of α-smooth actin and type-I collagen expression induced by MSC-CM, suggesting that MSC-CM could attenuate the fibrogenic response through mechanisms mediated by MMPs. Our results indicate that growth factors and cytokines released by these cells may modulate the fibrotic response and improve the endogenous mechanisms of muscle repair/regeneration. - Highlights: • MSC-CM contains paracrine factors that up-regulate MMP expression and function in different skeletal muscle cells. • MSC-CM promotes myoblast and satellite cell migration, proliferation and differentiation. • MSC-CM negatively interferes with fibroblast-myoblast transition in primary skeletal fibroblasts. • Paracrine factors from MSCs modulate the fibrotic response and improve the endogenous mechanisms of muscle regeneration.

  6. Sphingosine-1-phosphate mediates epidermal growth factor-induced muscle satellite cell activation

    SciTech Connect

    Nagata, Yosuke Ohashi, Kazuya; Wada, Eiji; Yuasa, Yuki; Shiozuka, Masataka; Nonomura, Yoshiaki; Matsuda, Ryoichi

    2014-08-01

    Skeletal muscle can regenerate repeatedly due to the presence of resident stem cells, called satellite cells. Because satellite cells are usually quiescent, they must be activated before participating in muscle regeneration in response to stimuli such as injury, overloading, and stretch. Although satellite cell activation is a crucial step in muscle regeneration, little is known of the molecular mechanisms controlling this process. Recent work showed that the bioactive lipid sphingosine-1-phosphate (S1P) plays crucial roles in the activation, proliferation, and differentiation of muscle satellite cells. We investigated the role of growth factors in S1P-mediated satellite cell activation. We found that epidermal growth factor (EGF) in combination with insulin induced proliferation of quiescent undifferentiated mouse myoblast C2C12 cells, which are also known as reserve cells, in serum-free conditions. Sphingosine kinase activity increased when reserve cells were stimulated with EGF. Treatment of reserve cells with the D-erythro-N,N-dimethylsphingosine, Sphingosine Kinase Inhibitor, or siRNA duplexes specific for sphingosine kinase 1, suppressed EGF-induced C2C12 activation. We also present the evidence showing the S1P receptor S1P2 is involved in EGF-induced reserve cell activation. Moreover, we demonstrated a combination of insulin and EGF promoted activation of satellite cells on single myofibers in a manner dependent on SPHK and S1P2. Taken together, our observations show that EGF-induced satellite cell activation is mediated by S1P and its receptor. - Highlights: • EGF in combination with insulin induces proliferation of quiescent C2C12 cells. • Sphingosine kinase activity increases when reserve cells are stimulated with EGF. • EGF-induced activation of reserve cells is dependent on sphingosine kinase and ERK. • The S1P receptor S1P2 is involved in EGF-induced reserve cell activation. • EGF-induced reserve cell activation is mediated by S1P and its

  7. Myoblasts from affected and non-affected FSHD muscles exhibit morphological differentiation defects

    PubMed Central

    Barro, Marietta; Carnac, Gilles; Flavier, Sébastien; Mercier, Jacques; Vassetzky, Yegor; Laoudj-Chenivesse, Dalila

    2010-01-01

    Abstract Facioscapulohumeral dystrophy (FSHD) is a muscular hereditary disease with a prevalence of 1 in 20,000 caused by a partial deletion of a subtelomeric repeat array on chromosome 4q. However, very little is known about the pathogenesis as well as the molecular and biochemical changes linked to the progressive muscle degeneration observed in these patients. Several studies have investigated possible pathophysiological pathways in FSHD myoblasts and mature muscle cells but some of these reports were apparently in contradiction. The discrepancy between these studies may be explained by differences between the sources of myoblasts. Therefore, we decided to thoroughly analyze affected and unaffected muscles from patients with FSHD in terms of vulnerability to oxidative stress, differentiation capacity and morphological abnormalities. We have established a panel of primary myoblast cell cultures from patients affected with FSHD and matched healthy individuals. Our results show that primary myoblasts are more susceptible to an induced oxidative stress than control myoblasts. Moreover, we demonstrate that both types of FSHD primary myoblasts differentiate into multi-nucleated myotubes, which present morphological abnormalities. Whereas control myoblasts fuse to form branched myotubes with aligned nuclei, FSHD myoblasts fuse to form either thin and branched myotubes with aligned nuclei or large myotubes with random nuclei distribution. In conclusion, we postulate that these abnormalities could be responsible for muscle weakness in patients with FSHD and provide an important marker for FSHD myoblasts. PMID:18505476

  8. Lkb1 deletion upregulates Pax7 expression through activating Notch signaling pathway in myoblasts.

    PubMed

    Shan, Tizhong; Zhang, Pengpeng; Xiong, Yan; Wang, Yizhen; Kuang, Shihuan

    2016-07-01

    Satellite cells play crucial roles in mediating the growth, maintenance, and repair of postnatal skeletal muscle. Activated satellite cells (myoblasts) can divide symmetrically or asymmetrically to generate progenies that self-renewal, proliferate or differentiate. Pax7 is a defining marker of quiescent and activated satellite cells, but not differentiated myoblast. We demonstrate here that deletion of Lkb1 upregulates Pax7 expression in myoblasts and inhibits asymmetric divisions that generate differentiating progenies. Furthermore, we find that Lkb1 activates the Notch signaling pathway, which subsequently increases Pax7 expression and promotes self-renewal and proliferation while inhibiting differentiation. Mechanistic studies reveal that Lkb1 regulates Notch activation through AMPK-mTOR pathway in myoblasts. Together, these results establish a key role of Lkb1 in regulating myoblast division and cell fates choices. PMID:27131604

  9. Down-regulation of the mitochondrial matrix peptidase ClpP in muscle cells causes mitochondrial dysfunction and decreases cell proliferation.

    PubMed

    Deepa, Sathyaseelan S; Bhaskaran, Shylesh; Ranjit, Rojina; Qaisar, Rizwan; Nair, Binoj C; Liu, Yuhong; Walsh, Michael E; Fok, Wilson C; Van Remmen, Holly

    2016-02-01

    The caseinolytic peptidase P (ClpP) is the endopeptidase component of the mitochondrial matrix ATP-dependent ClpXP protease. ClpP degrades unfolded proteins to maintain mitochondrial protein homeostasis and is involved in the initiation of the mitochondrial unfolded protein response (UPR(mt)). Outside of an integral role in the UPR(mt), the cellular function of ClpP is not well characterized in mammalian cells. To investigate the role of ClpP in mitochondrial function, we generated C2C12 muscle cells that are deficient in ClpP using siRNA or stable knockdown using lentiviral transduction. Reduction of ClpP levels by ~70% in C2C12 muscle cells resulted in a number of mitochondrial alterations including reduced mitochondrial respiration and reduced oxygen consumption rate in response to electron transport chain (ETC) complex I and II substrates. The reduction in ClpP altered mitochondrial morphology, changed the expression level of mitochondrial fission protein Drp1 and blunted UPR(mt) induction. In addition, ClpP deficient cells showed increased generation of reactive oxygen species (ROS) and decreased membrane potential. At the cellular level, reduction of ClpP impaired myoblast differentiation, cell proliferation and elevated phosphorylation of eukaryotic initiation factor 2 alpha (eIF2α) suggesting an inhibition of translation. Our study is the first to define the effects of ClpP deficiency on mitochondrial function in muscle cells in vitro. In addition, we have uncovered novel effects of ClpP on mitochondrial morphology, cell proliferation and protein translation pathways in muscle cells. PMID:26721594

  10. [Transplantation of normal or genetically modified myoblasts for the treatment of hereditary or acquired diseases].

    PubMed

    Tremblay, J P; Vilquin, J T

    2001-01-01

    The clinical trials of myoblast transplantation in Duchenne Muscular Dystrophy (DMD) patients produced disappointing results. The main problems responsible for these poor results have since then been identified and partially resolved. One of them was related to the use of an inadequate immunosuppression and, since then, immunosuppression with FK506 has permitted successful myoblast transplantation not only in mice but also in monkeys. The requirement for a sustained immunosuppression may be eventually avoided by developing a state of tolerance to the allogeneic cells or by autologous transplantation of genetically corrected myoblasts or stem cells. The rapid death of 75-80% of the injected myoblasts during the first five days has also contributed to the limited success of the early trials. This death was due to an inflammatory reaction and has been compensated in animal experiments by the injection of a larger number of cells (30 millions per cc). Finally, the myoblasts migrated only 0.5 mm away from their site of injection. This problem is currently compensated in animal experiments by injecting the myoblasts at every mm. The number of injections required may eventually be reduced by transfecting myoblasts with one or several metalloproteinase genes. The very good results obtained during the last two years in primates permit us to undertake a new phase I clinical trial to verify that myoblast transplantation can lead to the formation of muscle fibers expressing normal dystrophin in muscles of DMD patients. PMID:11530497

  11. Activation of nicotinic acetylcholine receptors increases the rate of fusion of cultured human myoblasts.

    PubMed Central

    Krause, R M; Hamann, M; Bader, C R; Liu, J H; Baroffio, A; Bernheim, L

    1995-01-01

    1. Fusion of myogenic cells is important for muscle growth and repair. The aim of this study was to examine the possible involvement of nicotinic acetylcholine receptors (nAChR) in the fusion process of myoblasts derived from postnatal human satellite cells. 2. Acetylcholine-activated currents (ACh currents) were characterized in pure preparations of freshly isolated satellite cells, proliferating myoblasts, myoblasts triggered to fuse and myotubes, using whole-cell and single-channel voltage clamp recordings. Also, the effect of cholinergic agonists on myoblast fusion was tested. 3. No nAChR were observed in freshly isolated satellite cells. nAChR were first observed in proliferating myoblasts, but ACh current densities increased markedly only just before fusion. At that time most mononucleated myoblasts had ACh current densities similar to those of myotubes. ACh channels had similar properties at all stages of myoblast maturation. 4. The fraction of myoblasts that did not fuse under fusion-promoting conditions had no ACh current and thus resembled freshly isolated satellite cells. 5. The rate of myoblast fusion was increased by carbachol, an effect antagonized by alpha-bungarotoxin, curare and decamethonium, but not by atropine, indicating that nAChR were involved. Even though a prolonged exposure to carbachol led to desensitization, a residual ACh current persisted after several days of exposure to the nicotinic agonist. 6. Our observations suggest that nAChR play a role in myoblast fusion and that part of this role is mediated by the flow of ions through open ACh channels. Images Figure 1 Figure 2 Figure 3 PMID:8788942

  12. Nanonet Force Microscopy for Measuring Cell Forces.

    PubMed

    Sheets, Kevin; Wang, Ji; Zhao, Wei; Kapania, Rakesh; Nain, Amrinder S

    2016-07-12

    The influence of physical forces exerted by or felt by cells on cell shape, migration, and cytoskeleton arrangement is now widely acknowledged and hypothesized to occur due to modulation of cellular inside-out forces in response to changes in the external fibrous environment (outside-in). Our previous work using the non-electrospinning Spinneret-based Tunable Engineered Parameters' suspended fibers has revealed that cells are able to sense and respond to changes in fiber curvature and structural stiffness as evidenced by alterations to focal adhesion cluster lengths. Here, we present the development and application of a suspended nanonet platform for measuring C2C12 mouse myoblast forces attached to fibers of three diameters (250, 400, and 800 nm) representing a wide range of structural stiffness (3-50 nN/μm). The nanonet force microscopy platform measures cell adhesion forces in response to symmetric and asymmetric external perturbation in single and cyclic modes. We find that contractility-based, inside-out forces are evenly distributed at the edges of the cell, and that forces are dependent on fiber structural stiffness. Additionally, external perturbation in symmetric and asymmetric modes biases cell-fiber failure location without affecting the outside-in forces of cell-fiber adhesion. We then extend the platform to measure forces of (1) cell-cell junctions, (2) single cells undergoing cyclic perturbation in the presence of drugs, and (3) cancerous single-cells transitioning from a blebbing to a pseudopodial morphology. PMID:27410747

  13. Myoblast cytonemes mediate Wg signaling from the wing imaginal disc and Delta-Notch signaling to the air sac primordium

    PubMed Central

    Huang, Hai; Kornberg, Thomas B

    2015-01-01

    The flight muscles, dorsal air sacs, wing blades, and thoracic cuticle of the Drosophila adult function in concert, and their progenitor cells develop together in the wing imaginal disc. The wing disc orchestrates dorsal air sac development by producing decapentaplegic and fibroblast growth factor that travel via specific cytonemes in order to signal to the air sac primordium (ASP). Here, we report that cytonemes also link flight muscle progenitors (myoblasts) to disc cells and to the ASP, enabling myoblasts to relay signaling between the disc and the ASP. Frizzled (Fz)-containing myoblast cytonemes take up Wingless (Wg) from the disc, and Delta (Dl)-containing myoblast cytonemes contribute to Notch activation in the ASP. Wg signaling negatively regulates Dl expression in the myoblasts. These results reveal an essential role for cytonemes in Wg and Notch signaling and for a signal relay system in the myoblasts. DOI: http://dx.doi.org/10.7554/eLife.06114.001 PMID:25951303

  14. Prostaglandin E2 promotes proliferation of skeletal muscle myoblasts via EP4 receptor activation

    PubMed Central

    Mo, Chenglin; Zhao, Ruonan; Vallejo, Julian; Igwe, Orisa; Bonewald, Lynda; Wetmore, Lori; Brotto, Marco

    2015-01-01

    We recently demonstrated that conditioned media (CM) from osteocytes enhances myogenic differentiation of myoblasts, suggesting that signaling from bone may be important for skeletal muscle myogenesis. The effect of CM was closely mimicked by prostaglandin E2 (PGE2), a bioactive lipid mediator in various physiological or pathological conditions. PGE2 is secreted at high levels by osteocytes and such secretion is further enhanced under loading conditions. Although four types of receptors, EP1 to EP4, mediate PGE2 signaling, it is unknown whether these receptors play a role in myogenesis. Therefore, in this study, the expression of EPs in mouse primary myoblasts was characterized, followed by examination of their roles in myoblast proliferation by treating myoblasts with PGE2 or specific agonists. All four PGE2 receptor mRNAs were detectable by quantitative real-time PCR (qPCR), but only PGE2 and EP4 agonist CAY 10598 significantly enhance myoblast proliferation. EP1/EP3 agonist 17-phenyl trinor PGE2 (17-PT PGE2) and EP2 agonist butaprost did not have any significant effects. Moreover, treatment with EP4 antagonist L161,982 dose-dependently inhibited myoblast proliferation. These results were confirmed by cell cycle analysis and the gene expression of cell cycle regulators. Concomitant with the inhibition of myoblast proliferation, treatment with L161,982 significantly increased intracellular reactive oxygen species (ROS) levels. Cotreatment with antioxidant N-acetyl cysteine (NAC) or sodium ascorbate (SA) successfully reversed the inhibition of myoblast proliferation and ROS overproduction caused by L161,982. Therefore, PGE2 signaling via the EP4 receptor regulates myogenesis by promoting myoblast proliferation and blocking this receptor results in increased ROS production in myoblasts. PMID:25785867

  15. Prostaglandin E2 promotes proliferation of skeletal muscle myoblasts via EP4 receptor activation.

    PubMed

    Mo, Chenglin; Zhao, Ruonan; Vallejo, Julian; Igwe, Orisa; Bonewald, Lynda; Wetmore, Lori; Brotto, Marco

    2015-01-01

    We recently demonstrated that conditioned media (CM) from osteocytes enhances myogenic differentiation of myoblasts, suggesting that signaling from bone may be important for skeletal muscle myogenesis. The effect of CM was closely mimicked by prostaglandin E2 (PGE2), a bioactive lipid mediator in various physiological or pathological conditions. PGE2 is secreted at high levels by osteocytes and such secretion is further enhanced under loading conditions. Although four types of receptors, EP1 to EP4, mediate PGE2 signaling, it is unknown whether these receptors play a role in myogenesis. Therefore, in this study, the expression of EPs in mouse primary myoblasts was characterized, followed by examination of their roles in myoblast proliferation by treating myoblasts with PGE2 or specific agonists. All four PGE2 receptor mRNAs were detectable by quantitative real-time PCR (qPCR), but only PGE2 and EP4 agonist CAY 10598 significantly enhance myoblast proliferation. EP1/EP3 agonist 17-phenyl trinor PGE2 (17-PT PGE2) and EP2 agonist butaprost did not have any significant effects. Moreover, treatment with EP4 antagonist L161,982 dose-dependently inhibited myoblast proliferation. These results were confirmed by cell cycle analysis and the gene expression of cell cycle regulators. Concomitant with the inhibition of myoblast proliferation, treatment with L161,982 significantly increased intracellular reactive oxygen species (ROS) levels. Cotreatment with antioxidant N-acetyl cysteine (NAC) or sodium ascorbate (SA) successfully reversed the inhibition of myoblast proliferation and ROS overproduction caused by L161,982. Therefore, PGE2 signaling via the EP4 receptor regulates myogenesis by promoting myoblast proliferation and blocking this receptor results in increased ROS production in myoblasts. PMID:25785867

  16. Identification and functional characterization of TRPA1 in human myoblasts.

    PubMed

    Osterloh, Markus; Böhm, Mario; Kalbe, Benjamin; Osterloh, Sabrina; Hatt, Hanns

    2016-02-01

    The proper function of the skeletal muscle is essential for the survival of most animals. Thus, efficient and rapid repair of muscular damage following injury is crucial. In recent years, satellite cells have emerged as key players of muscle repair, capable of undergoing extensive proliferation after injury, fusing into myotubes and restoring muscle function. Furthermore, it has been shown that Ca(2+)/calmodulin-dependent generation of nitric oxide (NO) is an important regulator of muscle repair. Here, we demonstrate the functional expression of transient receptor potential, subfamily A1 (TRPA1) channel in human primary myoblasts. Stimulation of these cells with well-known TRPA1 ligands led to robust intracellular Ca(2+) rises which could be inhibited by specific TRPA1 antagonists. Moreover, we show that TRPA1 activation enhances important aspects of skeletal muscle repair such as cell migration and myoblast fusion in vitro. Interestingly, TRPA1 levels and inducible Ca(2+) transients decline with ongoing myoblast differentiation. We suggest that TRPA1 might serve as a physiological mediator for inflammatory signals and appears to have a functional role in promoting myoblast migration, fusion, and potentially also in activating satellite cells in humans. PMID:26328519

  17. The critical role of myostatin in differentiation of sheep myoblasts

    SciTech Connect

    Liu, Chenxi; Li, Wenrong; Zhang, Xuemei; Zhang, Ning; He, Sangang; Huang, Juncheng; Ge, Yubin; Liu, Mingjun

    2012-06-08

    Highlights: Black-Right-Pointing-Pointer Identification of the effective and specific shRNA to knockdown MSTN. Black-Right-Pointing-Pointer Overexpression of MSTN reversibly suppressed myogenic differentiation. Black-Right-Pointing-Pointer shRNA knockdown of endogenous MSTN promoted ovine myoblast differentiation. Black-Right-Pointing-Pointer MSTN inhibits myogenic differentiation through down-regulation of MyoD and Myogenin and up-regulation of Smad3. Black-Right-Pointing-Pointer Provides a promise for the generation of transgenic sheep to improve meat productivity. -- Abstract: Myostatin [MSTN, also known as growth differentiation factor 8 (GDF8)], is an inhibitor of skeletal muscle growth. Blockade of MSTN function has been reported to result in increased muscle mass in mice. However, its role in myoblast differentiation in farm animals has not been determined. In the present study, we sought to determine the role of MSTN in the differentiation of primary sheep myoblasts. We found that ectopic overexpression of MSTN resulted in lower fusion index in sheep myoblasts, which indicated the repression of myoblast differentiation. This phenotypic change was reversed by shRNA knockdown of the ectopically expressed MSTN in the cells. In contrast, shRNA knockdown of the endogenous MSTN resulted in induction of myogenic differentiation. Additional studies revealed that the induction of differentiation by knocking down the ectopically or endogenously expressed MSTN was accompanied by up-regulation of MyoD and myogenin, and down-regulation of Smad3. Our results demonstrate that MSTN plays critical role in myoblast differentiation in sheep, analogous to that in mice. This study also suggests that shRNA knockdown of MSTN could be a potentially promising approach to improve sheep muscle growth, so as to increase meat productivity.

  18. Combinations of Kinase Inhibitors Protecting Myoblasts against Hypoxia

    PubMed Central

    Kang, Yunyi; Tierney, Matthew; Ong, Edison; Zhang, Linda; Piermarocchi, Carlo; Sacco, Alessandra; Paternostro, Giovanni

    2015-01-01

    Cell-based therapies to treat skeletal muscle disease are limited by the poor survival of donor myoblasts, due in part to acute hypoxic stress. After confirming that the microenvironment of transplanted myoblasts is hypoxic, we screened a kinase inhibitor library in vitro and identified five kinase inhibitors that protected myoblasts from cell death or growth arrest in hypoxic conditions. A systematic, combinatorial study of these compounds further improved myoblast viability, showing both synergistic and additive effects. Pathway and target analysis revealed CDK5, CDK2, CDC2, WEE1, and GSK3β as the main target kinases. In particular, CDK5 was the center of the target kinase network. Using our recently developed statistical method based on elastic net regression we computationally validated the key role of CDK5 in cell protection against hypoxia. This method provided a list of potential kinase targets with a quantitative measure of their optimal amount of relative inhibition. A modified version of the method was also able to predict the effect of combinations using single-drug response data. This work is the first step towards a broadly applicable system-level strategy for the pharmacology of hypoxic damage. PMID:26042811

  19. Coxsackievirus B Exits the Host Cell in Shed Microvesicles Displaying Autophagosomal Markers

    PubMed Central

    Mangale, Vrushali; Rahawi, Shahad; McIntyre, Laura L.; Williams, Wesley; Kha, Nelson; Cruz, Casey; Hancock, Bryan M.; Nguyen, David P.; Sayen, M. Richard; Hilton, Brett J.; Doran, Kelly S.; Segall, Anca M.; Wolkowicz, Roland; Cornell, Christopher T.; Whitton, J. Lindsay; Gottlieb, Roberta A.; Feuer, Ralph

    2014-01-01

    Coxsackievirus B3 (CVB3), a member of the picornavirus family and enterovirus genus, causes viral myocarditis, aseptic meningitis, and pancreatitis in humans. We genetically engineered a unique molecular marker, “fluorescent timer” protein, within our infectious CVB3 clone and isolated a high-titer recombinant viral stock (Timer-CVB3) following transfection in HeLa cells. “Fluorescent timer” protein undergoes slow conversion of fluorescence from green to red over time, and Timer-CVB3 can be utilized to track virus infection and dissemination in real time. Upon infection with Timer-CVB3, HeLa cells, neural progenitor and stem cells (NPSCs), and C2C12 myoblast cells slowly changed fluorescence from green to red over 72 hours as determined by fluorescence microscopy or flow cytometric analysis. The conversion of “fluorescent timer” protein in HeLa cells infected with Timer-CVB3 could be interrupted by fixation, suggesting that the fluorophore was stabilized by formaldehyde cross-linking reactions. Induction of a type I interferon response or ribavirin treatment reduced the progression of cell-to-cell virus spread in HeLa cells or NPSCs infected with Timer-CVB3. Time lapse photography of partially differentiated NPSCs infected with Timer-CVB3 revealed substantial intracellular membrane remodeling and the assembly of discrete virus replication organelles which changed fluorescence color in an asynchronous fashion within the cell. “Fluorescent timer” protein colocalized closely with viral 3A protein within virus replication organelles. Intriguingly, infection of partially differentiated NPSCs or C2C12 myoblast cells induced the release of abundant extracellular microvesicles (EMVs) containing matured “fluorescent timer” protein and infectious virus representing a novel route of virus dissemination. CVB3 virions were readily observed within purified EMVs by transmission electron microscopy, and infectious virus was identified within low

  20. Hepatocyte growth factor (HGF) signals through SHP2 to regulate primary mouse myoblast proliferation

    SciTech Connect

    Li, Ju; Reed, Sarah A.; Johnson, Sally E.

    2009-08-01

    Niche localized HGF plays an integral role in G{sub 0} exit and the return to mitotic activity of adult skeletal muscle satellite cells. HGF actions are regulated by MET initiated intracellular signaling events that include recruitment of SHP2, a protein tyrosine phosphatase. The importance of SHP2 in HGF-mediated signaling was examined in myoblasts and primary cultures of satellite cells. Myoblasts stably expressing SHP2 (23A2-SHP2) demonstrate increased proliferation rates by comparison to controls or myoblasts expressing a phosphatase-deficient SHP2 (23A2-SHP2DN). By comparison to 23A2 myoblasts, treatment of 23A2-SHP2 cells with HGF does not further increase proliferation rates and 23A2-SHP2DN myoblasts are unresponsive to HGF. Importantly, the effects of SHP2 are independent of downstream ERK1/2 activity as inclusion of PD98059 does not blunt the HGF-induced proliferative response. SHP2 function was further evaluated in primary satellite cell cultures. Ectopic expression of SHP2 in satellite cells tends to decrease proliferation rates and siSHP2 causes an increase the percentage of dividing myogenic cells. Interestingly, treatment of satellite cells with high concentrations of HGF (50 ng/ml) inhibits proliferation, which can be overcome by knockdown of SHP2. From these results, we conclude that HGF signals through SHP2 in myoblasts and satellite cells to directly alter proliferation rates.

  1. Attenuation of oxidative stress in U937 cells by polyphenolic-rich bark fractions of Burkea africana and Syzygium cordatum

    PubMed Central

    2013-01-01

    Background Oxidative stress has been implicated in the progression of various diseases, which may result in the depletion of endogenous antioxidants. Exogenous supplementation with antioxidants could result in increased protection against oxidative stress. As concerns have been raised regarding synthetic antioxidant usage, the identification of alternative treatments is justified. The aim of the present study was to determine the antioxidant efficacy of Burkea africana and Syzygium cordatum bark extracts in an in vitro oxidative stress model. Methods Cytotoxicity of crude aqueous and methanolic extracts, as well as polyphenolic-rich fractions, was determined in C2C12 myoblasts, 3T3-L1 pre-adipocytes, normal human dermal fibroblasts and U937 macrophage-like cells using the neutral red uptake assay. Polyphenolic content was determined using the Folin-Ciocalteau and aluminium trichloride assays, and antioxidant activity using the Trolox Equivalence Antioxidant Capacity and DPPH assays. The extracts efficacy against oxidative stress in AAPH-exposed U937 cells was assessed with regards to reactive oxygen species generation, cytotoxicity, apoptosis, lipid peroxidation and reduced glutathione depletion. Results B. africana and S. cordatum showed enrichment of polyphenols from the aqueous extract, to methanolic extract, to polyphenolic-rich fractions. Antioxidant activity followed the same trend, which correlated well with the increased concentration of polyphenols, and was between two- to three-fold stronger than the Trolox antioxidant control. Both plants had superior activity compared to ascorbic acid in the DPPH assay. Polyphenolic-rich fractions were most toxic to the 3T3-L1 (IC50’s between 13 and 21 μg/ml) and C2C12 (IC50’s approximately 25 μg/ml) cell lines, but were not cytotoxic in the U937 and normal human dermal fibroblasts cultures. Free radical-induced generation of reactive oxygen species (up to 80%), cytotoxicity (up to 20%), lipid peroxidation (up

  2. Elastic hydrogel substrate supports robust expansion of murine myoblasts and enhances their engraftment

    SciTech Connect

    Ding, Ke; Yang, Zhong; Xu, Jian-zhong; Liu, Wen-ying; Zeng, Qiang; Hou, Fang; Lin, Sen

    2015-09-10

    The application of satellite cell-derived myoblasts in regenerative medicine has been restricted by the rapid loss of stemness during in vitro cell expansion using traditional culture systems. However, studies published in the past decade have highlighted the influence of substrate elasticity on stem cell fate and revealed that culture on a soft hydrogel substrate can promote self-renewal and prolong the regenerative potential of muscle stem cells. Whether hydrogel substrates have similar effects after long-term robust expansion remains to be determined. Herein we prepared an elastic chitosan/beta-glycerophosphate/collagen hydrogel mimicking the soft microenvironment of muscle tissues for use as the substrate for satellite cell culture and investigated its influence on long-term cell expansion. After 20 passages in culture, satellite cell-derived myoblasts cultured on our hydrogel substrate exhibited significant improvements in proliferation capability, cell viability, colony forming frequency, and potential for myogenic differentiation compared to those cultured on a routine rigid culture surface. Immunochemical staining and western blot analysis both confirmed that myoblasts cultured on the hydrogel substrate expressed higher levels of several differentiation-related markers, including Pax7, Pax3, and SSEA-1, and a lower level of MyoD compared to myoblasts cultured on rigid culture plates (all p<0.05). After transplantation into the tibialis anterior of nude mice, myoblasts that had been cultured on the hydrogel substrate demonstrated a significantly greater engraftment efficacy than those cultured on the traditional surface. Collectively, these results indicate that the elastic hydrogel substrate supported robust expansion of murine myoblasts and enhanced their engraftment in vivo. - Highlights: • An elastic hydrogel was designed to mimic the pliable muscle tissue microenvironment. • Myoblasts retained their stemness in long-term culture on the elastic

  3. Myoblasts transplanted into rat infarcted myocardium are functionally isolated from their host

    PubMed Central

    Léobon, Bertrand; Garcin, Isabelle; Menasché, Philippe; Vilquin, Jean-Thomas; Audinat, Etienne; Charpak, Serge

    2003-01-01

    Survival and differentiation of myogenic cells grafted into infarcted myocardium have raised the hope that cell transplantation becomes a new therapy for cardiovascular diseases. The approach was further supported by transplantation of skeletal myoblasts, which was shown to improve cardiac performance in several animal species. Despite the success of myoblast transplantation and its recent trial in human, the mechanism responsible for the functional improvement remains unclear. Here, we used intracellular recordings coupled to video and fluorescence microscopy to establish whether myoblasts, genetically labeled with enhanced GFP and transplanted into rat infarcted myocardium, retain excitable and contractile properties, and participate actively to cardiac function. Our results indicate that grafted myoblasts differentiate into peculiar hyperexcitable myotubes with a contractile activity fully independent of neighboring cardiomyocytes. We conclude that mechanisms other than electromechanical coupling between grafted and host cells are involved in the improvement of cardiac function. PMID:12805561

  4. Determining the mechanical properties of plectin in mouse myoblasts and keratinocytes

    PubMed Central

    Bonakdar, Navid; Schilling, Achim; Spörrer, Marina; Lennert, Pablo; Mainka, Astrid; Winter, Lilli; Walko, Gernot; Wiche, Gerhard; Fabry, Ben; Goldmann, Wolfgang H.

    2015-01-01

    Plectin is the prototype of an intermediate filament (IF)-based cytolinker protein. It affects cells mechanically by interlinking and anchoring cytoskeletal filaments and acts as scaffolding and docking platform for signaling proteins to control cytoskeleton dynamics. The most common disease caused by mutations in the human plectin gene, epidermolysis bullosa simplex with muscular dystrophy (EBS-MD), is characterized by severe skin blistering and progressive muscular dystrophy. Therefore, we compared the biomechanical properties and the response to mechanical stress of murine plectin-deficient myoblasts and keratinocytes with wild-type cells. Using a cell stretching device, plectin-deficient myoblasts exhibited lower mechanical vulnerability upon external stress compared to wild-type cells, which we attributed to lower cellular pre-stress. Contrary to myoblasts, wild-type and plectin-deficient keratinocytes showed no significant differences. In magnetic tweezer measurements using fibronectin-coated paramagnetic beads, the stiffness of keratinocytes was higher than of myoblasts. Interestingly, cell stiffness, adhesion strength, and cytoskeletal dynamics were strikingly altered in plectin-deficient compared to wild-type myoblasts, whereas smaller differences were observed between plectin-deficient and wild-type keratinocytes, indicating that plectin might be more important for stabilizing cytoskeletal structures in myoblasts than in keratinocytes. Traction forces strongly correlated with the stiffness of plectin-deficient and wild-type myoblasts and keratinocytes. Contrary to that cell motility was comparable in plectin-deficient and wild-type myoblasts, but was significantly increased in plectin-deficient compared to wild-type keratinocytes. Thus, we postulate that the lack of plectin has divergent implications on biomechanical properties depending on the respective cell type. PMID:25447312

  5. AG490 improves the survival of human myoblasts in vitro and in vivo.

    PubMed

    Gérard, Catherine; Dufour, Christine; Goudenege, Sébastien; Skuk, Daniel; Tremblay, Jacques P

    2012-01-01

    Cell therapies consist in transplanting healthy cells into a disabled tissue with the goal to repopulate it and restore its function at least partially. In muscular diseases, most of the time, myoblasts are chosen for their expansion capacity in culture. Nevertheless, cell transplantation has limitations, among them, death of the transplanted cells, during the days following the graft. One possibility to counteract this problem is to enhance the proliferation of the transplanted myoblasts before their fusion with the existing muscle fibers. AG490 is a specific inhibitor of janus tyrosine kinase 2 (JAK2). The hypothesis is to block myoblast differentiation with AG490, thus permitting their proliferation. The inhibition of myoblast fusion by AG490 was confirmed in this study by gene expression and with a myosin heavy chain staining (MyHC). Moreover, cell survival was estimated by flow cytometry. AG490 was found to protect myoblasts in vitro from apoptosis induced by H(2)O(2) or by preventing attachment of cells to their substrate. Finally, in an in vivo model of muscle regeneration, when AG490 was coinjected with the myoblasts their survival was increased by 45% at 5 days after their transplantation. PMID:22963730

  6. The MARVEL domain protein, Singles Bar, is required for progression past the pre-fusion complex stage of myoblast fusion

    PubMed Central

    Estrada, Beatriz; Maeland, Anne D.; Gisselbrecht, Stephen S.; Bloor, James W.; Brown, Nicholas H.; Michelson, Alan M.

    2007-01-01

    Summary Multinucleated myotubes develop by the sequential fusion of individual myoblasts. Using a convergence of genomic and classical genetic approaches, we have discovered a novel gene, singles bar (sing), that is essential for myoblast fusion. sing encodes a small multipass transmembrane protein containing a MARVEL domain, which is found in vertebrate proteins involved in processes such as tight junction formation and vesicle trafficking where—as in myoblast fusion—membrane apposition occurs. sing is expressed in both founder cells and fusion competent myoblasts preceding and during myoblast fusion. Examination of embryos injected with double-stranded sing RNA or embryos homozygous for ethane methyl sulfonate-induced sing alleles revealed an identical phenotype: replacement of multinucleated myofibers by groups of single, myosin-expressing myoblasts at a stage when formation of the mature muscle pattern is complete in wild-type embryos. Unfused sing mutant myoblasts form clusters, suggesting that early recognition and adhesion of these cells is unimpaired. To further investigate this phenotype, we undertook electron microscopic ultrastructural studies of fusing myoblasts in both sing and wild-type embryos. These experiments revealed that more sing mutant myoblasts than wild-type contain pre-fusion complexes, which are characterized by electron-dense vesicles paired on either side of the fusing plasma membranes. In contrast, embryos mutant for another muscle fusion gene, blown fuse (blow), have a normal number of such complexes. Together, these results lead to the hypothesis that sing acts at a step distinct from that of blow, and that sing is required on both founder cell and fusion-competent myoblast membranes to allow progression past the pre-fusion complex stage of myoblast fusion, possibly by mediating fusion of the electron-dense vesicles to the plasma membrane. PMID:17537424

  7. Gelatin methacrylate as a promising hydrogel for 3D microscale organization and proliferation of dielectrophoretically patterned cells.

    PubMed

    Ramón-Azcón, Javier; Ahadian, Samad; Obregón, Raquel; Camci-Unal, Gulden; Ostrovidov, Serge; Hosseini, Vahid; Kaji, Hirokazu; Ino, Kosuke; Shiku, Hitoshi; Khademhosseini, Ali; Matsue, Tomokazu

    2012-08-21

    Establishing the 3D microscale organization of cells has numerous practical applications, such as in determining cell fate (e.g., proliferation, migration, differentiation, and apoptosis) and in making functional tissue constructs. One approach to spatially pattern cells is by dielectrophoresis (DEP). DEP has characteristics that are important for cell manipulation, such as high accuracy, speed, scalability, and the ability to handle both adherent and non-adherent cells. However, widespread application of this method is largely restricted because there is a limited number of suitable hydrogels for cell encapsulation. To date, polyethylene glycol-diacrylate (PEG-DA) and agarose have been used extensively for dielectric patterning of cells. In this study, we propose gelatin methacrylate (GelMA) as a promising hydrogel for use in cell dielectropatterning because of its biocompatibility and low viscosity. Compared to PEG hydrogels, GelMA hydrogels showed superior performance when making cell patterns for myoblast (C2C12) and endothelial (HUVEC) cells as well as in maintaining cell viability and growth. We also developed a simple and robust protocol for co-culture of these cells. Combined application of the GelMA hydrogels and the DEP technique is suitable for creating highly complex microscale tissues with important applications in fundamental cell biology and regenerative medicine in a rapid, accurate, and scalable manner. PMID:22773042

  8. Real-time, noninvasive optical coherence tomography of cross-sectional living cell-sheets in vitro and in vivo.

    PubMed

    Kobayashi, Mari; Haraguchi, Yuji; Shimizu, Tatsuya; Mizuuchi, Kiminori; Iseki, Hiroshi

    2015-08-01

    Cell sheet technology has a history of application in regenerating various tissues, having successfully completed several clinical trials using autologous cell sheets. Tomographic analysis of living cell sheets is an important tool in the field of cell sheet-based regenerative medicine and tissue engineering to analyze the inner structure of layered living cells. Optical coherence tomography (OCT) is commonly used in ophthalmology to noninvasively analyze cross-sections of target tissues at high resolution. This study used OCT to conduct real-time, noninvasive analysis of living cell sheet cross sections. OCT showed the internal structure of cell sheets in tomographic images synthesized with backscatter signals from inside the living cell sheet without invasion or damage. OCT observations were used to analyze the static and dynamic behaviors of living cell sheets in vitro and in vivo including (1) the harvesting process of a C2C12 mouse skeletal myoblast sheet from a temperature-responsive culture surface; (2) cell-sheet adhesion onto various surfaces including a culture surface, a synthetic rubber glove, and the dorsal subcutaneous tissue of rats; and (3) the real-time propagation of beating rat cardiac cells within cardiac cell sheets. This study showed that OCT technology is a powerful tool in the field of cell sheet-based regenerative medicine and tissue engineering. PMID:25350859

  9. Clone-derived human AF-amniotic fluid stem cells are capable of skeletal myogenic differentiation in vitro and in vivo.

    PubMed

    Ma, Xiaorong; Zhang, Shengli; Zhou, Junmei; Chen, Baisong; Shang, Yafeng; Gao, Tongbing; Wang, Xue; Xie, Hua; Chen, Fang

    2012-08-01

    Stem cell-based therapy may be the most promising method to cure skeletal muscle degenerative diseases such as Duchenne muscular dystrophy (DMD) and trauma in the future. Human amniotic fluid is enriched with early-stage stem cells from developing fetuses and these cells have cardiomyogenic potential both in vitro and in vivo. In the present study, we investigated the characteristics of human amniotic fluid-derived AF-type stem (HAF-AFS) cells by flow cytometry, immunofluorescence staining, reverse-transcription polymerase chain reaction, and osteogenic and adipogenic differentiation analysis. After confirming the stemness of HAF-AFS cells, we tested whether HAF-AFS cells could differentiate into skeletal myogenic cells in vitro and incorporate into regenerating skeletal muscle in vivo. By temporary exposure to the DNA demethylation agent 5-aza-2'-deoxycytidine (5-Aza dC) or co-cultured with C2C12 myoblasts, HAF-AFS cells differentiated into skeletal myogenic cells, expressing skeletal myogenic cell-specific markers such as Desmin, Troponin I (Tn I) and α-Actinin. Four weeks after transplantation into cardiotoxin-injured and X-ray-irradiated tibialis anterior (TA) muscles of NOD/SCID mice, HAF-AFS cells survived, differentiated into myogenic precursor cells and fused with host myofibres. The findings that HAF-AFS cells differentiate into myogenic cells in vitro and incorporate in skeletal muscle regeneration in vivo hold the promise of HAF-AFS cell-based therapy for skeletal muscle degenerative diseases. PMID:22396316

  10. l-glutamine Improves Skeletal Muscle Cell Differentiation and Prevents Myotube Atrophy After Cytokine (TNF-α) Stress Via Reduced p38 MAPK Signal Transduction.

    PubMed

    Girven, Matthew; Dugdale, Hannah F; Owens, Daniel J; Hughes, David C; Stewart, Claire E; Sharples, Adam P

    2016-12-01

    Tumour Necrosis Factor-Alpha (TNF-α) is chronically elevated in conditions where skeletal muscle loss occurs. As l-glutamine can dampen the effects of inflamed environments, we investigated the role of l-glutamine in both differentiating C2C12 myoblasts and existing myotubes in the absence/presence of TNF-α (20 ng · ml(-1) ) ± l-glutamine (20 mM). TNF-α reduced the proportion of cells in G1 phase, as well as biochemical (CK activity) and morphological differentiation (myotube number), with corresponding reductions in transcript expression of: Myogenin, Igf-I, and Igfbp5. Furthermore, when administered to mature myotubes, TNF-α induced myotube loss and atrophy underpinned by reductions in Myogenin, Igf-I, Igfbp2, and glutamine synthetase and parallel increases in Fox03, Cfos, p53, and Bid gene expression. Investigation of signaling activity suggested that Akt and ERK1/2 were unchanged, JNK increased (non-significantly) whereas P38 MAPK substantially and significantly increased in both myoblasts and myotubes in the presence of TNF-α. Importantly, 20 mM l-glutamine reduced p38 MAPK activity in TNF-α conditions back to control levels, with a corresponding rescue of myoblast differentiation and a reversal of atrophy in myotubes. l-glutamine resulted in upregulation of genes associated with growth and survival including; Myogenin, Igf-Ir, Myhc2 & 7, Tnfsfr1b, Adra1d, and restored atrophic gene expression of Fox03 back to baseline in TNF-α conditions. In conclusion, l-glutamine supplementation rescued suppressed muscle cell differentiation and prevented myotube atrophy in an inflamed environment via regulation of p38 MAPK. l-glutamine administration could represent an important therapeutic strategy for reducing muscle loss in catabolic diseases and inflamed ageing. J. Cell. Physiol. 9999: 231: 2720-2732, 2016. © 2016 Wiley Periodicals, Inc. PMID:26991744

  11. Involvement of Transient Receptor Potential Cation Channel Vanilloid 1 (TRPV1) in Myoblast Fusion.

    PubMed

    Kurosaka, Mitsutoshi; Ogura, Yuji; Funabashi, Toshiya; Akema, Tatsuo

    2016-10-01

    The mechanisms that underlie the complex process of muscle regeneration after injury remain unknown. Transient receptor potential cation channel vanilloid 1 (TRPV1) is expressed in several cell types, including skeletal muscle, and is activated by high temperature and by certain molecules secreted during tissue inflammation. Severe inflammation and local temperature perturbations are induced during muscle regeneration, which suggests that TRPV1 might be activated and involved in the process. The aim of this study, was to clarify the role of TRPV1 in the myogenic potential of satellite cells responsible for muscle regeneration. We found that mRNA and protein levels of TRPV1 increased during regeneration after cardiotoxin (CTX)-induced muscle injury in mice. Using isolated mouse satellite cells (i.e., myoblasts), we observed that activation of TRPV1 by its agonist capsaicin (CAP) augmented myogenin protein levels. Whereas CAP did not alter myoblast proliferation, it facilitated myoblast fusion (evaluated using myonucleii number per myotube and fusion index). In contrast, suppression of TRPV1 by siRNA impaired myoblast fusion. Using mice, we also demonstrated that intramuscular injection of CAP facilitated muscle repair after CTX-induced muscle injury. Moreover, we showed that these roles of TRPV1 might be mediated by interleukin-4 and calcium signaling during myoblast fusion. Collectively, these results suggest that TRPV1 underlies normal myogenesis through promotion of myoblast fusion. J. Cell. Physiol. 231: 2275-2285, 2016. © 2016 Wiley Periodicals, Inc. PMID:26892397

  12. Impaired hypertrophy in myoblasts is improved with testosterone administration.

    PubMed

    Deane, Colleen S; Hughes, David C; Sculthorpe, Nicholas; Lewis, Mark P; Stewart, Claire E; Sharples, Adam P

    2013-11-01

    We investigated the ability of testosterone (T) to restore differentiation in multiple population doubled (PD) murine myoblasts, previously shown to have a reduced differentiation in monolayer and bioengineered skeletal muscle cultures vs. their parental controls (CON) (Sharples et al., 2011, 2012 [7,26]). Cells were exposed to low serum conditions in the presence or absence of T (100nM)±PI3K inhibitor (LY294002) for 72h and 7 days (early and late muscle differentiation respectively). Morphological analyses were performed to determine myotube number, diameter (μm) and myonuclear accretion as indices of differentiation and myotube hypertrophy. Changes in gene expression for myogenin, mTOR and myostatin were also performed. Myotube diameter in CON and PD cells increased from 17.32±2.56μm to 21.02±1.89μm and 14.58±2.66μm to 18.29±3.08μm (P≤0.05) respectively after 72h of T exposure. The increase was comparable in both PD (+25%) and CON cells (+21%) suggesting a similar intrinsic ability to respond to exogenous T administration. T treatment also significantly increased myonuclear accretion (% of myotubes expressing 5+ nuclei) in both cell types after 7 days exposure (P≤0.05). Addition of PI3K inhibitor (LY294002) in the presence of T attenuated these effects in myotube morphology (in both cell types) suggesting a role for the PI3K pathway in T stimulated hypertrophy. Finally, PD myoblasts showed reduced responsiveness to T stimulated mRNA expression of mTOR vs. CON cells and T also reduced myostatin expression in PD myoblasts only. The present study demonstrates testosterone administration improves hypertrophy in myoblasts that basally display impaired differentiation and hypertrophic capacity vs. their parental controls, the action of testosterone in this model was mediated by PI3K/Akt pathway. PMID:23714396

  13. Protein Adsorption as a Key Mediator in the Nanotopographical Control of Cell Behavior.

    PubMed

    Ngandu Mpoyi, Elie; Cantini, Marco; Reynolds, Paul M; Gadegaard, Nikolaj; Dalby, Matthew J; Salmerón-Sánchez, Manuel

    2016-07-26

    Surface nanotopography is widely employed to control cell behavior and in particular controlled disorder has been shown to be important in cell differentiation/maturation. However, extracellular matrix proteins, such as fibronectin (FN), initially adsorbed on a biomaterial surface are known to mediate the interaction of synthetic materials with cells. In this work, we examine the effect of nanotopography on cell behavior through this adsorbed layer of adhesive proteins using a nanostructured polycarbonate surface comprising 150 nm-diameter pits originally defined using electron beam lithography. We address the effect of this nanopitted surface on FN adsorption and subsequently on cell morphology and behavior using C2C12 myoblasts. Wettability measurements and atomic force microscopy imaging showed that protein is adsorbed both within the interpits spaces and inside the nanopits. Cells responded to this coated nanotopography with the formation of fewer but larger focal adhesions and by mimicking the pit patterns within their cytoskeleton, nanoimprinting, ultimately achieving higher levels of myogenic differentiation compared to a flat control. Both focal adhesion assembly and nanoimprinting were found to be dependent on cell contractility and are adversely affected by the use of blebbistatin. Our results demonstrate the central role of the nanoscale protein interface in mediating cell-nanotopographical interactions and implicate this interface as helping control the mechanotransductive cascade. PMID:27391047

  14. Protein Adsorption as a Key Mediator in the Nanotopographical Control of Cell Behavior

    PubMed Central

    2016-01-01

    Surface nanotopography is widely employed to control cell behavior and in particular controlled disorder has been shown to be important in cell differentiation/maturation. However, extracellular matrix proteins, such as fibronectin (FN), initially adsorbed on a biomaterial surface are known to mediate the interaction of synthetic materials with cells. In this work, we examine the effect of nanotopography on cell behavior through this adsorbed layer of adhesive proteins using a nanostructured polycarbonate surface comprising 150 nm-diameter pits originally defined using electron beam lithography. We address the effect of this nanopitted surface on FN adsorption and subsequently on cell morphology and behavior using C2C12 myoblasts. Wettability measurements and atomic force microscopy imaging showed that protein is adsorbed both within the interpits spaces and inside the nanopits. Cells responded to this coated nanotopography with the formation of fewer but larger focal adhesions and by mimicking the pit patterns within their cytoskeleton, nanoimprinting, ultimately achieving higher levels of myogenic differentiation compared to a flat control. Both focal adhesion assembly and nanoimprinting were found to be dependent on cell contractility and are adversely affected by the use of blebbistatin. Our results demonstrate the central role of the nanoscale protein interface in mediating cell-nanotopographical interactions and implicate this interface as helping control the mechanotransductive cascade. PMID:27391047

  15. [Dystrophin gene expression in patients with Duchenne muscular dystrophy after myoblast transplantation].

    PubMed

    Shishkin, S S; Terekhov, S M; Krokhina, T B; Shakhovskaia, N I; Podobedova, A N; Linnaia, G F; Tarasov, V I; Ovchinnikov, V I; Krakhmaleva, I N; Zakharov, S F; Ershova, E S; Limborskaia, S A; Pogoda, T V; Zotikov, E A; Kut'ina, R M; Tarksh, M A; Sukhorukov, V S; Gerasimova, N L

    2001-08-01

    Based on originally designed technique of myoblast cultivation and in accordance with the approved by the Russian Ministry of Health "one muscle treatment" protocol of myoblast transplantation to the Duchenne muscular dystrophy patients, the first in Russia clinical trial of this gene correction method was carried out. Immonologically related myoblast cultures (30 to 90 million cells per patient) were injected after all preliminary procedures into tibialis anterior muscles of four boys selected from a group of volunteer recipients (Duchenne muscular dystrophy patients) based on the analysis of a number of surface antigens in donor-recipient pairs. The condition of the patients remained satisfactory during the whole period of post-transplantation follow-up (from 6 months to 1.5 years). Six months after myoblast transplantation the presence of donor DNA or dystrophin synthesis was demonstrated in muscle biopsies of three out of four patients. This result confirms efficacy and safety of the procedure used. PMID:11642111

  16. S100B engages RAGE or bFGF/FGFR1 in myoblasts depending on its own concentration and myoblast density. Implications for muscle regeneration.

    PubMed

    Riuzzi, Francesca; Sorci, Guglielmo; Beccafico, Sara; Donato, Rosario

    2012-01-01

    In high-density myoblast cultures S100B enhances basic fibroblast growth factor (bFGF) receptor 1 (FGFR1) signaling via binding to bFGF and blocks its canonical receptor, receptor for advanced glycation end-products (RAGE), thereby stimulating proliferation and inhibiting differentiation. Here we show that upon skeletal muscle injury S100B is released from myofibers with maximum release at day 1 post-injury in coincidence with satellite cell activation and the beginning of the myoblast proliferation phase, and declining release thereafter in coincidence with reduced myoblast proliferation and enhanced differentiation. By contrast, levels of released bFGF are remarkably low at day 1 post-injury, peak around day 5 and decline thereafter. We also show that in low-density myoblast cultures S100B binds RAGE, but not bFGF/FGFR1 thereby simultaneously stimulating proliferation via ERK1/2 and activating the myogenic program via p38 MAPK. Clearance of S100B after a 24-h treatment of low-density myoblasts results in enhanced myotube formation compared with controls as a result of increased cell numbers and activated myogenic program, whereas chronic treatment with S100B results in stimulation of proliferation and inhibition of differentiation due to a switch of the initial low-density culture to a high-density culture. However, at relatively high doses, S100B stimulates the mitogenic bFGF/FGFR1 signaling in low-density myoblasts, provided bFGF is present. We propose that S100B is a danger signal released from injured muscles that participates in skeletal muscle regeneration by activating the promyogenic RAGE or the mitogenic bFGF/FGFR1 depending on its own concentration, the absence or presence of bFGF, and myoblast density. PMID:22276098

  17. S100B Engages RAGE or bFGF/FGFR1 in Myoblasts Depending on Its Own Concentration and Myoblast Density. Implications for Muscle Regeneration

    PubMed Central

    Beccafico, Sara; Donato, Rosario

    2012-01-01

    In high-density myoblast cultures S100B enhances basic fibroblast growth factor (bFGF) receptor 1 (FGFR1) signaling via binding to bFGF and blocks its canonical receptor, receptor for advanced glycation end-products (RAGE), thereby stimulating proliferation and inhibiting differentiation. Here we show that upon skeletal muscle injury S100B is released from myofibers with maximum release at day 1 post-injury in coincidence with satellite cell activation and the beginning of the myoblast proliferation phase, and declining release thereafter in coincidence with reduced myoblast proliferation and enhanced differentiation. By contrast, levels of released bFGF are remarkably low at day 1 post-injury, peak around day 5 and decline thereafter. We also show that in low-density myoblast cultures S100B binds RAGE, but not bFGF/FGFR1 thereby simultaneously stimulating proliferation via ERK1/2 and activating the myogenic program via p38 MAPK. Clearance of S100B after a 24-h treatment of low-density myoblasts results in enhanced myotube formation compared with controls as a result of increased cell numbers and activated myogenic program, whereas chronic treatment with S100B results in stimulation of proliferation and inhibition of differentiation due to a switch of the initial low-density culture to a high-density culture. However, at relatively high doses, S100B stimulates the mitogenic bFGF/FGFR1 signaling in low-density myoblasts, provided bFGF is present. We propose that S100B is a danger signal released from injured muscles that participates in skeletal muscle regeneration by activating the promyogenic RAGE or the mitogenic bFGF/FGFR1 depending on its own concentration, the absence or presence of bFGF, and myoblast density. PMID:22276098

  18. Development of a cell culture surface conversion technique using alginate thin film for evaluating effect upon cellular differentiation

    NASA Astrophysics Data System (ADS)

    Nakashima, Y.; Tsusu, K.; Minami, K.; Nakanishi, Y.

    2014-06-01

    Here, we sought to develop a cell culture surface conversion technique that would not damage living cells. An alginate thin film, formed on a glass plate by spin coating of sodium alginate solution and dipping into calcium chloride solution, was used to inhibit adhesion of cells. The film could be removed by ethylenediaminetetraacetate (EDTA) at any time during cell culture, permitting observation of cellular responses to conversion of the culture surface in real time. Additionally, we demonstrated the validity of the alginate thin film coating method and the performance of the film. The thickness of the alginate thin film was controlled by varying the rotation speed during spin coating. Moreover, the alginate thin film completely inhibited the adhesion of cultured cells to the culture surface, irrespective of the thickness of the film. When the alginate thin film was removed from the culture surface by EDTA, the cultured cells adhered to the culture surface, and their morphology changed. Finally, we achieved effective differentiation of C2C12 myoblasts into myotube cells by cell culture on the convertible culture surface, demonstrating the utility of our novel technique.

  19. Development of a cell culture surface conversion technique using alginate thin film for evaluating effect upon cellular differentiation

    SciTech Connect

    Nakashima, Y.; Tsusu, K.; Minami, K.; Nakanishi, Y.

    2014-06-15

    Here, we sought to develop a cell culture surface conversion technique that would not damage living cells. An alginate thin film, formed on a glass plate by spin coating of sodium alginate solution and dipping into calcium chloride solution, was used to inhibit adhesion of cells. The film could be removed by ethylenediaminetetraacetate (EDTA) at any time during cell culture, permitting observation of cellular responses to conversion of the culture surface in real time. Additionally, we demonstrated the validity of the alginate thin film coating method and the performance of the film. The thickness of the alginate thin film was controlled by varying the rotation speed during spin coating. Moreover, the alginate thin film completely inhibited the adhesion of cultured cells to the culture surface, irrespective of the thickness of the film. When the alginate thin film was removed from the culture surface by EDTA, the cultured cells adhered to the culture surface, and their morphology changed. Finally, we achieved effective differentiation of C2C12 myoblasts into myotube cells by cell culture on the convertible culture surface, demonstrating the utility of our novel technique.

  20. Phospholipase D1 facilitates second-phase myoblast fusion and skeletal muscle regeneration.

    PubMed

    Teng, Shuzhi; Stegner, David; Chen, Qin; Hongu, Tsunaki; Hasegawa, Hiroshi; Chen, Li; Kanaho, Yasunori; Nieswandt, Bernhard; Frohman, Michael A; Huang, Ping

    2015-02-01

    Myoblast differentiation and fusion is a well-orchestrated multistep process that is essential for skeletal muscle development and regeneration. Phospholipase D1 (PLD1) has been implicated in the initiation of myoblast differentiation in vitro. However, whether PLD1 plays additional roles in myoblast fusion and exerts a function in myogenesis in vivo remains unknown. Here we show that PLD1 expression is up-regulated in myogenic cells during muscle regeneration after cardiotoxin injury and that genetic ablation of PLD1 results in delayed myofiber regeneration. Myoblasts derived from PLD1-null mice or treated with PLD1-specific inhibitor are unable to form mature myotubes, indicating defects in second-phase myoblast fusion. Concomitantly, the PLD1 product phosphatidic acid is transiently detected on the plasma membrane of differentiating myocytes, and its production is inhibited by PLD1 knockdown. Exogenous lysophosphatidylcholine, a key membrane lipid for fusion pore formation, partially rescues fusion defect resulting from PLD1 inhibition. Thus these studies demonstrate a role for PLD1 in myoblast fusion during myogenesis in which PLD1 facilitates the fusion of mononuclear myocytes with nascent myotubes. PMID:25428992

  1. TRPC3 cation channel plays an important role in proliferation and differentiation of skeletal muscle myoblasts

    PubMed Central

    Woo, Jin Seok; Cho, Chung-Hyun; Kim, Do Han

    2010-01-01

    During membrane depolarization associated with skeletal excitation-contraction (EC) coupling, dihydropyridine receptor [DHPR, a L-type Ca2+ channel in the transverse (t)-tubule membrane] undergoes conformational changes that are transmitted to ryanodine receptor 1 [RyR1, an internal Ca2+-release channel in the sarcoplasmic reticulum (SR) membrane] causing Ca2+ release from the SR. Canonical-type transient receptor potential cation channel 3 (TRPC3), an extracellular Ca2+-entry channel in the t-tubule and plasma membrane, is required for full-gain of skeletal EC coupling. To examine additional role(s) for TRPC3 in skeletal muscle other than mediation of EC coupling, in the present study, we created a stable myoblast line with reduced TRPC3 expression and without α1SDHPR (MDG/TRPC3 KD myoblast) by knock-down of TRPC3 in α1SDHPR-null muscular dysgenic (MDG) myoblasts using retrovirus-delivered small interference RNAs in order to eliminate any DHPR-associated EC coupling-related events. Unlike wild-type or α1SDHPR-null MDG myoblasts, MDG/TRPC3 KD myoblasts exhibited dramatic changes in cellular morphology (e.g., unusual expansion of both cell volume and the plasma membrane, and multi-nuclei) and failed to differentiate into myotubes possibly due to increased Ca2+ content in the SR. These results suggest that TRPC3 plays an important role in the maintenance of skeletal muscle myoblasts and myotubes. PMID:20644344

  2. Nanofiber Yarn/Hydrogel Core-Shell Scaffolds Mimicking Native Skeletal Muscle Tissue for Guiding 3D Myoblast Alignment, Elongation, and Differentiation.

    PubMed

    Wang, Ling; Wu, Yaobin; Guo, Baolin; Ma, Peter X

    2015-09-22

    Designing scaffolds that can mimic native skeletal muscle tissue and induce 3D cellular alignment and elongated myotube formation remains an ongoing challenge for skeletal muscle tissue engineering. Herein, we present a simple technique to generate core-shell composite scaffolds for mimicking native skeletal muscle structure, which comprise the aligned nanofiber yarn (NFY) core and the photocurable hydrogel shell. The aligned NFYs are prepared by the hybrid composition including poly(caprolactone), silk fibroin, and polyaniline via a developed dry-wet electrospinning method. A series of core-shell column and sheet composite scaffolds are ultimately obtained by encapsulating a piece and layers of aligned NFY cores within the hydrogel shell after photo-cross-linking. C2C12 myoblasts are seeded within the core-shell scaffolds, and the good biocompatibility of these scaffolds and their ability to induce 3D cellular alignment and elongation are successfully demonstrated. Furthermore, the 3D elongated myotube formation within core-shell scaffolds is also performed after long-term cultivation. These data suggest that these core-shell scaffolds combine the aligned NFY core that guides the myoblast alignment and differentiation and the hydrogel shell that provides a suitable 3D environment for nutrition exchange and mechanical protection to perform a great practical application for skeletal muscle regeneration. PMID:26280983

  3. Low-level laser irradiation alters mRNA expression from genes involved in DNA repair and genomic stabilization in myoblasts

    NASA Astrophysics Data System (ADS)

    Trajano, L. A. S. N.; Sergio, L. P. S.; Silva, C. L.; Carvalho, L.; Mencalha, A. L.; Stumbo, A. C.; Fonseca, A. S.

    2016-07-01

    Low-level lasers are used for the treatment of diseases in soft and bone tissues, but few data are available regarding their effects on genomic stability. In this study, we investigated mRNA expression from genes involved in DNA repair and genomic stabilization in myoblasts exposed to low-level infrared laser. C2C12 myoblast cultures in different fetal bovine serum concentrations were exposed to low-level infrared laser (10, 35 and 70 J cm‑2), and collected for the evaluation of DNA repair gene expression. Laser exposure increased gene expression related to base excision repair (8-oxoguanine DNA glycosylase and apurinic/apyrimidinic endonuclease 1), nucleotide excision repair (excision repair cross-complementation group 1 and xeroderma pigmentosum C protein) and genomic stabilization (ATM serine/threonine kinase and tumor protein p53) in normal and low fetal bovine serum concentrations. Results suggest that genomic stability could be part of a biostimulation effect of low-level laser therapy in injured muscles.

  4. Myoblasts and myoblast-conditioned medium attract the earliest spinal neurites from frog embryos.

    PubMed Central

    McCaig, C D

    1986-01-01

    A study was made of the capacity of newly segmented somites, unsegmented mesoderm and medium conditioned by each of these tissues to attract the growth of the earliest spinal neurites from the neural tube of Xenopus laevis in tissue culture. When presented with segmented somitic myoblasts or sheets of skin, spinal neurites grew selectively towards the somitic myoblasts. Neurites were not attracted specifically to somitic myoblasts from their own rostrocaudal level. A variable proportion of myoblasts from unsegmented caudal mesoderm differentiated and elongated in co-culture with neural tube and skin. These myoblasts also attracted neural outgrowths, but only if present in sufficient numbers. An agar slab containing medium conditioned by the presence of segmented myoblasts for 1 day attracted neurite outgrowths. A source of medium conditioned by the presence of undifferentiated, unsegmented myotomal mesoderm alone did not attract neurite outgrowths. Nerve growth factor (NGF) at a range of concentrations in the agar source (500-10,000 ng/ml) did not attract the earliest neurite outgrowths. It is concluded that the earliest skeletal myoblasts from Xenopus laevis embryos may attract neural outgrowths by releasing a soluble factor. Myoblasts may have to develop to the stage of somite segmentation before secretion of such an agent begins. The release of a myoblast-derived factor so early in development may assist directed nerve growth in vivo. Images Plate 1 Plate 2 PMID:3795063

  5. Increased Angiogenesis and Improved Left Ventricular Function after Transplantation of Myoblasts Lacking the MyoD Gene into Infarcted Myocardium

    PubMed Central

    Nakamura, Yasuhiro; Asakura, Yoko; Piras, Bryan A.; Hirai, Hiroyuki; Tastad, Christopher T.; Verma, Mayank; Christ, Amanda J.; Zhang, Jianyi; Yamazaki, Takanori; Yoshiyama, Minoru; Asakura, Atsushi

    2012-01-01

    Skeletal myoblast transplantation has therapeutic potential for repairing damaged heart. However, the optimal conditions for this transplantation are still unclear. Recently, we demonstrated that satellite cell-derived myoblasts lacking the MyoD gene (MyoD−/−), a master transcription factor for skeletal muscle myogenesis, display increased survival and engraftment compared to wild-type controls following transplantation into murine skeletal muscle. In this study, we compare cell survival between wild-type and MyoD−/− myoblasts after transplantation into infarcted heart. We demonstrate that MyoD−/− myoblasts display greater resistance to hypoxia, engraft with higher efficacy, and show a larger improvement in ejection fraction than wild-type controls. Following transplantation, the majority of MyoD−/− and wild-type myoblasts form skeletal muscle fibers while cardiomyocytes do not. Importantly, the transplantation of MyoD−/− myoblasts induces a high degree of angiogenesis in the area of injury. DNA microarray data demonstrate that paracrine angiogenic factors, such as stromal cell-derived factor-1 (SDF-1) and placental growth factor (PlGF), are up-regulated in MyoD−/− myoblasts. In addition, over-expression and gene knockdown experiments demonstrate that MyoD negatively regulates gene expression of these angiogenic factors. These results indicate that MyoD−/− myoblasts impart beneficial effects after transplantation into an infarcted heart, potentially due to the secretion of paracrine angiogenic factors and enhanced angiogenesis in the area of injury. Therefore, our data provide evidence that a genetically engineered myoblast cell type with suppressed MyoD function is useful for therapeutic stem cell transplantation. PMID:22848585

  6. Efficient myogenic differentiation of human adipose-derived stem cells by the transduction of engineered MyoD protein

    SciTech Connect

    Sung, Min Sun; Mun, Ji-Young; Kwon, Ohsuk; Kwon, Ki-Sun; Oh, Doo-Byoung

    2013-07-19

    Highlights: •MyoD was engineered to contain protein transduction domain and endosome-disruptive INF7 peptide. •The engineered MyoD-IT showed efficient nuclear targeting through an endosomal escape by INF7 peptide. •By applying MyoD-IT, human adipose-derived stem cells (hASCs) were differentiated into myogenic cells. •hASCs differentiated by applying MyoD-IT fused to myotubes through co-culturing with mouse myoblasts. •Myogenic differentiation using MyoD-IT is a safe method without the concern of altering the genome. -- Abstract: Human adipose-derived stem cells (hASCs) have great potential as cell sources for the treatment of muscle disorders. To provide a safe method for the myogenic differentiation of hASCs, we engineered the MyoD protein, a key transcription factor for myogenesis. The engineered MyoD (MyoD-IT) was designed to contain the TAT protein transduction domain for cell penetration and the membrane-disrupting INF7 peptide, which is an improved version of the HA2 peptide derived from influenza. MyoD-IT showed greatly improved nuclear targeting ability through an efficient endosomal escape induced by the pH-sensitive membrane disruption of the INF7 peptide. By applying MyoD-IT to a culture, hASCs were efficiently differentiated into long spindle-shaped myogenic cells expressing myosin heavy chains. Moreover, these cells differentiated by an application of MyoD-IT fused to myotubes with high efficiency through co-culturing with mouse C2C12 myoblasts. Because internalized proteins can be degraded in cells without altering the genome, the myogenic differentiation of hASCs using MyoD-IT would be a safe and clinically applicable method.

  7. The HMG protein T160 colocalizes with DNA replication foci and is down-regulated during cell differentiation.

    PubMed

    Hertel, L; De Andrea, M; Bellomo, G; Santoro, P; Landolfo, S; Gariglio, M

    1999-08-01

    The high mobility group protein T160, the murine homolog of the human structure-specific recognition protein 1, was first supposed to be involved in the process of V-(D)-J recombination, since it could bind to recombination signal sequence probes. We have recently cloned T160 by using an unrelated DNA probe and shown that it binds to either cruciform or linear DNA with no sequence specificity. In this work, we performed a detailed analysis of T160 expression and immunolocalization. We show that T160 is a phosphoprotein broadly conserved from yeast to mammals, with a high level of expression in all the cell lines tested and in tissues containing a high degree of proliferating cells. Indirect immunofluorescence analysis by confocal laser microscopy revealed that T160 distribution in the cell nucleus is not uniform, and focus-like staining was observed. Cell cycle studies by BrdU incorporation suggest that the appearance of T160 nuclear foci is specific of mid to late S phase. Furthermore, while T160 expression does not change during the cell cycle, it is dramatically down-regulated when cells begin to differentiate, as highlighted in C2C12 myoblasts and myotubes. The disappearance of T160 nuclear staining in multinucleated myotubes is shown. Taken together, these data suggest that its function may be less specific than V-(D)-J recombination and more related to some cellular basic process, such as DNA replication or repair. PMID:10413586

  8. Involvement of unconventional myosin VI in myoblast function and myotube formation.

    PubMed

    Karolczak, Justyna; Pavlyk, Iuliia; Majewski, Łukasz; Sobczak, Magdalena; Niewiadomski, Paweł; Rzhepetskyy, Yuriy; Sikorska, Agata; Nowak, Natalia; Pomorski, Paweł; Prószyński, Tomasz; Ehler, Elisabeth; Rędowicz, Maria Jolanta

    2015-07-01

    The important role of unconventional myosin VI (MVI) in skeletal and cardiac muscle has been recently postulated (Karolczak et al. in Histochem Cell Biol 139:873-885, 2013). Here, we addressed for the first time a role for this unique myosin motor in myogenic cells as well as during their differentiation into myotubes. During myoblast differentiation, the isoform expression pattern of MVI and its subcellular localization underwent changes. In undifferentiated myoblasts, MVI-stained puncti were seen throughout the cytoplasm and were in close proximity to actin filaments, Golgi apparatus, vinculin-, and talin-rich focal adhesion as well as endoplasmic reticulum. Colocalization of MVI with endoplasmic reticulum was enhanced during myotube formation, and differentiation-dependent association was also seen in sarcoplasmic reticulum of neonatal rat cardiomyocytes (NRCs). Moreover, we observed enrichment of MVI in myotube regions containing acetylcholine receptor-rich clusters, suggesting its involvement in the organization of the muscle postsynaptic machinery. Overexpression of the H246R MVI mutant (associated with hypertrophic cardiomyopathy) in myoblasts and NRCs caused the formation of abnormally large intracellular vesicles. MVI knockdown caused changes in myoblast morphology and inhibition of their migration. On the subcellular level, MVI-depleted myoblasts exhibited aberrations in the organization of actin cytoskeleton and adhesive structures as well as in integrity of Golgi apparatus and endoplasmic reticulum. Also, MVI depletion or overexpression of H246R mutant caused the formation of significantly wider or aberrant myotubes, respectively, indicative of involvement of MVI in myoblast differentiation. The presented results suggest an important role for MVI in myogenic cells and possibly in myoblast differentiation. PMID:25896210

  9. hHGF Overexpression in Myoblast Sheets Enhances Their Angiogenic Potential in Rat Chronic Heart Failure

    PubMed Central

    Siltanen, Antti; Kitabayashi, Katsukiyo; Lakkisto, Päivi; Mäkelä, Johanna; Pätilä, Tommi; Ono, Masamichi; Tikkanen, Ilkka; Sawa, Yoshiki; Kankuri, Esko; Harjula, Ari

    2011-01-01

    After severe myocardial infarction (MI), heart failure results from ischemia, fibrosis, and remodeling. A promising therapy to enhance cardiac function and induce therapeutic angiogenesis via a paracrine mechanism in MI is myoblast sheet transplantation. We hypothesized that in a rat model of MI-induced chronic heart failure, this therapy could be further improved by overexpression of the antiapoptotic, antifibrotic, and proangiogenic hepatocyte growth factor (HGF) in the myoblast sheets. We studied the ability of wild type (L6-WT) and human HGF-expressing (L6-HGF) L6 myoblast sheet-derived paracrine factors to stimulate cardiomyocyte, endothelial cell, or smooth muscle cell migration in culture. Further, we studied the autocrine effect of hHGF-expression on myoblast gene expression profiles by use of microarray analysis. We induced MI in Wistar rats by left anterior descending coronary artery (LAD) ligation and allowed heart failure to develop for 4 weeks. Thereafter, we administered L6-WT (n = 15) or L6-HGF (n = 16) myoblast sheet therapy. Control rats (n = 13) underwent LAD ligation and rethoracotomy without therapy, and five rats underwent a sham operation in both surgeries. We evaluated cardiac function with echocardiography at 2 and 4 weeks after therapy, and analyzed cardiac angiogenesis and left ventricular architecture from histological sections at 4 weeks. Paracrine mediators from L6-HGF myoblast sheets effectively induced migration of cardiac endothelial and smooth muscle cells but not cardiomyocytes. Microarray data revealed that hHGF-expression modulated myoblast gene expression. In vivo, L6-HGF sheet therapy effectively stimulated angiogenesis in the infarcted and non-infarcted areas. Both L6-WT and L6-HGF therapies enhanced cardiac function and inhibited remodeling in a similar fashion. In conclusion, L6-HGF therapy effectively induced angiogenesis in the chronically failing heart. Cardiac function, however, was not further enhanced by h

  10. Optical imaging in microfluidic bioreactors enables oxygen monitoring for continuous cell culture.

    PubMed

    Sud, Dhruv; Mehta, Geeta; Mehta, Khamir; Linderman, Jennifer; Takayama, Shuichi; Mycek, Mary-Ann

    2006-01-01

    For the first time, a fluorescence lifetime calibration method for an oxygen-sensitive dye ruthenium tris(2,2'-dipyridyl) dichloride hexahydrate (RTDP) is applied to image oxygen levels in poly(dimethyl siloxane) (PDMS) bioreactors containing living C2C12 mouse myoblasts. PDMS microsystems are broadly used in bioengineering applications due to their biocompatibility and ease of handling. For these systems, oxygen concentrations are of significance and are likely to play an important role in cell behavior and gene expression. Fluorescence lifetime imaging microscopy (FLIM) bases image contrast on fluorophore excited state lifetimes, which reflect local biochemistry. Unique attributes of the widefield, time-domain FLIM system include tunable excitation (337.1 to 960 nm), large temporal dynamic range (> or =600 ps), high spatial resolution (1.4 microm), calibrated detection (0 to 300+/-8 microM of oxygen), and rapid data acquisition and processing times (10 s). Oxygen levels decrease with increasing cell densities and are consistent with model outcomes obtained by simulating bioreactor oxygen diffusion and cell proliferation. In single bioreactor loops, FLIM detects spatial heterogeneity in oxygen levels with variations as high as 20%. The fluorescence lifetime-based imaging approach we describe avoids intensity-based artifacts (including photobleaching and concentration variations) and provides a technique with high spatial discrimination for oxygen monitoring in continuous cell culture systems. PMID:17092147

  11. Nuclear Export of Smads by RanBP3L Regulates Bone Morphogenetic Protein Signaling and Mesenchymal Stem Cell Differentiation

    PubMed Central

    Chen, Fenfang; Lin, Xia; Xu, Pinglong; Zhang, Zhengmao; Chen, Yanzhen; Wang, Chao; Han, Jiahuai; Zhao, Bin; Xiao, Mu

    2015-01-01

    Bone morphogenetic proteins (BMPs) play vital roles in regulating stem cell maintenance and differentiation. BMPs can induce osteogenesis and inhibit myogenesis of mesenchymal stem cells. Canonical BMP signaling is stringently controlled through reversible phosphorylation and nucleocytoplasmic shuttling of Smad1, Smad5, and Smad8 (Smad1/5/8). However, how the nuclear export of Smad1/5/8 is regulated remains unclear. Here we report that the Ran-binding protein RanBP3L acts as a nuclear export factor for Smad1/5/8. RanBP3L directly recognizes dephosphorylated Smad1/5/8 and mediates their nuclear export in a Ran-dependent manner. Increased expression of RanBP3L blocks BMP-induced osteogenesis of mouse bone marrow-derived mesenchymal stem cells and promotes myogenic induction of C2C12 mouse myoblasts, whereas depletion of RanBP3L expression enhances BMP-dependent stem cell differentiation activity and transcriptional responses. In conclusion, our results demonstrate that RanBP3L, as a nuclear exporter for BMP-specific Smads, plays a critical role in terminating BMP signaling and regulating mesenchymal stem cell differentiation. PMID:25755279

  12. Dynamics of the Skeletal Muscle Secretome during Myoblast Differentiation*

    PubMed Central

    Henningsen, Jeanette; Rigbolt, Kristoffer T. G.; Blagoev, Blagoy; Pedersen, Bente Klarlund; Kratchmarova, Irina

    2010-01-01

    During recent years, increased efforts have focused on elucidating the secretory function of skeletal muscle. Through secreted molecules, skeletal muscle affects local muscle biology in an auto/paracrine manner as well as having systemic effects on other tissues. Here we used a quantitative proteomics platform to investigate the factors secreted during the differentiation of murine C2C12 skeletal muscle cells. Using triple encoding stable isotope labeling by amino acids in cell culture, we compared the secretomes at three different time points of muscle differentiation and followed the dynamics of protein secretion. We identified and quantitatively analyzed 635 secreted proteins, including 35 growth factors, 40 cytokines, and 36 metallopeptidases. The extensive presence of these proteins that can act as potent signaling mediators to other cells and tissues strongly highlights the important role of the skeletal muscle as a prominent secretory organ. In addition to previously reported molecules, we identified many secreted proteins that have not previously been shown to be released from skeletal muscle cells nor shown to be differentially released during the process of myogenesis. We found 188 of these secreted proteins to be significantly regulated during the process of myogenesis. Comparative analyses of selected secreted proteins revealed little correlation between their mRNA and protein levels, indicating pronounced regulation by posttranscriptional mechanisms. Furthermore, analyses of the intracellular levels of members of the semaphorin family and their corresponding secretion dynamics demonstrated that the release of secreted proteins is tightly regulated by the secretory pathway, the stability of the protein, and/or the processing of secreted proteins. Finally, we provide 299 unique hydroxyproline sites mapping to 48 distinct secreted proteins and have discovered a novel hydroxyproline motif. PMID:20631206

  13. Mechanical strain applied to human fibroblasts differentially regulates skeletal myoblast differentiation.

    PubMed

    Hicks, Michael R; Cao, Thanh V; Campbell, David H; Standley, Paul R

    2012-08-01

    Cyclic short-duration stretches (CSDS) such as those resulting from repetitive motion strain increase the risk of musculoskeletal injury. Myofascial release is a common technique used by clinicians that applies an acyclic long-duration stretch (ALDS) to muscle fascia to repair injury. When subjected to mechanical strain, fibroblasts within muscle fascia secrete IL-6, which has been shown to induce myoblast differentiation, essential for muscle repair. We hypothesize that fibroblasts subjected to ALDS following CSDS induce myoblast differentiation through IL-6. Fibroblast conditioned media and fibroblast-myoblast cocultures were used to test fibroblasts' ability to induce myoblast differentiation. The coculture system applies strain to fibroblasts only but still allows for diffusion of potential differentiation mediators to unstrained myoblasts on coverslips. To determine the role of IL-6, we utilized myoblast unicultures ± IL-6 (0-100 ng/ml) and cocultures ± α-IL-6 (0-200 μg/ml). Untreated uniculture myoblasts served as a negative control. After 96 h, coverslips (n = 6-21) were microscopically analyzed and quantified by blinded observer for differentiation endpoints: myotubes per square millimeter (>3 nuclei/cell), nuclei/myotube, and fusion efficiency (%nuclei within myotubes). The presence of fibroblasts and fibroblast conditioned media significantly enhanced myotube number (P < 0.05). However, in coculture, CSDS applied to fibroblasts did not reproduce this effect. ALDS following CSDS increased myotube number by 78% and fusion efficiency by 96% vs. CSDS alone (P < 0.05). Fibroblasts in coculture increase IL-6 secretion; however, IL-6 secretion did not correlate with enhanced differentiation among strain groups. Exogenous IL-6 in myoblast uniculture failed to induce differentiation. However, α-IL-6 attenuated differentiation in all coculture groups (P < 0.05). Fibroblasts secrete soluble mediators that have profound effects on several measures of myoblast

  14. Mechanical strain applied to human fibroblasts differentially regulates skeletal myoblast differentiation

    PubMed Central

    Hicks, Michael R.; Cao, Thanh V.; Campbell, David H.

    2012-01-01

    Cyclic short-duration stretches (CSDS) such as those resulting from repetitive motion strain increase the risk of musculoskeletal injury. Myofascial release is a common technique used by clinicians that applies an acyclic long-duration stretch (ALDS) to muscle fascia to repair injury. When subjected to mechanical strain, fibroblasts within muscle fascia secrete IL-6, which has been shown to induce myoblast differentiation, essential for muscle repair. We hypothesize that fibroblasts subjected to ALDS following CSDS induce myoblast differentiation through IL-6. Fibroblast conditioned media and fibroblast-myoblast cocultures were used to test fibroblasts' ability to induce myoblast differentiation. The coculture system applies strain to fibroblasts only but still allows for diffusion of potential differentiation mediators to unstrained myoblasts on coverslips. To determine the role of IL-6, we utilized myoblast unicultures ± IL-6 (0–100 ng/ml) and cocultures ± α-IL-6 (0–200 μg/ml). Untreated uniculture myoblasts served as a negative control. After 96 h, coverslips (n = 6–21) were microscopically analyzed and quantified by blinded observer for differentiation endpoints: myotubes per square millimeter (>3 nuclei/cell), nuclei/myotube, and fusion efficiency (%nuclei within myotubes). The presence of fibroblasts and fibroblast conditioned media significantly enhanced myotube number (P < 0.05). However, in coculture, CSDS applied to fibroblasts did not reproduce this effect. ALDS following CSDS increased myotube number by 78% and fusion efficiency by 96% vs. CSDS alone (P < 0.05). Fibroblasts in coculture increase IL-6 secretion; however, IL-6 secretion did not correlate with enhanced differentiation among strain groups. Exogenous IL-6 in myoblast uniculture failed to induce differentiation. However, α-IL-6 attenuated differentiation in all coculture groups (P < 0.05). Fibroblasts secrete soluble mediators that have profound effects on several measures of

  15. PLLA/ZnO nanocomposites: Dynamic surfaces to harness cell differentiation.

    PubMed

    Trujillo, Sara; Lizundia, Erlantz; Vilas, José Luis; Salmeron-Sanchez, Manuel

    2016-08-01

    This work investigates the effect of the sequential availability of ZnO nanoparticles, (nanorods of ∼40nm) loaded within a degradable poly(lactic acid) (PLLA) matrix, in cell differentiation. The system constitutes a dynamic surface, in which nanoparticles are exposed as the polymer matrix degrades. ZnO nanoparticles were loaded into PLLA and the system was measured at different time points to characterise the time evolution of the physicochemical properties, including wettability and thermal properties. The micro and nanostructure were also investigated using AFM, SEM and TEM images. Cellular experiments with C2C12 myoblasts show that cell differentiation was significantly enhanced on ZnO nanoparticles-loaded PLLA, as the polymer degrades and the availability of nanoparticles become more apparent, whereas the release of zinc within the culture medium was negligible. Our results suggest PLLA/ZnO nanocomposites can be used as a dynamic system where nanoparticles are exposed during degradation, activating the material surface and driving cell differentiation. PMID:27085047

  16. Myoblast differentiation of human mesenchymal stem cells on graphene oxide and electrospun graphene oxide-polymer composite fibrous meshes: importance of graphene oxide conductivity and dielectric constant on their biocompatibility.

    PubMed

    Chaudhuri, Biswadeep; Bhadra, Debabrata; Moroni, Lorenzo; Pramanik, Krishna

    2015-01-01

    Recently graphene and graphene based composites are emerging as better materials to fabricate scaffolds. Addition of graphene oxide (GO) nanoplatelets (GOnPs) in bioactive polymers was found to enhance its conductivity (σ) and, dielectric permittivity (ϵ) along with biocompatibility. In this paper, human cord blood derived mesenchymal stem cells (CB-hMSCs) were differentiated to skeletal muscle cells (hSkMCs) on spin coated thin GO sheets composed of GOnPs and on electrospun fibrous meshes of GO-PCL (poly-caprolactone) composite. Both substrates exhibited excellent myoblast differentiations and promoted self-alignedmyotubesformation similar to natural orientation. σ, ϵ, microstructural and vibration spectroscopic studies were carried out for the characterizations of GO sheet and the composite scaffolds. Significantly enhanced values of both σ and ϵ of the GO-PCL composite were considered to provide favourable cues for the formation of superior multinucleated myotubes on the electrospun meshes compared to those on thin GO sheets. The present results demonstrated that both substrates might be used as potential candidates for CB-hMSCs differentiation and proliferation for human skeletal muscle tissue regeneration. PMID:25691492

  17. The Paracrine Effect of Skeletal Myoblasts Is Cardioprotective Against Oxidative Stress and Involves EGFR-ErbB4 Signaling, Cystathionase, and the Unfolded Protein Response.

    PubMed

    Siltanen, Antti; Nuutila, Kristo; Imanishi, Yukiko; Uenaka, Hisazumi; Mäkelä, Johanna; Pätilä, Tommi; Vento, Antti; Miyagawa, Shigeru; Sawa, Yoshiki; Harjula, Ari; Kankuri, Esko

    2016-01-01

    Therapeutic effects of skeletal myoblast transplantation into the myocardium are mediated via paracrine factors. We investigated the ability of myoblast-derived soluble mediators to protect cardiomyocytes from oxidative stress. Fetal rat cardiac cells were treated with conditioned medium from cultures of myoblasts or cardiac fibroblasts, and oxidative stress was induced with H2O2. Myoblast-derived factors effectively prevented oxidative stress-induced cardiac cell death and loss of mitochondrial membrane potential. This protective effect was mediated via epidermal growth factor (EGF) receptor and c-Met signaling, and mimicked by neuregulin 1 but not EGF. Microarray analysis of cardiac cells treated with myoblast versus cardiac fibroblast-derived mediators revealed differential regulation of genes associated with antioxidative effects: cystathionine-γ-lyase (cst), xanthine oxidase, and thioredoxin-interacting protein as well as tribbles homolog 3 (trib3). Cardiac cell pretreatment with tunicamycin, an inducer of trib3, also protected them against H2O2-induced cell death. Epicardial transplantation of myoblast sheets in a rat model of acute myocardial infarction was used to evaluate the expression of CST and trib3 as markers of myoblasts' paracrine effect in vivo. Myoblast sheets induced expression of the CST as well as trib3 in infarcted myocardium. CST localized around blood vessels, suggesting smooth muscle cell localization. Our results provide a deeper molecular insight into the therapeutic mechanisms of myoblast-derived paracrine signaling in cardiac cells and suggest that myoblast transplantation therapy may prevent oxidative stress-induced cardiac deterioration and progression of heart failure. PMID:26021843

  18. AP-2{alpha} suppresses skeletal myoblast proliferation and represses fibroblast growth factor receptor 1 promoter activity

    SciTech Connect

    Mitchell, Darrion L.; DiMario, Joseph X.

    2010-01-15

    Skeletal muscle development is partly characterized by myoblast proliferation and subsequent differentiation into postmitotic muscle fibers. Developmental regulation of expression of the fibroblast growth factor receptor 1 (FGFR1) gene is required for normal myoblast proliferation and muscle formation. As a result, FGFR1 promoter activity is controlled by multiple transcriptional regulatory proteins during both proliferation and differentiation of myogenic cells. The transcription factor AP-2{alpha} is present in nuclei of skeletal muscle cells and suppresses myoblast proliferation in vitro. Since FGFR1 gene expression is tightly linked to myoblast proliferation versus differentiation, the FGFR1 promoter was examined for candidate AP-2{alpha} binding sites. Mutagenesis studies indicated that a candidate binding site located at - 1035 bp functioned as a repressor cis-regulatory element. Furthermore, mutation of this site alleviated AP-2{alpha}-mediated repression of FGFR1 promoter activity. Chromatin immunoprecipitation studies demonstrated that AP-2{alpha} interacted with the FGFR1 promoter in both proliferating myoblasts and differentiated myotubes. In total, these results indicate that AP-2{alpha} is a transcriptional repressor of FGFR1 gene expression during skeletal myogenesis.

  19. Utilization of myoblasts from transgenic mice to evaluate the efficacy of myoblast transplantation.

    PubMed

    Kinoshita, I; Huard, J; Tremblay, J P

    1994-09-01

    A possible treatment for Duchenne muscular dystrophy is the injection of normal myoblasts into dystrophic muscles to induce the formation of new, healthy, and dystrophin-positive muscle fibers. To develop this therapy, it is important to identify the muscle fibers formed by the injected myoblasts in the host muscles. In this study, we used myoblasts from transgenic mice which have a gene expressing beta-galactosidase under the control of the promoter of quail fast skeletal muscle troponin I. This transgene is expressed in myotubes and muscle fibers, but not in myoblasts. Twenty-eight days after myoblast transplantation in nude and in mdx mice, muscle fibers containing of beta-galactosidase were identified by x-gal staining. In mdx mice, most of the beta-galactosidase-positive muscle fibers resulting from the myoblast transplantation were also dystrophin positive. This technique could make it possible to follow the success of myoblast transplantation even in mice that are not depleted of dystrophin. PMID:8065399

  20. Testosterone enables growth and hypertrophy in fusion impaired myoblasts that display myotube atrophy: deciphering the role of androgen and IGF-I receptors.

    PubMed

    Hughes, David C; Stewart, Claire E; Sculthorpe, Nicholas; Dugdale, Hannah F; Yousefian, Farzad; Lewis, Mark P; Sharples, Adam P

    2016-06-01

    We have previously highlighted the ability of testosterone (T) to improve differentiation and myotube hypertrophy in fusion impaired myoblasts that display reduced myotube hypertrophy via multiple population doublings (PD) versus their parental controls (CON); an observation which is abrogated via PI3K/Akt inhibition (Deane et al. 2013). However, whether the most predominant molecular mechanism responsible for T induced hypertrophy occurs directly via androgen receptor or indirectly via IGF-IR/PI3K/Akt pathway is currently debated. PD and CON C2C12 muscle cells were exposed to low serum conditions in the presence or absence of T (100 nM) ± inhibitors of AR (flutamide/F, 40 μm) and IGF-IR (picropodophyllin/PPP, 150 nM) for 72 h and 7 days (early/late muscle differentiation respectively). T increased AR and Akt abundance, myogenin gene expression, and myotube hypertrophy, but not ERK1/2 activity in both CON and PD cell types. Akt activity was not increased significantly in either cell type with T. Testosterone was also unable to promote early differentiation in the presence of IGF-IR inhibitor (PPP) yet still able to promote appropriate later increases in myotube hypertrophy and AR abundance despite IGF-IR inhibition. The addition of the AR inhibitor powerfully attenuated all T induced increases in differentiation and myotube hypertrophy with corresponding reductions in AR abundance, phosphorylated Akt, ERK1/2 and gene expression of IGF-IR, myoD and myogenin with increases in myostatin mRNA in both cell types. Interestingly, despite basally reduced differentiation and myotube hypertrophy, PD cells showed larger T induced increases in AR abundance vs. CON cells, a response abrogated in the presence of AR but not IGF-IR inhibitors. Furthermore, T induced increases in Akt abundance were sustained despite the presence of IGF-IR inhibition in PD cells only. Importantly, flutamide alone reduced IGF-IR mRNA in both cell types across time points, with an observed

  1. TBP/TFIID-dependent activation of MyoD target genes in skeletal muscle cells.

    PubMed

    Malecova, Barbora; Dall'Agnese, Alessandra; Madaro, Luca; Gatto, Sole; Coutinho Toto, Paula; Albini, Sonia; Ryan, Tammy; Tora, Làszlò; Puri, Pier Lorenzo

    2016-01-01

    Change in the identity of the components of the transcription pre-initiation complex is proposed to control cell type-specific gene expression. Replacement of the canonical TFIID-TBP complex with TRF3/TBP2 was reported to be required for activation of muscle-gene expression. The lack of a developmental phenotype in TBP2 null mice prompted further analysis to determine whether TBP2 deficiency can compromise adult myogenesis. We show here that TBP2 null mice have an intact regeneration potential upon injury and that TBP2 is not expressed in established C2C12 muscle cell or in primary mouse MuSCs. While TFIID subunits and TBP are downregulated during myoblast differentiation, reduced amounts of these proteins form a complex that is detectable on promoters of muscle genes and is essential for their expression. This evidence demonstrates that TBP2 does not replace TBP during muscle differentiation, as previously proposed, with limiting amounts of TFIID-TBP being required to promote muscle-specific gene expression. PMID:26880551

  2. TBP/TFIID-dependent activation of MyoD target genes in skeletal muscle cells

    PubMed Central

    Malecova, Barbora; Dall'Agnese, Alessandra; Madaro, Luca; Gatto, Sole; Coutinho Toto, Paula; Albini, Sonia; Ryan, Tammy; Tora, Làszlò; Puri, Pier Lorenzo

    2016-01-01

    Change in the identity of the components of the transcription pre-initiation complex is proposed to control cell type-specific gene expression. Replacement of the canonical TFIID-TBP complex with TRF3/TBP2 was reported to be required for activation of muscle-gene expression. The lack of a developmental phenotype in TBP2 null mice prompted further analysis to determine whether TBP2 deficiency can compromise adult myogenesis. We show here that TBP2 null mice have an intact regeneration potential upon injury and that TBP2 is not expressed in established C2C12 muscle cell or in primary mouse MuSCs. While TFIID subunits and TBP are downregulated during myoblast differentiation, reduced amounts of these proteins form a complex that is detectable on promoters of muscle genes and is essential for their expression. This evidence demonstrates that TBP2 does not replace TBP during muscle differentiation, as previously proposed, with limiting amounts of TFIID-TBP being required to promote muscle-specific gene expression. DOI: http://dx.doi.org/10.7554/eLife.12534.001 PMID:26880551

  3. Ubc9 negatively regulates BMP-mediated osteoblastic differentiation in cultured cells.

    PubMed

    Yukita, Akira; Hosoya, Akihiro; Ito, Yuzuru; Katagiri, Takenobu; Asashima, Makoto; Nakamura, Hiroaki

    2012-05-01

    SUMO (small ubiquitin-related modifier) modification (SUMOylation) has been reported to regulate various biological events such as cell-cycle progression, proliferation, and survival. Bone morphogenetic proteins (BMPs) play an important role in osteoblast differentiation and maturation. Although Smad4, which acts as a transcriptional factor in the BMP signaling, is a target of SUMOylation, the involvement of SUMOylation in osteoblast differentiation remains unclear. In this report, we demonstrated spatial expression patterns of SUMO proteins and Ubc9 (ubiquitin conjugating enzyme 9), which is a unique E2-SUMOylation enzyme, in mouse tibia. Furthermore, siRNA knockdown of Ubc9 enhanced osteoblastic differentiation induced by BMP2 in C2C12 mouse myoblasts and ST2 mouse bone-marrow derived stromal cells. Ubc9 knockdown elevated the BMP signaling transduction and reduced the expression of muscle-related genes in cooperation with BMP2. Finally, a luciferase assay using an Id1 (target gene of BMP signaling) reporter revealed that Smad4 mutants prevented from SUMOylation at their Lys158 possessed more potent transcriptional activity than wild-type Smad4. Taken together, these findings suggest that Ubc9 negatively regulates osteoblastic differentiation induced by BMP via, at least in part, SUMOylation of Smad4. PMID:22366399

  4. Monoamine oxidase inhibition prevents mitochondrial dysfunction and apoptosis in myoblasts from patients with collagen VI myopathies

    PubMed Central

    Sorato, E.; Menazza, S.; Zulian, A.; Sabatelli, P.; Gualandi, F.; Merlini, L.; Bonaldo, P.; Canton, M.; Bernardi, P.; Di Lisa, F.

    2014-01-01

    Although mitochondrial dysfunction and oxidative stress have been proposed to play a crucial role in several types of muscular dystrophy (MD), whether a causal link between these two alterations exists remains an open question. We have documented that mitochondrial dysfunction through opening of the permeability transition pore plays a key role in myoblasts from patients as well as in mouse models of MD, and that oxidative stress caused by monoamine oxidases (MAO) is involved in myofiber damage. In the present study we have tested whether MAO-dependent oxidative stress is a causal determinant of mitochondrial dysfunction and apoptosis in myoblasts from patients affected by collagen VI myopathies. We find that upon incubation with hydrogen peroxide or the MAO substrate tyramine myoblasts from patients upregulate MAO-B expression and display a significant rise in reactive oxygen species (ROS) levels, with concomitant mitochondrial depolarization. MAO inhibition by pargyline significantly reduced both ROS accumulation and mitochondrial dysfunction, and normalized the increased incidence of apoptosis in myoblasts from patients. Thus, MAO-dependent oxidative stress is causally related to mitochondrial dysfunction and cell death in myoblasts from patients affected by collagen VI myopathies, and inhibition of MAO should be explored as a potential treatment for these diseases. PMID:25017965

  5. Oxidative Stress and Plasma Membrane Repair in Single Myoblasts After Femtosecond Laser Photoporation.

    PubMed

    Duan, Xinxing; Chan, Kam Tai; Lee, Kenneth K H; Mak, Arthur F T

    2015-11-01

    Cell membranes are susceptible to biophysical damages. These biophysical damages often present themselves in challenging oxidative environments, such as in chronic inflammation. Here we report the damage evolution after single myoblasts were individually subjected to femtosecond (fs) laser photoporation on their plasma membranes under normal and oxidative conditions. A well-characterized tunable fs laser was coupled with a laser scanning confocal microscope. The post-damage wound evolution was documented by real-time imaging. The fs laser could generate a highly focused hole at a targeted site of the myoblast plasma membrane. The initial hole size depended on the laser dosage in terms of power and exposure duration. With the same laser power and irradiation duration, photoporation invoked bigger holes in the oxidative groups than in the control. Myoblasts showed difficulty in repairing holes with initial size beyond certain threshold. Within the threshold, holes could apparently be resealed within 100 s under the normal condition; while in oxidative condition, the resealing process could take 100-300 s. The hole-resealing capacity of myoblasts was compromised under oxidative stress particularly when the oxidative exposure was chronic. It is interesting to note that brief exposure to oxidative stress apparently could promote resealing in myoblasts after photoporation. PMID:26014361

  6. Molecular imaging to target transplanted muscle progenitor cells.

    PubMed

    Gutpell, Kelly; McGirr, Rebecca; Hoffman, Lisa

    2013-01-01

    Duchenne muscular dystrophy (DMD) is a severe genetic neuromuscular disorder that affects 1 in 3,500 boys, and is characterized by progressive muscle degeneration. In patients, the ability of resident muscle satellite cells (SCs) to regenerate damaged myofibers becomes increasingly inefficient. Therefore, transplantation of muscle progenitor cells (MPCs)/myoblasts from healthy subjects is a promising therapeutic approach to DMD. A major limitation to the use of stem cell therapy, however, is a lack of reliable imaging technologies for long-term monitoring of implanted cells, and for evaluating its effectiveness. Here, we describe a non-invasive, real-time approach to evaluate the success of myoblast transplantation. This method takes advantage of a unified fusion reporter gene composed of genes (firefly luciferase [fluc], monomeric red fluorescent protein [mrfp] and sr39 thymidine kinase [sr39tk]) whose expression can be imaged with different imaging modalities. A variety of imaging modalities, including positron emission tomography (PET), single-photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), optical imaging, and high frequency 3D-ultrasound are now available, each with unique advantages and limitations. Bioluminescence imaging (BLI) studies, for example, have the advantage of being relatively low cost and high-throughput. It is for this reason that, in this study, we make use of the firefly luciferase (fluc) reporter gene sequence contained within the fusion gene and bioluminescence imaging (BLI) for the short-term localization of viable C2C12 myoblasts following implantation into a mouse model of DMD (muscular dystrophy on the X chromosome [mdx] mouse). Importantly, BLI provides us with a means to examine the kinetics of labeled MPCs post-implantation, and will be useful to track cells repeatedly over time and following migration. Our reporter gene approach further allows us to merge multiple imaging modalities in a single living

  7. Hydrogels containing metallic glass sub-micron wires for regulating skeletal muscle cell behaviour.

    PubMed

    Ahadian, Samad; Banan Sadeghian, Ramin; Yaginuma, Shin; Ramón-Azcón, Javier; Nashimoto, Yuji; Liang, Xiaobin; Bae, Hojae; Nakajima, Ken; Shiku, Hitoshi; Matsue, Tomokazu; Nakayama, Koji S; Khademhosseini, Ali

    2015-11-01

    Hydrogels with tunable electrical and mechanical properties have a wide range of biological applications in tissue engineering, biosensing, and biorobotics. In this work, palladium-based metallic glass sub-micron wires (PdMGSMWs) were employed to enhance the conductivity and mechanical strength of gelatin methacryloyl (GelMA) gels. The values of electrical resistivity and stiffness of hybrid GelMA-PdMGSMW hydrogels were varied by the concentration of the sub-micron wires in the gels. Compared with pristine GelMA gels, hybrid GelMA-PdMGSMW gels were more efficient in regulating adhesion and spreading of C2C12 myoblasts. Formation, contractility, and metabolic activity of C2C12 myotubes in GelMA hydrogels also increased upon inclusion of the PdMGSMWs and applying electrical stimulation. The latter phenomenon is likely because of the electrical conductivity of hybrid GelMA gels. PMID:26343776

  8. The FGFRL1 Receptor Is Shed from Cell Membranes, Binds Fibroblast Growth Factors (FGFs), and Antagonizes FGF Signaling in Xenopus Embryos*

    PubMed Central

    Steinberg, Florian; Zhuang, Lei; Beyeler, Michael; Kälin, Roland E.; Mullis, Primus E.; Brändli, André W.; Trueb, Beat

    2010-01-01

    FGFRL1 (fibroblast growth factor receptor like 1) is the fifth and most recently discovered member of the fibroblast growth factor receptor (FGFR) family. With up to 50% amino acid similarity, its extracellular domain closely resembles that of the four conventional FGFRs. Its intracellular domain, however, lacks the split tyrosine kinase domain needed for FGF-mediated signal transduction. During embryogenesis of the mouse, FGFRL1 is essential for the development of parts of the skeleton, the diaphragm muscle, the heart, and the metanephric kidney. Since its discovery, it has been hypothesized that FGFRL1 might act as a decoy receptor for FGF ligands. Here we present several lines of evidence that support this notion. We demonstrate that the FGFRL1 ectodomain is shed from the cell membrane of differentiating C2C12 myoblasts and from HEK293 cells by an as yet unidentified protease, which cuts the receptor in the membrane-proximal region. As determined by ligand dot blot analysis, cell-based binding assays, and surface plasmon resonance analysis, the soluble FGFRL1 ectodomain as well as the membrane-bound receptor are capable of binding to some FGF ligands with high affinity, including FGF2, FGF3, FGF4, FGF8, FGF10, and FGF22. We furthermore show that ectopic expression of FGFRL1 in Xenopus embryos antagonizes FGFR signaling during early development. Taken together, our data provide strong evidence that FGFRL1 is indeed a decoy receptor for FGFs. PMID:19920134

  9. The FGFRL1 receptor is shed from cell membranes, binds fibroblast growth factors (FGFs), and antagonizes FGF signaling in Xenopus embryos.

    PubMed

    Steinberg, Florian; Zhuang, Lei; Beyeler, Michael; Kälin, Roland E; Mullis, Primus E; Brändli, André W; Trueb, Beat

    2010-01-15

    FGFRL1 (fibroblast growth factor receptor like 1) is the fifth and most recently discovered member of the fibroblast growth factor receptor (FGFR) family. With up to 50% amino acid similarity, its extracellular domain closely resembles that of the four conventional FGFRs. Its intracellular domain, however, lacks the split tyrosine kinase domain needed for FGF-mediated signal transduction. During embryogenesis of the mouse, FGFRL1 is essential for the development of parts of the skeleton, the diaphragm muscle, the heart, and the metanephric kidney. Since its discovery, it has been hypothesized that FGFRL1 might act as a decoy receptor for FGF ligands. Here we present several lines of evidence that support this notion. We demonstrate that the FGFRL1 ectodomain is shed from the cell membrane of differentiating C2C12 myoblasts and from HEK293 cells by an as yet unidentified protease, which cuts the receptor in the membrane-proximal region. As determined by ligand dot blot analysis, cell-based binding assays, and surface plasmon resonance analysis, the soluble FGFRL1 ectodomain as well as the membrane-bound receptor are capable of binding to some FGF ligands with high affinity, including FGF2, FGF3, FGF4, FGF8, FGF10, and FGF22. We furthermore show that ectopic expression of FGFRL1 in Xenopus embryos antagonizes FGFR signaling during early development. Taken together, our data provide strong evidence that FGFRL1 is indeed a decoy receptor for FGFs. PMID:19920134

  10. BTB-Kelch protein Krp1 regulates proliferation and differentiation of myoblasts

    PubMed Central

    Paxton, Camille W.; Cosgrove, Ruth A.; Drozd, Anja C.; Wiggins, Emma L.; Woodhouse, Sam; Watson, Rachel A.; Spence, Heather J.; Ozanne, Brad W.

    2011-01-01

    The BTB-Kelch protein Krp1 is highly and specifically expressed in skeletal muscle, where it is proposed to have a role in myofibril formation. We observed significant upregulation of Krp1 in C2 cells early in myoblast differentiation, well before myofibrillogenesis. Krp1 has a role in cytoskeletal organization and cell motility; since myoblast migration and elongation/alignment are important events in early myogenesis, we hypothesized that Krp1 is involved with earlier regulation of differentiation. Krp1 protein levels were detectable by 24 h after induction of differentiation in C2 cells and were significantly upregulated by 48 h, i.e., following the onset myogenin expression and preceding myosin heavy chain (MHC) upregulation. Upregulation of Krp1 required a myogenic stimulus as signaling derived from increased myoblast cell density was insufficient to activate Krp1 expression. Examination of putative Krp1 proximal promoter regions revealed consensus E box elements associated with myogenic basic helix-loop-helix binding. The activity of a luciferase promoter-reporter construct encompassing this 2,000-bp region increased in differentiating C2 myoblasts and in C2 cells transfected with myogenin and/or MyoD. Knockdown of Krp1 via short hairpin RNA resulted in increased C2 cell number and proliferation rate as assessed by bromodeoxyuridine incorporation, whereas overexpression of Krp1-myc had the opposite effect; apoptosis was unchanged. No effects of changed Krp1 protein levels on cell migration were observed, either by scratch wound assay or live cell imaging. Paradoxically, both knockdown and overexpression of Krp1 inhibited myoblast differentiation assessed by expression of myogenin, MEF2C, MHC, and cell fusion. PMID:21368295

  11. Nup50 is required for cell differentiation and exhibits transcription-dependent dynamics.

    PubMed

    Buchwalter, Abigail L; Liang, Yun; Hetzer, Martin W

    2014-08-15

    The nuclear pore complex (NPC) plays a critical role in gene expression by mediating import of transcription regulators into the nucleus and export of RNA transcripts to the cytoplasm. Emerging evidence suggests that in addition to mediating transport, a subset of nucleoporins (Nups) engage in transcriptional activation and elongation at genomic loci that are not associated with NPCs. The underlying mechanism and regulation of Nup mobility on and off nuclear pores remain unclear. Here we show that Nup50 is a mobile Nup with a pronounced presence both at the NPC and in the nucleoplasm that can move between these different localizations. Strikingly, the dynamic behavior of Nup50 in both locations is dependent on active transcription by RNA polymerase II and requires the N-terminal half of the protein, which contains importin α- and Nup153-binding domains. However, Nup50 dynamics are independent of importin α, Nup153, and Nup98, even though the latter two proteins also exhibit transcription-dependent mobility. Of interest, depletion of Nup50 from C2C12 myoblasts does not affect cell proliferation but inhibits differentiation into myotubes. Taken together, our results suggest a transport-independent role for Nup50 in chromatin biology that occurs away from the NPC. PMID:24943837

  12. TBX2 blocks myogenesis and promotes proliferation in rhabdomyosarcoma cells

    PubMed Central

    Zhu, Bo; Zhang, Meiling; Byrum, Stephanie D.; Tackett, Alan J.; Davie, Judith K.

    2014-01-01

    Rhabdomyosarcomas (RMS) are the most frequent soft tissue sarcomas in children that share many features of developing skeletal muscle. We have discovered that a T-box family member, TBX2, is highly up regulated in tumor cells of both major RMS subtypes. TBX2 is a repressor that is often over expressed in cancer cells and is thought to function in bypassing cell growth control, including repression of p14 and p21. The cell cycle regulator p21 is required for the terminal differentiation of skeletal muscle cells and is silenced in RMS cells. We have found that TBX2 interacts with the myogenic regulatory factors MyoD and myogenin and inhibits the activity of these factors. TBX2 is expressed in primary myoblasts and C2C12 cells, but is strongly down regulated upon differentiation. TBX2 recruits the histone deacetylase HDAC1 and is a potent inhibitor of the expression of muscle specific genes and the cell cycle regulators, p21 and p14. TBX2 promotes the proliferation of RMS cells and either depletions of TBX2 or dominant negative TBX2 up regulate p21 and muscle specific genes. Significantly, depletion or interference with TBX2 completely inhibits tumor growth in a xenograft assay, highlighting the oncogenic role of TBX2 in RMS cells. Thus, the data demonstrate that elevated expression of TBX2 contributes to the pathology of RMS cells by promoting proliferation and repressing differentiation specific gene expression. These results show that deregulated TBX2 serves as an oncogene in RMS, suggesting that TBX2 may serve as a new diagnostic marker or therapeutic target for RMS tumors. PMID:24470334

  13. Leucine and isoleucine reduce protein degradation in rainbow trout (Oncorhynchus mykiss) primary myoblast cultures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Myogenic precursor cells were isolated from rainbow trout skeletal muscle and incubated in media containing 10% fetal bovine serum for 7 days, thereby differentiating into myoblasts. Rates of protein degradation were determined in response to minimal essential media (MEM) of various amino acid (AA)...

  14. Tris[2-(acryloyloxy)ethyl]isocyanurate cross-linked low-molecular-weight polyethylenimine as gene delivery carriers in cell culture and dystrophic mdx mice.

    PubMed

    Wang, Mingxing; Tucker, Jay D; Lu, Peijuan; Wu, Bo; Cloer, Caryn; Lu, Qilong

    2012-04-18

    Hyperbranched poly(ester amine)s (PEAs) were successfully synthesized by Michael addition reaction between tris[2-(acryloyloxy)ethyl]isocyanurate (TAEI) and low-molecular-weight polyethylenimine (LPEI, M(w) 0.8k, 1.2k, and 2.0k) and evaluated in vitro and in vivo as gene carriers. PEAs effectively condensed plasmid DNA with particle sizes below 200 nm and surface charges between 11.5 and 33.5 mV under tested doses [at the ratios 2-10:1 of polymer/pDNA(w/w)]. The PEAs showed significantly lower cytotoxicities when compared with PEI 25k in two different cell lines. The PEAs (C series) composed of PEI 2k showed higher transgene expression compared to PEAs of PEI 0.8k (A series) or 1.2k (B series). Highest gene transfection efficiency in CHO, C2C12 myoblast, and human skeletal muscle (HSK) cell lines was obtained with TAEI/PEI-2K (C12) at a ratio of 1:2. Both C12, C14(TAEI/PEI-2K at a ratio of 1:4) demonstrated 5-8-fold higher gene expression as compared with PEI 25k in mdx mice in vivo through intramuscular administration. No obvious muscle damage was observed with these new polymers. Higher transfection efficiency and lower toxicity indicate the potential of the biodegradable PEAs as safe and efficient transgene delivery vectors. PMID:22443086

  15. 1,4-Dihydropyridines Active on the SIRT1/AMPK Pathway Ameliorate Skin Repair and Mitochondrial Function and Exhibit Inhibition of Proliferation in Cancer Cells.

    PubMed

    Valente, Sergio; Mellini, Paolo; Spallotta, Francesco; Carafa, Vincenzo; Nebbioso, Angela; Polletta, Lucia; Carnevale, Ilaria; Saladini, Serena; Trisciuoglio, Daniela; Gabellini, Chiara; Tardugno, Maria; Zwergel, Clemens; Cencioni, Chiara; Atlante, Sandra; Moniot, Sébastien; Steegborn, Clemens; Budriesi, Roberta; Tafani, Marco; Del Bufalo, Donatella; Altucci, Lucia; Gaetano, Carlo; Mai, Antonello

    2016-02-25

    Modulators of sirtuins are considered promising therapeutic targets for the treatment of cancer, cardiovascular, metabolic, inflammatory, and neurodegenerative diseases. Here we prepared new 1,4-dihydropyridines (DHPs) bearing changes at the C2/C6, C3/C5, C4, or N1 position. Tested with the SIRTainty procedure, some of them displayed increased SIRT1 activation with respect to the prototype 3a, high NO release in HaCat cells, and ameliorated skin repair in a mouse model of wound healing. In C2C12 myoblasts, two of them improved mitochondrial density and functions. All the effects were reverted by coadministration of compound C (9), an AMPK inhibitor, or of EX-527 (10), a SIRT1 inhibitor, highlighting the involvement of the SIRT1/AMPK pathway in the action of DHPs. Finally, tested in a panel of cancer cells, the water-soluble form of 3a, compound 8, displayed antiproliferative effects in the range of 8-35 μM and increased H4K16 deacetylation, suggesting a possible role for SIRT1 activators in cancer therapy. PMID:26689352

  16. Kras activation in p53-deficient myoblasts results in high-grade sarcoma formation with impaired myogenic differentiation

    PubMed Central

    McKinnon, Timothy; Venier, Rosemarie; Dickson, Brendan C.; Kabaroff, Leah; Alkema, Manon; Chen, Li; Shern, Jack F.; Yohe, Marielle E.; Khan, Javed; Gladdy, Rebecca A.

    2015-01-01

    While genomic studies have improved our ability to classify sarcomas, the molecular mechanisms involved in the formation and progression of many sarcoma subtypes are unknown. To better understand developmental origins and genetic drivers involved in rhabdomyosarcomagenesis, we describe a novel sarcoma model system employing primary murine p53-deficient myoblasts that were isolated and lentivirally transduced with KrasG12D. Myoblast cell lines were characterized and subjected to proliferation, anchorage-independent growth and differentiation assays to assess the effects of transgenic KrasG12D expression. KrasG12D overexpression transformed p53−/− myoblasts as demonstrated by an increased anchorage-independent growth. Induction of differentiation in parental myoblasts resulted in activation of key myogenic regulators. In contrast, Kras-transduced myoblasts had impaired terminal differentiation. p53−/− myoblasts transformed by KrasG12D overexpression resulted in rapid, reproducible tumor formation following orthotopic injection into syngeneic host hindlimbs. Pathological analysis revealed high-grade sarcomas with myogenic differentiation based on the expression of muscle-specific markers, such as Myod1 and Myog. Gene expression patterns of murine sarcomas shared biological pathways with RMS gene sets as determined by gene set enrichment analysis (GSEA) and were 61% similar to human RMS as determined by metagene analysis. Thus, our novel model system is an effective means to model high-grade sarcomas along the RMS spectrum. PMID:25992772

  17. Perinuclear localization of slow troponin C m RNA in muscle cells is controlled by a cis-element located at its 3' untranslated region.

    PubMed

    Reddy, Kishore K; Oitomen, Ferry M; Patel, Gopal P; Bag, Jnanankur

    2005-03-01

    The process of mRNA localization within a specific cytoplasmic region is an integral aspect of the regulation of gene expression. Furthermore, colocalization of mRNAs and their respective translation products may facilitate the proper assembly of multi-subunit complexes like the thick and thin filaments of muscle. This postulate was tested by investigating the cytoplasmic localization of three mRNAs-the alpha-actin, slow troponin C (sTnC), and slow troponin I (sTnI), which encode different poly-peptide partners of the thin filament. Using in situ hybridization we showed that all three thin filament mRNAs are localized in the perinuclear cytoplasm of cultured C2C12 muscle cells. Their localization differs from that of the nonmuscle beta-actin mRNA, which is localized in the peripheral region of both proliferating nondifferentiated myoblasts and the differentiated myocytes. Analysis of the localization signal of the sTnC mRNA showed that a 40-nucleotide-long region of the sTnC mRNA 3' UTR is sufficient to confer the perinuclear localization on a heterologous reporter beta-Gal mRNA. This localization signal showed tissue specificity and worked only in the differentiated myocytes, but not in the proliferating myoblasts or in HeLa cells. The predicted secondary structure of the localization signal suggests the presence of multiple stem and loop structures in this region of the 3' UTR. Mutations within the stem region of the localization signal, which abolish the base pairing in this region, significantly reduced its perinuclear mRNA localization activity. Using UV-induced photo-cross-linking of RNA and proteins we found that a myotube-specific 42-kDa polypeptide binds to the localization signal. PMID:15701732

  18. Spatial patterning of BMP-2 and BMP-7 on biopolymeric films and the guidance of muscle cell fate

    PubMed Central

    Almodóvar, Jorge; Guillot, Raphaël; Monge, Claire; Vollaire, Julien; Selimović, Šeila; Luc-Coll, Jean; Khademhosseini, Ali; Picart, Catherine

    2014-01-01

    In the cellular microenvironment, growth factor gradients are crucial in dictating cell fate. Towards developing materials that capture the native microenvironment we engineered biomimetic films that present gradients of matrix-bound bone morphogenetic proteins (BMP-2 and BMP-7). To this end layer-by-layer films composed of poly(l-lysine) and hyaluronan were combined in a simple microfluidic device enabling spatially controlled growth factor diffusion along the film. Linear long-range gradients of both BMPs induced the trans-differentiation of C2C12 myoblasts towards the osteogenic lineage in a dose dependent manner with a different signature for each BMP. The osteogenic marker alkaline phosphatase (ALP) increased in a linear manner for BMP-7 and non-linearly for BMP-2. Moreover, an increased expression of the myogenic marker troponin T was observed with decreasing matrix-bound BMP concentration, providing a substrate that it is both osteo- and myo-inductive. Lastly, dual parallel matrix-bound gradients of BMP-2 and -7 revealed a complete saturation of the ALP signal. This suggested an additive or synergistic effect of the two BMPs. This simple technology allows for determining quickly and efficiently the optimal concentration of matrix-bound growth factors, as well as for investigating the presentation of multiple growth factors in their solid-phase and in a spatially controlled manner. PMID:24485790

  19. A new level of plasticity: Drosophila smooth-like testes muscles compensate failure of myoblast fusion

    PubMed Central

    Kuckwa, Jessica; Fritzen, Katharina; Buttgereit, Detlev; Rothenbusch-Fender, Silke; Renkawitz-Pohl, Renate

    2016-01-01

    The testis of Drosophila resembles an individual testis tubule of mammals. Both are surrounded by a sheath of smooth muscles, which in Drosophila are multinuclear and originate from a pool of myoblasts that are set aside in the embryo and accumulate on the genital disc later in development. These muscle stem cells start to differentiate early during metamorphosis and give rise to all muscles of the inner male reproductive system. Shortly before the genital disc and the developing testes connect, multinuclear nascent myotubes appear on the anterior tips of the seminal vesicles. Here, we show that adhesion molecules are distinctly localized on the seminal vesicles; founder cell (FC)-like myoblasts express Dumbfounded (Duf) and Roughest (Rst), and fusion-competent myoblast (FCM)-like cells mainly express Sticks and stones (Sns). The smooth but multinuclear myotubes of the testes arose by myoblast fusion. RNAi-mediated attenuation of Sns or both Duf and Rst severely reduced the number of nuclei in the testes muscles. Duf and Rst probably act independently in this context. Despite reduced fusion in all of these RNAi-treated animals, myotubes migrated onto the testes, testes were shaped and coiled, muscle filaments were arranged as in the wild type and spermatogenesis proceeded normally. Hence, the testes muscles compensate for fusion defects so that the myofibres encircling the adult testes are indistinguishable from those of the wild type and male fertility is guaranteed. PMID:26657767

  20. Electrotransfection and lipofection show comparable efficiency for in vitro gene delivery of primary human myoblasts.

    PubMed

    Mars, Tomaz; Strazisar, Marusa; Mis, Katarina; Kotnik, Nejc; Pegan, Katarina; Lojk, Jasna; Grubic, Zoran; Pavlin, Mojca

    2015-04-01

    Transfection of primary human myoblasts offers the possibility to study mechanisms that are important for muscle regeneration and gene therapy of muscle disease. Cultured human myoblasts were selected here because muscle cells still proliferate at this developmental stage, which might have several advantages in gene therapy. Gene therapy is one of the most sought-after tools in modern medicine. Its progress is, however, limited due to the lack of suitable gene transfer techniques. To obtain better insight into the transfection potential of the presently used techniques, two non-viral transfection methods--lipofection and electroporation--were compared. The parameters that can influence transfection efficiency and cell viability were systematically approached and compared. Cultured myoblasts were transfected with the pEGFP-N1 plasmid either using Lipofectamine 2000 or with electroporation. Various combinations for the preparation of the lipoplexes and the electroporation media, and for the pulsing protocols, were tested and compared. Transfection efficiency and cell viability were inversely proportional for both approaches. The appropriate ratio of Lipofectamine and plasmid DNA provides optimal conditions for lipofection, while for electroporation, RPMI medium and a pulsing protocol using eight pulses of 2 ms at E = 0.8 kV/cm proved to be the optimal combination. The transfection efficiencies for the optimal lipofection and optimal electrotransfection protocols were similar (32 vs. 32.5%, respectively). Both of these methods are effective for transfection of primary human myoblasts; however, electroporation might be advantageous for in vivo application to skeletal muscle. PMID:25534347

  1. A new level of plasticity: Drosophila smooth-like testes muscles compensate failure of myoblast fusion.

    PubMed

    Kuckwa, Jessica; Fritzen, Katharina; Buttgereit, Detlev; Rothenbusch-Fender, Silke; Renkawitz-Pohl, Renate

    2016-01-15

    The testis of Drosophila resembles an individual testis tubule of mammals. Both are surrounded by a sheath of smooth muscles, which in Drosophila are multinuclear and originate from a pool of myoblasts that are set aside in the embryo and accumulate on the genital disc later in development. These muscle stem cells start to differentiate early during metamorphosis and give rise to all muscles of the inner male reproductive system. Shortly before the genital disc and the developing testes connect, multinuclear nascent myotubes appear on the anterior tips of the seminal vesicles. Here, we show that adhesion molecules are distinctly localized on the seminal vesicles; founder cell (FC)-like myoblasts express Dumbfounded (Duf) and Roughest (Rst), and fusion-competent myoblast (FCM)-like cells mainly express Sticks and stones (Sns). The smooth but multinuclear myotubes of the testes arose by myoblast fusion. RNAi-mediated attenuation of Sns or both Duf and Rst severely reduced the number of nuclei in the testes muscles. Duf and Rst probably act independently in this context. Despite reduced fusion in all of these RNAi-treated animals, myotubes migrated onto the testes, testes were shaped and coiled, muscle filaments were arranged as in the wild type and spermatogenesis proceeded normally. Hence, the testes muscles compensate for fusion defects so that the myofibres encircling the adult testes are indistinguishable from those of the wild type and male fertility is guaranteed. PMID:26657767

  2. Myoblast proliferation and syncytial fusion both depend on connexin43 function in transfected skeletal muscle primary cultures

    SciTech Connect

    Gorbe, Aniko; Krenacs, Tibor; Cook, Jeremy E.; Becker, David L. . E-mail: d.becker@ucl.ac.uk

    2007-04-01

    Muscles are formed by fusion of individual postmitotic myoblasts to form multinucleated syncytial myotubes. The process requires a well-coordinated transition from proliferation, through migratory alignment and cycle exit, to breakdown of apposed membranes. Connexin43 protein and cell-cycle inhibitor levels are correlated, and gap junction blockers can delay muscle regeneration, so a coordinating role for gap junctions has been proposed. Here, wild-type and dominant-negative connexin43 variants (wtCx43, dnCx43) were introduced into rat myoblasts in primary culture through pIRES-eGFP constructs that made transfected cells fluoresce. GFP-positive cells and vitally-stained nuclei were counted on successive days to reveal differences in proliferation, and myotubes were counted to reveal differences in fusion. Individual transfected cells were injected with Cascade Blue, which permeates gap junctions, mixed with FITC-dextran, which requires cytoplasmic continuity to enter neighbouring cells. Myoblasts transfected with wtCx43 showed more gap-junctional coupling than GFP-only controls, began fusion sooner as judged by the incidence of cytoplasmic coupling, and formed more myotubes. Myoblasts transfected with dnCx43 remained proliferative for longer than either GFP-only or wtCx43 myoblasts, showed less coupling, and underwent little fusion into myotubes. These results highlight the critical role of gap-junctional coupling in myotube formation.

  3. The synthesis and stability of cytoplasmic messenger RNA during myoblast differentiation in culture.

    PubMed

    Buckingham, M E; Caput, D; Cohen, A; Whalen, R G; Gros, F

    1974-04-01

    The synthesis of poly(A)-containing cytoplasmic RNA was examined in primary myoblast cultures prepared from skeletal muscle of fetal calves. After a period of cell division, these cells undergo fusion, with concomitant appearance of acetylcholine receptor and subsequent myosin synthesis. In the dividing myoblast there is a high level of messenger RNA synthesis, including a 26S RNA, the size of a putative messenger for the large subunit of myosin. In the transition period prior to fusion, there are quantitative changes in RNA synthesis. At this time, there is a pronounced production of 26S RNA, which diminishes during fusion. The possibility that 26S RNA is accumulated in the dividing myoblast was investigated by chase experiments. At fusion, there is a marked increase in the half-lives of a number of messenger RNA species, including 26 S, which increases from about 10 hr in the dividing cell to a value of more than 50 hr. The identity of the more rapidly turning over 26 S in the myoblasts, compared to that of the 26 S at fusion, was examined in terms of polysomal distribution, migration on gels, and hybridization with complementary DNA for the myosin message. The results of these analyses suggest that the 26S species are identical. Thus, it would appear that in a predetermined cell like the myoblast, the transition to the differentiated state of myotube that is synthesizing muscle specific proteins is effected by the stabilization of messenger already being actively transcribed: terminal differentiation, with respect to myosin synthesis, is preceded by the stabilization of 26S RNA. PMID:4524649

  4. Long-term evaluation of myoblast seeded patches implanted on infarcted rat hearts.

    PubMed

    Giraud, Marie-Noëlle; Flueckiger, Remy; Cook, Stéphane; Ayuni, Erick; Siepe, Matthias; Carrel, Thierry; Tevaearai, Hendrik

    2010-06-01

    Cell transplantation presents great potential for treatment of patients with severe heart failure. However, its clinical application was revealed to be more challenging than initially expected in experimental studies. Further investigations need to be undertaken to define the optimal treatment conditions. We previously reported on the epicardial implantation of a bio-engineered construct of skeletal myoblast-seeded polyurethane and its preventive effect on progression toward heart failure. In the present study, we present a long-term evaluation of this functional outcome. Left anterior descending coronary ligation was performed in female Lewis rats. Two weeks later, animals were treated with either epicardial implantation of biograft, acellular scaffold, sham operation, or direct intramyocardial skeletal myoblast injection. Functional assessments were performed with serial echocardiographies every 3 months and end point left ventricle pressure was assessed. Hearts were then harvested for histological examinations. Myocardial infarction induced a slow and progressive reduction in fractional shortening after 3 months. Progression toward heart failure was significantly prevented for up to 6 months after injection of myoblasts and for up to 9 months following biograft implantation. Nevertheless, this effect vanished after 12 months, with immunohistological examinations revealing an absence of the transplanted myoblasts within the scaffold. We demonstrated that tissue therapy is superior to cell therapy for stabilization of heart function. However, beneficial effects are transient. PMID:20482708

  5. The use of substrate materials and topography to modify growth patterns and rates of differentiation of muscle cells.

    PubMed

    Murray, L M; Nock, V; Evans, J J; Alkaisi, M M

    2016-07-01

    Cells are cultured on platforms made of a variety of materials with selected topographies during studies of cell response and behavior. Understanding the effects of substrates is essential for such applications as developing effective interfaces between body cells and implanted materials and devices. In this study, the effects of substrate surface properties on cell differentiation and alignment on C2C12 myoblasts cultured on conventional or fabricated polymeric cell culture substrates were investigated. Comparisons were made between cells cultured on tissue culture grade polystyrene (TCPS), glass, Permanox, and cured polydimethylsiloxane (PDMS) substrates. Fluorescent immunohistochemistry of cell markers was used to analyse the extent of differentiation. Alignment and guidance of cell growth and spread were studied using patterned platforms. Gratings were made on polystyrene (PS) and PDMS and differentiation was facilitated after 5 days by media exchange. Differences in cell morphology were observed between cells cultured on TCPS and PDMS substrates. Fully differentiated myotubes were observed in highest numbers on TCPS substrates and were non-detectable on PDMS substrates in the time frame of 144 h. Muscle cell alignment and their differentiation followed along the grating patterns on PS and elongated along the pattern length. On the other hand, on PDMS cells formed sheets of tissue and peeled from the substrate. We have revealed the potential for the combinations of surface materials and topography on cell behavior to induce accelerated differentiation and coordinated alignment. The results demonstrate that culture environment can be designed or engineered to modify or regulate muscle cell functions. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1638-1645, 2016. PMID:26916910

  6. Low Oxygen Tension Enhances Expression of Myogenic Genes When Human Myoblasts Are Activated from G0 Arrest

    PubMed Central

    Sellathurai, Jeeva; Nielsen, Joachim; Hejbøl, Eva Kildall; Jørgensen, Louise Helskov; Dhawan, Jyotsna; Nielsen, Michael Friberg Bruun; Schrøder, Henrik Daa

    2016-01-01

    Objectives Most cell culture studies have been performed at atmospheric oxygen tension of 21%, however the physiological oxygen tension is much lower and is a factor that may affect skeletal muscle myoblasts. In this study we have compared activation of G0 arrested myoblasts in 21% O2 and in 1% O2 in order to see how oxygen tension affects activation and proliferation of human myoblasts. Materials and Methods Human myoblasts were isolated from skeletal muscle tissue and G0 arrested in vitro followed by reactivation at 21% O2 and 1% O2. The effect was assesses by Real-time RT-PCR, immunocytochemistry and western blot. Results and Conclusions We found an increase in proliferation rate of myoblasts when activated at a low oxygen tension (1% O2) compared to 21% O2. In addition, the gene expression studies showed up regulation of the myogenesis related genes PAX3, PAX7, MYOD, MYOG (myogenin), MET, NCAM, DES (desmin), MEF2A, MEF2C and CDH15 (M-cadherin), however, the fraction of DES and MYOD positive cells was not increased by low oxygen tension, indicating that 1% O2 may not have a functional effect on the myogenic response. Furthermore, the expression of genes involved in the TGFβ, Notch and Wnt signaling pathways were also up regulated in low oxygen tension. The differences in gene expression were most pronounced at day one after activation from G0-arrest, thus the initial activation of myoblasts seemed most sensitive to changes in oxygen tension. Protein expression of HES1 and β-catenin indicated that notch signaling may be induced in 21% O2, while the canonical Wnt signaling may be induced in 1% O2 during activation and proliferation of myoblasts. PMID:27442119

  7. p300/β-Catenin Interactions Regulate Adult Progenitor Cell Differentiation Downstream of WNT5a/Protein Kinase C (PKC).

    PubMed

    Rieger, Megan E; Zhou, Beiyun; Solomon, Nicola; Sunohara, Mitsuhiro; Li, Changgong; Nguyen, Cu; Liu, Yixin; Pan, Jie-Hong; Minoo, Parviz; Crandall, Edward D; Brody, Steven L; Kahn, Michael; Borok, Zea

    2016-03-18

    Maintenance of stem/progenitor cell-progeny relationships is required for tissue homeostasis during normal turnover and repair. Wnt signaling is implicated in both maintenance and differentiation of adult stem/progenitor cells, yet how this pathway serves these dichotomous roles remains enigmatic. We previously proposed a model suggesting that specific interaction of β-catenin with either of the homologous Kat3 co-activators, p300 or CREB-binding protein, differentially regulates maintenance versus differentiation of embryonic stem cells. Limited knowledge of endogenous mechanisms driving differential β-catenin/co-activator interactions and their role in adult somatic stem/progenitor cell maintenance versus differentiation led us to explore this process in defined models of adult progenitor cell differentiation. We focused primarily on alveolar epithelial type II (AT2) cells, progenitors of distal lung epithelium, and identified a novel axis whereby WNT5a/protein kinase C (PKC) signaling regulates specific β-catenin/co-activator interactions to promote adult progenitor cell differentiation. p300/β-catenin but not CBP/β-catenin interaction increases as AT2 cells differentiate to a type I (AT1) cell-like phenotype. Additionally, p300 transcriptionally activates AT1 cell-specific gene Aqp-5. IQ-1, a specific inhibitor of p300/β-catenin interaction, prevents differentiation of not only primary AT2 cells, but also tracheal epithelial cells, and C2C12 myoblasts. p300 phosphorylation at Ser-89 enhances p300/β-catenin interaction, concurrent with alveolar epithelial cell differentiation. WNT5a, a traditionally non-canonical WNT ligand regulates Ser-89 phosphorylation and p300/β-catenin interactions in a PKC-dependent manner, likely involving PKCζ. These studies identify a novel intersection of canonical and non-canonical Wnt signaling in adult progenitor cell differentiation that has important implications for targeting β-catenin to modulate adult progenitor cell

  8. Creatine kinase B is necessary to limit myoblast fusion during myogenesis

    PubMed Central

    Simionescu-Bankston, Adriana; Pichavant, Christophe; Canner, James P.; Apponi, Luciano H.; Wang, Yanru; Steeds, Craig; Olthoff, John T.; Belanto, Joseph J.; Ervasti, James M.

    2015-01-01

    Myoblast fusion is critical for proper muscle growth and regeneration. During myoblast fusion, the localization of some molecules is spatially restricted; however, the exact reason for such localization is unknown. Creatine kinase B (CKB), which replenishes local ATP pools, localizes near the ends of cultured primary mouse myotubes. To gain insights into the function of CKB, we performed a yeast two-hybrid screen to identify CKB-interacting proteins. We identified molecules with a broad diversity of roles, including actin polymerization, intracellular protein trafficking, and alternative splicing, as well as sarcomeric components. In-depth studies of α-skeletal actin and α-cardiac actin, two predominant muscle actin isoforms, demonstrated their biochemical interaction and partial colocalization with CKB near the ends of myotubes in vitro. In contrast to other cell types, specific knockdown of CKB did not grossly affect actin polymerization in myotubes, suggesting other muscle-specific roles for CKB. Interestingly, knockdown of CKB resulted in significantly increased myoblast fusion and myotube size in vitro, whereas knockdown of creatine kinase M had no effect on these myogenic parameters. Our results suggest that localized CKB plays a key role in myotube formation by limiting myoblast fusion during myogenesis. PMID:25810257

  9. MiRNA let-7g regulates skeletal myoblast motility via Pinch-2.

    PubMed

    Boudoukha, S; Rivera Vargas, T; Dang, I; Kropp, J; Cuvellier, S; Gautreau, A; Polesskaya, A

    2014-05-01

    Post-transcriptional regulation of gene expression by RNA-binding proteins and by small non-coding RNAs plays an important role in cell biology. Our previous results show that in murine skeletal myoblasts, the expression of Pinch-2, a focal adhesion remodeling factor that regulates cell motility, is repressed by an RNA-binding protein IMP-2/Igf2bp2. We now show that the expression of Pinch-2 is also regulated by the miRNA let-7g. Let-7g and IMP-2 repress Pinch-2 expression independently of each other. A knock-down of let-7g leads to an increase in Pinch-2 expression, and to a decrease of cell motility, which can be reversed by a simultaneous knock-down of Pinch-2. We conclude that let-7g controls the motility of mouse myoblasts in cell culture by post-transcriptionally regulating the expression of Pinch-2. PMID:24613920

  10. Conserved Cis-Regulatory Modules Control Robustness in Msx1 Expression at Single-Cell Resolution

    PubMed Central

    Vance, Keith W.; Woodcock, Dan J.; Reid, John E.; Bretschneider, Till; Ott, Sascha; Koentges, Georgy

    2015-01-01

    The process of transcription is highly stochastic leading to cell-to-cell variations and noise in gene expression levels. However, key essential genes have to be precisely expressed at the correct amount and time to ensure proper cellular development and function. Studies in yeast and bacterial systems have shown that gene expression noise decreases as mean expression levels increase, a relationship that is controlled by promoter DNA sequence. However, the function of distal cis-regulatory modules (CRMs), an evolutionary novelty of metazoans, in controlling transcriptional robustness and variability is poorly understood. In this study, we used live cell imaging of transfected reporters combined with a mathematical modelling and statistical inference scheme to quantify the function of conserved Msx1 CRMs and promoters in modulating single-cell real-time transcription rates in C2C12 mouse myoblasts. The results show that the mean expression–noise relationship is solely promoter controlled for this key pluripotency regulator. In addition, we demonstrate that CRMs modulate single-cell basal promoter rate distributions in a graded manner across a population of cells. This extends the rheostatic model of CRM action to provide a more detailed understanding of CRM function at single-cell resolution. We also identify a novel CRM transcriptional filter function that acts to reduce intracellular variability in transcription rates and show that this can be phylogenetically separable from rate modulating CRM activities. These results are important for understanding how the expression of key vertebrate developmental transcription factors is precisely controlled both within and between individual cells. PMID:26342140

  11. Conserved Cis-Regulatory Modules Control Robustness in Msx1 Expression at Single-Cell Resolution.

    PubMed

    Vance, Keith W; Woodcock, Dan J; Reid, John E; Bretschneider, Till; Ott, Sascha; Koentges, Georgy

    2015-09-01

    The process of transcription is highly stochastic leading to cell-to-cell variations and noise in gene expression levels. However, key essential genes have to be precisely expressed at the correct amount and time to ensure proper cellular development and function. Studies in yeast and bacterial systems have shown that gene expression noise decreases as mean expression levels increase, a relationship that is controlled by promoter DNA sequence. However, the function of distal cis-regulatory modules (CRMs), an evolutionary novelty of metazoans, in controlling transcriptional robustness and variability is poorly understood. In this study, we used live cell imaging of transfected reporters combined with a mathematical modelling and statistical inference scheme to quantify the function of conserved Msx1 CRMs and promoters in modulating single-cell real-time transcription rates in C2C12 mouse myoblasts. The results show that the mean expression-noise relationship is solely promoter controlled for this key pluripotency regulator. In addition, we demonstrate that CRMs modulate single-cell basal promoter rate distributions in a graded manner across a population of cells. This extends the rheostatic model of CRM action to provide a more detailed understanding of CRM function at single-cell resolution. We also identify a novel CRM transcriptional filter function that acts to reduce intracellular variability in transcription rates and show that this can be phylogenetically separable from rate modulating CRM activities. These results are important for understanding how the expression of key vertebrate developmental transcription factors is precisely controlled both within and between individual cells. PMID:26342140

  12. Expression of human dystrophin following the transplantation of genetically modified mdx myoblasts.

    PubMed

    Moisset, P A; Gagnon, Y; Karpati, G; Tremblay, J P

    1998-10-01

    Transplantation of genetically modified autologous myoblasts has been proposed as a possible solution to avoid long-term use of immunosuppressive drugs. To determine the conditions to be used in this kind of approach for possible treatment of dystrophin deficiency, mdx myoblasts were infected at different multiplicities of infection (MOI or 0.01-1000) with an adenoviral vector containing a CMV promoter/enhancer driven 6.3 kb human dystrophin cDNA (minigene) and tested in vitro for transgene expression. In these cultures, dystrophin mRNA was found to be proportionate with increasing MOI. Primary myoblast cultures derived from transgenic mdx mice expressing beta-Gal under a muscle-specific promoter and showing high expression of the human mini-dystrophin transgene introduced by the adenoviral vector were grafted into anterior tibialis muscles of SCID mice. Ten and 24 days after transplantation, numerous muscle fibers expressing both human dystrophin and beta-Gal were detected throughout the mouse muscles by immunohistochemistry using an antibody specific for human dystrophin. The presence of the human mini-dystrophin mRNA was also detected by RT-PCR. These results demonstrate that three essential conditions in autologous myoblast transplantation can be achieved: (1) in vivo survival of at least some of the transduced myoblasts; (2) efficient fusion of these cells with the host muscle fibers; and (3) the high expression of the dystrophin transgene in situ. Furthermore, this article provides a novel RT-PCR-based technique to quantify the human dystrophin minigene expression in vitro and in vivo. PMID:9930339

  13. The E3 ubiquitin ligase TRIM32 regulates myoblast proliferation by controlling turnover of NDRG2.

    PubMed

    Mokhonova, Ekaterina I; Avliyakulov, Nuraly K; Kramerova, Irina; Kudryashova, Elena; Haykinson, Michael J; Spencer, Melissa J

    2015-05-15

    Limb girdle muscular dystrophy 2H is caused by mutations in the gene encoding the E3 ubiquitin ligase, TRIM32. Previously, we generated and characterized a Trim32 knockout mouse (T32KO) that displays both neurogenic and myopathic features. The myopathy in these mice is attributable to impaired muscle growth, associated with satellite cell senescence and premature sarcopenia. This satellite cell senescence is due to accumulation of the SUMO ligase PIASy, a substrate of TRIM32. The goal of this investigation was to identify additional substrates of TRIM32 using 2D fluorescence difference gel electrophoresis (2D-DIGE) in order to further explore its role in skeletal muscle. Because TRIM32 is an E3 ubiquitin ligase, we reasoned that TRIM32's substrates would accumulate in its absence. 2D-DIGE identified 19 proteins that accumulate in muscles from the T32KO mouse. We focused on two of these proteins, NDRG2 and TRIM72, due to their putative roles in myoblast proliferation and myogenesis. Follow-up analysis confirmed that both proteins were ubiquitinated by TRIM32 in vitro; however, only NDRG2 accumulated in skeletal muscle and myoblasts in the absence of TRIM32. NDRG2 overexpression in myoblasts led to reduced cell proliferation and delayed cell cycle withdrawal during differentiation. Thus, we identified NDRG2 as a novel target for TRIM32; these findings further corroborate the hypothesis that TRIM32 is involved in control of myogenic cells proliferation and differentiation. PMID:25701873

  14. The E3 ubiquitin ligase TRIM32 regulates myoblast proliferation by controlling turnover of NDRG2

    PubMed Central

    Mokhonova, Ekaterina I.; Avliyakulov, Nuraly K.; Kramerova, Irina; Kudryashova, Elena; Haykinson, Michael J.; Spencer, Melissa J.

    2015-01-01

    Limb girdle muscular dystrophy 2H is caused by mutations in the gene encoding the E3 ubiquitin ligase, TRIM32. Previously, we generated and characterized a Trim32 knockout mouse (T32KO) that displays both neurogenic and myopathic features. The myopathy in these mice is attributable to impaired muscle growth, associated with satellite cell senescence and premature sarcopenia. This satellite cell senescence is due to accumulation of the SUMO ligase PIASy, a substrate of TRIM32. The goal of this investigation was to identify additional substrates of TRIM32 using 2D fluorescence difference gel electrophoresis (2D-DIGE) in order to further explore its role in skeletal muscle. Because TRIM32 is an E3 ubiquitin ligase, we reasoned that TRIM32's substrates would accumulate in its absence. 2D-DIGE identified 19 proteins that accumulate in muscles from the T32KO mouse. We focused on two of these proteins, NDRG2 and TRIM72, due to their putative roles in myoblast proliferation and myogenesis. Follow-up analysis confirmed that both proteins were ubiquitinated by TRIM32 in vitro; however, only NDRG2 accumulated in skeletal muscle and myoblasts in the absence of TRIM32. NDRG2 overexpression in myoblasts led to reduced cell proliferation and delayed cell cycle withdrawal during differentiation. Thus, we identified NDRG2 as a novel target for TRIM32; these findings further corroborate the hypothesis that TRIM32 is involved in control of myogenic cells proliferation and differentiation. PMID:25701873

  15. Cofilin Phosphorylation Decreased by Serum-free Starvation with Low Glucose in the L6 Myoblasts.

    PubMed

    Kim, Mee-Young; Kim, Ju-Hyun; Lee, Jeong-Uk; Lee, Lim-Kyu; Yang, Seung-Min; Park, Byoung-Sun; Jeon, Hye-Joo; Lee, Won-Deok; Noh, Ji-Woong; Kwak, Taek-Yong; Jang, Sung-Ho; Lee, Tae-Hyun; Kim, Ju-Young; Kim, Tae-Whan; Kim, Bokyung; Kim, Junghwan

    2014-10-01

    [Purpose] Many studies have been using cell culture models of muscle cells with exogenous cytokines or glucocorticoids to mimic atrophy in in vivo and in vitro tests. However, the changes in the phosphorylation of atrophy-related cofilin are still poorly understood in starved skeletal muscle cells. In this study, we first examined whether or not phosphorylation of cofilin is altered in L6 myoblasts after 3, 6, 12, 24, 48, and 72 hours of serum-free starvation with low glucose. [Methods] We used Western blotting to exam protein expression and phosphorylation in atrophied L6 myoblasts. [Results] L6 cell sizes and numbers were diminished as a result of serum-free starvation in a time-dependent manner. Serum-free starvation for 3, 6, 12, 24, 48, and 72 hours significantly decreased the phosphorylation of cofilin, respectively. [Conclusion] These results suggest that starvation-induced atrophy may be in part related to changes in the phosphorylation of cofilin in L6 myoblasts. PMID:25364107

  16. Inhibitory effect of MyoD on the proliferation of breast cancer cells

    PubMed Central

    CAI, CHANGJING; QIN, XIAOQUN; WU, ZIYI; SHEN, QIXIA; YANG, WENQIAN; ZHANG, SHUJUN; DUAN, JINLING; LIANG, FENGLAN; LIU, CHI

    2016-01-01

    Skeletal muscle is rich in lymphatic vessels, with an abundant blood supply, and it is an infrequent site of cancer metastasis. Previous studies have demonstrated that enhanced secretion of MyoD may occur when skeletal muscle is injured or becomes cancerous. It was hypothesized that MyoD may act as an endogenous cytokine to inhibit the proliferation of cancer cells. To verify the possible effect of this protein on tumor cell proliferation, C2C12 mouse skeletal muscle cells and 4T1 mouse breast cancer cells were co-cultured using embedded Transwell plates. Following co-culture, cell cycle analysis revealed that C2C12 muscle cells were able to inhibit the proliferation of the breast cancer cells. Subsequently, MyoD was silenced in C2C12 cells to assess its effect on 4T1 cell proliferation. Following co-culture with MyoD-silenced cells, a 5-ethynyl-20-deoxyuridine assay indicated that MyoD silencing prevented the reduction in proliferation of 4T1 cells induced by untransfected C2C12 cells. In summary, the results indicated that MyoD inhibits the proliferation of breast cancer cells and may be a tumor suppressor factor. PMID:27284360

  17. Lateral Chain Length in Polyalkyl Acrylates Determines the Mobility of Fibronectin at the Cell/Material Interface

    PubMed Central

    2015-01-01

    Cells, by interacting with surfaces indirectly through a layer of extracellular matrix proteins, can respond to a variety of physical properties, such as topography or stiffness. Polymer surface mobility is another physical property that is less well understood but has been indicated to hold the potential to modulate cell behavior. Polymer mobility is related to the glass-transition temperature (Tg) of the system, the point at which a polymer transitions from an amorphous solid to a more liquid-like state. This work shows that changes in polymer mobility translate to interfacial mobility of extracellular matrix proteins adsorbed on the material surface. This study has utilized a family of polyalkyl acrylates with similar chemistry but different degrees of mobility, obtained through increasing length of the side chain. These materials are used, in conjunction with fluorescent fibronectin, to determine the mobility of this interfacial layer of protein that constitutes the initial cell–material interface. Furthermore, the extent of fibronectin domain availability (III9, III10, - the integrin binding site), cell-mediated reorganization, and cell differentiation was also determined. A nonmonotonic dependence of fibronectin mobility on polymer surface mobility was observed, with a similar trend noted in cell-mediated reorganization of the protein layer by L929 fibroblasts. The availability of the integrin-binding site was higher on the more mobile surfaces, where a similar organization of the protein into networks at the material interface was observed. Finally, differentiation of C2C12 myoblasts was seen to be highly sensitive to surface mobility upon inhibition of cell contractility. Altogether, these findings show that polymer mobility is a subtle influence that translates to the cell/material interface through the protein layer to alter the biological activity of the surface. PMID:26715432

  18. Development and optimization of a cell-based assay for the selection of synthetic compounds that potentiate bone morphogenetic protein-2 activity.

    PubMed

    Okada, Motohiro; Sangadala, Sreedhara; Liu, Yunshan; Yoshida, Munehito; Reddy, Boojala Vijay B; Titus, Louisa; Boden, Scott D

    2009-12-01

    The requirement of large amounts of the recombinant human bone morphogenetic protein-2 (BMP-2) produces a huge translational barrier for its routine clinical use due to high cost. This leads to an urgent need to develop alternative methods to lower costs and/or increase efficacies for using BMP-2. In this study, we describe the development and optimization of a cell-based assay that is sensitive, reproducible, and reliable in identifying reagents that potentiate the effects of BMP-2 in inducing transdifferentiation of C2C12 myoblasts into the osteoblastic phenotype. The assay is based on a BMP-responsive Smad1-driven luciferase reporter gene. LIM mineralization protein-1 (LMP-1) is a novel intracellular LIM domain protein that has been shown by our group to enhance cellular responsiveness to BMP-2. Our previous report elucidated that the binding of LMP-1 with the WW2 domain in Smad ubiquitin regulatory factor-1 (Smurf1) rescues the osteogenic Smads from degradation. Here, using the optimized cell-based assay, we first evaluated the activity of the recombinantly prepared proteins, LMP-1, and its mutant (LMP-1DeltaSmurf1) that lacks the Smurf1-WW2 domain-binding motif. Both the wild type and the mutant proteins were engineered to contain an 11-amino acid HIV-TAT protein derived membrane transduction domain to aid the cellular delivery of recombinant proteins. The cell-based reporter assay confirmed that LMP-1 potentiates the BMP-induced stimulation of C2C12 cells towards the osteoblastic phenotype. The potentiating effect of LMP-1 was significantly reduced when a specific-motif known to interact with Smurf1 was mutated. We validated the results obtained in the reporter assay by also monitoring the expression of mRNA for osteocalcin and alkaline phosphatase (ALP) which is widely accepted osteoblast differentiation marker genes. Finally, we provide further confirmation of our results by measuring the activity of alkaline phosphatase in support of the accuracy and

  19. Hyperhomocysteinemia inhibits satellite cell regenerative capacity through p38 alpha/beta MAPK signaling.

    PubMed

    Veeranki, Sudhakar; Lominadze, David; Tyagi, Suresh C

    2015-07-15

    Chronic failure in maintenance and regeneration of skeletal muscles leads to lower muscle mass (sarcopenia), muscle weakness, and poor response to injury. Evidence suggests that aberrant p38 MAPK signaling undermines the repair process after injury in aged mice. Previous studies have shown that hyperhomocysteinemia (HHcy) has been associated with muscle weakness and lower than normal body weights. However, whether or not HHcy condition also compromises skeletal muscle regenerative capabilities is not clear. In the current study, we show that CBS-/+ mice, a model for HHcy condition, exhibited compromised regenerative function and cell proliferation upon injury. However, there was no significant difference in Pax7 expression levels in the satellite cells from CBS-/+ mouse skeletal muscles. Interestingly, the satellite cells from CBS-/+ mice not only exhibited diminished in vitro proliferative capabilities, but also there was heightened oxidative stress. In addition, there was enhanced p38 MAPK activation as well as p16 and p21 expression in the CBS-/+ mouse satellite cells. Moreover, the C2C12 myoblasts also exhibited higher p38 MAPK activation and p16 expression upon treatment with homocysteine in addition to enhanced ROS presence. Tissue engraftment potential and regeneration after injury were restored to some extent upon treatment with the p38-MAPK inhibitor, SB203580, in the CBS-/+ mice. These results together suggest that HHcy-induced diminished satellite cell proliferation involves excessive oxidative stress and p38 MAPK signaling. Our study further proposes that HHcy is a potential risk factor for elderly frailty, and need to be considered as a therapeutic target while designing the alleviation interventions/postinjury rehabilitation measures for adults with HHcy. PMID:25980021

  20. Substrate stiffness affects skeletal myoblast differentiation in vitro

    NASA Astrophysics Data System (ADS)

    Romanazzo, Sara; Forte, Giancarlo; Ebara, Mitsuhiro; Uto, Koichiro; Pagliari, Stefania; Aoyagi, Takao; Traversa, Enrico; Taniguchi, Akiyoshi

    2012-12-01

    To maximize the therapeutic efficacy of cardiac muscle constructs produced by stem cells and tissue engineering protocols, suitable scaffolds should be designed to recapitulate all the characteristics of native muscle and mimic the microenvironment encountered by cells in vivo. Moreover, so not to interfere with cardiac contractility, the scaffold should be deformable enough to withstand muscle contraction. Recently, it was suggested that the mechanical properties of scaffolds can interfere with stem/progenitor cell functions, and thus careful consideration is required when choosing polymers for targeted applications. In this study, cross-linked poly-ɛ-caprolactone membranes having similar chemical composition and controlled stiffness in a supra-physiological range were challenged with two sources of myoblasts to evaluate the suitability of substrates with different stiffness for cell adhesion, proliferation and differentiation. Furthermore, muscle-specific and non-related feeder layers were prepared on stiff surfaces to reveal the contribution of biological and mechanical cues to skeletal muscle progenitor differentiation. We demonstrated that substrate stiffness does affect myogenic differentiation, meaning that softer substrates can promote differentiation and that a muscle-specific feeder layer can improve the degree of maturation in skeletal muscle stem cells.

  1. Trbp Is Required for Differentiation of Myoblasts and Normal Regeneration of Skeletal Muscle.

    PubMed

    Ding, Jian; Nie, Mao; Liu, Jianming; Hu, Xiaoyun; Ma, Lixin; Deng, Zhong-Liang; Wang, Da-Zhi

    2016-01-01

    Global inactivation of Trbp, a regulator of miRNA pathways, resulted in developmental defects and postnatal lethality in mice. Recently, we showed that cardiac-specific deletion of Trbp caused heart failure. However, its functional role(s) in skeletal muscle has not been characterized. Using a conditional knockout model, we generated mice lacking Trbp in the skeletal muscle. Unexpectedly, skeletal muscle specific Trbp mutant mice appear to be phenotypically normal under normal physiological conditions. However, these mice exhibited impaired muscle regeneration and increased fibrosis in response to cardiotoxin-induced muscle injury, suggesting that Trbp is required for muscle repair. Using cultured myoblast cells we further showed that inhibition of Trbp repressed myoblast differentiation in vitro. The impaired myogenesis is associated with reduced expression of muscle-specific miRNAs, miR-1a and miR-133a. Together, our study demonstrated that Trbp participates in the regulation of muscle differentiation and regeneration. PMID:27159388

  2. Trbp Is Required for Differentiation of Myoblasts and Normal Regeneration of Skeletal Muscle

    PubMed Central

    Ding, Jian; Nie, Mao; Liu, Jianming; Hu, Xiaoyun; Ma, Lixin; Deng, Zhong-Liang; Wang, Da-Zhi

    2016-01-01

    Global inactivation of Trbp, a regulator of miRNA pathways, resulted in developmental defects and postnatal lethality in mice. Recently, we showed that cardiac-specific deletion of Trbp caused heart failure. However, its functional role(s) in skeletal muscle has not been characterized. Using a conditional knockout model, we generated mice lacking Trbp in the skeletal muscle. Unexpectedly, skeletal muscle specific Trbp mutant mice appear to be phenotypically normal under normal physiological conditions. However, these mice exhibited impaired muscle regeneration and increased fibrosis in response to cardiotoxin-induced muscle injury, suggesting that Trbp is required for muscle repair. Using cultured myoblast cells we further showed that inhibition of Trbp repressed myoblast differentiation in vitro. The impaired myogenesis is associated with reduced expression of muscle-specific miRNAs, miR-1a and miR-133a. Together, our study demonstrated that Trbp participates in the regulation of muscle differentiation and regeneration. PMID:27159388

  3. Inhibition of Na{sup +} channel currents in rat myoblasts by 4-aminopyridine

    SciTech Connect

    Lu Boxun; Liu Linyun; Liao Lei; Zhang Zhihong; Mei Yanai . E-mail: yamei@fudan.edu.cn

    2005-09-15

    Our previous study revealed that 4-aminopyridine (4-AP), a specific blocker of A-type current, could also inhibit inward Na{sup +} currents (I {sub Na}) with a state-independent mechanism in rat cerebellar granule cells. In the present study, we report an inhibitory effect of 4-AP on voltage-gated and tetrodotoxin (TTX)-sensitive I {sub Na} recorded from cultured rat myoblasts. 4-AP inhibited I {sub Na} amplitude in a dose-dependent manner between the concentrations of 0.5 and 10 mM without significant alteration in the activation or inactivation kinetics of the channel. By comparison to the 4-AP-induced inhibitory effect on cerebellum neurons, the inhibitory effect on myoblasts was enhanced through repetitive pulse and inflected by changing frequency. Specifically, the lower the frequency of pulse, the higher the inhibition observed, suggesting that block manner is inversely use-dependent. Moreover, experiments adding 4-AP to the intracellular solution indicate that the inhibitory effects are localized inside the cell. Additionally, 4-AP significantly modifies the properties of steady-state activation and inactivation kinetics of the channel. Our data suggest that the K{sup +} channel blocker 4-AP inhibits both neuron and myoblast Na{sup +} channels via different mechanisms. These findings may also provide information regarding 4-AP-induced pharmacological and toxicological effects in clinical use and experimental research.

  4. The Tocotrienol-Rich Fraction Is Superior to Tocopherol in Promoting Myogenic Differentiation in the Prevention of Replicative Senescence of Myoblasts.

    PubMed

    Khor, Shy Cian; Razak, Azraul Mumtazah; Wan Ngah, Wan Zurinah; Mohd Yusof, Yasmin Anum; Abdul Karim, Norwahidah; Makpol, Suzana

    2016-01-01

    Aging results in a loss of muscle mass and strength. Myoblasts play an important role in maintaining muscle mass through regenerative processes, which are impaired during aging. Vitamin E potentially ameliorates age-related phenotypes. Hence, this study aimed to determine the effects of the tocotrienol-rich fraction (TRF) and α-tocopherol (ATF) in protecting myoblasts from replicative senescence and promoting myogenic differentiation. Primary human myoblasts were cultured into young and senescent stages and were then treated with TRF or ATF for 24 h, followed by an analysis of cell proliferation, senescence biomarkers, cellular morphology and differentiation. Our data showed that replicative senescence impaired the normal regenerative processes of myoblasts, resulting in changes in cellular morphology, cell proliferation, senescence-associated β-galactosidase (SA-β-gal) expression, myogenic differentiation and myogenic regulatory factors (MRFs) expression. Treatment with both TRF and ATF was beneficial to senescent myoblasts in reclaiming the morphology of young cells, improved cell viability and decreased SA-β-gal expression. However, only TRF treatment increased BrdU incorporation in senescent myoblasts, as well as promoted myogenic differentiation through the modulation of MRFs at the mRNA and protein levels. MYOD1 and MYOG gene expression and myogenin protein expression were modulated in the early phases of myogenic differentiation. In conclusion, the tocotrienol-rich fraction is superior to α-tocopherol in ameliorating replicative senescence-related aberration and promoting differentiation via modulation of MRFs expression, indicating vitamin E potential in modulating replicative senescence of myoblasts. PMID:26885980

  5. The Tocotrienol-Rich Fraction Is Superior to Tocopherol in Promoting Myogenic Differentiation in the Prevention of Replicative Senescence of Myoblasts

    PubMed Central

    Khor, Shy Cian; Razak, Azraul Mumtazah; Wan Ngah, Wan Zurinah; Mohd Yusof, Yasmin Anum; Abdul Karim, Norwahidah; Makpol, Suzana

    2016-01-01

    Aging results in a loss of muscle mass and strength. Myoblasts play an important role in maintaining muscle mass through regenerative processes, which are impaired during aging. Vitamin E potentially ameliorates age-related phenotypes. Hence, this study aimed to determine the effects of the tocotrienol-rich fraction (TRF) and α-tocopherol (ATF) in protecting myoblasts from replicative senescence and promoting myogenic differentiation. Primary human myoblasts were cultured into young and senescent stages and were then treated with TRF or ATF for 24 h, followed by an analysis of cell proliferation, senescence biomarkers, cellular morphology and differentiation. Our data showed that replicative senescence impaired the normal regenerative processes of myoblasts, resulting in changes in cellular morphology, cell proliferation, senescence-associated β-galactosidase (SA-β-gal) expression, myogenic differentiation and myogenic regulatory factors (MRFs) expression. Treatment with both TRF and ATF was beneficial to senescent myoblasts in reclaiming the morphology of young cells, improved cell viability and decreased SA-β-gal expression. However, only TRF treatment increased BrdU incorporation in senescent myoblasts, as well as promoted myogenic differentiation through the modulation of MRFs at the mRNA and protein levels. MYOD1 and MYOG gene expression and myogenin protein expression were modulated in the early phases of myogenic differentiation. In conclusion, the tocotrienol-rich fraction is superior to α-tocopherol in ameliorating replicative senescence-related aberration and promoting differentiation via modulation of MRFs expression, indicating vitamin E potential in modulating replicative senescence of myoblasts. PMID:26885980

  6. The Use of Platelet-Rich and Platelet-Poor Plasma to Enhance Differentiation of Skeletal Myoblasts

    PubMed Central

    Dragoo, Jason L.

    2016-01-01

    Objectives: Platelet-rich plasma (PRP) has been has been used to augment tissue repair and regeneration after musculoskeletal injury. However, there is increasing clinical evidence that PRP, and related blood products, do not show a consistent clinical effect. The purpose of this study is to compare the effects of non-neutrophil containing PRP (LP-PRP), modified LP-PRP (Mod LP-PRP) where TGF-β1 and myostatin (MSTN) were depleted, and platelet poor plasma (PPP) on human skeletal muscle myoblast (HSMM) differentiation. Our hypothesis was that LP-PRP would lead to myoblast proliferation, not differentiation, while modifications of PRP preparations will increase myoblast differentiation, which is necessary for skeletal muscle regeneration. Methods: Blood was simultaneously processed from eight healthy human donors to create LP-PRP, Mod-LP-PRP, PPP and second spin (ss) PRP and Mod-PRP groups. Mod-PRP was created using antibodies attached to sterile beads to remove TGF- β1 and MSTN. The biologics were then individually added to human skeletal muscle myoblasts (HSMM) and were analyzed over four days. Analysis for induction into myoblast proliferation and differentiation pathways included Western blot and RT-PCR, as well as confocal microscopy to assess for polynucleated myotubule formation. Results: LP-PRP treatment lead to increased myoblast proliferation compared to PPP (1.01 x 106 vs 5.1 x 105 cells), but showed no evidence differentiation into muscle cells either by myotubule formation or via inducing myosin heavy chain (MHC) RNA compared to negative controls (0.1x fold change; p>0.05). TGF- β1 and MSTN were successfully depleted in Mod-PRP, but this modification did little to improve myoblast differentiation (0.2x fold change MHC RNA vs control; p>0.05). Application of PPP to cultures induced myoblast differentiation that included visible multinucleated myotubule formation and MHC induction compared to negative controls (9.8x fold change; p<0.05). A second

  7. Effect of nano- and micro-scale topological features on alignment of muscle cells and commitment of myogenic differentiation.

    PubMed

    Jana, Soumen; Leung, Matthew; Chang, Julia; Zhang, Miqin

    2014-09-01

    Skeletal muscle injury can lead to severe motor deficits that adversely affect movement and quality of life. Current surgical treatments for skeletal muscle are hindered by the poor formation of organized myotube bundles at the wound site. Tissue-engineered skeletal muscle constructs to date have been unable to generate high degrees of myotube density and alignment. Generating a suitable in vitro tissue-engineered skeletal muscle construct requires the design of a scaffold that recapitulates the structural combination of nanoscale collagen fibrils and aligned microscale basal lamina tracks present in the native extracellular matrix (ECM). We hypothesized that a 3D aligned tubular porous scaffold containing aligned nanofibers inside the pores can mimic the native muscle tissue environment. We constructed a laminar section of the hypothesized scaffold with aligned chitosan-PCL nanofibers arranged co-axially with the aligned microscale chitosan scaffold bands to mimic the required myogenic environment. A 6-day study of C2C12 mouse myoblast cells cultured on this hybrid scaffold indicated that the nanofibers and scaffold bands in the scaffold played a synergetic role in directing cell orientation, interaction, migration and organization. Our results showed that aligned nanofibers mediated cell alignment and the aligned scaffold bands induced the formation of a more compact assembly of myotube cells as compared to various control substrates including chitosan films, nanofibers, and chitosan bands. The expression levels of both early and late-stage myogenic differentiation genes associated with myogenin and myosin heavy chain, respectively, were higher on the hybrid substrate than on control substrates. Our study suggests that the combination of nano and microscale topological features in the ECM can direct myogenic differentiation, and the hybrid material has the potential to improve the outcome of skeletal tissue engineering. PMID:24876344

  8. Barx2 and Pax7 Regulate Axin2 Expression in Myoblasts by Interaction with β-Catenin and Chromatin Remodelling.

    PubMed

    Hulin, Julie-Ann; Nguyen, Thi Diem Tran; Cui, Shuang; Marri, Shashikanth; Yu, Ruth T; Downes, Michael; Evans, Ronald M; Makarenkova, Helen; Meech, Robyn

    2016-08-01

    Satellite cells are the resident stem cells of skeletal muscle; quiescent in adults until activated by injury to generate proliferating myoblasts. The canonical Wnt signalling pathway, mediated by T-cell factor/lymphoid enhancer factor (TCF/LEF) and β-catenin effector proteins, controls myoblast differentiation in vitro, and recent work suggests that timely termination of the Wnt/β-catenin signal is important for normal adult myogenesis. We recently identified the Barx2 and Pax7 homeobox proteins as novel components of the Wnt effector complex. Here, we examine molecular and epigenetic mechanisms by which Barx2 and Pax7 regulate the canonical Wnt target gene Axin2, which mediates critical feedback to terminate the transcriptional response to Wnt signals. Barx2 is recruited to the Axin2 gene via TCF/LEF binding sites, recruits β-catenin and the coactivator GRIP-1, and induces local H3K-acetylation. Barx2 also promotes nuclear localization of β-catenin. Conversely, Pax7 represses Axin2 promoter/intron activity and inhibits Barx2-mediated H3K-acetylation via the corepressor HDAC1. Wnt3a not only induces Barx2 mRNA, but also stabilises Barx2 protein in myoblasts; conversely, Wnt3a potently inhibits Pax7 protein expression. As Barx2 promotes myogenic differentiation and Pax7 suppresses it, this novel posttranscriptional regulation of Barx2 and Pax7 by Wnt3a may be involved in the specification of differentiation-competent and -incompetent myoblast populations. Finally, we propose a model for dual function of Barx2 downstream of Wnt signals: activation of myogenic target genes in association with canonical myogenic regulatory factors, and regulation of the negative feedback loop that limits the response of myoblasts to Wnt signals via direct interaction of Barx2 with the TCF/β-catenin complex. Stem Cells 2016;34:2169-2182. PMID:27144473

  9. Electric Pulse Stimulation of Myotubes as an In Vitro Exercise Model: Cell-Mediated and Non-Cell-Mediated Effects

    PubMed Central

    Evers-van Gogh, Inkie J.A.; Alex, Sheril; Stienstra, Rinke; Brenkman, Arjan B.; Kersten, Sander; Kalkhoven, Eric

    2015-01-01

    Regular exercise has emerged as one of the best therapeutic strategies to prevent and treat type-2-diabetes. Exercise-induced changes in the muscle secretome, consisting of myokines and metabolites, may underlie the inter-organ communication between muscle and other organs. To investigate this crosstalk, we developed an in vitro system in which mouse C2C12 myotubes underwent electric pulse stimulation (EPS) to induce contraction. Subsequently the effects of EPS-conditioned media (EPS-CM) on hepatocytes were investigated. Here, we demonstrate that EPS-CM induces Metallothionein 1/2 and Slc30a2 gene expression and reduces Cyp2a3 gene expression in rat hepatocytes. When testing EPS-CM that was generated in the absence of C2C12 myotubes (non-cell EPS-CM) no decrease in Cyp2a3 expression was detected. However, similar inductions in hepatic Mt1/2 and Slc30a2 expression were observed. Non-cell EPS-CM were also applied to C2C12 myotubes and compared to C2C12 myotubes that underwent EPS: here changes in AMPK phosphorylation and myokine secretion largely depended on EPS-induced contraction. Taken together, these findings indicate that EPS can alter C2C12 myotube function and thereby affect gene expression in cells subjected to EPS-CM (Cyp2a3). However, EPS can also generate non-cell-mediated changes in cell culture media, which can affect gene expression in cells subjected to EPS-CM too. While EPS clearly represents a valuable tool in exercise research, care should be taken in experimental design to control for non-cell-mediated effects. PMID:26091097

  10. Titin and myosin, but not desmin, are linked during myofibrillogenesis in postmitotic mononucleated myoblasts.

    PubMed

    Hill, C S; Duran, S; Lin, Z X; Weber, K; Holtzer, H

    1986-12-01

    Monoclonal antibodies specific for the muscle protein titin have been used in conjunction with muscle-specific antibodies against myofibrillar myosin heavy chains (MHCs) and desmin to study myogenesis in cultured cells. Desmin synthesis is initiated in replicating presumptive myoblasts, whereas the synthesis of titin and MHC is initiated simultaneously in their progeny, the postmitotic, mononucleated myoblasts. Both titin and MHC are briefly localized to nonstriated and thereafter to definitively striated myofibrils. At no stage during myofibrillogenesis is either protein observed as part of a sequence of mini-sarcomeres. Titin antibodies bind to the A-I junction, MHC antibodies to the A bands in nascent, maturing, and mature myofibrils. In contrast, desmin remains distributed as longitudinal filaments until well after the definitive myofibrils have aligned laterally. This tight temporal and topographical linkage between titin and myosin is also observed in postmitotic, mononucleated myoblasts and multinucleated myotubes when myofibrillogenesis is perturbed with Colcemid or taxol. Colcemid induces elongating postmitotic mononucleated myoblasts and multinucleated myotubes to round up and form Colcemid myosacs. The myofibrils that emerge in these rounded cells are deployed in convoluted circles. The time required for their nonstriated myofibrils to transform into striated myofibrils is greatly protracted. Furthermore, as Colcemid induces immense desmin intermediate filament cables, the normal spatial relationships between emerging individual myofibrils is distorted. Despite these disturbances at all stages, the characteristic temporal and spatial relationship observed in normal myofibrils between titin and MHC is observed in myofibrils assembling in Colcemid-treated cells. Newly born postmitotic mononucleated myoblasts, or maturing myotubes, reared in taxol acquire a star-shaped configuration and are induced to assemble "pseudo-striated myofibrils." Pseudo

  11. Identification of singles bar as a direct transcriptional target of Drosophila Myocyte enhancer factor-2 and a regulator of adult myoblast fusion

    PubMed Central

    Brunetti, Tonya M.; Fremin, Brayon J.; Cripps, Richard M.

    2015-01-01

    In Drosophila, myoblast fusion is a conserved process in which founder cells (FCs) and fusion competent myoblasts (FCMs) fuse to form a syncytial muscle fiber. Mutants for the myogenic regulator Myocyte enhancer factor-2 (MEF2) show a failure of myoblast fusion, indicating that MEF2 regulates the fusion process. Indeed, chromatin immunoprecipitation studies show that several genes involved in myoblast fusion are bound by MEF2 during embryogenesis. Of these, the MARVEL domain gene singles bar (sing), is down-regulated in MEF2 knockdown pupae, and has five consensus MEF2 binding sites within a 9000-bp region. To determine if MEF2 is an essential and direct regulator of sing during pupal muscle development, we identified a 315-bp myoblast enhancer of sing. This enhancer was active during myoblast fusion, and mutation of two MEF2 sites significantly decreased enhancer activity. We show that lack of sing expression resulted in adult lethality and muscle loss, due to a failure of fusion during the pupal stage. Additionally, we sought to determine if sing was required in either FCs or FCMs to support fusion. Interestingly, knockdown of sing in either population did not significantly affect fusion, however, knockdown in both FCs and FCMs resulted in muscles with significantly reduced nuclei numbers, provisionally indicating that sing function is required in either cell type, but not both. Finally, we found that MEF2 regulated sing expression at the embryonic stage through the same 315-bp enhancer, indicating that sing is a MEF2 target at both critical stages of myoblast fusion. Our studies define for the first time how MEF2 directly controls fusion at multiple stages of the life cycle, and provide further evidence that the mechanisms of fusion characterized in Drosophila embryos is also used in the formation of the more complex adult muscles. PMID:25797154

  12. New insights into the trophic and cytoprotective effects of creatine in in vitro and in vivo models of cell maturation.

    PubMed

    Sestili, Piero; Ambrogini, Patrizia; Barbieri, Elena; Sartini, Stefano; Fimognari, Carmela; Calcabrini, Cinzia; Diaz, Anna Rita; Guescini, Michele; Polidori, Emanuela; Luchetti, Francesca; Canonico, Barbara; Lattanzi, Davide; Cuppini, Riccardo; Papa, Stefano; Stocchi, Vilberto

    2016-08-01

    A growing body of scientific reports indicates that the role of creatine (Cr) in cellular biochemistry and physiology goes beyond its contribution to cell energy. Indeed Cr has been shown to exert multiple effects promoting a wide range of physiological responses in vitro as well as in vivo. Included in these, Cr promotes in vitro neuron and muscle cell differentiation, viability and survival under normal or adverse conditions; anabolic, protective and pro-differentiative effects have also been observed in vivo. For example Cr has been shown to accelerate in vitro differentiation of cultured C2C12 myoblasts into myotubes, where it also induces a slight but significant hypertrophic effect as compared to unsupplemented cultures; Cr also prevents the anti-differentiation effects caused by oxidative stress in the same cells. In trained adults, Cr increases the mRNA expression of relevant myogemic factors, protein synthesis, muscle strength and size, in cooperation with physical exercise. As to neurons and central nervous system, Cr favors the electrophysiological maturation of chick neuroblasts in vitro and protects them from oxidative stress-caused killing; similarly, Cr promotes the survival and differentiation of GABA-ergic neurons in fetal spinal cord cultures in vitro; in vivo, maternal Cr supplementation promotes the morpho-functional development of hippocampal neurons in rat offsprings. This article, which presents also some new experimental data, focuses on the trophic, pro-survival and pro-differentiation effects of Cr and examines the ensuing preventive and therapeutic potential in pathological muscle and brain conditions. PMID:26724921

  13. [Construction of human growth hormone lentiviral vector and its expression in murine skeletal myoblasts].

    PubMed

    Liu, Xiang-Yang; Lu, Yong-Xin; Xu, Yu-Lan; Li, Xiao-Qing; Liu, Juan; Li, Ai-Hua; Luo, Ping; Wan, Jian-Ping

    2006-03-01

    The aim of this study is to construct a lentiviral vector encoding human growth hormone, and to achieve the long, efficient and stable expression in murine skeletal myoblasts. Primary skeletal myoblasts were isolated from Sprague-Dawley rats and cultured by enzymatic digestion. We tested them by Desmin immunohistochemistry stains and found their viability was up to 94% by Trypan blue. Human growth hormone (hGH) cDNA was subcloned into expression vector pLenti6/V5-D-TOPO to construct recombinant pLenti6/V5-hGH. The pLenti6/V5-hGH and the contructed pLenti6/V5-EGFP were transfected into murine skeletal myoblasts by the Lipofectamin 2000. Through counting by the Confocal Laser Scanning Microscope, we identified the transfection efficency. We added the blasticidin to the 6-well plate with lids and obtained stable myoblasts expressing hGH. The concentration of human growth hormone (hGH) in cell culture medium was detected by Radioimmunoassay (RIA). Polymerase Chain Reaction (PCR) and DNA sequence showed hGH cDNA had been correctly inserted into pLenti6/V5-D-TOPO vector. Bright green fluorescence of the transfected cells could be observed under the Confocal Laser Scanning Microscope after 24 h transfection with pLenti6/V5-EGFP plasmids, and the transfection rate reached 40%. The difference was distinct (P < 0.01) between the pLenti6/V5- hGH groups and control groups in the secretive level of human growth hormone. After 8 weeks, the expression of human growth hormone was still stable. Then, we validated the biological characterization of the rhGH by the enzyme-link immunosorbent assay (ELISA) of the Insulin-like growth factor I (IGF-1). These results demonstrate we have successfully constructed the recombinant pLenti6/V5-hGH plasmids and accomplished rhGH long, efficient and stable expression ectopic in skeletal muscle myoblasts. PMID:16607951

  14. Defective Regulation of MicroRNA Target Genes in Myoblasts from Facioscapulohumeral Dystrophy Patients*

    PubMed Central

    Dmitriev, Petr; Stankevicins, Luiza; Ansseau, Eugenie; Petrov, Andrei; Barat, Ana; Dessen, Philippe; Robert, Thomas; Turki, Ahmed; Lazar, Vladimir; Labourer, Emmanuel; Belayew, Alexandra; Carnac, Gilles; Laoudj-Chenivesse, Dalila; Lipinski, Marc; Vassetzky, Yegor S.

    2013-01-01

    Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant hereditary neuromuscular disorder linked to the deletion of an integral number of 3.3-kb-long macrosatellite repeats (D4Z4) within the subtelomeric region of chromosome 4q. Most genes identified in this region are overexpressed in FSHD myoblasts, including the double homeobox genes DUX4 and DUX4c. We have carried out a simultaneous miRNome/transcriptome analysis of FSHD and control primary myoblasts. Of 365 microRNAs (miRNAs) analyzed in this study, 29 were found to be differentially expressed between FSHD and normal myoblasts. Twenty-one microRNAs (miR-1, miR-7, miR-15a, miR-22, miR-30e, miR-32, miR-107, miR-133a, miR-133b, miR-139, miR-152, miR-206, miR-223, miR-302b, miR-331, miR-362, miR-365, miR-382, miR-496, miR-532, miR-654, and miR-660) were up-regulated, and eight were down-regulated (miR-15b, miR-20b, miR-21, miR-25, miR-100, miR-155, miR-345, and miR-594). Twelve of the miRNAs up-regulated in FHSD were also up-regulated in the cells ectopically expressing DUX4c, suggesting that this gene could regulate miRNA gene transcription. The myogenic miRNAs miR-1, miR-133a, miR-133b, and miR-206 were highly expressed in FSHD myoblasts, which nonetheless did not prematurely enter myogenic differentiation. This could be accounted for by the fact that in FSHD myoblasts, functionally important target genes, including cell cycle, DNA damage, and ubiquitination-related genes, escape myogenic microRNA-induced repression. PMID:24145033

  15. Brg1 Controls the Expression of Pax7 to Promote Viability and Proliferation of Mouse Primary Myoblasts.

    PubMed

    Padilla-Benavides, Teresita; Nasipak, Brian T; Imbalzano, Anthony N

    2015-12-01

    Brg1 (Brahma-related gene 1) is a catalytic component of the evolutionarily conserved mammalian SWI/SNF ATP-dependent chromatin remodeling enzymes that disrupt histone-DNA contacts on the nucleosome. While the requirement for the SWI/SNF enzymes in cell differentiation has been extensively studied, its role in precursor cell proliferation and survival is not as well defined. Muscle satellite cells constitute the stem cell pool that sustains and regenerates myofibers in adult skeletal muscle. Here, we show that deletion of Brg1 in primary mouse myoblasts derived from muscle satellite cells cultured ex vivo leads to a cell proliferation defect and apoptosis. We determined that Brg1 regulates cell proliferation and survival by controlling chromatin remodeling and activating transcription at the Pax7 promoter, which is expressed during somite development and is required for controlling viability of the satellite cell population. Reintroduction of catalytically active Brg1 or of Pax7 into Brg1-deficient satellite cells rescued the apoptotic phenotype and restored proliferation. These data demonstrate that Brg1 functions as a positive regulator for cellular proliferation and survival of primary myoblasts. Therefore, the regulation of gene expression through Brg1-mediated chromatin remodeling is critical not just for skeletal muscle differentiation but for maintaining the myoblast population as well. PMID:26036967

  16. Functional improvement of damaged adult mouse muscle by implantation of primary myoblasts.

    PubMed Central

    Irintchev, A; Langer, M; Zweyer, M; Theisen, R; Wernig, A

    1997-01-01

    1. Myoblasts from expanded primary cultures were implanted into cryodamaged soleus muscles of adult BALB/c mice. One to four months later isometric tension recordings were performed in vitro, and the male donor cells implanted into female hosts were traced on histological sections using a Y-chromosome-specific probe. The muscles were either mildly or severely cryodamaged, which led to reductions in tetanic muscle force to 33% (n = 9 muscles, 9 animals) and 70% (n = 11) of normal, respectively. Reduced forces resulted from deficits in regeneration of muscle tissue as judged from the reduced desmin-positive cross-sectional areas (34 and 66% of control, respectively). 2. Implantation of 10(6) myogenic cells into severely cryodamaged muscles more than doubled muscle tetanic force (to 70% of normal, n = 14), as well as specific force (to 66% of normal). Absolute and relative amount of desmin-positive muscle cross-sectional areas were significantly increased indicating improved microarchitecture and less fibrosis. Newly formed muscle tissue was fully innervated since the tetanic forces resulting from direct and indirect (nerve-evoked) stimulation were equal. Endplates were found on numerous Y-positive muscle fibres. 3. As judged from their position under basal laminae of muscle fibres and the expression of M-cadherin, donor-derived cells contributed to the pool of satellite cells on small- and large-diameter muscle fibres. 4. Myoblast implantation after mild cryodamage and in undamaged muscles had little or no functional or structural effects; in both preparations only a few Y-positive muscle nuclei were detected. It is concluded that myoblasts from expanded primary cultures-unlike permanent cell lines-significantly contribute to muscle regeneration only when previous muscle damage is extensive and loss of host satellite cells is severe. Images Figure 1 Figure 2 Figure 3 PMID:9161990

  17. Comparative analysis of genetically engineered immunodeficient mouse strains as recipients for human myoblast transplantation.

    PubMed

    Silva-Barbosa, Suse D; Butler-Browne, Gillian S; Di Santo, James P; Mouly, Vincent

    2005-01-01

    The development of an optimized animal model for the in vivo analysis of human muscle cells remains an important goal in the search of therapy for muscular dystrophy. Here we examined the efficiency of human myoblast xenografts in three distinct immunodeficient mouse models. We found that different conditioning regimes used to provoke host muscle regeneration (i.e., cardiotoxin versus cryodamage) had a marked impact on xenograft success. Tibialis anterior muscle of Rag2-, Rag-/gammac-, and Rag-/gammac-/C5- mice was treated by cardiotoxin or cryodamage, submitted to enzymatic digestion, and analyzed by cytofluorometry to quantitate inflammatory cells. Human myoblasts were injected into pretreated muscles from immunodeficient recipients and the cell engraftment evaluated by immunocytochemistry, 4-8 weeks after transplantation. Donor cell differentiation and dispersion within the host muscles was also investigated. Host regeneration in cardiotoxin-treated mice was accompanied by a higher inflammatory cell infiltration when compared to that induced by cryodamage. Accordingly, when compared to the cardiotoxin group, more human myogenic cells were found after cryodamage. When the distinct immunodeficient mice were compared, we found that the alymphoid strain lacking the complement component C5 (Rag-/gammac-/C5- mice) was the most efficient host for human muscle xenografts, when compared with C5(+)Rag-/gammac- mice or Rag- mice. Our results demonstrate that cryolesion-conditioned muscles of Rag-/gammac-/C5- mice provide the best environment for long-term in vivo human myoblast differentiation, opening the way for a novel approach to study the pathophysiology of human muscle disorders. PMID:16285254

  18. Caveolin-3 inhibits growth signal in cardiac myoblasts in a Ca2+-dependent manner

    PubMed Central

    Fujita, Takayuki; Otsu, Kouji; Oshikawa, Jin; Hori, Hideaki; Kitamura, Hitoshi; Ito, Takaaki; Umemura, Satoshi; Minamisawa, Susumu; Ishikawa, Yoshihiro

    2006-01-01

    Caveolin, a major protein component of caveolae, directly interacts with multiple signaling molecules, such as Ras and growth factor receptors, and inhibits their function. However, the role of the second messenger system in mediating this inhibition by caveolin remains poorly understood. We examined the role of Ca2+ -dependent signal in caveloin-mediated growth inhibition using a rat cardiac myoblast cell line (H9C2), in which the expression of caveolin-3, the muscle specific subtype, can be induced using the LacSwitch system. Upon induction with IPTG and serum-starvation, the expression of caveolin-3 was increased by 3.3-fold relative to that of mock-induced cells. The recombinant caveolin-3 was localized to the same subcellular fraction as endogenous caveolin-3 after sucrose gradient purification. Angiotensin II enhanced ERK phosphorylation, but this enhancement was significantly decreased in caveolin-3-induced cells in comparison to that in mock-induced cells. Similarly, when cells were stimulated with fetal calf serum, DNA synthesis, as determined by [3H]-thymidine incorporation, was significantly decreased in caveolin-3-induced cells. When cells were treated with Ca2+ chelator (BAPTA and EGTA), however, this attenuation was blunted. Calphostin (PKC inhibitor), but not cyclosporine A treatment (calcineurin inhibitor), blunted this attenuation in caveolin-3 induced cells. Our findings suggest that caveolin exhibits growth inhibition in a Ca2+-dependent manner, most likely through PKC, in cardiac myoblasts. PMID:16563233

  19. Culture Conditions Affect Expression of DUX4 in FSHD Myoblasts.

    PubMed

    Pandey, Sachchida Nand; Khawaja, Hunain; Chen, Yi-Wen

    2015-01-01

    Facioscapulohumeral muscular dystrophy (FSHD) is believed to be caused by aberrant expression of double homeobox 4 (DUX4) due to epigenetic changes of the D4Z4 region at chromosome 4q35. Detecting DUX4 is challenging due to its stochastic expression pattern and low transcription level. In this study, we examined different cDNA synthesis strategies and the sensitivity for DUX4 detection. In addition, we investigated the effects of dexamethasone and knockout serum replacement (KOSR) on DUX4 expression in culture. Our data showed that DUX4 was consistently detected in cDNA samples synthesized using Superscript III. The sensitivity of DUX4 detection was higher in the samples synthesized using oligo(dT) primers compared to random hexamers. Adding dexamethasone to the culture media significantly suppressed DUX4 expression in immortalized (1.3 fold, p < 0.01) and primary (4.7 fold, p < 0.01) FSHD myoblasts, respectively. Culture medium with KOSR increased DUX4 expression and the response is concentration dependent. The findings suggest that detection strategies and culture conditions should be carefully considered when studying DUX4 in cultured cells. PMID:26007167

  20. Stabilin-2 modulates the efficiency of myoblast fusion during myogenic differentiation and muscle regeneration

    PubMed Central

    Park, Seung-Yoon; Yun, Youngeun; Lim, Jung-Suk; Kim, Mi-Jin; Kim, Sang-Yeob; Kim, Jung-Eun; Kim, In-San

    2016-01-01

    Myoblast fusion is essential for the formation of skeletal muscle myofibres. Studies have shown that phosphatidylserine is necessary for myoblast fusion, but the underlying mechanism is not known. Here we show that the phosphatidylserine receptor stabilin-2 acts as a membrane protein for myoblast fusion during myogenic differentiation and muscle regeneration. Stabilin-2 expression is induced during myogenic differentiation, and is regulated by calcineurin/NFAT signalling in myoblasts. Forced expression of stabilin-2 in myoblasts is associated with increased myotube formation, whereas deficiency of stabilin-2 results in the formation of small, thin myotubes. Stab2-deficient mice have myofibres with small cross-sectional area and few myonuclei and impaired muscle regeneration after injury. Importantly, myoblasts lacking stabilin-2 have reduced phosphatidylserine-dependent fusion. Collectively, our results show that stabilin-2 contributes to phosphatidylserine-dependent myoblast fusion and provide new insights into the molecular mechanism by which phosphatidylserine mediates myoblast fusion during muscle growth and regeneration. PMID:26972991

  1. Activation of mitochondrial function and Hb expression in non-haematopoietic cells by an EPO inducer ameliorates ischaemic diseases in mice

    PubMed Central

    Hsu, Pei-Lun; Horng, Lin-Yea; Peng, Kang-Yung; Wu, Chia-Ling; Sung, Hui-Ching; Wu, Rong-Tsun

    2013-01-01

    Background and Purpose Many organs suffer from ischaemic injuries that reduce their ability to generate sufficient energy, which is required for functional maintenance and repair. Erythropoietin (EPO) ameliorates ischaemic injuries by pleiotropic effects. The aim of this study was to investigate the effect and mechanism of a small molecule EH-201, and found it as a potent EPO inducer and its effect in non-haematopoietic cells for therapeutic potential in ischemic disorders. Experimental Approach Mice kidney slices, primary hepatocytes, primary cardiomyocytes and C2C12 myoblasts were treated with EH-201. The effects of this treatment on EPO, Hb expression and mitochondrial biogenesis were analysed. In vivo, doxorubicin-induced cardiomyopathic mice were treated with EH-201. The mice were subjected to an endurance test, electrocardiography and echocardiography, and a histological examination of the isolated hearts was performed. EH-201 was also administered to cisplatin-induced nephropathic mice. Key Results In non-haematopoietic cells, EH-201 was potent at inducing EPO. EH-201 also stimulated mitochondrial biogenesis and enhanced the expression of Hb by a mechanism dependent on EPO-mediated signalling. In mechanistic studies, using EPO and EPO receptor-neutralizing antibodies, we confirmed that EH-201 enhances EPO-EPOR autocrine activity. EH-201 robustly increased the endurance performance activity of healthy and cardiomyopathic mice during hypoxic stress, enhanced myocardial mitochondrial biogenesis and Hb expression, and also improved cardiac function. EH-201 ameliorated anaemia and renal dysfunction in nephropathic mice. Conclusions and Implications The enhancement and recovery of cellular functions through the stimulation of mitochondrial activity and Hb production in non-haematopoietic cells by an inducer of endogenous EPO has potential as a therapeutic strategy for ischaemic diseases. PMID:23530756

  2. PKCθ signaling is required for myoblast fusion by regulating the expression of caveolin-3 and β1D integrin upstream focal adhesion kinase

    PubMed Central

    Madaro, Luca; Marrocco, Valeria; Fiore, Piera; Aulino, Paola; Smeriglio, Piera; Adamo, Sergio; Molinaro, Mario; Bouché, Marina

    2011-01-01

    Fusion of mononucleated myoblasts to form multinucleated myofibers is an essential phase of skeletal myogenesis, which occurs during muscle development as well as during postnatal life for muscle growth, turnover, and regeneration. Many cell adhesion proteins, including integrins, have been shown to be important for myoblast fusion in vertebrates, and recently focal adhesion kinase (FAK), has been proposed as a key mediator of myoblast fusion. Here we focused on the possible role of PKCθ, the PKC isoform predominantly expressed in skeletal muscle, in myoblast fusion. We found that the expression of PKCθ is strongly up-regulated following freeze injury–induced muscle regeneration, as well as during in vitro differentiation of satellite cells (SCs; the muscle stem cells). Using both PKCθ knockout and muscle-specific PKCθ dominant-negative mutant mouse models, we observed delayed body and muscle fiber growth during the first weeks of postnatal life, when compared with wild-type (WT) mice. We also found that myofiber formation, during muscle regeneration after freeze injury, was markedly impaired in PKCθ mutant mice, as compared with WT. This phenotype was associated with reduced expression of the myogenic differentiation program executor, myogenin, but not with that of the SC marker Pax7. Indeed in vitro differentiation of primary muscle-derived SCs from PKCθ mutants resulted in the formation of thinner myotubes with reduced numbers of myonuclei and reduced fusion rate, when compared with WT cells. These effects were associated to reduced expression of the profusion genes caveolin-3 and β1D integrin and to reduced activation/phosphorylation of their up-stream regulator FAK. Indeed the exogenous expression of a constitutively active mutant form of PKCθ in muscle cells induced FAK phosphorylation. Moreover pharmacologically mediated full inhibition of FAK activity led to similar fusion defects in both WT and PKCθ-null myoblasts. We thus propose that PKC

  3. Grape pomace extract exerts antioxidant effects through an increase in GCS levels and GST activity in muscle and endothelial cells.

    PubMed

    Goutzourelas, Nikolaos; Stagos, Dimitrios; Housmekeridou, Anastasia; Karapouliou, Christina; Kerasioti, Efthalia; Aligiannis, Nektarios; Skaltsounis, Alexios L; Spandidos, Demetrios A; Tsatsakis, Aristidis M; Kouretas, Demetrios

    2015-08-01

    In a previous study, we demonstrated that a grape pomace extract (GPE) exerted antioxidant activity in endothelial (EA.hy926) and muscle (C2C12) cells through an increase in glutathione (GSH) levels. In the present study, in order to elucidate the mechanisms responsible for the antioxidant activity of GPE, its effects on the expression of critical antioxidant enzymes, such as catalase (CAT), superoxide dismutase (SOD)1, heme oxy