Sample records for n-3 eicosapentaenoic acid

  1. Divergent shifts in lipid mediator profile following supplementation with n-3 docosapentaenoic acid and eicosapentaenoic acid.

    PubMed

    Markworth, James F; Kaur, Gunveen; Miller, Eliza G; Larsen, Amy E; Sinclair, Andrew J; Maddipati, Krishna Rao; Cameron-Smith, David

    2016-11-01

    In contrast to the well-characterized effects of specialized proresolving lipid mediators (SPMs) derived from eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), little is known about the metabolic fate of the intermediary long-chain (LC) n-3 polyunsaturated fatty acid (PUFA) docosapentaenoic acid (DPA). In this double blind crossover study, shifts in circulating levels of n-3 and n-6 PUFA-derived bioactive lipid mediators were quantified by an unbiased liquid chromatography-tandem mass spectrometry lipidomic approach. Plasma was obtained from human subjects before and after 7 d of supplementation with pure n-3 DPA, n-3 EPA or placebo (olive oil). DPA supplementation increased the SPM resolvin D5 n -3DPA (RvD5 n -3DPA ) and maresin (MaR)-1, the DHA vicinal diol 19,20-dihydroxy-DPA and n-6 PUFA derived 15-keto-PG E 2 (15-keto-PGE 2 ). EPA supplementation had no effect on any plasma DPA or DHA derived mediators, but markedly elevated monohydroxy-eicosapentaenoic acids (HEPEs), including the e-series resolvin (RvE) precursor 18-HEPE; effects not observed with DPA supplementation. These data show that dietary n-3 DPA and EPA have highly divergent effects on human lipid mediator profile, with no overlap in PUFA metabolites formed. The recently uncovered biologic activity of n-3 DPA docosanoids and their marked modulation by dietary DPA intake reveals a unique and specific role of n-3 DPA in human physiology.-Markworth, J. F., Kaur, G., Miller, E. G., Larsen, A. E., Sinclair, A. J., Maddipati, K. R., Cameron-Smith, D. Divergent shifts in lipid mediator profile following supplementation with n-3 docosapentaenoic acid and eicosapentaenoic acid. © FASEB.

  2. Health benefits of n-3 polyunsaturated fatty acids: eicosapentaenoic acid and docosahexaenoic acid.

    PubMed

    Siriwardhana, Nalin; Kalupahana, Nishan S; Moustaid-Moussa, Naima

    2012-01-01

    Marine-based fish and fish oil are the most popular and well-known sources of n-3 polyunsaturated fatty acids (PUFAs), namely, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). These n-3 PUFAs are known to have variety of health benefits against cardiovascular diseases (CVDs) including well-established hypotriglyceridemic and anti-inflammatory effects. Also, various studies indicate promising antihypertensive, anticancer, antioxidant, antidepression, antiaging, and antiarthritis effects. Moreover, recent studies also indicate anti-inflammatory and insulin-sensitizing effects of these fatty acids in metabolic disorders. Classically, n-3 PUFAs mediate some of these effects by antagonizing n-6 PUFA (arachidonic acid)-induced proinflammatory prostaglandin E₂ (PGE₂) formation. Another well-known mechanism by which n-3 PUFAs impart their anti-inflammatory effects is via reduction of nuclear factor-κB activation. This transcription factor is a potent inducer of proinflammatory cytokine production, including interleukin 6 and tumor necrosis factor-α, both of which are decreased by EPA and DHA. Other evidence also demonstrates that n-3 PUFAs repress lipogenesis and increase resolvins and protectin generation, ultimately leading to reduced inflammation. Finally, beneficial effects of EPA and DHA in insulin resistance include their ability to increase secretion of adiponectin, an anti-inflammatory adipokine. In summary, n-3 PUFAs have multiple health benefits mediated at least in part by their anti-inflammatory actions; thus their consumption, especially from dietary sources, should be encouraged. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. A novel omega3-fatty acid desaturase involved in the biosynthesis of eicosapentaenoic acid.

    PubMed Central

    Pereira, Suzette L; Huang, Yung-Sheng; Bobik, Emil G; Kinney, Anthony J; Stecca, Kevin L; Packer, Jeremy C L; Mukerji, Pradip

    2004-01-01

    Long-chain n-3 PUFAs (polyunsaturated fatty acids) such as EPA (eicosapentaenoic acid; 20:5 n-3) have important therapeutic and nutritional benefits in humans. In plants, cyanobacteria and nematodes, omega3-desaturases catalyse the formation of these n-3 fatty acids from n-6 fatty acid precursors. Here we describe the isolation and characterization of a gene ( sdd17 ) derived from an EPA-rich fungus, Saprolegnia diclina, that encodes a novel omega3-desaturase. This gene was isolated by PCR amplification of an S. diclina cDNA library using oligonucleotide primers corresponding to conserved regions of known omega3-desaturases. Expression of this gene in Saccharomyces cerevisiae, in the presence of various fatty acid substrates, revealed that the recombinant protein could exclusively desaturate 20-carbon n-6 fatty acid substrates with a distinct preference for ARA (arachidonic acid; 20:4 n-6), converting it into EPA. This activity differs from that of the known omega3-desaturases from any organism. Plant and cyanobacterial omega3-desaturases exclusively desaturate 18-carbon n-6 PUFAs, and a Caenorhabditis elegans omega3-desaturase preferentially desaturated 18-carbon PUFAs over 20-carbon substrates, and could not convert ARA into EPA when expressed in yeast. The sdd17 -encoded desaturase was also functional in transgenic somatic soya bean embryos, resulting in the production of EPA from exogenously supplied ARA, thus demonstrating its potential for use in the production of EPA in transgenic oilseed crops. PMID:14651475

  4. Eicosapentaenoic Acid Modulates Trichomonas vaginalis Activity.

    PubMed

    Korosh, Travis; Jordan, Kelsey D; Wu, Ja-Shin; Yarlett, Nigel; Upmacis, Rita K

    2016-01-01

    Trichomonas vaginalis is a sexually transmitted parasite and, while it is often asymptomatic in males, the parasite is associated with disease in both sexes. Metronidazole is an effective treatment for trichomoniasis, but resistant strains have evolved and, thus, it has become necessary to investigate other possible therapies. In this study, we examined the effects of native and oxidized forms of the sodium salts of eicosapentaenoic, docosahexaenoic, and arachidonic acids on T. vaginalis activity. Eicosapentaenoic acid was the most toxic with 190 and 380 μM causing approximately 90% cell death in Casu2 and ATCC 50142 strains, respectively. In contrast, oxidized eicosapentaenoic acid was the least toxic, requiring > 3 mM to inhibit activity, while low levels (10 μM) were associated with increased parasite density. Mass spectrometric analysis of oxidized eicosapentaenoic acid revealed C20 products containing one to six additional oxygen atoms and various degrees of bond saturation. These results indicate that eicosapentaenoic acid has different effects on T. vaginalis survival, depending on whether it is present in the native or oxidized form. A better understanding of lipid metabolism in T. vaginalis may facilitate the design of synthetic fatty acids that are effective for the treatment of metronidazole-resistant T. vaginalis. © 2015 The Author(s) Journal of Eukaryotic Microbiology © 2015 International Society of Protistologists.

  5. Blood docosahexaenoic acid and eicosapentaenoic acid in vegans: Associations with age and gender and effects of an algal-derived omega-3 fatty acid supplement.

    PubMed

    Sarter, Barbara; Kelsey, Kristine S; Schwartz, Todd A; Harris, William S

    2015-04-01

    Several studies have demonstrated that vegetarians and vegans have much lower plasma concentrations of omega-3 fatty acids (i.e., docosahexaenoic and eicosapentaenoic acids) when compared to those who eat fish. The purposes of this study were 1) to define the age and/or sex-specific docosahexaenoic plus eicosapentaenoic acids levels in red blood cell membranes (expressed as a percent of total fatty acids; hereafter the omega-3 index) in long-term vegans, and 2) to determine the effects of a vegetarian omega-3 supplement (254 mg docosahexaenoic plus eicosapentaenoic acids/day for 4 months) on the omega-3 index. A sample (n = 165) of vegans was recruited, and their omega-3 index was determined using a dried blood spot methodology. A subset of 46 subjects with a baseline omega-3 index of <4% was given a vegetarian omega-3 supplement for 4 months and then retested. The mean ± SD omega-3 index was 3.7 ± 1.0% which was similar to that of a cohort of omnivores (deployed US soldiers) from a recently-reported study. Among the vegan cohort, the index was significantly higher in females than males (3.9 ± 1.0% vs. 3.5 ± 1.0%; p = 0.026) and was directly related to age (p for trend = 0.009). The omega-3 index increased from 3.1 ± 0.6% to 4.8 ± 0.8% (p = 0.009) in the supplementation study. We conclude that vegans have low baseline omega-3 levels, but not lower than omnivores who also consume very little docosahexaenoic and eicosapentaenoic acids. The vegans responded robustly to a relatively low dose of a vegetarian omega-3 supplement. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Levels of eicosapentaenoic acid in obese schoolchildren with and without insulin resistance.

    PubMed

    Sánchez Meza, Karmina; Tene Pérez, Carlos Enrique; Sánchez Ramírez, Carmen Alicia; Muñiz Valencia, Roberto; Del Toro Equihua, Mario

    2014-09-12

    Obesity in children is now an increasing health risk worldwide in which the insulin-resistance can be present. Studies have linked a diet rich in n-3 fatty acids with a lower prevalence of insulin-resistance. To compare the levels of eicosapentaenoic acid among obese children with and without insulin-resistance. In 56 randomly school-age children with obesity, insulin-resistance was determined by the homeostasis model assessment for insulin-resistance index and the serum levels of eicosapentaenoic acid were determined by gas chromatography. Insulin-resistance was established when the index was >6.0, non- insulin- resistance when that index was within the range of 1.4-5.9. The serum levels of eicosapentaenoic acid were compared with the Kruskal-Wallis and Mann-Whitney U tests, as needed. No differences in age or sex were identified among the groups studied. The anthropometric parameters were significantly higher in the group of children with insulin-resistance than in the other two groups. The children with insulin- resistance had significantly lower levels of eicosapentaenoic acid than the non- insulin-resistance group [12.4% area under the curve vs. 37.4%, p = 0.031], respectively. Obese primary school-aged children with insulin-resistance had lower plasma levels of eicosapentaenoic acid. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  7. Effect of baseline plasma fatty acids on eicosapentaenoic acid levels in individuals supplemented with alpha-linolenic acid.

    PubMed

    DeFilippis, Andrew P; Harper, Charles R; Cotsonis, George A; Jacobson, Terry A

    2009-01-01

    We previously reported a >50% increase in mean plasma eicosapentaenoic acid levels in a general medicine clinic population after supplementation with alpha-linolenic acid. In the current analysis, we evaluate the variability of changes in eicosapentaenoic acid levels among individuals supplemented with alpha-linolenic acid and evaluated the impact of baseline plasma fatty acids levels on changes in eicosapentaenoic acid levels in these individuals. Changes in eicosapentaenoic acid levels among individuals supplemented with alpha-linolenic acid ranged from a 55% decrease to a 967% increase. Baseline plasma fatty acids had no statistically significant effect on changes in eicosapentaenoic levels acid after alpha-linolenic acid supplementation. Changes in eicosapentaenoic acid levels varied considerably in a general internal medicine clinic population supplemented with alpha-linolenic acid. Factors that may impact changes in plasma eicosapentaenoic acid levels after alpha-linolenic acid supplementation warrant further study.

  8. EICOSAPENTAENOIC ACID ENHANCES HEATSTROKE-IMPAIRED INTESTINAL EPITHELIAL BARRIER FUNCTION IN RATS.

    PubMed

    Xiao, Guizhen; Yuan, Fangfang; Geng, Yan; Qiu, Xiaowen; Liu, Zhifeng; Lu, Jiefu; Tang, Liqun; Zhang, Yali; Su, Lei

    2015-10-01

    Dysfunction of the intestinal barrier plays an important role in the pathological process of heatstroke. Omega-3 (or n-3) polyunsaturated fatty acids, including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), help protect the intestinal mucosal barrier. This study assessed if pretreating rats with EPA or DHA could alleviate heat stress-induced damage to the intestinal barrier caused by experimental heatstroke. Male Wistar rats were pregavaged with either EPA, DHA, corn oil, or normal saline (all 1 g/kg) for 21 days before the heatstroke experiment (control rats were not exposed to heat). Experimental rats were exposed to an ambient temperature of 37°C and 60% humidity to induce heatstroke, and then they were allowed to recover at room temperature after rapid cooling. Survival time of rats was monitored after heatstroke. Horseradish peroxidase flux from the gut lumen and the level of plasma D-lactate were measured to analyze intestinal permeability at 6 h after heatstroke. Plasma endotoxin levels were determined using a limulus amoebocyte lysate assay. Expressions of the tight junction (TJ) proteins occludin and ZO-1 were analyzed by Western blot and localized by immunofluorescence microscopy. Tight junction protein morphology was observed by transmission electron microscopy. Fatty acids of ileal mucosa were analyzed using gas chromatography-mass selective detector. Eicosapentaenoic acid significantly increased survival time after heatstroke. Eicosapentaenoic acid significantly decreased intestinal permeability and plasma endotoxin levels. Eicosapentaenoic acid effectively attenuated the heatstroke-induced disruption of the intestinal structure and improved the histology score, whereas DHA was less effective, and corn oil was ineffective. Pretreatment with EPA also increased expression of occludin and ZO-1 to effectively prevent TJ disruption. Eicosapentaenoic acid pretreatment enriched itself in the membrane of intestinal cells. Our results

  9. Distinguishing Health Benefits of Eicosapentaenoic and Docosahexaenoic Acids

    PubMed Central

    Russell, Fraser D.; Bürgin-Maunder, Corinna S.

    2012-01-01

    Long chain omega-3 polyunsaturated fatty acids (LC n-3 PUFAs) are recommended for management of patients with wide-ranging chronic diseases, including coronary heart disease, rheumatoid arthritis, dementia, and depression. Increased consumption of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) is recommended by many health authorities to prevent (up to 0.5 g/day) or treat chronic disease (1.0 g/day for coronary heart disease; 1.2–4 g/day for elevated triglyceride levels). Recommendations for dietary intake of LC n-3 PUFAs are often provided for α-linolenic acid, and for the combination of EPA and DHA. However, many studies have also reported differential effects of EPA, DHA and their metabolites in the clinic and at the laboratory bench. The aim of this article is to review studies that have identified divergent responses to EPA and DHA, and to explore reasons for these differences. In particular, we review potential contributing factors such as differential membrane incorporation, modulation of gene expression, activation of signaling pathways and metabolite formation. We suggest that there may be future opportunity to refine recommendations for intake of individual LC n-3 PUFAs. PMID:23203276

  10. Evaluation of long-chain n3 fatty acid content in diploid and triploid rainbow trout

    USDA-ARS?s Scientific Manuscript database

    Intake of long chain n3 fatty acids (LCn3), eicosapentaenoic acid (EPA; 20:5 n3) and docosahexaenoic acid (DHA; 22:6 n3), is associated with reduced cardiovascular disease. There is growing interest in farmed fish like rainbow trout, Oncorhynchus mykiss, as sources of LCn3. The trout industry raises...

  11. n-3 Polyunsaturated Fatty Acids Reduce Neonatal Hypoxic/Ischemic Brain Injury by Promoting Phosphatidylserine Formation and Akt Signaling.

    PubMed

    Zhang, Wenting; Liu, Jia; Hu, Xiaoming; Li, Peiying; Leak, Rehana K; Gao, Yanqin; Chen, Jun

    2015-10-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFAs) attenuate neonatal hypoxic/ischemic (H/I) brain damage, but the underlying mechanisms are not fully understood. This study tested the hypothesis that n-3 PUFAs enhance Akt-dependent prosurvival signaling by promoting the biosynthesis of phosphatidylserine in neuronal cell membranes. Dietary n-3 PUFA supplementation was initiated on the second day of pregnancy in dams. H/I was induced in 7-day-old rat pups by ipsilateral common carotid artery occlusion followed by hypoxia (8% oxygen for 2.5 hours). Neurological outcomes, brain tissue loss, cell death, and the activation of signaling events were assessed after H/I. The effects of n-3 PUFAs (docosahexaenoic acid and eicosapentaenoic acid) on oxygen-glucose deprivation-induced cell death and the underlying mechanism of protection were also examined in primary cortical neuron cultures. n-3 PUFAs reduced brain tissue loss at 7 days after H/I and improved neurological outcomes, whereas inhibition of PI3K/Akt signaling by LY294002 partially abrogated this neuroprotective effect. Docosahexaenoic acid/eicosapentaenoic acid also prevented ischemic neuronal death through the Akt prosurvival pathway in vitro. Furthermore, docosahexaenoic acid/eicosapentaenoic acid increased the production of phosphatidylserine, the major membrane-bound phospholipids, after ischemia both in vitro and in vivo. A reduction in membrane phosphatidylserine by shRNA-mediated knockdown of phosphatidylserine synthetase-1 attenuated Akt activation and neuronal survival after docosahexaenoic acid/eicosapentaenoic acid treatment in the oxygen-glucose deprivation model. n-3 PUFAs robustly protect against H/I-induced brain damage in neonates by activating Akt prosurvival pathway in compromised neurons. In addition, n-3 PUFAs promote the formation of membrane phosphatidylserine, thereby promoting Akt activity and improving cellular survival. © 2015 American Heart Association, Inc.

  12. Effect of growth temperature on the positional distribution of eicosapentaenoic acid and trans hexadecenoic acid in the phospholipids of a Vibrio species of bacterium.

    PubMed

    Henderson, R J; Millar, R M; Sargent, J R

    1995-02-01

    Phosphatidylethanolamine (PE) and phosphatidylglycerol (PG) were isolated from a Vibrio species of bacterium, known to produce eicosapentaenoic acid (20:5n-3) and trans-hexadecenoic acid (16:1n-7), and subjected to phospholipase A2 degradation to determine the positional distribution of component fatty acids. At the two growth temperatures studied (20 and 5 degrees C), both 20:5n-3 and trans 16:1 n-7 were located mainly at position sn-2 in PE. Increases in the proportions of 20:5n-3 and trans 16:1n-7 in position sn-2 with decreasing growth temperature were balanced mainly by decreases in the level of iso-15:0. In PG, trans 16:1n-7 was located predominantly in position sn-1, although the difference between the two positions was not as great as in PE. Eicosapentaenoic acid was preferentially located in position sn-2 of PG, particularly at 5 degrees C when it comprised 29.9% of the total fatty acids in this position. It is concluded that trans 16:1n-7/20:5n-3 is not a major molecular species of phospholipid in this species of Vibrio and that changes in the levels of molecular species of PE containing iso-15:0 may feature in thermal acclimation.

  13. Whole-body DHA synthesis-secretion kinetics from plasma eicosapentaenoic acid and alpha-linolenic acid in the free-living rat.

    PubMed

    Metherel, Adam H; Domenichiello, Anthony F; Kitson, Alex P; Hopperton, Kathryn E; Bazinet, Richard P

    2016-09-01

    Whole body docosahexaenoic acid (DHA, 22:6n-3) synthesis from α-linolenic acid (ALA, 18:3n-3) is considered to be very low, however, the daily synthesis-secretion of DHA may be sufficient to supply the adult brain. The current study aims to assess whether whole body DHA synthesis-secretion kinetics are different when comparing plasma ALA versus eicosapentaenoic acid (EPA, 20:5n-3) as the precursor. Male Long Evans rats (n=6) were fed a 2% ALA in total fat diet for eight weeks, followed by surgery to implant a catheter into each of the jugular vein and carotid artery and 3h of steady-state infusion with a known amount of (2)H-ALA and (13)C-eicosapentaenoic acid (EPA, 20:5n3). Blood samples were collected at thirty-minute intervals and plasma enrichment of (2)H- and (13)C EPA, n-3 docosapentaenoic acid (DPAn-3, 22:5n-3) and DHA were determined for assessment of synthesis-secretion kinetic parameters. Results indicate a 13-fold higher synthesis-secretion coefficient for DHA from EPA as compared to ALA. However, after correcting for the 6.6 fold higher endogenous plasma ALA concentration, no significant differences in daily synthesis-secretion (nmol/day) of DHA (97.6±28.2 and 172±62), DPAn-3 (853±279 and 1139±484) or EPA (1587±592 and 1628±366) were observed from plasma unesterified ALA and EPA sources, respectively. These results suggest that typical diets which are significantly higher in ALA compared to EPA yield similar daily DHA synthesis-secretion despite a significantly higher synthesis-secretion coefficient from EPA. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Prescription omega-3 fatty acid products containing highly purified eicosapentaenoic acid (EPA).

    PubMed

    Brinton, Eliot A; Mason, R Preston

    2017-01-31

    The omega-3 fatty acid eicosapentaenoic acid (EPA) has multiple actions potentially conferring cardiovascular benefit, including lowering serum triglyceride (TG) and non-high-density lipoprotein cholesterol (non-HDL-C) levels and potentially reducing key steps in atherogenesis. Dietary supplements are a common source of omega-3 fatty acids in the US, but virtually all contain docosahexaenoic acid (DHA) in addition to EPA, and lipid effects differ between DHA and EPA. Contrary to popular belief, no over-the-counter omega-3 products are available in the US, only prescription products and dietary supplements. Among the US prescription omega-3 products, only one contains EPA exclusively (Vascepa); another closely related prescription omega-3 product also contains highly purified EPA, but is approved only in Japan and is provided in different capsule sizes. These high-purity EPA products do not raise low-density lipoprotein cholesterol (LDL-C) levels, even in patients with TG levels >500 mg/dL, in contrast to the increase in LDL-C levels with prescription omega-3 products that also contain DHA. The Japanese prescription EPA product was shown to significantly reduce major coronary events in hypercholesterolemic patients when added to statin therapy in the Japan EPA Lipid Intervention Study (JELIS). The effects of Vascepa on cardiovascular outcomes are being investigated in statin-treated patients with high TG levels in the Reduction of Cardiovascular Events With EPA-Intervention Trial (REDUCE-IT).

  15. Kinetics of eicosapentaenoic acid in brain, heart and liver of conscious rats fed a high n-3 PUFA containing diet

    PubMed Central

    Igarashi, Miki; Chang, Lisa; Ma, Kaizong; Rapoport, Stanley I.

    2018-01-01

    Eicosapentaenoic acid (EPA, 20:5n-3), a precursor of docosahexaenoic acid (DHA), may benefit cardiovascular and brain health. Quantifying EPA’s in vivo kinetics might elucidate these effects. [1-14C] EPA was infused i.v. for 5 min in unanesthetized male rats fed a standard EPA–DHA diet. Plasma and microwaved tissue were analyzed. Kinetic parameters were calculated using our compartmental model. At 5 min, 31–48% of labeled EPA in brain and heart was oxidized, 7% in liver. EPA incorporation rates from brain and liver precursor EPA–CoA pools into lipids, mainly phospholipids, were 36 and 2529 nmol/s/g × 10−4, insignificant for heart. Deacylation–reacylation half-lives were 22 h and 38–128 min. Conversion rates to DHA equaled 0.65 and 25.1 nmol/s/g × 10−4, respectively. The low brain concentration and incorporation rate and high oxidation of EPA suggest that, if EPA has a beneficial effect in brain, it might result from its suppression of peripheral inflammation and hepatic conversion to bioactive DHA. PMID:24209500

  16. Kinetics of eicosapentaenoic acid in brain, heart and liver of conscious rats fed a high n-3 PUFA containing diet.

    PubMed

    Igarashi, Miki; Chang, Lisa; Ma, Kaizong; Rapoport, Stanley I

    2013-01-01

    Eicosapentaenoic acid (EPA, 20:5n-3), a precursor of docosahexaenoic acid (DHA), may benefit cardiovascular and brain health. Quantifying EPA's in vivo kinetics might elucidate these effects. [1-(14)C]EPA was infused i.v. for 5min in unanesthetized male rats fed a standard EPA-DHA diet. Plasma and microwaved tissue were analyzed. Kinetic parameters were calculated using our compartmental model. At 5min, 31-48% of labeled EPA in brain and heart was oxidized, 7% in liver. EPA incorporation rates from brain and liver precursor EPA-CoA pools into lipids, mainly phospholipids, were 36 and 2529nmol/s/g×10(-4), insignificant for heart. Deacylation-reacylation half-lives were 22h and 38-128min. Conversion rates to DHA equaled 0.65 and 25.1nmol/s/g×10(-4), respectively. The low brain concentration and incorporation rate and high oxidation of EPA suggest that, if EPA has a beneficial effect in brain, it might result from its suppression of peripheral inflammation and hepatic conversion to bioactive DHA. © 2013 Published by Elsevier Ltd.

  17. Twice-weekly consumption of farmed Atlantic salmon increases plasma content of phospholipid n-3 fatty acids

    USDA-ARS?s Scientific Manuscript database

    Elevated intake of the n-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), is related to risk reduction of cardiovascular and other diseases. Increased consumption of seafood such as farmed Atlantic salmon is an effective way to consume n-3 but there is a paucity of data as ...

  18. Effect of the ratio of dietary n-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid on broiler breeder performance, egg quality, and yolk fatty acid composition at different breeder ages.

    PubMed

    Koppenol, A; Delezie, E; Aerts, J; Willems, E; Wang, Y; Franssens, L; Everaert, N; Buyse, J

    2014-03-01

    When added to the feed of broiler breeder hens, dietary polyunsaturated fatty acids (FA) can be incorporated into the yolk and therefore become available to the progeny during their early development. The mechanism involved in lipid metabolism and deposition in the egg may be influenced by breeder age. Before the effect of an elevated concentration of certain polyunsaturated FA on the embryo can be investigated, the effect at breeder level and egg quality must be further assessed. The aim of the present experiment was to evaluate the effects of dietary n-6/n-3 ratios and dietary eicosapentaenoic acid (EPA, 20:5 n-3) and docosahexaenoic acid (DHA, 22:6 n-3) ratios, provided to broiler breeder hens, in terms of their zoo technical performance, egg quality, and yolk FA composition. Starting at 6 wk of age, 640 Ross-308 broiler breeder hens were fed 1 of 4 different diets. The control diet was a basal diet, rich in n-6 FA. The 3 other diets were enriched in n-3 FA, formulated to obtain a different EPA/DHA ratio of 1/1 (EPA = DHA), 1/2 (DHA), or 2/1 (EPA). In fact, after analysis the EPA/DHA ratio was 0.8, 0.4, or 2.1, respectively. Dietary EPA and DHA addition did not affect the performance of the breeder hens, except for egg weight. Egg weight was lower (P < 0.001) for all n-3 treatments. Dietary EPA improved number of eggs laid in the first 2 wk of the production cycle (P = 0.029). The absolute and relative yolk weight of eggs laid by EPA = DHA fed hens was lowest (P = 0.004 and P = 0.025, respectively). The EPA and DHA concentrations in the yolk were highly dependent on dietary EPA and DHA concentrations with a regression coefficient equal to 0.89. It can be concluded that dietary EPA and DHA can be incorporated in the breeder egg yolk to become available for the developing embryo, without compromising the performance and egg quality of the flock.

  19. Simultaneous determination of docosahexaenoic acid and eicosapentaenoic acid in common seafood using ultrasonic cell crusher extraction combined with gas chromatography.

    PubMed

    Zhao, Juanjuan; Ren, Yan; Yu, Chen; Chen, Xiangming; Shi, Yanan

    2017-02-01

    An effective method for the simultaneous determination of docosahexaenoic acid and eicosapentaenoic acid in common seafood by gas chromatography was developed and validated. Total docosahexaenoic acid and eicosapentaenoic acid were extracted from seafood by ultrasonic cell crusher assisted extraction and methyl esterified for gas chromatography analysis in the presence of the internal standard. The linearity was good (r > 0.999) in 9.59 ∼ 479.5 μg/mL for docosahexaenoic acid and 9.56 ∼ 477.8 μg/mL for eicosapentaenoic acid. The intrarun and interrun precisions were both within 4.8 and 6.1% for the two analytes, while the accuracy was less than 5.8%. The developed method was applied for determination of docosahexaenoic acid and eicosapentaenoic acid in six kinds of seafood. The result showed the content of docosahexaenoic acid and eicosapentaenoic acid was all higher than 1 mg/g in yellow croaker, hairtail, venerupis philippinarum, mussel, and oyster. Our work may be helpful for dietary optimization and production of docosahexaenoic acid and eicosapentaenoic acid. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Omega-3 fatty acids: new insights into the pharmacology and biology of docosahexaenoic acid, docosapentaenoic acid, and eicosapentaenoic acid.

    PubMed

    Davidson, Michael H

    2013-12-01

    Fish oil contains a complex mixture of omega-3 fatty acids, which are predominantly eicosapentaenoic acid (EPA), docosapentaenoic acid, and docosahexaenoic acid (DHA). Each of these omega-3 fatty acids has distinct biological effects that may have variable clinical effects. In addition, plasma levels of omega-3 fatty acids are affected not only by dietary intake, but also by the polymorphisms of coding genes fatty acid desaturase 1-3 for the desaturase enzymes that convert short-chain polyunsaturated fatty acids to long-chain polyunsaturated fatty acids. The clinical significance of this new understanding regarding the complexity of omega-3 fatty acid biology is the purpose of this review. FADS polymorphisms that result in either lower levels of long-chain omega-3 fatty acids or higher levels of long-chain omega-6 polyunsaturated fatty acids, such as arachidonic acid, are associated with dyslipidemia and other cardiovascular risk factors. EPA and DHA have differences in their effects on lipoprotein metabolism, in which EPA, with a more potent peroxisome proliferator-activated receptor-alpha effect, decreases hepatic lipogenesis, whereas DHA not only enhances VLDL lipolysis, resulting in greater conversion to LDL, but also increases HDL cholesterol and larger, more buoyant LDL particles. Overall, these results emphasize that blood concentrations of individual long-chain polyunsaturated fatty acids, which reflect both dietary intake and metabolic influences, may have independent, but also complementary- biological effects and reinforce the need to potentially provide a complex mixture of omega-3 fatty acids to maximize cardiovascular risk reduction.

  1. Differential effects of eicosapentaenoic acid and docosahexaenoic acid on human skin fibroblasts.

    PubMed

    Brown, E R; Subbaiah, P V

    1994-12-01

    To better understand the mode of action of omega 3 fatty acids in cell membranes, human foreskin fibroblasts were grown in serum-free medium supplemented with 50 microM oleic acid linoleic acid, eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA), and the effects on membrane composition, fluorescence polarization and enzyme activities were followed. The cells were enriched with EPA and DHA up to 7 and 13% of total lipids, respectively, of which > 95% was associated with phospholipids. In addition, the concentration of 22:5n-3 increased with both EPA and DHA to 7.5, and 2.1% of the total fatty acids, respectively. When compared to controls (oleic acid), cells treated with DHA showed a decrease in cholesterol, phospholipids, arachidonic acid (AA) and free cholesterol/phospholipid ratio (P < 0.05). In the presence of EPA, only decreases in AA and cholesterol were significant (P < 0.05). Membrane fluidity, assessed by fluorescence anisotropy, was increased 16% in cells enriched with DHA (P < 0.05), but showed no change with EPA or linoleic acid. There was an increase in membrane-associated 5'-nucleotidase (+27%) and adenylate cyclase (+19%) activities (P < 0.05), in DHA-enriched, but not in EPA-enriched cells, when compared with oleate controls. The studies show that incorporation of DHA, but not EPA, into cell membranes of fibroblasts alters membrane biophysical characteristics and function. We suggest that these two major n-3 fatty acids of fish oils have differential effects on cell membranes, and this may be related to the known differences in their physiological effects.

  2. Associations of obesity with triglycerides and C-reactive protein are attenuated in adults with high red blood cell eicosapentaenoic and docosahexaenoic acids

    USDA-ARS?s Scientific Manuscript database

    Background:N-3 fatty acids are associated with favorable, and obesity with unfavorable, concentrations of chronic disease risk biomarkers.Objective:We examined whether high eicosapentaenoic (EPA) and docosahexaenoic (DHA) acid intakes, measured as percentages of total red blood cell (RBC) fatty acid...

  3. Chronic Arachidonic Acid Administration Decreases Docosahexaenoic Acid- and Eicosapentaenoic Acid-Derived Metabolites in Kidneys of Aged Rats.

    PubMed

    Katakura, Masanori; Hashimoto, Michio; Inoue, Takayuki; Mamun, Abdullah Al; Tanabe, Yoko; Arita, Makoto; Shido, Osamu

    2015-01-01

    Arachidonic acid (ARA) metabolites produced by cyclo-oxygenase and lipoxygenase are important mediators maintaining physiological renal function. However, the effects of exogenous ARA on kidney function in vivo remain unknown. This study examined the effects of long-term oral ARA administration on normal renal function as well as inflammation and oxidative stress in aged rats. In addition, we measured levels of renal eicosanoids and docosanoids using liquid chromatography-tandem mass spectrometry. Control or ARA oil (240 mg/kg body weight/day) was orally administered to 21-month-old Wistar rats for 13 weeks. Levels of plasma creatinine, blood urea nitrogen, inflammatory and anti-inflammatory cytokines, reactive oxygen species, and lipid peroxidation were not significantly different between the two groups. The ARA concentration in the plasma, kidney, and liver increased in the ARA-administered group. In addition, levels of free-form ARA, prostaglandin E2, and 12- and 15-hydroxyeicosatetraenoic acid increased in the ARA-administered group, whereas renal concentration of docosahexaenoic acid and eicosapentaenoic acid decreased in the ARA-administered group. Levels of docosahexaenoic acid-derived protectin D1, eicosapentaenoic acid-derived 5-, and 18-hydroxyeicosapentaenoic acids, and resolvin E2 and E3 decreased in the ARA-administered group. Our results indicate that long-term ARA administration led to no serious adverse reactions under normal conditions and to a decrease in anti-inflammatory docosahexaenoic acid- and eicosapentaenoic acid-derived metabolites in the kidneys of aged rats. These results indicate that there is a possibility of ARA administration having a reducing anti-inflammatory effect on the kidney.

  4. Chronic Arachidonic Acid Administration Decreases Docosahexaenoic Acid- and Eicosapentaenoic Acid-Derived Metabolites in Kidneys of Aged Rats

    PubMed Central

    Katakura, Masanori; Hashimoto, Michio; Inoue, Takayuki; Mamun, Abdullah Al; Tanabe, Yoko; Arita, Makoto; Shido, Osamu

    2015-01-01

    Arachidonic acid (ARA) metabolites produced by cyclo-oxygenase and lipoxygenase are important mediators maintaining physiological renal function. However, the effects of exogenous ARA on kidney function in vivo remain unknown. This study examined the effects of long-term oral ARA administration on normal renal function as well as inflammation and oxidative stress in aged rats. In addition, we measured levels of renal eicosanoids and docosanoids using liquid chromatography–tandem mass spectrometry. Control or ARA oil (240 mg/kg body weight/day) was orally administered to 21-month-old Wistar rats for 13 weeks. Levels of plasma creatinine, blood urea nitrogen, inflammatory and anti-inflammatory cytokines, reactive oxygen species, and lipid peroxidation were not significantly different between the two groups. The ARA concentration in the plasma, kidney, and liver increased in the ARA-administered group. In addition, levels of free-form ARA, prostaglandin E2, and 12- and 15-hydroxyeicosatetraenoic acid increased in the ARA-administered group, whereas renal concentration of docosahexaenoic acid and eicosapentaenoic acid decreased in the ARA-administered group. Levels of docosahexaenoic acid-derived protectin D1, eicosapentaenoic acid-derived 5-, and 18-hydroxyeicosapentaenoic acids, and resolvin E2 and E3 decreased in the ARA-administered group. Our results indicate that long-term ARA administration led to no serious adverse reactions under normal conditions and to a decrease in anti-inflammatory docosahexaenoic acid- and eicosapentaenoic acid-derived metabolites in the kidneys of aged rats. These results indicate that there is a possibility of ARA administration having a reducing anti-inflammatory effect on the kidney. PMID:26485038

  5. Eicosapentaenoic acid regulation of muscle lipid metabolism in vivo and in vitro

    USDA-ARS?s Scientific Manuscript database

    Eicosapentaenoic acid (EPA), an omega 3 fatty acids exerts potent anti-inflammatory and hypolipidemic effects. We previously reported that mice fed high fat diets supplemented with EPA (HF-EPA) were resistant to diet-induced obesity, inflammation and insulin resistance. Here we further investigate b...

  6. The Pharmacokinetic Profile of a New Gastroresistant Capsule Preparation of Eicosapentaenoic Acid as the Free Fatty Acid

    PubMed Central

    Scaioli, Eleonora; Munarini, Alessandra; Hull, Mark A.; Belluzzi, Andrea

    2015-01-01

    Supplementation with n-3 polyunsaturated fatty acids (n-3 PUFAs) may be beneficial for patients with inflammatory bowel diseases (IBD). In this study we analyzed the pharmacokinetic profile of eicosapentaenoic acid (EPA), as the free fatty acid (FFA), in an enteric-coated preparation, in 10 ulcerative colitis (UC) and 10 Crohn's disease (CD) patients and 15 healthy volunteers (HV). Subjects received 2 g daily of EPA-FFA for 8 weeks. Plasma phospholipid and red blood cell (RBC) membrane fatty acid content were measured by gas chromatography-mass spectrometry. There was a rapid incorporation of EPA into plasma phospholipids by 2 weeks and a slower, but highly consistent, incorporation into RBC membranes (4% total fatty acid content; coefficient of variation 10–16%). There was a concomitant reduction in relative n-6 PUFA content. Elongation and desaturation of EPA into docosahexaenoic acid (DHA) via docosapentaenoic acid (DPA) were apparent and DHA content also increased in membranes. EPA-FFA is well tolerated and no difference in the pharmacokinetic profile of n-3 PUFA incorporation was detected between IBD patients and HV. Our data support the concept that EPA can be considered the “universal donor” with respect to key n-3 PUFAs and that this enteric-coated formulation allows long term treatment with a high level of compliance. PMID:26339608

  7. Docosahexaenoic acid synthesis from n-3 fatty acid precursors in rat hippocampal neurons.

    PubMed

    Kaduce, Terry L; Chen, Yucui; Hell, Johannes W; Spector, Arthur A

    2008-05-01

    Docosahexaenoic acid (DHA), the most abundant n-3 polyunsaturated fatty acid in the brain, has important functions in the hippocampus. To better understand essential fatty acid homeostasis in this region of the brain, we investigated the contributions of n-3 fatty acid precursors in supplying hippocampal neurons with DHA. Primary cultures of rat hippocampal neurons incorporated radiolabeled 18-, 20-, 22-, and 24-carbon n-3 fatty acid and converted some of the uptake to DHA, but the amounts produced from either [1-14C]alpha-linolenic or [1-14C]eicosapentaenoic acid were considerably less than the amounts incorporated when the cultures were incubated with [1-14C]22:6n-3. Most of the [1-14C]22:6n-3 uptake was incorporated into phospholipids, primarily ethanolamine phosphoglycerides. Additional studies demonstrated that the neurons converted [1-14C]linoleic acid to arachidonic acid, the main n-6 fatty acid in the brain. These findings differ from previous results indicating that cerebral and cerebellar neurons cannot convert polyunsaturated fatty acid precursors to DHA or arachidonic acid. Fatty acid compositional analysis demonstrated that the hippocampal neurons contained only 1.1-2.5 mol% DHA under the usual low-DHA culture conditions. The relatively low-DHA content suggests that some responses obtained with these cultures may not be representative of neuronal function in the brain.

  8. Low plasma eicosapentaenoic acid concentration as a possible risk factor for intracerebral hemorrhage.

    PubMed

    Ikeya, Yoshimori; Fukuyama, Naoto; Mori, Hidezo

    2015-03-01

    N-3 fatty acids, including eicosapentaenoic acid (EPA), prevent ischemic stroke. The preventive effect has been attributed to an antithrombic effect induced by elevated EPA and reduced arachidonic acid (AA) levels. However, the relationship between intracranial hemorrhage and N-3 fatty acids has not yet been elucidated. In this cross-sectional study, we compared common clinical and lifestyle parameters between 70 patients with intracranial hemorrhages and 66 control subjects. The parameters included blood chemistry data, smoking, alcohol intake, fish consumption, and the incidences of underlying diseases. The comparisons were performed using the Mann-Whitney U test followed by multiple logistic regression analysis. Nonparametric tests revealed that the 70 patients with intracerebral hemorrhages exhibited significantly higher diastolic blood pressures and alcohol intakes and lower body mass indices, high-density lipoprotein (HDL) cholesterol levels, EPA concentrations, EPA/AA ratios, and vegetable consumption compared with the 66 control subjects. A multiple logistic regression analysis revealed that higher diastolic blood pressure and alcohol intake and lower body mass index, HDL cholesterol, EPA/AA ratio, and vegetable consumption were relative risk factors for intracerebral hemorrhage. High HDL cholesterol was a common risk factor in both of the sex-segregated subgroups and the <65-year-old subgroup. However, neither EPA nor the EPA/AA ratio was a risk factor in these subgroups. Eicosapentaenoic acid was relative risk factor only in the ≥65-year-old subgroup. Rather than higher EPA levels, lower EPA concentrations and EPA/AA ratios were found to be risk factors for intracerebral hemorrhage in addition to previously known risk factors such as blood pressure, alcohol consumption, and lifestyle. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. The effects of long-term treatment with eicosapentaenoic acid and docosahexaenoic acid on hypoxia/rexoygenation injury of isolated cardiac cells in adult rats.

    PubMed

    Hayashi, M; Nasa, Y; Tanonaka, K; Sasaki, H; Miyake, R; Hayashi, J; Takeo, S

    1995-09-01

    N-3 polyunsaturated fatty acids have been epidemiologically demonstrated to decrease the incidence of ischaemic heart disease. The present study was undertaken to examine the effects of long-term treatment with eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on hypoxia/reoxygenation injury of isolated adult rat cardiomyocytes. Rats, fed with standard rat chow, were treated with 100 to 1000 mg/kg/day EPA or 1000 mg/kg/day DHA for 4 weeks and their cardiomyocytes were isolated by collagenase treatment. The cardiomyocytes, approximately 90% of which were rod-shaped, were subjected to 150-min hypoxia/15-min reoxygenation, and their survivals at the ends of hypoxia and reoxygenation were determined. Treatment with either 1000 mg/kg/day of EPA or DHA resulted in a significant increase in the survival of the cardiomyocytes (39.9 +/- 1.1 and 38.3 +/- 3.0%, n = 14 and 8, respectively v 26.7 +/- 1.6%, n = 8, for untreated group). Treatment with EPA increased eicosapentaenoic (377% increase), oleic (25% increase) and linoleic acid (37% increase) contents in the myocardial total phospholipids without changes in the total phospholipid content, whereas treatment with DHA did not increase DHA incorporation into the myocardial phospholipids. The results suggest that EPA and DHA protect the myocardial cells against hypoxia-reoxygenation-induced injury. Although alterations in myocardial phospholipid composition were observed by treatment with EPA or DHA, the primary mechanism underlying the benefit of EPA or DHA intake is unlikely to be related to increased incorporation of their own fatty acids into the myocardial phospholipids, or the mechanism may be different in each n-3 unsaturated fatty acid employed.

  10. Eicosapentaenoic acid but not docosahexaenoic acid restores skeletal muscle mitochondrial oxidative capacity in old mice

    PubMed Central

    Johnson, Matthew L; Lalia, Antigoni Z; Dasari, Surendra; Pallauf, Maximilian; Fitch, Mark; Hellerstein, Marc K; Lanza, Ian R

    2015-01-01

    Mitochondrial dysfunction is often observed in aging skeletal muscle and is implicated in age-related declines in physical function. Early evidence suggests that dietary omega-3 polyunsaturated fatty acids (n-3 PUFAs) improve mitochondrial function. Here, we show that 10 weeks of dietary eicosapentaenoic acid (EPA) supplementation partially attenuated the age-related decline in mitochondrial function in mice, but this effect was not observed with docosahexaenoic acid (DHA). The improvement in mitochondrial function with EPA occurred in the absence of any changes in mitochondrial abundance or biogenesis, which was evaluated from RNA sequencing, large-scale proteomics, and direct measurements of muscle mitochondrial protein synthesis rates. We find that EPA improves muscle protein quality, specifically by decreasing mitochondrial protein carbamylation, a post-translational modification that is driven by inflammation. These results demonstrate that EPA attenuated the age-related loss of mitochondrial function and improved mitochondrial protein quality through a mechanism that is likely linked with anti-inflammatory properties of n-3 PUFAs. Furthermore, we demonstrate that EPA and DHA exert some common biological effects (anticoagulation, anti-inflammatory, reduced FXR/RXR activation), but also exhibit many distinct biological effects, a finding that underscores the importance of evaluating the therapeutic potential of individual n-3 PUFAs. PMID:26010060

  11. Effect of short-term enteral feeding with eicosapentaenoic and gamma-linolenic acids on alveolar macrophage eicosanoid synthesis and bactericidal function in rats.

    PubMed

    Palombo, J D; DeMichele, S J; Boyce, P J; Lydon, E E; Liu, J W; Huang, Y S; Forse, R A; Mizgerd, J P; Bistrian, B R

    1999-09-01

    Because vasoactive eicosanoids derived from arachidonic acid present in immune cell phospholipids promote lung inflammation in critically ill patients, novel experimental diets containing eicosapentaenoic acid from fish oil and gamma-linolenic acid from borage oil have been designed to limit arachidonic acid metabolism. However, excess dietary eicosapentaenoic acid impairs superoxide formation and bacterial killing by immune cells. The present study determined whether short-term enteral feeding with diets enriched with either eicosapentaenoic acid alone or in combination with gamma-linolenic acid would modulate alveolar macrophage eicosanoid synthesis without compromising bactericidal function. Prospective, randomized, controlled, blinded study. University medical center. Adult male Sprague-Dawley rats. Rats underwent surgical placement of a gastroduodenal feeding catheter and were randomly assigned to receive one of three high-fat (55.2% of total calories), low-carbohydrate diets containing isocaloric amounts of lipids for 4 days. The control diet was enriched with linoleic acid, whereas the two test diets were low in linoleic acid and enriched with either 5 mole % eicosapentaenoic acid alone or in combination with 5 mole % gamma-linolenic acid. Alveolar macrophages were then procured to assess phospholipid fatty acid composition, eicosanoid synthesis after stimulation with endotoxin, superoxide formation and phagocytosis by flow cytometry, and killing of Staphylococcus aureus Alveolar macrophage levels of arachidonic acid were significantly (p < .01) lower and levels of eicosapentaenoic and dihomo-gamma-linolenic acids were higher after feeding the eicosapentaenoic and gamma-linolenic acid diet vs. the linoleic acid diet. Ratios of thromboxane B2,/B3, leukotriene B4/B5, and prostaglandin E2/E1 were reduced in the macrophages from rats given either the eicosapentaenoic acid or eicosapentaenoic acid with gamma-linolenic acid diet compared with ratios from rats

  12. n3- polyunsaturated Fat Acid Content of Some Edible Fish from Bahrain Waters

    NASA Astrophysics Data System (ADS)

    Al-Arrayedu, F. H.; Al Maskati, H. A.; Abdullah, F. J.

    1999-08-01

    This study was performed to determine the content of n3- polyunsaturated fatty acids in 10 fish species that are commonly consumed in Bahrain in addition to the main commercial shrimp species. White sardinella, which is a plankton feeder, had the highest content of n3- polyunsaturated fatty acids. It had the highest value of eicosapentaenoic acid (146.5 ± 20 mg 100 g-1) and linolenic acid (98.9±f 100 g-1) and the second highest value of docosahexaenoic acid at (133.7 ± 22 mg 100 g-1). Spanish mackerel which feeds mainly on sardinella was second with eicosapentaenoc acid at 55 ± 5.4 mg 100 g-1, docosahexaenoic acid at 161 ± 19.8 mg 100 g-1, linolenic acid at 16.4 mg 100 g-1 and docosapentaenoic acid at 25 ± 1.9 mg 100 g-1. Rabbitfish, the most popular edible fish in Bahrain which feeds mainly on benthic algae had the third highest content of n3- polyunsaturated fatty acids with eicosapentaenoic acid at 37.5 ± 3.9 mg 100 g-1, docosahexaenoic acid at 76 ± 6.7 mg 100 g-1, and docosapentaenoic acid at 85.8 ± 10 mg 100 g-1. The other fish and crustacean species studied were Arabian carpet shark, doublebar bream, grouper, gray grunt, golden travally, keeled mullet, spangled emperor and shrimp. The study explores the transfer of n3- polyunsaturated fatty acids through the food webs of the examined fish. It is apparent, generally, that plankton feeders displayed the highest content of n3- polyunsaturated fatty acids followed by seaweed and algae grazers, with benthic carnivores feeding on invertebrates displaying the poorest content. The values reported here, however, are much lower than those reported for fish available in American markets and in Mediterranean fish. Warm water temperature and high salinity which lead to lowering of the density of phytoplankton and phytoplankton content of n3- polyunsaturated fatty acids are suggested as the reason for the observed low values of n3- polyunsaturated fatty acids in Bahrain fish.

  13. Prescription n-3 fatty acids, but not eicosapentaenoic acid alone, improve reference memory-related learning ability by increasing brain-derived neurotrophic factor levels in SHR.Cg-Lepr(cp)/NDmcr rats, a metabolic syndrome model.

    PubMed

    Hashimoto, Michio; Inoue, Takayuki; Katakura, Masanori; Tanabe, Yoko; Hossain, Shahdat; Tsuchikura, Satoru; Shido, Osamu

    2013-10-01

    Metabolic syndrome is implicated in the decline of cognitive ability. We investigated whether the prescription n-3 fatty acid administration improves cognitive learning ability in SHR.Cg-Lepr(cp)/NDmcr (SHR-cp) rats, a metabolic syndrome model, in comparison with administration of eicosapentaenoic acid (EPA, C20:5, n-3) alone. Administration of TAK-085 [highly purified and concentrated n-3 fatty acid formulation containing EPA ethyl ester and docosahexaenoic acid (DHA, C22:6, n-3) ethyl ester] at 300 mg/kg body weight per day for 13 weeks reduced the number of reference memory-related errors in SHR-cp rats, but EPA alone had no effect, suggesting that long-term TAK-085 administration improves cognitive learning ability in a rat model of metabolic syndrome. However, the working memory-related errors were not affected in either of the rat groups. TAK-085 and EPA administration increased plasma EPA and DHA levels of SHR-cp rats, associating with an increase in EPA and DHA in the cerebral cortex. The TAK-085 administration decreased the lipid peroxide levels and reactive oxygen species in the cerebral cortex and hippocampus of SHR-cp rats, suggesting that TAK-085 increases antioxidative defenses. Its administration also increased the brain-derived neurotrophic factor levels in the cortical and hippocampal tissues of TAK-085-administered rats. The present study suggests that long-term TAK-085 administration is a possible therapeutic strategy for protecting against metabolic syndrome-induced learning decline.

  14. Synthesis of structured triacylglycerols enriched in n-3 fatty acids by immobilized microbial lipase.

    PubMed

    Araújo, Maria Elisa Melo Branco de; Campos, Paula Renata Bueno; Alberto, Thiago Grando; Contesini, Fabiano Jares; Carvalho, Patrícia de Oliveira

    The search for new biocatalysts has aroused great interest due to the variety of micro-organisms and their role as enzyme producers. Native lipases from Aspergillus niger and Rhizopus javanicus were used to enrich the n-3 long-chain polyunsaturated fatty acids content in the triacylglycerols of soybean oil by acidolysis with free fatty acids from sardine oil in solvent-free media. For the immobilization process, the best lipase/support ratios were 1:3 (w/w) for Aspergillus niger lipase and 1:5 (w/w) for Rhizopus javanicus lipase using Amberlite MB-1. Both lipases maintained constant activity for 6 months at 4°C. Reaction time, sardine-free fatty acids:soybean oil mole ratio and initial water content of the lipase were investigated to determine their effects on n-3 long-chain polyunsaturated fatty acids incorporation into soybean oil. Structured triacylglycerols with 11.7 and 7.2% of eicosapentaenoic acid+docosahexaenoic acid were obtained using Aspergillus niger lipase and Rhizopus javanicus lipase, decreasing the n-6/n-3 fatty acids ratio of soybean oil (11:1 to 3.5:1 and 4.7:1, respectively). The best reaction conditions were: initial water content of lipase of 0.86% (w/w), sardine-free faty acids:soybean oil mole ratio of 3:1 and reaction time of 36h, at 40°C. The significant factors for the acidolysis reaction were the sardine-free fatty acids:soybean oil mole ratio and reaction time. The characterization of structured triacylglycerols was obtained using easy ambient sonic-spray ionization mass spectrometry. The enzymatic reaction led to the formation of many structured triacylglycerols containing eicosapentaenoic acid, docosahexaenoic acid or both polyunsaturated fatty acids. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  15. Eicosapentaenoic acid but not docosahexaenoic acid restores skeletal muscle mitochondrial oxidative capacity in old mice.

    PubMed

    Johnson, Matthew L; Lalia, Antigoni Z; Dasari, Surendra; Pallauf, Maximilian; Fitch, Mark; Hellerstein, Marc K; Lanza, Ian R

    2015-10-01

    Mitochondrial dysfunction is often observed in aging skeletal muscle and is implicated in age-related declines in physical function. Early evidence suggests that dietary omega-3 polyunsaturated fatty acids (n-3 PUFAs) improve mitochondrial function. Here, we show that 10 weeks of dietary eicosapentaenoic acid (EPA) supplementation partially attenuated the age-related decline in mitochondrial function in mice, but this effect was not observed with docosahexaenoic acid (DHA). The improvement in mitochondrial function with EPA occurred in the absence of any changes in mitochondrial abundance or biogenesis, which was evaluated from RNA sequencing, large-scale proteomics, and direct measurements of muscle mitochondrial protein synthesis rates. We find that EPA improves muscle protein quality, specifically by decreasing mitochondrial protein carbamylation, a post-translational modification that is driven by inflammation. These results demonstrate that EPA attenuated the age-related loss of mitochondrial function and improved mitochondrial protein quality through a mechanism that is likely linked with anti-inflammatory properties of n-3 PUFAs. Furthermore, we demonstrate that EPA and DHA exert some common biological effects (anticoagulation, anti-inflammatory, reduced FXR/RXR activation), but also exhibit many distinct biological effects, a finding that underscores the importance of evaluating the therapeutic potential of individual n-3 PUFAs. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  16. Considerations for incorporating eicosapentaenoic and docosahexaenoic omega-3 fatty acids into the military food supply chain.

    PubMed

    Ismail, Adam; Rice, Harry B

    2014-11-01

    The U.S. military may consider exploring the inclusion of the long-chain omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), in the diets of active duty military personnel. To be successful, certain challenges must be overcome including determining appropriate dosage, ensuring cost efficiency, and optimizing stability. To increase EPA and DHA intake, the military should consider using one of three strategies, including mandates or recommendations on omega-3 supplement usage, contracts to purchase commercially available foods for distribution in the food supply chain, or direct addition of EPA and DHA into currently consumed foods. This review presents the challenges and strategies and provides potential suggestions to the military to increase the likelihood of success. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.

  17. Docosahexaenoic Acid and Eicosapentaenoic Acid Did not Alter trans-10,cis-12 Conjugated Linoleic Acid Incorporation into Mice Brain and Eye Lipids.

    PubMed

    Vemuri, Madhuri; Adkins, Yuriko; Mackey, Bruce E; Kelley, Darshan S

    2017-09-01

    trans 10,cis 12-CLA has been reported to alter fatty acid composition in several non-neurological tissues, but its effects are less known in neurological tissues. Therefore, the purpose of this study was to determine if CLA supplementation would alter brain and eye fatty acid composition and if those changes could be prevented by concomitant supplementation with docosahexaenoic acid (DHA; 22:6n3) or eicosapentaenoic acid (EPA; 20:5n3). Eight-week-old, pathogen-free C57BL/6N female mice (n = 6/group) were fed either the control diet or diets containing 0.5% (w/w) t10,c12-CLA in the presence or absence of either 1.5% DHA or 1.5% EPA for 8 weeks. CLA concentration was significantly (P < 0.05) greater in the eye but not in the brain lipids of the CLA group when compared with the control group. The sums of saturated, monounsaturated, polyunsaturated fatty acids, and n3:n6 ratio did not differ between these two groups for both tissues. The n3:n6 ratio and concentrations of 20:5n3 and 22:5n3 were significantly greater, and those of 20:4n6, 22:4n6, and 22:5n6 were lesser in the CLA + DHA and CLA + EPA groups than in the control and CLA groups for either tissue. DHA concentration was higher in the CLA + DHA group only but not in the CLA + EPA group when compared with the CLA group for both tissues. The dietary fatty acids generally induced similar changes in brain and eye fatty acid concentration and at the concentrations used both DHA and EPA fed individually with CLA were more potent than CLA alone in altering the tissue fatty acid concentration.

  18. Secular trend of serum docosahexaenoic acid, eicosapentaenoic acid, and arachidonic acid concentrations among Japanese-a 4- and 13-year descriptive epidemiologic study.

    PubMed

    Otsuka, Rei; Kato, Yuki; Imai, Tomoko; Ando, Fujiko; Shimokata, Hiroshi

    2015-03-01

    Cross-sectional studies have shown age-related increases in blood docosahexaenoic and eicosapentaenoic acid and decreases in arachidonic acid. We describe serum docosahexaenoic, eicosapentaenoic, and arachidonic acid concentrations over 13 years (1997-2012) across four study waves and serum fatty acid composition over 4 years (2006-2012) between two study waves according to age groups by sex in the same subjects. We included 443 men and 435 women aged 40-79 years at baseline. Serum arachidonic acid concentrations increased in all sex and age groups over 13 years, and eicosapentaenoic or docosahexaenoic acid concentrations increased in males and females who were younger and middle-aged at baseline. Only serum arachidonic acid composition increased over 4 years in men and women who were 40-69 years at baseline, even after adjustment for arachidonic acid intake. These findings suggest a secular increase trend in serum arachidonic acid levels over 13 years among randomly selected community-dwelling middle-aged and elderly Japanese. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. The role of omega-3 polyunsaturated fatty acids eicosapentaenoic and docosahexaenoic acids in the treatment of major depression and Alzheimer's disease: Acting separately or synergistically?

    PubMed

    Song, Cai; Shieh, Chu-Hsin; Wu, Yi-Shyuan; Kalueff, Allan; Gaikwad, Siddharth; Su, Kuan-Pin

    2016-04-01

    Omega-3 polyunsaturated fatty acids (n-3-PUFAs), mainly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), may improve or prevent some psychiatric and neurodegenerative diseases in both experimental and clinical studies. As important membrane components, these PUFAs benefit brain health by modulating neuroimmune and apoptotic pathways, changing membrane function and/or competing with n-6 PUFAs, the precursors of inflammatory mediators. However, the exact role of each fatty acid in neuroimmune modulation and neurogenesis, the interaction between EPA and DHA, and the best EPA:DHA ratios for improving brain disorders, remain unclear. It is also unknown whether EPA, as a DHA precursor, acts directly or via DHA. Here, we discuss recent evidence of EPA and DHA effects in the treatment of major depression and Alzheimer's disease, as well as their potential synergistic action on anti-inflammatory, antioxidant and neurotrophic processes in the brain. We further analyze the cellular and molecular mechanisms by which EPA, DHA or their combination may benefit these diseases. We also outline the limitations of current studies and suggest new genetic models and novel approaches to overcome these limitations. Finally, we summarize future strategies for translational research in this field. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Non-enzymatic cyclic oxygenated metabolites of adrenic, docosahexaenoic, eicosapentaenoic and α-linolenic acids; bioactivities and potential use as biomarkers.

    PubMed

    Galano, Jean-Marie; Lee, Jetty Chung-Yung; Gladine, Cecile; Comte, Blandine; Le Guennec, Jean-Yves; Oger, Camille; Durand, Thierry

    2015-04-01

    Cyclic oxygenated metabolites are formed in vivo through non-enzymatic free radical reaction of n-6 and n-3 polyunsaturated fatty acids (PUFAs) such as arachidonic (ARA C20:4 n-6), adrenic (AdA 22:4 n-6), α-linolenic (ALA 18:3 n-3), eicosapentaenoic (EPA 20:5 n-3) and docosahexaenoic (DHA 22:6 n-3) acids. These cyclic compounds are known as isoprostanes, neuroprostanes, dihomo-isoprostanes and phytoprostanes. Evidence has emerged for their use as biomarkers of oxidative stress and, more recently, the n-3PUFA-derived compounds have been shown to mediate bioactivities as secondary messengers. Accordingly, this review will focus on the cyclic oxygenated metabolites generated from AdA, ALA, EPA and DHA. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance". Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Global survey of the omega-3 fatty acids, docosahexaenoic acid and eicosapentaenoic acid in the blood stream of healthy adults.

    PubMed

    Stark, Ken D; Van Elswyk, Mary E; Higgins, M Roberta; Weatherford, Charli A; Salem, Norman

    2016-07-01

    Studies reporting blood levels of the omega-3 polyunsaturated fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), were systematically identified in order to create a global map identifying countries and regions with different blood levels. Included studies were those of healthy adults, published in 1980 or later. A total of 298 studies met all inclusion criteria. Studies reported fatty acids in various blood fractions including plasma total lipids (33%), plasma phospholipid (32%), erythrocytes (32%) and whole blood (3.0%). Fatty acid data from each blood fraction were converted to relative weight percentages (wt.%) and then assigned to one of four discrete ranges (high, moderate, low, very low) corresponding to wt.% EPA+DHA in erythrocyte equivalents. Regions with high EPA+DHA blood levels (>8%) included the Sea of Japan, Scandinavia, and areas with indigenous populations or populations not fully adapted to Westernized food habits. Very low blood levels (≤4%) were observed in North America, Central and South America, Europe, the Middle East, Southeast Asia, and Africa. The present review reveals considerable variability in blood levels of EPA+DHA and the very low to low range of blood EPA+DHA for most of the world may increase global risk for chronic disease. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Eicosapentaenoic acid induces DNA demethylation in carcinoma cells through a TET1-dependent mechanism.

    PubMed

    Ceccarelli, Veronica; Valentini, Virginia; Ronchetti, Simona; Cannarile, Lorenza; Billi, Monia; Riccardi, Carlo; Ottini, Laura; Talesa, Vincenzo Nicola; Grignani, Francesco; Vecchini, Alba

    2018-05-14

    In cancer cells, global genomic hypomethylation is found together with localized hypermethylation of CpG islands within the promoters and regulatory regions of silenced tumor suppressor genes. Demethylating agents may reverse hypermethylation, thus promoting gene re-expression. Unfortunately, demethylating strategies are not efficient in solid tumor cells. DNA demethylation is mediated by ten-eleven translocation enzymes (TETs). They sequentially convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), which is associated with active transcription; 5-formylcytosine; and finally, 5-carboxylcytosine. Although α-linolenic acid, eicosapentaenoic acid (EPA), and docosahexaenoic acid, the major n-3 polyunsaturated fatty acids, have anti-cancer effects, their action, as DNA-demethylating agents, has never been investigated in solid tumor cells. Here, we report that EPA demethylates DNA in hepatocarcinoma cells. EPA rapidly increases 5hmC on DNA, inducing p21 Waf1/Cip1 gene expression, which slows cancer cell-cycle progression. We show that the underlying molecular mechanism involves TET1. EPA simultaneously binds peroxisome proliferator-activated receptor γ (PPARγ) and retinoid X receptor α (RXRα), thus promoting their heterodimer and inducing a PPARγ-TET1 interaction. They generate a TET1-PPARγ-RXRα protein complex, which binds to a hypermethylated CpG island on the p21 gene, where TET1 converts 5mC to 5hmC. In an apparent shuttling motion, PPARγ and RXRα leave the DNA, whereas TET1 associates stably. Overall, EPA directly regulates DNA methylation levels, permitting TET1 to exert its anti-tumoral function.-Ceccarelli, V., Valentini, V., Ronchetti, S., Cannarile, L., Billi, M., Riccardi, C., Ottini, L., Talesa, V. N., Grignani, F., Vecchini, A., Eicosapentaenoic acid induces DNA demethylation in carcinoma cells through a TET1-dependent mechanism.

  3. Mead acid (20:3n-9) and n-3 polyunsaturated fatty acids are not associated with risk of posterior longitudinal ligament ossification: results of a case-control study.

    PubMed

    Hamazaki, Kei; Kawaguchi, Yoshiharu; Nakano, Masato; Yasuda, Taketoshi; Seki, Shoji; Hori, Takeshi; Hamazaki, Tomohito; Kimura, Tomoatsu

    2015-05-01

    Ossification of the posterior longitudinal ligament (OPLL) involves the replacement of ligamentous tissue with ectopic bone. Although genetics and heritability appear to be involved in the development of OPLL, its pathogenesis remains to be elucidated. Given previous findings that 5,8,11-eicosatrienoic acid [20:3n-9, Mead acid (MA)] has depressive effects on osteoblastic activity and anti-angiogenic effects, and that n-3 polyunsaturated fatty acids (PUFAs) have a preventive effect on heterotopic ossification, we hypothesized that both fatty acids would be involved in OPLL development. To examine the biological significance of these and other fatty acids in OPLL, we conducted this case-control study involving 106 patients with cervical OPLL and 109 age matched controls. Fatty acid composition was determined from plasma samples by gas chromatography. Associations between fatty acid levels and incident OPLL were evaluated by logistic regression. Contrary to our expectations, we found no significant differences between patients and controls in the levels of MA or n-3 PUFAs (e.g., eicosapentaenoic acid and docosahexaenoic acid). Logistic regression analysis did not reveal any associations with OPLL risk for MA or n-3 PUFAs. In conclusion, no potential role was found for MA or n-3 PUFAs in ectopic bone formation in the spinal canal. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Potential Approach of Microbial Conversion to Develop New Antifungal Products of Omega-3 Fatty Acids

    USDA-ARS?s Scientific Manuscript database

    Omega-3/('-3) or n-3 fatty acids are a family of unsaturated fatty acids that have in common a final carbon-carbon double bond in the n-3 position. n-3 Fatty acids which are important in human nutrition are: a-linolenic acid (18:3, n-3; ALA), eicosapentaenoic acid (20:5, n-3; EPA), and docosahexaen...

  5. Eicosapentaenoic acid and arachidonic acid differentially regulate adipogenesis, acquisition of a brite phenotype and mitochondrial function in primary human adipocytes.

    PubMed

    Fleckenstein-Elsen, Manuela; Dinnies, Daniela; Jelenik, Tomas; Roden, Michael; Romacho, Tania; Eckel, Jürgen

    2016-09-01

    n-3 and n-6 PUFAs have several opposing biological effects and influence white adipose tissue (WAT) function. The recent discovery of thermogenic UCP1-expressing brite adipocytes within WAT raised the question whether n-3 and n-6 PUFAs exert differential effects on brite adipocyte formation and mitochondrial function. Primary human preadipocytes were treated with n-3 PUFAs (eicosapentaenoic acid, EPA; docosahexaenoic acid, DHA) or n-6 PUFA (arachidonic acid, ARA) during differentiation, and adipogenesis, white and brite gene expression markers, mitochondrial content and function were analyzed at day 12 of differentiation. Adipogenesis was equally increased by n-3 and n-6 PUFAs. The n-6 PUFA ARA increased lipid droplet size and expression of the white-specific marker TCF21 while decreased mitochondrial protein expression and respiratory function. In contrast, EPA increased expression of the brown adipocyte-related genes UCP1 and CPT1B, and improved mitochondrial function of adipocytes. The opposing effects of EPA and ARA on gene expression and mitochondrial function were also observed in cells treated from day 8 to 12 of adipocyte differentiation. EPA promotes brite adipogenesis and improves parameters of mitochondrial function, such as increased expression of CPTB1, citrate synthase activity and higher maximal respiratory capacity, while ARA reduced mitochondrial spare respiratory capacity in vitro. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Determination of the Relative Efficacy of Eicosapentaenoic Acid and Docosahexaenoic Acid for Anti-Cancer Effects in Human Breast Cancer Models

    PubMed Central

    Mazurak, Vera C.; Damaraju, Sambasivarao

    2017-01-01

    Epidemiological studies have associated high fish oil consumption with decreased risk of breast cancer (BC). n-3 long chain polyunsaturated fatty acids (n-3 LCPUFA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) found in fish and fish oils exert anti-cancer effects. However, few studies have examined the relative efficacy of EPA and DHA alone and in mixtures on BC subtypes. This was the objective of the present review, as this research is a necessity for the translation of findings to human health and disease. The literature suggests that DHA has a greater anti-cancer effect in triple negative BC (TNBC). In estrogen positive (ER+) BC, DHA has a greater effect on cell viability, while both fatty acids have similar effects on apoptosis and proliferation. These effects are associated with preferential uptake of DHA into TNBC lipid rafts and EPA in ER+ BC. EPA:DHA mixtures have anti-cancer activity; however, the ratio of EPA:DHA does not predict the relative incorporation of these two fatty acids into membrane lipids as EPA appears to be preferentially incorporated. In summary, DHA and EPA should be considered separately in the context of BC prevention. The elucidation of optimal EPA:DHA ratios will be important for designing targeted n-3 LCPUFA treatments. PMID:29207553

  7. Chronic Psychological Stress Was Not Ameliorated by Omega-3 Eicosapentaenoic Acid (EPA).

    PubMed

    Bradbury, Joanne; Myers, Stephen P; Meyer, Barbara; Brooks, Lyndon; Peake, Jonathan; Sinclair, Andrew J; Stough, Con

    2017-01-01

    Background: Chronic psychological stress and mental health disorders are endemic in Western culture where population dietary insufficiencies of omega-3 fatty acids (n-3FA) from seafood have been observed. Objective: This study was designed to test for a causal relationship between one of the most active components of fish oil, eicosapentaenoic acid (EPA), and chronic psychological stress. Method: A randomized double-blind, placebo-controlled clinical trial with parallel-assignment to two groups was designed (Trial Id: ACTRN12610000404022). The interventions were four EPA-rich fish oil capsules per day, delivering 2.2 g/d EPA (and 0.44 g/d DHA), or identical placebo (low-phenolic olive oil capsules with 5% fish oil to aid blinding). The primary outcome was the between-group difference on the Perceived Stress Scale (PSS-10) after 12 weeks supplementation. An a priori power analysis determined that group sizes of 43 would provide 80% power to detect a significant between-group difference of 12.5%, at α = 0.05. Ninety community members (64 females, 26 males) reporting chronic work stress were recruited via public advertising in northern NSW, Australia. Results: At baseline the omega-3 index (EPA + DHA as % to total fatty acids in red blood cell membranes) was 5.2% in both groups ( SD = 1.6% control group; 1.8% active group). After supplementation this remained stable at 5.3% ( SD = 1.6%) for the control group but increased to 8.9% ( SD = 1.5%) for the active group, demonstrating successful incorporation of EPA into cells. Intention-to-treat (ITT) analysis found no significant between-group differences in PSS outcome scores post-intervention ( b = 1.21, p = 0.30) after adjusting for sex ( b = 2.36, p = 0.079), baseline PSS ( b = 0.42, p = 0.001) and baseline logEPA [ b = 1.41, p = 0.185; F (3, 86) = 8.47, p < 0.01, n = 89, R-square = 0.243]. Discussion: Treatment increased cell membrane EPA but, contrary to the hypothesis, there was no effect on perceived stress

  8. Chronic Psychological Stress Was Not Ameliorated by Omega-3 Eicosapentaenoic Acid (EPA)

    PubMed Central

    Bradbury, Joanne; Myers, Stephen P.; Meyer, Barbara; Brooks, Lyndon; Peake, Jonathan; Sinclair, Andrew J.; Stough, Con

    2017-01-01

    Background: Chronic psychological stress and mental health disorders are endemic in Western culture where population dietary insufficiencies of omega-3 fatty acids (n-3FA) from seafood have been observed. Objective: This study was designed to test for a causal relationship between one of the most active components of fish oil, eicosapentaenoic acid (EPA), and chronic psychological stress. Method: A randomized double-blind, placebo-controlled clinical trial with parallel-assignment to two groups was designed (Trial Id: ACTRN12610000404022). The interventions were four EPA-rich fish oil capsules per day, delivering 2.2 g/d EPA (and 0.44 g/d DHA), or identical placebo (low-phenolic olive oil capsules with 5% fish oil to aid blinding). The primary outcome was the between-group difference on the Perceived Stress Scale (PSS-10) after 12 weeks supplementation. An a priori power analysis determined that group sizes of 43 would provide 80% power to detect a significant between-group difference of 12.5%, at α = 0.05. Ninety community members (64 females, 26 males) reporting chronic work stress were recruited via public advertising in northern NSW, Australia. Results: At baseline the omega-3 index (EPA + DHA as % to total fatty acids in red blood cell membranes) was 5.2% in both groups (SD = 1.6% control group; 1.8% active group). After supplementation this remained stable at 5.3% (SD = 1.6%) for the control group but increased to 8.9% (SD = 1.5%) for the active group, demonstrating successful incorporation of EPA into cells. Intention-to-treat (ITT) analysis found no significant between-group differences in PSS outcome scores post-intervention (b = 1.21, p = 0.30) after adjusting for sex (b = 2.36, p = 0.079), baseline PSS (b = 0.42, p = 0.001) and baseline logEPA [b = 1.41, p = 0.185; F(3, 86) = 8.47, p < 0.01, n = 89, R-square = 0.243]. Discussion: Treatment increased cell membrane EPA but, contrary to the hypothesis, there was no effect on perceived stress. Limitations

  9. The induction of apoptosis in pre-malignant keratinocytes by omega-3 polyunsaturated fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) is inhibited by albumin.

    PubMed

    Nikolakopoulou, Zacharoula; Shaikh, Mushfiq Hassan; Dehlawi, Hebah; Michael-Titus, Adina Teodora; Parkinson, Eric Kenneth

    2013-04-12

    The long chain omega-3 polyunsaturated fatty acids (PUFA) have been reported to exert anti-cancer effects. At this study we tested the effect of the omega-3 PUFA, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), on pre-malignant keratinocytes growth in the well-characterised human pre-malignant epidermal cell line, HaCaT and attempted to identify a PUFA serum antagonist. Both EPA and DHA inhibited HaCaT growth and induced apoptosis. At the 10% (v/v) foetal bovine serum (FBS) medium, limited growth inhibition (3-20% for 50μM DHA and EPA respectively) and negligible apoptosis were observed with PUFA use. However, at 3% (v/v) FBS medium, 30-50μM of PUFA caused impressive levels of growth inhibition (82-83% for 50μM DHA and EPA respectively) and increase of apoptosis (8-19% increase in 72h). None of the numerous serum growth factors present in FBS or the antioxidant n-tert-butyl-α-phenylnitrone could inhibit the PUFA-induced cytotoxicity. In contrast, bovine and human albumin (0.1-0.3%, w/v) significantly antagonized the growth inhibitory and apoptosis-inducing effects of PUFA. In conclusion, we have shown for the first time that omega-3 PUFA inhibit the growth and induce apoptosis of pre-malignant keratinocytes and identified albumin as a major antagonistic factor in serum that could limit their effectiveness at pharmacologically-achievable doses. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Usefulness of Icosapent Ethyl (Eicosapentaenoic Acid Ethyl Ester) in Women to Lower Triglyceride Levels (Results from the MARINE and ANCHOR Trials).

    PubMed

    Mosca, Lori; Ballantyne, Christie M; Bays, Harold E; Guyton, John R; Philip, Sephy; Doyle, Ralph T; Juliano, Rebecca A

    2017-02-01

    There are limited data on the efficacy and safety of triglyceride (TG)-lowering agents in women. We conducted subgroup analyses of the effects of icosapent ethyl (a high-purity prescription form of the ethyl ester of the omega-3 fatty acid, eicosapentaenoic acid) on TG levels (primary efficacy variable) and other atherogenic and inflammatory parameters in a total of 215 women with a broad range of TG levels (200-2000 mg/dl) enrolled in two 12-week placebo-controlled trials: MARINE (n = 18; placebo, n = 18) and ANCHOR (n = 91; placebo, n = 88). Icosapent ethyl 4 g/day significantly reduced TG levels from baseline to week 12 versus placebo in both MARINE (-22.7%; p = 0.0327) and ANCHOR (-21.5%; p <0.0001) without increasing low-density lipoprotein cholesterol levels. Significant improvements were also observed in non-high-density lipoprotein cholesterol levels in MARINE (-15.7%; p = 0.0082) and ANCHOR (-14.2%; p <0.0001) and total cholesterol levels in MARINE (-14.9%; p = 0.0023) and ANCHOR (-12.1%; p <0.0001), along with significant increases of >500% in eicosapentaenoic acid levels in plasma and red blood cells (all p <0.001). Icosapent ethyl was well tolerated, with adverse-event profiles comparable with findings in the overall studies. In conclusion, icosapent ethyl 4 g/day significantly reduced TG levels and other atherogenic parameters in women without increasing low-density lipoprotein cholesterol levels compared with placebo; the clinical implications of these findings are being evaluated in the REDUCtion of Cardiovascular Events With Eicosapentaenoic Acid [EPA]-Intervention Trial (REDUCE-IT) cardiovascular outcomes study. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Triploidy does not decrease contents of eicosapentaenoic and docosahexaenoic acids in filets of pink salmon Oncorhynchus gorbuscha.

    PubMed

    Gladyshev, Michail I; Artamonova, Valentina S; Makhrov, Alexander A; Sushchik, Nadezhda N; Kalachova, Galina S; Dgebuadze, Yury Y

    2017-02-01

    Triploid fish has become an important item of commercial aquaculture, but data on its fatty acid (FA) composition are still controversial, especially regarding essential polyunsaturated fatty acids, eicosapentaenoic acid (20:5n-3, EPA) and docosahexaenoic acid (22:6n-3, DHA). We studied FA composition and content of diploid and triploid pink salmon Oncorhynchus gorbuscha, reared in aquaculture in a bay of the White Sea (Russia). FA composition, measured as percentages of total FA of triploids and immature diploid females significantly differed from that of mature diploid fish. Specifically, mature diploids had higher percentage of EPA and DHA in their muscle tissue (filets) compared to that of triploids and immature diploid females. Nevertheless, the contents of EPA and DHA per mass of the filets in diploid and triploid specimens were similar. Thus, no special efforts are needed to improve EPA and DHA contents in filets of triploids. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. n-3 fatty acids: role in neurogenesis and neuroplasticity.

    PubMed

    Crupi, R; Marino, A; Cuzzocrea, S

    2013-01-01

    Omega-3 polyunsaturated fatty acids (PUFA) are essential unsaturated fatty acids with a double bond (C=C) starting after the third carbon atom from the end of the carbon chain. They are important nutrients but, unfortunately, mammals cannot synthesize them, whereby they must be obtained from food sources or from supplements. Amongst nutritionally important polyunsaturated n-3 fatty acids, α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are highly concentrated in the brain and have anti-oxidative stress, anti-inflammatory and antiapoptotic effects. They are involved in many bodily processes and may reportedly lead to neuron protection in neurological diseases. aged or damaged neurons and in Alzheimer's disease. Their effect in cognitive and behavioral functions and in several neurological and psychiatric disorders has been also proven. The dentate gyrus (DG), a sub-region of hippocampus, is implicated in cognition and mood regulation. The hippocampus represents one of the two areas in the mammalian brain in which adult neurogenesis occurs. This process is associated with beneficial effects on cognition, mood and chronic pharmacological treatment. The exposure to n-3 fatty acids enhances adult hippocampal neurogenesis associated with cognitive and behavioral processes, promotes synaptic plasticity by increasing long-term potentiation and modulates synaptic protein expression to stimulate the dendritic arborization and new spines formation. On this basis we review the effect of n-3 fatty acids on adult hippocampal neurogenesis and neuroplasticity. Moreover their possible use as a new therapeutic approach for neurodegenerative diseases is pointed out.

  13. Echium oil is better than rapeseed oil in enriching poultry meat with n-3 polyunsaturated fatty acids, including eicosapentaenoic acid and docosapentaenoic acid.

    PubMed

    Kitessa, Soressa M; Young, Paul

    2009-03-01

    alpha-Linolenic acid (ALA; 18 : 3n-3) and stearidonic acid (SDA; 18 : 4n-3) are on the biosynthetic pathway of EPA (20 : 5n-3) and DHA (22 : 6n-3). The n-3 fatty acid in rapeseed oil is ALA while Echium oil contains both ALA and SDA. To determine the comparative efficacy of ALA- and SDA-rich oils in enriching broiler meat with n-3 PUFA, we offered diets supplemented with rapeseed oil (rapeseed group) or Echium oil (Echium group) for 35 d to two groups of chicks (age 21 d). There were no differences in carcass weight (2.20 (sem 0.06) v. 2.23 (sem 0.05) kg), boned, skinless thigh muscle (494 (sem 20.5) v. 507 (sem 16.7) g), boned, skinless breast muscle (553 (sem 13.4) v. 546 (sem 11.6) g) or organ weights (heart, liver and gizzard) between the two groups. The total intramuscular fat (IMF) percentage of thigh (8.0 (sem 0.64) v. 8.1 (sem 0.62) %) and breast muscles (2.3 (sem 0.24) v. 2.0 (sem 0.19) %) were also similar between the groups. In contrast, the concentrations of most of the individual n-3 fatty acids (ALA, SDA, EPA and docosapentaenoic acid) were all higher in the Echium than the rapeseed group (P < 0.05). However, differences in DHA concentrations were significant in breast but not thigh muscle IMF. The total n-3 yields/100 g serve thigh muscle were 265 and 676 mg for the rapeseed and Echium groups, respectively (P < 0.0001). The corresponding values for equivalent breast muscles were 70 and 137 mg, respectively (P < 0.01). We conclude that Echium oil is a better lipid supplement than rapeseed oil in changing the concentration and yield of n-3 fatty acids, except DHA, in broiler meat.

  14. Associations With Eicosapentaenoic Acid to Arachidonic Acid Ratio and Mortality in Hospitalized Heart Failure Patients.

    PubMed

    Watanabe, Shunsuke; Yoshihisa, Akiomi; Kanno, Yuki; Takiguchi, Mai; Yokokawa, Tetsuro; Sato, Akihiko; Miura, Shunsuke; Shimizu, Takeshi; Abe, Satoshi; Sato, Takamasa; Suzuki, Satoshi; Oikawa, Masayoshi; Sakamoto, Nobuo; Yamaki, Takayoshi; Sugimoto, Koichi; Kunii, Hiroyuki; Nakazato, Kazuhiko; Suzuki, Hitoshi; Saitoh, Shu-Ichi; Takeishi, Yasuchika

    2016-12-01

    Intake of n-3 polyunsaturated fatty acids (n-3 PUFAs) lowers the risk of atherosclerotic cardiovascular events, particularly ischemic heart disease. In addition, the ratio of eicosapentaenoic acid (EPA; n-3 PUFA) to arachidonic acid (AA; n-6 PUFA) has recently been recognized as a risk marker of cardiovascular disease. In contrast, the prognostic impact of the EPA/AA ratio on patients with heart failure (HF) remains unclear. A total of 577 consecutive patients admitted for HF were divided into 2 groups based on median of the EPA/AA ratio: low EPA/AA (EPA/AA <0.32 mg/dl, n = 291) and high EPA/AA (EPA/AA ≥0.32, n = 286) groups. We compared laboratory data and echocardiographic findings and followed cardiac mortality. Although body mass index, blood pressure, B-type natriuretic peptide, hemoglobin, estimated glomerular filtration rate, total protein, albumin, sodium, C-reactive protein, and left ventricular ejection fraction did not differ between the 2 groups, cardiac mortality was significantly higher in the low EPA/AA group than in the high EPA/AA group (12.7 vs 5.9%, log-rank P = .004). Multivariate Cox proportional hazard analysis revealed that the EPA/AA ratio was an independent predictor of cardiac mortality (hazard ratio 0.677, 95% confidence interval 0.453-0.983, P = .041) in patients with HF. The EPA/AA ratio was an independent predictor of cardiac mortality in patients with HF; therefore, the prognosis of patients with HF may be improved by taking appropriate management to control the EPA/AA balance. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. Effects of oral eicosapentaenoic acid versus docosahexaenoic acid on human peripheral blood mononuclear cell gene expression

    USDA-ARS?s Scientific Manuscript database

    Objective: Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have beneficial effects on inflammation and cardiovascular disease (CVD). Our aim was to assess the effect of a six-week supplementation with either olive oil, EPA, or DHA on gene expression in peripheral blood mononuclear cells (...

  16. Decreased eicosapentaenoic acid levels in acne vulgaris reveals the presence of a proinflammatory state.

    PubMed

    Aslan, İbrahim; Özcan, Filiz; Karaarslan, Taner; Kıraç, Ebru; Aslan, Mutay

    2017-01-01

    This study aimed to determine circulating levels of polyunsaturated fatty acids (PUFAs), secretory phospholipase A2 (sPLA2), lipoprotein lipase (LPL) and measure circulating protein levels of angiopoietin-like protein 3 (ANGPTL3), ANGPTL4, cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2) in patients with acne vulgaris. Serum from 21 control subjects and 31 acne vulgaris patients were evaluated for levels of arachidonic acid (AA, C20:4n- 6), dihomo-gamma-linolenic acid (DGLA, C20:3n-6), eicosapentaenoic acid (EPA, C20:5n-3) and docosahexaenoic acid (DHA, C22:6n-3). PUFA levels were determined by an optimized multiple reaction monitoring (MRM) method using ultra fast-liquid chromatography (UFLC) coupled with tandem mass spectrometry (MS/MS). Lipid profile, routine biochemical and hormone parameters were assayed by standard kit methods Serum EPA levels were significantly decreased while AA/EPA and DGLA/EPA ratio were significantly increased in acne vulgaris patients compared to controls. Serum levels of AA, DGLA and DHA showed no significant difference while activity of sPLA2 and LPL were significantly increased in acne vulgaris compared to controls. Results of this study reveal the presence of a proinflammatory state in acne vulgaris as shown by significantly decreased serum EPA levels and increased activity of sPLA2, AA/EPA and DGLA/EPA ratio. Increased LPL activity in the serum of acne vulgaris patients can be protective through its anti-dyslipidemic actions. This is the first study reporting altered EPA levels and increased sPLA2 activity in acne vulgaris and supports the use of omega-3 fatty acids as adjuvant treatment for acne patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Eicosapentaenoic acid prevents arterial calcification in klotho mutant mice.

    PubMed

    Nakamura, Kazufumi; Miura, Daiji; Saito, Yukihiro; Yunoki, Kei; Koyama, Yasushi; Satoh, Minoru; Kondo, Megumi; Osawa, Kazuhiro; Hatipoglu, Omer F; Miyoshi, Toru; Yoshida, Masashi; Morita, Hiroshi; Ito, Hiroshi

    2017-01-01

    The klotho gene was identified as an "aging-suppressor" gene that accelerates arterial calcification when disrupted. Serum and vascular klotho levels are reduced in patients with chronic kidney disease, and the reduced levels are associated with arterial calcification. Intake of eicosapentaenoic acid (EPA), an n-3 fatty acid, reduces the risk of fatal coronary artery disease. However, the effects of EPA on arterial calcification have not been fully elucidated. The aim of this study was to determine the effect of EPA on arterial calcification in klotho mutant mice. Four-week-old klotho mutant mice and wild-type (WT) mice were given a diet containing 5% EPA (EPA food, klotho and WT: n = 12, each) or not containing EPA (control food, klotho and WT: n = 12, each) for 4 weeks. Calcium volume scores of thoracic and abdominal aortas assessed by computed tomography were significantly elevated in klotho mice after 4 weeks of control food, but they were not elevated in klotho mice after EPA food or in WT mice. Serum levels of EPA and resolvin E1, an active metabolite of EPA, in EPA food-fed mice were significantly increased compared to those in control food-fed mice. An oxidative stress PCR array followed by quantitative PCR revealed that NADPH oxidase-4 (NOX4), an enzyme that generates superoxide, gene expression was up-regulated in arterial smooth muscle cells (SMCs) of klotho mice. Activity of NOX was also significantly higher in SMCs of klotho mice than in those of WT mice. EPA decreased expression levels of the NOX4 gene and NOX activity. GPR120, a receptor of n-3 fatty acids, gene knockdown by siRNA canceled effects of EPA on NOX4 gene expression and NOX activity in arterial SMCs of klotho mice. EPA prevents arterial calcification together with reduction of NOX gene expression and activity via GPR120 in klotho mutant mice.

  18. The Role of n-3 Polyunsaturated Fatty Acids in the Prevention and Treatment of Breast Cancer

    PubMed Central

    Liu, Jiajie; Ma, David W. L.

    2014-01-01

    Breast cancer (BC) is the most common cancer among women worldwide. Dietary fatty acids, especially n-3 polyunsaturated fatty acids (PUFA), are believed to play a role in reducing BC risk. Evidence has shown that fish consumption or intake of long-chain n-3 PUFA, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are beneficial for inhibiting mammary carcinogenesis. The evidence regarding α-linolenic acid (ALA), however, remains equivocal. It is essential to clarify the relation between ALA and cancer since ALA is the principal source of n-3 PUFA in the Western diet and the conversion of ALA to EPA and DHA is not efficient in humans. In addition, the specific anticancer roles of individual n-3 PUFA, alone, have not yet been identified. Therefore, the present review evaluates ALA, EPA and DHA consumed individually as well as in n-3 PUFA mixtures. Also, their role in the prevention of BC and potential anticancer mechanisms of action are examined. Overall, this review suggests that each n-3 PUFA has promising anticancer effects and warrants further research. PMID:25412153

  19. Omega-3 Eicosapentaenoic Acid Decreases CD133 Colon Cancer Stem-Like Cell Marker Expression While Increasing Sensitivity to Chemotherapy

    PubMed Central

    De Carlo, Flavia; Witte, Theodore R.; Hardman, W. Elaine; Claudio, Pier Paolo

    2013-01-01

    Colorectal cancer is the third leading cause of cancer-related death in the western world. In vitro and in vivo experiments showed that omega-3 polyunsaturated fatty acids (n-3 PUFAs) can attenuate the proliferation of cancer cells, including colon cancer, and increase the efficacy of various anticancer drugs. However, these studies address the effects of n-3 PUFAs on the bulk of the tumor cells and not on the undifferentiated colon cancer stem-like cells (CSLCs) that are responsible for tumor formation and maintenance. CSLCs have also been linked to the acquisition of chemotherapy resistance and to tumor relapse. Colon CSLCs have been immunophenotyped using several antibodies against cellular markers including CD133, CD44, EpCAM, and ALDH. Anti-CD133 has been used to isolate a population of colon cancer cells that retains stem cells properties (CSLCs) from both established cell lines and primary cell cultures. We demonstrated that the n-3 PUFA, eicosapentaenoic acid (EPA), was actively incorporated into the membrane lipids of COLO 320 DM cells. 25 uM EPA decreased the cell number of the overall population of cancer cells, but not of the CD133 (+) CSLCs. Also, we observed that EPA induced down-regulation of CD133 expression and up-regulation of colonic epithelium differentiation markers, Cytokeratin 20 (CK20) and Mucin 2 (MUC2). Finally, we demonstrated that EPA increased the sensitivity of COLO 320 DM cells (total population) to both standard-of-care chemotherapies (5-Fluorouracil and oxaliplatin), whereas EPA increased the sensitivity of the CD133 (+) CSLCs to only 5-Fluorouracil. PMID:23874993

  20. A randomized clinical trial of high eicosapentaenoic acid omega-3 fatty acids and inositol as monotherapy and in combination in the treatment of pediatric bipolar spectrum disorders: a pilot study.

    PubMed

    Wozniak, Janet; Faraone, Stephen V; Chan, James; Tarko, Laura; Hernandez, Mariely; Davis, Jacqueline; Woodworth, K Yvonne; Biederman, Joseph

    2015-11-01

    We conducted a 12-week, randomized, double-blind, controlled clinical trial to evaluate the effectiveness and tolerability of high eicosapentaenoic acid (EPA)/docosahexaenoic acid (DHA) omega-3 fatty acids and inositol as monotherapy and in combination in children with bipolar spectrum disorders. Participants were children 5-12 years of age meeting DSM-IV diagnostic criteria for bipolar spectrum disorders (bipolar I or II disorder or bipolar disorder not otherwise specified [NOS]) and displaying mixed, manic, or hypomanic symptoms. Subjects with severe illness were excluded. Subjects were randomized to 1 of 3 treatment arms: inositol plus placebo, omega-3 fatty acids plus placebo, and the combined active treatment of omega-3 fatty acids plus inositol. Data were collected from February 2012 to November 2013. Twenty-four subjects were exposed to treatment (≥ 1 week of study completed) (inositol [n = 7], omega-3 fatty acids [n = 7], and omega-3 fatty acids plus inositol [n =10]). Fifty-four percent of the subjects completed the study. Subjects randomized to the omega-3 fatty acids plus inositol arm had the largest score decrease comparing improvement from baseline to end point with respect to the Young Mania Rating Scale (P < .05). Similar results were found for the Children's Depression Rating Scale (P < .05) and the Brief Psychiatric Rating Scale (P <.05). Results of this pilot randomized, double-blind, controlled trial suggest that the combined treatment of omega-3 fatty acids plus inositol reduced symptoms of mania and depression in prepubertal children with mild to moderate bipolar spectrum disorders. Results should be interpreted in light of limitations, which include exclusion of severely ill subjects, 54% completion rate, and small sample size. ClinicalTrials.gov identifier: NCT01396486. © Copyright 2015 Physicians Postgraduate Press, Inc.

  1. Therapeutic potential of n-3 polyunsaturated fatty acids in disease.

    PubMed

    Fetterman, James W; Zdanowicz, Martin M

    2009-07-01

    The potential therapeutic benefits of supplementation with n-3 polyunsaturated fatty acids (PUFAs) in various diseases are reviewed, and the antiinflammatory actions, activity, and potential drug interactions and adverse effects of n-3 PUFAs are discussed. Fish oils are an excellent source of long-chain n-3 PUFAs, such as eicosapentaenoic acid and docosahexaenoic acid. After consumption, n-3 PUFAs can be incorporated into cell membranes and reduce the amount of arachidonic acid available for the synthesis of proinflammatory eicosanoids (e.g., prostaglandins, leukotrienes). Likewise, n-3 PUFAs can also reduce the production of inflammatory cytokines, such as tumor necrosis factor alpha, interleukin-1, and interleukin-6. Considerable research has been conducted to evaluate the potential therapeutic effects of fish oils in numerous conditions, including arthritis, coronary artery disease, inflammatory bowel disease, asthma, and sepsis, all of which have inflammation as a key component of their pathology. Additional investigations into the use of supplementation with fish oils in patients with neural injury, cancer, ocular diseases, and critical illness have recently been conducted. The most commonly reported adverse effects of fish oil supplements are a fishy aftertaste and gastrointestinal upset. When recommending an n-3 PUFA, clinicians should be aware of any possible adverse effect or drug interaction that, although not necessarily clinically significant, may occur, especially for patients who may be susceptible to increased bleeding (e.g., patients taking warfarin). The n-3 PUFAs have been shown to be efficacious in treating and preventing various diseases. The wide variation in dosages and formulations used in studies makes it difficult to recommend dosages for specific treatment goals.

  2. Dietary eicosapentaenoic acid prevents systemic immunosuppression in mice induced by UVB radiation.

    PubMed

    Moison, R M; Beijersbergen Van Henegouwen, G M

    2001-07-01

    Moison, R. M. W. and Beijersbergen van Henegouwen, G. M. J. Dietary Eicosapentaenoic Acid Prevents Systemic Immunosuppression in Mice Induced by UVB Radiation. Radiat. Res. 156, 36-44 (2001). Reactive oxygen species (ROS) contribute to the immunosuppression induced by UVB radiation. Omega-3 fatty acids in fish oil, e.g. eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), can modulate immunoresponsiveness, but because of their susceptibility to ROS-induced damage, they can also challenge the epidermal antioxidant defense system. The influence of dietary supplementation with different omega-3 fatty acids on systemic immunosuppression induced in mice by UVB radiation was studied using the contact hypersensitivity response to trinitrochlorobenzene. In an attempt to study the mechanisms involved, UVB-radiation-induced changes in epidermal antioxidant status were also studied. Mice received high-fat (25% w/w) diets enriched with either oleic acid (control diet), EPA, DHA, or EPA + DHA (MaxEPA). Immunosuppression induced by UVB radiation was 53% in mice fed the oleic acid diet and 69% in mice fed the DHA diet. In contrast, immunosuppression was only 4% and 24% in mice fed the EPA and MaxEPA diets, respectively. Increased lipid peroxidation and decreased vitamin E levels (P < 0.05) were found in unirradiated mice fed the MaxEPA and DHA diets. For all diets, exposure to UVB radiation increased lipid peroxidation (P < 0.05), but levels of glutathione (P < 0.05) and vitamin C (P > 0.05) decreased only in the mice given fish oil. UVB irradiation did not influence vitamin E levels. In conclusion, dietary EPA, but not DHA, protects against UVB-radiation-induced immunosuppression in mice. The degree of protection appears to be related to the amount of EPA incorporated and the ability of the epidermis to maintain an adequate antioxidant level after irradiation.

  3. Implications for eicosapentaenoic acid- and docosahexaenoic acid-derived resolvins as therapeutics for arthritis.

    PubMed

    Souza, Patricia R; Norling, Lucy V

    2016-08-15

    Omega-3 polyunsaturated fatty acids are essential for health and are known to possess anti-inflammatory properties, improving cardiovascular health as well as benefiting inflammatory diseases. Indeed, dietary supplementation with omega-3 polyunsaturated fatty acids has proved efficacious in reducing joint pain, morning stiffness and nonsteroidal anti-inflammatory drugs usage in rheumatoid arthritis patients. However, the mechanisms by which omega-3 polyunsaturated fatty acids exert their beneficial effects have not been fully explored. Seminal discoveries by Serhan and colleagues have unveiled a novel class of bioactive lipid mediators that are enzymatically biosynthesized in vivo from omega-3 eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), termed resolvins, protectins and maresins. These bioactive pro-resolving lipid mediators provide further rationale for the beneficial effects of fish-oil enriched diets. These endogenous lipid mediators are spatiotemporally biosynthesized to actively regulate resolution by acting on specific G protein-coupled receptors (GPCRs) to initiate anti-inflammatory and pro-resolving signals that terminate inflammation. In this review, we will discuss the mechanism of actions of these molecules, including their analgesic and bone-sparing properties making them ideal therapeutic agonists for the treatment of inflammatory diseases such as rheumatoid arthritis. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Lipase-Produced Hydroxytyrosyl Eicosapentaenoate is an Excellent Antioxidant for the Stabilization of Omega-3 Bulk Oils, Emulsions and Microcapsules.

    PubMed

    Akanbi, Taiwo Olusesan; Barrow, Colin James

    2018-01-29

    In this study, several lipophilic hydroxytyrosyl esters were prepared enzymatically using immobilized lipase from Candida antarctica B. Oxidation tests showed that these conjugates are excellent antioxidants in lipid-based matrices, with hydroxytyrosyl eicosapentaenoate showing the highest antioxidant activity. Hydroxytyrosyl eicosapentaenoate effectively stabilized bulk fish oil, fish-oil-in-water emulsions and microencapsulated fish oil. The stabilizing effect of this antioxidant may either be because it orients itself with the omega-3 fatty acids in the oil, thereby protecting them against oxidation, or because this unstable fatty acid can preferentially oxidise, thus providing an additional mechanism of antioxidant protection. Hydroxytyrosyl eicosapentaenoate itself was stable for one year when stored at -20 °C.

  5. The Omega-3 Fatty Acid Eicosapentaenoic Acid Accelerates Disease Progression in a Model of Amyotrophic Lateral Sclerosis

    PubMed Central

    Gladman, Stacy; Biggio, Maria Luigia; Marino, Marianna; Jayasinghe, Maduka; Ullah, Farhan; Dyall, Simon C.; Malaspina, Andrea; Bendotti, Caterina; Michael-Titus, Adina

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive fatal neurodegenerative disease characterised by loss of motor neurons that currently has no cure. Omega-3 polyunsaturated fatty acids, such as eicosapentaenoic acid (EPA), have many health benefits including neuroprotective and myoprotective potential. We tested the hypothesis that a high level of dietary EPA could exert beneficial effects in ALS. The dietary exposure to EPA (300 mg/kg/day) in a well-established mouse model of ALS expressing the G93A superoxide dismutase 1 (SOD1) mutation was initiated at a pre-symptomatic or symptomatic stage, and the disease progression was monitored until the end stage. Daily dietary EPA exposure initiated at the disease onset did not significantly alter disease presentation and progression. In contrast, EPA treatment initiated at the pre-symptomatic stage induced a significantly shorter lifespan. In a separate group of animals sacrificed before the end stage, the tissue analysis showed that the vacuolisation detected in G93A-SOD1 mice was significantly increased by exposure to EPA. Although EPA did not alter motor neurone loss, EPA reversed the significant increase in activated microglia and the astrocytic activation seen in G93A-SOD1 mice. The microglia in the spinal cord of G93A-SOD1 mice treated with EPA showed a significant increase in 4-hydroxy-2-hexenal, a highly toxic aldehydic oxidation product of omega-3 fatty acids. These data show that dietary EPA supplementation in ALS has the potential to worsen the condition and accelerate the disease progression. This suggests that great caution should be exerted when considering dietary omega-3 fatty acid supplements in ALS patients. PMID:23620776

  6. Docosahexaenoic acid, but not eicosapentaenoic acid, improves septic shock-induced arterial dysfunction in rats

    PubMed Central

    Clere-Jehl, Raphaël; Le Borgne, Pierrick; Merdji, Hamid; Auger, Cyril; Schini-Kerth, Valérie; Meziani, Ferhat

    2017-01-01

    Introduction Long chain n-3 fatty acid supplementation may modulate septic shock-induced host response to pathogen-induced sepsis. The composition of lipid emulsions for parenteral nutrition however remains a real challenge in intensive care, depending on their fatty acid content. Because they have not been assessed yet, we aimed at determining the respective effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) during septic shock-induced vascular dysfunction. Methods In a peritonitis-induced septic shock model, rats were infused with EPA, DHA, an EPA/DHA mixture or 5% dextrose (D5) during 22 hours. From H18, rats were resuscitated and monitored during 4 hours. At H22, plasma, aorta and mesenteric resistance arteries were collected to perform ex vivo experiments. Results We have shown that septic rats needed an active resuscitation with fluid challenge and norepinephrine treatment, while SHAM rats did not. In septic rats, norepinephrine requirements were significantly decreased in DHA and EPA/DHA groups (10.6±12.0 and 3.7±8.0 μg/kg/min respectively versus 17.4±19.3 μg/kg/min in D5 group, p<0.05) and DHA infusion significantly improved contractile response to phenylephrine through nitric oxide pathway inhibition. DHA moreover significantly reduced vascular oxidative stress and nitric oxide production, phosphorylated IκB expression and vasodilative prostaglandin production. DHA also significantly decreased polyunsaturated fatty acid pro-inflammatory mediators and significantly increased several anti-inflammatory metabolites. Conclusions DHA infusion in septic rats improved hemodynamic dysfunction through decreased vascular oxidative stress and inflammation, while EPA infusion did not have beneficial effects. PMID:29261735

  7. Antimicrobial potential of bioconverted products of omega-3 fatty acids by Pseudomonas aeruginosa PR3

    USDA-ARS?s Scientific Manuscript database

    Bioconverted omega-3 fatty acids, eicosapentaenoic acid (bEPA) and docosahexanoic acid (bDHA), obtained from the microbial conversion of non-bioconverted eicosapentaenoic and docosahexaenoic acids by Pseudomonas aeruginosa PR3 were evaluated for their antimicrobial potential. bEPA and bDHA at 5 µl/...

  8. Intake of total omega-3 fatty acids, eicosapentaenoic acid and docosahexaenoic acid and risk of coronary heart disease in the Spanish EPIC cohort study.

    PubMed

    Amiano, P; Machón, M; Dorronsoro, M; Chirlaque, M Dolores; Barricarte, A; Sánchez, M-J; Navarro, C; Huerta, J M; Molina-Montes, E; Sánchez-Cantalejo, E; Urtizberea, M; Arriola, L; Larrañaga, N; Ardanaz, E; Quirós, J R; Moreno-Iribas, C; González, C A

    2014-03-01

    The evidence about the benefits of omega-3 fatty acid intake on coronary heart disease (CHD) is not consistent. We thus aimed to assess the relation between dietary intake of total omega-3 fatty acids (from plant and marine foods) and marine polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), on the risk of CHD in the Spanish cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC). The analysis included 41,091 men and women aged 20-69 years, recruited from 1992 to 1996 and followed-up until December 2004. Omega-3 fatty acid intake was estimated from a validated dietary questionnaire. Only participants with definite incident CHD event were considered as cases. Cox regression models were used to assess the association between the intake of total omega-3 fatty acids, EPA or DHA and CHD. A total of 609 participants (79% men) had a definite CHD event. Mean intakes of total omega-3 fatty acids, EPA and DHA were very similar in the cases and in the cohort, both in men and women. In the multivariate adjusted model, omega-3 fatty acids, EPA and DHA were not related to incident CHD in either men or women. The hazard ratios (HR) for omega-3 were 1.23 in men (95% CI 0.94-15.9, p = 0.20); and 0.77 in women (95% CI 0.46-1.30, p = 0.76). In the Spanish EPIC cohort, with a relatively high intake of fish, no association was found between EPA, DHA and total omega-3 fatty acid intake and risk of CHD. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Enhanced absorption of n-3 fatty acids from emulsified compared with encapsulated fish oil

    USDA-ARS?s Scientific Manuscript database

    The omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have important nutrition and disease management properties. Presently fish oil (FO) supplementation relies on capsular triglyceride. Flavored emulsified lipid preparations may provide an improved approach to FO del...

  10. Hydrothermal-acid treatment for effectual extraction of eicosapentaenoic acid (EPA)-abundant lipids from Nannochloropsis salina.

    PubMed

    Lee, Ilgyu; Han, Jong-In

    2015-09-01

    Hydrothermal acid treatment, was adopted to extract eicosapentaenoic acid (EPA) from wet biomass of Nannochloropsis salina. It was found that sulfuric acid-based treatment increased EPA yield from 11.8 to 58.1 mg/g cell in a way that was nearly proportional to its concentration. Nitric acid exhibited the same pattern at low concentrations, but unlike sulfuric acid its effectiveness unexpectedly dropped from 0.5% to 2.0%. The optimal and minimal conditions for hydrothermal acid pretreatment were determined using a statistical approach; its maximum EPA yield (predicted: 43.69 mg/g cell; experimental: 43.93 mg/g cell) was established at a condition of 1.27% of sulfuric acid, 113.34 °C of temperature, and 36.71 min of reaction time. Our work demonstrated that the acid-catalyzed cell disruption, accompanied by heat, can be one potentially promising option for ω-3 fatty acids extraction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Alternative Sources of n-3 Long-Chain Polyunsaturated Fatty Acids in Marine Microalgae

    PubMed Central

    Martins, Dulce Alves; Custódio, Luísa; Barreira, Luísa; Pereira, Hugo; Ben-Hamadou, Radhouan; Varela, João; Abu-Salah, Khalid M.

    2013-01-01

    The main source of n-3 long-chain polyunsaturated fatty acids (LC-PUFA) in human nutrition is currently seafood, especially oily fish. Nonetheless, due to cultural or individual preferences, convenience, geographic location, or awareness of risks associated to fatty fish consumption, the intake of fatty fish is far from supplying the recommended dietary levels. The end result observed in most western countries is not only a low supply of n-3 LC-PUFA, but also an unbalance towards the intake of n-6 fatty acids, resulting mostly from the consumption of vegetable oils. Awareness of the benefits of LC-PUFA in human health has led to the use of fish oils as food supplements. However, there is a need to explore alternatives sources of LC-PUFA, especially those of microbial origin. Microalgae species with potential to accumulate lipids in high amounts and to present elevated levels of n-3 LC-PUFA are known in marine phytoplankton. This review focuses on sources of n-3 LC-PUFA, namely eicosapentaenoic and docosahexaenoic acids, in marine microalgae, as alternatives to fish oils. Based on current literature, examples of marketed products and potentially new species for commercial exploitation are presented. PMID:23807546

  12. Vibrational structure of the polyunsaturated fatty acids eicosapentaenoic acid and arachidonic acid studied by infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Kiefer, Johannes; Noack, Kristina; Bartelmess, Juergen; Walter, Christian; Dörnenburg, Heike; Leipertz, Alfred

    2010-02-01

    The spectroscopic discrimination of the two structurally similar polyunsaturated C 20 fatty acids (PUFAs) 5,8,11,14,17-eicosapentaenoic acid and 5,8,11,14-eicosatetraenoic acid (arachidonic acid) is shown. For this purpose their vibrational structures are studied by means of attenuated total reflection (ATR) Fourier-transform infrared (FT-IR) spectroscopy. The fingerprint regions of the recorded spectra are found to be almost identical, while the C-H stretching mode regions around 3000 cm -1 show such significant differences as results of electronic and molecular structure alterations based on the different degree of saturation that both fatty acids can be clearly distinguished from each other.

  13. A High-Fat, High-Oleic Diet, But Not a High-Fat, Saturated Diet, Reduces Hepatic α-Linolenic Acid and Eicosapentaenoic Acid Content in Mice.

    PubMed

    Picklo, Matthew J; Murphy, Eric J

    2016-05-01

    Considerable research has focused upon the role of linoleic acid (LNA; 18:2n-6) as a competitive inhibitor of α-linolenic (ALA; 18:3n-3) metabolism; however, little data exist as to the impact of saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA) on ALA metabolism. We tested the hypothesis that a high SFA diet, compared to a high MUFA (oleic acid 18:1n-9) diet, reduces ALA conversion to long chain n-3 fatty acids. Mice were fed for 12 weeks on three diets: (1) a control, 16 % fat energy diet consisting of similar levels of SFA and MUFA (2) a 50 % fat energy high MUFA energy diet (35 % MUFA and 7 % SFA) or (3) a 50 % fat energy, high SFA energy diet (34 % SFA, 8 % MUFA). ALA and LNA content remained constant. Analysis of hepatic lipids demonstrated a selective reduction (40 %) in ALA but not LNA and a 35 % reduction in eicosapentaenoic acid (EPA; 20:5n-3) in the high MUFA mice compared to the other groups. Lower content of ALA was reflected in the neutral lipid fraction, while smaller levels of phospholipid esterified EPA and docosapentaenoic acid (DPA; 22:5n-3) were evident. Docosahexaenoic acid (DHA; 22:6n-3) content was elevated by the high SFA diet. Expression of Fads1 (Δ5 desaturase) and Fads2 (Δ6 desaturase) was elevated by the high MUFA and reduced by the high SFA diet. These data indicate that a high MUFA diet, but not a high SFA diet, reduces ALA metabolism and point to selective hepatic disposition of ALA versus LNA.

  14. Dietary Conjugated Linoleic Acid-Enriched Cheeses Influence the Levels of Circulating n-3 Highly Unsaturated Fatty Acids in Humans.

    PubMed

    Murru, Elisabetta; Carta, Gianfranca; Cordeddu, Lina; Melis, Maria Paola; Desogus, Erika; Ansar, Hastimansooreh; Chilliard, Yves; Ferlay, Anne; Stanton, Catherine; Coakley, Mairéad; Ross, R Paul; Piredda, Giovanni; Addis, Margherita; Mele, Maria Cristina; Cannelli, Giorgio; Banni, Sebastiano; Manca, Claudia

    2018-06-11

    n-3 highly unsaturated fatty acids (n-3 HUFA) directly and indirectly regulate lipid metabolism, energy balance and the inflammatory response. We investigated changes to the n-3 HUFA score of healthy adults, induced by different types and amounts of conjugated linoleic acid (CLA)-enriched (ENCH) cheeses consumed for different periods of time, compared to dietary fish oil (FO) pills (500 mg, each containing 100 mg of eicosapentaenoic and docosahexaenoic acids—EPA+DHA) or α-linolenic acid (ALA)-rich linseed oil (4 g, containing 2 g of ALA). A significant increase in the n-3 HUFA score was observed, in a dose-dependent manner, after administration of the FO supplement. In terms of the impact on the n-3 HUFA score, the intake of ENCH cheese (90 g/day) for two or four weeks was equivalent to the administration of one or two FO pills, respectively. Conversely, the linseed oil intake did not significantly impact the n-3 HUFA score. Feeding ENCH cheeses from different sources (bovine, ovine and caprine) for two months improved the n-3 HUFA score by increasing plasma DHA, and the effect was proportional to the CLA content in the cheese. We suggest that the improved n-3 HUFA score resulting from ENCH cheese intake may be attributed to increased peroxisome proliferator-activated receptor alpha (PPAR-α) activity. This study demonstrates that natural ENCH cheese is an alternative nutritional source of n-3 HUFA in humans.

  15. Dietary n-3 polyunsaturated fatty acids affect the development of renovascular hypertension in rats

    NASA Technical Reports Server (NTRS)

    Rousseau, D.; Helies-Toussaint, C.; Raederstorff, D.; Moreau, D.; Grynberg, A.

    2001-01-01

    The consequences of a dietary n-3 PUFA supply was investigated on the blood pressure (BP) increase elicited by left renal artery stenosis in rats distributed in 3 groups (n = 8) fed for 8 weeks a semi-purified diet either as control diet or enriched diets (docosahexaenoic acid, DHA, or eicosapentaenoic acid, EPA). The PUFA intake induced large alterations in heart and kidney phospholipid fatty acid profile, but did not influence body weight, cardiac hypertrophy, renal left atrophy and right hypertrophy. Within 4 weeks, BP raised from 120-180 +/- 2 mm Hg in the control group, but only to 165 +/- 3 mm Hg in the n-3 PUFA groups. After stabilization of BP in the 3 groups, the rats received a short administration of increasing dose of perindopril. The lower dose (0.5 mg/kg) moderately decreased BP only in the control group. With higher doses (1, 5 and 10 mg/kg) BP was normalized in the 3 groups, with a higher amplitude of the BP lowering effect in the control group. A moderate n-3 PUFA intake can contribute to prevent the development of peripheral hypertension in rats by a mechanism that may involve angiotensin converting enzyme.

  16. Dietary n-3 polyunsaturated fatty acids affect the development of renovascular hypertension in rats.

    PubMed

    Rousseau, D; Héliès-Toussaint, C; Raederstorff, D; Moreau, D; Grynberg, A

    2001-09-01

    The consequences of a dietary n-3 PUFA supply was investigated on the blood pressure (BP) increase elicited by left renal artery stenosis in rats distributed in 3 groups (n = 8) fed for 8 weeks a semi-purified diet either as control diet or enriched diets (docosahexaenoic acid, DHA, or eicosapentaenoic acid, EPA). The PUFA intake induced large alterations in heart and kidney phospholipid fatty acid profile, but did not influence body weight, cardiac hypertrophy, renal left atrophy and right hypertrophy. Within 4 weeks, BP raised from 120-180 +/- 2 mm Hg in the control group, but only to 165 +/- 3 mm Hg in the n-3 PUFA groups. After stabilization of BP in the 3 groups, the rats received a short administration of increasing dose of perindopril. The lower dose (0.5 mg/kg) moderately decreased BP only in the control group. With higher doses (1, 5 and 10 mg/kg) BP was normalized in the 3 groups, with a higher amplitude of the BP lowering effect in the control group. A moderate n-3 PUFA intake can contribute to prevent the development of peripheral hypertension in rats by a mechanism that may involve angiotensin converting enzyme.

  17. Protein kinase A is activated by the n–3 polyunsaturated fatty acid eicosapentaenoic acid in rat ventricular muscle

    PubMed Central

    Szentandrássy, Norbert; Pérez-Bido, M R; Alonzo, E; Negretti, N; O'Neill, Stephen C

    2007-01-01

    During cardiac ischaemia antiarrhythmic n–3 polyunsaturated fatty acids (PUFAs) are released following activation of phospholipase A2, if they are in the diet prior to ischaemia. Here we show a positive lusitropic effect of one such PUFA, eicosapentaenoic acid (EPA) in the antiarrhythmic concentration range in Langendorff hearts and isolated rat ventricular myocytes due to activation of protein kinase A (PKA). Several different approaches indicated activation of PKA by EPA (5–10 μmol l−1): the time constant of decay of the systolic Ca2+ transient decreased to 65.3 ± 5.0% of control, Western blot analysis showed a fourfold increase in phospholamban phosphorylation, and PKA activity increased by 21.0 ± 7.3%. In addition myofilament Ca2+ sensitivity was reduced in EPA; this too may have resulted from PKA activation. We also found that EPA inhibited L-type Ca2+ current by 38.7 ± 3.9% but this increased to 63.3 ± 3.4% in 10 μmol l−1 H89 (to inhibit PKA), providing further evidence of activation of PKA by EPA. PKA inhibition also prevented the lusitropic effect of EPA on the systolic Ca2+ transient and contraction. Our measurements show, however, PKA activation in EPA cannot be explained by increased cAMP levels and alternative mechanisms for PKA activation are discussed. The combined lusitropic effect and inhibition of contraction by EPA may, respectively, combat diastolic dysfunction in ischaemic cardiac muscle and promote cell survival by preserving ATP. This is a further level of protection for the heart in addition to the well-documented antiarrhythmic qualities of these fatty acids. PMID:17510185

  18. Use of radiolabeled substrates to determine the desaturase and elongase activities involved in eicosapentaenoic acid and docosahexaenoic acid biosynthesis in the marine microalga Pavlova lutheri.

    PubMed

    Guihéneuf, Freddy; Ulmann, Lionel; Mimouni, Virginie; Tremblin, Gérard

    2013-06-01

    The marine flagellate Pavlova lutheri is a microalga known to be rich in long-chain polyunsaturated fatty acids (LC-PUFAs) and able to produce large amounts of n-3 fatty acids, such as eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3). As no previous study had attempted to measure the metabolic step of fatty acid synthesis in this alga, we used radiolabeled precursors to explore the various desaturation and elongation steps involved in LC-PUFA biosynthesis pathways. The incorporation of (14)C-labeled palmitic ([1-(14)C] 16:0) and dihomo-γ-linolenic ([1-(14)C] 20:3n-6) acids as ammonium salts within the cells was monitored during incubation periods lasting 3, 10 or 24h. Total lipids and each of the fatty acids were also monitored during these incubation periods. A decrease in the availability and/or accessibility of the radiolabeled substrates was observed over the incubation time. This decrease with incubation time observed using [1-(14)C] 16:0 and [1-(14)C] 20:3n-6 as substrates was used to monitor the conversion of (14)C-labeled arachidonic acid ([1-(14)C] 20:4n-6) into longer and more unsaturated fatty acids, such as 20:5n-3 and 22:6n-3, over shorter incubation times (1 and 3h). A metabolic relationship between the n-6 and n-3 fatty acid series was demonstrated in P. lutheri by measuring the Δ17-desaturation activity involved in the conversion of eicosatetraenoic acid to 20:5n-3. Our findings suggest that the biosynthesis pathway leading to n-3 LC-PUFA involves fatty acids of the n-6 family, which act as precursors in the biosynthesis of 20:5n-3 and 22:6n-3. This preliminary work provides a method for studying microalgal LC-PUFA biosynthesis pathways and desaturase and elongase activities in vivo using externally-radiolabeled fatty acid precursors as substrates. The use of the [1-(14)C] 20:4n-6 substrate also highlighted the relationships between the n-6 and the n-3 fatty acid series (e.g. Δ17-desaturation), and the final elongation

  19. Increased Erythrocyte Eicosapentaenoic Acid and Docosahexaenoic Acid Are Associated With Improved Attention and Behavior in Children With ADHD in a Randomized Controlled Three-Way Crossover Trial.

    PubMed

    Milte, Catherine M; Parletta, Natalie; Buckley, Jonathan D; Coates, Alison M; Young, Ross M; Howe, Peter R C

    2015-11-01

    To investigate effects of omega-3 polyunsaturated fatty acids (n-3 PUFA) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on attention, literacy, and behavior in children with ADHD. Ninety children were randomized to consume supplements high in EPA, DHA, or linoleic acid (control) for 4 months each in a crossover design. Erythrocyte fatty acids, attention, cognition, literacy, and Conners' Parent Rating Scales (CPRS) were measured at 0, 4, 8, 12 months. Fifty-three children completed the treatment. Outcome measures showed no significant differences between the three treatments. However, in children with blood samples (n = 76-46), increased erythrocyte EPA + DHA was associated with improved spelling (r = .365, p < .001) and attention (r = -.540, p < .001) and reduced oppositional behavior (r = -.301, p < .003), hyperactivity (r = -.310, p < .001), cognitive problems (r = -.326, p < .001), Diagnostic and Statistical Manual of Mental Disorders (4th ed.; DSM-IV) hyperactivity (r = -.270, p = .002) and DSM-IV inattention (r = -.343, p < .001). Increasing erythrocyte DHA and EPA via dietary supplementation may improve behavior, attention, and literacy in children with ADHD. © The Author(s) 2013.

  20. Red Blood Cell Docosapentaenoic Acid (DPA n-3) is Inversely Associated with Triglycerides and C-reactive Protein (CRP) in Healthy Adults and Dose-Dependently Increases Following n-3 Fatty Acid Supplementation

    PubMed Central

    Skulas-Ray, Ann C.; Flock, Michael R.; Richter, Chesney K.; Harris, William S.; West, Sheila G.; Kris-Etherton, Penny M.

    2015-01-01

    The role of the long-chain omega-3 (n-3) fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in lipid metabolism and inflammation has been extensively studied; however, little is known about the relationship between docosapentaenoic acid (DPA, 22:5 n-3) and inflammation and triglycerides (TG). We evaluated whether n-3 DPA content of red blood cells (RBC) was associated with markers of inflammation (interleukin-6 (IL-6), tumor necrosis factor α (TNF-α), and C-reactive protein (CRP) and fasting TG prior to n-3 supplementation in two studies (Study 1: n = 115, aged 20–44 years, body mass index (BMI) 20–30 kg/m2, TG = 34–176 mg/dL; Study 2: n = 28, aged 22–65 years, BMI 24–37 kg/m2, TG = 141–339 mg/dL). We also characterized the dose-response effects of n-3 fatty acid supplementation on RBC n-3 DPA after five months of supplementation with fish oil (Study 1: 0, 300, 600, 900, and 1800 mg/day EPA + DHA) and eight weeks of prescription n-3 ethyl esters (Study 2: 0, 850, and 3400 mg/day EPA + DHA). In Study 1, RBC n-3 DPA was inversely correlated with CRP (R2 = 36%, p < 0.001) and with fasting TG (r = −0.30, p = 0.001). The latter finding was replicated in Study 2 (r = −0.33, p = 0.04). In both studies, n-3 supplementation significantly increased RBC n-3 DPA dose-dependently. Relative increases were greater for Study 1, with increases of 29%–61% vs. 14%–26% for Study 2. The associations between RBC n-3 DPA, CRP, and fasting TG may have important implications for the prevention of atherosclerosis and chronic inflammatory diseases and warrant further study. PMID:26247967

  1. Associations of dietary intake and plasma concentrations of eicosapentaenoic and docosahexaenoic acid with prenatal depressive symptoms in Japan.

    PubMed

    Shiraishi, Mie; Matsuzaki, Masayo; Yatsuki, Yuko; Murayama, Ryoko; Severinsson, Elisabeth; Haruna, Megumi

    2015-06-01

    The association between depression and omega-3 polyunsaturated fatty acids, including eicosapentaenoic and docosahexaenoic acid, continues to gain focus. In this study, we examined whether dietary intakes and plasma concentrations of eicosapentaenoic and docosahexaenoic acid were associated with depressive symptoms during pregnancy. Healthy Japanese women with singleton pregnancies were recruited at a university hospital in Tokyo between 2010 and 2012. The depressive-symptom group included participants with Edinburgh Postnatal Depression Scale scores greater than eight. Of the 329 participants, 19 (5.8%) had depressive symptoms. Lower plasma docosahexaenoic acid concentration was significantly associated with prenatal depressive symptoms. Women with depressive symptoms had a higher rate of pregnancy-associated nausea than those with non-depressive symptoms (52.6% vs 28.7%, respectively). Although we adjusted for the presence of pregnancy-associated nausea, dietary fatty acid intake was not associated with depressive symptoms in the multiple logistic regression analyses. Further large studies would be required to examine any preventive effect of dietary fatty acid intake on depressive symptoms among pregnant women. © 2014 Wiley Publishing Asia Pty Ltd.

  2. Low unesterified:esterified eicosapentaenoic acid (EPA) plasma concentration ratio is associated with bipolar disorder episodes, and omega-3 plasma concentrations are altered by treatment

    PubMed Central

    Saunders, Erika FH; Reider, Aubrey; Singh, Gagan; Gelenberg, Alan J; Rapoport, Stanley I

    2015-01-01

    Objectives Omega (n)-3 and n-6 polyunsaturated fatty acids (PUFA) are molecular modulators of neurotransmission and inflammation. We hypothesized that plasma concentrations of n-3 PUFA would be lower and of n-6 PUFA higher in subjects with bipolar disorder (BD) compared to healthy controls (HC), and would correlate with symptom severity in subjects with BD, and that effective treatment would correlate with increased n-3 but lower n-6 PUFA levels. Additionally, we explored clinical correlations and group differences in plasma levels of saturated and monounsaturated fatty acids. Methods This observational, parallel group study compared biomarkers between HC (n = 31), and symptomatic subjects with BD (n = 27) when ill and after symptomatic recovery (follow-up). Plasma concentrations of five PUFA [linoleic acid (LA), arachidonic acid (AA), alpha-linolenic acid (ALA), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA)], of two saturated fatty acids (palmitic acid and stearic acid) and of two monounsaturated fatty acids (palmitoleic acid, oleic acid) were measured in esterified (E) and unesterified (UE) forms. Calculated ratios included UE:E for the five PUFA, ratios of n-3 PUFA (DHA:ALA, EPA:ALA, EPA:DHA), and the ratio of n-6:n-3 AA:EPA. Comparisons of plasma fatty acid levels and ratios between BD and HC groups were made with Student t-tests, between the BD group at baseline and follow-up using paired t-tests. Comparison of categorical variables was performed using Chi-square tests. Pearson’s r was used for bivariate correlations with clinical variables, including depressive and manic symptoms, current panic attacks, and psychosis. Results UE EPA was lower in BD than HC, with a large effect size (Cohen’s d = 0.86, p < 0.002), however, it was not statistically significant after correction for multiple comparisons. No statistically significant difference was seen in any plasma PUFA concentration between BD and HC after Bonferroni correction for 40

  3. Eicosapentaenoic Acid Enhances Heat Stress-Impaired Intestinal Epithelial Barrier Function in Caco-2 Cells

    PubMed Central

    Xiao, Guizhen; Tang, Liqun; Yuan, Fangfang; Zhu, Wei; Zhang, Shaoheng; Liu, Zhifeng; Geng, Yan; Qiu, Xiaowen

    2013-01-01

    Objective Dysfunction of the intestinal epithelial tight junction (TJ) barrier is known to have an important etiologic role in the pathophysiology of heat stroke. N-3 polyunsaturated fatty acids (PUFAs), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), play a role in maintaining and protecting the TJ structure and function. This study is aimed at investigating whether n-3 PUFAs could alleviate heat stress-induced dysfunction of intestinal tight junction. Methods Human intestinal epithelial Caco-2 cells were pre-incubated with EPA, DHA or arachidonic acid (AA) and then exposed to heat stress. Transepithelial electrical resistance (TEER) and Horseradish Peroxidase (HRP) permeability were measured to analyze barrier integrity. Levels of TJ proteins, including occludin, ZO-1 and claudin-2, were analyzed by Western blot and localized by immunofluorescence microscopy. Messenger RNA levels were determined by quantitative real time polymerase chain reaction (Q-PCR). TJ morphology was observed by transmission electron microscopy. Results EPA effectively attenuated the decrease in TEER and impairment of intestinal permeability in HRP flux induced by heat exposure. EPA significantly elevated the expression of occludin and ZO-1, while DHA was less effective and AA was not at all effective. The distortion and redistribution of TJ proteins, and disruption of morphology were also effectively prevented by pretreatment with EPA. Conclusion This study indicates for the first time that EPA is more potent than DHA in protecting against heat-induced permeability dysfunction and epithelial barrier damage of tight junction. PMID:24066055

  4. Different Effects of Eicosapentaenoic and Docosahexaenoic Acids on Atherogenic High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease in Mice.

    PubMed

    Suzuki-Kemuriyama, Noriko; Matsuzaka, Takashi; Kuba, Motoko; Ohno, Hiroshi; Han, Song-Iee; Takeuchi, Yoshinori; Isaka, Masaaki; Kobayashi, Kazuto; Iwasaki, Hitoshi; Yatoh, Shigeru; Suzuki, Hiroaki; Miyajima, Katsuhiro; Nakae, Dai; Yahagi, Naoya; Nakagawa, Yoshimi; Sone, Hirohito; Yamada, Nobuhiro; Shimano, Hitoshi

    2016-01-01

    Non-alcoholic fatty liver disease (NAFLD), the hepatic manifestation of metabolic syndrome, can progress to steatohepatitis (NASH) and advanced liver damage, such as that from liver cirrhosis and cancer. Recent studies have shown the benefits of consuming n-3 polyunsaturated fatty acids (PUFAs) for the treatment of NAFLD. In the present study, we investigated and compared the effects of the major n-3 PUFAs-eicosapentaenoic acid (EPA, C20:5) and docosahexaenoic acid (DHA, C22:6)-in preventing atherogenic high-fat (AHF) diet-induced NAFLD. Mice were fed the AHF diet supplemented with or without EPA or DHA for four weeks. Both EPA and DHA reduced the pathological features of AHF diet-induced NASH pathologies such as hepatic lobular inflammation and elevated serum transaminase activity. Intriguingly, EPA had a greater hepatic triacylglycerol (TG)-reducing effect than DHA. In contrast, DHA had a greater suppressive effect than EPA on AHF diet-induced hepatic inflammation and ROS generation, but no difference in fibrosis. Both EPA and DHA could be effective for treatment of NAFLD and NASH. Meanwhile, the two major n-3 polyunsaturated fatty acids might differ in a relative contribution to pathological intermediate steps towards liver fibrosis.

  5. Intake of Fish and Omega-3 (n-3) Fatty Acids: Effect on Humans During Actual and Simulated Weightlessness

    NASA Technical Reports Server (NTRS)

    Smith, S. M.; Pierson, D. L.; Mehta, S. K.; Zwart, S. R.

    2011-01-01

    Space flight has many negative effects on human physiology, including bone and muscle loss. Bone and muscle are two systems that are positively affected by dietary intake of fish and n-3 fatty acids. The mechanism is likely to be related to inhibition by n-3 fatty acids of inflammatory cytokines (such as TNF) and thus inhibition of downstream NF-kB activation. We have documented this effect in a 3-dimensional cell culture model, where NF-kB activation in osteoclasts was inhibited by eicosapentaenoic acid, an n-3 fatty acid. We have also indentified that NF-kB activation in peripheral blood mononuclear cells of Space Shuttle crews. We found that after Shuttle flights of 2 wk, expression of the protein p65 (evidence of NF-kB activation) was increased at landing (P less than 0.001). When evaluating the effects of n-3 fatty acid intake on bone breakdown after 60 d of bed rest (a weightlessness analog). We found that after 60 d of bed rest, greater intake of n-3 fatty acids was associated with less N-telopeptide excretion (Pearson r = -0.62, P less than 0.05). We also evaluated the relationship of fish intake and bone loss in astronauts after 4 to 6 mo missions on the International Space Station. Higher consumption of fish during flight was associated with higher bone mineral density (Pearson r = 0.46, P less than 0.05). Together, these findings provide evidence of the cellular mechanism by which n-3 fatty acids can inhibit bone loss, and preliminary human evidence of the potential for n-3 fatty acids to counteract bone loss associated with space flight. This study was supported by the NASA Human Research Program.

  6. Intake of Fish and Omega-3 (N-3) Fatty Acid: Effect on Humans during Actual and Simulated Weightlessness

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Mehta, Satish K.; Pierson, Duane L.; Zwart, Sara R.

    2009-01-01

    Space flight has many negative effects on human physiology, including bone and muscle loss. These are some of the systems on which intakes of fish and n-3 fatty acids have positive effects. These effects are likely to occur through inhibition of inflammatory cytokines (such as TNFalpha) and thus inhibition of downstream NF-KB activation. We documented this effect in a 3D cell culture model, where NF-KB activation in osteoclasts was inhibited by eicosapentaenoic acid, an n-3 fatty acid. We have extended these studies and report here (a) NF-KB expression in peripheral blood mononuclear cells of Space Shuttle crews on 2-wk missions, (b) the effects of n-3 fatty acid intake after 60 d of bed rest (a weightlessness analog), and (c) the effects of fish intake in astronauts after 4 to 6 mo on the International Space Station. After Shuttle flights of 2 wk, NFKB p65 expression at landing was increased (P less than 0.001). After 60 d of bed rest, higher intake of n-3 fatty acids was associated with less N-telopeptide excretion (Pearson r = -0.62, P less than 0.05). Higher consumption of fish during flight was associated with higher bone mineral density (Pearson r = -0.46, P less than 0.05). Together with our earlier findings, these data provide mechanistic cellular and preliminary human evidence of the potential for n-3 fatty acids to counteract bone loss associated with spaceflight. This study was supported by the NASA Human Research Program.

  7. Engineering strategies for enhancing the production of eicosapentaenoic acid (EPA) from an isolated microalga Nannochloropsis oceanica CY2.

    PubMed

    Chen, Chun-Yen; Chen, Yu-Chun; Huang, Hsiao-Chen; Huang, Chieh-Chen; Lee, Wen-Lung; Chang, Jo-Shu

    2013-11-01

    Microalgae have emerged as promising resources for highly unsaturated fatty acids. In this study, an indigenous microalga identified as Nannochloropsis oceanica CY2 was grown photoautotrophically to produce eicosapentaenoic acid (EPA; 20:5, n-3). Specific engineering strategies were employed to stimulate EPA accumulation in the microalgal cells. The results show that BG-11 was the most effective medium to grow N. oceanica CY2, giving an EPA content and biomass concentration of 2.38% (per dry cell weight) and 1.53 g/l. The EPA content nearly doubled when using the optimal nitrogen source (NaNO3) at a concentration of 1.50 g/l. The illumination system also markedly affected the EPA content for the photoautotrophic microalga. When the microalgal culture was illuminated with a red LED, an impressively high EPA content of 5.5% was obtained. Finally, using semi-batch cultures operations with LED-blue illumination, the EPA content of N. oceanica CY2 was stably maintained at 5.0%. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Effects of MAT9001 containing eicosapentaenoic acid and docosapentaenoic acid, compared to eicosapentaenoic acid ethyl esters, on triglycerides, lipoprotein cholesterol, and related variables.

    PubMed

    Maki, Kevin C; Bobotas, George; Dicklin, Mary R; Huebner, Margie; Keane, William F

    Long-chain omega-3 fatty acid concentrate pharmaceuticals are used in the United States for treatment of severe hypertriglyceridemia (≥500 mg/dL) and are under investigation as adjuncts to statins for lowering cardiovascular risk in patients with high triglycerides (TGs; 200-499 mg/dL). To evaluate MAT9001, an investigational prescription-only omega-3 fatty acid agent containing predominantly eicosapentaenoic acid (EPA) and docosapentaenoic acid, in 42 men and women with fasting TG 200 to 400 mg/dL. In this open-label, crossover trial, subjects received MAT9001 and EPA ethyl esters (EPA-EE) in random order. They were housed in a clinical research unit for 2 14-day treatment periods, separated by a ≥35-day washout. Lipoprotein lipids, apolipoproteins (Apos) and proprotein convertase subtilisin kexin type 9 levels were measured before and at the end of each treatment period. MAT9001, compared with EPA-EE, resulted in significantly (P < .05) larger reductions from pretreatment levels for TG (-33.2% vs -10.5%), total cholesterol (-9.0% vs -6.2%), non-high-density lipoprotein cholesterol (-8.8% vs -4.6%), very low-density lipoprotein cholesterol (-32.5% vs -8.1%), Apo C3 (-25.5% vs -5.0%), and proprotein convertase subtilisin kexin type 9 (-12.3% vs +8.8%). MAT9001 also produced a significantly (P = .003) larger reduction in Apo A1 (-15.3% vs -10.2%), but responses for high-density lipoprotein cholesterol (-11.3% vs -11.1%), low-density lipoprotein cholesterol (-2.4% vs -4.3%), and Apo B (-3.8% vs -0.7%), respectively, were not significantly different relative to EPA-EE. MAT9001 produced significantly larger reductions than EPA-EE in several lipoprotein-related variables that would be expected to favorably alter cardiovascular disease risk in men and women with hypertriglyceridemia. Copyright © 2016 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  9. Potential benefits of eicosapentaenoic acid on atherosclerotic plaques.

    PubMed

    Nelson, J R; Wani, O; May, H T; Budoff, M

    2017-04-01

    Residual cardiovascular (CV) risk remains in some patients despite optimized statin therapy and may necessitate add-on therapy to reduce this risk. Eicosapentaenoic acid (EPA), an omega-3 polyunsaturated fatty acid, lowers plasma triglyceride levels without raising low-density lipoprotein cholesterol levels and has potential beneficial effects on atherosclerotic plaques. Animal studies have shown that EPA reduces levels of pro-inflammatory cytokines and chemokines. In clinical trials utilizing a wide spectrum of plaque imaging modalities, EPA has shown beneficial effects on plaque characteristics. Studies of patients with coronary artery disease receiving statin therapy suggest that EPA may decrease plaque vulnerability and prevent plaque progression. EPA also decreased pentraxin-3 and macrophage accumulation. A large, randomized, Japanese study reported that EPA plus a statin resulted in a 19% relative reduction in major coronary events at 5years versus a statin alone in patients with hypercholesterolemia (P=0.011). Icosapent ethyl, a high-purity prescription form of EPA ethyl ester, has been shown to reduce triglyceride levels and markers of atherosclerotic inflammation. Results of an ongoing CV outcomes study will further define the potential clinical benefits of icosapent ethyl in reducing CV risk in high-risk patients receiving statin therapy. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Mechanisms of n-3 fatty acid-mediated development and maintenance of learning memory performance.

    PubMed

    Su, Hui-Min

    2010-05-01

    Docosahexaenoic acid (DHA, 22:6n-3) is specifically enriched in the brain and mainly anchored in the neuronal membrane, where it is involved in the maintenance of normal neurological function. Most DHA accumulation in the brain takes place during brain development in the perinatal period. However, hippocampal DHA levels decrease with age and in the brain disorder Alzheimer's disease (AD), and this decrease is associated with reduced hippocampal-dependent spatial learning memory ability. A potential mechanism is proposed by which the n-3 fatty acids DHA and eicosapentaenoic acid (20:5n-3) aid the development and maintenance of spatial learning memory performance. The developing brain or hippocampal neurons can synthesize and take up DHA and incorporate it into membrane phospholipids, especially phosphatidylethanolamine, resulting in enhanced neurite outgrowth, synaptogenesis and neurogenesis. Exposure to n-3 fatty acids enhances synaptic plasticity by increasing long-term potentiation and synaptic protein expression to increase the dendritic spine density, number of c-Fos-positive neurons and neurogenesis in the hippocampus for learning memory processing. In aged rats, n-3 fatty acid supplementation reverses age-related changes and maintains learning memory performance. n-3 fatty acids have anti-oxidative stress, anti-inflammation, and anti-apoptosis effects, leading to neuron protection in the aged, damaged, and AD brain. Retinoid signaling may be involved in the effects of DHA on learning memory performance. Estrogen has similar effects to n-3 fatty acids on hippocampal function. It would be interesting to know if there is any interaction between DHA and estrogen so as to provide a better strategy for the development and maintenance of learning memory. Copyright 2010 Elsevier Inc. All rights reserved.

  11. A Study of the Differential Effects of Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) on Gene Expression Profiles of Stimulated Thp-1 Macrophages

    PubMed Central

    Allam-Ndoul, Bénédicte; Guénard, Frédéric; Barbier, Olivier; Vohl, Marie-Claude

    2017-01-01

    Background: An appropriate intake of omega-3 (n-3) fatty acids (FAs) such as eicosapentaenoic and docosahexaenoic acid (EPA/DHA) from marine sources is known to have anti-inflammatory effects. However, molecular mechanisms underlying their beneficial effects on health are not fully understood. The aim of the present study was to characterize gene expression profiles of THP-1 macrophages, incubated in either EPA or DHA and stimulated with lipopolysaccharide (LPS), a pro-inflammatory agent. Methods: THP-1 macrophages were incubated into 10, 50 and 75 µM of EPA or DHA for 24 h, and 100 nM of LPS was added to the culture media for 18 h. Total mRNA was extracted and gene expression examined by microarray analysis using Illumina Human HT-12 expression beadchips (Illumina). Results: Pathway analysis revealed that EPA and DHA regulate genes involved in cell cycle regulation, apoptosis, immune response and inflammation, oxidative stress and cancer pathways in a differential and dose-dependent manner. Conclusions: EPA and DHA appear to exert differential effects on gene expression in THP-1 macrophages. Specific effects of n-3 FAs on gene expression levels are also dose-dependent. PMID:28441337

  12. A Study of the Differential Effects of Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) on Gene Expression Profiles of Stimulated Thp-1 Macrophages.

    PubMed

    Allam-Ndoul, Bénédicte; Guénard, Frédéric; Barbier, Olivier; Vohl, Marie-Claude

    2017-04-25

    Background: An appropriate intake of omega-3 ( n -3) fatty acids (FAs) such as eicosapentaenoic and docosahexaenoic acid (EPA/DHA) from marine sources is known to have anti-inflammatory effects. However, molecular mechanisms underlying their beneficial effects on health are not fully understood. The aim of the present study was to characterize gene expression profiles of THP-1 macrophages, incubated in either EPA or DHA and stimulated with lipopolysaccharide (LPS), a pro-inflammatory agent. Methods: THP-1 macrophages were incubated into 10, 50 and 75 µM of EPA or DHA for 24 h, and 100 nM of LPS was added to the culture media for 18 h. Total mRNA was extracted and gene expression examined by microarray analysis using Illumina Human HT-12 expression beadchips (Illumina). Results: Pathway analysis revealed that EPA and DHA regulate genes involved in cell cycle regulation, apoptosis, immune response and inflammation, oxidative stress and cancer pathways in a differential and dose-dependent manner. Conclusions: EPA and DHA appear to exert differential effects on gene expression in THP-1 macrophages. Specific effects of n -3 FAs on gene expression levels are also dose-dependent.

  13. ω-3 fatty acids, γ-linolenic acid, and antioxidants: immunomodulators or inert dietary supplements?

    PubMed

    Schott, Christopher K; Huang, David T

    2012-11-23

    The omega-3 (n-3) fatty acids docosahexaenoic acid and eicosapentaenoic acid, along with γ-linolenic acid and antioxidants, may modulate systemic inflammatory response and improve oxygenation and outcomes in patients with acute lung injury. Objective: To determine if dietary supplementation of these substances to patients with acute lung injury would increase ventilator-free days to study day 28. Design: The OMEGA study, a randomized, double-blind, placebo-controlled, multicenter trial conducted from January 2, 2008, through February 21, 2009. All participants had complete follow-up. Setting: This trial occurred at 44 hospitals in the National Heart, Lung, and Blood Institute ARDS Clinical Trials Network. Subjects: Participants were 272 adults within 48 hours of developing acute lung injury requiring mechanical ventilation whose physicians intended to start enteral nutrition. Intervention: Twice-daily enteral supplementation of n-3 fatty acids, γ -linolenic acid, and antioxidants compared with an isocaloric control. Enteral nutrition, directed by a protocol, was delivered separately from the study supplement. Outcomes: Ventilator-free days to study day 28. The study was stopped early for futility after 143 and 129 patients were enrolled in the n-3 and control groups. Despite an 8-fold increase in plasma eicosapentaenoic acid levels, patients receiving the n-3 supplement had fewer ventilator-free days (14.0 vs 17.2; P=.02) (difference, −3.2 [95% CI, −5.8 to −0.7]) and intensive care unit-free days (14.0 vs 16.7; P=.04). Patients in the n-3 group also had fewer nonpulmonary organ failure-free days (12.3 vs 15.5; P=.02). Sixty-day hospital mortality was 26.6% in the n 3 group vs 16.3% in the control group (P=.054), and adjusted 60-day mortality was 25.1% and 17.6% in the n-3 and control groups, respectively (P=.11). Use of the n-3 supplement resulted in more days with diarrhea (29% vs 21%; P=.001). Twice-daily enteral supplementation of n-3 fatty acids,

  14. Effects of dietary saturated and n-6 polyunsaturated fatty acids on the incorporation of long-chain n-3 polyunsaturated fatty acids into blood lipids.

    PubMed

    Dias, C B; Wood, L G; Garg, M L

    2016-07-01

    Omega-3 polyunsaturated fatty acids (n-3PUFA) are better absorbed when they are combined with high-fat meals. However, the role of different dietary fats in modulating the incorporation of n-3PUFA in blood lipids in humans has not been previously explored. Omega-6 polyunsaturated fatty acids (n-6PUFA) are known to compete with n-3PUFA in the metabolic pathways and for the incorporation into phospholipids, whereas saturated fats (SFA) may enhance n-3PUFA incorporation into tissues. In a randomized parallel-design trial, we aimed to investigate the long-term effects of n-3PUFA supplementation in subjects consuming a diet enriched with either SFA or n-6PUFA on fatty acid incorporation into plasma and erythrocytes and on blood lipid profiles (total cholesterol, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C) and triglycerides). Dietary supplementation with n-3PUFA co-administered with SFA for 6 weeks resulted in a significant rise in total cholesterol (0.46±0.60 mmol/L; P=0.020) and LDL-C (0.48±0.48 mmol/L; P=0.011) in comparison with combination with n-6PUFA. The diet enriched with SFA also induced a greater increase in eicosapentaenoic acid (2.07±0.79 vs 1.15±0.53; P=0.004), a smaller decrease in docosapentaenoic acid (-0.12±0.23 vs -0.30±0.20; P=0.034) and a similar increase in docosahexaenoic acid (3.85±1.14 vs 3.10±1.07; P=0.128) percentage in plasma compared with the diet enriched with n-6PUFA. A similar effect was seen in erythrocytes. N-3PUFA supplementation resulted in similar changes in HDL-C and triglyceride levels. The results suggest that dietary substitution of SFA with n-6PUFA, despite maintaining low levels of circulating cholesterol, hinders n-3PUFA incorporation into plasma and tissue lipids.

  15. Association of total marine fatty acids, eicosapentaenoic and docosahexaenoic acids, with aortic stiffness in Koreans, whites, and Japanese Americans.

    PubMed

    Sekikawa, Akira; Shin, Chol; Masaki, Kamal H; Barinas-Mitchell, Emma J M; Hirooka, Nobutaka; Willcox, Bradley J; Choo, Jina; White, Jessica; Evans, Rhobert W; Fujiyoshi, Akira; Okamura, Tomonori; Miura, Katsuyuki; Muldoon, Matthew F; Ueshima, Hirotsugu; Kuller, Lewis H; Sutton-Tyrrell, Kim

    2013-11-01

    Few previous studies have reported the association of aortic stiffness with marine n-3 fatty acids (Fas) in the general population. The aim of this study was to determine the combined and independent associations of 2 major marine n-3 FAs, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), with aortic stiffness evaluated using carotid-femoral pulse wave velocity (cfPWV) in Korean, white, and Japanese American men. A population-based sample of 851 middle-aged men (299 Koreans, 266 whites, and 286 Japanese Americans) was examined for cfPWV during 2002-2006. Serum FAs, including EPA and DHA, were measured as a percentage of total FAs using gas chromatography. Multiple regression analysis was used to examine the association of EPA and DHA with cfPWV after adjusting for blood pressure and other confounders. Mean EPA and DHA levels were 1.9 (SD = 1.0) and 4.8 (SD = 1.4) for Koreans, 0.8 (SD = 0.6) and 2.4 (SD = 1.2) for whites, and 1.0 (SD = 1.0) and 3.2 (SD = 1.4) for Japanese Americans. Both EPA and DHA were significantly higher in Koreans than in the other 2 groups (P < 0.01). Multiple regression analyses in Koreans showed that cfPWV had a significant inverse association with total marine n-3 FAs and with EPA alone after adjusting for blood pressure and other potential confounders. In contrast, there was no significant association of cfPWV with DHA. Whites and Japanese Americans did not show any significant associations of cfPWV with total marine n-3 FAs, EPA, or DHA. High levels of EPA observed in Koreans have an inverse association with aortic stiffness. © American Journal of Hypertension, Ltd 2013. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Association of Total Marine Fatty Acids, Eicosapentaenoic and Docosahexaenoic Acids, With Aortic Stiffness in Koreans, Whites, and Japanese Americans

    PubMed Central

    2013-01-01

    BACKGROUND Few previous studies have reported the association of aortic stiffness with marine n-3 fatty acids (Fas) in the general population. The aim of this study was to determine the combined and independent associations of 2 major marine n-3 FAs, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), with aortic stiffness evaluated using carotid–femoral pulse wave velocity (cfPWV) in Korean, white, and Japanese American men. METHODS A population-based sample of 851 middle-aged men (299 Koreans, 266 whites, and 286 Japanese Americans) was examined for cfPWV during 2002–2006. Serum FAs, including EPA and DHA, were measured as a percentage of total FAs using gas chromatography. Multiple regression analysis was used to examine the association of EPA and DHA with cfPWV after adjusting for blood pressure and other confounders. RESULTS Mean EPA and DHA levels were 1.9 (SD = 1.0) and 4.8 (SD = 1.4) for Koreans, 0.8 (SD = 0.6) and 2.4 (SD = 1.2) for whites, and 1.0 (SD = 1.0) and 3.2 (SD = 1.4) for Japanese Americans. Both EPA and DHA were significantly higher in Koreans than in the other 2 groups (P < 0.01). Multiple regression analyses in Koreans showed that cfPWV had a significant inverse association with total marine n-3 FAs and with EPA alone after adjusting for blood pressure and other potential confounders. In contrast, there was no significant association of cfPWV with DHA. Whites and Japanese Americans did not show any significant associations of cfPWV with total marine n-3 FAs, EPA, or DHA. CONCLUSIONS High levels of EPA observed in Koreans have an inverse association with aortic stiffness. PMID:23820020

  17. Clinical implications of eicosapentaenoic acid/arachidonic acid ratio (EPA/AA) in adult patients with congenital heart disease.

    PubMed

    Kanoh, Miki; Inai, Kei; Shinohara, Tokuko; Tomimatsu, Hirofumi; Nakanishi, Toshio

    2017-12-01

    Recent studies showed that a low ratio between the levels of eicosapentaenoic acid and those of arachidonic acid (EPA/AA) is associated with higher incidence of coronary artery disease and poor prognosis of heart failure, arrhythmia, and cardiac sudden death. However, the clinical implications of EPA/AA in adult patients with congenital heart disease remain unclear. We aimed to assess the prognostic value of EPA/AA regarding cardiac events in adult patients with congenital heart disease. We measured the serum levels of eicosapentaenoic acid and arachidonic acid in 130 adult patients (median age, 31 years) stratified into two groups according to their EPA/AA (low, ≤0.22; high, >0.22). We prospectively analyzed the association between EPA/AA and incidence of cardiac events during a mean observation period of 15 months, expressed in terms of hazard ratio (HR) with 95% confidence interval (95% CI). In the subgroup of patients with biventricular circulation (2VC) (n = 76), we analyzed the same clinical endpoints. In our study population, EPA/AA was not associated with the incidence of arrhythmic events (HR, 1.52; 95% CI, 0.82-2.85; p = 0.19), but low EPA/AA was a predictor of heart failure hospitalization (HR, 2.83; 95% CI, 1.35-6.30; p < 0.01). Among patients with 2VC, an EPA/AA of ≤0.25 was associated with a significantly higher risk of arrhythmic events (HR, 2.55; 95% CI, 1.11-6.41; p = 0.03) and heart failure hospitalization (HR, 5.20; 95% CI, 1.78-18.1; p < 0.01). EPA/AA represents a useful predictor of cardiac events in adult patients with congenital heart disease.

  18. Low unesterified:esterified eicosapentaenoic acid (EPA) plasma concentration ratio is associated with bipolar disorder episodes, and omega-3 plasma concentrations are altered by treatment.

    PubMed

    Saunders, Erika Fh; Reider, Aubrey; Singh, Gagan; Gelenberg, Alan J; Rapoport, Stanley I

    2015-11-01

    Omega (n)-3 and n-6 polyunsaturated fatty acids (PUFAs) are molecular modulators of neurotransmission and inflammation. We hypothesized that plasma concentrations of n-3 PUFAs would be lower and those of n-6 PUFAs higher in subjects with bipolar disorder (BD) compared to healthy controls (HCs), and would correlate with symptom severity in subjects with BD, and that effective treatment would correlate with increased n-3 but lower n-6 PUFA levels. Additionally, we explored clinical correlations and group differences in plasma levels of saturated and monounsaturated fatty acids. This observational, parallel group study compared biomarkers between HCs (n = 31) and symptomatic subjects with BD (n = 27) when ill and after symptomatic recovery (follow-up). Plasma concentrations of five PUFAs [linoleic acid (LA), arachidonic acid (AA), alpha-linolenic acid (ALA), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA)], two saturated fatty acids (palmitic acid and stearic acid) and two monounsaturated fatty acids (palmitoleic acid and oleic acid) were measured in esterified (E) and unesterified (UE) forms. Calculated ratios included UE:E for the five PUFAs, ratios of n-3 PUFAs (DHA:ALA, EPA:ALA and EPA:DHA), and the ratio of n-6:n-3 AA:EPA. Comparisons of plasma fatty acid levels and ratios between BD and HC groups were made with Student t-tests, and between the BD group at baseline and follow-up using paired t-tests. Comparison of categorical variables was performed using chi-square tests. Pearson's r was used for bivariate correlations with clinical variables, including depressive and manic symptoms, current panic attacks, and psychosis. UE EPA was lower in subjects with BD than in HCs, with a large effect size (Cohen's d = 0.86, p < 0.002); however, it was not statistically significant after correction for multiple comparisons. No statistically significant difference was seen in any plasma PUFA concentration between the BD and HC groups after Bonferroni correction

  19. Synthesis of docosahexaenoic acid from eicosapentaenoic acid in retina neurons protects photoreceptors from oxidative stress.

    PubMed

    Simón, María Victoria; Agnolazza, Daniela L; German, Olga Lorena; Garelli, Andrés; Politi, Luis E; Agbaga, Martin-Paul; Anderson, Robert E; Rotstein, Nora P

    2016-03-01

    Oxidative stress is involved in activating photoreceptor death in several retinal degenerations. Docosahexaenoic acid (DHA), the major polyunsaturated fatty acid in the retina, protects cultured retina photoreceptors from apoptosis induced by oxidative stress and promotes photoreceptor differentiation. Here, we investigated whether eicosapentaenoic acid (EPA), a metabolic precursor to DHA, had similar effects and whether retinal neurons could metabolize EPA to DHA. Adding EPA to rat retina neuronal cultures increased opsin expression and protected photoreceptors from apoptosis induced by the oxidants paraquat and hydrogen peroxide (H2 O2 ). Palmitic, oleic, and arachidonic acids had no protective effect, showing the specificity for DHA. We found that EPA supplementation significantly increased DHA percentage in retinal neurons, but not EPA percentage. Photoreceptors and glial cells expressed Δ6 desaturase (FADS2), which introduces the last double bond in DHA biosynthetic pathway. Pre-treatment of neuronal cultures with CP-24879 hydrochloride, a Δ5/Δ6 desaturase inhibitor, prevented EPA-induced increase in DHA percentage and completely blocked EPA protection and its effect on photoreceptor differentiation. These results suggest that EPA promoted photoreceptor differentiation and rescued photoreceptors from oxidative stress-induced apoptosis through its elongation and desaturation to DHA. Our data show, for the first time, that isolated retinal neurons can synthesize DHA in culture. Docosahexaenoic acid (DHA), the major polyunsaturated fatty acid in retina photoreceptors, and its precursor, eicosapentaenoic acid (EPA) have multiple beneficial effects. Here, we show that retina neurons in vitro express the desaturase FADS2 and can synthesize DHA from EPA. Moreover, addition of EPA to these cultures protects photoreceptors from oxidative stress and promotes their differentiation through its metabolization to DHA. © 2015 International Society for Neurochemistry.

  20. Enteral omega-3 fatty acid, gamma-linolenic acid, and antioxidant supplementation in acute lung injury.

    PubMed

    Rice, Todd W; Wheeler, Arthur P; Thompson, B Taylor; deBoisblanc, Bennett P; Steingrub, Jay; Rock, Peter

    2011-10-12

    The omega-3 (n-3) fatty acids docosahexaenoic acid and eicosapentaenoic acid, along with γ-linolenic acid and antioxidants, may modulate systemic inflammatory response and improve oxygenation and outcomes in patients with acute lung injury. To determine if dietary supplementation of these substances to patients with acute lung injury would increase ventilator-free days to study day 28. The OMEGA study, a randomized, double-blind, placebo-controlled, multicenter trial conducted from January 2, 2008, through February 21, 2009. Participants were 272 adults within 48 hours of developing acute lung injury requiring mechanical ventilation whose physicians intended to start enteral nutrition at 44 hospitals in the National Heart, Lung, and Blood Institute ARDS Clinical Trials Network. All participants had complete follow-up. Twice-daily enteral supplementation of n-3 fatty acids, γ-linolenic acid, and antioxidants compared with an isocaloric control. Enteral nutrition, directed by a protocol, was delivered separately from the study supplement. Ventilator-free days to study day 28. The study was stopped early for futility after 143 and 129 patients were enrolled in the n-3 and control groups. Despite an 8-fold increase in plasma eicosapentaenoic acid levels, patients receiving the n-3 supplement had fewer ventilator-free days (14.0 vs 17.2; P = .02) (difference, -3.2 [95% CI, -5.8 to -0.7]) and intensive care unit-free days (14.0 vs 16.7; P = .04). Patients in the n-3 group also had fewer nonpulmonary organ failure-free days (12.3 vs 15.5; P = .02). Sixty-day hospital mortality was 26.6% in the n-3 group vs 16.3% in the control group (P = .054), and adjusted 60-day mortality was 25.1% and 17.6% in the n-3 and control groups, respectively (P = .11). Use of the n-3 supplement resulted in more days with diarrhea (29% vs 21%; P = .001). Twice-daily enteral supplementation of n-3 fatty acids, γ-linolenic acid, and antioxidants did not improve the primary end point of

  1. Formulation of dark chocolate as a carrier to deliver eicosapentaenoic and docosahexaenoic acids: Effects on product quality.

    PubMed

    Toker, Omer Said; Konar, Nevzat; Palabiyik, Ibrahim; Rasouli Pirouzian, Haniyeh; Oba, Sirin; Polat, Derya Genc; Poyrazoglu, Ender Sinan; Sagdic, Osman

    2018-07-15

    In this study, dark chocolate enriched with EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid) was developed using various forms and origins. Quality characteristics such as physical, thermo-gravimetric, rheological, textural and sensory properties of chocolates were investigated. The highest EPA/DHA stability was determined in samples prepared by free-flowing powder and microencapsulated forms of omega-3 fatty acids (FA). The L ∗ and C ∗ values varied from 32.16-33.37 and 7.45-8.09, respectively for the all samples. Hardness values ranged between 6422 and 8367 N and the use of EPA/DHA in the triglyceride form caused softer chocolate whereas control sample was the hardest sample. Melting and rheological properties were not significantly affected by the studied EPA/DHA sources (P < 0.05). Microencapsulated EPA/DHA added chocolate was the most preferred source whereas sample with algae oil showed the lowest acceptability. According to the results, dark chocolate can be used for delivering omega-3 FA by considering their origin and physical form. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Sustainable source of omega-3 eicosapentaenoic acid from metabolically engineered Yarrowia lipolytica: from fundamental research to commercial production.

    PubMed

    Xie, Dongming; Jackson, Ethel N; Zhu, Quinn

    2015-02-01

    The omega-3 fatty acids, cis-5, 8, 11, 14, and 17-eicosapentaenoic acid (C20:5; EPA) and cis-4, 7, 10, 13, 16, and 19-docosahexaenoic acid (C22:6; DHA), have wide-ranging benefits in improving heart health, immune function, mental health, and infant cognitive development. Currently, the major source for EPA and DHA is from fish oil, and a minor source of DHA is from microalgae. With the increased demand for EPA and DHA, DuPont has developed a clean and sustainable source of the omega-3 fatty acid EPA through fermentation using metabolically engineered strains of Yarrowia lipolytica. In this mini-review, we will focus on DuPont's technology for EPA production. Specifically, EPA biosynthetic and supporting pathways have been introduced into the oleaginous yeast to synthesize and accumulate EPA under fermentation conditions. This Yarrowia platform can also produce tailored omega-3 (EPA, DHA) and/or omega-6 (ARA, GLA) fatty acid mixtures in the cellular lipid profiles. Fundamental research such as metabolic engineering for strain construction, high-throughput screening for strain selection, fermentation process development, and process scale-up were all needed to achieve the high levels of EPA titer, rate, and yield required for commercial application. Here, we summarize how we have combined the fundamental bioscience and the industrial engineering skills to achieve large-scale production of Yarrowia biomass containing high amounts of EPA, which led to two commercial products, New Harvest™ EPA oil and Verlasso® salmon.

  3. Minimal food effect for eicosapentaenoic acid and docosahexaenoic acid bioavailability from omega-3-acid ethyl esters with an Advanced Lipid TechnologiesTM (ALT®)-based formulation.

    PubMed

    Lopez-Toledano, Miguel A; Thorsteinsson, Thorsteinn; Daak, Ahmed A; Maki, Kevin C; Johns, Colleen; Rabinowicz, Adrian L; Sancilio, Frederick D

    The absorption of eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) omega-3-acid ethyl esters (EEs) is influenced by food. There is a need for a formulation of EE that is less impacted by food effect. SC401 is a novel Advanced Lipid Technologies-based formulation of EPA-EE and DHA-EE. In the presence of an aqueous medium, Advanced Lipid Technologies forms stable micelles in situ independent of bile salt secretion. This effect is hypothesized to improve EPA-EE and DHA-EE bioavailability while it helps mitigate the food effect associated with their consumption. The aim of the article was to assess the effect of food on the bioavailability of DHA and EPA after a single oral dose of 1530 mg omega-3 fatty acids EE (SC401) in 24 healthy subjects under fasted and low-fat (9% of total calories from fat) and high-fat (50% of total calories from fat) meal conditions. This was a randomized, open-label, single-dose, 3-period, 3-way crossover study. Blood samples for pharmacokinetic analyses were taken at predose and at 0.5, 1, 2, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 8, 10, 12 and 24 hours postdose. To assess the safety of the intervention, active monitoring of adverse events, physical examinations, vital signs, clinical laboratory assessments (chemistry, hematology, and urinalysis), and 12-lead electrocardiograms were conducted. SC401 showed high bioavailability of both EPA and DHA in fasted, low-fat meal, and high-fat meal conditions. No differences were found in SC401 DHA AUC 0-t (t = 24 hours) among the 3 conditions (91.69% high-fat/fasted, 97.12% low-fat/fasted, and 105.92% low-fat/high-fat; P > .05 in all cases). In contrast, SC401 EPA AUC 0-t was affected by food intake (179.06% high-fat/fasted, P < .0001; 150.05% low-fat/fasted, P < .0001) and the amount of fat taken with SC401 (83.80% low-fat/high-fat; P = .0009). SC401 was safe and well tolerated. A single dose of SC401 resulted in high levels of EPA and DHA total lipids in plasma

  4. Role of n-3 Polyunsaturated Fatty Acids in Ameliorating the Obesity-Induced Metabolic Syndrome in Animal Models and Humans

    PubMed Central

    Huang, Chao-Wei; Chien, Yi-Shan; Chen, Yu-Jen; Ajuwon, Kolapo M.; Mersmann, Harry M.; Ding, Shih-Torng

    2016-01-01

    The incidence of obesity and its comorbidities, such as insulin resistance and type II diabetes, are increasing dramatically, perhaps caused by the change in the fatty acid composition of common human diets. Adipose tissue plays a role as the major energy reservoir in the body. An excess of adipose mass accumulation caused by chronic positive energy balance results in obesity. The n-3 polyunsaturated fatty acids (n-3 PUFA), DHA (docosahexaenoic acid) and EPA (eicosapentaenoic acid) exert numerous beneficial effects to maintain physiological homeostasis. In the current review, the physiology of n-3 PUFA effects in the body is delineated from studies conducted in both human and animal experiments. Although mechanistic studies in human are limited, numerous studies conducted in animals and models in vitro provide potential molecular mechanisms of the effects of these fatty acids. Three aspects of n-3 PUFA in adipocyte regulation are discussed: (1) lipid metabolism, including adipocyte differentiation, lipolysis and lipogenesis; (2) energy expenditure, such as mitochondrial and peroxisomal fatty acid β-oxidation; and (3) inflammation, including adipokines and specialized pro-resolving lipid mediators. Additionally, the mechanisms by which n-3 PUFA regulate gene expression are highlighted. The beneficial effects of n-3 PUFA may help to reduce the incidence of obesity and its comorbidities. PMID:27735847

  5. Production of eicosapentaenoic acid by Nannochloropsis oculata: Effects of carbon dioxide and glycerol.

    PubMed

    Shene, Carolina; Chisti, Yusuf; Vergara, Daniela; Burgos-Díaz, César; Rubilar, Mónica; Bustamante, Mariela

    2016-12-10

    The marine microalga Nannochloropsis oculata is a potential source of eicosapentaenoic acid (EPA, C20:5n3) and carotenoids for use in functional foods and nutraceuticals. Mixotrophic culture of N. oculata using glycerol was examined as a possible way of increasing the biomass and metabolite productivity relative to a pure photoautotrophic culture in modified f/2 medium. The effect of CO 2 supply was also tested. EPA production in semi-continuous culture with and without glycerol and CO 2 was evaluated. The effects of glycerol supplementation and light/dark cycling on the production of the biomass and EPA are reported for cultures conducted at a constant pH controlled using CO 2 . Consumption of glycerol was small, but its effects were significant. Glycerol enhanced the lipid content of the biomass but reduced the chlorophyll a content. Mixotrophic cultivation favored the production of lipids with a high percentage of saturated fatty acids that are generally desired in oils for making biodiesel. EPA concentration (5.3±0.6 to 27.5±1.6mg EPA/L) in N. oculata cultures depended strongly on growth conditions. The highest EPA concentration occurred in non-aerated mixotrophic culture with intermittent CO 2 supply without pH control. This EPA concentration (=27.5±1.6mg/L) was comparable to that obtained in semi-continuous culture without glycerol and pH control, and aerated with CO 2 enriched air during the light period (=23.6±1.1mg/L). Copyright © 2016 Elsevier B.V. All rights reserved.

  6. N-3 fatty acids and membrane microdomains: from model membranes to lymphocyte function.

    PubMed

    Shaikh, Saame Raza; Teague, Heather

    2012-12-01

    This article summarizes the author's research on fish oil derived n-3 fatty acids, plasma membrane organization and B cell function. We first cover basic model membrane studies that investigated how docosahexaenoic acid (DHA) targeted the organization of sphingolipid-cholesterol enriched lipid microdomains. A key finding here was that DHA had a relatively poor affinity for cholesterol. This work led to a model that predicted DHA acyl chains in cells would manipulate lipid-protein microdomain organization and thereby function. We then review how the predictions of the model were tested with B cells in vitro followed by experiments using mice fed fish oil. These studies reveal a highly complex picture on how n-3 fatty acids target lipid-protein organization and B cell function. Key findings are as follows: (1) n-3 fatty acids target not just the plasma membrane but also endomembrane organization; (2) DHA, but not eicosapentaenoic acid (EPA), disrupts microdomain spatial distribution (i.e. clustering), (3) DHA alters protein lateral organization and (4) changes in membrane organization are accompanied by functional effects on both innate and adaptive B cell function. Altogether, the research over the past 10 years has led to an evolution of the original model on how DHA reorganizes membrane microdomains. The work raises the intriguing possibility of testing the model at the human level to target health and disease. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Eicosapentaenoic acid and docosahexaenoic acid reduce UVB- and TNF-alpha-induced IL-8 secretion in keratinocytes and UVB-induced IL-8 in fibroblasts.

    PubMed

    Storey, Amy; McArdle, Frank; Friedmann, Peter S; Jackson, Malcolm J; Rhodes, Lesley E

    2005-01-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFA) inhibit ultraviolet B (UVB)-induced inflammation and other inflammatory states, in vivo. We examined whether this may be mediated by modulation of interleukin (IL)-8, a chemokine pivotal to skin inflammation induced by UVB, in epidermal and dermal cells. We also explored the ability of n-3 PUFA to protect against tumor necrosis factor (TNF)-alpha induction of IL-8, and assessed relative potencies of the principal dietary n-3 PUFA, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Pre-supplementation, both HaCaT keratinocyte and CCD922SK fibroblast cell lines showed dose-responses for UVB-induced IL-8 release (p<0.001), assessed 48 h post-irradiation. Cells were supplemented with > or =90% purified EPA, DHA, oleic acid (OA) or vehicle control, for 4.5 d. EPA and DHA supplements were bioavailable to keratinocytes and fibroblasts. In keratinocytes, EPA and DHA were shown to reduce basal secretion of IL-8 by 66% and 63%, respectively (p<0.05), and UVB-induced levels by 66% and 65% at 48 h after 100 mJ per cm2, respectively, (p<0.01). A similar pattern occurred in fibroblasts, whereas OA had no influence on IL-8 release in either cell line. In addition, TNF-alpha-induced IL-8 secretion by keratinocytes was reduced by 54% and 42%, respectively, by EPA and DHA (p<0.001). Hence both n-3 PUFA inhibit production of UVB- and TNF-alpha-induced IL-8 in skin cells; this may be important in the photoprotective and other anti-inflammatory effects conferred by these agents.

  8. Splenic Immune Response Is Down-Regulated in C57BL/6J Mice Fed Eicosapentaenoic Acid and Docosahexaenoic Acid Enriched High Fat Diet.

    PubMed

    Soni, Nikul K; Ross, Alastair B; Scheers, Nathalie; Savolainen, Otto I; Nookaew, Intawat; Gabrielsson, Britt G; Sandberg, Ann-Sofie

    2017-01-10

    Dietary n -3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are associated with reduction of inflammation, although the mechanisms are poorly understood, especially how the spleen, as a secondary lymphoid organ, is involved. To investigate the effects of EPA and DHA on spleen gene expression, male C57BL/6J mice were fed high fat diets (HFD) differing in fatty acid composition, either based on corn oil (HFD-CO), or CO enriched with 2 g/100 g EPA and DHA (HFD-ED), for eight weeks. Spleen tissue was analyzed using transcriptomics and for fatty acids profiling. Biological processes (BPs) related to the immune response, including T-cell receptor signaling pathway, T-cell differentiation and co-stimulation, myeloid dendritic cell differentiation, antigen presentation and processing, and the toll like receptor pathway were downregulated by HFD-ED compared with control and HFD-CO. These findings were supported by the down-regulation of NF-κB in HFD-ED compared with HFD-CO fed mice. Lower phospholipid arachidonic acid levels in HFD-ED compared with HFD-CO, and control mice suggest attenuation of pathways via prostaglandins and leukotrienes. The HFD-ED also upregulated BPs related to erythropoiesis and hematopoiesis compared with control and HFD-CO fed mice. Our findings suggest that EPA and DHA down-regulate the splenic immune response induced by HFD-CO, supporting earlier work that the spleen is a target organ for the anti-inflammatory effects of these n -3 fatty acids.

  9. Splenic Immune Response Is Down-Regulated in C57BL/6J Mice Fed Eicosapentaenoic Acid and Docosahexaenoic Acid Enriched High Fat Diet

    PubMed Central

    Soni, Nikul K.; Ross, Alastair B.; Scheers, Nathalie; Savolainen, Otto I.; Nookaew, Intawat; Gabrielsson, Britt G.; Sandberg, Ann-Sofie

    2017-01-01

    Dietary n-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are associated with reduction of inflammation, although the mechanisms are poorly understood, especially how the spleen, as a secondary lymphoid organ, is involved. To investigate the effects of EPA and DHA on spleen gene expression, male C57BL/6J mice were fed high fat diets (HFD) differing in fatty acid composition, either based on corn oil (HFD-CO), or CO enriched with 2 g/100 g EPA and DHA (HFD-ED), for eight weeks. Spleen tissue was analyzed using transcriptomics and for fatty acids profiling. Biological processes (BPs) related to the immune response, including T-cell receptor signaling pathway, T-cell differentiation and co-stimulation, myeloid dendritic cell differentiation, antigen presentation and processing, and the toll like receptor pathway were downregulated by HFD-ED compared with control and HFD-CO. These findings were supported by the down-regulation of NF-κB in HFD-ED compared with HFD-CO fed mice. Lower phospholipid arachidonic acid levels in HFD-ED compared with HFD-CO, and control mice suggest attenuation of pathways via prostaglandins and leukotrienes. The HFD-ED also upregulated BPs related to erythropoiesis and hematopoiesis compared with control and HFD-CO fed mice. Our findings suggest that EPA and DHA down-regulate the splenic immune response induced by HFD-CO, supporting earlier work that the spleen is a target organ for the anti-inflammatory effects of these n-3 fatty acids. PMID:28075380

  10. Effects of α-lipoic acid and eicosapentaenoic acid in overweight and obese women during weight loss.

    PubMed

    Huerta, Ana E; Navas-Carretero, Santiago; Prieto-Hontoria, Pedro L; Martínez, J Alfredo; Moreno-Aliaga, María J

    2015-02-01

    To evaluate the potential body weight-lowering effects of dietary supplementation with eicosapentaenoic acid (EPA) and α-lipoic acid separately or combined in healthy overweight/obese women following a hypocaloric diet. This is a short-term double-blind placebo-controlled study with parallel design that lasted 10 weeks. Of the randomized participants, 97 women received the allocated treatment [Control, EPA (1.3 g/d), α-lipoic acid (0.3 g/d), and EPA+α-lipoic acid (1.3 g/d+0.3 g/d)], and 77 volunteers completed the study. All groups followed an energy-restricted diet of 30% less than total energy expenditure. Body weight, anthropometric measurements, body composition, resting energy expenditure, blood pressure, serum glucose, and insulin and lipid profile, as well as leptin and ghrelin levels, were assessed at baseline and after nutritional intervention. Body weight loss was significantly higher (P<0.05) in those groups supplemented with α-lipoic acid. EPA supplementation significantly attenuated (P<0.001) the decrease in leptin levels that occurs during weight loss. Body weight loss improved lipid and glucose metabolism parameters but without significant differences between groups. The intervention suggests that α-lipoic acid supplementation alone or in combination with EPA may help to promote body weight loss in healthy overweight/obese women following energy-restricted diets. © 2014 The Obesity Society.

  11. Combining eicosapentaenoic acid, decosahexaenoic acid and arachidonic acid, using a fully crossed design, affect gene expression and eicosanoid secretion in salmon head kidney cells in vitro.

    PubMed

    Holen, Elisabeth; He, Juyun; Espe, Marit; Chen, Liqiou; Araujo, Pedro

    2015-08-01

    Future feed for farmed fish are based on untraditional feed ingredients, which will change nutrient profiles compared to traditional feed based on marine ingredients. To understand the impact of oils from different sources on fish health, n-6 and n-3 polyunsaturated fatty acids (PUFAs) were added to salmon head kidney cells, in a fully crossed design, to monitor their individual and combined effects on gene expression. Exposing salmon head kidney cells to single fatty acids, arachidonic acid (AA) or decosahexaenoic acid (DHA), resulted in down-regulation of cell signaling pathway genes and specific fatty acid metabolism genes as well as reduced prostaglandin E2 (PGE2) secretion. Eicosapentaenoic acid (EPA) had no impact on gene transcription in this study, but reduced the cell secretion of PGE2. The combined effect of AA + EPA resulted in up-regulation of eicosanoid pathway genes and the pro-inflammatory cytokine, tumor necrosis factor alpha (TNF-α), Bclx (an inducer of apoptosis) and fatty acid translocase (CD36) as well as increased cell secretion of PGE2 into the media. Adding single fatty acids to salmon head kidney cells decreased inflammation markers in this model. The combination AA + EPA acted differently than the rest of the fatty acid combinations by increasing the inflammation markers in these cells. The concentration of fatty acid used in this experiment did not induce any lipid peroxidation responses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Interplay Between n-3 and n-6 Long-Chain Polyunsaturated Fatty Acids and the Endocannabinoid System in Brain Protection and Repair.

    PubMed

    Dyall, Simon C

    2017-11-01

    The brain is enriched in arachidonic acid (ARA) and docosahexaenoic acid (DHA), long-chain polyunsaturated fatty acids (LCPUFAs) of the n-6 and n-3 series, respectively. Both are essential for optimal brain development and function. Dietary enrichment with DHA and other long-chain n-3 PUFA, such as eicosapentaenoic acid (EPA), has shown beneficial effects on learning and memory, neuroinflammatory processes, and synaptic plasticity and neurogenesis. ARA, DHA and EPA are precursors to a diverse repertoire of bioactive lipid mediators, including endocannabinoids. The endocannabinoid system comprises cannabinoid receptors, their endogenous ligands, the endocannabinoids, and their biosynthetic and degradation enzymes. Anandamide (AEA) and 2-arachidonoylglycerol (2-AG) are the most widely studied endocannabinoids and are both derived from phospholipid-bound ARA. The endocannabinoid system also has well-established roles in neuroinflammation, synaptic plasticity and neurogenesis, suggesting an overlap in the neuroprotective effects observed with these different classes of lipids. Indeed, growing evidence suggests a complex interplay between n-3 and n-6 LCPUFA and the endocannabinoid system. For example, long-term DHA and EPA supplementation reduces AEA and 2-AG levels, with reciprocal increases in levels of the analogous endocannabinoid-like DHA and EPA-derived molecules. This review summarises current evidence of this interplay and discusses the therapeutic potential for brain protection and repair.

  13. Supplementation with high-dose docosahexaenoic acid increases the Omega-3 Index more than high-dose eicosapentaenoic acid.

    PubMed

    Allaire, Janie; Harris, William S; Vors, Cécile; Charest, Amélie; Marin, Johanne; Jackson, Kristina Harris; Tchernof, André; Couture, Patrick; Lamarche, Benoît

    2017-05-01

    Recent studies suggest that eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids have distinct effects on cardiometabolic risk factors. The Omega-3 Index (O3I), which is calculated as the proportion of EPA and DHA in red blood cell (RBC) membranes, has been inversely associated with the risk of coronary heart diseases and coronary mortality. The objective of this study was to compare the effects of EPA and DHA supplementation on the O3I in men and women with abdominal obesity and subclinical inflammation. In a double-blind controlled crossover study, 48 men and 106 women with abdominal obesity and subclinical inflammation were randomized to a sequence of three treatment phases: 1-2.7g/d of EPA, 2-2.7g/d of DHA, and 3-3g/d of corn oil (0g of EPA+DHA). All supplements were provided as 3×1g capsules for a total of 3g/d. The 10-week treatment phases were separated by nine-week washouts. RBC membrane fatty acid composition and O3I were assessed at baseline and the end of each phase. Differences in O3I between treatments were assessed using mixed models for repeated measures. The increase in the O3I after supplementation with DHA (+5.6% compared with control, P<0.0001) was significantly greater than after EPA (+3.3% compared with control, P<0.0001; DHA vs. EPA, P<0.0001). Compared to control, DHA supplementation decreased (-0.8%, P<0.0001) while EPA increased (+2.5%, P<0.0001) proportion of docosapentaenoic acid (DPA) in RBCs (DHA vs. EPA, P<0.0001). The baseline O3I was higher in women than in men (6.3% vs. 5.8%, P=0.011). The difference between DHA and EPA in increasing the O3I tended to be higher in men than in women (+2.6% vs. +2.2% respectively, P for the treatment by sex interaction=0.0537). The increase in the O3I is greater with high dose DHA supplementation than with high dose EPA, which is consistent with the greater potency of DHA to modulate cardiometabolic risk factors. The extent to which such differences between EPA and DHA in increasing the O3I relates

  14. A new pure ω-3 eicosapentaenoic acid ethyl ester (AMR101) for the management of hypertriglyceridemia: the MARINE trial.

    PubMed

    Jacobson, Terry A

    2012-06-01

    ω-3 fatty acids reduce triglyceride (TG) levels, but corresponding increases in low-density lipoprotein cholesterol (LDL-C) levels may compromise achievement of lipid goals in patients with elevated cardiovascular risk. AMR101 is an investigational agent containing ≥96% of pure icosapent ethyl (the ethyl ester of eicosapentaenoic acid). The Phase III Multi-Center, Placebo-Controlled, Randomized, Double-Blind, 12-Week Study with an Open-Label Extension (MARINE) investigated the efficacy and safety of AMR101 in 229 patients with very high TG levels (≥500 mg/dl). AMR101 4 g/day significantly reduced median placebo-adjusted TG levels from baseline by 33.1% (p < 0.0001), and AMR101 2 g/day reduced TG levels by 19.7% (p = 0.0051). Changes in LDL-C were minimal and nonsignificant. AMR101 may offer substantial TG lowering without increases in LDL-C levels.

  15. Circulating and dietary omega-3 and omega-6 polyunsaturated fatty acids and incidence of CVD in the Multi-Ethnic Study of Atherosclerosis.

    PubMed

    de Oliveira Otto, Marcia C; Wu, Jason H Y; Baylin, Ana; Vaidya, Dhananjay; Rich, Stephen S; Tsai, Michael Y; Jacobs, David R; Mozaffarian, Dariush

    2013-12-18

    Dietary guidelines support intake of polyunsaturated fatty acids (PUFAs) in fish and vegetable oils. However, some controversy remains about benefits of PUFAs, and most prior studies have relied on self-reported dietary assessment in relatively homogeneous populations. In a multiethnic cohort of 2837 US adults (whites, Hispanics, African Americans, Chinese Americans), plasma phospholipid PUFAs were measured at baseline (2000-2002) using gas chromatography and dietary PUFAs estimated using a food frequency questionnaire. Incident cardiovascular disease (CVD) events (including coronary heart disease and stroke; n=189) were prospectively identified through 2010 during 19 778 person-years of follow-up. In multivariable-adjusted Cox models, circulating n-3 eicosapentaenoic acid and docosahexaenoic acid were inversely associated with incident CVD, with extreme-quartile hazard ratios (95% CIs) of 0.49 for eicosapentaenoic acid (0.30 to 0.79; Ptrend=0.01) and 0.39 for docosahexaenoic acid (0.22 to 0.67; Ptrend<0.001). n-3 Docosapentaenoic acid (DPA) was inversely associated with CVD in whites and Chinese, but not in other race/ethnicities (P-interaction=0.01). No significant associations with CVD were observed for circulating n-3 alpha-linolenic acid or n-6 PUFA (linoleic acid, arachidonic acid). Associations with CVD of self-reported dietary PUFA were consistent with those of the PUFA biomarkers. All associations were similar across racial-ethnic groups, except those of docosapentaenoic acid. Both dietary and circulating eicosapentaenoic acid and docosahexaenoic acid, but not alpha-linolenic acid or n-6 PUFA, were inversely associated with CVD incidence. These findings suggest that increased consumption of n-3 PUFA from seafood may prevent CVD development in a multiethnic population.

  16. Translating plasma and whole blood fatty acid compositional data into the sum of eicosapentaenoic and docosahexaenoic acid in erythrocytes.

    PubMed

    Stark, Ken D; Aristizabal Henao, Juan J; Metherel, Adam H; Pilote, Louise

    2016-01-01

    Specific blood levels of eicosapentaenoic plus docosahexaenoic acid (EPA+DHA, wt% of total) in erythrocytes or "the omega-3 index" have been recommended for cardio-protection, but fatty acids are often measured in different blood fractions. The ability to estimate the % of EPA+DHA in erythrocytes from the fatty acid composition of other blood fractions would enable clinical assessments of omega-3 status when erythrocyte fractions are not available and increase the ability to compare blood levels of omega-3 fatty acids across clinical studies. The fatty acid composition of baseline plasma, erythrocytes and whole blood samples from participants (n=1104) in a prospective, multicenter study examining acute coronary syndrome were determined. The ability to predict the % of EPA+DHA in erythrocytes from other blood fractions were examined using bivariate and multiple linear regression modelling. Concordance analysis was also used to compare the actual erythrocytes EPA+DHA values to values estimated from other blood fractions. EPA+DHA in erythrocytes was significantly (p<0.001) correlated EPA+DHA in plasma (r(2)=0.54) and whole blood (r(2)=0.79). Using multiple linear regression to predict EPA+DHA in erythrocytes resulted in stronger coefficients of determination in both plasma (R(2)=0.70) and whole blood (R(2)=0.84). Concordance analyses indicated agreement between actual and estimated EPA+DHA in erythrocytes, although estimating from plasma fatty acids appears to require translation by categorization rather than by translation as continuous data. This study shows that the fatty acid composition of different blood fractions can be used to estimate erythrocyte EPA+DHA in a population with acute coronary syndrome. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Eicosapentaenoic acid and docosahexaenoic acid increase the degradation of amyloid-β by affecting insulin-degrading enzyme.

    PubMed

    Grimm, Marcus O W; Mett, Janine; Stahlmann, Christoph P; Haupenthal, Viola J; Blümel, Tamara; Stötzel, Hannah; Grimm, Heike S; Hartmann, Tobias

    2016-12-01

    Omega-3 polyunsaturated fatty acids (PUFAs) have been proposed to be highly beneficial in Alzheimer's disease (AD). AD pathology is closely linked to an overproduction and accumulation of amyloid-β (Aβ) peptides as extracellular senile plaques in the brain. Total Aβ levels are not only dependent on its production by proteolytic processing of the amyloid precursor protein (APP), but also on Aβ-clearance mechanisms, including Aβ-degrading enzymes. Here we show that the omega-3 PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) increase Aβ-degradation by affecting insulin-degrading enzyme (IDE), the major Aβ-degrading enzyme secreted into the extracellular space of neuronal and microglial cells. The identification of the molecular mechanisms revealed that EPA directly increases IDE enzyme activity and elevates gene expression of IDE. DHA also directly stimulates IDE enzyme activity and affects IDE sorting by increasing exosome release of IDE, resulting in enhanced Aβ-degradation in the extracellular milieu. Apart from the known positive effect of DHA in reducing Aβ production, EPA and DHA might ameliorate AD pathology by increasing Aβ turnover.

  18. Long-chain n-3 polyunsaturated fatty acids in plasma in British meat-eating, vegetarian, and vegan men.

    PubMed

    Rosell, Magdalena S; Lloyd-Wright, Zouë; Appleby, Paul N; Sanders, Thomas A B; Allen, Naomi E; Key, Timothy J

    2005-08-01

    Plasma concentrations of long-chain n-3 polyunsaturated fatty acids are lower in vegetarians and in vegans than in omnivores. No data are available on whether these concentrations differ between long- and short-term vegetarians and vegans. We compared plasma fatty acid composition in meat-eaters, vegetarians, and vegans and examined whether the proportions of eicosapentaenoic acid (20:5n-3; EPA), docosapentaenoic acid (22:5n-3; DPA), and docosahexaenoic acid (22:6n-3; DHA) were related to the subjects' duration of adherence to their diets or to the proportions of plasma linoleic acid (18:2n-6; LA) and alpha-linolenic acid (18:3n-3; ALA). The present cross-sectional study included 196 meat-eating, 231 vegetarian, and 232 vegan men in the United Kingdom. Information on anthropometry, diet, and smoking habits was obtained through a questionnaire. Total fatty acid composition in plasma was measured. The proportions of plasma EPA and DHA were lower in the vegetarians and in the vegans than in the meat-eaters, whereas only small differences were seen for DPA. Plasma EPA, DPA, and DHA proportions were not significantly associated with the duration of time since the subjects became vegetarian or vegan, which ranged from <1 y to >20 y. In the vegetarians and the vegans, plasma DHA was inversely correlated with plasma LA. The proportions of plasma long-chain n-3 fatty acids were not significantly affected by the duration of adherence to a vegetarian or vegan diet. This finding suggests that when animal foods are wholly excluded from the diet, the endogenous production of EPA and DHA results in low but stable plasma concentrations of these fatty acids.

  19. The Effect of Marine Derived n-3 Fatty Acids on Adipose Tissue Metabolism and Function

    PubMed Central

    Todorčević, Marijana; Hodson, Leanne

    2015-01-01

    Adipose tissue function is key determinant of metabolic health, with specific nutrients being suggested to play a role in tissue metabolism. One such group of nutrients are the n-3 fatty acids, specifically eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3). Results from studies where human, animal and cellular models have been utilised to investigate the effects of EPA and/or DHA on white adipose tissue/adipocytes suggest anti-obesity and anti-inflammatory effects. We review here evidence for these effects, specifically focusing on studies that provide some insight into metabolic pathways or processes. Of note, limited work has been undertaken investigating the effects of EPA and DHA on white adipose tissue in humans whilst more work has been undertaken using animal and cellular models. Taken together it would appear that EPA and DHA have a positive effect on lowering lipogenesis, increasing lipolysis and decreasing inflammation, all of which would be beneficial for adipose tissue biology. What remains to be elucidated is the duration and dose required to see a favourable effect of EPA and DHA in vivo in humans, across a range of adiposity. PMID:26729182

  20. Eicosapentaenoic acid membrane incorporation impairs ABCA1-dependent cholesterol efflux via a protein kinase A signaling pathway in primary human macrophages.

    PubMed

    Fournier, Natalie; Tardivel, Sylviane; Benoist, Jean-François; Vedie, Benoît; Rousseau-Ralliard, Delphine; Nowak, Maxime; Allaoui, Fatima; Paul, Jean-Louis

    2016-04-01

    A diet rich in n-3/n-6 polyunsaturated fatty acids (PUFAs) is cardioprotective. Dietary PUFAs affect the cellular phospholipids composition, which may influence the function of membrane proteins. We investigated the impact of the membrane incorporation of several PUFAs on ABCA1-mediated cholesterol efflux, a key antiatherogenic pathway. Arachidonic acid (AA) (C20:4 n-6) and docosahexaenoic acid (DHA) (C22:6 n-3) decreased or increased cholesterol efflux from J774 mouse macrophages, respectively, whereas they had no effect on efflux from human monocyte-derived macrophages (HMDM). Importantly, eicosapentaenoic acid (EPA) (C20:5 n-3) induced a dose-dependent reduction of ABCA1 functionality in both cellular models (-28% for 70μM of EPA in HMDM), without any alterations in ABCA1 expression. These results show that PUFA membrane incorporation does not have the same consequences on cholesterol efflux from mouse and human macrophages. The EPA-treated HMDM exhibited strong phospholipid composition changes, with high levels of both EPA and its elongation product docosapentaenoic acid (DPA) (C22:5 n-3), which is associated with a decreased level of AA. In HMDM, EPA reduced the ATPase activity of the membrane transporter. Moreover, the activation of adenylate cyclase by forskolin and the inhibition of cAMP phosphodiesterase by isobutylmethylxanthine restored ABCA1 cholesterol efflux in EPA-treated human macrophages. In conclusion, EPA membrane incorporation reduces ABCA1 functionality in mouse macrophages as well as in primary human macrophages and this effect seems to be PKA-dependent in human macrophages. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Effects of oral eicosapentaenoic acid versus docosahexaenoic acid on human peripheral blood mononuclear cell gene expression.

    PubMed

    Tsunoda, Fumiyoshi; Lamon-Fava, Stefania; Asztalos, Bela F; Iyer, Lakshmanan K; Richardson, Kris; Schaefer, Ernst J

    2015-08-01

    Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have beneficial effects on inflammation and cardiovascular disease (CVD). Our aim was to assess the effect of a six-week supplementation with either olive oil, EPA, or DHA on gene expression in peripheral blood mononuclear cells (PBMC). Subjects were sampled at baseline and six weeks after receiving either: olive oil 6.0 g/day (n = 16), EPA 1.8 g/day (n = 16), or DHA 1.8 g/day (n = 18). PBMC were subjected to gene expression analysis by microarray with key findings confirmed by quantitative real-time polymerase chain reaction (Q-PCR). Plasma phospholipid EPA increased 3 fold in the EPA group, and DHA increased 63% in the DHA group (both p < 0.01), while no effects were observed in the olive oil group. Microarray analysis indicated that EPA but not DHA or olive oil significantly affected the gene expression in the following pathways: 1) interferon signaling, 2) receptor recognition of bacteria and viruses, 3) G protein signaling, glycolysis and glycolytic shunting, 4) S-adenosyl-l-methionine biosynthesis, and 5) cAMP-mediated signaling including cAMP responsive element protein 1 (CREB1), as well as many other individual genes including hypoxia inducible factor 1, α subunit (HIF1A). The findings for CREB1 and HIF1A were confirmed by Q-PCR analysis. Our data indicate that EPA supplementation was associated with significant effects on gene expression involving the interferon pathway as well as down-regulation of CREB1 and HIF1A, which may relate to its beneficial effect on CVD risk reduction. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Effects of Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) on Fetal Pulmonary Circulation: An Experimental Study in Fetal Lambs

    PubMed Central

    Sharma, Dyuti; Aubry, Estelle; Ouk, Thavarak; Houeijeh, Ali; Houfflin-Debarge, Véronique; Besson, Rémi; Deruelle, Philippe; Storme, Laurent

    2017-01-01

    Background: Persistent pulmonary hypertension of the newborn (PPHN) causes significant morbidity and mortality in neonates. n-3 Poly-unsaturated fatty acids have vasodilatory properties in the perinatal lung. We studied the circulatory effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in fetal sheep and in fetal pulmonary arterial rings. Methods: At 128 days of gestation, catheters were placed surgically in fetal systemic and pulmonary circulation, and a Doppler probe around the left pulmonary artery (LPA). Pulmonary arterial pressure and LPA flow were measured while infusing EPA or DHA for 120 min to the fetus, to compute pulmonary vascular resistance (PVR). The dose effects of EPA or DHA were studied in vascular rings pre-constricted with serotonin. Rings treated with EPA were separated into three groups: E+ (intact endothelium), E− (endothelium stripped) and LNA E+ (pretreatment of E+ rings with l-nitro-arginine). Results: EPA, but not DHA, induced a significant and prolonged 25% drop in PVR (n = 8, p < 0.001). Incubation of vascular rings with EPA (100 µM) caused a maximum relaxation of 60% in the E+ (n = 6), whereas vessel tone did not change in the E− (n = 6, p < 0.001). The vascular effects of EPA were significantly decreased in LNA E+ (n = 6). Incubation with DHA resulted in only a mild relaxation at the highest concentration of DHA (300 µM) compared to E+. Conclusions: EPA induces a sustained pulmonary vasodilatation in fetal lambs. This effect is endothelium- and dose-dependent and involves nitric oxide (NO) production. We speculate that EPA supplementation may improve pulmonary circulation in clinical conditions with PPHN. PMID:28714905

  3. Effects of Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) on Fetal Pulmonary Circulation: An Experimental Study in Fetal Lambs.

    PubMed

    Sharma, Dyuti; Aubry, Estelle; Ouk, Thavarak; Houeijeh, Ali; Houfflin-Debarge, Véronique; Besson, Rémi; Deruelle, Philippe; Storme, Laurent

    2017-07-16

    Background: Persistent pulmonary hypertension of the newborn (PPHN) causes significant morbidity and mortality in neonates. n -3 Poly-unsaturated fatty acids have vasodilatory properties in the perinatal lung. We studied the circulatory effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in fetal sheep and in fetal pulmonary arterial rings. Methods: At 128 days of gestation, catheters were placed surgically in fetal systemic and pulmonary circulation, and a Doppler probe around the left pulmonary artery (LPA). Pulmonary arterial pressure and LPA flow were measured while infusing EPA or DHA for 120 min to the fetus, to compute pulmonary vascular resistance (PVR). The dose effects of EPA or DHA were studied in vascular rings pre-constricted with serotonin. Rings treated with EPA were separated into three groups: E+ (intact endothelium), E- (endothelium stripped) and LNA E+ (pretreatment of E+ rings with l-nitro-arginine). Results: EPA, but not DHA, induced a significant and prolonged 25% drop in PVR ( n = 8, p < 0.001). Incubation of vascular rings with EPA (100 µM) caused a maximum relaxation of 60% in the E+ ( n = 6), whereas vessel tone did not change in the E- ( n = 6, p < 0.001). The vascular effects of EPA were significantly decreased in LNA E+ ( n = 6). Incubation with DHA resulted in only a mild relaxation at the highest concentration of DHA (300 µM) compared to E+. Conclusions: EPA induces a sustained pulmonary vasodilatation in fetal lambs. This effect is endothelium- and dose-dependent and involves nitric oxide (NO) production. We speculate that EPA supplementation may improve pulmonary circulation in clinical conditions with PPHN.

  4. Do fatty acids help in overcoming reading difficulties? A double-blind, placebo-controlled study of the effects of eicosapentaenoic acid and carnosine supplementation on children with dyslexia.

    PubMed

    Kairaluoma, L; Närhi, V; Ahonen, T; Westerholm, J; Aro, M

    2009-01-01

    There are claims that dietary supplementation of unsaturated fatty acids could help children with dyslexia to overcome their reading problems. However, these claims have not yet been empirically tested. This study was designed to test whether dietary supplementation was superior to placebo in treating reading, spelling or other reading-related skills of children with dyslexia. The experimental group (eicosapentaenoic acid, EPA, n = 30) ate dietary supplements and the control group (placebo, n = 31) placebos during the 90-day treatment period. The supplements contained omega-3 fatty acid (ethyl-EPA, 500 mg/day) and carnosine (400 mg/day). The groups were matched for reading skills, grade, gender, attention problems, intelligence and amount of special education. The literacy-related skills of the two groups were assessed before and after the treatment period. No group differences were observed between EPA and placebo in measures of reading accuracy or speed, spelling, decoding fluency, arithmetical skills, reading-related language skills, attention or behavioural problems. The present findings do not support the hypothesis that omega-3 fatty acid (ethyl-EPA) or carnosine has a role in the treatment of reading and spelling problems in children with dyslexia.

  5. Metabolic profiling of murine plasma reveals eicosapentaenoic acid metabolites protecting against endothelial activation and atherosclerosis.

    PubMed

    Liu, Yajin; Fang, Xuan; Zhang, Xu; Huang, Jing; He, Jinlong; Peng, Liyuan; Ye, Chenji; Wang, Yingmei; Xue, Fengxia; Ai, Ding; Li, Dan; Zhu, Yi

    2018-04-01

    Atherosclerosis results from a maladaptive inflammatory response initiated by the intramural retention of LDL in susceptible areas of the arterial vasculature. The ω-3 polyunsaturated fatty acids (ω-3) have protective effects in atherosclerosis; however, their molecular mechanism is still largely unknown. The present study used a metabolomic approach to reveal the atheroprotective metabolites of ω-3 and investigate the underlying mechanisms. We evaluated the development of atherosclerosis in LDL receptor-deficient mice (LDLR -/- ) fed a Western-type diet (WTD) plus ω-3 and also LDLR -/- and fat-1 transgenic (LDLR -/- -fat-1 tg ) mice fed a WTD. The profiles of ω-3 in the plasma were screened by LC-MS/MS using unbiased systematic metabolomics analysis. We also studied the effect of metabolites of eicosapentaenoic acid (EPA) on endothelial activation in vitro. The ω-3 diet and fat-1 transgene decreased monocyte infiltration, inhibited the expression of pro-inflammatory genes and significantly attenuated atherosclerotic plaque formation and enhanced plaque stability in LDLR -/- mice. The content of 18-hydroxy-eicosapentaenoic acid (18-HEPE) and 17,18-epoxy-eicosatetraenoic acid (17,18-EEQ), from the cytochrome P450 pathway of EPA, was significantly higher in plasma from both ω-3-treated LDLR -/- and LDLR -/- -fat-1 tg mice as compared with WTD-fed LDLR -/- mice. In vitro in endothelial cells, 18-HEPE or 17,18-EEQ decreased inflammatory gene expression induced by TNFα via NF-κB signalling and thereby inhibited monocyte adhesion to endothelial cells. EPA protected against the development of atherosclerosis in atheroprone mice via the metabolites 18-HEPE and/or 17,18-EEQ, which reduced endothelial activation. These compounds may have therapeutic implications in atherosclerosis. This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10

  6. Dietary flavonoids increase plasma very long-chain (n-3) fatty acids in rats.

    PubMed

    Toufektsian, Marie-Claire; Salen, Patricia; Laporte, François; Tonelli, Chiara; de Lorgeril, Michel

    2011-01-01

    Flavonoids probably contribute to the health benefits associated with the consumption of fruit and vegetables. However, the mechanisms by which they exert their effects are not fully elucidated. PUFA of the (n-3) series also have health benefits. Epidemiological and clinical studies have suggested that wine flavonoids may interact with the metabolism of (n-3) PUFA and increase their blood and cell levels. The present studies in rats were designed to assess whether flavonoids actually increase plasma levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), the main very long-chain (n-3) PUFA. Rats were fed a corn-derived anthocyanin (ACN)-rich (ACN-rich) or ACN-free diet with constant intakes of plant and marine (n-3) PUFA for 8 wk (Expt. 1). Plasma fatty acids were measured by GC. The ACN-rich diet contained ~0.24 ± 0.01 mg of ACN/g pellets. There were no significant differences between groups in the main saturated, monounsaturated, and (n-6) fatty acids. In contrast, plasma EPA and DHA were greater in the ACN-rich diet group than in the ACN-free diet group (P < 0.05). We obtained similar results in 2 subsequent experiments in which rats were administered palm oil (80 μL/d) and consumed the ACN-rich or ACN-free diet (Expt. 2) or were supplemented with fish oil (60 mg/d, providing 35 mg DHA and 12 mg EPA) and consumed the ACN-rich or ACN-free diet (Expt. 3). In both experiments, plasma EPA and DHA were significantly greater in the ACN-rich diet group. These studies demonstrate that the consumption of flavonoids increases plasma very long-chain (n-3) PUFA levels. These data confirm previous clinical and epidemiological studies and provide new insights into the health benefits of flavonoids.

  7. Capacity of omega-3 fatty acids or eicosapentaenoic acid to counteract weightlessness-induced bone loss by inhibiting NF-kappaB activation: from cells to bed rest to astronauts.

    PubMed

    Zwart, Sara R; Pierson, Duane; Mehta, Satish; Gonda, Steve; Smith, Scott M

    2010-05-01

    NF-kappaB is a transcriptional activator of many genes, including some that lead to muscle atrophy and bone resorption-significant concerns for astronauts. NF-kappaB activation is inhibited by eicosapentaenoic acid (EPA), but the influence of this omega-3 fatty acid on the effects of weightlessness are unknown. We report here cellular, ground analogue, and spaceflight findings. We investigated the effects of EPA on differentiation of RAW264.7 monocyte/macrophage cells induced by receptor activator of NF-kappaB ligand (RANKL) and on activation of NF-kappaB by tumor necrosis factor alpha (TNF-alpha) or exposure to modeled weightlessness. EPA (50 microM for 24 hours) inhibited RANKL-induced differentiation and decreased activation of NF-kappaB induced by 0.2 microg/mL of TNF-alpha for 30 minutes or by modeled weightlessness for 24 hours (p < .05). In human studies, we evaluated whether NF-kappaB activation was altered after short-duration spaceflight and determined the relationship between intake of omega-3 fatty acids and markers of bone resorption during bed rest and the relationship between fish intake and bone mineral density after long-duration spaceflight. NF-kappaB was elevated in crew members after short-duration spaceflight, and higher consumption of fish (a rich source of omega-3 fatty acids) was associated with reduced loss of bone mineral density after flight (p < .05). Also supporting the cell study findings, a higher intake of omega-3 fatty acids was associated with less N-telopeptide excretion during bed rest (Pearson r = -0.62, p < .05). Together these data provide mechanistic cellular and preliminary human evidence of the potential for EPA to counteract bone loss associated with spaceflight. (c) 2010 American Society for Bone and Mineral Research.

  8. A Novel ω-3 Acid Ethyl Ester Formulation Incorporating Advanced Lipid TechnologiesTM (ALT®) Improves Docosahexaenoic Acid and Eicosapentaenoic Acid Bioavailability Compared with Lovaza®.

    PubMed

    Lopez-Toledano, Miguel A; Thorsteinsson, Thorsteinn; Daak, Ahmed; Maki, Kevin C; Johns, Colleen; Rabinowicz, Adrian L; Sancilio, Frederick D

    2017-03-01

    The US Food and Drug Administration has approved several highly purified ω-3 fatty acid prescription drugs for the treatment of severe hypertriglyceridemia. These differ in the amounts and forms of docosahexaenoic acid (DHA) and/or eicosapentaenoic acid (EPA). This study compared the bioavailability of SC401 (1530 mg EPA-ethyl esters [EEs] and DHA-EEs plus Advanced Lipid Technologies ⁎ [ALT † ], a proprietary lipid-delivery platform to improve absorption), with. Lovaza ‡ (3600 mg ω-3, primarily EPA-EEs and DHA-EEs) under low-fat feeding conditions. This was a Phase I, randomized, open-label, single-dose, 2-way crossover study in healthy participants housed from day -3 to day 2 in each treatment period. Blood samples for pharmacokinetic measurements were collected before and after dosing, and safety profile and tolerability were assessed. In unadjusted analyses, SC401 had 5% lower C max and approximately the same AUC 0-last of EPA + DHA total lipids compared with Lovaza. When adjusted for baseline, SC401 had ~6% higher C max and 18% higher AUC 0-last for EPA + DHA total lipids, and dose- and baseline-adjusted analyses found that SC401 had ~149% higher C max and 178% higher AUC 0-last than Lovaza for EPA + DHA total lipids. The T max was also substantially longer with Lovaza (~10 hours) than with SC401 (~6 hours). These results indicate that SC401, an ω-3 acid EE formulation containing ALT † achieved high bioavailability of EPA and DHA, at a lower dose (1530 mg) than Lovaza (3600 mg), under low-fat feeding conditions. Copyright © 2017 Elsevier HS Journals, Inc. All rights reserved.

  9. Comparison of inferred fractions of n-3 and n-6 polyunsaturated fatty acids in feral domestic cat diets with those in commercial feline extruded diets.

    PubMed

    Backus, Robert C; Thomas, David G; Fritsche, Kevin L

    2013-04-01

    To compare presumed fatty acid content in natural diets of feral domestic cats (inferred from body fat polyunsatrated fatty acids content) with polyunsaturated fatty acid content of commercial feline extruded diets. Subcutaneous and intra-abdominal adipose tissue samples (approx 1 g) from previously frozen cadavers of 7 adult feral domestic cats trapped in habitats remote from human activity and triplicate samples (200 g each) of 7 commercial extruded diets representing 68% of market share obtained from retail stores. Lipid, triacylglycerol, and phospholipid fractions in adipose tissue samples and ether extracts of diet samples were determined by gas chromatography of methyl esters. Triacylglycerol and phospholipid fractions in the adipose tissue were isolated by thin-layer chromatography. Diet samples were also analyzed for proximate contents. For the adipose tissue samples, with few exceptions, fatty acids fractions varied only moderately with lipid fraction and site from which tissue samples were obtained. Linoleic, α-linolenic, arachidonic, eicosapentaenoic, and docosahexaenoic acid fractions were 15.0% to 28.2%, 4.5% to 18.7%, 0.9% to 5.0%, < 0.1% to 0.2%, and 0.6% to 1.7%, respectively. As inferred from the adipose findings, dietary fractions of docosahexaenoic and α-linolenic acid were significantly greater than those in the commercial feline diets, but those for linoleic and eicosapentaenoic acids were not significantly different. The fatty acid content of commercial extruded feline diets differed from the inferred content of natural feral cat diets, in which dietary n-3 and possibly n-6 polyunsaturated fatty acids were more abundant. The impact of this difference on the health of pet cats is not known.

  10. Intake of long-chain ω-3 fatty acids from diet and supplements in relation to mortality.

    PubMed

    Bell, Griffith A; Kantor, Elizabeth D; Lampe, Johanna W; Kristal, Alan R; Heckbert, Susan R; White, Emily

    2014-03-15

    Evidence from experimental studies suggests that the long-chain ω-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid have beneficial effects that may lead to reduced mortality from chronic diseases, but epidemiologic evidence is mixed. Our objective was to evaluate whether intake of long-chain ω-3 fatty acids from diet and supplements is associated with cause-specific and total mortality. Study participants (n = 70,495) were members of a cohort study (the Vitamins and Lifestyle Study) who were residents of Washington State aged 50-76 years at the start of the study (2000-2002). Participants were followed for mortality through 2006 (n = 3,051 deaths). Higher combined intake of eicosapentaenoic acid and docosahexaenoic acid from diet and supplements was associated with a decreased risk of total mortality (hazard ratio (HR) = 0.82, 95% confidence interval (CI): 0.73, 0.93) and mortality from cancer (HR = 0.77, 95% CI: 0.64, 0.92) but only a small reduction in risk of death from cardiovascular disease (HR = 0.87, 95% CI: 0.68, 1.10). These results suggest that intake of long-chain ω-3 fatty acids may reduce risk of total and cancer-specific mortality.

  11. N-3 Polyunsaturated Fatty Acids of Marine Origin and Multifocality in Human Breast Cancer.

    PubMed

    Ouldamer, Lobna; Goupille, Caroline; Vildé, Anne; Arbion, Flavie; Body, Gilles; Chevalier, Stephan; Cottier, Jean Philippe; Bougnoux, Philippe

    2016-01-01

    The microenvironment of breast epithelial tissue may contribute to the clinical expression of breast cancer. Breast epithelial tissue, whether healthy or tumoral, is directly in contact with fat cells, which in turn could influence tumor multifocality. In this pilot study we investigated whether the fatty acid composition of breast adipose tissue differed according to breast cancer focality. Twenty-three consecutive women presenting with non-metastatic breast cancer underwent breast-imaging procedures including Magnetic Resonance Imaging prior to treatment. Breast adipose tissue specimens were collected during breast surgery. We established a biochemical profile of adipose tissue fatty acids by gas chromatography. We assessed whether there were differences according to breast cancer focality. We found that decreased levels in breast adipose tissue of docosahexaenoic and eicosapentaenoic acids, the two main polyunsaturated n-3 fatty acids of marine origin, were associated with multifocality. These differences in lipid content may contribute to mechanisms through which peritumoral adipose tissue fuels breast cancer multifocality.

  12. Dietary α-linolenic acid from flaxseed oil or eicosapentaenoic and docosahexaenoic acids from fish oil differentially alter fatty acid composition and characteristics of fresh and frozen-thawed bull semen.

    PubMed

    Moallem, Uzi; Neta, Noam; Zeron, Yoel; Zachut, Maya; Roth, Zvi

    2015-04-15

    Incorporation rates of dietary omega-3 (n-3) fatty acids (FAs) from different sources into bull plasma and sperm and the effects on physiological characteristics of fresh and frozen-thawed semen were determined. Fifteen fertile bulls were assigned to three treatment groups and supplemented for 13 weeks with encapsulated fat: (1) SFA-360 g/d per bull saturated FA; (2) FLX-450 g/d per bull providing 84.2 g/d C18:3n-3 (α-linolenic acid) from flaxseed oil; and (3) FO-450 g/d per bull providing 8.7 g/d C20:5n-3 (eicosapentaenoic acid) and 6.5 g/d C22:6n-3 (docosahexaenoic acid, DHA) from fish oil. Blood samples were taken every 2 weeks and semen was collected weekly. With respect to the FA supplements, the proportion of α-linolenic acid in plasma increased in the FLX bulls, whereas that of DHA was increased in the FO bulls, within 2 weeks. However, changes in the sperm FA fraction were first expressed in the sixth week of supplementation: in the FO and FLX bulls the DHA proportion increased (P < 0.001), whereas that of C22:5n-6 FAs (docosapentaenoic acid [DPA] n-6) decreased (P < 0.001). Sperm motility and progressive motility in fresh semen were higher (P < 0.05), and the fading rate tended to be lower in the FLX than in FO bulls (P < 0.06). Furthermore, sperm motility, progressive motility, and velocity in frozen-thawed semen were higher in FLX than in the other groups (P < 0.008). These findings indicate that the proportion of DHA in sperm can be increased at the expense of DPAn-6 by either FO or FLX supplementation, indicating de novo elongation and desaturation of short- into longer-chain n-3 FAs in testes. Furthermore, the moderate exchange of DHA and DPAn-6 in the FLX group's sperm was associated with changes in the characteristics of both fresh and frozen-thawed semen, suggesting the importance of the ratio between these two FAs for sperm structure and function. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. The Eicosapentaenoic Acid Metabolite 15-Deoxy-δ12,14-Prostaglandin J3 Increases Adiponectin Secretion by Adipocytes Partly via a PPARγ-Dependent Mechanism

    PubMed Central

    Lefils-Lacourtablaise, Jennifer; Socorro, Mairobys; Géloën, Alain; Daira, Patricia; Debard, Cyrille; Loizon, Emmanuelle; Guichardant, Michel; Dominguez, Zury; Vidal, Hubert; Lagarde, Michel; Bernoud-Hubac, Nathalie

    2013-01-01

    The intake of ω-3 polyunsaturated fatty acids (PUFAs), which are abundant in marine fish meat and oil, has been shown to exert many beneficial effects. The mechanisms behind those effects are numerous, including interference with the arachidonic acid cascade that produces pro-inflammatory eicosanoids, formation of novel bioactive lipid mediators, and change in the pattern of secreted adipocytokines. In our study, we show that eicosapentaenoic acid (EPA) increases secreted adiponectin from 3T3-L1 adipocytes and in plasma of mice as early as 4 days after initiation of an EPA-rich diet. Using 3T3-L1 adipocytes, we report for the first time that 15-deoxy-δ12,14-PGJ3 (15d-PGJ3), a product of EPA, also increases the secretion of adiponectin. We demonstrate that the increased adiponectin secretion induced by 15d-PGJ3 is partially peroxisome proliferator-activated receptor-gamma (PPAR-γ)-mediated. Finally, we show that 3T3-L1 adipocytes can synthesize 15d-PGJ3 from EPA. 15d-PGJ3 was also detected in adipose tissue from EPA-fed mice. Thus, these studies provide a novel mechanism(s) for the therapeutic benefits of ω-3 polyunsaturated fatty acids dietary supplementation. PMID:23734181

  14. Lower omega-3 polyunsaturated fatty acids and lower docosahexaenoic acid in men with pedophilia.

    PubMed

    Mincke, Elda; Cosyns, Paul; Christophe, Armand B; De Vriese, Stephanie; Maes, Michael

    2006-12-01

    Previous studies have suggested that abnormalities in plasma phospholipid fatty acids may play a role in aggressive behavior. Recently, it was suggested that a dysfunctional serotonergic turnover in the brain may be involved in the etiopathology of pedophilia. Depletion of n-3 polyunsaturated fatty acids (PUFA) may cause alterations in the serotonergic system that may be related to pedophilia and aggression. This study examines the serum phospholipid n-3 and n-6 PUFA fractions in pedophilia. Twenty-seven pedophilic men and eighteen healthy volunteers participated in this study. In pedophilia there was a significant depletion of the C22:6n-3 (docosahexaenoic acid, DHA), total n-3 fractions and an increase in the total n-6/n-3 and C20:4n-6/C20:5n-3 (arachidonic acid/eicosapentaenoic acid) ratios. Using the NEO Personality Inventory, lower DHA in pedophiles is related to more impulsiveness and lower agreeableness (trust, altruism, straightforwardness, compliance) and conscientiousness (self-discipline). The results of this study suggest that a depletion of the serum phospholipid n-3 higher unsaturated fatty acids (HUFAs) and, in particular, of DHA may take part in the pathophysiology of pedophilia. One hypothesis is that a depletion of n-3 HUFAs and DHA may cause alterations in the serotonergic turnover, which are related to impulse discontrol and aggression-hostility, behaviors which are associated with pedophilia.

  15. Efficacy and safety of TAK-085 compared with eicosapentaenoic acid in Japanese subjects with hypertriglyceridemia undergoing lifestyle modification: the omega-3 fatty acids randomized double-blind (ORD) study.

    PubMed

    Tatsuno, Ichiro; Saito, Yasushi; Kudou, Kentarou; Ootake, Jun

    2013-01-01

    Hypertriglyceridemia is a risk factor for cardiovascular disease, and clinical practice guidelines advocate treatment to reduce triglyceride (TG) levels. In Japan, an EPA-E (eicosapentaenoic acid-ethyl ester) product has been used clinically for treating dyslipidemia. We investigated the TG-lowering effects of TAK-085 (EPA-E + docosahexaenoic acid-ethyl ester) in comparison with EPA-E in Japanese patients with hypertriglyceridemia (TG ≥150 mg/dL and <750 mg/dL). In this multicenter, 12-week, double-blind study, subjects were stratified for coadministration of a 3-hydroxy-3-methyl-glutaryl-CoA reductase inhibitor then randomized to TAK-085 2 g once daily (n = 205), TAK-085 2 g twice daily (n = 210), or EPA-E 0.6 g three times daily (n = 195). Each one gram of fatty acid in TAK-085 contains approximately 465 mg of EPA plus 375 mg of docosahexaenoic acid-ethyl as ethyl esters. Guidance on lifestyle modifications was provided throughout. The primary end point was the percent change in TG levels (baseline from end of treatment), which was -10.8 ± 22.6, -22.9 ± 23.1, and -11.2 ± 25.7 in the TAK-085 2 g/day, TAK-085 4 g/day, and EPA-E 1.8 g/day groups, respectively. TAK-085 4 g/day produced a significantly greater reduction in TG than EPA-E 1.8 g/day (P < .0001), whereas TAK-085 2 g/day was not inferior to EPA-E 1.8 g/day. Changes in other lipid parameters were relatively modest. There were no notable safety or tolerability differences between the groups. In Japanese patients with modest hypertriglyceridemia who also underwent lifestyle intervention, TAK-085 4 g/day reduced TG more than EPA-E 1.8 g/day. TAK-085 2 g/day had similar effects on TG as EPA-E 1.8 g/day. TAK-085 was well-tolerated. Copyright © 2013 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  16. Bioavailability of long-chain n-3 fatty acids from enriched meals and from microencapsulated powder.

    PubMed

    Hinriksdottir, H H; Jonsdottir, V L; Sveinsdottir, K; Martinsdottir, E; Ramel, A

    2015-03-01

    Despite the potential benefits of long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFAs), intake is often low because of low consumption of oily seafood. Microencapsulated fish oil powder can improve tolerance and acceptance of LC n-3 PUFAs. Bioavailability is important to achieve efficacy. We investigated the bioavailability of LC n-3 PUFAs from microencapsulated powder in comparison with meals enriched with liquid fish oil. Participants (N=99, age⩾50 years) of this 4-week double-blinded dietary intervention were randomized into three groups. Group 1 (n=38) received 1.5 g/d eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) as ready-to-eat meals enriched with liquid fish oil; group 2 (n=30) received the same amount of these LC n-3 PUFAs as microencapsulated fish oil powder and regular meals; and group 3 (n=31) was the control group, which received placebo powder and regular meals. Blood samples were taken from fingertips at baseline and at the end point. Seventy-seven subjects (77.8%) completed the study. The amount of EPA in blood doubled in both groups that received LC n-3 PUFAs (P<0.05), but it did not change in the control group. The changes in DHA were less but still significant in both intervention groups. According to multivariate analysis, both intervention groups had higher end-point LC n-3 PUFA concentrations compared with placebo, but differences between intervention groups were not significant. Bioavailability of LC n-3 PUFAs in encapsulated powder is very similar to the bioavailability of LC n-3 PUFAs in ready-to-eat meals enriched with liquid fish oil. Thus, encapsulated powder can be considered useful to increase LC n-3 PUFA concentrations in blood.

  17. Eicosapentaenoic acid regulates brown adipose tissue gene expression and metabolism in high fat fed mice

    USDA-ARS?s Scientific Manuscript database

    Brown adipose tissue (BAT) is a thermogenic tissue, a key regulator of energy balance and a potential therapeutic target for obesity. We previously reported that eicosapentaenoic acid (EPA) reduced high fat (HF) diet-induced obesity and insulin resistance in mice, independent of energy intake. We hy...

  18. n-3 fatty acid dietary recommendations and food sources to achieve essentiality and cardiovascular benefits.

    PubMed

    Gebauer, Sarah K; Psota, Tricia L; Harris, William S; Kris-Etherton, Penny M

    2006-06-01

    Dietary recommendations have been made for n-3 fatty acids, including alpha-linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) to achieve nutrient adequacy and to prevent and treat cardiovascular disease. These recommendations are based on a large body of evidence from epidemiologic and controlled clinical studies. The n-3 fatty acid recommendation to achieve nutritional adequacy, defined as the amount necessary to prevent deficiency symptoms, is 0.6-1.2% of energy for ALA; up to 10% of this can be provided by EPA or DHA. To achieve recommended ALA intakes, food sources including flaxseed and flaxseed oil, walnuts and walnut oil, and canola oil are recommended. The evidence base supports a dietary recommendation of approximately 500 mg/d of EPA and DHA for cardiovascular disease risk reduction. For treatment of existing cardiovascular disease, 1 g/d is recommended. These recommendations have been embraced by many health agencies worldwide. A dietary strategy for achieving the 500-mg/d recommendation is to consume 2 fish meals per week (preferably fatty fish). Foods enriched with EPA and DHA or fish oil supplements are a suitable alternate to achieve recommended intakes and may be necessary to achieve intakes of 1 g/d.

  19. Evaluation of the impact of genetic polymorphisms in glutathione-related genes on the association between methylmercury or n-3 polyunsaturated long chain fatty acids and risk of myocardial infarction: a case-control study

    PubMed Central

    2011-01-01

    Background The n-3 polyunsaturated fatty acids eicosapentaenoic acid and docosahexaenoic acid, which are present in fish, are protective against myocardial infarction. However, fish also contains methylmercury, which influences the risk of myocardial infarction, possibly by generating oxidative stress. Methylmercury is metabolized by conjugation to glutathione, which facilitates elimination. Glutathione is also an antioxidant. Individuals with certain polymorphisms in glutathione-related genes may tolerate higher exposures to methylmercury, due to faster metabolism and elimination and/or better glutathione-associated antioxidative capacity. They would thus benefit more from the protective agents in fish, such as eicosapentaenoic+docosahexaenoic acid and selenium. The objective for this study was to elucidate whether genetic polymorphisms in glutathione-related genes modify the association between eicosapentaenoic+docosahexaenoic acid or methylmercury and risk of first ever myocardial infarction. Methods Polymorphisms in glutathione-synthesizing (glutamyl-cysteine ligase catalytic subunit, GCLC and glutamyl-cysteine ligase modifier subunit, GCLM) or glutathione-conjugating (glutathione S-transferase P, GSTP1) genes were genotyped in 1027 individuals from northern Sweden (458 cases of first-ever myocardial infarction and 569 matched controls). The impact of these polymorphisms on the association between erythrocyte-mercury (proxy for methylmercury) and risk of myocardial infarction, as well as between plasma eicosapentaenoic+docosahexaenoic acid and risk of myocardial infarction, was evaluated by conditional logistic regression. The effect of erythrocyte-selenium on risk of myocardial infarction was also taken into consideration. Results There were no strong genetic modifying effects on the association between plasma eicosapentaenoic+docosahexaenoic acid or erythrocyte-mercury and risk of myocardial infarction risk. When eicosapentaenoic+docosahexaenoic acid or

  20. The Evidence for α-Linolenic Acid and Cardiovascular Disease Benefits: Comparisons with Eicosapentaenoic Acid and Docosahexaenoic Acid12

    PubMed Central

    Fleming, Jennifer A.; Kris-Etherton, Penny M.

    2014-01-01

    Our understanding of the cardiovascular disease (CVD) benefits of α-linolenic acid (ALA, 18:3n–3) has advanced markedly during the past decade. It is now evident that ALA benefits CVD risk. The expansion of the ALA evidence base has occurred in parallel with ongoing research on eicosapentaenoic acid (EPA, 20:5n–3) and docosahexaenoic acid (DHA, 22:6n–3) and CVD. The available evidence enables comparisons to be made for ALA vs. EPA + DHA for CVD risk reduction. The epidemiologic evidence suggests comparable benefits of plant-based and marine-derived n–3 (omega-3) PUFAs. The clinical trial evidence for ALA is not as extensive; however, there have been CVD event benefits reported. Those that have been reported for EPA + DHA are stronger because only EPA + DHA differed between the treatment and control groups, whereas in the ALA studies there were diet differences beyond ALA between the treatment and control groups. Despite this, the evidence suggests many comparable CVD benefits of ALA vs. EPA + DHA. Thus, we believe that it is time to revisit what the contemporary dietary recommendation should be for ALA to decrease the risk of CVD. Our perspective is that increasing dietary ALA will decrease CVD risk; however, randomized controlled clinical trials are necessary to confirm this and to determine what the recommendation should be. With a stronger evidence base, the nutrition community will be better positioned to revise the dietary recommendation for ALA for CVD risk reduction. PMID:25398754

  1. Red Blood Cell Eicosapentaenoic Acid Inversely Relates to MRI-Assessed Carotid Plaque Lipid Core Burden in Elders at High Cardiovascular Risk.

    PubMed

    Bargalló, Núria; Gilabert, Rosa; Romero-Mamani, Edwin-Saúl; Cofán, Montserrat; Calder, Philip C; Fitó, Montserrat; Corella, Dolores; Salas-Salvadó, Jordi; Ruiz-Canela, Miguel; Estruch, Ramon; Ros, Emilio; Sala-Vila, Aleix

    2017-09-20

    Supplemental marine omega-3 eicosapentaenoic acid (EPA) has an anti-atherosclerotic effect. Clinical research on EPA supplied by the regular diet and atherosclerosis is scarce. In the framework of the PREvención con DIeta MEDiterránea (PREDIMED) trial, we conducted a cross-sectional study in 161 older individuals at high vascular risk grouped into different stages of carotid atherosclerosis severity, including those without ultrasound-detected atheroma plaque ( n = 38), with plaques <2.0 mm thick ( n = 65), and with plaques ≥2.0 mm ( n = 79). The latter were asked to undergo contrast-enhanced 3T magnetic resonance imaging (MRI) and were subsequently grouped into absence ( n = 31) or presence ( n = 27) of MRI-detectable plaque lipid, a main feature of unstable atheroma plaques. We determined the red blood cell (RBC) proportion of EPA (a valid marker of long-term EPA intake) at enrolment by gas chromatography. In multivariate models, EPA related inversely to MRI-assessed plaque lipid volume, but not to maximum intima-media thickness of internal carotid artery, plaque burden, or MRI-assessed normalized wall index. The inverse association between EPA and plaque lipid content in patients with advanced atherosclerosis supports the notion that this fatty acid might improve cardiovascular health through stabilization of advanced atheroma plaques.

  2. Red Blood Cell Eicosapentaenoic Acid Inversely Relates to MRI-Assessed Carotid Plaque Lipid Core Burden in Elders at High Cardiovascular Risk

    PubMed Central

    Bargalló, Núria; Gilabert, Rosa; Romero-Mamani, Edwin-Saúl; Calder, Philip C.; Fitó, Montserrat; Estruch, Ramon; Ros, Emilio; Sala-Vila, Aleix

    2017-01-01

    Supplemental marine omega-3 eicosapentaenoic acid (EPA) has an anti-atherosclerotic effect. Clinical research on EPA supplied by the regular diet and atherosclerosis is scarce. In the framework of the PREvención con DIeta MEDiterránea (PREDIMED) trial, we conducted a cross-sectional study in 161 older individuals at high vascular risk grouped into different stages of carotid atherosclerosis severity, including those without ultrasound-detected atheroma plaque (n = 38), with plaques <2.0 mm thick (n = 65), and with plaques ≥2.0 mm (n = 79). The latter were asked to undergo contrast-enhanced 3T magnetic resonance imaging (MRI) and were subsequently grouped into absence (n = 31) or presence (n = 27) of MRI-detectable plaque lipid, a main feature of unstable atheroma plaques. We determined the red blood cell (RBC) proportion of EPA (a valid marker of long-term EPA intake) at enrolment by gas chromatography. In multivariate models, EPA related inversely to MRI-assessed plaque lipid volume, but not to maximum intima-media thickness of internal carotid artery, plaque burden, or MRI-assessed normalized wall index. The inverse association between EPA and plaque lipid content in patients with advanced atherosclerosis supports the notion that this fatty acid might improve cardiovascular health through stabilization of advanced atheroma plaques. PMID:28930197

  3. Thirteen-year prospective study between fish consumption, long-chain n-3 fatty acids intakes and cognitive function.

    PubMed

    Kesse-Guyot, E; Péneau, S; Ferry, M; Jeandel, C; Hercberg, S; Galan, P

    2011-02-01

    Because of their structural, anti-inflammatory and antithrombic properties, long-chain n-3 fatty acids may be key factors in the aging process. We sought to elucidate the association between intake of long-chain n-3 fatty acids and/or fish and cognitive function evaluated 13 years after dietary assessment. Prospective population-based study. 3,294 adults from the SU.VI.MAX study (Supplementation with Antioxidant Vitamins and Minerals study). MEASUREMENTS/STATISTICAL ANALYSIS: Subjects underwent a standardized clinical examination which included cognitive tests and self-reported cognitive difficulties scale (2007-2009). Poor scores were defined using percentiles as cut-off. Dietary data were assessed through repeated 24-h dietary records. Odd ratio (OR), comparing the fourth (Q4) to the first quartile (Q1), of having a poor score were calculated using adjusted logistic regression. Self-reported cognitive difficulties were less frequent among subjects with higher intakes of total n-3 long chain fatty acids (OR = 0.72, CI 95%=0.56-0.92) and eicosapentaenoic acid (OR Q4 versus Q1 = 0.74, CI 95%=0.58-0.95), even after adjustment for depressive symptoms. A borderline significant association was also found with high fish consumption (OR Q4 versus Q1 = 0.80, CI 95%=0.63-1.01). Cognitive complaints, which may be an early indicator of cognitive decline, are less frequent among the elderly who have a high long-chain n-3 acids intake, as assessed 13 years earlier.

  4. The safety assessment of Pythium irregulare as a producer of biomass and eicosapentaenoic acid for use in dietary supplements and food ingredients.

    PubMed

    Wu, Lei; Roe, Charles L; Wen, Zhiyou

    2013-09-01

    Polyunsaturated fatty acids, docosahexaenoic acid (DHA, 22:6, n-3), eicosapentaenoic acid (EPA, 20:5, n-3), and arachidonic acid (ARA, 20:4 n-6), have multiple beneficial effects on human health and can be used as an important ingredient in dietary supplements, food, feed and pharmaceuticals. A variety of microorganisms has been used for commercial production of these fatty acids. The microorganisms in the Pythium family, particularly Pythium irregulare, are potential EPA producers. The aim of this work is to provide a safety assessment of P. irregulare so that the EPA derived from this species can be potentially used in various commercial applications. The genus Pythium has been widely recognized as a plant pathogen by infecting roots and colonizing the vascular tissues of various plants such as soybeans, corn and various vegetables. However, the majority of the Pythium species (including P. irregulare) have not been reported to infect mammals including humans. The only species among the Pythium family that infects mammals is P. insidiosum. There also have been no reports showing P. irregulare to contain mycotoxins or cause potentially allergenic responses in humans. Based on the safety assessment, we conclude that P. irregulare can be considered a safe source of biomass and EPA-containing oil for use as ingredients in dietary supplements, food, feed and pharmaceuticals.

  5. Systematic Review on N-3 and N-6 Polyunsaturated Fatty Acid Intake in European Countries in Light of the Current Recommendations - Focus on Specific Population Groups.

    PubMed

    Sioen, Isabelle; van Lieshout, Lilou; Eilander, Ans; Fleith, Mathilde; Lohner, Szimonetta; Szommer, Alíz; Petisca, Catarina; Eussen, Simone; Forsyth, Stewart; Calder, Philip C; Campoy, Cristina; Mensink, Ronald P

    2017-01-01

    Earlier reviews indicated that in many countries adults, children and adolescents consume on an average less polyunsaturated fatty acids (PUFAs) than recommended by the Food and Agriculture Organisation/World Health Organisation. The intake of total and individual n-3 and n-6 PUFAs in European infants, children, adolescents, elderly and pregnant/lactating women was evaluated systematically. The evaluations were done against recommendations of the European Food Safety Authority. Key Messages: Fifty-three studies from 17 different European countries reported an intake of total n-3 and n-6 PUFAs and/or individual n-3 or n-6 PUFAs in at least one of the specific population groups: 10 in pregnant women, 4 in lactating women, 3 in infants 6-12 months, 6 in children 1-3 years, 11 in children 4-9 years, 8 in adolescents 10-18 years and 11 in elderly >65 years. Mean linoleic acid intake was within the recommendation (4 energy percentage [E%]) in 52% of the countries, with inadequate intakes more likely in lactating women, adolescents and elderly. Mean α-linolenic acid intake was within the recommendation (0.5 E%) in 77% of the countries. In 26% of the countries, mean eicosapentaenoic acid and/or docosahexaenoic acid intake was as recommended. These results indicate that intake of n-3 and n-6 PUFAs may be suboptimal in specific population groups in Europe. © 2017 S. Karger AG, Basel.

  6. Effect of Eicosapentaenoic Acid and Docosahexaenoic Acid on Myogenesis and Mitochondrial Biosynthesis during Murine Skeletal Muscle Cell Differentiation.

    PubMed

    Hsueh, Tun-Yun; Baum, Jamie I; Huang, Yan

    2018-01-01

    Polyunsaturated fatty acids are important nutrients for human health, especially omega-3 fatty acids such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which have been found to play positive roles in the prevention of various diseases. However, previous studies have reported that excessive omega-3 fatty acids supplement during pregnancy caused side effects such as slower neural transmission times and postnatal growth restriction. In this study, we investigated the effect of EPA and DHA on mitochondrial function and gene expression in C2C12 myoblasts during skeletal muscle differentiation. C2C12 myoblasts were cultured to confluency and then treated with differentiation medium that contained fatty acids (50-µM EPA and DHA). After 72 h of myogenic differentiation, mRNA was collected, and gene expression was analyzed by real-time PCR. Microscopy was used to examine cell morphology following treatment with fatty acids. The effect of EPA and DHA on cellular oxygen consumption was measured using a Seahorse XF24 Analyzer. Cells treated with fatty acids had fewer myotubes formed ( P ≤ 0.05) compared with control cells. The expression of the genes related to myogenesis was significantly lower ( P ≤ 0.05) in cells treated with fatty acids, compared with control cells. Genes associated with adipogenesis had higher ( P ≤ 0.05) expression after treatment with fatty acids. Also, the mitochondrial biogenesis decreased with lower ( P ≤ 0.05) gene expression and lower ( P ≤ 0.05) mtDNA/nDNA ratio in cells treated with fatty acids compared with control cells. However, the expression of genes related to peroxisome biosynthesis was higher ( P ≤ 0.05) in cells treated with fatty acids. Moreover, fatty-acid treatment reduced ( P ≤ 0.05) oxygen consumption rate under oligomycin-inhibited (reflecting proton leak) and uncoupled conditions. Our data imply that fatty acids might reduce myogenesis and increase adipogenesis in myotube formation. Fatty acids

  7. Omega-3 Fatty Acids and Incident Ischemic Stroke and Its Atherothrombotic and Cardioembolic Subtypes in 3 US Cohorts.

    PubMed

    Saber, Hamidreza; Yakoob, Mohammad Yawar; Shi, Peilin; Longstreth, W T; Lemaitre, Rozenn N; Siscovick, David; Rexrode, Kathryn M; Willett, Walter C; Mozaffarian, Dariush

    2017-10-01

    The associations of individual long-chain n-3 polyunsaturated fatty acids with incident ischemic stroke and its main subtypes are not well established. We aimed to investigate prospectively the relationship of circulating eicosapentaenoic acid, docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA) with risk of total ischemic, atherothrombotic, and cardioembolic stroke. We measured circulating phospholipid fatty acids at baseline in 3 separate US cohorts: CHS (Cardiovascular Health Study), NHS (Nurses' Health Study), and HPFS (Health Professionals Follow-Up Study). Ischemic strokes were prospectively adjudicated and classified into atherothrombotic (large- and small-vessel infarctions) or cardioembolic by imaging studies and medical records. Risk according to fatty acid levels was assessed using Cox proportional hazards (CHS) or conditional logistic regression (NHS, HPFS) according to study design. Cohort findings were pooled using fixed-effects meta-analysis. A total of 953 incident ischemic strokes were identified (408 atherothrombotic, 256 cardioembolic, and 289 undetermined subtypes) during median follow-up of 11.2 years (CHS) and 8.3 years (pooled, NHS and HPFS). After multivariable adjustment, lower risk of total ischemic stroke was seen with higher DPA (highest versus lowest quartiles; pooled hazard ratio [HR], 0.74; 95% confidence interval [CI], 0.58-0.92) and DHA (HR, 0.80; 95% CI, 0.64-1.00) but not eicosapentaenoic acid (HR, 0.94; 95% CI, 0.77-1.19). DHA was associated with lower risk of atherothrombotic stroke (HR, 0.53; 95% CI, 0.34-0.83) and DPA with lower risk of cardioembolic stroke (HR, 0.58; 95% CI, 0.37-0.92). Findings in each individual cohort were consistent with pooled results. In 3 large US cohorts, higher circulating levels of DHA were inversely associated with incident atherothrombotic stroke and DPA with cardioembolic stroke. These novel findings suggest differential pathways of benefit for DHA, DPA, and eicosapentaenoic acid. © 2017

  8. Eicosapentaenoic acid production from Nannochloropsis oceanica CY2 using deep sea water in outdoor plastic-bag type photobioreactors.

    PubMed

    Chen, Chun-Yen; Nagarajan, Dillirani; Cheah, Wai Yan

    2018-04-01

    In this study, Nannochloropsis oceanica CY2 was grown in deep-sea water (DSW)-based medium in 5-L plastic bag-type photobioreactors (PBRs) for the autotrophic production of Eicosapentaenoic acid (EPA, 20:5n-3). EPA production of N. oceanica CY2 was stimulated when it was grown in 100% DSW amended with 1.5 g L -1 NaNO 3 , achieving a EPA content of 3.1% and a biomass concentration of 3.3 g L -1 . An outdoor-simulated microalgae cultivation system was also conducted to validate the feasibility of outdoor cultivation of the CY2 strain in plastic bag-type PBRs. Using an inoculum size of 0.6 g/L, the biomass concentration in the PBR culture was 3.5 g L -1 , while the EPA content and productivity reached a maximal level of 4.12% and 7.49 mg L -1  d -1 , respectively. When the PBRs were operated on semi-batch mode, the EPA productivity could further increase to 9.9 mg L -1  d -1 with a stable EPA content of 4.1%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Activation of the AMP-Activated Protein Kinase by Eicosapentaenoic Acid (EPA, 20:5 n-3) Improves Endothelial Function In Vivo

    PubMed Central

    Wu, Yong; Zhang, Cheng; Dong, Yunzhou; Wang, Shuangxi; Song, Ping; Viollet, Benoit; Zou, Ming-Hui

    2012-01-01

    The aim of the present study was to test the hypothesis that the cardiovascular-protective effects of eicosapentaenoic acid (EPA) may be due, in part, to its ability to stimulate the AMP-activated protein kinase (AMPK)-induced endothelial nitric oxide synthase (eNOS) activation. The role of AMPK in EPA-induced eNOS phosphorylation was investigated in bovine aortic endothelial cells (BAEC), in mice deficient of either AMPKα1 or AMPKα2, in eNOS knockout (KO) mice, or in Apo-E/AMPKα1 dual KO mice. EPA-treatment of BAEC increased both AMPK-Thr172 phosphorylation and AMPK activity, which was accompanied by increased eNOS phosphorylation, NO release, and upregulation of mitochondrial uncoupling protein-2 (UCP-2). Pharmacologic or genetic inhibition of AMPK abolished EPA-enhanced NO release and eNOS phosphorylation in HUVEC. This effect of EPA was absent in the aortas isolated from either eNOS KO mice or AMPKα1 KO mice fed a high-fat, high-cholesterol (HFHC) diet. EPA via upregulation of UCP-2 activates AMPKα1 resulting in increased eNOS phosphorylation and consequent improvement of endothelial function in vivo. PMID:22532857

  10. Diffusion of cis-5,8,11,14,17-eicosapentaenoic acid (1); carbon dioxide (2)

    NASA Astrophysics Data System (ADS)

    Winkelmann, J.

    This document is part of Subvolume A `Gases in Gases, Liquids and their Mixtures' of Volume 15 `Diffusion in Gases, Liquids and Electrolytes' of Landolt-Börnstein Group IV `Physical Chemistry'. It is part of the chapter of the chapter `Diffusion in Pure Gases' and contains data on diffusion of (1) cis-5,8,11,14,17-eicosapentaenoic acid; (2) carbon dioxide

  11. Methylmercury Increases and Eicosapentaenoic Acid Decreases the Relative Amounts of Arachidonic Acid-Containing Phospholipids in Mouse Brain.

    PubMed

    Zeng, Ying-Xu; Du, Zhen-Yu; Mjøs, Svein Are; Grung, Bjørn; Midtbø, Lisa K

    2016-01-01

    The membrane phospholipid composition in mammalian brain can be modified either by nutrients such as dietary fatty acids, or by certain toxic substances such as methylmercury (MeHg), leading to various biological and toxic effects. The present study evaluated the effects of eicosapentaenoic acid (EPA) and MeHg on the composition of the two most abundant membrane phospholipid classes, i.e., phosphatidylcholines (PtdCho) and phosphatidylethanolamines (PtdEtn), in mouse brain by using a two-level factorial design. The intact membrane PtdCho and PtdEtn species were analyzed by liquid chromatography-mass spectrometry. The effects of EPA and MeHg on the PtdCho and PtdEtn composition were evaluated by principal component analysis and ANOVA. The results showed that EPA and MeHg had different effects on the composition of membrane PtdCho and PtdEtn species in brain, where EPA showed strongest impact. EPA led to large reductions in the levels of arachidonic acid (ARA)-containing PtdCho and PtdEtn species in brain, while MeHg tended to elevate the levels of ARA-containing PtdCho and PtdEtn species. EPA also significantly increased the levels of PtdCho and PtdEtn species with n-3 fatty acids. Our results indicate that EPA may to some degree counteract the alterations of the PtdCho and PtdEtn pattern induced by MeHg, and thus alleviate the MeHg neurotoxicity in mouse brain through the inhibition of ARA-derived pro-inflammatory factors. These results may assist in the understanding of the interaction between MeHg, EPA and phospholipids, as well as the risk and benefits of a fish diet.

  12. Anthocyanins do not influence long-chain n-3 fatty acid status: studies in cells, rodents and humans.

    PubMed

    Vauzour, David; Tejera, Noemi; O'Neill, Colette; Booz, Valeria; Jude, Baptiste; Wolf, Insa M A; Rigby, Neil; Silvan, Jose Manuel; Curtis, Peter J; Cassidy, Aedin; de Pascual-Teresa, Sonia; Rimbach, Gerald; Minihane, Anne Marie

    2015-03-01

    Increased tissue status of the long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA), eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) is associated with cardiovascular and cognitive benefits. Limited epidemiological and animal data suggest that flavonoids, and specifically anthocyanins, may increase EPA and DHA levels, potentially by increasing their synthesis from the shorter-chain n-3 PUFA, α-linolenic acid. Using complimentary cell, rodent and human studies we investigated the impact of anthocyanins and anthocyanin-rich foods/extracts on plasma and tissue EPA and DHA levels and on the expression of fatty acid desaturase 2 (FADS2), which represents the rate limiting enzymes in EPA and DHA synthesis. In experiment 1, rats were fed a standard diet containing either palm oil or rapeseed oil supplemented with pure anthocyanins for 8 weeks. Retrospective fatty acid analysis was conducted on plasma samples collected from a human randomized controlled trial where participants consumed an elderberry extract for 12 weeks (experiment 2). HepG2 cells were cultured with α-linolenic acid with or without select anthocyanins and their in vivo metabolites for 24 h and 48 h (experiment 3). The fatty acid composition of the cell membranes, plasma and liver tissues were analyzed by gas chromatography. Anthocyanins and anthocyanin-rich food intake had no significant impact on EPA or DHA status or FADS2 gene expression in any model system. These data indicate little impact of dietary anthocyanins on n-3 PUFA distribution and suggest that the increasingly recognized benefits of anthocyanins are unlikely to be the result of a beneficial impact on tissue fatty acid status. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Anthocyanins do not influence long-chain n-3 fatty acid status: studies in cells, rodents and humans☆

    PubMed Central

    Vauzour, David; Tejera, Noemi; O'Neill, Colette; Booz, Valeria; Jude, Baptiste; Wolf, Insa M.A.; Rigby, Neil; Silvan, Jose Manuel; Curtis, Peter J.; Cassidy, Aedin; de Pascual-Teresa, Sonia; Rimbach, Gerald; Minihane, Anne Marie

    2015-01-01

    Increased tissue status of the long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA), eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) is associated with cardiovascular and cognitive benefits. Limited epidemiological and animal data suggest that flavonoids, and specifically anthocyanins, may increase EPA and DHA levels, potentially by increasing their synthesis from the shorter-chain n-3 PUFA, α-linolenic acid. Using complimentary cell, rodent and human studies we investigated the impact of anthocyanins and anthocyanin-rich foods/extracts on plasma and tissue EPA and DHA levels and on the expression of fatty acid desaturase 2 (FADS2), which represents the rate limiting enzymes in EPA and DHA synthesis. In experiment 1, rats were fed a standard diet containing either palm oil or rapeseed oil supplemented with pure anthocyanins for 8 weeks. Retrospective fatty acid analysis was conducted on plasma samples collected from a human randomized controlled trial where participants consumed an elderberry extract for 12 weeks (experiment 2). HepG2 cells were cultured with α-linolenic acid with or without select anthocyanins and their in vivo metabolites for 24 h and 48 h (experiment 3). The fatty acid composition of the cell membranes, plasma and liver tissues were analyzed by gas chromatography. Anthocyanins and anthocyanin-rich food intake had no significant impact on EPA or DHA status or FADS2 gene expression in any model system. These data indicate little impact of dietary anthocyanins on n-3 PUFA distribution and suggest that the increasingly recognized benefits of anthocyanins are unlikely to be the result of a beneficial impact on tissue fatty acid status. PMID:25573539

  14. Long-term supplementation with eicosapentaenoic acid salvages cardiomyocytes from hypoxia/reoxygenation-induced injury in rats fed with fish-oil-deprived diet.

    PubMed

    Nasa, Y; Hayashi, M; Sasaki, H; Hayashi, J; Takeo, S

    1998-06-01

    Dietary supplementation of fish oil containing eicosapentaenoic acid (C20:5 n-3, EPA) and docosahexaenoic acid (C22:6 n-3, DHA) has been shown to exert protective effects on ischemic/reperfused hearts. We determined whether deprivation of fish oil from the diet paradoxically enhances susceptibility of cardiomyocytes to hypoxia/reoxygenation-induced injury and whether supplementation with either EPA or DHA overcomes such alterations. Rats were fed with fish-oil-rich (FOR) diet, fish-oil-deprived (FOD) diet alone, FOD diet with EPA (1 g/kg/day), or FOD diet with DHA (1 g/kg/day) for 4 weeks. The FOD diet reduced n-3 polyunsaturated fatty acids (PUFAs) and increased n-6 PUFAs such as linoleic (C18:2) and arachidonic acids (C20:4) in myocardial phospholipids. EPA or DHA supplementation increased its incorporation into phospholipid pools. Cardiomyocytes isolated by treatment with collagenase were subjected to 150 min of hypoxia and subsequent reoxygenation for 15 min. In the FOD diet group, the number of surviving rod-shaped cells after hypoxia and reoxygenation was smaller than that of the FOR group. Supplementation with EPA did not affect the number of rod-shaped cells, but attenuated reoxygenation-induced reduction in the number of square-shaped cells. In contrast, DHA supplementation did not afford any protection. The results suggest that deprivation of fish oil from dietary intake enhances the susceptibility of cardiomyocytes to hypoxic injury, and EPA, but not DHA, is capable of salvaging cardiomyocytes from hypoxia/reoxygenation-induced damage.

  15. Systematic Review on N-3 and N-6 Polyunsaturated Fatty Acid Intake in European Countries in Light of the Current Recommendations – Focus on Specific Population Groups

    PubMed Central

    Sioen, Isabelle; van Lieshout, Lilou; Eilander, Ans; Fleith, Mathilde; Lohner, Szimonetta; Szommer, Alíz; Petisca, Catarina; Eussen, Simone; Forsyth, Stewart; Calder, Philip C.; Campoy, Cristina; Mensink, Ronald P.

    2017-01-01

    Background Earlier reviews indicated that in many countries adults, children and adolescents consume on an average less polyunsaturated fatty acids (PUFAs) than recommended by the Food and Agriculture Organisation/World Health Organisation. Summary The intake of total and individual n-3 and n-6 PUFAs in European infants, children, adolescents, elderly and pregnant/lactating women was evaluated systematically. Results The evaluations were done against recommendations of the European Food Safety Authority. Key Messages Fifty-three studies from 17 different European countries reported an intake of total n-3 and n-6 PUFAs and/or individual n-3 or n-6 PUFAs in at least one of the specific population groups: 10 in pregnant women, 4 in lactating women, 3 in infants 6–12 months, 6 in children 1–3 years, 11 in children 4–9 years, 8 in adolescents 10–18 years and 11 in elderly >65 years. Mean linoleic acid intake was within the recommendation (4 energy percentage [E%]) in 52% of the countries, with inadequate intakes more likely in lactating women, adolescents and elderly. Mean α-linolenic acid intake was within the recommendation (0.5 E%) in 77% of the countries. In 26% of the countries, mean eicosapentaenoic acid and/or docosahexaenoic acid intake was as recommended. These results indicate that intake of n-3 and n-6 PUFAs may be suboptimal in specific population groups in Europe. PMID:28190013

  16. Eicosapentaenoic acid reduces high-fat diet-induced insulin resistance by altering adipose tissue glycolytic and inflammatory function

    USDA-ARS?s Scientific Manuscript database

    We previously reported Eicosapentaenoic Acid (EPA)'s ability to prevent high-fat (HF) diet-induced obesity, insulin resistance, and inflammation. In this study, we dissected mechanisms mediating anti-inflammatory and anti-lipogenic actions of EPA, using histology/ immunohistochemistry, transcriptomi...

  17. N-3 poly-unsaturated fatty acids shift estrogen signaling to inhibit human breast cancer cell growth.

    PubMed

    Cao, Wenqing; Ma, ZhiFan; Rasenick, Mark M; Yeh, ShuYan; Yu, JiangZhou

    2012-01-01

    Although evidence has shown the regulating effect of n-3 poly-unsaturated fatty acid (n-3 PUFA) on cell signaling transduction, it remains unknown whether n-3 PUFA treatment modulates estrogen signaling. The current study showed that docosahexaenoic acid (DHA, C22:6), eicosapentaenoic acid (EPA, C20:5) shifted the pro-survival and proliferative effect of estrogen to a pro-apoptotic effect in human breast cancer (BCa) MCF-7 and T47D cells. 17 β-estradiol (E2) enhanced the inhibitory effect of n-3 PUFAs on BCa cell growth. The IC50 of DHA or EPA in MCF-7 cells decreased when combined with E2 (10 nM) treatment (from 173 µM for DHA only to 113 µM for DHA+E2, and from 187 µm for EPA only to 130 µm for EPA+E2). E2 also augmented apoptosis in n-3 PUFA-treated BCa cells. In contrast, in cells treated with stearic acid (SA, C18:0) as well as cells not treated with fatty acid, E2 promoted breast cancer cell growth. Classical (nuclear) estrogen receptors may not be involved in the pro-apoptotic effects of E2 on the n-3 PUFA-treated BCa cells because ERα agonist failed to elicit, and ERα knockdown failed to block E2 pro-apoptotic effects. Subsequent studies reveal that G protein coupled estrogen receptor 1 (GPER1) may mediate the pro-apoptotic effect of estrogen. N-3 PUFA treatment initiated the pro-apoptotic signaling of estrogen by increasing GPER1-cAMP-PKA signaling response, and blunting EGFR, Erk 1/2, and AKT activity. These findings may not only provide the evidence to link n-3 PUFAs biologic effects and the pro-apoptotic signaling of estrogen in breast cancer cells, but also shed new insight into the potential application of n-3 PUFAs in BCa treatment.

  18. Effects of dietary n-3 highly unsaturated fatty acids (HUFAs) on growth, fatty acid profiles, antioxidant capacity and immunity of sea cucumber Apostichopus japonicus (Selenka).

    PubMed

    Yu, Haibo; Gao, Qinfeng; Dong, Shuanglin; Zhou, Jishu; Ye, Zhi; Lan, Ying

    2016-07-01

    The present study was conducted to understand the effects of dietary n-3 highly unsaturated fatty acids (HUFAs) on growth, fatty acid profiles, antioxidant capacity and the immunity of sea cucumber Apostichopus japonicus (Selenka). Five experimental diets were prepared, containing graded levels of n-3 HUFAs (0.46%, 0.85%, 1.25%, 1.61% and 1.95%, respectively), and the 0.46% group was used as control group. The specific growth rates, fatty acid profiles, activities and gene expression of antioxidative enzymes and lysozyme of the sea cucumbers that were fed with the 5 experimental diets were determined. The results showed that the specific growth rate of sea cucumbers in all the treatment groups significantly increased compared to the control group (P < 0.05), indicating the positive effects of n-3 HUFAs on the growth of sea cucumbers. The contents of eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) in the body wall of the sea cucumbers gradually increased with the increasing levels of n-3 HUFAs in the diets. The suitable supplement of n-3 HUFAs in diets improved the activities of superoxide dismutase (SOD) and catalase (CAT) of sea cucumbers by up-regulating the expression of SOD and CAT mRNA in sea cucumbers. However, excess n-3 HUFAs in diets caused lipid peroxidation, inhibited the expression of lysozyme (LSZ) mRNA and decreased the activities of LSZ in sea cucumbers. In summary, the suitable supplement levels of n-3 HUFAs in diets of sea cucumbers A. japonicus were estimated between 0.85% and 1.25% considering the growth performance, cost and the indicators of antioxidant capacity and immunity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Eicosapentaenoic acid (EPA) induced apoptosis in HepG2 cells through ROS-Ca(2+)-JNK mitochondrial pathways.

    PubMed

    Zhang, Yuanyuan; Han, Lirong; Qi, Wentao; Cheng, Dai; Ma, Xiaolei; Hou, Lihua; Cao, Xiaohong; Wang, Chunling

    2015-01-24

    Eicosapentaenoic acid (EPA), a well-known dietary n-3 PUFAS, has been considered to inhibit proliferation of tumor cells. However, the molecular mechanism related to EPA-induced liver cancer cells apoptosis has not been reported. In this study, we investigated the effect of EPA on HepG2 cells proliferation and apoptosis mechanism through mitochondrial pathways. EPA inhibited proliferation of HepG2 cells in a dose-dependent manner and had no significant effect on the cell viability of humor normal liver L-02 cells. It was found that EPA initially evoked ROS formation, leading to [Ca(2+)]c accumulation and the mitochondrial permeability transition pore (MPTP) opening; EPA-induced HepG2 cells apoptosis was inhibited by N-acetylcysteine (NAC, an inhibitor of ROS), 1,2-bis (2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid (BAPTA-AM, a chelator of calcium) and CsA (inhibitor of MPTP). The relationship between ROS production, the increase of cytoplasmic Ca and MPTP opening was detected. It seems that ROS may act as an upstream regulator of EPA-induced [Ca(2+)]c generation, moreover, generation of ROS, overload of mitochondrial [Ca(2+)]c, and JNK activated cause the opening of MPTP. Western blotting results showed that EPA elevated the phosphorylation status of JNK, processes associated with the ROS generation. Simultaneously, the apoptosis induced by EPA was related to release of cytochrome C from mitochondria to cytoplasm through the MPTP and activation of caspase-9 and caspase-3. These results suggest that EPA induces apoptosis through ROS-Ca(2+)-JNK mitochondrial pathways. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Effects of dietary supplementation with eicosapentaenoic acid or gamma-linolenic acid on neutrophil phospholipid fatty acid composition and activation responses.

    PubMed

    Fletcher, M P; Ziboh, V A

    1990-10-01

    Previous data that alimentation with fish oil rich in eicosapentaenoic acid (EPA; 20:n-3) or vegetable oil rich in gamma-linolenic acid (GLA; 18:3n-6) can reduce symptoms of inflammatory skin disorders lead us to determine the effects of dietary supplements of oils rich in EPA or GLA on guinea pig (GP) neutrophil (PMN) membrane potential (delta gamma), secretion, and superoxide (O2-) responses. Weanling GPs were initially fed diets supplemented with olive oil (less than 0.1% EPA; less than 0.1% GLA) for 2 weeks, followed by a crossover by two sets of animals to diets supplemented with fish oil (19% EPA) or borage oil (25% GLA). At 4-week intervals, 12% sterile casein-elicited peritoneal neutrophils (PMN) were assessed for membrane polyunsaturated fatty acid (PUFA) profiles and FMLP-, LTB4-, and PMA-stimulated delta gamma changes, changes in flow cytometrically measured forward scatter (FWD-SC) (shape change), 90 degrees scatter (90 degrees -SC) in cytochalasin B-pretreated-PMN (secretion response), and superoxide responses, GP incorporated EPA and GLA (as the elongation product, dihomo-GLA or DGLA) into their PMN phospholipids by 4 weeks. The peritoneal PMN of all groups demonstrated broad resting FWD-SC and poor activation-related FWD-SC increases, suggesting in vivo activation. While secretion was comparable in the three groups in response to FMLP, there was a trend toward inhibition of LTB4-stimulated 90 degrees -SC loss in both fish and borage oil groups. This was significant only with borage oil (21.7 +/- 2.1 vs 15.3 +/- 1.2% loss of baseline 90 degrees -SC, olive vs borage: P = 0.03). PMN from borage- and fish oil-fed GPs showed a progressively lower O2- response to FMLP than the olive oil group (73.9 +/- 3.9 and 42.9 +/- 6.8% of olive oil response for borage and fish oils, respectively; P less than 0.005 and P less than 0.01, respectively, at 12 weeks), while PMA-stimulated O2- was inhibited only in the fish oil-fed group and only at 12 weeks (62.0 +/- 2

  1. Low breast milk levels of long-chain n-3 fatty acids in allergic women, despite frequent fish intake.

    PubMed

    Johansson, S; Wold, A E; Sandberg, A-S

    2011-04-01

    Long-chain n-3 polyunsaturated fatty acids (PUFAs) have immune regulating and anti-inflammatory effects. However, their role in allergic disease is unclear. Allergic diseases are immunologically heterogeneous, and we hypothesized that n-3 fatty acid composition in serum and breast milk may vary according to clinical manifestations. Further, animal studies have shown reduction of serum-PUFA levels during allergic inflammation. To investigate fatty acid composition in breast milk and serum from women with different atopic disease manifestations. Secondly, to determine whether low PUFA levels reflected insufficient intakes. Fatty acids were analysed in breast milk and serum of women with atopic eczema and respiratory allergy (n=16), only respiratory allergy (n=7), as well as healthy women (n=22). Dietary intake of foods expected to affect long-chain n-3 PUFA levels were estimated by food-frequency questionnaire. The fatty acid pattern was related to diagnostic group and intake of relevant food items using a multivariate pattern recognition method (partial least squares projections to latent structures and discriminant analysis). Results Women with a combination of eczema and respiratory allergy had lower breast milk levels of several PUFAs (arachidonic acid, eicosapentaenoic acid, EPA, docosahexaenoic acid, DHA, and docosapentaenoic acid, DPA), and a lower ratio of long-chain n-3 PUFAs/n-6 PUFAs. Their PUFA levels differed not only from that of healthy women, but also from that of women with only respiratory allergy. The latter had a fatty acid pattern similar to that of healthy women. Despite low EPA, DHA and DPA levels women with eczema and respiratory allergy consumed no less fish than did healthy women. Our data suggest that reduced levels of long-chain n-3 fatty acids in serum and breast milk characterize women with extensive allergic disease including eczema, and are not related to low fish intake. Consumption of PUFAs during the allergic process may explain

  2. Effects of nutritional factors on the growth and heterotrophic eicosapentaenoic acid production of diatom Nitzschia laevis

    NASA Astrophysics Data System (ADS)

    Cao, Xiaohong; Li, Songyao; Wang, Chunling; Lu, Meifang

    2008-08-01

    The effects of several nutritional factors on the growth and eicosapentaenoic acid (EPA) production of diatom Nitzschia laevis were studied. 4 LDM (quadrupled concentration of the nutrient salt) was the optimal concentration of nutrient salt for the growth and EPA production of N. laevis. The growth of N. laevis was inhibited when the glucose concentration was either lower than 10 gL-1 or higher than 15 gL-1. Both sodium nitrate and urea were good nitrogen sources for the growth and EPA production, while ammonium chloride seriously decreased the dry cell weight (DW) and the EPA content. Silicate seriously influenced the growth of N. laevis. The maximum DW of 2.34 gL-1 was obtained in the presence of 150 mgL-1 Na2SiO3·9H2O. The EPA content remained almost the same when the silicate concentration was lower than 150 mgL-1; however, higher silicate concentrations resulted in a steady decrease of EPA content. Low medium salinity (⩽29) did not seem to influence the DW of N. laevis, and high salinity resulted in a decrease of DW. The highest EPA content (4.08%) and yield (110 mgL-1) were observed at the salinity of 36 and 29, respectively.

  3. Effect of Eicosapentaenoic and Docosahexaenoic Acids Added to Statin Therapy on Coronary Artery Plaque in Patients With Coronary Artery Disease: A Randomized Clinical Trial.

    PubMed

    Alfaddagh, Abdulhamied; Elajami, Tarec K; Ashfaque, Hasan; Saleh, Mohamad; Bistrian, Bruce R; Welty, Francine K

    2017-12-15

    Although statins reduce cardiovascular events, residual risk remains. Therefore, additional modalities are needed to reduce risk. We evaluated the effect of eicosapentaenoic acid and docosahexaenoic acid in pharmacologic doses added to statin treatment on coronary artery plaque volume. A total of 285 subjects with stable coronary artery disease on statins were randomized to omega-3 ethyl-ester (1.86 g of eicosapentaenoic acid and 1.5 g of docosahexaenoic acid daily) or no omega-3 (control) for 30 months. Coronary plaque volume was assessed by coronary computed tomographic angiography. Mean (SD) age was 63.0 (7.7) years; mean low-density lipoprotein cholesterol ≤80 mg/dL. In the intention-to-treat analysis, our primary endpoint, noncalcified plaque volume, was not different between groups ( P =0.14) but approached significance in the per protocol analysis ( P =0.07). When stratified by age in the intention-to-treat analysis, younger omega-3 subjects had significantly less progression of the primary endpoint, noncalcified plaque ( P =0.013), and fibrous, calcified and total plaque. In plaque subtype analysis, controls had significant progression of fibrous plaque compared to no change in the omega-3 ethyl-ester group (median % change [interquartile range], 5.0% [-5.7, 20.0] versus -0.1% [-12.3, 14.5], respectively; P =0.018). Among those on low-intensity statins, omega-3 ethyl-ester subjects had attenuation of fibrous plaque progression compared to controls (median % change [interquartile range], 0.3% [-12.8, 9.0] versus 4.8% [-5.1, 19.0], respectively; P =0.032). In contrast, those on high-intensity statins had no difference in plaque change in either treatment arm. High-dose eicosapentaenoic acid and docosahexaenoic acid provided additional benefit to statins in preventing progression of fibrous coronary plaque in subjects adherent to therapy with well-controlled low-density lipoprotein cholesterol levels. The benefit on low-intensity statin, but not high

  4. Erythrocyte membrane n-3 fatty acid levels and carotid atherosclerosis in Chinese men and women.

    PubMed

    Dai, Xiao-wei; Zhang, Bo; Wang, Ping; Chen, Chao-gang; Chen, Yu-ming; Su, Yi-xiang

    2014-01-01

    Prospective studies have supported the beneficial effects of n-3 fatty acid consumption on cardiac deaths, but limited data focused on atherosclerosis. We investigated the associations between n-3 fatty acids in erythrocytes and atherosclerosis in middle-aged and older Chinese. 847 subjects (285 men and 562 women), aged 40-65 years, from Guangzhou, China were included in this community-based cross-sectional study between December 2005 and January 2008. The levels of α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in erythrocytes were measured by gas chromatography. Carotid ultrasound examination was conducted to obtain intima-media thickness of the common carotid artery and the carotid bifurcation. Dietary data and other covariates were collected using interviewer-administered questionnaires. After adjustment for age, sex, and other confounders, negative dose-response associations between the contents of individual n-3 polyunsaturated fatty acids in the erythrocyte membrane and the prevalence of carotid artery wall thickening and plaque were observed. A comparison in the highest and lowest tertiles gave odds ratios (95% confidence interval) for thickening in the walls of the common carotid artery of 0.58 (0. 34-0.97; P-trend = 0. 037) for DHA, and 0.39 (0.23-0.67; P-trend < 0.001) for ALA. However, EPA was not significantly associated with carotid atherosclerosis. Similar results were found for thickening at the carotid bifurcation and the occurrence of carotid artery plaque. Higher levels of DHA and ALA in the erythrocyte membrane were significantly associated with a lower burden of subclinical atherosclerosis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. High levels of omega-3 fatty acids in milk from omega-3 fatty acid-supplemented mothers are related to less immunoglobulin E-associated disease in infancy.

    PubMed

    Warstedt, Kristina; Furuhjelm, Catrin; Fälth-Magnusson, Karin; Fagerås, Malin; Duchén, Karel

    2016-11-01

    We previously reported a protective effect of maternal omega-3 fatty acid supplements on the development of immunoglobulin E (IgE)-associated disease in infancy. This study assessed omega-3 long-chain polyunsaturated fatty acids (LCPUFA) in maternal milk in relation to omega-3 LCPUFA supplementation and the development of allergic disease in their infants. This study randomised 95 pregnant women at risk of having an allergic infant, to daily supplements of 2.6 g omega-3 LCPUFA or a placebo of 2.7 g soya bean oil from gestational week 25 until 3 months of lactation. Breast milk samples were collected as colostrum, at one and 3 months. Milk fatty acids were related to allergic outcome in the infants at 24 months. Omega-3 milk fatty acids were higher in women who received omega-3 supplements than the placebo group (p < 0.01). Higher proportions of milk eicosapentaenoic acid and docosahexaenoic acid and a lower arachidonic/eicosapentaenoic acid ratio were associated with an absence of IgE-associated disease in the infants. None of the children developed IgE-associated atopic eczema above a level of 0.83 mol% eicosapentaenoic acid in colostrum. [Correction added on 7 July 2016, after online publication: In the preceding sentence, the correct word should be "above" instead of "below" and this has been amended in this current version.] CONCLUSION: High omega-3 LCPUFA milk levels in mothers who received omega-3 LCPUFA supplements were related to fewer allergies in their children. ©2016 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  6. Highly purified eicosapentaenoic acid as free fatty acids strongly suppresses polyps in Apc(Min/+) mice.

    PubMed

    Fini, Lucia; Piazzi, Giulia; Ceccarelli, Claudio; Daoud, Yahya; Belluzzi, Andrea; Munarini, Alessandra; Graziani, Giulia; Fogliano, Vincenzo; Selgrad, Michael; Garcia, Melissa; Gasbarrini, Antonio; Genta, Robert M; Boland, C Richard; Ricciardiello, Luigi

    2010-12-01

    Although cyclooxygenase (COX)-2 inhibitors could represent the most effective chemopreventive tool against colorectal cancer (CRC), their use in clinical practice is hampered by cardiovascular side effects. Consumption of ω-3-polyunsaturated fatty acids (ω-3-PUFAs) is associated with a reduced risk of CRC. Therefore, in this study, we assessed the efficacy of a novel 99% pure preparation of ω-3-PUFA eicosapentaenoic acid as free fatty acids (EPA-FFA) on polyps in Apc(Min/+) mice. Apc(Min/+) and corresponding wild-type mice were fed control diet (Ctrl) or diets containing either EPA-FFA 2.5% or 5%, for 12 weeks while monitoring food intake and body weight. We found that both EPA-FFA diets protected from the cachexia observed among Apc(Min/+) animals fed Ctrl diet (P < 0.0054), without toxic effect, in conjunction with a significant decrease in lipid peroxidation in the treated arms. Moreover, both EPA-FFA diets dramatically suppressed polyp number (by 71.5% and 78.6%, respectively; P < 0.0001) and load (by 82.5% and 93.4%, respectively; P < 0.0001) in both small intestine and colon. In addition, polyps less than 1 mm in size were predominantly found in the EPA-FFA 5% arm whereas those 1 to 3 mm in size were more frequent in the Ctrl arm (P < 0.0001). Interestingly, in the EPA-FFA groups, mucosal arachidonic acid was replaced by EPA (P < 0.0001), leading to a significant reduction in COX-2 expression and β-catenin nuclear translocation. Moreover, in the EPA-FFA arms, we found a significant decrease in proliferation throughout the intestine together with an increase in apoptosis. Our data make 99% pure EPA-FFA an excellent candidate for CRC chemoprevention. ©2010 AACR.

  7. Omega-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid and their mechanisms of action on apolipoprotein B-containing lipoproteins in humans: a review.

    PubMed

    Oscarsson, Jan; Hurt-Camejo, Eva

    2017-08-10

    Epidemiological and genetic studies suggest that elevated triglyceride (TG)-rich lipoprotein levels in the circulation increase the risk of cardiovascular disease. Prescription formulations of omega-3 fatty acids (OM3FAs), mainly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), reduce plasma TG levels and are approved for the treatment of patients with severe hypertriglyceridemia. Many preclinical studies have investigated the TG-lowering mechanisms of action of OM3FAs, but less is known from clinical studies. We conducted a review, using systematic methodology, of studies in humans assessing the mechanisms of action of EPA and DHA on apolipoprotein B-containing lipoproteins, including TG-rich lipoproteins and low-density lipoproteins (LDLs). A systematic search of PubMed retrieved 55 articles, of which 30 were used in the review; 35 additional arrticles were also included. In humans, dietary DHA is retroconverted to EPA, while production of DHA from EPA is not observed. Dietary DHA is preferentially esterified into TGs, while EPA is more evenly esterified into TGs, cholesterol esters and phospholipids. The preferential esterification of DHA into TGs likely explains the higher turnover of DHA than EPA in plasma. The main effects of both EPA and DHA are decreased fasting and postprandial serum TG levels, through reduction of hepatic very-low-density lipoprotein (VLDL)-TG production. The exact mechanism for reduced VLDL production is not clear but does not include retention of lipids in the liver; rather, increased hepatic fatty acid oxidation is likely. The postprandial reduction in TG levels is caused by increased lipoprotein lipase activity and reduced serum VLDL-TG concentrations, resulting in enhanced chylomicron clearance. Overall, no clear differences between the effects of EPA and DHA on TG levels, or on turnover of TG-rich lipoproteins, have been observed. Effects on LDL are complex and may be influenced by genetics, such as APOE genotype. EPA and

  8. Dietary n-3 LCPUFA from fish oil but not α-linolenic acid-derived LCPUFA confers atheroprotection in mice[S

    PubMed Central

    Degirolamo, Chiara; Kelley, Kathryn L.; Wilson, Martha D.; Rudel, Lawrence L.

    2010-01-01

    The atheroprotective potential of n-3 α-linolenic acid (ALA) has not yet been fully determined, even in murine models of atherosclerosis. We tested whether ALA-derived, n-3 long chain polyunsaturated fatty acids (LCPUFA) could offer atheroprotection in a dose-dependent manner. Apolipoprotein B (ApoB)100/100LDLr−/− mice were fed with diets containing two levels of ALA from flaxseed oil for 16 weeks. Fish oil- and cis-monounsaturated-fat-enriched diets were used as positive and negative controls, respectively. The mice fed cis-monounsaturated fat and ALA-enriched diets exhibited equivalent plasma total cholesterol (TPC) and LDL-cholesterol (LDL-c) levels; only mice fed the fish-oil diet had lower TPC and LDL-c concentrations. Plasma LDL-CE fatty acid composition analysis showed that ALA-enriched diets lowered the percentage of atherogenic cholesteryl oleate compared with cis-monounsaturated-fat diet (44% versus 55.6%) but not as efficiently as the fish-oil diet (32.4%). Although both ALA and fish-oil diets equally enriched hepatic phospholipids with eicosapentaenoic acid (EPA) and ALA-enriched diets lowered hepatic cholesteryl ester (CE) levels compared with cis-monounsaturated-fat diet, only fish oil strongly protected from atherosclerosis. These outcomes indicate that dietary n-3 LCPUFA from fish oil and n-3 LCPUFA (mostly EPA) synthesized endogenously from ALA were not equally atheroprotective in these mice. PMID:20154006

  9. Circulating irisin and glucose metabolism in overweight/obese women: effects of α-lipoic acid and eicosapentaenoic acid.

    PubMed

    Huerta, A E; Prieto-Hontoria, P L; Fernández-Galilea, M; Sáinz, N; Cuervo, M; Martínez, J A; Moreno-Aliaga, M J

    2015-09-01

    Irisin is a myokine/adipokine with potential role in obesity and diabetes. The objectives of the present study were to analyse the relationship between irisin and glucose metabolism at baseline and during an oral glucose tolerance test (OGTT) and to determine the effects of eicosapentaenoic acid (EPA) and/or α-lipoic acid treatment on irisin production in cultured human adipocytes and in vivo in healthy overweight/obese women following a weight loss program. Seventy-three overweight/obese women followed a 30% energy-restricted diet supplemented without (control) or with EPA (1.3 g/day), α-lipoic acid (0.3 g/day) or both EPA + α-lipoic acid (1.3 + 0.3 g/day) during 10 weeks. An OGTT was performed at baseline. Moreover, human adipocytes were treated with EPA (100-200 μM) or α-lipoic acid (100-250 μM) during 24 h. At baseline plasma, irisin circulating levels were positively associated with glucose levels; however, serum irisin concentrations were not affected by the increment in blood glucose or insulin during the OGTT. Treatment with α-lipoic acid (250 μM) upregulated Fndc5 messenger RNA (mRNA) and irisin secretion in cultured adipocytes. In overweight/obese women, irisin circulating levels decreased significantly after weight loss in all groups, while no additional differences were induced by EPA or α-lipoic acid supplementation. Moreover, plasma irisin levels were positively associated with higher glucose concentrations at beginning and at endpoint of the study. The data from the OGTT suggest that glucose is not a direct contributing factor of irisin release. The higher irisin levels observed in overweight/obese conditions could be a protective response of organism to early glucose impairments.

  10. Effect of Eicosapentaenoic Acid and Docosahexaenoic Acid on Myogenesis and Mitochondrial Biosynthesis during Murine Skeletal Muscle Cell Differentiation

    PubMed Central

    Hsueh, Tun-Yun; Baum, Jamie I.; Huang, Yan

    2018-01-01

    Polyunsaturated fatty acids are important nutrients for human health, especially omega-3 fatty acids such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which have been found to play positive roles in the prevention of various diseases. However, previous studies have reported that excessive omega-3 fatty acids supplement during pregnancy caused side effects such as slower neural transmission times and postnatal growth restriction. In this study, we investigated the effect of EPA and DHA on mitochondrial function and gene expression in C2C12 myoblasts during skeletal muscle differentiation. C2C12 myoblasts were cultured to confluency and then treated with differentiation medium that contained fatty acids (50-µM EPA and DHA). After 72 h of myogenic differentiation, mRNA was collected, and gene expression was analyzed by real-time PCR. Microscopy was used to examine cell morphology following treatment with fatty acids. The effect of EPA and DHA on cellular oxygen consumption was measured using a Seahorse XF24 Analyzer. Cells treated with fatty acids had fewer myotubes formed (P ≤ 0.05) compared with control cells. The expression of the genes related to myogenesis was significantly lower (P ≤ 0.05) in cells treated with fatty acids, compared with control cells. Genes associated with adipogenesis had higher (P ≤ 0.05) expression after treatment with fatty acids. Also, the mitochondrial biogenesis decreased with lower (P ≤ 0.05) gene expression and lower (P ≤ 0.05) mtDNA/nDNA ratio in cells treated with fatty acids compared with control cells. However, the expression of genes related to peroxisome biosynthesis was higher (P ≤ 0.05) in cells treated with fatty acids. Moreover, fatty-acid treatment reduced (P ≤ 0.05) oxygen consumption rate under oligomycin-inhibited (reflecting proton leak) and uncoupled conditions. Our data imply that fatty acids might reduce myogenesis and increase adipogenesis in myotube formation. Fatty acids may also

  11. The impact of omega-3 fatty acids on osteoporosis.

    PubMed

    Maggio, M; Artoni, A; Lauretani, F; Borghi, L; Nouvenne, A; Valenti, G; Ceda, G P

    2009-01-01

    The essential polyunsaturated fatty acids (PUFAs) comprise 2 main classes: n-6 and n-3 fatty acids. The most common source of n-6 fatty acids is linoleic acid (LA) which is found in high concentrations in various vegetable oils. Arachidonic acid (AA), the 20-carbon n-6 fatty acid, is obtained largely by synthesis from LA in the body. The n-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic (DHA) are found in fish and fish oils. Long-Chain polyunsaturated fatty acids (LCPUFAs) and lipid mediators derived from LCPUFAs have critical roles in the regulation of a variety of biological processes including bone metabolism. There are different mechanisms by which dietary fatty acids affect bone: effect on calcium balance, effect on osteoblastogenesis and osteoblast activity, change of membrane function, decrease in inflammatory cytokines such as interleukin-1 (IL-1), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-alpha), modulation of peroxisome proliferators-activated receptor gamma (PPARgamma). Animal studies have shown that a higher dietary omega-3/omega-6 fatty acids ratio is associated with beneficial effects on bone health. In spite of increasing evidence of the positive effects of dietary fats on bone metabolism from animal and in vitro studies, the few studies conducted in humans do not allow us to draw a definitive conclusion on their usefulness in clinical practice.

  12. Inadequate daily intakes of n-3 polyunsaturated fatty acids (PUFA) in the general French population of children (3-10 years) and adolescents (11-17 years): the INCA2 survey.

    PubMed

    Guesnet, Philippe; Tressou, Jessica; Buaud, Benjamin; Simon, Noëmie; Pasteau, Stéphane

    2018-04-23

    This paper deals with the dietary daily intakes of main polyunsaturated fatty acids (PUFA) in French children and adolescents. Dietary intakes of main PUFA were determined from a general French population of 1500 children (3-10 years) and adolescents (11-17 years) by using the most recent set of national robust data on food (National Survey INCA 2 performed in 2006 and 2007). Main results showed that mean daily intakes of total fat and n-6 PUFA linoleic acid (LA, 18:2n-6) were close to current recommended values for children and adolescent populations. However, 80% (children) to 90% (adolescents) of our French populations not only ingested low quantities of n-3 long-chain PUFA (docosahexaenoic (22:6n-3) and eicosapentaenoic (20:5n-3) acids) but also very low quantities of alpha-linolenic acid (ALA, 18:3n-3) at the origin of a non-balanced n-6/n-3 ratio. Inadequate consumption of EPA + DHA was also observed in subgroups of infants and adolescent who consumed more than two servings/week of fish. Such disequilibrium in PUFA dietary intakes in favor of n-6 PUFA could have adverse impact on cell membrane incorporation of long-chain n-3 PUFA and deleterious impacts on the health of children and adolescents. Promoting the consumption of both vegetable oils and margarines rich in ALA, and oily fish rich in long-chain n-3 PUFA might improve such PUFA disequilibrium.

  13. Chemopreventive Effects of Dietary Eicosapentaenoic Acid Supplementation in Experimental Myeloid Leukemia.

    PubMed

    Finch, Emily R; Kudva, Avinash K; Quickel, Michael D; Goodfield, Laura L; Kennett, Mary J; Whelan, Jay; Paulson, Robert F; Prabhu, K Sandeep

    2015-10-01

    Current therapies for treatment of myeloid leukemia do not eliminate leukemia stem cells (LSC), leading to disease relapse. In this study, we supplemented mice with eicosapentaenoic acid (EPA, C20:5), a polyunsaturated omega-3 fatty acid, at pharmacologic levels, to examine whether the endogenous metabolite, cyclopentenone prostaglandin delta-12 PGJ3 (Δ(12)-PGJ3), was effective in targeting LSCs in experimental leukemia. EPA supplementation for 8 weeks resulted in enhanced endogenous production of Δ(12)-PGJ3 that was blocked by indomethacin, a cyclooxygenase (COX) inhibitor. Using a murine model of chronic myelogenous leukemia (CML) induced by bone marrow transplantation of BCR-ABL-expressing hematopoietic stem cells, mice supplemented with EPA showed a decrease in the LSC population, and reduced splenomegaly and leukocytosis, when compared with mice on an oleic acid diet. Supplementation of CML mice carrying the T315I mutation (in BCR-ABL) with EPA resulted in a similar effect. Indomethacin blocked the EPA effect and increased the severity of BCR-ABL-induced CML and decreased apoptosis. Δ(12)-PGJ3 rescued indomethacin-treated BCR-ABL mice and decreased LSCs. Inhibition of hematopoietic-prostaglandin D synthase (H-PGDS) by HQL-79 in EPA-supplemented CML mice also blocked the effect of EPA. In addition, EPA supplementation was effective in a murine model of acute myeloid leukemia. EPA-supplemented mice exhibited a decrease in leukemia burden and a decrease in the LSC colony-forming unit (LSC-CFU). The decrease in LSCs was confirmed through serial transplantation assays in all disease models. The results support a chemopreventive role for EPA in myeloid leukemia, which is dependent on the ability to efficiently convert EPA to endogenous COX-derived prostanoids, including Δ(12)-PGJ3. ©2015 American Association for Cancer Research.

  14. Membrane Disordering by Eicosapentaenoic Acid in B Lymphomas Is Reduced by Elongation to Docosapentaenoic Acid as Revealed with Solid-State Nuclear Magnetic Resonance Spectroscopy of Model Membranes.

    PubMed

    Harris, Mitchell; Kinnun, Jacob J; Kosaraju, Rasagna; Leng, Xiaoling; Wassall, Stephen R; Shaikh, Saame Raza

    2016-07-01

    Plasma membrane organization is a mechanistic target of n-3 (ω-3) polyunsaturated fatty acids. Previous studies show that eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) differentially disrupt plasma membrane molecular order to enhance the frequency and function of B lymphocytes. However, it is not known whether EPA and DHA affect the plasma membrane organization of B lymphomas differently to influence their function. We tested whether EPA and DHA had different effects on membrane order in B lymphomas and liposomes and studied their effects on B-lymphoma growth. B lymphomas were treated with 25 μmol EPA, DHA, or serum albumin control/L for 24 h. Membrane order was measured with fluorescence polarization, and cellular fatty acids (FAs) were analyzed with GC. Growth was quantified with a viability assay. (2)H nuclear magnetic resonance (NMR) studies were conducted on deuterated phospholipid bilayers. Treating Raji, Ramos, and RPMI lymphomas for 24 h with 25 μmol EPA or DHA/L lowered plasma membrane order by 10-40% relative to the control. There were no differences between EPA and DHA on membrane order for the 3 cell lines. FA analyses revealed complex changes in response to EPA or DHA treatment and a large fraction of EPA was converted to docosapentaenoic acid (DPA; 22:5n-3). NMR studies, which were used to understand why EPA and DHA had similiar membrane effects, showed that phospholipids containing DPA, similar to DHA, were more ordered than those containing EPA. Finally, treating B lymphomas with 25 μmol EPA or DHA/L did not increase the frequency of B lymphomas compared with controls. The results establish that 25 μmol EPA and DHA/L equally disrupt membrane order and do not promote B lymphoma growth. The data open a new area of investigation, which is how EPA's conversion to DPA substantially moderates its influence on membrane properties. © 2016 American Society for Nutrition.

  15. Paradigm shift - Metabolic transformation of docosahexaenoic and eicosapentaenoic acids to bioactives exemplify the promise of fatty acid drug discovery.

    PubMed

    Halade, Ganesh V; Black, Laurence M; Verma, Mahendra Kumar

    Fatty acid drug discovery (FADD) is defined as the identification of novel, specialized bioactive mediators that are derived from fatty acids and have precise pharmacological/therapeutic potential. A number of reports indicate that dietary intake of omega-3 fatty acids and limited intake of omega-6 promotes overall health benefits. In 1929, Burr and Burr indicated the significant role of essential fatty acids for survival and functional health of many organs. In reference to specific dietary benefits of differential omega-3 fatty acids, docosahexaenoic and eicosapentaenoic acids (DHA and EPA) are transformed to monohydroxy, dihydroxy, trihydroxy, and other complex mediators during infection, injury, and exercise to resolve inflammation. The presented FADD approach describes the metabolic transformation of DHA and EPA in response to injury, infection, and exercise to govern uncontrolled inflammation. Metabolic transformation of DHA and EPA into a number of pro-resolving molecules exemplifies a novel, inexpensive approach compared to traditional, expensive drug discovery. DHA and EPA have been recommended for prevention of cardiovascular disease since 1970. Therefore, the FADD approach is relevant to cardiovascular disease and resolution of inflammation in many injury models. Future research demands identification of novel action targets, receptors for biomolecules, mechanism(s), and drug-interactions with resolvins in order to maintain homeostasis. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance - A review.

    PubMed

    Saini, Ramesh Kumar; Keum, Young-Soo

    2018-06-15

    Linoleic acid (LA) (n-6) and α-linolenic acid (ALA) (n-3) are essential fatty acids (EFAs) as they cannot be synthesized by humans or other higher animals. In the human body, these fatty acids (FAs) give rise to arachidonic acid (ARA, n-6), eicosapentaenoic acid (EPA, n-3), and docosahexaenoic acid (DHA, n-3) that play key roles in regulating body homeostasis. Locally acting bioactive signaling lipids called eicosanoids derived from these FAs also regulate diverse homeostatic processes. In general, ARA gives rise to pro-inflammatory eicosanoids whereas EPA and DHA give rise to anti-inflammatory eicosanoids. Thus, a proportionally higher consumption of n-3 PUFAs can protect us against inflammatory diseases, cancer, cardiovascular diseases, and other chronic diseases. The present review summarizes major sources, intake, and global consumption of n-3 and n-6 PUFAs. Their metabolism to biosynthesize long-chain PUFAs and eicosanoids and their roles in brain metabolism, cardiovascular disease, obesity, cancer, and bone health are also discussed. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. n-3 Fatty Acids, Ventricular Arrhythmia–Related Events, and Fatal Myocardial Infarction in Postmyocardial Infarction Patients With Diabetes

    PubMed Central

    Kromhout, Daan; Geleijnse, Johanna M.; de Goede, Janette; Oude Griep, Linda M.; Mulder, Barbara J.M.; de Boer, Menko-Jan; Deckers, Jaap W.; Boersma, Eric; Zock, Peter L.; Giltay, Erik J.

    2011-01-01

    OBJECTIVE We carried out a secondary analysis in high-risk patients with a previous myocardial infarction (MI) and diabetes in the Alpha Omega Trial. We tested the hypothesis that in these patients an increased intake of the n-3 fatty acids eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and α-linolenic acid (ALA) will reduce the incidence of ventricular arrhythmias and fatal MI. RESEARCH DESIGN AND METHODS A subgroup of 1,014 post-MI patients with diabetes aged 60–80 years was randomly allocated to receive one of four trial margarines, three with an additional amount of n-3 fatty acids and one placebo for 40 months. The end points were ventricular arrhythmia–related events and fatal MI. The data were analyzed according to the intention-to-treat principle, using multivariable Cox proportional hazards models. RESULTS The patients consumed on average 18.6 g of margarine per day, which resulted in an additional intake of 223 mg EPA plus 149 mg DHA and/or 1.9 g ALA in the active treatment groups. During follow-up, 29 patients developed a ventricular arrhythmia–related events and 27 had a fatal MI. Compared with placebo patients, the EPA-DHA plus ALA group experienced less ventricular arrhythmia–related events (hazard ratio 0.16; 95% CI 0.04–0.69). These n-3 fatty acids also reduced the combined end-point ventricular arrhythmia–related events and fatal MI (0.28; 0.11–0.71). CONCLUSIONS Our results suggest that low-dose supplementation of n-3 fatty acids exerts a protective effect against ventricular arrhythmia–related events in post-MI patients with diabetes. PMID:22110169

  18. The Salmon in Pregnancy Study: study design, subject characteristics, maternal fish and marine n-3 fatty acid intake, and marine n-3 fatty acid status in maternal and umbilical cord blood.

    PubMed

    Miles, Elizabeth A; Noakes, Paul S; Kremmyda, Lefkothea-Stella; Vlachava, Maria; Diaper, Norma D; Rosenlund, Grethe; Urwin, Heidi; Yaqoob, Parveen; Rossary, Adrien; Farges, Marie-Chantal; Vasson, Marie-Paule; Liaset, Bjørn; Frøyland, Livar; Helmersson, Johanna; Basu, Samar; Garcia, Erika; Olza, Josune; Mesa, Maria D; Aguilera, Concepcion M; Gil, Angel; Robinson, Sian M; Inskip, Hazel M; Godfrey, Keith M; Calder, Philip C

    2011-12-01

    Oily fish provides marine n-3 (omega-3) fatty acids that are considered to be important in the growth, development, and health of the fetus and newborn infant. The objectives were to increase salmon consumption among pregnant women and to determine the effect on maternal and umbilical cord plasma marine n-3 fatty acid content. Women (n = 123) with low habitual consumption of oily fish were randomly assigned to continue their habitual diet or were provided with 2 portions of farmed salmon/wk to include in their diet from week 20 of pregnancy until delivery. Median weekly consumption frequency of study salmon in the salmon group was 1.94 portions, and total fish consumption frequency was 2.11 portions/wk in the salmon group and 0.47 portions/wk in the control group (P < 0.001). Intakes of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from the diet, from seafood, and from oily fish were higher in the salmon group (all P < 0.001). Percentages of EPA and DHA in plasma phosphatidylcholine decreased during pregnancy in the control group (P for trend = 0.029 and 0.008, respectively), whereas they increased in the salmon group (P for trend for both < 0.001). EPA and DHA percentages were higher in maternal plasma phosphatidylcholine at weeks 34 and 38 of pregnancy and in umbilical cord plasma phosphatidylcholine in the salmon group (P < 0.001 for all). If pregnant women, who do not regularly eat oily fish, eat 2 portions of salmon/wk, they will increase their intake of EPA and DHA, achieving the recommended minimum intake; and they will increase their and their fetus' status of EPA and DHA. This trial was registered at clinicaltrials.gov as NCT00801502.

  19. A prospective, randomized, double blind, placebo-controlled evaluation of the effects of eicosapentaenoic acid and docosahexaenoic acid on the clinical signs and erythrocyte membrane polyunsaturated fatty acid concentrations in dogs with osteoarthritis.

    PubMed

    Mehler, Stephen J; May, Lauren R; King, Crystal; Harris, William S; Shah, Zubin

    2016-06-01

    Osteoarthritis (OA) in dogs is a prevalent and serious condition. The most common treatment for the clinical signs of OA in dogs is the administration of nonsteroidal antiiflammatory pharmaceuticals. Omega-3 (n-3) fatty acids have been shown to reduce the clinical signs of osteoarthritis in dogs. The primary goals of this study were 1) to determine the effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on the clinical signs of OA in dogs, 2) to evaluate the effects of supplementation on the arachadonic acid (ARA)/ (EPA+DHA) algorithm and 3) to correlate alterations in the ARA/(EPA+DHA) with changes in the clinical signs of canine OA. Seventy-eight client owned dogs were enrolled in a prospective, randomized, double-blind, placebo controlled clinical trial. Dogs were randomized to placebo oil or triglyceride n-3 oil (providing an average dose of 69mg EPA+DHA/kg/day). Orthopedic examinations and blood analyses were performed at baseline, day 42, and day 84. A single investigator confirmed a diagnosis of OA of the coxofemoral joints and/or stifle joints in all dogs. Seventy-four dogs completed the trial. All clinical outcomes for measuring discomfort, lameness, and joint severity at day 84 and all blood metrics at day 42 and day 84 significantly (p<0.05) improved compared with placebo. No major side effects were observed. This study demonstrated that the daily supplementation of a dogs diet with EPA and DHA shifts the blood fatty acid concentrations correlating to relief of clinical signs associated with OA in dogs. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Effects of long-term treatment with eicosapentaenoic acid on the heart subjected to ischemia/reperfusion and hypoxia/reoxygenation in rats.

    PubMed

    Takeo, S; Nasa, Y; Tanonaka, K; Yabe, K; Nojiri, M; Hayashi, M; Sasaki, H; Ida, K; Yanai, K

    1998-11-01

    The effects of eicosapentaenoic acid (EPA) and long-term treatment with EPA-ethylester (EPA-E) were examined in perfused rat hearts subjected to ischemia/reperfusion and adult rat cardiomyocytes subjected to hypoxia/reoxygenation. EPA (0.1 microM) improved postischemic contractile dysfunction of the ischemic/reperfused heart. EPA (10 microM) attenuated hypoxia/reoxygenation-induced morphological deterioration of cardiomyocytes. The results suggest the presence of direct cardioprotective effects of EPA. Rats were orally treated for 4 weeks with 1 g/kg/day of EPA-E to elucidate ex vivo effects of EPA, and the fatty acid composition of cardiac phospholipids was determined. The percent ratio of EPA in total fatty acids of cardiac phospholipids increased whereas that of arachidonic acid decreased. The percent ratio of n-3/n-6 fatty acid did not increase. Treatment with EPA-E did not improve the post-ischemic contractile function, but attenuated the ischemia/reperfusion-induced release of prostaglandins during reperfusion. Treatment with EPA-E preserved a better morphological appearance of the cardiomyocytes subjected to hypoxia/reoxygenation. The results suggest that the mechanisms responsible for cytoprotective effects of hypoxic/reoxygenated cardiomyocytes or inhibition of metabolic alterations of the ischemic/reperfused heart by long-term EPA-E treatment did not contribute substantially to recovery of post-ischemic contractile dysfunction. The direct in vitro effects of EPA may play a role in the protection of the heart from ischemia/reperfusion or hypoxia/reoxygenation injury.

  1. Docosahexaenoic acid at the sn-2 position of structured triacylglycerols improved n-3 polyunsaturated fatty acid assimilation in tissues of hamsters.

    PubMed

    Bandarra, Narcisa M; Lopes, Paula A; Martins, Susana V; Ferreira, Júlia; Alfaia, Cristina M; Rolo, Eva A; Correia, Jorge J; Pinto, Rui M A; Ramos-Bueno, Rebeca P; Batista, Irineu; Prates, José A M; Guil-Guerrero, José L

    2016-05-01

    In this study, we hypothesized that the incorporation of docosahexaenoic acid (DHA) in tissues will be higher when it is ingested as triacylglycerols (TAG) structured at the sn-2 position, which enhances efficacy and health benefits of dietary DHA n-3 supplementation. Ten-week-old Golden Syrian male hamsters were randomly allocated into 4 dietary groups with 10 animals in each: linseed oil (LSO; control group), fish oil (FO), fish oil ethyl esters (FO-EE), and structured DHA at the sn-2 position of TAG (DHA-SL). After 12 weeks, there were no variations in the hamsters' body composition parameters across dietary groups. The DHA-SL diet had the lowest values of total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, total lipids, and aspartate aminotransferase activity, whereas the inverse was observed for the FO diet. Glucose was increased in the LSO diet without affecting insulin and insulin resistance markers. Whereas n-3 polyunsaturated fatty acid was increased in the brain of hamsters fed the DHA-SL diet, higher levels of n-6 polyunsaturated fatty acid were observed in the liver and erythrocytes of the LSO. The highest omega-3 index was obtained with the DHA-SL diet. The principal component analyses discriminated DHA from other metabolites and set apart 4 clusters matching the 4 diets. Similarly, liver, erythrocytes, and brain were separated from each other, pointing toward an individual signature on fatty acid deposition. The structured sn-2 position DHA-containing TAG ameliorated blood lipids and fatty acid incorporation, in particular eicosapentaenoic acid and DHA in liver, erythrocytes, and brain, relative to commercially FOs, thus improving the health benefits of DHA due to its higher bioavailability. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. The potential relevance of docosahexaenoic acid and eicosapentaenoic acid to the etiopathogenesis of childhood neuropsychiatric disorders.

    PubMed

    Tesei, Alessandra; Crippa, Alessandro; Ceccarelli, Silvia Busti; Mauri, Maddalena; Molteni, Massimo; Agostoni, Carlo; Nobile, Maria

    2017-09-01

    Over the last 15 years, considerable interest has been given to the potential role of omega-3 polyunsaturated fatty acids (PUFAs) for understanding pathogenesis and treatment of neurodevelopmental and psychiatric disorders. This review aims to systematically investigate the scientific evidence supporting the hypothesis on the omega-3 PUFAs deficit as a risk factor shared by different pediatric neuropsychiatric disorders. Medline PubMed database was searched for studies examining blood docosahexaenoic acid (DHA) or eicosapentaenoic acid (EPA) status in children with neuropsychiatric disorders. Forty-one published manuscripts were compatible with the search criteria. The majority of studies on attention-deficit/hyperactivity disorder (ADHD) and autism found a significant decrease in DHA levels in patients versus healthy controls. For the other conditions examined-depression, juvenile bipolar disorder, intellectual disabilities, learning difficulties, and eating disorders (EDs)-the literature was too limited to draw any stable conclusions. However, except EDs, findings in these conditions were in line with results from ADHD and autism studies. Results about EPA levels were too inconsistent to conclude that EPA could be associated with any of the conditions examined. Finally, correlational data provided, on one hand, evidence for a negative association between DHA and symptomatology, whereas on the other hand, evidence for a positive association between EPA and emotional well-being. Although the present review underlines the potential involvement of omega-3 PUFAs in the predisposition to childhood neuropsychiatric disorders, more observational and intervention studies across different diagnoses are needed, which should integrate the collection of baseline PUFA levels with their potential genetic and environmental influencing factors.

  3. Baking reduces prostaglandin, resolvin, and hydroxy-fatty acid content of farm-raised Atlantic salmon (Salmo salar)

    USDA-ARS?s Scientific Manuscript database

    Consumption of seafood enriched in n-3 polyunsaturated fatty acids (PUFA) is associated with a decreased risk of cardiovascular disease. Several n-3 oxidation products from eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) have known protective effects in the vasculature t...

  4. Arachidonic Acid and Eicosapentaenoic Acid Metabolism in Juvenile Atlantic Salmon as Affected by Water Temperature.

    PubMed

    Norambuena, Fernando; Morais, Sofia; Emery, James A; Turchini, Giovanni M

    2015-01-01

    Salmons raised in aquaculture farms around the world are increasingly subjected to sub-optimal environmental conditions, such as high water temperatures during summer seasons. Aerobic scope increases and lipid metabolism changes are known plasticity responses of fish for a better acclimation to high water temperature. The present study aimed at investigating the effect of high water temperature on the regulation of fatty acid metabolism in juvenile Atlantic salmon fed different dietary ARA/EPA ratios (arachidonic acid, 20:4n-6/ eicosapentaenoic acid, 20:5n-3), with particular focus on apparent in vivo enzyme activities and gene expression of lipid metabolism pathways. Three experimental diets were formulated to be identical, except for the ratio EPA/ARA, and fed to triplicate groups of Atlantic salmon (Salmo salar) kept either at 10°C or 20°C. Results showed that fatty acid metabolic utilisation, and likely also their dietary requirements for optimal performance, can be affected by changes in their relative levels and by environmental temperature in Atlantic salmon. Thus, the increase in temperature, independently from dietary treatment, had a significant effect on the β-oxidation of a fatty acid including EPA, as observed by the apparent in vivo enzyme activity and mRNA expression of pparα -transcription factor in lipid metabolism, including β-oxidation genes- and cpt1 -key enzyme responsible for the movement of LC-PUFA from the cytosol into the mitochondria for β-oxidation-, were both increased at the higher water temperature. An interesting interaction was observed in the transcription and in vivo enzyme activity of Δ5fad-time-limiting enzyme in the biosynthesis pathway of EPA and ARA. Such, at lower temperature, the highest mRNA expression and enzyme activity was recorded in fish with limited supply of dietary EPA, whereas at higher temperature these were recorded in fish with limited ARA supply. In consideration that fish at higher water temperature

  5. Environmental evaluation of eicosapentaenoic acid production by Phaeodactylum tricornutum.

    PubMed

    Pérez-López, Paula; González-García, Sara; Allewaert, Céline; Verween, Annick; Murray, Patrick; Feijoo, Gumersindo; Moreira, Ma Teresa

    2014-01-01

    Polyunsaturated fatty acids (PUFAs) play an important role in human health. Due to the increased market demand, the production of PUFAs from potential alternative sources such as microalgae is receiving increased interest. The aim of this study was to perform a life cycle assessment (LCA) of the biotechnological production of eicosapentaenoic acid (EPA) from the marine diatom Phaeodactylum tricornutum, followed by the identification of avenues to improve its environmental profile. The LCA tackles two production schemes of P. tricornutum PUFAs with an EPA content of 36%: lab and pilot scales. The results at lab scale show that both the electricity requirements and the production of the extraction agent (chloroform) have significant influence on the life cycle environmental performance of microalgal EPA production. An alternative method based on hexane was proposed to replace chloroform and environmental benefits were identified. Regarding the production of EPA at pilot scale, three main environmental factors were identified: the production of the nitrogen source required for microalgae growing, the transport activities and electricity requirements. Improvement alternatives were proposed and discussed concerning: a) the use of nitrogen based fertilizers, b) the valorization of the residual algal paste as soil conditioner and, c) the anaerobic digestion of the residual algal paste for bioenergy production. Encouraging environmental benefits could be achieved if sodium nitrate was substituted by urea, calcium nitrate or ammonium nitrate, regardless the category under assessment. In contrast, minor improvement was found when valorizing the residual algal paste as mineral fertilizer, due to its overall low content in N and P. Concerning the biogas production from the anaerobic digestion, the improvement on the environmental profile was also limited due to the discrepancy between the potential energy production from the algal paste and the high electricity requirements in

  6. Association between polymorphisms in the fatty acid desaturase gene cluster and the plasma triacylglycerol response to an n-3 PUFA supplementation.

    PubMed

    Cormier, Hubert; Rudkowska, Iwona; Paradis, Ann-Marie; Thifault, Elisabeth; Garneau, Véronique; Lemieux, Simone; Couture, Patrick; Vohl, Marie-Claude

    2012-08-01

    Eicosapentaenoic and docosahexaenoic acids have been reported to have a variety of beneficial effects on cardiovascular disease risk factors. However, a large inter-individual variability in the plasma lipid response to an omega-3 (n-3) polyunsaturated fatty acid (PUFA) supplementation is observed in different studies. Genetic variations may influence plasma lipid responsiveness. The aim of the present study was to examine the effects of a supplementation with n-3 PUFA on the plasma lipid profile in relation to the presence of single-nucleotide polymorphisms (SNPs) in the fatty acid desaturase (FADS) gene cluster. A total of 208 subjects from Quebec City area were supplemented with 3 g/day of n-3 PUFA, during six weeks. In a statistical model including the effect of the genotype, the supplementation and the genotype by supplementation interaction, SNP rs174546 was significantly associated (p = 0.02) with plasma triglyceride (TG) levels, pre- and post-supplementation. The n-3 supplementation had an independent effect on plasma TG levels and no significant genotype by supplementation interaction effects were observed. In summary, our data support the notion that the FADS gene cluster is a major determinant of plasma TG levels. SNP rs174546 may be an important SNP associated with plasma TG levels and FADS1 gene expression independently of a nutritional intervention with n-3 PUFA.

  7. Association between Polymorphisms in the Fatty Acid Desaturase Gene Cluster and the Plasma Triacylglycerol Response to an n-3 PUFA Supplementation

    PubMed Central

    Cormier, Hubert; Rudkowska, Iwona; Paradis, Ann-Marie; Thifault, Elisabeth; Garneau, Véronique; Lemieux, Simone; Couture, Patrick; Vohl, Marie-Claude

    2012-01-01

    Eicosapentaenoic and docosahexaenoic acids have been reported to have a variety of beneficial effects on cardiovascular disease risk factors. However, a large inter-individual variability in the plasma lipid response to an omega-3 (n-3) polyunsaturated fatty acid (PUFA) supplementation is observed in different studies. Genetic variations may influence plasma lipid responsiveness. The aim of the present study was to examine the effects of a supplementation with n-3 PUFA on the plasma lipid profile in relation to the presence of single-nucleotide polymorphisms (SNPs) in the fatty acid desaturase (FADS) gene cluster. A total of 208 subjects from Quebec City area were supplemented with 3 g/day of n-3 PUFA, during six weeks. In a statistical model including the effect of the genotype, the supplementation and the genotype by supplementation interaction, SNP rs174546 was significantly associated (p = 0.02) with plasma triglyceride (TG) levels, pre- and post-supplementation. The n-3 supplementation had an independent effect on plasma TG levels and no significant genotype by supplementation interaction effects were observed. In summary, our data support the notion that the FADS gene cluster is a major determinant of plasma TG levels. SNP rs174546 may be an important SNP associated with plasma TG levels and FADS1 gene expression independently of a nutritional intervention with n-3 PUFA. PMID:23016130

  8. Antibacterial and antibiofilm activities of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) against periodontopathic bacteria.

    PubMed

    Sun, Mengjun; Zhou, Zichao; Dong, Jiachen; Zhang, Jichun; Xia, Yiru; Shu, Rong

    2016-10-01

    Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are two major omega-3 polyunsaturated fatty acids (n-3 PUFAs) with antimicrobial properties. In this study, we evaluated the potential antibacterial and antibiofilm activities of DHA and EPA against two periodontal pathogens, Porphyromonas gingivalis (P. gingivalis) and Fusobacterium nucleatum (F. nucleatum). MTT assay showed that DHA and EPA still exhibited no cytotoxicity to human oral tissue cells when the concentration came to 100 μM and 200 μM, respectively. Against P. gingivalis, DHA and EPA showed the same minimum inhibitory concentration (MIC) of 12.5 μM, and a respective minimum bactericidal concentration (MBC) of 12.5 μM and 25 μM. However, the MIC and MBC values of DHA or EPA against F. nucleatum were both greater than 100 μM. For early-stage bacteria, DHA or EPA displayed complete inhibition on the planktonic growth and biofilm formation of P. gingivalis from the lowest concentration of 12.5 μM. And the planktonic growth of F. nucleatum was slightly but not completely inhibited by DHA or EPA even at the concentration of 100 μM, however, the biofilm formation of F. nucleatum at 24 h was significantly restrained by 100 μM EPA. For exponential-phase bacteria, 100 μM DHA or EPA completely killed P. gingivalis and significantly decreased the viable counts of F. nucleatum. Meanwhile, the morphology of P. gingivalis was apparently damaged, and the virulence factor gene expression of P. gingivalis and F. nucleatum was strongly downregulated. Besides, the viability and the thickness of mature P. gingivalis biofilm, together with the viability of mature F. nucleatum biofilm were both significantly decreased in the presence of 100 μM DHA or EPA. In conclusion, DHA and EPA possessed antibacterial activities against planktonic and biofilm forms of periodontal pathogens, which suggested that DHA and EPA might be potentially supplementary therapeutic agents for prevention

  9. Integrated Immunomodulatory Mechanisms through which Long-Chain n-3 Polyunsaturated Fatty Acids Attenuate Obese Adipose Tissue Dysfunction

    PubMed Central

    Liddle, Danyelle M.; Wellings, Hannah R.; Power, Krista A.; Robinson, Lindsay E.; Monk, Jennifer M.

    2017-01-01

    Obesity is a global health concern with rising prevalence that increases the risk of developing other chronic diseases. A causal link connecting overnutrition, the development of obesity and obesity-associated co-morbidities is visceral adipose tissue (AT) dysfunction, characterized by changes in the cellularity of various immune cell populations, altered production of inflammatory adipokines that sustain a chronic state of low-grade inflammation and, ultimately, dysregulated AT metabolic function. Therefore, dietary intervention strategies aimed to halt the progression of obese AT dysfunction through any of the aforementioned processes represent an important active area of research. In this connection, fish oil-derived dietary long-chain n-3 polyunsaturated fatty acids (PUFA) in the form of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been demonstrated to attenuate obese AT dysfunction through multiple mechanisms, ultimately affecting AT immune cellularity and function, adipokine production, and metabolic signaling pathways, all of which will be discussed herein. PMID:29186929

  10. Cardiometabolic risk factors are influenced by Stearoyl-CoA Desaturase (SCD) -1 gene polymorphisms and n-3 polyunsaturated fatty acid supplementation.

    PubMed

    Rudkowska, Iwona; Julien, Pierre; Couture, Patrick; Lemieux, Simone; Tchernof, André; Barbier, Olivier; Vohl, Marie-Claude

    2014-05-01

    To determine if single nucleotide polymorphisms (SNPs) in stearoyl-CoA desaturase (SCD)-1 gene that encodes a key enzyme for fatty acid metabolism are associated with the response of cardiometabolic risk factors to n-3 PUFA supplementation. Two hundred and ten subjects completed a 2-week run-in period followed by 6-week supplementation with 5 g of fish oil (1.9-2.2 g eicosapentaenoic acid and 1.1 g docosahexaenoic acid). Risk factors were measured pre and post n-3 supplementation. Fatty acid composition of plasma phospholipids was analyzed by GC and the desaturase indices SCD16 (16:1n-7/16:0) and SCD18 (18:1n-9/18:0) were calculated. Genotyping of eight SNPs of the SCD1 gene was performed. N-3 PUFA supplementation decreased plasma triglycerides, as well as SCD16 and SCD18 indices, but increased fasting plasma glucose concentrations. SNPs in SCD1-modified cardiometabolic risk factors pre and post n-3 PUFA supplementation: triglyceride (rs508384, p = 0.0086), IL6 (rs3071, p = 0.0485), C-reactive protein (rs3829160, p = 0.0489), and SCD18 indices (rs2234970, p = 0.0337). A significant interaction effect between the SNP and n-3 PUFA supplementation was also observed for fasting plasma glucose levels (rs508384, p = 0.0262). These results suggest that cardiometabolic risk factors are modulated by genetic variations in the SCD1 gene alone or in combination with n-3 PUFA supplementation. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Dietary omega-6 fatty acid lowering increases bioavailability of omega-3 polyunsaturated fatty acids in human plasma lipid pools.

    PubMed

    Taha, Ameer Y; Cheon, Yewon; Faurot, Keturah F; Macintosh, Beth; Majchrzak-Hong, Sharon F; Mann, J Douglas; Hibbeln, Joseph R; Ringel, Amit; Ramsden, Christopher E

    2014-05-01

    Dietary linoleic acid (LA, 18:2n-6) lowering in rats reduces n-6 polyunsaturated fatty acid (PUFA) plasma concentrations and increases n-3 PUFA (eicosapentaenoic (EPA) and docosahexaenoic acid (DHA)) concentrations. To evaluate the extent to which 12 weeks of dietary n-6 PUFA lowering, with or without increased dietary n-3 PUFAs, alters unesterified and esterified plasma n-6 and n-3 PUFA concentrations in subjects with chronic headache. Secondary analysis of a randomized trial. Subjects with chronic headache were randomized for 12 weeks to (1) average n-3, low n-6 (L6) diet; or (2) high n-3, low n-6 LA (H3-L6) diet. Esterified and unesterified plasma fatty acids were quantified at baseline (0 weeks) and after 12 weeks on a diet. Compared to baseline, the L6 diet reduced esterified plasma LA and increased esterified n-3 PUFA concentrations (nmol/ml), but did not significantly change plasma arachidonic acid (AA, 20:4n-6) concentration. In addition, unesterified EPA concentration was increased significantly among unesterified fatty acids. The H3-L6 diet decreased esterified LA and AA concentrations, and produced more marked increases in esterified and unesterified n-3 PUFA concentrations. Dietary n-6 PUFA lowering for 12 weeks significantly reduces LA and increases n-3 PUFA concentrations in plasma, without altering plasma AA concentration. A concurrent increase in dietary n-3 PUFAs for 12 weeks further increases n-3 PUFA plasma concentrations and reduces AA. Published by Elsevier Ltd.

  12. Dietary omega-6 fatty acid lowering increases bioavailability of omega-3 polyunsaturated fatty acids in human plasma lipid pools

    PubMed Central

    Taha, Ameer Y.; Cheon, Yewon; Faurot, Keturah F.; MacIntosh, Beth; Majchrzak-Hong, Sharon F.; Mann, J. Douglas; Hibbeln, Joseph R.; Ringel, Amit; Ramsden, Christopher E.

    2014-01-01

    Background Dietary linoleic acid (LA, 18:2n-6) lowering in rats reduces n-6 polyunsaturated fatty acid (PUFA) plasma concentrations and increases n-3 PUFA (eicosapentaenoic (EPA) and docosahexaenoic acid (DHA)) concentrations. Objective To evaluate the extent to which 12 weeks of dietary n-6 PUFA lowering, with or without increased dietary n-3 PUFAs, change unesterified and esterified plasma n-6 and n-3 PUFA concentrations in subjects with chronic headache. Design Secondary analysis of a randomized trial. Subjects with chronic headache were randomized for 12 weeks to: (1) average n-3, low n-6 (L6) diet; or (2) high n-3, low n-6 LA (H3-L6) diet. Esterified and unesterified plasma fatty acids were quantified at baseline (0 weeks) and after 12 weeks on a diet. Results Compared to baseline, the L6 diet reduced esterified plasma LA and increased esterified n-3 PUFA concentrations (nmol/ml), but did not significantly change plasma arachidonic acid (AA, 20:4n-6) concentration. In addition, unesterified EPA concentration was increased significantly among unesterified fatty acids. The H3-L6 diet decreased esterified LA and AA concentrations, and produced more marked increases in esterified and unesterified n-3 PUFA concentrations. Conclusion Dietary n-6 PUFA lowering for 12 weeks significantly reduces LA and increases n-3 PUFA concentrations in plasma, without altering plasma AA concentration. A concurrent increase in dietary n-3 PUFA for 12 weeks further increases n-3 PUFA plasma concentrations, but also reduces AA. PMID:24675168

  13. Potential Application of Eicosapentaenoic Acid Monoacylglyceride in the Management of Colorectal Cancer

    PubMed Central

    Morin, Caroline; Rodríguez, Enrique; Blier, Pierre U.; Fortin, Samuel

    2017-01-01

    Background: There is increasing evidence that marine omega-3 oils are involved in the reduction of cancer risk and progression. However, the anticancer effect of omega-3 monoglyceride on colorectal cancer has yet to be assessed. The goal of this study was to evaluate the anti-cancer effects of eicosapentaenoic acid monoglyceride (MAG-EPA) in HCT116 colorectal carcinoma cells. Methods: The effect of MAG-EPA was evaluated in vitro on HCT116 cells and in vivo on mouse model of HCT116 xenograft. Results: Our data reveal that MAG-EPA decreased cell proliferation and induced apoptosis in HCT116 cells. In a xenograft mouse model, daily per os administration of MAG-EPA reduced tumor growth. Furthermore, MAG-EPA treatments decreased EGFR, VEGFR, and AKT activation pathways and reduced VEGF and HIF1α expression levels in tumors. Conclusion: MAG-EPA may promote apoptosis and inhibit growth of tumors by suppressing EGFR and VEGFR activation pathways. Altogether, these data provide new evidence regarding the mode of action of MAG-EPA in colorectal cancer cells. PMID:28869531

  14. The Differential Effects of Eicosapentaenoic Acid and Docosahexaenoic Acid on Cardiometabolic Risk Factors: A Systematic Review

    PubMed Central

    Innes, Jacqueline K.; Calder, Philip C.

    2018-01-01

    A large body of evidence supports the cardioprotective effects of the long-chain omega-3 polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). There is increasing interest in the independent effects of EPA and DHA in the modulation of cardiometabolic risk factors. This systematic review aims to appraise the latest available evidence of the differential effects of EPA and DHA on such risk factors. A systematic literature review was conducted up to May 2017. Randomised controlled trials were included if they met strict eligibility criteria, including EPA or DHA > 2 g/day and purity ≥ 90%. Eighteen identified articles were included, corresponding to six unique studies involving 527 participants. Both EPA and DHA lowered triglyceride concentration, with DHA having a greater triglyceride-lowering effect. Whilst total cholesterol levels were largely unchanged by EPA and DHA, DHA increased high-density lipoprotein (HDL) cholesterol concentration, particularly HDL2, and increased low-density lipoprotein (LDL) cholesterol concentration and LDL particle size. Both EPA and DHA inhibited platelet activity, whilst DHA improved vascular function and lowered heart rate and blood pressure to a greater extent than EPA. The effects of EPA and DHA on inflammatory markers and glycaemic control were inconclusive; however both lowered oxidative stress. Thus, EPA and DHA appear to have differential effects on cardiometabolic risk factors, but these need to be confirmed by larger clinical studies. PMID:29425187

  15. Low Plasma Eicosapentaenoic Acid Levels are Associated with Elevated Trait Aggression and Impulsivity in Major Depressive Disorder with a History of Comorbid Substance Use Disorder

    PubMed Central

    Beier, Anne Mette; Lauritzen, Lotte; Galfalvy, Hanga C.; Cooper, Thomas B.; Oquendo, Maria A.; Grunebaum, Michael F.; Mann, J. John; Sublette, M. Elizabeth

    2014-01-01

    Major depressive disorder (MDD) is associated with low levels of omega-3 polyunsaturated fatty acids (PUFAs), holding promise for new perspectives on disease etiology and treatment targets. As aggressive and impulsive behaviors are associated with low omega-3 PUFA levels in some clinical contexts, we investigated plasma PUFA relationships with trait aggression and impulsivity in patients with MDD. Medication-free MDD patients (n=48) and healthy volunteers (HV, n=35) were assessed with the Brown-Goodwin Aggression Inventory. A subset (MDD, n=39; HV, n=33) completed the Barratt Impulsiveness Scale. Plasma PUFAs eicosapentaenoic acid (EPA, 20:5n-3), docosahexaenoic acid (DHA, 22:6n-3), and arachidonic acid (AA, 20:4n-6) were quantified and ln-transformed to mitigate distributional skew. Ln-transformed PUFA (lnPUFA) levels were predictors in regression models, with aggression or impulsivity scores as outcomes, and cofactors of sex and diagnostic status (MDD with or without a history of substance use disorder [SUD], or HV). Interactions were tested between relevant PUFAs and diagnostic status. Additional analyses explored possible confounds of depression severity, self-reported childhood abuse history, and, in MDD patients, suicide attempt history. Among PUFA, lnEPA but not lnDHA predicted aggression (F1,76=12.493, p=0.001), and impulsivity (F1,65=5.598, p=0.021), with interactions between lnEPA and history of SUD for both aggression (F1,76=7.941, p=0.001) and impulsivity (F1,65=3.485, p=0.037). Results remained significant when adjusted for childhood abuse, depression severity, or history of suicide attempt. In conclusion, low EPA levels were associated with aggression and impulsivity only in patients with MDD and comorbid SUD, even though in most cases SUD was in full sustained remission. PMID:25017608

  16. Effects of dietary conjugated linoleic acid and linoleic:linolenic acid ratio on polyunsaturated fatty acid status in laying hens.

    PubMed

    Du, M; Ahn, D U; Sell, J L

    2000-12-01

    A study was conducted to determine the effects of dietary conjugated linoleic acid (CLA) and the ratio of linoleic:linolenic acid on long-chain polyunsaturated fatty acid status. Thirty-two 31-wk-old White Leghorn hens were randomly assigned to four diets containing 8.2% soy oil, 4.1% soy oil + 2.5% CLA (4.1% CLA source), 4.1% flax oil + 2.5% CLA, or 4.1% soy oil + 4.1% flax oil. Hens were fed the diets for 3 wk before eggs and tissues were collected for the study. Lipids were extracted from egg yolk and tissues, classes of egg yolk lipids were separated, and fatty acid concentrations of total lipids, triglyceride, phosphatidylethanolamine, and phosphatidylcholine were analyzed by gas chromatography. The concentrations of monounsaturated fatty acids and non-CLA polyunsaturated fatty acids were reduced after CLA feeding. The amount of arachidonic acid was decreased after CLA feeding in linoleic acid- and linolenic acid-rich diets, but amounts of eicosapentaenoic acid and docosahexaenoic acid were increased in the linolenic-rich diet, indicating that the synthesis or deposition of long-chain n-3 fatty acids was accelerated after CLA feeding. The increased docosahexaenoic acid and eicosapentaenoic acid contents in lipid may be compensation for the decreased arachidonic acid content. Dietary supplementation of linoleic acid increased n-6 fatty acid levels in lipids, whereas linolenic acid increased n-3 fatty acid levels. Results also suggest that CLA might not be elongated to synthesize long-chain fatty acids in significant amounts. The effect of CLA in reducing the level of n-6 fatty acids and promoting the level of n-3 fatty acids could be related to the biological effects of CLA.

  17. Chronic administration of docosahexaenoic acid or eicosapentaenoic acid, but not arachidonic acid, alone or in combination with uridine, increases brain phosphatide and synaptic protein levels in gerbils.

    PubMed

    Cansev, M; Wurtman, R J

    2007-08-24

    Synthesis of phosphatidylcholine, the most abundant brain membrane phosphatide, requires three circulating precursors: choline; a pyrimidine (e.g. uridine); and a polyunsaturated fatty acid. Supplementing a choline-containing diet with the uridine source uridine-5'-monophosphate (UMP) or, especially, with UMP plus the omega-3 fatty acid docosahexaenoic acid (given by gavage), produces substantial increases in membrane phosphatide and synaptic protein levels within gerbil brain. We now compare the effects of various polyunsaturated fatty acids, given alone or with UMP, on these synaptic membrane constituents. Gerbils received, daily for 4 weeks, a diet containing choline chloride with or without UMP and/or, by gavage, an omega-3 (docosahexaenoic or eicosapentaenoic acid) or omega-6 (arachidonic acid) fatty acid. Both of the omega-3 fatty acids elevated major brain phosphatide levels (by 18-28%, and 21-27%) and giving UMP along with them enhanced their effects significantly. Arachidonic acid, given alone or with UMP, was without effect. After UMP plus docosahexaenoic acid treatment, total brain phospholipid levels and those of each individual phosphatide increased significantly in all brain regions examined (cortex, striatum, hippocampus, brain stem, and cerebellum). The increases in brain phosphatides in gerbils receiving an omega-3 (but not omega-6) fatty acid, with or without UMP, were accompanied by parallel elevations in levels of pre- and post-synaptic proteins (syntaxin-3, PSD-95 and synapsin-1) but not in those of a ubiquitous structural protein, beta-tubulin. Hence administering omega-3 polyunsaturated fatty acids can enhance synaptic membrane levels in gerbils, and may do so in patients with neurodegenerative diseases, especially when given with a uridine source, while the omega-6 polyunsaturated fatty acid arachidonic acid is ineffective.

  18. Use of biodiesel-derived crude glycerol for producing eicosapentaenoic acid (EPA) by the fungus Pythium irregulare.

    PubMed

    Athalye, Sneha K; Garcia, Rafael A; Wen, Zhiyou

    2009-04-08

    Crude glycerol is a major byproduct for the biodiesel industry. Producing value-added products through microbial fermentation on crude glycerol provides opportunities to utilize a large quantity of this byproduct. The objective of this study is to explore the potential of using crude glycerol for producing eicosapentaenoic acid (EPA, 20:5 n-3) by the fungus Pythium irregulare . When P. irregulare was grown in medium containing 30 g/L crude glycerol and 10 g/L yeast extract, EPA yield and productivity reached 90 mg/L and 14.9 mg/L x day, respectively. Adding pure vegetable oils (flaxseed oil and soybean oil) to the culture greatly enhanced the biomass and the EPA production. This enhancement was due to the oil absorption by the fungal cells and elongation of shorter chain fatty acids (e.g., linoleic acid and alpha-linolenic acid) into longer chain fatty acid (e.g., EPA). The major impurities contained in crude glycerol, soap and methanol, were inhibitory to fungal growth. Soap can be precipitated from the liquid medium through pH adjustment, whereas methanol can be evaporated from the medium during autoclaving. The glycerol-derived fungal biomass contained about 15% lipid, 36% protein, and 40% carbohydrate, with 9% ash. In addition to EPA, the fungal biomass was also rich in the essential amino acids lysine, arginine, and leucine, relative to many common feedstuffs. Elemental analysis by inductively coupled plasma showed that aluminum, calcium, copper, iron, magnesium, manganese, phosphorus, potassium, silicon, sodium, sulfur, and zinc were present in the biomass, whereas no heavy metals (such as mercury and lead) were detected. The results show that it is feasible to use crude glycerol for producing fungal biomass that can serve as EPA-fortified food or feed.

  19. Synthesis of docosahexaenoic acid from eicosapentaenoic acid in retina neurons protects photoreceptors from oxidative stress

    PubMed Central

    Simón, María Victoria; Agnolazza, Daniela L.; German, Olga Lorena; Garelli, Andrés; Politi, Luis E.; Agbaga, Martin-Paul; Anderson, Robert E.; Rotstein, Nora P.

    2015-01-01

    Oxidative stress is involved in activating photoreceptor death in several retinal degenerations. Docosahexaenoic acid (DHA), the major polyunsaturated fatty acid in the retina, protects cultured retina photoreceptors from apoptosis induced by oxidative stress and promotes photoreceptor differentiation. Here we investigated whether eicosapentaenoic acid (EPA), a metabolic precursor to DHA, had similar effects and whether retinal neurons could metabolize EPA to DHA. Adding EPA to rat retina neuronal cultures increased opsin expression and protected photoreceptors from apoptosis induced by the oxidants paraquat (PQ) and hydrogen peroxide (H2O2). Palmitic, oleic, and arachidonic acids had no protective effect, showing the specificity for DHA. We found that EPA supplementation significantly increased DHA percentage in retinal neurons, but not EPA percentage. Photoreceptors and glial cells expressed Δ6 desaturase (FADS2), which introduces the last double bond in DHA biosynthetic pathway. Pre-treatment of neuronal cultures with CP-24879 hydrochloride, a Δ5/Δ6 desaturase inhibitor, prevented EPA-induced increase in DHA percentage and completely blocked EPA protection and its effect on photoreceptor differentiation. These results suggest that EPA promoted photoreceptor differentiation and rescued photoreceptors from oxidative stress-induced apoptosis through its elongation and desaturation to DHA. Our data show, for the first time, that isolated retinal neurons can synthesize DHA in culture. PMID:26662863

  20. Synthesis and Functional Assessment of a Novel Fatty Acid Probe, ω-Ethynyl Eicosapentaenoic Acid Analog, to Analyze the in Vivo Behavior of Eicosapentaenoic Acid.

    PubMed

    Tokunaga, Tomohisa; Watanabe, Bunta; Sato, Sho; Kawamoto, Jun; Kurihara, Tatsuo

    2017-08-16

    Eicosapentaenoic acid (EPA) is an ω-3 polyunsaturated fatty acid that plays various beneficial roles in organisms from bacteria to humans. Although its beneficial physiological functions are well-recognized, a molecular probe that enables the monitoring of its in vivo behavior without abolishing its native functions has not yet been developed. Here, we designed and synthesized an ω-ethynyl EPA analog (eEPA) as a tool for analyzing the in vivo behavior and function of EPA. eEPA has an ω-ethynyl group tag in place of the ω-methyl group of EPA. An ethynyl group has a characteristic Raman signal and can be visualized by Raman scattering microscopy. Moreover, this group can specifically react in situ with azide compounds, such as those with fluorescent group, via click chemistry. In this study, we first synthesized eEPA efficiently based on the following well-known strategies. To introduce four C-C double bonds, a coupling reaction between terminal acetylene and propargylic halide or tosylate was employed, and then, by simultaneous and stereoselective partial hydrogenation with P-2 nickel, the triple bonds were converted to cis double bonds. One double bond and an ω-terminal C-C triple bond were introduced by Wittig reaction with a phosphonium salt harboring an ethynyl group. Then, we evaluated the in vivo function of the resulting probe by using an EPA-producing bacterium, Shewanella livingstonensis Ac10. This cold-adapted bacterium inducibly produces EPA at low temperatures, and the EPA-deficient mutant (ΔEPA) shows growth retardation and abnormal morphology at low temperatures. When eEPA was exogenously supplemented to ΔEPA, eEPA was incorporated into the membrane phospholipids as an acyl chain, and the amount of eEPA was about 5% of the total fatty acids in the membrane, which is comparable to the amount of EPA in the membrane of the parent strain. Notably, by supplementation with eEPA, the growth retardation and abnormal morphology of ΔEPA were almost

  1. Arachidonic Acid and Eicosapentaenoic Acid Metabolism in Juvenile Atlantic Salmon as Affected by Water Temperature

    PubMed Central

    Norambuena, Fernando; Morais, Sofia; Emery, James A.; Turchini, Giovanni M.

    2015-01-01

    Salmons raised in aquaculture farms around the world are increasingly subjected to sub-optimal environmental conditions, such as high water temperatures during summer seasons. Aerobic scope increases and lipid metabolism changes are known plasticity responses of fish for a better acclimation to high water temperature. The present study aimed at investigating the effect of high water temperature on the regulation of fatty acid metabolism in juvenile Atlantic salmon fed different dietary ARA/EPA ratios (arachidonic acid, 20:4n-6/ eicosapentaenoic acid, 20:5n-3), with particular focus on apparent in vivo enzyme activities and gene expression of lipid metabolism pathways. Three experimental diets were formulated to be identical, except for the ratio EPA/ARA, and fed to triplicate groups of Atlantic salmon (Salmo salar) kept either at 10°C or 20°C. Results showed that fatty acid metabolic utilisation, and likely also their dietary requirements for optimal performance, can be affected by changes in their relative levels and by environmental temperature in Atlantic salmon. Thus, the increase in temperature, independently from dietary treatment, had a significant effect on the β-oxidation of a fatty acid including EPA, as observed by the apparent in vivo enzyme activity and mRNA expression of pparα -transcription factor in lipid metabolism, including β-oxidation genes- and cpt1 -key enzyme responsible for the movement of LC-PUFA from the cytosol into the mitochondria for β-oxidation-, were both increased at the higher water temperature. An interesting interaction was observed in the transcription and in vivo enzyme activity of Δ5fad–time-limiting enzyme in the biosynthesis pathway of EPA and ARA. Such, at lower temperature, the highest mRNA expression and enzyme activity was recorded in fish with limited supply of dietary EPA, whereas at higher temperature these were recorded in fish with limited ARA supply. In consideration that fish at higher water temperature

  2. Use of dry-milling derived thin stillage for producing eicosapentaenoic acid (EPA) by the fungus Pythium irregulare.

    PubMed

    Liang, Yi; Zhao, Xuefei; Strait, Megan; Wen, Zhiyou

    2012-05-01

    This study was to explore the use of thin stillage, a major byproduct in dry milling corn-ethanol plants, for production of eicosapentaenoic acid (EPA) by the fungus Pythium irregulare. Thin stillage contains various compounds that were ideal for fungal growth. Thin stillage concentration and temperature played important roles in fungal growth and EPA production. When 50% thin stillage was used in a stepwise temperature shift culture process, the cell density reached 23 g/L at day 9 with EPA yield and productivity of 243 and 27 mg/L day, respectively. The fungal biomass contained 39% lipid, 28% protein, 30% carbohydrate, and 3% ash. The fungal culture also generated a nutrient-depleted liquid by removing organic compounds in the raw thin stillage. The results collectively showed a new use of thin stillage by feeding to the fungus P. irregulare for producing omega-3 fatty acids. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Food frequency questionnaire as an indicator of the serum composition of essential n-3 and n-6 polyunsaturated fatty acids in early pregnancy, according to body mass index.

    PubMed

    Lepsch, J; Vaz, J S; Moreira, J D; Pinto, T J P; Soares-Mota, M; Kac, G

    2015-02-01

    We investigated whether food frequency questionnaire (FFQ) may be indicative of the serum composition of essential n-3 and n-6 polyunsaturated fatty acids (PUFAs) in early pregnancy and if correlations are affected by body mass index (BMI). The present study comprised a prospective cohort conducted in Rio de Janeiro, Brazil. The sample was composed of 248 women, aged 20-40 years, between 6 and the 13 weeks of gestation. Dietary intake was assessed using a validated FFQ. Fatty acid serum compositions were determined in fasting serum samples, employing a high-throughput robotic direct methylation coupled with fast gas-liquid chromatography. Spearman's correlation (r(s)) was used to assess the relationship between fatty acid intake and corresponding serum composition. Women were classified according to BMI (kg m(-2) ) as underweight/normal weight (BMI < 25 kg m(-2) ; n = 139) or excessive weight (BMI ≥ 25 kg m(-2) ; n = 109). In the total sample, dietary report was significantly correlated with the serum composition of total polyunsaturated fatty acid (PUFA; r(s) = 0.232, P < 0.001), linoleic acid (LA; 18:2n-6; r(s) = 0.271, P < 0.001), eicosapentaenoic acid (EPA; 20:5n-3; r(s) = 0.263, P < 0.001) and docosahexaenoic acid (DHA; 22:6n-3; r(s) = 0.209, P = 0.001). When analyses were stratified by BMI, significant correlations between FFQ and serum composition among underweight/normal weight women were observed for total PUFA (r(s) = 0.323, P < 0.001), LA (r(s) = 0.322, P < 0.001), EPA (r(s) = 0.352, P < 0.001) and DHA (r(s) = 0.176, P = 0.039). Among women of excessive weight, significant correlations were observed only for alpha linolenic acid (ALA; 18:3n-3; r(s) = 0.199, P = 0.040) and DHA (r(s) = 0.236, P = 0.014). FFQ in early pregnancy may be used as a possible indicator of serum concentrations of fatty acids. Higher correlations were observed among underweight/normal weight women. © 2014 The British Dietetic Association Ltd.

  4. A Palmitic Acid Elongase Affects Eicosapentaenoic Acid and Plastidial Monogalactosyldiacylglycerol Levels in Nannochloropsis.

    PubMed

    Dolch, Lina-Juana; Rak, Camille; Perin, Giorgio; Tourcier, Guillaume; Broughton, Richard; Leterrier, Marina; Morosinotto, Tomas; Tellier, Frédérique; Faure, Jean-Denis; Falconet, Denis; Jouhet, Juliette; Sayanova, Olga; Beaudoin, Frédéric; Maréchal, Eric

    2017-01-01

    Nannochloropsis species are oleaginous eukaryotes containing a plastid limited by four membranes, deriving from a secondary endosymbiosis. In Nannochloropsis, thylakoid lipids, including monogalactosyldiacylglycerol (MGDG), are enriched in eicosapentaenoic acid (EPA). The need for EPA in MGDG is not understood. Fatty acids are de novo synthesized in the stroma, then converted into very-long-chain polyunsaturated fatty acids (FAs) at the endoplasmic reticulum (ER). The production of MGDG relies therefore on an EPA supply from the ER to the plastid, following an unknown process. We identified seven elongases and five desaturases possibly involved in EPA production in Nannochloropsis gaditana Among the six heterokont-specific saturated FA elongases possibly acting upstream in this pathway, we characterized the highly expressed isoform Δ0-ELO1 Heterologous expression in yeast (Saccharomyces cerevisiae) showed that NgΔ0-ELO1 could elongate palmitic acid. Nannochloropsis Δ0-elo1 mutants exhibited a reduced EPA level and a specific decrease in MGDG In NgΔ0-elo1 lines, the impairment of photosynthesis is consistent with a role of EPA-rich MGDG in nonphotochemical quenching control, possibly providing an appropriate MGDG platform for the xanthophyll cycle. Concomitantly with MGDG decrease, the level of triacylglycerol (TAG) containing medium chain FAs increased. In Nannochloropsis, part of EPA used for MGDG production is therefore biosynthesized by a channeled process initiated at the elongation step of palmitic acid by Δ0-ELO1, thus acting as a committing enzyme for galactolipid production. Based on the MGDG/TAG balance controlled by Δ0-ELO1, this study also provides novel prospects for the engineering of oleaginous microalgae for biotechnological applications. © 2017 American Society of Plant Biologists. All Rights Reserved.

  5. Eicosapentaenoic Acid Versus Docosahexaenoic Acid as Options for Vascular Risk Prevention: A Fish Story.

    PubMed

    Singh, Sarabjeet; Arora, Rohit R; Singh, Mukesh; Khosla, Sandeep

    2016-01-01

    Vascular inflammation is a key component involved in the process of arthrosclerosis, which in turn increases the risk for cardiovascular injury. In the last 10 years, there have been many trials that looked at omega-3 fatty acids as a way to reduce cardiovascular risk. These trials observed the effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on the traditional lipid panel and found that both EPA and DHA reduce triglyceride (TG) level and increase high-density lipoprotein cholesterol (HDL-C) levels but also increase the low-density lipoprotein cholesterol (LDL-C) levels. In the 2 more recent trials, the MARINE and ANCHOR, EPA was given as an adjunct therapy to high-risk patients and not only was the traditional lipids measured but also examined the vascular inflammatory biomarkers. The results of these 2 trials not only showed reduction in cardiovascular risk because of reduction in vascular inflammation and reduction in the lipid panel but also showed that one of the MARINE-derived omega-3 fatty acid is superior to the other. Data search for omega-3 fatty acids and cardiovascular risk was performed, and articles were selected for review from 2006 to date. The research studies were all double-blind randomized trials except for one, which was a single-blind and focused on the effects of omega-3 fatty acids on the entire lipid panel. The participants received DHA/EPA and compared with a placebo group on the effect seen in the lipid panel. The first 7 studies looked at the effects of omega-3 fatty acids on TG, LDL-C, and HDL-C; of the 7, 1 directly compared DHA and EPA, 2 focused on EPA, and 4 were directed towards DHA alone. The MARINE and ANCHOR trials were more recent and also looked at the same parameter but also monitored vascular inflammatory biomarkers and how they were affected by omega-3 fatty acids. A second data search was performed for vascular biomarkers and cardiovascular risk, and articles that focused on high-sensitivity C

  6. Chronic administration of docosahexaenoic acid or eicosapentaenoic acid, but not arachidonic acid, alone or in combination with uridine, increases brain phosphatide and synaptic protein levels in gerbils

    PubMed Central

    Cansev, M.; Wurtman, R. J.

    2007-01-01

    Synthesis of phosphatidylcholine, the most abundant brain membrane phosphatide, requires three circulating precursors: choline; a pyrimidine (e.g., uridine); and a polyunsaturated fatty acid. Supplementing a choline-containing diet with the uridine source uridine-5′-monophosphate (UMP) or, especially, with UMP plus the omega-3 fatty acid docosahexaenoic acid (given by gavage), produces substantial increases in membrane phosphatide and synaptic protein levels within gerbil brain. We now compare the effects of various polyunsaturated fatty acids, given alone or with UMP, on these synaptic membrane constituents. Gerbils received, daily for 4 weeks, a diet containing choline chloride with or without UMP and/or, by gavage, an omega-3 (docosahexaenoic or eicosapentaenoic acid) or omega-6 (arachidonic acid) fatty acid. Both of the omega-3 fatty acids elevated major brain phosphatide levels (by 18-28%, and 21-27%) and giving UMP along with them enhanced their effects significantly. Arachidonic acid, given alone or with UMP, was without effect. After UMP plus docosahexaenoic acid treatment, total brain phospholipids levels and those of each individual phosphatide increased significantly in all brain regions examined (cortex, striatum, hippocampus, brain stem, and cerebellum). The increases in brain phosphatides in gerbils receiving an omega-3 (but not omega-6) fatty acid, with or without UMP, were accompanied by parallel elevations in levels of pre- and post-synaptic proteins (syntaxin-3, PSD-95 and Synapsin-1) but not in those of a ubiquitous structural protein, β-tubulin. Hence administering omega-3 polyunsaturated fatty acids can enhance synaptic membrane levels in gerbils, and may do so in patients with neurodegenerative diseases, especially when given with a uridine source, while the omega-6 polyunsaturated fatty acid arachidonic acid is ineffective. PMID:17683870

  7. Eicosapentaenoic Acid and Docosahexaenoic Acid in Whole Blood Are Differentially and Sex-Specifically Associated with Cardiometabolic Risk Markers in 8–11-Year-Old Danish Children

    PubMed Central

    Damsgaard, Camilla T.; Eidner, Maj B.; Stark, Ken D.; Hjorth, Mads F.; Sjödin, Anders; Andersen, Malene R.; Andersen, Rikke; Tetens, Inge; Astrup, Arne; Michaelsen, Kim F.; Lauritzen, Lotte

    2014-01-01

    n-3 long-chain polyunsaturated fatty acids improve cardiovascular risk markers in adults. These effects may differ between eicosapentaenoic acid (EPA, 20∶5n-3) and docosahexaenoic acid (DHA, 22∶6n-3), but we lack evidence in children. Using baseline data from the OPUS School Meal Study we 1) investigated associations between EPA and DHA in whole blood and early cardiometabolic risk markers in 713 children aged 8–11 years and 2) explored potential mediation through waist circumference and physical activity and potential dietary confounding. We collected data on parental education, pubertal stage, 7-day dietary records, physical activity by accelerometry and measured anthropometry, blood pressure, and heart rate. Blood samples were analyzed for whole blood fatty acid composition, cholesterols, triacylglycerol, insulin resistance by the homeostatic model of assessment (HOMA-IR), and inflammatory markers. Whole blood EPA was associated with a 2.7 mmHg (95% CI 0.4; 5.1) higher diastolic blood pressure per weight% EPA, but only in boys. Heart rate was negatively associated with both EPA and DHA status (P = 0.02 and P = 0.002, respectively). Whole blood EPA was negatively associated with triacylglycerol (P = 0.003) and positively with total cholesterol, low density and high density lipoprotein (HDL) cholesterol and HDL:triacylglycerol (all P<0.01) whereas DHA was negatively associated with insulin and HOMA-IR (P = 0.003) and tended to be negatively associated with a metabolic syndrome-score (P = 0.05). Adjustment for waist circumference and physical activity did not change the associations. The association between DHA and HOMA-IR was attenuated but remained after adjustment for fiber intake and none of the other associations were confounded by dietary fat, protein, fiber or energy intake. This study showed that EPA status was negatively associated with triacylglycerol and positively with cholesterols whereas DHA was negatively associated with

  8. Enhanced eicosapentaenoic acid production by a new deep-sea marine bacterium Shewanella electrodiphila MAR441T.

    PubMed

    Zhang, Jinwei; Burgess, J Grant

    2017-01-01

    Omega-3 fatty acids are products of secondary metabolism, essential for growth and important for human health. Although there are numerous reports of bacterial production of omega-3 fatty acids, less information is available on the biotechnological production of these compounds from bacteria. The production of eicosapentaenoic acid (EPA, 20:5ω3) by a new species of marine bacteria Shewanella electrodiphila MAR441T was investigated under different fermentation conditions. This strain produced a high percentage (up to 26%) of total fatty acids and high yields (mg / g of biomass) of EPA at or below the optimal growth temperature. At higher growth temperatures these values decreased greatly. The amount of EPA produced was affected by the carbon source, which also influenced fatty acid composition. This strain required Na+ for growth and EPA synthesis and cells harvested at late exponential or early stationary phase had a higher EPA content. Both the highest amounts (20 mg g-1) and highest percent EPA content (18%) occurred with growth on L-proline and (NH4)2SO4. The addition of cerulenin further enhanced EPA production to 30 mg g-1. Chemical mutagenesis using NTG allowed the isolation of mutants with improved levels of EPA content (from 9.7 to 15.8 mg g-1) when grown at 15°C. Thus, the yields of EPA could be substantially enhanced without the need for recombinant DNA technology, often a commercial requirement for food supplement manufacture.

  9. Enhanced eicosapentaenoic acid production by a new deep-sea marine bacterium Shewanella electrodiphila MAR441T

    PubMed Central

    Burgess, J. Grant

    2017-01-01

    Omega-3 fatty acids are products of secondary metabolism, essential for growth and important for human health. Although there are numerous reports of bacterial production of omega-3 fatty acids, less information is available on the biotechnological production of these compounds from bacteria. The production of eicosapentaenoic acid (EPA, 20:5ω3) by a new species of marine bacteria Shewanella electrodiphila MAR441T was investigated under different fermentation conditions. This strain produced a high percentage (up to 26%) of total fatty acids and high yields (mg / g of biomass) of EPA at or below the optimal growth temperature. At higher growth temperatures these values decreased greatly. The amount of EPA produced was affected by the carbon source, which also influenced fatty acid composition. This strain required Na+ for growth and EPA synthesis and cells harvested at late exponential or early stationary phase had a higher EPA content. Both the highest amounts (20 mg g-1) and highest percent EPA content (18%) occurred with growth on L-proline and (NH4)2SO4. The addition of cerulenin further enhanced EPA production to 30 mg g-1. Chemical mutagenesis using NTG allowed the isolation of mutants with improved levels of EPA content (from 9.7 to 15.8 mg g-1) when grown at 15°C. Thus, the yields of EPA could be substantially enhanced without the need for recombinant DNA technology, often a commercial requirement for food supplement manufacture. PMID:29176835

  10. Saturated Branched Chain, Normal Odd-Carbon-Numbered, and n-3 (Omega-3) Polyunsaturated Fatty Acids in Freshwater Fish in the Northeastern United States.

    PubMed

    Wang, Dong Hao; Jackson, James R; Twining, Cornelia; Rudstam, Lars G; Zollweg-Horan, Emily; Kraft, Clifford; Lawrence, Peter; Kothapalli, Kumar; Wang, Zhen; Brenna, J Thomas

    2016-10-04

    The fatty acid profiles of wild freshwater fish are poorly characterized as a human food source for several classes of fatty acids, particularly for branched chain fatty acids (BCFA), a major bioactive dietary component known to enter the US food supply primarily via dairy and beef fat. We evaluated the fatty acid content of 27 freshwater fish species captured in the northeastern US with emphasis on the BCFA and bioactive polyunsaturated fatty acids (PUFA) most associated with fish, specifically n-3 (omega-3) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Mean BCFA content across all species was 1.0 ± 0.5% (mean ± SD) of total fatty acids in edible muscle, with rainbow smelt (Osmerus mordax) and pumpkinseed (Lepomis gibbosus) the highest at >2% BCFA. In comparison, EPA + DHA constituted 28% ± 7% of total fatty acids. Across all fish species, the major BCFA were iso-15:0, anteiso-15:0, iso-16:0, iso-17:0 and anteiso-17:0. Fish skin had significantly higher BCFA content than muscle tissues, at 1.8% ± 0.7%, but lower EPA and DHA. Total BCFA in fish skins was positively related with that in muscle (r 2 = 0.6). The straight chain saturates n-15:0 and n-17:0 which have been identified previously as markers for dairy consumption were relatively high with means of 0.4% and 0.6%, respectively, and may be an underappreciated marker for seafood intake. Consuming a standardized portion, 70 g (2.5 oz), of wild freshwater fish contributes only small amounts of BCFA, 2.5-24.2 mg, to the American diet, while it adds surprisingly high amounts of EPA + DHA (107 mg to 558 mg).

  11. Effects of purified eicosapentaenoic and docosahexaenoic acids in nonalcoholic fatty liver disease: results from the Welcome* study.

    PubMed

    Scorletti, Eleonora; Bhatia, Lokpal; McCormick, Keith G; Clough, Geraldine F; Nash, Kathryn; Hodson, Leanne; Moyses, Helen E; Calder, Philip C; Byrne, Christopher D

    2014-10-01

    There is no licensed treatment for non-alcoholic fatty liver disease (NAFLD), a condition that increases risk of chronic liver disease, type 2 diabetes and cardiovascular disease. We tested whether 15-18 months treatment with docosahexaenoic acid (DHA) plus eicosapentaenoic acid (EPA) (Omacor/Lovaza) (4 g/day) decreased liver fat and improved two histologically-validated liver fibrosis biomarker scores (primary outcomes). Patients with NAFLD were randomised in a double blind placebo-controlled trial [DHA+EPA(n=51), placebo(n=52)]. We quantified liver fat percentage (%) by magnetic resonance spectroscopy in three liver zones. We measured liver fibrosis using two validated scores. We tested adherence to the intervention (Omacor group) and contamination (with DHA and EPA) (placebo group) by measuring erythrocyte percentage DHA and EPA enrichment (gas chromatography). We undertook multivariable linear regression to test effects of: a) DHA+EPA treatment (ITT analyses) and b) erythrocyte DHA and EPA enrichment (secondary analysis). Median (IQR) baseline and end of study liver fat% were 21.7 (19.3) and 19.7 (18.0) (placebo), and 23.0 (36.2) and 16.3 (22.0), (DHA+EPA). In the fully adjusted regression model there was a trend towards improvement in liver fat% with DHA+EPA treatment (β=-3.64 (95%CI -8.0,0.8); p=0.1) but there was evidence of contamination in the placebo group and variable adherence to the intervention in the Omacor group. Further regression analysis showed that DHA enrichment was independently associated with a decrease in liver fat% (for each 1% enrichment, β=-1.70 (95%CI -2.9,-0.5); p=0.007). No improvement in the fibrosis scores occurred. Conclusion. Erythrocyte DHA enrichment with DHA+EPA treatment is linearly associated with decreased liver fat%. Substantial decreases in liver fat% can be achieved with high percentage erythrocyte DHA enrichment in NAFLD. (Hepatology 2014;).

  12. Bioengineered Plants Can Be a Useful Source of Omega-3 Fatty Acids

    PubMed Central

    Lyu, Shan-Wu

    2017-01-01

    Omega-3 fatty acids have proven to be very essential for human health due to their multiple health benefits. These essential fatty acids (EFAs) need to be uptaken through diet because they are unable to be produced by the human body. These are important for skin and hair growth as well as for proper visual, neural, and reproductive functions of the body. These fatty acids are proven to be extremely vital for normal tissue development during pregnancy and infancy. Omega-3 fatty acids can be obtained mainly from two dietary sources: marine and plant oils. Eicosapentaenoic acid (EPA; C20:5 n-3) and docosahexaenoic acid (DHA; C22:6 n-3) are the primary marine-derived omega-3 fatty acids. Marine fishes are high in omega-3 fatty acids, yet high consumption of those fishes will cause a shortage of fish stocks existing naturally in the oceans. An alternative source to achieve the recommended daily intake of EFAs is the demand of today. In this review article, an attempt has, therefore, been made to discuss the importance of omega-3 fatty acids and the recent developments in order to produce these fatty acids by the genetic modifications of the plants. PMID:28316988

  13. Bioengineered Plants Can Be a Useful Source of Omega-3 Fatty Acids.

    PubMed

    Amjad Khan, Waleed; Chun-Mei, Hu; Khan, Nadeem; Iqbal, Amjad; Lyu, Shan-Wu; Shah, Farooq

    2017-01-01

    Omega-3 fatty acids have proven to be very essential for human health due to their multiple health benefits. These essential fatty acids (EFAs) need to be uptaken through diet because they are unable to be produced by the human body. These are important for skin and hair growth as well as for proper visual, neural, and reproductive functions of the body. These fatty acids are proven to be extremely vital for normal tissue development during pregnancy and infancy. Omega-3 fatty acids can be obtained mainly from two dietary sources: marine and plant oils. Eicosapentaenoic acid (EPA; C20:5 n-3) and docosahexaenoic acid (DHA; C22:6 n-3) are the primary marine-derived omega-3 fatty acids. Marine fishes are high in omega-3 fatty acids, yet high consumption of those fishes will cause a shortage of fish stocks existing naturally in the oceans. An alternative source to achieve the recommended daily intake of EFAs is the demand of today. In this review article, an attempt has, therefore, been made to discuss the importance of omega-3 fatty acids and the recent developments in order to produce these fatty acids by the genetic modifications of the plants.

  14. n-3 Fatty Acids Attenuate the Risk of Diabetes Associated With Elevated Serum Nonesterified Fatty Acids: The Multi-Ethnic Study of Atherosclerosis

    PubMed Central

    Steffen, Brian T.; Steffen, Lyn M.; Zhou, Xia; Ouyang, Pamela; Weir, Natalie L.

    2015-01-01

    OBJECTIVE Chronically high nonesterified fatty acids (NEFAs) are a marker of metabolic dysfunction and likely increase risk of type 2 diabetes. By comparison, n-3 fatty acids (FAs) have been shown to have various health benefits and may protect against disease development. In 5,697 participants of the Multi-Ethnic Study of Atherosclerosis (MESA), we examined whether serum levels of NEFAs relate to risk of incident type 2 diabetes and further tested whether plasma n-3 FA levels may interact with this relation. RESEARCH DESIGN AND METHODS NEFAs were measured in fasting serum using an enzymatic colorimetric assay and phospholipid n-3 FAs eicosapentaenoic and docosahexaenoic acids were determined in plasma through gas chromatography-flame ionization detection in 5,697 MESA participants. Cox proportional hazards regression evaluated the association between NEFA levels and incident type 2 diabetes and whether plasma n-3 FAs modified this association adjusting for age, sex, race, education, field center, smoking, and alcohol use. RESULTS Over a mean 11.4 years of the study period, higher diabetes incidence was found across successive NEFA quartiles (Q) (hazard ratio [95% CI]): Q1, 1.0; Q2, 1.35 (1.07, 1.71); Q3, 1.58 (1.24, 2.00); and Q4, 1.86 (1.45, 2.38) (Ptrend < 0.001). A significant interaction of n-3 FAs on the relation between NEFAs and type 2 diabetes was also observed (Pinteraction = 0.03). For individuals with lower n-3 levels (<75th percentile), a higher risk of type 2 diabetes was observed across quartiles of NEFAs: Q1, 1.0; Q2, 1.41 (1.07, 1.84); Q3, 1.77 (1.35, 2.31); and Q4, 2.18 (1.65, 2.88) (Ptrend < 0.001). No significant associations were observed in those with n-3 FAs ≥75th percentile (Ptrend = 0.54). CONCLUSIONS NEFAs are a marker of type 2 diabetes and may have clinical utility for detecting risk of its development. The modifying influence of n-3 FAs suggests a protective effect against disease and/or metabolic dysfunction related to NEFAs and

  15. Pork as a Source of Omega-3 (n-3) Fatty Acids

    PubMed Central

    Dugan, Michael E.R.; Vahmani, Payam; Turner, Tyler D.; Mapiye, Cletos; Juárez, Manuel; Prieto, Nuria; Beaulieu, Angela D.; Zijlstra, Ruurd T.; Patience, John F.; Aalhus, Jennifer L.

    2015-01-01

    Pork is the most widely eaten meat in the world, but typical feeding practices give it a high omega-6 (n-6) to omega-3 (n-3) fatty acid ratio and make it a poor source of n-3 fatty acids. Feeding pigs n-3 fatty acids can increase their contents in pork, and in countries where label claims are permitted, claims can be met with limited feeding of n-3 fatty acid enrich feedstuffs, provided contributions of both fat and muscle are included in pork servings. Pork enriched with n-3 fatty acids is, however, not widely available. Producing and marketing n-3 fatty acid enriched pork requires regulatory approval, development costs, quality control costs, may increase production costs, and enriched pork has to be tracked to retail and sold for a premium. Mandatory labelling of the n-6/n-3 ratio and the n-3 fatty acid content of pork may help drive production of n-3 fatty acid enriched pork, and open the door to population-based disease prevention polices (i.e., food tax to provide incentives to improve production practices). A shift from the status-quo, however, will require stronger signals along the value chain indicating production of n-3 fatty acid enriched pork is an industry priority. PMID:26694475

  16. Pork as a Source of Omega-3 (n-3) Fatty Acids.

    PubMed

    Dugan, Michael E R; Vahmani, Payam; Turner, Tyler D; Mapiye, Cletos; Juárez, Manuel; Prieto, Nuria; Beaulieu, Angela D; Zijlstra, Ruurd T; Patience, John F; Aalhus, Jennifer L

    2015-12-16

    Pork is the most widely eaten meat in the world, but typical feeding practices give it a high omega-6 (n-6) to omega-3 (n-3) fatty acid ratio and make it a poor source of n-3 fatty acids. Feeding pigs n-3 fatty acids can increase their contents in pork, and in countries where label claims are permitted, claims can be met with limited feeding of n-3 fatty acid enrich feedstuffs, provided contributions of both fat and muscle are included in pork servings. Pork enriched with n-3 fatty acids is, however, not widely available. Producing and marketing n-3 fatty acid enriched pork requires regulatory approval, development costs, quality control costs, may increase production costs, and enriched pork has to be tracked to retail and sold for a premium. Mandatory labelling of the n-6/n-3 ratio and the n-3 fatty acid content of pork may help drive production of n-3 fatty acid enriched pork, and open the door to population-based disease prevention polices (i.e., food tax to provide incentives to improve production practices). A shift from the status-quo, however, will require stronger signals along the value chain indicating production of n-3 fatty acid enriched pork is an industry priority.

  17. Effect of dietary n-3 fatty acids supplementation on fatty acid metabolism in atorvastatin-administered SHR.Cg-Leprcp/NDmcr rats, a metabolic syndrome model.

    PubMed

    Al Mamun, Abdullah; Hashimoto, Michio; Katakura, Masanori; Tanabe, Yoko; Tsuchikura, Satoru; Hossain, Shahdat; Shido, Osamu

    2017-01-01

    The effects of cholesterol-lowering statins, which substantially benefit future cardiovascular events, on fatty acid metabolism have remained largely obscured. In this study, we investigated the effects of atorvastatin on fatty acid metabolism together with the effects of TAK-085 containing highly purified eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) ethyl ester on atorvastatin-induced n-3 polyunsaturated fatty acid lowering in SHR.Cg-Lepr cp /NDmcr (SHRcp) rats, as a metabolic syndrome model. Supplementation with 10mg/kg body weight/day of atorvastatin for 17 weeks significantly decreased plasma total cholesterol and very low density lipoprotein cholesterol. Atorvastatin alone caused a subtle change in fatty acid composition particularly of EPA and DHA in the plasma, liver or erythrocyte membranes. However, the TAK-085 consistently increased both the levels of EPA and DHA in the plasma, liver and erythrocyte membranes. After confirming the reduction of plasma total cholesterol, 300mg/kg body weight/day of TAK-085 was continuously administered for another 6 weeks. Supplementation with TAK-085 did not decrease plasma total cholesterol but significantly increased the EPA and DHA levels in both the plasma and liver compared with rats administered atorvastatin only. Supplementation with atorvastatin alone significantly decreased sterol regulatory element-binding protein-1c, Δ5- and Δ6-desaturases, elongase-5, and stearoyl-coenzyme A (CoA) desaturase-2 levels and increased 3-hydroxy-3-methylglutaryl-CoA reductase mRNA expression in the liver compared with control rats. TAK-085 supplementation significantly increased stearoyl-CoA desaturase-2 mRNA expression. These results suggest that long-term supplementation with atorvastatin decreases the EPA and DHA levels by inhibiting the desaturation and elongation of n-3 fatty acid metabolism, while TAK-085 supplementation effectively replenishes this effect in SHRcp rat liver. Copyright © 2016 Elsevier Masson

  18. Low plasma eicosapentaenoic acid levels are associated with elevated trait aggression and impulsivity in major depressive disorder with a history of comorbid substance use disorder.

    PubMed

    Beier, Anne Mette; Lauritzen, Lotte; Galfalvy, Hanga C; Cooper, Thomas B; Oquendo, Maria A; Grunebaum, Michael F; Mann, J John; Sublette, M Elizabeth

    2014-10-01

    Major depressive disorder (MDD) is associated with low levels of omega-3 polyunsaturated fatty acids (PUFAs), holding promise for new perspectives on disease etiology and treatment targets. As aggressive and impulsive behaviors are associated with low omega-3 PUFA levels in some clinical contexts, we investigated plasma PUFA relationships with trait aggression and impulsivity in patients with MDD. Medication-free MDD patients (n = 48) and healthy volunteers (HV, n = 35) were assessed with the Brown-Goodwin Aggression Inventory. A subset (MDD, n = 39; HV, n = 33) completed the Barratt Impulsiveness Scale. Plasma PUFAs eicosapentaenoic acid (EPA, 20:5n-3), docosahexaenoic acid (DHA, 22:6n-3), and arachidonic acid (AA, 20:4n-6) were quantified and ln-transformed to mitigate distributional skew. Ln-transformed PUFA (lnPUFA) levels were predictors in regression models, with aggression or impulsivity scores as outcomes, and cofactors of sex and diagnostic status (MDD with or without a history of substance use disorder [SUD], or HV). Interactions were tested between relevant PUFAs and diagnostic status. Additional analyses explored possible confounds of depression severity, self-reported childhood abuse history, and, in MDD patients, suicide attempt history. Among PUFA, lnEPA but not lnDHA predicted aggression (F1,76 = 12.493, p = 0.001), and impulsivity (F1,65 = 5.598, p = 0.021), with interactions between lnEPA and history of SUD for both aggression (F1,76 = 7.941, p = 0.001) and impulsivity (F1,65 = 3.485, p = 0.037). Results remained significant when adjusted for childhood abuse, depression severity, or history of suicide attempt. In conclusion, low EPA levels were associated with aggression and impulsivity only in patients with MDD and comorbid SUD, even though in most cases SUD was in full sustained remission. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Change in blood levels of eicosapentaenoic acid and posttraumatic stress symptom: A secondary analysis of data from a placebo-controlled trial of omega3 supplements.

    PubMed

    Matsuoka, Yutaka J; Hamazaki, Kei; Nishi, Daisuke; Hamazaki, Tomohito

    2016-11-15

    Eicosapentaenoic acid (EPA) is suggested to be protective against posttraumatic stress disorder (PTSD) from two observational studies. We previously conducted a randomized controlled trial and found no effect of docosahexaenoic acid (DHA) for prevention of PTSD. This secondary analysis aimed to determine whether change in blood levels of EPA is associated with PTSD symptoms. The percentages of EPA, DHA, and arachidonic acid (AA) were measured in erythrocyte membranes at baseline and posttreatment in 110 participants with severe physical injury who were randomly assigned to receive either a daily dose of 1,470mg DHA and 147mg EPA or of placebo for 12 weeks. Associations between change in erythrocyte fatty acid levels during the trial controlling for each baseline level and PTSD severity at 12 weeks were analyzed by treatment arm. In the omega3 supplements arm, changes in EPA+DHA (p=.023) and EPA (p=.001) as well as the EPA:AA ratio (p=.000) and EPA: DHA ratio (p=.013) were inversely correlated with PTSD severity. Change in AA was positively correlated with PTSD severity (p=.001). This trial was conducted at a single-center in Japan and PTSD symptoms in most participants were not serious. Increased erythrocyte level of EPA during the trial was associated with low severity of PTSD symptoms in patients receiving omega3 supplements. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Ethyl-eicosapentaenoic acid for the treatment of psychological distress and depressive symptoms in middle-aged women: a double-blind, placebo-controlled, randomized clinical trial.

    PubMed

    Lucas, Michel; Asselin, Geneviève; Mérette, Chantal; Poulin, Marie-Josée; Dodin, Sylvie

    2009-02-01

    Psychological distress (PD) and depressive symptoms are commonly observed during menopausal transition. Studies suggest that omega-3 (n-3) fatty acids may help alleviate depression. The objective was to compare enriched ethyl-eicosapentaenoic acid (E-EPA) supplementation with placebo for the treatment of PD and depressive symptoms in middle-aged women. Women with moderate-to-severe PD (n = 120) were randomly assigned to receive 1.05 g E-EPA/d plus 0.15 g ethyl-docosahexaenoic acid/d (n = 59) or placebo (n = 61) for 8 wk. The main outcomes were 8-wk changes in PD scores [Psychological General Well-Being Schedule (PGWB)] and depressive scales [20-item Hopkins Symptom Checklist Depression Scale (HSCL-D-20) and the 21-item Hamilton Depression Rating Scale (HAM-D-21)]. At baseline, women with PD were mildly to moderately depressed, and 24% met the major depressive episode (MDE) criteria of the Diagnostic and Statistical Manual of Mental Disorders, 4th edition. After 8 wk, outcomes improved in both groups, but no significant differences were noted between them. Stratification analyses for MDE diagnosis at baseline indicated that differences in adjusted 8-wk changes between the E-EPA group without MDE (n = 46) and the placebo group (n = 45) were 8.0 (95% CI: 0.6, 15.3; P = 0.034) for the PGWB, -0.2 (95% CI: -0.01, -0.4; P = 0.040) for the HSCL-D-20, and -2.7 (95% CI: -0.3, -5.1; P = 0.030) for the HAM-D-21. Differences in adjusted 8-wk changes between the E-EPA group with MDE (n = 13) and the placebo group (n = 16) were not significant. To our knowledge, this is the first trial of n-3 supplementation in the treatment of PD and depressive symptoms in middle-aged women. In women with PD without MDE at baseline, the 8-wk changes in PD and depressive scales improved significantly more with E-EPA than with placebo. This trial was registered at http://www.controlled-trials.com as ISRCTN69617477.

  1. Eicosapentaenoic acid attenuates dexamethasome-induced apoptosis by inducing adaptive autophagy via GPR120 in murine bone marrow-derived mesenchymal stem cells

    PubMed Central

    Gao, B; Han, Y-H; Wang, L; Lin, Y-J; Sun, Z; Lu, W-G; Hu, Y-Q; Li, J-Q; Lin, X-S; Liu, B-H; Jie, Q; Yang, L; Luo, Z-J

    2016-01-01

    Long-term use of glucocorticoids is a widespread clinical problem, which currently has no effective solution other than discontinuing the use. Eicosapentaenoic acid (EPA), an omega-3 long chain polyunsaturated fatty acid (n-3 PUFA), which is largely contained in fish or fish oil, has been reported to promote cell viability and improve bone metabolism. However, little is known about the effects of EPA on dexamethasome (Dex)-induced cell apoptosis. In this study, we showed that EPA-induced autophagy of murine bone marrow-derived mesenchymal stem cells (mBMMSCs). Meanwhile, EPA, but not arachidonic acid (AA), markedly inhibited Dex-induced apoptosis and promoted the viability of mBMMSCs. We also observed that EPA-induced autophagy was modulated by GPR120, but not GPR40. Further experiments showed that the mechanism of EPA-induced autophagy associated with GPR120 modulation involved an increase in the active form of AMP-activated protein kinase and a decrease in the activity of mammalian target of RAPA. The protective effect of EPA on Dex-induced apoptosis via GPR120-meditated induction of adaptive autophagy was supported by in vivo experiments. In summary, our findings may have important implications in developing future strategies to use EPA in the prevention and therapy of the side effects induced by long-term Dex-abuse. PMID:27228350

  2. Genetic loci associated with plasma phospholipid n-3 fatty acids: a meta-analysis of genome-wide association studies from the CHARGE Consortium.

    PubMed

    Lemaitre, Rozenn N; Tanaka, Toshiko; Tang, Weihong; Manichaikul, Ani; Foy, Millennia; Kabagambe, Edmond K; Nettleton, Jennifer A; King, Irena B; Weng, Lu-Chen; Bhattacharya, Sayanti; Bandinelli, Stefania; Bis, Joshua C; Rich, Stephen S; Jacobs, David R; Cherubini, Antonio; McKnight, Barbara; Liang, Shuang; Gu, Xiangjun; Rice, Kenneth; Laurie, Cathy C; Lumley, Thomas; Browning, Brian L; Psaty, Bruce M; Chen, Yii-Der I; Friedlander, Yechiel; Djousse, Luc; Wu, Jason H Y; Siscovick, David S; Uitterlinden, André G; Arnett, Donna K; Ferrucci, Luigi; Fornage, Myriam; Tsai, Michael Y; Mozaffarian, Dariush; Steffen, Lyn M

    2011-07-01

    Long-chain n-3 polyunsaturated fatty acids (PUFAs) can derive from diet or from α-linolenic acid (ALA) by elongation and desaturation. We investigated the association of common genetic variation with plasma phospholipid levels of the four major n-3 PUFAs by performing genome-wide association studies in five population-based cohorts comprising 8,866 subjects of European ancestry. Minor alleles of SNPs in FADS1 and FADS2 (desaturases) were associated with higher levels of ALA (p = 3 x 10⁻⁶⁴) and lower levels of eicosapentaenoic acid (EPA, p = 5 x 10⁻⁵⁸) and docosapentaenoic acid (DPA, p = 4 x 10⁻¹⁵⁴). Minor alleles of SNPs in ELOVL2 (elongase) were associated with higher EPA (p = 2 x 10⁻¹²) and DPA (p = 1 x 10⁻⁴³) and lower docosahexaenoic acid (DHA, p = 1 x 10⁻¹⁵). In addition to genes in the n-3 pathway, we identified a novel association of DPA with several SNPs in GCKR (glucokinase regulator, p = 1 x 10⁻⁸). We observed a weaker association between ALA and EPA among carriers of the minor allele of a representative SNP in FADS2 (rs1535), suggesting a lower rate of ALA-to-EPA conversion in these subjects. In samples of African, Chinese, and Hispanic ancestry, associations of n-3 PUFAs were similar with a representative SNP in FADS1 but less consistent with a representative SNP in ELOVL2. Our findings show that common variation in n-3 metabolic pathway genes and in GCKR influences plasma phospholipid levels of n-3 PUFAs in populations of European ancestry and, for FADS1, in other ancestries.

  3. Genetic Loci Associated with Plasma Phospholipid n-3 Fatty Acids: A Meta-Analysis of Genome-Wide Association Studies from the CHARGE Consortium

    PubMed Central

    Kabagambe, Edmond K.; Nettleton, Jennifer A.; King, Irena B.; Weng, Lu-Chen; Bhattacharya, Sayanti; Bandinelli, Stefania; Bis, Joshua C.; Rich, Stephen S.; Jacobs, David R.; Cherubini, Antonio; McKnight, Barbara; Liang, Shuang; Gu, Xiangjun; Rice, Kenneth; Laurie, Cathy C.; Lumley, Thomas; Browning, Brian L.; Psaty, Bruce M.; Chen, Yii-Der I.; Friedlander, Yechiel; Djousse, Luc; Wu, Jason H. Y.; Siscovick, David S.; Uitterlinden, André G.; Arnett, Donna K.; Ferrucci, Luigi; Fornage, Myriam; Tsai, Michael Y.; Mozaffarian, Dariush; Steffen, Lyn M.

    2011-01-01

    Long-chain n-3 polyunsaturated fatty acids (PUFAs) can derive from diet or from α-linolenic acid (ALA) by elongation and desaturation. We investigated the association of common genetic variation with plasma phospholipid levels of the four major n-3 PUFAs by performing genome-wide association studies in five population-based cohorts comprising 8,866 subjects of European ancestry. Minor alleles of SNPs in FADS1 and FADS2 (desaturases) were associated with higher levels of ALA (p = 3×10−64) and lower levels of eicosapentaenoic acid (EPA, p = 5×10−58) and docosapentaenoic acid (DPA, p = 4×10−154). Minor alleles of SNPs in ELOVL2 (elongase) were associated with higher EPA (p = 2×10−12) and DPA (p = 1×10−43) and lower docosahexaenoic acid (DHA, p = 1×10−15). In addition to genes in the n-3 pathway, we identified a novel association of DPA with several SNPs in GCKR (glucokinase regulator, p = 1×10−8). We observed a weaker association between ALA and EPA among carriers of the minor allele of a representative SNP in FADS2 (rs1535), suggesting a lower rate of ALA-to-EPA conversion in these subjects. In samples of African, Chinese, and Hispanic ancestry, associations of n-3 PUFAs were similar with a representative SNP in FADS1 but less consistent with a representative SNP in ELOVL2. Our findings show that common variation in n-3 metabolic pathway genes and in GCKR influences plasma phospholipid levels of n-3 PUFAs in populations of European ancestry and, for FADS1, in other ancestries. PMID:21829377

  4. Inhibition of triacylglycerol and apoprotein B secretion and of low density lipoprotein binding in Hep G2 cells by eicosapentaenoic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, S.H.; Nestel, P.J.

    1987-05-01

    The consumption of long chain polyunsaturated fatty acids of fish oils leads to profound lowering of plasma triacylglyercol (TAG) but not of plasma cholesterol. Reasons for this were investigated with the human hepatoma cell line, the Hep G2 cell. Incubations with oleic acid (OA), linoleic acid (LA) and the characteristic marine fatty acid eicosapentaenoic acid (EPA) enriched cellular TAG mass, though least with EPA. However, secretion of very low density lipoprotein (VLDL)-TAG and apoprotein B (apo B), measured from (/sup 3/H)-glycerol and (/sup 3/H)-leucine was markedly inhibited by EPA. Preincubation with LA reduced VLDL-TAG but not apo B secretion inmore » comparison with OA which stimulated both. A possible effect on low density lipoprotein (LDL) removal was studied by measuring (/sup 125/I)-LDL binding. Preincubation with either EPA or LA inhibited the saturable binding of LDL, observed with OA and control incubations. The binding of lipoproteins containing chylomicron remnants was not affected by any of the fatty acids.« less

  5. Marine n-3 polyunsaturated fatty acids in patients with end-stage renal failure and in subjects without kidney disease: a comparative study.

    PubMed

    Madsen, Trine; Christensen, Jeppe H; Svensson, My; Witt, Petra M; Toft, Egon; Schmidt, Erik B

    2011-03-01

    Patients with end-stage renal disease treated with chronic hemodialysis (HD) are reported to have low levels of marine n-3 polyunsaturated fatty acids (PUFA) in plasma and cell membranes compared with healthy subjects. The aim of this study was to investigate whether n-3 PUFA levels in plasma and cells are lower in HD patients as compared with subjects without kidney disease. A comparative study was carried out. This study was carried out at the Departments of Nephrology and Cardiology, Aalborg Hospital, Aarhus University Hospital, Denmark. This study consisted of 2 study populations comprising HD patients and 5 study populations comprising subjects without kidney disease. The fatty acid distribution in plasma phospholipids and platelet phospholipids was measured using gas chromatography. Eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and arachidonic acid (AA) levels in plasma or serum phospholipids and platelet phospholipids in HD patients were compared with n-3 PUFA levels in subjects without kidney disease. EPA and DHA were lower and AA/EPA was higher in plasma/serum phospholipids in HD patients than in subjects without kidney disease. Similarly, higher AA and AA/EPA and lower EPA and DHA levels were found in platelet phospholipids of HD patients. Adjustment for gender, age, and habitual intake of fish and fish oil supplements did not change these results. HD patients have lower n-3 PUFA levels in plasma and cells compared with subjects without kidney disease. Copyright © 2011 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  6. Whole-genome single-nucleotide polymorphism (SNP) marker discovery and association analysis with the eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) content in Larimichthys crocea

    PubMed Central

    Xiao, Shijun; Wang, Panpan; Dong, Linsong; Zhang, Yaguang; Han, Zhaofang; Wang, Qiurong

    2016-01-01

    Whole-genome single-nucleotide polymorphism (SNP) markers are valuable genetic resources for the association and conservation studies. Genome-wide SNP development in many teleost species are still challenging because of the genome complexity and the cost of re-sequencing. Genotyping-By-Sequencing (GBS) provided an efficient reduced representative method to squeeze cost for SNP detection; however, most of recent GBS applications were reported on plant organisms. In this work, we used an EcoRI-NlaIII based GBS protocol to teleost large yellow croaker, an important commercial fish in China and East-Asia, and reported the first whole-genome SNP development for the species. 69,845 high quality SNP markers that evenly distributed along genome were detected in at least 80% of 500 individuals. Nearly 95% randomly selected genotypes were successfully validated by Sequenom MassARRAY assay. The association studies with the muscle eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) content discovered 39 significant SNP markers, contributing as high up to ∼63% genetic variance that explained by all markers. Functional genes that involved in fat digestion and absorption pathway were identified, such as APOB, CRAT and OSBPL10. Notably, PPT2 Gene, previously identified in the association study of the plasma n-3 and n-6 polyunsaturated fatty acid level in human, was re-discovered in large yellow croaker. Our study verified that EcoRI-NlaIII based GBS could produce quality SNP markers in a cost-efficient manner in teleost genome. The developed SNP markers and the EPA and DHA associated SNP loci provided invaluable resources for the population structure, conservation genetics and genomic selection of large yellow croaker and other fish organisms. PMID:28028455

  7. Circulating CD36+ microparticles are not altered by docosahexaenoic or eicosapentaenoic acid supplementation.

    PubMed

    Phang, M; Thorne, R F; Alkhatatbeh, M J; Garg, M L; Lincz, L F

    2016-03-01

    Circulating microparticles (MP) are the source of a plasma derived form of the scavenger receptor CD36, termed soluble (s)CD36, the levels of which correlate with markers of atherosclerosis and risk of cardiovascular disease. Long chain n-3 polyunsaturated fatty acids have cardioprotective effects that we have previously reported to be gender specific. The aim of this study was to determine if dietary docosahexaenoic acid (DHA) and/or eicosapentaenoic acid (EPA) supplementation affect circulating CD36 + MP levels, and if this occurs differentially in healthy men and women. Participants (43M, 51F) aged 39.6 ± 1.7 years received 4 weeks of daily supplementation with DHA rich (200 mg EPA; 1000 mg DHA), EPA rich (1000 mg EPA; 200 mg DHA), or placebo (sunola) oil in a double-blinded, randomised, placebo controlled trial. Plasma CD36 + MP were enumerated by flow cytometry and differences between genders and treatments were evaluated by Student's or paired t-test and one way ANOVA. Males and females had similar levels of CD36 + MP at baseline (mean = 1018 ± 325 vs 980 ± 318; p = 0.577) and these were not significantly changed after DHA (M, p = 0.571; F, p = 0.444) or EPA (M, p = 0.361; F, p = 0.901) supplementation. Likewise, the overall percent change in these levels were not different between supplemented cohorts compared to placebo when all participants were combined (% change in CD36 + MP: DHA = 5.7 ± 37.5, EPA = -3.4 ± 35.4, placebo = -11.5 ± 32.9; p = 0.158) or stratified by gender (M, DHA = -2.6 ± 30.6, EPA = -15.1 ± 20.1, placebo = -21.4 ± 28.7, p = 0.187; F, DHA = 11.7 ± 41.5, EPA = 6.8 ± 42.9, placebo = -2.8 ± 34.7, p = 0.552). The cardioprotective effects of DHA and EPA do not act through a CD36 + MP mechanism. Copyright © 2015 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by

  8. DHA-rich n-3 fatty acid supplementation decreases DNA methylation in blood leukocytes: the OmegAD study.

    PubMed

    Karimi, Mohsen; Vedin, Inger; Freund Levi, Yvonne; Basun, Hans; Faxén Irving, Gerd; Eriksdotter, Maria; Wahlund, Lars-Olof; Schultzberg, Marianne; Hjorth, Erik; Cederholm, Tommy; Palmblad, Jan

    2017-10-01

    Background: Dietary fish oils, rich in long-chain n-3 (ω-3) fatty acids (FAs) [e.g., docosahexaenoic acid (DHA, 22:6n-3) and eicosapentaenoic acid (EPA, 20:5n-3)], modulate inflammatory reactions through various mechanisms, including gene expression, which is measured as messenger RNA concentration. However, the effects of long-term treatment of humans with DHA and EPA on various epigenetic factors-such as DNA methylation, which controls messenger RNA generation-are poorly described. Objective: We wanted to determine the effects of 6 mo of dietary supplementation with an n-3 FA preparation rich in DHA on global DNA methylation of peripheral blood leukocytes (PBLs) and the relation to plasma EPA and DHA concentrations in Alzheimer disease (AD) patients. Design: In the present study, DNA methylation in four 5'-cytosine-phosphate-guanine-3' (CpG) sites of long interspersed nuclear element-1 repetitive sequences was assessed in a group of 63 patients (30 given the n-3 FA preparation and 33 given placebo) as an estimation of the global DNA methylation in blood cells. Patients originated from the randomized, double-blind, placebo-controlled OmegAD study, in which 174 AD patients received either 1.7 g DHA and 0.6 g EPA (the n-3 FA group) or placebo daily for 6 mo. Results: At 6 mo, the n-3 FA group displayed marked increases in DHA and EPA plasma concentrations (2.6- and 3.5-fold), as well as decreased methylation in 2 out of 4 CpG sites ( P < 0.05 for all), respectively. This hypomethylation in CpG2 and CpG4 sites showed a reverse correlation to changes in plasma EPA concentration ( r = -0.25, P = 0.045; and r = -0.26, P = 0.041, respectively), but not to changes in plasma DHA concentration, and were not related to apolipoprotein E-4 allele frequency. Conclusion: Supplementation with n-3 FA for 6 mo was associated with global DNA hypomethylation in PBLs. Our data may be of importance in measuring various effects of marine oils, including gene expression, in patients

  9. Eicosapentaenoic acid (EPA) vs. Docosahexaenoic acid (DHA): Effects in epididymal white adipose tissue of mice fed a high-fructose diet.

    PubMed

    Bargut, Thereza Cristina Lonzetti; Santos, Larissa Pereira; Machado, Daiana Guimarães Lopes; Aguila, Marcia Barbosa; Mandarim-de-Lacerda, Carlos Alberto

    2017-08-01

    Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been demonstrated to be beneficial for many diseases, including those associated with the metabolic syndrome (e.g. insulin resistance and hypertension). Nevertheless, not only their actions are not entirely understood, but also their only effects were not yet elucidated. Therefore, we aimed to compare the effects of EPA and DHA, alone or in combination, on the epididymal white adipose tissue (WAT) metabolism in mice fed a high-fructose diet. 3-mo-old C57Bl/6 mice were fed a control diet (C) or a high-fructose diet (HFru). After three weeks on the diets, the HFru group was subdivided into four new groups for another five weeks: HFru, HFru+EPA, HFru+DHA, and HFru-EPA+DHA (n=10/group). Besides evaluating biometric and metabolic parameters of the animals, we measured the adipocyte area and performed molecular analyses (inflammation and lipolysis) in the epididymal WAT. The HFru group showed adipocyte hypertrophy, inflammation, and uncontrolled lipolysis. The treated animals showed a reversion of adipocyte hypertrophy, inhibition of inflammation with activation of anti-inflammatory mediators, and regularization of lipolysis. Overall, the beneficial effects were more marked with DHA than EPA. Although the whole-body metabolic effects were similar between EPA and DHA, DHA appeared to be the central actor in WAT metabolism, modulating pro and anti-inflammatory pathways and alleviating adipocytes abnormalities. Therefore, when considering fructose-induced adverse effects in WAT, the most prominent actions were observed with DHA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Supplementation with α-Lipoic Acid Alone or in Combination with Eicosapentaenoic Acid Modulates the Inflammatory Status of Healthy Overweight or Obese Women Consuming an Energy-Restricted Diet.

    PubMed

    Huerta, Ana E; Prieto-Hontoria, Pedro L; Sáinz, Neira; Martínez, J Alfredo; Moreno-Aliaga, María J

    2016-03-09

    The proinflammatory state induced by obesity plays an important role in obesity-related metabolic complications. Our objective was to evaluate whether dietary supplementation with α-lipoic acid (LA) and eicosapentaenoic acid (EPA), separately or in combination, could improve inflammatory and cardiovascular disease risk markers in healthy overweight or obese women consuming an energy-restricted diet. Within the context of the Effects of Lipoic Acid and Eicosapentaenoic Acid in Human Obesity (OBEPALIP) study, Caucasian women (n = 73) aged 20-50 y with a BMI (in kg/m 2 ) between 27.5 and 40 consumed an energy-restricted diet for 10 wk after being randomly assigned to 1 of 4 parallel experimental groups: a control group or groups supplemented with 1.3 g EPA/d, 0.3 g LA/d, or both. Secondary outcomes were measured at baseline and at the end of the study. These included circulating inflammatory [C-reactive protein (CRP), adiponectin, interleukin 6 (IL-6), chemerin, haptoglobin, amyloid A, and leukocytes] and cardiovascular disease risk markers (platelet count and circulating apelin, asymmetric dimethylarginine, vascular endothelial growth factor, and plasminogen activator inhibitor 1). Gene expression of IL6, adhesion G protein-coupled receptor E1 (ADGRE1), interleukin 10 (IL10), chemokine (C-C motif) ligand 2, and adiponectin was measured in subcutaneous abdominal adipose tissue biopsies at endpoint. Supplementation with LA caused a greater reduction in some circulating inflammatory risk markers, such as CRP (-0.13 ± 0.07 mg/dL compared with 0.06 ± 0.07 mg/dL, P < 0.05) and leukocyte count (-0.74 ± 0.18 × 10 3 /mm 3 compared with 0.06 ± 0.18 × 10 3 /mm 3 , P < 0.01), than in the groups that were not supplemented with LA. In contrast, the fall in apelin concentrations that accompanied weight loss was less pronounced in groups that were supplemented with LA (-1.1 ± 4.9 pg/mL) than in those that were not (-21.3 ± 4.8 pg/mL, P < 0.01). In adipose tissue, compared

  11. A Palmitic Acid Elongase Affects Eicosapentaenoic Acid and Plastidial Monogalactosyldiacylglycerol Levels in Nannochloropsis1

    PubMed Central

    Dolch, Lina-Juana; Rak, Camille; Broughton, Richard; Leterrier, Marina; Tellier, Frédérique; Faure, Jean-Denis; Falconet, Denis; Jouhet, Juliette

    2017-01-01

    Nannochloropsis species are oleaginous eukaryotes containing a plastid limited by four membranes, deriving from a secondary endosymbiosis. In Nannochloropsis, thylakoid lipids, including monogalactosyldiacylglycerol (MGDG), are enriched in eicosapentaenoic acid (EPA). The need for EPA in MGDG is not understood. Fatty acids are de novo synthesized in the stroma, then converted into very-long-chain polyunsaturated fatty acids (FAs) at the endoplasmic reticulum (ER). The production of MGDG relies therefore on an EPA supply from the ER to the plastid, following an unknown process. We identified seven elongases and five desaturases possibly involved in EPA production in Nannochloropsis gaditana. Among the six heterokont-specific saturated FA elongases possibly acting upstream in this pathway, we characterized the highly expressed isoform Δ0-ELO1. Heterologous expression in yeast (Saccharomyces cerevisiae) showed that NgΔ0-ELO1 could elongate palmitic acid. Nannochloropsis Δ0-elo1 mutants exhibited a reduced EPA level and a specific decrease in MGDG. In NgΔ0-elo1 lines, the impairment of photosynthesis is consistent with a role of EPA-rich MGDG in nonphotochemical quenching control, possibly providing an appropriate MGDG platform for the xanthophyll cycle. Concomitantly with MGDG decrease, the level of triacylglycerol (TAG) containing medium chain FAs increased. In Nannochloropsis, part of EPA used for MGDG production is therefore biosynthesized by a channeled process initiated at the elongation step of palmitic acid by Δ0-ELO1, thus acting as a committing enzyme for galactolipid production. Based on the MGDG/TAG balance controlled by Δ0-ELO1, this study also provides novel prospects for the engineering of oleaginous microalgae for biotechnological applications. PMID:27895203

  12. N-3 polyunsaturated fatty acids and 17β-estradiol injection induce antidepressant-like effects through regulation of serotonergic neurotransmission in ovariectomized rats.

    PubMed

    Jin, Youri; Park, Yongsoon

    2015-09-01

    Previous studies have suggested that estrogen and n-3 polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have antidepressant-like effects. The purpose of the present study was to determine the interaction between n-3 PUFAs and estrogen, and their neurotrophic mechanism in rats after the forced swimming test (FST). Rats were fed a modified American Institute of Nutrition 93G diet with 0%, 1% or 2% EPA+DHA relative to the total energy intake during 12 weeks. At 8 weeks, rats were ovariectomized and injected with either 17β-estradiol-3-benzoate (E2) or corn oil during the last 3 weeks. Both n-3 PUFA supplementation and E2 injection increased climbing and decreased immobility during the FST. Serum serotonin concentration was also increased by both n-3 PUFA and E2. N-3 PUFA and E2 decreased hippocampal expressions of interleukin (IL)-6 and tumor necrosis factor-α, and increased cAMP response element binding protein (CREB), phosphorylated CREB and brain-derived neurotrophic factor (BDNF). N-3 PUFA supplementation decreased hippocampal expression of IL-1β only in rats injected with E2. Both n-3 PUFA supplementation and E2 injection increased estrogen receptor (ER)-α in the hippocampus, but ER-β was increased only by E2 injection. Additionally, there was a significant interaction between n-3 PUFA supplementation and E2 injection on the hippocampal expression of pCREB, suggesting membrane-mediated interaction of n-3 PUFAs and E2. In conclusion, both n-3 PUFA and E2 had antidepressant-like effects by regulating serotonergic neurotransmission through BDNF and inflammatory cytokines. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Reversed-phase high-performance liquid chromatography purification of methyl esters of C(16)-C(28) polyunsaturated fatty acids in microalgae, including octacosaoctaenoic acid [28:8(n-3)].

    PubMed

    Mansour, Maged P

    2005-12-02

    A preparative reversed-phase (RP; C(18)) high-performance liquid chromatography (HPLC) method with gradient elution using acetonitrile (MeCN)-chloroform (CHCl(3)) (or dichloromethane (DCM)) and evaporative light-scattering detection (ELSD) with automatic multiple injection and fraction collection was used to purify milligram quantities of microalgal polyunsaturated fatty acids (PUFA), separated as methyl esters (ME). PUFA-ME purified included methyl esters of docosahexaenoic acid (DHA; 22:6(n-3)), eicosapentaenoic acid (EPA; 20:5(n-3)) and the unusual very long-chain (C(28)) highly unsaturated fatty acid (VLC-HUFA), octacosaoctaenoic acid [28:8(n-3)(4, 7, 10, 13, 16, 19, 22, 25)] from the marine dinoflagellate Scrippsiella sp. CS-295/c. Other PUFA purified from various microalgae using this RP-HPLC method to greater than 95% purity included 16:3(n-4), 16:4(n-3), 16:4(n-1) and 18:5(n-3). The number of injections required was variable and depended on the abundance of the desired PUFA-ME, and resolution from closely eluting PUFA-ME, which determined the maximum loading. The purity of these fatty acids was determined by electron impact (EI) GC-MS and the chain length and location of double bonds was determined by EI GC-MS of 4,4-dimethyl oxazoline (DMOX) derivatives formed using a low temperature method. Advantages over silver-ion HPLC for purifying PUFA-ME is that separation occurs according to chain length as well as degree of unsaturation enabling separation of PUFA-ME with the same degree of unsaturation but different chain length (i.e. between 18:5(n-3) and 20:5(n-3)). In addition, PUFA-ME are not strongly adsorbed, but elute earlier than their more saturated corresponding FAME of the same chain length. This method is robust, simple, and requires only a short re-equilibration time. It is a useful tool for preparing milligram quantities of pure PUFA-ME for bioactive screening (as free fatty acids), although many multiple injections may be required for minor PUFA

  14. Omega-3 polyunsaturated fatty acid (fish oil) supplementation and the prevention of clinical cardiovascular disease

    USDA-ARS?s Scientific Manuscript database

    Multiple randomized controlled trials (RCTs) have assessed the effects of supplementation with eicosapentaenoic acid plus docosahexaenoic acid (omega-3 polyunsaturated fatty acids, commonly called fish oils) on the occurrence of clinical cardiovascular diseases. Although the effects of supplementati...

  15. Long-Chain Omega-3 Fatty Acids Eicosapentaenoic Acid and Docosahexaenoic Acid and Blood Pressure: A Meta-Analysis of Randomized Controlled Trials

    PubMed Central

    Van Elswyk, Mary; Alexander, Dominik D.

    2014-01-01

    BACKGROUND Although a large body of literature has been devoted to examining the relationship between eicosapentaenoic and docosahexaenoic acids (EPA+DHA) and blood pressure, past systematic reviews have been hampered by narrow inclusion criteria and a limited scope of analytical subgroups. In addition, no meta-analysis to date has captured the substantial volume of randomized controlled trials (RCTs) published in the past 2 years. The objective of this meta-analysis was to examine the effect of EPA+DHA, without upper dose limits and including food sources, on blood pressure in RCTs. METHODS Random-effects meta-analyses were used to generate weighted group mean differences and 95% confidence intervals (CIs) between the EPA+DHA group and the placebo group. Analyses were conducted for subgroups defined by key subject or study characteristics. RESULTS Seventy RCTs were included. Compared with placebo, EPA+DHA provision reduced systolic blood pressure (−1.52mm Hg; 95% confidence interval (CI) = −2.25 to −0.79) and diastolic blood pressure (−0.99mm Hg; 95% CI = −1.54 to −0.44) in the meta-analyses of all studies combined. The strongest effects of EPA+DHA were observed among untreated hypertensive subjects (systolic blood pressure = −4.51mm Hg, 95% CI = −6.12 to −2.83; diastolic blood pressure = −3.05mm Hg, 95% CI = −4.35 to −1.74), although blood pressure also was lowered among normotensive subjects (systolic blood pressure = −1.25mm Hg, 95% CI = −2.05 to −0.46; diastolic blood pressure = −0.62mm Hg, 95% CI = −1.22 to −0.02). CONCLUSIONS Overall, available evidence from RCTs indicates that provision of EPA+DHA reduces systolic blood pressure, while provision of ≥2 grams reduces diastolic blood pressure. PMID:24610882

  16. Long-chain omega-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid and blood pressure: a meta-analysis of randomized controlled trials.

    PubMed

    Miller, Paige E; Van Elswyk, Mary; Alexander, Dominik D

    2014-07-01

    Although a large body of literature has been devoted to examining the relationship between eicosapentaenoic and docosahexaenoic acids (EPA+DHA) and blood pressure, past systematic reviews have been hampered by narrow inclusion criteria and a limited scope of analytical subgroups. In addition, no meta-analysis to date has captured the substantial volume of randomized controlled trials (RCTs) published in the past 2 years. The objective of this meta-analysis was to examine the effect of EPA+DHA, without upper dose limits and including food sources, on blood pressure in RCTs. Random-effects meta-analyses were used to generate weighted group mean differences and 95% confidence intervals (CIs) between the EPA+DHA group and the placebo group. Analyses were conducted for subgroups defined by key subject or study characteristics. Seventy RCTs were included. Compared with placebo, EPA+DHA provision reduced systolic blood pressure (-1.52 mm Hg; 95% confidence interval (CI) = -2.25 to -0.79) and diastolic blood pressure (-0.99 mm Hg; 95% CI = -1.54 to -0.44) in the meta-analyses of all studies combined. The strongest effects of EPA+DHA were observed among untreated hypertensive subjects (systolic blood pressure = -4.51 mm Hg, 95% CI = -6.12 to -2.83; diastolic blood pressure = -3.05 mm Hg, 95% CI = -4.35 to - 1.74), although blood pressure also was lowered among normotensive subjects (systolic blood pressure = -1.25 mm Hg, 95% CI = -2.05 to -0.46; diastolic blood pressure = -0.62 mm Hg, 95% CI = -1.22 to -0.02). Overall, available evidence from RCTs indicates that provision of EPA+DHA reduces systolic blood pressure, while provision of ≥2 grams reduces diastolic blood pressure. © The Author 2014. Published by Oxford University Press on behalf of the American Journal of Hypertension.

  17. Dietary conjugated linoleic acid and long-chain n-3 fatty acids in mammary and prostate cancer protection: a review.

    PubMed

    Heinze, Verónica M; Actis, Adriana B

    2012-02-01

    The role of dietary fatty acids on cancer is still controversial. To examine the current literature on the protective role of conjugated linoleic acid (CLA) and marine long-chain fatty acids [eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] and the risk of breast and prostate cancer, data from 41 case-control and cohort studies and relevant in vitro and animal experiments were included in this 2000-2010 revision. Epidemiological studies on CLA intake or its tissue concentration related to breast and prostate tumorigenesis are not conclusive; EPA and DHA intake have shown important inverse associations just in some studies. Additional research on the analysed association is required.

  18. Insulin-Sensitizing Effects of Omega-3 Fatty Acids: Lost in Translation?

    PubMed Central

    Lalia, Antigoni Z.; Lanza, Ian R.

    2016-01-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFA) of marine origin, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), have been long studied for their therapeutic potential in the context of type 2 diabetes, insulin resistance, and glucose homeostasis. Glaring discordance between observations in animal and human studies precludes, to date, any practical application of n-3 PUFA as nutritional therapeutics against insulin resistance in humans. Our objective in this review is to summarize current knowledge and provide an up-to-date commentary on the therapeutic value of EPA and DHA supplementation for improving insulin sensitivity in humans. We also sought to discuss potential mechanisms of n-3 PUFA action in target tissues, in specific skeletal muscle, based on our recent work, as well as in liver and adipose tissue. We conducted a literature search to include all preclinical and clinical studies performed within the last two years and to comment on representative studies published earlier. Recent studies support a growing consensus that there are beneficial effects of n-3 PUFA on insulin sensitivity in rodents. Observational studies in humans are encouraging, however, the vast majority of human intervention studies fail to demonstrate the benefit of n-3 PUFA in type 2 diabetes or insulin-resistant non-diabetic people. Nevertheless, there are still several unanswered questions regarding the potential impact of n-3 PUFA on metabolic function in humans. PMID:27258299

  19. Omega-3 fatty acids and inflammatory processes: from molecules to man.

    PubMed

    Calder, Philip C

    2017-10-15

    Inappropriate, excessive or uncontrolled inflammation contributes to a range of human diseases. Inflammation involves a multitude of cell types, chemical mediators and interactions. The present article will describe nutritional and metabolic aspects of omega-6 (n-6) and omega-3 (n-3) fatty acids and explain the roles of bioactive members of those fatty acid families in inflammatory processes. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are n-3 fatty acids found in oily fish and fish oil supplements. These fatty acids are capable of partly inhibiting many aspects of inflammation including leucocyte chemotaxis, adhesion molecule expression and leucocyte-endothelial adhesive interactions, production of eicosanoids like prostaglandins and leukotrienes from the n-6 fatty acid arachidonic acid and production of pro-inflammatory cytokines. In addition, EPA gives rise to eicosanoids that often have lower biological potency than those produced from arachidonic acid, and EPA and DHA give rise to anti-inflammatory and inflammation resolving mediators called resolvins, protectins and maresins. Mechanisms underlying the anti-inflammatory actions of EPA and DHA include altered cell membrane phospholipid fatty acid composition, disruption of lipid rafts, inhibition of activation of the pro-inflammatory transcription factor nuclear factor κB so reducing expression of inflammatory genes and activation of the anti-inflammatory transcription factor peroxisome proliferator-activated receptor γ. Animal experiments demonstrate benefit from EPA and DHA in a range of models of inflammatory conditions. Human trials demonstrate benefit of oral n-3 fatty acids in rheumatoid arthritis and in stabilizing advanced atherosclerotic plaques. Intravenous n-3 fatty acids may have benefits in critically ill patients through reduced inflammation. The anti-inflammatory and inflammation resolving actions of EPA, DHA and their derivatives are of clinical relevance. © 2017 The Author

  20. Can pleiotropic effects of eicosapentaenoic acid (EPA) impact residual cardiovascular risk?

    PubMed

    Nelson, John R; True, Wayne S; Le, Viet; Mason, R Preston

    2017-11-01

    Residual cardiovascular (CV) risk persists even in statin-treated patients with optimized low-density lipoprotein cholesterol (LDL-C) levels. Other pathways beyond cholesterol contribute to CV risk and the key to reducing residual risk may be addressing non-cholesterol risk factors through pleiotropic mechanisms. The purpose of this review is to examine the literature relating to the potential role of the omega-3 fatty acid eicosapentaenoic acid (EPA) in reducing residual CV risk. The literature shows that EPA can robustly lower plasma triglyceride (TG) levels without raising LDL-C levels and documents EPA to have a broad range of beneficial effects on the atherosclerotic pathway, including those on lipids, lipoproteins, inflammation, oxidation, phospholipid membranes, and the atherosclerotic plaque itself. Clinical imaging studies have consistently demonstrated that EPA decreases plaque vulnerability and prevents plaque progression. The evidence therefore points to a potential role for EPA to reduce residual CV risk. A large randomized study of statin-treated Japanese patients demonstrated that EPA ethyl ester reduced major coronary events by 19% (P = 0.011). However, while there has been significant benefit demonstrated in this and another Japanese CV outcomes study, the question as to whether EPA can play a role in reducing residual CV risk remains to be addressed in broader populations. The large, global, ongoing, randomized, placebo-controlled REDUCE-IT study of high-risk statin-treated patients with persistent hypertriglyceridemia is currently underway to investigate the potential of icosapent ethyl (high-purity prescription EPA ethyl ester) as an add-on therapy to reduce residual CV risk.

  1. Effects of a Novel Nutritional Formula Enriched With Eicosapentaenoic Acid and Docosahexaenoic Acid Specially Developed for Tube-Fed Hemodialysis Patients.

    PubMed

    Esaki, Shinga; Iwahori, Motokazu-Tohru; Takagi, Yuri; Wada, Toshikazu; Morita, Shunsuke; Sonoki, Hirofumi; Nakao, Toshiyuki

    2017-03-01

    To evaluate the effects of a nutritional formula enriched with eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in tube-fed bedridden hemodialysis patients. A prospective, multicenter, single-arm study. Koyukai Memorial Hospital, Orimoto Hospital, and Chofu Hospital, Japan. Eleven tube-fed bedridden hemodialysis patients. Patients were fed a nutritional formula enriched with EPA and DHA for 12 weeks. Body weight; body mass index (BMI); serum levels of total protein, albumin, prealbumin, total cholesterol, triglyceride, and C-reactive protein (CRP); serum fatty acid composition. Body weight; BMI; and serum levels of total protein, albumin, total cholesterol, triglyceride, and CRP at 12 weeks were not significantly different from baseline levels. Serum prealbumin, EPA, and DHA levels significantly increased after 12 weeks of treatment. A nutritional formula enriched with EPA and DHA may be beneficial for nutritional management in tube-fed bedridden hemodialysis patients. Copyright © 2016. Published by Elsevier Inc.

  2. Icosapent ethyl: Eicosapentaenoic acid concentration and triglyceride-lowering effects across clinical studies.

    PubMed

    Bays, Harold E; Ballantyne, Christie M; Doyle, Ralph T; Juliano, Rebecca A; Philip, Sephy

    2016-09-01

    Icosapent ethyl is a high-purity prescription form of eicosapentaenoic acid (EPA) ethyl ester approved at a dose of 4g/day as an adjunct to diet to reduce triglyceride (TG) levels in adult patients with severe (≥500mg/dL) hypertriglyceridemia. This post-hoc exploratory analysis examined the relationship of icosapent ethyl dose with EPA concentrations in plasma and red blood cells (RBCs) across 3 clinical studies-a phase 1 pharmacokinetic study in healthy adult volunteers and 2 pivotal phase 3 studies (MARINE and ANCHOR) in adult patients with hypertriglyceridemia-and examined the relationship between EPA levels and TG-lowering effects in MARINE and ANCHOR. In all 3 studies, icosapent ethyl produced dose-dependent increases in the concentrations of EPA in plasma and RBCs. In both MARINE and ANCHOR, these dose-dependent EPA increases correlated with the degree of TG level lowering (all P<0.01). In patients with high TG levels (≥200mg/dL) and treated with icosapent ethyl 4g/day, the end-of-treatment plasma and RBC EPA concentrations were >170μg/mL and>70μg/mL, respectively. These studies support icosapent ethyl as producing predictable dose-dependent pharmacokinetics/pharmacodynamics, with TG level lowering dependent upon icosapent ethyl dose and EPA concentrations in plasma and RBCs. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Liver conversion of docosahexaenoic and arachidonic acids from their 18-carbon precursors in rats on a DHA-free but α-LNA-containing n-3 PUFA adequate diet.

    PubMed

    Gao, Fei; Kim, Hyung-Wook; Igarashi, Miki; Kiesewetter, Dale; Chang, Lisa; Ma, Kaizong; Rapoport, Stanley I

    2011-01-01

    The long-chain polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA, 20:5n-3), docosahexaenoic acid (DHA, 22:6n-3), and arachidonic acid (AA, 20:4n-6), are critical for health. These PUFAs can be synthesized in liver from their plant-derived precursors, α-linolenic acid (α-LNA, 18:3n-3) and linoleic acid (LA, 18:2n-6). Vegetarians and vegans may have suboptimal long-chain n-3 PUFA status, and the extent of the conversion of α-LNA to EPA and DHA by the liver is debatable. We quantified liver conversion of DHA and other n-3 PUFAs from α-LNA in rats fed a DHA-free but α-LNA (n-3 PUFA) adequate diet, and compared results to conversion of LA to AA. [U-(13)C]LA or [U-(13)C]α-LNA was infused intravenously for 2h at a constant rate into unanesthetized rats fed a DHA-free α-LNA adequate diet, and published equations were used to calculate kinetic parameters. The conversion coefficient k(⁎) of DHA from α-LNA was much higher than for AA from LA (97.2×10(-3) vs. 10.6×10(-3)min(-1)), suggesting that liver elongation-desaturation is more selective for n-3 PUFA biosynthesis on a per molecule basis. The net daily secretion rate of DHA, 20.3μmol/day, exceeded the reported brain DHA consumption rate by 50-fold, suggesting that the liver can maintain brain DHA metabolism with an adequate dietary supply solely of α-LNA. This infusion method could be used in vegetarians or vegans to determine minimal daily requirements of EPA and DHA in humans. Published by Elsevier B.V.

  4. Transfer of omega-3 fatty acids across the blood-brain barrier after dietary supplementation with a docosahexaenoic acid-rich omega-3 fatty acid preparation in patients with Alzheimer's disease: the OmegAD study.

    PubMed

    Freund Levi, Y; Vedin, I; Cederholm, T; Basun, H; Faxén Irving, G; Eriksdotter, M; Hjorth, E; Schultzberg, M; Vessby, B; Wahlund, L-O; Salem, N; Palmblad, J

    2014-04-01

    Little is known about the transfer of essential fatty acids (FAs) across the human blood-brain barrier (BBB) in adulthood. In this study, we investigated whether oral supplementation with omega-3 (n-3) FAs would change the FA profile of the cerebrospinal fluid (CSF). A total of 33 patients (18 receiving the n-3 FA supplement and 15 receiving placebo) were included in the study. These patients were participants in the double-blind, placebo-controlled randomized OmegAD study in which 204 patients with mild Alzheimer's disease (AD) received 2.3 g n-3 FA [high in docosahexaenoic acid (DHA)] or placebo daily for 6 months. CSF FA levels were related to changes in plasma FA and to CSF biomarkers of AD and inflammation. At 6 months, the n-3 FA supplement group displayed significant increases in CSF (and plasma) eicosapentaenoic acid (EPA), DHA and total n-3 FA levels (P < 0.01), whereas no changes were observed in the placebo group. Changes in CSF and plasma levels of EPA and n-3 docosapentaenoic acid were strongly correlated, in contrast to those of DHA. Changes in DHA levels in CSF were inversely correlated with CSF levels of total and phosphorylated tau, and directly correlated with soluble interleukin-1 receptor type II. Thus, the more DHA increased in CSF, the greater the change in CSF AD/inflammatory biomarkers. Oral supplementation with n-3 FAs conferred changes in the n-3 FA profile in CSF, suggesting transfer of these FAs across the BBB in adults. © 2013 The Association for the Publication of the Journal of Internal Medicine.

  5. Association of serum n-3 polyunsaturated fatty acids with psychological distress in the second and third trimesters of pregnancy: Adjunct Study of Japan Environment and Children's Study.

    PubMed

    Hamazaki, Kei; Harauma, Akiko; Tanabe, Satoru; Namai, Miho; Moriguchi, Toru; Inadera, Hidekuni

    2016-11-01

    The results of several epidemiological studies and clinical trials investigating the effects of n-3 polyunsaturated fatty acids (PUFAs) on antenatal and postnatal depression remain controversial. In a previous case-control study of early pregnancy in Japan, we found an inverse association between eicosapentaenoic acid and risk of psychological distress after adjusting for possible confounders. Here, in a 1:2 matched case-control study, we further investigated the possible relationship between serum n-3 PUFAs and risk of psychological distress in the second and third trimesters of pregnancy. The psychological distress group (n=71) consisted of subjects with a score of ≥13 on the Kessler Psychological Distress Scale. The control group (n=142) was matched for age, educational level, and family income. Fatty acid composition of total lipid was determined from serum samples by gas chromatography. Associations between fatty acid levels and incidence of psychological distress were evaluated by logistic regression. Sixty-six percent of blood samples were collected in the second trimester and the remainder in the third. There were no significant differences in any of the n-3 PUFAs between the two groups. After adjustment for possible confounders, none of the n-3 PUFAs showed an association with risk of psychological distress. Peripheral n-3 PUFA levels might not influence the risk of psychological distress in later pregnancy. Further research is warranted to clarify this finding. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Associations of obesity with triglycerides and C-reactive protein are attenuated in adults with high red blood cell eicosapentaenoic and docosahexaenoic acids

    PubMed Central

    Makhoul, Zeina; Kristal, Alan R.; Gulati, Roman; Luick, Bret; Bersamin, Andrea; O'Brien, Diane; Hopkins, Scarlett E.; Stephensen, Charles B.; Stanhope, Kimber L.; Havel, Peter J.; Boyer, Bert

    2011-01-01

    Background N-3 fatty acids are associated with favorable, and obesity with unfavorable, concentrations of chronic disease risk biomarkers. Objective We examined whether high eicosapentaenoic (EPA) and docosahexaenoic (DHA) acid intakes, measured as percentages of total red blood cell (RBC) fatty acids, modify associations of obesity with chronic disease risk biomarkers. Methods In a cross-sectional study of 330 Yup'ik Eskimos, generalized additive models (GAM) and linear and quadratic regression models were used to examine associations of BMI with biomarkers across RBC EPA and DHA categories. Results Median (5th–95th percentile) RBC EPA and DHA were 2.6% (0.5–5.9%) and 7.3% (3.3–8.9%), respectively. In regression models, associations of BMI with triglycerides, glucose, insulin, C-reactive protein (CRP) and leptin differed significantly by RBC EPA and DHA. The GAM confirmed regression results for triglycerides and CRP: At low RBC EPA and RBC DHA, the predicted increases in triglycerides and CRP concentrations associated with a BMI increase from 25 to 35 were 99.5±45.3 mg/dl (106%) and 137.8±71.0 mg/dl (156%), respectively, for triglycerides and 1.2±0.7 mg/l (61%) and 0.8±1.0 mg/l (35%), respectively, for CRP. At high RBC EPA and RBC DHA, these predicted increases were 13.9±8.1 mg/dl (23%) and 12.0±12.3 mg/dl (18%), respectively, for triglycerides and 0.5±0.5 mg/l (50%) and −0.5±0.6 mg/l (−34%), respectively, for CRP. Conclusions In this population, high RBC EPA and DHA were associated with attenuated dyslipidemia and low-grade systemic inflammation among overweight and obese persons. This may help inform recommendations for n-3 fatty acid intakes in the reduction of obesity-related disease risk. PMID:21427737

  7. Omega-3 fatty acids are oxygenated at the n-7 carbon by the lipoxygenase domain of a fusion protein in the cyanobacterium Acaryochloris marina

    PubMed Central

    Gao, Benlian; Boeglin, William E.; Brash, Alan R.

    2009-01-01

    Lipoxygenases (LOX) are found in most organisms that contain polyunsaturated fatty acids, usually existing as individual genes although occasionally encoded as a fusion protein with a catalase-related hemoprotein. Such a fusion protein occurs in the cyanobacterium Acaryochloris marina and herein we report the novel catalytic activity of its LOX domain. The full-length protein and the C-terminal LOX domain were expressed in Escherichia coli, and the catalytic activities characterized by UV, HPLC, GC-MS, and CD. All omega-3 polyunsaturates were oxygenated by the LOX domain at the n-7 position and with R stereospecificity: α-linolenic and the most abundant fatty acid in A. marina, stearidonic acid (C18.4ω3), are converted to the corresponding 12R-hydroperoxides, eicosapentaenoic acid to its 14R-hydroperoxide, and docosahexaenoic acid to its 16R-hydroperoxide. Omega-6 polyunsaturates were oxygenated at the n-10 position, forming 9R-hydroperoxy-octadecadienoic acid from linoleic acid and 11R-hydroperoxy-eicosatetraenoic acid from arachidonic acid. The metabolic transformation of stearidonic acid by the full-length fusion protein entails its 12R oxygenation with subsequent conversion by the catalase-related domain to a novel allene epoxide, a likely precursor of cyclopentenone fatty acids or other signaling molecules (Gao et al, J. Biol. Chem. 284:22087-98, 2009). Although omega-3 fatty acids and lipoxygenases are of widespread occurrence, this appears to be the first description of a LOX-catalyzed oxygenation that specifically utilizes the terminal pentadiene of omega-3 fatty acids. PMID:19786119

  8. n-3 Fatty acids attenuate the risk of diabetes associated with elevated serum nonesterified fatty acids: the multi-ethnic study of atherosclerosis.

    PubMed

    Steffen, Brian T; Steffen, Lyn M; Zhou, Xia; Ouyang, Pamela; Weir, Natalie L; Tsai, Michael Y

    2015-04-01

    Chronically high nonesterified fatty acids (NEFAs) are a marker of metabolic dysfunction and likely increase risk of type 2 diabetes. By comparison, n-3 fatty acids (FAs) have been shown to have various health benefits and may protect against disease development. In 5,697 participants of the Multi-Ethnic Study of Atherosclerosis (MESA), we examined whether serum levels of NEFAs relate to risk of incident type 2 diabetes and further tested whether plasma n-3 FA levels may interact with this relation. NEFAs were measured in fasting serum using an enzymatic colorimetric assay and phospholipid n-3 FAs eicosapentaenoic and docosahexaenoic acids were determined in plasma through gas chromatography-flame ionization detection in 5,697 MESA participants. Cox proportional hazards regression evaluated the association between NEFA levels and incident type 2 diabetes and whether plasma n-3 FAs modified this association adjusting for age, sex, race, education, field center, smoking, and alcohol use. Over a mean 11.4 years of the study period, higher diabetes incidence was found across successive NEFA quartiles (Q) (hazard ratio [95% CI]): Q1, 1.0; Q2, 1.35 (1.07, 1.71); Q3, 1.58 (1.24, 2.00); and Q4, 1.86 (1.45, 2.38) (P(trend) < 0.001). A significant interaction of n-3 FAs on the relation between NEFAs and type 2 diabetes was also observed (P(interaction) = 0.03). For individuals with lower n-3 levels (<75th percentile), a higher risk of type 2 diabetes was observed across quartiles of NEFAs: Q1, 1.0; Q2, 1.41 (1.07, 1.84); Q3, 1.77 (1.35, 2.31); and Q4, 2.18 (1.65, 2.88) (P(trend) < 0.001). No significant associations were observed in those with n-3 FAs ≥ 75th percentile (P(trend) = 0.54). NEFAs are a marker of type 2 diabetes and may have clinical utility for detecting risk of its development. The modifying influence of n-3 FAs suggests a protective effect against disease and/or metabolic dysfunction related to NEFAs and requires further study. © 2015 by the American

  9. Lower inter-partum interval and unhealthy life-style factors are inversely associated with n-3 essential fatty acids changes during pregnancy: a prospective cohort with Brazilian women.

    PubMed

    Pinto, Thatiana J P; Farias, Dayana R; Rebelo, Fernanda; Lepsch, Jaqueline; Vaz, Juliana S; Moreira, Júlia D; Cunha, Geraldo M; Kac, Gilberto

    2015-01-01

    To analyze serum fatty acids concentrations during healthy pregnancy and evaluate whether socioeconomic, demographic, obstetric, nutritional, anthropometric and lifestyle factors are associated with their longitudinal changes. A prospective cohort of 225 pregnant women was followed in the 5th-13th, 20th-26th and 30th-36th weeks of gestation. Serum samples were collected in each trimester of pregnancy and analyzed to determine the fatty acids composition using a high-throughput robotic direct methylation method coupled with fast gas-liquid chromatography. The independent variables comprised the subjects' socioeconomic and demographic status, obstetric history, early pregnancy body mass index (BMI), dietary and lifestyle parameters. Analyses were performed using linear mixed-effects models. The overall absolute concentrations of fatty acids increased from the 1st to the 2nd trimester and slightly increased from the 2nd to the 3rd trimester. Early pregnancy BMI, inter-partum interval and weekly fish intake were the factors associated with changes in eicosapentaenoic + docosahexaenoic acids (EPA+DHA) and total n-3 polyunsaturated fatty acids (PUFAs). Early pregnancy BMI, age and monthly per-capita income were inversely associated with the changes in the n-6/n-3 ratio. Alcohol consumption was positively associated with the n-6/n-3 ratio. Early pregnancy BMI was positively associated with EPA+DHA and total n-3 PUFAs, while presenting a reduced weekly fish intake and a lower inter-partum interval were associated with lower levels of n-3 PUFAs. A lower per-capita family income and a drinking habit were factors that were positively associated with a higher n-6/n-3 ratio.

  10. N-3 Fatty Acid Rich Triglyceride Emulsions Are Neuroprotective after Cerebral Hypoxic-Ischemic Injury in Neonatal Mice

    PubMed Central

    Vannucci, Susan J.; Mastropietro, Christopher; Bazan, Nicolas G.; Ten, Vadim S.; Deckelbaum, Richard J.

    2013-01-01

    We questioned if acute administration of n-3 fatty acids (FA) carried in n-3 rich triglyceride (TG) emulsions provides neuroprotection in neonatal mice subjected to hypoxic-ischemic (H/I) brain injury. We examined specificity of FA, optimal doses, and therapeutic windows for neuroprotection after H/I. H/I insult was induced in C57BL/6J 10-day-old mice by right carotid artery ligation followed by exposure to 8% O2 for 15 minutes at 37°C. Intraperitoneal injection with n-3-rich TG emulsions, n-6 rich TG emulsions or saline for control was administered at different time points before and/or after H/I. In separate experiments, dose responses were determined with TG containing only docosahexaenoic acid (Tri-DHA) or eicosapentaenoic acid (Tri-EPA) with a range of 0.1–0.375 g n-3 TG/kg, administered immediately after H/I insult. Infarct volume and cerebral blood flow (CBF) were measured. Treatment with n-3 TG emulsions both before- and after- H/I significantly reduced total infarct volume by a mean of 43% when administered 90 min prior to H/I and by 47% when administered immediately after H/I. In post-H/I experiments Tri-DHA, but not Tri-EPA exhibited neuroprotective effects with both low and high doses (p<0.05). Moreover, delayed post-H/I treatment with Tri-DHA significantly decreased total infarct volume by a mean of 51% when administered at 0 hr, by 46% at 1 hr, and by 51% at 2 hr after H/I insult. No protective effect occurred with Tri-DHA injection at 4 hr after H/I. There were no n-3 TG related differences in CBF. A significant reduction in brain tissue death was maintained after Tri-DHA injection at 8 wk after the initial brain injury. Thus, n-3 TG, specifically containing DHA, is protective against H/I induced brain infarction when administered up to 2 hr after H/I injury. Acute administration of TG-rich DHA may prove effective for treatment of stroke in humans. PMID:23437099

  11. Providing male rats deficient in iron and n-3 fatty acids with iron and alpha-linolenic acid alone affects brain serotonin and cognition differently from combined provision.

    PubMed

    Baumgartner, Jeannine; Smuts, Cornelius M; Zimmermann, Michael B

    2014-06-13

    We recently showed that a combined deficiency of iron (ID) and n-3 fatty acids (n-3 FAD) in rats disrupts brain monoamine metabolism and produces greater memory deficits than ID or n-3 FAD alone. Providing these double-deficient rats with either iron (Fe) or preformed docosahexaenoic acid (DHA)/eicosapentaenoic acid (EPA) alone affected brain monoamine pathways differently from combined repletion and even exacerbated cognitive deficits associated with double-deficiency. Iron is a co-factor of the enzymes responsible for the conversion of alpha-linolenic acid (ALA) to EPA and DHA, thus, the provision of ALA with Fe might be more effective in restoring brain EPA and DHA and improving cognition in double-deficient rats than ALA alone. In this study we examined whether providing double-deficient rats with ALA and Fe, alone or in combination, can correct deficits in monoamine metabolism and cognition associated with double-deficiency. Using a 2 × 2 design, male rats with concurrent ID and n-3 FAD were fed an Fe + ALA, Fe + n-3 FAD, ID + ALA, or ID + n-3 FAD diet for 5 weeks (postnatal day 56-91). Biochemical measures, and spatial working and reference memory (using the Morris water maze) were compared to age-matched controls. In the hippocampus, we found a significant Fe × ALA interaction on DHA: Compared to the group receiving ALA alone, DHA was significantly higher in the Fe + ALA group. In the brain, we found significant antagonistic Fe × ALA interactions on serotonin concentrations. Provision of ALA alone impaired working memory compared with age-matched controls, while in the reference memory task ALA provided with Fe significantly improved performance. These results indicate that providing either iron or ALA alone to double-deficient rats affects serotonin pathways and cognitive performance differently from combined provision. This may be partly explained by the enhancing effect of Fe on the conversion of ALA to EPA and DHA.

  12. Providing male rats deficient in iron and n-3 fatty acids with iron and alpha-linolenic acid alone affects brain serotonin and cognition differently from combined provision

    PubMed Central

    2014-01-01

    Background We recently showed that a combined deficiency of iron (ID) and n-3 fatty acids (n-3 FAD) in rats disrupts brain monoamine metabolism and produces greater memory deficits than ID or n-3 FAD alone. Providing these double-deficient rats with either iron (Fe) or preformed docosahexaenoic acid (DHA)/eicosapentaenoic acid (EPA) alone affected brain monoamine pathways differently from combined repletion and even exacerbated cognitive deficits associated with double-deficiency. Iron is a co-factor of the enzymes responsible for the conversion of alpha-linolenic acid (ALA) to EPA and DHA, thus, the provision of ALA with Fe might be more effective in restoring brain EPA and DHA and improving cognition in double-deficient rats than ALA alone. Methods In this study we examined whether providing double-deficient rats with ALA and Fe, alone or in combination, can correct deficits in monoamine metabolism and cognition associated with double-deficiency. Using a 2 × 2 design, male rats with concurrent ID and n-3 FAD were fed an Fe + ALA, Fe + n-3 FAD, ID + ALA, or ID + n-3 FAD diet for 5 weeks (postnatal day 56–91). Biochemical measures, and spatial working and reference memory (using the Morris water maze) were compared to age-matched controls. Results In the hippocampus, we found a significant Fe × ALA interaction on DHA: Compared to the group receiving ALA alone, DHA was significantly higher in the Fe + ALA group. In the brain, we found significant antagonistic Fe × ALA interactions on serotonin concentrations. Provision of ALA alone impaired working memory compared with age-matched controls, while in the reference memory task ALA provided with Fe significantly improved performance. Conclusion These results indicate that providing either iron or ALA alone to double-deficient rats affects serotonin pathways and cognitive performance differently from combined provision. This may be partly explained by the enhancing effect of Fe on

  13. Demands of eicosapentaenoic acid (EPA) in Daphnia: are they dependent on body size?

    PubMed

    Sikora, Anna B; Petzoldt, Thomas; Dawidowicz, Piotr; von Elert, Eric

    2016-10-01

    Fatty acids contribute to the nutritional quality of the phytoplankton and, thus, play an important role in Daphnia nutrition. One of the polyunsaturated fatty acids (PUFAs)--eicosapentaenoic acid (EPA)--has been shown to predict carbon transfer between primary producers and consumers in lakes, suggesting that EPA limitation of Daphnia in nature is widespread. Although the demand for EPA must be covered by the diet, the demand of EPA in Daphnia that differ in body size has not been addressed yet. Here, we hypothesize that the demand for EPA in Daphnia is size-dependent and that bigger species have a higher EPA demand. To elucidate this, a growth experiment was conducted in which at 20 °C three Daphnia taxa (small-sized D. longispina complex, medium-sized D. pulicaria, and large-bodied D. magna) were fed Synechococcus elongatus supplemented with cholesterol and increasing concentrations of EPA. In addition, fatty acid analyses of Daphnia were performed. Our results show that the saturation threshold for EPA-dependent growth increased with increasing body size. This increase in thresholds with body size may provide another mechanism contributing to the prevalence of small-bodied cladocera in warm habitats and to the midsummer decline of large cladocera in eutrophic water bodies.

  14. Conversion of α-linolenic acid to long-chain omega-3 fatty acid derivatives and alterations of HDL density subfractions and plasma lipids with dietary polyunsaturated fatty acids in Monk parrots (Myiopsitta monachus).

    PubMed

    Petzinger, C; Larner, C; Heatley, J J; Bailey, C A; MacFarlane, R D; Bauer, J E

    2014-04-01

    The effect of α-linolenic acid from a flaxseed (FLX)-enriched diet on plasma lipid and fatty acid metabolism and possible atherosclerosis risk factors was studied in Monk parrots (Myiopsitta monachus). Twenty-four Monk parrots were randomly assigned to diets containing either 10% ground SUNs or 10% ground FLXs. Feed intake was calculated daily. Blood samples, body condition scores and body weights were obtained at -5 weeks, day 0, 7, 14, 28, 42 and 70. Plasma samples were analysed for total cholesterol, free cholesterol, triacylglycerols and lipoproteins. Phospholipid subfraction fatty acid profiles were determined. By day 70, the FLX group had significantly higher plasma phospholipid fatty acids including 18:3n-3 (α-linolenic acid), 20:5n-3 (eicosapentaenoic acid) and 22:6n-3 (docosahexaenoic acid). The sunflower group had significantly higher plasma phospholipid levels of 20:4n-6 (arachidonic acid). By day 70, the high-density lipoprotein (HDL) peak shifted resulting in significantly different HDL peak densities between the two experimental groups (1.097 g/ml FLX group and 1.095 g/ml SUN group, p = 0.028). The plasma fatty acid results indicate that Monk parrots can readily convert α-linolenic acid to the long-chain omega-3 derivatives including docosahexaenoic acid and reduce 20:4n-6 accumulation in plasma phospholipids. The reason for a shift in the HDL peak density is unknown at this time. Journal of Animal Physiology and Animal Nutrition © 2013 Blackwell Verlag GmbH.

  15. Can breeder reproductive status, performance and egg quality be enhanced by supplementation and transition of n-3 fatty acids?

    PubMed

    Delezie, E; Koppenol, A; Buyse, J; Everaert, N

    2016-08-01

    The aim of this experiment was to investigate the effect of n-3 fatty acid (FA) supplemented diets on breeder performance, productivity and egg quality. Breeders (n = 480) were fed the supplemented diet from 18 weeks onwards; the inclusion level of n-3 FA was increased from 1.5% to 3.0% from 34 weeks of age onwards until 48 weeks of age. Ross-308 broiler breeders (n = 480) were fed one of four different diets: a basal diet rich in n-6 FA (control diet) or one of three diets rich in n-3 FA. For the n-3 FA diets, eicosapentaenoic acid (EPA, 20:5 n-3) and docosahexaenoic acid (DHA, 22:6 n-3) were fed to the broiler breeders at different ratios formulated to obtain EPA/DHA ratios of 1/1, 1/2 or 2/1. Differences in performance, reproduction and egg quality parameters due to n-3 supplementation were noted more for the 1.5% followed by the 3.0% fed broilers than their 1.5% supplemented counterparts. Egg weight (p < 0.001) and egg mass (p = 0.003) were significantly lower and feed conversion (p = 0.008) significantly higher for the n-3 FA (at 3.0% inclusion level) fed broilers compared to the control group. For the EPA- and DHA-fed breeders, a higher proportional abdominal fat percentage (p = 0.025) and proportional albumen weight (%) (p = 0.041) were found respectively. Dietary treatments did not affect reproduction. It can be concluded that the results of the present experiment indicate no significant differences between treatments at 1.5% inclusion levels. However, increasing this level to 3.0% is not recommended due to the rather negative effects on the measured parameters. It should be further investigated whether these adverse effects were obtained due to (i) the higher supplementation level, (ii) combining a supplementation level of 1.5% with 3% or (iii) the duration of supplementation. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  16. Omega-3 Polyunsaturated Fatty Acids and Their Health Benefits.

    PubMed

    Shahidi, Fereidoon; Ambigaipalan, Priyatharini

    2018-03-25

    Omega-3 polyunsaturated fatty acids (PUFAs) include α-linolenic acid (ALA; 18:3 ω-3), stearidonic acid (SDA; 18:4 ω-3), eicosapentaenoic acid (EPA; 20:5 ω-3), docosapentaenoic acid (DPA; 22:5 ω-3), and docosahexaenoic acid (DHA; 22:6 ω-3). In the past few decades, many epidemiological studies have been conducted on the myriad health benefits of omega-3 PUFAs. In this review, we summarized the structural features, properties, dietary sources, metabolism, and bioavailability of omega-3 PUFAs and their effects on cardiovascular disease, diabetes, cancer, Alzheimer's disease, dementia, depression, visual and neurological development, and maternal and child health. Even though many health benefits of omega-3 PUFAs have been reported in the literature, there are also some controversies about their efficacy and certain benefits to human health.

  17. Comparison of natural antioxidants and their effects on omega-3 fatty acid oxidation in fish oil

    USDA-ARS?s Scientific Manuscript database

    Polyunsaturated fatty acids (PUFA), such as the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have been found to offer a variety of health benefits including cardiovascular protection, anti-inflammatory effect and human development. It is known that fish and algae o...

  18. A novel liquid chromatography/tandem mass spectrometry (LC-MS/MS) based bioanalytical method for quantification of ethyl esters of Eicosapentaenoic acid (EPA) and Docosahexaenoic acid (DHA) and its application in pharmacokinetic study.

    PubMed

    Viswanathan, Sekarbabu; Verma, P R P; Ganesan, Muniyandithevar; Manivannan, Jeganathan

    2017-07-15

    Omega-3 fatty acids are clinically useful and the two marine omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are prevalent in fish and fish oils. Omega-3 fatty acid formulations should undergo a rigorous regulatory step in order to obtain United States Food and Drug Administration (USFDA) approval as prescription drug. In connection with that, despite quantifying EPA and DHA fatty acids, there is a need for quantifying the level of ethyl esters of them in biological samples. In this study, we make use of reverse phase high performance liquid chromatography coupled with mass spectrometry (RP-HPLC-MS)technique for the method development. Here, we have developed a novel multiple reaction monitoring method along with optimized parameters for quantification of EPA and DHA as ethyl esters. Additionally, we attempted to validate the bio-analytical method by conducting the sensitivity, selectivity, precision accuracy batch, carryover test and matrix stability experiments. Furthermore, we also implemented our validated method for evaluation of pharmacokinetics of omega fatty acid ethyl ester formulations. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Omega-3 Polyunsaturated Fatty Acids and Oxylipins in Neuroinflammation and Management of Alzheimer Disease.

    PubMed

    Devassy, Jessay Gopuran; Leng, Shan; Gabbs, Melissa; Monirujjaman, Md; Aukema, Harold M

    2016-09-01

    Alzheimer disease (AD) is becoming one of the most prevalent neurodegenerative conditions worldwide. Although the disease progression is becoming better understood, current medical interventions can only ameliorate some of the symptoms but cannot slow disease progression. Neuroinflammation plays an important role in the advancement of this disorder, and n-3 (ω-3) polyunsaturated fatty acids (PUFAs) are involved in both the reduction in and resolution of inflammation. These effects may be mediated by the anti-inflammatory and proresolving effects of bioactive lipid mediators (oxylipins) derived from n-3 PUFAs [eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] in fish oil. Although interventions have generally used fish oil containing both EPA and DHA, several studies that used either EPA or DHA alone or specific oxylipins derived from these fatty acids indicate that they have distinct effects. Both DHA and EPA can reduce neuroinflammation and cognitive decline, but EPA positively influences mood disorders, whereas DHA maintains normal brain structure. Fewer studies with a plant-derived n-3 PUFA, α-linolenic acid, suggest that other n-3 PUFAs and their oxylipins also may positively affect AD. Further research identifying the unique anti-inflammatory and proresolving properties of oxylipins from individual n-3 PUFAs will enable the discovery of novel disease-management strategies in AD. © 2016 American Society for Nutrition.

  20. Hybrid striped bass feeds based on fish oil, beef tallow, and eicosapentaenoic acid/docosahexaenoic acid supplements: Insight regarding fish oil sparing and demand for -3 long-chain polyunsaturated fatty acids.

    PubMed

    Bowzer, J; Jackson, C; Trushenski, J

    2016-03-01

    Previous research suggests that saturated (SFA) and monounsaturated fatty acid (MUFA) rich lipids, including beef tallow, can make utilization or diet-to-tissue transfer of long-chain polyunsaturated fatty acids (LC-PUFA) more efficient. We hypothesized that using beef tallow as an alternative to fish oil may effectively reduce the LC-PUFA demand of hybrid striped bass × and allow for greater fish oil sparing. Accordingly, we evaluated growth performance and tissue fatty acid profiles of juvenile fish (23.7 ± 0.3 g) fed diets containing menhaden fish oil (considered an ideal source of LC-PUFA for this taxon), beef tallow (BEEF ONLY), or beef tallow amended with purified sources of eicosapentaenoic acid (EPA) and/or docosahexaenoic acid (DHA) to achieve levels corresponding to 50 or 100% of those observed in the FISH ONLY feed. Diets were randomly assigned to quadruplicate tanks of fish ( = 4; 10 fish/tank), and fish were fed assigned diets to apparent satiation once daily for 10 wk. Survival (98-100%) was equivalent among treatments, but weight gain (117-180%), specific growth rate (1.1-1.5% BW/d), feed intake (1.4-1.8% BW/d), thermal growth coefficient (0.50-0.70), and feed conversion ratio (FCR; 1.1-1.4, DM basis) varied. Except for FCR, no differences were observed between the FISH ONLY and BEEF ONLY treatments, but performance was generally numerically superior among fish fed the diets containing beef tallow supplemented with DHA at the 100% or both EPA and DHA at the 50% or 100% level. Tissue fatty acid composition was significantly distorted in favor among fish fed the beef tallow-based feeds; however, profile distortion was most overt in peripheral tissues. Results suggest that beef tallow may be used as a primary lipid source in practical diets for hybrid striped bass, but performance may be improved by supplementation with LC-PUFA, particularly DHA. Furthermore, our results suggest that -3 LC-PUFA requirements reported for hybrid striped bass may not be

  1. Eicosapentaenoic acid prevents TCDD-induced oxidative stress and inflammatory response by modulating MAP kinases and redox-sensitive transcription factors

    PubMed Central

    Palanisamy, Kalaiselvi; Krishnaswamy, Rajashree; Paramasivan, Poornima; Chih-Yang, Huang; Vishwanadha, Vijaya Padma

    2015-01-01

    Background and Purpose Oxidative stress and subsequent activation of inflammatory responses is a widely accepted consequence of exposure to environmental toxins. TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin), a well-known environmental toxin, exerts its toxicity through many signalling mechanisms, with liver being the principal organ affected. However, an effective antidote to TCDD-induced toxicity is unknown. The present study evaluated the effect of eicosapentaenoic acid (EPA), an n3 fatty acid, on TCDD-induced toxicity. Experimental Approach In cultures of HepG2 cells, the EPA/AA ratio was determined using gas chromatography, oxidative stress and inflammatory responses through reactive oxygen species (ROS) levels, antioxidant status, [Ca2+]i, nuclear migration of two redox-sensitive transcription factors, NF-κB p65 and Nrf-2, expression of MAP kinase (p-Erk, p-p38), NF-κB p65, COX-2 and Nrf-2. Cellular changes in ΔΨm, acidic vesicular organelle formation, cell cycle analysis and scanning electron microscopy analysis were performed. Key Results EPA offered significant cytoprotection by increasing EPA/AA ratios in cell membranes, inhibiting ROS generation, enhancing antioxidant status and modulating nuclear translocation of redox-sensitive transcription factors (NF-κB p65 and Nrf-2) and expression of NF-κB p65, COX-2 and Nrf-2. Furthermore, TCDD-induced upstream events of MAPK phosphorylation, the increase in [Ca2+]i levels and cell surface changes in microvilli were significantly inhibited by EPA. EPA treatment maintained ΔΨm and prevented formation of acidic vesicular organelles. Conclusion and Implications The present study demonstrates for the first time some underlying molecular mechanisms of cytoprotection exerted by EPA against TCDD-induced oxidative stress and inflammatory responses. PMID:26177858

  2. Eicosapentaenoic and Docosahexaenoic Acid-Enriched High Fat Diet Delays Skeletal Muscle Degradation in Mice.

    PubMed

    Soni, Nikul K; Ross, Alastair B; Scheers, Nathalie; Savolainen, Otto I; Nookaew, Intawat; Gabrielsson, Britt G; Sandberg, Ann-Sofie

    2016-09-03

    Low-grade chronic inflammatory conditions such as ageing, obesity and related metabolic disorders are associated with deterioration of skeletal muscle (SkM). Human studies have shown that marine fatty acids influence SkM function, though the underlying mechanisms of action are unknown. As a model of diet-induced obesity, we fed C57BL/6J mice either a high fat diet (HFD) with purified marine fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) (HFD-ED), a HFD with corn oil, or normal mouse chow for 8 weeks; and used transcriptomics to identify the molecular effects of EPA and DHA on SkM. Consumption of ED-enriched HFD modulated SkM metabolism through increased gene expression of mitochondrial β-oxidation and slow-fiber type genes compared with HFD-corn oil fed mice. Furthermore, HFD-ED intake increased nuclear localization of nuclear factor of activated T-cells (Nfatc4) protein, which controls fiber-type composition. This data suggests a role for EPA and DHA in mitigating some of the molecular responses due to a HFD in SkM. Overall, the results suggest that increased consumption of the marine fatty acids EPA and DHA may aid in the prevention of molecular processes that lead to muscle deterioration commonly associated with obesity-induced low-grade inflammation.

  3. Effects of temperature, salinity, light intensity, and pH on the eicosapentaenoic acid production of Pinguiococcus pyrenoidosus

    NASA Astrophysics Data System (ADS)

    Sang, Min; Wang, Ming; Liu, Jianhui; Zhang, Chengwu; Li, Aifen

    2012-06-01

    The effects of temperature, light intensity, salinity, and initial pH on the growth and fatty acid composition of Pinguiococcus pyrenoidosus 2078 were studied for eicosapentaenoic acid (EPA) production potential. The fatty acid composition was assayed by gas chromatography-mass spectrometry, which indicated that the main fatty acids were C14:0, C16:0 and EPA. The highest EPA percentage 20.83% of total fatty acids was obtained at 20°C with the temperature being set at 20, 24, and 28°C. Under different salinities and light intensities, the highest percentages of total polyunsaturated fatty acids (PUFAs) and EPA were 17.82% and 31.37% of total fatty acids, respectively, which were achieved at salinity 30 and 100 μmol photon m-2s-1 illumination. The highest percentages of total PUFAs and EPA were 38.75% and 23.13% of total fatty acids, respectively, which were reached at an initial pH of 6 with the test range being from 5.0 to 9.0.

  4. The effects of omega-3 polyunsaturated Fatty Acid consumption on mammary carcinogenesis.

    PubMed

    Witte, Theodore R; Hardman, W Elaine

    2015-05-01

    The consumption of omega-3 polyunsaturated fatty acids (n-3 PUFA) is associated with a reduced risk of breast cancer. Studies in animals and in vitro have demonstrated mechanisms that could explain this apparent effect, but clinical and epidemiological studies have returned conflicting results on the practical benefits of dietary n-3 PUFA for prevention of breast cancer. Effects are often only significant within a population when comparing the highest n-3 PUFA consumption group to the lowest n-3 group or highest n-6 group. The beneficial effects of n-3 PUFA eicosapentaenoic and docosahexaenoic on the risk of breast cancer are dose dependent and are negatively affected by total n-6 consumption. The majority of the world population, including the most highly developed regions, consumes insufficient n-3 PUFA to significantly reduce breast cancer risk. This review discusses the physiological and dietary context in which reduction of breast cancer risk may occur, some proposed mechanisms of action and meaningful recommendations for consumption of n-3 PUFA in the diet of developed regions.

  5. Association of Serum n-3/n-6 Polyunsaturated Fatty Acid Ratio With T-Wave Alternans in Patients With Ischemic Heart Disease.

    PubMed

    Nodera, Minoru; Suzuki, Hitoshi; Yamada, Shinya; Kamioka, Masashi; Kaneshiro, Takashi; Kamiyama, Yoshiyuki; Takeishi, Yasuchika

    2015-01-01

    Several studies have demonstrated that oral intake of n-3 polyunsaturated fatty acids, specifically eicosapentaenoic acid (EPA), prevents ventricular tachyarrhythmias (VT) with ischemic heart disease, but the underlying mechanisms still remain unclear. Thus, we examined the relation between the serum EPA/arachidonic acid (AA) ratio and electrophysiological properties in patients with ischemic heart disease. The study subjects consisted of 57 patients (46 males, mean age, 66 ± 13 years) with ischemic heart disease. T-wave alternans (TWA) and heart rate variability were assessed by 24hour Holter ECG, and left ventricular ejection fraction (LVEF) was determined by echocardiography. Fasting blood samples were collected, and the serum EPA/AA ratio was determined. Based on a median value of the serum EPA/AA ratio, all subjects were divided into two groups: serum EPA/AA ratio below 0.33 (Group-L, n = 28) or not (Group-H, n = 29). We compared these parameters between the two groups. LVEF was not different between the two groups. The maximum value of TWA was significantly higher in Group-L than in Group-H (69.5 ± 22.8 μV versus 48.7 ± 12.0 μV, P = 0.007). In addition, VT defined as above 3 beats was observed in 7 cases (25%) in Group-L, but there were no cases of VT in Group-H (P = 0.004). However, low-frequency (LF) component, high-frequency (HF) component, LF to HF ratio, and standard deviation of all R-R intervals were not different between the two groups. These results suggest that a low EPA/AA ratio may induce cardiac electrical instability, but not autonomic nervous imbalance, associated with VT in patients with ischemic heart disease.

  6. Dietary supplementation with very long-chain n-3 fatty acids in man decreases expression of the interleukin-2 receptor (CD25) on mitogen-stimulated lymphocytes from patients with inflammatory skin diseases.

    PubMed

    Søyland, E; Lea, T; Sandstad, B; Drevon, A

    1994-04-01

    T-cell activation and cytokine production play an important role in several chronic inflammatory diseases. Because n-3 fatty acids exert beneficial effects on the clinical state of some of these diseases, we examined the effect of dietary supplementation of n-3 fatty acids on T-cell proliferation, expression of CD25 (interleukin-2 receptor alpha-chain), secretion of interleukin-2, interleukin-6 and tumour necrosis factor from T-cells from patients with psoriasis and atopic dermatitis. During 4 months, 21 patients supplied 6 g of highly concentrated ethyl esters of EPA and DHA in gelatin capsules daily to their diet. In the control group 20 patients supplied 6 g per day of corn oil in gelatin capsules to their diet. Eicosapentaenoic acid (20:5, n-3) of serum phospholipids increased from 14 (min 4-max 42) to 81 (min 59-max 144) mg l-1 (P < 0.01) in patients with atopic dermatitis receiving n-3 fatty acids, and from 25 (min 7-max 66) to 74 (min 46-max 142) mg l-1 (P < 0.01) in patients with psoriasis, whereas docosahexaenoic acid (22:6, n-3) increased from 65 (min 46-max 120) to 92 (min 54-max 121) mg l-1 (P < 0.05) and from 81 (min 38-max 122) to 92 (min 63-max 169) mg l-1 (NS) in atopic and psoriatic patients, respectively. The changes in the serum phospholipid fatty acid profile in the groups receiving n-3 fatty acids, correlate to the dietary intake of corresponding fatty acids.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Dietary fish oil supplements increase tissue n-3 fatty acid composition and expression of delta-6 desaturase and elongase-2 in Jade Tiger hybrid abalone.

    PubMed

    Mateos, Hintsa T; Lewandowski, Paul A; Su, Xiao Q

    2011-08-01

    This study was conducted to investigate the effects of fish oil (FO) supplements on fatty acid composition and the expression of ∆6 desaturase and elongase 2 genes in Jade Tiger abalone. Five test diets were formulated to contain 0.5, 1.0, 1.5, 2.0 and 2.5% of FO respectively, and the control diet was the normal commercial abalone diet with no additional FO supplement. The muscle, gonad and digestive glands (DG) of abalone fed with all of the five test diets showed significantly high levels of total n-3 polyunsaturated fatty acid (PUFA), eicosapentaenoic acid (EPA), docosapentaenoic acid n-3 (DPAn-3), and docosahexaenoic acid (DHA) than the control group. In all three types of tissue, abalone fed diet supplemented with 1.5% FO showed the highest level of these fatty acids (P < 0.05). For DPAn-3 the higher level was also found in muscle and gonad of abalone fed diet supplemented with 2% FO (P < 0.05). Elongase 2 expression was markedly higher in the muscle of abalone fed diet supplemented with 1.5% FO (P < 0.05), followed by the diet containing 2% FO supplement. For ∆6 desaturase, significantly higher expression was observed in muscle of abalone fed with diet containing 0.5% FO supplement (P < 0.05). Supplementation with FO in the normal commercial diet can significantly improve long chain n-3 PUFA level in cultured abalone, with 1.5% being the most effective supplementation level.

  8. The Current Role of Omega-3 Fatty Acids in the Management of Atrial Fibrillation.

    PubMed

    Christou, Georgios A; Christou, Konstantinos A; Korantzopoulos, Panagiotis; Rizos, Evangelos C; Nikas, Dimitrios N; Goudevenos, John A

    2015-09-22

    The main dietary source of omega-3 polyunsaturated fatty acids (n-3 PUFA) is fish, which contains eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). In the present manuscript, we aimed to review the current evidence regarding the clinical role of n-3 PUFA in the prevention of atrial fibrillation (AF) and the possible underlying mechanisms. A literature search based on PubMed listings was performed using "Omega-3 fatty acids" and "atrial fibrilation" as key search terms. n-3 PUFA have been shown to attenuate structural atrial remodeling, prolong atrial effective refractory period through the prevention of reentry and suppress ectopic firing from pulmonary veins. Dietary fish intake has been found to have no effect on the incidence of AF in the majority of studies. Circulating DHA has been consistently reported to be inversely associated with AF risk, whereas EPA has no such effect. The majority of studies investigating the impact of n-3 PUFA supplementation on the incidence of AF following cardiac surgery reported no benefit, though most of them did not use n-3 PUFA pretreatment for adequate duration. Studies using adequate four-week pretreatment with n-3 PUFA before cardioversion of AF showed a reduction of the AF incidence. Although n-3 PUFA have antiarrhythmogenic properties, their clinical efficacy on the prevention of AF is not consistently supported. Further well-designed studies are needed to overcome the limitations of the existing studies and provide robust conclusions.

  9. Low levels of serum n-3 polyunsaturated fatty acids are associated with worse heart failure-free survival in patients after acute myocardial infarction.

    PubMed

    Hara, Masahiko; Sakata, Yasuhiko; Nakatani, Daisaku; Suna, Shinichiro; Usami, Masaya; Matsumoto, Sen; Hamasaki, Toshimitsu; Doi, Yasuji; Nishino, Masami; Sato, Hiroshi; Kitamura, Tetsuhisa; Nanto, Shinsuke; Hori, Masatsugu; Komuro, Issei

    2013-01-01

    Intake of long-chain n-3 polyunsaturated fatty acids (n-3 PUFA), including docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), is associated with a lower risk of atherosclerotic cardiovascular events, particularly acute myocardial infarction (AMI). However, limited data are available regarding the association between serum n-3 PUFA levels and heart failure (HF) events in survivors of AMI. We evaluated whether serum DHA and EPA levels were associated with HF-free survival and HF hospitalization rates after AMI. A total of 712 patients were divided into 3 groups according to their tertile serum levels of DHA and EPA (Low, Middle, and High). Propensity-score-stratified Cox regression analysis revealed that DHA- and EPA-Low groups presented statistically significant worse HF-free survival (hazard ratio (HR) 1.68, 95% confidence interval (CI) 1.03-2.72, P=0.0358, and HR 1.69, 95% CI 1.05-2.72, P=0.0280, respectively), with the EPA-Low group having a higher risk of HF hospitalization (HR 2.40, 95% CI 1.21-4.75, P=0.0097) than the DHA-Low group (HR 1.72, 95% CI 0.86-3.45, P=0.1224). The relationship between a low DHA or EPA level and decreased HF-free survival was almost common to all subgroups; however, the effect of low serum EPA on HF hospitalization was prominent in male patients, and those with low levels of high-density lipoprotein cholesterol or without statin therapy. Low levels of circulating n-3 PUFA are associated with decreased HF-free survival in post-AMI patients.

  10. n-3 Fatty Acid Supplementation for the Treatment of Dry Eye Disease.

    PubMed

    Asbell, Penny A; Maguire, Maureen G; Pistilli, Maxwell; Ying, Gui-shuang; Szczotka-Flynn, Loretta B; Hardten, David R; Lin, Meng C; Shtein, Roni M

    2018-05-03

    Dry eye disease is a common chronic condition that is characterized by ocular discomfort and visual disturbances that decrease quality of life. Many clinicians recommend the use of supplements of n-3 fatty acids (often called omega-3 fatty acids) to relieve symptoms. In a multicenter, double-blind clinical trial, we randomly assigned patients with moderate-to-severe dry eye disease to receive a daily oral dose of 3000 mg of fish-derived n-3 eicosapentaenoic and docosahexaenoic acids (active supplement group) or an olive oil placebo (placebo group). The primary outcome was the mean change from baseline in the score on the Ocular Surface Disease Index (OSDI; scores range from 0 to 100, with higher scores indicating greater symptom severity), which was based on the mean of scores obtained at 6 and 12 months. Secondary outcomes included mean changes per eye in the conjunctival staining score (ranging from 0 to 6) and the corneal staining score (ranging from 0 to 15), with higher scores indicating more severe damage to the ocular surface, as well as mean changes in the tear break-up time (seconds between a blink and gaps in the tear film) and the result on Schirmer's test (length of wetting of paper strips placed on the lower eyelid), with lower values indicating more severe signs. A total of 349 patients were assigned to the active supplement group and 186 to the placebo group; the primary analysis included 329 and 170 patients, respectively. The mean change in the OSDI score was not significantly different between the active supplement group and the placebo group (-13.9 points and -12.5 points, respectively; mean difference in change after imputation of missing data, -1.9 points; 95% confidence interval [CI], -5.0 to 1.1; P=0.21). This result was consistent across prespecified subgroups. There were no significant differences between the active supplement group and the placebo group in mean changes from baseline in the conjunctival staining score (mean difference in

  11. Combination of n-3 polyunsaturated fatty acids reduces atherogenesis in apolipoprotein E-deficient mice by inhibiting macrophage activation.

    PubMed

    Takashima, Akira; Fukuda, Daiju; Tanaka, Kimie; Higashikuni, Yasutomi; Hirata, Yoichiro; Nishimoto, Sachiko; Yagi, Shusuke; Yamada, Hirotsugu; Soeki, Takeshi; Wakatsuki, Tetsuzo; Taketani, Yutaka; Shimabukuro, Michio; Sata, Masataka

    2016-11-01

    Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are major components of n-3 polyunsaturated fatty acids (n-3 PUFAs) which inhibit atherogenesis, although few studies have examined the effects of the combination of EPA and DHA on atherogenesis. The aim of this study was to investigate whether DHA has additional anti-atherosclerotic effects when combined with EPA. Male 8-week-old apolipoprotein E-deficient (Apoe -/- ) mice were fed a western-type diet supplemented with different amounts of EPA and DHA; EPA (2.5%, w/w), low-dose EPA + DHA (2.5%, w/w), or high-dose EPA + DHA (5%, w/w) for 20 weeks. The control group was fed a western-type diet containing no n-3 PUFA. Histological and gene expression analysis were performed in atherosclerotic lesions in the aorta. To address the mechanisms, RAW264.7 cells were used. All n-3 PUFA treatments significantly attenuated the development and destabilization of atherosclerotic plaques compared with the control. The anti-atherosclerotic effects were enhanced in the high-dose EPA + DHA group (p < 0.001), whereas the pure EPA group and low-dose EPA + DHA group showed similar results. EPA and DHA additively attenuated the expression of inflammatory molecules in RAW264.7 cells stimulated with LPS. DHA or EPA + DHA suppressed LPS-induced toll-like receptor 4 (TLR4) expression in lipid rafts on RAW264.7 cells (p < 0.05). Lipid raft disruption by methyl-β-cyclodextrin suppressed mRNA expression of inflammatory molecules in LPS-stimulated macrophages. n-3 PUFAs suppressed atherogenesis. DHA combined with EPA had additional anti-inflammatory effects and inhibited atherogenesis in Apoe -/- mice. The reduction of TLR4 expression in lipid rafts in macrophages by DHA might be involved in this mechanism, at least partially. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Effect of consumption of tomato juice enriched with n-3 polyunsaturated fatty acids on the lipid profile, antioxidant biomarker status, and cardiovascular disease risk in healthy women.

    PubMed

    García-Alonso, F J; Jorge-Vidal, V; Ros, G; Periago, M J

    2012-06-01

    We compared the effects of consumption of n-3 polyunsaturated fatty acids (PUFA)-enriched tomato juice versus plain tomato juice on the serum lipid profile and levels of biomarkers related to antioxidant status and cardiovascular disease (CVD) risk in women. Eighteen healthy women participated in a 2-week intervention trial involving the daily intake of 500 mL of n-3 PUFA-enriched juice (n = 11) or plain tomato juice (n = 7). Each serving of enriched juice provided 250 mg of eicosapentaenoic acid (EPA) plus docosahexanoic acid (DHA). Both juices provided natural antioxidant compounds such as phenolics (181 mg) and lycopene (26.5 mg). Intervention with the enriched juice had no effect on the lipid profile, and serum levels of triglycerides and cholesterol (total, LDL, and HDL) remained unchanged. The serum antioxidant status improved following juice intake, as revealed by an increase in total antioxidant capacity and a slight decrease in lipid peroxidation. The serum levels of homocysteine, a cardiovascular risk factor, decreased following n-3 PUFA-enriched juice consumption. A decrease in vascular adhesion molecule 1 (VCAM-1) levels was also noted after intake of either plain or enriched tomato juice, whereas intercellular adhesion molecule 1 (ICAM-1) levels only decreased following intake of the enriched juice. Overall, stronger positive amelioration of CVD risk factors was observed following the intake of n-3 PUFA-enriched juice than after plain tomato juice consumption, which suggested a possible synergistic action between n-3 PUFAs and tomato antioxidants.

  13. Alpha Lipoic Acid Plus Omega-3 Fatty Acids for Vestibulodynia Associated With Painful Bladder Syndrome.

    PubMed

    Murina, Filippo; Graziottin, Alessandra; Felice, Raffaele; Gambini, Dania

    2017-03-01

    This study assessed the effectiveness of alpha lipoic acid (ALA) plus omega-3 polyunsaturated fatty acids (n-3 PUFAs) in combination with amitriptyline therapy in patients with vestibulodynia/painful bladder syndrome (VBD/PBS). Women with VBD/PBS were randomly assigned to receive amitriptyline or amitriptyline plus a commercially available preparation (ALAnerv Age; Alfa Wassermann, Bologna, Italy) containing, in 2 capsules, ALA 600 mg plus docosahexaenoic acid 250 mg and eicosapentaenoic acid 16.67 mg. Symptoms of burning and pain were assessed using a 10-cm visual analog scale and the short form of the McGill-Melzack Pain Questionnaire. Among 84 women who were randomized, the mean ± standard deviation dose of amitriptyline was 21.7 ± 6.6 mg/day, without statistical difference between the two groups. Pain, as assessed using both the pain rating index of the visual analog scale and the short-form McGill Pain Questionnaire, decreased significantly in both trial groups, with a greater effect seen with the addition of ALA and n-3 PUFAs. The addition of ALA/n-3 PUFAs to amitriptyline treatment was also associated with improvements in dyspareunia and pelvic floor muscle tone. The overall incidence of adverse events was low, and none led to treatment discontinuation. The addition of ALA/n-3 PUFAs to amitriptyline treatment in patients with VBD/PBS appears to improve outcomes and may allow for a lower dosage of amitriptyline, which may lead to fewer adverse effects. Copyright © 2017 The Society of Obstetricians and Gynaecologists of Canada/La Société des obstétriciens et gynécologues du Canada. Published by Elsevier Inc. All rights reserved.

  14. [Omega-3 fatty acids, fish, fish oil and cardiovascular disease--a review with implications to Israeli nutritional guidelines].

    PubMed

    Eilat-Adar, Sigal; Lipovetzky, Nestor; Goldbourt, Uri; Henkin, Yaakov

    2004-08-01

    Evidence from epidemiological and randomized controlled trials shows beneficial effects of omega-3 (n-3) fatty acids from fish and plant sources on cardiovascular disease (CVD), especially in patients with preexisting CVD. The optimal dose of n-3 is not yet determined, but prospective secondary prevention studies suggest that the addition of 0.5-1.8 grams/day of marine-derived eicosapentaenoic acid and docosahexaenoic acid, or plant derived alpha-linolenic acid at a dose of 1.5-3 grams/day significantly reduce subsequent cardiac events and mortality. These data have led the American Heart Association Dietary Guidelines committee to recommend to the general population the consumption of at least two servings of fatty fish per week, in addition to vegetable oils high in alpha-linolenic acid. The risk of adverse effects and toxicity from contaminants at this dose is low. The amount of daily n-3 fatty acids recommended for patients with coronary heart disease is 1 gram/day. In patients who cannot consume this dose of n-3 fatty acids through diet alone, addition of n-3 supplements should be considered. Higher doses of contaminant-free n-3 supplements, 2-4 grams/day, can be used in the treatment of hypertriglyceridemia. Data on the content of n-3 fatty acids and contaminants in Israeli bred fish is limited. Thus, caution should be exercised when applying these recommendations to the Israeli fish market.

  15. Plasma eicosapentaenoic acid is negatively associated with all-cause mortality among men and women in a population-based prospective study.

    PubMed

    Miura, Kyoko; Hughes, Maria Celia B; Ungerer, Jacobus Pj; Green, Adèle C

    2016-11-01

    Omega-3 polyunsaturated fatty acids (PUFAs) have anti-inflammatory properties, whereas omega-6 PUFAs appear to have proinflammatory properties. We aimed to assess plasma omega-3 and omega-6 PUFA status in relation to all-cause mortality in an Australian community-based study. We hypothesized that omega-3 PUFA would be inversely associated, and omega-6 PUFA positively associated with all-cause mortality. Plasma phospholipid omega-3 (eicosapentaenoic acid [EPA], docosapentaenoic acid [DPA], docosahexaenoic acid, α-linolenic acid, and total) and omega-6 PUFAs (linoleic acid, arachidonic acid, and total) were measured among 1008 adults (44% men) in 1996. Plasma PUFA composition was quantified using gas chromatography. During 17-year follow-up, 98 men and 81 women died. After adjustment for potential confounding factors, plasma EPA was inversely associated with all-cause mortality overall (adjusted hazard ratio [HR] per 1-SD increase, 0.81; 95% confidence interval [CI], 0.68-0.95), in men (HR, 0.78; 95% CI, 0.62-0.98), and in women (HR, 0.78; 95% CI, 0.65-0.94), separately. Inverse associations with mortality among men were also seen for DPA (HR, 0.76; 95% CI, 0.60-0.97) and α-linolenic acid (HR, 0.73; 95% CI, 0.57-0.94). No omega-6 PUFAs were significantly associated with mortality. Our findings of reduced all-cause mortality in men and women who have high EPA in plasma, and in men with high plasma DPA and α-linolenic acid, partially support our hypothesis that omega-3 PUFAs help reduce mortality but provide no evidence that omega-6 PUFAs may increase mortality. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Mind-body interface: the role of n-3 fatty acids in psychoneuroimmunology, somatic presentation, and medical illness comorbidity of depression.

    PubMed

    Su, Kuan-Pin

    2008-01-01

    With the unsatisfaction of monoamine-based pharmacotherapy and the high comorbidity of other medical illness in depression, the serotonin hypothesis seems to fail in approaching the aetiology of depression. Based upon the evidence from epidemiological data, case-control studies of phospholipid polyunsaturated fatty acids (PUFAs) levels in human tissues, and antidepressant effect in clinical trials, PUFAs have shed a light to discover the unsolved of depression and connect the mind and body. Briefly, the deficit of n-3 PUFAs has been reported to be associated with neurological, cardiovascular, cerebrovascular, autoimmune, metabolic diseases and cancers. Recent studies revealed that the deficit of n-3 PUFAs is also associated with depression. For example, societies that consume a small amount of omega-3 PUFAs appear to have a higher prevalence of major depressive disorder. In addition, depressive patients had showed a lower level of omega-3 PUFAs; and the antidepressant effect of PUFAs had been reported in a number of clinical trials. The PUFAs are classified into n-3 (or omega-3) and n-6 (or omega-6) groups. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), the major bioactive components of n-3 PUFAs, are not synthesized in human body and can only be obtained directly from the diet, particularly by consuming fish. DHA deficit is associated with dysfunctions of neuronal membrane stability and transmission of serotonin, norepinephrine and dopamine, which might connect to the aetiology of mood and cognitive dysfunction of depression. On the other hand, EPA is important in balancing the immune function and physical healthy by reducing arachidonic acid (AA, an n-6 PUFA) level on cell membrane and prostaglandin E2 (PGE2) synthesis. Interestingly, animals fed with high AA diet or treated with PGE2 were observed to present sickness behaviours of anorexia, low activity, change in sleep pattern and attention, which are similar to somatic symptoms of depression in

  17. Biologic plausibility, cellular effects, and molecular mechanisms of eicosapentaenoic acid (EPA) in atherosclerosis.

    PubMed

    Borow, Kenneth M; Nelson, John R; Mason, R Preston

    2015-09-01

    Residual cardiovascular (CV) risk remains in dyslipidemic patients despite intensive statin therapy, underscoring the need for additional intervention. Eicosapentaenoic acid (EPA), an omega-3 polyunsaturated fatty acid, is incorporated into membrane phospholipids and atherosclerotic plaques and exerts beneficial effects on the pathophysiologic cascade from onset of plaque formation through rupture. Specific salutary actions have been reported relating to endothelial function, oxidative stress, foam cell formation, inflammation, plaque formation/progression, platelet aggregation, thrombus formation, and plaque rupture. EPA also improves atherogenic dyslipidemia characterized by reduction of triglycerides without raising low-density lipoprotein cholesterol. Other beneficial effects of EPA include vasodilation, resulting in blood pressure reductions, as well as improved membrane fluidity. EPA's effects are at least additive to those of statins when given as adjunctive therapy. In this review, we present data supporting the biologic plausibility of EPA as an anti-atherosclerotic agent with potential clinical benefit for prevention of CV events, as well as its cellular effects and molecular mechanisms of action. REDUCE-IT is an ongoing, randomized, controlled study evaluating whether the high-purity ethyl ester of EPA (icosapent ethyl) at 4 g/day combined with statin therapy is superior to statin therapy alone for reducing CV events in high-risk patients with mixed dyslipidemia. The results from this study are expected to clarify the role of EPA as adjunctive therapy to a statin for reduction of residual CV risk. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  18. Omega 3 and omega 6 fatty acids intake and dietary sources in a representative sample of Spanish adults.

    PubMed

    González-Rodríguez, Liliana G; Aparicio, Aránzazu; López-Sobaler, Ana M; Ortega, Rosa M

    2013-01-01

    The present study analyzes the intake of omega 3 (n-3 PUFAs) and omega 6 (n-6 PUFAs) and dietary sources in a representative sample of Spanish adults. For this purpose 418 adults (18 - 60 y), from 15 Spanish provinces were studied. The intake of energy and nutrients [specifically, the n-3 polyunsaturated fatty acids (PUFAs,) α-linolenic acid (ALA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA); and the n-6 PUFA, linoleic acid (LA)] was determined using a 24-hour recall questionnaire for two days. The Multiple Source Method (MSM) was used to estimate participants’ usual fatty acid intake. The total n-3 PUFAs intake was 1.8 ± 0.60 g/day (ALA: 1.3 ± 0.32, EPA: 0.16 ± 0.14, and DHA: 0.33 ± 0.21 g/day) and n-6 PUFA intake was 11.0 ± 2.7 g/day (LA: 10.8 ± 2.7 g/day). A high proportion of participants did not meet their nutrient intake goals for total n-3 PUFAs (84.7 %), ALA (45.0 %), and EPA plus DHA (62.9 %). The main food sources for ALA were oil, dairy products, and meat; for EPA fish; for DHA, fish, eggs, and meat; and for LA, oils, meat, and cereals. Therefore, an increase in the intake of foods rich in n-3 PUFAs or the use of supplements with n-3 PUFAs might help to improve the n-3 PUFA intake.

  19. Omega-3 fatty acids in baked freshwater fish from south of Brazil.

    PubMed

    Andrade, A D; Visentainer, J V; Matsushita, M; de Souza, N E

    1997-03-01

    Lipid and fatty acid levels in the edible flesh of 17 baked freshwater fish from Brazil's southern region were determined. Analyses of fatty acids methyl esters were performed by gas chromatography. Palmitic acid (C16:0) was the predominant saturated fatty acid, accouting for 50-70% of total saturated acids. Linoleic acid (C18:2 omega 6), linolenic acid (C18:3 omega 3), and docosahexaenoic acid (C22:6 omega 3) were the predominant polyunsatured fatty acids (PUFA). The data revealed that species such as barbado, corvina, pintado, and truta were good sources of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and that most freshwater fish examined were good sources of PUFA-omega 3.

  20. Eicosapentaenoic acid improves glycemic control in elderly bedridden patients with type 2 diabetes.

    PubMed

    Ogawa, Susumu; Abe, Takaaki; Nako, Kazuhiro; Okamura, Masashi; Senda, Miho; Sakamoto, Takuya; Ito, Sadayoshi

    2013-01-01

    Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are ω3-polyunsaturated fatty acids mainly contained in the blue-backed fish oil, and are effective in decreasing the lipids disorder and the cardiovascular incidence among diabetic patients. Moreover, it has been suggested that EPA and DHA may improve the insulin resistance and glucose metabolism. However, the clinical effects of EPA and DHA on glucose metabolism remain unclear. We aimed to clarify the effects of EPA/DHA treatment on glycemic control in type 2 diabetes mellitus. This study was a multicenter prospective randomized controlled trial involving 30 elderly type 2 diabetic patients on a liquid diet. Their exercises were almost zero and the content of their meals was strictly managed and understood well. Therefore, the difference by the individual's life was a minimum. The subjects were divided into two groups: those receiving EPA/DHA-rich liquid diet [EPA/DHA (+)] or liquid diet lacking EPA/DHA [EPA/DHA (-)]. Changes in factors related to glucose and lipid metabolism were assessed after the three-month study. Serum concentrations of EPA rose in EPA/DHA (+), although the levels of DHA and fasting C-peptide remained unchanged in EPA/DHA (+). In addition, there was a significant decline in the fasting plasma glucose (FPG), hemoglobin A1c (HbA1c), fasting remnant-like particles and apolipoprotein (apo) B in EPA/DHA (+), compared with the values in EPA/DHA (-). EPA/DHA-rich diet might improve glucose metabolism in elderly type 2 diabetic patients on a liquid diet. This phenomenon may be due to the improved insulin resistance mediated by the rise in serum EPA concentrations.

  1. Differential effects of n-3 polyunsaturated fatty acids on metabolic control and vascular reactivity in the type 2 diabetic ob/ob mouse.

    PubMed

    Mustad, Vikkie A; Demichele, Stephen; Huang, Yung-Sheng; Mika, Amanda; Lubbers, Nathan; Berthiaume, Nathalie; Polakowski, Jim; Zinker, Brad

    2006-10-01

    Diets rich in monounsaturated fatty acids (MUFA) are recommended for individuals with type 2 diabetes mellitus (T2DM). The American Heart Association recommends increasing intakes of n-3 polyunsaturated fatty acids (PUFA) to reduce the risk of vascular disease in high-risk individuals; however, the long-term effects of these bioactive fatty acids on glucose metabolism in insulin resistance are controversial. The present studies were conducted to evaluate the effects of diets rich in both MUFA and alpha linolenic acid (C18:3n-3, ALA), eicosapentaenoic acid (C20:5n-3, EPA), or docosahexaenoic acid (C22:6n-3, DHA), on glycemic control and other parameters related to vascular health in a mouse model of T2DM and insulin resistance. Male ob/ob mice (n = 15 per treatment) were fed 1 of 4 lipid-modified formula diets (LFDs) for 4 weeks: (1) MUFA control, (2) ALA blend, (3) EPA blend, and (4) DHA blend. A portion of a MUFA-rich lipid blend in the control LFD was replaced with 11% to 14% energy as n-3 PUFA. After 4 weeks, plasma glucose response to a standard meal (1.5 g carbohydrate/kg body weight) and insulin challenge (2 U/kg body weight, IP) was assessed, and samples were collected for analysis of glucose, insulin, and lipids. Vascular reactivity of isolated aortic rings was assessed in an identical follow-up study. The results showed that insulin-resistant mice fed an LFD with EPA and/or DHA blends had significantly (P < .05) lower triglycerides and free fatty acids, but insulin sensitivity and fasting plasma glucose were not improved. However, mice fed with the ALA blend had significantly improved insulin sensitivity when compared to those fed with other LFD (P < .05). Animals fed an LFD with n-3 PUFA from marine or plant sources showed significantly improved vascular responses as compared with the MUFA-rich LFD (E(max), P < .05) and ob/ob reference mice consuming chow (E(max) and pEC(50), P < .05). In summary, long-term consumption of LFD with n-3 PUFAs improved blood

  2. Effect of eicosapentaenoic acid ethyl ester v. oleic acid-rich safflower oil on insulin resistance in type 2 diabetic model rats with hypertriacylglycerolaemia.

    PubMed

    Minami, Asako; Ishimura, Noriko; Sakamoto, Sadaichi; Takishita, Eiko; Mawatari, Kazuaki; Okada, Kazuko; Nakaya, Yutaka

    2002-02-01

    The purpose of the present study was to test whether hyperlipidaemia and insulin resistance in type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats can be improved by dietary supplementation with purified eicosapentaenoic acid (EPA) or oleic acid (OA). Male OLETF rats were fed powdered chow (510 g fat/kg) alone (n 8) or chow supplemented with 10 g EPA- (n 8) or OA- (n 8) rich oil/kg per d from 5 weeks until 30 weeks of age. An oral glucose tolerance test and hyperinsulinaemic euglycaemic clamp was performed at 25 and 30 weeks of age. EPA supplementation resulted in significantly (P<0.05) reduced plasma lipids, hepatic triacylglycerols, and abdominal fat deposits, and more efficient in vivo glucose disposal compared with OA supplementation and no supplementation. OA supplementation was associated with significantly increased insulin response to oral glucose compared with EPA supplementation and no supplementation. Inverse correlation was noted between glucose uptake and plasma triacylglycerol levels (r -086, P<0.001) and abdominal fat volume (r -0.80, P<0.001). The result of oral glucose tolerance test study showed that the rats fed EPA tended to improve glucose intolerance, although this was not statistically significant. Levels of plasma insulin at 60 min after glucose was significantly increased in rats fed OA compared with the other two groups. The results indicate that long-term feeding of EPA might be effective in preventing insulin resistance in diabetes-prone rats, at least in part, due to improving hypertriacylglycerolaemia.

  3. Early infant adipose deposition is positively associated with the n-6 to n-3 fatty acid ratio in human milk independent of maternal BMI.

    PubMed

    Rudolph, M C; Young, B E; Lemas, D J; Palmer, C E; Hernandez, T L; Barbour, L A; Friedman, J E; Krebs, N F; MacLean, P S

    2017-04-01

    Excessive infant weight gain in the first 6-month of life is a powerful predictor of childhood obesity and related health risks. In mice, omega-6 fatty acids (FAs) serve as potent ligands driving adipogenesis during early development. The ratio of omega-6 relative to omega-3 (n-6/n-3) FA in human milk (HM) has increased threefold over the last 30 years, but the impact of this shift on infant adipose development remains undetermined. This study investigated how maternal obesity and maternal dietary FA (as reflected in maternal red blood cells (RBCs) composition) influenced HM n-6 and n-3 FAs, and whether the HM n-6/n-3 ratio was associated with changes in infant adipose deposition between 2 weeks and 4 months postpartum. Forty-eight infants from normal weight (NW), overweight (OW) and obese (OB) mothers were exclusively or predominantly breastfed over the first 4 months of lactation. Mid-feed HM and maternal RBC were collected at either transitional (2 weeks) or established (4 months) lactation, along with infant body composition assessed using air-displacement plethysmography. The FA composition of HM and maternal RBC was measured quantitatively by lipid mass spectrometry. In transitional and established HM, docosahexaenoic acid (DHA) was lower (P=0.008; 0.005) and the arachidonic acid (AA)/DHA+eicosapentaenoic acid (EPA) ratio was higher (P=0.05; 0.02) in the OB relative to the NW group. Maternal prepregnancy body mass index (BMI) and AA/DHA+EPA ratios in transitional and established HM were moderately correlated (P=0.018; 0.001). Total infant fat mass was increased in the upper AA/DHA+EPA tertile of established HM relative to the lower tertile (P=0.019). The amount of changes in infant fat mass and percentage of body fat were predicted by AA/EPA+DHA ratios in established HM (P=0.038; 0.010). Perinatal infant exposures to a high AA/EPA+DHA ratio during the first 4 months of life, which is primarily reflective of maternal dietary FA, may significantly contribute to

  4. Omega-3 polyunsaturated fatty acid biomarkers and coronary heart disease: Pooling project of 19 cohort studies

    USDA-ARS?s Scientific Manuscript database

    The role of omega-3 polyunsaturated fatty acids for primary prevention of coronary heart disease (CHD) remains controversial. Most prior longitudinal studies evaluated self-reported consumption rather than biomarkers. This study sought to evaluate biomarkers of seafood-derived eicosapentaenoic acid ...

  5. Inflammation increases NOTCH1 activity via MMP9 and is counteracted by Eicosapentaenoic Acid-free fatty acid in colon cancer cells

    PubMed Central

    Fazio, Chiara; Piazzi, Giulia; Vitaglione, Paola; Fogliano, Vincenzo; Munarini, Alessandra; Prossomariti, Anna; Milazzo, Maddalena; D’Angelo, Leonarda; Napolitano, Manuela; Chieco, Pasquale; Belluzzi, Andrea; Bazzoli, Franco; Ricciardiello, Luigi

    2016-01-01

    Aberrant NOTCH1 signalling is critically involved in multiple models of colorectal cancer (CRC) and a prominent role of NOTCH1 activity during inflammation has emerged. Epithelial to Mesenchymal Transition (EMT), a crucial event promoting malignant transformation, is regulated by inflammation and Metalloproteinase-9 (MMP9) plays an important role in this process. Eicosapentaenoic Acid (EPA), an omega-3 polyunsaturated fatty acid, was shown to prevent colonic tumors in different settings. We recently found that an extra-pure formulation of EPA as Free Fatty Acid (EPA-FFA) protects from colon cancer development in a mouse model of Colitis-Associated Cancer (CAC) through modulation of NOTCH1 signalling. In this study, we exposed colon cancer cells to an inflammatory stimulus represented by a cytokine-enriched Conditioned Medium (CM), obtained from THP1-differentiated macrophages. We found, for the first time, that CM strongly up-regulated NOTCH1 signalling and EMT markers, leading to increased invasiveness. Importantly, NOTCH1 signalling was dependent on MMP9 activity, upon CM exposure. We show that a non-cytotoxic pre-treatment with EPA-FFA antagonizes the effect of inflammation on NOTCH1 signalling, with reduction of MMP9 activity and invasiveness. In conclusion, our data suggest that, in CRC cells, inflammation induces NOTCH1 activity through MMP9 up-regulation and that this mechanism can be counteracted by EPA-FFA. PMID:26864323

  6. Inflammation increases NOTCH1 activity via MMP9 and is counteracted by Eicosapentaenoic Acid-free fatty acid in colon cancer cells.

    PubMed

    Fazio, Chiara; Piazzi, Giulia; Vitaglione, Paola; Fogliano, Vincenzo; Munarini, Alessandra; Prossomariti, Anna; Milazzo, Maddalena; D'Angelo, Leonarda; Napolitano, Manuela; Chieco, Pasquale; Belluzzi, Andrea; Bazzoli, Franco; Ricciardiello, Luigi

    2016-02-11

    Aberrant NOTCH1 signalling is critically involved in multiple models of colorectal cancer (CRC) and a prominent role of NOTCH1 activity during inflammation has emerged. Epithelial to Mesenchymal Transition (EMT), a crucial event promoting malignant transformation, is regulated by inflammation and Metalloproteinase-9 (MMP9) plays an important role in this process. Eicosapentaenoic Acid (EPA), an omega-3 polyunsaturated fatty acid, was shown to prevent colonic tumors in different settings. We recently found that an extra-pure formulation of EPA as Free Fatty Acid (EPA-FFA) protects from colon cancer development in a mouse model of Colitis-Associated Cancer (CAC) through modulation of NOTCH1 signalling. In this study, we exposed colon cancer cells to an inflammatory stimulus represented by a cytokine-enriched Conditioned Medium (CM), obtained from THP1-differentiated macrophages. We found, for the first time, that CM strongly up-regulated NOTCH1 signalling and EMT markers, leading to increased invasiveness. Importantly, NOTCH1 signalling was dependent on MMP9 activity, upon CM exposure. We show that a non-cytotoxic pre-treatment with EPA-FFA antagonizes the effect of inflammation on NOTCH1 signalling, with reduction of MMP9 activity and invasiveness. In conclusion, our data suggest that, in CRC cells, inflammation induces NOTCH1 activity through MMP9 up-regulation and that this mechanism can be counteracted by EPA-FFA.

  7. Omega-3 dietary Fatty Acid status of healthy older adults in Tasmania, Australia: an observational study.

    PubMed

    Pittaway, J K; Chuang, L T; Ahuja, K D K; Beckett, J M; Glew, R H; Ball, M J

    2015-05-01

    To determine the dietary and supplement intake of omega-3 (n-3) polyunsaturated fatty acids (PUFA) of older Tasmanian adults; their plasma n-3 PUFA status and the relationship between n-3 PUFA intake and plasma status. Cross-sectional study. Launceston and surrounding regions, Tasmania, Australia. Seventy-three community-dwelling older adults: 23 men aged 70 ± 6.1 years and 50 women aged 70 ± 6.7 years. A validated, semi-quantitative food frequency questionnaire estimated dietary PUFA intake. The plasma phospholipid fraction of venous blood samples was analysed for fatty acid content. Anthropometric data was recorded. Thirty-five participants (48%) regularly ingested a fish oil supplement. Their plasma n-3 PUFA profile contained significantly more eicosapentaenoic acid (EPA) (odds ratio 3.14; 95% CI 1.37% to 7.30%; p<0.05) and docosahexaenoic acid (DHA) (odds ratio 2.64; 95% CI 1.16% to 6.01%; p<0.05) than non-supplement users. Fish and meat were the main dietary sources of n-3 PUFAs. Participants most commonly consumed fish 3-4 times per week. Significant associations of dietary α-linolenic acid (ALA), EPA, docosapentaenoic acid (DPA) and DHA with plasma n-3 PUFAs were noted but not always between dietary and plasma counterparts. Without the use of fish oil supplements, most study participants were unable to meet the recommended daily intake of 0.5g EPA and DHA combined; however, the plasma n-3 PUFA profile of non-supplement-users was still robust compared to other Australian and overseas studies.

  8. Induction of a Pregnancy-Like Mammary Gland Differentiation by Docosapentaenoic Omega-3 Fatty Acid

    DTIC Science & Technology

    2009-09-01

    eicosapentaenoic and docosapentaenoic omega-3 fatty acids . FEBS J. 274(13):3351-62, 2007. 13 Tumorigenesis and Neoplastic Progression Synuclein...1-0375 TITLE: Induction of a Pregnancy-Like Mammary Gland Differentiation by Docosapentaenoic Omega-3 Fatty Acid PRINCIPAL INVESTIGATOR...Fatty Acid 5b. GRANT NUMBER W81XWH-07-1-0375 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Shi, Y. Eric 5e. TASK

  9. Two-Stage Enzymatic Preparation of Eicosapentaenoic Acid (EPA) And Docosahexaenoic Acid (DHA) Enriched Fish Oil Triacylglycerols.

    PubMed

    Zhang, Zhen; Liu, Fang; Ma, Xiang; Huang, Huihua; Wang, Yong

    2018-01-10

    Fish oil products in the form of triacylglycerols generally have relatively low contents of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and so it is of potential research and industrial interest to enrich the related contents in commercial products. Thereby an economical and efficient two-stage preparation of EPA and DHA enriched fish oil triacylglycerols is proposed in this study. The first stage was the partial hydrolysis of fish oil by only 0.2 wt.‰ AY "Amano" 400SD which led to increases of EPA and DHA contents in acylglycerols from 19.30 and 13.09 wt % to 25.95 and 22.06 wt %, respectively. Subsequently, products of the first stage were subjected to transesterification with EPA and DHA enriched fatty acid ethyl esters (EDEE) as the second stage to afford EPA and DHA enriched fish oil triacylglycerols by using as low as 2 wt % Novozyme 435. EDEEs prepared from fish oil ethyl ester, and recycled DHA and EPA, respectively, were applied in this stage. Final products prepared with two different sources of EDEEs were composed of 97.62 and 95.92 wt % of triacylglycerols, respectively, with EPA and DHA contents of 28.20 and 21.41 wt % for the former and 25.61 and 17.40 wt % for the latter. Results not only demonstrate this two-stage process's capability and industrial value for enriching EPA and DHA in fish oil products, but also offer new opportunities for the development of fortified fish oil products.

  10. Effects of eicosapentaenoic acid on hepatic dyslipidemia and oxidative stress in high fat diet-induced steatosis.

    PubMed

    Hirotani, Yoshihiko; Ozaki, Nozomi; Tsuji, Yoshihiro; Urashima, Yoko; Myotoku, Michiaki

    2015-01-01

    We investigated the ability of eicosapentaenoic acid (EPA) to prevent high-fat diet (HFD)-induced obesity and non-alcoholic fatty liver disease (NAFLD). Male C57BL/6J mice were fed standard chow (5.3% fat content), an HFD (32.0% fat content) or an HFD + EPA (1 g/kg/day EPA for the last 6 weeks) for 12 weeks. Serum total cholesterol, hepatic triglyceride and total cholesterol levels were significantly increased in the HFD group, in comparison with those of normal mice (p < 0.01). In contrast, hepatic triglyceride and total cholesterol levels were significantly decreased in the HFD + EPA group, in comparison with those of the HFD group (p < 0.05). In addition, EPA decreased the body weight of obese mice and improved hepatic function. Hepatic superoxide dismutase activity and glutathione levels were significantly decreased in obese mice, but increased with EPA administration. Our data suggest that EPA supplementation has a beneficial effect on NAFLD progression.

  11. Dietary long-chain omega-3 fatty acids do not diminish eosinophilic pulmonary inflammation in mice

    USDA-ARS?s Scientific Manuscript database

    The effects of fish oil supplements on diminishing airway inflammation in asthma have been studied in mouse models and human intervention trials with varying results. However, the independent effects of the main omega-3 PUFAs found in fish oil, eicosapentaenoic acid (EPA) and docosahexaenoic acid (D...

  12. Effects of n-3 polyunsaturated fatty acids and vitamin E on colonic mucosal leukotriene generation, lipid peroxidation, and microcirculation in rats with experimental colitis.

    PubMed

    Shimizu, T; Igarashi, J; Ohtuka, Y; Oguchi, S; Kaneko, K; Yamashiro, Y

    2001-01-01

    We investigated the effect of n-3 polyunsaturated fatty acids (PUFAs) on mucosal levels of leukotrienes (LTs) and lipid peroxide (LPO), and on mucosal microcirculation, in rats with experimental colitis induced by dextran sulfate sodium (DSS). We fed Wistar rats a perilla oil-enriched diet containing alpha-linolenic acid (63.2% of total fatty acids) with various doses of vitamin E for 4 weeks, with 4% DSS added to the drinking water during the last week. Control rats were fed a diet produced from soybean oil containing alpha-linolenic acid (5.1% of total fatty acids). Colonic mucosal blood flow was measured with a laser Doppler flowmeter. The mucosal level of arachidonic acid was significantly lower and that of eicosapentaenoic acid was significantly higher in the experimental group. The mucosal level of LPO in the experimental group fed a trace or ordinary dose of vitamin E was significantly higher than that of the controls. The production of LTB(4) and LTC(4) from the colonic mucosa in the experimental group was significantly lower than that in controls. However, only the experimental group fed a vitamin E dose 4-fold higher than that given to the controls showed a significant increase in mucosal blood flow. These results suggest that n-3 PUFAs increase mucosal blood flow by inhibiting LT production when there is sufficient vitamin E to inhibit lipid peroxidation in rats with experimental colitis. Copyright 2001 S. Karger AG, Basel

  13. The Current Role of Omega-3 Fatty Acids in the Management of Atrial Fibrillation

    PubMed Central

    Christou, Georgios A.; Christou, Konstantinos A.; Korantzopoulos, Panagiotis; Rizos, Evangelos C.; Nikas, Dimitrios N.; Goudevenos, John A.

    2015-01-01

    Background: The main dietary source of omega-3 polyunsaturated fatty acids (n-3 PUFA) is fish, which contains eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). In the present manuscript, we aimed to review the current evidence regarding the clinical role of n-3 PUFA in the prevention of atrial fibrillation (AF) and the possible underlying mechanisms. Methods: A literature search based on PubMed listings was performed using “Omega-3 fatty acids” and “atrial fibrilation” as key search terms. Results: n-3 PUFA have been shown to attenuate structural atrial remodeling, prolong atrial effective refractory period through the prevention of reentry and suppress ectopic firing from pulmonary veins. Dietary fish intake has been found to have no effect on the incidence of AF in the majority of studies. Circulating DHA has been consistently reported to be inversely associated with AF risk, whereas EPA has no such effect. The majority of studies investigating the impact of n-3 PUFA supplementation on the incidence of AF following cardiac surgery reported no benefit, though most of them did not use n-3 PUFA pretreatment for adequate duration. Studies using adequate four-week pretreatment with n-3 PUFA before cardioversion of AF showed a reduction of the AF incidence. Conclusions: Although n-3 PUFA have antiarrhythmogenic properties, their clinical efficacy on the prevention of AF is not consistently supported. Further well-designed studies are needed to overcome the limitations of the existing studies and provide robust conclusions. PMID:26402674

  14. Protective effects of prescription n-3 fatty acids against impairment of spatial cognitive learning ability in amyloid β-infused rats.

    PubMed

    Hashimoto, Michio; Tozawa, Ryuichi; Katakura, Masanori; Shahdat, Hossain; Haque, Abdul Md; Tanabe, Yoko; Gamoh, Shuji; Shido, Osamu

    2011-07-01

    Deposition of amyloid β peptide (Aβ) into the brain causes cognitive impairment. We investigated whether prescription pre-administration of n-3 fatty acids improves cognitive learning ability in young rats and whether it protects against learning ability impairments in an animal model of Alzheimer's disease that was prepared by infusion of Aβ(1-40) into the cerebral ventricles of rats. Pre-administration of TAK-085 (highly purified and concentrated n-3 fatty acids containing eicosapentaenoic acid ethyl ester and docosahexaenoic acid ethyl ester) at 300 mg kg(-1) day(-1) for 12 weeks significantly reduced the number of reference memory errors in an 8-arm radial maze, suggesting that long-term administration of TAK-085 improves cognitive leaning ability in rats. After pre-administration, the control group was divided into the vehicle and Aβ-infused groups, whereas the TAK-085 pre-administration group was divided into the TAK-085 and TAK-085 + Aβ groups (TAK-085-pre-administered Aβ-infused rats). Aβ(1-40) or vehicle was infused into the cerebral ventricle using a mini osmotic pump. Pre-administration of TAK-085 to the Aβ-infused rats significantly suppressed the number of reference and working memory errors and decreased the levels of lipid peroxide and reactive oxygen species in the cerebral cortex and hippocampus of Aβ-infused rats, suggesting that TAK-085 increases antioxidative defenses. The present study suggests that long-term administration of TAK-085 is a possible therapeutic agent for protecting against Alzheimer's disease-induced learning deficiencies. This journal is © The Royal Society of Chemistry 2011

  15. Randomized controlled trial of ethyl-eicosapentaenoic acid in Huntington disease: the TREND-HD study.

    PubMed

    2008-12-01

    To determine whether ethyl-eicosapentaenoic acid (ethyl-EPA), an omega-3 fatty acid, improves the motor features of Huntington disease. Six-month multicenter, randomized, double-blind, placebo-controlled trial followed by a 6-month open-label phase without disclosing initial treatment assignments. Forty-one research sites in the United States and Canada. Three hundred sixteen adults with Huntington disease, enriched for a population with shorter trinucleotide (cytosine-adenine-guanine) repeat length expansions. Random assignment to placebo or ethyl-EPA, 1 g twice a day, followed by open-label treatment with ethyl-EPA. Six-month change in the Total Motor Score 4 component of the Unified Huntington's Disease Rating Scale analyzed for all research participants and those with shorter cytosine-adenine-guanine repeat length expansions (<45). At 6 months, the Total Motor Score 4 point change for patients receiving ethyl-EPA did not differ from that for those receiving placebo. No differences were found in measures of function, cognition, or global impression. Before public disclosure of the 6-month placebo-controlled results, 192 individuals completed the open-label phase. The Total Motor Score 4 change did not worsen for those who received active treatment for 12 continuous months compared with those who received active treatment for only 6 months (2.0-point worsening; P=.02). Ethyl-EPA was not beneficial in patients with Huntington disease during 6 months of placebo-controlled evaluation. Clinical Trial Registry clinicaltrials.gov Identifier: NCT00146211.

  16. Plasma Levels of Eicosapentaenoic Acid Are Associated with Anti-TNF Responsiveness in Rheumatoid Arthritis and Inhibit the Etanercept-driven Rise in Th17 Cell Differentiation in Vitro.

    PubMed

    Jeffery, Louisa; Fisk, Helena L; Calder, Philip C; Filer, Andrew; Raza, Karim; Buckley, Christopher D; McInnes, Iain; Taylor, Peter C; Fisher, Benjamin A

    2017-06-01

    To determine whether levels of plasma n-3 polyunsaturated fatty acids are associated with response to antitumor necrosis factor (anti-TNF) agents in rheumatoid arthritis (RA), and whether this putative effect may have its basis in altering anti-TNF-driven Th17 cell differentiation. Plasma was collected at baseline and after 3 months of anti-TNF treatment in 22 patients with established RA, and fatty acid composition of the phosphatidylcholine (PC) component was measured. CD4+CD25- T cells and monocytes were purified from the blood of healthy donors and cocultured in the presence of anti-CD3, with or without etanercept (ETN), eicosapentaenoic acid (EPA), or the control fatty acid, linoleic acid (LA). Expression of interleukin 17 and interferon-γ was measured by intracellular staining and flow cytometry. Plasma PC EPA levels and the EPA/arachidonic acid ratio correlated inversely with change in the Disease Activity Score at 28 joints (DAS28) at 3 months (-0.51, p = 0.007 and -0.48, p = 0.01, respectively), indicating that higher plasma EPA was associated with a greater reduction in DAS28. Plasma PC EPA was positively associated with European League Against Rheumatism response (p = 0.02). An increase in Th17 cells post-therapy has been associated with nonresponse to anti-TNF. ETN increased Th17 frequencies in vitro . Physiological concentrations of EPA, but not LA, prevented this. EPA status was associated with clinical improvements to anti-TNF therapy in vivo and prevented the effect of ETN on Th17 cells in vitro . EPA supplementation might be a simple way to improve anti-TNF outcomes in patients with RA by suppressing Th17 frequencies.

  17. Successful high-level accumulation of fish oil omega-3 long-chain polyunsaturated fatty acids in a transgenic oilseed crop.

    PubMed

    Ruiz-Lopez, Noemi; Haslam, Richard P; Napier, Johnathan A; Sayanova, Olga

    2014-01-01

    Omega-3 (also called n-3) long-chain polyunsaturated fatty acids (≥C20; LC-PUFAs) are of considerable interest, based on clear evidence of dietary health benefits and the concurrent decline of global sources (fish oils). Generating alternative transgenic plant sources of omega-3 LC-PUFAs, i.e. eicosapentaenoic acid (20:5 n-3, EPA) and docosahexaenoic acid (22:6 n-3, DHA) has previously proved problematic. Here we describe a set of heterologous genes capable of efficiently directing synthesis of these fatty acids in the seed oil of the crop Camelina sativa, while simultaneously avoiding accumulation of undesirable intermediate fatty acids. We describe two iterations: RRes_EPA in which seeds contain EPA levels of up to 31% (mean 24%), and RRes_DHA, in which seeds accumulate up to 12% EPA and 14% DHA (mean 11% EPA and 8% DHA). These omega-3 LC-PUFA levels are equivalent to those in fish oils, and represent a sustainable, terrestrial source of these fatty acids. We also describe the distribution of these non-native fatty acids within C. sativa seed lipids, and consider these data in the context of our current understanding of acyl exchange during seed oil synthesis. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  18. Effect of eicosapentaenoic acids-rich fish oil supplementation on motor nerve function after eccentric contractions.

    PubMed

    Ochi, Eisuke; Tsuchiya, Yosuke; Yanagimoto, Kenichi

    2017-01-01

    This study investigated the effect of supplementation with fish oil rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on the M-wave latency of biceps brachii and muscle damage after a single session of maximal elbow flexor eccentric contractions (ECC). Twenty-one men were completed the randomized, double-blind, placebo-controlled, and parallel-design study. The subjects were randomly assigned to the fish oil group ( n  = 10) or control group ( n  = 11). The fish oil group consumed eight 300-mg EPA-rich fish oil softgel capsules (containing, in total, 600 mg EPA and 260 mg DHA) per day for 8 weeks before the exercise, and continued this for a further 5 days. The control group consumed an equivalent number of placebo capsules. The subjects performed six sets of ten eccentric contractions of the elbow flexors using a dumbbell set at 40% of their one repetition maximum. M-wave latency was assessed as the time taken from electrical stimulation applied to Erb's point to the onset of M-wave of the biceps brachii. This was measured before and immediately after exercise, and then after 1, 2, 3, and 5 days. Changes in maximal voluntary isometric contraction (MVC) torque, range of motion (ROM), upper arm circumference, and delayed onset muscle soreness (DOMS) were assessed at the same time points. Compared with the control group, M-wave latency was significantly shorter in the fish oil group immediately after exercise ( p  = 0.040), MVC torque was significantly higher at 1 day after exercise ( p  = 0.049), ROM was significantly greater at post and 2 days after exercise (post; p  = 0.006, day 2; p  = 0.014), and there was significantly less delayed onset muscle soreness at 1 and 2 days after exercise (day 1; p  = 0.049, day 2; p  = 0.023). Eight weeks of EPA and DHA supplementation may play a protective role against motor nerve function and may attenuate muscle damage after eccentric contractions. This trial was registered on July 14th

  19. Docosahexaenoic acid synthesis from alpha-linolenic acid is inhibited by diets high in polyunsaturated fatty acids.

    PubMed

    Gibson, R A; Neumann, M A; Lien, E L; Boyd, K A; Tu, W C

    2013-01-01

    The conversion of the plant-derived omega-3 (n-3) α-linolenic acid (ALA, 18:3n-3) to the long-chain eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) can be increased by ALA sufficient diets compared to ALA deficient diets. Diets containing ALA above an optimal level result in no further increase in DHA levels in animals and humans. The present study evaluates means of maximizing plasma DHA accumulation by systematically varying both linoleic acid (LA, 18:2n-6) and ALA dietary level. Weanling rats were fed one of 54 diets for three weeks. The diets varied in the percentage of energy (en%) of LA (0.07-17.1 en%) and ALA (0.02-12.1 en%) by manipulating both the fat content and the balance of vegetable oils. The peak of plasma phospholipid DHA (>8% total fatty acids) was attained as a result of feeding a narrow dietary range of 1-3 en% ALA and 1-2 en% LA but was suppressed to basal levels (∼2% total fatty acids) at dietary intakes of total polyunsaturated fatty acids (PUFA) above 3 en%. We conclude it is possible to enhance the DHA status of rats fed diets containing ALA as the only source of n-3 fatty acids but only when the level of dietary PUFA is low (<3 en%). Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Relationship between Long Chain n-3 Polyunsaturated Fatty Acids and Autism Spectrum Disorder: Systematic Review and Meta-Analysis of Case-Control and Randomised Controlled Trials

    PubMed Central

    Mazahery, Hajar; Stonehouse, Welma; Delshad, Maryam; Kruger, Marlena C.; Conlon, Cathryn A.; Beck, Kathryn L.; von Hurst, Pamela R.

    2017-01-01

    Omega-3 long chain polyunsaturated fatty acid supplementation (n-3 LCPUFA) for treatment of Autism Spectrum Disorder (ASD) is popular. The results of previous systematic reviews and meta-analyses of n-3 LCPUFA supplementation on ASD outcomes were inconclusive. Two meta-analyses were conducted; meta-analysis 1 compared blood levels of LCPUFA and their ratios arachidonic acid (ARA) to docosahexaenoic acid (DHA), ARA to eicosapentaenoic acid (EPA), or total n-6 to total n-3 LCPUFA in ASD to those of typically developing individuals (with no neurodevelopmental disorders), and meta-analysis 2 compared the effects of n-3 LCPUFA supplementation to placebo on symptoms of ASD. Case-control studies and randomised controlled trials (RCTs) were identified searching electronic databases up to May, 2016. Mean differences were pooled and analysed using inverse variance models. Heterogeneity was assessed using I2 statistic. Fifteen case-control studies (n = 1193) were reviewed. Compared with typically developed, ASD populations had lower DHA (−2.14 [95% CI −3.22 to −1.07]; p < 0.0001; I2 = 97%), EPA (−0.72 [95% CI −1.25 to −0.18]; p = 0.008; I2 = 88%), and ARA (−0.83 [95% CI, −1.48 to −0.17]; p = 0.01; I2 = 96%) and higher total n-6 LCPUFA to n-3 LCPUFA ratio (0.42 [95% CI 0.06 to 0.78]; p = 0.02; I2 = 74%). Four RCTs were included in meta-analysis 2 (n = 107). Compared with placebo, n-3 LCPUFA improved social interaction (−1.96 [95% CI −3.5 to −0.34]; p = 0.02; I2 = 0) and repetitive and restricted interests and behaviours (−1.08 [95% CI −2.17 to −0.01]; p = 0.05; I2 = 0). Populations with ASD have lower n-3 LCPUFA status and n-3 LCPUFA supplementation can potentially improve some ASD symptoms. Further research with large sample size and adequate study duration is warranted to confirm the efficacy of n-3 LCPUFA. PMID:28218722

  1. Eicosapentaenoic acid-enriched phosphatidylcholine isolated from Cucumaria frondosa exhibits anti-hyperglycemic effects via activating phosphoinositide 3-kinase/protein kinase B signal pathway.

    PubMed

    Hu, Shiwei; Xu, Leilei; Shi, Di; Wang, Jingfeng; Wang, Yuming; Lou, Qiaoming; Xue, Changhu

    2014-04-01

    Eicosapentaenoic acid-enriched phosphatidylcholine was isolated from the sea cucumber Cucumaria frondosa (Cucumaria-PC) and its effects on streptozotocin (STZ)-induced hyperglycemic rats were investigated. Male Sprague-Dawley rats were randomly divided into normal control, model control (STZ), low- and high-dose Cucumaria-PC groups (STZ + Cucumaria-PC at 25 and 75 mg/Kg·b·wt, intragastrically, respectively). Blood glucose, insulin, glycogen in liver and gastrocnemius were determined over 60 days. Insulin signaling in the rats' gastrocnemius was determined by reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blotting. The results showed that Cucumaria-PC significantly decreased blood glucose level, increased insulin secretion and glycogen synthesis in diabetic rats. RT-PCR analysis revealed that Cucumaria-PC significantly promoted the expressions of glycometabolism-related genes of insulin receptor (IR), insulin receptor substrate-1 (IRS-1), phosphoinositide 3-kinase (PI3K), protein kinase B (PKB), and glucose transporter 4 (GLUT4) in gastrocnemius. Western blotting assay demonstrated that Cucumaria-PC remarkably enhanced the proteins abundance of IR-β, PI3K, PKB, GLUT4, as well as phosphorylation of Tyr-IR-β, p85-PI3K, Ser473-PKB (P < 0.05 and P < 0.01). These findings suggested that Cucumaria-PC exhibited significant anti-hyperglycemic activities through up-regulating PI3K/PKB signal pathway mediated by insulin. Nutritional supplementation with Cucumaria-PC, if validated for human studies, may offer an adjunctive therapy for diabetes mellitus. Copyright © 2013 The Society for Biotechnology, Japan. All rights reserved.

  2. Eicosapentaenoic Acid (EPA) Decreases the All-Cause Mortality in Hemodialysis Patients.

    PubMed

    Inoue, Tomoko; Okano, Kazuhiro; Tsuruta, Yuki; Tsuruta, Yukio; Tsuchiya, Ken; Akiba, Takashi; Nitta, Kosaku

    2015-01-01

    Atherosclerosis, which causes cardiovascular disease, is a major cause of death in hemodialysis (HD) patients. Eicosapentaenoic acid (EPA), an anti-hyperlipidemic agent, is known to have antioxidative or anti-inflammatory effects, resulting in improvements in atherosclerosis. In the present study, we examined whether EPA improves the all-cause mortality in patients receiving regular HD therapy. We enrolled 176 patients treated with maintenance HD therapy and performed a longitudinal observational cohort study for three years. We divided the patients into two groups based on whether or not the received EPA treatment [EPA(+) and EPA(-), respectively]. The primary end-point was all-cause death. We also matched the two groups using propensity score matching and examined the effect of EPA. Before matching, the all-cause mortality rates were 24.0% in the EPA(+) and 11.8% in the EPA(-) groups, which were significantly different (p=0.044). After propensity score matching, the EPA(+) group still showed a significantly better prognosis than the EPA(-) group (p=0.038). A multivariate analysis showed that EPA treatment significantly reduced the risk of all-cause mortality both before and after propensity score matching. EPA treatment is independently associated with lower mortality in HD patients.

  3. Omega-6 and omega-3 fatty acids metabolism pathways in the body of pigs fed diets with different sources of fatty acids.

    PubMed

    Skiba, Grzegorz; Poławska, Ewa; Sobol, Monika; Raj, Stanisława; Weremko, Dagmara

    2015-01-01

    This study was carried out on 24 gilts (♀ Polish Large White × ♂ Danish Landrace) grown with body weight (BW) of 60 to 105 kg. The pigs were fed diets designed on the basis of a standard diet (appropriate for age and BW of pigs) where a part of the energy content was replaced by different fat supplements: linseed oil in Diet L, rapeseed oil in Diet R and fish oil in Diet F (6 gilts per dietary treatment). The fat supplements were sources of specific fatty acids (FA): in Diet L α-linolenic acid (C18:3 n-3, ALA); in Diet R linoleic acid (C18:2 n-6, LA) and in Diet F eicosapentaenoic acid (C20:5 n-3, EPA), docosapentaenoic acid (C22:5 n-3, DPA) and docosahexaenoic acid (C22:6 n-3, DHA). The protein, fat and total FA contents in the body did not differ among groups of pigs. The enhanced total intake of LA and ALA by pigs caused an increased deposition of these FA in the body (p < 0.01) and an increased potential body pool of these acids for further metabolism/conversions. The conversion efficiency of LA and ALA from the feed to the pig's body differed among groups (p < 0.01) and ranged from 64.4% to 67.2% and from 69.4% to 81.7%, respectively. In Groups L and R, the level of de novo synthesis of long-chain polyunsaturated FA was higher than in Group F. From the results, it can be concluded that the efficiency of deposition is greater for omega-3 FA than for omega-6 FA and depends on their dietary amount. The level of LA and ALA intake influences not only their deposition in the body but also the end products of the omega-3 and omega-6 pathways.

  4. Eicosapentaenoic acid abolishes inhibition of insulin-induced mTOR phosphorylation by LPS via PTP1B downregulation in skeletal muscle.

    PubMed

    Wei, Hong-Kui; Deng, Zhao; Jiang, Shu-Zhong; Song, Tong-Xing; Zhou, Yuan-Fei; Peng, Jian; Tao, Ya-Xiong

    2017-01-05

    Dietary n-3 polyunsaturated fatty acids (n-3 PUFAs) increase insulin signaling in skeletal muscle. In the current study, we investigated the effect of eicosapentaenoic acid (EPA) on insulin-induced mammalian target of rapamycin (mTOR) phosphorylation in myotubes. We showed that EPA did not affect basal and insulin-induced mTOR phosphorylation in myotubes. However, EPA abolished lipopolysaccharide (LPS) -induced deficiency in insulin signaling (P < 0.05). Pre-incubation of nuclear factor κB (NF-κΒ) and c-Jun N-terminal kinases (JNK) inhibitors prevented the decreased insulin-induced mTOR phosphorylation elicited by LPS (P < 0.05). In addition, in protein tyrosine phosphatase-1B (PTP1B) knockdown myotubes, LPS failed to decrease insulin-induced mammalian target of rapamycin (mTOR) phosphorylation in myotubes (P > 0.05). In myotubes, LPS stimulated PTP1B expression via NF-κB and activation protein-1 (AP1). Pre-incubation of 50 μM EPA prevented the LPS-induced activation of AP1 and NF-κΒ as well as PTP1B expression (P < 0.05). Interestingly, incubation of peroxisome proliferator-activated receptor γ (PPARγ) antagonist (GW9662) prior to EPA treatment, the effect of EPA on insulin-induced mTOR phosphorylation was blocked. Accordingly, EPA did not inhibit the LPS-induced activation of AP1 or NF-κΒ as well as PTP1B expression when incubation of GW9662 prior to EPA treatment. The in vivo study showed that EPA prevented LPS-induced PTPT1B expression and a decrease in insulin-induced mTOR phosphorylation in muscle of mice. In summary, EPA abolished LPS inhibition of insulin-induced mTOR phosphorylation in myotubes, and one of the key mechanisms was to inhibit AP1 and NF-κB activation and PTP1B transcription. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Dietary milled flaxseed and flaxseed oil improve N-3 fatty acid status and do not affect glycemic control in individuals with well-controlled type 2 diabetes.

    PubMed

    Taylor, Carla G; Noto, Amy D; Stringer, Danielle M; Froese, Sylvia; Malcolmson, Linda

    2010-02-01

    To determine the effects of dietary consumption of milled flaxseed or flaxseed oil on glycemic control, n-3 fatty acid status, anthropometrics, and adipokines in individuals with type 2 diabetes. Thirty-four participants were randomized into a parallel, controlled trial. The participants were adults with type 2 diabetes (age 52.4 +/- 1.5 years, body mass index 32.4 +/- 1.0 kg/m(2), n = 17 men and 17 women). Participants consumed a selection of bakery products containing no flax (control group [CTL], n = 9), milled flaxseed (FXS, n = 13; 32 g/d), or flaxseed oil (FXO, n = 12; 13 g/d) daily for 12 weeks. The FXS and FXO groups received equivalent amounts of alpha-linolenic acid (ALA; 7.4 g/day). The primary outcome measures were fasting plasma hemoglobin A(1c), glucose, insulin, and phospholipid fatty acid composition. The secondary outcome measures were fasting circulating leptin and adiponectin, as well as body weight, body mass index, and waist circumference. Dietary intake assessment and calculations for homeostasis model assessment for insulin resistance and quantified insulin sensitivity check were also completed. The FXS and FXO groups had increases in plasma phospholipid n-3 fatty acids (ALA, eicosapentaenoic acid [EPA], or decosapentaenoic acid [DPA], but not docosahexaenoic acid), and the FXO group had more EPA and DPA in plasma phospholipids compared to the FXS group. All groups had similar caloric intakes; however, the CTL group experienced a 4% weight gain compared to baseline (p < 0.05), while both flax groups had constant body weights during the study period. All other parameters, including glycemic control, were unchanged by dietary treatment. Milled FXS and FXO intake does not affect glycemic control in adults with well-controlled type 2 diabetes. Possible prevention of weight gain by flax consumption warrants further investigation.

  6. Omega-3 fatty acid monotherapy for pediatric bipolar disorder: a prospective open-label trial.

    PubMed

    Wozniak, Janet; Biederman, Joseph; Mick, Eric; Waxmonsky, James; Hantsoo, Liisa; Best, Catherine; Cluette-Brown, Joanne E; Laposata, Michael

    2007-01-01

    To test the effectiveness and safety of omega-3 fatty acids (Omegabrite(R) brand) in the treatment of pediatric bipolar disorder (BPD). Subjects (N=20) were outpatients of both sexes, 6 to 17 years of age, with a DSM-IV diagnosis of BPD and Young Mania Rating Scale (YMRS) score of >15 treated over an 8-week period in open-label trial with omega-3 fatty acids 1290 mg-4300 mg combined EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid). Subjects experienced a statistically significant but modest 8.9+/-2.9 point reduction in the YMRS scores (baseline YMRS=28.9+/-10.1; endpoint YMRS=19.1+/-2.6, p<0.001). Adverse events were few and mild. Red blood cell membrane levels of EPA and DHA increased in treated subjects. As only 35% of these subjects had a response by the usual accepted criteria of >50% decrease on the YMRS, omega-3 fatty acids treatment was associated with a very modest improvement in manic symptoms in children with BPD.

  7. Eicosapentaenoic acid reduces membrane fluidity, inhibits cholesterol domain formation, and normalizes bilayer width in atherosclerotic-like model membranes.

    PubMed

    Mason, R Preston; Jacob, Robert F; Shrivastava, Sandeep; Sherratt, Samuel C R; Chattopadhyay, Amitabha

    2016-12-01

    Cholesterol crystalline domains characterize atherosclerotic membranes, altering vascular signaling and function. Omega-3 fatty acids reduce membrane lipid peroxidation and subsequent cholesterol domain formation. We evaluated non-peroxidation-mediated effects of eicosapentaenoic acid (EPA), other TG-lowering agents, docosahexaenoic acid (DHA), and other long-chain fatty acids on membrane fluidity, bilayer width, and cholesterol domain formation in model membranes. In membranes prepared at 1.5:1 cholesterol-to-phospholipid (C/P) mole ratio (creating pre-existing domains), EPA, glycyrrhizin, arachidonic acid, and alpha linolenic acid promoted the greatest reductions in cholesterol domains (by 65.5%, 54.9%, 46.8%, and 45.2%, respectively) compared to controls; other treatments had modest effects. EPA effects on cholesterol domain formation were dose-dependent. In membranes with 1:1 C/P (predisposing domain formation), DHA, but not EPA, dose-dependently increased membrane fluidity. DHA also induced cholesterol domain formation without affecting temperature-induced changes in-bilayer unit cell periodicity relative to controls (d-space; 57Å-55Å over 15-30°C). Together, these data suggest simultaneous formation of distinct cholesterol-rich ordered domains and cholesterol-poor disordered domains in the presence of DHA. By contrast, EPA had no effect on cholesterol domain formation and produced larger d-space values relative to controls (60Å-57Å; p<0.05) over the same temperature range, suggesting a more uniform maintenance of lipid dynamics despite the presence of cholesterol. These data indicate that EPA and DHA had different effects on membrane bilayer width, membrane fluidity, and cholesterol crystalline domain formation; suggesting omega-3 fatty acids with differing chain length or unsaturation may differentially influence membrane lipid dynamics and structural organization as a result of distinct phospholipid/sterol interactions. Copyright © 2016. Published by

  8. Cognitive enhancement by omega-3 fatty acids from child-hood to old age: findings from animal and clinical studies.

    PubMed

    Luchtman, Dirk W; Song, Cai

    2013-01-01

    Omega-(n)-3 polyunsaturated fatty acids (PUFAs), including docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are major components of neuronal membranes and have a wide range of functions, from modulating synaptic plasticity and neurochemistry, to neuroimmune-modulation and neuroprotection. Thus, it is not surprising that n-3 PUFA are widely acknowledged to have cognitive-enhancing effects. Although clinical evidence is somewhat conflicting, probably in large part due to methodological issues, animal studies have consistently demonstrated that n-3 PUFA are indispensable for proper brain development, may enhance cognitive function in healthy, adult individuals and attenuate cognitive impairment in aging and age-related disorders, such as dementia. This review discusses and integrates up to date evidence from clinical and animal studies investigating the cognitive-enhancing effects of n-3 PUFA during development, child- and adult-hood, as well as old-age with associated neurodegenerative diseases, such as Alzheimer's disease. Furthermore, we cover the major underlying biochemical and neurophysiological mechanisms by which n-3 PUFA mediate these effects on cognition. This article is part of a Special Issue entitled 'Cognitive Enhancers'. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Production of eicosapentaenoic acid by high cell density cultivation of the marine oleaginous diatom Fistulifera solaris.

    PubMed

    Tanaka, Tsuyoshi; Yabuuchi, Takashi; Maeda, Yoshiaki; Nojima, Daisuke; Matsumoto, Mitsufumi; Yoshino, Tomoko

    2017-12-01

    Polyunsaturated fatty acids (PUFAs), including eicosapentaenoic acid (EPA), have attracted attention owing to their health benefits for humans, as well as their importance in aquaculture and animal husbandry. Establishing a sustainable PUFA supply based on fish oils has been difficult due to their increasing demand. Therefore, alternative sources of PUFAs are required. In this research, we examined the potential of the marine oleaginous diatom Fistulifera solaris as an alternative producer of PUFAs. Optimization of culture conditions was carried out for high cell density cultivation, and a maximal biomass productivity of 1.32±0.13g/(L·day) was achieved. By slightly adjusting the culture conditions for EPA production, the maximal EPA productivity reached 135.7±10.0mg/(L·day). To the best of our knowledge, this is the highest EPA productivity among microalgae cultured under photoautotrophic conditions. This result indicates that F. solaris is a promising candidate host for sustainable PUFA production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Effect of eicosapentaenoic acid/docosahexaenoic acid on coronary high-intensity plaques detected with non-contrast T1-weighted imaging (the AQUAMARINE EPA/DHA study): study protocol for a randomized controlled trial.

    PubMed

    Nakao, Kazuhiro; Noguchi, Teruo; Asaumi, Yasuhide; Morita, Yoshiaki; Kanaya, Tomoaki; Fujino, Masashi; Hosoda, Hayato; Yoneda, Shuichi; Kawakami, Shoji; Nagai, Toshiyuki; Nishihira, Kensaku; Nakashima, Takahiro; Kumasaka, Reon; Arakawa, Tetsuo; Otsuka, Fumiyuki; Nakanishi, Michio; Kataoka, Yu; Tahara, Yoshio; Goto, Yoichi; Yamamoto, Haruko; Hamasaki, Toshimitsu; Yasuda, Satoshi

    2018-01-08

    Despite the success of HMG-CoA reductase inhibitor (statin) therapy in reducing atherosclerotic cardiovascular events, a residual risk for cardiovascular events in patients with coronary artery disease (CAD) remains. Long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFAs), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are promising anti-atherosclerosis agents that might reduce the residual CAD risk. Non-contrast T1-weighted imaging (T1WI) with cardiac magnetic resonance (CMR) less invasively identifies high-risk coronary plaques as high-intensity signals. These high-intensity plaques (HIPs) are quantitatively assessed using the plaque-to-myocardium signal intensity ratio (PMR). Our goal is to assess the effect of EPA/DHA on coronary HIPs detected with T1WI in patients with CAD on statin treatment. This prospective, controlled, randomized, open-label study examines the effect of 12 months of EPA/DHA therapy and statin treatment on PMR of HIPs detected with CMR and computed tomography angiography (CTA) in patients with CAD. The primary endpoint is the change in PMR after EPA/DHA treatment. Secondary endpoints include changes in Hounsfield units, plaque volume, vessel area, and plaque area measured using CTA. Subjects are randomly assigned to either of three groups: the 2 g/day EPA/DHA group, the 4 g/day EPA/DHA group, or the no-treatment group. This trial will help assess whether EPA/DHA has an anti-atherosclerotic effect using PMR of HIPs detected by CMR. The trial outcomes will provide novel insights into the effect of EPA/DHA on high-risk coronary plaques and may provide new strategies for lowering the residual risk in patients with CAD on statin therapy. The University Hospital Medical Information Network (UMIN) Clinical Trials Registry, ID: UMIN000015316 . Registered on 2 October 2014.

  11. A diet high in α-linolenic acid and monounsaturated fatty acids attenuates hepatic steatosis and alters hepatic phospholipid fatty acid profile in diet-induced obese rats.

    PubMed

    Hanke, Danielle; Zahradka, Peter; Mohankumar, Suresh K; Clark, Jaime L; Taylor, Carla G

    2013-01-01

    This study investigated the efficacy of the plant-based n-3 fatty acid, α-linolenic acid (ALA), a dietary precursor of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), for modulating hepatic steatosis. Rats were fed high fat (55% energy) diets containing high oleic canola oil, canola oil, a canola/flax oil blend (C/F, 3:1), safflower oil, soybean oil, or lard. After 12 weeks, C/F and weight-matched (WM) groups had 20% less liver lipid. Body mass, liver weight, glucose and lipid metabolism, inflammation and molecular markers of fatty acid oxidation, synthesis, desaturation and elongation did not account for this effect. The C/F group had the highest total n-3 and EPA in hepatic phospholipids (PL), as well as one of the highest DHA and lowest arachidonic acid (n-6) concentrations. In conclusion, the C/F diet with the highest content of the plant-based n-3 ALA attenuated hepatic steatosis and altered the hepatic PL fatty acid profile. © 2013 Published by Elsevier Ltd.

  12. Effect of omega-3 fatty acids on the modification of erythrocyte membrane fatty acid content including oleic acid in peritoneal dialysis patients.

    PubMed

    An, W S; Lee, S M; Son, Y K; Kim, S E; Kim, K H; Han, J Y; Bae, H R; Park, Y

    2012-01-01

    Erythrocyte membrane fatty acids (FA), such as oleic acid, are related to acute coronary syndrome. There is no report about the effect of omega-3 FA on oleic acid in peritoneal dialysis (PD) patients. We hypothesized that omega-3 FA can modify erythrocyte membrane FA, including oleic acid, in PD patients. In a double-blind, randomized, placebo-controlled study, 18 patients who were treated with PD for at least 6 months were randomized to treatment for 12 weeks with omega-3 FA or placebo. Erythrocyte membrane FA content was measured by gas chromatography at baseline and after 12 weeks. The erythrocyte membrane content of eicosapentaenoic acid and docosahexaenoic acid was significantly increased and saturated FA and oleic acid were significantly decreased in the omega-3 FA supplementation group after 12 weeks compared to baseline. In conclusion, erythrocyte membrane FA content, including oleic acid, was significantly modified by omega-3 FA supplementation for 12 weeks in PD patients. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Potential adverse effects of omega-3 Fatty acids in dogs and cats.

    PubMed

    Lenox, C E; Bauer, J E

    2013-01-01

    Fish oil omega-3 fatty acids, mainly eicosapentaenoic acid and docosahexaenoic acid, are used in the management of several diseases in companion animal medicine, many of which are inflammatory in nature. This review describes metabolic differences among omega-3 fatty acids and outlines potential adverse effects that may occur with their supplementation in dogs and cats with a special focus on omega-3 fatty acids from fish oil. Important potential adverse effects of omega-3 fatty acid supplementation include altered platelet function, gastrointestinal adverse effects, detrimental effects on wound healing, lipid peroxidation, potential for nutrient excess and toxin exposure, weight gain, altered immune function, effects on glycemic control and insulin sensitivity, and nutrient-drug interactions. Copyright © 2013 by the American College of Veterinary Internal Medicine.

  14. A novel bioactive derivative of eicosapentaenoic acid (EPA) suppresses intestinal tumor development in ApcΔ14/+ mice.

    PubMed

    Nakanishi, Masako; Hanley, Matthew P; Zha, Ruochen; Igarashi, Yuichi; Hull, Mark A; Mathias, Gary; Sciavolino, Frank; Grady, James J; Rosenberg, Daniel W

    2018-03-08

    Familial adenomatous polyposis (FAP) is a genetic disorder characterized by the development of hundreds of polyps throughout the colon. Without prophylactic colectomy, most individuals with FAP develop colorectal cancer at an early age. Treatment with EPA in the free fatty acid form (EPA-FFA) has been shown to reduce polyp burden in FAP patients. Since high-purity EPA-FFA is subject to rapid oxidation, a stable form of EPA compound has been developed in the form of magnesium l-lysinate bis-eicosapentaenoate (TP-252). We assessed the chemopreventive efficacy of TP-252 on intestinal tumor formation using ApcΔ14/+ mice and compared it with EPA-FFA. TP-252 was supplemented in a modified AIN-93G diet at 1, 2 or 4% and EPA-FFA at 2.5% by weight and administered to mice for 11 weeks. We found that administration of TP-252 significantly reduced tumor number and size in the small intestine and colon in a dose-related manner and as effectively as EPA-FFA. To gain further insight into the cancer protection afforded to the colon, we performed a comprehensive lipidomic analysis of total fatty acid composition and eicosanoid metabolites. Treatment with TP-252 significantly decreased the levels of arachidonic acid (AA) and increased EPA concentrations within the colonic mucosa. Furthermore, a classification and regression tree (CART) analysis revealed that a subset of fatty acids, including EPA and docosahexaenoic acid (DHA), and their downstream metabolites, including PGE3 and 14-hydroxy-docosahexaenoic acid (HDoHE), were strongly associated with antineoplastic activity. These results indicate that TP-252 warrants further clinical development as a potential strategy for delaying colectomy in adolescent FAP patients.

  15. Eicosapentaenoic acid and docosahexaenoic acid have distinct membrane locations and lipid interactions as determined by X-ray diffraction.

    PubMed

    Sherratt, Samuel C R; Mason, R Preston

    2018-01-31

    Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) differentially influence lipid oxidation, signal transduction, fluidity, and cholesterol domain formation, potentially due in part to distinct membrane interactions. We used small angle X-ray diffraction to evaluate the EPA and DHA effects on membrane structure. Membrane vesicles composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and cholesterol (C) (0.3C:POPC mole ratio) were prepared and treated with vehicle, EPA, or DHA (1:10 mol ratio to POPC). Electron density profiles generated from the diffraction data showed that EPA increased membrane hydrocarbon core electron density over a broad area, up to ± 20 Å from the membrane center, indicating an energetically favorable extended orientation for EPA likely stabilized by van der Waals interactions. By contrast, DHA increased electron density in the phospholipid head group region starting at ± 12 Å from the membrane center, presumably due to DHA-surface interactions, with coincident reduction in electron density in the membrane hydrocarbon core centered ± 7-9 Å from the membrane center. The membrane width (d-space) decreased by 5 Å in the presence of vehicle as the temperature increased from 10 °C to 30 °C due to increased acyl chain trans-gauche isomerizations, which was unaffected by addition of EPA or DHA. The influence of DHA on membrane structure was modulated by temperature changes while the interactions of EPA were unaffected. The contrasting EPA and DHA effects on membrane structure indicate distinct molecular locations and orientations that may contribute to observed differences in biological activity. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  16. N-3 polyunsaturated fatty acid regulation of hepatic gene transcription

    PubMed Central

    Jump, Donald B.

    2009-01-01

    Purpose of review The liver plays a central role in whole body lipid metabolism and adapts rapidly to changes in dietary fat composition. This adaption involves changes in the expression of genes involved in glycolysis, de-novo lipogenesis, fatty acid elongation, desaturation and oxidation. This review brings together metabolic and molecular studies that help explain n-3 (omega-3) polyunsaturated fatty acid regulation of hepatic gene transcription. Recent findings Dietary n-3 polyunsaturated fatty acid regulates hepatic gene expression by targeting three major transcriptional regulatory networks: peroxisome proliferator-activated receptor α, sterol regulatory element binding protein-1 and the carbohydrate regulatory element binding protein/Max-like factor X heterodimer. 22 : 6,n-3, the most prominent n-3 polyunsaturated fatty acid in tissues, is a weak activator of peroxisome proliferator-activated receptor α. Hepatic metabolism of 22 : 6,n-3, however, generates 20 : 5,n-3, a strong peroxisome proliferator-activated receptor α activator. In contrast to peroxisome proliferator-activated receptor α, 22 : 6,n-3 is the most potent fatty acid regulator of hepatic sterol regulatory element binding protein-1. 22 : 6,n-3 suppresses sterol regulatory element binding protein-1 gene expression while enhancing degradation of nuclear sterol regulatory element binding protein-1 through 26S proteasome and Erk1/2-dependent mechanisms. Both n-3 and n-6 polyunsaturated fatty acid suppress carbohydrate regulatory element binding protein and Max-like factor X nuclear abundance and interfere with glucose-regulated hepatic metabolism. Summary These studies have revealed unique mechanisms by which specific polyunsaturated fatty acids control peroxisome proliferator activated receptor α, sterol regulatory element binding protein-1 and carbohydrate regulatory element binding protein/Max-like factor X function. As such, specific metabolic and signal transduction pathways contribute

  17. Different ratios of docosahexaenoic and eicosapentaenoic acids do not alter growth, nucleic acid and fatty acids of juvenile cobia (Rachycentron canadum).

    PubMed

    Xu, Youqing; Ding, Zhaokun; Zhang, Haizhu; Liu, Liang; Wang, Shuqi; Gorge, John

    2009-12-01

    An experiment was performed to study the effect of different ratios of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on the growth, nucleic acid and fatty acids of cobia (Rachycentron canadum) juveniles. The juveniles were fed for 8 weeks using seven treatment diets (D-1-D-7) with the same amount of DHA and EPA (1.50 +/- 0.1% of dried diet), but varying ratios of DHA to EPA (0.90, 1.10, 1.30, 1.50, 1.70, 1.90, 2.10, respectively) and a control diet (D-0, DHA + EPA = 0.8% of dried diet, DHA/EPA = 1.30). At the end of the experiment, the mean body weight (BW) of juveniles fed D-0-D-7 increased significantly (from 6.86 +/- 1.64 in the week 0 to 58.52 +/- 16.45 g at the end of week 8, P < 0.05). The mean RNA amount and RNA/DNA ratio in the muscle (from 39.62 +/- 1.30 microg mg(-1) and 2.29 +/- 0.11 in the week 0 to 272.55 +/- 10.70 microg mg(-1) and 14.54 +/- 1.75 at the end of week 8, respectively) and the mean weight in the liver (from 117.70 +/- 11.15 microg mg(-1) and 3.14 +/- 0.25 in the week 0 to 793.07 +/- 13.38 microg mg(-1) and 13.16 +/- 0.76 at the end of week 8, respectively) of cobia juveniles fed D-0-D-7 were significantly higher at the end of 8-week experiment than initially (P < 0.05). The RNA/DNA ratio in the muscle and liver of cobia juveniles increased with their growth and appeared an obvious positive relationship, especially in the muscle, based on regression analysis. The mean lipid content increased significantly in the liver (from 29.82 +/- 0.99 to 37.47 +/- 3.25% totally) and muscle (from 6.74 +/- 0.25 to 10.63 +/- 0.23% totally) of cobia juveniles (P < 0.05). However, no significant difference was found on the lipid contents of juveniles fed different diets for 8 weeks (P > 0.05). In the muscle and liver of juveniles, EPA decreased with its reduction in the diet; DHA, DHA/EPA ratio and poly unsaturated fatty acids (PUFAs) generally increased with their increment in the diet. The conclusion was drawn that the growth, nucleic acid

  18. In vitro effects of docosahexaenoic and eicosapentaenoic acid on human meibomian gland epithelial cells.

    PubMed

    Hampel, Ulrike; Krüger, Magret; Kunnen, Carolina; Garreis, Fabian; Willcox, Mark; Paulsen, Friedrich

    2015-11-01

    To investigate the effect of ω-3 fatty acids on human meibomian gland epithelial cells (HMGECs, cell line) in vitro. HMGECs were stimulated with docosahexaenoic acid (DHA) or combinations with eicosapentaenoic acid (EPA) and acetyl sialic acid (ASA). Sudan III fat staining, viability and proliferation assays, electric cell-substrate impedance sensing, real-time PCR for gene expression of cyclooxygenase-2 and 15-lipoxygenase and ELISAs for resolvin D1 (RvD1), IFNγ, TNFα and IL-6 were applied. Lipid droplet accumulation and viability was increased by 100 μM DHA in the presence or absence of EPA in serum cultured HMGECs. In contrast, HMGECs cultured with DHA and EPA under serum-free conditions showed minimal lipid accumulation, decreased proliferation and viability. Normalized impedance was significantly reduced in serum-free cultured HMGECs when stimulated with DHA and EPA. HMGECs cultured in serum containing medium showed increased normalized impedance under DHA and EPA stimulation compared to DHA or EPA alone or controls. IL-6 and IFNγ were downregulated in HMGECs treated for 72 h with DHA and EPA. In general, TNFα, IFNγ and IL-6 levels were decreased after 72 h compared to 24 h in serum containing medium with or without DHA or EPA. The concentration of RvD1 was elevated 2-fold after DHA treatment. Cyclooxygenase-2 gene expression decreased compared to controls during DHA stimulation after 72 h. Treatment with DHA and ASA revealed a decreased 15-lipoxygenase gene expression which was reduced after three days of DHA incubation. DHA and EPA supplementation affected HMGECs in vitro and supported anti-inflammatory effects by influencing cytokine levels, decreasing COX-2 expression and increasing the production of RvD1. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Genetic and epigenetic transgenerational implications related to omega-3 fatty acids. Part I: maternal FADS2 genotype and DNA methylation correlate with polyunsaturated fatty acid status in toddlers: an exploratory analysis.

    PubMed

    Lupu, Daniel S; Cheatham, Carol L; Corbin, Karen D; Niculescu, Mihai D

    2015-11-01

    Polyunsaturated fatty acid metabolism in toddlers is regulated by a complex network of interacting factors. The contribution of maternal genetic and epigenetic makeup to this milieu is not well understood. In a cohort of mothers and toddlers 16 months of age (n = 65 mother-child pairs), we investigated the association between maternal genetic and epigenetic fatty acid desaturase 2 (FADS2) profiles and toddlers' n-6 and n-3 fatty acid metabolism. FADS2 rs174575 variation and DNA methylation status were interrogated in mothers and toddlers, as well as food intake and plasma fatty acid concentrations in toddlers. A multivariate fit model indicated that maternal rs174575 genotype, combined with DNA methylation, can predict α-linolenic acid plasma concentration in all toddlers and arachidonic acid concentrations in boys. Arachidonic acid intake was predictive for its plasma concentration in girls, whereas intake of 3 major n-3 species (eicosapentaenoic, docosapentaenoic, and docosahexaenoic acids) were predictive for their plasma concentrations in boys. FADS2 genotype and DNA methylation in toddlers were not related to plasma concentrations or food intakes, except for CpG8 methylation. Maternal FADS2 methylation was a predictor for the boys' α-linolenic acid intakes. This exploratory study suggests that maternal FADS2 genetic and epigenetic status could be related to toddlers' polyunsaturated fatty acid metabolism. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Protective role of n6/n3 PUFA supplementation with varying DHA/EPA ratios against atherosclerosis in mice.

    PubMed

    Liu, Liang; Hu, Qinling; Wu, Huihui; Xue, Yihong; Cai, Liang; Fang, Min; Liu, Zhiguo; Yao, Ping; Wu, Yongning; Gong, Zhiyong

    2016-06-01

    The effects of n3 polyunsaturated fatty acids (PUFA) on cardiovascular disease are controversial. We currently explored the effects of various ratios of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on high-fat-induced atherosclerosis. In model apoE(-/-) mice, high-fat diets (HFD) were partially replaced with fish and algal oils (DHA/EPA 2:1, 1:1 and 1:2) and/or plant oils enriched in linoleic and alpha-linolenic acids with an n6/n3 ratio of 4:1. PUFA supplementation significantly reduced the atherosclerotic plaque area, serum lipid profile, inflammatory response, aortic ROS production, proinflammatory factors and scavenger receptor expression as compared to those in the HFD group. However, plant oils did not have a significant effect on the following: serum HDL-C level; aortic ABCA1, ABCG1 and LAL mRNA expression; and CD36 and LOX-1 protein expression. Compared to the plant-oil-treated group, the DHA/EPA 1:1 group had a smaller atherosclerotic plaque area, higher serum HDL-C levels and lesser CD36 and MSR-1 mRNA expression; the DHA/EPA 2:1 group had lower serum TC, LDL-C and TNF-α levels and lower aortic ROS levels. Our study suggested that n3 PUFA from animals had more potent atheroprotective effects than that from plants. Supplementation involving higher DHA/EPA ratios and an n6/n3 ratio of 4:1 was beneficial for reducing serum "bad cholesterol" and a 1:1 DHA/EPA ratio with an n6/n3 ratio of 4:1 was beneficial for improving serum "good cholesterol" and inhibiting ox-LDL uptake. Our results suggest that achieving an n6/n3 ratio of 4:1 in the diet is also important in addition to having an optimal DHA/EPA ratio. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Omega-3 free fatty acids for the treatment of severe hypertriglyceridemia: the EpanoVa fOr Lowering Very high triglyceridEs (EVOLVE) trial.

    PubMed

    Kastelein, John J P; Maki, Kevin C; Susekov, Andrey; Ezhov, Marat; Nordestgaard, Borge G; Machielse, Ben N; Kling, Douglas; Davidson, Michael H

    2014-01-01

    Omega-3 fatty acids in free fatty acid form have enhanced bioavailability, and plasma levels are less influenced by food than for ethyl ester forms. The aim was to evaluate the safety and lipid-altering efficacy in subjects with severe hypertriglyceridemia of an investigational pharmaceutical omega-3 free fatty acid (OM3-FFA) containing eicosapentaenoic acid and docosahexaenoic acid. This was a multinational, double-blind, randomized, out-patient study. Men and women with triglycerides (TGs) ≥ 500 mg/dL, but <2000 mg/dL, took control (olive oil [OO] 4 g/d; n = 99), OM3-FFA 2 g/d (plus OO 2 g/d; n = 100), OM3-FFA 3 g/d (plus OO 1 g/d; n = 101), or OM3-FFA 4 g/d (n = 99) capsules for 12 weeks in combination with the National Cholesterol Education Program Therapeutic Lifestyle Changes diet. Fasting serum TGs changed from baseline by -25.9% (P < .01 vs OO), -25.5% (P < .01 vs OO), and -30.9% (P < .001 vs OO) with 2, 3, and 4 g/d OM3-FFA, respectively, compared with -4.3% with OO. Non-high-density lipoprotein cholesterol (non-HDL-C), total cholesterol-to-HDL-C ratio, very low-density lipoprotein cholesterol, remnant-like particle cholesterol, apolipoprotein CIII, lipoprotein-associated phospholipase A2, and arachidonic acid were significantly lowered (P < .05 at each OM3-FFA dosage vs OO); and plasma eicosapentaenoic acid and docosahexaenoic acid were significantly elevated (P < .001 at each OM3-FFA dosage vs OO). With OM3-FFA 2 and 4 g/d (but not 3 g/d), low-density lipoprotein cholesterol was significantly increased compared with OO (P < .05 vs OO). High-sensitivity C-reactive protein responses with OM3-FFA did not differ significantly from the OO response at any dosage. Fewer subjects reported any adverse event with OO vs OM3-FFA, but frequencies across dosage groups were similar. Discontinuation due to adverse event, primarily gastrointestinal, ranged from 5% to 7% across OM3-FFA dosage groups vs 0% for OO. OM3-FFA achieved the primary end point for TG lowering

  2. Adolescents with or at ultra-high risk for bipolar disorder exhibit erythrocyte docosahexaenoic acid and eicosapentaenoic acid deficits: a candidate prodromal risk biomarker.

    PubMed

    McNamara, Robert K; Jandacek, Ronald; Tso, Patrick; Blom, Thomas J; Welge, Jeffrey A; Strawn, Jeffrey R; Adler, Caleb M; Strakowski, Stephen M; DelBello, Melissa P

    2016-06-01

    Mood disorders are associated with low levels of the long-chain omega-3 (LCn-3) fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). This study investigated LCn-3 fatty acid biostatus in youth with or at varying risk for developing mania to assess its utility as a prodromal risk biomarker. Erythrocyte fatty acid composition was determined in healthy adolescents (n = 28, HC), asymptomatic adolescents with a biological parent with bipolar I disorder (n = 30; 'high risk', HR), adolescents with a biological parent with bipolar I disorder and major depressive disorder, or depressive disorder not otherwise specified (n = 36; 'ultra-high risk', UHR), and first-episode adolescent bipolar manic patients (n = 35, BP). Group differences were observed for DHA (P ≤ 0.0001) and EPA (P = 0.03). Compared with HC, erythrocyte EPA + DHA ('omega-3 index') was significantly lower in BP (-24%, P ≤ 0.0001) and UHR (-19%, P = 0.0006) groups, and there was a trend in the HR group (-11%, P = 0.06). Compared with HC (61%), a greater percentage of HR (77%, P = 0.02), UHR (80%, P = 0.005) and BP (97%, P = 0.001) subjects exhibited EPA + DHA levels of ≤4.0%. Among all subjects (n = 130), EPA + DHA was inversely correlated with manic (r = -0.29, P = 0.0008) and depressive (r = -0.28, P = 0.003) symptom severity. The AA/EPA + DHA ratio was significantly greater in BP (+22%, P = 0.0002) and UHR (+16%, P = 0.001) groups. Low EPA + DHA levels coincide with the initial onset of mania, and increasing risk for developing bipolar disorder is associated with graded erythrocyte EPA + DHA deficits. Low erythrocyte EPA + DHA biostatus may represent a promising prodromal risk biomarker warranting additional evaluation in future prospective studies. © 2015 Wiley Publishing Asia Pty Ltd.

  3. Eicosapentaenoic Acid (EPA) Induced Macrophages Activation through GPR120-Mediated Raf-ERK1/2-IKKβ-NF-κB p65 Signaling Pathways

    PubMed Central

    Han, Lirong; Song, Shumin; Niu, Yabing; Meng, Meng; Wang, Chunling

    2017-01-01

    Objectives: To investigate the immunomodulatory effect and molecular mechanisms of Eicosapentaenoic acid (EPA, a typical kind of n-3PUFAs) on RAW264.7 cells. Methods: A variety of research methods, including the RAW264.7 cells culture, cell proliferation assays, morphologic observations, measurements of NO production, cytokine assays, nuclear protein extractions, western blot analyses and NF-κB p65 immunofluorescence assays were used in this study. Results: The results showed that EPA could increase the proliferation index and enhance the release of nitric oxide (NO) and cytokines in RAW264.7 cells. Western blotting results revealed that the protein level of GPR120 increased significantly in RAW264.7 cells after EPA treatment. Meanwhile, EPA elevated the phosphorylation status of Raf, which may act as an upstream regulator of EPA-induced phosphorylated ERK1/2. In addition, the phosphorylated ERK1/2 may then promote IKKβ in endochylema and translocate the NF-κB p65 subunit into the nucleus, thus regulating the production of inducible nitric oxide synthase (iNOS) and cytokines. Conclusions: EPA (0.6–3.0 μmol) activates RAW264.7 cells through GPR120-mediated Raf-ERK1/2-IKKβ-NF-κB p65 signaling pathways. PMID:28841192

  4. Eicosapentaenoic Acid (EPA) Induced Macrophages Activation through GPR120-Mediated Raf-ERK1/2-IKKβ-NF-κB p65 Signaling Pathways.

    PubMed

    Han, Lirong; Song, Shumin; Niu, Yabing; Meng, Meng; Wang, Chunling

    2017-08-25

    Objectives: To investigate the immunomodulatory effect and molecular mechanisms of Eicosapentaenoic acid (EPA, a typical kind of n-3PUFAs) on RAW264.7 cells. Methods: A variety of research methods, including the RAW264.7 cells culture, cell proliferation assays, morphologic observations, measurements of NO production, cytokine assays, nuclear protein extractions, western blot analyses and NF-κB p65 immunofluorescence assays were used in this study. Results: The results showed that EPA could increase the proliferation index and enhance the release of nitric oxide (NO) and cytokines in RAW264.7 cells. Western blotting results revealed that the protein level of GPR120 increased significantly in RAW264.7 cells after EPA treatment. Meanwhile, EPA elevated the phosphorylation status of Raf, which may act as an upstream regulator of EPA-induced phosphorylated ERK1/2. In addition, the phosphorylated ERK1/2 may then promote IKKβ in endochylema and translocate the NF-κB p65 subunit into the nucleus, thus regulating the production of inducible nitric oxide synthase (iNOS) and cytokines. Conclusions: EPA (0.6-3.0 μmol) activates RAW264.7 cells through GPR120-mediated Raf-ERK1/2-IKKβ-NF-κB p65 signaling pathways.

  5. Eicosapentaenoic acid (EPA) induced apoptosis in HepG2 cells through ROS–Ca{sup 2+}–JNK mitochondrial pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yuanyuan; Han, Lirong; Qi, Wentao

    Highlights: • EPA evoked ROS formation, [Ca{sup 2+}]{sub c} accumulation, the opening of MPTP and the phosphorylation of JNK. • EPA-induced [Ca{sup 2+}]{sub c} elevation was depended on production of ROS. • EPA-induced ROS generation, [Ca{sup 2+}]{sub c} increase, and JNK activated caused MPTP opening. • The apoptosis induced by EPA was related to release of cytochrome C through the MPTP. • EPA induced HepG2 cells apoptosis through ROS–Ca{sup 2+}–JNK mitochondrial pathways. - Abstract: Eicosapentaenoic acid (EPA), a well-known dietary n−3 PUFAS, has been considered to inhibit proliferation of tumor cells. However, the molecular mechanism related to EPA-induced liver cancermore » cells apoptosis has not been reported. In this study, we investigated the effect of EPA on HepG2 cells proliferation and apoptosis mechanism through mitochondrial pathways. EPA inhibited proliferation of HepG2 cells in a dose-dependent manner and had no significant effect on the cell viability of humor normal liver L-02 cells. It was found that EPA initially evoked ROS formation, leading to [Ca{sup 2+}]{sub c} accumulation and the mitochondrial permeability transition pore (MPTP) opening; EPA-induced HepG2 cells apoptosis was inhibited by N-acetylcysteine (NAC, an inhibitor of ROS), 1,2-bis (2-aminophenoxy) ethane-N,N,N′,N′-tetraacetic acid (BAPTA-AM, a chelator of calcium) and CsA (inhibitor of MPTP). The relationship between ROS production, the increase of cytoplasmic Ca and MPTP opening was detected. It seems that ROS may act as an upstream regulator of EPA-induced [Ca{sup 2+}]{sub c} generation, moreover, generation of ROS, overload of mitochondrial [Ca{sup 2+}]{sub c}, and JNK activated cause the opening of MPTP. Western blotting results showed that EPA elevated the phosphorylation status of JNK, processes associated with the ROS generation. Simultaneously, the apoptosis induced by EPA was related to release of cytochrome C from mitochondria to cytoplasm through

  6. Total lipid and fatty acid composition of eight strains of marine diatoms

    NASA Astrophysics Data System (ADS)

    Liang, Ying; Mai, Kang-Sen; Sun, Shi-Chun

    2000-12-01

    Fatty acid composition and total lipid content of 8 strains of marine diatoms ( Nitzschia frustrula, Nitzschia closterium, Nitzschia incerta, Navicula pelliculosa, Phaeodactylum tricornutum, Synedra fragilaroides) were examined. The microalgae were grown under defined conditions and harvested at the late exponential phase. The major fatty acids in most strains were 14∶0 (1.0% 6.3%), 16∶0 (13.5 26.4%), 16∶1n-7 (21.1% 46.3%) and 20∶5n-3 (6.5% 19.5%). The polyunsaturated fatty acids 16∶2n-4, 16∶3n-4, 16∶4n-1 and 20∶4n-6 also comprised a significant proportion of the total fatty acids in some strains. The characteristic fatty acid composition of diatoms is readily distinguishable from those of other microalgal groups. Significant concentration of the polyunsaturated fatty acid 20∶5n-3 (eicosapentaenoic acid) was present in each strain, with the highest proportion in B222 (19.5%).

  7. Association between dietary intake of n-3 polyunsaturated fatty acids and severity of skin photoaging in a middle-aged Caucasian population.

    PubMed

    Latreille, Julie; Kesse-Guyot, Emmanuelle; Malvy, Denis; Andreeva, Valentina; Galan, Pilar; Tschachler, Erwin; Hercberg, Serge; Guinot, Christiane; Ezzedine, Khaled

    2013-12-01

    Intake of long-chain n-3 polyunsaturated fatty acid (PUFAs) supplementation has been reported to be associated with reduced UVB-erythemal sensitivity, but their relationship to photoaging has not been studied to date. To investigate associations between daily n-3 PUFA intake and the severity of skin photoaging. A cross-sectional study was conducted on 2919 subjects aged 45-60 years from the SU.VI.MAX cohort. At baseline, trained investigators graded the severity of facial skin photoaging using a validated 6-grade scale during a clinical examination. Intake of α-linolenic (ALA), eicosapentaenoic (EPA), docosapentaenoic (DPA), and docosahexaenoic acids (DHA) were evaluated by dietary source using ten 24-h dietary record questionnaires during the first 2.5 years of the follow-up period. After adjustment for possible confounders, severe photoaging was found to be inversely associated with higher intake of ALA in men and with higher intake of EPA in women. When considering the different food sources of ALA for men, an inverse association appeared between severe photoaging and ALA from vegetable oils, as well as with ALA from fruit and vegetables, whereas no association was observed for ALA from dairy products. In women, ALA from vegetable oils also tended to be inversely linked to photoaging. These findings suggest a possible benefit effect of n-3 PUFAs on skin aging. Nonetheless, further epidemiological studies are necessary to confirm our results and to gain additional insights into underlying mechanisms. Copyright © 2013 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  8. Quantitative determination of fatty acids in marine fish and shellfish from warm water of Straits of Malacca for nutraceutical purposes.

    PubMed

    Abd Aziz, Nurnadia; Azlan, Azrina; Ismail, Amin; Mohd Alinafiah, Suryati; Razman, Muhammad Rizal

    2013-01-01

    This study was conducted to quantitatively determine the fatty acid contents of 20 species of marine fish and four species of shellfish from Straits of Malacca. Most samples contained fairly high amounts of polyunsaturated fatty acids (PUFAs), especially alpha-linolenic acid (ALA, C18:3 n3), eicosapentaenoic acid (EPA, C20:5 n3), and docosahexaenoic acid (DHA, C22:6 n3). Longtail shad, yellowstripe scad, and moonfish contained significantly higher (P < 0.05) amounts of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and alpha-linolenic acid (ALA), respectively. Meanwhile, fringescale sardinella, malabar red snapper, black pomfret, Japanese threadfin bream, giant seaperch, and sixbar grouper showed considerably high content (537.2-944.1 mg/100 g wet sample) of desirable omega-3 fatty acids. The polyunsaturated-fatty-acids/saturated-fatty-acids (P/S) ratios for most samples were higher than that of Menhaden oil (P/S = 0.58), a recommended PUFA supplement which may help to lower blood pressure. Yellowstripe scad (highest DHA, ω - 3/ω - 6 = 6.4, P/S = 1.7), moonfish (highest ALA, ω - 3/ω - 6 = 1.9, P/S = 1.0), and longtail shad (highest EPA, ω - 3/ω - 6 = 0.8, P/S = 0.4) were the samples with an outstandingly desirable overall composition of fatty acids. Overall, the marine fish and shellfish from the area contained good composition of fatty acids which offer health benefits and may be used for nutraceutical purposes in the future.

  9. Untargeted metabolomic on urine samples after α-lipoic acid and/or eicosapentaenoic acid supplementation in healthy overweight/obese women.

    PubMed

    Romo-Hualde, Ana; Huerta, Ana E; González-Navarro, Carlos J; Ramos-López, Omar; Moreno-Aliaga, María J; Martínez, J Alfredo

    2018-05-09

    Eicosapentaenoic acid (EPA) and α-lipoic acid (α-LA) have been investigated for their beneficial effects on obesity and cardiovascular risk factors. In the current research, the goal was to evaluate metabolomic changes following the dietary supplementation of these two lipids, alone or combined in healthy overweight/obese sedentary women following an energy-restricted diet. For this purpose, an untargeted metabolomics approach was conducted on urine samples using liquid chromatography coupled with time of flight mass spectrometry (HPLC-TOF-MS). This is a short-term double blind placebo-controlled study with a parallel nutritional design that lasted 10 weeks. Participants were assigned to one of the 4 experimental groups [Control, EPA (1.3 g/d), α-LA (0.3 g/d) and EPA+α-LA (1.3 g/d + 0.3 g/d)]. All intervention groups followed an energy-restricted diet of 30% less than total energy expenditure. Clinically relevant biochemical measurements were analyzed. Urine samples (24 h) were collected at baseline and after 10 weeks. Untargeted metabolomic analysis on urine samples was carried out, and principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were performed for the pattern recognition and characteristic metabolites identification. Urine samples were scattered in the PCA scores plots in response to the supplementation with α-LA. Totally, 28 putative discriminant metabolites in positive ionization, and 6 in negative ionization were identified among groups clearly differentiated according to the α-LA administration. Remarkably is the presence of an ascorbate intermediate metabolite (one of the isomers of trihydroxy-dioxohexanoate, or dihydroxy-oxohexanedionate) in the groups supplemented with α-LA. This fact might be associated with antioxidant properties of both α-LA and ascorbic acid. Correlations between phenotypical parameters and putative metabolites of provided additional information on whether there is a

  10. Omega-3 fatty acids in the gravid pig uterus as affected by maternal supplementation with omega-3 fatty acids.

    PubMed

    Brazle, A E; Johnson, B J; Webel, S K; Rathbun, T J; Davis, D L

    2009-03-01

    Two experiments evaluated the ability of maternal fatty acid supplementation to alter conceptus and endometrial fatty acid composition. In Exp. 1, treatments were 1) the control, a corn-soybean meal diet; 2) flax, the control diet plus ground flax (3.75% of diet); and 3) protected fatty acids (PFA), the control plus a protected fish oil source rich in n-3 PUFA (Gromega, JBS United Inc., Sheridan, IN; 1.5% of diet). Supplements replaced equal parts of corn and soybean meal. When gilts reached 170 d of age, PG600 (PMSG and hCG, Intervet USA, Millsboro, DE) was injected to induce puberty, and dietary treatments (n = 8/treatment) were initiated. When detected in estrus, gilts were artificially inseminated. On d 40 to 43 of gestation, 7 gilts in the control treatment, 8 gilts in the PFA treatment, and 5 gilts in the flax treatment were pregnant and were slaughtered. Compared with the control treatment, the flax treatment tended to increase eicosapentaenoic acid (EPA: C20:5n-3) in fetuses (0.14 vs. 0.25 +/- 0.03 mg/g of dry tissue; P = 0.055), whereas gilts receiving PFA had more (P < 0.05) docosahexaenoic acid (DHA: C22:6n-3) in their fetuses (5.23 vs. 4.04 +/- 0.078 mg/g) compared with gilts fed the control diet. Both the flax and PFA diets increased (P < 0.05) DHA (0.60, 0.82, and 0.85 +/- 0.078 mg/g for the control, flax, and PFA diet, respectively) in the chorioallantois. In the endometrium, EPA and docosapentaenoic acid (C22:5n-3) were increased by the flax diet (P < 0.001; P < 0.05), whereas gilts receiving PFA had increased DHA (P < 0.001). The flax diet selectively increased EPA, and the PFA diet selectively increased DHA in the fetus and endometrium. In Exp. 2, gilts were fed diets containing PFA (1.5%) or a control diet beginning at approximately 170 of age (n = 13/treatment). A blood sample was collected after 30 d of treatment, and gilts were artificially inseminated when they were approximately 205 d old. Conceptus and endometrial samples were collected on

  11. Polyunsaturated fatty acids in various macroalgal species from North Atlantic and tropical seas.

    PubMed

    van Ginneken, Vincent J T; Helsper, Johannes P F G; de Visser, Willem; van Keulen, Herman; Brandenburg, Willem A

    2011-06-22

    In this study the efficacy of using marine macroalgae as a source for polyunsaturated fatty acids, which are associated with the prevention of inflammation, cardiovascular diseases and mental disorders, was investigated. The fatty acid (FA) composition in lipids from seven sea weed species from the North Sea (Ulva lactuca, Chondrus crispus, Laminaria hyperborea, Fucus serratus, Undaria pinnatifida, Palmaria palmata, Ascophyllum nodosum) and two from tropical seas (Caulerpa taxifolia, Sargassum natans) was determined using GCMS. Four independent replicates were taken from each seaweed species. Omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs), were in the concentration range of 2-14 mg/g dry matter (DM), while total lipid content ranged from 7-45 mg/g DM. The n-9 FAs of the selected seaweeds accounted for 3%-56% of total FAs, n-6 FAs for 3%-32% and n-3 FAs for 8%-63%. Red and brown seaweeds contain arachidonic (C20:4, n-6) and/or eicosapentaenoic acids (EPA, C20:5, n-3), the latter being an important "fish" FA, as major PUFAs while in green seaweeds these values are low and mainly C16 FAs were found. A unique observation is the presence of another typical "fish" fatty acid, docosahexaenoic acid (DHA, C22:6, n-3) at ≈ 1 mg/g DM in S. natans. The n-6: n-3 ratio is in the range of 0.05-2.75 and in most cases below 1.0. Environmental effects on lipid-bound FA composition in seaweed species are discussed. Marine macroalgae form a good, durable and virtually inexhaustible source for polyunsaturated fatty acids with an (n-6) FA: (n-3) FA ratio of about 1.0. This ratio is recommended by the World Health Organization to be less than 10 in order to prevent inflammatory, cardiovascular and nervous system disorders. Some marine macroalgal species, like P. palmata, contain high proportions of the "fish fatty acid" eicosapentaenoic acid (EPA, C20:5, n-3), while in S. natans also docosahexaenoic acid (DHA, C22:6, n-3) was detected.

  12. Polyunsaturated fatty acids in various macroalgal species from north Atlantic and tropical seas

    PubMed Central

    2011-01-01

    Background In this study the efficacy of using marine macroalgae as a source for polyunsaturated fatty acids, which are associated with the prevention of inflammation, cardiovascular diseases and mental disorders, was investigated. Methods The fatty acid (FA) composition in lipids from seven sea weed species from the North Sea (Ulva lactuca, Chondrus crispus, Laminaria hyperborea, Fucus serratus, Undaria pinnatifida, Palmaria palmata, Ascophyllum nodosum) and two from tropical seas (Caulerpa taxifolia, Sargassum natans) was determined using GCMS. Four independent replicates were taken from each seaweed species. Results Omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs), were in the concentration range of 2-14 mg/g dry matter (DM), while total lipid content ranged from 7-45 mg/g DM. The n-9 FAs of the selected seaweeds accounted for 3%-56% of total FAs, n-6 FAs for 3%-32% and n-3 FAs for 8%-63%. Red and brown seaweeds contain arachidonic (C20:4, n-6) and/or eicosapentaenoic acids (EPA, C20:5, n-3), the latter being an important "fish" FA, as major PUFAs while in green seaweeds these values are low and mainly C16 FAs were found. A unique observation is the presence of another typical "fish" fatty acid, docosahexaenoic acid (DHA, C22:6, n-3) at ≈ 1 mg/g DM in S. natans. The n-6: n-3 ratio is in the range of 0.05-2.75 and in most cases below 1.0. Environmental effects on lipid-bound FA composition in seaweed species are discussed. Conclusion Marine macroalgae form a good, durable and virtually inexhaustible source for polyunsaturated fatty acids with an (n-6) FA: (n-3) FA ratio of about 1.0. This ratio is recommended by the World Health Organization to be less than 10 in order to prevent inflammatory, cardiovascular and nervous system disorders. Some marine macroalgal species, like P. palmata, contain high proportions of the "fish fatty acid" eicosapentaenoic acid (EPA, C20:5, n-3), while in S. natans also docosahexaenoic acid (DHA, C22:6, n-3) was

  13. Associations between a fatty acid desaturase gene polymorphism and blood arachidonic acid compositions in Japanese elderly.

    PubMed

    Horiguchi, Sayaka; Nakayama, Kazuhiro; Iwamoto, Sadahiko; Ishijima, Akiko; Minezaki, Takayuki; Baba, Mamiko; Kontai, Yoshiko; Horikawa, Chika; Kawashima, Hiroshi; Shibata, Hiroshi; Kagawa, Yasuo; Kawabata, Terue

    2016-02-01

    We investigated whether the single nucleotide polymorphism rs174547 (T/C) of the fatty acid desaturase-1 gene, FADS1, is associated with changes in erythrocyte membrane and plasma phospholipid (PL) long-chain polyunsaturated fatty acid (LCPUFA) composition in elderly Japanese participants (n=124; 65 years or older; self-feeding and oral intake). The rs174547 C-allele carriers had significantly lower arachidonic acid (ARA; n-6 PUFA) and higher linoleic acid (LA, n-6 PUFA precursor) levels in erythrocyte membrane and plasma PL (15% and 6% ARA reduction, respectively, per C-allele), suggesting a low LA to ARA conversion rate in erythrocyte membrane and plasma PL of C-allele carriers. α-linolenic acid (n-3 PUFA precursor) levels were higher in the plasma PL of C-allele carriers, whereas levels of the n-3 LCPUFAs eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) were unchanged in erythrocyte membrane and plasma PL. Thus, rs174547 genotypes were significantly associated with different ARA compositions of the blood of elderly Japanese. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Omega-3 and omega-6 fatty acid intakes and endometrial cancer risk in a population-based case-control study.

    PubMed

    Arem, Hannah; Neuhouser, Marian L; Irwin, Melinda L; Cartmel, Brenda; Lu, Lingeng; Risch, Harvey; Mayne, Susan T; Yu, Herbert

    2013-04-01

    Animal and laboratory studies suggest that long-chain omega-3 (n-3) fatty acids, a type of polyunsaturated fat found in fatty fish, may protect against carcinogenesis, but human studies on dietary intake of polyunsaturated fats and fish with endometrial cancer risk show mixed results. We evaluated the associations between endometrial cancer risk and intake of fatty acids and fish in a population-based sample of 556 incident cancer cases and 533 age-matched controls using multivariate unconditional logistic regression methods. Although total n-3 fatty acid intake was not associated with endometrial cancer risk, higher intakes of eicosapentaenoic (EPA 20:5) and docosahexaenoic (DHA 22:6) fatty acids were significantly associated with lower risks (OR = 0.57, 95 % CI: 0.39-0.84; OR = 0.64, 95 % CI: 0.44-0.94; respectively) comparing extreme quartiles. The ratio of n-3:n-6 fatty acids was inversely associated with risk only on a continuous scale (OR = 0.84, 95 % CI: 0.71-0.99), while total fish intake was not associated with risk. Fish oil supplement use was significantly associated with reduced risk of endometrial cancer: OR = 0.63 (95 % CI: 0.45-0.88). Our results suggest that dietary intake of the long-chain polyunsaturated fatty acids EPA and DHA in foods and supplements may have protective associations against the development of endometrial cancer.

  15. Response surface methodology for optimising the culture conditions for eicosapentaenoic acid production by marine bacteria.

    PubMed

    Abd Elrazak, Ahmed; Ward, Alan C; Glassey, Jarka

    2013-05-01

    Polyunsaturated fatty acids (PUFAs), especially eicosapentaenoic acid (EPA), are increasingly attracting scientific attention owing to their significant health-promoting role in the human body. However, the human body lacks the ability to produce them in vivo. The limitations associated with the current sources of ω-3 fatty acids from animal and plant sources have led to increased interest in microbial production. Bacterial isolate 717 was identified as a potential high EPA producer. As an important step in the process development of the microbial PUFA production, the culture conditions at the bioreactor scale were optimised for the isolate 717 using a response surface methodology exploring the significant effect of temperature, pH and dissolved oxygen and the interaction between them on the EPA production. This optimisation strategy led to a significant increase in the amount of EPA produced by the isolate under investigation, where the amount of EPA increased from 9 mg/g biomass (33 mg/l representing 7.6 % of the total fatty acids) to 45 mg/g (350 mg/l representing 25 % of the total fatty acids). To avoid additional costs associated with extreme cooling at large scale, a temperature shock experiment was carried out reducing the overall cooling time from the whole cultivation process to 4 h only prior to harvest. The ability of the organism to produce EPA under the complete absence of oxygen was tested revealing that oxygen is not critically required for the biosynthesis of EPA but the production improved in the presence of oxygen. The stability of the produced oil and the complete absence of heavy metals in the bacterial biomass are considered as an additional benefit of bacterial EPA compared to other sources of PUFA. To our knowledge this is the first report of a bacterial isolate producing EPA with such high yields making the large-scale manufacture much more economically viable.

  16. Improved eicosapentaenoic acid production in Pythium splendens RBB-5 based on metabolic regulation analysis.

    PubMed

    Ren, Liang; Zhou, Pengpeng; Zhu, Yuanmin; Zhang, Ruijiao; Yu, Longjiang

    2017-05-01

    Eicosapentaenoic acid (EPA) is an essential polyunsaturated fatty acid for human beings. At present, the production of commercially available long-chain polyunsaturated fatty acids, mainly from wild-caught ocean fish, is struggling to meet the increasing demand for EPA. Production of EPA by microorganisms may be an alternative, effective and economical method. The oleaginous fungus Pythium splendens RBB-5 is a potential source of EPA, and thanks to the simple culture conditions required, high yields can be achieved in a facile manner. In the study, lipid metabolomics was performed in an attempt to enhance EPA biosynthesis in Pythium splendens. Synthetic, metabolic regulation and gene expression analyses were conducted to clarify the mechanism of EPA biosynthesis, and guide optimization of EPA production. The results showed that the Δ 6 desaturase pathway is the main EPA biosynthetic route in this organism, and ∆ 6 , ∆ 12 and Δ 17 desaturases are the rate-limiting enzymes. All the three desaturase genes were separately introduced into the parent strain to increase the flow of fatty acids into the Δ 6 desaturase pathway. Enhanced expression of these key enzymes, in combination with improved regulation of metabolism, resulted in a maximum yield of 1.43 g/L in the D12 transgenic strain, which represents a tenfold increase over the parent strain before optimization. This is the higher EPA production yield yet reported for a microbial system. Our findings may allow the production of EPA at an industrial scale, and the strategy employed could be used to increase the production of EPA or other lipids in oleaginous microorganisms.

  17. A double-blind, randomized, placebo-controlled trial of n-3 fatty acid based lipid infusion in acute, extended guttate psoriasis. Rapid improvement of clinical manifestations and changes in neutrophil leukotriene profile.

    PubMed

    Grimminger, F; Mayser, P; Papavassilis, C; Thomas, M; Schlotzer, E; Heuer, K U; Führer, D; Hinsch, K D; Walmrath, D; Schill, W B

    1993-08-01

    Twenty patients hospitalized for acute psoriasis guttata with a minimum 10% of body surface area involvement (range 10-90%) completed a 10-day trial in which they were randomly allocated to receive daily infusions with either an n-3 fatty acid based lipid emulsion [100 ml/day with 2.1 g eicosapentaenoic (EPA) and 21 g docosahexaenoic acid (DHA)] or a conventional n-6 lipid emulsion (EPA + DHA < 0.1 g/100 ml). The severity of disease was evaluated by scoring daily erythema, infiltration, and desquamation and by a subjective scoring of clinical manifestations offered by the patients. Leukotriene (LT) and platelet-activating factor (PAF) generation were investigated in ionophore-stimulated neutrophils obtained on days 0, 1, 3, 5, 10, and 40. Moderate improvement in clinical manifestations was noted in the n-6 group (changes in score systems between 16-25% from baseline within 10 days). In contrast, the severity of disease markedly decreased in all patients of the n-3 group, with improvements in all score systems ranging between 45% and 76% within 10 days (P < 0.05 for each variable). The difference in response to the two regimens was evident within 4-7 days after onset of lipid infusion. A more than ten fold increase in neutrophil EPA-derived 5-lipoxygenase product formation (LTB5, its omega-oxidation products, non-enzymatic degradation products of LTA5 and 5-hydroxyeicosapentaenoic acid) was noted in the n-3 group but not in the n-6 group. Neutrophil PAF generation increased in the n-6 group but decreased in the n-3 group. In conclusion, modulation of eicosanoid metabolism by intravenous n-3 fatty acid supplementation appears to exert a rapid beneficial effect on inflammatory skin lesions in acute guttate psoriasis.

  18. Eicosapentaenoic and docosahexaenoic acids, cognition, and behavior in children with attention-deficit/hyperactivity disorder: a randomized controlled trial.

    PubMed

    Milte, Catherine M; Parletta, Natalie; Buckley, Jonathan D; Coates, Alison M; Young, Ross M; Howe, Peter R C

    2012-06-01

    To determine the effects of an eicosapentaenoic acid (EPA)-rich oil and a docosahexaenoic acid (DHA)-rich oil versus an ω-6 polyunsaturated fatty acid-rich safflower oil (control) on literacy and behavior in children with attention-deficit/hyperactivity disorder (ADHD) in a randomized controlled trial. Supplements rich in EPA, DHA, or safflower oil were randomly allocated for 4 mo to 90 Australian children 7 to 12 y old with ADHD symptoms higher than the 90th percentile on the Conners Rating Scales. The effect of supplementation on cognition, literacy, and parent-rated behavior was assessed by linear mixed modeling. Pearson correlations determined associations between the changes in outcome measurements and the erythrocyte fatty acid content (percentage of total) from baseline to 4 mo. There were no significant differences between the supplement groups in the primary outcomes after 4 mo. However, the erythrocyte fatty acid profiles indicated that an increased proportion of DHA was associated with improved word reading (r = 0.394) and lower parent ratings of oppositional behavior (r = 0.392). These effects were more evident in a subgroup of 17 children with learning difficulties: an increased erythrocyte DHA was associated with improved word reading (r = 0.683), improved spelling (r = 0.556), an improved ability to divide attention (r = 0.676), and lower parent ratings of oppositional behavior (r = 0.777), hyperactivity (r = 0.702), restlessness (r = 0.705), and overall ADHD symptoms (r = 0.665). Increases in erythrocyte ω-3 polyunsaturated fatty acids, specifically DHA, may improve literacy and behavior in children with ADHD. The greatest benefit may be observed in children who have comorbid learning difficulties. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Prostaglandin transporter (OATP2A1/SLCO2A1) contributes to local disposition of eicosapentaenoic acid-derived PGE3.

    PubMed

    Gose, Tomoka; Nakanishi, Takeo; Kamo, Shunsuke; Shimada, Hiroaki; Otake, Katsumasa; Tamai, Ikumi

    2016-01-01

    Eicosapentaenoic acid (EPA)-derived prostaglandin E3 (PGE3) possesses an anti-inflammatory effect; however, information for transporters that regulate its peri-cellular concentration is limited. The present study, therefore, aimed to clarify transporters involved in local disposition of PGE3. PGE3 uptake was assessed in HEK293 cells transfected with OATP2A1/SLCO2A1, OATP1B1/SLCO1B1, OATP2B1/SLCO2B1, OAT1/SLC22A6, OCT1/SLC22A1 or OCT2/SLC22A2 genes, compared with HEK293 cells transfected with plasmid vector alone (Mock). PGE3 uptake by OATP2A1-expressing HEK293 cells (HEK/2A1) was the highest and followed by HEK/1B1, while no significantly higher uptake of PGE3 than Mock cells was detected by other transporters. Saturation kinetics in PGE3 uptake by HEK/2A1 estimated the Km as 7.202 ± 0.595 μM, which was 22 times higher than that of PGE2 (Km=0.331 ± 0.131 μM). Furthermore, tissue disposition of PGE3 was examined in wild-type (WT) and Slco2a1-deficient (Slco2a1(-/-)) mice after oral administration of EPA ethyl ester (EPA-E) when they underwent intraperitoneal injection of endotoxin (e.g., lipopolysaccharide). PGE3 concentration was significantly higher in the lung, and tended to increase in the colon, stomach, and kidney of Slco2a1(-/-), compared to WT mice. Ratio of PGE2 metabolite 15-keto PGE2 over PGE2 concentration was significantly lower in the lung and colon of Slco2a1(-/-) than that of WT mice, suggesting that PGE3 metabolism is downregulated in Slco2a1(-/-) mice. In conclusion, PGE3 was found to be a substrate of OATP2A1, and local disposition of PGE3 could be regulated by OATP2A1 at least in the lung. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Oral nutritional supplements containing n-3 polyunsaturated fatty acids affect quality of life and functional status in lung cancer patients during multimodality treatment: an RCT

    PubMed Central

    van der Meij, B S; Langius, J A E; Spreeuwenberg, M D; Slootmaker, S M; Paul, M A; Smit, E F; van Leeuwen, P A M

    2012-01-01

    Background/Objectives: Our objective was to investigate effects of an oral nutritional supplement containing n-3 polyunsaturated fatty acids (FAs) on quality of life, performance status, handgrip strength and physical activity in patients with non-small cell lung cancer (NSCLC) undergoing multimodality treatment. Subjects/Methods: In a double-blind experiment, 40 patients with stage III NSCLC were randomised to receive 2 cans/day of a protein- and energy-dense oral nutritional supplement containing n-3 polyunsaturated FAs (2.02 g eicosapentaenoic acid+0.92 g docosahexaenoic acid/day) or an isocaloric control supplement, during multimodality treatment. Quality of life, Karnofsky Performance Status, handgrip strength and physical activity (by wearing an accelerometer) were assessed. Effects of intervention were analysed by generalised estimating equations. P-values <0.05 were regarded as statistically significant. Results: The intervention group reported significantly higher on the quality of life parameters, physical and cognitive function (B=11.6 and B=20.7, P<0.01), global health status (B=12.2, P=0.04) and social function (B=22.1, P=0.04) than the control group after 5 weeks. The intervention group showed a higher Karnofsky Performance Status (B=5.3, P=0.04) than the control group after 3 weeks. Handgrip strength did not significantly differ between groups over time. The intervention group tended to have a higher physical activity than the control group after 3 and 5 weeks (B=6.6, P=0.04 and B=2.5, P=0.05). Conclusion: n-3 Polyunsaturated FAs may beneficially affect quality of life, performance status and physical activity in patients with NSCLC undergoing multimodality treatment. PMID:22234041

  1. The ratio of serum eicosapentaenoic acid to arachidonic acid and risk of cancer death in a Japanese community: The Hisayama Study.

    PubMed

    Nagata, Masaharu; Hata, Jun; Hirakawa, Yoichiro; Mukai, Naoko; Yoshida, Daigo; Ohara, Tomoyuki; Kishimoto, Hiro; Kawano, Hiroyuki; Kitazono, Takanari; Kiyohara, Yutaka; Ninomiya, Toshiharu

    2017-12-01

    Whether the intake of eicosapentaenoic acid (EPA) or arachidonic acid (AA) affects the risk of cancer remains unclear, and the association between the serum EPA:AA ratio and cancer risk has not been fully evaluated in general populations. A total of 3098 community-dwelling subjects aged ≥40 years were followed up for 9.6 years (2002-2012). The levels of the serum EPA:AA ratio were categorized into quartiles (<0.29, 0.29-0.41, 0.42-0.60, and >0.60). The risk estimates were computed using a Cox proportional hazards model. The same analyses were conducted for the serum docosahexaenoic acid to arachidonic acid (DHA:AA) ratio and individual fatty acid concentrations. During the follow-up period, 121 subjects died of cancer. Age- and sex-adjusted cancer mortality increased with lower serum EPA:AA ratio levels (P trend<0.05). In the multivariable-adjusted analysis, the subjects in the first quartile of the serum EPA:AA ratio had a 1.93-fold (95% confidence interval, 1.15-3.22) greater risk of cancer death than those in the fourth quartile. Lower serum EPA concentrations were marginally associated with higher cancer mortality (P trend<0.11), but the serum DHA or AA concentrations and the serum DHA:AA ratio were not (all P trend>0.37). With regard to site-specific cancers, lower serum EPA:AA ratio was associated with a higher risk of death from liver cancer. However, no such associations were detected for deaths from other cancers. These findings suggest that decreased level of the serum EPA:AA ratio is a significant risk factor for cancer death in the general Japanese population. Copyright © 2017. Production and hosting by Elsevier B.V.

  2. Women who take n-3 long-chain polyunsaturated fatty acid supplements during pregnancy and lactation meet the recommended intake.

    PubMed

    Jia, Xiaoming; Pakseresht, Mohammadreza; Wattar, Nour; Wildgrube, Jamie; Sontag, Stephanie; Andrews, Murphy; Subhan, Fatheema Begum; McCargar, Linda; Field, Catherine J

    2015-05-01

    The aim of the current study was to estimate total intake and dietary sources of eicosapentaenoic acid (EPA), docosapentanoic (DPA), and docosahexaenoic acid (DHA) and compare DHA intakes with the recommended intakes in a cohort of pregnant and lactating women. Twenty-four-hour dietary recalls and supplement intake questionnaires were collected from 600 women in the Alberta Pregnancy Outcomes and Nutrition (APrON) cohort at each trimester of pregnancy and 3 months postpartum. Dietary intake was estimated in 2 ways: by using a commercial software program and by using a database created for APrON. Only 27% of women during pregnancy and 25% at 3 months postpartum met the current European Union (EU) consensus recommendation for DHA. Seafood, fish, and seaweed products contributed to 79% of overall n-3 long-chain polyunsaturated fatty acids intake from foods, with the majority from salmon. The estimated intake of DHA and EPA was similar between databases, but the estimated DPA intake was 20%-30% higher using the comprehensive database built for this study. Women who took a supplement containing DHA were 10.6 and 11.1 times more likely to meet the current EU consensus recommendation for pregnancy (95% confidence interval (CI): 6.952-16.07; P<0.001) and postpartum (95% CI: 6.803-18.14; P<0.001), respectively. Our results suggest that the majority of women in the cohort were not meeting the EU recommendation for DHA during pregnancy and lactation, but taking a supplement significantly improved the likelihood that they would meet recommendations.

  3. Omega-3 fatty acids are inversely related to callous and unemotional traits in adolescent boys with attention deficit hyperactivity disorder.

    PubMed

    Gow, Rachel V; Vallee-Tourangeau, Frederic; Crawford, Michael Angus; Taylor, Eric; Ghebremeskel, Kebreab; Bueno, Allain A; Hibbeln, Joseph R; Sumich, Alexander; Rubia, Katya

    2013-06-01

    A number of research studies have reported abnormal plasma fatty acid profiles in children with ADHD along with some benefit of n-3 to symptoms of ADHD. However, it is currently unclear whether (lower) long chain-polyunsaturated fatty acids (LC-PUFAs) are related to ADHD pathology or to associated behaviours. The aim of this study was to test whether (1) ADHD children have abnormal plasma LC-PUFA levels and (2) ADHD symptoms and associated behaviours are correlated with LC-PUFA levels. Seventy-two, male children with (n=29) and without a clinical diagnosis of ADHD (n=43) were compared in their plasma levels of LC-PUFA. Plasma DHA was higher in the control group prior to statistical correction. Callous-unemotional (CU) traits were found to be significantly negatively related to both eicosapentaenoic acid (EPA), and total omega-3 in the ADHD group. The findings unveil for the first time that CU and anti-social traits in ADHD are associated with lower omega-3 levels. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Eicosapentaenoic acid inhibits oxidation of high density lipoprotein particles in a manner distinct from docosahexaenoic acid.

    PubMed

    Sherratt, Samuel C R; Mason, R Preston

    2018-02-05

    The omega-3 fatty acid eicosapentaenoic acid (EPA) reduces oxidation of ApoB-containing particles in vitro and in patients with hypertriglyceridemia. EPA may produce these effects through a potent antioxidant mechanism, which may facilitate LDL clearance and slow plaque progression. We hypothesize that EPA antioxidant effects may extend to ApoA-containing particles like HDL, potentially preserving certain atheroprotective functions. HDL was isolated from human plasma and incubated at 37 °C in the absence (vehicle) or presence of EPA and/or DHA; 5.0 or 10.0 μM each. Samples were then subjected to copper-induced oxidation (10 μM). HDL oxidation was inhibited similarly by EPA and DHA up to 1 h. EPA (10 μM) maintained significant HDL oxidation inhibition of 89% (0.622 ± 0.066 μM MDA; p < .001) at 4 h, with continued inhibition of 64% at 14 h, vs. vehicle (5.65 ± 0.06 to 2.01 ± 0.10 μM MDA; p < .001). Conversely, DHA (10 μM) antioxidant benefit was lost by 4 h. At a lower concentration (5 μM), EPA antioxidant activity remained at 81% (5.53 ± 0.15 to 1.03 ± 0.10 μM MDA; p < .001) at 6 h, while DHA lost all antioxidant activity by 4 h. The antioxidant activity of EPA was preserved when combined with an equimolar concentration of DHA (5 μM each). EPA pretreatment prevented HDL oxidation in a dose-dependent manner that was preserved over time. These results suggest unique lipophilic and electron stabilization properties for EPA as compared to DHA with respect to inhibition of HDL oxidation. These antioxidant effects of EPA may enhance certain atheroprotective functions for HDL. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Dietary polychlorinated biphenyls, long-chain n-3 polyunsaturated fatty acids and incidence of malignant melanoma.

    PubMed

    Donat-Vargas, Carolina; Berglund, Marika; Glynn, Anders; Wolk, Alicja; Åkesson, Agneta

    2017-02-01

    For malignant melanoma, other risk factors aside from sun exposure have been hardly explored. Polychlorinated biphenyls (PCBs)-mainly from fatty fish- may affect melanogenesis and promote melanoma progression, while long-chain n-3 polyunsaturated fatty acids seem to exert antineoplastic actions in melanoma cells. We aimed to assess the association of validated estimates of dietary PCB exposure as well as the intake of eicosapentaenoic acid and docosahexaenoic acid (EPA-DHA), accounting for sun habits and skin type, with the risk of malignant melanoma in middle-aged and elderly women. We included 20,785 women at baseline in 2009 from the prospective population-based Swedish Mammography Cohort. Validated estimates of dietary PCB exposure and EPA-DHA intake were obtained via a food frequency questionnaire. Incident melanoma cases were ascertained through register-linkage. During 4.5 years of follow-up, we ascertained 67 incident cases of melanoma. After multivariable adjustments, exposure to dietary PCBs was associated with four-fold increased risk of malignant melanoma (hazard ratio [HR], 4.0 [95% confidence interval {CI}, 1.2-13; P for trend = 0.02]), while EPA-DHA intake was associated with 80% lower risk (HR, 0.2 [95% CI, 0.1-0.8; P for trend = 0.03]), comparing the highest exposure tertiles with the lowest. While we found a direct association between dietary PCB exposure and risk of melanoma, EPA-DHA intake showed to have a substantial protective association. Question of benefits and risk from fish consumption is very relevant and further prospective studies in the general population verifying these findings are warranted. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Metabolomic and genomic profiling of n-3 polyunsaturated fatty acid effects on muscle metabolism in mice fed a high fat diet

    USDA-ARS?s Scientific Manuscript database

    We previously reported that feeding mice high-fat (HF) diets enriched with eicosapentaenoic acid (EPA) decreased inflammation, adiposity and insulin resistance. In the current study, we used skeletal muscle from mice fed HF or HF-EPA for 11 weeks to further dissect mechanisms mediating EPA effects o...

  7. Dietary n-6 and n-3 fatty acids in immunity and autoimmune disease.

    PubMed

    Harbige, L S

    1998-11-01

    Clearly there is much evidence to show that under well-controlled laboratory and dietary conditions fatty acid intake can have profound effects on animal models of autoimmune disease. Studies in human autoimmune disease have been less dramatic; however, human trials have been subject to uncontrolled dietary and genetic backgrounds, infection and other environmental influences, and basic trial designs have been inadequate. The impact of dietary fatty acids on animal autoimmune disease models appears to depend on the animal model and the type and amount of fatty acids fed. Diets low in fat, essential fatty acid-deficient, or high in n-3 fatty acids from fish oils increase the survival and reduce disease severity in spontaneous autoantibody-mediated disease, whilst linoleic acid-rich diets appear to increase disease severity. In experimentally-induced T-cell-mediated autoimmune disease, essential fatty acid-deficient diets or diets supplemented with n-3 fatty acids appear to augment disease, whereas n-6 fatty acids prevent or reduce the severity. In contrast, in both T-cell and antibody-mediated auto-immune disease the desaturated and elongated metabolites of linoleic acid are protective. Suppression of autoantibody and T lymphocyte proliferation, apoptosis of autoreactive lymphocytes, and reduced pro-inflammatory cytokine production by high-dose fish oils are all likely mechanisms by which n-3 fatty acids ameliorate autoimmune disease. However, these could be undesirable long-term effects of high-dose fish oil which may compromise host immunity. The protective mechanism(s) of n-6 fatty acids in T-cell- mediated autoimmune disease are less clear, but may include dihomo-gamma-linolenic acid- and arachidonic acid-sensitive immunoregulatory circuits such as Th1 responses, TGF beta 1-mediated effects and Th3-like responses. It is often claimed that n-6 fatty acids promote autoimmune and inflammatory disease based on results obtained with linoleic acid only. It should be

  8. TRIGLYCERIDES, ATHEROSCLEROSIS, AND CARDIOVASCULAR OUTCOME STUDIES: FOCUS ON OMEGA-3 FATTY ACIDS.

    PubMed

    Handelsman, Yehuda; Shapiro, Michael D

    2017-01-01

    To provide an overview of the roles of triglycerides and triglyceride-lowering agents in atherosclerosis in the context of cardiovascular outcomes studies. We reviewed the published literature as well as ClinicalTrials.gov entries for ongoing studies. Despite improved atherosclerotic cardiovascular disease (ASCVD) outcomes with statin therapy, residual risk remains. Epidemiologic data and recent genetic insights provide compelling evidence that triglycerides are in the causal pathway for the development of atherosclerosis, thereby renewing interest in targeting triglycerides to improve ASCVD outcomes. Fibrates, niacin, and omega-3 fatty acids (OM3FAs) are three classes of triglyceride-lowering drugs. Outcome studies with triglyceride-lowering agents have been inconsistent. With regard to OM3FAs, the JELIS study showed that eicosapentaenoic acid (EPA) significantly reduced major coronary events in statin-treated hypercholesterolemic patients. Regarding other agents, extended-release niacin and fenofibrate are no longer recommended as statin add-on therapy (by some guidelines, though not all) because of the lack of convincing evidence from outcome studies. Notably, subgroup analyses from the outcome studies have generated the hypothesis that triglyceride lowering may provide benefit in statin-treated patients with persistent hypertriglyceridemia. Two ongoing OM3FA outcome studies (REDUCE-IT and STRENGTH) are testing this hypothesis in high-risk, statin-treated patients with triglyceride levels of 200 to 500 mg/dL. There is consistent evidence that triglycerides are in the causal pathway of atherosclerosis but inconsistent evidence from cardiovascular outcomes studies as to whether triglyceride-lowering agents reduce cardiovascular risk. Ongoing outcomes studies will determine the role of triglyceride lowering in statin-treated patients with high-dose prescription OM3FAs in terms of improved ASCVD outcomes. AACE = American Association of Clinical Endocrinologists

  9. Eicosapentaenoic acid in cancer improves body composition and modulates metabolism.

    PubMed

    Pappalardo, Giulia; Almeida, Ana; Ravasco, Paula

    2015-04-01

    The objective of this review article is to present the most recent intervention studies with EPA on nutritional outcomes in cancer patients, e.g. nutritional status, weight & lean body mass. For this purpose a PubMed(®) and MedLine(®) search of the published literature up to and including January 2014 that contained the keywords: cancer, sarcopenia, EPA, ω-3 fatty acids, weight, intervention trial, muscle mass was conducted. The collected data was summarized and written in text format and in tables that contained: study design, patient' population, sample size, statistical significance and results of the intervention. The paper will cover malignancy, body composition, intervention with EPA, physiological mechanisms of action of EPA, effect of EPA on weight and body composition, future research. In cancer patients deterioration of muscle mass can be present regardless of body weight or Body Mass Index (BMI). Thus, sarcopenia in cancer patients with excessive fat mass (FM), entitled sarcopenic obesity, has gained greater relevance in clinical practice; it can negatively influence patients' functional status, tolerance to treatments & disease prognosis. The search for an effective nutritional intervention that improves body composition (preservation of muscle mass and muscle quality) is of utmost importance for clinicians and patients. The improvement of muscle quality is an even more recent area of interest because it has probable implications in patients' prognosis. Eicosapentaenoic acid (EPA) has been identified as a promising nutrient with the wide clinical benefits. Several mechanisms have been proposed to explain EPA potential benefits on body composition: inhibition of catabolic stimuli by modulating pro-inflammatory cytokines production and enhancing insulin sensitivity that induces protein synthesis; also, EPA may attenuate deterioration of nutritional status resulting from antineoplastic therapies by improving calorie and protein intake as well. Indeed

  10. Dietary (n-6 : n-3) Fatty Acids Alter Plasma and Tissue Fatty Acid Composition in Pregnant Sprague Dawley Rats

    PubMed Central

    Kassem, Amira Abdulbari; Abu Bakar, Md Zuki; Yong Meng, Goh; Mustapha, Noordin Mohamed

    2012-01-01

    The objective of this paper is to study the effects of varying dietary levels of n-6 : n-3 fatty acid ratio on plasma and tissue fatty acid composition in rat. The treatment groups included control rats fed chow diet only, rats fed 50% soybean oil (SBO): 50% cod liver oil (CLO) (1 : 1), 84% SBO: 16% CLO (6 : 1), 96% SBO: 4% CLO (30 : 1). Blood samples were taken at day 15 of pregnancy, and the plasma and tissue were analyzed for fatty acid profile. The n-3 PUFA in plasma of Diet 1 : 1 group was significantly higher than the other diet groups, while the total n-6 PUFA in plasma was significantly higher in Diet 30 : 1 group as compared to the control and Diet 1 : 1 groups. The Diet 1 : 1 group showed significantly greater percentages of total n-3 PUFA and docosahexaenoic acid in adipose and liver tissue, and this clearly reflected the contribution of n-3 fatty acids from CLO. The total n-6 PUFA, linoleic acid, and arachidonic acid were significantly difference in Diet 30 : 1 as compared to Diet 1 : 1 and control group. These results demonstrated that the dietary ratio of n-6 : n-3 fatty acid ratio significantly affected plasma and tissue fatty acids profile in pregnant rat. PMID:22489205

  11. Eicosapentaenoic and docosahexaenoic acids enriched polyunsaturated fatty acids from the coastal marine fish of Bay of Bengal and their therapeutic value.

    PubMed

    Bera, Rabindranath; Dhara, Tushar K; Bhadra, Ranjan; Majumder, Gopal C; Sen, Parimal C

    2010-12-01

    Eicosapentaenoic acid (EPA)/docosahexaenoic acid (DHA) enriched polyunsaturated fatty acids (PUFA) significantly present in marine fish oil emerge as preventive agents for combating many health problems specially in chronic or metabolic disorders. The fish in the coastal area of Bay of Bengal has remained unexplored with respect to EPA/DHA enriched PUFA content in its oils, although it may be a potential source in harnessing the health benefit. In this study, seven varieties of the coastal fish were analysed for the content of EPA/DHA. The one locally known as lotte, (Harpadon nehereus) though has low content of total lipids, was found to have high EPA/DHA in its oil. The phospholipids rich fraction was extracted from the total fish oil. The EPA/DHA enriched PUFA was isolated to investigate the potential use for health benefits. EPA/DHA is found to act as protective agent against mercury poisoning studied in cell culture as well as in animal mode. It is found to be highly preventive in diabetes. The lotte is available in the coastal area of Bay of Bengal adjoining West Bengal, India in large scale and it is the first report showing EPA/DHA enriched PUFA in these fish oil that can be availed to harness in important health benefits.

  12. The effect of omega-3 fatty acids on central nervous system remyelination in fat-1 mice.

    PubMed

    Siegert, Elise; Paul, Friedemann; Rothe, Michael; Weylandt, Karsten H

    2017-01-24

    There is a large body of experimental evidence suggesting that omega-3 (n-3) polyunsaturated fatty acids (PUFAs) are capable of modulating immune function. Some studies have shown that these PUFAs might have a beneficial effect in patients suffering form multiple sclerosis (MS), a chronic inflammatory demyelinating disease of the central nervous system (CNS). This could be due to increased n-3 PUFA-derived anti-inflammatory lipid mediators. In the present study we tested the effect of an endogenously increased n-3 PUFA status on cuprizone-induced CNS demyelination and remyelination in fat-1 mice versus their wild-type (wt) littermates. Fat-1 mice express an n-3 desaturase, which allows them to convert n-6 PUFAs into n-3 PUFAs. CNS lipid profiles in fat-1 mice showed a significant increase of eicosapentaenoic acid (EPA) levels but similar docosahexaenoic acid levels compared to wt littermates. This was also reflected in significantly higher levels of monohydroxy EPA metabolites such as 18-hydroxyeicosapentaenoic acid (18-HEPE) in fat-1 brain tissue. Feeding fat-1 mice and wt littermates 0.2% cuprizone for 5 weeks caused a similar degree of CNS demyelination in both groups; remyelination was increased in the fat-1 group after a recovery period of 2 weeks. However, at p = 0.07 this difference missed statistical significance. These results indicate that n-3 PUFAs might have a role in promotion of remyelination after toxic injury to CNS oligodendrocytes. This might occur either via modulation of the immune system or via a direct effect on oligodendrocytes or neurons through EPA-derived lipid metabolites such as 18-HEPE.

  13. Quantitative Determination of Fatty Acids in Marine Fish and Shellfish from Warm Water of Straits of Malacca for Nutraceutical Purposes

    PubMed Central

    Abd Aziz, Nurnadia; Azlan, Azrina; Ismail, Amin; Mohd Alinafiah, Suryati; Razman, Muhammad Rizal

    2013-01-01

    This study was conducted to quantitatively determine the fatty acid contents of 20 species of marine fish and four species of shellfish from Straits of Malacca. Most samples contained fairly high amounts of polyunsaturated fatty acids (PUFAs), especially alpha-linolenic acid (ALA, C18:3 n3), eicosapentaenoic acid (EPA, C20:5 n3), and docosahexaenoic acid (DHA, C22:6 n3). Longtail shad, yellowstripe scad, and moonfish contained significantly higher (P < 0.05) amounts of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and alpha-linolenic acid (ALA), respectively. Meanwhile, fringescale sardinella, malabar red snapper, black pomfret, Japanese threadfin bream, giant seaperch, and sixbar grouper showed considerably high content (537.2–944.1 mg/100g wet sample) of desirable omega-3 fatty acids. The polyunsaturated-fatty-acids/saturated-fatty-acids (P/S) ratios for most samples were higher than that of Menhaden oil (P/S = 0.58), a recommended PUFA supplement which may help to lower blood pressure. Yellowstripe scad (highest DHA, ω − 3/ω − 6 = 6.4, P/S = 1.7), moonfish (highest ALA, ω − 3/ω − 6 = 1.9, P/S = 1.0), and longtail shad (highest EPA, ω − 3/ω − 6 = 0.8, P/S = 0.4) were the samples with an outstandingly desirable overall composition of fatty acids. Overall, the marine fish and shellfish from the area contained good composition of fatty acids which offer health benefits and may be used for nutraceutical purposes in the future. PMID:23509703

  14. Past and Present Insights on Alpha-linolenic Acid and the Omega-3 Fatty Acid Family.

    PubMed

    Stark, Aliza H; Reifen, Ram; Crawford, Michael A

    2016-10-25

    Alpha-linolenic acid (ALA) is the parent essential fatty acid of the omega-3 family. This family includes docosahexaenoic acid (DHA), which has been conserved in neural signaling systems in the cephalopods, fish, amphibian, reptiles, birds, mammals, primates, and humans. This extreme conservation, in spite of wide genomic changes of over 500 million years, testifies to the uniqueness of this molecule in the brain and affirms the importance of omega-3 fatty acids. While DHA and its close precursor, eicosapentaenoic acids (EPA), have received much attention by the research community, ALA, as the precursor of both, has been considered of little interest. There are many papers on ALA requirements in experimental animals. Unlike humans, rats and mice can readily convert ALA to EPA and DHA, so it is unclear whether the effect is solely due to the conversion products or to ALA itself. The intrinsic role of ALA has yet to be defined. This paper will discuss both recent and historical findings related to this distinctive group of fatty acids, and will highlight the physiological significance of the omega-3 family.

  15. 'Designer oils' low in n-6:n-3 fatty acid ratio beneficially modifies cardiovascular risks in mice.

    PubMed

    Riediger, Natalie D; Azordegan, Nazila; Harris-Janz, Sydney; Ma, David W L; Suh, Miyoung; Moghadasian, Mohammed H

    2009-08-01

    Cardiovascular benefits of dietary n-3 fatty acids have been shown. However, benefits of n-3 fatty acids as part of a high fat, low n-6:n-3 fatty acid ratio diet has not been fully characterized. Aim of this study is to investigate cardiovascular and metabolic benefits of 'designer oils' containing a low ratio of n-6:n-3 fatty acids in C57BL/6 mice. Three groups of C57BL/6 mice were fed an atherogenic diet supplemented with either a fish oil- or flaxseed oil-based 'designer oil' with an approximate n-6:n-3 fatty acid ratio of 2:1 (treated groups, n = 6 each) or with a safflower oil-based formulation with a high ratio (25:1) of n-6:n-3 fatty acids (control group, n = 6) for 6 weeks. Food intake, body weight, and blood lipid levels were monitored regularly. Fatty acid profile of the heart tissues was assessed. Histological assessment of liver samples was conducted. At the end of the study body weight and food intake was significantly higher in the flax group compared to control. The levels of 20:5n-3 and 22:6n-3 was significantly increased in the heart phospholipids in both flax and fish groups compared to control; tissue 20:4n-6 was significantly reduced in the fish group compared to control. Significant liver pathology was observed in the control group only. Lowering dietary ratio of n-6:n-3 fatty acids may significantly reduce cardiovascular and metabolic risks in mice regardless of the source of n-3 fatty acids.

  16. Basal omega-3 fatty acid status affects fatty acid and oxylipin responses to high-dose n3-HUFA in healthy volunteers

    USDA-ARS?s Scientific Manuscript database

    Objective: Baseline concentrations of highly unsaturated omega-3 fatty acid (n3-HUFA) may influence the ability of dietary n3-HUFA to affect changes in concentrations of esterified fatty acids and their metabolites. This study evaluates the influence of basal n3-HUFA and n3-HUFA metabolite status ...

  17. Can long chain n-3 fatty acids from feed be converted into very long chain n-3 fatty acids in fillets from farmed rainbow trout (Oncorhynchus mykiss)?

    NASA Astrophysics Data System (ADS)

    Lušnic Polak, M.; Demšar, L.; Luzar, U.; Polak, T.

    2017-09-01

    The link between the basic chemical and fatty acid composition of trout feed on one hand and trout (Oncorhynchus mykiss) meat (fillet) was investigated.. The content of 52 fatty acids from feed and trout meat lipids was determined by in-situ transesterification and capillary column gas-liquid chromatography. On average, 100 g of trout feed contained 7.4 g of moisture, 47.7 g of proteins, 6.09 g of ash, 21.4 g of fat, and as for fatty acid composition, 47.8 wt. % were monounsaturated, 34.0 wt. % were polyunsaturated and 18.1 wt. % were saturated fatty acids, with the PS ratio 1.88, n-6/n-3 ratio 1.74, 0.80 wt. % of trans and 3.28 wt. % of very long chain n-3 fatty acids. On average, 100 g of trout meat contained 76.1 g of moisture, 21.4 g of proteins, 1.34 g of ash, 2.52 g of fat, and in the fatty acid composition 42.1 wt. % were monounsaturated, 38.2 wt. % were polyunsaturated and 18.9 wt. % were saturated fatty acids, with the PS ratio 2.02, n-6/n-3 ratio 0.98, 0.95 wt. % of trans and 13.25 wt. % of very long chain n-3 fatty acids.

  18. Omega-3 fatty acids modulate Weibel-Palade body degranulation and actin cytoskeleton rearrangement in PMA-stimulated human umbilical vein endothelial cells.

    PubMed

    Bürgin-Maunder, Corinna S; Brooks, Peter R; Russell, Fraser D

    2013-11-08

    Long chain omega-3 polyunsaturated fatty acids (LC n-3 PUFAs) produce cardiovascular benefits by improving endothelial function. Endothelial cells store von Willebrand factor (vWF) in cytoplasmic Weibel-Palade bodies (WPBs). We examined whether LC n-3 PUFAs regulate WPB degranulation using cultured human umbilical vein endothelial cells (HUVECs). HUVECs were incubated with or without 75 or 120 µM docosahexaenoic acid or eicosapentaenoic acid for 5 days at 37 °C. WPB degranulation was stimulated using phorbol 12-myristate 13-acetate (PMA), and this was assessed by immunocytochemical staining for vWF. Actin reorganization was determined using phalloidin-TRITC staining. We found that PMA stimulated WPB degranulation, and that this was significantly reduced by prior incubation of cells with LC n-3 PUFAs. In these cells, WPBs had rounded rather than rod-shaped morphology and localized to the perinuclear region, suggesting interference with cytoskeletal remodeling that is necessary for complete WPB degranulation. In line with this, actin rearrangement was altered in cells containing perinuclear WPBs, where cells exhibited a thickened actin rim in the absence of prominent cytoplasmic stress fibers. These findings indicate that LC n-3 PUFAs provide some protection against WBP degranulation, and may contribute to an improved understanding of the anti-thrombotic effects previously attributed to LC n-3 PUFAs.

  19. Effect of omega-3 fatty acids on canine atopic dermatitis.

    PubMed

    Mueller, R S; Fieseler, K V; Fettman, M J; Zabel, S; Rosychuk, R A W; Ogilvie, G K; Greenwalt, T L

    2004-06-01

    Twenty-nine dogs were included in a double-blinded, placebo-controlled, randomised trial and were orally supplemented for 10 weeks with either flax oil (200 mg/kg/day), eicosapentaenoic acid (50 mg/kg/day) and docosahexaenoic acid (35 mg/kg/day) in a commercial preparation, or mineral oil as a placebo. For each dog, clinical scores were determined based on a scoring system developed prior to the trial. Total omega-6 and omega-3 intake and the ratio of omega-6:omega-3 (omega-6:3) were calculated before and after the trial. The dogs' clinical scores improved in those supplemented with flax oil and the commercial preparation, but not in the placebo group. No correlation was identified between total fatty acid intake or omega-6:3 ratio and clinical scores. Based on the results of this study, the total intake of fatty acids or the omega-6:3 ratio do not seem to be the main factors in determining the clinical response.

  20. Age dependence of plasma phospholipid fatty acid levels: potential role of linoleic acid in the age-associated increase in docosahexaenoic acid and eicosapentaenoic acid concentrations.

    PubMed

    de Groot, Renate H M; van Boxtel, Martin P J; Schiepers, Olga J G; Hornstra, Gerard; Jolles, Jelle

    2009-10-01

    Limited information is available with respect to the association between age and the plasma phospholipid fatty acid profile. Therefore we investigated the association between plasma phospholipid fatty acid status and age after correction for sex, smoking, alcohol use, BMI and fish intake. Plasma phospholipid fatty acid composition was measured and information on fish intake and other potential covariates was collected in 234 participants of the Maastricht Aging Study. The participants were healthy individuals of both sexes with an age range between 36 and 88 years. Hierarchical linear regression analyses were applied to study the relationship between age and fatty acid concentrations. After correction for fish consumption and other relevant covariates, a significant positive relationship was observed between age of the subjects and their plasma phospholipid concentrations of DHA (22 : 6n-3, P = 0.006) and EPA (20 : 5n-3; P = 0.001). Age contributed 2.3 and 3.9 % to the amount of explained variance, respectively. The higher n-3 long-chain PUFA status at advanced age was confirmed by lower concentrations of their putative 'shortage marker' Osbond acid (ObA, 22 : 5n-6; P = 0.022 for the relationship with age after correction for covariates and fish intake, R2 0.022). Concentrations of linoleic acid (LA; 18 : 2n-6) were negatively associated with age (P < 0.001; R2 0.061). In conclusion, DHA and EPA concentrations appeared to be higher in older age groups, partly because of a higher fish intake and partly because of another age-associated mechanism, possibly involving the well-known competition with LA.

  1. Erythrocyte stearidonic acid and other n-3 fatty acids and CHD in the Physicians’ Health Study

    USDA-ARS?s Scientific Manuscript database

    Intake of marine-based n-3 fatty acids (EPA, docosapentaenoic acid and DHA) is recommended to prevent CHD. Stearidonic acid (SDA), a plant-based n-3 fatty acid, is a precursor of EPA and may be more readily converted to EPA than a-linolenic acid (ALA). While transgenic soyabeans might supply SDA at ...

  2. Effects of dietary n-3 fatty acids on Toll-like receptor activation in primary leucocytes from Atlantic salmon (Salmo salar).

    PubMed

    Arnemo, Marianne; Kavaliauskis, Arturas; Andresen, Adriana Magalhaes Santos; Bou, Marta; Berge, Gerd Marit; Ruyter, Bente; Gjøen, Tor

    2017-08-01

    The shortage of the n-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on the international markets has led to increasing substitution of fish oil by plant oils in Atlantic salmon (Salmo salar) feed and thereby reducing the EPA and DHA content in salmon. However, the minimum required levels of these fatty acids in fish diets for securing fish health are unknown. Fish were fed with 0, 1 or 2% EPA or DHA alone or in combination of both over a period, growing from 50 to 400 g. Primary head kidney leucocytes were isolated and stimulated with Toll-like receptor (TLR) ligands to determine if EPA and DHA deficiency can affect expression of important immune genes and eicosanoid production. Several genes related to viral immune response did not vary between groups. However, there was a tendency that the high-level EPA and DHA groups expressed lower levels of IL-1β in non-stimulated leucocytes. These leucocytes were also more responsive to the TLR ligands, inducing higher expression levels of IL-1β and Mx1 after stimulation. The levels of prostaglandin E2 and leukotriene B4 in serum and media from stimulated leucocytes were lower in both low and high EPA and DHA groups. In conclusion, leucocytes from low EPA and DHA groups seemed to be less responsive towards immunostimulants, like TLR ligands, indicating that low levels or absence of dietary EPA and DHA may have immunosuppressive effects.

  3. N-3 fatty acids reduced trans fatty acids retention and increased docosahexaenoic acid levels in the brain.

    PubMed

    Lavandera, Jimena Verónica; Saín, Juliana; Fariña, Ana Clara; Bernal, Claudio Adrián; González, Marcela Aída

    2017-09-01

    The levels of docosahexaenoic acid (DHA, 22:6n-3) and arachidonic acid (AA, 20:4n-6) are critical for the normal structure and function of the brain. Trans fatty acids (TFA) and the source of the dietary fatty acids (FA) interfere with long-chain polyunsaturated fatty acids (LC-PUFA) biosynthesis. The aim of this study was to investigate the effect of TFA supplementation in diets containing different proportions of n-9, n-6, and n-3 FA on the brain FA profile, including the retention of TFA, LC-PUFA levels, and n-6/n-3 PUFA ratios. These parameters were also investigated in the liver, considering that LC-PUFA are mainly bioconverted from their dietary precursors in this tissue and transported by serum to the brain. Also, stearoyl-CoA desaturase-1 (SCD1) and sterol regulatory element-binding protein-1c (SREBP-1c) gene expressions were evaluated. Male CF1 mice were fed (16 weeks) diets containing different oils (olive, corn, and rapeseed) with distinct proportions of n-9, n-6, and n-3 FA (55.2/17.2/0.7, 32.0/51.3/0.9, and 61.1/18.4/8.6), respectively, substituted or not with 0.75% of TFA. FA composition of the brain, liver, and serum was assessed by gas chromatography. TFA were incorporated into, and therefore retained in the brain, liver, and serum. However, the magnitude of retention was dependent on the tissue and type of isomer. In the brain, total TFA retention was lower than 1% in all diets. Dietary n-3 PUFA decreased TFA retention and increased DHA accretion in the brain. The results underscore the importance of the type of dietary FA on the retention of TFA in the brain and also on the changes of the FA profile.

  4. Effects of omega-3 fatty acid supplementation on the pattern of oxylipins: a short review about the modulation of hydroxy-, dihydroxy-, and epoxy-fatty acids.

    PubMed

    Ostermann, Annika I; Schebb, Nils Helge

    2017-07-19

    A growing body of evidence suggests that the intake of the long chain omega-3 polyunsaturated fatty acids (n3-PUFA) eicosapentaenoic acid (C20:5 n3, EPA) and docosahexaenoic acid (C22:6 n3, DHA) is linked to beneficial health effects, particularly in the prevention of cardiovascular and inflammatory diseases. Although the molecular mode of action of n3-PUFA is still not fully understood, it is not controversial that a significant portion of the (patho)-physiological effects of PUFA are mediated by their oxidative metabolites, i.e. eicosanoids and other oxylipins. Quantitative targeted oxylipin methods allow the comprehensive monitoring of n3-PUFA supplementation induced changes in the pattern of oxylipins in order to understand their biology. In this short review, results from intervention studies are summarized analyzing >30 oxylipins from different PUFAs in response to n3-PUFA supplementation. The results are not only qualitatively compared with respect to the study design, n3-PUFA dose and trends in the lipid mediators, but also quantitatively based on the relative change in the oxylipin level induced by n3-PUFA. The evaluation of the data from the studies shows that the change in oxylipins generally corresponded to the observed changes in their precursor PUFA, i.e. the lower the individual n3-status at the baseline, the higher the increase in EPA and DHA derived oxylipins. The strongest relative increases were found for EPA derived oxylipins, while changes in arachidonic acid (C20:4 n6, ARA) derived eicosanoids were heterogeneous. After 3-12 weeks of supplementation, similar relative changes were observed in free and total (free + esterified) oxylipins in plasma and serum. Regarding EPA derived oxylipins, the results indicate a trend for a linear increase with dose. However, the interpretation of the quantitative oxylipin patterns between studies is hampered by strong inter-individual variances in oxylipin levels between and also within the studies. In the

  5. The effect of fish oil supplementation on brain DHA and EPA content and fatty acid profile in mice.

    PubMed

    Valentini, Kelly J; Pickens, C Austin; Wiesinger, Jason A; Fenton, Jenifer I

    2017-12-18

    Supplementation with omega-3 (n-3) fatty acids may improve cognitive performance and protect against cognitive decline. However, changes in brain phospholipid fatty acid composition after supplementation with n-3 fatty acids are poorly described. The purpose of this study was to feed increasing n-3 fatty acids and characterise the changes in brain phospholipid fatty acid composition and correlate the changes with red blood cells (RBCs) and plasma in mice. Increasing dietary docosahexaenoic (DHA) and eicosapentaenoic acid (EPA) did not alter brain DHA. Brain EPA increased and total n-6 polyunsaturated fatty acids decreased across treatment groups, and correlated with fatty acid changes in the RBC (r > 0.7). Brain cis-monounsaturated fatty acids oleic and nervonic acid (p < .01) and saturated fatty acids arachidic, behenic, and lignoceric acid (p < .05) also increased. These brain fatty acid changes upon increasing n-3 intake should be further investigated to determine their effects on cognition and neurodegenerative disease.

  6. Omega-3 fatty acid levels and general performance of commercial broilers fed practical levels of redfish meal.

    PubMed

    Hulan, H W; Ackman, R G; Ratnayake, W M; Proudfoot, F G

    1989-01-01

    A total of 1,200 day-old Arbor Acre broiler chickens was randomly assigned to 12 pens (50 males and 50 females/pen) and divided into three blocks of four pens each. Each of four different diets was fed ad libitum to one pen of birds within each block to determine the effect of feeding practical levels of redfish meal (RFM) on performance and omega-3 fatty acid content of edible meat and skin lipids of broiler chickens. The four diets included (control) 0%, 4.0%, 8.0%, and 12.0% RFM. Feeding diets containing RFM had no effect on overall mortality or feed efficiency but resulted in decreased incidence of sudden death syndrome and lower body weight (P less than .01) and feed consumption (P less than .05). Additions of RFM to the diets resulted in a substantial dietary enrichment of omega-3 fatty acids (especially eicosapentaenoic acid, EPA or 20:5n-3, and docosahexaenoic acid, DHA or 22:6n-3). Analyses (wt/wt%) revealed that breast meat (less skin) was lower (P less than .001) in lipid and triglyceride but higher in free cholesterol (P less than .001) and phospholipid (P less than .001) than thigh meat (less skin). Dietary treatment had no effect on carcass lipid content or composition. Breast meat lipid contained more (P less than .001) omega-3 fatty acids (especially EPA and DHA), more docosapentaenoic acid, (DPA or 22:5n-3) and more total omega-3 polyunsaturated acids (n-3 PUFA) than thigh meat lipids. Feeding additional RFM resulted in an increased (P less than .001) accumulation of EPA, DPA, DHA, and total n-3 PUFA primarily at the expense of two omega-6 fatty acids, linoleic (18:2n-6) and arachidonic acid (20:4n-6). It can be calculated from the data presented that the consumption of 100 g of chicken that has been fed 12.0% RFM would contribute approximately 197 mg of omega-3 fatty acids (EPA + DPA + DHA) in contrast with the 138 mg of omega-3 fatty acids which would be realized from the consumption of 100 g of white fish such as cod.

  7. Effect of the omega-3 fatty acid plus vitamin E supplementation on subjective global assessment score, glucose metabolism, and lipid concentrations in chronic hemodialysis patients.

    PubMed

    Asemi, Zatollah; Soleimani, Alireza; Bahmani, Fereshteh; Shakeri, Hossein; Mazroii, Navid; Abedi, Fatemeh; Fallah, Melika; Mohammadi, Ali Akbar; Esmaillzadeh, Ahmad

    2016-02-01

    This study was conducted to determine the effects of omega-3 fatty acid plus vitamin E supplementation on subjective global assessment (SGA) score and metabolic profiles in chronic hemodialysis (HD) patients. This randomized double-blind placebo-controlled clinical trial was conducted among 120 chronic HD patients. Participants were randomly divided into four groups to receive: (i) 1250 mg/day omega-3 fatty acid containing 600 mg eicosapentaenoic acid and 300 mg docosahexaenoic acid + vitamin E placebo (n = 30), (ii) 400 IU/day vitamin E + omega-3 fatty acids placebo (n = 30), (iii) 1250 mg omega-3 fatty acids/day + 400 IU/day vitamin E (n = 30), and (iv) omega-3 fatty acids placebo + vitamin E placebo (n = 30) for 12 wk. Fasting blood samples were taken at baseline and after 12-wk intervention to measure metabolic profiles. Patients who received combined omega-3 fatty acids and vitamin E supplements compared with vitamin E, omega-3 fatty acids, and placebo had significantly decreased SGA score (p < 0.001), fasting plasma glucose (p = 0.01), serum insulin levels (p = 0.001), homeostasis model of assessment insulin resistance (p = 0.002), and improved quantitative insulin sensitivity check index (p = 0.006). Omega-3 fatty acids plus vitamin E supplementation for 12 wk among HD patients had beneficial effects on SGA score and metabolic profiles. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Plasma n-3 and n-6 fatty acids and inflammatory markers in Chinese vegetarians.

    PubMed

    Yu, Xiaomei; Huang, Tao; Weng, Xiumei; Shou, Tianxing; Wang, Qiang; Zhou, Xiaoqiong; Hu, Qinxin; Li, Duo

    2014-09-29

    Polyunsaturated fatty acid (PUFA) intake favorably affects chronic inflammatory-related diseases such as cardiovascular disease; however, the relationship between the PUFA and inflammatory factors in the healthy vegetarians were not clear. We aimed to investigate the plasma fatty acids status, and its association with plasma inflammatory factors in Chinese vegetarians and omnivores. A total of 89 male vegetarians and 106 male omnivores were participated the study. Plasma concentrations of inflammatory factors were detected by ELISA, and as standard methods fatty acids were extracted and determined by chromatography. Compared with omnivores, vegetarians have significant higher interleukin-6 (IL-6), plasma n-6 PUFA, n-6/n-3, and 18:3n-3; while they have significant lower leukotriene B4 (LTB4), cyclo-oxygenase-2 (COX2) and prostaglandin E2 (PGE2), 20:5n-3, 22:5n-3, 22:6n-3, and n-3 PUFA. In vegetarians, plasma 20:4n-6 was significant positively related to TNF-α. LTB4 was significantly positively related to plasma 22:6n-3, and negatively associated with n-6 PUFA. Vegetarians have higher plasma n-6 PUFA and IL-6, but lower LTB4, n-3 PUFA, 22:6n-3, COX2 and PGE2 levels. It would seem appropriate for vegetarians to increase their dietary n-3 PUFA, while reduce dietary n-6 PUFA and thus reduce the risk of chronic inflammatory-related diseases.

  9. Eicosapentaenoic Acid as a Potential Therapeutic Approach to Reduce Cardiovascular Risk in Patients with End-Stage Renal Disease on Hemodialysis: A Review

    PubMed Central

    Borow, Kenneth M.; Mason, R. Preston; Vijayaraghavan, Krishnaswami

    2017-01-01

    Background Patients with end-stage renal disease on hemodialysis have excess cardiovascular disease (CVD) burden with substantially increased CV event rates compared with the general population. Summary Traditional interventions that, according to standard clinical guidelines, reduce CV risk such as antihypertensive therapy, diet, exercise, and statins are not similarly effective in the hemodialysis population. This raises the question of whether additional risk factors, such as enhanced inflammation and oxidative stress, may drive the increased CVD burden in hemodialysis patients. Eicosapentaenoic acid (EPA), an omega-3 polyunsaturated fatty acid, is incorporated into the atherosclerotic plaque as well as membrane phospholipid bilayers and produces beneficial effects on inflammatory and oxidative mechanisms involved in atherosclerotic plaque formation and progression. EPA levels and the ratio of EPA to the omega-6 polyunsaturated fatty acid arachidonic acid (AA) are reduced in hemodialysis patients. Serum EPA levels have been inversely correlated with proinflammatory cytokines, and the EPA/AA ratio has been inversely associated with CV events in hemodialysis cohorts. Three recent studies involving over 800 hemodialysis patients and follow-up of 2–3 years suggest that EPA therapy may improve clinical outcomes in this patient population as evidenced by significant reductions in cardiovascular mortality, all-cause mortality, and/or CV events. Key Messages Further studies with high-purity EPA are warranted in patients on hemodialysis, especially given the fact that other interventions including antihypertensives, diet, exercise, and statins have not provided meaningful benefit. PMID:29344023

  10. Selective enrichment of Eicosapentaenoic acid (20:5n-3) in N. oceanica CASA CC201 by natural auxin supplementation.

    PubMed

    Udayan, Aswathy; Arumugam, Muthu

    2017-10-01

    The present study aims to evaluate the effect of different concentration of natural auxin, Indole-3 acetic acid (IAA) on growth, lipid yield, PUFA and EPA accumulation in Nannochloropsis oceanica CASA CC201. It was observed that the, treatment with 10ppm concentration of IAA resulted in high cell number 579.5×10 6 cells/ml than the control (215.5×10 6 cells/ml). Treatment with IAA at a concentration of 40ppm gives the highest cellular lipid accumulation of 60.9% DCW than the control 31.05% DCW). Lipid yield is also found to be increased by the addition of 40ppm IAA (319.5mg/L) compared with the control (121.5mg/L). EPA percentage is increased to 10.76% by the addition of 40ppm IAA compared to the control (1.87%). Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Antibacterial activities of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) against planktonic and biofilm growing Streptococcus mutans.

    PubMed

    Sun, Mengjun; Dong, Jiachen; Xia, Yiru; Shu, Rong

    2017-06-01

    The aim of this study was to evaluate the potential antibacterial activities of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) against planktonic and biofilm modes of Streptococcus mutans (S. mutans). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined. The effects on planktonic growth and biofilm metabolic activity were evaluated by growth curve determination and MTT assay, respectively. Then, colony forming unit (CFU) counting, scanning electron microscopy (SEM) and real-time PCR were performed to further investigate the actions of DHA and EPA on exponential phase-S. mutans. Confocal laser scanning microscopy (CLSM) was used to detect the influences on mature biofilms. The MICs of DHA and EPA against S. mutans were 100 μM and 50 μM, respectively; the MBC of both compounds was 100 μM. In the presence of 12.5 μM-100 μM DHA or EPA, the planktonic growth and biofilm metabolic activity were reduced in varying degrees. For exponential-phase S. mutans, the viable counts, the bacterial membranes and the biofilm-associated gene expression were damaged by 100 μM DHA or EPA treatment. For 1-day-old biofilms, the thickness was decreased and the proportion of membrane-damaged bacteria was increased in the presence of 100 μM DHA or EPA. These results indicated that, DHA and EPA possessed antibacterial activities against planktonic and biofilm growing S. mutans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Oral administration of eicosapentaenoic acid or docosahexaenoic acid modifies cardiac function and ameliorates congestive heart failure in male rats.

    PubMed

    Yamanushi, Tomoko T; Kabuto, Hideaki; Hirakawa, Eiichiro; Janjua, Najma; Takayama, Fusako; Mankura, Mitsumasa

    2014-04-01

    This study assessed the effects of eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) on normal cardiac function (part 1) and congestive heart failure (CHF) (part 2) through electrocardiogram analysis and determination of EPA, DHA, and arachidonic acid (AA) concentrations in rat hearts. In part 2, pathologic assessments were also performed. For part 1 of this study, 4-wk-old male rats were divided into a control group and 2 experimental groups. The rats daily were orally administered (1 g/kg body weight) saline, EPA-ethyl ester (EPA-Et; E group), or DHA-ethyl ester (DHA-Et; D group), respectively, for 28 d. ECGs revealed that QT intervals were significantly shorter for groups E and D compared with the control group (P ≤ 0.05). Relative to the control group, the concentration of EPA was higher in the E group and concentrations of EPA and DHA were higher in the D group, although AA concentrations were lower (P ≤ 0.05). In part 2, CHF was produced by subcutaneous injection of monocrotaline into 5-wk-old rats. At 3 d before monocrotaline injection, rats were administered either saline, EPA-Et, or DHA-Et as mentioned above and then killed at 21 d. The study groups were as follows: normal + saline (control), CHF + saline (H group), CHF + EPA-Et (HE group), and CHF + DHA-Et (HD group). QT intervals were significantly shorter (P ≤ 0.05) in the control and HD groups compared with the H and HE groups. Relative to the H group, concentrations of EPA were higher in the HE group and those of DHA were higher in the control and HD groups (P ≤ 0.05). There was less mononuclear cell infiltration in the myocytes of the HD group than in the H group (P = 0.06). The right ventricles in the H, HE, and HD groups showed significantly increased weights (P ≤ 0.05) compared with controls. The administration of EPA-Et or DHA-Et may affect cardiac function by modification of heart fatty acid composition, and the administration of DHA-Et may ameliorate CHF.

  13. Novel Genetic Loci Associated with the Plasma Triglyceride Response to an Omega-3 Fatty Acid Supplementation.

    PubMed

    Vallée Marcotte, Bastien; Cormier, Hubert; Guénard, Frédéric; Rudkowska, Iwona; Lemieux, Simone; Couture, Patrick; Vohl, Marie-Claude

    2016-01-01

    A recent genome-wide association study (GWAS) by our group identified 13 loci associated with the plasma triglyceride (TG) response to omega-3 (n-3) fatty acid (FA) supplementation. This study aimed to test whether single-nucleotide polymorphisms (SNPs) within the IQCJ, NXPH1, PHF17 and MYB genes are associated with the plasma TG response to an n-3 FA supplementation. A total of 208 subjects followed a 6-week n-3 FA supplementation of 5 g/day of fish oil (1.9-2.2 g of eicosapentaenoic acid and 1.1 g of docosahexaenoic acid). Measurements of plasma lipids were made before and after the supplementation. Sixty-seven tagged SNPs were selected to increase the density of markers near GWAS hits. In a repeated model, independent effects of the genotype and the gene-supplementation interaction were associated with plasma TG. Genotype effects were observed with two SNPs of NXPH1, and gene-diet interactions were observed with ten SNPs of IQCJ, four SNPs of NXPH1 and three SNPs of MYB. Positive and negative responders showed different genotype frequencies with nine SNPs of IQCJ, two SNPs of NXPH1 and two SNPs of MYB. Fine mapping in GWAS-associated loci allowed the identification of SNPs partly explaining the large interindividual variability observed in plasma TG levels in response to an n-3 FA supplementation. © 2016 S. Karger AG, Basel.

  14. Oil and eicosapentaenoic acid production by the diatom Phaeodactylum tricornutum cultivated outdoors in Green Wall Panel (GWP®) reactors.

    PubMed

    Rodolfi, Liliana; Biondi, Natascia; Guccione, Alessia; Bassi, Niccolò; D'Ottavio, Massimo; Arganaraz, Gimena; Tredici, Mario R

    2017-10-01

    Phaeodactylum tricornutum is a widely studied diatom and has been proposed as a source of oil and polyunsaturated fatty acids (PUFA), particularly eicosapentaenoic acid (EPA). Recent studies indicate that lipid accumulation occurs under nutritional stress. Aim of this research was to determine how changes in nitrogen availability affect productivity, oil yield, and fatty acid (FA) composition of P. tricornutum UTEX 640. After preliminary laboratory trials, outdoor experiments were carried out in 40-L GWP® reactors under different nitrogen regimes in batch. Nitrogen replete cultures achieved the highest productivity of biomass (about 18 g m -2  d -1 ) and EPA (about 0.35 g m -2  d -1 ), whereas nitrogen-starved cultures achieved the highest FA productivity (about 2.6 g m -2  d -1 ). The annual potential yield of P. tricornutum grown outdoors in GWP® reactors is 730 kg of EPA per hectare under nutrient-replete conditions and 5,800 kg of FA per hectare under nitrogen starvation. Biotechnol. Bioeng. 2017;114: 2204-2210. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.

  15. Serum Polyunsaturated Fatty Acids and Endometriosis.

    PubMed

    Hopeman, Margaret M; Riley, Joan K; Frolova, Antonina I; Jiang, Hui; Jungheim, Emily S

    2015-09-01

    Polyunsaturated fatty acids (PUFAs) are fatty acids containing 2 or more double bonds, and they are classified by the location of the last double bond. Omega 3 (n-3) and omega 6 (n-6) PUFAs are obtained through food sources including fatty fish and seed/vegetable oils, respectively, and they are important to a number of physiologic processes including inflammation. Previous work demonstrates suppressive effects of n-3 PUFAs on endometriotic lesions in animal models and decreased risk of endometriosis among women with high n-3 PUFA intake. Thus, we sought to determine the relationship between circulating levels of PUFAs and endometriosis in women. To do this, we performed a cross-sectional study of serum PUFAs and clinical data from 205 women undergoing in vitro fertilization (IVF). Serum PUFAs were measured using liquid chromatography coupled to tandem mass spectroscopy and included n-3 PUFAs such as α-linolenic acid, eicosapentaenoic acid (EPA), and docosahexaenoic acid and n-6 PUFAs such as linoleic acid and arachidonic acid. Multivariable logistic regression was used to determine relationships between specific and total serum PUFAs and patient history of endometriosis. Women with high serum EPA levels were 82% less likely to have endometriosis compared to women with low EPA levels (odds ratio = 0.18, 95% confidence interval 0.04-0.78). © The Author(s) 2014.

  16. Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production

    PubMed Central

    2012-01-01

    Omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) provide significant health benefits and this has led to an increased consumption as dietary supplements. Omega-3 fatty acids EPA and DHA are found in animals, transgenic plants, fungi and many microorganisms but are typically extracted from fatty fish, putting additional pressures on global fish stocks. As primary producers, many marine microalgae are rich in EPA (C20:5) and DHA (C22:6) and present a promising source of omega-3 fatty acids. Several heterotrophic microalgae have been used as biofactories for omega-3 fatty acids commercially, but a strong interest in autotrophic microalgae has emerged in recent years as microalgae are being developed as biofuel crops. This paper provides an overview of microalgal biotechnology and production platforms for the development of omega-3 fatty acids EPA and DHA. It refers to implications in current biotechnological uses of microalgae as aquaculture feed and future biofuel crops and explores potential applications of metabolic engineering and selective breeding to accumulate large amounts of omega-3 fatty acids in autotrophic microalgae. PMID:22830315

  17. A Novel Halophilic Lipase, LipBL, Showing High Efficiency in the Production of Eicosapentaenoic Acid (EPA)

    PubMed Central

    Pérez, Dolores; Martín, Sara; Fernández-Lorente, Gloria; Filice, Marco; Guisán, José Manuel; Ventosa, Antonio; García, María Teresa; Mellado, Encarnación

    2011-01-01

    Background Among extremophiles, halophiles are defined as microorganisms adapted to live and thrive in diverse extreme saline environments. These extremophilic microorganisms constitute the source of a number of hydrolases with great biotechnological applications. The interest to use extremozymes from halophiles in industrial applications is their resistance to organic solvents and extreme temperatures. Marinobacter lipolyticus SM19 is a moderately halophilic bacterium, isolated previously from a saline habitat in South Spain, showing lipolytic activity. Methods and Findings A lipolytic enzyme from the halophilic bacterium Marinobacter lipolyticus SM19 was isolated. This enzyme, designated LipBL, was expressed in Escherichia coli. LipBL is a protein of 404 amino acids with a molecular mass of 45.3 kDa and high identity to class C β-lactamases. LipBL was purified and biochemically characterized. The temperature for its maximal activity was 80°C and the pH optimum determined at 25°C was 7.0, showing optimal activity without sodium chloride, while maintaining 20% activity in a wide range of NaCl concentrations. This enzyme exhibited high activity against short-medium length acyl chain substrates, although it also hydrolyzes olive oil and fish oil. The fish oil hydrolysis using LipBL results in an enrichment of free eicosapentaenoic acid (EPA), but not docosahexaenoic acid (DHA), relative to its levels present in fish oil. For improving the stability and to be used in industrial processes LipBL was immobilized in different supports. The immobilized derivatives CNBr-activated Sepharose were highly selective towards the release of EPA versus DHA. The enzyme is also active towards different chiral and prochiral esters. Exposure of LipBL to buffer-solvent mixtures showed that the enzyme had remarkable activity and stability in all organic solvents tested. Conclusions In this study we isolated, purified, biochemically characterized and immobilized a lipolytic enzyme from

  18. Plasma fatty acid profile and alternative nutrition.

    PubMed

    Krajcovicová-Kudlácková, M; Simoncic, R; Béderová, A; Klvanová, J

    1997-01-01

    Plasma profile of fatty acids was examined in a group of children consisting of 7 vegans, 15 lactoovovegetarians and 10 semivegetarians. The children were 11-15 years old and the average period of alternative nutrition was 3.4 years. The results were compared with a group of 19 omnivores that constituted an average sample with respect to biochemical and hematological parameters from a larger study of health and nutritional status of children in Slovakia. Alternative nutrition groups had significantly lower values of saturated fatty acids. The content of oleic acid was identical to omnivores. A significant increase was observed for linoleic and alpha-linolenic (n-3) acids. The dihomo-gamma-linolenic (n-6) acid and arachidonic (n-6) acid values were comparable to omnivores for all alternative nutrition groups. Values of n-3 polyunsaturated fatty acids in lactoovovegetarians were identical to those of omnivores whereas they were significantly increased in semivegetarians consuming fish twice a week. Due to the total exclusion of animal fats from the diet, vegans had significantly reduced values of palmitoleic acid as well as eicosapentaenoic (n-3) acid and docosahexaenoic (n-3) acid resulting in an increased n-6/n-3 ratio. Values of plasma fatty acids found in alternative nutrition groups can be explained by the higher intake of common vegetable oils (high content of linoleic acid), oils rich in alpha-linolenic acid (cereal germs, soybean oil, walnuts), as well as in n-3 polyunsaturated fatty acids (fish). The results of fatty acids (except n-3 in vegans) and other lipid parameters confirm the beneficial effect of vegetarian nutrition in the prevention of cardiovascular diseases.

  19. Fortification of foods with omega-3 polyunsaturated fatty acids.

    PubMed

    Ganesan, Balasubramanian; Brothersen, Carl; McMahon, Donald J

    2014-01-01

    A $600 million nutritional supplements market growing at 30% every year attests to consumer awareness of, and interests in, health benefits attributed to these supplements. For over 80 years the importance of polyunsaturated fatty acid (PUFA) consumption for human health has been established. The FDA recently approved the use of ω-3 PUFAs in supplements. Additionally, the market for ω-3 PUFA ingredients grew by 24.3% last year, which affirms their popularity and public awareness of their benefits. PUFAs are essential for normal human growth; however, only minor quantities of the beneficial ω-3 PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are synthesized by human metabolism. Rather PUFAs are obtained via dietary or nutritional supplementation and modified into other beneficial metabolites. A vast literature base is available on the health benefits and biological roles of ω-3 PUFAs and their metabolism; however, information on their dietary sources and palatability of foods incorporated with ω-3 PUFAs is limited. DHA and EPA are added to many foods that are commercially available, such as infant and pet formulae, and they are also supplemented in animal feed to incorporate them in consumer dairy, meat, and poultry products. The chief sources of EPA and DHA are fish oils or purified preparations from microalgae, which when added to foods, impart a fishy flavor that is considered unacceptable. This fishy flavor is completely eliminated by extensively purifying preparations of n-3 PUFA sources. While n-3 PUFA lipid autoxidation is considered the main cause of fishy flavor, the individual oxidation products identified thus far, such as unsaturated carbonyls, do not appear to contribute to fishy flavor or odor. Alternatively, various compound classes such as free fatty acids and volatile sulfur compounds are known to impart fishy flavor to foods. Identification of the causative compounds to reduce and eventually eliminate fishy flavor is important

  20. Effects of omega-3 fatty acid supplementation on neurocognitive functioning and mood in deployed U.S. soldiers: a pilot study.

    PubMed

    Dretsch, Michael N; Johnston, Daniel; Bradley, Ryan S; MacRae, Holden; Deuster, Patricia A; Harris, William S

    2014-04-01

    Omega-3 fatty acids (FAs) may have neuroprotective properties for psychological health and cognition. The objective of this study was to evaluate the effectiveness of omega-3 FAs (eicosapentaenoic + docosahexaenoic; Harris-Schacky [HS]-Omega-3 Index) on neuropsychological functioning among U.S. Soldiers deployed to Iraq. This randomized, double-blind, placebo-controlled trial included Soldiers between the ages of 18 and 55 years who were randomly assigned to either the active treatment group (n = 44) or placebo group (n = 34). Active treatment was 2.5 g per day of eicosapentaenoic + docosahexaenoic (Lovaza; GlaxoSmithKline, Research Triangle Park, North Carolina). The placebo was corn oil ethyl esters. HS-Omega-3 Index, a neurocognitive battery (Central Nervous System-Vital Signs, Morrisville, North Carolina), and psychological health scales were assessed at baseline and after 60 days of treatment. Although the results revealed that omega-3 FAs significantly increased the HS-Omega-3 Index (p = 0.001), there were no significant effects on indices psychological health and neurocognitive functioning by treatment group. Nevertheless, there was a significant inverse correlation between the changes in the HS-Omega-3 Index and daytime sleepiness (r = 0.30, p = 0.009). Short-term treatment with 2.5 g of omega-3 FAs did not alter measures of neurocognition or psychological health, but there was evidence of a relationship between omega-3 levels and daytime sleepiness. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.

  1. Preparation of triacylglycerols rich in omega-3 fatty acids from sardine oil using a Rhizomucor miehei lipase: focus in the EPA/DHA ratio.

    PubMed

    Bispo, Paulo; Batista, Irineu; Bernardino, Raul J; Bandarra, Narcisa Maria

    2014-02-01

    The increasing evidence on the differential biochemical effects of eicosapentaenoic acid (EPA)/docosahexaenoic acid (DHA) raises the need of n-3 highly unsaturated fatty acid concentrates with different amounts of these fatty acids. In the present work, physicochemical and enzymatic techniques were combined to obtain acylglycerols, mainly triacylglycerols (TAG), rich in n-3 fatty acids. Sardine oil was obtained by washing sardine (Sardina pilchardus) mince with a NaHCO3 solution, hydrolyzed in a KOH-ethanol solution, and concentrated with urea. The esterification reaction was performed in the stoichiometric proportion of substrates for re-esterification to TAG, with 10 % level of Rhizomucor miehei lipase based on the weight of substrates, without any solvent, during 48 h. This procedure led to approximately 88 % of acylglycerols, where more than 66 % were TAG and the concentration of n-3 fatty acids was higher than 60 %, the EPA and DHA ratio (EPA/DHA) was 4:1. The content of DHA in the unesterifed fraction (free fatty acids) increased from 20 to 54 %, while the EPA level in the same fraction decreased from 33 to 12.5 % (EPA/DHA ratio ≈1:4). Computational methods (density functional theory calculations) have been carried out at the B3LYP/6-31G(d,p) level to explain some of the experimental results.

  2. n-3 fatty acids reduce plasma 20-hydroxyeicosatetraenoic acid and blood pressure in patients with chronic kidney disease.

    PubMed

    Barden, Anne E; Burke, Valerie; Mas, Emilie; Beilin, Lawrence J; Puddey, Ian B; Watts, Gerald F; Irish, Ashley B; Mori, Trevor A

    2015-09-01

    Metabolism of arachidonic acid by cytochrome P450 ω-hydroxylase leads to the formation of 20-hydroxyeicosatetraenoic acid (20-HETE) that regulates vascular function, sodium homeostasis and blood pressure (BP). Supplementation with n-3 fatty acids is known to alter arachidonic acid metabolism and reduce the formation of the lipid peroxidation products F2-isoprostanes, but the effect of n-3 fatty acids on 20-HETE has not been studied. We previously reported a significant effect of n-3 fatty acids but not coenzyme Q10 (CoQ) to reduce BP in a double-blind, placebo-controlled intervention, wherein patients with chronic kidney disease (CKD) were randomized to n-3 fatty acids (4 g), CoQ (200 mg), both supplements or control (4 g olive oil), daily for 8 weeks. This study examined the effect of n-3 fatty acids on plasma and urinary 20-HETE in the same study, as well as plasma and urinary F2-isoprostanes, and relate these to changes in BP. Seventy-four patients completed the 8-week intervention. n-3 fatty acids but not CoQ significantly reduced plasma 20-HETE (P = 0.001) and F2-isoprostanes (P < 0.001). In regression models adjusted for BP at baseline, postintervention plasma 20-HETE was a significant predictor of the fall in SBP (P < 0.0001) and DBP (P < 0.0001) after n-3 fatty acids. This is the first report that n-3 fatty acid supplementation reduces plasma 20-HETE in humans and that this associates with reduced BP. These results provide a plausible mechanism for the reduction in BP observed in patients with CKD following n-3 fatty acid supplementation.

  3. Dietary n-3 fatty acid restriction during gestation in rats: neuronal cell body and growth-cone fatty acids.

    PubMed

    Auestad, N; Innis, S M

    2000-01-01

    Growth cones are membrane-rich structures found at the distal end of growing axons and are the predecessors of the synaptic membranes of nerve endings. This study examined whether n-3 fatty acid restriction during gestation in rats alters the composition of growth cone and neuronal cell body membrane fatty acids in newborns. Female rats were fed a standard control diet containing soy oil (8% of fatty acids as 18:3n-3 by wt) or a semisynthetic n-3 fatty acid-deficient diet with safflower oil (0.3% of fatty acids as 18:3n-3 by wt) throughout normal pregnancy. Experiments were conducted on postnatal day 2 to minimize the potential for contamination from synaptic membranes and glial cells. Dietary n-3 fatty acid restriction resulted in lower docosahexaenoic acid (DHA) concentrations and a corresponding higher docosapentaenoic acid concentration in neuronal growth cones, but had no effects on neuronal cell body fatty acid concentrations. These studies suggest that accretion of DHA in growth cones, but not neuronal cell bodies, is affected by n-3 fatty acid restriction during gestation. Differences in other fatty acids or components between the semisynthetic and the standard diet, however, could have been involved in the effects on growth-cone DHA content. The results also provide evidence to suggest that the addition of new membrane fatty acids to neurons during development occurs along the shaft of the axon or at the growth cone, rather than originating at the cell body.

  4. Maternal long-chain polyunsaturated fatty acid status during early pregnancy and children's risk of problem behavior at age 5-6 years.

    PubMed

    Loomans, Eva M; Van den Bergh, Bea R H; Schelling, Maaike; Vrijkotte, Tanja G M; van Eijsden, Manon

    2014-04-01

    To prospectively investigate the association between maternal long-chain polyunsaturated fatty acid (LCPUFA) status and ratio during pregnancy and children's risk of problem behavior at 5 years of age. Maternal LCPUFA status in plasma phospholipids during pregnancy (M = 13.3, SD = 3 weeks) was available for 4336 women. Children's behavior was rated by their mother (n = 2502) and teacher (n = 2061). When using multivariate logistic regression analyses, we found that greater concentrations of omega-3 fatty acid docosahexaenoic acid (OR 0.75; 95% CI 0.56-0.99; P = .05) decreased children's risk for emotional symptoms. Although lower eicosapentaenoic acid and a greater omega-6:omega-3 LCPUFA (ie, arachidonic acid/[docosahexaenoic acid + eicosapentaenoic acid]) tended to increase the risk for emotional symptoms and the risk of hyperactivity/inattention problems for the omega-6:omega-3 LCPUFA, the results were nonsignificant (P = .07). No evidence was found for mediation by preterm birth and being small for gestational age. The child's sex and infant feeding pattern did not modify the associations. Our results suggest long-term developmental programming influences of maternal LCPUFA status during pregnancy and stress the importance of an adequate and balanced supply of fatty acids in pregnant women for optimal fetal brain development and subsequent long-term behavioral outcomes. Copyright © 2014 Mosby, Inc. All rights reserved.

  5. Efficacy and safety of eicosapentaenoic acid ethyl ester (AMR101) therapy in statin-treated patients with persistent high triglycerides (from the ANCHOR study).

    PubMed

    Ballantyne, Christie M; Bays, Harold E; Kastelein, John J; Stein, Evan; Isaacsohn, Jonathan L; Braeckman, Rene A; Soni, Paresh N

    2012-10-01

    AMR101 is an ω-3 fatty acid agent containing ≥96% pure icosapent-ethyl, the ethyl ester of eicosapentaenoic acid. The efficacy and safety of AMR101 were evaluated in this phase 3, multicenter, placebo-controlled, randomized, double-blinded, 12-week clinical trial (ANCHOR) in high-risk statin-treated patients with residually high triglyceride (TG) levels (≥200 and <500 mg/dl) despite low-density lipoprotein (LDL) cholesterol control (≥40 and <100 mg/dl). Patients (n = 702) on a stable diet were randomized to AMR101 4 or 2 g/day or placebo. The primary end point was median percent change in TG levels from baseline versus placebo at 12 weeks. AMR101 4 and 2 g/day significantly decreased TG levels by 21.5% (p <0.0001) and 10.1% (p = 0.0005), respectively, and non-high-density lipoprotein (non-HDL) cholesterol by 13.6% (p <0.0001) and 5.5% (p = 0.0054), respectively. AMR101 4 g/day produced greater TG and non-HDL cholesterol decreases in patients with higher-efficacy statin regimens and greater TG decreases in patients with higher baseline TG levels. AMR101 4 g/day decreased LDL cholesterol by 6.2% (p = 0.0067) and decreased apolipoprotein B (9.3%), total cholesterol (12.0%), very-low-density lipoprotein cholesterol (24.4%), lipoprotein-associated phospholipase A(2) (19.0%), and high-sensitivity C-reactive protein (22.0%) versus placebo (p <0.001 for all comparisons). AMR101 was generally well tolerated, with safety profiles similar to placebo. In conclusion, AMR101 4 g/day significantly decreased median placebo-adjusted TG, non-HDL cholesterol, LDL cholesterol, apolipoprotein B, total cholesterol, very-low-density lipoprotein cholesterol, lipoprotein-associated phospholipase A(2), and high-sensitivity C-reactive protein in statin-treated patients with residual TG elevations. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Towards sustainable sources for omega-3 fatty acids production.

    PubMed

    Adarme-Vega, T Catalina; Thomas-Hall, Skye R; Schenk, Peer M

    2014-04-01

    Omega-3 fatty acids eicosapentaenoic acid (EPA) and docohexaenoic acid (DHA), provide significant health benefits for brain function/development and cardiovascular conditions. However, most EPA and DHA for human consumption is sourced from small fatty fish caught in coastal waters and, with depleting global fish stocks, recent research has been directed towards more sustainable sources. These include aquaculture with plant-based feeds, krill, marine microalgae, microalgae-like protists and genetically-modified plants. To meet the increasing demand for EPA and DHA, further developments are needed towards land-based sources. In particular large-scale cultivation of microalgae and plants is likely to become a reality with expected reductions in production costs, yield increasese and the adequate addressing of genetically modified food acceptance issues. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Folded and unfolded conformations of the omega-3 polyunsaturated fatty acid family: ch(3)ch(2)[ch=chch(2)](b)[ch(2)](m)cooh: first principles study.

    PubMed

    Law, Jacqueline M S; Szori, Milan; Izsak, Robert; Penke, Botond; Csizmadia, Imre G; Viskolcz, Bela

    2006-05-11

    Polyunsaturated fatty acids (PUFA) like stearidonic acid (SDA;18:4 n-3) eicosapentaenoic acid (EPA; 20:5 n-3), and docosahexaenoic acid (DHA; 22:6 n-3) and its chain fragment models were studied at B3LYP/6-31G(d) levels of theory. Significant conformations for the cis and trans isomers were selected to obtained the thermodynamic functions (DeltaH, DeltaS, DeltaG) for the cis-trans isomerization and for folding using the B3LYP/6-311+G(2d,p)//B3LYP/6-31G(d) level of theory. The structural analysis shows that there are significant differences in thermodynamic function of the trans- and cis-PUFAs. The trans-cis isomerization energy values reinforce the consistency and the relative accuracy of theoretical model calculations. The observed flexibility of naturally cis PUFAs could be explained by a very special "smooth basin" PES of the motif of sp(2)-sp(3)-sp(2) hybrid states as reported previously (J. Phys. Chem. A 2005, 109, 520-533). We assumed that intrinsic thermodynamic functions may describe this flexible folding process. The folding enthalpy as well as the folding entropy suggests that there is a new role of the cis-PUFAs in membranes: these cis isomers may have a strong influence on membrane stability and permeability. The average length of the cis helix and beta PUFA was approximated. The difference between the lengths of these two structures is approximately 10 A.

  8. Eicosapentaenoic acid to arachidonic acid (EPA/AA) ratio as an associated factor of high risk plaque on coronary computed tomography in patients without coronary artery disease.

    PubMed

    Nagahara, Yasuomi; Motoyama, Sadako; Sarai, Masayoshi; Ito, Hajime; Kawai, Hideki; Takakuwa, Yoko; Miyagi, Meiko; Shibata, Daisuke; Takahashi, Hiroshi; Naruse, Hiroyuki; Ishii, Junichi; Ozaki, Yukio

    2016-07-01

    Coronary computed tomography angiography (CCTA)-verified high risk plaque (HRP) characteristics including positive remodeling and low attenuation plaque have been associated with acute coronary syndromes. Several studies reported that the n-3 polyunsaturated fatty acids have been associated with cardiovascular events. However, the relationship between serum eicosapentaenoic acid to arachidonic acid (EPA/AA) ratio and CCTA-verified HRP in patients without known coronary artery disease (CAD) is unclear. We aimed at investigating the relation between EPA/AA and CCTA-verified HRP in patients without known CAD. We included 193 patients undergoing CCTA without known CAD (65.5 ± 12.0 years, 55.0% male). No patient has been treated with EPA. The relation of coronary risk factors, lipid profile, high-sensitivity C-reactive protein, coronary artery calcification score (CACS), number of vessel disease, plaque burden, and EPA/AA with the presence of HRP was evaluated by logistic regression analysis. Incremental value of EPA/AA to predict HRP was also analyzed by C-index, NRI, and IDI. A Cox proportional hazards model was used to estimate the time to cardiovascular event. HRP was observed in 37 (19%) patients. Multivariable logistic regression analysis revealed that current smoking (OR 2.58; p=0.046), number of vessel disease (OR 1.87; p=0.031), and EPA/AA ratio (OR 0.65; p=0.0006) were independent associated factors of HRP on CCTA. Although the addition of EPA/AA to the baseline model did not significantly improve C-index, both NRI (0.60, p=0.0049) and IDI (0.054, p=0.0072) were significantly improved. Patients with HRP had significantly higher rate of events compared with patients without HRP (14% vs. 3%, Logrank p=0.0004). On multivariable Cox hazard analysis, baseline EPA/AA ratio was an independent predictor (HR 0.57, p=0.047). Low EPA/AA was an associated factor of HRP on CCTA in patients without CAD. In addition to conventional coronary risk factors and CACS, EPA

  9. Fish Lipids as a Valuable Source of Polyunsaturated Fatty Acids

    NASA Astrophysics Data System (ADS)

    Merdzhanova, Albena; Ivanov, Ivaylo; Dobreva, Diana A.; Makedonski, Lyubomir

    2017-03-01

    This article presents information about omega-3 (h-3) and omega-6 (n-6) polyunsaturated fatty acid (PUFA) contents in a broad range of commercially important fish species available on Bulgarian fish markets. The aim is to raise consumers' awareness and encourage them to eat fish. Fish species from the Black Sea coast have relatively high proportion of n-3 PUFAs, of which more than 80% is by EPf (eicosapentaenoic acid, C 20:5 n-3) and DHA (docosahexaenoic acid, C 22:6 n-3). Extensive epidemiological studies show that fish consumption is inversely associated with the incidence of cardiovascular diseases (CVD), stroke and the functioning of the brain. About 0.5 g of omega-3 (EPA+DHA) a day or two savings of oily fish a week are required to reduce the risk of death from CVD. PUFAs needs should be satisfied not only with food additives but with fish lipids containing food.

  10. Reverse association of omega-3/omega-6 polyunsaturated fatty acids ratios with carotid atherosclerosis in patients on hemodialysis.

    PubMed

    Umemoto, Norio; Ishii, Hideki; Kamoi, Daisuke; Aoyama, Toru; Sakakibara, Takashi; Takahashi, Hiroshi; Tanaka, Akihito; Yasuda, Yoshinari; Suzuki, Susumu; Matsubara, Tatsuaki; Murohara, Toyoaki

    2016-06-01

    Omega-3 (n-3) polyunsaturated fatty acids (PUFAs) are widely recognized to have beneficial effects against cardiovascular disease. We investigated the association of n-3 PUFAs levels with carotid atherosclerosis in patients on hemodialysis (HD), who are at high risk for cardiovascular events. Carotid ultra-sound was performed in a total of 461 patients on HD (male 67%, age 67 ± 12years, diabetes rate 46%). Intima-media thickness (IMT) and the plaque score (PS) in carotid arteries were measured. Carotid atherosclerosis was defined as IMT >1.2 mm and/or PS > 5.0. The levels of n-6 PUFAs [dihomo-gamma-linolenic acid (DHLA) and arachidonic acid (AA)] and n-3 PUFAs [eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] were also measured prior to carotid ultra-sound. Carotid atherosclerosis was observed in 94 patients (20.4%). Individual PUFAs levels were comparable between patients with and without carotid atherosclerosis. However, the ratio of EPA/AA and that of n-3/n-6 PUFAs were significantly lower in patients with carotid atherosclerosis compared to those without (median 0.36 vs. 0.41, p = 0.031 and 0.85 vs. 0.93, p = 0.041, respectively]. After adjustment for other confounders, the ratio of EPA/AA (OR 0.30, 95% CI 0.12-0.70, p = 0.0055) and the ratio of n-3/n-6 PUFAs (OR 0.45, 95% CI 0.25-0.80, p = 0.0066) showed an independent reverse association with carotid atherosclerosis. In addition, the area under receiver-operating characteristic curves for carotid atherosclerosis was significantly greater in an established risk model with EPA/AA and n-3/n-6 ratios than in the established risk model alone. These data suggest that low ratios of both EPA/AA ratio and n-3/n-6 PUFAs were closely associated with carotid atherosclerosis in patients on HD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Genetic predisposition scores for dyslipidaemia influence plasma lipid concentrations at baseline, but not the changes after controlled intake of n-3 polyunsaturated fatty acids.

    PubMed

    AlSaleh, Aseel; Maniou, Zoitsa; Lewis, Fiona J; Hall, Wendy L; Sanders, Thomas A B; O'Dell, Sandra D

    2014-07-01

    Inconsistent effects of fish oil supplementation on plasma lipids may be influenced by genetic variation. We investigated 12 single nucleotide polymorphisms (SNPs) associated with dyslipidaemia in genome-wide association studies, in 310 participants randomised to treatment with placebo or 0.45, 0.9 and 1.8 g/day eicosapentaenoic acid (20:5n-3, EPA) and docosahexaenoic acid (22:6n-3, DHA) (1.51:1) in a 12-month parallel controlled trial. Effects of risk alleles were assessed as trait-specific genetic predisposition scores (GPS) and singly. GPS were positively associated with baseline concentrations of plasma total cholesterol, low-density-lipoprotein cholesterol and triglyceride (TG) and negatively with high-density-lipoprotein cholesterol. The TG-GPS was associated with 0.210 mmol/L higher TG per risk allele (P < 0.0001), but no effects of single TG SNPs were significant at baseline. After treatment with EPA and DHA, TG-GPS was associated with 0.023 mmol/L lower TG per risk allele (P = 0.72). No interactions between GPS and treatment were significant; however, FADS1 SNP rs174546 C/T interaction with treatment was a significant determinant of plasma TG concentration (P = 0.047, n = 267). Concentration differed between genotype groups after the 1.8 g/day dose (P = 0.026), decreasing by 3.5 (95 % CI -15.1 to 8.2) % in non-carriers of the risk T-allele (n = 30) and by 21.6 (95 % CI -32.1 to -11.2) % in carriers (n = 37), who showed a highly significant difference between treatments (P = 0.007). Carriers of the FADS1 rs174546 risk allele could benefit from a high intake of EPA and DHA in normalising plasma TG.

  12. Bioavailability of Dietary Omega-3 Fatty Acids Added to a Variety of Sausages in Healthy Individuals

    PubMed Central

    Köhler, Anton; Heinrich, Johanna; von Schacky, Clemens

    2017-01-01

    A low Omega-3 Index (eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in erythrocytes) is associated with cardiac, cerebral, and other health issues. Intake of EPA and DHA, but not of alpha-linolenic acid (ALA), increases the Omega-3 Index. We investigated bioavailability, safety, palatability and tolerability of EPA and DHA in a novel source: a variety of sausages. We screened 96 healthy volunteers, and recruited 44 with an Omega-3 Index <5%. Participants were randomly assigned to receive a variety of sausages enriched with approximately 250 mg EPA and DHA per 80 g (n = 22) daily for 8 weeks, or matching placebo sausages (n = 22). All sausages contained approximately 250 mg ALA/80 g. In the verum group, the mean Omega-3 Index increased from 4.18 ± 0.54 to 5.72 ± 0.66% (p < 0.001), while it remained unchanged in the placebo group. While ALA levels increased only in the placebo group, DPA levels increased in both groups. Inter-individual variability in the response was large. The mean increase of the Omega-3 Index per intake of EPA and DHA we observed was higher than for other sources previously studied, indicating superior bioavailability. As increasing production of EPA and DHA is difficult, improvements of bioavailability can facilitate reaching the target range for the Omega-3 Index (8–11%). PMID:28629180

  13. Bioavailability of Dietary Omega-3 Fatty Acids Added to a Variety of Sausages in Healthy Individuals.

    PubMed

    Köhler, Anton; Heinrich, Johanna; von Schacky, Clemens

    2017-06-19

    A low Omega-3 Index (eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in erythrocytes) is associated with cardiac, cerebral, and other health issues. Intake of EPA and DHA, but not of alpha-linolenic acid (ALA), increases the Omega-3 Index. We investigated bioavailability, safety, palatability and tolerability of EPA and DHA in a novel source: a variety of sausages. We screened 96 healthy volunteers, and recruited 44 with an Omega-3 Index <5%. Participants were randomly assigned to receive a variety of sausages enriched with approximately 250 mg EPA and DHA per 80 g ( n = 22) daily for 8 weeks, or matching placebo sausages ( n = 22). All sausages contained approximately 250 mg ALA/80 g. In the verum group, the mean Omega-3 Index increased from 4.18 ± 0.54 to 5.72 ± 0.66% ( p < 0.001), while it remained unchanged in the placebo group. While ALA levels increased only in the placebo group, DPA levels increased in both groups. Inter-individual variability in the response was large. The mean increase of the Omega-3 Index per intake of EPA and DHA we observed was higher than for other sources previously studied, indicating superior bioavailability. As increasing production of EPA and DHA is difficult, improvements of bioavailability can facilitate reaching the target range for the Omega-3 Index (8-11%).

  14. ANALYSIS OF ω-3 FATTY ACID CONTENT OF POLISH FISH OIL DRUG AND DIETARY SUPPLEMENTS.

    PubMed

    Osadnik, Kamila; Jaworska, Joanna

    2016-07-01

    Study results indicate that a diet rich in polyunsaturated fatty acids ω-3 (PUFA n-3) exerts favorable effect on human health, accounting for reduced cardiovascular morbidity and mortality. PUFA n-3 contained in marine fish oils, particularly eicosapentaenoic (EPA, 20:5 n-3) and docosahexaenoic (DHA, 22:6 n-3) acids, are attributed antithrombotic, anti-inflammatory, anti-atherosclerotic and anti-arrhythmic effects. They have also beneficial effects on cognitive functions and immunological mechanisms of an organism. Considering the fact that marine fish are not abundant in Western diet, the pharmaceutical industry reacts with a broad selection of PUFA n-3 containing dietary supplements and drugs. Increased consumers' interest with those products has been observed recently. Therefore, their quality, understood as reliability of manufacturer's declaration of composition of offered dietary supplements, is highly important. We have tested 22 products available in pharmacies and supermarkets, manufacturers of which declared content of n-3 fatty acids (21 dietary supplements and I drug). Identity and content of DHA and EPA were assessed using ¹H NMR spectroscopy, based on characteristic signals from protons in methylene groups. Almost one in five of the examined dietary supplements contains < 89% of the PUFA n-3 amount declared by its manufacturer. For a majority of tested products the manufacturer-declared information regarding DHA (58%) and EPA (74%) content was consistent with the actual composition. It is notable that more cases of discrepancy between the declared and the actual content regarded DHA than EPA, which indicates a less favorable balance, considering the pro-health effect of those acids. Over a half of tested products provides the supplementary dose (250 mg/day) with one capsule taken daily, and in 27% of cases the daily dosage should be doubled. Only 10% of those products ensure the appropriate dose for cardiovascular patients (1 g/day) with the use of

  15. A randomized, crossover, head-to-head comparison of eicosapentaenoic acid and docosahexaenoic acid supplementation to reduce inflammation markers in men and women: the Comparing EPA to DHA (ComparED) Study.

    PubMed

    Allaire, Janie; Couture, Patrick; Leclerc, Myriam; Charest, Amélie; Marin, Johanne; Lépine, Marie-Claude; Talbot, Denis; Tchernof, André; Lamarche, Benoît

    2016-08-01

    To date, most studies on the anti-inflammatory effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in humans have used a mixture of the 2 fatty acids in various forms and proportions. We compared the effects of EPA supplementation with those of DHA supplementation (re-esterified triacylglycerol; 90% pure) on inflammation markers (primary outcome) and blood lipids (secondary outcome) in men and women at risk of cardiovascular disease. In a double-blind, randomized, crossover, controlled study, healthy men (n = 48) and women (n = 106) with abdominal obesity and low-grade systemic inflammation consumed 3 g/d of the following supplements for periods of 10 wk: 1) EPA (2.7 g/d), 2) DHA (2.7 g/d), and 3) corn oil as a control with each supplementation separated by a 9-wk washout period. Primary analyses assessed the difference in cardiometabolic outcomes between EPA and DHA. Supplementation with DHA compared with supplementation with EPA led to a greater reduction in interleukin-18 (IL-18) (-7.0% ± 2.8% compared with -0.5% ± 3.0%, respectively; P = 0.01) and a greater increase in adiponectin (3.1% ± 1.6% compared with -1.2% ± 1.7%, respectively; P < 0.001). Between DHA and EPA, changes in CRP (-7.9% ± 5.0% compared with -1.8% ± 6.5%, respectively; P = 0.25), IL-6 (-12.0% ± 7.0% compared with -13.4% ± 7.0%, respectively; P = 0.86), and tumor necrosis factor-α (-14.8% ± 5.1% compared with -7.6% ± 10.2%, respectively; P = 0.63) were NS. DHA compared with EPA led to more pronounced reductions in triglycerides (-13.3% ± 2.3% compared with -11.9% ± 2.2%, respectively; P = 0.005) and the cholesterol:HDL-cholesterol ratio (-2.5% ± 1.3% compared with 0.3% ± 1.1%, respectively; P = 0.006) and greater increases in HDL cholesterol (7.6% ± 1.4% compared with -0.7% ± 1.1%, respectively; P < 0.0001) and LDL cholesterol (6.9% ± 1.8% compared with 2.2% ± 1.6%, respectively; P = 0.04). The increase in LDL-cholesterol concentrations for DHA compared with

  16. Climate warming is predicted to reduce omega-3, long-chain, polyunsaturated fatty acid production in phytoplankton.

    PubMed

    Hixson, Stefanie M; Arts, Michael T

    2016-08-01

    Phytoplankton are the main source of energy and omega-3 (n-3) long-chain essential fatty acids (EFA) in aquatic ecosystems. Their growth and biochemical composition are affected by surrounding environmental conditions, including temperature, which continues to increase as a result of climate warming. Increasing water temperatures may negatively impact the production of EFA by phytoplankton through the process of homeoviscous adaptation. To investigate this, we conducted an exploratory data synthesis with 952 fatty acid (FA) profiles from six major groups of marine and freshwater phytoplankton. Temperature was strongly correlated with a decrease in the proportion of n-3 long-chain polyunsaturated FA (LC-PUFA) and an increase in omega-6 FA and saturated FA. Based on linear regression models, we predict that global n-3 LC-PUFA production will be reduced by 8.2% for eicosapentaenoic acid (EPA) and 27.8% for docosahexaenoic acid (DHA) with an increase in water temperature of 2.5 °C. Using a previously published estimate of the global production of EPA by diatoms, which contribute to most of the world's supply of EPA, we predict a loss of 14.2 Mt of EPA annually as a result of ocean warming. The n-3 LC-PUFA are vitally important for an array of key physiological functions in aquatic and terrestrial organisms, and these FA are mainly produced by phytoplankton. Therefore, reduced production of these EFA, as a consequence of climate warming, is predicted to negatively affect species that depend on these compounds for optimum physiological function. Such profound changes in the biochemical composition of phytoplankton cell membranes can lead to cascading effects throughout the world's ecosystems. © 2016 John Wiley & Sons Ltd.

  17. Inflammation in Response to n3 Fatty Acids in a Porcine Obesity Model

    PubMed Central

    Faris, Richard J; Boddicker, Rebecca L; Walker-Daniels, Jennifer; Li, Jenny; Jones, Douglas E; Spurlock, Michael E

    2012-01-01

    Fatty acids have distinct cellular effects related to inflammation and insulin sensitivity. Dietary saturated fat activates toll-like receptor 4, which in turn can lead to chronic inflammation, insulin resistance, and adipose tissue macrophage infiltration. Conversely, n3 fatty acids are generally antiinflammatory and promote insulin sensitivity, in part via peroxisome proliferator-activated receptor γ. Ossabaw swine are a useful biomedical model of obesity. We fed Ossabaw pigs either a low-fat control diet or a diet containing high-fat palm oil with or without additional n3 fatty acids for 30 wk to investigate the effect of saturated fats and n3 fatty acids on obesity-linked inflammatory markers. The diet did not influence the inflammatory markers C-reactive protein, TNFα, IL6, or IL12. In addition, n3 fatty acids attenuated the increase in inflammatory adipose tissue CD16–CD14+ macrophages induced by high palm oil. High-fat diets with and without n3 fatty acids both induced hyperglycemia without hyperinsulinemia. The high-fat only group but not the high-fat group with n3 fatty acids showed reduced insulin sensitivity in response to insulin challenge. This effect was not mediated by decreased phosphorylation of protein kinase B. Therefore, in obese Ossabaw swine, n3 fatty acids partially attenuate insulin resistance but only marginally change inflammatory status and macrophage phenotype in adipose tissue. PMID:23561883

  18. Omega-3 Fatty Acids Supplementation: Therapeutic Potential in a Mouse Model of Stargardt Disease.

    PubMed

    Prokopiou, Ekatherine; Kolovos, Panagiotis; Kalogerou, Maria; Neokleous, Anastasia; Nicolaou, Orthodoxia; Sokratous, Kleitos; Kyriacou, Kyriacos; Georgiou, Tassos

    2018-06-01

    To evaluate the therapeutic effects of omega-33) fatty acids on retinal degeneration in the ABCA4-/- model of Stargardt disease when the blood level of arachidonic acid (AA)/eicosapentaenoic acid (EPA) ratio is between 1 and 1.5. Eight-month-old mice were allocated to three groups: wild type (129S1), ABCA4-/- untreated, and ABCA4-/- ω3 treated. ω3 treatment lasted 3 months and comprised daily gavage administration of EPA and docosahexaenoic acid (DHA). Blood and retinal fatty acid analysis was performed using gas chromatography to adjust the blood AA/EPA ∼1 to 1.5. Eyecups were histologically examined using transmission electron microscopy and confocal microscopy to evaluate lipofuscin granules and the photoreceptor layer. Retinal N-retinylidene-N-retinylethanolamine (A2E), a major component of retinal pigment epithelium lipofuscin, was quantified using liquid chromatography and tandem mass spectrometry, in addition to retinal proteomic analysis to determine changes in inflammatory proteins. EPA levels increased and AA levels decreased in the blood and retinas of the treatment group. Significantly less A2E and lipofuscin granules were observed in the treatment group. The thickness of the outer nuclear layer was significantly greater in the treatment group (75.66 ± 4.80 μm) than in the wild-type (61.40 ± 1.84 μm) or untreated ABCA4-/- (56.50 ± 3.24 μm) groups. Proteomic analysis indicated lower levels of complement component 3 (C3) in the treatment group, indicative of lower complement-induced inflammatory response. Three months of ω3 supplementation (AA/EPA ∼1-1.5) reduces A2E levels, lipofuscin granules, and C3 levels in the ABCA4-/- mouse model of Stargardt disease, consistent with slowing of the disease.

  19. Correlates of electroencephalographic resting states and erythrocyte membrane docosahexaenoic and eicosapentaenoic acid levels in individuals at ultra-high risk of psychosis.

    PubMed

    Lavoie, Suzie; Whitford, Thomas J; Benninger, Franz; Feucht, Martha; Kim, Sung-Wan; Klier, Claudia M; McNamara, Robert K; Rice, Simon; Schäfer, Miriam R; Amminger, G Paul

    2016-01-01

    Abnormal levels of polyunsaturated fatty acids (PUFAs) have been reported in individuals suffering from schizophrenia. The main aim of the present study was to investigate the relationship between erythrocyte membrane fatty acid levels and resting-state brain activity occurring in individuals at ultra-high risk (UHR) of psychosis. The association between erythrocyte membrane fatty acids levels and resting-state brain activity and its value in predicting psychosis was examined in 72 UHR individuals. In the frontal area, the activity in the fast frequency band Beta2 was positively associated with docosahexaenoic acid (DHA) levels (R = 0.321, P = 0.017), and in the fronto-central area, Beta2 activity showed a positive correlation with eicosapentaenoic acid (EPA) levels (R = 0.305, P = 0.009), regardless of psychosis transition status. Conversely, the slow frequency band Theta was significantly negatively associated with EPA levels in the parieto-occipital region (R = -0.251, P = 0.033. Results also showed that Alpha power was negatively correlated with DHA levels in UHR individuals who did not transition to psychosis, while this correlation was not present in individuals who later transitioned. Our results suggest that individuals at UHR for psychosis who have higher basal omega-3 fatty acids levels present with resting EEG features associated with better states of alertness and vigilance. Furthermore, the improvement in the Alpha synchrony observed along with increased DHA levels in participants who did not transition to psychosis is disturbed in those who did transition. However, these interesting results are limited by the small sample size and low statistical power of the study. © The Royal Australian and New Zealand College of Psychiatrists 2015.

  20. Forms of n-3 (ALA, C18:3n-3 or DHA, C22:6n-3) Fatty Acids Affect Carcass Yield, Blood Lipids, Muscle n-3 Fatty Acids and Liver Gene Expression in Lambs.

    PubMed

    Ponnampalam, Eric N; Lewandowski, Paul A; Fahri, Fahri T; Burnett, Viv F; Dunshea, Frank R; Plozza, Tim; Jacobs, Joe L

    2015-11-01

    The effects of supplementing diets with n-3 alpha-linolenic acid (ALA) and docosahexaenoic acid (DHA) on plasma metabolites, carcass yield, muscle n-3 fatty acids and liver messenger RNA (mRNA) in lambs were investigated. Lambs (n = 120) were stratified to 12 groups based on body weight (35 ± 3.1 kg), and within groups randomly allocated to four dietary treatments: basal diet (BAS), BAS with 10.7 % flaxseed supplement (Flax), BAS with 1.8 % algae supplement (DHA), BAS with Flax and DHA (FlaxDHA). Lambs were fed for 56 days. Blood samples were collected on day 0 and day 56, and plasma analysed for insulin and lipids. Lambs were slaughtered, and carcass traits measured. At 30 min and 24 h, liver and muscle samples, respectively, were collected for determination of mRNA (FADS1, FADS2, CPT1A, ACOX1) and fatty acid composition. Lambs fed Flax had higher plasma triacylglycerol, body weight, body fat and carcass yield compared with the BAS group (P < 0.001). DHA supplementation increased carcass yield and muscle DHA while lowering plasma insulin compared with the BAS diet (P < 0.01). Flax treatment increased (P < 0.001) muscle ALA concentration, while DHA treatment increased (P < 0.001) muscle DHA concentration. Liver mRNA FADS2 was higher and CPT1A lower in the DHA group (P < 0.05). The FlaxDHA diet had additive effects, including higher FADS1 and ACOX1 mRNA than for the Flax or DHA diet. In summary, supplementation with ALA or DHA modulated plasma metabolites, muscle DHA, body fat and liver gene expression differently.

  1. A Metabolomic Analysis of Omega-3 Fatty Acid-Mediated Attenuation of Western Diet-Induced Nonalcoholic Steatohepatitis in LDLR -/- Mice

    PubMed Central

    Depner, Christopher M.; Traber, Maret G.; Bobe, Gerd; Kensicki, Elizabeth; Bohren, Kurt M.; Milne, Ginger; Jump, Donald B.

    2013-01-01

    Background Nonalcoholic steatohepatitis (NASH) is a progressive form of nonalcoholic fatty liver disease and a risk factor for cirrhosis, hepatocellular carcinoma and liver failure. Previously, we reported that dietary docosahexaenoic acid (DHA, 22:6,n-3) was more effective than eicosapentaenoic acid (EPA, 20:5,n-3) at reversing western diet (WD) induced NASH in LDLR-/- mice. Methods Using livers from our previous study, we carried out a global non-targeted metabolomic approach to quantify diet-induced changes in hepatic metabolism. Results Livers from WD + olive oil (WD + O)-fed mice displayed histological and gene expression features consistent with NASH. The metabolomic analysis of 320 metabolites established that the WD and n-3 polyunsaturated fatty acid (PUFA) supplementation had broad effects on all major metabolic pathways. Livers from WD + O-fed mice were enriched in saturated (SFA) and monounsaturated fatty acids (MUFA), palmitoyl-sphingomyelin, cholesterol, n-6 PUFA, n-6 PUFA-containing phosphoglycerolipids, n-6 PUFA-derived oxidized lipids (12-HETE) and depleted of C20-22 n-3 PUFA-containing phosphoglycerolipids, C20-22 n-3 PUFA-derived oxidized lipids (18-HEPE, 17,18-DiHETE) and S-lactoylglutathione, a methylglyoxal detoxification product. WD + DHA was more effective than WD + EPA at attenuating WD + O-induced changes in NASH gene expression markers, n-6 PUFA and oxidized lipids, citrate and S-lactosyl glutathione. Diet-induced changes in hepatic MUFA and sphingolipid content were associated with changes in expression of enzymes involved in MUFA and sphingolipid synthesis. Changes in hepatic oxidized fatty acids and S-lactoylglutathione, however, correlated with hepatic n-3 and n-6 C20-22 PUFA content. Hepatic C20-22 n-3 PUFA content was inversely associated with hepatic α-tocopherol and ascorbate content and positively associated with urinary F2- and F3-isoprostanes, revealing diet effects on whole body oxidative stress. Conclusion DHA regulation of

  2. A metabolomic analysis of omega-3 fatty acid-mediated attenuation of western diet-induced nonalcoholic steatohepatitis in LDLR-/- mice.

    PubMed

    Depner, Christopher M; Traber, Maret G; Bobe, Gerd; Kensicki, Elizabeth; Bohren, Kurt M; Milne, Ginger; Jump, Donald B

    2013-01-01

    Nonalcoholic steatohepatitis (NASH) is a progressive form of nonalcoholic fatty liver disease and a risk factor for cirrhosis, hepatocellular carcinoma and liver failure. Previously, we reported that dietary docosahexaenoic acid (DHA, 22:6,n-3) was more effective than eicosapentaenoic acid (EPA, 20:5,n-3) at reversing western diet (WD) induced NASH in LDLR(-/-) mice. Using livers from our previous study, we carried out a global non-targeted metabolomic approach to quantify diet-induced changes in hepatic metabolism. Livers from WD + olive oil (WD + O)-fed mice displayed histological and gene expression features consistent with NASH. The metabolomic analysis of 320 metabolites established that the WD and n-3 polyunsaturated fatty acid (PUFA) supplementation had broad effects on all major metabolic pathways. Livers from WD + O-fed mice were enriched in saturated (SFA) and monounsaturated fatty acids (MUFA), palmitoyl-sphingomyelin, cholesterol, n-6 PUFA, n-6 PUFA-containing phosphoglycerolipids, n-6 PUFA-derived oxidized lipids (12-HETE) and depleted of C20-22 n-3 PUFA-containing phosphoglycerolipids, C20-22 n-3 PUFA-derived oxidized lipids (18-HEPE, 17,18-DiHETE) and S-lactoylglutathione, a methylglyoxal detoxification product. WD + DHA was more effective than WD + EPA at attenuating WD + O-induced changes in NASH gene expression markers, n-6 PUFA and oxidized lipids, citrate and S-lactosyl glutathione. Diet-induced changes in hepatic MUFA and sphingolipid content were associated with changes in expression of enzymes involved in MUFA and sphingolipid synthesis. Changes in hepatic oxidized fatty acids and S-lactoylglutathione, however, correlated with hepatic n-3 and n-6 C20-22 PUFA content. Hepatic C20-22 n-3 PUFA content was inversely associated with hepatic α-tocopherol and ascorbate content and positively associated with urinary F2- and F3-isoprostanes, revealing diet effects on whole body oxidative stress. DHA regulation of hepatic SFA, MUFA, PUFA

  3. Omega-3 Fatty Acids, Depressive Symptoms, and Cognitive Performance in Patients With Coronary Artery Disease

    PubMed Central

    Mazereeuw, Graham; Herrmann, Nathan; Oh, Paul I.; Ma, David W.L.; Wang, Cheng Tao; Kiss, Alexander; Lanctôt, Krista L.

    2016-01-01

    Abstract This trial investigated the efficacy of omega-3 polyunsaturated fatty acid (n-3 PUFA) treatment for improving depressive symptoms and cognitive performance in patients with coronary artery disease (CAD) participating in cardiac rehabilitation. Patients with CAD aged 45 to 80 years were randomized to receive either 1.9-g/d n-3 PUFA treatment or placebo for 12 weeks. Depressive symptoms were measured using the Hamilton Depression Rating Scale (HAM-D, primary outcome) and the Beck Depression Inventory II (BDI-II). Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, criteria were used to identify a depressive episode at baseline. Cognitive performance was measured using a standardized battery for vascular cognitive impairment. In 92 patients (age, 61.7 ± 8.7 y; 76% male, 40% depressed; HAM-D, 6.9 ± 5.9; BDI-II, 12.3 ± 10.9; n = 45 n-3 PUFA, n = 47 placebo), depression decreased (HAM-D, F3,91 = 2.71 and P = 0.049; BDI-II, F3,91 = 6.24 and P < 0.01), and cognitive performance improved (attention/processing speed, F1,91 = 5.57, P = 0.02; executive function, F1,91 = 14.64, P < 0.01; visuospatial memory, F1,91 = 4.01, P = 0.04) over cardiac rehabilitation. Omega-3 PUFA treatment increased plasma eicosapentaenoic acid (F1,29 = 33.29, P < 0.01) and docosahexaenoic acid (F1,29 = 15.29, P < 0.01) concentrations but did not reduce HAM-D (F3,91 = 1.59, P = 0.20) or BDI-II (F3,91 = 0.46, P = 0.50) scores compared with placebo. Treatment did not improve cognitive performance; however, n-3 PUFAs significantly increased verbal memory compared with placebo in a subgroup of nondepressed patients (F1,54 = 4.16, P = 0.04). This trial suggests that n-3 PUFAs do not improve depressive and associated cognitive symptoms in those with CAD. The possible benefits of n-3 PUFAs for verbal memory may warrant investigation in well-powered studies. PMID:27529771

  4. Lowering the dietary omega-6: omega-3 does not hinder nonalcoholic fatty-liver disease development in a murine model.

    PubMed

    Enos, Reilly T; Velázquez, Kandy T; McClellan, Jamie L; Cranford, Taryn L; Walla, Michael D; Murphy, E Angela

    2015-05-01

    It is hypothesized that a high dietary n-6:n-3 (eg, 10-20:1) is partly responsible for the rise in obesity and related health ailments. However, no tightly controlled studies using high-fat diets differing in the n-6:n-3 have tested this hypothesis. The aim of the study was to determine the role that the dietary n-6:n-3 plays in non-alcoholic fatty-liver disease (NAFLD) and colitis development. We hypothesized that reducing the dietary n-6:n-3 would hinder the development of NAFLD and colitis. Male C57BL/6 J mice were fed high-fat diets, differing in the n-6:n-3 (1:1, 5:1, 10:1, 20:1), for 20 weeks. Gas chromatography-mass spectrometry was used to analyze the hepatic phospholipid arachidonic acid (AA):eicosapentaenoic acid and AA:docosahexaenoic acid. Hepatic metabolism, inflammatory signaling, macrophage polarization, gene expression of inflammatory mediators, oxidative and endoplasmic reticulum stress, and oxidative capacity were assessed as well as colonic inflammatory signaling, and gene expression of inflammatory mediators and tight-junction proteins. Although reducing the dietary n-6:n-3 lowered the hepatic phospholipid AA:eicosapentaenoic acid and AA:docosahexaenoic acid in a dose-dependent manner and mildly influenced inflammatory signaling, it did not significantly attenuate NAFLD development. Furthermore, the onset of NAFLD was not paired to colitis development or changes in tight-junction protein gene expression. In conclusion, reducing the dietary n-6:n-3 did not attenuate NAFLD progression; nor is it likely that colitis, or gut permeability, plays a role in NAFLD initiation in this model. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Supplementation of docosahexaenoic acid (DHA) / Eicosapentaenoic acid (EPA) in a ratio of 1/1.3 during the last trimester of pregnancy results in EPA accumulation in cord blood.

    PubMed

    Büyükuslu, Nihal; Ovalı, Sema; Altuntaş, Şükriye Leyla; Batırel, Saime; Yiğit, Pakize; Garipağaoğlu, Muazzez

    2017-10-01

    Omega-3 fatty acids (n-3 FA), specifically DHA, are associated with fetal growth and development. We aimed to determine the levels of DHA and EPA in cord serum after n-3 FA supplementation during the last trimester of pregnancy. Among 55 women, 23 were administered daily one capsule of n-3 FA supplement, involving DHA/EPA in a ratio of 1/1.3. Twenty nine women were enrolled as control group. Blood samples were collected at 22-24 weeks of gestation and at delivery. Fatty acids were analyzed with the method of GC-MS. Cord DHA level increased and EPA level decreased in both groups between the days of 22-24 and delivery. However, decrease in cord EPA level was significant in control group (p < 0.001) but not in supplement group (p > 0.05). Supplementation of DHA/EPA in a ratio of 1/1.3 during the last trimester of pregnancy caused higher cord EPA level compared to control group indicating an accumulation in umbilical cord. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Validation of the omega-3 fatty acid intake measured by a web-based food frequency questionnaire against omega-3 fatty acids in red blood cells in men with prostate cancer.

    PubMed

    Allaire, J; Moreel, X; Labonté, M-È; Léger, C; Caron, A; Julien, P; Lamarche, B; Fradet, V

    2015-09-01

    The objective of this study was to evaluate the ability of a web-based self-administered food frequency questionnaire (web-FFQ) to assess the omega-3 (ω-3) fatty acids (FAs) intake of men affected with prostate cancer (PCa) against a biomarker. The study presented herein is a sub-study from a phase II clinical trial. Enrolled patients afflicted with PCa were included in the sub-study analysis if the FA profiles from the red blood cell (RBC) membranes and FA intakes at baseline were both determined at the time of the data analysis (n=60). Spearman's correlation coefficients were calculated to estimate the correlations between FA intakes and their proportions in the RBC membranes. Intakes of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were highly correlated with their respective proportions in the RBC membranes (both rs=0.593, P<0.0001). Correlation between alpha-linolenic acid (ALA) intake and its proportion in RBC was not significant (rs=0.130, P=0.332). Correlations were observed between fatty fish intake and total ω-3 FAs (rs=0.304, P=0.02), total long-chain ω-3 FAs (rs=0.290, P=0.03) and DHA (rs=0.328, P=0.01) in RBC membranes. This study has shown that the web-FFQ is an accurate tool to assess total long-chain ω-3 FAs, EPA and DHA but not ALA intake in clinical trials and epidemiological studies carried out in men with PCa.

  7. Dietary supplementation with arachidonic acid but not eicosapentaenoic or docosahexaenoic acids alter lipids metabolism in C57BL/6J mice.

    PubMed

    Magdeldin, Sameh; Elewa, Yaser; Ikeda, Takako; Ikei, Junko; Zhang, Ying; Xu, Bo; Nameta, Masaaki; Fujinaka, Hidehiko; Yoshida, Yutaka; Yaoita, Eishin; Yamamoto, Tadashi

    2009-09-01

    In order to investigate the effects of dietary supplementation rich in omega 3 and omega 6 fatty acids, we set up an experiment of twenty four C57BL/6J male mice segregated into 3 groups: normal diet (ND), omega 3 polyunsaturated fatty acid (n-3 PUFA,) and omega 6 (n-6 PUFA). At the end of the experiment that lasted for 1 month, food consumption of ND and n-3 PUFA were similar while it decreased in n-6 PUFA group. Total cholesterol, triglycerides, free fatty acids, and phospholipids profiles were increased in n-6 PUFA. LDL decreased in n-3 PUFA while increased in n-6 PUFA fed mice comparing to control group. On the other hand, there was no difference between treatments in HDL and glucose levels. Expression of leptin (ob) gene transcripts in epididymal fat were significantly elevated in n-6 PUFA mice compared to ND and n-3 PUFA groups while hypothalamic ob receptor A (obRa) mRNA did not changed in response to diet regimes. Transmission and scanning electron microscopy showed different degrees in fatty changes in the liver of both PUFA groups including lipid droplet infiltration and Ito cells with over accumulated lipids. In conclusion, under PUFA dietary supplementation, the hyperlipidemic status and elevated ob expression of n-6 PUFA but not n-3 PUFA fed mice suggests altered lipid metabolism between PUFA groups and/or different endocrine involvement. Moreover, the coincidently structural changes observed in liver of this group direct us to call for further studies to investigate the anti-obesity effect and safety of these PUFA under high supplementation condition.

  8. Therapeutic Effects of Omega-3 Fatty Acids on Chronic Kidney Disease-Associated Pruritus: a Literature Review

    PubMed Central

    Panahi, Yunes; Dashti-Khavidaki, Simin; Farnood, Farahnoosh; Noshad, Hamid; Lotfi, Mahsa; Gharekhani, Afshin

    2016-01-01

    Uremic pruritus remains one of the most tormenting, frequent and potentially disabling problem in chronic kidney disease (CKD) patients. However, an area of substantial etiological interest with relation to uremic pruritus is the essential fatty acids deficiency. So we performed a literature review to elucidate the efficacy of omega-3 fatty acids on uremic pruritus. This review evaluated all of the studies published in English language, focusing on the clinical effects of omega-3 fatty acids on uremic pruritus. The literature review was conducted in December 2015 and carried out by searching Scopus, Medline, Cochrane central register of controlled trials, and Cochrane database of systematic reviews. The search terms were "kidney injury", "kidney failure", "chronic kidney disease", "end-stage renal disease", "dialysis", "hemodialysis", "peritoneal dialysis", "pruritus", "itch", "skin problems", "fish oil", "omega 3", "n-3 fatty acids", "polyunsaturated fatty acids", "docosahexaenoic acid", and "eicosapentaenoic acid". Four small studies investigating potential benefits of omega-3 fatty acids on symptoms of uremic pruritus were found. Among them, three small randomized controlled trials have shown a significant improvement in pruritus symptoms (evaluated by a standard questionnaire) in CKD patients who took omega-3 supplement compared to omega-6, omega-9, and placebo supplementation. Despite numerous limitations of the studies, it is worth noting that even minor reduction in itching symptoms may be clinically significant for CKD patients. Therefore, and considering multiple health benefits of omega-3 fatty acids in advanced CKD and negligible risk profile, omega-3 intake can wisely be applied to CKD patients with uremic pruritus. PMID:28101457

  9. n-3 fatty acids and cardiovascular outcomes in patients with dysglycemia.

    PubMed

    Bosch, Jackie; Gerstein, Hertzel C; Dagenais, Gilles R; Díaz, Rafael; Dyal, Leanne; Jung, Hyejung; Maggiono, Aldo P; Probstfield, Jeffrey; Ramachandran, Ambady; Riddle, Matthew C; Rydén, Lars E; Yusuf, Salim

    2012-07-26

    The use of n-3 fatty acids may prevent cardiovascular events in patients with recent myocardial infarction or heart failure. Their effects in patients with (or at risk for) type 2 diabetes mellitus are unknown. In this double-blind study with a 2-by-2 factorial design, we randomly assigned 12,536 patients who were at high risk for cardiovascular events and had impaired fasting glucose, impaired glucose tolerance, or diabetes to receive a 1-g capsule containing at least 900 mg (90% or more) of ethyl esters of n-3 fatty acids or placebo daily and to receive either insulin glargine or standard care. The primary outcome was death from cardiovascular causes. The results of the comparison between n-3 fatty acids and placebo are reported here. During a median follow up of 6.2 years, the incidence of the primary outcome was not significantly decreased among patients receiving n-3 fatty acids, as compared with those receiving placebo (574 patients [9.1%] vs. 581 patients [9.3%]; hazard ratio, 0.98; 95% confidence interval [CI], 0.87 to 1.10; P=0.72). The use of n-3 fatty acids also had no significant effect on the rates of major vascular events (1034 patients [16.5%] vs. 1017 patients [16.3%]; hazard ratio, 1.01; 95% CI, 0.93 to 1.10; P=0.81), death from any cause (951 [15.1%] vs. 964 [15.4%]; hazard ratio, 0.98; 95% CI, 0.89 to 1.07; P=0.63), or death from arrhythmia (288 [4.6%] vs. 259 [4.1%]; hazard ratio, 1.10; 95% CI, 0.93 to 1.30; P=0.26). Triglyceride levels were reduced by 14.5 mg per deciliter (0.16 mmol per liter) more among patients receiving n-3 fatty acids than among those receiving placebo (P<0.001), without a significant effect on other lipids. Adverse effects were similar in the two groups. Daily supplementation with 1 g of n-3 fatty acids did not reduce the rate of cardiovascular events in patients at high risk for cardiovascular events. (Funded by Sanofi; ORIGIN ClinicalTrials.gov number, NCT00069784.).

  10. Omega-3 fatty acids prevent inflammation and metabolic disorder through inhibition of NLRP3 inflammasome activation.

    PubMed

    Yan, Yiqing; Jiang, Wei; Spinetti, Thibaud; Tardivel, Aubry; Castillo, Rosa; Bourquin, Carole; Guarda, Greta; Tian, Zhigang; Tschopp, Jurg; Zhou, Rongbin

    2013-06-27

    Omega-3 fatty acids (ω-3 FAs) have potential anti-inflammatory activity in a variety of inflammatory human diseases, but the mechanisms remain poorly understood. Here we show that stimulation of macrophages with ω-3 FAs, including eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and other family members, abolished NLRP3 inflammasome activation and inhibited subsequent caspase-1 activation and IL-1β secretion. In addition, G protein-coupled receptor 120 (GPR120) and GPR40 and their downstream scaffold protein β-arrestin-2 were shown to be involved in inflammasome inhibition induced by ω-3 FAs. Importantly, ω-3 FAs also prevented NLRP3 inflammasome-dependent inflammation and metabolic disorder in a high-fat-diet-induced type 2 diabetes model. Our results reveal a mechanism through which ω-3 FAs repress inflammation and prevent inflammation-driven diseases and suggest the potential clinical use of ω-3 FAs in gout, autoinflammatory syndromes, or other NLRP3 inflammasome-driven inflammatory diseases. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Effects of Capsaicin Coadministered with Eicosapentaenoic Acid on Obesity-Related Dysregulation in High-Fat-Fed Mice.

    PubMed

    Hirotani, Yoshihiko; Fukamachi, Junta; Ueyama, Rina; Urashima, Yoko; Ikeda, Kenji

    2017-01-01

    Obesity-induced inflammation contributes to the development of metabolic disorders such as insulin resistance, type 2 diabetes, fatty liver disease, and cardiovascular disease. In this study, we investigated whether the combination of eicosapentaenoic acid (EPA) and capsaicin could protect against high-fat diet (HFD)-induced obesity and related metabolic disorders. The experiments were performed using male C57BL/6J mice that were fed one of the following diets for 10 weeks: standard chow (5.3% fat content) (normal group), a HFD (32.0% fat content) (HFD group), or a HFD supplemented with either 4% (w/w) EPA (EPA group) or a combination of 4% (w/w) EPA and 0.01% (w/w) capsaicin (EPA+Cap group). Our results indicated that the body, fat and liver tissue weights and levels of serum glucose, insulin, total cholesterol, triglyceride, high-density lipoprotein-cholesterol, aspartate aminotransferase, and alanine aminotransferase were significantly higher in HFD group mice than in normal group mice (p<0.05 in all cases). However, the body and fat tissue weights and serum glucose levels and homeostasis model assessment of insulin resistance were significantly lower in EPA+Cap group mice group than in HFD and EPA group mice (p<0.05 in all cases). Thus, our study suggests that the combination of EPA and capsaicin might be beneficial for delaying the progression of obesity-related metabolic dysregulation and subsequent complications.

  12. Eicosapentaenoic acid improves endothelial function and nitric oxide bioavailability in a manner that is enhanced in combination with a statin.

    PubMed

    Mason, R Preston; Dawoud, Hazem; Jacob, Robert F; Sherratt, Samuel C R; Malinski, Tadeusz

    2018-07-01

    The endothelium exerts many vasoprotective effects that are largely mediated by release of nitric oxide (NO). Endothelial dysfunction represents an early but reversible step in atherosclerosis and is characterized by a reduction in the bioavailability of NO. Previous studies have shown that eicosapentaenoic acid (EPA), an omega-3 fatty acid (O3FA), and statins individually improve endothelial cell function, but their effects in combination have not been tested. Through a series of in vitro experiments, this study evaluated the effects of a combined treatment of EPA and the active metabolite of atorvastatin (ATM) on endothelial cell function under conditions of oxidative stress. Specifically, the comparative and time-dependent effects of these agents on endothelial dysfunction were examined by measuring the levels of NO and peroxynitrite (ONOO - ) released from human umbilical vein endothelial cells (HUVECs). The data suggest that combined treatment with EPA and ATM is beneficial to endothelial function and was unique to EPA and ATM since similar improvements could not be recapitulated by substituting another O3FA docosahexaenoic acid (DHA) or other TG-lowering agents such as fenofibrate, niacin, or gemfibrozil. Comparable beneficial effects were observed when HUVECs were pretreated with EPA and ATM before exposure to oxidative stress. Interestingly, the kinetics of EPA-based protection of endothelial function in response to oxidation were found to be significantly different than those of DHA. Lastly, the beneficial effects on endothelial function generated by combined treatment of EPA and ATM were reproduced when this study was expanded to an ex vivo model utilizing rat glomerular endothelial cells. Taken together, these findings suggest that a combined treatment of EPA and ATM can inhibit endothelial dysfunction that occurs in response to conditions such as hyperglycemia, oxidative stress, and dyslipidemia. Copyright © 2018 The Authors. Published by Elsevier

  13. Bioavailability and potential uses of vegetarian sources of omega-3 fatty acids: a review of the literature.

    PubMed

    Lane, Katie; Derbyshire, Emma; Li, Weili; Brennan, Charles

    2014-01-01

    Presently alpha-linolenic acid (ALA) is the most widely used vegetarian LC3PUFA, but only marginal amounts are converted into eicosapentaenoic (EPA) and docosahexaenoic acid (DHA); both of which are strongly related to human health. Currently, fish oils represent the most prominent dietary sources of EPA and DHA; however, these are unsuitable for vegetarians. Alternative sources include flaxseed, echium, walnut, and algal oil but their conversion to EPA and DHA must be considered. The present systematic review sets out to collate information from intervention studies examining the bioavailability of alternative vegetarian long chain omega-3 (n-3) polyunsaturated fatty acids (LC3PUFA) sources. Ten key papers published over the last 10 years were identified with seven intervention studies reporting that ALA from nut and seed oils was not converted to DHA at all. Three studies showed that ingestion of micro-algae oil led to significant increases in blood erythrocyte and plasma DHA. Further work is now needed to identify optimal doses of alternative vegetarian LC3PUFAs and how these can be integrated within daily diets. The potential role of algal oils appears to be particularly promising and an area in which further research is warranted.

  14. Comparative study of tissue deposition of omega-3 fatty acids from polar-lipid rich oil of the microalgae Nannochloropsis oculata with krill oil in rats.

    PubMed

    Kagan, Michael L; Levy, Aharon; Leikin-Frenkel, Alicia

    2015-01-01

    Long-chain omega-3 polyunsaturated fatty acids (LC n-3 PUFA) exert health benefits which are dependent upon their incorporation into blood, cells and tissues. Plasma and tissue deposition of LC n-3 PUFA from oils extracted from the micro-algae Nannochloropsis oculata and from krill were compared in rats. The algal oil provides eicosapentaenoic acid (EPA) partly conjugated (15%) to phospholipids and glycolipids but no docosahexaenoic acid (DHA), whereas krill oil provides both EPA and DHA conjugated in part (40%) to phospholipids. Rats fed a standard diet received either krill oil or polar-lipid rich algal oil by gavage daily for 7 days (5 ml oil per kg body weight each day). Fatty acid concentrations were analyzed in plasma, brain and liver, and two adipose depots since these represent transport, functional and storage pools of fatty acids, respectively. When measuring total LC n-3 PUFA (sum of EPA, docosapentaenoic acid (DPA) and DHA), there was no statistically significant difference between the algal oil and krill oil for plasma, brain, liver and gonadal adipose tissue. Concentrations of LC n-3 PUFA were higher in the retroperitoneal adipose tissue from the algal oil group. Tissue uptake of LC n-3 PUFA from an algal oil containing 15% polar lipids (glycolipids and phospholipids) was found to be equivalent to krill oil containing 40% phospholipids. This may be due to glycolipids forming smaller micelles during ingestive hydrolysis than phospholipids. Ingestion of fatty acids with glycolipids may improve bioavailability, but this needs to be further explored.

  15. Influence of dietary n-3 LC-PUFA on growth, nutritional composition and immune function in marine fish Sebastiscus marmoratus

    NASA Astrophysics Data System (ADS)

    Peng, Shiming; Yue, Yanfeng; Gao, Quanxin; Shi, Zhaohong; Yin, Fei; Wang, Jiangang

    2014-09-01

    A 60-day feeding experiment was conducted to investigate the influence of dietary omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) on growth, nutritional composition and immune function of marine fish Sebastiscus marmoratus. Five diets containing 3.6, 10.2, 18.2, 26.5, or 37.0 g/kg n-3 LC-PUFA were prepared. The results reveal significant influences of dietary n-3 LC-PUFA on the final weight, weight gain, specific growth rate, feed conversion ratio, and condition factor. As dietary n-3 LCPUFA increased, weight gain and specific growth rate increased and were significantly higher in groups fed 18.2, 26.5 and 37.0 g/kg than in groups fed 3.6 and 10.2 g/kg ( P<0.05); there was no significant difference between groups fed 18.2, 26.5, or 37.0 g/kg ( P>0.05). With increasing dietary n-3 LC-PUFA, eicosapentaenoic acid and docosahexenoic acid content in muscle and liver increased significantly, immunoglobulin class M content gradually increased from 9.1 to 14.8 μg/L, and lysozyme activity content increased from 1 355 to 2 268 U/mL. Broken line model analysis according to weight gain indicated that a dietary n-3 LC-PUFA level of 18.2 g/kg is essential for normal growth at a fat level of 125 g/kg. Therefore, appropriate dietary n-3 LC-PUFA not only promote growth and improve the n-3 LC-PUFA content, but also enhance immune function in S. marmoratus.

  16. Dietary omega-3 fatty acids for women.

    PubMed

    Bourre, Jean-Marie

    2007-01-01

    This review details the specific needs of women for omega-3 fatty acids, including alpha linoleic acid (ALA) and the very long chain fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Omega-3 fatty acid (dietary or in capsules) ensures that a woman's adipose tissue contains a reserve of these fatty acids for the developing fetus and the breast-fed newborn infant. This ensures the optimal cerebral and cognitive development of the infant. The presence of large quantities of EPA and DHA in the diet slightly lengthens pregnancy, and improves its quality. Human milk contains both ALA and DHA, unlike that of other mammals. Conditions such as diabetes can alter the fatty acid profile of mother's milk, while certain diets, like those of vegetarians, vegans, or even macrobiotic diets, can have the same effect, if they do not include seafood. ALA, DHA and EPA, are important for preventing ischemic cardiovascular disease in women of all ages. Omega-3 fatty acids can help to prevent the development of certain cancers, particularly those of the breast and colon, and possibly of the uterus and the skin, and are likely to reduce the risk of postpartum depression, manic-depressive psychosis, dementias (Alzheimer's disease and others), hypertension, toxemia, diabetes and, to a certain extend, age-related macular degeneration. Omega-3 fatty acids could play a positive role in the prevention of menstrual syndrome and postmenopausal hot flushes. The normal western diet contains little ALA (less than 50% of the RDA). The only adequate sources are rapeseed oil (canola), walnuts and so-called "omega-3" eggs (similar to wild-type or Cretan eggs). The amounts of EPA and DHA in the diet vary greatly from person to person. The only good sources are fish and seafood, together with "omega-3" eggs.

  17. Omega-3 Fatty Acid Supplementation is Associated With Oxidative Stress and Dyslipidemia, but Does not Contribute to Better Lipid and Oxidative Status on Hemodialysis Patients.

    PubMed

    de Mattos, Andresa Marques; da Costa, José Abrão Cardeal; Jordão Júnior, Alceu Afonso; Chiarello, Paula Garcia

    2017-09-01

    The aim of the study was to explore the effects of n-3 polyunsaturated fatty acids (PUFA) supplementation in physiological doses on oxidative stress (OS) and dyslipidemia in patients on hemodialysis (HD). Randomized, double-blind, controlled, experimental trial. A total of 88 HD patients ≥18 years old and on HD for at least 6 months. A total of 43 patients received 1.28 g/day of n-3 PUFA, and 45 other patients received soybean oil for 12 weeks. Both oil supplements were vitamin E standardized. Routine tests, lipid profile, advanced oxidation protein products, isoprostanes, vitamins C and E, total antioxidant capacity, serum fatty acids, and adverse effects were evaluated. Supplementation was not able to alter lipid or OS profiles. There was an increase in the serum n-3 PUFA levels (eicosapentaenoic acid: +116%; docosahexaenoic acid: +100%) and an improvement in the n-6/n-3 ratio (-49%) in the supplemented group. Associations between n-3 PUFA and improvement in isoprostane and advanced oxidation protein product and HDL were observed. Treatment was well tolerated. Although the n-3 PUFA supplementation was associated with lower concentrations of isoprostane and advanced oxidation protein product and higher HDL levels, it was not sufficient for the improvement of highly prevalent risk factors, such as OS and dyslipidemia in HD patients. Copyright © 2017 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  18. A high-fat, high-oleic diet, but not a high-fat, saturated diet, reduces hepatic alpha-linolenic acid and eicosapentaenoic acid content in mice

    USDA-ARS?s Scientific Manuscript database

    Considerable research centers upon the role of linoleic acid (LNA; 18:2n6) as a competitive inhibitor of a-linolenic (ALA; 18:3n3) metabolism; however, little data exist as to the impact of saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA) on ALA metabolism. We tested the hypothesi...

  19. Regulation of the Mevalonate Pathway for the Prevention of Breast Cancer

    DTIC Science & Technology

    2002-08-01

    eicosapentaenoic acid (EPA) on growth of MCF-7 cells. In Task 4 (new), we determined that mevalonate promotes the growth of mammary tumors in nude mice, and...serum medium (2% fetal bovine serum) was used to support MCF-7 growth during test treatments. The effects of the n-3 PUFAs eicosapentaenoic acid (EPA...mammary carcinogenesis by n-3 polyunsaturated fatty acids (PUFAs) can be accounted for by their inhibitory effect on the cholesterol biosynthesis

  20. Hot topic: Enhancing omega-3 fatty acids in milk fat of dairy cows by using stearidonic acid-enriched soybean oil from genetically modified soybeans.

    PubMed

    Bernal-Santos, G; O'Donnell, A M; Vicini, J L; Hartnell, G F; Bauman, D E

    2010-01-01

    Very long chain n-3 fatty acids such as eicosapentaenoic acid (EPA; 20:5n-3) are important in human cardiac health and the prevention of chronic diseases, but food sources are limited. Stearidonic acid (SDA; 18:4n-3) is an n-3 fatty acid that humans are able to convert to EPA. In utilizing SDA-enhanced soybean oil (SBO) derived from genetically modified soybeans, our objectives were to examine the potential to increase the n-3 fatty acid content of milk fat and to determine the efficiency of SDA uptake from the digestive tract and transfer to milk fat. Three multiparous, rumen-fistulated Holstein cows were assigned randomly in a 3 x 3 Latin square design to the following treatments: 1) control (no oil infusion); 2) abomasal infusion of SDA-enhanced SBO (SDA-abo); and 3) ruminal infusion of SDA-enhanced SBO (SDA-rum). The SDA-enhanced SBO contained 27.1% SDA, 10.4% alpha-linolenic acid, and 7.2% gamma-linolenic acid. Oil infusions provided 57 g/d of SDA with equal amounts of oil infused into either the rumen or abomasum at 6-h intervals over a 7-d infusion period. Cow numbers were limited and no treatment differences were detected for DMI or milk production (22.9+/-0.5 kg/d and 32.3+/-0.9 kg/d, respectively; least squares means +/- SE), milk protein percentage and yield (3.24+/-0.04% and 1.03+/-0.02 kg/d), or lactose percentage and yield (4.88+/-0.05% and 1.55+/-0.05 kg/d). Treatment also had no effect on milk fat yield (1.36+/-0.03 kg/d), but milk fat percentage was lower for the SDA-rum treatment (4.04+/-0.04% vs. 4.30+/-0.04% for control and 4.41+/-0.05% for SDA-abo). The SDA-abo treatment increased n-3 fatty acids to 3.9% of total milk fatty acids, a value more than 5-fold greater than that for the control. Expressed as a percentage of total milk fatty acids, values (least squares means +/- SE) for the SDA-abo treatment were 1.55+/-0.03% for alpha-linolenic acid (18:3n-3), 1.86+/-0.02 for SDA, 0.23 +/- <0.01 for eicosatetraenoic acid (20:4n-3), and 0

  1. Development of rabbit meat products fortified with n-3 polyunsaturated fatty acids.

    PubMed

    Petracci, Massimiliano; Bianchi, Maurizio; Cavani, Claudio

    2009-02-01

    Rabbit meat is a highly digestible, tasty, low-calorie food, often recommended by nutritionists over other meats. Currently research in the rabbit sector is interested in developing feeding strategies aiming to further increase the nutritional value of rabbit meat as a "functional food" by including n-3 polyunsaturated fatty acids (n-3 PUFA), conjugated linoleic acid (CLA), vitamins and antioxidants in rabbit diets and assessing their effects on both raw and stored/processed meat quality properties. Our recent studies indicate that the dietary inclusion from 3 to 6% of linseed might be considered as a way to achieve the enrichment of the meat with α-linolenic acid and to guarantee satisfactory product stability during further processing and storage. Considering that 6% dietary linseed corresponds to a n-3 PUFA content of 8.5% of the total fatty acids and a lipid content of 4.7 g/100 g of leg meat, a content of 396 mg n-3 PUFA/100g meat can be estimated, which represents about 19% of the recommended daily allowance (RDA) for n-3 PUFA.

  2. Development of Rabbit Meat Products Fortified With n-3 Polyunsaturated Fatty Acids

    PubMed Central

    Petracci, Massimiliano; Bianchi, Maurizio; Cavani, Claudio

    2009-01-01

    Rabbit meat is a highly digestible, tasty, low-calorie food, often recommended by nutritionists over other meats. Currently research in the rabbit sector is interested in developing feeding strategies aiming to further increase the nutritional value of rabbit meat as a “functional food” by including n-3 polyunsaturated fatty acids (n-3 PUFA), conjugated linoleic acid (CLA), vitamins and antioxidants in rabbit diets and assessing their effects on both raw and stored/processed meat quality properties. Our recent studies indicate that the dietary inclusion from 3 to 6% of linseed might be considered as a way to achieve the enrichment of the meat with α-linolenic acid and to guarantee satisfactory product stability during further processing and storage. Considering that 6% dietary linseed corresponds to a n-3 PUFA content of 8.5% of the total fatty acids and a lipid content of 4.7 g/100 g of leg meat, a content of 396 mg n-3 PUFA/100g meat can be estimated, which represents about 19% of the recommended daily allowance (RDA) for n-3 PUFA. PMID:22253971

  3. The Microbiota of Freshwater Fish and Freshwater Niches Contain Omega-3 Fatty Acid-Producing Shewanella Species

    PubMed Central

    McGraw, Joseph E.; Jensen, Brittany J.; Bishop, Sydney S.; Lokken, James P.; Dorff, Kellen J.; Ripley, Michael P.; Munro, James B.

    2015-01-01

    Approximately 30 years ago, it was discovered that free-living bacteria isolated from cold ocean depths could produce polyunsaturated fatty acids (PUFA) such as eicosapentaenoic acid (EPA) (20:5n-3) or docosahexaenoic acid (DHA) (22:6n-3), two PUFA essential for human health. Numerous laboratories have also discovered that EPA- and/or DHA-producing bacteria, many of them members of the Shewanella genus, could be isolated from the intestinal tracts of omega-3 fatty acid-rich marine fish. If bacteria contribute omega-3 fatty acids to the host fish in general or if they assist some bacterial species in adaptation to cold, then cold freshwater fish or habitats should also harbor these producers. Thus, we undertook a study to see if these niches also contained omega-3 fatty acid producers. We were successful in isolating and characterizing unique EPA-producing strains of Shewanella from three strictly freshwater native fish species, i.e., lake whitefish (Coregonus clupeaformis), lean lake trout (Salvelinus namaycush), and walleye (Sander vitreus), and from two other freshwater nonnative fish, i.e., coho salmon (Oncorhynchus kisutch) and seeforellen brown trout (Salmo trutta). We were also able to isolate four unique free-living strains of EPA-producing Shewanella from freshwater habitats. Phylogenetic and phenotypic analyses suggest that one producer is clearly a member of the Shewanella morhuae species and another is sister to members of the marine PUFA-producing Shewanella baltica species. However, the remaining isolates have more ambiguous relationships, sharing a common ancestor with non-PUFA-producing Shewanella putrefaciens isolates rather than marine S. baltica isolates despite having a phenotype more consistent with S. baltica strains. PMID:26497452

  4. Comparative fatty acid composition of four Sargassum species (Fucales, Phaeophyta)

    NASA Astrophysics Data System (ADS)

    Wu, Xiang-Chun; Lu, Bao-Ren; Tseng, C. K.

    1995-12-01

    Fatty acid composition of four Sargassum species from Qingdao and Shidao, Shandong Province was investigated. 16:0 (palmitic acid) was the major saturated fatty acid. C18 and C20 were the main polyunsaturated fatty acids (PUFAs). Arachidonic acid and eicosapentaenoic acid predominated among polyenoic acids in all the algal species examined, except for Sargassum sp. which had low concentration of eicosapentaenoic acid.

  5. Omega-3 polyunsaturated fatty acids for the prevention of cardiovascular disease: do formulation, dosage & comparator matter?

    PubMed

    DiNicolantonio, James J; Meier, Pascal; O'Keefe, James H

    2013-01-01

    Multiple trials over the past two decades testing omega-3 polyunsaturated fatty acids (PUFAs), containing eicosapentaenoic acid (EPA) and or docosahexaenoic acid (DHA), have shown substantial benefits for reducing major coronary heart disease (CHD) events, all-cause mortality, cardiovascular (CV) death, sudden cardiac death (SCD), and stroke. However, recent trials testing omega-3s have generally failed to confirm these benefits. While increased fish and fish oil intake among the general population, increased use of optimal medical therapy (including statins, aspirin, and modern antihypertensive medications) probably make it more challenging for fish oil supplementation to show additional benefits, there might be further explanations in the formulation, dosage, and comparator used in these recent omega-3 trials.

  6. The relevance of serum levels of long chain omega-3 polyunsaturated fatty acids and prostate cancer risk: A meta-analysis

    PubMed Central

    Chua, Michael E.; Sio, Maria Christina D.; Sorongon, Mishell C.; Morales, Marcelino L.

    2013-01-01

    Objective: Our objective was to systematically analyze the evidence for an association between serum level long chain omega-3 polyunsaturated fatty acid (n-3 PUFA) and prostate cancer risk from human epidemiological studies. Study Procedures: We searched biomedical literature databases up to November 2011 and included epidemiological studies with description of long chain n-3 PUFA and incidence of prostate cancer in humans. Critical appraisal was done by two independent reviewers. Data were pooled using the general variance-based method with random-effects model; effect estimates were expressed as risk ratio with 95% confidence interval (CI). Heterogeneity was assessed by Chi2 and quantified by I2, publication bias was also determined. Results: In total, 12 studies were included. Significant negative association was noted between high serum level of n-3 PUFA doc-osapentaenoic acid (DPA) and total prostate cancer risk (RR:0.756; 95% CI 0.599, 0.955; p = 0.019). Likewise, a positive association between high blood level of fish oil contents, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and high-grade prostate tumour incidence (RR:1.381; 95% CI 1.050, 1.817; p = 0.021) was noted; however, this finding was evident only after adjustment was done on interstudy variability through the removal of a lower quality study from the pool. Conclusions: High serum levels of long chain n-3 PUFA DPA is associated with reduced total prostate cancer risk. While high blood level of EPA and DHA is possibly associated with increased high-grade prostate tumour risk. PMID:23766835

  7. Eicosapentaenoic and docosahexaenoic acids have different effects on peripheral phospholipase A2 gene expressions in acute depressed patients.

    PubMed

    Su, Kuan-Pin; Yang, Hui-Ting; Chang, Jane Pei-Chen; Shih, Yin-Hua; Guu, Ta-Wei; Kumaran, Satyanarayanan Senthil; Gałecki, Piotr; Walczewska, Anna; Pariante, Carmine M

    2018-01-03

    Omega-3 polyunsaturated fatty acids (PUFAs) have been proven critical in the development and management of major depressive disorder (MDD) by a number of epidemiological, clinical and preclinical studies, but the molecular mechanisms underlying this therapeutic action are yet to be understood. Although eicosapentaenoic acid (EPA) seems to be the active component of omega-3 PUFAs' antidepressant effects, the biological research about the difference of specific genetic regulations between EPA and docosahexaenoic acid (DHA), the two main components of omega-3 PUFAs, is still lacking in human subjects. We conducted a 12-week randomized-controlled trial comparing the effects of EPA and DHA on gene expressions of phospholipase A2 (cPLA2) and cyclooxygenase-2 (COX2), serotonin transporter (5HTT), and Tryptophan hydroxylase 2 (TPH-2) in 27 MDD patients. In addition, the erythrocyte PUFA compositions and the candidate gene expressions were also compared between these 27 MDD patients and 22 healthy controls. EPA was associated with a significant decrease in HAM-D scores (CI: -13 to -21, p<0.001) and significant increases in erythrocyte levels of EPA (CI: +1.0% to +2.9%, p=0.001) and DHA (CI: +2.9% to +5.6%, p=0.007). DHA treatment was associated with a significant decrease in HAM-D scores (CI: -6 to -14, p<0.001) and a significant increase in DHA levels (CI: +0.2% to +2.3%, p=0.047), but not of EPA levels. The cPLA2 gene expression levels were significantly increased in patients received EPA (1.9 folds, p=0.038), but not DHA (1.08 folds, p=0.92). There was a tendency for both EPA and DHA groups to decrease COX-2 gene expressions. The gene expressions of COX-2, cPLA2, TPH-2 and 5-HTT did not differ between MDD cases and healthy controls. EPA differentiates from DHA in clinical antidepressant efficacy and in upregulating cPLA2 gene regulations, which supports the clinical observation showing the superiority of EPA's antidepressant effects. ClinicalTrials.gov identifier: NCT

  8. Highly Purified Eicosapentaenoic Acid Increases Interleukin-10 Levels of Peripheral Blood Monocytes in Obese Patients With Dyslipidemia

    PubMed Central

    Satoh-Asahara, Noriko; Shimatsu, Akira; Sasaki, Yousuke; Nakaoka, Hidenori; Himeno, Akihiro; Tochiya, Mayu; Kono, Shigeo; Takaya, Tomohide; Ono, Koh; Wada, Hiromichi; Suganami, Takayoshi; Hasegawa, Koji; Ogawa, Yoshihiro

    2012-01-01

    OBJECTIVE It has recently been highlighted that proinflammatory (M1) macrophages predominate over anti-inflammatory (M2) macrophages in obesity, thereby contributing to obesity-induced adipose inflammation and insulin resistance. A recent clinical trial revealed that highly purified eicosapentaenoic acid (EPA) reduces the incidence of major coronary events. In this study, we examined the effect of EPA on M1/M2-like phenotypes of peripheral blood monocytes in obese dyslipidemic patients. RESEARCH DESIGN AND METHODS Peripheral blood monocytes were prepared from 26 obese patients without and 90 obese patients with dyslipidemia. Of the latter 90 obese patients with dyslipidemia, 82 patients were treated with or without EPA treatment (1.8 g daily) for 3 months. RESULTS Monocytes in obese patients with dyslipidemia showed a significantly lower expression of interleukin-10 (IL-10), an M2 marker, than those without dyslipidemia. EPA significantly increased serum IL-10 and EPA levels, the EPA/arachidonic acid (AA) ratio, and monocyte IL-10 expression and decreased the pulse wave velocity (PWV), an index of arterial stiffness, compared with the control group. After EPA treatment, the serum EPA/AA ratio was significantly correlated with monocyte IL-10 expression. Only increases in monocyte IL-10 expression and serum adiponectin were independent determinants of a decreased PWV by EPA. Furthermore, EPA significantly increased the expression and secretion of IL-10 in human monocytic THP-1 cells through a peroxisome proliferator–activated receptor (PPAR)γ-dependent pathway. CONCLUSIONS This study is the first to show that EPA increases the monocyte IL-10 expression in parallel with decrease of arterial stiffness, which may contribute to the antiatherogenic effect of EPA in obese dyslipidemic patients. PMID:22912426

  9. Omega-3 fatty acids for breast cancer prevention and survivorship.

    PubMed

    Fabian, Carol J; Kimler, Bruce F; Hursting, Stephen D

    2015-05-04

    Women with evidence of high intake ratios of the marine omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) relative to the omega-6 arachidonic acid have been found to have a reduced risk of breast cancer compared with those with low ratios in some but not all case-control and cohort studies. If increasing EPA and DHA relative to arachidonic acid is effective in reducing breast cancer risk, likely mechanisms include reduction in proinflammatory lipid derivatives, inhibition of nuclear factor-κB-induced cytokine production, and decreased growth factor receptor signaling as a result of alteration in membrane lipid rafts. Primary prevention trials with either risk biomarkers or cancer incidence as endpoints are underway but final results of these trials are currently unavailable. EPA and DHA supplementation is also being explored in an effort to help prevent or alleviate common problems after a breast cancer diagnosis, including cardiac and cognitive dysfunction and chemotherapy-induced peripheral neuropathy. The insulin-sensitizing and anabolic properties of EPA and DHA also suggest supplementation studies to determine whether these omega-3 fatty acids might reduce chemotherapy-associated loss of muscle mass and weight gain. We will briefly review relevant omega-3 fatty acid metabolism, and early investigations in breast cancer prevention and survivorship.

  10. Metabolism of uniformly labeled 13C-eicosapentaenoic acid and 13C-arachidonic acid in young and old men.

    PubMed

    Léveillé, Pauline; Chouinard-Watkins, Raphaël; Windust, Anthony; Lawrence, Peter; Cunnane, Stephen C; Brenna, J Thomas; Plourde, Mélanie

    2017-08-01

    Background: Plasma eicosapentaenoic acid (EPA) and arachidonic acid (AA) concentrations increase with age. Objective: The aim of this study was to evaluate EPA and AA metabolism in young and old men by using uniformly labeled carbon-13 ( 13 C) fatty acids. Design: Six young (∼25 y old) and 6 old (∼75 y old) healthy men were recruited. Each participant consumed a single oral dose of 35 mg 13 C-EPA and its metabolism was followed in the course of 14 d in the plasma and 28 d in the breath. After the washout period of ≥28 d, the same participants consumed a single oral dose of 50 mg 13 C-AA and its metabolism was followed for 28 d in plasma and breath. Results: There was a time × age interaction for 13 C-EPA ( P time × age = 0.008), and the shape of the postprandial curves was different between young and old men. The 13 C-EPA plasma half-life was ∼2 d for both young and old men ( P = 0.485). The percentage dose recovered of 13 C-EPA per hour as 13 CO 2 and the cumulative β-oxidation of 13 C-EPA did not differ between young and old men. At 7 d, however, old men had a >2.2-fold higher plasma 13 C-DHA concentration synthesized from 13 C-EPA compared with young men ( P age = 0.03). 13 C-AA metabolism was not different between young and old men. The 13 C-AA plasma half-life was ∼4.4 d in both young and old participants ( P = 0.589). Conclusions: The metabolism of 13 C-AA was not modified by age, whereas 13 C-EPA metabolism was slightly but significantly different in old compared with young men. The higher plasma 13 C-DHA seen in old men may be a result of slower plasma DHA clearance with age. This trial was registered at clinicaltrials.gov as NCT02957188. © 2017 American Society for Nutrition.

  11. Overview of Omega-3 Fatty Acid Therapies

    PubMed Central

    Bradberry, J. Chris; Hilleman, Daniel E.

    2013-01-01

    The triglyceride (TG)-lowering benefits of the very-long-chain omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are well documented. Available as prescription formulations and dietary supplements, EPA and DHA are recommended by the American Heart Association for patients with coronary heart disease and hypertriglyceridemia. Dietary supplements are not subject to the same government regulatory standards for safety, efficacy, and purity as prescription drugs are; moreover, supplements may contain variable concentrations of EPA and DHA and possibly other contaminants. Reducing low-density lipoprotein-cholesterol (LDL-C) levels remains the primary treatment goal in the management of dyslipidemia. Dietary supplements and prescription formulations that contain both EPA and DHA may lower TG levels, but they may also increase LDL-C levels. Two prescription formulations of long-chain omega-3 fatty acids are available in the U.S. Although prescription omega-3 acid ethyl esters (OM-3-A EEs, Lovaza) contain high-purity EPA and DHA, prescription icosapent ethyl (IPE, Vascepa) is a high-purity EPA agent. In clinical trials of statin-treated and non–statin-treated patients with hypertriglyceridemia, both OM-3-A EE and IPE lowered TG levels and other atherogenic markers; however, IPE did not increase LDL-C levels. Results of recent outcomes trials of long-chain omega-3 fatty acids, fibrates, and niacin have been disappointing, failing to show additional reductions in adverse cardiovascular events when combined with statins. Therefore, the REDUCE–IT study is being conducted to evaluate the effect of the combination of IPE and statins on cardiovascular outcomes in high-risk patients. The results of this trial are eagerly anticipated. PMID:24391388

  12. Differential effects of triacylglycerol positional isomers containing n-3 series highly unsaturated fatty acids on lipid metabolism in C57BL/6J mice.

    PubMed

    Yoshinaga, Kazuaki; Sasaki, Keiichi; Watanabe, Hiroyuki; Nagao, Koji; Inoue, Nao; Shirouchi, Bungo; Yanagita, Teruyoshi; Nagai, Toshiharu; Mizobe, Hoyo; Kojima, Koichi; Beppu, Fumiaki; Gotoh, Naohiro

    2015-01-01

    The present study investigated the effects of binding position of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) to triacylglycerol (TAG) on lipid metabolism in C57BL/6J mice. Mice were treated with pure TAG positional isomers, including 1,2(2,3)-dipalmitoyl-3(1)-eicosapentaenoyl glycerol, 1,3-dipalmitoyl-2-eicosapentaenoyl glycerol, 1,2(2,3)-dipalmitoyl-3(1)-docosahexaenoyl glycerol, and 1,3-dipalmitoyl-2-docosahexaenoyl glycerol. Compared to DHA bound to the α-position of TAG, DHA bound to the β-position more effectively inhibited fatty acid synthetic enzymes and cholesterol-metabolism enzymes and thus reduced TAG and cholesterol concentrations in the serum and liver. EPA bound to the α-position of TAG, but not EPA bound to the β-position of TAG, significantly decreased hepatic cholesterol concentrations. Additionally, EPA bound to the α-position of TAG increased the ratio of PGI2 to TXA2 to a higher degree than EPA bound to the β-position. These results suggested that the binding position of EPA and DHA to TAG affected TAG and cholesterol metabolism as well as eicosanoid production in C57BL/6J mice. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Sea cucumber and blue mussel: new sources of phospholipid enriched omega-3 fatty acids with a potential role in 3T3-L1 adipocyte metabolism.

    PubMed

    Vaidya, Hitesh; Cheema, Sukhinder K

    2014-12-01

    Omega (n)-3 polyunsaturated fatty acids (PUFA), namely docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), are known to reduce the risk of insulin resistance and ameliorate obesity-associated disorders. DHA and EPA structured in the phospholipid form possess superior biological effects compared to the triglyceride form available in fish oil. In this study, we have found that sea cucumber (SC) and blue mussel (BM) from Newfoundland and Labrador are rich sources of n-3 PUFA structured in the phospholipid form. Treatment with SC and BM methanolic extracts (250 and 100 μg mL(-1), respectively) significantly (p < 0.01) increased triglyceride accumulation in 3T3-L1 adipocytes, along with an increase in the mRNA expression of the peroxisome proliferator-activated receptor-γ (37 and 39%, respectively) and adiponectin (57 and 56%, respectively) compared with control cells (p < 0.05). Only SC extracts (250 μg mL(-1)) increased the mRNA expression of sterol regulatory element-binding protein-1 (SREBP-1). Treatment with higher concentrations of SC and BM extracts (500 and 750 μg mL(-1), respectively) significantly (p < 0.01) decreased triglyceride accumulation in 3T3-L1 cells as opposed to an increase in triglyceride accumulation at lower concentrations. This was due to inhibition of acetyl-CoA carboxylase-1 and SREBP-1 mRNA expression compared to control cells (p < 0.05). There was no effect of the extracts on the mRNA expression of hormone sensitive lipase or lipolysis, suggesting that the decrease in triglyceride accumulation at higher concentrations is not due to breakdown and release of fat. This is the first report to show that SC and BM are new sources of phospholipid bonded n-3 PUFA, with the potential to target insulin resistance and obesity.

  14. Mercury and omega-3 fatty acid profiles in freshwater fish of the Dehcho Region, Northwest Territories: Informing risk benefit assessments.

    PubMed

    Laird, Matthew J; Henao, Juan J Aristizabal; Reyes, Ellen S; Stark, Ken D; Low, George; Swanson, Heidi K; Laird, Brian D

    2018-10-01

    Traditional foods have significant nutritional, sociocultural and economic value in subarctic First Nations communities of the Northwest Territories, and play a crucial role in promoting cultural continuity and sovereignty. Omega-3 polyunsaturated fatty acids (N-3 PUFAs), including eicosapentaenoic (EPA) and docosahexaenoic acid (DHA), carry significant benefits for neurocognitive development and cardiovascular health. However, the health risks posed by methylmercury may serve to undermine the benefits of fish consumption in Northern Indigenous communities. The objective of this study was to characterize profiles for mercury (Hg) and fatty acids in fish species harvested across lakes of the Dehcho Region, in the Mackenzie Valley of the Northwest Territories, to better understand the risks and benefits associated with traditional foods. Hg levels increased with trophic position, with the highest levels found in Burbot, Lake Trout, Walleye, and Northern Pike. Lake Trout, along with planktivorous species including Lake Whitefish, Cisco, and Sucker, demonstrated higher N-3 PUFAs than other species. Negative associations were observed between Hg and N-3 PUFAs in Lake Trout, Northern Pike, Walleye and Burbot. Further stratifying these relationships revealed significant interactions by lake. Significant differences observed in fatty acid and Hg profiles across lakes underscore the importance of considering both species- and lake-specific findings. This growing dataset of freshwater fish of the Dehcho will inform future efforts to characterize human Hg exposure profiles using probabilistic dose reconstruction models. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. A randomised cross-over trial in healthy adults indicating improved absorption of omega-3 fatty acids by pre-emulsification

    PubMed Central

    Garaiova, Iveta; Guschina, Irina A; Plummer, Sue F; Tang, James; Wang, Duolao; Plummer, Nigel T

    2007-01-01

    Background The health benefits of increased intakes of omega-3 fatty acids are well established but palatability often presents a problem. The process of emulsification is used in the food industry to provide a wider spectrum of use, often with the result of increased consumption. Moreover, as emulsification is an important step in the digestion and absorption of fats, the pre-emulsification process may enhance digestion and absorption. In this study the levels of plasma fatty acid and triacylglycerol (TAG) following the ingestion of either an oil mixture or an emulsified oil mixture have been compared. Methods In this randomised cross-over study, 13 volunteers received the oil mixture and 11 received the oil emulsion as part of an otherwise fat free meal. Blood samples were collected at 0, 1.5, 3, 4.5, 6, 7.5 and 9 hours after ingestion of oil, separated and stored at -20°C. Plasma triacylglycerols were assessed spectrophotometrically and fatty acids were determined by gas chromatography. Following a washout period of twenty days the procedure was repeated with the assignments reversed. Results The postprandial plasma TAG and the C18:3 (n-6), C18:3(n-3), C20:5(n-3) and C22:6 (n-3) polyunsaturated fatty acid (PUFA) levels for the emulsified oil group were increased significantly (P = 0.0182; P = 0.0493; P = 0.0137; P < 0.0001; P = 0.0355 respectively) compared with the non-emulsified oil group. The C16:0 and C18:0 saturated fatty acids, the C18:1 (n-9) monounsaturated fatty acid and the C18:2 PUFA were not significantly different for the oil and emulsified oil groups. Conclusion Pre-emulsification of an oil mixture prior to ingestion increases the absorption of longer chain more highly unsaturated fatty acids (especially eicosapentaenoic acid and docosahexaenoic acid) but does not affect absorption of shorter chain less saturated fatty acids, suggesting that pre-emulsification of fish oils may be a useful means of boosting absorption of these beneficial fatty

  16. Fatty Acid Profiles of Stipe and Blade from the Norwegian Brown Macroalgae Laminaria hyperborea with Special Reference to Acyl Glycerides, Polar Lipids, and Free Fatty Acids.

    PubMed

    Foseid, Lena; Devle, Hanne; Stenstrøm, Yngve; Naess-Andresen, Carl Fredrik; Ekeberg, Dag

    2017-01-01

    A thorough analysis of the fatty acid profiles of stipe and blade from the kelp species Laminaria hyperborea is presented. Lipid extracts were fractionated into neutral lipids, free fatty acids, and polar lipids, prior to derivatization and GC-MS analysis. A total of 42 fatty acids were identified and quantified, including the n -3 fatty acids α -linolenic acid, stearidonic acid, and eicosapentaenoic acid. The fatty acid amounts are higher in blade than in stipe (7.42 mg/g dry weight and 2.57 mg/g dry weight, resp.). The highest amounts of n -3 fatty acids are found within the neutral lipid fractions with 590.6 ug/g dry weight and 100.9 ug/g dry weight for blade and stipe, respectively. The amounts of polyunsaturated fatty acids are 3.4 times higher in blade than stipe. The blade had the highest PUFA/SFA ratio compared to stipe (1.02 versus 0.76) and the lowest n -6/ n -3 ratio (0.8 versus 3.5). This study highlights the compositional differences between the lipid fractions of stipe and blade from L. hyperborea . The amount of polyunsaturated fatty acids compared to saturated- and monounsaturated fatty acids is known to influence human health. In the pharmaceutical, food, and feed industries, this can be of importance for production of different health products.

  17. Fatty Acid Profiles of Stipe and Blade from the Norwegian Brown Macroalgae Laminaria hyperborea with Special Reference to Acyl Glycerides, Polar Lipids, and Free Fatty Acids

    PubMed Central

    Foseid, Lena; Stenstrøm, Yngve; Naess-Andresen, Carl Fredrik; Ekeberg, Dag

    2017-01-01

    A thorough analysis of the fatty acid profiles of stipe and blade from the kelp species Laminaria hyperborea is presented. Lipid extracts were fractionated into neutral lipids, free fatty acids, and polar lipids, prior to derivatization and GC-MS analysis. A total of 42 fatty acids were identified and quantified, including the n-3 fatty acids α-linolenic acid, stearidonic acid, and eicosapentaenoic acid. The fatty acid amounts are higher in blade than in stipe (7.42 mg/g dry weight and 2.57 mg/g dry weight, resp.). The highest amounts of n-3 fatty acids are found within the neutral lipid fractions with 590.6 ug/g dry weight and 100.9 ug/g dry weight for blade and stipe, respectively. The amounts of polyunsaturated fatty acids are 3.4 times higher in blade than stipe. The blade had the highest PUFA/SFA ratio compared to stipe (1.02 versus 0.76) and the lowest n-6/n-3 ratio (0.8 versus 3.5). This study highlights the compositional differences between the lipid fractions of stipe and blade from L. hyperborea. The amount of polyunsaturated fatty acids compared to saturated- and monounsaturated fatty acids is known to influence human health. In the pharmaceutical, food, and feed industries, this can be of importance for production of different health products. PMID:28713595

  18. Potential for daily supplementation of n-3 fatty acids to reverse symptoms of dry eye in mice.

    PubMed

    Harauma, Akiko; Saito, Junpei; Watanabe, Yoshitake; Moriguchi, Toru

    2014-06-01

    The purpose of this study was to determine the change in tear volume, as a predominant symptom of dry eye syndrome, in dietary n-3 fatty acid deficient mice compared with n-3 fatty acid adequate mice. The tear volume in n-3 fatty acid deficient mice was significantly lower than that in n-3 fatty acid adequate mice. In addition, the concentration of n-3 fatty acid in the lacrimal and meibomian glands, which affects the production of tears, was markedly decreased compared with n-3 fatty acid adequate mice. However, the tear volume recovered almost completely after one week of continuous administration of fish oil containing EPA and DHA in n-3 fatty acid deficient mice. Also, the concentration of DHA in the meibomian gland of n-3 fatty acid deficient group recovered to approximately 80% more than that of n-3 fatty acid adequate group. These results suggested that dietary n-3 fatty acids deficiency showed reversible dry eye syndrome, and that n-3 fatty acids have an important role in the production of tears. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Marine OMEGA-3 fatty acids in the prevention of cardiovascular disease.

    PubMed

    Mori, Trevor A

    2017-11-01

    Omega-6 (ω6) and omega-33) fatty acids are two classes of dietary polyunsaturated fatty acids derived from linoleic acid (18:2ω6) and α-linolenic acid (18:3ω3), respectively. Enzymatic metabolism of linoleic and α-linolenic acids generates arachidonic acid (20:4ω6) and eicosapentaenoic acid (20:5ω3; EPA), respectively, both of which are substrates for enzymes that yield eicosanoids with multiple and varying physiological functions. Further elongation and desaturation of EPA yields the 22-carbon fatty acid docosahexaenoic acid (22:6ω3; DHA). The main dietary source of EPA and DHA for human consumption is fish, especially oily fish. There is considerable evidence that EPA and DHA are protective against cardiovascular disease (heart disease and stroke), particularly in individuals with pre-existing disease. ω3 Fatty acids benefit multiple risk factors including blood pressure, blood vessel function, heart function and blood lipids, and they have antithrombotic, anti-inflammatory and anti-oxidative actions. ω3 Fatty acids do not adversely interact with medications. Supplementation with ω3 fatty acids is recommended in individuals with elevated blood triglyceride levels and patients with coronary heart disease. A practical recommendation for the general population is to increase ω3 fatty acid intake by incorporating fish as part of a healthy diet that includes increased fruits and vegetables, and moderation of salt intake. Health authorities recommend the general population should consume at least two oily fish meals per week. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Reduction of circulating FABP4 level by treatment with omega-3 fatty acid ethyl esters.

    PubMed

    Furuhashi, Masato; Hiramitsu, Shinya; Mita, Tomohiro; Omori, Akina; Fuseya, Takahiro; Ishimura, Shutaro; Watanabe, Yuki; Hoshina, Kyoko; Matsumoto, Megumi; Tanaka, Marenao; Moniwa, Norihito; Yoshida, Hideaki; Ishii, Junnichi; Miura, Tetsuji

    2016-01-12

    Fatty acid-binding protein 4 (FABP4/A-FABP/aP2) mainly expressed in adipocytes is secreted and acts as an adipokine. Increased circulating FABP4 level is associated with obesity, insulin resistance and atherosclerosis. However, little is known about the modulation of serum FABP4 level by drugs including anti-dyslipidemic agents. Patients with dyslipidemia were treated with omega-3 fatty acid ethyl esters (4 g/day; n = 14) containing eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) for 4 weeks. Serum FABP4 level was measured before and after treatment. Expression and secretion of FABP4 were also examined in mouse 3T3-L1 adipocytes treated with EPA or DHA. Treatment with omega-3 fatty acid ethyl esters significantly decreased triglycerides and serum FABP4 level (13.5 ± 1.5 vs. 11.5 ± 1.1 ng/ml, P = 0.017). Change in FABP4 level by omega-3 fatty acids was negatively correlated with change in levels of EPA + DHA (r = -0.643, P = 0.013), EPA (r = -0.540, P = 0.046) and DHA (r = -0.650, P = 0.011) but not change in the level of triglycerides or other fatty acid composition. Treatment of 3T3-L1 adipocytes with EPA or DHA had no effect on short-term (2 h) secretion of FABP4. However, gene expression and long-term (24 h) secretion of FABP4 were significantly reduced by treatment with EPA or DHA. Omega-3 fatty acids decrease circulating FABP4 level, possibly by reducing expression and consecutive secretion of FABP4 in adipocytes. Reducing FABP4 level might be involved in suppression of cardiovascular events by omega-3 fatty acids.

  1. Intake of Marine-Derived Omega-3 Polyunsaturated Fatty Acids and Mortality in Renal Transplant Recipients

    PubMed Central

    Gomes Neto, António W.; Sotomayor Campos, Camilo G.; Pranger, Ilse G.; van den Berg, Else; Gans, Rijk O. B.; Soedamah-Muthu, Sabita S.; Navis, Gerjan J.; Bakker, Stephan J. L.

    2017-01-01

    The effect of marine-derived omega-3 polyunsaturated fatty acids (n-3 PUFA) on long-term outcome in renal transplant recipients (RTR) remains unclear. We investigated whether marine-derived n-3 PUFA intake is associated with all-cause and cardiovascular (CV) mortality in RTR. Intake of eicosapentaenoic acid plus docosahexaenoic acid (EPA-DHA) was assessed using a validated Food Frequency Questionnaire. Cox regression analyses were performed to evaluate the associations of EPA-DHA intake with all-cause and CV mortality. We included 627 RTR (age 53 ± 13 years). EPA-DHA intake was 102 (42–215) mg/day. During median follow-up of 5.4 years, 130 (21%) RTR died, with 52 (8.3%) due to CV causes. EPA-DHA intake was associated with lower risk of all-cause mortality (Hazard Ratio (HR) 0.85; 95% confidence interval (95% CI) 0.75–0.97). Age (p = 0.03) and smoking status (p = 0.01) significantly modified this association, with lower risk of all-cause and CV mortality particularly in older (HR 0.75, 95% CI 0.61–0.92; HR 0.68, 95% CI 0.48–0.95) and non-smoking RTR (HR 0.80, 95% CI 0.68–0.93; HR 0.74, 95% CI 0.56–0.98). In conclusion, marine-derived n-3 PUFA intake is inversely associated with risk of all-cause and CV mortality in RTR. The strongest associations were present in subgroups of patients, which adds further evidence to the plea for EPA-DHA supplementation, particularly in elderly and non-smoking RTR. PMID:28379169

  2. A Review of Nanoliposomal Delivery System for Stabilization of Bioactive Omega-3 Fatty Acids

    PubMed Central

    Hadian, Zahra

    2016-01-01

    Currently, bioactive compounds are required in the design and production of functional foods, with the aim of improving the health status of consumers all around the world. Various epidemiological and clinical studies have demonstrated the salutary role of eicosapentaenoic acid (EPA, 22:6 n−3) and docosahexaenoic acid (DHA, 22:5 n−3) in preventing diseases and reducing mortality from cardiovascular diseases. The unsaturated nature of bioactive lipids leads to susceptibility to oxidation under environmental conditions. Oxidative deterioration of omega-3 fatty acids can cause the reduction in their nutritional quality and sensory properties. Encapsulation of these fatty acids could create a barrier against reaction with harmful environmental factors. Currently, fortification of foods containing bioactive omega-3 fatty acids has found great application in the food industries of different countries. Previous studies have suggested that nano-encapsulation has significant effects on the stability of physical and chemical properties of bioactive compounds. Considering the functional role of omega-3 fatty acids, this study has provided a literature review on applications of nanoliposomal delivery systems for encapsulation of these bioactive compounds. PMID:26955449

  3. Preparation of 7-hydroxy-2-oxoindolin-3-ylacetic acid and its [13C2], [5-n-3H], and [5-n-3H]-7-O-glucosyl analogues for use in the study of indol-3-ylacetic acid catabolism

    NASA Technical Reports Server (NTRS)

    Lewer, P.; Bandurski, R. S. (Principal Investigator)

    1987-01-01

    An improved synthesis of 7-hydroxy-2-oxoindolin-3-ylacetic acid via the base-induced condensation reaction between oxalate esters and 7-benzyloxyindolin-2-one is described. 7-Benzyloxyindolin-2-one was prepared in four steps and 50% overall yield from 3-hydroxy-2-nitrotoluene. The yield of the title compound from 7-benzyloxyindolin-2-one was 56%. This route was used to prepare 7-hydroxy-2-oxoindolin-3-yl[13C2]acetic acid in 30% yield from [13C2]oxalic acid dihydrate. The method could not be extended to the preparation of the corresponding [14C2]-compound. However, an enzyme preparation from Zea mays roots catalysed the conversion of carrier-free [5-n-3H]indol-3-ylacetic acid with a specific activity of 16.7 Ci mmol-1 to a mixture of 7-hydroxy-2-oxo[5-n-3H]indolin-3-ylacetic acid and its [5-n-3H]-7-O-glucoside in ca. 3 and 40% radiochemical yield respectively. The glucoside was converted into the 7-hydroxy compound in 80% yield by means of beta-glucosidase.

  4. The Impact of Preoperative Enteral Nutrition Enriched with Eicosapentaenoic Acid on Postoperative Hypercytokinemia after Pancreatoduodenectomy: The Results of a Double-Blinded Randomized Controlled Trial.

    PubMed

    Ashida, Ryo; Okamura, Yukiyasu; Wakabayashi-Nakao, Kanako; Mizuno, Takashi; Aoki, Shuichi; Uesaka, Katsuhiko

    2018-06-08

    To investigate whether preoperative enteral diets -enriched in eicosapentaenoic acid (EPA) supplements could reduce the incidence of hypercytokinemia after pancreatoduodenectomy (PD) in a double-blinded randomized -controlled trial. Patients with resectable periampullary cancer were randomized into either the control group or the treatment group. Patients in the treatment group received oral supplementation (600 kcal/day) containing EPA for 7 days before surgery. Patients in the control group received isocaloric isonitrogenous standard nutrition (600 kcal/day) without EPA for 7 days before surgery. The primary endpoint was postoperative serum concentrations of interleukin-6 (IL-6). The secondary endpoints were the postoperative nutritional status and the incidence of postoperative infectious complications. Twenty-four patients were enrolled in the present study. After exclusion, 20 patients (control group, n = 9; treatment group, n = 11) were analyzed. There were no significant differences in the curves for the serum concentration of IL-6 (p = 0.68) or the incidence of infectious complications between the 2 groups (control group: 78%, treatment group: 55%, p = 0.37). The results of a double-blinded randomized controlled trial indicated that preoperative immunonutrition had no marked impact on the rates of postoperative hypercytokinemia or infectious complications after PD. © 2018 S. Karger AG, Basel.

  5. The existence and gas phase acidity of the HAlnF3n+1 superacids (n = 1-4)

    NASA Astrophysics Data System (ADS)

    Czapla, Marcin; Skurski, Piotr

    2015-06-01

    Novel strong superacids are proposed and investigated on the basis of ab initio calculations. The gas phase acidity of the HAlF4, HAl2F7, and HAl3F10 systems evaluated by the estimation of the Gibbs free energies of their deprotonation reactions were found significant and comparable to the corresponding value characterizing the HTaF6, whereas the strength of the HAl4F13 acid was predicted to exceed that of the HSbF6 acid (the strongest liquid superacid recognized). The deprotonation energies of the HAlnF3n+1 acids (n = 1-4) turned out to be closely related to the electronic stabilities of their corresponding (AlnF3n+1)- anions.

  6. The Ratio of Eicosapentaenoic Acid (EPA) to Arachidonic Acid may be a Residual Risk Marker in Stable Coronary Artery Disease Patients Receiving Treatment with Statin Following EPA Therapy.

    PubMed

    Tani, Shigemasa; Nagao, Ken; Kawauchi, Kenji; Yagi, Tsukasa; Atsumi, Wataru; Matsuo, Rei; Hirayama, Atsushi

    2017-10-01

    We investigated the relationship between the eicosapentaenoic acid (EPA)/arachidonic acid (AA) ratio and non-high-density lipoprotein cholesterol (non-HDL-C) level, a major residual risk of coronary artery disease (CAD), in statin-treated CAD patients following EPA therapy. We conducted a 6-month, prospective, randomized clinical trial to investigate the effect of the additional administration of EPA on the EPA/AA ratio and the serum non-HDL-C level in stable CAD patients receiving statin treatment. We assigned CAD patients already receiving statin therapy to an EPA group (1800 mg/day; n = 50) or a control group (n = 50). A significant reduction in the serum non-HDL-C level was observed in the EPA group, compared with the control group (-9.7 vs. -1.2%, p = 0.01). A multiple-regression analysis with adjustments for coronary risk factors revealed that achieved EPA/AA ratio was more reliable as an independent and significant predictor of a reduction in the non-HDL-C level at a 6-month follow-up examination (β = -0.324, p = 0.033) than the absolute change in the EPA/AA ratio. Interestingly, significant negative correlations were found between the baseline levels and the absolute change values of both non-HDL-C and triglyceride-rich lipoproteins, both markers of residual risk of CAD, indicating that patients with a higher baseline residual risk achieved a greater reduction. The present results suggest that the achieved EPA/AA ratio, but not the absolute change in EPA/AA ratio, following EPA therapy might be a useful marker for the risk stratification of CAD among statin-treated patients with a high non-HDL-C level. UMIN ( http://www.umin.ac.jp/ ) Study ID: UMIN000010452.

  7. Association between very long chain fatty acids in the meibomian gland and dry eye resulting from n-3 fatty acid deficiency.

    PubMed

    Tanaka, Hideko; Harauma, Akiko; Takimoto, Mao; Moriguchi, Toru

    2015-06-01

    In our previously study, we reported lower tear volume in with an n-3 fatty acid deficient mice and that the docosahexaenoic acid and total n-3 fatty acid levels in these mice are significantly reduced in the meibomian gland, which secretes an oily tear product. Furthermore, we noted very long chain fatty acids (≥25 carbons) in the meibomian gland. To verify the detailed mechanism of the low tear volume in the n-3 fatty acid-deficient mice, we identified the very long chain fatty acids in the meibomian gland, measured the fatty acid composition in the tear product. Very long chain fatty acids were found to exist as monoesters. In particular, very long chain fatty acids with 25-29 carbons existed for the most part as iso or anteiso branched-chain fatty acids. n-3 fatty acid deficiency was decreased the amount of meibum secretion from meibomian gland without change of fatty acid composition. These results suggest that the n-3 fatty acid deficiency causes the enhancement of evaporation of tear film by reducing oily tear secretion along with the decrease of meibomian gland function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. A novel cost-effectiveness model of prescription eicosapentaenoic acid extrapolated to secondary prevention of cardiovascular diseases in the United States.

    PubMed

    Philip, Sephy; Chowdhury, Sumita; Nelson, John R; Benjamin Everett, P; Hulme-Lowe, Carolyn K; Schmier, Jordana K

    2016-10-01

    Given the substantial economic and health burden of cardiovascular disease and the residual cardiovascular risk that remains despite statin therapy, adjunctive therapies are needed. The purpose of this model was to estimate the cost-effectiveness of high-purity prescription eicosapentaenoic acid (EPA) omega-3 fatty acid intervention in secondary prevention of cardiovascular diseases in statin-treated patient populations extrapolated to the US. The deterministic model utilized inputs for cardiovascular events, costs, and utilities from published sources. Expert opinion was used when assumptions were required. The model takes the perspective of a US commercial, third-party payer with costs presented in 2014 US dollars. The model extends to 5 years and applies a 3% discount rate to costs and benefits. Sensitivity analyses were conducted to explore the influence of various input parameters on costs and outcomes. Using base case parameters, EPA-plus-statin therapy compared with statin monotherapy resulted in cost savings (total 5-year costs $29,393 vs $30,587 per person, respectively) and improved utilities (average 3.627 vs 3.575, respectively). The results were not sensitive to multiple variations in model inputs and consistently identified EPA-plus-statin therapy to be the economically dominant strategy, with both lower costs and better patient utilities over the modeled 5-year period. The model is only an approximation of reality and does not capture all complexities of a real-world scenario without further inputs from ongoing trials. The model may under-estimate the cost-effectiveness of EPA-plus-statin therapy because it allows only a single event per patient. This novel model suggests that combining EPA with statin therapy for secondary prevention of cardiovascular disease in the US may be a cost-saving and more compelling intervention than statin monotherapy.

  9. The Microbiota of Freshwater Fish and Freshwater Niches Contain Omega-3 Fatty Acid-Producing Shewanella Species.

    PubMed

    Dailey, Frank E; McGraw, Joseph E; Jensen, Brittany J; Bishop, Sydney S; Lokken, James P; Dorff, Kellen J; Ripley, Michael P; Munro, James B

    2016-01-01

    Approximately 30 years ago, it was discovered that free-living bacteria isolated from cold ocean depths could produce polyunsaturated fatty acids (PUFA) such as eicosapentaenoic acid (EPA) (20:5n-3) or docosahexaenoic acid (DHA) (22:6n-3), two PUFA essential for human health. Numerous laboratories have also discovered that EPA- and/or DHA-producing bacteria, many of them members of the Shewanella genus, could be isolated from the intestinal tracts of omega-3 fatty acid-rich marine fish. If bacteria contribute omega-3 fatty acids to the host fish in general or if they assist some bacterial species in adaptation to cold, then cold freshwater fish or habitats should also harbor these producers. Thus, we undertook a study to see if these niches also contained omega-3 fatty acid producers. We were successful in isolating and characterizing unique EPA-producing strains of Shewanella from three strictly freshwater native fish species, i.e., lake whitefish (Coregonus clupeaformis), lean lake trout (Salvelinus namaycush), and walleye (Sander vitreus), and from two other freshwater nonnative fish, i.e., coho salmon (Oncorhynchus kisutch) and seeforellen brown trout (Salmo trutta). We were also able to isolate four unique free-living strains of EPA-producing Shewanella from freshwater habitats. Phylogenetic and phenotypic analyses suggest that one producer is clearly a member of the Shewanella morhuae species and another is sister to members of the marine PUFA-producing Shewanella baltica species. However, the remaining isolates have more ambiguous relationships, sharing a common ancestor with non-PUFA-producing Shewanella putrefaciens isolates rather than marine S. baltica isolates despite having a phenotype more consistent with S. baltica strains. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Treatment with Docosahexaenoic Acid, but Not Eicosapentaenoic Acid, Delays Ca2+-Induced Mitochondria Permeability Transition in Normal and Hypertrophied Myocardium

    PubMed Central

    Khairallah, Ramzi J.; O'Shea, Karen M.; Brown, Bethany H.; Khanna, Nishanth; Des Rosiers, Christine

    2010-01-01

    Intake of fish oil containing docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) prevents heart failure; however, the mechanisms are unclear. Mitochondrial permeability transition pore (MPTP) opening contributes to myocardial pathology in cardiac hypertrophy and heart failure, and treatment with DHA + EPA delays MPTP opening. Here, we assessed: 1) whether supplementation with both DHA and EPA is needed for optimal prevention of MPTP opening, and 2) whether this benefit occurs in hypertrophied myocardium. Rats with either normal myocardium or cardiac hypertrophy induced by 8 weeks of abdominal aortic banding were fed one of four diets: control diet without DHA or EPA or diets enriched with either DHA, EPA, or DHA + EPA (1:1 ratio) at 2.5% of energy intake for 17 weeks. Aortic banding caused a 27% increase in left ventricular mass and 25% depletion in DHA in mitochondrial phosopholipids in rats fed the control diet. DHA supplementation raised DHA in phospholipids ∼2-fold in both normal and hypertrophied hearts and increased EPA. DHA + EPA supplementation also increased DHA, but to a lesser extent than DHA alone. EPA supplementation increased EPA, but did not affect DHA compared with the control diet. Ca2+-induced MPTP opening was delayed by DHA and DHA + EPA supplementation in both normal and hypertrophied hearts, but EPA had no effect on MPTP opening. These results show that supplementation with DHA alone effectively increases both DHA and EPA in cardiac mitochondrial phospholipids and delays MPTP and suggest that treatment with DHA + EPA offers no advantage over DHA alone. PMID:20624993

  11. Determinants of Blood Cell Omega-3 Fatty Acid Content

    PubMed Central

    Block, Robert C.; Harris, William S.; Pottala, James V.

    2009-01-01

    Background Although red blood cell eicosapentaenoic acid (EPA) plus docosahexaenoic acid (DHA) content (the Omega-3 Index) predicts cardiovascular death, the factors determining the Index are unknown. Methods In 704 outpatients, we undertook an investigation of the clinical determinants of the Index. Results Factors associated with the Index in decreasing order were: EPA+DHA supplement use, fish consumption frequency, triglyceride level, age, high cholesterol history, and smoking. These factors explained 59% of Index variability, with capsules/fish intake together accounting for 47%. The Index increased by 13% (p< 0.0001) for each serving level increase in fish intake and EPA+DHA supplementation correlated with a 58% increase (p< 0.0001) regardless of background fish intake (p=0.25; test for interaction). A 100 mg/dL decrease in serum triglycerides was associated with a 15% higher (p<0.0001) Index. Conclusions The intake of EPA+DHA-rich foods and supplements principally determined the Omega-3 Index, but explained only about half of the variability. PMID:19953197

  12. Associations between omega-3 fatty acids and 25(OH)D and psychological distress among Inuit in Canada.

    PubMed

    Skogli, Hans-Ragnar; Geoffroy, Dominique; Weiler, Hope A; Tell, Grethe S; Kirmayer, Laurence J; Egeland, Grace M

    2017-01-01

    fatty acids; PUFAs: polyunsaturated fatty acids; 25(OH)D: 25-hydroxyvitamin D; IPY: International Polar Year; IHS : Inuit Health Survey; RBC: red blood cell; OR: odds ratio; K6: Kessler 6-item screening scale; SPD: serious psychological distress; EPA: eicosapentaenoic acid (20:5 n-3); DHA: docosahexaenoic acid (22:6 n-3); DPA n-3: docosapentaenoic acid (22:5 n-3); n-3 LC-PUFAs: EPA (20:5 n-3) + DHA (22:6 n-3) + DPA (22:5 n-3); BMI: body mass index (kg m - 2 ).

  13. Associations between omega-3 fatty acids and 25(OH)D and psychological distress among Inuit in Canada

    PubMed Central

    Skogli, Hans-Ragnar; Geoffroy, Dominique; Weiler, Hope A.; Tell, Grethe S.; Kirmayer, Laurence J.; Egeland, Grace M.

    2017-01-01

    biomarker levels and psychological well-being. Abbreviations: n-3 FAs: omega-3 fatty acids; PUFAs: polyunsaturated fatty acids; 25(OH)D: 25-hydroxyvitamin D; IPY: International Polar Year; IHS : Inuit Health Survey; RBC: red blood cell; OR: odds ratio; K6: Kessler 6-item screening scale; SPD: serious psychological distress; EPA: eicosapentaenoic acid (20:5 n-3); DHA: docosahexaenoic acid (22:6 n-3); DPA n-3: docosapentaenoic acid (22:5 n-3); n-3 LC-PUFAs: EPA (20:5 n-3) + DHA (22:6 n-3) + DPA (22:5 n-3); BMI: body mass index (kg m–2) PMID:28625107

  14. Omega-3 fatty acids, EPA and DHA induce apoptosis and enhance drug sensitivity in multiple myeloma cells but not in normal peripheral mononuclear cells.

    PubMed

    Abdi, J; Garssen, J; Faber, J; Redegeld, F A

    2014-12-01

    The n-3 polyunsaturated fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been shown to enhance the effect of chemotherapeutic drugs in clinical studies in cancer patients and to induce apoptotic tumor cell death in vitro. Until now, EPA and DHA have never been investigated in multiple myeloma (MM). Human myeloma cells (L363, OPM-1, OPM-2 and U266) and normal peripheral blood mononuclear cells were exposed to EPA and DHA, and effects on mitochondrial function and apoptosis, caspase-3 activation, gene expression and drug toxicity were measured. Exposure to EPA and DHA induced apoptosis and increased sensitivity to bortezomib in MM cells. Importantly, they did not affect viability of normal human peripheral mononuclear cells. Messenger RNA expression arrays showed that EPA and DHA modulated genes involved in multiple signaling pathways including nuclear factor (NF) κB, Notch, Hedgehog, oxidative stress and Wnt. EPA and DHA inhibited NFκB activity and induced apoptosis through mitochondrial perturbation and caspase-3 activation. Our study suggests that EPA and DHA induce selective cytotoxic effects in MM and increase sensitivity to bortezomib and calls for further exploration into a potential application of these n-3 polyunsaturated fatty acids in the therapy of MM. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Increased hepatic beta-oxidation of docosahexaenoic acid, elongation of eicosapentaenoic acid, and acylation of lysophosphatidate in rats fed a docosahexaenoic acid-enriched diet.

    PubMed

    Kanazawa, A; Shirota, Y; Fujimoto, K

    1997-07-01

    Rats were fed a diet supplemented with corn oil (n-3 deficient), soy oil, or a mixture containing 8% 22:6n-3 ethyl ester for 6 wk. The hepatic capacities for the beta-oxidation and synthesis of 22:6n-3, in addition to the acylation of lysophosphatidate, were tested in vitro. In rats that were fed a 22:6n-3-enriched diet, both the beta-oxidation of 22:6n-3 and elongation of 20:5n-3 were enhanced compared to those in rats fed the other diets. Acylation of lysophosphatidate was also enhanced in rats fed a 22:6n-3-enriched diet, while the rate of dephosphorylation of phosphatidate was not changed. The amount of 22:6n-3 in the liver was much less than that consumed in a docosahexaenoic acid-enriched diet. These results suggest that a significant amount of dietary 22:6n-3 was degraded via beta-oxidation, and that a portion of the retroconverted 20:5n-3 was recycled for the synthesis of 22:6n-3. The recycling of 20:5n-3 might contribute to the low level of 22:6n-3 in rats fed an n-3-deficient diet.

  16. Impact of Biological Feedback and Incentives on Blood Fatty Acid Concentrations, Including Omega-3 Index, in an Employer-Based Wellness Program.

    PubMed

    McBurney, Michael I; Bird, Julia K

    2017-08-05

    Eicosapentaenoic acid (EPA, C20:5n-3) and docosahexaenoic acid (DHA, C22:6n-3) are important fatty acids for the retina and brain. More than 95% of Americans have suboptimal EPA + DHA blood concentrations. This cross-sectional employer-based study assessed whole blood fatty acid levels of volunteers participating in an onsite wellness biometric screening program and was designed to determine if an incentive, a $5 coupon for a 90-day supply of fish oil supplement typically costing $18-30, stimulated incremental dietary behavior change relative to nutritional status assessment alone to increase EPA + DHA concentrations. Volunteers completed a dietary survey and finger stick blood samples were collected to be analyzed for fatty acid composition. In addition, 636 individuals participated in the initial onsite biometric screening. Three months later, and without prior knowledge, all employees were invited to a second screening. At the second screening, 198 employees volunteered for the first time and 149 employees had a second test (17.9%). At baseline, the average age ( n = 834) was 45 year and omega-3 index was 5.0% with 41% female. EPA + DHA concentration, i.e., omega-3 index, was significantly lower in men (4.8%) than women (5.2%), as were DHA and linoleic acid (LA) concentrations ( p < 0.05). Baseline omega-3 index was positively and linearly associated with omega-3 intake. Only 4% of volunteers had an omega-3 index >8% on initial screening. Among the 149 individuals with two measurements, omega-3 intake from supplements, but not food, increased significantly from 258 to 445 mg/d ( p < 0.01) at the second test as did the omega-3 index (+0.21, p < 0.02). In this employed population, only 1% redeemed a coupon for an omega-3 supplement.

  17. Blood fatty acid changes in healthy young Americans in response to a 10-week diet that increased n-3 and reduced n-6 fatty acid consumption: a randomised controlled trial.

    PubMed

    Young, Andrew J; Marriott, Bernadette P; Champagne, Catherine M; Hawes, Michael R; Montain, Scott J; Johannsen, Neil M; Berry, Kevin; Hibbeln, Joseph R

    2017-05-01

    Military personnel generally under-consume n-3 fatty acids and overconsume n-6 fatty acids. In a placebo-controlled, double-blinded study, we investigated whether a diet suitable for implementation in military dining facilities and civilian cafeterias could benefit n-3/n-6 fatty acid status of consumers. Three volunteer groups were provided different diets for 10 weeks. Control (CON) participants consumed meals from the US Military's Standard Garrison Dining Facility Menu. Experimental, moderate (EXP-Mod) and experimental-high (EXP-High) participants consumed the same meals, but high n-6 fatty acid and low n-3 fatty acid containing chicken, egg, oils and food ingredients were replaced with products having less n-6 fatty acids and more n-3 fatty acids. The EXP-High participants also consumed smoothies containing 1000 mg n-3 fatty acids per serving, whereas other participants received placebo smoothies. Plasma and erythrocyte EPA and DHA in CON group remained unchanged throughout, whereas EPA, DHA and Omega-3 Index increased in EXP-Mod and EXP-High groups, and were higher than in CON group after 5 weeks. After 10 weeks, Omega-3 Index in EXP-High group had increased further. No participants exhibited changes in fasting plasma TAG, total cholesterol, LDL, HDL, mood or emotional reactivity. Replacing high linoleic acid (LA) containing foods in dining facility menus with similar high oleic acid/low LA and high n-3 fatty acid foods can improve n-6/n-3 blood fatty acid status after 5 weeks. The diets were well accepted and suitable for implementation in group feeding settings like military dining facilities and civilian cafeterias.

  18. Cardiovascular benefits of omega-3 fatty acids.

    PubMed

    von Schacky, Clemens; Harris, William S

    2007-01-15

    Cardiac societies recommend the intake of 1 g/day of the two omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) for cardiovascular disease prevention, treatment after a myocardial infarction, prevention of sudden death, and secondary prevention of cardiovascular disease. These recommendations are based on a body of scientific evidence that encompasses literally thousands of publications. Of four large scale intervention studies three also support the recommendations of these cardiac societies. One methodologically questionable study with a negative result led a Cochrane meta-analysis to a null conclusion. This null conclusion, however, has not swayed the recommendations of the cardiac societies mentioned, and has been refuted with good reason by scientific societies. Based on the scientific evidence just mentioned, we propose a new risk factor to be considered for sudden cardiac death, the omega-3 index. It is measured in red blood cells, and is expressed as a percentage of EPA + DHA of total fatty acids. An omega-3 index of >8% is associated with 90% less risk for sudden cardiac death, as compared to an omega-3 index of <4%. The omega-3 index as a risk factor for sudden cardiac death has striking similarities to LDL as a risk factor for coronary artery disease. Moreover, the omega-3 index reflects the omega-3 fatty acid status of a given individual (analogous to HbA1c reflecting glucose homeostasis). The omega-3 index can therefore be used as a goal for treatment with EPA and DHA. As is the case now for LDL, in the future, the cardiac societies might very well recommend treatment with EPA and DHA to become goal oriented (e.g. an omega-3 index>8%).

  19. COX-2, aspirin and metabolism of arachidonic, eicosapentaenoic and docosahexaenoic acids and their physiological and clinical significance.

    PubMed

    Poorani, R; Bhatt, Anant N; Dwarakanath, B S; Das, Undurti N

    2016-08-15

    Polyunsaturated fatty acids (PUFAs) are vital for normal growth and development and physiological function of various tissues in humans. PUFAs have immunomodulatory actions in addition to their ability to modulate inflammation, vascular reactivity, neurotransmission and stem cell biology. PUFAs and their metabolites possess both pro- and anti-inflammatory properties that underlie their actions and involvement in several diseases. Aspirin, a non-steroidal anti-inflammatory drug (NSAID), possesses both cyclo-oxygenase (COX) and lipoxygenase (LOX) inhibitory action and enhances the production of anti-inflammatory lipoxin A4 {(called as epi-lipoxin A4, aspirin-triggered lipoxins (ATLs))}. In addition, at low doses aspirin may not interfere with the production of prostacyclin (PGI2). Both lipoxin A4 and PGI2 have vasodilator, platelet anti-aggregator and anti-inflammatory actions that may underlie the beneficial actions of aspirin. Paradoxically, other NSAIDs may not have the same actions as that of aspirin on PUFA metabolism. Similar anti-inflammatory compounds are formed from eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) by the action of aspirin termed as resolvins (from EPA and DHA) and protectins and maresins from DHA. PUFAs: arachidonic acid (AA), EPA and DHA and their various products modulate not only inflammation and immune response but also possess actions on various genes, nuclear factors, cyclic AMP and GMP, G-protein coupled receptors (GPRs), hypothalamic neurotransmitters, hormones, cytokines and enzymes, and interact with nitric oxide, carbon monoxide, and hydrogen sulfide to regulate their formation and action and to form new compounds that have several biological actions. These pleiotropic actions of PUFAs and their metabolites may explain their ability to play a role in several physiological actions and diseases. The big challenge is to harness these actions to prevent and manage clinical conditions. Copyright © 2015 Elsevier B.V. All

  20. Polyunsaturated Fatty Acids and Recurrent Mood Disorders: Phenomenology, Mechanisms, and Clinical Application

    PubMed Central

    Messamore, Erik; Almeida, Daniel M.; Jandacek, Ronald J.; McNamara, Robert K.

    2017-01-01

    A body of evidence has implicated dietary deficiency in omega-3 polyunsaturated fatty acids (n-3 PUFA), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), in the pathophysiology and etiology of recurrent mood disorders including major depressive disorder (MDD) and bipolar disorder. Cross-national and cross-sectional evidence suggests that greater habitual intake of n-3 PUFA is associated with reduced risk for developing mood symptoms. Meta-analyses provide strong evidence that patients with mood disorders exhibit low blood n-3 PUFA levels which are associated with increased risk for the initial development of mood symptoms in response to inflammation. While the etiology of this n-3 PUFA deficit may be multifactorial, n-3 PUFA supplementation is sufficient to correct this deficit and may also have antidepressant effects. Rodent studies suggest that n-3 PUFA deficiency during perinatal development can recapitulate key neuropathological, neurochemical, and behavioral features associated with mood disorders. Clinical neuroimaging studies suggest that low n-3 PUFA biostatus is associated with abnormalities in cortical structure and function also observed in mood disorders. Collectively, these findings implicate dietary n-3 PUFA insufficiency, particularly during development, in the pathophysiology of mood dysregulation, and support implementation of routine screening for and treatment of n-3 PUFA deficiency in patients with mood disorders. PMID:28069365

  1. Icosapent ethyl (eicosapentaenoic acid ethyl ester): Effects on remnant-like particle cholesterol from the MARINE and ANCHOR studies.

    PubMed

    Ballantyne, Christie M; Bays, Harold E; Philip, Sephy; Doyle, Ralph T; Braeckman, Rene A; Stirtan, William G; Soni, Paresh N; Juliano, Rebecca A

    2016-10-01

    Remnant-like particle cholesterol (RLP-C) is atherogenic and may increase atherosclerotic cardiovascular disease risk. Icosapent ethyl is a high-purity prescription eicosapentaenoic acid ethyl ester (approved as an adjunct to diet to reduce triglyceride [TG] levels in adult patients with TGs ≥500 mg/dL [≥5.65 mmol/L] at 4 g/day). In the MARINE and ANCHOR studies, icosapent ethyl reduced TG and other atherogenic lipid parameter levels without increasing low-density lipoprotein cholesterol (LDL-C) levels. This exploratory analysis evaluated the effects of icosapent ethyl on calculated and directly measured RLP-C. MARINE (TGs ≥500 and ≤2000 mg/dL [≥5.65 mmol/L and ≤22.6 mmol/L]) and ANCHOR (TGs ≥200 and <500 mg/dL [≥2.26 and <5.65 mmol/L] despite statin-controlled LDL-C) were phase 3, 12-week, double-blind studies that randomized adult patients to icosapent ethyl 4 g/day, 2 g/day, or placebo. This analysis assessed median percent change from baseline to study end in directly measured (immunoseparation assay) RLP-C levels (MARINE, n = 218; ANCHOR, n = 252) and calculated RLP-C levels in the full populations. Icosapent ethyl 4 g/day significantly reduced directly measured RLP-C levels -29.8% (p = 0.004) in MARINE and -25.8% (p = 0.0001) in ANCHOR versus placebo, and also reduced directly measured RLP-C levels to a greater extent in subgroups with higher versus lower baseline TG levels, in patients receiving statins versus no statins (MARINE), and in patients receiving medium/higher-intensity versus lower-intensity statins (ANCHOR). Strong correlations were found between calculated and directly measured RLP-C for baseline, end-of-treatment, and percent change values in ANCHOR and MARINE (0.73-0.92; p < 0.0001 for all). Icosapent ethyl 4 g/day significantly reduced calculated and directly measured RLP-C levels versus placebo in patients with elevated TG levels from the MARINE and ANCHOR studies. Copyright © 2016 The Authors

  2. Eicosapentaenoic and Docosahexaenoic Acids Attenuate Progression of Albuminuria in Patients With Type 2 Diabetes Mellitus and Coronary Artery Disease.

    PubMed

    Elajami, Tarec K; Alfaddagh, Abdulhamied; Lakshminarayan, Dharshan; Soliman, Michael; Chandnani, Madhuri; Welty, Francine K

    2017-07-14

    Albuminuria is a marker of inflammation and an independent predictor of cardiovascular morbidity and mortality. The current study evaluated whether eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) supplementation attenuates progression of albuminuria in subjects with coronary artery disease. Two-hundred sixty-two subjects with stable coronary artery disease were randomized to either Lovaza (1.86 g of EPA and 1.5 g of DHA daily) or no Lovaza (control) for 1 year. Percent change in urine albumin-to-creatinine ratio (ACR) was compared. Mean (SD) age was 63.3 (7.6) years; 17% were women and 30% had type 2 diabetes mellitus. In nondiabetic subjects, no change in urine ACR occurred in either the Lovaza or control groups. In contrast, ACR increased 72.3% ( P <0.001) in diabetic subjects not receiving Lovaza, whereas those receiving Lovaza had no change. In diabetic subjects on an angiotensin-converting enzyme-inhibitor or angiotensin-receptor blocker, those receiving Lovaza had no change in urine ACR, whereas those not receiving Lovaza had a 64.2% increase ( P <0.001). Change in ACR was directly correlated with change in systolic blood pressure ( r =0.394, P =0.01). EPA and DHA supplementation attenuated progression of albuminuria in subjects with type 2 diabetes mellitus and coronary artery disease, most of whom were on an angiotensin-converting enzyme-inhibitor or angiotensin-receptor blocker. Thus, EPA and DHA supplementation should be considered as additional therapy to an angiotensin-converting enzyme-inhibitor or angiotensin-receptor blocker in subjects with type 2 diabetes mellitus and coronary artery disease. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01624727. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  3. Blood fatty acid composition of pregnant and nonpregnant Korean women: red cells may act as a reservoir of arachidonic acid and docosahexaenoic acid for utilization by the developing fetus.

    PubMed

    Ghebremeskel, K; Min, Y; Crawford, M A; Nam, J H; Kim, A; Koo, J N; Suzuki, H

    2000-05-01

    Relative fatty acid composition of plasma and red blood cell (RBC) choline phosphoglycerides (CPG), and RBC ethanolamine phosphoglycerides (EPG) of pregnant (n = 40) and nonpregnant, nonlactating (n = 40), healthy Korean women was compared. The two groups were of the same ethnic origin and comparable in age and parity. Levels of arachidonic (AA) and docosahexaenoic (DHA) acids were lower (P < 0.05) and palmitic and oleic acids higher (P < 0.0001) in plasma CPG of the pregnant women. Similarly, the RBC CPG and EPG of the pregnant women had lower AA and DHA (P < 0.05) and higher palmitic and oleic acids (P < 0.01). The reduction in DHA and total n-3 fatty acids in plasma CPG of the pregnant women was paralleled by an increase in docosatetraenoic (DTA) and docosapentaenoic (DPA) acids of the n-6 series and in DPA/DTA ratio. In the RBC phospholipids (CPG and EPG) of the pregnant women, DTA and DPA acids of the n-6 series and DPA/DTA ratio did not increase with the decrease of the n-3 metabolites (eicosapentaenoic acid, DPA, and DHA) and total n-3. Since pregnancy was the main identifiable variable between the two groups, the lower levels of AA and DHA in RBC CPG and EPG of the pregnant women suggest that the mothers were mobilizing membrane AA and DHA to meet the high fetal requirement for these nutrients. It may also suggest that RBC play a role as a potential store of AA and DHA and as a vehicle for the transport of these fatty acids from maternal circulation to the placenta to be utilized by the developing fetus.

  4. Omega-3 polyunsaturated fatty acids selectively inhibit growth in neoplastic oral keratinocytes by differentially activating ERK1/2

    PubMed Central

    Parkinson, Eric Kenneth

    2013-01-01

    The long-chain omega-3 polyunsaturated fatty acids (n-3 PUFAs)—eicosapentaenoic acid (EPA) and its metabolite docosahexaenoic acid (DHA)—inhibit cancer formation in vivo, but their mechanism of action is unclear. Extracellular signal-regulated kinase 1/2 (ERK1/2) activation and inhibition have both been associated with the induction of tumour cell apoptosis by n-3 PUFAs. We show here that low doses of EPA, in particular, inhibited the growth of premalignant and malignant keratinocytes more than the growth of normal counterparts by a combination of cell cycle arrest and apoptosis. The growth inhibition of the oral squamous cell carcinoma (SCC) lines, but not normal keratinocytes, by both n-3 PUFAs was associated with epidermal growth factor receptor (EGFR) autophosphorylation, a sustained phosphorylation of ERK1/2 and its downstream target p90RSK but not with phosphorylation of the PI3 kinase target Akt. Inhibition of EGFR with either the EGFR kinase inhibitor AG1478 or an EGFR-blocking antibody inhibited ERK1/2 phosphorylation, and the blocking antibody partially antagonized growth inhibition by EPA but not by DHA. DHA generated more reactive oxygen species and activated more c-jun N-terminal kinase than EPA, potentially explaining its increased toxicity to normal keratinocytes. Our results show that, in part, EPA specifically inhibits SCC growth and development by creating a sustained signalling imbalance to amplify the EGFR/ERK/p90RSK pathway in neoplastic keratinocytes to a supraoptimal level, supporting the chemopreventive potential of EPA, whose toxicity to normal cells might be reduced further by blocking its metabolism to DHA. Furthermore, ERK1/2 phosphorylation may have potential as a biomarker of n-3 PUFA function in vivo. PMID:23892603

  5. Update on marine omega-3 fatty acids: management of dyslipidemia and current omega-3 treatment options.

    PubMed

    Weintraub, Howard

    2013-10-01

    Low-density lipoprotein cholesterol (LDL-C) is currently the primary target in the management of dyslipidemia, and statins are first-line pharmacologic interventions. Adjunct therapy such as niacins, fibrates, bile acid sequestrants, or cholesterol absorption inhibitors may be considered to help reduce cardiovascular risk. This review discusses the need for alternative adjunct treatment options and the potential place for omega-3 fatty acids as such. The cardiovascular benefits of fish consumption are attributed to the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and a variety of omega-3 fatty acid products are available with varied amounts of EPA and DHA. The product types include prescription drugs, food supplements, and medical foods sourced from fish, krill, algal and plant oils or purified from these oils. Two prescription omega-3 fatty acids are currently available, omega-3 fatty acid ethyl esters (contains both EPA and DHA ethyl esters), and icosapent ethyl (IPE; contains high-purity EPA ethyl ester). A pharmaceutical containing free fatty acid forms of omega-3 is currently in development. Omega-3 fatty acid formulations containing EPA and DHA have been shown to increase LDL-C levels while IPE has been shown to lower triglyceride levels without raising LDL-C levels, alone or in combination with statin therapy. In addition, recent studies have not been able to demonstrate reduced cardiovascular risk following treatment with fibrates, niacins, cholesterol absorption inhibitors, or omega-3 fatty acid formulations containing both EPA and DHA in statin-treated patients; thus, there remains a need for further cardiovascular outcomes studies for adjunct therapy. Copyright © 2013 The Author. Published by Elsevier Ireland Ltd.. All rights reserved.

  6. The effects of n-3 fatty acid deficiency and repletion upon the fatty acid composition and function of the brain and retina.

    PubMed

    Connor, W E; Neuringer, M

    1988-01-01

    It is now apparent that both n-6 and n-3 fatty acids are essential for normal development in mammals, and that each has specific functions in the body. N-6 fatty acids are necessary primarily for growth, reproduction, and the maintenance of skin integrity, whereas n-3 fatty acids are involved in the development and function of the retina and cerebral cortex and perhaps other organs such as the testes. Fetal life and infancy are particularly critical for the nervous tissue development. Therefore, with respect to human nutrition, adequate amounts of omega-3 fatty acids should be provided during pregnancy, lactation and infancy, but probably throughout life. We estimate that adequate levels are provided by diets containing 6-8% kcals from linoleic acid and 1% from n-3 fatty acids (alpha-linolenic acid, EPA and DHA), resulting in a ratio of n-6 to n-3 fatty acids of 4:1 to 10:1. The essentiality of n-3 fatty acids resides in their presence as DHA in vital membranes of the photoreceptors of the retina and the synaptosomes and other subcellular membranes of the brain. The replacement of DHA in deficient animals by the n-6 fatty acid, 22:5, results in abnormal functioning of the membranes for reasons as yet to be ascertained. Most significant is the lability of fatty acid composition in the retinal and brain of deficient animals. Dietary fish oil, which contains EPA and DHA, will readily lead to a change in the composition of the membrane of retina and brain, fatty acids, with DHA replacing the n-6 fatty acid, 22:5. The interrelationships between the chemistry of neural and retinal membranes as affected by diet and their biological functioning provides an exciting prospect for future investigations.

  7. Habitual Diets Rich in Dark-Green Vegetables Are Associated with an Increased Response to ω-3 Fatty Acid Supplementation in Americans of African Ancestry123

    PubMed Central

    O’Sullivan, Aifric; Armstrong, Patrice; Schuster, Gertrud U.; Pedersen, Theresa L.; Allayee, Hooman; Stephensen, Charles B.; Newman, John W.

    2014-01-01

    Although substantial variation exists in individual responses to omega-3 (ω-3) (n–3) fatty acid supplementation, the causes for differences in response are largely unknown. Here we investigated the associations between the efficacy of ω-3 fatty acid supplementation and a broad range of nutritional and clinical factors collected during a double-blind, placebo-controlled trial in participants of African ancestry, randomly assigned to receive either 2 g eicosapentaenoic acid (EPA) + 1 g docosahexaenoic acid (n = 41) or corn/soybean oil placebo (n = 42) supplements for 6 wk. Food-frequency questionnaires were administered, and changes in erythrocyte lipids, lipoproteins, and monocyte 5-lipoxygenase–dependent metabolism were measured before and after supplementation. Mixed-mode linear regression modeling identified high (n = 28) and low (n = 13) ω-3 fatty acid response groups on the basis of changes in erythrocyte EPA abundance (P < 0.001). Compliance was equivalent (∼88%), whereas decreases in plasma triglycerides and VLDL particle sizes and reductions in stimulated monocyte leukotriene B4 production were larger in the high-response group. Although total diet quality scores were similar, the low-response group showed lower estimated 2005 Healthy Eating Index subscores for dark-green and orange vegetables and legumes (P = 0.01) and a lower intake of vegetables (P = 0.02), particularly dark-green vegetables (P = 0.002). Because the findings reported here are associative in nature, prospective studies are needed to determine if dietary dark-green vegetables or nutrients contained in these foods can enhance the efficacy of ω-3 fatty acid supplements. This trial was registered at clinicaltrials.gov as NCT00536185. PMID:24259553

  8. Erythrocyte polyunsaturated fatty acid status, memory, cognition and mood in older adults with mild cognitive impairment and healthy controls.

    PubMed

    Milte, Catherine M; Sinn, Natalie; Street, Steven J; Buckley, Jonathan D; Coates, Alison M; Howe, Peter R C

    2011-01-01

    Polyunsaturated fatty acid (PUFA) levels are altered in adults with cognitive decline and also depression. Depression facilitates progression from mild cognitive impairment (MCI) to dementia. We investigated associations between omega-3 (n-3) and omega-6 (n-6) PUFAs and cognition, memory and depression in 50 adults ≥65 years with MCI and 29 controls. Memory, depressive symptoms and erythrocyte PUFAs (% total fatty acids) were assessed. Eicosapentaenoic acid (EPA) was lower in MCI vs controls (.94% vs 1.26%, p<.01); n-6 PUFAs were higher: dihomo-gamma-linolenic acid (1.51% vs 1.32%, p<.01), arachidonic acid (11.54% vs 10.70%, p<.01), n-6 docosapentaenoic acid (DPA:.46% vs.34%, p<.01), and total n-6 PUFA (24.14% vs 23.37%, p<.05). Higher n-6 DPA predicted poorer mental health. Lower n-3 DPA was associated with higher self-reported bodily pain. Adults with MCI had higher depression scores (3.05±.39 vs 1.33±.24, p<.01). Depressive symptoms associated with elevated n-6 PUFA may contribute to cognitive decline in this population. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Omega-3 Fatty Acid Biomarkers and Subsequent Depressive Symptoms

    PubMed Central

    Persons, Jane E.; Robinson, Jennifer G.; Ammann, Eric M.; Coryell, William H.; Espeland, Mark A.; Harris, William S.; Manson, JoAnn E.; Fiedorowicz, Jess G.

    2014-01-01

    Objective We sought to determine the relationship between the omega-3 fatty acid content of red blood cell membranes (RBC), in particular docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), and baseline and new-onset depressive symptoms in postmenopausal women. We secondarily sought to characterize the association between dietary omega-3 fatty acid intake and depressive symptomatology. Methods Study participants included 7,086 members of the Women's Health Initiative Memory Study (aged 63–81) who had an assessment of RBC omega-3 fatty acid concentrations at the baseline screening visit. Depressive symptoms at baseline and follow-up were characterized using the Burnam 8-item scale for depressive disorders (CES-D/DIS short form), and secondarily additionally inferred by antidepressant medication use. Results In multivariable-adjusted models, our primary exposure, RBC DHA+EPA, was not related to depressive symptoms by any measure at baseline or follow-up, nor were RBC total omega-3, DHA, or EPA (all p>0.2). In contrast, dietary intake of omega-3 was positively associated with depressive symptoms at baseline (adjusted OR 1.082, 95% C.I. 1.004–1.166; p=0.04 for dietary DHA+EPA and Burnam Score ≥ 0.06), although this generally did not persist at follow-up. Conclusion No relationship between RBC omega-3 levels and subsequent depressive symptoms was evident, and associations between dietary omega-3 and depressive symptoms were variable. Biomarkers of omega-3 status do not appear to be related to risk of new depression in post-menopausal women. PMID:24338726

  10. Very-long-chain ω-3 fatty acid supplements and adipose tissue functions: a randomized controlled trial.

    PubMed

    Hames, Kazanna C; Morgan-Bathke, Maria; Harteneck, Debra A; Zhou, Lendia; Port, John D; Lanza, Ian R; Jensen, Michael D

    2017-06-01

    Background: Increased omega-3 (n-3) fatty acid consumption is reported to benefit patients with metabolic syndrome, possibly due to improved adipose tissue function. Objective: We tested the effects of high-dose, very-long-chain ω-3 fatty acids on adipose tissue inflammation and insulin regulation of lipolysis. Design: A double-blind, placebo-controlled study compared 6 mo of 3.9 g eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)/d (4.2 g total ω-3/d; n = 12) with a placebo (4.2 g oleate/d; n = 9) in insulin-resistant adults. Before and after treatment, the volunteers underwent adipose tissue biopsies to measure the total (CD68 + ), pro- (CD14 + = M1), and anti- (CD206 + = M2) inflammatory macrophages, crown-like structures, and senescent cells, as well as a 2-step pancreatic clamping with a [U- 13 C]palmitate infusion to determine the insulin concentration needed to suppress palmitate flux by 50% (IC 50(palmitate) f). Results: In the ω-3 group, the EPA and DHA contributions to plasma free fatty acids increased ( P = 0.0003 and P = 0.003, respectively), as did the EPA and DHA content in adipose tissue ( P < 0.0001 and P < 0.0001, respectively). Despite increases in adipose and plasma EPA and DHA in the ω-3 group, there were no significant changes in the IC 50(palmitate) f (19 ± 2 compared with 24 ± 3 μIU/mL), adipose macrophages (total: 31 ± 2/100 adipocytes compared with 33 ± 2/100 adipocytes; CD14 + : 13 ± 2/100 adipocytes compared with 14 ± 2/100 adipocytes; CD206 + : 28 ± 2/100 adipocytes compared with 29 ± 3/100 adipocytes), crown-like structures (1 ± 0/10 images compared with 1 ± 0/10 images), or senescent cells (4% ± 1% compared with 4% ± 1%). There were no changes in these outcomes in the placebo group. Conclusions: Six months of high-dose ω-3 supplementation raised plasma and adipose ω-3 fatty acid concentrations but had no beneficial effects on adipose tissue lipolysis or inflammation in insulin-resistant adults. This trial

  11. A Transgenic Camelina sativa Seed Oil Effectively Replaces Fish Oil as a Dietary Source of Eicosapentaenoic Acid in Mice123

    PubMed Central

    Tejera, Noemi; Vauzour, David; Betancor, Monica B; Sayanova, Olga; Usher, Sarah; Cochard, Marianne; Rigby, Neil; Ruiz-Lopez, Noemi; Menoyo, David; Tocher, Douglas R; Napier, Johnathan A; Minihane, Anne Marie

    2016-01-01

    Background: Fish currently supplies only 40% of the eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) required to allow all individuals globally to meet the minimum intake recommendation of 500 mg/d. Therefore, alternative sustainable sources are needed. Objective: The main objective was to investigate the ability of genetically engineered Camelina sativa (20% EPA) oil (CO) to enrich tissue EPA and DHA relative to an EPA-rich fish oil (FO) in mammals. Methods: Six-week-old male C57BL/6J mice were fed for 10 wk either a palm oil–containing control (C) diet or diets supplemented with EPA-CO or FO, with the C, low-EPA CO (COL), high-EPA CO (COH), low-EPA FO (FOL), and high-EPA FO (FOH) diets providing 0, 0.4, 3.4, 0.3, and 2.9 g EPA/kg diet, respectively. Liver, muscle, and brain were collected for fatty acid analysis, and blood glucose and serum lipids were quantified. The expression of selected hepatic genes involved in EPA and DHA biosynthesis and in modulating their cellular impact was determined. Results: The oils were well tolerated, with significantly greater weight gain in the COH and FOH groups relative to the C group (P < 0.001). Significantly lower (36–38%) blood glucose concentrations were evident in the FOH and COH mice relative to C mice (P < 0.01). Hepatic EPA concentrations were higher in all EPA groups relative to the C group (P < 0.001), with concentrations of 0.0, 0.4, 2.9, 0.2, and 3.6 g/100 g liver total lipids in the C, COL, COH, FOL, and FOH groups, respectively. Comparable dose-independent enrichments of liver DHA were observed in mice fed CO and FO diets (P < 0.001). Relative to the C group, lower fatty acid desaturase 1 (Fads1) expression (P < 0.005) was observed in the COH and FOH groups. Higher fatty acid desaturase 2 (Fads2), peroxisome proliferator–activated receptor α (Ppara), and peroxisome proliferator–activated receptor γ (Pparg) (P < 0.005) expressions were induced by CO. No impact of treatment on liver X receptor

  12. Partial replacement of dietary linoleic acid with long chain n-3 polyunsaturated fatty acids protects against dextran sulfate sodium-induced colitis in rats.

    PubMed

    Tyagi, Anupama; Kumar, Uday; Santosh, Vadakattu Sai; Reddy, Suryam; Mohammed, Saazida Bhanu; Ibrahim, Ahamed

    2014-12-01

    Imbalances in the dietary n-6 and n-3 polyunsaturated fatty acids have been implicated in the increased prevalence of inflammatory bowel disease. This study investigated the effects of substitution of linoleic acid with long chain n-3 polyunsaturated fatty acids and hence decreasing n-6:n-3 fatty acid ratio on inflammatory response in dextran sulfate sodium induced colitis. Male weanling Sprague Dawley rats were fed diets with n-6:n-3 fatty acid in the ratios of 215,50,10 or 5 for 3 months and colitis was induced by administration of dextran sulfate sodium in drinking water during last 11 days. Decreasing the dietary n-6:n-3 fatty acid ratio to 10 and 5 significantly attenuated the severity of colitis as evidenced by improvements in clinical symptoms, reversal of shortening of colon length, reduced severity of anemia, preservation of colonic architecture as well as reduced colonic mucosal myeloperoxidase activity. This protection was associated with suppression of colonic mucosal proinflammatory mediators such as TNFα, IL-1β and nitric oxide. These findings suggest that long chain n-3 polyunsaturated fatty acids at a level of 3.0 g/kg diet (n-6:n-3 ratio of 10) prevents dextran sulfate sodium induced colitis by suppressing the proinflammatory mediators. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Prepartum fatty acid supplementation in sheep I. Eicosapentaenoic and docosahexaenoic acid supplementation do not modify ewe and lamb metabolic status and performance through weaning.

    PubMed

    Coleman, D N; Rivera-Acevedo, K C; Relling, A E

    2018-02-15

    Fatty acids are involved in the regulation of many physiological pathways, including those involved in gene expression and energy metabolism. Through effects on these pathways, fatty acids may have lifelong impacts on offspring development and metabolism via maternal supplementation. Therefore, our objective was to investigate the impact of supplementing a source of omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) during late gestation on productive and metabolic responses of ewes and their offspring. Eighty-four gestating ewes (28 pens) were blocked and randomly assigned to a diet with 0.39% added fat during the last 50 d of gestation (d -0). The fat sources were Ca salts of a palmitic fatty acid distillate (PFAD) or EPA + DHA. After lambing (d 1), all ewes and lambs were placed on the same pasture. The ewes were weighed and BCS was measured on d -50, -20, 30, and 60 (weaning) of the experiment. Blood samples were taken from the ewes on d -50, -20, 1 (lambing), 30, and 60. Milk yield and composition were measured at 30 d postpartum. Lambs were weighed and bled at d 1, 30, and 60, and ADG was calculated. All plasma samples were analyzed for glucose and NEFA. Ghrelin, prostaglandin E metabolites (PGEM), and the prostaglandin D2 metabolite 11β-PGF2α were measured in d -20 ewe samples. Insulin and adropin were measured in lamb samples at d 60. There was no difference on ewe BW (P = 0.48) or BCS (P = 0.55), or plasma concentrations of glucose (P = 0.57), NEFA (P = 0.44), ghrelin (P = 0.36), PGEM (P = 0.32), and 11β-PGF2α (P = 0.86) between ewes supplemented with PFAD or EPA + DHA. Neither milk yield nor its composition was different (P > 0.10) among treatments. Lambs born from ewes supplemented with PFAD or EPA + DHA did not have different BW (P = 0.22), ADG (P = 0.21) or plasma NEFA (P = 0.52), glucose (P = 0.50), insulin (P = 0.59), and adropin (P = 0.72) concentrations. These results suggest that supplementation of EPA and DHA

  14. Bioequivalence of two omega-3 fatty acid ethyl ester formulations: a case of clinical pharmacology of dietary supplements

    PubMed Central

    Galli, Claudio; Maggi, Franco M; Risé, Patrizia; Sirtori, Cesare R

    2012-01-01

    AIM To evaluate the bioequivalence of two omega-3 long chain polyunsaturated fatty acid (n-3 LC-PUFA) ethyl ester preparations, previously shown not to be bioequivalent in healthy subjects, with the objective of providing a guideline for future work in this area. METHOD A randomized double-blind crossover protocol was chosen. Volunteers with the lowest blood concentrations of n-3 LC-PUFA were selected. They received the ethyl esters in a single high dose (12 g) and eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) blood concentrations were analyzed after fingerprick collection at intervals up to 24 h. RESULTS Differently from a prior study, the pharmacokinetic analysis indicated a satisfactory bioequivalence: for the AUC(0,24 h) 90% CI of the ratio between the two formulations were in the range for bioequivalence (for EPA 0.98, 1.04 and for DHA 0.99, 1.04) and the same was true for Cmax and tmax (90% CI were 0.95, 1.14 and 1.10, 1.25 for EPA and 0.88, 1.02 and 0.84, 1.24 for DHA). CONCLUSION This study shows that, in order to obtain reliable bioequivalence data of products present in the daily diet, certain conditions should be met. Subjects should have low, homogeneous baseline concentrations and not be exposed to food items containing the product under evaluation, e.g. fish. Finally, as in the case of omega-3 fatty acids, selected doses should be high, eventually with appropriate conditions of intake. PMID:22242645

  15. Eicosapentaenoic acid reduces adipocyte hypertrophy and inflammation in diet-induced obese mice in an adiposity-independent manner.

    PubMed

    LeMieux, Monique J; Kalupahana, Nishan S; Scoggin, Shane; Moustaid-Moussa, Naima

    2015-03-01

    Obesity is associated with an overexpansion of adipose tissue, along with increases in blood pressure, glycemia, inflammation, and thrombosis. Research to develop nutritional interventions to prevent or treat obesity and its associated diseases is greatly needed. Previously, we demonstrated the ability of eicosapentaenoic acid (EPA) to prevent high-fat (HF) diet-induced obesity, insulin resistance, and inflammation in mice. The objective of the current study was to determine the mechanisms mediating the anti-inflammatory and antilipogenic actions of EPA. In a previous study, male C57BL/6J mice were fed a low-fat diet (10% of energy from fat), an HF diet (45% of energy from fat), or an HF diet supplemented with EPA (45% of energy from fat; 36 g/kg EPA; HF+EPA) for 11 wk or an HF diet for 6 wk and then switched to the HF+EPA diet for 5 wk. In this study, we used histology/immunohistochemistry, gene expression, and metabolomic analyses of white adipose tissue from these mice. In addition, cultured mouse 3T3-L1 adipocytes were treated with 100 μM EPA for 48 h and then used for extracellular flux assays with untreated 3T3-L1 adipocytes used as a control. Compared with the HF diet, the HF+EPA diet significantly reduced body weight, adiposity, adipocyte size, and macrophage infiltration into adipose tissue. No significant differences in overall body weight or fat pad weights were observed between HF-fed mice vs. those fed the HF+EPA diet for a short time after first inducing obesity with the HF diet. Interestingly, both histology and immunohistochemistry results showed a significantly lower mean adipocyte size and macrophage infiltration in mice fed the HF diet and then switched to the HF+EPA diet vs. those fed HF diets only. This indicated that EPA was able to prevent as well as reverse HF-diet-induced adipocyte inflammation and hypertrophy and that some of the metabolic effects of EPA were independent of body weight or adiposity. In addition, adipose tissue metabolomic

  16. Supplementation with n-3, n-6, n-9 fatty acids in an insulin-resistance animal model: does it improve VLDL quality?

    PubMed

    Lucero, D; Olano, C; Bursztyn, M; Morales, C; Stranges, A; Friedman, S; Macri, E V; Schreier, L; Zago, V

    2017-05-24

    Insulin-resistance (IR), of increased cardiovascular risk, is characterized by the production of altered VLDL with greater atherogenicity. Dietary fatty acids influence the type of circulating VLDL. But, it is not clear how dietary fatty acids impact VLDL characteristics in IR. to evaluate the effects of n-3, n-6 and n-9 fatty acid supplementation on preventing atherogenic alterations in VLDL, in a diet-induced IR rat model. Male Wistar rats (180-200 g) were fed: standard diet (control, n = 8) and a sucrose rich diet (30% sucrose in water/12 weeks, SRD; n = 24). Simultaneously, SRD was subdivided into SRD-C (standard diet), and three other groups supplemented (15% w/w) with: fish oil (SRD-n3), sunflower oil (SRD-n6) and high oleic sunflower oil (SRD-n9). Lipid profile, free fatty acids, glucose, and insulin were measured. Isolated VLDL (d < 1.006 g ml -1 ) was characterized by chemical composition and size (size exclusion-HPLC). In comparison with SRD-C: SRD-n3 showed an improved lipoprotein profile (p < 0.01), with lower levels of insulin and HOMA-IR (p < 0.05). SRD-n6 showed increased levels of HDL-cholesterol and lower insulin levels. SRD-n9 did not exhibit differences in lipid and IR profile, and even favored weight gain and visceral fat. Only SRD-n3 prevented the alterations in VLDL-TG% (54.2 ± 4.4% vs. 68.6 ± 8.2, p < 0.05) and showed lower large VLDL-% (22.5[19.7-35.6] vs. 49.1[15.5-82.0], p < 0.05), while SRD-n6 and SRD-n9 did not show effects. In IR, while n-3 PUFA showed expected favorable effects, supplementation with n-6 PUFA and n-9 MUFA did not prevent atherogenic alterations of VLDL. Thus, the recommendations of supplementation with these fatty acids in general diet should be revised.

  17. Red blood cell fatty acid analysis for determining compliance with omega3 supplements in dry eye disease trials.

    PubMed

    Gadaria-Rathod, Neha; Dentone, Peter G; Peskin, Ellen; Maguire, Maureen G; Moser, Ann; Asbell, Penny A

    2013-11-01

    To evaluate pill counts and red blood cell (RBC) membrane fatty acid profiles as measures of compliance with oral omega3 polyunsaturated fatty acids3 PUFAs) and to compare the two techniques. Sixteen dry eye disease subjects were given oral ω3 PUFA or placebo for 3 months. Compliance was measured by pill counts and blood tests at baseline and 3 months. The Wilcoxon signed-rank tests and rank-sum tests were used to compare changes from baseline and the difference between the two groups; Spearman correlation coefficients were used to assess the relationship of pill counts to changes in blood FAs. Pill counts for the ω3 (n=7) and placebo (n=9) groups showed a mean consumption of 4.39 and 4.76 pills per day, respectively. In the ω3 group, the median change from baseline was +1.46% for eicosapentaenoic acid (EPA) (P=0.03), +1.49% for docosahexaenoic acid (DHA) (P=0.08), and -1.91% for arachidonic acids (AA) (P=0.02). In the placebo group, median changes in all measured FAs were small and not statistically significant. The difference in change in FA levels between the two groups was significantly greater for EPA (P=0.01) and AA (P=0.04). The correlations between pill counts and changes in EPA (r=0.36, P=0.43) and DHA (r=0.17, P=0.70) were not strong. RBC FA analysis can be used to measure compliance in the active group and also monitor the placebo group for nonstudy ω3 intake. Low correlation of pill counts with blood levels suggests that pill counts alone may be inaccurate and should be replaced or supplemented with objective measures.

  18. Long-chain n-3 and n-6 polyunsaturated fatty acids and risk of atrial fibrillation: Results from a Danish cohort study.

    PubMed

    Mortensen, Lotte Maxild; Lundbye-Christensen, Søren; Schmidt, Erik Berg; Calder, Philip C; Schierup, Mikkel Heide; Tjønneland, Anne; Parner, Erik T; Overvad, Kim

    2017-01-01

    Studies of the relation between polyunsaturated fatty acids and risk of atrial fibrillation have been inconclusive. The risk of atrial fibrillation may depend on the interaction between n-3 and n-6 polyunsaturated fatty acids as both types of fatty acids are involved in the regulation of systemic inflammation. We investigated the association between dietary intake of long chain polyunsaturated fatty acids (individually and in combination) and the risk of atrial fibrillation with focus on potential interaction between the two types of polyunsaturated fatty acids. The risk of atrial fibrillation in the Diet, Cancer and Health Cohort was analyzed using the pseudo-observation method to explore cumulative risks on an additive scale providing risk differences. Dietary intake of long chain polyunsaturated fatty acids was assessed by food frequency questionnaires. The main analyses were adjusted for the dietary intake of n-3 α-linolenic acid and n-6 linoleic acid to account for endogenous synthesis of long chain polyunsaturated fatty acids. Interaction was assessed as deviation from additivity of absolute association measures (risk differences). Cumulative risks in 15-year age periods were estimated in three strata of the cohort (N = 54,737). No associations between intake of n-3 or n-6 long chain polyunsaturated fatty acids and atrial fibrillation were found, neither when analyzed separately as primary exposures nor when interaction between n-3 and n-6 long chain polyunsaturated fatty acids was explored. This study suggests no association between intake of long chain polyunsaturated fatty acids and risk of atrial fibrillation.

  19. Associations between variants of FADS genes and omega-3 and omega-6 milk fatty acids of Canadian Holstein cows.

    PubMed

    Ibeagha-Awemu, Eveline M; Akwanji, Kingsley A; Beaudoin, Frédéric; Zhao, Xin

    2014-02-17

    Fatty acid desaturase 1 (FADS1) and 2 (FADS2) genes code respectively for the enzymes delta-5 and delta-6 desaturases which are rate limiting enzymes in the synthesis of polyunsaturated omega-3 and omega-6 fatty acids (FAs). Omega-3 and-6 FAs as well as conjugated linoleic acid (CLA) are present in bovine milk and have demonstrated positive health effects in humans. Studies in humans have shown significant relationships between genetic variants in FADS1 and 2 genes with plasma and tissue concentrations of omega-3 and-6 FAs. The aim of this study was to evaluate the extent of sequence variations within these two genes in Canadian Holstein cows as well as the association between sequence variants and health promoting FAs in milk. Thirty three SNPs were detected within the studied regions of genes including a synonymous mutation (FADS1-07, rs42187261, 306Tyr > Tyr) in exon 8 of FADS1, a non-synonymous mutation (FADS2-14, rs211580559, 294Ala > Val) within FADS2 exon 7, a splice site SNP (FADS2-05, rs211263660), a 3'UTR SNP (FADS2-23, rs109772589), and another 3'UTR SNP with an effect on a microRNA binding site within FADS2 gene (FADS2-19, rs210169303). Association analyses showed significant relations between three out of seven tested SNPs and several FAs. Significant associations (FDR P < 0.05) were recorded between FADS2-23 (rs109772589) and two omega-6 FAs (dihomogamma linolenic acid [C20:3n6] and arachidonic acid [C20:4n6]), FADS1-07 (rs42187261) and one omega-3 FA (eicosapentaenoic acid, C20:5n3) and tricosanoic acid (C23:0), and one intronic SNP, FADS1-01 (rs136261927) and C20:3n6. Our study has demonstrated positive associations between three SNPs within FADS1 and FADS2 genes (a SNP within the 3'UTR, a synonymous SNP and an intronic SNP), with three milk PUFAs of Canadian Holstein cows thus suggesting possible involvement of synonymous and non-coding region variants in FA synthesis. These SNPs may serve as potential genetic markers in breeding programs to

  20. Omega-3 polyunsaturated fatty acids in treating non-alcoholic steatohepatitis: A randomized, double-blind, placebo-controlled trial.

    PubMed

    Nogueira, Monize Aydar; Oliveira, Claudia Pinto; Ferreira Alves, Venâncio Avancini; Stefano, José Tadeu; Rodrigues, Lívia Samara Dos Reis; Torrinhas, Raquel Susana; Cogliati, Bruno; Barbeiro, Hermes; Carrilho, Flair José; Waitzberg, Dan Linetzky

    2016-06-01

    & aims: Few clinical trials have addressed the potential benefits of omega-3 polyunsaturated fatty acids (PUFAs) on non-alcoholic steatohepatitis (NASH). We evaluated the effects of supplementation with omega-3 PUFAs from flaxseed and fish oils in patients with biopsy-proven NASH. Patients received three capsules daily, each containing 0.315 g of omega-3 PUFAs (64% alpha-linolenic [ALA], 16% eicosapentaenoic [EPA], and 21% docosahexaenoic [DHA] acids; n-3 group, n = 27) or mineral oil (placebo group, n = 23). Liver biopsies were evaluated histopathologically by the NASH activity score (NAS). Plasma levels of omega-3 PUFAs were assessed as a marker of intake at baseline and after 6 months of treatment. Secondary endpoints included changes in plasma biochemical markers of lipid metabolism, inflammation, and liver function at baseline and after 3 and 6 months of treatment. At baseline, NAS was comparable between the groups (p = 0.98). After intervention with omega-3 PUFAs, plasma ALA and EPA levels increased (p ≤ 0.05). However in the placebo group, we also observed increased EPA and DHA (p ≤ 0.05), suggesting an off-protocol intake of PUFAs. NAS improvement/stabilization was correlated with increased ALA in the n-3 group (p = 0.02) and with increased EPA (p = 0.04) and DHA (p = 0.05) in the placebo group. Triglycerides were reduced after 3 months in the n-3 group compared to baseline (p = 0.01). In NASH patients, the supplementation of omega-3 PUFA from flaxseed and fish oils significantly impacts on plasma lipid profile of patients with NASH. Plasma increase of these PUFAs was associated with better liver histology. (ID 01992809). Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  1. The Polyunsaturated Fatty Acids Arachidonic Acid and Docosahexaenoic Acid Induce Mouse Dendritic Cells Maturation but Reduce T-Cell Responses In Vitro

    PubMed Central

    Carlsson, Johan A.; Wold, Agnes E.; Sandberg, Ann-Sofie; Östman, Sofia M.

    2015-01-01

    Long-chain polyunsaturated fatty acids (PUFAs) might regulate T-cell activation and lineage commitment. Here, we measured the effects of omega-3 (n-3), n-6 and n-9 fatty acids on the interaction between dendritic cells (DCs) and naïve T cells. Spleen DCs from BALB/c mice were cultured in vitro with ovalbumin (OVA) with 50 μM fatty acids; α-linolenic acid, arachidonic acid (AA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), linoleic acid or oleic acid and thereafter OVA-specific DO11.10 T cells were added to the cultures. Fatty acids were taken up by the DCs, as shown by gas chromatography analysis. After culture with arachidonic acid or DHA CD11c+ CD11b+ and CD11c+ CD11bneg DCs expressed more CD40, CD80, CD83, CD86 and PDL-1, while IAd remained unchanged. However, fewer T cells co-cultured with these DCs proliferated (CellTrace Violetlow) and expressed CD69 or CD25, while more were necrotic (7AAD+). We noted an increased proportion of T cells with a regulatory T cell (Treg) phenotype, i.e., when gating on CD4+ FoxP3+ CTLA-4+, CD4+ FoxP3+ Helios+ or CD4+ FoxP3+ PD-1+, in co-cultures with arachidonic acid- or DHA-primed DCs relative to control cultures. The proportion of putative Tregs was inversely correlated to T-cell proliferation, indicating a suppressive function of these cells. With arachidonic acid DCs produced higher levels of prostaglandin E2 while T cells produced lower amounts of IL-10 and IFNγ. In conclusion arachidonic acid and DHA induced up-regulation of activation markers on DCs. However arachidonic acid- and DHA-primed DCs reduced T-cell proliferation and increased the proportion of T cells expressing FoxP3, indicating that these fatty acids can promote induction of regulatory T cells. PMID:26619195

  2. Effects of saturated palmitic acid and omega-3 polyunsaturated fatty acids on Sertoli cell apoptosis.

    PubMed

    Hu, Xuechun; Ge, Xie; Liang, Wei; Shao, Yong; Jing, Jun; Wang, Cencen; Zeng, Rong; Yao, Bing

    2018-05-25

    Obesity is believed to negatively affect male semen quality and is accompanied by dysregulation of free fatty acid (FFA) metabolism in plasma. However, the implication of dysregulated FFA on semen quality and the involvement of Sertoli cells remain unclear. In the present study, we report obesity decreased Sertoli cell viability through dysregulated FFAs. We observed an increased rate of apoptosis in Sertoli cells, accompanied with elevated FFA levels, in the testes of obese mice that were provided a high-fat diet (HFD). Moreover, the levels of reactive oxygen species were elevated. Furthermore, we demonstrated by in vitro assays that saturated palmitic acid (PA), which is the most common saturated FFA in plasma, led to decreased cell viability of TM4 Sertoli cells in a time- and dose-dependent manner. A similar finding was noted in primary mouse Sertoli cells. In contrast to saturated FFA, omega-3 (ω-3) polyunsaturated fatty acids (PUFAs) protected Sertoli cells from PA-induced lipotoxicity at the physiologically relevant levels. These results indicated that the lipotoxicity of saturated fatty acids might be the cause of obesity-induced Sertoli cell apoptosis, which leads to decreased semen quality. In addition, ω-3 PUFAs could be classified as protective FFAs. FFA: free fatty acid; HFD: high-fat diet; SD: standard diet; PA: palmitic acid; PUFA: polyunsaturated fatty acid; AI: apoptotic index; MTT: 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide; ROS: reactive oxygen species; HE: Hematoxylin and eosin; WT1: Wilm Tumor 1; NAFLD: non- alcoholic fatty liver disease; DCFH-DA: 2', 7' dichlorofluorescin diacetate; 36B4: acidic ribosomal phosphoprotein P0; SD: standard deviation; EPA: eicosapentaenoic acid; PI: propidium iodide; DHA: docosahexenoic acid.

  3. Highly purified eicosapentaenoic acid ameliorates cardiac injury and adipose tissue inflammation in a rat model of metabolic syndrome

    PubMed Central

    Ito, S.; Sano, Y.; Nagasawa, K.; Matsuura, N.; Yamada, Y.; Uchinaka, A.; Murohara, T.

    2016-01-01

    Summary Introduction n‐3 Polyunsaturated fatty acids such as eicosapentaenoic acid (EPA), which are abundant in fish oil, have been shown to delay the onset of cardiovascular events. We previously established DahlS.Z‐Lepr fa/Lepr fa (DS/obese) rats, which are derived from a cross between Dahl salt‐sensitive and Zucker rats, as a model of metabolic syndrome. This study has now explored the influence of highly purified EPA on cardiac and adipose tissue pathophysiology in this animal model. Materials and methods DS/obese rats were administered EPA (300 or 1,000 mg kg−1 d−1, per os) or vehicle from age 9 to 13 weeks. Homozygous lean (DahlS.Z‐Lepr +/Lepr +, or DS/lean) littermates were studied as controls. Results Whereas EPA had no effect on body weight, food intake or systolic blood pressure in DS/obese rats, it attenuated cardiac fibrosis, diastolic dysfunction, oxidative stress and inflammation in these animals. In addition, EPA did not affect insulin resistance but reduced adipocyte hypertrophy and inflammation in visceral fat of DS/obese rats. Moreover, EPA increased circulating levels of adiponectin as well as attenuated both the down‐regulation of AMP‐activated protein kinase phosphorylation and the up‐regulation of phosphorylation of the p65 subunit of nuclear factor‐kB in the heart of DS/obese rats. Conclusions Treatment of DS/obese rats with EPA did not affect hypertension but reduced cardiac fibrosis and diastolic dysfunction, with the latter effects being accompanied by AMP‐activated protein kinase activation and inactivation of nuclear factor‐kB signalling in the heart, possibly as a result of an increase in adiponectin secretion. EPA may be suitable for the treatment of cardiac injury associated with metabolic syndrome. PMID:27708849

  4. Dietary Hizikia fusiformis glycoprotein-induced IGF-I and IGFBP-3 associated to somatic growth, polyunsaturated fatty acid metabolism, and immunity in juvenile olive flounder Paralichthys olivaceus.

    PubMed

    Choi, Youn Hee; Kim, Kang-Woong; Han, Hyon-Sob; Nam, Taek Jeong; Lee, Bong-Joo

    2014-01-01

    This study was aimed to examine the effect of dietary glycoprotein extracted from the sea mustard Hizikia fusiformis (Phaeophyceae: Sargassaceae) as a dietary supplement on growth performance in association with somatotropin level, proximate compositions, and immunity in juvenile olive flounder Paralichthys olivaceus. Water-ethanol extracted glycoprotein from H. fusiformis was supplemented to three fishmeal-based diets at the concentration of 0, 5, and 10gkg(-1) diet (designated as H0, H5, and H10, respectively). After a 12week-long feeding trial, growth performance and biochemical responses were analyzed including proximate composition, and whole body amino acids and fatty acids. We also measured plasma insulin like growth factor (IGF), IGF-binding protein (IGFBP) and interleukin (IL). The fish fed H5 showed the greatest weight gain among the dietary treatments. In parallel with the growth, the fish fed the diets containing H. fusiformis glycoprotein showed an increased plasma IGF-I activity and increased expression of 43-kDa IGFBP-3 compared to that in the control, whereas an opposite trend was observed for 34-kDa IGFBP-1. Although no differences were found in the level of whole body linoleic acid (C18:2n-6) and linolenic acid (C18:3n-3) among treatments, increases in arachidonic acid (ARA, C20:4n-6), eicosapentaenoic acid (EPA, C20:5n-3) and docosahexaenoic acid (DHA, C22:6n-3) were observed in fish fed H5 compared to control. IL-2 and -6 levels increased significantly in fish fed H10 compared to those in the control indicating increased immunity. These results suggest that supplementation of H. fusiformis glycoprotein in fish diet may be beneficial for fish growth and immunity in juvenile olive flounder. © 2013.

  5. Dietary intake and plasma metabolomic analysis of polyunsaturated fatty acids in bipolar subjects reveal dysregulation of linoleic acid metabolism.

    PubMed

    Evans, Simon J; Ringrose, Rachel N; Harrington, Gloria J; Mancuso, Peter; Burant, Charles F; McInnis, Melvin G

    2014-10-01

    Polyunsaturated fatty acids (PUFA) profiles associate with risk for mood disorders. This poses the hypothesis of metabolic differences between patients and unaffected healthy controls that relate to the primary illness or are secondary to medication use or dietary intake. However, dietary manipulation or supplementation studies show equivocal results improving mental health outcomes. This study investigates dietary patterns and metabolic profiles relevant to PUFA metabolism, in bipolar I individuals compared to non-psychiatric controls. We collected seven-day diet records and performed metabolomic analysis of fasted plasma collected immediately after diet recording. Regression analyses adjusted for age, gender and energy intake found that bipolar individuals had significantly lower intake of selenium and PUFAs, including eicosapentaenoic acid (EPA) (n-3), docosahexaenoic acid (DHA) (n-3), arachidonic acid (AA) (n-6) and docosapentaenoic acid (DPA) (n-3/n-6 mix); and significantly increased intake of the saturated fats, eicosanoic and docosanoic acid. Regression analysis of metabolomic data derived from plasma samples, correcting for age, gender, BMI, psychiatric medication use and dietary PUFA intake, revealed that bipolar individuals had reduced 13S-HpODE, a major peroxidation product of the n-6, linoleic acid (LA), reduced eicosadienoic acid (EDA), an elongation product of LA; reduced prostaglandins G2, F2 alpha and E1, synthesized from n-6 PUFA; and reduced EPA. These observations remained significant or near significant after Bonferroni correction and are consistent with metabolic variances between bipolar and control individuals with regard to PUFA metabolism. These findings suggest that specific dietary interventions aimed towards correcting these metabolic disparities may impact health outcomes for individuals with bipolar disorder. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Long Chain Fatty Acid Acylated Derivatives of Quercetin-3-O-Glucoside as Antioxidants to Prevent Lipid Oxidation

    PubMed Central

    Warnakulasuriya, Sumudu N.; Ziaullah; Rupasinghe, H.P. Vasantha

    2014-01-01

    Flavonoids have shown promise as natural plant-based antioxidants for protecting lipids from oxidation. It was hypothesized that their applications in lipophilic food systems can be further enhanced by esterification of flavonoids with fatty acids. Quercetin-3-O-glucoside (Q3G) was esterified individually with six selected long chain fatty acids: stearic acid (STA), oleic acid (OLA), linoleic acid (LNA), α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and decosahexaenoic acid (DHA), using Candida antarctica B lipase as the biocatalyst. The antioxidant activity of esterified flavonoids was evaluated using lipid oxidation model systems of poly-unsaturated fatty acids-rich fish oil and human low density lipoprotein (LDL), in vitro. In the oil-in-water emulsion, Q3G esters exhibited 50% to 100% inhibition in primary oxidation and 30% to 75% inhibition in secondary oxidation. In bulk oil, Q3G esters did not provide considerable protection from lipid oxidation; however, Q3G demonstrated more than 50% inhibition in primary oxidation. EPA, DHA and ALA esters of Q3G showed significantly higher inhibition in Cu2+- and peroxyl radical-induced LDL oxidation in comparison to Q3G. PMID:25384198

  7. Long chain fatty acid acylated derivatives of quercetin-3-o-glucoside as antioxidants to prevent lipid oxidation.

    PubMed

    Warnakulasuriya, Sumudu N; Ziaullah; Rupasinghe, H P Vasantha

    2014-11-06

    Flavonoids have shown promise as natural plant-based antioxidants for protecting lipids from oxidation. It was hypothesized that their applications in lipophilic food systems can be further enhanced by esterification of flavonoids with fatty acids. Quercetin-3-O-glucoside (Q3G) was esterified individually with six selected long chain fatty acids: stearic acid (STA), oleic acid (OLA), linoleic acid (LNA), α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and decosahexaenoic acid (DHA), using Candida antarctica B lipase as the biocatalyst. The antioxidant activity of esterified flavonoids was evaluated using lipid oxidation model systems of poly-unsaturated fatty acids-rich fish oil and human low density lipoprotein (LDL), in vitro. In the oil-in-water emulsion, Q3G esters exhibited 50% to 100% inhibition in primary oxidation and 30% to 75% inhibition in secondary oxidation. In bulk oil, Q3G esters did not provide considerable protection from lipid oxidation; however, Q3G demonstrated more than 50% inhibition in primary oxidation. EPA, DHA and ALA esters of Q3G showed significantly higher inhibition in Cu2+- and peroxyl radical-induced LDL oxidation in comparison to Q3G.

  8. Baking reduces prostaglandin, resolvin, and hydroxy-fatty acid content of farm-raised Atlantic salmon (Salmo salar).

    PubMed

    Raatz, Susan K; Golovko, Mikhail Y; Brose, Stephen A; Rosenberger, Thad A; Burr, Gary S; Wolters, William R; Picklo, Matthew J

    2011-10-26

    The consumption of seafood enriched in n-3 polyunsaturated fatty acids (PUFA) is associated with a decreased risk of cardiovascular disease. Several n-3 oxidation products from eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (22:6n-3) have known protective effects in the vasculature. It is not known whether the consumption of cooked seafood enriched in n-3 PUFA causes appreciable consumption of lipid oxidation products. We tested the hypothesis that baking Atlantic salmon (Salmo salar) increases the level of n-3 and n-6 PUFA oxidation products over raw salmon. We measured the contents of several monohydroxy-fatty acids (MHFA), prostanoids, and resolvins. Our data demonstrate that baking did not change the overall total levels of MHFA. However, baking resulted in selective regioisomeric loss of hydroxy fatty acids from arachidonic acid (20:4n-6) and EPA, while significantly increasing hydroxyl-linoleic acid levels. The contents of prostanoids and resolvins were reduced several-fold with baking. The inclusion of a coating on the salmon prior to baking reduced the loss of some MHFA but had no effect on prostanoid losses incurred by baking. Baking did not decrease n-3 PUFA contents, indicating that baking of salmon is an acceptable means of preparation that does not alter the potential health benefits of high n-3 seafood consumption. The extent to which the levels of MHFA, prostanoids, and resolvins in the raw or baked fish have physiologic consequence for humans needs to be determined.

  9. Polyunsaturated fatty acids in the central nervous system: evolution of concepts and nutritional implications throughout life.

    PubMed

    Alessandri, Jean-Marc; Guesnet, Philippe; Vancassel, Sylvie; Astorg, Pierre; Denis, Isabelle; Langelier, Bénédicte; Aïd, Sabah; Poumès-Ballihaut, Carine; Champeil-Potokar, Gaëlle; Lavialle, Monique

    2004-01-01

    Docosahexaenoic acid (DHA, 22:6n-3) and arachidonic acid (AA, 20:4n-6) are the major polyunsaturated fatty acids in the membranes of brain and retinal cells. Animals specifically deficient in dietary n-3 fatty acids have low DHA content in their membranes, reduced visual acuity and impaired learning ability. Studies on bottle-fed human infants have shown that adding DHA and AA to milk replacer-formulas can bring their concentrations in the infant blood lipids to values as high as those produced by breast-feeding and significantly improves mental development and maturation of visual function. In older subjects, diverse neuropsychiatric and neurodegenerative diseases have been associated to decreased blood levels of n-3 PUFA. Low intakes of fish or of n-3 PUFA in populations have been associated with increased risks of depression and Alzheimer disease, and n-3 PUFA, especially eicosapentaenoic acid (EPA, 20:5n-3), have shown efficacy as adjunctive treatment - and in some cases as the only treatment--in several psychiatric disorders. The mechanisms by which polyunsaturated fatty acids have an impact on neuronal functions will be reviewed: the modulation of membrane biophysical properties, regulation of neurotransmitter release, synthesis of biologically active oxygenated derivatives, and nuclear receptor-mediated transcription of genes responsive to fatty acids or to their derivatives.

  10. n-3 and n-6 Fatty Acid Changes in the Erythrocyte Membranes of Patients with 658240251 Clostridium difficile Infection.

    PubMed

    Czepiel, Jacek; Gdula-Argasińska, Joanna; Garlicki, Aleksander

    2016-01-01

    The implications of circulating essential fatty acids (FA) on the inflammatory risk profile and clinical outcome are still unclear. In order to gain a deeper understanding of the role of polyunsaturated fatty acids (PUFA) in the pathogenesis of acute infection, we analyzed the FA content in red blood cell (RBC) membranes of patients with Clostridium difficile infection (CDI) and controls. We prospectively studied 60 patients including 30 patients with CDI and 30 controls to assess lipid concentrations in erythrocyte membranes using gas chromatography. We observed a higher level of saturated fatty acids (SFA) in RBC membranes from patients with CDI. In patients with CDI, we also noticed a higher level of 20:4 n-6 FA and only a small amounts of C20:2n-6, C20:3n-6 FAs, arachidonic acid (AA) precursors, which suggest an intense inflammatory reaction in the organism during infection. We also noticed low levels of n-3 FA in the RBC membranes of patients infected with CDI. There is a deficit of n-3 FA in patients with CDI. n-3 FA are probably used during CDI as precursors of pro-resolving mediators that may indicate a therapeutic role of n-3 PUFAs in CDI. The changes in fatty acids in erythrocyte membranes during CDI alter their functions which may have an impact on the clinical outcome.

  11. Effect of n-3 fatty acids on free tryptophan and exercise fatigue.

    PubMed

    Huffman, Derek M; Altena, Thomas S; Mawhinney, Thomas P; Thomas, Tom R

    2004-08-01

    Free tryptophan (Trp), which is augmented by liberated free fatty acids (FFA) from adipose tissue, can induce mental fatigue via serotonin during exercise. Since an attenuation in FFA has been observed with omega-3 fatty acid (n-3fa) use, our purpose was to examine the effect of n-3fa supplementation on free Trp availability and exercise fatigue. Ten recreationally trained men ( n=5) and women ( n=5), with maximal oxygen consumption (VO(2max))of 51.6 (3.0) and 44.3 (1.4) ml kg(-1) min(-1), respectively, were studied on two occasions following an overnight fast, before and after n-3fa supplementation (4 g day(-1) for 4 weeks). The exercise trials consisted of a 75-min treadmill run at 60% VO(2max) followed immediately by a high-intensity incremental bout to fatigue. Measurements included exercise monitors, plasma volume (PV), triglycerides (TG), FFA, glycerol, lactate, and glucose. Free Trp and branched-chain amino acids (BCAA) were measured and correlated with time to fatigue; all blood variables were corrected for PV. Free Trp, lactate, glucose, FFA, and glycerol were not significantly different between trials, but TG ( P<0.001) and the free Trp/BCAA ratio were significantly lower after n-3fa use [1.76 (0.18)x10(-2) microg ml(-1)] versus before supplementation [2.17 (0.22), P=0.033]. There was a non-significant increase in time to fatigue after supplementation [10.2 (0.3) min] versus before n-3fa use [9.7 (0.2), P=0.068], and a tendency for higher BCAA levels after supplementation, P=0.068. However, neither free Trp nor the free Trp/BCAA ratio significantly predicted time to fatigue. In conclusion, n-3fa supplementation did not diminish free Trp concentrations or significantly improve endurance performance during a maximal bout of exercise.

  12. Meta-analysis of erythrocyte polyunsaturated fatty acid biostatus in bipolar disorder.

    PubMed

    McNamara, Robert K; Welge, Jeffrey A

    2016-05-01

    Dietary deficiency in polyunsaturated fatty acids (PUFAs), including the omega-3 fatty acids eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3), and excesses in omega-6 fatty acids, including linoleic acid (LA; 18:2n-6) and arachidonic acid (AA; 20:4n-6), may be associated with the pathophysiology of bipolar disorder. In an effort to provide clarification regarding the relationship between PUFA biostatus and bipolar disorder, this meta-analysis investigated studies comparing erythrocyte (red blood cell) membrane PUFA composition in patients with bipolar disorder and healthy controls. A meta-analysis was performed on case-control studies comparing erythrocyte PUFA (EPA, DHA, LA and AA) levels in patients with bipolar I disorder and healthy controls. Standardized effect sizes were calculated and combined using a random effects model. Six eligible case-control studies comprising n = 118 bipolar I patients and n = 147 healthy controls were included in the analysis. Compared with healthy controls, patients with bipolar I disorder exhibited robust erythrocyte DHA deficits (p = 0.0008) and there was a trend for lower EPA (p = 0.086). There were no significant differences in LA (p = 0.42) or AA (p = 0.64). Bipolar I disorder is associated with robust erythrocyte DHA deficits. These findings add to a growing body of evidence implicating omega-3 PUFA deficiency in the pathophysiology of bipolar disorder. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Association of plasma n-6 and n-3 polyunsaturated fatty acids with synovitis in the knee: the MOST study

    USDA-ARS?s Scientific Manuscript database

    In osteoarthritis (OA) the synovium is often inflamed and inflammatory cytokines contribute to cartilage damage. Omega-3 polyunsaturated fatty acids (n-3 PUFAs) have anti-inflammatory effects whereas omega-6 polyunsaturated fatty acids (n-6 PUFAs) have, on balance, proinflammatory effects. The goal ...

  14. Effects of dietary n-3 fatty acids on the phospholipid molecular species of monkey brain.

    PubMed

    Lin, D S; Connor, W E; Anderson, G J; Neuringer, M

    1990-10-01

    We examined the changes in the molecular species of brain ethanolamine glycerophospholipids of monkeys fed diets containing widely ranging amounts of n-3 fatty acids. Two groups of rhesus monkeys were fed pre- and postnatally either a control diet (soy oil; containing 8% of fatty acids as 18:3n-3) or a deficient diet (safflower oil; containing less than 0.3% 18:3n-3). The brains of these animals were analyzed at 22 months of age. A third group of monkeys was fed the safflower oil diet to 22 months of age and then switched to a fish oil diet (28% long-chain n-3 fatty acids) for 1-2 years before autopsy. The molecular species of the diacyl, alkylacyl, and alkenylacyl ethanolamine glycerophospholipids from frontal cortex were separated by HPLC. A total of 24 molecular species were identified. Fatty acids in the sn-2 position differed markedly among the diet groups, but the sn-1 position always contained only 16:0, 18:0, or 18:1. In the diacyl subclass of the control brain, the n-3 molecular species represented 41% of total and the n-6 species 45%, whereas in the deficient brain the n-3 molecular species decreased to 9% and n-6 molecular species increased to 77%. The fatty acid 22:5n-6 did not replace 22:6n-3 in a symmetrical fashion in the molecular species of the deficient brain. In the brains of the fish oil-fed monkeys, the n-3 molecular species amounted to 61% and n-6 molecular species were reduced to 25%. The species 18:1-22:6, 16:0-22:6, and 18:0-22:6 generally changed proportionally in response to diet.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Polyunsaturated Fatty Acids of Marine Macroalgae: Potential for Nutritional and Pharmaceutical Applications

    PubMed Central

    Pereira, Hugo; Barreira, Luísa; Figueiredo, Filipe; Custódio, Luísa; Vizetto-Duarte, Catarina; Polo, Cristina; Rešek, Eva; Engelen, Aschwin; Varela, João

    2012-01-01

    As mammals are unable to synthesize essential polyunsaturated fatty acids (PUFA), these compounds need to be taken in through diet. Nowadays, obtaining essential PUFA in diet is becoming increasingly difficult; therefore this work investigated the suitability of using macroalgae as novel dietary sources of PUFA. Hence, 17 macroalgal species from three different phyla (Chlorophyta, Phaeophyta and Rhodophyta) were analyzed and their fatty acid methyl esters (FAME) profile was assessed. Each phylum presented a characteristic fatty acid signature as evidenced by clustering of PUFA profiles of algae belonging to the same phylum in a Principal Components Analysis. The major PUFA detected in all phyla were C18 and C20, namely linoleic, arachidonic and eicosapentaenoic acids. The obtained data showed that rhodophytes and phaeophytes have higher concentrations of PUFA, particularly from the n-3 series, thereby being a better source of these compounds. Moreover, rhodophytes and phaeophytes presented “healthier” ∑n-6/∑n-3 and PUFA/saturated fatty acid ratios than chlorophytes. Ulva was an exception within the Chlorophyta, as it presented high concentrations of n-3 PUFA, α-linolenic acid in particular. In conclusion, macroalgae can be considered as a potential source for large-scale production of essential PUFA with wide applications in the nutraceutical and pharmacological industries. PMID:23118712

  16. Short-term n-3 fatty acid supplementation but not aspirin increases plasma proresolving mediators of inflammation.

    PubMed

    Barden, Anne; Mas, Emilie; Croft, Kevin D; Phillips, Michael; Mori, Trevor A

    2014-11-01

    Resolution of inflammation is an active process involving specialized proresolving mediators (SPM) formed from the n-3 fatty acids. This study examined the effect of n-3 fatty acid supplementation and aspirin on plasma SPMs in healthy humans. Healthy volunteers (n = 21) were supplemented with n-3 fatty acids (2.4g/day) for 7 days with random assignment to take aspirin (300 mg/day) or placebo from day 5 to day 7. Blood was collected at baseline (day 0), day 5, and day 7. Plasma 18R/S-HEPE, E-series resolvins, 17R/S-HDHA, D-series resolvins, 14R/S-HDHA, and MaR-1 were measured by LC/MS/MS. At baseline concentrations of E- and D- series resolvins and the upstream precursors 18R/S-HEPE, 17R/S-HDHA ranged from 0.1nM to 0.2nM. 14R/S-HDHA was 3-fold higher than the other SPMs at baseline but MaR-1 was below the limit of detection. Supplementation with n-3 fatty acids significantly increased RvE1, 18R/S-HEPE, 17R/S-HDHA, and 14R/S-HDHA but not other SPMs. The addition of aspirin after 5 days of n-3 fatty acids did not affect concentrations of any SPM. N-3 fatty acid supplementation for 5 days results in concentrations of SPMs that are biologically active in healthy humans. Aspirin administered after n-3 fatty acids did not offer any additional benefit in elevating the levels of SPMs. Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc.

  17. Acne vulgaris, mental health and omega-3 fatty acids: a report of cases

    PubMed Central

    Rubin, Mark G; Kim, Katherine; Logan, Alan C

    2008-01-01

    Acne vulgaris is a common skin condition, one that is associated with significant psychological disability. The psychological impairments in acne include higher rates of depression, anxiety, anger and suicidal thoughts. Despite a paucity of clinical research, patients with skin conditions and/or mental health disorders are frequent consumers of dietary supplements. An overlap may exist between nutrients that potentially have both anti-acne and mood regulating properties; examples include omega-3 fatty acids from fish oil, chromium, zinc and selenium. Here we report on five cases of acne treated with eicosapentaenoic acid and antioxidant nutrients. Self-administration of these nutrients may have improved inflammatory acne lesions and global aspects of well-being; the observations suggest a need for controlled trials. PMID:18851733

  18. Nutrigenomics and nutrigenetics of ω3 polyunsaturated fatty acids.

    PubMed

    Vanden Heuvel, John P

    2012-01-01

    Diets rich in ω3 polyunsaturated fatty acids3-PUFAs) such as alpha-linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid are associated with decreased incidence and severity of several chronic diseases including cardiovascular disease (CVD) and cancer. At least some of the beneficial effects of these dietary fatty acids are via metabolites such as prostaglandins, leukotrienes, thromboxanes, and resolvins. The effects of ω3-PUFAs are in contrast to those of fatty acids with virtually identical structures, such as the ω6-PUFAs linoleic acid and arachidonic acid, and their corresponding metabolites. The purpose of this chapter is to discuss both the nutrigenomics (nutrient-gene interactions) and nutrigenetics (genetic variation in nutrition) of dietary fatty acids with a focus on the ω3-PUFAs (Gebauer et al., 2007(1)). Important in the biological response for these fatty acids or their metabolites are cognate receptors that are able to regulate gene expression and coordinately affect metabolic or signaling pathways associated with CVD and cancer. Four nuclear receptor (NR) subfamilies will be emphasized as receptors that respond to dietary and endogenous ligands: (1) peroxisome proliferator-activated receptors, (2) retinoid X receptors, (3) liver X receptors, and (4) farnesoid X receptor. In addition to the different responses elicited by varying structures of fatty acids, responses may vary because of genetic variation in enzymes that metabolize ω3- and ω6 fatty acids or that respond to them. In particular, polymorphisms in the fatty acid desaturases and the aforementioned NRs contribute to the complexity of nutritional effects seen with ω3-PUFAs. Following a brief introduction to the health benefits of ω3-PUFAs, the regulation of gene expression by these dietary fatty acids via NRs will be characterized. Subsequently, the effects of single-nucleotide polymorphisms (SNPs) in key enzymes involved in the metabolism and response to ω3-PUFAs will

  19. Dietary Effects of Oxidized Eicosapentaenoic Acid (EPA) and Intact EPA on Hepatic Steatosis Induced by a High-sucrose Diet and Liver-X-receptor α Agonist in Mice.

    PubMed

    Furumoto, Hidehiro; Nanthirudjanar, Tharnath; Hirata, Takashi; Sugawara, Tatsuya

    2016-01-01

    Numerous studies have shown that dietary omega-3 polyunsaturated fatty acids (PUFAs), particularly eicosapentaenoic acid (EPA), improve lipid metabolism. The beneficial effects of PUFA-derived oxidation products have been increasingly reported. However, EPA is easily oxidized in food products and in the human body, generating various derivatives of oxidized EPA (oxEPA), such that these oxidation products may partially contribute to EPA's effect. We previously reported that oxEPA was more potent than intact EPA in reducing liver-X-receptor α (LXRα)-induced cellular triacylglycerol (TG) accumulation. However, the in vivo hypolipidemic effects of oxEPA remain unclear. In the present study, we evaluated the effect of oral administration of EPA and oxEPA on hepatic steatosis in mice induced by a high-sucrose diet and a synthetic LXRα agonist, TO-901317. Both EPA and oxEPA reduced TG accumulation in the liver and plasma biomarkers of liver injury. Furthermore, they suppressed the expression of lipogenic genes, but not β-oxidation genes, in a similar pattern as the biomarkers. Our results suggest that oxEPA and intact EPA suppress de novo lipogenesis to ameliorate hepatic steatosis.

  20. Color and fatty acid profile of abdominal fat pads from broiler chickens fed lobster meal.

    PubMed

    Rathgeber, B M; Anderson, D M; Thompson, K L; Macisaac, J L; Budge, S

    2011-06-01

    Consumer demands for food products enriched with healthful n-3 fatty acids are steadily increasing. Feeding marine byproducts may provide an economical means of increasing the long-chain n-3 content of broiler tissues. A study was conducted to evaluate the effect of dietary lobster meal (LM) on the color and fatty acid profile of broiler chicken fatty tissue. Broilers were fed increasing levels (0, 2, 4, 6, 8, and 10%) of LM for 35 d. Fat pad samples were collected at slaughter and color and fatty acid concentrations were determined. A linear effect was found of LM on red coloration (P < 0.05) as dietary LM increased. Fat pad eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) levels also increased (P < 0.0001) in a linear fashion. The essential long-chain fatty acids were lower for the 10% LM diet (0.37 mg of EPA/g; 0.16 mg of DHA/g) compared with the 8% LM diet (0.51 mg of EPA/g; 0.27 mg of DHA/g). Using lobster meal as a feed ingredient resulted in broiler abdominal fat pads with a favorable increase in n-3 fatty acids.