Science.gov

Sample records for n-acetylcysteine-mediated catalase upregulation

  1. A rapid and transient ROS generation by cadmium triggers apoptosis via caspase-dependent pathway in HepG2 cells and this is inhibited through N-acetylcysteine-mediated catalase upregulation

    SciTech Connect

    Oh, Seon-Hee; Lim, Sung-Chul . E-mail: sclim@chosun.ac.kr

    2006-05-01

    Although reactive oxygen species (ROS) have been implicated in cadmium (Cd)-induced hepatotoxicity, the role of ROS in this pathway remains unclear. Therefore, we attempted to determine the molecular mechanisms relevant to Cd-induced cell death in HepG2 cells. Cd was found to induce apoptosis in the HepG2 cells in a time- and dose-dependent fashion, as confirmed by DNA fragmentation analysis and TUNEL staining. In the early stages, both rapid and transient ROS generation triggered apoptosis via Fas activation and subsequent caspase-8-dependent Bid cleavage, as well as by calpain-mediated mitochondrial Bax cleavage. The timing of Bid activation was coincided with the timing at which the mitochondrial transmembrane potential (MMP) collapsed as well as the cytochrome c (Cyt c) released into the cytosol. Furthermore, mitochondrial permeability transition (MPT) pore inhibitors, such as cyclosporin A (CsA) and bongkrekic acid (BA), did not block Cd-induced ROS generation, MMP collapse and Cyt c release. N-acetylcysteine (NAC) pretreatment resulted in the complete inhibition of the Cd-induced apoptosis via catalase upregulation and subsequent Fas downregulation. NAC treatment also completely blocked the Cd-induced intracellular ROS generation, MMP collapse and Cyt c release, indicating that Cd-induced mitochondrial dysfunction may be regulated indirectly by ROS-mediated signaling pathway. Taken together, a rapid and transient ROS generation by Cd triggers apoptosis via caspase-dependent pathway and subsequent mitochondrial pathway. NAC inhibits Cd-induced apoptosis through the blocking of ROS generation as well as the catalase upregulation.

  2. Green tea catechins upregulate superoxide dismutase and catalase in fruit flies.

    PubMed

    Li, Yuk Man; Chan, Ho Yin Edwin; Huang, Yu; Chen, Zhen Yu

    2007-05-01

    Chinese Longjing green tea is an excellent source of polyphenol antioxidants. HPLC analysis revealed that Longjing green tea catechin extract (GTC) contained 62% epigallocatechin gallate (EGCG), 19% epigallocatechin (EGC), 9% epicatechin gallate (ECG), and 7% epicatechin (EC). Investigating the effect of GTC on the lifespan of Drosophila melanogaster, we observed that a 10 mg GTC/mL diet could prolong its 50% survival time by 36% and mean lifespan by 16%. This was consistent with 17% reduction in total body lipid hydroperoxide (LPO) level in GTC-treated flies compared to the control group. Supplementation of 10 mg GTC/mL diet increased the survival time only in wild type Oregon-R-C (OR) but not in two mutant fly lines, SOD(n108)/TM3 (gene for superoxide dismutase (SOD) was knocked out) and Cat(n1)/TM3 (gene for catalase was knocked out), when the flies were challenged with paraquat or hydrogen peroxide. Accordingly, SOD and catalase activities in OR wild type increased by 40 and 19%, respectively. RT-PCR analysis indicated that the genes for copper-zinc containing SOD (CuZnSOD), manganese containing SOD (MnSOD), and catalase were upregulated. It was concluded that prolonging lifespan by GTC in D. melanogaster was influenced, among others, by upregulation of endogenous antioxidant enzymes. PMID:17440995

  3. Overexpression of Ref-1 Inhibits Lead-induced Endothelial Cell Death via the Upregulation of Catalase

    PubMed Central

    Lee, Kwon Ho; Lee, Sang Ki; Kim, Hyo Shin; Cho, Eun Jung; Joo, Hee Kyoung; Lee, Eun Ji; Lee, Ji Young; Park, Myoung Soo; Chang, Seok Jong; Cho, Chung-Hyun; Park, Jin Bong

    2009-01-01

    The role of apurinic/apyrimidinic endonuclease1/redox factor-1 (Ref-1) on the lead (Pb)-induced cellular response was investigated in the cultured endothelial cells. Pb caused progressive cellular death in endothelial cells, which occurred in a concentration- and time-dependent manner. However, Ref-1 overexpression with AdRef-1 significantly inhibited Pb-induced cell death in the endothelial cells. Also the overexpression of Ref-1 significantly suppressed Pb-induced superoxide and hydrogen peroxide elevation in the endothelial cells. Pb exposure induced the downregulation of catalase, it was inhibited by the Ref-1 overexpression in the endothelial cells. Taken together, our data suggests that the overexpression of Ref-1 inhibited Pb-induced cell death via the upregulation of catalase in the cultured endothelial cells. PMID:20054488

  4. PprM is necessary for up-regulation of katE1, encoding the major catalase of Deinococcus radiodurans, under unstressed culture conditions.

    PubMed

    Jeong, Sun-Wook; Seo, Ho Seong; Kim, Min-Kyu; Choi, Jong-Il; Lim, Heon-Man; Lim, Sangyong

    2016-06-01

    Deinococcus radiodurans is a poly-extremophilic organism, capable of tolerating a wide variety of different stresses, such as gamma/ultraviolet radiation, desiccation, and oxidative stress. PprM, a cold shock protein homolog, is involved in the radiation resistance of D. radiodurans, but its role in the oxidative stress response has not been investigated. In this study, we investigated the effect of pprM mutation on catalase gene expression. pprM disruption decreased the mRNA and protein levels of KatE1, which is the major catalase in D. radiodurans, under normal culture conditions. A pprM mutant strain (pprM MT) exhibited decreased catalase activity, and its resistance to hydrogen peroxide (H2O2) decreased accordingly compared with that of the wild-type strain. We confirmed that RecG helicase negatively regulates katE1 under normal culture conditions. Among katE1 transcriptional regulators, the positive regulator drRRA was not altered in pprM (-), while the negative regulators perR, dtxR, and recG were activated more than 2.5-fold in pprM MT. These findings suggest that PprM is necessary for KatE1 production under normal culture conditions by down-regulation of katE1 negative regulators. PMID:27225459

  5. CATALASE ACTIVITY IN LEPTOSPIRA

    PubMed Central

    Rao, P. J.; Larson, A. D.; Cox, C. D.

    1964-01-01

    Rao, P. J. (University of Illinois, Urbana), A. D. Larson, and C. D. Cox. Catalase activity in Leptospira. J. Bacteriol. 88:1045–1048. 1964.—A number of serotypes of Leptospira were found to possess catalase activity, although considerable variation in activity existed among various serotypes. Catalase activity of L. pomona was reduced by inhibitors commonly employed for arresting catalase activity in other biological systems. Catalase activity was increased three to five times by growing cultures under conditions of oxygen availability; however, aeration had no beneficial effect on total viable cell crop. The relationship of oxygen to metabolism and future studies on virulence of the leptospirae is discussed. PMID:14219017

  6. Short communication: N-Acetylcysteine-mediated modulation of antibiotic susceptibility of bovine mastitis pathogens.

    PubMed

    Yang, F; Liu, L H; Li, X P; Luo, J Y; Zhang, Z; Yan, Z T; Zhang, S D; Li, H S

    2016-06-01

    The aim of this study was to investigate the effects of N-acetylcysteine (NAC) on antibiotic susceptibility of bovine mastitis pathogens including Staphylococcus aureus, Streptococcus dysgalactiae, Escherichia coli, and Streptococcus agalactiae. Minimum inhibitory concentrations (MIC) were tested by the agar-based E-test method. The presence of 10mM NAC reduced the MIC of penicillin and ampicillin but enhanced the MIC of erythromycin and ciprofloxacin for all of the strains. In addition, NAC-mediated modulation of MIC of kanamycin, tetracycline, and vancomycin was diverse, depending on the target bacterial pathogen and antibiotic being used. The results suggest that NAC is an important modulator of antibiotic activity against the major bovine mastitis pathogens. PMID:27016837

  7. Bronchiolar epithelial catalase is diminished in smokers with mild COPD.

    PubMed

    Betsuyaku, Tomoko; Fuke, Satoshi; Inomata, Takashi; Kaga, Kichizo; Morikawa, Toshiaki; Odajima, Nao; Adair-Kirk, Tracy; Nishimura, Masaharu

    2013-07-01

    This study aimed to investigate bronchiolar catalase expression and its relationship with smoking and/or chronic obstructive pulmonary disease (COPD) in humans and to determine the dynamic change of bronchiolar catalase expression in response to cigarette smoke in mice. Lung tissue was obtained from 36 subjects undergoing surgery for peripheral tumours, consisting of life-long nonsmokers and smokers with or without COPD. Male C57BL/6 mice were subjected to cigarette smoke exposure for up to 3 months followed by a 28-day cessation period. We quantified bronchiolar catalase mRNA using laser capture microdissection and quantitative reverse transcription-polymerase chain reaction. C22 club cells (Clara cells) in culture were exposed to cigarette smoke extract and monitored for viability when catalase expression was decreased by siRNA. Catalase was decreased at mRNA and protein levels in bronchiolar epithelium in smokers with COPD. In mice, bronchiolar catalase is temporarily upregulated at 1 day after cigarette smoke exposure but is downregulated by repeated cigarette smoke exposure, and is not restored long after withdrawal once emphysema is developed. Decreasing catalase expression in C22 cells resulted in greater cigarette smoke extract-induced cell death. Bronchiolar catalase reduction is associated with COPD. Regulation of catalase depends on the duration of cigarette smoke exposure, and plays a critical role for protection against cigarette smoke-induced cell damage. PMID:23100509

  8. Catalase is inhibited by flavonoids.

    PubMed

    Krych, Justyna; Gebicka, Lidia

    2013-07-01

    Catalases, heme enzymes, which catalyze decomposition of hydrogen peroxide to water and molecular oxygen, belong to the antioxidant defense system of the cell. In this work we have shown that catalase from bovine liver is inhibited by flavonoids. The inhibition is, at least partially, due to the formation of hydrogen bonds between catalase and flavonoids. In the presence of some flavonoids the formation of unreactive catalase compound II has been detected. The most potent catalase inhibitors among the tested flavonoids have appeared myricetin, epicatechin gallate and epigallocatechin gallate. The relationship between the degree of enzyme inhibition and molecular structure of flavonoids has been analyzed. PMID:23567286

  9. 7 CFR 58.432 - Catalase.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Catalase. 58.432 Section 58.432 Agriculture... Material § 58.432 Catalase. The catalase preparation shall be a stable, buffered solution, neutral in pH, having a potency of not less than 100 Keil units per milliliter. The source of the catalase,...

  10. 7 CFR 58.432 - Catalase.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Catalase. 58.432 Section 58.432 Agriculture... Material § 58.432 Catalase. The catalase preparation shall be a stable, buffered solution, neutral in pH, having a potency of not less than 100 Keil units per milliliter. The source of the catalase,...

  11. 7 CFR 58.432 - Catalase.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Catalase. 58.432 Section 58.432 Agriculture... Material § 58.432 Catalase. The catalase preparation shall be a stable, buffered solution, neutral in pH, having a potency of not less than 100 Keil units per milliliter. The source of the catalase,...

  12. 7 CFR 58.432 - Catalase.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Quality Specifications for Raw Material § 58.432 Catalase. The catalase preparation shall be a stable, buffered solution, neutral in...

  13. 7 CFR 58.432 - Catalase.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Quality Specifications for Raw Material § 58.432 Catalase. The catalase preparation shall be a stable, buffered solution, neutral in...

  14. Classical catalase: ancient and modern.

    PubMed

    Nicholls, Peter

    2012-09-15

    This review describes the historical difficulties in devising a kinetically satisfactory mechanism for the classical catalase after its identification as a unique catalytic entity in 1902 and prior to the breakthrough 1947 analysis by Chance and co-workers which led to the identification of peroxide compounds I and II. The role of protons in the formation of these two ferryl complexes is discussed and current problems of inhibitory ligand and hydrogen donor binding at the active site are outlined, especially the multiple roles involving formate or formic acid. A previous mechanism of NADPH-dependent catalase protection against substrate inhibition is defended. A revised model linking the catalytic ('catalatic') action and the one-electron side reactions involving compound II is suggested. And it is concluded that, contrary to an idea proposed in 1963 that eukaryotic catalase might be a 'fossil enzyme', current thinking gives it a central role in the redox protective processes of long term importance for human and other eukaryotic and prokaryotic life. PMID:22326823

  15. Possible involvement of the JAK/STAT signaling pathway in N-acetylcysteine-mediated antidepressant-like effects.

    PubMed

    Al-Samhari, Marwa M; Al-Rasheed, Nouf M; Al-Rejaie, Salim; Al-Rasheed, Nawal M; Hasan, Iman H; Mahmoud, Ayman M; Dzimiri, Nduna

    2016-03-01

    Advances in depression research have targeted inflammation and oxidative stress to develop novel types of treatment. The JAK/STAT signaling pathway plays pivotal roles in immune and inflammatory responses. The present study was designed to investigate the effects of N-acetylcysteine, a putative precursor of the antioxidant glutathione, in an animal model of depression, with an emphasis on the JAK/STAT signaling pathway. Fluoxetine, a classical antidepressant drug was also under investigation. Male Wistar rats were subjected to forced swimming test and given N-acetylcysteine and fluoxetine immediately after the pre-test session, 5 h later and 1 h before the test session of the forced swimming test. N-acetylcysteine decreased immobility time (P < 0.05), serum corticosterone (P < 0.001), and hydrogen peroxide (P < 0.001), while restored glutathione concentration. Treatment of the rats with N-acetylcysteine produced significant (P < 0.001) down-regulation of STAT3 mRNA expression and protein phosphorylation. On the other hand, N-acetylcysteine significantly (P < 0.001) increased SOCS3 gene expression; however, SOCS3 protein was not changed. In conclusion, our study suggests that modulation of the JAK/STAT pathway might mediate the antidepressant-like effects of N-acetylcysteine. Therefore, depression research may target the JAK/STAT signaling pathway to provide a novel effective therapy. PMID:26643864

  16. Catalase and glutathione peroxidase mimics

    PubMed Central

    Day, Brian J.

    2009-01-01

    Overproduction of the reactive oxygen species (ROS) superoxide (O2−) and hydrogen peroxide (H2O2) are increasingly implicated in human disease and aging. ROS are also being explored as important modulating agents in a number of cell signaling pathways. Earlier work has focused on development of small catalytic scavengers of O2−, commonly referred to as superoxide dismutase (SOD) mimetics. Many of these compounds also have substantial abilities to catalytically scavenge H2O2 and peroxynitrite (ONOO−). Peroxides have been increasingly shown to disrupt cell signaling cascades associated with excessive inflammation associated with a wide variety of human diseases. Early studies with enzymatic scavengers like SOD frequently reported little or no beneficial effect in biologic models unless SOD was combined with catalase or a peroxidase. Increasing attention has been devoted to developing catalase or peroxidase mimetics as a way to treat overt inflammation associated with the pathophysiology of many human disorders. This review will focus on recent development of catalytic scavengers of peroxides and their potential use as therapeutic agents for pulmonary, cardiovascular, neurodegenerative and inflammatory disorders. PMID:18948086

  17. Thirty years of heme catalases structural biology.

    PubMed

    Díaz, Adelaida; Loewen, Peter C; Fita, Ignacio; Carpena, Xavi

    2012-09-15

    About thirty years ago the crystal structures of the heme catalases from Penicillium vitale (PVC) and, a few months later, from bovine liver (BLC) were published. Both enzymes were compact tetrameric molecules with subunits that, despite their size differences and the large phylogenetic separation between the two organisms, presented a striking structural similarity for about 460 residues. The high conservation, confirmed in all the subsequent structures determined, suggested a strong pressure to preserve a functional catalase fold, which is almost exclusively found in these mono-functional heme catalases. However, even in the absence of the catalase fold an efficient catalase activity is also found in the heme containing catalase-peroxidase proteins. The structure of these broad substrate range enzymes, reported for the first time less than ten years ago from the halophilic archaebacterium Haloarcula marismortui (HmCPx) and from the bacterium Burkholderia pseudomallei (BpKatG), showed a heme pocket closely related to that of plant peroxidases, though with a number of unique modifications that enable the catalase reaction. Despite the wealth of structural information already available, for both monofunctional catalases and catalase-peroxidases, a number of unanswered major questions require continuing structural research with truly innovative approaches. PMID:22209752

  18. Sirt1 protects against oxidative stress-induced renal tubular cell apoptosis by the bidirectional regulation of catalase expression

    SciTech Connect

    Hasegawa, Kazuhiro; Wakino, Shu Yoshioka, Kyoko; Tatematsu, Satoru; Hara, Yoshikazu; Minakuchi, Hitoshi; Washida, Naoki; Tokuyama, Hirobumi; Hayashi, Koichi; Itoh, Hiroshi

    2008-07-18

    NAD{sup +}-dependent protein deacetylase Sirt1 regulates cellular apoptosis. We examined the role of Sirt1 in renal tubular cell apoptosis by using HK-2 cells, proximal tubular cell lines with or without reactive oxygen species (ROS), H{sub 2}O{sub 2}. Without any ROS, Sirt1 inhibitors enhanced apoptosis and the expression of ROS scavenger, catalase, and Sirt1 overexpression downregulated catalase. When apoptosis was induced with H{sub 2}O{sub 2}, Sirt1 was upregulated with the concomitant increase in catalase expression. Sirt1 overexpression rescued H{sub 2}O{sub 2}-induced apoptosis through the upregulation of catalase. H{sub 2}O{sub 2} induced the nuclear accumulation of forkhead transcription factor, FoxO3a and the gene silencing of FoxO3a enhanced H{sub 2}O{sub 2}-induced apoptosis. In conclusion, endogenous Sirt1 maintains cell survival by regulating catalase expression and by preventing the depletion of ROS required for cell survival. In contrast, excess ROS upregulates Sirt1, which activates FoxO3a and catalase leading to rescuing apoptosis. Thus, Sirt1 constitutes a determinant of renal tubular cell apoptosis by regulating cellular ROS levels.

  19. Fungal catalases: function, phylogenetic origin and structure.

    PubMed

    Hansberg, Wilhelm; Salas-Lizana, Rodolfo; Domínguez, Laura

    2012-09-15

    Most fungi have several monofunctional heme-catalases. Filamentous ascomycetes (Pezizomycotina) have two types of large-size subunit catalases (L1 and L2). L2-type are usually induced by different stressors and are extracellular enzymes; those from the L1-type are not inducible and accumulate in asexual spores. L2 catalases are important for growth and the start of cell differentiation, while L1 are required for spore germination. In addition, pezizomycetes have one to four small-size subunit catalases. Yeasts (Saccharomycotina) do not have large-subunit catalases and generally have one peroxisomal and one cytosolic small-subunit catalase. Small-subunit catalases are inhibited by substrate while large-subunit catalases are activated by H(2)O(2). Some small-subunit catalases bind NADPH preventing inhibition by substrate. We present a phylogenetic analysis revealing one or two events of horizontal gene transfers from Actinobacteria to a fungal ancestor before fungal diversification, as the origin of large-size subunit catalases. Other possible horizontal transfers of small- and large-subunit catalases genes were detected and one from bacteria to the fungus Malassezia globosa was analyzed in detail. All L2-type catalases analyzed presented a secretion signal peptide. Mucorales preserved only L2-type catalases, with one containing a secretion signal if two or more are present. Basidiomycetes have only L1-type catalases, all lacking signal peptide. Fungal small-size catalases are related to animal catalases and probably evolved from a common ancestor. However, there are several groups of small-size catalases. In particular, a conserved group of fungal sequences resemble plant catalases, whose phylogenetic origin was traced to a group of bacteria. This group probably has the heme orientation of plant catalases and could in principle bind NADPH. From almost a hundred small-subunit catalases only one fourth has a peroxisomal localization signal and in fact many fungi lack

  20. The three catalases in Deinococcus radiodurans: Only two show catalase activity.

    PubMed

    Jeong, Sun-Wook; Jung, Jong-Hyun; Kim, Min-Kyu; Seo, Ho Seong; Lim, Heon-Man; Lim, Sangyong

    2016-01-15

    Deinococcus radiodurans, which is extremely resistant to ionizing radiation and oxidative stress, is known to have three catalases (DR1998, DRA0146, and DRA0259). In this study, to investigate the role of each catalase, we constructed catalase mutants (Δdr1998, ΔdrA0146, and ΔdrA0259) of D. radiodurans. Of the three mutants, Δdr1998 exhibited the greatest decrease in hydrogen peroxide (H2O2) resistance and the highest increase in intracellular reactive oxygen species (ROS) levels following H2O2 treatments, whereas ΔdrA0146 showed no change in its H2O2 resistance or ROS level. Catalase activity was not attenuated in ΔdrA0146, and none of the three bands detected in an in-gel catalase activity assay disappeared in ΔdrA0146. The purified His-tagged recombinant DRA0146 did not show catalase activity. In addition, the phylogenetic analysis of the deinococcal catalases revealed that the DR1998-type catalase is common in the genus Deinococcus, but the DRA0146-type catalase was found in only 4 of 23 Deinococcus species. Taken together, these results indicate that DR1998 plays a critical role in the anti-oxidative system of D. radiodurans by detoxifying H2O2, but DRA0146 does not have catalase activity and is not involved in the resistance to H2O2 stress. PMID:26692481

  1. Influence of stabilizers cosolutes on catalase conformation.

    PubMed

    Belluzo, Soledad; Boeris, Valeria; Farruggia, Beatriz; Picó, Guillermo

    2011-12-01

    The effects of sucrose, mannitol and betaine on the thermodynamic stability and the conformational state of the catalase enzyme were analyzed in order to understand the molecular mechanism whereby the solutes stabilized the enzyme. Catalase was selected as the model enzyme because it is used in several biotechnological processes. In the presence of each cosolute, our data have shown that there was a significant increase in the thermal stability of catalase. A minor stabilization in the enzyme secondary structure were induced by these cosolutes, as circular dichroism in the far UV region has demonstrated. Furthermore, our results support the idea that the overall native structure of catalase becomes more rigid, at least in certain surface areas, in the presence of the assayed stabilizers. This last finding can be reasonably explained by the exclusion mechanism of cosolutes from the protein surface which increases the structured water around this area. PMID:21871917

  2. Immobilization of bovine catalase onto magnetic nanoparticles.

    PubMed

    Doğaç, Yasemin İspirli; Teke, Mustafa

    2013-01-01

    The scope of this study is to achieve carrier-bound immobilization of catalase onto magnetic particles (Fe₃O₄ and Fe₂O₃NiO₂ · H₂O) to specify the optimum conditions of immobilization. Removal of H2O2 and the properties of immobilized sets were also investigated. To that end, adsorption and then cross-linking methods onto magnetic particles were performed. The optimum immobilization conditions were found for catalase: immobilization time (15 min for Fe₃O₄; 10 min for Fe2O₃NiO₂ · H₂O), the initial enzyme concentration (1 mg/mL), amount of magnetic particles (25 mg), and glutaraldehyde concentration (3%). The activity reaction conditions (optimum temperature, optimum pH, pH stability, thermal stability, operational stability, and reusability) were characterized. Also kinetic parameters were calculated by Lineweaver-Burk plots. The optimum pH values were found to be 7.0, 7.0, and 8.0 for free enzyme, Fe₃O₄-immobilized catalases, and Fe₂O₃NiO₂ · H₂O-immobilized catalases, respectively. All immobilized catalase systems displayed the optimum temperature between 25 and 35°C. Reusability studies showed that Fe₃O₄-immobilized catalase can be used 11 times with 50% loss in original activity, while Fe2O₃NiO₂ · H₂O-immobilized catalase lost 67% of activity after the same number of uses. Furthermore, immobilized catalase systems exhibited improved thermal and pH stability. The results transparently indicate that it is possible to have binding between enzyme and magnetic nanoparticles. PMID:23876136

  3. Increased myocardial catalase in rats fed ethanol.

    PubMed Central

    Fahimi, H. D.; Kino, M.; Hicks, L.; Thorp, K. A.; Abelman, W. H.

    1979-01-01

    The effects of chronic intake of dietary ethanol upon catalase, an enzyme capable of metabolizing ethanol, as well as upon myocardial morphology and hemodynamics, were studied in the rat. Ethanol, comprising 36% of dietary calories, administered to rats for 5 weeks, was associated with increased myocardial catalase of 45.9 +/- 3.7 IU/mg protein, compared to 21.0 +/- 1.8 IU/mg protein in pair-fed controls. The enzyme activity remained significantly elevated after 18 weeks of ethanol. Hepatic catalase did not differ in these groups. Parallel cytochemical studies confirmed the increase in myocardial catalase by demonstrating an increase in peroxisomes. Gross and light-microscopic examinations revealed no abnormalities at either 5 or 18 weeks. Remarkably few ultrastructural abnormalities were seen in this material fixed by vascular perfusion. Hemodynamic studies after 5 weeks of ethanol revealed decreased left ventricle systolic pressure and decreased mean arterial pressure but no change in ventricular filling pressure. The possibility of catalase playing a metabolic and potentially protective role in rat myocardium chronically exposed to ethanol is discussed. Images Figure 3 Figure 4-6 Figures 1 and 2 Figures 7 and 8 p[389]-a PMID:474705

  4. Protection of Bacillus pumilus spores by catalases.

    PubMed

    Checinska, Aleksandra; Burbank, Malcolm; Paszczynski, Andrzej J

    2012-09-01

    Bacillus pumilus SAFR-032, isolated at spacecraft assembly facilities of the National Aeronautics and Space Administration Jet Propulsion Laboratory, is difficult to kill by the sterilization method of choice, which uses liquid or vapor hydrogen peroxide. We identified two manganese catalases, YjqC and BPUM_1305, in spore protein extracts of several B. pumilus strains by using PAGE and mass spectrometric analyses. While the BPUM_1305 catalase was present in six of the B. pumilus strains tested, YjqC was not detected in ATCC 7061 and BG-B79. Furthermore, both catalases were localized in the spore coat layer along with laccase and superoxide dismutase. Although the initial catalase activity in ATCC 7061 spores was higher, it was less stable over time than the SAFR-032 enzyme. We propose that synergistic activity of YjqC and BPUM_1305, along with other coat oxidoreductases, contributes to the enhanced resistance of B. pumilus spores to hydrogen peroxide. We observed that the product of the catalase reaction, gaseous oxygen, forms expanding vesicles on the spore surface, affecting the mechanical integrity of the coat layer, resulting in aggregation of the spores. The accumulation of oxygen gas and aggregations may play a crucial role in limiting further exposure of Bacilli spore surfaces to hydrogen peroxide or other toxic chemicals when water is present. PMID:22752169

  5. Evolution of Catalases from Bacteria to Humans

    PubMed Central

    Zamocky, Marcel; Furtmüller, Paul G.; Obinger, Christian

    2010-01-01

    Excessive hydrogen peroxide is harmful for almost all cell components, so its rapid and efficient removal is of essential importance for aerobically living organisms. Conversely, hydrogen peroxide acts as a second messenger in signal-transduction pathways. H2O2 is degraded by peroxidases and catalases, the latter being able both to reduce H2O2 to water and to oxidize it to molecular oxygen. Nature has evolved three protein families that are able to catalyze this dismutation at reasonable rates. Two of the protein families are heme enzymes: typical catalases and catalase–peroxidases. Typical catalases comprise the most abundant group found in Eubacteria, Archaeabacteria, Protista, Fungi, Plantae, and Animalia, whereas catalase–peroxidases are not found in plants and animals and exhibit both catalatic and peroxidatic activities. The third group is a minor bacterial protein family with a dimanganese active site called manganese catalases. Although catalyzing the same reaction (2 H2O2 → 2 H2O + O2), the three groups differ significantly in their overall and active-site architecture and the mechanism of reaction. Here, we present an overview of the distribution, phylogeny, structure, and function of these enzymes. Additionally, we report about their physiologic role, response to oxidative stress, and about diseases related to catalase deficiency in humans. PMID:18498226

  6. Catalases Induction in High Virulence Pinewood Nematode Bursaphelenchus xylophilus under Hydrogen Peroxide-Induced Stress.

    PubMed

    Vicente, Cláudia S L; Ikuyo, Yoriko; Shinya, Ryoji; Mota, Manuel; Hasegawa, Koichi

    2015-01-01

    Considered an EPPO A2 quarantine pest, Bursaphelenchus xylophilus is the causal agent of the pine wilt disease and the most devastating plant parasitic nematode attacking coniferous trees in the world. In the early stages of invasion, this nematode has to manage host defence mechanisms, such as strong oxidative stress. Only successful, virulent nematodes are able to tolerate the basal plant defences, and furthermore migrate and proliferate inside of the host tree. In this work, our main objective was to understand to what extent B. xylophilus catalases are involved in their tolerance to oxidative stress and virulence, using as oxidant agent the reactive oxygen species hydrogen peroxide (H2O2). After 24 hours of exposure, high virulence isolates of B. xylophilus could withstand higher H2O2 concentrations in comparison with low virulence B. xylophilus and B. mucronatus, corroborating our observation of Bxy-ctl-1 and Bxy-ctl-2 catalase up-regulation under the same experimental conditions. Both catalases are expressed throughout the nematode intestine. In addition, transgenic strains of Caenorhabditis elegans overexpressing B. xylophilus catalases were constructed and evaluated for survival under similar conditions as previously. Our results suggest that catalases of high virulence B. xylophilus were crucial for nematode survival under prolonged exposure to in vitro oxidative stress, highlighting their adaptive response, which could contribute to their success in host conditions. PMID:25894519

  7. Catalases Induction in High Virulence Pinewood Nematode Bursaphelenchus xylophilus under Hydrogen Peroxide-Induced Stress

    PubMed Central

    Vicente, Cláudia S. L.; Ikuyo, Yoriko; Shinya, Ryoji; Mota, Manuel; Hasegawa, Koichi

    2015-01-01

    Considered an EPPO A2 quarantine pest, Bursaphelenchus xylophilus is the causal agent of the pine wilt disease and the most devastating plant parasitic nematode attacking coniferous trees in the world. In the early stages of invasion, this nematode has to manage host defence mechanisms, such as strong oxidative stress. Only successful, virulent nematodes are able to tolerate the basal plant defences, and furthermore migrate and proliferate inside of the host tree. In this work, our main objective was to understand to what extent B. xylophilus catalases are involved in their tolerance to oxidative stress and virulence, using as oxidant agent the reactive oxygen species hydrogen peroxide (H2O2). After 24 hours of exposure, high virulence isolates of B. xylophilus could withstand higher H2O2 concentrations in comparison with low virulence B. xylophilus and B. mucronatus, corroborating our observation of Bxy-ctl-1 and Bxy-ctl-2 catalase up-regulation under the same experimental conditions. Both catalases are expressed throughout the nematode intestine. In addition, transgenic strains of Caenorhabditis elegans overexpressing B. xylophilus catalases were constructed and evaluated for survival under similar conditions as previously. Our results suggest that catalases of high virulence B. xylophilus were crucial for nematode survival under prolonged exposure to in vitro oxidative stress, highlighting their adaptive response, which could contribute to their success in host conditions. PMID:25894519

  8. Activation of Peroxisome Proliferator-Activated Receptor Alpha Improves Aged and UV-Irradiated Skin by Catalase Induction.

    PubMed

    Shin, Mi Hee; Lee, Se-Rah; Kim, Min-Kyoung; Shin, Chang-Yup; Lee, Dong Hun; Chung, Jin Ho

    2016-01-01

    Peroxisome proliferator-activated receptor alpha (PPARα) is a nuclear hormone receptor involved in the transcriptional regulation of lipid metabolism, fatty acid oxidation, and glucose homeostasis. Its activation stimulates antioxidant enzymes such as catalase, whose expression is decreased in aged human skin. Here we investigated the expression of PPARα in aged and ultraviolet (UV)-irradiated skin, and whether PPARα activation can modulate expressions of matrix metalloproteinase (MMP)-1 and procollagen through catalase regulation. We found that PPARα mRNA level was significantly decreased in intrinsically aged and photoaged human skin as well as in UV-irradiated skin. A PPARα activator, Wy14643, inhibited UV-induced increase of MMP-1 and decrease of procollagen expression and caused marked increase in catalase expression. Furthermore, production of reactive oxygen species (ROS) was suppressed by Wy14643 in UV-irradiated and aged dermal fibroblasts, suggesting that the PPARα activation-induced upregulation of catalase leads to scavenging of ROS produced due to UV irradiation or aging. PPARα knockdown decreased catalase expression and abolished the beneficial effects of Wy14643. Topical application of Wy14643 on hairless mice restored catalase activity and prevented MMP-13 and inflammatory responses in skin. Our findings indicate that PPARα activation triggers catalase expression and ROS scavenging, thereby protecting skin from UV-induced damage and intrinsic aging. PMID:27611371

  9. cDNA cloning, characterization and expression analysis of the antioxidant enzyme gene, catalase, of Chinese shrimp Fenneropenaeus chinensis.

    PubMed

    Zhang, Qingli; Li, Fuhua; Zhang, Xiaojun; Dong, Bo; Zhang, Jiquan; Xie, Yusu; Xiang, Jianhai

    2008-05-01

    Catalase is an important antioxidant protein that protects organisms against various oxidative stresses by eliminating hydrogen peroxide. The full-length catalase cDNA of Chinese shrimp Fenneropenaeus chinensis was cloned from the hepatopancreas using degenerate primers by the method of 3' and 5' rapid amplification of cDNA ends PCR. The cDNA sequence consists of 1892 bp with a 1560 bp open reading frame, encoding 520 amino acids with high identity to invertebrate, vertebrate and even bacterial catalases. The sequence includes the catalytic residues His71, Asn144, and Tyr354. The molecular mass of the predicted protein is 58824.04 Da with an estimated pI of 6.63. Sequence comparison showed that the deduced amino acid sequence of F. chinensis catalase shares 96%, 73%, 71% and 70% identity with that of Pacific white shrimp Litopenaeus vannamei, Abalone Haliotis discus hannai, Zhikong scallop Chlamys farreri and Human Homo sapiens, respectively. Catalase transcripts were detected in hepatopancreas, hemocytes, lymphoid organ, intestine, ovary, muscle and gill by real-time PCR. The variation of catalase mRNA transcripts in hemocytes and hepatopancreas was also quantified by real-time PCR and the result indicated that the catalase showed up-regulated expression trends in hemocytes at 14 h and in hepatopancreas at 37 h after injection with white spot syndrome virus (WSSV). PMID:18353680

  10. Protective Role of Catalase in Pseudomonas aeruginosa Biofilm Resistance to Hydrogen Peroxide

    PubMed Central

    Elkins, James G.; Hassett, Daniel J.; Stewart, Philip S.; Schweizer, Herbert P.; McDermott, Timothy R.

    1999-01-01

    The role of the two known catalases in Pseudomonas aeruginosa in protecting planktonic and biofilm cells against hydrogen peroxide (H2O2) was investigated. Planktonic cultures and biofilms formed by the wild-type strain PAO1 and the katA and katB catalase mutants were compared for their susceptibility to H2O2. Over the course of 1 h, wild-type cell viability decreased steadily in planktonic cells exposed to a single dose of 50 mM H2O2, whereas biofilm cell viability remained at approximately 90% when cells were exposed to a flowing stream of 50 mM H2O2. The katB mutant, lacking the H2O2-inducible catalase KatB, was similar to the wild-type strain with respect to H2O2 resistance. The katA mutant possessed undetectable catalase activity. Planktonic katA mutant cultures were hypersusceptible to a single dose of 50 mM H2O2, while biofilms displayed a 10-fold reduction in the number of culturable cells after a 1-h exposure to 50 mM H2O2. Catalase activity assays, activity stains in nondenaturing polyacrylamide gels, and lacZ reporter genes were used to characterize the oxidative stress responses of planktonic cultures and biofilms. Enzyme assays and catalase activity bands in nondenaturing polyacrylamide gels showed significant KatB catalase induction occurred in biofilms after a 20-min exposure to H2O2, suggesting that biofilms were capable of a rapid adaptive response to the oxidant. Reporter gene data obtained with a katB::lacZ transcriptional reporter strain confirmed katB induction and that the increase in total cellular catalase activity was attributable to KatB. Biofilms upregulated the reporter in the constant presence of 50 mM H2O2, while planktonic cells were overwhelmed by a single 50 mM dose and were unable to make detectable levels of β-galactosidase. The results of this study demonstrated the following: the constitutively expressed KatA catalase is important for resistance of planktonic and biofilm P. aeruginosa to H2O2, particularly at high H2O2

  11. 21 CFR 173.135 - Catalase derived from Micrococcus lysodeikticus.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Catalase derived from Micrococcus lysodeikticus... FOOD FOR HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.135 Catalase derived from Micrococcus lysodeikticus. Bacterial catalase derived from Micrococcus lysodeikticus by a pure...

  12. 21 CFR 173.135 - Catalase derived from Micrococcus lysodeikticus.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Catalase derived from Micrococcus lysodeikticus... FOOD FOR HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.135 Catalase derived from Micrococcus lysodeikticus. Bacterial catalase derived from Micrococcus lysodeikticus by a pure...

  13. 21 CFR 184.1034 - Catalase (bovine liver).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... with 5 U.S.C. 552(a) and 1 CFR part 51. Copies are available from the National Academy Press, 2101... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Catalase (bovine liver). 184.1034 Section 184.1034... Listing of Specific Substances Affirmed as GRAS § 184.1034 Catalase (bovine liver). (a) Catalase...

  14. 21 CFR 173.135 - Catalase derived from Micrococcus lysodeikticus.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... FOOD FOR HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.135 Catalase derived from Micrococcus lysodeikticus. Bacterial catalase derived from Micrococcus lysodeikticus by a pure culture... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Catalase derived from Micrococcus...

  15. Growth-Dependent Catalase Localization in Exiguobacterium oxidotolerans T-2-2T Reflected by Catalase Activity of Cells

    PubMed Central

    Hanaoka, Yoshiko; Takebe, Fumihiko; Nodasaka, Yoshinobu; Hara, Isao; Matsuyama, Hidetoshi; Yumoto, Isao

    2013-01-01

    A psychrotolerant and H2O2-resistant bacterium, Exiguobacterium oxidotolerans T-2-2T, exhibits extraordinary H2O2 resistance and produces catalase not only intracellularly but also extracellularly. The intracellular and extracellular catalases exhibited the same enzymatic characteristics, that is, they exhibited the temperature-dependent activity characteristic of a cold-adapted enzyme, their heat stabilities were similar to those of mesophilic enzymes and very high catalytic intensity. In addition, catalase gene analysis indicated that the bacterium possessed the sole clade 1 catalase gene corresponding to intracellular catalase. Hence, intracellular catalase is secreted into the extracellular space. In addition to intracellular and extracellular catalases, the inner circumference of the cells showed the localization of catalase in the mid-stationary growth phase, which was observed by immunoelectron microscopy using an antibody against the intracellular catalase of the strain. The cells demonstrated higher catalase activity in the mid-stationary growth phase than in the exponential growth phase. The catalase localized in the inner circumference can be dissociated by treatment with Tween 60. Thus, the localized catalase is not tightly bound to the inner circumference of the cells and may play a role in the oxidative defense of the cells under low metabolic state. PMID:24204687

  16. Role of oxyradicals in the inactivation of catalase by ozone

    SciTech Connect

    Whiteside, C.; Hassan, H.M. )

    1988-01-01

    The antioxidant enzymes, catalase and superoxide dismutase, are inactivated upon exposure to ozone. In this study, the mechanism of this inactivation was examined using catalase as a model system. The data show that the inactivation of catalase is dependent on ozone concentration, time of exposure, and pH. Loss of catalase activity is accompanied with loss of the heme spectra. Tiron, desferal-Mn, trolox-c, and pyruvate protect the enzyme against ozone inactivation. SOD is less effective due to its inactivation by ozone. On the other hand, alcohols do not provide significant protection. The data suggest the possible involvement of superoxide radicals in the inactivation of catalase by ozone.

  17. Redundancy, phylogeny and differential expression of Histoplasma capsulatum catalases.

    PubMed

    Johnson, Clayton H; Klotz, Martin G; York, J Lyndal; Kruft, Volker; McEwen, Joan E

    2002-04-01

    Histoplasma capsulatum produces an extracellular catalase termed M antigen, which is similar to catalase B of Aspergillus and Emericella species. Evidence is presented here for two additional catalase isozymes in H. capsulatum. Catalase A is highly similar to a large-subunit catalase in Aspergillus and Emericella species, while catalase P is a small-subunit catalase protein with greatest similarity to known peroxisomal catalases of animals and Saccharomycotina yeasts. Complete cDNAs for the CATA and CATP genes (encoding catalases A and P, respectively) were isolated. The transcriptional expression of the H. capsulatum CATA, CATB (M antigen) and CATP genes was assessed by Northern blot hybridizations on total RNA. Results at the transcript levels for these genes are shown for three conditions: cell morphology (mycelial versus yeast phase cells), oxidative stress (in response to a challenge with H(2)O(2)) and carbon source (glucose vs glycerol). Collectively, these results demonstrated regulation of CATA by both cell morphology and oxidative stress, but not by carbon source, and regulation of CATB and CATP by carbon source but not cell morphology or oxidative stress. A phylogenetic analysis of presently available catalase sequences and intron residences was done. The results support a model for evolution of eukaryotic monofunctional catalase genes from prokaryotic genes. PMID:11932457

  18. Gold nanoparticles and/or N-acetylcysteine mediate carrageenan-induced inflammation and oxidative stress in a concentration-dependent manner.

    PubMed

    Paula, Marcos M S; Petronilho, Fabricia; Vuolo, Francieli; Ferreira, Gabriela K; De Costa, Leandro; Santos, Giulia P; Effting, Pauline S; Dal-Pizzol, Felipe; Dal-Bó, Alexandre G; Frizon, Tiago E; Silveira, Paulo C L; Pinho, Ricardo A

    2015-10-01

    We report the effect of gold nanoparticles (AuNP) in an acute inflammation model induced by carrageenan (CG) and compared this effect with those induced by the antioxidant N-acetylcysteine (NAC) alone and by the synergistic effect of NAC and AuNP together. Male Wistar rats received saline or saline containing CG administered into the pleural cavity, and some rats also received NAC (20 mg/kg) subcutaneously and/or AuNP administered into the pleural cavity immediately after surgery. Four hours later, the rats were sacrificed and pleural exudates obtained for evaluation of cytokine levels and myeloperoxidase activities. Oxidative stress parameters were also evaluated in the lungs. The results demonstrated that the inflammatory process caused by the administration of CG into the pleural cavity resulted in a substantial increase in the levels of tumor necrosis factor-α, interleukin-1β, and myeloperoxidase and a reduction in interleukin-10 levels. These levels seem to be reversed after different treatments in animals. Antioxidant enzymes exhibited positive responses after treatment of NAC + AuNP, and all treatments were effective at reducing lipid peroxidation and oxidation of thiol groups induced by CG. These findings suggest that small compounds, such as NAC plus AuNP, may be useful in the treatment of conditions associated with local inflammation. PMID:25917538

  19. Molecular Characterization of a Catalase from Hydra vulgaris

    PubMed Central

    Dash, Bhagirathi; Phillips, Timothy D.

    2012-01-01

    Catalase, an antioxidant and hydroperoxidase enzyme protects the cellular environment from harmful effects of hydrogen peroxide by facilitating its degradation to oxygen and water. Molecular information on a cnidarian catalase and/or peroxidase is, however, limited. In this work an apparent full length cDNA sequence coding for a catalase (HvCatalase) was isolated from Hydra vulgaris using 3’- and 5’- (RLM) RACE approaches. The 1859 bp HvCatalase cDNA included an open reading frame of 1518 bp encoding a putative protein of 505 amino acids with a predicted molecular mass of 57.44 kDa. The deduced amino acid sequence of HvCatalase contained several highly conserved motifs including the heme-ligand signature sequence RLFSYGDTH and the active site signature FXRERIPERVVHAKGXGA. A comparative analysis showed the presence of conserved catalytic amino acids [His(71), Asn(145), and Tyr(354)] in HvCatalase as well. Homology modeling indicated the presence of the conserved features of mammalian catalase fold. Hydrae exposed to thermal, starvation, metal and oxidative stress responded by regulating its catalase mRNA transcription. These results indicated that the HvCatalase gene is involved in the cellular stress response and (anti)oxidative processes triggered by stressor and contaminant exposure. PMID:22521743

  20. The Stringent Response Controls Catalases in Pseudomonas aeruginosa and Is Required for Hydrogen Peroxide and Antibiotic Tolerance

    PubMed Central

    Khakimova, Malika; Ahlgren, Heather G.; Harrison, Joe J.; English, Ann M.

    2013-01-01

    Pseudomonas aeruginosa, a human opportunistic pathogen, possesses a number of antioxidant defense enzymes under the control of multiple regulatory systems. We recently reported that inactivation of the P. aeruginosa stringent response (SR), a starvation stress response controlled by the alarmone (p)ppGpp, caused impaired antioxidant defenses and antibiotic tolerance. Since catalases are key antioxidant enzymes in P. aeruginosa, we compared the levels of H2O2 susceptibility and catalase activity in P. aeruginosa wild-type and ΔrelA ΔspoT (ΔSR) mutant cells. We found that the SR was required for optimal catalase activity and mediated H2O2 tolerance during both planktonic and biofilm growth. Upon amino acid starvation, induction of the SR upregulated catalase activity. Full expression of katA and katB also required the SR, and this regulation occurred through both RpoS-independent and RpoS-dependent mechanisms. Furthermore, overexpression of katA was sufficient to restore H2O2 tolerance and to partially rescue the antibiotic tolerance of ΔSR cells. All together, these results suggest that the SR regulates catalases and that this is an important mechanism in protecting nutrient-starved and biofilm bacteria from H2O2- and antibiotic-mediated killing. PMID:23457248

  1. Catalase and enumeration of stressed Staphylococcus aureus cells.

    PubMed Central

    Flowers, R S; Martin, S E; Brewer, D G; Ordal, Z J

    1977-01-01

    The effects of catalase on the enumeration of stressed (heated, reduced water activity, or freeze-dried) Staphylococcus aureus cells on several selective media were examined. The addition of catalase greatly increased the enumeration of stressed cells. The beneficial effects of catalase were most pronounced on those media least efficient in enumeration of stressed staphylococci, showing increases in enumeration of up to 1,100-fold. The effects of catalase appear to be due to the reduced ability of stressed cells to repair and form colonies in the absence of an exogenous decomposer of H2O2. Thermally stressed cells were more sensitive to H2O2 than unstressed cells. During recovery, stressed cells overcame the requirement for catalase. These findings implicate H2O2 as a factor in the failure of certain selective media to adequately enumerate stressed cells and demonstrate that the addition of catalase to these media markedly increases their productivity. PMID:879771

  2. Vulnerability of the human airway epithelium to hyperoxia. Constitutive expression of the catalase gene in human bronchial epithelial cells despite oxidant stress.

    PubMed

    Yoo, J H; Erzurum, S C; Hay, J G; Lemarchand, P; Crystal, R G

    1994-01-01

    Although catalase is a major intracellular antioxidant, the expression of the human catalase gene appears to be limited in the airway epithelium, making these cells vulnerable to oxidant stress. The basis for this limited gene expression was examined by evaluation of the expression of the endogenous gene in human bronchial epithelial cells in response to hyperoxia. Hyperoxia failed to upregulate endogenous catalase gene expression, in contrast to a marked increase in expression of the heat shock protein gene. Sequence analysis of 1.7 kb of the 5'-flanking region of the human catalase gene showed features of a "house-keeping" gene (no TATA box, high GC content, multiple CCAAT boxes, and transcription start sites). Transfection of human bronchial epithelial cells with fusion genes composed of various lengths of the catalase 5'-flanking region and luciferase as a reporter gene showed low level constitutive promoter activity that did not change after exposure to hyperoxia. Importantly, using a replication-deficient recombinant adenoviral vector containing the human catalase cDNA, levels of catalase were significantly increased in human airway epithelial cells and this was associated with increased survival of the cells when exposed to hyperoxia. These observations provide a basis for understanding the sensitivity of the human airway epithelium to oxidant stress and a strategy for protecting the epithelium from such injury. PMID:8282800

  3. Catalase protects HepG2 cells from apoptosis induced by DNA-damaging agents by accelerating the degradation of p53.

    PubMed

    Bai, Jingxiang; Cederbaum, Arthur I

    2003-02-14

    Oxidants such as H(2)O(2) play a role in the toxicity of certain DNA-damaging agents, a process that often involves the tumor suppressor p53. H(2)O(2) is rapidly degraded by catalase, which protects cells against oxidant injury. To study the effect of catalase on apoptosis induced by DNA-damaging agents, HepG2 cells were infected with adenovirus containing the cDNA of catalase (Ad-Cat). Forty-eight hours after infection, catalase protein and activity was increased 7-10-fold compared with control cells infected with Ad-LacZ. After treatment with Vp16 or mitomycin C, control cells underwent apoptosis in a p53-dependent manner; however, overexpression of catalase inhibited this apoptosis. Basal levels as well as Vp16- or mitomycin C-stimulated levels of p53 and p21 protein were decreased in the catalase-overexpressing cells as compared with control cells; however, p53 mRNA levels were not decreased by catalase. There was no difference in p53 protein synthesis between catalase-overexpressing cells and control cells. However, pulse-chase experiments indicated that p53 protein degradation was enhanced in the catalase-overexpressing cells. Proteasome inhibitors but not calpeptin prevented the catalase-mediated decrease of p53 content. Whereas Vp16 increased, catalase overexpression decreased the phosphorylation of p53. The protein phosphatase inhibitor okadaic acid did not prevent the catalase-mediated down-regulation of p53 or phosphorylated p53. These results demonstrate that catalase protects HepG2 cells from apoptosis induced by DNA-damaging agents in association with decreasing p53 phosphorylation; the latter may lead to an acceleration in the degradation of p53 protein by the proteasome complex. This suggests that the level of catalase may play a critical role in cell-induced resistance to the effects of anti-cancer drugs which up-regulate p53. PMID:12468545

  4. Inhibition of catalase activity in vitro by diesel exhaust particles

    SciTech Connect

    Mori, Yoki; Murakami, Sumika; Sagae, Toshiyuki

    1996-02-09

    The effect of diesel exhaust particles (DEP) on the activity of catalase, an intracellular anti-oxidant, was investigated because H{sub 2}O{sub 2} is a cytotoxic oxidant, and catalase released from alveolar cells is an important antioxidant in the epithelial lining fluid in the lung. DEP inhibited the activity of bovine liver catalase dose-dependently, to 25-30% of its original value. The inhibition of catalase by DEP was observed only in the presence of anions such as Cl{sup {minus}}, Br{sup {minus}}, or thiocyanate. Other anions, such as CH{sub 3}COO{sup {minus}} or SO{sub 4}{sup {minus}}, and cations such as K{sup +}, Na{sup +}, Mg{sup 2+}, or Fe{sup 2+}, did not affect the activity of catalase, even in the presence of DEP extract. Catalase from guinea pig alveolar cells and catalase from red blood cells were also inhibited by DEP extracts, as was catalase from bovine liver. These results suggest that DEP taken up in the lung and located on alveolar spaces might cause cell injury by inhibiting the activity of catalase in epithelial lining fluid, enhancing the toxicity of H{sub 2}O{sub 2} generated from cells in addition to that of O{sub 2}{sup {minus}} generated by the chemical reaction of DEP with oxygen. 10 refs., 6 figs.

  5. Development of a new biosensor for determination of catalase activity.

    PubMed

    Teke, Mustafa

    2014-01-01

    Catalase is one of the major antioxidant enzymes that catalyzes the hydrolysis of H2O2. The aim of this study was to suggest a new method for the assay of catalase activity. For this purpose, an amperometric biosensor based on glucose oxidase for determination of catalase activity was developed. Immobilization of glucose oxidase was made by a cross-linking method with glutaraldehyde on a Clark-type electrode (dissolved oxygen probe). Optimization and characterization properties of the biosensor were studied and determination of catalase activity in defined conditions was investigated in artificial serum solution. The results were compared with a reference method. PMID:24499365

  6. Catalases are NAD(P)H-dependent tellurite reductases.

    PubMed

    Calderón, Iván L; Arenas, Felipe A; Pérez, José Manuel; Fuentes, Derie E; Araya, Manuel A; Saavedra, Claudia P; Tantaleán, Juan C; Pichuantes, Sergio E; Youderian, Philip A; Vásquez, Claudio C

    2006-01-01

    Reactive oxygen species damage intracellular targets and are implicated in cancer, genetic disease, mutagenesis, and aging. Catalases are among the key enzymatic defenses against one of the most physiologically abundant reactive oxygen species, hydrogen peroxide. The well-studied, heme-dependent catalases accelerate the rate of the dismutation of peroxide to molecular oxygen and water with near kinetic perfection. Many catalases also bind the cofactors NADPH and NADH tenaciously, but, surprisingly, NAD(P)H is not required for their dismutase activity. Although NAD(P)H protects bovine catalase against oxidative damage by its peroxide substrate, the catalytic role of the nicotinamide cofactor in the function of this enzyme has remained a biochemical mystery to date. Anions formed by heavy metal oxides are among the most highly reactive, natural oxidizing agents. Here, we show that a natural isolate of Staphylococcus epidermidis resistant to tellurite detoxifies this anion thanks to a novel activity of its catalase, and that a subset of both bacterial and mammalian catalases carry out the NAD(P)H-dependent reduction of soluble tellurite ion (TeO(3)(2-)) to the less toxic, insoluble metal, tellurium (Te(o)), in vitro. An Escherichia coli mutant defective in the KatG catalase/peroxidase is sensitive to tellurite, and expression of the S. epidermidis catalase gene in a heterologous E. coli host confers increased resistance to tellurite as well as to hydrogen peroxide in vivo, arguing that S. epidermidis catalase provides a physiological line of defense against both of these strong oxidizing agents. Kinetic studies reveal that bovine catalase reduces tellurite with a low Michaelis-Menten constant, a result suggesting that tellurite is among the natural substrates of this enzyme. The reduction of tellurite by bovine catalase occurs at the expense of producing the highly reactive superoxide radical. PMID:17183702

  7. Interaction of Nitric Oxide with Catalase: Structural and Kinetic Analysis

    PubMed Central

    2011-01-01

    We present the structures of bovine catalase in its native form and complexed with ammonia and nitric oxide, obtained by X-ray crystallography. Using the NO generator 1-(N,N-diethylamino)diazen-1-ium-1,2-diolate, we were able to generate sufficiently high NO concentrations within the catalase crystals that substantial occupation was observed despite a high dissociation rate. Nitric oxide seems to be slightly bent from the heme normal that may indicate some iron(II) character in the formally ferric catalase. Microspectrophotometric investigations inline with the synchrotron X-ray beam reveal photoreduction of the central heme iron. In the cases of the native and ammonia-complexed catalase, reduction is accompanied by a relaxation phase. This is likely not the case for the catalase NO complex. The kinetics of binding of NO to catalase were investigated using NO photolyzed from N,N′-bis(carboxymethyl)-N,N′-dinitroso-p-phenylenediamine using an assay that combines catalase with myoglobin binding kinetics. The off rate is 1.5 s–1. Implications for catalase function are discussed. PMID:21524057

  8. IS CATALASE ACTIVITY ASSOCIATED WITH MAIZE RESISTANCE TO ASPERGILLUS FLAVUS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Catalase activity was measured in various cob tissues during maize ear development because of its role in maintaining reactive oxygen homeostasis during biotic and abiotic stress. Catalase activity was determined in immature and mature embryos, pericarp, and rachis tissues of maize lines that are re...

  9. High catalase production by Rhizobium radiobacter strain 2-1.

    PubMed

    Nakayama, Mami; Nakajima-Kambe, Toshiaki; Katayama, Hideki; Higuchi, Kazuhiko; Kawasaki, Yoshio; Fuji, Ryujiro

    2008-12-01

    To promote the application of catalase for treating wastewater containing hydrogen peroxide, bacteria exhibiting high catalase activity were screened. A bacterium, designated strain 2-1, with high catalase activity was isolated from the wastewater of a beverage factory that uses hydrogen peroxide. Strain 2-1 was identified as Rhizobium radiobacter (formerly known as Agrobacterium tumefaciens) on the basis of both phenotypic and genotypic characterizations. Although some strains of R. radiobacter are known plant pathogens, polymerase chain reaction (PCR) analysis showed that strain 2-1 has no phytopathogenic factor. Compared with a type strain of R. radiobacter, the specific catalase activity of strain 2-1 was approximately 1000-fold. Moreover, Strain 2-1 grew faster and exhibited considerably higher catalase activity than other microorganisms that have been used for industrial catalase production. Strain 2-1 is harmless to humans and the environment and produces catalase efficiently, suggesting that strain 2-1 is a good resource for the mass production of catalase for the treatment of hydrogen peroxide-containing wastewater. PMID:19134550

  10. Genes Important for Catalase Activity in Enterococcus faecalis

    PubMed Central

    Baureder, Michael; Hederstedt, Lars

    2012-01-01

    Little in general is known about how heme proteins are assembled from their constituents in cells. The Gram-positive bacterium Enterococcus faecalis cannot synthesize heme and does not depend on it for growth. However, when supplied with heme in the growth medium the cells can synthesize two heme proteins; catalase (KatA) and cytochrome bd (CydAB). To identify novel factors important for catalase biogenesis libraries of E. faecalis gene insertion mutants were generated using two different types of transposons. The libraries of mutants were screened for clones deficient in catalase activity using a colony zymogram staining procedure. Analysis of obtained clones identified, in addition to katA (encoding the catalase enzyme protein), nine genes distributed over five different chromosomal loci. No factors with a dedicated essential role in catalase biogenesis or heme trafficking were revealed, but the results indicate the RNA degradosome (srmB, rnjA), an ABC-type oligopeptide transporter (oppBC), a two-component signal transducer (etaR), and NADH peroxidase (npr) as being important for expression of catalase activity in E. faecalis. It is demonstrated that catalase biogenesis in E. faecalis is independent of the CydABCD proteins and that a conserved proline residue in the N-terminal region of KatA is important for catalase assembly. PMID:22590595

  11. The catalase activity of diiron adenine deaminase.

    PubMed

    Kamat, Siddhesh S; Holmes-Hampton, Gregory P; Bagaria, Ashima; Kumaran, Desigan; Tichy, Shane E; Gheyi, Tarun; Zheng, Xiaojing; Bain, Kevin; Groshong, Chris; Emtage, Spencer; Sauder, J Michael; Burley, Stephen K; Swaminathan, Subramanyam; Lindahl, Paul A; Raushel, Frank M

    2011-12-01

    Adenine deaminase (ADE) from the amidohydrolase superfamily (AHS) of enzymes catalyzes the conversion of adenine to hypoxanthine and ammonia. Enzyme isolated from Escherichia coli was largely inactive toward the deamination of adenine. Molecular weight determinations by mass spectrometry provided evidence that multiple histidine and methionine residues were oxygenated. When iron was sequestered with a metal chelator and the growth medium supplemented with Mn(2+) before induction, the post-translational modifications disappeared. Enzyme expressed and purified under these conditions was substantially more active for adenine deamination. Apo-enzyme was prepared and reconstituted with two equivalents of FeSO(4). Inductively coupled plasma mass spectrometry and Mössbauer spectroscopy demonstrated that this protein contained two high-spin ferrous ions per monomer of ADE. In addition to the adenine deaminase activity, [Fe(II) /Fe(II) ]-ADE catalyzed the conversion of H(2)O(2) to O(2) and H(2)O. The values of k(cat) and k(cat)/K(m) for the catalase activity are 200 s(-1) and 2.4 × 10(4) M(-1) s(-1), respectively. [Fe(II)/Fe(II)]-ADE underwent more than 100 turnovers with H(2)O(2) before the enzyme was inactivated due to oxygenation of histidine residues critical for metal binding. The iron in the inactive enzyme was high-spin ferric with g(ave) = 4.3 EPR signal and no evidence of anti-ferromagnetic spin-coupling. A model is proposed for the disproportionation of H(2)O(2) by [Fe(II)/Fe(II)]-ADE that involves the cycling of the binuclear metal center between the di-ferric and di-ferrous oxidation states. Oxygenation of active site residues occurs via release of hydroxyl radicals. These findings represent the first report of redox reaction catalysis by any member of the AHS. PMID:21998098

  12. Beneficial effect of catalase treatment on growth of Clostridium perfringens.

    PubMed Central

    Harmon, S M; Kautter, D A

    1976-01-01

    Several common plating media were tested for their ability to support growth of Clostridium perfringens after storage of the plates for 1 to 10 days at 4 and 25 degrees C with and without subsequent addition of catalase. Liver-veal (LV) agar and brain heart infusion (BHI) agar quickly become incapable of supporting growth after storage without added catalase, whereas Shahidi Ferguson perfringens (SFP) agar and Brewer anaerobic (BA) agar were less affected. Plate counts of C. perfringens on untreated LV and BHI agars stored 3 days at 25 degrees C showed a reduction of 98.2%, whereas counts on SFP and BA agars were reduced by 13.6% and 46.2%, respectively. Addition of 1,500 U of beef liver catalase to the surface of the 3-day-old agars before incubation resulted in substantial restoration of their growth-promoting ability. Counts of colonies on LV, GHI, SFP, and BA agars with added catalase were usually 20 to 90% higher than untreated controls. Similar results were obtained using purified catalase, fungal catalase, and horseradish peroxidase. These results suggest that inhibition may be due to peroxide formed during storage and incubation and that additon of catalase provides near optimum conditions for growth of C. perfringens on these media. PMID:185958

  13. The catalase activity of diiron adenine deaminase

    SciTech Connect

    Kamat S. S.; Swaminathan S.; Holmes-Hampton, G. P.; Bagaria, A.; Kumaran, D.; Tichy, S. E.; Gheyi, T.; Zheng, X.; Bain, K.; Groshong, C.; Emtage, S.; Sauder, J. M.; Burley, S. K.; Lindahl, P. A.; Raushel, F. M.

    2011-12-01

    Adenine deaminase (ADE) from the amidohydrolase superfamily (AHS) of enzymes catalyzes the conversion of adenine to hypoxanthine and ammonia. Enzyme isolated from Escherichia coli was largely inactive toward the deamination of adenine. Molecular weight determinations by mass spectrometry provided evidence that multiple histidine and methionine residues were oxygenated. When iron was sequestered with a metal chelator and the growth medium supplemented with Mn{sup 2+} before induction, the post-translational modifications disappeared. Enzyme expressed and purified under these conditions was substantially more active for adenine deamination. Apo-enzyme was prepared and reconstituted with two equivalents of FeSO{sub 4}. Inductively coupled plasma mass spectrometry and Moessbauer spectroscopy demonstrated that this protein contained two high-spin ferrous ions per monomer of ADE. In addition to the adenine deaminase activity, [Fe{sup II}/Fe{sup II}]-ADE catalyzed the conversion of H{sub 2}O{sub 2} to O{sub 2} and H{sub 2}O. The values of k{sub cat} and k{sub cat}/K{sub m} for the catalase activity are 200 s{sup -1} and 2.4 x 10{sup 4} M{sup -1} s{sup -1}, respectively. [Fe{sup II}/Fe{sup II}]-ADE underwent more than 100 turnovers with H{sub 2}O{sub 2} before the enzyme was inactivated due to oxygenation of histidine residues critical for metal binding. The iron in the inactive enzyme was high-spin ferric with g{sub ave} = 4.3 EPR signal and no evidence of anti-ferromagnetic spin-coupling. A model is proposed for the disproportionation of H{sub 2}O{sub 2} by [Fe{sup II}/Fe{sup II}]-ADE that involves the cycling of the binuclear metal center between the di-ferric and di-ferrous oxidation states. Oxygenation of active site residues occurs via release of hydroxyl radicals. These findings represent the first report of redox reaction catalysis by any member of the AHS.

  14. A Laboratory Experiment of the Purification of Catalase.

    ERIC Educational Resources Information Center

    Busquets, Montserrat; Franco, Rafael

    1986-01-01

    Describes a simple method for purifying catalase for the study of proteins. Procedures are systematically and diagramatically presented. Also identifies polyacrylamide gel electrophoresis, kinetic studies, and apparent molecular weight determination as possible techniques to be used in studying proteins. (ML)

  15. Pseudomonas syringae Catalases Are Collectively Required for Plant Pathogenesis

    PubMed Central

    Guo, Ming; Block, Anna; Bryan, Crystal D.; Becker, Donald F.

    2012-01-01

    The bacterial pathogen Pseudomonas syringae pv. tomato DC3000 must detoxify plant-produced hydrogen peroxide (H2O2) in order to survive in its host plant. Candidate enzymes for this detoxification include the monofunctional catalases KatB and KatE and the bifunctional catalase-peroxidase KatG of DC3000. This study shows that KatG is the major housekeeping catalase of DC3000 and provides protection against menadione-generated endogenous H2O2. In contrast, KatB rapidly and substantially accumulates in response to exogenous H2O2. Furthermore, KatB and KatG have nonredundant roles in detoxifying exogenous H2O2 and are required for full virulence of DC3000 in Arabidopsis thaliana. Therefore, the nonredundant ability of KatB and KatG to detoxify plant-produced H2O2 is essential for the bacteria to survive in plants. Indeed, a DC3000 catalase triple mutant is severely compromised in its ability to grow in planta, and its growth can be partially rescued by the expression of katB, katE, or katG. Interestingly, our data demonstrate that although KatB and KatG are the major catalases involved in the virulence of DC3000, KatE can also provide some protection in planta. Thus, our results indicate that these catalases are virulence factors for DC3000 and are collectively required for pathogenesis. PMID:22797762

  16. Identification of catalase-like activity from Mycobacterium leprae and the relationship between catalase and isonicotinic acid hydrazide (INH).

    PubMed

    Kang, T J; You, J C; Chae, G T

    2001-08-01

    As Mycobacterium leprae proliferate inside macrophages, it has been speculated that catalase encoded by katG may protect the bacilli from deleterious effects of peroxide generated from the macrophage and may also play a crucial role in the survival of M. leprae in vivo. However, unlike that of M. tuberculosis, the katG of M. leprae has been reported to be a pseudogene, implicating that isoniazid, which is activated to a potent tuberculocidal agent by catalase, is unlikely to be of therapeutic benefit to leprosy patients. These results raise a question as to how M. leprae avoids H202-mediated killing inside macrophages. To understand the survival of M. leprae in macrophages, the present study attempted to detect catalase-like activity in M. leprae. Catalase-like activity was found in M. leprae cell lysate by the diaminobenzidine (DAB) staining method with non-denaturing polyacrylamide gel electrophoresis. An ammonium sulphate precipitation study revealed that the catalase-like activity was precipitable with 80% ammonium sulphate. The effect of isoniazid (INH) on M. leprae growth was also tested by RT-PCR and radiorespirometric assay to examine catalase-like activity in M. leprae, because INH was activated by catalase. It was found that the viability of M. leprae was decreased at a concentration of 20 microg/ml by radiorespirometric assay and it was inhibited at higher concentrations as determined by RT-PCR. These data suggest that a catalase-like activity other than that encoded by katG is present in M. leprae. PMID:11478670

  17. MicroRNA-30b-Mediated Regulation of Catalase Expression in Human ARPE-19 Cells

    PubMed Central

    Haque, Rashidul; Chun, Eugene; Howell, Jennifer C.; Sengupta, Trisha; Chen, Dan; Kim, Hana

    2012-01-01

    Background Oxidative injury to retinal pigment epithelium (RPE) and retinal photoreceptors has been linked to a number of retinal diseases, including age-related macular degeneration (AMD). Reactive oxygen species (ROS)-mediated gene expression has been extensively studied at transcriptional levels. Also, the post-transcriptional control of gene expression at the level of translational regulation has been recently reported. However, the microRNA (miRNA/miR)-mediated post-transcriptional regulation in human RPE cells has not been thoroughly looked at. Increasing evidence points to a potential role of miRNAs in diverse physiological processes. Methodology/Principal Findings We demonstrated for the first time in a human retinal pigment epithelial cell line (ARPE-19) that the post-transcriptional control of gene expression via miRNA modulation regulates human catalase, an important and potent component of cell's antioxidant defensive network, which detoxifies hydrogen peroxide (H2O2) radicals. Exposure to several stress-inducing agents including H2O2 has been reported to alter miRNA expression profile. Here, we demonstrated that a sublethal dose of H2O2 (200 µM) up-regulated the expression of miR-30b, a member of the miR-30 family, which inhibited the expression of endogenous catalase both at the transcript and protein levels. However, antisense (antagomirs) of miR-30b was not only found to suppress the miR-30b mimics-mediated inhibitions, but also to dramatically increase the expression of catalase even under an oxidant environment. Conclusions/Significance We propose that a microRNA antisense approach could enhance cytoprotective mechanisms against oxidative stress by increasing the antioxidant defense system. PMID:22880027

  18. CENTRAL REINFORCING EFFECTS OF ETHANOL ARE BLOCKED BY CATALASE INHIBITION

    PubMed Central

    Nizhnikov, Michael Edward; Molina, Juan Carlos; Spear, Norman

    2007-01-01

    Recent studies have systematically indicated that newborn rats are highly sensitive to ethanol’s positive reinforcing effects. Central administrations of ethanol (25–200 mg %) associated with an olfactory conditioned stimulus (CS) promote subsequent conditioned approach to the CS as evaluated through the newborn’s response to a surrogate nipple scented with the CS. It has been shown that ethanol’s first metabolite, acetaldehyde, exerts significant reinforcing effects in the central nervous system. A significant amount of acetaldehyde is derived from ethanol metabolism via the catalase system. In newborn rats catalase levels are particularly high in several brain structures. The present study tested the effect of catalase inhibition on central ethanol reinforcement. In the first experiment, pups experienced lemon odor either paired or unpaired with intracisternal (i.c.) administrations of 100 mg% ethanol. Half of the animals corresponding to each learning condition were pretreated with i.c. administrations of either physiological saline or a catalase inhibitor (sodium-azide). Catalase inhibition completely suppressed ethanol reinforcement in paired groups without affecting responsiveness to the CS during conditioning or responding by unpaired control groups. A second experiment tested whether these effects were specific to ethanol reinforcement or due instead to general impairment in learning and expression capabilities. Central administration of an endogenous kappa opioid receptor agonist (dynorphin A-13) was employed as an alternative source of reinforcement. Inhibition of the catalase system had no effect on the reinforcing properties of dynorphin. The present results support the hypothesis that ethanol metabolism regulated by the catalase system plays a critical role in determination of ethanol reinforcement in newborn rats. PMID:17980789

  19. Purification and biosynthesis of cottonseed (Gossypium hirsutum L.) catalase.

    PubMed Central

    Kunce, C M; Trelease, R N; Turley, R B

    1988-01-01

    As part of our research on peroxisome biogenesis, catalase was purified from cotyledons of dark-grown cotton (Gossypium hirsutum L.) seedlings and monospecific antibodies were raised in rabbits. Purified catalase appeared as three distinct electrophoretic forms in non-denaturing gels and as a single protein band (with a subunit Mr of 57,000) on silver-stained SDS/polyacrylamide gels. Western blots of crude extracts and isolated peroxisomes from cotton revealed one immunoreactive polypeptide with the same Mr (57,000) as the purified enzyme, indicating that catalase did not undergo any detectable change in Mr during purification. Synthesis in vitro, directed by polyadenylated RNA isolated from either maturing seeds or cotyledons of dark-grown cotton seedlings, revealed a predominant immunoreactive translation product with a subunit Mr of 57,000 and an additional minor immunoreactive product with a subunit Mr of 64000. Labelling studies in vivo revealed newly synthesized monomers of both the 64000- and 57,000-Mr proteins present in the cytosol and incorporation of both proteins into the peroxisome without proteolytic processing. Within the peroxisome, the 57,000-Mr catalase was found as an 11S tetramer; whereas the 64,000-Mr protein was found as a relatively long-lived 20S aggregate (native Mr approx. 600,000-800,000). The results strongly indicate that the 64,000-Mr protein (catalase?) is not a precursor to the 57,000-Mr catalase and that cotton catalase is translated on cytosolic ribosomes without a cleavable transit or signal sequence. Images Fig. 1. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. Fig. 8. Fig. 9. Fig. 10. PMID:3134010

  20. The localization of catalase in the pulmonary alveolar macrophage.

    PubMed

    Davies, P; Drath, D B; Engel, E E; Huber, G L

    1979-02-01

    A combined biochemical and cytochemical study of catalase was performed on alveolar macrophages lavaged from the lungs of adult male rats. Biochemically, catalase activity was present in both a high-speed granule fraction and in the supernatant. The granule-associated activity exhibited latency. Two methods of cell breakage, sonication and homogenization, yielded similar levels and distributions of catalase activity. Catalase activity in whole cells was identified cytochemically by the alkaline diaminobenzidine method and was localized within membrane-lined cytoplasmic granules similar in size to microperoxisomes and associated with cisternae of smooth endoplasmic reticulum. Localization of the reaction product was inhibited by 0.04 M aminotriazole, by cyanide, and by boiling prior to incubation. The cytochemical reaction continued in the absence of exogenous peroxide, but could be prevented by addition of catalase or pyruvate to the peroxide-free medium. Enzyme activity was also localized within a portion of the membrane-bound granules present in the cell fractions used for the biochemical assays. PMID:431040

  1. Mechanism of inhibition of catalase by nitro and nitroso compounds.

    PubMed

    Titov, V Yu; Petrenko, Yu M; Vanin, A F

    2008-01-01

    Dinitrosyl iron complexes (DNIC) with thiolate ligands and S-nitrosothiols, which are NO and NO+ donors, share the earlier demonstrated ability of nitrite for inhibition of catalase. The efficiency of inhibition sharply (by several orders in concentration of these agents) increases in the presence of chloride, bromide, and thiocyanate. The nitro compounds tested--nitroarginine, nitroglycerol, nitrophenol, and furazolidone--gained the same inhibition ability after incubation with ferrous ions and thiols. This is probably the result of their transformation into DNIC. None of these substances lost the inhibitory effect in the presence of the well known NO scavenger oxyhemoglobin. This fact suggests that NO+ ions rather than neutral NO molecules are responsible for the enzyme inactivation due to nitrosation of its structures. The enhancement of catalase inhibition in the presence of halide ions and thiocyanate might be caused by nitrosyl halide formation. The latter protected nitrosonium ions against hydrolysis, thereby ensuring their transfer to the targets in enzyme molecules. The addition of oxyhemoglobin plus iron chelator o-phenanthroline destroying DNIC sharply attenuated the inhibitory effect of DNIC on catalase. o-Phenanthroline added alone did not influence this effect. Oxyhemoglobin is suggested to scavenge nitrosonium ions released from decomposing DNIC, thereby preventing catalase nitrosation. The mixture of oxyhemoglobin and o-phenanthroline did not affect the inhibitory action of nitrite or S-nitrosothiols on catalase. PMID:18294136

  2. Identification of two catalases in Azotobacter vinelandii: a KatG homologue and a novel bacterial cytochrome c catalase, CCCAv.

    PubMed

    Sandercock, James R; Page, William J

    2008-02-01

    Azotobacter vinelandii produces two detectable catalases during growth on minimal medium. The heat-labile catalase expressed during exponential growth phase was identified as a KatG homologue by liquid chromatography-tandem mass spectrometry (LC-MS/MS) using a mixed protein sample. The second catalase was heat resistant and had substantial residual activity after treatment at 90 degrees C. This enzyme was purified by anion-exchange and size exclusion chromatography and was found to exhibit strong absorption at 407 nm, which is often indicative of associated heme moieties. The purified protein was fragmented by proteinase K and identified by LC-MS/MS. Some identity was shared with the MauG/bacterial cytochrome c peroxidase (BCCP) protein family, but the enzyme exhibited a strong catalase activity never before observed in this family. Because two putative c-type heme sites (CXXCH) were predicted in the peptide sequence and were demonstrated experimentally, the enzyme was designated a cytochrome c catalase (CCC(Av)). However, the local organization of the CCC(Av) heme motifs differed significantly from that of the BCCPs as the sites were confined to the C-terminal half of the catalase. A possible Ca2+ binding motif, previously described in the BCCPs, is also present in the CCC(Av) peptide sequence. Some instability in the presence of EGTA was observed. Expression of the catalase was abolished in cccA mutants, resulting in a nearly 8,700-fold reduction in peroxide resistance in stationary phase. PMID:18055590

  3. The impact of catalase expression on the replicative lifespan of Saccharomyces cerevisiae.

    PubMed

    Van Zandycke, S M; Sohier, P J; Smart, K A

    2002-02-01

    The role of catalase on Saccharomyces cerevisiae replicative lifespan was investigated using a wild-type haploid laboratory yeast W303a, a catalase A mutant, a catalase T mutant and an acatalasaemic mutant. Lifespan analysis was performed in two different environmental conditions. Under repressing conditions, on glucose media, catalase T activity, but not catalase A activity was necessary to assure longevity. However, under derepressing conditions, on ethanol media, both catalases were required for longevity assurance. Although catalase activity and carbon source influence yeast lifespan, the relationship between oxidative defence and replicative senescence is complex. PMID:11744047

  4. Peroxide-inducible catalase in Aeromonas salmonicida subsp. salmonicida protects against exogenous hydrogen peroxide and killing by activated rainbow trout, Oncorhynchus mykiss L., macrophages.

    PubMed

    Barnes, A C; Bowden, T J; Horne, M T; Ellis, A E

    1999-03-01

    Aeromonas salmonicida subsp. salmonicida expresses a single cytoplasmically located catalase which was found to be inducible by exposure to 20 microM hydrogen peroxide in mid-exponential phase resulting in a 4 fold increase in activity. Subsequent exposure to 2 mM peroxide in late-exponential/early-stationary phase resulted in further induction of catalase activity which increased to 20 fold higher levels than those found in uninduced cultures. Exponentially induced cultures were protected against subsequent exposure to 10 mM peroxide which was lethal to non-induced cultures. Bacteria subjected to induction in mid-exponential and early-stationary phase were resistant to 100 mM peroxide, although viability was greatly reduced. Growth of the bacterium under iron-restricted conditions had no effect on the peroxide induction of catalase. As current evidence indicates, the latter is an iron-co-factored heme catalase, this result suggests that catalase induction has a high priority in the metabolism of iron. Furthermore, exposure to peroxide also induces expression of periplasmic MnSOD. A. salmonicida MT423 was resistant to normal rainbow trout macrophages, but was susceptible to killing by activated macrophages. However, if catalase was induced by prior exposure to 20 microM peroxide during mid-exponential phase, A. salmonicida was resistant to killing by activated macrophages. The ability of A. salmonicida to upregulate periplasmic MnSOD and cytoplasmic catalase production under iron restricted conditions and low level peroxide (conditions expected to exist during the early stages of an infection) may be vital for its ability to withstand attack by phagocytic cells in vivo. PMID:10089155

  5. Kinetics of hydrogen peroxide decomposition by catalase: hydroxylic solvent effects.

    PubMed

    Raducan, Adina; Cantemir, Anca Ruxandra; Puiu, Mihaela; Oancea, Dumitru

    2012-11-01

    The effect of water-alcohol (methanol, ethanol, propan-1-ol, propan-2-ol, ethane-1,2-diol and propane-1,2,3-triol) binary mixtures on the kinetics of hydrogen peroxide decomposition in the presence of bovine liver catalase is investigated. In all solvents, the activity of catalase is smaller than in water. The results are discussed on the basis of a simple kinetic model. The kinetic constants for product formation through enzyme-substrate complex decomposition and for inactivation of catalase are estimated. The organic solvents are characterized by several physical properties: dielectric constant (D), hydrophobicity (log P), concentration of hydroxyl groups ([OH]), polarizability (α), Kamlet-Taft parameter (β) and Kosower parameter (Z). The relationships between the initial rate, kinetic constants and medium properties are analyzed by linear and multiple linear regression. PMID:22565543

  6. Embryonic catalase protects against ethanol embryopathies in acatalasemic mice and transgenic human catalase-expressing mice in embryo culture

    SciTech Connect

    Miller-Pinsler, Lutfiya; Wells, Peter G.

    2015-09-15

    Reactive oxygen species (ROS) have been implicated in the mechanism of ethanol (EtOH) teratogenicity, but the protective role of the embryonic antioxidative enzyme catalase is unclear, as embryonic activity is only about 5% of maternal levels. We addressed this question in a whole embryo culture model. C57BL/6 mouse embryos expressing human catalase (hCat) or their wild-type (C57BL/6 WT) controls, and C3Ga.Cg-Cat{sup b}/J catalase-deficient, acatalasemic (aCat) mouse embryos or their wild-type C3HeB/FeJ (C3H WT) controls, were explanted on gestational day (GD) 9 (plug = GD 1), exposed for 24 h to 2 or 4 mg/mL EtOH or vehicle, and evaluated for functional and morphological changes. hCat and C57BL/6 WT vehicle-exposed embryos developed normally, while EtOH was embryopathic in C57BL/6 WT embryos, evidenced by decreases in anterior neuropore closure, somites developed, turning and head length, whereas hCat embryos were protected (p < 0.001). Maternal pretreatment of C57BL/6 WT dams with 50 kU/kg PEG-catalase (PEG-cat) 8 h prior to embryo culture, which increases embryonic catalase activity, blocked all EtOH embryopathies (p < 0.001). Vehicle-exposed aCat mouse embryos had lower yolk sac diameters compared to WT controls, suggesting that endogenous ROS are embryopathic. EtOH was more embryopathic in aCat embryos than WT controls, evidenced by reduced head length and somite development (p < 0.01), and trends for reduced anterior neuropore closure, turning and crown–rump length. Maternal pretreatment of aCat dams with PEG-Cat blocked all EtOH embryopathies (p < 0.05). These data suggest that embryonic catalase is a determinant of risk for EtOH embryopathies. - Highlights: • Ethanol (EtOH) exposure causes structural embryopathies in embryo culture. • Genetically enhanced catalase (hCat) protects against EtOH embryopathies. • Genetically deficient catalase (aCat) exacerbates EtOH embryopathies. • Embryonic catalase is developmentally important. • Et

  7. Recovery of Clostridia on Catalase-Treated Plating Media

    PubMed Central

    Harmon, Stanley M.; Kautter, Donald A.

    1977-01-01

    Four plating media commonly used for culturing clostridia were tested for their ability to support growth of several Clostridium species after storage of the plates for 1 to 10 days at 4 and 25°C with and without subsequent addition of catalase. Liver-veal (LV) agar and brain heart infusion (BHI) agar rapidly became incapable of supporting growth after storage without added catalase, whereas Shahidi Ferguson perfringens agar base and Brewer anaerobic agar were less affected. Plate counts of vegetative cells of nine of the less fastidious Clostridium species on untreated LV and BHI agars, stored for 3 days at 4°C, were 60 to 90% lower than counts on catalase-treated media. Counts on Shahidi Ferguson perfringens agar base were only 1 to 24% lower on untreated medium with the same species. Addition of 500 U of purified beef liver catalase to the surface of the 3-day-old agars before inoculation resulted in substantial restoration of the ability of the media to support colony formation from vegetative cells except with the most strictly anaerobic species (nonproteolytic C. botulinum types B, E, and F, and C. novyii types A and B). A similar response was obtained with spores of the less fastidious species on catalase-treated media. Our results suggest that inhibition of most Clostridium species on LV and BHI agars may be due to accumulation of peroxide during preparation, storage, and incubation of the media, and also suggest that the presence of glucose in these media is a major factor contributing to their inability to support growth. It is believed that the addition of exogenous catalase prevents the accumulation of peroxide(s), thus allowing colony formation from vegetative cells of the clostridia under what would otherwise be unsuitable cultural conditions. PMID:869526

  8. Effects of Peroxisomal Catalase Inhibition on Mitochondrial Function

    PubMed Central

    Walton, Paul A.; Pizzitelli, Michael

    2012-01-01

    Peroxisomes produce hydrogen peroxide as a metabolic by-product of their many oxidase enzymes, but contain catalase that breaks down hydrogen peroxide in order to maintain the organelle’s oxidative balance. It has been previously demonstrated that, as cells age, catalase is increasingly absent from the peroxisome, and resides instead as an unimported tetrameric molecule in the cell cytosol; an alteration that is coincident with increased cellular hydrogen peroxide levels. As this process begins in middle-passage cells, we sought to determine whether peroxisomal hydrogen peroxide could contribute to the oxidative damage observed in mitochondria in late-passage cells. Early-passage human fibroblasts (Hs27) treated with aminotriazole (3-AT), an irreversible catalase inhibitor, demonstrated decreased catalase activity, increased levels of cellular hydrogen peroxide, protein carbonyls, and peroxisomal numbers. This treatment increased mitochondrial reactive oxygen species levels, and decreased the mitochondrial aconitase activity by ∼85% within 24 h. In addition, mitochondria from 3-AT treated cells show a decrease in inner membrane potential. These results demonstrate that peroxisome-derived oxidative imbalance may rapidly impair mitochondrial function, and considering that peroxisomal oxidative imbalance begins to occur in middle-passage cells, supports the hypothesis that peroxisomal oxidant release occurs upstream of, and contributes to, the mitochondrial damage observed in aging cells. PMID:22536190

  9. 21 CFR 173.135 - Catalase derived from Micrococcus lysodeikticus.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Catalase derived from Micrococcus lysodeikticus. 173.135 Section 173.135 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION...

  10. 21 CFR 184.1034 - Catalase (bovine liver).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... with 5 U.S.C. 552(a) and 1 CFR part 51. Copies are available from the National Academy Press, 2101... liver) (CAS Reg. No. 81457-95-6) is an enzyme preparation obtained from extracts of bovine liver. It is a partially purified liquid or powder. Its characterizing enzyme activity is catalase (EC...

  11. 21 CFR 184.1034 - Catalase (bovine liver).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... with 5 U.S.C. 552(a) and 1 CFR part 51. Copies are available from the National Academy Press, 2101... liver) (CAS Reg. No. 81457-95-6) is an enzyme preparation obtained from extracts of bovine liver. It is a partially purified liquid or powder. Its characterizing enzyme activity is catalase (EC...

  12. 21 CFR 184.1034 - Catalase (bovine liver).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... with 5 U.S.C. 552(a) and 1 CFR part 51. Copies are available from the National Academy Press, 2101... liver) (CAS Reg. No. 81457-95-6) is an enzyme preparation obtained from extracts of bovine liver. It is a partially purified liquid or powder. Its characterizing enzyme activity is catalase (EC...

  13. 21 CFR 184.1034 - Catalase (bovine liver).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... 110, which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies... enzyme preparation obtained from extracts of bovine liver. It is a partially purified liquid or powder. Its characterizing enzyme activity is catalase (EC 1.11.1.6). (b) The ingredient meets the...

  14. Improving catalase-based propelled motor endurance by enzyme encapsulation

    NASA Astrophysics Data System (ADS)

    Simmchen, Juliane; Baeza, Alejandro; Ruiz-Molina, Daniel; Vallet-Regí, Maria

    2014-07-01

    Biocatalytic propulsion is expected to play an important role in the future of micromotors as it might drastically increase the number of available fuelling reactions. However, most of the enzyme-propelled micromotors so far reported still rely on the degradation of peroxide by catalase, in spite of being vulnerable to relatively high peroxide concentrations. To overcome this limitation, herein we present a strategy to encapsulate the catalase and to graft the resulting enzyme capsules on motor particles. Significant improvement of the stability in the presence of peroxide and other aggressive agents has been observed.Biocatalytic propulsion is expected to play an important role in the future of micromotors as it might drastically increase the number of available fuelling reactions. However, most of the enzyme-propelled micromotors so far reported still rely on the degradation of peroxide by catalase, in spite of being vulnerable to relatively high peroxide concentrations. To overcome this limitation, herein we present a strategy to encapsulate the catalase and to graft the resulting enzyme capsules on motor particles. Significant improvement of the stability in the presence of peroxide and other aggressive agents has been observed. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr02459a

  15. Heterogeneity of Catalase in Maturing and Germinated Cotton Seeds 1

    PubMed Central

    Kunce, Christine M.; Trelease, Richard N.

    1986-01-01

    To investigate possible charge and size heterogeneity of catalase (EC 1.11.1.6) in cotton (Gossypium hirsutum L. cv Deltapine 62), extracts of cotyledons from different developmental ages were subjected to nondenaturing polyacrylamide gel electrophoresis and isoelectric focusing. Special precautions (e.g. fresh homogenates, reducing media) were necessary to prevent artefacts due to enzyme modification during extraction and storage. When the gels were stained for enzyme activity, two distinct electrophoretic forms of catalase were resolved in extracts of maturing and mature cotton seeds. In germinated seeds, three additional cathodic forms were detected revealing a total of five electrophoretic variants. In green cotyledons, the two anodic forms characteristic of ungerminated seeds were less active; whereas, the most cathodic form was predominant. All forms of catalase were found in isolated glyoxysomes. Corresponding electrophoretic patterns were found on Western blots probed with anticatalase serum; no immunoreactive, catalytically inactive forms were detected. Western blots of sodium dodecyl sulfate-polyacrylamide gels revealed only one immunoreactive (55 kilodaltons) polypeptide in cotton extracts of all developmental ages. Results from isoelectric focusing and Ferguson plots indicate that the electrophoretic variants of catalase are charge isomers with a molecular weight of approximately 230,000. Images Fig. 1 Fig. 2 Fig. 3 Fig. 6 Fig. 7 PMID:16664956

  16. 21 CFR 173.135 - Catalase derived from Micrococcus lysodeikticus.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Catalase derived from Micrococcus lysodeikticus. 173.135 Section 173.135 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SECONDARY DIRECT FOOD ADDITIVES PERMITTED...

  17. Catalase-peroxidases (KatG) exhibit NADH oxidase activity.

    PubMed

    Singh, Rahul; Wiseman, Ben; Deemagarn, Taweewat; Donald, Lynda J; Duckworth, Harry W; Carpena, Xavi; Fita, Ignacio; Loewen, Peter C

    2004-10-01

    Catalase-peroxidases (KatG) produced by Burkholderia pseudomallei, Escherichia coli, and Mycobacterium tuberculosis catalyze the oxidation of NADH to form NAD+ and either H2O2 or superoxide radical depending on pH. The NADH oxidase reaction requires molecular oxygen, does not require hydrogen peroxide, is not inhibited by superoxide dismutase or catalase, and has a pH optimum of 8.75, clearly differentiating it from the peroxidase and catalase reactions with pH optima of 5.5 and 6.5, respectively, and from the NADH peroxidase-oxidase reaction of horseradish peroxidase. B. pseudomallei KatG has a relatively high affinity for NADH (Km=12 microm), but the oxidase reaction is slow (kcat=0.54 min(-1)) compared with the peroxidase and catalase reactions. The catalase-peroxidases also catalyze the hydrazinolysis of isonicotinic acid hydrazide (INH) in an oxygen- and H2O2-independent reaction, and KatG-dependent radical generation from a mixture of NADH and INH is two to three times faster than the combined rates of separate reactions with NADH and INH alone. The major products from the coupled reaction, identified by high pressure liquid chromatography fractionation and mass spectrometry, are NAD+ and isonicotinoyl-NAD, the activated form of isoniazid that inhibits mycolic acid synthesis in M. tuberculosis. Isonicotinoyl-NAD synthesis from a mixture of NAD+ and INH is KatG-dependent and is activated by manganese ion. M. tuberculosis KatG catalyzes isonicotinoyl-NAD formation from NAD+ and INH more efficiently than B. pseudomallei KatG. PMID:15280362

  18. Altered methanol embryopathies in embryo culture with mutant catalase-deficient mice and transgenic mice expressing human catalase

    SciTech Connect

    Miller, Lutfiya; Wells, Peter G.

    2011-04-01

    The mechanisms underlying the teratogenicity of methanol (MeOH) in rodents, unlike its acute toxicity in humans, are unclear, but may involve reactive oxygen species (ROS). Embryonic catalase, although expressed at about 5% of maternal activity, may protect the embryo by detoxifying ROS. This hypothesis was investigated in whole embryo culture to remove confounding maternal factors, including metabolism of MeOH by maternal catalase. C57BL/6 (C57) mouse embryos expressing human catalase (hCat) or their wild-type (C57 WT) controls, and C3Ga.Cg-Catb/J acatalasemic (aCat) mouse embryos or their wild-type C3HeB/FeJ (C3H WT) controls, were explanted on gestational day (GD) 9 (plug = GD 1), exposed for 24 h to 4 mg/ml MeOH or vehicle, and evaluated for functional and morphological changes. hCat and C57 WT vehicle-exposed embryos developed normally. MeOH was embryopathic in C57 WT embryos, evidenced by decreases in anterior neuropore closure, somites developed and turning, whereas hCat embryos were protected. Vehicle-exposed aCat mouse embryos had lower yolk sac diameters compared to C3H WT controls, suggesting that endogenous ROS are embryopathic. MeOH was more embryopathic in aCat embryos than WT controls, with reduced anterior neuropore closure and head length only in catalase-deficient embryos. These data suggest that ROS may be involved in the embryopathic mechanism of methanol, and that embryonic catalase activity may be a determinant of teratological risk.

  19. PGC-1α Serine 570 Phosphorylation and GCN5-mediated Acetylation by Angiotensin II Drive Catalase Down-regulation and Vascular Hypertrophy*

    PubMed Central

    Xiong, Shiqin; Salazar, Gloria; San Martin, Alejandra; Ahmad, Mushtaq; Patrushev, Nikolay; Hilenski, Lula; Nazarewicz, Rafal Robert; Ma, Minhui; Ushio-Fukai, Masuko; Alexander, R. Wayne

    2010-01-01

    Angiotensin II (Ang II) is a pleuripotential hormone that is important in the pathophysiology of multiple conditions including aging, cardiovascular and renal diseases, and insulin resistance. Reactive oxygen species (ROS) are important mediators of Ang II-induced signaling generally and have a well defined role in vascular hypertrophy, which is inhibited by overexpression of catalase, inferring a specific role of H2O2. The molecular mechanisms are understood incompletely. The transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) is a key regulator of energy metabolism and ROS-scavenging enzymes including catalase. We show that Ang II stimulates Akt-dependent PGC-1α serine 570 phosphorylation, which is required for the binding of the histone acetyltransferase GCN5 (general control nonderepressible 5) to PGC-1α and for its lysine acetylation. These sequential post-translational modifications suppress PGC-1α activity and prevent its binding to the catalase promoter through the forkhead box O1 transcription factor, thus decreasing catalase expression. We demonstrate that overexpression of the phosphorylation-defective mutant PGC-1α (S570A) prevents Ang II-induced increases in H2O2 levels and hypertrophy ([3H]leucine incorporation). Knockdown of PGC-1α by small interfering RNA promotes basal and Ang II-stimulated ROS and hypertrophy, which is reversed by polyethylene glycol-conjugated catalase. Thus, endogenous PGC-1α is a negative regulator of vascular hypertrophy by up-regulating catalase expression and thus reducing ROS levels. We provide novel mechanistic insights by which Ang II may mediate its ROS-dependent pathophysiologic effects on multiple cardiometabolic diseases. PMID:19940161

  20. Structure of catalase determined by MicroED.

    PubMed

    Nannenga, Brent L; Shi, Dan; Hattne, Johan; Reyes, Francis E; Gonen, Tamir

    2014-01-01

    MicroED is a recently developed method that uses electron diffraction for structure determination from very small three-dimensional crystals of biological material. Previously we used a series of still diffraction patterns to determine the structure of lysozyme at 2.9 Å resolution with MicroED (Shi et al., 2013). Here we present the structure of bovine liver catalase determined from a single crystal at 3.2 Å resolution by MicroED. The data were collected by continuous rotation of the sample under constant exposure and were processed and refined using standard programs for X-ray crystallography. The ability of MicroED to determine the structure of bovine liver catalase, a protein that has long resisted atomic analysis by traditional electron crystallography, demonstrates the potential of this method for structure determination. PMID:25303172

  1. Direct electrochemistry of Penicillium chrysogenum catalase adsorbed on spectroscopic graphite.

    PubMed

    Dimcheva, Nina; Horozova, Elena

    2013-04-01

    The voltammetric studies of Penicillium chrysogenum catalase (PcCAT) adsorbed on spectroscopic graphite, showed direct electron transfer (DET) between its active site and the electrode surface. Analogous tests performed with the commercially available bovine catalase revealed that mammalian enzyme is much less efficient in the DET process. Both catalases were found capable to catalyse the electrooxidation of phenol, but differed in the specifics of catalytic action. At an applied potential of 0.45V the non-linear regression showed the kinetics of the bioelectrochemical oxidation catalysed by the PcCAT obeyed the Hill equation with a binding constant K=0.034±0.002 M(2) (Hill's coefficient n=2.097±0.083, R(2)=0.997), whilst the catalytic action of the bovine catalase was described by the Michaelis-Menten kinetic model with the following parameters: V(max,app)=7.780±0.509 μA, and K(M,app)=0.068±0.070 mol L(-1). The performance of the electrode reaction was affected by the electrode potential, the pH, and temperature. Based on the effect of pH and temperature on the electrode response in presence of phenol a tentative reaction pathway of its bioelectrocatalytic oxidation has been hypothesised. The possible application of these findings in biosensing phenol up to concentration 30 mM at pHs below 7 and in absence of oxidising agents (oxygen or H(2)O(2)) was considered. PMID:23103554

  2. Engineering the proximal heme cavity of catalase-peroxidase.

    PubMed

    Jakopitsch, Christa; Regelsberger, Günther; Furtmüller, Paul Georg; Rüker, Florian; Peschek, Günter A; Obinger, Christian

    2002-07-25

    Catalase-peroxidases (KatGs) are prokaryotic heme peroxidases with homology to yeast cytochrome c peroxidase (CCP) and plant ascorbate peroxidases (APXs). KatGs, CCP and APXs contain identical amino acid triads in the heme pocket (distal Arg/Trp/His and proximal His/Trp/Asp), but differ dramatically in their reactivities towards hydrogen peroxide and various one-electron donors. Only KatGs have high catalase activity in addition to a peroxidase activity of broad specificity. Here, we investigated the effect of mutating the conserved proximal triad on KatG catalysis. With the exception of W341F, all variants (H290Q, W341A, D402N, D402E) exhibited a catalase activity <1% of wild-type KatG and spectral properties indicating alterations in heme coordination and spin states. Generally, the peroxidase activity was much less effected by these mutations. Compared with wild-type KatG the W341F variant had a catalase and halogenation activity of about 40% and an even increased overall peroxidase activity. This variant, for the first time, allowed to monitor the hydrogen peroxide mediated transitions of ferric KatG to compound I and back to the resting enzyme. Compound I reduction by aromatic one-electron donors (o-dianisidine, pyrogallol, aniline) was not influenced by exchanging Trp by Phe. The findings are discussed in comparison with the data known from CCP and APX and a reaction mechanism for the multifunctional activity of the W341F variant is suggested. PMID:12121764

  3. Dual targeting of yeast catalase A to peroxisomes and mitochondria.

    PubMed

    Petrova, Ventsislava Y; Drescher, Diane; Kujumdzieva, Anna V; Schmitt, Manfred J

    2004-06-01

    Yeast catalase A (Cta1p) contains two peroxisomal targeting signals (SSNSKF) localized at its C-terminus and within the N-terminal third of the protein, which both can target foreign proteins to peroxisomes. In the present study we demonstrated that Cta1p can also enter mitochondria, although the enzyme lacks a classical mitochondrial import sequence. Cta1p co-targeting was studied in a catalase A null mutant after growth on different carbon sources, and expression of a Cta1p-GFP (green fluorescent protein)-fusion protein or a Cta1p derivative containing either a c-Myc epitope (Cta1p(myc)) or a SKF-extended tag (Cta1p(myc-SKF)). Peroxisomal and mitochondrial co-import of catalase A were tested qualitatively by fluorescence microscopy and functional complementation of a Delta cta1 null mutation, and quantitatively by subcellular fractionation followed by Western blot analysis and enzyme activity assays. Efficient Cta1p import into peroxisomes was observed when cells were cultivated under peroxisome-inducing conditions (i.e. growth on oleate), whereas significant co-import of Cta1p-GFP into mitochondria occurred when cells were grown under respiratory conditions that favour oxygen stress and ROS (reactive oxygen species) accumulation within this organelle. In particular, when cells were grown on the non-fermentable carbon source raffinose, respiration is maximally enhanced, and catalase A was efficiently targeted to the mitochondrial matrix where it presumably functions as scavenger of H2O2 and mitochondrial-derived ROS. PMID:14998369

  4. Dual targeting of yeast catalase A to peroxisomes and mitochondria.

    PubMed Central

    Petrova, Ventsislava Y; Drescher, Diane; Kujumdzieva, Anna V; Schmitt, Manfred J

    2004-01-01

    Yeast catalase A (Cta1p) contains two peroxisomal targeting signals (SSNSKF) localized at its C-terminus and within the N-terminal third of the protein, which both can target foreign proteins to peroxisomes. In the present study we demonstrated that Cta1p can also enter mitochondria, although the enzyme lacks a classical mitochondrial import sequence. Cta1p co-targeting was studied in a catalase A null mutant after growth on different carbon sources, and expression of a Cta1p-GFP (green fluorescent protein)-fusion protein or a Cta1p derivative containing either a c-Myc epitope (Cta1p(myc)) or a SKF-extended tag (Cta1p(myc-SKF)). Peroxisomal and mitochondrial co-import of catalase A were tested qualitatively by fluorescence microscopy and functional complementation of a Delta cta1 null mutation, and quantitatively by subcellular fractionation followed by Western blot analysis and enzyme activity assays. Efficient Cta1p import into peroxisomes was observed when cells were cultivated under peroxisome-inducing conditions (i.e. growth on oleate), whereas significant co-import of Cta1p-GFP into mitochondria occurred when cells were grown under respiratory conditions that favour oxygen stress and ROS (reactive oxygen species) accumulation within this organelle. In particular, when cells were grown on the non-fermentable carbon source raffinose, respiration is maximally enhanced, and catalase A was efficiently targeted to the mitochondrial matrix where it presumably functions as scavenger of H2O2 and mitochondrial-derived ROS. PMID:14998369

  5. Overexpression of Catalase Diminishes Oxidative Cysteine Modifications of Cardiac Proteins

    PubMed Central

    Yao, Chunxiang; Behring, Jessica B.; Shao, Di; Sverdlov, Aaron L.; Whelan, Stephen A.; Elezaby, Aly; Yin, Xiaoyan; Siwik, Deborah A.; Seta, Francesca; Costello, Catherine E.; Cohen, Richard A.; Matsui, Reiko; Colucci, Wilson S.; McComb, Mark E.; Bachschmid, Markus M.

    2015-01-01

    Reactive protein cysteine thiolates are instrumental in redox regulation. Oxidants, such as hydrogen peroxide (H2O2), react with thiolates to form oxidative post-translational modifications, enabling physiological redox signaling. Cardiac disease and aging are associated with oxidative stress which can impair redox signaling by altering essential cysteine thiolates. We previously found that cardiac-specific overexpression of catalase (Cat), an enzyme that detoxifies excess H2O2, protected from oxidative stress and delayed cardiac aging in mice. Using redox proteomics and systems biology, we sought to identify the cysteines that could play a key role in cardiac disease and aging. With a ‘Tandem Mass Tag’ (TMT) labeling strategy and mass spectrometry, we investigated differential reversible cysteine oxidation in the cardiac proteome of wild type and Cat transgenic (Tg) mice. Reversible cysteine oxidation was measured as thiol occupancy, the ratio of total available versus reversibly oxidized cysteine thiols. Catalase overexpression globally decreased thiol occupancy by ≥1.3 fold in 82 proteins, including numerous mitochondrial and contractile proteins. Systems biology analysis assigned the majority of proteins with differentially modified thiols in Cat Tg mice to pathways of aging and cardiac disease, including cellular stress response, proteostasis, and apoptosis. In addition, Cat Tg mice exhibited diminished protein glutathione adducts and decreased H2O2 production from mitochondrial complex I and II, suggesting improved function of cardiac mitochondria. In conclusion, our data suggest that catalase may alleviate cardiac disease and aging by moderating global protein cysteine thiol oxidation. PMID:26642319

  6. Progeric effects of catalase inactivation in human cells

    SciTech Connect

    Koepke, Jay I.; Wood, Christopher S.; Terlecky, Laura J.; Walton, Paul A.; Terlecky, Stanley R.

    2008-10-01

    Peroxisomes generate hydrogen peroxide, a reactive oxygen species, as part of their normal metabolism. A number of pathological situations exist in which the organelle's capacity to degrade the potentially toxic oxidant is compromised. It is the peroxidase, catalase, which largely determines the functional antioxidant capacity of the organelle, and it is this enzyme that is affected in aging, in certain diseases, and in response to exposure to specific chemical agents. To more tightly control the enzymatic activity of peroxisomal catalase and carefully document the effects of its impaired action on human cells, we employed the inhibitor 3-amino-1,2,4-triazole. We show that by chronically reducing catalase activity to approximately 38% of normal, cells respond in a dramatic manner, displaying a cascade of accelerated aging reactions. Hydrogen peroxide and related reactive oxygen species are produced, protein and DNA are oxidatively damaged, import into peroxisomes and organelle biogenesis is corrupted, and matrix metalloproteinases are hyper-secreted from cells. In addition, mitochondria are functionally impaired, losing their ability to maintain a membrane potential and synthesize reactive oxygen species themselves. These latter results suggest an important redox-regulated connection between the two organelle systems, a topic of considerable interest for future study.

  7. Catalase-only nanoparticles prepared by shear alone: Characteristics, activity and stability evaluation.

    PubMed

    Huang, Xiao-Nan; Du, Xin-Ying; Xing, Jin-Feng; Ge, Zhi-Qiang

    2016-09-01

    Catalase is a promising therapeutic enzyme; however, it carries risks of inactivation and rapid degradation when it is used in practical bioprocess, such as delivery in vivo. To overcome the issue, we made catalase-only nanoparticles using shear stress alone at a moderate shear rate of 217s(-1) in a coaxial cylinder flow cell. Properties of nanoparticles, including particle size, polydispersity index and zeta potential, were characterized. The conformational changes of pre- and post-sheared catalase were determined using spectroscopy techniques. The results indicated that the conformational changes of catalase and reduction in α-helical content caused by shear alone were less significant than that by desolvation method. Catalase-only nanoparticles prepared by single shear retained over 90% of its initial activity when compared with the native catalase. Catalase nanoparticles lost only 20% of the activity when stored in phosphate buffer solution for 72h at 4°C, whereas native catalase lost 53% under the same condition. Especially, the activity of nanogranulated catalase was decreased only slightly in the simulated intestinal fluid containing α-chymotrypsin during 4h incubation at 37°C, implying that the catalase nanoparticle was more resistant to the degradation of proteases than native catalase molecules. Overall, catalase-only nanoparticles offered a great potential to stabilize enzymes for various pharmaceutical applications. PMID:26318217

  8. Structure–Function Relationships in Fungal Large-Subunit Catalases

    SciTech Connect

    Diaz, A.; Valdez, V; Rudino-Pinera, E; Horjales, E; Hansberg, W

    2009-01-01

    Neurospora crassa has two large-subunit catalases, CAT-1 and CAT-3. CAT-1 is associated with non-growing cells and accumulates particularly in asexual spores; CAT-3 is associated with growing cells and is induced under different stress conditions. It is our interest to elucidate the structure-function relationships in large-subunit catalases. Here we have determined the CAT-3 crystal structure and compared it with the previously determined CAT-1 structure. Similar to CAT-1, CAT-3 hydrogen peroxide (H{sub 2}O{sub 2}) saturation kinetics exhibited two components, consistent with the existence of two active sites: one saturated in the millimolar range and the other in the molar range. In the CAT-1 structure, we found three interesting features related to its unusual kinetics: (a) a constriction in the channel that conveys H{sub 2}O{sub 2} to the active site; (b) a covalent bond between the tyrosine, which forms the fifth coordination bound to the iron of the heme, and a vicinal cysteine; (c) oxidation of the pyrrole ring III to form a cis-hydroxyl group in C5 and a cis-{gamma}-spirolactone in C6. The site of heme oxidation marks the starts of the central channel that communicates to the central cavity and the shortest way products can exit the active site. CAT-3 has a similar constriction in its major channel, which could function as a gating system regulated by the H{sub 2}O{sub 2} concentration before the gate. CAT-3 functional tyrosine is not covalently bonded, but has instead the electron relay mechanism described for the human catalase to divert electrons from it. Pyrrole ring III in CAT-3 is not oxidized as it is in other large-subunit catalases whose structure has been determined. Different in CAT-3 from these enzymes is an occupied central cavity. Results presented here indicate that CAT-3 and CAT-1 enzymes represent a functional group of catalases with distinctive structural characteristics that determine similar kinetics.

  9. Structure-function relationships in fungal large-subunit catalases.

    PubMed

    Díaz, Adelaida; Valdés, Víctor-Julián; Rudiño-Piñera, Enrique; Horjales, Eduardo; Hansberg, Wilhelm

    2009-02-13

    Neurospora crassa has two large-subunit catalases, CAT-1 and CAT-3. CAT-1 is associated with non-growing cells and accumulates particularly in asexual spores; CAT-3 is associated with growing cells and is induced under different stress conditions. It is our interest to elucidate the structure-function relationships in large-subunit catalases. Here we have determined the CAT-3 crystal structure and compared it with the previously determined CAT-1 structure. Similar to CAT-1, CAT-3 hydrogen peroxide (H(2)O(2)) saturation kinetics exhibited two components, consistent with the existence of two active sites: one saturated in the millimolar range and the other in the molar range. In the CAT-1 structure, we found three interesting features related to its unusual kinetics: (a) a constriction in the channel that conveys H(2)O(2) to the active site; (b) a covalent bond between the tyrosine, which forms the fifth coordination bound to the iron of the heme, and a vicinal cysteine; (c) oxidation of the pyrrole ring III to form a cis-hydroxyl group in C5 and a cis-gamma-spirolactone in C6. The site of heme oxidation marks the starts of the central channel that communicates to the central cavity and the shortest way products can exit the active site. CAT-3 has a similar constriction in its major channel, which could function as a gating system regulated by the H(2)O(2) concentration before the gate. CAT-3 functional tyrosine is not covalently bonded, but has instead the electron relay mechanism described for the human catalase to divert electrons from it. Pyrrole ring III in CAT-3 is not oxidized as it is in other large-subunit catalases whose structure has been determined. Different in CAT-3 from these enzymes is an occupied central cavity. Results presented here indicate that CAT-3 and CAT-1 enzymes represent a functional group of catalases with distinctive structural characteristics that determine similar kinetics. PMID:19109972

  10. Cloning, characterization, and expression in Escherichia coli of a gene encoding Listeria seeligeri catalase, a bacterial enzyme highly homologous to mammalian catalases.

    PubMed Central

    Haas, A; Brehm, K; Kreft, J; Goebel, W

    1991-01-01

    A gene coding for catalase (hydrogen-peroxide:hydrogen-peroxide oxidoreductase; EC 1.11.1.6) of the gram-positive bacterium Listeria seeligeri was cloned from a plasmid library of EcoRI-digested chromosomal DNA, with Escherichia coli DH5 alpha as a host. The recombinant catalase was expressed in E. coli to an enzymatic activity approximately 50 times that of the combined E. coli catalases. The nucleotide sequence was determined, and the deduced amino acid sequence revealed 43.2% amino acid sequence identity between bovine liver catalase and L. seeligeri catalase. Most of the amino acid residues which are involved in catalytic activity, the formation of the active center accession channel, and heme binding in bovine liver catalase were also present in L. seeligeri catalase at the corresponding positions. The recombinant protein contained 488 amino acid residues and had a calculated molecular weight of 55,869. The predicted isoelectric point was 5.0. Enzymatic and genetic analyses showed that there is most probably a single catalase of this type in L. seeligeri. A perfect 21-bp inverted repeat, which was highly homologous to previously reported binding sequences of the Fur (ferric uptake regulon) protein of E. coli, was detected next to the putative promoter region of the L. seeligeri catalase gene. Images PMID:1860824

  11. Cloning, Expression, and Characterization of a Novel Thermophilic Monofunctional Catalase from Geobacillus sp. CHB1.

    PubMed

    Jia, Xianbo; Chen, Jichen; Lin, Chenqiang; Lin, Xinjian

    2016-01-01

    Catalases are widely used in many scientific areas. A catalase gene (Kat) from Geobacillus sp. CHB1 encoding a monofunctional catalase was cloned and recombinant expressed in Escherichia coli (E. coli), which was the first time to clone and express this type of catalase of genus Geobacillus strains as far as we know. This Kat gene was 1,467 bp in length and encoded a catalase with 488 amino acid residuals, which is only 81% similar to the previously studied Bacillus sp. catalase in terms of amino acid sequence. Recombinant catalase was highly soluble in E. coli and made up 30% of the total E. coli protein. Fermentation broth of the recombinant E. coli showed a high catalase activity level up to 35,831 U/mL which was only lower than recombinant Bacillus sp. WSHDZ-01 among the reported catalase production strains. The purified recombinant catalase had a specific activity of 40,526 U/mg and K m of 51.1 mM. The optimal reaction temperature of this recombinant enzyme was 60°C to 70°C, and it exhibited high activity over a wide range of reaction temperatures, ranging from 10°C to 90°C. The enzyme retained 94.7% of its residual activity after incubation at 60°C for 1 hour. High yield and excellent thermophilic properties are valuable features for this catalase in industrial applications. PMID:27579320

  12. Cloning, Expression, and Characterization of a Novel Thermophilic Monofunctional Catalase from Geobacillus sp. CHB1

    PubMed Central

    2016-01-01

    Catalases are widely used in many scientific areas. A catalase gene (Kat) from Geobacillus sp. CHB1 encoding a monofunctional catalase was cloned and recombinant expressed in Escherichia coli (E. coli), which was the first time to clone and express this type of catalase of genus Geobacillus strains as far as we know. This Kat gene was 1,467 bp in length and encoded a catalase with 488 amino acid residuals, which is only 81% similar to the previously studied Bacillus sp. catalase in terms of amino acid sequence. Recombinant catalase was highly soluble in E. coli and made up 30% of the total E. coli protein. Fermentation broth of the recombinant E. coli showed a high catalase activity level up to 35,831 U/mL which was only lower than recombinant Bacillus sp. WSHDZ-01 among the reported catalase production strains. The purified recombinant catalase had a specific activity of 40,526 U/mg and Km of 51.1 mM. The optimal reaction temperature of this recombinant enzyme was 60°C to 70°C, and it exhibited high activity over a wide range of reaction temperatures, ranging from 10°C to 90°C. The enzyme retained 94.7% of its residual activity after incubation at 60°C for 1 hour. High yield and excellent thermophilic properties are valuable features for this catalase in industrial applications. PMID:27579320

  13. Inhibition of host cell catalase by Mycoplasma pneumoniae: a possible mechanism for cell injury.

    PubMed Central

    Almagor, M; Yatziv, S; Kahane, I

    1983-01-01

    This study demonstrates that viable Mycoplasma pneumoniae cells inhibit catalase activity in several types of intact human cells as well as in solution. Human erythrocyte catalase was inhibited up to 72%, and the inhibition of catalase in human cultured skin fibroblasts, lung carcinoma epithelial cells, and ciliated epithelial cells from human nasal polyps ranged between 75 and 80%. UV light-killed mycoplasmas failed to inhibit catalase activity both in intact cells and in vitro. After M. pneumoniae infection of human cultured skin fibroblasts, the level of malonyldialdehyde, an indicator for membrane lipid peroxidation, was 3.5 times higher than in control fibroblasts. Virulent M. pneumoniae completely inhibited catalase activity in solution, whereas the nonvirulent strains had a lesser ability to inhibit catalase activity. These findings suggest that as a result of host cell catalase inhibition by M. pneumoniae, the toxicity of the hydrogen peroxide generated by the microorganism and the affected cell is enhanced, thereby inducing host cell damage. PMID:6407999

  14. Plating isolation of various catalase-negative microorganisms from soil

    NASA Technical Reports Server (NTRS)

    Labeda, D. P.; Hunt, C. M.; Casida, L. E., Jr.

    1974-01-01

    A unique plating procedure was developed that allows isolation, but not enumeration, of representatives of the catalase-negative soil microflora. The numbers recovered, however, are low as compared to the numbers recovered when the modified dilution-to-extinction isolation procedure is used. The latter procedure provides prolonged inoculation in sealed tubes containing a nutritionally rich broth medium over small submerged agar slants. In contrast, the plating procedure utilizes nutritionally minimal media and the shorter incubations mandated by the inherent problems associated with plating.

  15. High Conformational Stability of Secreted Eukaryotic Catalase-peroxidases

    PubMed Central

    Zámocký, Marcel; García-Fernández, Queralt; Gasselhuber, Bernhard; Jakopitsch, Christa; Furtmüller, Paul G.; Loewen, Peter C.; Fita, Ignacio; Obinger, Christian; Carpena, Xavi

    2012-01-01

    Catalase-peroxidases (KatGs) are bifunctional heme enzymes widely spread in archaea, bacteria, and lower eukaryotes. Here we present the first crystal structure (1.55 Å resolution) of an eukaryotic KatG, the extracellular or secreted enzyme from the phytopathogenic fungus Magnaporthe grisea. The heme cavity of the homodimeric enzyme is similar to prokaryotic KatGs including the unique distal +Met-Tyr-Trp adduct (where the Trp is further modified by peroxidation) and its associated mobile arginine. The structure also revealed several conspicuous peculiarities that are fully conserved in all secreted eukaryotic KatGs. Peculiarities include the wrapping at the dimer interface of the N-terminal elongations from the two subunits and cysteine residues that cross-link the two subunits. Differential scanning calorimetry and temperature- and urea-mediated unfolding followed by UV-visible, circular dichroism, and fluorescence spectroscopy combined with site-directed mutagenesis demonstrated that secreted eukaryotic KatGs have a significantly higher conformational stability as well as a different unfolding pattern when compared with intracellular eukaryotic and prokaryotic catalase-peroxidases. We discuss these properties with respect to the structure as well as the postulated roles of this metalloenzyme in host-pathogen interactions. PMID:22822072

  16. Cytochemical localization of catalase in leaf microbodies (peroxisomes).

    PubMed

    Frederick, S E; Newcomb, E H

    1969-11-01

    Segments of mature tobacco leaves were fixed in glutaraldehyde, incubated in medium containing 3,3'-diaminobenzidine (DAB) and hydrogen peroxide, and postfixed in osmium tetroxide. Electron microscopic observation of treated tissues revealed pronounced deposition of a highly electron-opaque material in microbodies but not in other organelles. The coarsely granular reaction product is presumably osmium black formed by reaction of oxidized DAB with osmium tetroxide. Reaction of the microbodies with DAB was completely inhibited by 0.02 M 3-amino-1,2,4-triazole and was considerably reduced by 0.01 M potassium cyanide. These results, when considered in light of recent biochemical studies, strongly suggest that catalase is responsible for the reaction. Sharp localization of this enzyme in microbodies establishes that they are identical to the catalase-rich "peroxisomes" recently isolated from leaf cell homogenates. A browning reaction that occurred in leaves during the incubation step was inhibited by cyanide but not by aminotriazole and therefore could not have been caused by the same enzyme. This reaction and a slight deposition of dense material within primary and secondary walls are ascribed to oxidation of DAB by soluble and wall-localized peroxidases. PMID:4981071

  17. Identification of a Catalase-Phenol Oxidase in Betalain Biosynthesis in Red Amaranth (Amaranthus cruentus).

    PubMed

    Teng, Xiao-Lu; Chen, Ning; Xiao, Xing-Guo

    2015-01-01

    Betalains are a group of nitrogen-containing pigments that color plants in most families of Caryophyllales. Their biosynthesis has long been proposed to begin with hydroxylation of L-tyrosine to L-DOPA through monophenolase activity of tyrosinase, but biochemical evidence in vivo remains lacking. Here we report that a Group 4 catalase, catalase-phenol oxidase (named as AcCATPO), was identified, purified and characterized from leaves of Amaranthus cruentus, a betalain plant. The purified enzyme appeared to be a homotrimeric protein composed of subunits of about 58 kDa, and demonstrated not only the catalase activity toward H2O2, but also the monophenolase activity toward L-tyrosine and diphenolase activity toward L-DOPA. Its catalase and phenol oxidase activities were inhibited by common classic catalase and tyrosinase inhibitors, respectively. All its peptide fragments identified by nano-LC-MS/MS were targeted to catalases, and matched with a cDNA-encoded polypeptide which contains both classic catalase and phenol oxidase active sites. These sites were also present in catalases of non-betalain plants analyzed. AcCATPO transcript abundance was positively correlated with the ratio of betaxanthin to betacyanin in both green and red leaf sectors of A. tricolor. These data shows that the fourth group catalase, catalase-phenol oxidase, is present in plant, and might be involved in betaxanthin biosynthesis. PMID:26779247

  18. Inhibition of peritoneal dissemination of tumor cells by cationized catalase in mice.

    PubMed

    Hyoudou, Kenji; Nishikawa, Makiya; Kobayashi, Yuki; Mukai, Sakiko; Ikemura, Mai; Kuramoto, Yukari; Yamashita, Fumiyoshi; Hashida, Mitsuru

    2007-05-14

    To inhibit peritoneal dissemination of tumor cells by destroying hydrogen peroxide, ethylenediamine-conjugated catalase (ED-catalase), a cationized derivative, was injected into the peritoneal cavity of mice. ED-catalase had about a 6-fold longer retention time within the cavity than unmodified catalase. Peritoneal dissemination was evaluated after intraperitoneal inoculation of B16-BL6/Luc, a melanoma clone stably expressing firefly luciferase, by measuring luciferase activity. An intraperitoneal injection of ED-catalase just before tumor inoculation significantly reduced the number of tumor cells in peritoneal organs. Catalase was less effective, confirming the importance of the retention of the enzyme within the cavity for the inhibition. ED-catalase injected 3 days after tumor inoculation was also effective in inhibiting tumor growth. A real-time quantitative PCR analysis revealed that ED-catalase significantly suppressed the expression of intercellular adhesion molecule-1. Daily dosing of ED-catalase for 7 days significantly prolonged the survival of tumor-bearing mice. These findings indicate that ED-catalase, which is retained for a long time within the peritoneal cavity, is highly effective in inhibiting the adhesion and proliferation of peritoneally disseminated tumor cells, and in increasing the survival of tumor-bearing mice. PMID:17382424

  19. Inhibition of adhesion and proliferation of peritoneally disseminated tumor cells by pegylated catalase.

    PubMed

    Hyoudou, Kenji; Nishikawa, Makiya; Kobayashi, Yuki; Kuramoto, Yukari; Yamashita, Fumiyoshi; Hashida, Mitsuru

    2006-01-01

    Hydrogen peroxide may aggravate the peritoneal dissemination of tumor cells by activating the expression of a variety of genes. In this study, we used pegylated catalase (PEG-catalase) to examine whether prolonged retention of catalase activity within the peritoneal cavity is effective in inhibiting peritoneal dissemination in mouse models. Murine B16-BL6 cells or colon 26 cells labeled with firefly luciferase gene were inoculated intraperitoneally into syngeneic mice. Compared with unmodified catalase, PEG-catalase was retained in the peritoneal cavity for a long period after intraperitoneal injection. A single injection of PEG-catalase just before tumor inoculation significantly reduced the number of the tumor cells at 1 and 7 days. The changes in the expression of molecules involved in the metastasis were evaluated by real time quantitative PCR analysis. Inoculation of the tumor cells increased the expression of intercellular adhesion molecule (ICAM)-1 in the greater omentum, which was inhibited by PEG-catalase. An injection of PEG-catalase at 3 days after tumor inoculation also reduced the number of the tumor cells, suggesting that processes other than the adhesion of tumor cells to peritoneal organs are also inhibited. Daily doses of PEG-catalase significantly prolonged the survival time of tumor-bearing mice. These results indicate that intraperitoneal injection of PEG-catalase inhibits the multiple processes of peritoneal dissemination of tumor cells by scavenging hydrogen peroxide in the peritoneal cavity. PMID:17086358

  20. Purification and characterization of catalase from marine bacterium Acinetobacter sp. YS0810.

    PubMed

    Fu, Xinhua; Wang, Wei; Hao, Jianhua; Zhu, Xianglin; Sun, Mi

    2014-01-01

    The catalase from marine bacterium Acinetobacter sp. YS0810 (YS0810CAT) was purified and characterized. Consecutive steps were used to achieve the purified enzyme as follows: ethanol precipitation, DEAE Sepharose ion exchange, Superdex 200 gel filtration, and Resource Q ion exchange. The active enzyme consisted of four identical subunits of 57.256 kDa. It showed a Soret peak at 405 nm, indicating the presence of iron protoporphyrin IX. The catalase was not apparently reduced by sodium dithionite but was inhibited by 3-amino-1,2,4-triazole, hydroxylamine hydrochloride, and sodium azide. Peroxidase-like activity was not found with the substrate o-phenylenediamine. So the catalase was determined to be a monofunctional catalase. N-terminal amino acid of the catalase analysis gave the sequence SQDPKKCPVTHLTTE, which showed high degree of homology with those of known catalases from bacteria. The analysis of amino acid sequence of the purified catalase by matrix-assisted laser desorption ionization time-of-flight mass spectrometry showed that it was a new catalase, in spite of its high homology with those of known catalases from other bacteria. The catalase showed high alkali stability and thermostability. PMID:25045672

  1. Catalase degradation in sunflower cotyledons during peroxisome transition from glyoxysomal to leaf peroxisomal function. [Helianthus annuus

    SciTech Connect

    Eising, R.; Gerhardt, B.

    1987-06-01

    First order rate constant for the degradation (degradation constants) of catalase in the cotyledons of sunflower (Helianthus annuus L.) were determined by measuring the loss of catalase containing /sup 14/C-labeled heme. During greening of the cotyledons, a period when peroxisomes change from glyoxysomal to leaf peroxisomal function, the degradation of glyoxysomal catalase is significantly slower than during all other stages of cotyledon development in light or darkness. The degradation constant during the transition stage of peroxisome function amounts to 0.205 day/sup -1/ in contrast to the constants ranging from 0.304 day/sup -1/ to 0.515 day/sup -1/ during the other developmental stages. Density labeling experiments comprising labeling of catalase with /sup 2/H/sub 2/O and its isopycnic centrifugation on CsCl gradients demonstrated that the determinations of the degradation constants were not substantially affected by reutilization of /sup 14/C-labeled compounds for catalase synthesis. The degradation constants for both glyoxysomal catalase and catalase synthesized during the transition of peroxisome function do not differ. This was shown by labeling the catalases with different isotopes and measuring the isotope ratio during the development of the cotyledons. The results are inconsistent with the concept that an accelerated and selective degradation of glyoxysomes underlies the change in peroxisome function. The data suggest that catalase degradation is at least partially due to an individual turnover of catalase and does not only result from a turnover of the whole peroxisomes.

  2. Identification of a Catalase-Phenol Oxidase in Betalain Biosynthesis in Red Amaranth (Amaranthus cruentus)

    PubMed Central

    Teng, Xiao-Lu; Chen, Ning; Xiao, Xing-Guo

    2016-01-01

    Betalains are a group of nitrogen-containing pigments that color plants in most families of Caryophyllales. Their biosynthesis has long been proposed to begin with hydroxylation of L-tyrosine to L-DOPA through monophenolase activity of tyrosinase, but biochemical evidence in vivo remains lacking. Here we report that a Group 4 catalase, catalase-phenol oxidase (named as AcCATPO), was identified, purified and characterized from leaves of Amaranthus cruentus, a betalain plant. The purified enzyme appeared to be a homotrimeric protein composed of subunits of about 58 kDa, and demonstrated not only the catalase activity toward H2O2, but also the monophenolase activity toward L-tyrosine and diphenolase activity toward L-DOPA. Its catalase and phenol oxidase activities were inhibited by common classic catalase and tyrosinase inhibitors, respectively. All its peptide fragments identified by nano-LC-MS/MS were targeted to catalases, and matched with a cDNA-encoded polypeptide which contains both classic catalase and phenol oxidase active sites. These sites were also present in catalases of non-betalain plants analyzed. AcCATPO transcript abundance was positively correlated with the ratio of betaxanthin to betacyanin in both green and red leaf sectors of A. tricolor. These data shows that the fourth group catalase, catalase-phenol oxidase, is present in plant, and might be involved in betaxanthin biosynthesis. PMID:26779247

  3. Catalase activity of different Candida species after exposition to specific antiserum

    PubMed Central

    Miyasaka, Natália R.S.; Unterkircher, Carmelinda S.; Shimizu, Mario T.

    2008-01-01

    Antisera were developed in rabbits after challenge with intracellular antigens of Candida albicans, C. tropicalis and C. parapsilosis. Microorganism catalase has been correlated with virulence, resistance to drugs and immunogenicity. The intracellular catalase is consistently present in strains of Candida and in this paper, the enzyme activity was analysed by PAGE after exposition to antisera. The catalases of C. albicans, C. parapsilosis and C. tropicalis were immunogenic and differed in their binding to specific antibodies raised in rabbits. Tests of cross-reactivity between different Candida species showed that when antiserum from C. albicans immunized rabbit was incubated with intracellular extracts of these three Candida species, the catalases activities were abolished. However, the antisera from C. parapsilosis or C. tropicalis immunized rabbits did not affect the catalase activity of C. albicans; the enzyme of C. albicans was inactivated only by the antiserum to the catalase of own C. albicans. The antiserum to the catalase of C. tropicalis was species-specific and did not cross-react with catalases of C. albicans and C. parapsilosis. The activities of Aspergillus niger and bovine catalases were not affected by the antiserum from any Candida immunized rabbits. This report is a preliminary study of specific antisera that react against intracellular catalase of Candida sp. and neutralize the enzymatic activity. Further study is necessary to develop species-specific antibody once differences in the susceptibility of the Candida species to commonly used antifungal drugs make identification to the species level important. PMID:24031174

  4. A Chaperone Function of NO CATALASE ACTIVITY1 Is Required to Maintain Catalase Activity and for Multiple Stress Responses in Arabidopsis

    PubMed Central

    Li, Jing; Liu, Juntao; Wang, Guoqiang; Cha, Joon-Yung; Li, Guannan; Chen, She; Li, Zhen; Guo, Jinghua; Zhang, Caiguo; Yang, Yongqing; Kim, Woe-Yeon; Yun, Dae-Jin; Schumaker, Karen S.; Chen, Zhongzhou; Guo, Yan

    2015-01-01

    Catalases are key regulators of reactive oxygen species homeostasis in plant cells. However, the regulation of catalase activity is not well understood. In this study, we isolated an Arabidopsis thaliana mutant, no catalase activity1-3 (nca1-3) that is hypersensitive to many abiotic stress treatments. The mutated gene was identified by map-based cloning as NCA1, which encodes a protein containing an N-terminal RING-finger domain and a C-terminal tetratricopeptide repeat-like helical domain. NCA1 interacts with and increases catalase activity maximally in a 240-kD complex in planta. In vitro, NCA1 interacts with CATALASE2 (CAT2) in a 1:1 molar ratio, and the NCA1 C terminus is essential for this interaction. CAT2 activity increased 10-fold in the presence of NCA1, and zinc ion binding of the NCA1 N terminus is required for this increase. NCA1 has chaperone protein activity that may maintain the folding of catalase in a functional state. NCA1 is a cytosol-located protein. Expression of NCA1 in the mitochondrion of the nca1-3 mutant does not rescue the abiotic stress phenotypes of the mutant, while expression in the cytosol or peroxisome does. Our results suggest that NCA1 is essential for catalase activity. PMID:25700484

  5. Overexpression, purification and characterization of a recombinant secretary catalase from Bacillus subtilis.

    PubMed

    Shi, Xunlong; Feng, Meiqing; Zhao, Yujie; Guo, Xin; Zhou, Pei

    2008-01-01

    A recombinant Bacillus subtilis strain (KN25) was generated for the large-scale preparation of catalase. The B. subtilis katA gene encoding for catalase was cloned into the shuttle vector PRB374, downstream of the constitutively active vegII promoter, followed by transformation of the B. subtilis strain WB600 with the plasmid. The transformant strain, KN25 secretes high levels (3,500 U/ml) of catalase, which facilitates its purification. Three simple purification steps yielded nearly homogeneous catalase, with approximately 70% recovery. The purified recombinant catalase has a specific activity of 34,600 U/mg under optimal conditions, and is more resistant to acidic conditions than bovine liver catalase. PMID:17876537

  6. Comperative study of catalase immobilization on chitosan, magnetic chitosan and chitosan-clay composite beads.

    PubMed

    Başak, Esra; Aydemir, Tülin; Dinçer, Ayşe; Becerik, Seda Çınar

    2013-12-01

    Catalase was immobilized on chitosan and modified chitosan. Studies were carried out on free-immobilized catalase concerning the determination of optimum temperature, pH, thermal, storage stability, reusability, and kinetic parameters. Optimum temperature and pH for free catalase and catalase immobilized were found as 35°C and 7.0, respectively. After 100 times of repeated tests, the immobilized catalases on chitosan-clay and magnetic chitosan maintain over 50% and 60% of the original activity, respectively. The ease of catalase immobilization on low-cost matrices and good stability upon immobilization in the present study make it a suitable product for further use in the food industry. PMID:23687952

  7. Immobilized catalase on CoFoam hydrophilic polyurethane composite.

    PubMed

    Vasudevan, Palligarnai T; Como, Karin

    2006-02-01

    Catalase from bovine liver was covalently immobilized on hydrophilic polyurethane composite (CoFoam). The activity of the enzyme was assayed in the decomposition of H2O2 at pH 7.0 and 25 degrees C. The effects of water-to-prepolymer ratio, the addition of a crosslinking agent, and the utilization of a spacer on enzyme activity were examined. The results of immobilization of the enzyme in a large-scale unit are reported. The advantage of the CoFoam composite lies in the low drop in pressure in a packed-bed reactor at fairly large flow rates. For example, at flow rates of 10-12 L/min, the drop in pressure is typically 3 kPa. Enzymes immobilized on CoFoam represent a novel use as catalysts in packed-bed reactors owing to the low drop in pressure. PMID:16484719

  8. Isolation and characterization of catalase from Penicillium chrysogenum.

    PubMed

    Chaga, G S; Medin, A S; Chaga, S G; Porath, J O

    1992-06-26

    Catalase from a crude preparation of Penicillium chrysogenum was isolated in a single chromatographic step by immobilized metal ion affinity chromatography (IMAC) on Cu(II)-Chelating Sepharose Fast Flow. A chromatographically and electrophoretically homogeneous enzyme was obtained in 89% yield. IMAC was found to be superior to ion-exchange, hydrophobic interaction, size-exclusion and concanavalin A affinity chromatography. Analytical and preparative chromatography gave essentially the same chromatograms. Isoelectric point, molecular weight (by ultracentrifugation), amino acid composition, carbohydrate content and subunit organization were determined. The apparent Michaelis-Menten constant, KM, and the azide competitor constant, Ki, were calculated and found to be 59 microM and 6.1 microM, respectively. PMID:1639925

  9. Layer-by-layer self-assembly immobilization of catalases on wool fabrics.

    PubMed

    Liu, J; Wang, Q; Fan, X R; Sun, X J; Huang, P H

    2013-04-01

    A new immobilization strategy of catalases on natural fibers was reported in this paper. Catalase (CAT) from Bacillus subtilis was assembled into multiple layers together with poly(diallyldimethylammonium chloride) (PDDA) on wool fabrics via layer-by-layer (LBL) electrostatic self-assembly deposition. The mechanism and structural evaluation of LBL electrostatic self-assembly were studied in terms of scanning electron microscopy (SEM), surface zeta potential, and apparent color depth (K/S). The SEM pictures showed obvious deposits absorbed on the wool surfaces after LBL self-assembly. The surface zeta potential and dyeing depth of CAT/PDDA-assembled wool fabrics presented a regular layer-by-layer alternating trend along with the change of deposited materials, revealing the multilayer structure of the wool fiber immobilized catalases. The V(max) values were found to be 2,500±238 U/mg protein for the free catalase and 1,000±102 U/mg protein for the immobilized catalase. The K(m) value of free catalase (11.25±2.3 mM) was found to be lower than that of the immobilized catalase (222.2±36.5 mM). The immobilized catalase remained high enzymatic activity and showed a measureable amount of reusability, which proved that LBL electrostatic self-assembly deposition is a promising approach to immobilize catalases. PMID:23420488

  10. Prevention of pulmonary metastasis from subcutaneous tumors by binary system-based sustained delivery of catalase.

    PubMed

    Hyoudou, Kenji; Nishikawa, Makiya; Ikemura, Mai; Kobayashi, Yuki; Mendelsohn, Adam; Miyazaki, Nobuhiko; Tabata, Yasuhiko; Yamashita, Fumiyoshi; Hashida, Mitsuru

    2009-07-20

    Catalase delivery can be effective in inhibiting reactive oxygen species (ROS)-mediated acceleration of tumor metastasis. Our previous studies have demonstrated that increasing the plasma half-life of catalase by pegylation (PEG-catalase) significantly increases its potency of inhibiting experimental pulmonary metastasis in mice. In the present study, a biodegradable gelatin hydrogel formulation was used to further increase the circulation time of PEG-catalase. Implantation of (111)In-PEG-catalase/hydrogel into subcutaneous tissues maintained the radioactivity in plasma for more than 14 days. Then, the effect of the PEG-catalase/hydrogel on spontaneous pulmonary metastasis of tumor cells was evaluated in mice with subcutaneous tumor of B16-BL6/Luc cells, a murine melanoma cell line stably expressing luciferase. Measuring luciferase activity in the lung revealed that the PEG-catalase/hydrogel significantly (P<0.05) inhibited the pulmonary metastasis compared with PEG-catalase solution. These findings indicate that sustaining catalase activity in the blood circulation achieved by the use of pegylation and gelatin hydrogel can reduce the incidence of tumor cell metastasis. PMID:19361547

  11. Extracellular localization of catalase is associated with the transformed state of malignant cells.

    PubMed

    Böhm, Britta; Heinzelmann, Sonja; Motz, Manfred; Bauer, Georg

    2015-12-01

    Oncogenic transformation is dependent on activated membrane-associated NADPH oxidase (NOX). However, the resultant extracellular superoxide anions are also driving the NO/peroxynitrite and the HOCl pathway, which eliminates NOX-expressing transformed cells through selective apoptosis induction. Tumor progression is dependent on dominant interference with intercellular apoptosis-inducing ROS signaling through membrane-associated catalase, which decomposes H2O2 and peroxynitrite and oxidizes NO. Particularly, the decomposition of extracellular peroxynitrite strictly requires membrane-associated catalase. We utilized small interfering RNA (siRNA)-mediated knockdown of catalase and neutralizing antibodies directed against the enzyme in combination with challenging H2O2 or peroxynitrite to determine activity and localization of catalase in cells from three distinct steps of multistage oncogenesis. Nontransformed cells did not generate extracellular superoxide anions and only showed intracellular catalase activity. Transformed cells showed superoxide anion-dependent intercellular apoptosis-inducing ROS signaling in the presence of suboptimal catalase activity in their membrane. Tumor cells exhibited tight control of intercellular apoptosis-inducing ROS signaling through a high local concentration of membrane-associated catalase. These data demonstrate that translocation of catalase to the outside of the cell membrane is already associated with the transformation step. A strong local increase in the concentration of membrane-associated catalase is achieved during tumor progression and is controlled by tumor cell-derived H2O2 and by transglutaminase. PMID:26140730

  12. Protective effect of coadministered superoxide dismutase and catalase against stress-induced gastric mucosal lesions.

    PubMed

    Ohta, Yoshiji; Nishida, Keiji

    2003-08-01

    1. There are conflicting reports as to the protective effect of coadministered native superoxide dismutase (SOD) and catalase against gastric mucosal lesions in rats with water immersion restraint (WIR) stress. It is unclear how coadministered native SOD and catalase protect against WIR stress-induced gastric mucosal lesions. Therefore, in the present study, we re-examined the protective effect of coadministered native SOD and catalase against gastric mucosal lesions in rats with WIR stress. 2. Gastric mucosal lesions were induced in Wistar rats by 3 h WIR. Rats were injected subcutaneously with a mixture of purified bovine erythrocyte SOD and bovine liver catalase 1 h before the onset of WIR. Ulcer index, serum SOD, catalase and xanthine oxidase (XO), uric acid and gastric mucosal SOD, catalase, XO, myeloperoxidase (MPO; an index of tissue neutrophil infiltration), non-protein sulfhydryl (NP-SH) and thiobarbituric acid-reactive substances (TBARS; an index of lipid peroxidation) were assayed in all rats used. 3. Rats with 3 h WIR showed gastric mucosal lesions. Pre-administration of SOD plus catalase to rats with WIR prevented lesion formation. In the serum of rats with WIR alone, XO activity and uric acid concentration increased, whereas SOD and catalase activities did not change. Pre-administration of SOD plus catalase to rats with WIR did not affect increased serum XO activity and uric acid concentration, but did increase serum SOD and catalase activities. In the gastric mucosa of rats with WIR alone, increases in MPO activity and TBARS concentration and a decrease in NP-SH concentration occurred, whereas XO, SOD and catalase activities did not change. Pre-administration of SOD plus catalase to rats with WIR attenuated the changes in gastric mucosal MPO activity and TBARS and NP-SH concentrations, but did not affect gastric mucosal XO, SOD and catalase activities. Pre-administration of SOD plus catalase (in an inactivated form) to rats with WIR had no effect on

  13. Activity and stability of catalase in nonionic micellar and reverse micellar systems.

    PubMed

    Gebicka, Lidia; Jurgas-Grudzinska, Monika

    2004-01-01

    Catalase activity and stability in the presence of simple micelles of Brij 35 and entrapped in reverse micelles of Brij 30 have been studied. The enzyme retains full activity in aqueous micellar solution of Brij 35. Catalase exhibits "superactivity" in reverse micelles composed of 0.1 M Brij 30 in dodecane, n-heptane or isooctane, and significantly lowers the activity in decaline. The incorporation of catalase into Brij 30 reverse micelles enhances its stability at 50 degrees C. However, the stability of catalase incubated at 37 degrees C in micellar and reverse micellar solutions is lower than that in homogeneous aqueous solution. PMID:15666551

  14. Importance of catalase in the adaptive response to hydrogen peroxide: analysis of acatalasaemic Saccharomyces cerevisiae.

    PubMed Central

    Izawa, S; Inoue, Y; Kimura, A

    1996-01-01

    Controversy about the importance of catalase in the detoxification of H2O2 in human erythrocytes continues. It has been suggested that catalase has no role in the clearance of H2O2 in erythrocytes. In the present study we investigated the role of catalase in the defence mechanism against oxidative stress using Saccharomyces cerevisiae. S. cerevisiae has two catalases, catalase A and catalase T. We constructed a double mutant (acatalasaemic mutant) unable to produce either catalase A or catalase T, and compared it with wild-type and single-mutant cells. The acatalasaemic mutant cells showed a similar growth rate to wild-type cells under non-oxidative stress conditions, and showed a similar susceptibility to H2O2 stress in the exponential growth phase. The acatalasaemic mutant cells at stationary phase were, however, much more sensitive to H2O2 stress than wild-type and single-mutant cells. Moreover, the ability of acatalasaemic and single-mutant cells to show adaptation to 2 mM H2O2 was distinctly inferior to that of wild-type cells. These results suggest that catalase is not essential for yeast cells under normal conditions, but plays an important role in the acquisition of tolerance to oxidative stress in the adaptive response of these cells. PMID:8947468

  15. Soluble epoxide hydrolase contamination of specific catalase preparations inhibits epoxyeicosatrienoic acid vasodilation of rat renal arterioles.

    PubMed

    Gauthier, Kathryn M; Olson, Lauren; Harder, Adam; Isbell, Marilyn; Imig, John D; Gutterman, David D; Falck, J R; Campbell, William B

    2011-10-01

    Cytochrome P-450 metabolites of arachidonic acid, the epoxyeicosatrienoic acids (EETs) and hydrogen peroxide (H(2)O(2)), are important signaling molecules in the kidney. In renal arteries, EETs cause vasodilation whereas H(2)O(2) causes vasoconstriction. To determine the physiological contribution of H(2)O(2), catalase is used to inactivate H(2)O(2). However, the consequence of catalase action on EET vascular activity has not been determined. In rat renal afferent arterioles, 14,15-EET caused concentration-related dilations that were inhibited by Sigma bovine liver (SBL) catalase (1,000 U/ml) but not Calbiochem bovine liver (CBL) catalase (1,000 U/ml). SBL catalase inhibition was reversed by the soluble epoxide hydrolase (sEH) inhibitor tAUCB (1 μM). In 14,15-EET incubations, SBL catalase caused a concentration-related increase in a polar metabolite. Using mass spectrometry, the metabolite was identified as 14,15-dihydroxyeicosatrienoic acid (14,15-DHET), the inactive sEH metabolite. 14,15-EET hydrolysis was not altered by the catalase inhibitor 3-amino-1,2,4-triazole (3-ATZ; 10-50 mM), but was abolished by the sEH inhibitor BIRD-0826 (1-10 μM). SBL catalase EET hydrolysis showed a regioisomer preference with greatest hydrolysis of 14,15-EET followed by 11,12-, 8,9- and 5,6-EET (V(max) = 0.54 ± 0.07, 0.23 ± 0.06, 0.18 ± 0.01 and 0.08 ± 0.02 ng DHET·U catalase(-1)·min(-1), respectively). Of five different catalase preparations assayed, EET hydrolysis was observed with two Sigma liver catalases. These preparations had low specific catalase activity and positive sEH expression. Mass spectrometric analysis of the SBL catalase identified peptide fragments matching bovine sEH. Collectively, these data indicate that catalase does not affect EET-mediated dilation of renal arterioles. However, some commercial catalase preparations are contaminated with sEH, and these contaminated preparations diminish the biological activity of H(2)O(2) and EETs. PMID:21753077

  16. Study of catalase adsorption on two mixed-mode ligands and the mechanism involved therein.

    PubMed

    Shiva Ranjini, S; Vijayalakshmi, M A

    2012-11-01

    Mixed-mode chromatography sorbents n-hexylamine HyperCel™ (HEA) and phenylpropylamine HyperCel™ (PPA) were evaluated for the study of adsorption of catalase from two different sources. Various parameters such as buffer composition, ionic strength and pH were investigated to study the mechanism of interaction of commercially available pre-purified catalase from Bovine liver, purified catalase from black gram (Vigna mungo) and crude extract of black gram containing catalase with these mixed-mode ligands. A simple and economical screening protocol for identifying optimal buffer conditions for adsorption and desorption of catalase was established with micro volumes of the sorbent in batch mode. With HEA HyperCel, it was observed that pre-purified catalase from both bovine liver and black gram was completely retained at pH 7.0, irrespective of the presence or absence of NaCl in the adsorption buffer, whereas the catalase from crude extract of black gram was completely retained only in the presence of 0.2 M salt in the adsorption buffer. The elution of catalase from both the sources was accomplished by lowering the pH to 4.5 in absence of salt. In case of PPA HyperCel, catalase from both the sources was very strongly adsorbed under different buffer conditions studied, and elution did not yield a significant catalase activity. From the screening experiments, it could be concluded that the interaction of catalase with HEA HyperCel could be dominated by hydrophobic forces with minor contributions from ionic interaction and with PPA HyperCel, it could be a combination of different non-covalent interactions acting on different loci on the surface of the protein. PMID:23108613

  17. Regulation of catalase activity in leaves of Nicotiana sylvestris by high CO sub 2

    SciTech Connect

    Havir, E.A.; McHale, N.A. )

    1989-03-01

    The effect of high CO{sub 2} (1% CO{sub 2}/21% O{sub 2}) on the activity of specific forms of catalase (CAT-1, -2, and -3) in seedling leaves of tobacco (Nicotiana sylvestris, Nicotiana tabacum) was examined. In high CO{sub 2} total catalase activity decreased by 50% in the first 2 days, followed by a more gradual decline in the next 4 days. The loss of total activity resulted primarily from a decrease in CAT-1 catalase. In contrast, the activity of CAT-3 catalase, a form with enhanced peroxidatic activity, increased 3-fold in high CO{sub 2} relative to air controls after 4 days. Short-term exposure to high CO{sub 2} indicated that the 50% loss of total activity occurs in the firs 12 hours. Catalase levels increased to normal within 12 hours after seedlings were returned to air. When seedlings were transferred to air after prolonged exposure to high CO{sub 2} (13 days), the levels of CAT-1 catalase were partially restored while CAT-3 remained at its elevated level. Levels of superoxide dismutase activity and those of several peroxisomal enzymes were not affected by high CO{sub 2}. Total catalase levels did not decline when seedlings were exposed to atmospheres of 0.04% CO{sub 2}/5% O{sub 2} or 0.04% CO{sub 2}/1% O{sub 2}, indicating that regulation of catalase in high CO{sub 2} is not related directly to suppression of photorespiration. Antibodies prepared against CAT-1 catalase from N. tabacum reacted strongly against CAT-1 catalase from both N. sylvestris and N. tabacum but not against CAT-3 catalase from either species.

  18. Inherited catalase deficiency: is it benign or a factor in various age related disorders?

    PubMed

    Góth, László; Nagy, Teréz

    2013-01-01

    Hydrogen peroxide was - and is still - considered toxic for a wide range of living organisms. Oxidative stress occurs when there is an excess of pro-oxidants over antioxidants and it has been implicated in several diseases. Catalase is involved in hydrogen peroxide catabolism and is important in defense against oxidative stress. Acatalasemia means the inherited near-total deficiency of catalase activity, usually in reference to red cell catalase. Acatalasemia was thought at first to be an asymptotic disorder. In the absence of catalase, neither the Japanese, or Hungarian acatalasemics nor acatalasemic mice had significantly increased blood glutathione peroxidase activity. In animal models, catalase deficient tissues show much slower rates of removal of extracellular hydrogen peroxide. In catalase knock-out mice, a decreased hydrogen peroxide removing capacity and increased reactive oxygen species formation were reported. Hydrogen peroxide may cause methemoglobinemia in patients with catalase deficiency. During anesthesia for a Japanese acatalasemic patient the disinfection with hydrogen peroxide solution caused severe methemoglobinemia. Patients with inherited catalase deficiency, who are treated with uric acid oxidase (rasburicase) may experience very high concentrations of hydrogen peroxide and may suffer from methemoglobinemia and hemolysis. The high (18.5%) prevalence of diabetes mellitus in inherited catalase deficient individuals and the earlier (10 years) manifestation of the disease may be attributed to the oxidative damage of oxidant sensitive, insulin producing pancreatic beta-cells. Ninety-seven of 114 acatalasemics had diseases related to oxidative stress and aging. The oxidative stress due to catalase deficiency could contribute to the manifestation of diabetes while for the other diseases it may be one of the factors in their causations. In summary, inherited catalase deficiency is associated with clinical features, pathologic laboratory test results

  19. Biochemical and genetic analyses of a catalase from the anaerobic bacterium Bacteroides fragilis.

    PubMed Central

    Rocha, E R; Smith, C J

    1995-01-01

    A single catalase enzyme was produced by the anaerobic bacterium Bacteroides fragilis when cultures at late log phase were shifted to aerobic conditions. In anaerobic conditions, catalase activity was detected in stationary-phase cultures, indicating that not only oxygen exposure but also starvation may affect the production of this antioxidant enzyme. The purified enzyme showed a peroxidatic activity when pyrogallol was used as an electron donor. It is a hemoprotein containing one heme molecule per holomer and has an estimated molecular weight of 124,000 to 130,000. The catalase gene was cloned by screening a B. fragilis library for complementation of catalase activity in an Escherichia coli catalase mutant (katE katG) strain. The cloned gene, designated katB, encoded a catalase enzyme with electrophoretic mobility identical to that of the purified protein from the B. fragilis parental strain. The nucleotide sequence of katB revealed a 1,461-bp open reading frame for a protein with 486 amino acids and a predicted molecular weight of 55,905. This result was very close to the 60,000 Da determined by denaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified catalase and indicates that the native enzyme is composed of two identical subunits. The N-terminal amino acid sequence of the purified catalase obtained by Edman degradation confirmed that it is a product of katB. The amino acid sequence of KatB showed high similarity to Haemophilus influenzae HktE (71.6% identity, 66% nucleotide identity), as well as to gram-positive bacterial and mammalian catalases. No similarities to bacterial catalase-peroxidase-type enzymes were found. The active-site residues, proximal and distal hemebinding ligands, and NADPH-binding residues of the bovine liver catalase-type enzyme were highly conserved in B. fragilis KatB. PMID:7768808

  20. CHARACTERIZATION OF CATALASE ACTIVITIES IN A ROOT-CLEANING ISOLATE OF PSEUDOMONAS PUTIDA

    EPA Science Inventory

    Psuedomonas putida, a saprophytic root-colonizing bacterium, produces multiple forms of catalase Catalase A which increases in specific activity during growth phase and after treatment with H2O2, is located in the and is inhibited by 3-amino-1,2-4-triazole, EDTA, and cyanide, but...

  1. Covalent Immobilization of Catalase onto Regenerated Silk Fibroins via Tyrosinase-Catalyzed Cross-Linking.

    PubMed

    Wang, Ping; Qi, Chenglong; Yu, Yuanyuan; Yuan, Jiugang; Cui, Li; Tang, Gengtie; Wang, Qiang; Fan, Xuerong

    2015-09-01

    Regenerated silk fibroins could be used as medical scaffolds and carrier materials for enzyme immobilization. In the present work, tyrosinase enzyme was used for enzymatic oxidation of silk fibroins, followed by immobilization of catalase onto the fibroin surfaces through physical adsorption and covalent cross-linking as well. Spectrophotometry, SDS-PAGE, and Fourier transform infrared spectroscopy (FTIR) were used to examine the efficiency of enzymatic oxidation and catalase immobilization, respectively. The results indicate that tyrosine residues in silk fibroins could be oxidized and converted to the active o-quinones. Incubating silk fibroins with catalase and tyrosinase led to a noticeable change of molecular weight distribution, indicating the occurrence of the cross-links between silk fibroins and catalase molecules. Two different pathways were proposed for the catalase immobilizations, and the method based on grafting of catalase onto the freeze-dried fibroin membrane is more acceptable. The residual enzyme activity for the immobilized catalase exhibited higher than that of the control after repeated washing cycles. Meanwhile, the thermal stability and alkali resistance were also slightly improved as compared to free catalase. The mechanisms of enzymatic immobilization are also concerned. PMID:26189105

  2. Structural analysis of NADPH depleted bovine liver catalase and its inhibitor complexes.

    PubMed

    Sugadev, Ragumani; Ponnuswamy, M N; Sekar, K

    2011-01-01

    To study the functional role of NADPH during mammalian catalase inhibition, the X-ray crystal structures of NADPH-depleted bovine liver catalase and its inhibitor complexes, cyanide and azide, determined at 2.8Å resolution. From the complex structures it is observed that subunits with and without an inhibitor/catalytic water molecule are linked by N-terminal domain swapping. Comparing mammalian- and fungal- catalases, we speculate that NADPH-depleted mammalian catalases may function as a domain-swapped dimer of dimers, especially during inactivation by inhibitors like cyanide and azide. We further speculate that in mammalian catalases the N-terminal hinge-loop region and α-helix is the structural element that senses NADPH binding. Although the above arguments are speculative and need further verification, as a whole our studies have opened up a new possibility, viz. that mammalian catalase acts as a domain-swapped dimer of dimers, especially during inhibitor binding. To generalize this concept to the formation of the inactive state in mammalian catalases in the absence of tightly bound NADPH molecules needs further exploration. The present study adds one more intriguing fact to the existing mysteries of mammalian catalases. PMID:21968615

  3. Catalase addition to vitrification solutions maintains goat ovarian preantral follicles stability.

    PubMed

    Carvalho, A A; Faustino, L R; Silva, C M G; Castro, S V; Lobo, C H; Santos, F W; Santos, R R; Campello, C C; Bordignon, V; Figueiredo, J R; Rodrigues, A P R

    2014-08-01

    The aim of this study was to verify whether the addition of catalase (20 IU/mL) at different steps of goat ovarian tissue vitrification affects ROS levels, follicular morphology and viability, stromal cell density, apoptosis and the expression of proteins related to DNA-damage signaling (γH2AX) and repair (53BP1). Goat ovarian tissues were analyzed fresh (control) or after vitrification: without catalase (VS-/WS-), with catalase in vitrification solutions (VS+/WS-), with catalase in washing solutions (VS-/WS+) or with catalase in both solutions (VS+/WS+). The vitrification without catalase had higher ROS levels than the control. The catalase, regardless the step of addition, maintained ROS levels similar to the control. There were no difference between treatments regarding follicular viability, stromal cell density and detection of γH2AX and 53BP1. There was no difference in follicular morphology and DNA fragmentation between groups vitrified. In conclusion, catalase addition to vitrification solutions prevents ROS formation in cryopreserved goat ovarian tissues. PMID:24972862

  4. Regulation of catalase in Neisseria gonorrhoeae. Effects of oxidant stress and exposure to human neutrophils.

    PubMed

    Zheng, H Y; Hassett, D J; Bean, K; Cohen, M S

    1992-09-01

    We studied the effects of oxidant stress on the catalase activity and hydrogen peroxide sensitivity of Neisseria gonorrhoeae. N. gonorrhoeae is an obligate pathogen of man that evokes a remarkable but ineffective neutrophil response. Gonococci make no superoxide dismutase but express high catalase activity. Gonococcal catalase activity increased threefold when organisms were subjected to 1.0 mM hydrogen peroxide. This increase in catalase activity was marked by a parallel increase in protein concentration recognized by a rabbit polyclonal antibody raised against the purified gonococcal enzyme. Catalase was primarily localized to the gonococcal cytoplasm in the presence or absence of stress; only a single isoenzyme of catalase could be identified. Exposure of gonococci to neutrophil-derived oxidants was accomplished by stimulating neutrophils with phorbol myristate acetate or by using gonococcal Opa variants that interacted with neutrophils with different degrees of efficiency. Gonococci exposed to neutrophils demonstrated a twofold increase in catalase activity in spite of some reduction in viability. Exposure of gonococci to 1.0 mM hydrogen peroxide made the organisms significantly more resistant to higher concentrations of hydrogen peroxide and to neutrophils than control organisms. These results suggest that catalase is an important defense for N. gonorrhoeae during attack by human neutrophils. The rapid response of this enzyme to hydrogen peroxide should be taken into consideration in studies designed to evaluate the interaction between neutrophils and gonococci. PMID:1522209

  5. CATALASE AND SUPEROXIDE DISMUTASE OF ROOT-COLONIZING SAPROPHYTIC FLUORESCENT PSEUDOMONADS

    EPA Science Inventory

    Root-colonizing, saprophytic fluorescent pseudomonads of the Pseudomonas putida-P. fluorescens group express similar levels of catalase and superoxide dismutase activities during growth on a sucrose- and amino acid-rich medium. ncreased specific activities of catalase but not sup...

  6. Catalase Activity of Psychrophilic Bacteria Grown at 2 and 30 C1

    PubMed Central

    Frank, Hilmer A.; Ishibashi, Sandra T.; Reid, Ann; Ito, June S.

    1963-01-01

    Catalase activity was measured in resting-cell suspensions of psychrophilic bacteria grown at 2 and at 30 C. Enzyme activity decreased in both cell-suspension types as harvest age increased. At comparable physiological age, cells grown at 2 C had more catalase than cells grown at 30 C. PMID:13959237

  7. Forchlorfenuron detection based on its inhibitory effect towards catalase immobilized on boron nitride substrate.

    PubMed

    Xu, Qin; Cai, Lijuan; Zhao, Huijie; Tang, Jiaqian; Shen, Yuanyuan; Hu, Xiaoya; Zeng, Haibo

    2015-01-15

    An enzymatic procedure based on a catalase biosensor for the detection of forchlorfenuron (CPPU) has been reported in this work. Catalase was immobilized on boron nitride (BN) sheets dispersed in chitosan by adsorption. The immobilized catalase exhibited direct electron transfer character and excellent electrocatalytic activity towards H2O2 reduction. After introducing CPPU into the H2O2 containing phosphate buffer solution, the catalase-catalyzed H2O2 reduction current decreased. By measuring the current decrease, CPPU can be determined in the range of 0.5-10.0 µM with the detection limit of 0.07 μM. The non-competitive inhibition behavior of CPPU towards catalase was verified by the Lineweaver-Burk plots. Long stability character has been ascribed to this biosensor. Possible use of this biosensor in flow systems is illustrated. The proposed biosensor has been successfully applied to CPPU determination in fruits samples with satisfactory results. PMID:25108110

  8. [Catalase and superoxide dismutase in the cells of strictly anaerobic microorganisms].

    PubMed

    Briukhanov, A L; Thauer, R K; Netrusov, A I

    2002-01-01

    Strictly anaerobic microorganisms relating to various physiological groups were screened for catalase and superoxide dismutase (SOD) activity. All of the investigated anaerobes possessed the SOD activity, necessary for protection against toxic products of oxygen reduction. High specific activities of SOD were found in Acetobacterium woodii and Acetobacterium wieringae. Most of the investigated clostridia and acetogens were catalase-negative. A significant activity of catalase was found in Thermohydrogenium kirishiense, in representatives of the genus Desulfotomaculum, and in several methanogens. Methanobrevibacter arboriphilus had an exceptionally high catalase activity after growth in medium supplemented with hemin. Hemin also produced a strong positive effect on the catalase activity in many other anaerobic microorganisms. In methanogens, the activities of the enzymes of antioxidant defense varied in wide ranges depending on the stage of growth and the energy source. PMID:12138753

  9. Amelioration of hepatic reperfusion injury by superoxide dismutase and catalase

    SciTech Connect

    Clemens, M.G.; Burke, F.; Chaudry, I.H.

    1986-03-05

    Oxygen-derived free radicals have been implicated in reperfusion injury in various tissues. The present study determined if enzymatic scavenging of free radicals could improve recovery of hepatic function following ischemia. Livers from fasted rats were perfused with Krebs-HCO/sub 3/ buffer with substrates for gluconeogenesis for 30 min (control) followed by 60 min warm ischemia and 90 min reperfusion. At the beginning and end of ischemia the liver was flushed with buffered Ringer's with superoxide dismutase + catalase (150,000 U/L each)(SOD) or without additions (Untreated). Bile flow and glucose release were monitored during control and reperfusion periods and tissue sampled at the end of the experiment to determine tissue water and electrolytes. Bile flow and gluconeogenesis were markedly depressed after ischemia in both groups. At the end of 90 min reperfusion bile flow in Untreated and SOD were 23 +/- 6 and 46 +/- 8 ..mu..l/15 min (20% and 41% of control respectively, p < .01). Gluconeogenesis recovered to 83 +/- 4% of control in Untreated vs 103 +/- 6% with SOD (p < .05). Tissue water and electrolytes were not different. These results suggest that generation of oxygen-derived free radicals contributes to functional deficits in the liver following ischemia and that these defects can be attenuated by enzymatic scavenging.

  10. Enhanced stability of catalase covalently immobilized on functionalized titania submicrospheres.

    PubMed

    Wu, Hong; Liang, Yanpeng; Shi, Jiafu; Wang, Xiaoli; Yang, Dong; Jiang, Zhongyi

    2013-04-01

    In this study, a novel approach combing the chelation and covalent binding was explored for facile and efficient enzyme immobilization. The unique capability of titania to chelate with catecholic derivatives at ambient conditions was utilized for titania surface functionalization. The functionalized titania was then used for enzyme immobilization. Titania submicrospheres (500-600 nm) were synthesized by a modified sol-gel method and functionalized with carboxylic acid groups through a facile chelation method by using 3-(3,4-dihydroxyphenyl) propionic acid as the chelating agent. Then, catalase (CAT) was covalently immobilized on these functionalized titania submicrospheres through 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS) coupling reaction. The immobilized CAT retained 65% of its free form activity with a loading capacity of 100-150 mg/g titania. The pH stability, thermostability, recycling stability and storage stability of the immobilized CAT were evaluated. A remarkable enhancement in enzyme stability was achieved. The immobilized CAT retained 90% and 76% of its initial activity after 10 and 16 successive cycles of decomposition of hydrogen peroxide, respectively. Both the Km and the Vmax values of the immobilized CAT (27.4 mM, 13.36 mM/min) were close to those of the free CAT (25.7 mM, 13.46 mM/min). PMID:23827593

  11. Catalase Inhibits Ionizing Radiation-Induced Apoptosis in Hematopoietic Stem and Progenitor Cells

    PubMed Central

    Xiao, Xia; Luo, Hongmei; Vanek, Kenneth N.; LaRue, Amanda C.; Schulte, Bradley A.

    2015-01-01

    Hematologic toxicity is a major cause of mortality in radiation emergency scenarios and a primary side effect concern in patients undergoing chemo-radiotherapy. Therefore, there is a critical need for the development of novel and more effective approaches to manage this side effect. Catalase is a potent antioxidant enzyme that coverts hydrogen peroxide into hydrogen and water. In this study, we evaluated the efficacy of catalase as a protectant against ionizing radiation (IR)-induced toxicity in hematopoietic stem and progenitor cells (HSPCs). The results revealed that catalase treatment markedly inhibits IR-induced apoptosis in murine hematopoietic stem cells and hematopoietic progenitor cells. Subsequent colony-forming cell and cobble-stone area-forming cell assays showed that catalase-treated HSPCs can not only survive irradiation-induced apoptosis but also have higher clonogenic capacity, compared with vehicle-treated cells. Moreover, transplantation of catalase-treated irradiated HSPCs results in high levels of multi-lineage and long-term engraftments, whereas vehicle-treated irradiated HSPCs exhibit very limited hematopoiesis reconstituting capacity. Mechanistically, catalase treatment attenuates IR-induced DNA double-strand breaks and inhibits reactive oxygen species. Unexpectedly, we found that the radioprotective effect of catalase is associated with activation of the signal transducer and activator of transcription 3 (STAT3) signaling pathway and pharmacological inhibition of STAT3 abolishes the protective activity of catalase, suggesting that catalase may protect HSPCs against IR-induced toxicity via promoting STAT3 activation. Collectively, these results demonstrate a previously unrecognized mechanism by which catalase inhibits IR-induced DNA damage and apoptosis in HSPCs. PMID:25603016

  12. Production of IFN-γ and IL-4 Against Intact Catalase and Constructed Catalase Epitopes of Helicobacter pylori From T-Cells

    PubMed Central

    Ghasemian Safaei, Hajieh; Faghri, Jamshid; Moghim, Sharareh; Nasr Esfahani, Bahram; Fazeli, Hossein; Makvandi, Manoochehr; Adib, Minoo; Rashidi, Niloufar

    2015-01-01

    Background: Helicobacter pylori infection is highly prevalent in the developing countries. It causes gastritis, peptic ulcer disease, and gastrocarcinoma. Treatment with drugs and antibiotics is problematic due to the following reasons: cost, resistance to antibiotics, prolonged treatment and using multiple drugs. Catalase is highly conserved among the Helicobacter species and is important to the survival of the organism. It is expressed in high amounts and is exposed to the surface of this bacterium; therefore it represents a suitable candidate vaccine antigen. Objectives: A suitable approach in H. pylori vaccinology is the administration of epitope based vaccines. Therefore the responses of T-cells (IFN-γ and IL-4 production) against the catalase of H. pylori were determined. Then the quality of the immune responses against intact catalase and three epitopes of catalase were compared. Materials and Methods: In this study, a composition of three epitopes of the H. pylori catalase was selected based on Propred software. The effect of catalase epitopes on T-cells were assayed and immune responses identified. Results: The results of IFN-γ, IL-4 production against antigens, epitopes, and recombinant catalase by T-cells were compared for better understanding of epitope efficiency. Conclusions: The current research demonstrated that epitope sequence stimulates cellular immune responses effectively. In addition, increased safety and potency as well as a reduction in time and cost were advantages of this method. Authors are going to use this sequence as a suitable vaccine candidate for further research on animal models and humans in future. PMID:26862387

  13. Do pH and flavonoids influence hypochlorous acid-induced catalase inhibition and heme modification?

    PubMed

    Krych-Madej, Justyna; Gebicka, Lidia

    2015-09-01

    Hypochlorous acid (HOCl), highly reactive oxidizing and chlorinating species, is formed in the immune response to invading pathogens by the reaction of hydrogen peroxide with chloride catalyzed by the enzyme myeloperoxidase. Catalase, an important antioxidant enzyme, catalyzing decomposition of hydrogen peroxide to water and molecular oxygen, hampers in vitro HOCl formation, but is also one of the main targets for HOCl. In this work we have investigated HOCl-induced catalase inhibition at different pH, and the influence of flavonoids (catechin, epigallocatechin gallate and quercetin) on this process. It has been shown that HOCl-induced catalase inhibition is independent on pH in the range 6.0-7.4. Preincubation of catalase with epigallocatechin gallate and quercetin before HOCl treatment enhances the degree of catalase inhibition, whereas catechin does not affect this process. Our rapid kinetic measurements of absorption changes around the heme group have revealed that heme modification by HOCl is mainly due to secondary, intramolecular processes. The presence of flavonoids, which reduce active catalase intermediate, Compound I to inactive Compound II have not influenced the kinetics of HOCl-induced heme modification. Possible mechanisms of the reaction of hypochlorous acid with catalase are proposed and the biological consequences are discussed. PMID:26116387

  14. Dual gene therapy with extracellular superoxide dismutase and catalase attenuates experimental optic neuritis

    PubMed Central

    Qi, Xiaoping; Hauswirth, William W.

    2007-01-01

    Purpose To ameliorate experimental optic neuritis by combining scavenging of superoxide by germ line increases in the extracellular superoxide dismutase (ECSOD) and hydrogen peroxide by viral-mediated gene transfer of the human catalase gene. Methods The human catalase gene inserted into recombinant adeno-associated virus (rAAV) was injected into the right eyes of transgenic mice overexpressing human ECSOD and wild-type littermates. Animals were simultaneously sensitized for experimental autoimmune encephalomyelitis (EAE) and then sacrificed one month later. The effects of antioxidant genes (ECSOD and catalase) on the histologic lesions of EAE were measured by computerized analysis of myelin area, optic disc area, extent of the cellular infiltrate, cerium derived H2O2 reaction product and extravasation of serum albumin detected by immunogold. Results Combined scavenging of H2O2 and superoxide with ECSOD and catalase suppressed demyelination by 72%, 54% due to catalase, and 19% due to ECSOD. Disruption of the blood-brain barrier was reduced 63% by the combined effects of catalase and ECSOD, 35% due to catalase and 29% due to ECSOD. Conclusions Transgene modulation of antioxidant enzyme defenses against both superoxide and its metabolite H2O2 provide a substantial suppressive effect against EAE in the optic nerve that may be a new therapeutic strategy for suppression of optic neuritis and multiple sclerosis. PMID:17242675

  15. Catalase from the white shrimp Penaeus (Litopenaeus) vannamei: molecular cloning and protein detection.

    PubMed

    Tavares-Sánchez, Olga L; Gómez-Anduro, Gracia A; Felipe-Ortega, Ximena; Islas-Osuna, Maria A; Sotelo-Mundo, Rogerio R; Barillas-Mury, Carolina; Yepiz-Plascencia, Gloria

    2004-08-01

    Catalase is an antioxidant enzyme that plays a very important role in the protection against oxidative damage by breaking down hydrogen peroxide. It is a very highly conserved enzyme that has been identified from numerous species including bacteria, fungi, plants and animals, but the information about catalase in crustaceans is very limited. A cDNA containing the complete coding sequence for catalase from the shrimp Penaeus (Litopenaeus) vannamei was sequenced and the mRNA was detected by RT-PCR in selected tissues. Catalase was detected in hepatopancreas crude extracts by Western blot analysis with anti-human catalase polyclonal antibodies. The nucleotide sequence is 1692 bp long, including a 72-bp 5'-UTR, a coding sequence of 1515 bp and a 104-bp 3'-UTR. The deduced amino acid sequence corresponds to 505 amino acids with high identity to invertebrate, vertebrate and even bacterial catalases and contains the catalytic residues His71, Asn144, and Tyr354. The predicted protein has a calculated molecular mass of 57 kDa; which coincides with the size of the subunit (approximately 55 kDa) and the tetrameric protein (approximately 230 kDa) detected in hepatopancreas extracts under native conditions. Catalase mRNA level was higher in hepatopancreas, followed by gills and was not detected in muscle. PMID:15325332

  16. The Molecular Mechanism of the Catalase-like Activity in Horseradish Peroxidase.

    PubMed

    Campomanes, Pablo; Rothlisberger, Ursula; Alfonso-Prieto, Mercedes; Rovira, Carme

    2015-09-01

    Horseradish peroxidase (HRP) is one of the most relevant peroxidase enzymes, used extensively in immunochemistry and biocatalysis applications. Unlike the closely related catalase enzymes, it exhibits a low activity to disproportionate hydrogen peroxide (H2O2). The origin of this disparity remains unknown due to the lack of atomistic information on the catalase-like reaction in HRP. Using QM(DFT)/MM metadynamics simulations, we uncover the mechanism for reduction of the HRP Compound I intermediate by H2O2 at atomic detail. The reaction begins with a hydrogen atom transfer, forming a peroxyl radical and a Compound II-like species. Reorientation of the peroxyl radical in the active site, concomitant with the transfer of the second hydrogen atom, is the rate-limiting step, with a computed free energy barrier (18.7 kcal/mol, ∼ 6 kcal/mol higher than the one obtained for catalase) in good agreement with experiments. Our simulations reveal the crucial role played by the distal pocket residues in accommodating H2O2, enabling formation of a Compound II-like intermediate, similar to catalases. However, out of the two pathways for Compound II reduction found in catalases, only one is operative in HRP. Moreover, the hydrogen bond network in the distal side of HRP compensates less efficiently than in catalases for the energetic cost required to reorient the peroxyl radical at the rate-determining step. The distal Arg and a water molecule in the "wet" active site of HRP have a substantial impact on the reaction barrier, compared to the "dry" active site in catalase. Therefore, the lower catalase-like efficiency of heme peroxidases compared to catalases can be directly attributed to the different distal pocket architecture, providing hints to engineer peroxidases with a higher rate of H2O2 disproportionation. PMID:26274391

  17. Effects of pergolide mesylate on transduction efficiency of PEP-1-catalase protein

    SciTech Connect

    Sohn, Eun Jeong; Kim, Dae Won; Kim, Young Nam; Kim, So Mi; Lim, Soon Sung; Kang, Tae-Cheon; Kwon, Hyeok Yil; Kim, Duk-Soo; Cho, Sung-Woo; Han, Kyu Hyung; Park, Jinseu; Eum, Won Sik; Hwang, Hyun Sook; Choi, Soo Young

    2011-03-18

    Research highlights: {yields} We studied effects of pergolide mesylate (PM) on in vitro and in vivo transduction of PEP-1-catalase. {yields} PEP-1-catatase inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation. {yields} PM enhanced the transduction of PEP-1-catalase into HaCaT cells and skin tissue. {yields} PM increased anti-inflammatory activity of PEP-1-catalase. {yields} PM stimulated therapeutic action of anti-oxidant enzyme catalase in oxidative-related diseases. -- Abstract: The low transduction efficiency of various proteins is an obstacle to their therapeutic application. However, protein transduction domains (PTDs) are well-known for a highly effective tool for exogenous protein delivery to cells. We examined the effects of pergolide mesylate (PM) on the transduction of PEP-1-catalase into HaCaT human keratinocytes and mice skin and on the anti-inflammatory activity of PEP-1-catatase against 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation using Western blot and histological analysis. PM enhanced the time- and dose-dependent transduction of PEP-1-catalase into HaCaT cells without affecting the cellular toxicity. In a mouse edema model, PEP-1-catalase inhibited the increased expressions of inflammatory mediators and cytokines such as cyclooxygenase-2, inducible nitric oxide synthase, interleukin-6 and -1{beta}, and tumor necrosis factor-{alpha} induced by TPA. On the other hand, PM alone failed to exert any significant anti-inflammatory effects. However, the anti-inflammatory effect of co-treatment with PEP-1-catalase and PM was more potent than that of PEP-1-catalase alone. Our results indicate that PM may enhance the delivery of PTDs fusion therapeutic proteins to target cells and tissues and has potential to increase their therapeutic effects of such drugs against various diseases.

  18. Transglutaminase-catalyzed site-specific glycosidation of catalase with aminated dextran.

    PubMed

    Valdivia, Aymara; Villalonga, Reynaldo; Di Pierro, Prospero; Pérez, Yunel; Mariniello, Loredana; Gómez, Leissy; Porta, Raffaele

    2006-04-10

    An enzymatic approach, based on a transglutaminase-catalyzed coupling reaction, was investigated to modify bovine liver catalase with an end-group aminated dextran derivative. We demonstrated that catalase activity increased after enzymatic glycosidation and that the conjugate was 3.8-fold more stable to thermal inactivation at 55 degrees C and 2-fold more resistant to proteolytic degradation by trypsin. Moreover, the transglutaminase-mediated modification also improved the pharmacokinetics behavior of catalase, increasing 2.5-fold its plasma half-life time and reducing 3-fold the total clearance after its i.v. administration in rats. PMID:16446004

  19. Rapid upregulation of heart antioxidant enzymes during arousal from estivation in the Giant African snail (Achatina fulica).

    PubMed

    Salway, Kurtis D; Tattersall, Glenn J; Stuart, Jeffrey A

    2010-11-01

    Estivation is an adaptive response to environments characterized by elevated temperatures and desiccative stress, as may occur during summer dry seasons. Similar to diapause and hibernation, it is characterized by low levels of activity, a drastically suppressed metabolic rate and enhanced stress resistance. We tested the hypothesis that Achatina fulica, a pulmonate land snail, enhances stress resistance during estivation and/or arousal by upregulating intracellular antioxidant defenses in the heart, kidney, hepatopancreas and foot tissues. No statistically significant changes in mitochondrial or cytosolic superoxide dismutase levels or activities, or glutathione peroxidase, glutathione reductase or catalase activities were associated with estivation in any tissue, however. In contrast, during arousal from estivation, activities of several antioxidant enzymes increased in heart, hepatopancreas and foot. In heart, a rapid increase in MnSOD protein levels was observed that peaked at 2h post arousal, but no such change was observed in CuZnSOD protein levels. Glutathione peroxidase activity was upregulated at 1h post arousal and remained elevated until 8h post arousal in heart tissue. Glutathione peroxidase was also upregulated at 24h post arousal in foot tissue. Glutathione reductase activity was upregulated at 4h post arousal in heart and foot tissues whereas catalase activity showed no changes. Markers of lipid peroxidation and protein damage revealed no significant increases during estivation or arousal. Therefore, antioxidant enzymes may play a role in oxidative stress defense specifically during arousal from estivation in A. fulica. PMID:20621194

  20. Development of bone-targeted catalase derivatives for inhibition of bone metastasis of tumor cells in mice.

    PubMed

    Zheng, Yunlong; Nishikawa, Makiya; Ikemura, Mai; Yamashita, Fumiyoshi; Hashida, Mitsuru

    2012-02-01

    Removal of hydrogen peroxide by delivering catalase to the vicinity of metastasizing tumor cells is a promising approach for inhibiting tumor metastasis. To inhibit bone metastasis, catalase was conjugated with 3,5-di(ethylamino-2,2-bisphosphono)benzoic acid (Bip), a derivative of bone-seeking bisphosphonates, polyethylene glycol (PEG), or both. Bip-conjugated catalase derivatives, that is, catalase-Bip and PEG-catalase-Bip, exhibited a higher affinity for bone matrix as compared with their counterparts without Bip. The tissue distribution of (111) In-labeled catalase derivatives indicated that the accumulation of radioactivity in bones was increased by conjugation of either Bip or PEG with catalase. An experimental bone metastasis model was developed by injecting male C57BL/6 mice with murine melanoma B16-BL6/Luc cells, which stably express firefly luciferase into left ventricle. Repeated injections of catalase to tumor-bearing mice had no significant effect on the number of melanoma cells in tibiae and femurs, whereas injections of catalase-Bip, PEG-catalase, or PEG-catalase-Bip significantly reduced the number. These results indicate that targeted delivery of catalase to the bones can be achieved by conjugating the enzyme with either Bip or PEG, and this delivery is effective in inhibiting the bone metastasis of tumor cells. PMID:21953593

  1. Recovery of a catalase-negative Staphylococcus epidermidis strain in blood and urine cultures from a patient with pyelonephritis.

    PubMed

    Kallstrom, George; Chang, Tom; Albertson, Marc; Morilla, Daniel; Fisher, Mark A; Eberly, Bardwell

    2011-11-01

    This report describes a 60-year-old patient with bilateral nephrolithiasis. A catalase-negative Staphylococcus epidermidis strain was recovered from both urine and blood cultures. Although rare, isolates of catalase-negative Staphylococcus spp., including Staphylococcus aureus, have been reported. Here, we describe the first report of a catalase-negative S. epidermidis strain. PMID:21900516

  2. Recovery of a Catalase-Negative Staphylococcus epidermidis Strain in Blood and Urine Cultures from a Patient with Pyelonephritis ▿

    PubMed Central

    Kallstrom, George; Chang, Tom; Albertson, Marc; Morilla, Daniel; Fisher, Mark A.; Eberly, Bardwell

    2011-01-01

    This report describes a 60-year-old patient with bilateral nephrolithiasis. A catalase-negative Staphylococcus epidermidis strain was recovered from both urine and blood cultures. Although rare, isolates of catalase-negative Staphylococcus spp., including Staphylococcus aureus, have been reported. Here, we describe the first report of a catalase-negative S. epidermidis strain. PMID:21900516

  3. Occurrence of High Catalase-containing Acinetobacter in Spacecraft Assembly Facilities

    NASA Astrophysics Data System (ADS)

    McCoy, K. B.; Derecho, I.; La Duc, M. T.; Vaishampayan, P.; Venkateswaran, K. J.; Mogul, R.

    2010-04-01

    In summary, the measurement of high catalase specific activity values for spacecraft-associated Acinetobacter strains is potentially the result of adaptation towards the harsh conditions of the clean rooms and assembly process.

  4. Immobilization of catalase on chitosan and amino acid- modified chitosan beads.

    PubMed

    Başak, Esra; Aydemir, Tülin

    2013-08-01

    Bovine liver catalase was covalently immobilized onto amino acid-modified chitosan beads. The beads were characterized with SEM, FTIR, TGA and the effects of immobilization on optimum pH and temperature, thermostability, reusability were evaluated. Immobilized catalase showed the maximal enzyme activity at pH 7.0 at 30°C. The kinetic parameters, Km and Vmax, for immobilized catalase on alanine-chitosan beads and lysine-chitosan beads were estimated to be 25.67 mM, 27 mM and 201.39 μmol H2O2/min, 197.50 μmol H2O2/min, respectively. The activity of the immobilized catalase on Ala-CB and Lys-CB retained 40% of its high initial activity after 100 times of reuse. PMID:23316810

  5. Spectroscopic study on the interaction of catalase with bifendate and analogs.

    PubMed

    Wang, Ruiqiang; Zhang, Lu; Wang, Rui; Dou, Huanjing; Li, Hua; Wang, Yi; Pu, Juanjuan; Wang, Ruiyong

    2013-02-01

    The interactions of bifendate (DDB) or analogs (Bicyclol, I, II and III) with catalase are analyzed by spectrophotometric methods. The fluorescence spectra results show the intrinsic fluorescence of catalase is strongly quenched by DDB or analogs with a static quenching procedure. The binding constants are obtained at three temperatures. The thermodynamics parameters (ΔH, ΔS, ΔG) indicate the hydrophobic and electrostatic interactions play a major role in the interaction. The results of synchronous fluorescence, UV-vis absorption and three-dimensional fluorescence spectra demonstrate that the microenvironments of Trp residue of catalase are disturbed by the analogs. Thermodynamic results showed that DDB is the strongest quencher and bind to catalase with the highest affinity among five compounds. PMID:23220523

  6. Production, characterization, cloning and sequence analysis of a monofunctional catalase from Serratia marcescens SYBC08.

    PubMed

    Zeng, Hua-Wei; Cai, Yu-Jie; Liao, Xiang-Ru; Zhang, Feng; Zhang, Da-Bing

    2011-04-01

    A monofunctional catalase from Serratia marcescens SYBC08 produced by liquid state fermentation in 7 liter fermenter was isolated and purified by ammonium sulfate precipitation (ASP), ion exchange chromatography (IEC), and gel filtration (GF) and characterized. Its sequence was analyzed by LC-MS/MS technique and gene cloning. The highest catalase production (20,289 U · ml(-1)) was achieved after incubation for 40 h. The purified catalase had an estimated molecular mass of 230 kDa, consisting of four identical subunits of 58 kDa. High specific activity of the catalase (199,584 U · mg(-1) protein) was 3.44 times higher than that of Halomonas sp. Sk1 catalase (57,900 U · mg(-1) protein). The enzyme without peroxidase activity was found to be an atypical electronic spectrum of monofunctional catalase. The apparent K(m) and V(max) were 78 mM and 188, 212 per µM H(2) O(2) µM heme(-1) s(-1), respectivly. The enzyme displayed a broad pH activity range (pH 5.0-11.0), with optimal pH range of 7.0-9.0: It was most active at 20 °C and had 78% activity at 0 °C. Its thermo stability was slightly higher compared to that of commercial catalase from bovine liver. LC-MS/MS analysis confirmed that the deduced amino acid sequence of cloning gene was the catalase sequence from Serratia marcescens SYBC08. The sequence was compared with that of 23 related catalases. Although most of active site residues, NADPH-binding residues, proximal residues of the heme, distal residues of the heme and residues interacting with a water molecule in the enzyme were well conserved in 23 related catalases, weakly conserved residues were found. Its sequence was closely related with that of catalases from pathogenic bacterium in the family Enterobacteriaceae. This result imply that the enzyme with high specific activity plays a significant role in preventing those microorganisms of the family Enterobacteriaceae against hydrogen peroxide resulted in cellular damage. Calalase yield by Serratia

  7. Two divergent catalase genes are differentially regulated during Aspergillus nidulans development and oxidative stress.

    PubMed Central

    Kawasaki, L; Wysong, D; Diamond, R; Aguirre, J

    1997-01-01

    Catalases are ubiquitous hydrogen peroxide-detoxifying enzymes that are central to the cellular antioxidant response. Of two catalase activities detected in the fungus Aspergillus nidulans, the catA gene encodes the spore-specific catalase A (CatA). Here we characterize a second catalase gene, identified after probing a genomic library with catA, and demonstrate that it encodes catalase B. This gene, designated catB, predicts a 721-amino-acid polypeptide (CatB) showing 78% identity to an Aspergillus fumigatus catalase and 61% identity to Aspergillus niger CatR. Notably, similar levels of identity are found when comparing CatB to Escherichia coli catalase HPII (43%), A. nidulans CatA (40%), and the predicted peptide of a presumed catA homolog from A. fumigatus (38%). In contrast, the last two peptides share a 79% identity. The catalase B activity was barely detectable in asexual spores (conidia), disappeared after germination, and started to accumulate 10 h after spore inoculation, throughout growth and conidiation. The catB mRNA was absent from conidia, and its accumulation correlated with catalase activity, suggesting that catB expression is regulated at the transcription level. In contrast, the high CatA activity found in spores was lost gradually during germination and growth. In addition to its developmental regulation, CatB was induced by H2O2, heat shock, paraquat, or uric acid catabolism but not by osmotic stress. This pattern of regulation and the protective role against H2O2 offered by CatA and CatB, at different stages of the A. nidulans life cycle, suggest that catalase gene redundancy performs the function of satisfying catalase demand at the two different stages of metabolic and genetic regulation represented by growing hyphae versus spores. Alternative H2O2 detoxification pathways in A. nidulans were indicated by the fact that catA/catB double mutants were able to grow in substrates whose catabolism generates H2O2. PMID:9150225

  8. Catalase from the silkworm, Bombyx mori: gene sequence, distribution, and overexpression.

    PubMed

    Yamamoto, Kohji; Banno, Yutaka; Fujii, Hiroshi; Miake, Fumio; Kashige, Nobuhiro; Aso, Yoichi

    2005-04-01

    Living organisms require mechanisms regulating reactive oxygen species (ROS) such as hydrogen peroxide and superoxide anion. Catalase is one of the regulatory enzymes and facilitates the degradation of hydrogen peroxide to oxygen and water. Biochemical information on an insect catalase is, however, insufficient. Using mRNA from fat body of the silkworm, Bombyx mori, a cDNA encoding a putative catalase was amplified by reverse transcriptase-polymerase chain reaction and sequenced. The deduced amino acid sequence comprised 507 residues with more than seventy residues forming a scaffold for a heme cofactor conserved. The sequence showed 71% and 66% identities to those of the Drosophila melanogaster and Apis mellifera catalases, respectively; the catalase from B. mori was estimated to be phylogenetically close to that from A. mellifera. The transcripts of the gene and the catalase activity were distributed in diverse tissues of B. mori, suggesting its ubiquitous nature. Using the gene, a recombinant catalase (rCAT) was functionally overexpressed in a soluble form using Escherichia coli, purified to homogeneity, and characterized. The pH-optimum of rCAT was broad around pH 8.0. More than 80% of the original rCAT activity was retained after incubation in the following conditions: at pH 8-11 and 4 degrees C for 24 h; at pH 7 and temperatures below 50 degrees C for 30 min. The Michaelis constant for hydrogen peroxide was evaluated to be 28 mM at pH 6.5 and 30 degrees C. rCAT was suggested to be a member of the typical catalase family. PMID:15763464

  9. Effects of autogamy in Paramecium tetraurelia on catalase activity and on radiosensitivity to natural ionizing radiations

    SciTech Connect

    Croute, F.; Dupouy, D.; Charley, J.P.; Soleilhavoup, J.P.; Planel, H.

    1980-02-01

    Catalase activity of Paramecium tetraurelia decreased during autogamy and recovered to normal 5 days later. Autogamy also caused changes in the ciliate's sensitivity sensitivity to natural ionizing radiations - the decrease in cell growth rate previously described in shielded cultures did not occur when autogamous cells were used. Maximum effect of shielding was observed in 11-day-old postautogamous cells. The role of the catalase in the mechanism of natural irradiation effect is discussed.

  10. Reversible adsorption of catalase onto Fe(3+) chelated poly(AAm-GMA)-IDA cryogels.

    PubMed

    Aktaş Uygun, Deniz; Uygun, Murat; Akgöl, Sinan; Denizli, Adil

    2015-05-01

    In this presented study, poly(acrylamide-glycidyl methacrylate) [poly(AAm-GMA)] cryogels were synthesized by cryopolymerization technique at sub-zero temperature. Prepared cryogels were then functionalized with iminodiacetic acid (IDA) and chelated with Fe(3+) ions in order produce the metal chelate affinity matrix. Synthesized cryogels were characterized with FTIR, ESEM and EDX analysis, and it was found that the cryogel had sponge like structure with interconnected pores and their pore diameter was about 200 μm. Fe(3+) chelated poly(AAm-GMA)-IDA cryogels were used for the adsorption of catalase and optimum adsorption conditions were determined by varying the medium pH, initial catalase concentration, temperature and ionic strength. Maximum catalase adsorption onto Fe(3+) chelated poly(AAm-GMA)-IDA cryogel was found to be 12.99 mg/g cryogel at 25 °C, by using pH 5.0 acetate buffer. Adsorbed catalase was removed from the cryogel by using 1.0M of NaCl solution and desorption yield was found to be 96%. Additionally, reusability profile of the Fe(3+) chelated poly(AAm-GMA)-IDA cryogel was also investigated and it was found that, adsorption capacity of the cryogels didn't decrease significantly at the end of the 40 reuses. Catalase activity studies were also tested and it was demonstrated that desorbed catalase retained 70% of its initial activity. PMID:25746283

  11. The water effect on the kinetic of the bovine liver catalase.

    PubMed

    Seixas, Flavio Augusto Vicente; da Silva, Milene Ribeiro; Murakami, Mario Tyago; Tosqui, Priscilla; Colombo, Marcio Francisco

    2011-09-01

    Catalase is an enzyme that occurs in almost all aerobic organisms. Its main metabolic function is to prevent oxidative damage to tissues induced by hydrogen peroxide which is a strong oxidizing agent. Catalase is very effective in performing this task, since it has the highest turnover rate among all the enzymes. The properties of catalase have been investigated extensively for many years; however, the role of the solvent molecules in the catalytic reaction of this enzyme has not yet been investigated. Therefore, the objective of this work was to investigate the contribution of the solvent molecules on the catalytic reaction of bovine liver catalase with its substrate H2O2 by the osmotic stress method. As a probe for protein structural changes in solution, the differential number of water molecules released during the transition from free to bound form of the enzyme was measured. These assays were correlated with protein structural data provided by the SAXS technique and crystallographic structures of free and CN(-) bonded enzymes. The results showed that the difference in surface accessible area of the crystal structures does not reflect the variation that is observed in solution. Moreover, catalase is not influenced by the solvent during the catalytic reaction, which represents a lower energy barrier to be crossed in the overall energetics of the reaction, a fact that contributes to the high turnover rate of catalase. PMID:21529340

  12. Purification, characterization, and identification of a novel bifunctional catalase-phenol oxidase from Scytalidium thermophilum.

    PubMed

    Sutay Kocabas, Didem; Bakir, Ufuk; Phillips, Simon E V; McPherson, Michael J; Ogel, Zumrut B

    2008-06-01

    A novel bifunctional catalase with an additional phenol oxidase activity was isolated from a thermophilic fungus, Scytalidium thermophilum. This extracellular enzyme was purified ca. 10-fold with 46% yield and was biochemically characterized. The enzyme contains heme and has a molecular weight of 320 kDa with four 80 kDa subunits and an isoelectric point of 5.0. Catalase and phenol oxidase activities were most stable at pH 7.0. The activation energies of catalase and phenol oxidase activities of the enzyme were found to be 2.7 +/- 0.2 and 10.1 +/- 0.4 kcal/mol, respectively. The pure enzyme can oxidize o-diphenols such as catechol, caffeic acid, and L-DOPA in the absence of hydrogen peroxide and the highest oxidase activity is observed against catechol. No activity is detected against tyrosine and common laccase substrates such as ABTS and syringaldazine with the exception of weak activity with p-hydroquinone. Common catechol oxidase inhibitors, salicylhydroxamic acid and p-coumaric acid, inhibit the oxidase activity. Catechol oxidation activity was also detected in three other catalases tested, from Aspergillus niger, human erythrocyte, and bovine liver, suggesting that this dual catalase-phenol oxidase activity may be a common feature of catalases. PMID:18369615

  13. Association of CAT polymorphisms with catalase activity and exposure to environmental oxidative stimuli

    PubMed Central

    Nadif, Rachel; Mintz, Margaret; Jedlicka, Anne; Bertrand, Jean-Pierre; Kleeberger, Steven R.; Kauffmann, Francine

    2005-01-01

    We tested the hypotheses that catalase activity is modified by CAT single nucleotide polymorphisms (SNPs) (–262;–844), and by their interactions with oxidant exposures (coal dusts, smoking), lymphotoxin alpha (LTA, NcoI) and tumor necrosis factor (TNF, -308) in 196 miners. Erythrocyte catalase, superoxide dismutase, and glutathione peroxidase activities were measured. The CAT –262 SNP was related to lower catalase activity (104, 87 and 72 k/g hemoglobin for CC, CT and TT respectively, p<0.0001). Regardless of CAT SNPs, the LTA NcoI but not the TNF –308 SNP was associated with catalase activity (p=0.04 and p=0.8). CAT –262 T carriers were less frequent in highly exposed miners (OR=0.39 [0.20 – 0.78], p=0.007). In CAT –262 T carriers only, catalase activity decreased with high dust exposure (p=0.01). Haplotype analyses (combined CAT SNPs) confirm these results. Results show that CAT –262 and LTA NcoI SNPs, and interaction with coal dust exposure, influenced catalase activity. PMID:16298864

  14. Inhibitory effects of a novel Val to Thr mutation on the distal heme of human catalase

    PubMed Central

    Mashhadi, Zahra; Boeglin, William E.; Brash, Alan R.

    2014-01-01

    True catalases efficiently breakdown hydrogen peroxide, whereas the catalase-related enzyme allene oxide synthase (cAOS) is completely unreactive and instead metabolizes a fatty acid hydroperoxide. In cAOS a Thr residue adjacent to the distal His restrains reaction with H2O2 (Tosha et al (2006) J. Biol. Chem. 281:12610; De Luna et al (2013) J. Phys. Chem. B 117: 14635) and its mutation to the consensus Val of true catalases permits the interaction. Here we investigated the effects of the reciprocal experiment in which the Val74 of human catalase is mutated to Thr, Ser, Met, Pro, or Ala. The Val74Thr substitution decreased catalatic activity by 3.5-fold and peroxidatic activity by 3-fold. Substitution with Ser had similar negative effects (5- and 3-fold decreases). Met decreased catalatic activity 2-fold and eliminated peroxidatic activity altogether, whereas the Val74Ala substitution was well tolerated. (The Val74Pro protein lacked heme). We conclude that the conserved Val74 of true catalases helps optimize catalysis. There are rare substitutions of Val74 with Ala, Met, or Pro, but not with Ser of Thr, possibly due their hydrogen bonding affecting the conformation of His75, the essential distal heme residue for activity in catalases. PMID:25086217

  15. Inhibitory effects of a novel Val to Thr mutation on the distal heme of human catalase.

    PubMed

    Mashhadi, Zahra; Boeglin, William E; Brash, Alan R

    2014-11-01

    True catalases efficiently breakdown hydrogen peroxide, whereas the catalase-related enzyme allene oxide synthase (cAOS) is completely unreactive and instead metabolizes a fatty acid hydroperoxide. In cAOS a Thr residue adjacent to the distal His restrains reaction with H2O2 (Tosha et al. (2006) J. Biol. Chem. 281:12610; De Luna et al. (2013) J. Phys. Chem. B 117: 14635) and its mutation to the consensus Val of true catalases permits the interaction. Here we investigated the effects of the reciprocal experiment in which the Val74 of human catalase is mutated to Thr, Ser, Met, Pro, or Ala. The Val74Thr substitution decreased catalatic activity by 3.5-fold and peroxidatic activity by 3-fold. Substitution with Ser had similar negative effects (5- and 3-fold decreases). Met decreased catalatic activity 2-fold and eliminated peroxidatic activity altogether, whereas the Val74Ala substitution was well tolerated. (The Val74Pro protein lacked heme). We conclude that the conserved Val74 of true catalases helps optimize catalysis. There are rare substitutions of Val74 with Ala, Met, or Pro, but not with Ser of Thr, possibly due their hydrogen bonding affecting the conformation of His75, the essential distal heme residue for activity in catalases. PMID:25086217

  16. Fluorescence Spectrometry of the Interaction of Multi-Walled Carbon Nanotubes with Catalase

    NASA Astrophysics Data System (ADS)

    Fan, Y.; Li, Y.; Cai, H.; Li, J.; Miao, J.; Fu, D.; Yang, Q.

    2014-11-01

    The interaction of multi-walled carbon nanotubes (MWCNTs) with catalase is investigated using fluorescence and circular dichroism spectroscopic techniques. The results of the fluorescence experiments suggest that MWCNTs quench the intrinsic fluorescence of catalase via a static quenching mechanism. The circular dichroism spectral results reveal the unfolding of catalase with a significant decrease in the α-helix content in the presence of MWCNTs, which indicates that the conformation of catalase is changed in the binding process, thereby remarkably decreasing its activity. The binding constants and the number of binding sites of the MWCNT to the catalase are calculated at different temperatures. The thermodynamic parameters, such as the changes in free energy (ΔG), enthalpy (ΔH), and entropy (ΔS), are calculated using thermodynamic equations. The fact that all negative values of ΔG, ΔH, and ΔS are obtained suggests that the interaction of the MWCNTs with catalase is spontaneous, and that hydrogen bonding and van der Waals interactions play an important role in the binding process.

  17. The critical role of catalase in prooxidant and antioxidant function of p53

    PubMed Central

    Kang, M Y; Kim, H-B; Piao, C; Lee, K H; Hyun, J W; Chang, I-Y; You, H J

    2013-01-01

    The tumor suppressor p53 is an important regulator of intracellular reactive oxygen species (ROS) levels, although downstream mediators of p53 remain to be elucidated. Here, we show that p53 and its downstream targets, p53-inducible ribonucleotide reductase (p53R2) and p53-inducible gene 3 (PIG3), physically and functionally interact with catalase for efficient regulation of intracellular ROS, depending on stress intensity. Under physiological conditions, the antioxidant functions of p53 are mediated by p53R2, which maintains increased catalase activity and thereby protects against endogenous ROS. After genotoxic stress, high levels of p53 and PIG3 cooperate to inhibit catalase activity, leading to a shift in the oxidant/antioxidant balance toward an oxidative status, which could augment apoptotic cell death. These results highlight the essential role of catalase in p53-mediated ROS regulation and suggest that the p53/p53R2–catalase and p53/PIG3–catalase pathways are critically involved in intracellular ROS regulation under physiological conditions and during the response to DNA damage, respectively. PMID:22918438

  18. A synthetic superoxide dismutase/catalase mimetic EUK-207 mitigates radiation dermatitis and promotes wound healing in irradiated rat skin.

    PubMed

    Doctrow, Susan R; Lopez, Argelia; Schock, Ashley M; Duncan, Nathan E; Jourdan, Megan M; Olasz, Edit B; Moulder, John E; Fish, Brian L; Mäder, Marylou; Lazar, Jozef; Lazarova, Zelmira

    2013-04-01

    In the event of a radionuclear attack or nuclear accident, the skin would be the first barrier exposed to radiation, though skin injury can progress over days to years following exposure. Chronic oxidative stress has been implicated as being a potential contributor to the progression of delayed radiation-induced injury to skin and other organs. To examine the causative role of oxidative stress in delayed radiation-induced skin injury, including impaired wound healing, we tested a synthetic superoxide dismutase (SOD)/catalase mimetic, EUK-207, in a rat model of combined skin irradiation and wound injury. Administered systemically, beginning 48 hours after irradiation, EUK-207 mitigated radiation dermatitis, suppressed indicators of tissue oxidative stress, and enhanced wound healing. Evaluation of gene expression in irradiated skin at 30 days after exposure revealed a significant upregulation of several key genes involved in detoxication of reactive oxygen and nitrogen species. This gene expression pattern was primarily reversed by EUK-207 therapy. These results demonstrate that oxidative stress has a critical role in the progression of radiation-induced skin injury, and that the injury can be mitigated by appropriate antioxidant compounds administered 48 hours after exposure. PMID:23190879

  19. Purification and Characterization of a Novel Thermo-Alkali-Stable Catalase from Thermus brockianus

    SciTech Connect

    Thompson, Vicki Sue; Schaller, Kastli Dianne; Apel, William Arnold

    2003-10-01

    A novel thermo-alkali-stable catalase from Thermus brockianus was purified and characterized. The protein was purified from a T. brockianus cell extract in a three-step procedure that resulted in 65-fold purification to a specific activity of 5300 U/mg. The enzyme consisted of four identical subunits of 42.5 kDa as determined by SDS-PAGE and a total molecular mass measured by gel filtration of 178 kDa. The catalase was active over a temperature range from 30 to 94 C and a pH range from 6 to 10, with optimum activity occurring at 90 C and pH 8. At pH 8, the enzyme was extremely stable at elevated temperatures with half-lives of 330 h at 80 C and 3 h at 90 C. The enzyme also demonstrated excellent stability at 70 C and alkaline pH with measured half-lives of 510 h and 360 h at pHs of 9 and 10, respectively. The enzyme had an unusual pyridine hemochrome spectrum and appears to utilize eight molecules of heme c per tetramer rather than protoheme IX present in the majority of catalases studied to date. The absorption spectrum suggested that the heme iron of the catalase was in a 6-coordinate low spin state rather than the typical 5-coordinate high spin state. A Km of 35.5 mM and a Vmax of 20.3 mM/min·mg protein for hydrogen peroxide was measured, and the enzyme was not inhibited by hydrogen peroxide at concentrations up to 450 mM. The enzyme was strongly inhibited by cyanide and the traditional catalase inhibitor 3-amino-1,2,4-triazole. The enzyme also showed no peroxidase activity to peroxidase substrates o-dianisidine and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), a trait of typical monofunctional catalases. However, unlike traditional monofunctional catalases, the T. brockianus catalase was easily reduced by dithionite, a characteristic of catalase-peroxidases. The above properties indicate that this catalase has potential for applications in industrial bleaching processes to remove residual hydrogen peroxide from process streams.

  20. Pineal proteins upregulate specific antioxidant defense systems in the brain.

    PubMed

    Bharti, Vijay K; Srivastava, R S

    2009-01-01

    The neuroendocrine functions of the pineal affect a wide variety of glandular and nervous system processes. Beside melatonin (MEL), the pineal gland secretes and expresses certain proteins essential for various physiological functions. It has been suggested that the pineal gland may also have an antioxidant role due to secretory product other than MEL. Therefore, the present study was designed to study the effect of buffalo (Bubalus bubalis) pineal proteins (PP) on the antioxidant defense system in the brain of female rats. The twenty-four rats were taken in present study and were divided into four groups: control (0 day), control (28 day), vehicle control and buffalo PP. The PP was injected 100 μg/kg BW intraperitoneal (i.p.) daily for 28 days. The activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), glutathione reductase (GR) and reduced glutathione (GSH) concentration and the levels of lipid peroxidation (LPO) in the brain tissue were measured to assess the antioxidant systems. These enzymes protect from adverse effects of free radicals and help in amelioration of oxidative stress. Buffalo pineal proteins administration did not cause any effect on brain LPO, whereas GPx, GR and GSH were significantly (p < 0.05) decreased. However, SOD and CAT activities were increased to significant levels than the control in PP treated rats. Our study herein suggested that buffalo (Bubalus bubalis) pineal proteins upregulates specific antioxidant defense systems and can be useful in control of various oxidative stress-induced neuronal diseases. PMID:20357930

  1. Benfotiamine upregulates antioxidative system in activated BV-2 microglia cells

    PubMed Central

    Bozic, Iva; Savic, Danijela; Stevanovic, Ivana; Pekovic, Sanja; Nedeljkovic, Nadezda; Lavrnja, Irena

    2015-01-01

    Chronic microglial activation and resulting sustained neuroinflammatory reaction are generally associated with neurodegeneration. Activated microglia acquires proinflammatory cellular profile that generates oxidative burst. Their persistent activation exacerbates inflammation, which damages healthy neurons via cytotoxic mediators, such as superoxide radical anion and nitric oxide. In our recent study, we have shown that benfotiamine (S-benzoylthiamine O-monophosphate) possesses anti-inflammatory effects. Here, the effects of benfotiamine on the pro-oxidative component of activity of LPS-stimulated BV-2 cells were investigated. The activation of microglia was accompanied by upregulation of intracellular antioxidative defense, which was further promoted in the presence of benfotiamine. Namely, activated microglia exposed to non-cytotoxic doses of benfotiamine showed increased levels and activities of hydrogen peroxide- and superoxide-removing enzymes—catalase and glutathione system, and superoxide dismutase. In addition, benfotiamine showed the capacity to directly scavenge superoxide radical anion. As a consequence, benfotiamine suppressed the activation of microglia and provoked a decrease in NO and ·O−2 production and lipid peroxidation. In conclusion, benfotiamine might silence pro-oxidative activity of microglia to alleviate/prevent oxidative damage of neighboring CNS cells. PMID:26388737

  2. Vascular oxidative stress upregulates angiotensin II type I receptors via mechanisms involving nuclear factor kappa B.

    PubMed

    Bhatt, Siddhartha R; Lokhandwala, Mustafa F; Banday, Anees Ahmad

    2014-01-01

    Abstract The association of oxidative stress with hypertension is well known. However, a causal role of oxidative stress in hypertension is unclear. Vascular angiotensin II type 1 receptor (AT1R) upregulation is a prominent contributor to pathogenesis of hypertension. However, the mechanisms causing this upregulation are unknown. Oxidative stress is an important regulator of protein expression via activation of transcription factors such as nuclear factor kappa B (NFκB). The present study was carried out to test the hypothesis that oxidative stress contributes to vascular AT1R upregulation via NFκB in human aortic smooth muscle cells (HASMC) and spontaneously hypertensive rats (SHR). HASMC exposed to oxidative stress exhibited a robust increase in AT1R mRNA in HASMC. Furthermore, oxidative stress failed to upregulate AT1Rs in the presence of either an antioxidant catalase or siRNA against p65 subunit of NFκB. To test the role of oxidative stress and NFκB in hypertension, prehypertensive SHR were treated with NFκB inhibitor pyrrolidine dithiocarbamate from 5 weeks to 11-12 weeks of age. At 11-12 weeks of age, SHR exhibited increased NFκB expression, AT1R upregulation and exaggerated Ang II-induced vasoconstriction as compared to age-matched Wistar Kyoto (WKY) rats. PDTC treatment of SHR lowered NFκB expression, normalized AT1R expression and Ang II-induced vasoconstriction. More importantly, PDTC treatment significantly attenuated hypertension development in SHR. In conclusion, vascular oxidative can upregulate AT1R, via mechanisms involving NFκB, and contribute to the development of hypertension. PMID:25198883

  3. Adeno-Associated Viral-Mediated Catalase Expression Suppresses Optic Neuritis in Experimental Allergic Encephalomyelitis

    NASA Astrophysics Data System (ADS)

    Guy, John; Qi, Xiaoping; Hauswirth, William W.

    1998-11-01

    Suppression of oxidative injury by viral-mediated transfer of the human catalase gene was tested in the optic nerves of animals with experimental allergic encephalomyelitis (EAE). EAE is an inflammatory autoimmune disorder of primary central nervous system demyelination that has been frequently used as an animal model for the human disease multiple sclerosis (MS). The optic nerve is a frequent site of involvement common to both EAE and MS. Recombinant adeno-associated virus containing the human gene for catalase was injected over the right optic nerve heads of SJL/J mice that were simultaneously sensitized for EAE. After 1 month, cell-specific catalase activity, evaluated by quantitation of catalase immunogold, was increased approximately 2-fold each in endothelia, oligodendroglia, astrocytes, and axons of the optic nerve. Effects of catalase on the histologic lesions of EAE were measured by computerized analysis of the myelin sheath area (for demyelination), optic disc area (for optic nerve head swelling), extent of the cellular infiltrate, extravasated serum albumin labeled by immunogold (for blood-brain barrier disruption), and in vivo H2O2 reaction product. Relative to control, contralateral optic nerves injected with the recombinant virus without a therapeutic gene, catalase gene inoculation reduced demyelination by 38%, optic nerve head swelling by 29%, cellular infiltration by 34%, disruption of the blood-brain barrier by 64%, and in vivo levels of H2O2 by 61%. Because the efficacy of potential treatments for MS are usually initially tested in the EAE animal model, this study suggests that catalase gene delivery by using viral vectors may be a therapeutic strategy for suppression of MS.

  4. Reduction of hydrogen peroxide accumulation and toxicity by a catalase from Mycoplasma iowae.

    PubMed

    Pritchard, Rachel E; Prassinos, Alexandre J; Osborne, John D; Raviv, Ziv; Balish, Mitchell F

    2014-01-01

    Mycoplasma iowae is a well-established avian pathogen that can infect and damage many sites throughout the body. One potential mediator of cellular damage by mycoplasmas is the production of H2O2 via a glycerol catabolic pathway whose genes are widespread amongst many mycoplasma species. Previous sequencing of M. iowae serovar I strain 695 revealed the presence of not only genes for H2O2 production through glycerol catabolism but also the first documented mycoplasma gene for catalase, which degrades H2O2. To test the activity of M. iowae catalase in degrading H2O2, we studied catalase activity and H2O2 accumulation by both M. iowae serovar K strain DK-CPA, whose genome we sequenced, and strains of the H2O2-producing species Mycoplasma gallisepticum engineered to produce M. iowae catalase by transformation with the M. iowae putative catalase gene, katE. H2O2-mediated virulence by M. iowae serovar K and catalase-producing M. gallisepticum transformants were also analyzed using a Caenorhabditis elegans toxicity assay, which has never previously been used in conjunction with mycoplasmas. We found that M. iowae katE encodes an active catalase that, when expressed in M. gallisepticum, reduces both the amount of H2O2 produced and the amount of damage to C. elegans in the presence of glycerol. Therefore, the correlation between the presence of glycerol catabolism genes and the use of H2O2 as a virulence factor by mycoplasmas might not be absolute. PMID:25127127

  5. Intron loss and gain during evolution of the catalase gene family in angiosperms.

    PubMed Central

    Frugoli, J A; McPeek, M A; Thomas, T L; McClung, C R

    1998-01-01

    Angiosperms (flowering plants), including both monocots and dicots, contain small catalase gene families. In the dicot, Arabidopsis thaliana, two catalase (CAT) genes, CAT1 and CAT3, are tightly linked on chromosome 1 and a third, CAT2, which is more similar to CAT1 than to CAT3, is unlinked on chromosome 4. Comparison of positions and numbers of introns among 13 angiosperm catalase genomic sequences indicates that intron positions are conserved, and suggests that an ancestral catalase gene common to monocots and dicots contained seven introns. Arabidopsis CAT2 has seven introns; both CAT1 and CAT3 have six introns in positions conserved with CAT2, but each has lost a different intron. We suggest the following sequence of events during the evolution of the Arabidopsis catalase gene family. An initial duplication of an ancestral catalase gene gave rise to CAT3 and CAT1. CAT1 then served as the template for a second duplication, yielding CAT2. Intron losses from CAT1 and CAT3 followed these duplications. One subclade of monocot catalases has lost all but the 5'-most and 3'-most introns, which is consistent with a mechanism of intron loss by replacement of an ancestral intron-containing gene with a reverse-transcribed DNA copy of a fully spliced mRNA. Following this event of concerted intron loss, the Oryza sativa (rice, a monocot) CAT1 lineage acquired an intron in a novel position, consistent with a mechanism of intron gain at proto-splice sites. PMID:9584109

  6. Enhanced antioxidant defense due to extracellular catalase activity in Syrian hamster during arousal from hibernation.

    PubMed

    Ohta, Hitomi; Okamoto, Iwao; Hanaya, Toshiharu; Arai, Shigeyuki; Ohta, Tsunetaka; Fukuda, Shigeharu

    2006-08-01

    Mammalian hibernators are considered a natural model for resistance to ischemia-reperfusion injuries, and protective mechanisms against oxidative stress evoked by repeated hibernation-arousal cycles in these animals are increasingly the focus of experimental investigation. Here we show that extracellular catalase activity provides protection against oxidative stress during arousal from hibernation in Syrian hamster. To examine the serum antioxidant defense system, we first assessed the hibernation-arousal state-dependent change in serum attenuation of cytotoxicity induced by hydrogen peroxide. Serum obtained from hamsters during arousal from hibernation at a rectal temperature of 32 degrees C, concomitant with the period of increased oxidative stress, attenuated the cytotoxicity four-fold more effectively than serum from cenothermic control hamsters. Serum catalase activity significantly increased during arousal, whereas glutathione peroxidase activity decreased by 50%, compared with cenothermic controls. The cytoprotective effect of purified catalase at the concentration found in serum was also confirmed in a hydrogen peroxide-induced cytotoxicity model. Moreover, inhibition of catalase by aminotriazole led to an 80% loss of serum hydrogen peroxide scavenging activity. These results suggest that extracellular catalase is effective for protecting hibernators from oxidative stress evoked by arousal from hibernation. PMID:16807122

  7. Purification and characterization of oxygen-inducible haem catalase from oxygen-tolerant Bifidobacterium asteroides.

    PubMed

    Hayashi, Kyohei; Maekawa, Itaru; Tanaka, Kunifusa; Ijyuin, Susumu; Shiwa, Yu; Suzuki, Ippei; Niimura, Youichi; Kawasaki, Shinji

    2013-01-01

    Bifidobacterium asteroides, originally isolated from honeybee intestine, was found to grow under 20% O(2) conditions in liquid shaking culture using MRS broth. Catalase activity was detected only in cells that were exposed to O(2) and grown in medium containing a haem source, and these cells showed higher viability on exposure to H(2)O(2). Passage through multiple column chromatography steps enabled purification of the active protein, which was identified as a homologue of haem catalase on the basis of its N-terminal sequence. The enzyme is a homodimer composed of a subunit with a molecular mass of 55 kDa, and the absorption spectrum shows the typical profile of bacterial haem catalase. A gene encoding haem catalase, which has an amino acid sequence coinciding with the N-terminal amino acid sequence of the purified protein, was found in the draft genome sequence data of B. asteroides. Expression of the katA gene was induced in response to O(2) exposure. The haem catalase from B. asteroides shows about 70-80% identity with those from lactobacilli and other lactic acid bacteria, and no homologues were found in other bifidobacterial genomes. PMID:23154971

  8. Characterization of a Facultatively Psychrophilic Bacterium, Vibrio rumoiensis sp. nov., That Exhibits High Catalase Activity

    PubMed Central

    Yumoto, Isao; Iwata, Hideaki; Sawabe, Tomoo; Ueno, Keisuke; Ichise, Nobutoshi; Matsuyama, Hidetoshi; Okuyama, Hidetoshi; Kawasaki, Kosei

    1999-01-01

    A novel facultatively psychrophilic bacterium, strain S-1, which exhibits extraordinarily high catalase activity was isolated from the drain pool of a fish product processing plant that uses H2O2 as a bleaching and microbicidal agent. The catalase activity of the isolate was 1 or 2 orders of magnitude higher than those of Corynebacterium glutamicum, Staphylococcus aureus, Pseudomonas fluorescens, and five other species tested in this study. The strain seemed to possess only one kind of catalase, according to the results of polyacrylamide gel electrophoresis of the cell extract. The optimum temperature for catalase activity was about 30°C, which was about 20°C lower than that for bovine catalase activity. Electron microscopic observation revealed that the surface of the microorganism was covered by blebs. Although the isolate was nonflagellated, its taxonomic position on the basis of physiological and biochemical characteristics and analysis of 16S rRNA sequence and DNA-DNA relatedness data indicated that strain S-1 is a new species belonging to the genus Vibrio. Accordingly, we propose the name Vibrio rumoiensis. The type strain is S-1 (FERM P-14531). PMID:9872761

  9. Inhibition of experimental hepatic metastasis by targeted delivery of catalase in mice.

    PubMed

    Nishikawa, Makiya; Tamada, Ayumi; Hyoudou, Kenji; Umeyama, Yukari; Takahashi, Yuki; Kobayashi, Yuki; Kumai, Hitomi; Ishida, Emi; Staud, Frantisek; Yabe, Yoshiyuki; Takakura, Yoshinobu; Yamashita, Fumiyoshi; Hashida, Mitsuru

    2004-01-01

    Bovine liver catalase derivatives possessing diverse tissue distribution properties were synthesized, and their effects on hepatic metastasis of colon carcinoma cells were examined in mice. An intraportal injection of 1 x 10(5) colon 26 cells resulted in the formation of more than 50 metastatic colonies on the surface of the liver at 14 days after injection. An intravenous injection of catalase (CAT; 35000 units/kg of body weight) significantly (P < 0.001) reduced the number of the colonies in the liver. Galactosylated (Gal-), mannosylated (Man-) and succinylated (Suc-) CAT were also tested in the same system. Of these derivatives, Gal-CAT showed the greatest inhibitory effect on hepatic metastasis, and the number of colonies was significantly (P < 0.001) smaller than following treatment with catalase. High activities of matrix metalloproteinases (MMPs), especially MMP-9, were detected in the liver of mice bearing metastatic tumor tissues, which was significantly (P < 0.05) reduced by Gal-CAT. These results, combined with our previous finding that Gal-CAT can be efficiently delivered to hepatocytes, indicate that the targeted delivery of catalase to the liver by galactosylation is a promising approach to suppress hepatic metastasis. Decreased MMP activity by catalase delivery seems to be involved in its anti-metastatic effect. PMID:15387371

  10. Characterization of monofunctional catalase KatA from radioresistant bacterium Deinococcus radiodurans.

    PubMed

    Kobayashi, Issei; Tamura, Takashi; Sghaier, Haitham; Narumi, Issay; Yamaguchi, Shotaro; Umeda, Koichi; Inagaki, Kenji

    2006-04-01

    Catalase plays a key role in protecting cells against toxic reactive oxygen species. Here we report on the cloning, purification and characterization of a catalase (KatA, DR1998) from the extremely radioresistant bacterium Deinococcus radiodurans. The size of purified D. radiodurans KatA monomer was 65 kDa while gel filtration revealed that the size of the enzyme was 240 kDa, suggesting that KatA formed a homotetramer in solution. Purified KatA displayed a final specific activity of 68,800 U/mg of protein. The catalase activity of KatA was inhibited by sodium azide, sodium cyanide and 3-amino-1,2,4-triazole. The absorption spectrum of KatA exhibited a Soret band at 408 nm. The position of the spectral peak remained unchanged following reduction of KatA with dithionite. No peroxidase activity was found for KatA. These results demonstrate that D. radiodurans KatA is a typical monofunctional heme-containing catalase. The stability of KatA with respect to H2O2 stress was superior to that of commercially available Aspergillus niger and bovine liver catalases. The relative abundance of KatA in cells in addition to the H2O2 resistance property may play a role in the survival strategy of D. radiodurans against oxidative damage. PMID:16716939

  11. Relationship between uptake of mercury vapor by mushrooms and its catalase activity

    SciTech Connect

    Ogata, M.; Kenmotsu, K.; Hirota, N.; Naito, M.

    1981-12-01

    The uptake of mercury vapor by mushrooms (Shiitake) artifically grown on an oak tree and the uptake in vitro by catalase extracts prepared from mushroom Hay Bacillus and spinach are reported. Mushrooms were exposed to 1.4 mg/Hg/cu m for 11 days. Measurement of total mercury was as previously described (Ogata et al. 1978, 1979). Levels in mushrooms ranged from 0.4 +/- 0.1 ..mu..g/g at 0.5 days to 4.6 +/- 0.2 ..mu..g/g at 10.5 days and steady-state thereafter. In in vitro studies Hy uptake by mushroom catalase extract was estimated by the perborate method. Uptake was found to parallel catalase activity and was inhibited by potassium cyanide, sodium azide, and 3-amino-1,2,4-triazole. Similar results were obtained with Hay Bacillus and spinach catalase extracts. Results suggest that the level of mercury in the mushroom can be used as an indicator of mercury pollution in the environment. It is also suggested that catalase has an important role in uptake of mercury vapor in the plant. 2 tables (JMT)

  12. A molecular dynamics examination on mutation-induced catalase activity in coral allene oxide synthase.

    PubMed

    De Luna, Phil; Bushnell, Eric A C; Gauld, James W

    2013-11-27

    Coral allene oxide synthase (cAOS) catalyzes the formation of allene oxides from fatty acid hydroperoxides. Interestingly, its active site differs from that of catalase by only a single residue yet is incapable of catalase activity. That is, it is unable to catalyze the decomposition of hydrogen peroxide to molecular oxygen and water. However, the single active-site mutation T66V allows cAOS to exhibit catalase activity. We have performed a series of molecular dynamics (MD) simulations in order to gain insights into the differences in substrate (8R-hydroperoxyeicosatetraenoic) and H2O2 active site binding between wild-type cAOS and the T66V mutant cAOS. It is observed that in wild-type cAOS the active site Thr66 residue consistently forms a strong hydrogen-bonding interaction with H2O2 (catalase substrate) and, importantly, with the aid of His67 helps to pull H2O2 away from the heme Fe center. In contrast, in the T66V-cAOS mutant the H2O2 is much closer to the heme's Fe center and now forms a consistent Fe···O2H2 interaction. In addition, the His67···H2O2 distance shortens considerably, increasing the likelihood of a Cpd I intermediate and hence exhibiting catalase activity. PMID:24164352

  13. Effect of Catalase and Sodium Fluoride on Human Enamel bleached with 35% Carbamide Peroxide

    PubMed Central

    Shigli, Anand L; Sharma, Divya S; Thakur, Gagan

    2015-01-01

    ABSTRACT Aim: To evaluate the effects of postbleaching antioxidant application fluoridation treatment on the surface morphology and microhardness of human enamel. Materials and methods: Ten freshly extracted human maxillary central incisors were cut at cementoenamel junction. Crown portion was sectioned into six slabs which were divided into five groups: group A – untreated controls; group B – 35% carbamide peroxide (CP); group C – 35% CP and catalase; group D – treatment with 35% CP and 5% sodium fluoride; group E – 35% CP, catalase and 5% sodium fluoride. Thirty-five percent carbamide peroxide application included two applications of 30 minutes each at a 5-day interval. After treatment, the slabs were thoroughly washed with water for 10 seconds and stored in artificial saliva at 37°C until the next treatment. Two percent sodium fluoride included application for 5 minutes. Three catalase included application for 3 minutes. Results: After 5 days, groups B and C showed significantly decreased enamel microhardness compared to control. Group D specimens showed relatively less reduction in enamel micro-hardness than group C specimens. There is a marked increase in enamel microhardness in group E specimens. Conclusions: Fluoride take up was comparatively enhanced after catalase application resulting in less demineralization and increased microhardness. How to cite this article: Thakur R, Shigli AL, Sharma DS, Thakur G. Effect of Catalase and Sodium Fluoride on Human Enamel bleached with 35% Carbamide Peroxide. Int J Clin Pediatr Dent 2015;8(1):12-17. PMID:26124575

  14. ICAM-1 targeted catalase encapsulated PLGA-b-PEG nanoparticles against vascular oxidative stress.

    PubMed

    Sari, Ece; Tunc-Sarisozen, Yeliz; Mutlu, Hulya; Shahbazi, Reza; Ucar, Gulberk; Ulubayram, Kezban

    2015-01-01

    Targeted delivery of therapeutics is the favourable idea, whereas it is possible to distribute the therapeutically active drug molecule only to the site of action. For this purpose, in this study, catalase encapsulated poly(D,L-lactide-co-glycolide)-block-poly(ethylene glycol) (PLGA-b-PEG) nanoparticles were developed and an endothelial target molecule (anti-ICAM-1) was conjugated to this carrier system in order to decrease the oxidative stress level in the target site. According to the enzymatic activity results, initial catalase activity of nanoparticles was increased from 27.39 U/mg to up to 45.66 U/mg by adding 5 mg/mL bovine serum albumin (BSA). After 4 h, initial catalase activity was preserved up to 46.98% while free catalase retained less than 4% of its activity in proteolytic environment. Furthermore, FITC labelled anti-ICAM-1 targeted catalase encapsulated nanoparticles (anti-ICAM-1/CatNPs) were rapidly taken up by cultured endothelial cells and concomitantly endothelial cells were resistant to H2O2 induced oxidative impairment. PMID:26471402

  15. Arrhenius activation energy of damage to catalase during spray-drying.

    PubMed

    Schaefer, Joachim; Lee, Geoffrey

    2015-07-15

    The inactivation of catalase during spray-drying over a range of outlet gas temperatures could be closely represented by the Arrhenius equation. From this an activation energy for damage to the catalase could be calculated. The close fit to Arrhenius suggests that the thermally-induced part of inactivation of the catalase during the complex drying and particle-formation processes takes place at constant temperature. These processes are rapid compared with the residence time of the powder in the collecting vessel of the cyclone where dried catalase is exposed to a constant temperature equal to approximately the drying gas outlet temperature. A lower activation energy after spray drying with the ultrasonic nozzle was found than with the 2-fluid nozzle under otherwise identical spray drying conditions. It is feasible that the ultrasonic nozzle when mounted in the lid of the spray dryer heats up toward the drying gas inlet temperature much more that the air-cooled 2-fluid nozzle. Calculation of the Arrhenius activation energy also showed how the stabilizing efficacy of trehalose and mannitol on the catalase varies in strength across the range of drying gas inlet and outlet temperatures examined. PMID:25940040

  16. Development of a new catalase activity assay for biological samples using optical CUPRAC sensor

    NASA Astrophysics Data System (ADS)

    Bekdeşer, Burcu; Özyürek, Mustafa; Güçlü, Kubilay; Alkan, Fulya Üstün; Apak, Reşat

    2014-11-01

    A novel catalase activity assay was developed for biological samples (liver and kidney tissue homogenates) using a rapid and low-cost optical sensor-based ‘cupric reducing antioxidant capacity' (CUPRAC) method. The reagent, copper(II)-neocuproine (Cu(II)-Nc) complex, was immobilized onto a cation-exchanger film of Nafion, and the absorbance changes associated with the formation of the highly-colored Cu(I)-Nc chelate as a result of reaction with hydrogen peroxide (H2O2) was measured at 450 nm. When catalase was absent, H2O2 produced the CUPRAC chromophore, whereas catalase, being an effective H2O2 scavenger, completely annihilated the CUPRAC signal due to H2O2. Thus, the CUPRAC absorbance due to H2O2 oxidation concomitant with Cu(I)-Nc formation decreased proportionally with catalase. The developed sensor gave a linear response over a wide concentration range of H2O2 (0.68-78.6 μM). This optical sensor-based method applicable to tissue homogenates proved to be efficient for low hydrogen peroxide concentrations (physiological and nontoxic levels) to which the widely used UV method is not accurately responsive. Thus, conventional problems of the UV method arising from relatively low sensitivity and selectivity, and absorbance disturbance due to gaseous oxygen evolution were overcome. The catalase findings of the proposed method for tissue homogenates were statistically alike with those of HPLC.

  17. Novel Role of Endogenous Catalase in Macrophage Polarization in Adipose Tissue.

    PubMed

    Park, Ye Seul; Uddin, Md Jamal; Piao, Lingjuan; Hwang, Inah; Lee, Jung Hwa; Ha, Hunjoo

    2016-01-01

    Macrophages are important components of adipose tissue inflammation, which results in metabolic diseases such as insulin resistance. Notably, obesity induces a proinflammatory phenotypic switch in adipose tissue macrophages, and oxidative stress facilitates this switch. Thus, we examined the role of endogenous catalase, a key regulator of oxidative stress, in the activity of adipose tissue macrophages in obese mice. Catalase knockout (CKO) exacerbated insulin resistance, amplified oxidative stress, and accelerated macrophage infiltration into epididymal white adipose tissue in mice on normal or high-fat diet. Interestingly, catalase deficiency also enhanced classical macrophage activation (M1) and inflammation but suppressed alternative activation (M2) regardless of diet. Similarly, pharmacological inhibition of catalase activity using 3-aminotriazole induced the same phenotypic switch and inflammatory response in RAW264.7 macrophages. Finally, the same phenotypic switch and inflammatory responses were observed in primary bone marrow-derived macrophages from CKO mice. Taken together, the data indicate that endogenous catalase regulates the polarization of adipose tissue macrophages and thereby inhibits inflammation and insulin resistance. PMID:27597806

  18. The oxidation of chiral alcohols catalyzed by catalase in organic solvents

    SciTech Connect

    Magner, E.; Klibanov, A.M.

    1995-04-20

    The catalytic properties of bovine liver catalase have been investigated in organic solvents. In tetrahydrofuran, dioxane, and acetone (all containing 1% to 3% of water), the enzyme breaks down tert-butyl hydroperoxide several fold faster than in pure water. Furthermore, the rate of catalase-catalyzed production of tert-butanol from tert-butyl hydroperoxide increases more than 400-fold upon transition from aqueous buffer to ethanol as the reaction medium. The mechanistic rationale for this striking effect is that in aqueous buffer the rate-limiting step of the enzymatic process involves the reduction of catalase`s compound 1 by tert-butyl hydroperoxide. In ethanol, an additional step in the reaction scheme becomes available in which ethanol, greatly outcompeting the hydroperoxide, is oxidized by compound 1 regenerating the free enzyme. In solvents, such as acetonitrile or tetrahydrofuran, which themselves are not oxidizable by compound 1, catalase catalyzes the oxidation of numerous primary and secondary alcohols with tert-butyl hydroperoxide to the corresponding aldehydes or ketones. The enzymatic oxidation of some chiral alcohols (2,3-butanediol, citronellol, and menthol) under these conditions occurs enantioselectively. Examination of the enantioselectivity for the oxidation of 2,3-butanediol in a series of organic solvents reveals a considerable solvent dependence.

  19. Production of catalases by Aspergillus niger isolates as a response to pollutant stress by heavy metals

    SciTech Connect

    Buckova, M.; Godocikova, J.; Simonovicova, A.; Polek, B.

    2005-04-15

    Isolates of Aspergillus niger, selected from the coal dust of a mine containing arsenic (As; 400 mg/kg) and from the river sediment of mine surroundings (As, 1651 mg/kg, Sb, 362 mg/kg), growing in minimal nitrate medium in the phase of hyphal development and spore formation, exhibited much higher levels of total catalase activity than the same species from the culture collection or a culture adapted to soil contaminated with As (5 mg/L). Electrophoretic resolution of catalases in cell-free extracts revealed three isozymes of catalases and production of individual isozymes was not significantly affected by stress environments. Exogenously added stressors (As{sup 5+}, Cd{sup 2+}, Cu{sup 2+}) at final concentrations of 25 and 50 mg/L and H{sub 2}O{sub 2} (20 or 40 m(M)) mostly stimulated production of catalases only in isolates from mines surroundings, and H{sub 2}O{sub 2} and Hg{sup 2+} caused the disappearance of the smallest catalase I. Isolates exhibited a higher tolerance of the toxic effects of heavy metals and H{sub 2}O{sub 2}, as monitored by growth, than did the strain from the culture collection.

  20. The catalase gene differentiates between some strains of Staphylococcus aureus ssp. anaerobius.

    PubMed

    Musa, N O; Eltom, K; Gessler, F; Böhnel, H; Babiker, A; El Sanousi, S M

    2010-05-01

    Staphylococcus aureus ssp anaerobius strain S10 was isolated from an outbreak of sheep abscess disease. Sequence of the catalase gene of this strain showed 99% identity to the catalase gene (katB) sequence of the reference strain (S. aureus ssp. anaerobius strain MVF213) with mismatching of three base pairs. An important substitution located 1036 nucleotides upstream of the initiation codon from "C" in katB to "T" in the catalase gene of strain S10 originated a stop codon. The deduced protein (345 amino acids) is 105 amino acids shorter than that of katB. Partial sequence of the catalase gene of other 8 local isolates in addition to another reference strain (DSM 20714/ATCC 35844) revealed the same mutations in all local (African) strains, whereas the sequence of the reference (European) strain was typical to that of katB. Sequence of the catalase gene of S. aureus ssp. anaerobius strain S10 was deposited in GenBank under accession no. EU281993. PMID:20526831

  1. Novel Role of Endogenous Catalase in Macrophage Polarization in Adipose Tissue

    PubMed Central

    2016-01-01

    Macrophages are important components of adipose tissue inflammation, which results in metabolic diseases such as insulin resistance. Notably, obesity induces a proinflammatory phenotypic switch in adipose tissue macrophages, and oxidative stress facilitates this switch. Thus, we examined the role of endogenous catalase, a key regulator of oxidative stress, in the activity of adipose tissue macrophages in obese mice. Catalase knockout (CKO) exacerbated insulin resistance, amplified oxidative stress, and accelerated macrophage infiltration into epididymal white adipose tissue in mice on normal or high-fat diet. Interestingly, catalase deficiency also enhanced classical macrophage activation (M1) and inflammation but suppressed alternative activation (M2) regardless of diet. Similarly, pharmacological inhibition of catalase activity using 3-aminotriazole induced the same phenotypic switch and inflammatory response in RAW264.7 macrophages. Finally, the same phenotypic switch and inflammatory responses were observed in primary bone marrow-derived macrophages from CKO mice. Taken together, the data indicate that endogenous catalase regulates the polarization of adipose tissue macrophages and thereby inhibits inflammation and insulin resistance. PMID:27597806

  2. Moxibustion upregulates hippocampal progranulin expression

    PubMed Central

    Yi, Tao; Qi, Li; Li, Ji; Le, Jing-jing; Shao, Lei; Du, Xin; Dong, Jing-cheng

    2016-01-01

    In China, moxibustion is reported to be useful and has few side effects for chronic fatigue syndrome, but its mechanisms are largely unknown. More recently, the focus has been on the wealth of information supporting stress as a factor in chronic fatigue syndrome, and largely concerns dysregulation in the stress-related hypothalamic-pituitary-adrenal axis. In the present study, we aimed to determine the effect of moxibustion on behavioral symptoms in chronic fatigue syndrome rats and examine possible mechanisms. Rats were subjected to a combination of chronic restraint stress and forced swimming to induce chronic fatigue syndrome. The acupoints Guanyuan (CV4) and Zusanli (ST36, bilateral) were simultaneously administered moxibustion. Untreated chronic fatigue syndrome rats and normal rats were used as controls. Results from the forced swimming test, open field test, tail suspension test, real-time PCR, enzyme-linked immunosorbent assay, and western blot assay showed that moxibustion treatment decreased mRNA expression of corticotropin-releasing hormone in the hypothalamus, and adrenocorticotropic hormone and corticosterone levels in plasma, and markedly increased progranulin mRNA and protein expression in the hippocampus. These findings suggest that moxibustion may relieve the behavioral symptoms of chronic fatigue syndrome, at least in part, by modulating the hypothalamic-pituitary-adrenal axis and upregulating hippocampal progranulin. PMID:27212922

  3. Moxibustion upregulates hippocampal progranulin expression.

    PubMed

    Yi, Tao; Qi, Li; Li, Ji; Le, Jing-Jing; Shao, Lei; Du, Xin; Dong, Jing-Cheng

    2016-04-01

    In China, moxibustion is reported to be useful and has few side effects for chronic fatigue syndrome, but its mechanisms are largely unknown. More recently, the focus has been on the wealth of information supporting stress as a factor in chronic fatigue syndrome, and largely concerns dysregulation in the stress-related hypothalamic-pituitary-adrenal axis. In the present study, we aimed to determine the effect of moxibustion on behavioral symptoms in chronic fatigue syndrome rats and examine possible mechanisms. Rats were subjected to a combination of chronic restraint stress and forced swimming to induce chronic fatigue syndrome. The acupoints Guanyuan (CV4) and Zusanli (ST36, bilateral) were simultaneously administered moxibustion. Untreated chronic fatigue syndrome rats and normal rats were used as controls. Results from the forced swimming test, open field test, tail suspension test, real-time PCR, enzyme-linked immunosorbent assay, and western blot assay showed that moxibustion treatment decreased mRNA expression of corticotropin-releasing hormone in the hypothalamus, and adrenocorticotropic hormone and corticosterone levels in plasma, and markedly increased progranulin mRNA and protein expression in the hippocampus. These findings suggest that moxibustion may relieve the behavioral symptoms of chronic fatigue syndrome, at least in part, by modulating the hypothalamic-pituitary-adrenal axis and upregulating hippocampal progranulin. PMID:27212922

  4. Insights into the selective binding and toxic mechanism of microcystin to catalase

    NASA Astrophysics Data System (ADS)

    Hu, Yuandong; Da, Liangjun

    2014-03-01

    Microcystin is a sort of cyclic nonribosomal peptides produced by cyanobacteria. It is cyanotoxin, which can be very toxic for plants and animals including humans. The present study evaluated the interaction of microcystin and catalase, under physiological conditions by means of fluorescence, three-dimensional (3D) fluorescence, circular dichroism (CD), Fourier Transform infrared (FT-IR) spectroscopy, and enzymatic reactionkinetic techniques. The fluorescence data showed that microcystin could bind to catalase to form a complex. The binding process was a spontaneous molecular interaction procedure, in which electrostatic interactions played a major role. Energy transfer and fluorescence studies proved the existence of a static binding process. Additionally, as shown by the three-dimensional fluorescence, CD and FT-IR results, microcystin could lead to conformational and microenvironmental changes of the protein, which may affect the physiological functions of catalase. The work provides important insights into the toxicity mechanism of microcystin in vivo.

  5. Synergistic effects between catalase inhibitors and modulators of nitric oxide metabolism on tumor cell apoptosis.

    PubMed

    Scheit, Katrin; Bauer, Georg

    2014-10-01

    Inhibitors of catalase (such as ascorbate, methyldopa, salicylic acid and neutralizing antibodies) synergize with modulators of nitric oxide (NO) metabolism (such as arginine, arginase inhibitor, NO synthase-inducing interferons and NO dioxygenase inhibitors) in the singlet oxygen-mediated inactivation of tumor cell protective catalase. This is followed by reactive oxygen species (ROS)-dependent apoptosis induction. TGF-beta, NADPH oxidase-1, NO synthase, dual oxidase-1 and caspase-9 are characterized as essential catalysts in this process. The FAS receptor and caspase-8 are required for amplification of ROS signaling triggered by individual compounds, but are dispensable when the synergistic effect is established. Our findings explain the antitumor effects of catalase inhibitors and of compounds that target NO metabolism, as well as their synergy. These data may have an impact on epidemiological studies related to secondary plant compounds and open new perspectives for the establishment of novel antitumor drugs and for the improvement of established chemotherapeutics. PMID:25275027

  6. Influence of Catalase and Superoxide Dismutase on Ozone Inactivation of Listeria monocytogenes

    PubMed Central

    Fisher, Christopher W.; Lee, Dongha; Dodge, Beth-Anne; Hamman, Kristen M.; Robbins, Justin B.; Martin, Scott E.

    2000-01-01

    The effects of ozone at 0.25, 0.40, and 1.00 ppm on Listeria monocytogenes were evaluated in distilled water and phosphate-buffered saline. Differences in sensitivity to ozone were found to exist among the six strains examined. Greater cell death was found following exposure at lower temperatures. Early stationary-phase cells were less sensitive to ozone than mid-exponential- and late stationary-phase cells. Ozonation at 1.00 ppm of cabbage inoculated with L. monocytogenes effectively inactivated all cells after 5 min. The abilities of in vivo catalase and superoxide dismutase to protect the cells from ozone were also examined. Three listerial test strains were inactivated rapidly upon exposure to ozone. Both catalase and superoxide dismutase were found to protect listerial cells from ozone attack, with superoxide dismutase being more important than catalase in this protection. PMID:10742219

  7. Layer-by-layer assembled multilayers using catalase-encapsulated gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Kim, Sungwoo; Park, Jeongju; Cho, Jinhan

    2010-09-01

    We introduce a novel and versatile approach for the preparation of multilayers, based on catalase-encapsulated gold nanoparticles (CAT-AuNP), allowing electrostatic charge reversal and structural transformation through pH adjustment. CAT-AuNP, which are synthesized directly from CAT stabilizer, can be electrostatically assembled with anionic and cationic PEs as a result of the charge reversal of the catalase stabilizers through pH control. In particular, at pH 5.2, near the pI of catalase, dispersed CAT-AuNP are structurally transformed into colloidal or network CAT-AuNP nanocomposites. Furthermore, we demonstrate that the layer-by-layer assembled multilayers composed of PEs and CAT-AuNP induce an effective electron transfer between CAT and the electrode as well as a high loading of CAT and AuNP, and resultantly exhibit a highly catalytic activity toward H2O2.

  8. ENVIRONMENTAL EFFECTS ON SUPEROXIDE DISMUTASE AND CATALASE ACTIVITY AND EXPRESSION IN HONEY BEE.

    PubMed

    Nikolić, Tatjana V; Purać, Jelena; Orčić, Snežana; Kojić, Danijela; Vujanović, Dragana; Stanimirović, Zoran; Gržetić, Ivan; Ilijević, Konstantin; Šikoparija, Branko; Blagojević, Duško P

    2015-12-01

    Understanding the cellular stress response in honey bees will significantly contribute to their conservation. The aim of this study was to analyze the response of the antioxidative enzymes superoxide dismutase and catalase in honey bees related to the presence of toxic metals in different habitats. Three locations were selected: (i) Tunovo on the mountain Golija, as control area, without industry and large human impact, (ii) Belgrade as urban area, and (iii) Zajača, as mining and industrial zone. Our results showed that the concentrations of lead (Pb) in whole body of bees vary according to habitat, but there was very significant increase of Pb in bees from investigated industrial area. Bees from urban and industrial area had increased expression of both Sod1 and Cat genes, suggesting adaptation to increased oxidative stress. However, in spite increased gene expression, the enzyme activity of catalase was lower in bees from industrial area suggesting inhibitory effect of Pb on catalase. PMID:26314562

  9. Role of the lateral channel in catalase HPII of Escherichia coli.

    PubMed Central

    Sevinc, M. S.; Maté, M. J.; Switala, J.; Fita, I.; Loewen, P. C.

    1999-01-01

    The heme-containing catalase HPII of Escherichia coli consists of a homotetramer in which each subunit contains a core region with the highly conserved catalase tertiary structure, to which are appended N- and C-terminal extensions making it the largest known catalase. HPII does not bind NADPH, a cofactor often found in catalases. In HPII, residues 585-590 of the C-terminal extension protrude into the pocket corresponding to the NADPH binding site in the bovine liver catalase. Despite this difference, residues that define the NADPH pocket in the bovine enzyme appear to be well preserved in HPII. Only two residues that interact ionically with NADPH in the bovine enzyme (Asp212 and His304) differ in HPII (Glu270 and Glu362), but their mutation to the bovine sequence did not promote nucleotide binding. The active-site heme groups are deeply buried inside the molecular structure requiring the movement of substrate and products through long channels. One potential channel is about 30 A in length, approaches the heme active site laterally, and is structurally related to the branched channel associated with the NADPH binding pocket in catalases that bind the dinucleotide. In HPII, the upper branch of this channel is interrupted by the presence of Arg260 ionically bound to Glu270. When Arg260 is replaced by alanine, there is a threefold increase in the catalytic activity of the enzyme. Inhibitors of HPII, including azide, cyanide, various sulfhydryl reagents, and alkylhydroxylamine derivatives, are effective at lower concentration on the Ala260 mutant enzyme compared to the wild-type enzyme. The crystal structure of the Ala260 mutant variant of HPII, determined at 2.3 A resolution, revealed a number of local structural changes resulting in the opening of a second branch in the lateral channel, which appears to be used by inhibitors for access to the active site, either as an inlet channel for substrate or an exhaust channel for reaction products. PMID:10091651

  10. Computational study concerning the effect of some pesticides on the Proteus Mirabilis catalase activity

    NASA Astrophysics Data System (ADS)

    Isvoran, Adriana

    2016-03-01

    Assessment of the effects of the herbicides nicosulfuron and chlorsulfuron and the fungicides difenoconazole and drazoxlone upon catalase produced by soil microorganism Proteus mirabilis is performed using the molecular docking technique. The interactions of pesticides with the enzymes are predicted using SwissDock and PatchDock docking tools. There are correlations for predicted binding energy values for enzyme-pesticide complexes obtained using the two docking tools, all the considered pesticides revealing favorable binding to the enzyme, but only the herbicides bind to the catalytic site. These results suggest the inhibitory potential of chlorsulfuron and nicosulfuron on the catalase activity in soil.

  11. A Eukaryote without Catalase-Containing Microbodies: Neurospora crassa Exhibits a Unique Cellular Distribution of Its Four Catalases†

    PubMed Central

    Schliebs, Wolfgang; Würtz, Christian; Kunau, Wolf-Hubert; Veenhuis, Marten; Rottensteiner, Hanspeter

    2006-01-01

    Microbodies usually house catalase to decompose hydrogen peroxide generated within the organelle by the action of various oxidases. Here we have analyzed whether peroxisomes (i.e., catalase-containing microbodies) exist in Neurospora crassa. Three distinct catalase isoforms were identified by native catalase activity gels under various peroxisome-inducing conditions. Subcellular fractionation by density gradient centrifugation revealed that most of the spectrophotometrically measured activity was present in the light upper fractions, with an additional small peak coinciding with the peak fractions of HEX-1, the marker protein for Woronin bodies, a compartment related to the microbody family. However, neither in-gel assays nor monospecific antibodies generated against the three purified catalases detected the enzymes in any dense organellar fraction. Furthermore, staining of an N. crassa wild-type strain with 3,3′-diaminobenzidine and H2O2 did not lead to catalase-dependent reaction products within microbodies. Nonetheless, N. crassa does possess a gene (cat-4) whose product is most similar to the peroxisomal type of monofunctional catalases. This novel protein indeed exhibited catalase activity, but was not localized to microbodies either. We conclude that N. crassa lacks catalase-containing peroxisomes, a characteristic that is probably restricted to a few filamentous fungi that produce little hydrogen peroxide within microbodies. PMID:16963632

  12. A novel analytical method to evaluate directly catalase activity of microorganisms and mammalian cells by ESR oximetry.

    PubMed

    Nakamura, Keisuke; Kanno, Taro; Mokudai, Takayuki; Iwasawa, Atsuo; Niwano, Yoshimi; Kohno, Masahiro

    2010-09-01

    Electron spin resonance (ESR) oximetry technique was applied for analysis of catalase activity in the present study. Catalase activity was evaluated by measuring oxygen from the reaction between hydrogen peroxide (H(2)O(2)) and catalase-positive cells. It was demonstrated that the ESR spectra of spin-label probes, 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPOL), 4-oxo-2,2,6,6-tetramethyl-1-piperidinyloxy (4-oxo-TEMPO) and 4-maleimido-2,2,6,6-tetramethyl-1-piperidinyloxy (4-maleimido-TEMPO) in the presence of H(2)O(2) were broadened with the concentrations of catalase. It was possible to make a calibration curve for catalase activity by peak widths of the spectra of each spin-label probe, which are broadened dependently on catalase concentrations. The broadened ESR spectra were also observed when the catalase-positive micro-organisms or the mammalian cells originally from circulating monocytes/macrophages were mixed with TEMPOL and H(2)O(2). Meanwhile, catalase-negative micro-organisms caused no broadening change of ESR spectra. The present study indicates that it is possible to evaluate directly the catalase activity of various micro-organisms and mammalian cells by using an ESR oximetry technique. PMID:20815766

  13. Direct evidence for catalase activity of [Ru(V)(edta)(O)](-).

    PubMed

    Chatterjee, Debabrata; Jaiswal, Namita; Franke, Alicja; van Eldik, Rudi

    2014-12-01

    Reported is the first example of a ruthenium(III) complex, Ru(III)(edta) (edta(4-) = ethylenediaminetetraacetate), that catalyzes the disproportion of H2O2 to O2 and water in resemblance to catalase activity, and shedding light on the possible mechanism of action of the [Ru(V)(edta)(O)](-) formed in the reacting system. PMID:25307989

  14. Protective role of extracellular catalase (KatA) against UVA radiation in Pseudomonas aeruginosa biofilms.

    PubMed

    Pezzoni, Magdalena; Pizarro, Ramón A; Costa, Cristina S

    2014-02-01

    One of the more stressful factors that Pseudomonas aeruginosa must face in nature is solar UVA radiation. In this study, the protective role of KatA catalase in both planktonic cells and biofilms of P. aeruginosa against UVA radiation was determined by using the wild-type (PAO1) and an isogenic catalase deficient strain (katA). The katA strain was more sensitive than the wild-type, especially in the case of biofilms. Moreover, the wild-type biofilm was more resistant than its planktonic counterpart, but this was not observed in the katA strain. Striking KatA activity was detected in the matrix of katA(+) strains, and to our knowledge, this is the first report of this activity in the matrix of P. aeruginosa biofilms. Provision of bovine catalase or KatA to the matrix of a katA biofilm significantly increased its UVA tolerance, demonstrating that extracellular KatA is essential to optimal defense against UVA in P. aeruginosa biofilms. Efficiency of photocatalytic treatments using TiO2 and UVA was lower in biofilms than in planktonic cells, but KatA and KatB catalases seem not to be responsible for the higher resistance of the sessile cells to this treatment. PMID:24491420

  15. A study of the inhibition of catalase by dipotassium trioxohydroxytetrafluorotriborate K₂[B₃O₃F₄OH].

    PubMed

    Islamovic, Safija; Galic, Borivoj; Milos, Mladen

    2014-10-01

    In the development of boronic acid-based enzyme inhibitors as potential pharmaceutical drugs, dipotassium trioxohydroxytetrafluorotriborate K2[B3O3F4OH] was listed as a promising new therapeutic for treatment of these diseases. The catalase-mediated conversion of hydrogen peroxide, in the presence and absence of K2[B3O3F4OH] was studied. The kinetics conformed to the Michaelis-Menten model. Lineweaver-Burk plots were linear and plotted the family of straight lines intersected on the abscissa indicating non-competitive inhibition of the catalase. It appears that in the absence of inhibitor, catalase operates the best at conditions around pH 7.1 and in the presence of K2[B3O3F4OH] the optimum is around pH 6.2. The uncatalyzed reaction of hydrogen peroxide decomposition generally has a value of activation energy of 75 kJ mole(-1), whereas catalase, in the absence of inhibitor, lowers the value to 11.2 kJ mole(-1), while in the presence 69 mmoles L(-1) of K2[B3O3F4OH] it was 37.8 kJ mole(-1). PMID:24506205

  16. Catalase and glutathione peroxidase are equally active in detoxification of hydrogen peroxide in human erythrocytes

    SciTech Connect

    Gaetani, G.F.; Galiano, S.; Canepa, L.; Ferraris, A.M.; Kirkman, H.N.

    1989-01-01

    Genetic deficiencies of glucose-6-phosphate dehydrogenase (G6PD) and NADPH predispose affected erythrocytes to destruction from peroxides. Conversely, genetic deficiencies of catalase do not predispose affected erythrocytes to peroxide-induced destruction. These observations have served to strengthen the assumption that the NADPH/glutathione/glutathione peroxidase pathway is the principal means for disposal of H/sub 2/O/sub 2/ in human erythrocytes. Recently, however, mammalian catalase was found to have tightly bound NADPH and to require NADPH for the prevention and reversal of inactivation by its toxic substrate (H/sub 2/O/sub 2/). Since both catalase and the glutathione pathway are dependent on NADPH for function, this finding raises the possibility that both mechanisms destroy H/sub 2/O/sub 2/ in human erythrocytes. A comparison of normal and acatalasemic erythrocytes in the present study indicated that catalase accounts for more than half of the destruction of H/sub 2/O/sub 2/ when H/sub 2/O/sub 2/ is generated at a rate comparable to that which leads to hemolysis in G6PD- deficient erythrocytes.

  17. Catalase and superoxide dismutase activities in a Stenotrophomonas maltophilia WZ2 resistant to herbicide pollution.

    PubMed

    Lü, Zhenmei; Sang, Liya; Li, Zimu; Min, Hang

    2009-01-01

    Quinclorac bensulfuron-methyl is a mixed herbicide widely used on paddy rice field to effectively control barnyard grass and most broad-leaved grasses and sedges. We analyzed superoxide dismutase (SOD) and catalase activities in the quinclorac-highly degrading strain Stenotrophomonas maltophilia WZ2 and Gram-negative standard strain Escherichia coli K12 in an attempt to understand antioxidant enzymes in bacteria are produced in response to quinclorac or bensulfuron-methyl, which increases the virulence of the bacteria. MnSOD and two additional catalase isozymes were induced by quinclorac or bensulfuron-methyl in S. maltophilia WZ2, but not in E. coli K12. Quinclorac turned out to be a more sensitive inducer of SOD, whereas bensulfuron-methyl is a more sensitive one of catalase. A mixture of both has effects similar to quinclorac. Results indicate that catalase has a much weakly role in the defense against quinclorac or bensulfuron-methyl induced oxidative stress, whereas SOD could be critical. PMID:18304632

  18. Do Superoxide Dismutase (SOD) and Catalase (CAT) protect Cells from DNA Damage Induced by Active Arsenicals?

    EPA Science Inventory

    Superoxide dismutase (SOD) catalyzes the conversion of superoxide to hydrogen peroxide, which can be converted to water and oxygen through the action of catalase. Heterozygous mice of strain B6: 129S7-SodltmlLeb/J were obtained from Jackson Laboratories and bred to produce offspr...

  19. Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin

    NASA Technical Reports Server (NTRS)

    Yang, T.; Poovaiah, B. W.

    2002-01-01

    Environmental stimuli such as UV, pathogen attack, and gravity can induce rapid changes in hydrogen peroxide (H(2)O(2)) levels, leading to a variety of physiological responses in plants. Catalase, which is involved in the degradation of H(2)O(2) into water and oxygen, is the major H(2)O(2)-scavenging enzyme in all aerobic organisms. A close interaction exists between intracellular H(2)O(2) and cytosolic calcium in response to biotic and abiotic stresses. Studies indicate that an increase in cytosolic calcium boosts the generation of H(2)O(2). Here we report that calmodulin (CaM), a ubiquitous calcium-binding protein, binds to and activates some plant catalases in the presence of calcium, but calcium/CaM does not have any effect on bacterial, fungal, bovine, or human catalase. These results document that calcium/CaM can down-regulate H(2)O(2) levels in plants by stimulating the catalytic activity of plant catalase. Furthermore, these results provide evidence indicating that calcium has dual functions in regulating H(2)O(2) homeostasis, which in turn influences redox signaling in response to environmental signals in plants.

  20. Immobilized glucose oxidase--catalase and their deactivation in a differential-bed loop reactor.

    PubMed

    Prenosil, J E

    1979-01-01

    Glucose oxidase containing catalase was immobilized with a copolymer of phenylenediamine and glutaraldehyde on pumice and titania carrier to study the enzymatic oxidation of glucose in a differential-bed loop reactor. The reaction rate was found to be first order with respect to the concentration of limiting oxygen substrate, suggesting a strong external mass-transfer resistance for all the flow rates used. The partial pressure of oxygen was varied from 21.3 up to 202.6 kPa. The use of a differential-bed loop reactor for the determination of the active enzyme concentration in the catalyst with negligible internal pore diffusion resistance is shown. Catalyst deactivation was studied, especially with respect to the presence of catalase. It is believed that the hydrogen peroxide formed in the oxidation reaction deactivates catalase first; if an excess of catalase is present, the deactivation of glucose oxidase remains small. The mathematical model subsequently developed adequately describes the experimental results. PMID:427262

  1. Heterologous expression and characterization of a new heme-catalase in Bacillus subtilis 168.

    PubMed

    Philibert, Tuyishime; Rao, Zhiming; Yang, Taowei; Zhou, Junping; Huang, Genshu; Irene, Komera; Samuel, Niyomukiza

    2016-06-01

    Reactive oxygen species (ROS) is an inherent consequence to all aerobically living organisms that might lead to the cells being lethal and susceptible to oxidative stress. Bacillus pumilus is characterized by high-resistance oxidative stress that stimulated our interest to investigate the heterologous expression and characterization of heme-catalase as potential biocatalyst. Results indicated that recombinant enzyme significantly exhibited the high catalytic activity of 55,784 U/mg expressed in Bacillus subtilis 168 and 98.097 µmol/min/mg peroxidatic activity, the apparent K m of catalytic activity was 59.6 ± 13 mM with higher turnover rate (K cat = 322.651 × 10(3) s(-1)). The pH dependence of catalatic and peroxidatic activity was pH 7.0 and pH 4.5 respectively with temperature dependence of 40 °C and the recombinant heme-catalase exhibited a strong Fe(2+) preference. It was further revealed that catalase KatX2 improved the resistance oxidative stress of B. subtilis. These findings suggest that this B. pumilus heme-catalase can be considered among the industrially relevant biocatalysts due to its exceptional catalytic rate and high stability and it can be a potential candidate for the improvement of oxidative resistance of industrially produced strains. PMID:27016935

  2. Methanol and acriflavine resistance in Dictyostelium are caused by loss of catalase.

    PubMed

    Garcia, Ma Xenia U; Roberts, Catherine; Alexander, Hannah; Stewart, A Michael; Harwood, Adrian; Alexander, Stephen; Insall, Robert H

    2002-01-01

    Various chemicals with harmful effects are not themselves toxic, but are metabolized in vivo to produce toxic products. One example is methanol in Dictyostelium, which is lethal to cells containing the acrA gene, but relatively harmless to acrA mutants. This makes methanol resistance one of the tightest genetic selections in DICTYOSTELIUM: Loss of acrA also confers cross-resistance to unrelated compounds such as acriflavine and thiabendazole. We have used insertional mutagenesis to demonstrate that the acrA locus encodes the peroxisomal catalase A enzyme. Disruption of the catA gene results in parallel resistance to acriflavine. Molecular and biochemical studies of several previously characterized methanol-resistant strains reveal that each lacks catalase activity. One allele, acrA2, contains a 13 bp deletion which introduces a frameshift in the middle of the gene. The involvement of catalase in methanol resistance in Dictyostelium compares with its role in methanol metabolism in yeast and rodents. However, this is the first study to show that catalase is required for the toxicity of acriflavine. Our results imply that acriflavine and thiabendazole are precursors which must be oxidized to generate biologically active species. The catA/acrA gene is also a potentially invaluable negative selectable marker for Dictyostelium molecular genetics. PMID:11782526

  3. Improved human sperm recovery using superoxide dismutase and catalase supplementation in semen cryopreservation procedure.

    PubMed

    Rossi, T; Mazzilli, F; Delfino, M; Dondero, F

    2001-01-01

    The aim of this work was to evaluate the effects of ROS scavenger supplementation in human semen samples undergoing cryopreservation procedures.After screening out andrological pathologies, we selected 25 male partners of infertile couples with the following semen profile: volume >/= 2.0 ml, normal viscosity, sperm count >/=20 x 10(6)/ml, straight progressive motility (classes 1 and 2) >/= 40% (Mazzilli, Rossi, Delfino and Nofroni (1999) Andrologia 31: 187-194), atypical forms catalase to the third and both SOD (100 U/ml) and catalase (100 U/ml) were added to the fourth aliquot. Each aliquot was mixed (v/v) with TEST yolk buffer freezing medium (Irvine Scientific) and then frozen at -196 degrees C. The percent recovery of progressive motile and swollen spermatozoa was evaluated after thawing.No significant variation in the recovery of progressive motility was seen in the aliquots with added SOD or catalase alone, compared to the control group. On the other hand, a significant improvement in sperm parameter recovery was seen in the aliquot with both SOD and catalase supplementation; perhaps because of their combined and simultaneous action on superoxide anion and hydrogen peroxide. These results suggest that, in some selected cases, SOD and catalase supplementation can contribute greatly to the prevention of sperm membrane lipid peroxidation by ROS and thus allow good sperm parameter recovery after freezing-thawing procedures. PMID:15256925

  4. The effect of superoxide dismutase mimetic and catalase on the quality of postthawed goat semen.

    PubMed

    Shafiei, Mojtaba; Forouzanfar, Mohsen; Hosseini, Sayyed Morteza; Esfahani, Mohammad Hossein Nasr

    2015-05-01

    Manganese(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin chloride (MnTE) is a cell-permeable superoxide dismutase mimetic agent which can convert superoxide to hydrogen peroxide (H2O2). Supplementation of MnTE to a commercial semen extender can protect sperm from superoxide but not H2O2. Therefore, we proposed that addition of catalase (0.0, 200, or 400 IU/mL) in combination with MnTE (0.1 μM) may further improve the cryopreservation efficiency of goat semen in commercially optimized freezing media such as Andromed. Therefore, ejaculates were obtained from three adult bucks twice a week during the breeding season and diluted with Andromed supplemented with or without MnTE and catalase and were frozen in liquid nitrogen. Sperm parameters and reactive oxygen species contents were evaluated 2 hours after dilution (before freezing) and after freezing/thawing. The results revealed that all the treatments significantly (P ≤ 0.05) improved sperm motility, viability, and membrane integrity after freezing and reduced reactive oxygen species content compared with the control group, but maximum improvement was obtained in MnTE + 400 IU/mL catalase. In addition, supplementation with these antioxidants significantly (P ≤ 0.05) increases the cleavage rate after IVF. In conclusion, the results of present study suggest that addition of antioxidant MnTE or catalase to commercial optimized media, such as Andromed, improves total motility, membrane integrity, and viability of goat semen samples after thawing. But the degree of improvement for these parameters significantly (P ≤ 0.05) higher when MnTE and catalase were simultaneously added to the cryopreservation media. PMID:25698161

  5. Catalase and superoxide dismutase activities as biomarkers of oxidative stress in workers exposed to mercury vapors

    SciTech Connect

    Perrin-Nadif, R.; Dusch, M.; Mur, J.M.; Koch, C.; Schmitt, P.

    1996-06-07

    We investigated the role of three blood antioxidant enzyme activities and total antioxidant status (TAS) as biological markers of oxidative stress in workers exposed to mercury (Hg{degrees}) vapors. Twenty-two female workers took part in the study. Blood and urine sampling for biological analyses was performed. The workers were classified into three subgroups according to their creatinine-corrected Hg concentration in urine. Blood antioxidant enzyme activities and TAS were compared between groups with nonparametric distribution-free methods. A significant difference existed in catalase activity and a slight, but not significant, difference existed in Cu{sup 2+}/Zn{sup 2+} superoxide dismutase (Cu{sup 2+}/Zn{sup 2+} SOD) activity between the three groups. No differences were observed in either the glutathione peroxidase activity or the TAS between these groups. Catalase and Cu{sup 2+}/Zn{sup 2+} SOD activities were increased in the groups of workers with higher creatinine-corrected urinary Hg concentrations when compared with the group of lower creatinine-corrected urinary Hg concentrations. Catalase activity was positively correlated with the creatinine-corrected concentration of Hg in urine, and Cu{sup 2+}/Zn{sup 2+} SOD activity was slightly correlated with the creatinine-corrected concentration of Hg in urine. The role of erythrocyte catalase and Cu{sup 2}/Zn{sup 2+} SOD activities we have measured is in agreement with the hypothesis of the involvement of reactive oxygen species production as an important event in chronic exposure to Hg{degrees} vapors in humans. In spite of the small sample size, results indicate that erythrocyte catalase and Cu{sup 2+}/Zn{sup 2+} SOD activities could be considered as markers of biological effect in workers exposed to Hg{degrees} vapors. 24 refs., 3 figs., 2 tabs.

  6. Purification, crystallization and preliminary crystallographic analysis of KatB, a manganese catalase from Anabaena PCC 7120.

    PubMed

    Bihani, Subhash Chandra; Chakravarty, Dhiman; Ballal, Anand

    2013-11-01

    Catalases are enzymes that play an important role in the detoxification of hydrogen peroxide (H2O2) in aerobic organisms. Among catalases, haem-containing catalases are ubiquitously distributed and their enzymatic mechanism is very well understood. On the other hand, manganese catalases that contain a bimanganese core in the active site have been less well characterized and their mode of action is not fully understood. The genome of Anabaena PCC 7120 does not show the presence of a haem catalase-like gene; instead, two ORFs encoding manganese catalases (Mn-catalases) are present. Here, the crystallization and preliminary X-ray crystallographic analysis of KatB, one of the two Mn-catalases from Anabaena, are reported. KatB was crystallized using the hanging-drop vapour-diffusion method with PEG 400 as a precipitant and calcium acetate as an additive. Diffraction data were collected in-house on an Agilent SuperNova system using a microfocus sealed-tube X-ray source. The crystal diffracted to 2.2 Å resolution at 100 K. The tetragonal crystal belonged to space group P4(1)2(1)2 (or enantiomer), with unit-cell parameters a = b = 101.87, c = 138.86 Å. Preliminary X-ray diffraction analysis using the Matthews coefficient and self-rotation function suggests the presence of a trimer in the asymmetric unit. PMID:24192374

  7. Mitochondrial targeting of a catalase transgene product by plasmid liposomes increases radioresistance in vitro and in vivo.

    PubMed

    Epperly, Michael W; Melendez, J A; Zhang, Xichen; Nie, Suhua; Pearce, Linda; Peterson, James; Franicola, Darcy; Dixon, Tracy; Greenberger, Benjamin A; Komanduri, Paavani; Wang, Hong; Greenberger, Joel S

    2009-05-01

    To determine whether increased mitochondrially localized catalase was radioprotective, a human catalase transgene was cloned into a small pSVZeo plasmid and localized to the mitochondria of 32D cl 3 cells by adding the mitochondrial localization sequence of MnSOD (mt-catalase). The cell lines 32D-Cat and 32D-mt-Cat had increased catalase biochemical activity as confirmed by Western blot analysis compared to the 32D cl 3 parent cells. The MnSOD-overexpressing 32D cl 3 cell line, 2C6, had decreased baseline catalase activity that was increased in 2C6-Cat and 2C6-mt-Cat subclonal cell lines. 32D-mt-Cat cells were more radioresistant than 32D-Cat cells, but both were radioresistant relative to 32D cl 3 cells. 2C6-mt-Cat cells but not 2C6-Cat cells were radioresistant compared to 2C6 cells. Intratracheal injection of the mt-catalase-plasmid liposome complex (mt-Cat-PL) but not the catalase-plasmid liposome complex (Cat-PL) increased the resistance of C57BL/6NHsd female mice to 20 Gy thoracic irradiation compared to MnSOD-plasmid liposomes. Thus mitochondrially targeted overexpression of the catalase transgene is radioprotective in vitro and in vivo. PMID:19580494

  8. A novel NADPH:(bound) NADP+ reductase and NADH:(bound) NADP+ transhydrogenase function in bovine liver catalase.

    PubMed

    Gaetani, Gian F; Ferraris, Anna M; Sanna, Paola; Kirkman, Henry N

    2005-02-01

    Many catalases have the shared property of containing bound NADPH and being susceptible to inactivation by their own substrate, H2O2. The presence of additional (unbound) NADPH effectively prevents bovine liver and human erythrocytic catalase from becoming compound II, the reversibly inactivated state of catalase, and NADP+ is known to be generated in the process. The function of the bound NADPH, which is tightly bound in bovine liver catalase, has been unknown. The present study with bovine liver catalase and [14C]NADPH and [14C]NADH revealed that unbound NADPH or NADH are substrates for an internal reductase and transhydrogenase reaction respectively; the unbound NADPH or NADH cause tightly bound NADP+ to become NADPH without becoming tightly bound themselves. This and other results provide insight into the function of tightly bound NADPH. PMID:15456401

  9. Novel nonsense mutation in the katA gene of a catalase-negative Staphylococcus aureus strain☆

    PubMed Central

    Lagos, Jaime; Alarcón, Pedro; Benadof, Dona; Ulloa, Soledad; Fasce, Rodrigo; Tognarelli, Javier; Aguayo, Carolina; Araya, Pamela; Parra, Bárbara; Olivares, Berta; Hormazábal, Juan Carlos; Fernández, Jorge

    2016-01-01

    We report the first description of a rare catalase-negative strain of Staphylococcus aureus in Chile. This new variant was isolated from blood and synovial tissue samples of a pediatric patient. Sequencing analysis revealed that this catalase-negative strain is related to ST10 strain, which has earlier been described in relation to S. aureus carriers. Interestingly, sequence analysis of the catalase gene katA revealed presence of a novel nonsense mutation that causes premature translational truncation of the C-terminus of the enzyme leading to a loss of 222 amino acids. Our study suggests that loss of catalase activity in this rare catalase-negative Chilean strain is due to this novel nonsense mutation in the katA gene, which truncates the enzyme to just 283 amino acids. PMID:26887242

  10. MEASUREMENT OF SUPEROXIDE DISMUTASE, CATALASE, AND GLUTATHIONE PEROXIDASE IN CULTURED CELLS AND TISSUE

    PubMed Central

    Weydert, Christine J.; Cullen, Joseph J.

    2010-01-01

    Cells contain a large number of antioxidants to prevent or repair the damage caused by ROS, as well as to regulate redox-sensitive signaling pathways General protocols are described to measure the antioxidant enzyme activity of superoxide dismutase (SOD), catalase, and glutathione peroxidase. The SODs convert superoxide radical into hydrogen peroxide and molecular oxygen, while the catalase and peroxidases convert hydrogen peroxide into water. In this way, two toxic species, superoxide radical and hydrogen peroxide, are converted to the harmless product water. Western blots, activity gels and activity assays are various methods used to determine protein and activity in both cells and tissue depending on the amount of protein needed for each assay. Other techniques including immunohistochemistry and immunogold can further evaluate the levels of the various antioxidant enzymes in tissue and cells. In general, these assays require 24 to 48 hours to complete. PMID:20057381

  11. Binding of chrysoidine to catalase: spectroscopy, isothermal titration calorimetry and molecular docking studies.

    PubMed

    Yang, Bingjun; Hao, Fang; Li, Jiarong; Chen, Dongliang; Liu, Rutao

    2013-11-01

    Chrysoidine is an industrial azo dye and the presence of chrysoidine in water and food has become an environmental concern due to its negative effects on human beings. In this work, the interactions between chrysoidine and bovine liver catalase (BLC) were explored. Obvious loss in catalytic activity was observed after incubation of BLC with chrysoidine, and the inhibition effect of BLC was found to be of the non-competitive type. No profound conformational change of BLC occurs in the presence of chrysoidine as revealed by UV-vis absorption, circular dichroism and fluorescence spectroscopy studies. Isothermal titration calorimetry results indicate that catalase has two sets of binding sites for chrysoidine. Further, molecular docking simulations show that chrysoidine is located within the bottleneck in the main channel of the substrate to the active site of BLC, which explain the activity inhibition of BLC by chrysoidine. PMID:24001681

  12. Effect of organic solvents on the conformation and interaction of catalase and anticatalase antibodies.

    PubMed

    Rehan, Mohd; Younus, Hina

    2006-05-30

    Effect of six organic solvents-methanol, ethanol, propanol, dimethyl sulphoxide (DMSO), N,N-dimethyl formamide (DMF), and glycerol on the conformation and interaction of catalase and anticatalase antibodies were studied with the aim of identifying the solvents in which antigen-antibody interactions are strong. The antigen binding activity of the antibodies in the various organic solvents increased in the following order: ethanolCatalase activity was inhibited in DMSO. However, the enzyme was activated in DMF upto about 50% of its concentration. PMID:16677702

  13. Diminishing of aggregation for bovine liver catalase through acidic residues modification.

    PubMed

    Hashemnia, S; Moosavi-Movahedi, A A; Ghourchian, H; Ahmad, F; Hakimelahi, G H; Saboury, A A

    2006-12-15

    The tendency of proteins to aggregate is an important problem in biotechnology and the pharmaceutical industry. Because proteins in the aggregated state generally do not have the same biological activity as proteins in the native state. In order to prevent aggregation, it is essential to know the effective parameters in anti-aggregation mechanism. Using a chemical protein modification approach, UV-vis and fluorescence spectroscopies and circular dichroism spectropolarimetry, this study investigates the parameters involved in anti-aggregation mechanism of bovine liver catalase. Our findings clearly indicate that the modified bovine liver catalase provides better protection than the native enzyme against thermal aggregation. It seems that a decrease in hydrophobicity resulting in chemical modification plays an important role in preventing aggregation. PMID:16828155

  14. A Laboratory Experiment Investigating Different Aspects of Catalase Activity in an Inquiry - Based Approach

    NASA Astrophysics Data System (ADS)

    Kimbrough, Doris R.; Magoun, Mary Ann; Langfur, Meg

    1997-02-01

    The action of the enzyme catalase on aqueous hydrogen peroxide to generate oxygen gas is a well-established demonstration (1-3). Catalase is typically obtained by aqueous extraction of a potato, and the potato extract is mixed together with 3% hydrogen peroxide. The oxygen that is produced can be collected over water. Variations on the procedure can demonstrate the dependence of catalytic activity on temperature or the presence of inhibitors (1, 2). The University of Colorado at Denver has used a version of this procedure as a laboratory in its second-semester course for nonmajors. Recently, students have been allowed to expand upon the procedures prescribed in the laboratory handout in an open-ended project format. We explored some of these variations in detail, and the results provided here offer ideas, centered around this laboratory, for open-ended projects that can be used in an inquiry-based approach.

  15. Catalase-Modified Carbon Electrodes: Persuading Oxygen To Accept Four Electrons Rather Than Two.

    PubMed

    Sepunaru, Lior; Laborda, Eduardo; Compton, Richard G

    2016-04-18

    We successfully exploited the natural highly efficient activity of an enzyme (catalase) together with carbon electrodes to produce a hybrid electrode for oxygen reduction, very appropriate for energy transformation. Carbon electrodes, in principle, are cheap but poor oxygen reduction materials, because only two-electron reduction of oxygen occurs at low potentials, whereas four-electron reduction is key for energy-transformation technology. With the immobilization of catalase on the surface, the hydrogen peroxide produced electrochemically is decomposed back to oxygen by the enzyme; the enzyme natural activity on the surface regenerates oxygen, which is further reduced by the carbon electrode with no direct electron transfer between the enzyme and the electrode. Near full four-electron reduction of oxygen is realised on a carbon electrode, which is modified with ease by a commercially available enzyme. The value of such enzyme-modified electrode for energy-transformation devices is evident. PMID:26934203

  16. Polymorphisms in the promoter region of catalase gene and essential hypertension.

    PubMed

    Zhou, Xiao Feng; Cui, Jing; DeStefano, Anita L; Chazaro, Irmarie; Farrer, Lindsay A; Manolis, Athanasios J; Gavras, Haralambos; Baldwin, Clinton T

    2005-01-01

    Genetic variations that predispose individuals to complex disorders, such as essential hypertension, may be found in gene coding regions, intronic regions or in gene promoter regions. Most studies have focused on gene variations that result in amino acid substitutions because they result in different isoforms of the protein, presumably resulting in differences in protein properties. Less attention has been placed on the role of intronic or promoter mutations. In this report, we examined two single nucleotide polymorphisms (SNPs) in the catalase (CAT) gene prompter region in a cohort of hypertensive Caucasians and African Americans with a Mass Spec based Homogenous MassEXTEND assay. We found an association when a specific combination of the two promoter SNPs was examined in Caucasians. No association was observed in African Americans. Our data suggest that genetic variations in the promoter region of catalase gene influence the susceptibility to essential hypertension. In addition, the genetic factors that contribute to hypertension maybe different between ethnic groups. PMID:15735318

  17. Superoxide dismutase, catalase and cell dimorphism in Candida albicans cells exposed to methanol and different temperatures.

    PubMed

    Romandini, P; Bonotto, C; Bertoloni, G; Beltramini, M; Salvato, B

    1994-05-01

    The combined effects of methanol and different temperatures on Candida albicans were studied. Growth curve, cell morphology, superoxide dismutase (SOD) and catalase activity levels have been determined. Cell growth in each medium was comparable to 28 degrees C and 37 degrees C. The growth rate was not affected by methanol, in the presence of glucose, while it was much lower in the absence of sugar. Cell dimorphism appeared after thermic stress and it was also dependent on the medium composition. In all media, both SOD and catalase levels were much higher at 37 degrees C. The presence of methanol per se did not affect the enzymatic levels, while the absence of glucose gave higher SOD levels. PMID:8061958

  18. Cytochrome bd oxidase from Escherichia coli displays high catalase activity: an additional defense against oxidative stress.

    PubMed

    Borisov, Vitaliy B; Forte, Elena; Davletshin, Albert; Mastronicola, Daniela; Sarti, Paolo; Giuffrè, Alessandro

    2013-07-11

    Cytochrome bd oxygen reductase from Escherichia coli has three hemes, b558, b595 and d. We found that the enzyme, as-prepared or in turnover with O2, rapidly decomposes H2O2 with formation of approximately half a mole of O2 per mole of H2O2. Such catalase activity vanishes upon cytochrome bd reduction, does not compete with the oxygen-reductase activity, is insensitive to NO, CO, antimycin-A and N-ethylmaleimide (NEM), but is inhibited by cyanide (Ki ~2.5μM) and azide. The activity, possibly associated with heme-b595, was also observed in catalase-deficient E. coli cells following cytochrome bd over-expression suggesting a protective role against oxidative stress in vivo. PMID:23727202

  19. Differential activation of catalase expression and activity by PPAR agonists: Implications for astrocyte protection in anti-glioma therapy☆

    PubMed Central

    Khoo, Nicholas K.H.; Hebbar, Sachin; Zhao, Weiling; Moore, Steven A.; Domann, Frederick E.; Robbins, Mike E.

    2013-01-01

    Glioma survival is dismal, in part, due to an imbalance in antioxidant expression and activity. Peroxisome proliferator-activated receptor (PPAR) agonists have antineoplastic properties which present new redox-dependent targets for glioma anticancer therapies. Herein, we demonstrate that treatment of primary cultures of normal rat astrocytes with PPAR agonists increased the expression of catalase mRNA protein, and enzymatic activity. In contrast, these same agonists had no effect on catalase expression and activity in malignant rat glioma cells. The increase in steady-state catalase mRNA observed in normal rat astrocytes was due, in part, to de novo mRNA synthesis as opposed to increased catalase mRNA stability. Moreover, pioglitazone-mediated induction of catalase activity in normal rat astrocytes was completely blocked by transfection with a PPARγ-dominant negative plasmid. These data suggest that defects in PPAR-mediated signaling and gene expression may represent a block to normal catalase expression and induction in malignant glioma. The ability of PPAR agonists to differentially increase catalase expression and activity in normal astrocytes but not glioma cells suggests that these compounds might represent novel adjuvant therapeutic agents for the treatment of gliomas. PMID:24024139

  20. Cytotoxicity of lawsone and cytoprotective activity of antioxidants in catalase mutant Escherichia coli.

    PubMed

    Sauriasari, Rani; Wang, Da-Hong; Takemura, Yoko; Tsutsui, Ken; Masuoka, Noriyoshi; Sano, Kuniaki; Horita, Masako; Wang, Bing-Ling; Ogino, Keiki

    2007-06-01

    Lawsone is an active naphthoquinone derivative isolated from henna (Lawsonia inermis L.), a widely used hair dye. Previous study on the toxicity of lawsone remains unclear since the involvement of oxidative stress and the kind of ROS (reactive oxygen species) involved have not been fully resolved yet. This present study reports the cytotoxic effects of lawsone and henna. We carried out CAT assay (a zone of inhibition test of bacterial growth and colony-forming efficiency test of transformant Escherichia coli strains that express mammalian catalase gene derived from normal catalase mice (Cs(a)) and catalase-deficient mutant mice (Cs(b))), Ames mutagenicity assay and H(2)O(2) generation assay. Lawsone generated H(2)O(2) slightly in phosphate buffer system and was not mutagenic in Ames assay using TA 98, TA 100 and TA 102, both in the absence and presence of metabolic activation. Lawsone exposure inhibited the growth of both Cs(a) and Cs(b) strains in a dose-dependent manner. Mean zone diameter for Cs(a) was 9.75+/-0.96 mm and 12.75+/-1.5 mm for Cs(b). Natural henna leaves did not show toxic effects, whereas two out of four samples of marketed henna products were shown toxicity effects. Catalase abolished zone of inhibition (ZOI) of marketed henna products, eliminated ZOI of lawsone in a dose-dependent manner and low concentration of exogenous MnSOD and Cu/ZnSOD eliminated the toxicity. Histidine and DTPA, the metal chelator; BHA and low concentration of capsaicin, the inducer of NADH-quinone reductase, effectively protected Cs(a) and Cs(b) against lawsone in this study. We suggest that lawsone cytotoxicity is probably mediated, at least in part, by the release of O(2)(-), H(2)O(2) and OH(-). PMID:17442476

  1. Impedance spectroscopy and conductometric biosensing for probing catalase reaction with cyanide as ligand and inhibitor.

    PubMed

    Bouyahia, Naima; Hamlaoui, Mohamed Larbi; Hnaien, Mouna; Lagarde, Florence; Jaffrezic-Renault, Nicole

    2011-02-01

    In this work, a new biosensor was prepared through immobilization of bovine liver catalase in a photoreticulated poly (vinyl alcohol) membrane at the surface of a conductometric transducer. This biosensor was used to study the kinetics of catalase-H(2)0(2) reaction and its inhibition by cyanide. Immobilized catalase exhibited a Michaelis-Menten behaviour at low H(2)0(2) concentrations (<100mM) with apparent constant K(M)(app)=84±3mM and maximal initial velocity V(M)(app)=13.4μS min(-1). Inhibition by cyanide was found to be non-competitive and inhibition binding constant K(i) was 13.9±0.3μM. The decrease of the biosensor response by increasing cyanide concentration was linear up to 50μM, with a cyanide detection limit of 6μM. In parallel, electrochemical characteristics of the catalase/PVA biomembrane and its interaction with cyanide were studied by cyclic voltammetry and impedance spectroscopy. Addition of the biomembrane onto the gold electrodes induced a significant increase of the interfacial polarization resistance R(P). On the contrary, cyanide binding resulted in a decrease of Rp proportional to KCN concentration in the 4 to 50μM range. Inhibition coefficient I(50) calculated by this powerful label-free and substrate-free technique (24.3μM) was in good agreement with that determined from the substrate-dependent conductometric biosensor (24.9μM). PMID:20813591

  2. Post-Transcriptional Regulation of Catalase Isozyme Expression in Cotton Seeds.

    PubMed Central

    Ni, W; Trelease, RN

    1991-01-01

    We reported previously that expression of the five tetrameric catalase isozymes during postgerminative growth of cotton seedings was a consequence of interactions between two subunits (SU 1 and SU 2) temporally synthesized from two distinct catalase genes. In this study, we focused on the regulation of the expression of these two catalase subunits during the changeover from glyoxysomal to leaf-type peroxisomal metabolism. The steady-state level of glyoxysomal SU 1 protein (present in 12-hour-old seeds) increased through day 3 and then declined linearly through day 6, whereas SU 2 protein (first detected in 24-hour-old seeds) increased continuously through day 6. The time courses for steady-state levels of the mRNAs encoding these two subunits revealed two clearly separated peaks: the first at day 1 (SU 1) and the other at day 4 (SU 2). Accumulation of these mRNAs preceded the accumulation of their corresponding proteins by at least 24 hours, suggesting temporal, pretranslational regulation of synthesis of both subunits. Results from run-on transcriptional assays with isolated nuclei, however, revealed that transcripts encoding both subunits were synthesized together on days 1 through 5. Hence, it appears that the accumulations of SU 1 and SU 2 mRNAs are controlled primarily at the post-transcriptional level, which has not been reported for catalase or any other eukaryotic peroxisomal enzymes. The accumulation of SU 1 mRNA is not light dependent, whereas the accumulation of SU 2 mRNA, which directs synthesis of the predominant subunit comprising the leaf-type peroxisomal isozyme, occurs only after exposure of seedlings to light. PMID:12324611

  3. Ergot cluster-encoded catalase is required for synthesis of chanoclavine-I in Aspergillus fumigatus.

    PubMed

    Goetz, Kerry E; Coyle, Christine M; Cheng, Johnathan Z; O'Connor, Sarah E; Panaccione, Daniel G

    2011-06-01

    Genes required for ergot alkaloid biosynthesis are clustered in the genomes of several fungi. Several conserved ergot cluster genes have been hypothesized, and in some cases demonstrated, to encode early steps of the pathway shared among fungi that ultimately make different ergot alkaloid end products. The deduced amino acid sequence of one of these conserved genes (easC) indicates a catalase as the product, but a role for a catalase in the ergot alkaloid pathway has not been established. We disrupted easC of Aspergillus fumigatus by homologous recombination with a truncated copy of that gene. The resulting mutant (ΔeasC) failed to produce the ergot alkaloids typically observed in A. fumigatus, including chanoclavine-I, festuclavine, and fumigaclavines B, A, and C. The ΔeasC mutant instead accumulated N-methyl-4-dimethylallyltryptophan (N-Me-DMAT), an intermediate recently shown to accumulate in Claviceps purpurea strains mutated at ccsA (called easE in A. fumigatus) (Lorenz et al. Appl Environ Microbiol 76:1822-1830, 2010). A ΔeasE disruption mutant of A. fumigatus also failed to accumulate chanoclavine-I and downstream ergot alkaloids and, instead, accumulated N-Me-DMAT. Feeding chanoclavine-I to the ΔeasC mutant restored ergot alkaloid production. Complementation of either ΔeasC or ΔeasE mutants with the respective wild-type allele also restored ergot alkaloid production. The easC gene was expressed in Escherichia coli, and the protein product displayed in vitro catalase activity with H(2)O(2) but did not act, in isolation, on N-Me-DMAT as substrate. The data indicate that the products of both easC (catalase) and easE (FAD-dependent oxidoreductase) are required for conversion of N-Me-DMAT to chanoclavine-I. PMID:21409592

  4. Optimization of permeabilization process of yeast cells for catalase activity using response surface methodology

    PubMed Central

    Trawczyńska, Ilona; Wójcik, Marek

    2015-01-01

    Biotransformation processes accompanied by whole yeast cells as biocatalyst are a promising area of food industry. Among the chemical sanitizers currently used in food technology, hydrogen peroxide is a very effective microbicidal and bleaching agent. In this paper, permeabilization has been applied to Saccharomyces cerevisiae yeast cells aiming at increased intracellular catalase activity for decomposed H2O2. Ethanol, which is non-toxic, biodegradable and easily available, has been used as permeabilization factor. Response surface methodology (RSM) has been applied in determining the influence of different parameters on permeabilization process. The aim of the study was to find such values of the process parameters that would yield maximum activity of catalase during decomposition of hydrogen peroxide. The optimum operating conditions for permeabilization process obtained by RSM were as follows: 53% (v/v) of ethanol concentration, temperature of 14.8 °C and treatment time of 40 min. After permeabilization, the activity of catalase increased ca. 40 times and its maximum value equalled to 4711 U/g. PMID:26019618

  5. Spectroscopy, calorimetry and molecular simulation studies on the interaction of catalase with copper ion.

    PubMed

    Hao, Fang; Jing, Mingyang; Zhao, Xingchen; Liu, Rutao

    2015-02-01

    In this research, the binding mechanism of Cu(2+) to bovine liver catalase (BLC) was studied by fluorescence spectroscopy, ultraviolet-visible (UV-vis) absorption spectroscopy, circular dichroism (CD) spectroscopy, isothermal titration calorimetry (ITC) and molecular docking methods. The cellar experiment was firstly carried out to investigate the inhibition effect of catalase. During the fluorescence quenching study, after correcting the inner filter effect (IFE), the fluorescence of BLC was found to be quenched by Cu(2+). The quenching mechanism was determined by fluorescence lifetime measurement, and was confirmed to be the dynamic mode. The secondary structure content of BLC was changed by the addition of Cu(2+), as revealed by UV-vis absorption and CD spectra, which further induces the decrease in BLC activity. Molecular simulation study indicates that Cu(2+) is located between two β-sheets and two random coils of BLC near to the heme group, and interacts with His 74 and Ser 113 residues near a hydrophilic area. The decrease of α-helix and the binding of His 74 are considered to be the major reason for the inhibition of BLC activity caused by Cu(2+). The ITC results indicate that the binding stoichiometry of Cu(2+) to catalase is 11.4. Moreover, the binding of Cu(2+) to BLC destroyed H-bonds, which was confirmed by the CD result. PMID:25618814

  6. Superoxide dismutase and catalase conjugated to polyethylene glycol increases endothelial enzyme activity and oxidant resistance

    SciTech Connect

    Beckman, J.S.; Minor, R.L. Jr.; White, C.W.; Repine, J.E.; Rosen, G.M.; Freeman, B.A.

    1988-05-15

    Covalent conjugation of superoxide dismutase and catalase with polyethylene glycol (PEG) increases the circulatory half-lives of these enzymes from <10 min to 40 h, reduced immunogenicity, and decreases sensitivity to proteolysis. Because PEG has surface active properties and can induce cell fusion, the authors hypothesized that PEG conjugation could enhance cell binding and association of normally membrane-impermeable enzymes. Incubation of cultured porcine aortic endothelial cells with /sup 125/I-PEG-catalase or /sup 125/I-PEG-superoxide dismutase produced a linear, concentration-dependent increase in cellular enzyme activity and radioactivity. Fluorescently labeled PEG-superoxide dismutase incubated with endothelial cells showed a vesicular localization. Mechanical injury to cell monolayers, which is known to stimulate endocytosis, further increased the uptake of fluorescent PEG-superoxide dismutase. Addition of PEG and PEG-conjugated enzymes perturbed the spin-label binding environment, indicative of producing an increase in plasma membrane fluidity. Thus, PEG conjugation to superoxide dismutase and catalase enhances cell association of these enzymes in a manner which increases cellular enzyme activities and provides prolonged protection from partially reduced oxygen species.

  7. Catalase-like activity of horseradish peroxidase: relationship to enzyme inactivation by H2O2.

    PubMed Central

    Hernández-Ruiz, J; Arnao, M B; Hiner, A N; García-Cánovas, F; Acosta, M

    2001-01-01

    H2O2 is the usual oxidizing substrate of horseradish peroxidase C (HRP-C). In the absence in the reaction medium of a one-electron donor substrate, H2O2 is able to act as both oxidizing and reducing substrate. However, under these conditions the enzyme also undergoes a progressive loss of activity. There are several pathways that maintain the activity of the enzyme by recovering the ferric form, one of which is the decomposition of H2O2 to molecular oxygen in a similar way to the action of catalase. This production of oxygen has been kinetically characterized with a Clark-type electrode coupled to an oxygraph. HRP-C exhibits a weak catalase-like activity, the initial reaction rate of which is hyperbolically dependent on the H2O2 concentration, with values for K(2) (affinity of the first intermediate, compound I, for H2O2) and k(3) (apparent rate constant controlling catalase activity) of 4.0 +/- 0.6 mM and 1.78 +/- 0.12 s(-1) respectively. Oxygen production by HRP-C is favoured at pH values greater than approx. 6.5; under similar conditions HRP-C is also much less sensitive to inactivation during incubations with H2O2. We therefore suggest that this pathway is a major protective mechanism of HRP-C against such inactivation. PMID:11171085

  8. katGI and katGII encode two different catalases-peroxidases in Mycobacterium fortuitum.

    PubMed

    Menéndez, M C; Ainsa, J A; Martín, C; García, M J

    1997-11-01

    It has been suggested that catalase-peroxidase plays an important role in several aspects of mycobacterial metabolism and is a virulence factor in the main pathogenic mycobacteria. In this investigation, we studied genes encoding for this protein in the fast-growing opportunistic pathogen Mycobacterium fortuitum. Nucleotide sequences of two different catalase-peroxidase genes (katGI and katGII) of M. fortuitum are described. They show only 64% homology at the nucleotide level and 55% identity at the amino acid level, and they are more similar to catalases-peroxidases from different bacteria, including mycobacteria, than to each other. Both proteins were found to be expressed in actively growing M. fortuitum, and both could also be expressed when transformed into Escherichia coli and M. aurum. We detected the presence of a copy of IS6100 in the neighboring region of a katG gene in the M. fortuitum strain in which this element was identified (strain FC1). The influence of each katG gene on isoniazid (isonicotinic acid hydrazide; INH) susceptibility of mycobacteria was checked by using the INH-sensitive M. aurum as the host. Resistance to INH was induced when katGI was transformed into INH-sensitive M. aurum, suggesting that this enzyme contributes to the natural resistance of M. fortuitum to the drug. This is the first report showing two different genes encoding same enzyme activity which are actively expressed within the same mycobacterial strain. PMID:9371430

  9. Purification and characterization of recombinant catalase-peroxidase, which confers isoniazid sensitivity in Mycobacterium tuberculosis.

    PubMed

    Nagy, J M; Cass, A E; Brown, K A

    1997-12-12

    The Mycobacterium tuberculosis katG gene encodes a dual-function enzyme called catalase-peroxidase, which confers sensitivity in M. tuberculosis to isonicotinic acid hydrazide. We have constructed a system for the high level expression of a recombinant form of this enzyme by amplifying the katG gene from the pYZ56 construct (1) and subcloning into a vector suitable for expression in Escherichia coli. The resulting plasmid, pTBCP, produced the catalase-peroxidase in large quantities, corresponding to 30% of total cell protein. The enzyme has been purified to homogeneity and appears to be a dimer in the native form. Using either hydrogen peroxide or t-butyl hydroperoxide and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) as substrates, kcat and Km values have been obtained for both catalatic and peroxidatic activities, respectively. The availability of significant quantities of an active, folded, recombinant form of M. tuberculosis catalase-peroxidase should thus facilitate future studies of its role in drug activation and antibiotic resistance. PMID:9395452

  10. Murine and human b locus pigmentation genes encode a glycoprotein (gp75) with catalase activity

    SciTech Connect

    Halaban, R.; Moellmann, G. )

    1990-06-01

    Melanogenesis is regulated in large part by tyrosinase, and defective tyrosinase leads to albinism. The mechanisms for other pigmentation determinants (e.g., those operative in tyrosinase-positive albinism and in murine coat-color mutants) are not yet known. One murine pigmentation gene, the brown (b) locus, when mutated leads to a brown (b/b) or hypopigmentated (B{sup lt}/B{sup lt}) coat versus the wild-type black (B/B). The authors show that the b locus codes for a glycoprotein with the activity of a catalase (catalase B). Only the c locus protein is a tyrosinase. Because peroxides may be by-products of melanogenic activity and hydrogen peroxide in particular is known to destroy melanin precursors and melanin, they conclude that pigmentation is controlled not only by tyrosinase but also by a hydroperoxidase. The studies indicate that catalase B is identical with gp75, a known human melanosomal glycoprotein; that the b mutation is in a heme-associated domain; and that the B{sup lt} mutation renders the protein susceptible to rapid proteolytic degradation.

  11. Role of phosphate on stability and catalase mimetic activity of cerium oxide nanoparticles.

    PubMed

    Singh, Ragini; Singh, Sanjay

    2015-08-01

    Cerium oxide nanoparticles (CeNPs) have been recently shown to scavenge reactive oxygen and nitrogen species (ROS and RNS) in different experimental model systems. CeNPs (3+) and CeNPs (4+) have been shown to exhibit superoxide dismutase (SOD) and catalase mimetic activity, respectively. Due to their nanoscale dimension, CeNPs are expected to interact with the components of biologically relevant buffers and medium, which could alter their catalytic properties. We have demonstrated earlier that CeNPs (3+) interact with phosphate and lose the SOD activity. However, very little is known about the interaction of CeNPs (4+) with the phosphate and other anions, predominantly present in biological buffers and their effects on the catalase mimetic-activity of these nanoparticles. In this study, we report that catalase mimetic-activity of CeNPs (4+) is resistant to the phosphate anions, pH changes and composition of cell culture media. Given the abundance of phosphate anions in the biological system, it is likely that internalized CeNPs would be influenced by cytoplasmic and nucleoplasmic concentration of phosphate. PMID:26011425

  12. Understanding the role of the catalase/peroxide genes in H2O2 resistance of E. coli serotype O157:H7 biofilms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Escherichia coli serotype O157:H7 defenses against H2O2 include the peroxiredoxin AhpC and three catalases: KatG (catalase-peroxidase), KatE (catalase), and the plasmid-encoded KatP (catalase/peroxidase). AhpC, KatG, and KatP are induced by OxyR in exponential phase, while KatE is indu...

  13. Specific Function of the Met-Tyr-Trp Adduct Radical and Residues Arg-418 and Asp-137 in the Atypical Catalase Reaction of Catalase-Peroxidase KatG*

    PubMed Central

    Zhao, Xiangbo; Khajo, Abdelahad; Jarrett, Sanchez; Suarez, Javier; Levitsky, Yan; Burger, Richard M.; Jarzecki, Andrzej A.; Magliozzo, Richard S.

    2012-01-01

    Catalase activity of the dual-function heme enzyme catalase-peroxidase (KatG) depends on several structural elements, including a unique adduct formed from covalently linked side chains of three conserved amino acids (Met-255, Tyr-229, and Trp-107, Mycobacterium tuberculosis KatG numbering) (MYW). Mutagenesis, electron paramagnetic resonance, and optical stopped-flow experiments, along with calculations using density functional theory (DFT) methods revealed the basis of the requirement for a radical on the MYW-adduct, for oxyferrous heme, and for conserved residues Arg-418 and Asp-137 in the rapid catalase reaction. The participation of an oxyferrous heme intermediate (dioxyheme) throughout the pH range of catalase activity is suggested from our finding that carbon monoxide inhibits the activity at both acidic and alkaline pH. In the presence of H2O2, the MYW-adduct radical is formed normally in KatG[D137S] but this mutant is defective in forming dioxyheme and lacks catalase activity. KatG[R418L] is also catalase deficient but exhibits normal formation of the adduct radical and dioxyheme. Both mutants exhibit a coincidence between MYW-adduct radical persistence and H2O2 consumption as a function of time, and enhanced subunit oligomerization during turnover, suggesting that the two mutations disrupting catalase turnover allow increased migration of the MYW-adduct radical to protein surface residues. DFT calculations showed that an interaction between the side chain of residue Arg-418 and Tyr-229 in the MYW-adduct radical favors reaction of the radical with the adjacent dioxyheme intermediate present throughout turnover in WT KatG. Release of molecular oxygen and regeneration of resting enzyme are thereby catalyzed in the last step of a proposed catalase reaction. PMID:22918833

  14. 4-Hydroxy-2-nonenal upregulates endogenous antioxidants and phase 2 enzymes in rat H9c2 myocardiac cells: protection against overt oxidative and electrophilic injury.

    PubMed

    Zhu, Hong; Zhang, Li; Xi, Xiaoqing; Zweier, Jay L; Li, Yunbo

    2006-08-01

    This study was undertaken to determine if 4-hydroxy-2-nonenal (HNE) could upregulate antioxidants and phase 2 enzymes in rat H9c2 myocardiac cells, and if the upregulated defenses led to cytoprotection against oxidative and electrophilic injury. Incubation of H9c2 cells with HNE at noncytotoxic concentrations resulted in significant induction of cellular catalase, glutathione (GSH), GSH S-transferase (GST), and NAD(P)H:quinone oxidoreductase 1 (NQO1), as determined by enzyme activity and/or protein expression. HNE treatment caused increased mRNA expression of catalase, gamma-glutamylcysteine ligase, GST-A1, and NQO1. Pretreatment of H9c2 cells with HNE led to significant protection against cytotoxicity induced by reactive oxygen and nitrogen species. HNE-pretreated cells also exhibited increased resistance to injury elicited by subsequent cytotoxic concentrations of HNE. Taken together, this study demonstrates that several antioxidants and phase 2 enzymes in H9c2 cells are upregulated by HNE and that the increased defenses afford protection against overt oxidative and electrophilic cardiac cell injury. PMID:17015266

  15. Delivery of bioactive macromolecules from microporous polymer matrices: Release and activity profiles of lysozyme, collagenase and catalase.

    PubMed

    Wang, Yiwei; Chang, Hsin-I; Li, Xiongwei; Alpar, Oyar; Coombes, Allan G A

    2009-06-28

    Microporous polycaprolactone (PCL) matrices containing lysozyme, collagenase and catalase respectively with molecular weight covering a wide range from 14.3 to 240kDa were produced by a novel method involving rapid cooling of particle suspensions in dry ice. The enzyme loading efficiency (lysozyme (50%), collagenase (75%) and catalase (90%)) depended on the enzyme molecular weight and the non-solvent used to extract acetone from the hardened matrices. Sustained enzyme release occurred from the PCL matrices over 11 days with retained activity dependent on the particular enzyme used (collagenase 100% activity at 11 days, lysozyme 75-80% at 11 days, catalase 10-20% at 5 days). The present findings confirm the potential of microporous PCL matrices for delivering bioactive macromolecules from implantable/insertable depot-type formulations and tissue engineering scaffolds and recommend catalase as a challenging model protein for evaluating such devices. PMID:19491030

  16. Increasing the endogenous NO level causes catalase inactivation and reactivation of intercellular apoptosis signaling specifically in tumor cells

    PubMed Central

    Bauer, Georg

    2015-01-01

    Tumor cells generate extracellular superoxide anions and are protected against intercellular apoptosis-inducing HOCl- and NO/peroxynitrite signaling through the expression of membrane-associated catalase. This enzyme decomposes H2O2 and thus prevents HOCl synthesis. It efficiently interferes with NO/peroxynitrite signaling through oxidation of NO and decomposition of peroxynitrite. The regulatory potential of catalase at the crosspoint of ROS and RNS chemical biology, as well as its high local concentration on the outside of the cell membrane of tumor cells, establish tight control of intercellular signaling and thus prevent tumor cell apoptosis. Therefore, inhibition of catalase or its inactivation by singlet oxygen reactivate intercellular apoptosis-inducing signaling. Nitric oxide and peroxynitrite are connected with catalase in multiple and meaningful ways, as (i) NO can be oxidated by compound I of catalase, (ii) NO can reversibly inhibit catalase, (iii) peroxynitrite can be decomposed by catalase and (iv) the interaction between peroxynitrite and H2O2 leads to the generation of singlet oxygen that inactivates catalase. Therefore, modulation of the concentration of free NO through addition of arginine, inhibition of arginase, induction of NOS expression or inhibition of NO dioxygenase triggers an autoamplificatory biochemical cascade that is based on initial formation of singlet oxygen, amplification of superoxide anion/H2O2 and NO generation through singlet oxygen dependent stimulation of the FAS receptor and caspase-8. Finally, singlet oxygen is generated at sufficiently high concentration to inactivate protective catalase and to reactivate intercellular apoptosis-inducing ROS signaling. This regulatory network allows to establish several pathways for synergistic interactions, like the combination of modulators of NO metabolism with enhancers of superoxide anion generation, modulators of NO metabolism that act at different targets and between modulators of

  17. Increasing the endogenous NO level causes catalase inactivation and reactivation of intercellular apoptosis signaling specifically in tumor cells.

    PubMed

    Bauer, Georg

    2015-12-01

    Tumor cells generate extracellular superoxide anions and are protected against intercellular apoptosis-inducing HOCl- and NO/peroxynitrite signaling through the expression of membrane-associated catalase. This enzyme decomposes H2O2 and thus prevents HOCl synthesis. It efficiently interferes with NO/peroxynitrite signaling through oxidation of NO and decomposition of peroxynitrite. The regulatory potential of catalase at the crosspoint of ROS and RNS chemical biology, as well as its high local concentration on the outside of the cell membrane of tumor cells, establish tight control of intercellular signaling and thus prevent tumor cell apoptosis. Therefore, inhibition of catalase or its inactivation by singlet oxygen reactivate intercellular apoptosis-inducing signaling. Nitric oxide and peroxynitrite are connected with catalase in multiple and meaningful ways, as (i) NO can be oxidated by compound I of catalase, (ii) NO can reversibly inhibit catalase, (iii) peroxynitrite can be decomposed by catalase and (iv) the interaction between peroxynitrite and H2O2 leads to the generation of singlet oxygen that inactivates catalase. Therefore, modulation of the concentration of free NO through addition of arginine, inhibition of arginase, induction of NOS expression or inhibition of NO dioxygenase triggers an autoamplificatory biochemical cascade that is based on initial formation of singlet oxygen, amplification of superoxide anion/H2O2 and NO generation through singlet oxygen dependent stimulation of the FAS receptor and caspase-8. Finally, singlet oxygen is generated at sufficiently high concentration to inactivate protective catalase and to reactivate intercellular apoptosis-inducing ROS signaling. This regulatory network allows to establish several pathways for synergistic interactions, like the combination of modulators of NO metabolism with enhancers of superoxide anion generation, modulators of NO metabolism that act at different targets and between modulators of

  18. Purification, cloning, expression, and biochemical characterization of a monofunctional catalase, KatP, from Pigmentiphaga sp. DL-8.

    PubMed

    Dong, Weiliang; Hou, Ying; Li, Shuhuan; Wang, Fei; Zhou, Jie; Li, Zhoukun; Wang, Yicheng; Huang, Fei; Fu, Lei; Huang, Yan; Cui, Zhongli

    2015-04-01

    Catalases are essential components of the cellular equipment used to cope with oxidative stress. The monofunctional catalase KatP was purified from Pigmentiphaga sp. using ammonium sulfate precipitation (ASP), diethylaminoethyl ion exchange chromatography (IEC), and hydrophobic interaction chromatography (HIC). The purified catalase formed polymer with an estimated monomer molecular mass of 54kDa, which were resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and zymogram analysis. KatP exhibited a specific catalytic activity of 73,000U/mg, which was higher than that of catalase-1 of Comamonas terrigena N3H (55,900U/mg). Seven short tryptic fragments of this catalase were obtained by electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-Q-TOF MS/MS), and the gene, katP, was cloned by PCR amplification and overexpressed in Escherichia coli BL21 (DE3). Based on the complete amino acid sequence, KatP was identified as a clade 3 monofunctional catalase. The specific activities of recombinant KatP for hydrogen peroxide (690,000U/mg) increased 9-fold over that of the parent strain. The Km and Vmax of recombinant KatP were 9.48mM and 81.2mol/minmg, respectively. The optimal pH and temperature for KatP were 7.0 and 37°C, respectively, and the enzyme displayed abroad pH-stable range of 4.0-11.0. The enzyme was inhibited by Zn(2+), Cu(2+), Cr(2+), and Mn(2+), whereas Fe(3+) and Mg(2+) stimulated KatP enzymatic activity. Interestingly, the catalase activity of recombinant KatP displayed high stability under different temperature and pH conditions, suggesting that KatP is a potential candidate for the production of catalase. PMID:25665507

  19. Release time of residual oxygen after dental bleaching with 35% hydrogen peroxide: effect of a catalase-based neutralizing agent.

    PubMed

    Guasso, Bárbara; Salomone, Paloma; Nascimento, Paulo Cícero; Pozzobon, Roselaine Terezinha

    2016-01-01

    This article assessed the effect of a catalase-based agent on residual oxygen (O2) release from teeth exposed to 35% hydrogen peroxide (H2O2). The use of the catalase-based neutralizer agent for 2-3 minutes was able to release residual O2 5 days after exposure to a 35% H2O2-based bleaching gel. PMID:27148658

  20. NADPH binding and control of catalase compound II formation: comparison of bovine, yeast, and Escherichia coli enzymes.

    PubMed Central

    Hillar, A; Nicholls, P; Switala, J; Loewen, P C

    1994-01-01

    1. NADPH binds to bovine catalase and to yeast catalases A and T, but not to Escherichia coli catalase HPII. The association was demonstrated using chromatography and fluorimetry. Bound NADPH fluoresces in a similar way to NADPH in solution. 2. Bound NADPH protects bovine and yeast catalases against forming inactive peroxide compound II either via endogenous reductant action or by ferrocyanide reduction during catalytic activity in the presence of slowly generated peroxide. 3. Bound NADPH reduces neither compound I nor compound II of catalase. It apparently reacts with an intermediate formed during the decay of compound I to compound II; this postulated intermediate is an immediate precursor of stable compound II either when the latter is formed by endogenous reductants or when ferrocyanide is used. It represents therefore a new type of hydrogen donor that is not included in the original classification of Keilin and Nicholls [Keilin, D. and Nicholls, P. (1958) Biochim. Biophys. Acta 29, 302-307] 4. A model for NADPH action is presented in which concerted reduction of the ferryl iron and of a neighbouring protein free radical is responsible for the observed NADPH effects. The roles of migrant radical species in mammalian and yeast catalases are compared with similar events in metmyoglobin and cytochrome c peroxidase reactions with peroxides. Images Figure 1 PMID:8002960

  1. Cloning, sequence, and phenotypic expression of katA, which encodes the catalase of Lactobacillus sake LTH677.

    PubMed Central

    Knauf, H J; Vogel, R F; Hammes, W P

    1992-01-01

    Lactobacillus sake LTH677 is a strain, isolated from fermented sausage, which forms a heme-dependent catalase. This rare property is highly desirable in sausage fermentation, as it prevents rancidity and discoloration caused by hydrogen peroxide. A gene bank containing MboI fragments of chromosomal DNA from Lactobacillus sake LTH677 in Escherichia coli plasmid pBR328 was constructed. The catalase gene was cloned by heterologous complementation of the Kat- phenotype of E. coli UM2. The catalase structural gene, designated katA, was assigned to a 2.3-kb region by deletion analysis of the originally cloned fragment in plasmid pHK1000. The original chromosomal arrangement was determined by Southern hybridization. Protein analysis revealed that the catalase subunit has a molecular size of 65,000 Da and that the active catalase possesses a hexameric structure. The molecular size of the subunit deduced from the nucleotide sequence was determined to 54,504 Da. The N-terminal amino acid sequence of the 65,000-Da protein corresponded to the one deduced from the DNA sequence. After recloning of katA in the E. coli-Lactococcus shuttle vector pGKV210, the gene was successfully transferred and phenotypically expressed in Lactobacillus casei, which is naturally deficient in catalase activity. Images PMID:1575485

  2. Layer-by-layer immobilized catalase on electrospun nanofibrous mats protects against oxidative stress induced by hydrogen peroxide.

    PubMed

    Huang, Rong; Deng, Hongbing; Cai, Tongjian; Zhan, Yingfei; Wang, Xiankai; Chen, Xuanxuan; Ji, Ailing; Lil, Xueyong

    2014-07-01

    Catalase, a kind of redox enzyme and generally recognized as an efficient agent for protecting cells against hydrogen peroxide (H2O2)-induced cytotoxicity. The immobilization of catalase was accomplished by depositing the positively charged chitosan and the negatively charged catalase on electrospun cellulose nanofibrous mats through electrospining and layer-by-layer (LBL) techniques. The morphology obtained from Field emission scanning electron microscopy (FE-SEM) indicated that more orderly arranged three-dimension (3D) structure and roughness formed with increasing the number of coating bilayers. Besides, the enzyme-immobilized nanofibrous mats were found with high enzyme loading and activity, moreover, X-ray photoelectron spectroscopy (XPS) results further demonstrated the successful immobilization of chitosan and catalase on cellulose nanofibers support. Furthermore, we evaluated the cytotoxicity induced by hydrogen peroxide in the Human umbilical vascular endothelial cells with or without pretreatment of nanofibrous mats by MTT assay, LDH activity and Flow cytometric evaluation, and confirmed the pronounced hydrogen peroxide-induced toxicity, but pretreatment of immobilized catalase reduced the cytotoxicity and protected cells against hydrogen peroxide-induced cytotoxic effects which were further demonstrated by scanning electron microscopy (SEM) and Transmission Electron Microscopy (TEM) images. The data pointed toward a role of catalase-immobilized nanofibrous mats in protecting cells against hydrogen peroxide-induced cellular damage and their potential application in biomedical field. PMID:24804555

  3. Two temporally synthesized charge subunits interact to form the five isoforms of cottonseed (Gossypium hirsutum) catalase.

    PubMed Central

    Ni, W; Trelease, R N; Eising, R

    1990-01-01

    Five charge isoforms of tetrameric catalase were isolated from cotyledons of germinated cotton (Gossypium hirsutum L.) seedlings. Denaturing isoelectric focusing of the individual isoforms in polyacrylamide gels indicated that isoforms A (most anodic) and E (most cathodic) consisted of one subunit of different charge, whereas isoforms B, C and D each consisted of a mixture of these two subunits. Thus the five isoforms apparently were formed through combinations of two subunits in different ratios. Labelling cotyledons in vivo with [35S]methionine at three daily intervals in the dark, and translation in vivo of polyadenylated RNA isolated from cotyledons at the same ages, revealed synthesis of two different subunits. One of the subunits was synthesized in cotyledons at all ages studied (days 1-3), whereas the other subunit was detected only at days 2 and 3. This differential expression of two catalase subunits helped explain previous results from this laboratory showing that the two anodic forms (A and B) found in maturing seeds were supplemented with three cathodic forms (C-E) after the seeds germinated. These subunit data also helped clarify our new findings that proteins of isoforms A, B and C (most active isoforms) accumulated in cotyledons of plants kept in the dark for 3 days, then gradually disappeared during the next several days, whereas isoforms D and E (least active isoforms) remained in the cells. This shift in isoform pattern occurred whether seedlings were kept in the dark or exposed to continuous light after day 3, although exposure to light enhanced this process. These sequential molecular events were responsible for the characteristic developmental changes (rise and fall) in total catalase activity. We believe that the isoform changeover is physiologically related to the changeover in glyoxysome to leaf-type-peroxisome metabolism. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:1695843

  4. Highly Active and Stable Large Catalase Isolated from a Hydrocarbon Degrading Aspergillus terreus MTCC 6324

    PubMed Central

    Vatsyayan, Preety; Goswami, Pranab

    2016-01-01

    A hydrocarbon degrading Aspergillus terreus MTCC 6324 produces a high level of extremely active and stable cellular large catalase (CAT) during growth on n-hexadecane to combat the oxidative stress caused by the hydrocarbon degrading metabolic machinery inside the cell. A 160-fold purification with specific activity of around 66 × 105 U mg−1 protein was achieved. The native protein molecular mass was 368 ± 5 kDa with subunit molecular mass of nearly 90 kDa, which indicates that the native CAT protein is a homotetramer. The isoelectric pH (pI) of the purified CAT was 4.2. BLAST aligned peptide mass fragments of CAT protein showed its highest similarity with the catalase B protein from other fungal sources. CAT was active in a broad range of pH 4 to 12 and temperature 25°C to 90°C. The catalytic efficiency (Kcat/Km) of 4.7 × 108 M−1 s−1 within the studied substrate range and alkaline pH stability (half-life, t1/2 at pH 12~15 months) of CAT are considerably higher than most of the extensively studied catalases from different sources. The storage stability (t1/2) of CAT at physiological pH 7.5 and 4°C was nearly 30 months. The haem was identified as haem b by electrospray ionization tandem mass spectroscopy (ESI-MS/MS). PMID:27057351

  5. Highly Active and Stable Large Catalase Isolated from a Hydrocarbon Degrading Aspergillus terreus MTCC 6324.

    PubMed

    Vatsyayan, Preety; Goswami, Pranab

    2016-01-01

    A hydrocarbon degrading Aspergillus terreus MTCC 6324 produces a high level of extremely active and stable cellular large catalase (CAT) during growth on n-hexadecane to combat the oxidative stress caused by the hydrocarbon degrading metabolic machinery inside the cell. A 160-fold purification with specific activity of around 66 × 10(5) U mg(-1) protein was achieved. The native protein molecular mass was 368 ± 5 kDa with subunit molecular mass of nearly 90 kDa, which indicates that the native CAT protein is a homotetramer. The isoelectric pH (pI) of the purified CAT was 4.2. BLAST aligned peptide mass fragments of CAT protein showed its highest similarity with the catalase B protein from other fungal sources. CAT was active in a broad range of pH 4 to 12 and temperature 25°C to 90°C. The catalytic efficiency (K cat/K m ) of 4.7 × 10(8) M(-1) s(-1) within the studied substrate range and alkaline pH stability (half-life, t 1/2 at pH 12~15 months) of CAT are considerably higher than most of the extensively studied catalases from different sources. The storage stability (t 1/2) of CAT at physiological pH 7.5 and 4°C was nearly 30 months. The haem was identified as haem b by electrospray ionization tandem mass spectroscopy (ESI-MS/MS). PMID:27057351

  6. Respiration triggers heme transfer from cytochrome c peroxidase to catalase in yeast mitochondria.

    PubMed

    Kathiresan, Meena; Martins, Dorival; English, Ann M

    2014-12-01

    In exponentially growing yeast, the heme enzyme, cytochrome c peroxidase (Ccp1) is targeted to the mitochondrial intermembrane space. When the fermentable source (glucose) is depleted, cells switch to respiration and mitochondrial H2O2 levels rise. It has long been assumed that CCP activity detoxifies mitochondrial H2O2 because of the efficiency of this activity in vitro. However, we find that a large pool of Ccp1 exits the mitochondria of respiring cells. We detect no extramitochondrial CCP activity because Ccp1 crosses the outer mitochondrial membrane as the heme-free protein. In parallel with apoCcp1 export, cells exhibit increased activity of catalase A (Cta1), the mitochondrial and peroxisomal catalase isoform in yeast. This identifies Cta1 as a likely recipient of Ccp1 heme, which is supported by low Cta1 activity in ccp1Δ cells and the accumulation of holoCcp1 in cta1Δ mitochondria. We hypothesized that Ccp1's heme is labilized by hyperoxidation of the protein during the burst in H2O2 production as cells begin to respire. To test this hypothesis, recombinant Ccp1 was hyperoxidized with excess H2O2 in vitro, which accelerated heme transfer to apomyoglobin added as a surrogate heme acceptor. Furthermore, the proximal heme Fe ligand, His175, was found to be ∼ 85% oxidized to oxo-histidine in extramitochondrial Ccp1 isolated from 7-d cells, indicating that heme labilization results from oxidation of this ligand. We conclude that Ccp1 responds to respiration-derived H2O2 via a previously unidentified mechanism involving H2O2-activated heme transfer to apoCta1. Subsequently, the catalase activity of Cta1, not CCP activity, contributes to mitochondrial H2O2 detoxification. PMID:25422453

  7. Pharmacokinetics and stability properties of catalase modified with water-soluble polysaccharides.

    PubMed

    Valdivia, Aymara; Pérez, Yunel; Gómez, Leissy; Ramírez, Hector L; Schacht, Etienne H; Villalonga, Reynaldo

    2006-07-01

    Bovine liver catalase (EC 1.11.1.6) was chemically modified with mannan, carboxymethylcellulose, and carboxymethylchitin. The enzyme retained about 48-97% of the initial specific activity after glycosidation with the polysaccharides. The prepared neoglycoenzyme was 1.9-5.7 fold more stable against the thermal inactivation processes at 55 degrees C, in comparison with the native counterpart. Also, the modified enzyme was more resistant to proteolytic degradation with trypsin. Pharmacokinetics studies revealed higher plasma half-life time for all the enzyme-polymer preparations, but better results were achieved for the enzyme modified with the anionic macromolecules. PMID:16838281

  8. Extraction of Erythrocyte Enzymes for the Preparation of Polyhemoglobin-catalase-superoxide Dismutase

    PubMed Central

    Gu, Jingsong; Chang, Thomas Ming Swi

    2012-01-01

    In sustained severe ischemia, reperfusion with oxygen carriers may result in ischemia-reperfusion injuries because of the release of damaging oxygen radicals. A nanobiotechnology-based polyhemogloin-calatase-superoxide dismutase can prevent this because the oxygen carrier, polyhemoglobin, is linked to antioxidant enzymes, catalase and superoxide dismutase. However, these antioxidant enzymes come from nonhuman sources and recombinant human enzymes are expensive. This paper describes our study on extracting these enzymes from red blood cells and analyzing the amount of enzymes needed for adequate protection from ischemia-reperfusion. PMID:19229698

  9. X-ray diffraction study of Penicillium Vitale catalase in the complex with aminotriazole

    SciTech Connect

    Borovik, A. A.; Grebenko, A. I.; Melik-Adamyan, V. R.

    2011-07-15

    The three-dimensional structure of the enzyme catalase from Penicillium vitale in a complex with the inhibitor aminotriazole was solved and refined by protein X-ray crystallography methods. An analysis of the three-dimensional structure of the complex showed that the inhibition of the enzyme occurs as a result of the covalent binding of aminotriazole to the amino-acid residue His64 in the active site of the enzyme. An investigation of the three-dimensional structure of the complex resulted in the amino-acid residues being more precisely identified. The binding sites of saccharide residues and calcium ions in the protein molecule were found.

  10. Activity of Superoxide Dismutase and Catalase in Fenugreek (Trigonella foenum-graecum) in Response to Carbendazim.

    PubMed

    Sangeetha, R

    2010-01-01

    Fenugreek (Trigonella foenum-graecum) is an annual herb, used as a spice and traditionally as medicine. Fenugreek finds its uses in treating hyperglycemia, hyperlipidemia and disorders of gastro-intestinal and cardiovascular systems. Fenugreek cultivation in India is affected by fungal diseases like root-rot and damping-off and fungicides like carbendazim are used to overcome these infections. Fungicides play both positive and negative role in plants; fungicides protect plants from diseases and also exert oxidative stress simultaneously. This report is on the response of antioxidants, superoxide dismutase and catalase in fenugreek seeds and plants treated to different concentrations of carbendazim. PMID:20582202

  11. Dynamics of the reaction glucose-catalase-glucose oxidase-hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Číp, M.; Schreiberová, L.; Schreiber, I.

    2011-12-01

    Glucose-catalase-glucose oxidase-hydrogen peroxide reaction is one of the few known enzymatic systems studied in vitro in the field of nonlinear chemical dynamics. This reaction belongs to the family of oscillatory enzymatic reactions, which form a natural basis of oscillations in biological systems. A parametric study of dependence on mixing, temperature and initial concentrations of components in a batch stirred reactor was carried out. A newly proposed mathematical model of the reaction conforms to the obtained experimental data. Results of our experiments and simulations hint at further directions of research of non-linear dynamics in this reaction.

  12. Biomimetic Mn-Catalases Based on Dimeric Manganese Complexes in Mesoporous Silica for Potential Antioxidant Agent.

    PubMed

    Escriche-Tur, Luis; Corbella, Montserrat; Font-Bardia, Mercè; Castro, Isabel; Bonneviot, Laurent; Albela, Belén

    2015-11-01

    Two new structural and functional models of the Mn-catalase with formula [{Mn(III)(bpy)(H2O)}(μ-2-MeOC6H4CO2)2(μ-O){Mn(III)(bpy)(X)}]X, where X = NO3 (1) and ClO4 (2) and bpy = 2,2'-bipyridine, were synthesized and characterized by X-ray diffraction. In both cases, a water molecule and an X ion occupy the monodentate positions. The magnetic properties of these compounds reveal a weak antiferromagnetic behavior (2J = -2.2 cm(-1) for 1 and -0.7 cm(-1) for 2, using the spin Hamiltonian H = -2J S1·S2) and negative zero-field splitting parameter DMn (-4.6 cm(-1) and -3.0 cm(-1) for 1 and 2, respectively). This fact, together with the nearly orthogonal orientation of the Jahn-Teller axes of the Mn(III) ions explain the unusual shape of χMT versus T plot at low temperature. Compound 1 presents a better catalase activity than 2 in CH3CN-H2O media, probably due to a beneficial interaction of the NO3(-) ion with the Mn complex in solution. These compounds were successfully inserted inside two-dimensional hexagonal mesoporous silica (MCM-41 type) leading to the same hybrid material ([Mn2O]@SiO2), without the X group. The manganese complex occupies approximately half of the available pore volume, keeping the silica's hexagonal array intact. Magnetic measurements of [Mn2O]@SiO2 suggest that most of the dinuclear unit is preserved, as a non-negligible interaction between Mn ions is still observed. The X-ray photoelectron spectroscopy analysis of the Mn 3s peak confirms that Mn remains as Mn(III) inside the silica. The catalase activity study of material [Mn2O]@SiO2 reveals that the complex is more active inside the porous silica, probably due to the surface silanolate groups of the pore wall. Moreover, the new material shows catalase activity in water media, while the coordination compounds are not active. PMID:26484833

  13. Genome-wide Screening of Regulators of Catalase Expression: ROLE OF A TRANSCRIPTION COMPLEX AND HISTONE AND tRNA MODIFICATION COMPLEXES ON ADAPTATION TO STRESS.

    PubMed

    García, Patricia; Encinar Del Dedo, Javier; Ayté, José; Hidalgo, Elena

    2016-01-01

    In response to environmental cues, the mitogen-activated protein kinase Sty1-driven signaling cascade activates hundreds of genes to induce a robust anti-stress cellular response in fission yeast. Thus, upon stress imposition Sty1 transiently accumulates in the nucleus where it up-regulates transcription through the Atf1 transcription factor. Several regulators of transcription and translation have been identified as important to mount an integral response to oxidative stress, such as the Spt-Ada-Gcn5-acetyl transferase or Elongator complexes, respectively. With the aim of identifying new regulators of this massive gene expression program, we have used a GFP-based protein reporter and screened a fission yeast deletion collection using flow cytometry. We find that the levels of catalase fused to GFP, both before and after a threat of peroxides, are altered in hundreds of strains lacking components of chromatin modifiers, transcription complexes, and modulators of translation. Thus, the transcription elongation complex Paf1, the histone methylase Set1-COMPASS, and the translation-related Trm112 dimers are all involved in full expression of Ctt1-GFP and in wild-type tolerance to peroxides. PMID:26567340

  14. Relationship between the size of the bottleneck 15 A from iron in the main channel and the reactivity of catalase corresponding to the molecular size of substrates.

    PubMed

    Hara, Isao; Ichise, Nobutoshi; Kojima, Kiyoshi; Kondo, Hidemasa; Ohgiya, Satoru; Matsuyama, Hidetoshi; Yumoto, Isao

    2007-01-01

    A catalase that exhibits a high level of activity and a rapid reaction with organic peroxides has been purified from Exiguobacterium oxidotolerans T-2-2T (EKTA catalase). The amino acid sequence of EKTA catalase revealed that it is a novel clade 1 catalase. Amino acid residues in the active site around the protoheme are conserved in the primary structure of EKTA catalase. Although the general interactions of molecules larger than hydrogen peroxide with catalases are strongly inhibited because of the selection role of long and narrow channels in the substrate reaching the active site, the formation rate of reactive intermediates (compound I) in the reaction of EKTA catalase with peracetic acid is 77 times higher than that of bovine liver catalase (BLC) and 1200 times higher than that of Micrococcus luteus catalase (MLC). The crystal structure of EKTA catalase has been determined and refined to 2.4 A resolution. The main channel structure of EKTA catalase is different from those of BLC and MLC. The rate constant of compound I formation in catalases decreased with an increase in the molecular size of the substrate. For EKTA catalase with a larger bottleneck 15 A from the iron (entrance of narrow channel) in the main channel, a lower rate of reduction in compound I formation rate with an increase in the molecular size of substrates was found. The increase in the rate constant of compound I formation in these catalases was directly proportional to the increase in the size of the bottleneck in the main channel when molecules of substrates larger than H2O2, such as organic peroxides, are used in the reaction. The results indicate that the size of the bottleneck in the main channel in catalase is an important factor in defining the rate of compound I formation corresponding to the molecular size of the substrates, and this was demonstrated. The Leu149-Ile180 and Asp109-Met167 combinations at the entrance of the narrow channel in EKTA catalase determine the size of the

  15. Oscillatory shear stress upregulation of endothelial nitric oxide synthase requires intracellular hydrogen peroxide and CaMKII.

    PubMed

    Cai, Hua; McNally, Joseph S; Weber, Martina; Harrison, David G

    2004-07-01

    We have previously shown that hydrogen peroxide (H(2)O(2)) upregulates endothelial nitric oxide synthase (eNOS) expression via a calcium/calmodulin-dependent protein kinase II (CaMKII)-mediated mechanism whereas it also acutely activates eNOS enzyme. We hypothesized that oscillatory shear stress (OSS), which stimulates endogenous H(2)O(2), would have effects on eNOS expression and function similar to that of exogenous H(2)O(2). Exposure of bovine aortic endothelial cells to OSS (+/-15 dynes/cm(2)) increased eNOS mRNA expression by 3-fold. Pretreatment with either polyethylene glycol-catalase (PEG-CAT, a scavenger of H(2)O(2)) or KN93, an inhibitor of CaMKII, abolished this response. OSS activated CaMKII in an H(2)O(2)-dependent fashion whereas unidirectional laminar shear stress (LSS) inhibited CaMKII phosphorylation. Inhibition of c-Src (essential for LSS upregulation of eNOS) had no effect on OSS upregulation of eNOS. Additionally, OSS stimulated NO* production acutely. Scavenging of H(2)O(2) by PEG-CAT attenuated OSS stimulation of NO* by 50% whereas it had no effect on LSS regulation of NO* production. These data suggest that intracellular H(2)O(2) and CaMKII mediate OSS upregulation of eNOS. The acute activation of eNOS by OSS also partially requires H(2)O(2). As OSS has been shown previously to stimulate sustained production of superoxide (O(2)*-) which would inactivate NO*, these responses may represent attempted compensation to restore NO* bioavailability in areas exposed to OSS. Simultaneous stimulation of O(2)*- and NO* by this mechanism, however, could facilitate peroxynitrite formation and protein nitration, which may enhance atherosclerotic lesion formation. Both OSS and LSS upregulate eNOS expression but via different signaling mechanisms. PMID:15242742

  16. Upregulation of intracellular antioxidant enzymes in brain and heart during estivation in the African lungfish Protopterus dolloi.

    PubMed

    Page, Melissa M; Salway, Kurtis D; Ip, Yuen Kwong; Chew, Shit F; Warren, Sarah A; Ballantyne, James S; Stuart, Jeffrey A

    2010-03-01

    The African slender lungfish, Protopterus dolloi, is highly adapted to withstand periods of drought by secreting a mucous cocoon and estivating for periods of months to years. Estivation is similar to the diapause and hibernation of other animal species in that it is characterized by negligible activity and a profoundly depressed metabolic rate. As is typically observed in quiescent states, estivating P. dolloi are resistant to environmental stresses. We tested the hypothesis that P. dolloi enhances stress resistance during estivation by upregulating intracellular antioxidant defences in brain and heart tissues. We found that most of the major intracellular antioxidant enzymes, including the mitochondrial superoxide dismutase, cytosolic superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase, were upregulated in brain tissue of lungfish that had estivated for 60 days. Several of these enzymes were also elevated in heart tissue of estivators. These changes were not due to food deprivation, as they did not occur in a group of fish that were deprived of food but maintained in water for the same period of time. We found little evidence of tissue oxidative damage in estivators. Products of lipid peroxidation (4-hydroxynonenal adducts) and oxidative protein damage (carbonylation) were similar in estivating and control lungfish. However, protein nitrotyrosine levels were elevated in brain tissue of estivators. Taken together, these data indicate that estivating P. dolloi have enhanced oxidative stress resistance in brain and heart due to a significant upregulation of intracellular antioxidant capacity. PMID:19888582

  17. Antioxidant catalase rescues against high fat diet-induced cardiac dysfunction via an IKKβ-AMPK-dependent regulation of autophagy.

    PubMed

    Liang, Lei; Shou, Xi-Ling; Zhao, Hai-Kang; Ren, Gu-Qun; Wang, Jian-Bang; Wang, Xi-Hui; Ai, Wen-Ting; Maris, Jackie R; Hueckstaedt, Lindsay K; Ma, Ai-Qun; Zhang, Yingmei

    2015-02-01

    Autophagy, a conservative degradation process for long-lived and damaged proteins, participates in a variety of biological processes including obesity. However, the precise mechanism of action behind obesity-induced changes in autophagy still remains elusive. This study was designed to examine the role of the antioxidant catalase in high fat diet-induced changes in cardiac geometry and function as well as the underlying mechanism of action involved with a focus on autophagy. Wild-type (WT) and transgenic mice with cardiac overexpression of catalase were fed low or high fat diet for 20 weeks prior to assessment of myocardial geometry and function. High fat diet intake triggered obesity, hyperinsulinemia, and hypertriglyceridemia, the effects of which were unaffected by catalase transgene. Myocardial geometry and function were compromised with fat diet intake as manifested by cardiac hypertrophy, enlarged left ventricular end systolic and diastolic diameters, fractional shortening, cardiomyocyte contractile capacity and intracellular Ca²⁺ mishandling, the effects of which were ameliorated by catalase. High fat diet intake promoted reactive oxygen species production and suppressed autophagy in the heart, the effects of which were attenuated by catalase. High fat diet intake dampened phosphorylation of inhibitor kappa B kinase β(IKKβ), AMP-activated protein kinase (AMPK) and tuberous sclerosis 2 (TSC2) while promoting phosphorylation of mTOR, the effects of which were ablated by catalase. In vitro study revealed that palmitic acid compromised cardiomyocyte autophagy and contractile function in a manner reminiscent of fat diet intake, the effect of which was significantly alleviated by inhibition of IKKβ, activation of AMPK and induction of autophagy. Taken together, our data revealed that the antioxidant catalase counteracts against high fat diet-induced cardiac geometric and functional anomalies possibly via an IKKβ-AMPK-dependent restoration of myocardial

  18. [Integrin-ligands binding reaction upregulates the antioxidant activity of rabbit bronchial epithelial cells].

    PubMed

    Qin, X Q; Xiang, Y; Guan, C X; Zhang, C Q; Sun, X H

    2001-02-01

    Antioxidant activity of bronchial epithelial cells (BECs) plays an essential role in preventing the airway epithelium integrity from damage in structure and function. Integrin expressed by BECs is the receptor of extracellular matrix such as fibronectin (Fn), and it is involved in modulation of proliferation, differentiation and metabolism of the cells. In order to test the hypothesis that integrin-ligand binding reaction supports the ability of cells to withstand oxidant attack, the present study evaluated the antioxidant activity of primary cultured rabbit BECs treated with fibronectin or its sequence Arg-Gly-Asp (RGD peptide), by determining changes in the activity of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase (CAT) and in the level of glutathione (GSH). The results are as follows: (1) Fn (10 micrograms/ml) increased significantly the activity unit of GSH-Px (P < 0.05, n = 5), which was inhibited by calmodulin-inhibitor W7 (10(-5) mol/L) (P < 0.05). Both Fn (5-20 micrograms/ml) and RGD (15-60 micrograms/ml) showed a dose-dependent upregulatory effect (respectively r = 0.93 and r = 0.73). (2) Treatment with Fn increased SOD activity (P < 0.01, n = 7), which was abolished by W7 (P < 0.01). (3) Catalase activity was also stimulated by Fn (P < 0.05, n = 6) and reversed by W7 (P < 0.01). (4) A dose-dependent increase of GSH level was observed in both Fn (r = 0.82) and RGD treatment (r = 0.84). The data suggest that the binding of integrin with extracellular matrix can upregulate activity of antioxidant enzymes, and increase the content of GSH and improve the ability of BECs to resist oxidant injury. PMID:11354796

  19. Ability of recombinant human catalase to suppress inflammation of the murine lung induced by influenza A.

    PubMed

    Shi, Xunlong; Shi, Zhihui; Huang, Hai; Zhu, Hongguang; Zhou, Pei; Zhu, Haiyan; Ju, Dianwen

    2014-06-01

    Influenza A virus pandemics and emerging antiviral resistance highlight the urgent need for novel generic pharmacological strategies that reduce both viral replication and inflammation of the lung. We have previously investigated the therapeutic efficacy of recombinant human catalase (rhCAT) against viral pneumonia in mice, but the protection mechanisms involved were not explored. In the present study, we have performed a more in-depth analysis covering survival, lung inflammation, immune cell responses, production of cytokines, and inflammation signaling pathways in mice. Male imprinting control region mice were infected intranasally with high pathogenicity (H1N1) influenza A virus followed by treatment with recombinant human catalase. The administration of rhCAT resulted in a significant reduction in inflammatory cell infiltration (e.g., macrophages and neutrophils), inflammatory cytokine levels (e.g., IL-2, IL-6, TNF-α, IFN-γ), the level of the intercellular adhesion molecule 1 chemokine and the mRNA levels of toll-like receptors TLR-4, TLR-7, and NF-κB, as well as partially maintaining the activity of the antioxidant enzymes system. These findings indicated that rhCAT might play a key protective role in viral pneumonia of mice via suppression of inflammatory immune responses. PMID:24385240

  20. Characterization of glutathione reductase and catalase in the fronds of two Pteris ferns upon arsenic exposure.

    PubMed

    Kertulis-Tartar, Gina M; Rathinasabapathi, Bala; Ma, Lena Q

    2009-10-01

    To better understand the mechanisms of plant tolerance to high concentration of arsenic, we characterized two antioxidant enzymes, glutathione reductase (GR) and catalase (CAT), in the fronds of Pteris vittata, an arsenic-hyperaccumulating fern, and Pteris ensiformis, an arsenic-sensitive fern. The induction, activation and apparent kinetics of GR and CAT in the plants upon arsenic exposure were investigated. Under arsenic exposure (sodium arsenate), CAT activity in P. vittata was increased by 1.5-fold, but GR activity was unchanged. Further, GR was not inhibited or activated by the arsenic in assays. No significant differences in K(m) and V(max) values of GR or CAT were observed between the two ferns. However, CAT activity in P. vittata was activated by 200 microM arsenate up to 300% compared to the control. Similar but much smaller increases were observed for P. ensiformis and purified bovine liver catalase (133% and 120%, respectively). This research reports, for the first time, the activation of CAT by arsenic in P. vittata. The increased CAT activities may allow P. vittata to more efficiently mediate arsenic-induced stress by preparing the fern for the impeding production of reactive oxygen species resulting from arsenate reduction to arsenite in the fronds. PMID:19574057

  1. Flow injection catalase activity measurement based on gold nanoparticles/carbon nanotubes modified glassy carbon electrode.

    PubMed

    El Nashar, Rasha Mohamed

    2012-07-15

    Amperometric flow injection method of hydrogen peroxide analysis was developed based on catalase enzyme (CAT) immobilization on a glassy carbon electrode (GC) modified with electrochemically deposited gold nanoparticles on a multiwalled carbon nanotubes/chitosan film. The resulting biosensor was applied to detect hydrogen peroxide with a linear response range 1.0×10(-7)-2.5×10(-3)M with a correlation coefficient 0.998 and response time less than 10s. The optimum conditions of film deposition such as potential applied, deposition time and pH were tested and the flow injection conditions were optimized to be: flow rate of 3ml/min, sample volume 75μl and saline phosphate buffer of pH 6.89. Catalase enzyme activity was successfully determined in liver homogenate samples of rats, raised under controlled dietary plan, using a flow injection analysis system involving the developed biosensor simultaneously with spectrophotometric detection, which is the common method of enzymatic assay. PMID:22817944

  2. Superoxide dismutase, catalase, and. alpha. -tocopherol content of stored potato tubers. [Solanum tuberosum L

    SciTech Connect

    Spychalla, J.P.; Desborough, S.L. )

    1990-11-01

    Activated oxygen or oxygen free radical mediated damage to plants has been established or implicated in many plant stress situations. The extent of activated oxygen damage to potato (Solanum tuberosum L.) tubers during low temperature storage and long-term storage is not known. Quantitation of oxygen free radical mediated damage in plant tissues is difficult. However, it is comparatively easy to quantitate endogenous antioxidants, which detoxify potentially damaging forms of activated oxygen. Three tuber antioxidants, superoxide dismutase, catalase, and {alpha}-tocopherol were assayed from four potato cultivars stored at 3{degree}C and 9{degree}C for 40 weeks. Tubers stored at 3{degree}C demonstrated increased superoxide dismutase activities (up to 72%) compared to tubers stored at 9{degree}C. Time dependent increases in the levels of superoxide dismutase, catalase, and {alpha}-tocopherol occurred during the course of the 40 week storage. The possible relationship between these increases in antioxidants and the rate of activated oxygen production in the tubers is discussed.

  3. Isozymes of Ipomoea batatas catechol oxidase differ in catalase-like activity.

    PubMed

    Gerdemann, C; Eicken, C; Magrini, A; Meyer, H E; Rompel, A; Spener, F; Krebs, B

    2001-07-01

    The amino acid sequences of two isozymes of catechol oxidase from sweet potatoes (Ipomoea batatas) were determined by Edman degradation of BrCN cleavage fragments of the native protein and by sequencing of amplified cDNA fragments. Sequence alignment and phylogenetic analysis of plant catechol oxidases revealed about 80% equidistance between the two I. batatas catechol oxidases and approximately 40--60% to catechol oxidases of other plants. When H(2)O(2) was applied as substrate the 39 kDa isozyme, but not the 40 kDa isozyme, showed catalase-like activity. The structure of the 40 kDa isozyme was modeled on the basis of the published crystal structure of the 39 kDa isozyme [T. Klabunde et al., Nat. Struct. Biol. 5 (1998) 1084]. The active site model closely resembled that of the 39 kDa isozyme determined by crystallography, except for a mutation of Thr243 (40 kDa isozyme) to Ile241 (39 kDa isozyme) close to the dimetal center. This residue difference affects the orientation of the Glu238/236 residue, which is thought to be responsible for the catalase-like activity of the 39 kDa isozyme for which a catalytic mechanism is proposed. PMID:11451442

  4. Isonicotinic acid hydrazide conversion to Isonicotinyl-NAD by catalase-peroxidases.

    PubMed

    Wiseman, Ben; Carpena, Xavi; Feliz, Miguel; Donald, Lynda J; Pons, Miquel; Fita, Ignacio; Loewen, Peter C

    2010-08-20

    Activation of the pro-drug isoniazid (INH) as an anti-tubercular drug in Mycobacterium tuberculosis involves its conversion to isonicotinyl-NAD, a reaction that requires the catalase-peroxidase KatG. This report shows that the reaction proceeds in the absence of KatG at a slow rate in a mixture of INH, NAD(+), Mn(2+), and O(2), and that the inclusion of KatG increases the rate by >7 times. Superoxide, generated by either Mn(2+)- or KatG-catalyzed reduction of O(2), is an essential intermediate in the reaction. Elimination of the peroxidatic process by mutation slows the rate of reaction by 60% revealing that the peroxidatic process enhances, but is not essential for isonicotinyl-NAD formation. The isonicotinyl-NAD(*+) radical is identified as a reaction intermediate, and its reduction by superoxide is proposed. Binding sites for INH and its co-substrate, NAD(+), are identified for the first time in crystal complexes of Burkholderia pseudomallei catalase-peroxidase with INH and NAD(+) grown by co-crystallization. The best defined INH binding sites were identified, one in each subunit, on the opposite side of the protein from the entrance to the heme cavity in a funnel-shaped channel. The NAD(+) binding site is approximately 20 A from the entrance to the heme cavity and involves interactions primarily with the AMP portion of the molecule in agreement with the NMR saturation transfer difference results. PMID:20554537

  5. A bifunctional enzyme from Rhodococcus erythropolis exhibiting secondary alcohol dehydrogenase-catalase activities.

    PubMed

    Martinez-Rojas, Enriqueta; Kurt, Tutku; Schmidt, Udo; Meyer, Vera; Garbe, Leif-Alexander

    2014-11-01

    Alcohol dehydrogenases have long been recognized as potential biocatalyst for production of chiral fine and bulk chemicals. They are relevant for industry in enantiospecific production of chiral compounds. In this study, we identified and purified a nicotinamide adenine dinucleotide (NAD)-dependent secondary alcohol dehydrogenase (SdcA) from Rhodococcus erythropolis oxidizing γ-lactols into γ-lactones. SdcA showed broad substrate specificity on γ-lactols; secondary aliphatic alcohols with 8 and 10 carbon atoms were also substrates and oxidized with (2S)-stereospecificity. The enzyme exhibited moderate stability with a half-life of 5 h at 40 °C and 20 days at 4 °C. Mass spectrometric identification revealed high sequence coverage of SdcA amino acid sequence to a highly conserved catalase from R. erythropolis. The corresponding encoding gene was isolated from genomic DNA and subsequently overexpressed in Escherichia coli BL21 DE3 cells. In addition, the recombinant SdcA was purified and characterized in order to confirm that the secondary alcohol dehydrogenase and catalase activity correspond to the same enzyme. PMID:24846734

  6. Molecular Cloning and Expression Analysis of a Catalase Gene (NnCAT) from Nelumbo nucifera.

    PubMed

    Dong, Chen; Zheng, Xingfei; Diao, Ying; Wang, Youwei; Zhou, Mingquan; Hu, Zhongli

    2015-11-01

    Rapid amplification cDNA end (RACE) assay was established to achieve the complete cDNA sequence of a catalase gene (NnCAT) from Nelumbo nucifera. The obtained full-length cDNA was 1666 bp in size and contained a 1476-bp open reading frame. The 3D structural model of NnCAT was constructed by homology modeling. The putative NnCAT possessed all the main characteristic amino acid residues and motifs of catalase (CAT) protein family, and the phylogenetic analysis revealed that NnCAT grouped together with high plants. Moreover, recombinant NnCAT showed the CAT activity (758 U/mg) at room temperature, holding high activity during temperature range of 20-50 °C, then the optimal pH of recombinant protein was assessed from pH 4 to pH 11. Additionally, real-time PCR assay demonstrated that NnCAT mRNA was expressed in various tissues of N. nucifera, with the highest expression in young leaf and lowest level in the root, and mRNA level of NnCAT was significantly augmented in response to short-time mechanical wounding. Different expression pattern of NnCAT gene suggested that NnCAT probably played a defensive role in the initial stages of oxidative stress, regulating the level of reactive oxygen species (ROS) by extracellular stimuli such as short-time mechanical wounding. PMID:26299377

  7. Catalase-like activity studies of the manganese(II) adsorbed zeolites

    NASA Astrophysics Data System (ADS)

    Ćiçek, Ekrem; Dede, Bülent

    2013-12-01

    Preparation of manganese(II) adsorbed on zeolite 3A, 4A, 5A. AW-300, ammonium Y zeolite, organophilic, molecular sieve and catalase-like enzyme activity of manganese(II) adsorbed zeolites are reported herein. Firstly zeolites are activated at 873 K for two hours before contact manganese(II) ions. In order to observe amount of adsorption, filtration process applied for the solution. The pure zeolites and manganese(II) adsorbed zeolites were analysed by FT-IR. As a result according to the FT-IR spectra, the incorporation of manganese(II) cation into the zeolite structure causes changes in the spectra. These changes are expected particularly in the pseudolattice bands connected with the presence of alumino and silicooxygen tetrahedral rings in the zeolite structure. Furthermore, the catalytic activities of the Mn(II) adsorbed zeolites for the disproportionation of hydrogen peroxide were investigated in the presence of imidazole. The Mn(II) adsorbed zeolites display efficiency in the disproportion reactions of hydrogen peroxide, producing water and dioxygen in catalase-like activity.

  8. Dual promoters of the major catalase (KatA) govern distinct survival strategies of Pseudomonas aeruginosa

    PubMed Central

    Chung, In-Young; Kim, Bi-o; Jang, Hye-Jeong; Cho, You-Hee

    2016-01-01

    KatA is the major catalase required for hydrogen peroxide (H2O2) resistance and acute virulence in Pseudomonas aeruginosa PA14, whose transcription is driven from the promoter (katAp1) located at 155 nucleotide (nt) upstream of the start codon. Here, we identified another promoter (katAp2), the +1 of which was mapped at the 51 nt upstream of the start codon, which was responsible for the basal transcription during the planktonic culture and down-regulated upon H2O2 treatment under the control by the master regulator of anaerobiosis, Anr. To dissect the roles of the dual promoters in conditions involving KatA, we created the promoter mutants for each -10 box (p1m, p2m, and p1p2m) and found that katAp1 is required for the function of KatA in the logarithmic growth phase during the planktonic culture as well as in acute virulence, whereas katAp2 is required for the function of KatA in the stationary phase as well as in the prolonged biofilm culture. This dismantling of the dual promoters of katA sheds light on the roles of KatA in stress resistance in both proliferative and growth-restrictive conditions and thus provides an insight into the regulatory impacts of the major catalase on the survival strategies of P. aeruginosa. PMID:27491679

  9. Cysteine-independent Catalase-like Activity of Vertebrate Peroxiredoxin 1 (Prx1).

    PubMed

    Sun, Cen-Cen; Dong, Wei-Ren; Zhao, Jing; Nie, Li; Xiang, Li-Xin; Zhu, Guan; Shao, Jian-Zhong

    2015-08-01

    Peroxiredoxins (Prxs) are a ubiquitous family of antioxidant proteins that are known as thioredoxin peroxidases. Here we report that Prx1 proteins from Tetraodon nigroviridis and humans also possess a previously unknown catalase-like activity that is independent of Cys residues and reductants but dependent on iron. We identified that the GVL motif was essential to the catalase (CAT)-like activity of Prx1 but not to the Cys-dependent thioredoxin peroxidase (POX) activity, and we generated mutants lacking POX and/or CAT activities for individually delineating their functional features. We discovered that the TnPrx1 POX and CAT activities possessed different kinetic features in reducing H2O2. The overexpression of wild-type TnPrx1 and mutants differentially regulated the intracellular levels of reactive oxygen species and p38 phosphorylation in HEK-293T cells treated with H2O2. These observations suggest that the dual antioxidant activities of Prx1 may be crucial for organisms to mediate intracellular redox homeostasis. PMID:26088136

  10. Identification and characteristic analysis of the catalase gene from Locusta migratoria.

    PubMed

    Zhang, Xueyao; Li, Yahong; Wang, Junxiu; Zhang, Tingting; Li, Tao; Dong, Wei; Ma, Enbo; Zhang, Jianzhen

    2016-09-01

    Catalase (CAT) is a ubiquitous antioxidant enzyme in almost all living organisms exposed to atmosphere, which involved in decomposing harmful hydrogen peroxide, into oxygen and water. In this study, a full-length cDNA (1524bp) encoding the catalase gene (LmCAT) from Locusta migratoria was cloned (accession number KT716445). The open reading frame of the LmCAT gene encoded 507 amino acids and shared 57.8%-97.8% amino acid identities with other insect CATs. The coding region was interrupted by 9 introns, while its promoter region contained 15 putative binding sites for 5 kinds of transcriptional regulation factors. For the stage-specific expression profile, LmCAT was highly expressed in the fourth-instar nymphs. For the tissue-specific expression profile, the LmCAT transcripts were highest in the fat bodies, and relatively abundant in the gastric caecum, Malpighian tubules, ovary and integument. Moreover, the result showed that quercetin could significantly induce the expression level of LmCAT. The expression of LmCAT could be silenced by RNAi, but the moralities were not significantly different between control and RNAi groups. Our results would provide valuable information for further study on the ROS regulation mechanism in insect. PMID:27521923

  11. Cell-mediated Transfer of Catalase Nanoparticles from Macrophages to Brain Endothelial and Neural Cells

    PubMed Central

    Haney, Matthew J.; Zhao, Yuling; Li, Shu; Higginbotham, Sheila M.; Booth, Stephanie L.; Han, Huai-Yun; Vetro, Joseph A.; Mosley, R. Lee; Kabanov, Alexander V.; Gendelman, Howard E.; Batrakova, Elena V.

    2011-01-01

    Background Our laboratories forged the concept of macrophage delivery of protein antioxidants to attenuate neuroinflammation and nigrostriatal degeneration in Parkinson’s disease (PD). Notably, the delivery of the redox enzyme, catalase, incorporated into a polyion complex micelle (“nanozyme”) by bone marrow-derived macrophages protected the nigrostriatal against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxication. Nonetheless, how macrophage delivery of nanozyme increases the efficacy of catalase remains unknown. Methods Herein, we examined the transfer of nanozyme from macrophages to brain microvessel endothelial cells, neurons and astrocytes. Results Facilitated transport of the nanozyme from macrophages to endothelial and neural target cells occurred through endocytosis-independent mechanisms that involved fusion of cellular membranes; macrophage bridging conduits; and nanozyme lipid coatings. Nanozyme transfer was operative across an artificial blood brain barrier and showed efficient reactive oxygen species decomposition. Conclusion This is the first demonstration that drug-loaded macrophages discharge particles to contiguous target cells for potential therapeutic brain enzyme delivery. The pathways for drug delivery shown may be used for the treatment of degenerative disorders of the nervous system. PMID:21449849

  12. Salicylic acid and salicylic acid sensitive and insensitive catalases in different genotypes of chickpea against Fusarium oxysporum f. sp. ciceri.

    PubMed

    Gayatridevi, S; Jayalakshmi, S K; Mulimani, V H; Sreeramulu, K

    2013-10-01

    Differential expression of catalase isozymes in different genotypes of chickpea resistant genotypes- A1, JG-315, JG-11, WR-315, R1-315, Vijaya, ICCV-15017, GBS-964, GBM-10, and susceptible genotypes- JG-62, MNK, ICCV-08321, ICCV-08311, KW-104, ICCV-08123, ICC-4951, ICC-11322, ICC-08116 for wilt disease caused by Fusarium oxysporum. f. sp. ciceri (Foc) was analyzed. Salicylic acid (SA) and H2O2 concentrations were determined in control as well as in plants infected with F. ciceri and found that the high and low levels of salicylic acid and H2O2 in resistant and susceptible genotypes of chickpea respectively. Catalase isozyme activities were detected in the gel and found that no induction of new catalases was observed in all the resistant genotypes and their some of the native catalase isozymes were inhibited; whereas, induction of multiple catalase isozymes was observed in all the screened susceptible genotypes and their activities were not inhibited upon Foc or SA treatments. The above results support the possible role of these isozymes as a marker to identify which genotype of chickpea is expressing systemic acquired resistance. PMID:24431522

  13. Evidence for separate substrate binding sites for hydrogen peroxide and cumene hydroperoxide (CHP) in the oxidation of ethanol by catalase

    SciTech Connect

    DeMaster, E.G.; Nagasawa,ss H.T.

    1986-03-01

    The oxidation of ethanol by purified bovine liver catalase (Sigma, C-40) can be supported by H/sub 2/O/sub 2/ or by CHP. The time course of the H/sub 2/O/sub 2/ supported reaction (using glucose/glucose oxidase as the H/sub 2/O/sub 2/ source) was linear for at least one hr, whereas the rate of acetaldehyde formation in the CHP (4.2 mM) supported reaction decreased with time. When catalase was exposed o CHP for 5 min before the addition of ethanol, the rate of CHP supported ethanol oxidation was reduced by more than 90% compared to incubations where the addition of ethanol preceded that of CHP. In the CHP inhibited state, the peroxidative activity of catalase was not restored by further addition of CHP or ethanol; however, addition of fresh catalase yielded its expected activity. Significantly, the CHP inhibited enzyme was equally effective as the untreated enzyme in catalyzing (a) the oxidation of ethanol in the presence H/sub 2/O/sub 2/ supported peroxidative activity as well as catalytic activity by CHP inhibited catalase points to separate binding sites for H/sub 2/O/sub 2/ and CHP in this reaction. Alternatively, CHP may bind adjacent to a common peroxide active site, thereby sterically impeding the binding of CHP - but not of H/sub 2/O/sub 2/ - to this active site.

  14. Scavenging of free radicals in gas-phase mainstream cigarette smoke by immobilized catalase at filter level.

    PubMed

    Lu, Xin; Hua, Zhaozhe; Du, Guocheng; Ma, Xiaolong; Cao, Jianhua; Yang, Zhanping; Chen, Jian

    2008-03-01

    Catalase is well known as capable of inducing the decomposition of H(2)O(2). In this study, a kind of immobilized catalase (entrapped in cross-linked chitosan beads) was dispersed in conventional acetate filter as an antioxidant additive. Quantitative estimation of the free radicals in mainstream cigarette smoke (MCS) was performed to address the effect of this modified filter. It was found that the levels of PBN adduct and NO(*)/NO(2)(*) associated with the gas-phase mainstream cigarette smoke (GPCS) were efficiently decreased by approximately 40% through catalase filtering. Besides, the modified filter was found to lower the MCS-induced adverse biological effects including lipid peroxidation and mutagenicity. This was proved to be substantially attributed to the catalase-dependent breakdown of NO(*), which was stimulated by some of peroxides (most probably being H(2)O(2)), the dismutation products of tar particulate matters (TPM). These results highlighted a promising approach to reduce the smoking-associated health risks to passive smokers. Moreover, the mechanisms of catalase filtering may be helpful for the development of appropriate immobilized enzyme systems to be applied for reducing health risks associated with gaseous pollutants. PMID:18344119

  15. Uncaria tomentosa extracts protect human erythrocyte catalase against damage induced by 2,4-D-Na and its metabolites.

    PubMed

    Bukowska, Bożena; Bors, Milena; Gulewicz, Krzysztof; Koter-Michalak, Maria

    2012-06-01

    The effect of ethanolic and aqueous extracts from leaves and bark of Uncaria tomentosa was studied, with particular attention to catalase activity (CAT - EC. 1.11.1.6). We observed that all tested extracts, at a concentration of 250 μg/mL were not toxic to erythrocyte catalase because they did not decreased its activity. Additionally, we investigated the protective effect of extracts on changes in CAT activity in the erythrocytes incubated with sodium salt of 2,4-dichlorophenoxyacetic acid (2,4-D-Na) and its metabolites i.e., 2,4-dichlorophenol (2,4-DCP) and catechol. Previous investigations showed that these chemicals decreased activity of erythrocyte catalase (Bukowska et al., 2000; Bukowska and Kowalska, 2004). The erythrocytes were divided into two portions. The first portion was incubated for 1 and 5h at 37°C with 2,4-D-Na, 2,4-DCP and catechol, and second portion was preincubated with extracts for 10 min and then incubated with xenobiotics for 1 and 5h. CAT activity was measured in the first and second portion of the erythrocytes. We found a protective effect of the extracts from U. tomentosa on the activity of catalase incubated with xenobiotics studied. Probably, phenolic compounds contained in U. tomentosa scavenged free radicals, and therefore protected active center (containing -SH groups) of catalase. PMID:22426356

  16. Important role of catalase in the cellular response of the budding yeast Saccharomyces cerevisiae exposed to ionizing radiation.

    PubMed

    Nishimoto, Takuto; Furuta, Masakazu; Kataoka, Michihiko; Kishida, Masao

    2015-03-01

    Ionizing radiation indirectly causes oxidative stress in cells via reactive oxygen species (ROS), such as hydroxyl radicals (OH(-)) generated by the radiolysis of water. We investigated how the catalase function was affected by ionizing radiation and analyzed the phenotype of mutants with a disrupted catalase gene in Saccharomyces cerevisiae exposed to radiation. The wild-type yeast strain and isogenic mutants with disrupted catalase genes were exposed to various doses of (60)Co gamma-rays. There was no difference between the wild-type strain and the cta1 disruption mutant following exposure to gamma-ray irradiation. In contrast, there was a significant decrease in the ctt1 disruption mutant, suggesting that this strain exhibited decreased survival on gamma-ray exposure compared with other strains. In all three strains, stationary phase cells were more tolerant to the exposure of gamma-rays than exponential phase cells, whereas the catalase activity in the wild-type strain and cta1 disruption mutant was higher in the stationary phase than in the exponential phase. These data suggest a correlation between catalase activity and survival following gamma-ray exposure. However, this correlation was not clear in the ctt1 disruption mutant, suggesting that other factors are involved in the tolerance to ROS induced by irradiation. PMID:25416226

  17. Axenic growth up-regulates mass-specific metabolic rate, stress resistance, and extends life span in Caenorhabditis elegans.

    PubMed

    Houthoofd, Koen; Braeckman, Bart P; Lenaerts, Isabelle; Brys, Kristel; De Vreese, Annemie; Van Eygen, Sylvie; Vanfleteren, Jacques R

    2002-12-01

    Culture in axenic medium causes two-fold increases in the length of development and adult life span in Caenorhabditis elegans. We asked whether axenic medium imposes dietary restriction (ADR), and causes changes in metabolic activity and stress resistance. Eat mutants, which have a reduced food intake, were studied in parallel with wild-type worms to assess potential synergistic actions of axenic culture and food restriction. We found that axenic culture enhances metabolic activity as assessed by mass-specific oxygen consumption rate and heat production. Axenic culture also caused higher activities of the antioxidant enzymes superoxide dismutase and catalase, and led to increased resistance to high temperature, which was further exacerbated by mutation in eat-2. These results show that axenic medium up-regulates a variety of somatic maintenance functions including oxidative and thermal stress resistance and that food restriction due to axenic growth and to mutation in eat-2 are very similar but not identical. PMID:12559406

  18. Crystallization and preliminary X-ray diffraction analysis of a cold-adapted catalase from Vibrio salmonicida

    SciTech Connect

    Riise, Ellen Kristin; Lorentzen, Marit Sjo; Helland, Ronny; Willassen, Nils Peder

    2006-01-01

    Monoclinic (P2{sub 1}) crystals of a His-tagged form of V. salmonicida catalase without cofactor diffract X-rays to 1.96 Å. Catalase (EC 1.11.1.6) catalyses the breakdown of hydrogen peroxide to water and molecular oxygen. Recombinant Vibrio salmonicida catalase (VSC) possesses typical cold-adapted features, with higher catalytic efficiency, lower thermal stability and a lower temperature optimum than its mesophilic counterpart from Proteus mirabilis. Crystals of VSC were produced by the hanging-drop vapour-diffusion method using ammonium sulfate as precipitant. The crystals belong to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 98.15, b = 217.76, c = 99.28 Å, β = 110.48°. Data were collected to 1.96 Å and a molecular-replacement solution was found with eight molecules in the asymmetric unit.

  19. The catalase gene family in cucumber: genome-wide identification and organization

    PubMed Central

    Hu, Lifang; Yang, Yingui; Jiang, Lunwei; Liu, Shiqiang

    2016-01-01

    Abstract Catalase (CAT) is a common antioxidant enzyme in almost all living organisms. Currently, detailed reports on cucumber (Cucumis sativus L.) CAT (CsCAT) genes and tissue expression profiling are limited. In the present study, four candidate CsCAT genes were identified in cucumber. Phylogenetic analysis indicated that CsCAT1-CsCAT3 are closely related to Arabidopsis AtCAT1-AtCAT3, but no obvious counterpart was observed for CsCAT4. Intron/exon structure analysis revealed that only one of the 15 positions was completely conserved. Motif analysis showed that, unlike the CAT genes of other species, none of CsCAT genes contained all 10 motifs. Expression data showed that transcripts of all of the CsCAT genes, except CsCAT4, were detected in five tissues. Moreover, their transcription levels displayed differences under different stress treatments. PMID:27560990

  20. Catalase-positive microperoxisomes in rat soleus and extensor digitorum longus muscle fiber types

    NASA Technical Reports Server (NTRS)

    Riley, Danny A.; Bain, James L. W.; Ellis, Stanley

    1988-01-01

    The size, distribution, and content of catalase-reactive microperoxisomes were investigated cytochemically in three types of muscle fibers from the soleus and the extensor digitorum longus (EDL) of male rats. Muscle fibers were classified on the basis of the mitochondrial content and distribution, the Z-band widths, and the size and shape of myofibrils as the slow-twitch oxidative (SO), the fast-twitch oxidative glycolytic (FOG), and the fast-twitch glycolytic (FG) fibers. It was found that both the EDL and soleus SO fibers possessed the largest microperoxisomes. A comparison of microperoxisome number per muscle fiber area or the microperoxisome area per fiber area revealed following ranking, starting from the largest number and the area-ratio values: soleus SO, EDL SO, EDL FOG, and EDL FG.

  1. Molecular interaction of 2-mercaptobenzimidazole with catalase reveals a potentially toxic mechanism of the inhibitor.

    PubMed

    Teng, Yue; Zou, Luyi; Huang, Ming; Zong, Wansong

    2014-12-01

    2-Mercaptobenzimidazole (MBI) is widely utilized as a corrosion inhibitor, copper-plating brightener and rubber accelerator. The residue of MBI in the environment possesses a potential risk to human health. In this work, the toxic interaction of MBI with the important antioxidant enzyme catalase (CAT) was investigated using spectroscopic and molecular docking methods under physiological conditions. MBI can spontaneously bind with CAT with one binding site through hydrogen bonds and van der Waals forces to form MBI-CAT complex. The molecular docking study revealed that MBI bound into the CAT interface of chains B and C, which led to some conformational and microenvironmental changes of CAT and further resulted in the inhibition of CAT activity. This present study provides direct evidence at a molecular level to show that exposure to MBI could induce changes in the structure and function of the enzyme CAT. PMID:25463673

  2. Lack of effect of deferoxamine, dimethyl sulfoxide, and catalase on monocrotaline pyrrole pulmonary injury

    SciTech Connect

    Bruner, L.H.; Johnson, K.; Carpenter, L.J.; Roth, R.A.

    1987-01-01

    Monocrotaline pyrrole (MCTP) is a reactive metabolite of the pyrrolizidine alkaloid monocrotaline. MCTP given intravenously to rats causes pulmonary hypertension and right ventricular hypertrophy. Lesions in lungs after MCTP treatment contain macrophages and neutrophils, which may contribute to the damage by generation of reactive oxygen metabolites. Rats were treated with MCTP and agents known to protect against oxygen radical-mediated damage in acute models of neutrophil-dependent lung injury. Rats received MCTP and deferoxamine mesylate (DF), dimethyl sulfoxide (DMSO), or polyethylene glycol-coupled catalase (PEG-CAT). MCTP/vehicle-treated controls developed lung injury manifested as increased lung weight, release of lactate dehydrogenase into the airway, and sequestration of SVI-labeled bovine serum albumin in the lungs. Cotreatment of rats with DF, DMSO, or PEG-CAT did not protect against the injury due to MCTP. These results suggest that toxic oxygen metabolites do not play an important role in the pathogenesis of MCTP-induced pulmonary injury.

  3. Sixty years from discovery to solution: crystal structure of bovine liver catalase form III.

    PubMed

    Foroughi, Leila M; Kang, You Na; Matzger, Adam J

    2011-09-01

    The crystallization and structural characterization of bovine liver catalase (BLC) has been intensively studied for decades. Forms I and II of BLC have previously been fully characterized using single-crystal X-ray diffraction. Form III has previously been analyzed by electron microscopy, but owing to the thinness of this crystal form an X-ray crystal structure had not been determined. Here, the crystal structure of form III of BLC is presented in space group P2(1)2(1)2(1), with unit-cell parameters a = 68.7, b = 173.7, c = 186.3 Å. The asymmetric unit is composed of the biological tetramer, which is packed in a tetrahedron motif with three other BLC tetramers. This higher resolution structure has allowed an assessment of the previously published electron-microscopy studies. PMID:21904028

  4. The catalase gene family in cucumber: genome-wide identification and organization.

    PubMed

    Hu, Lifang; Yang, Yingui; Jiang, Lunwei; Liu, Shiqiang

    2016-07-25

    Catalase (CAT) is a common antioxidant enzyme in almost all living organisms. Currently, detailed reports on cucumber (Cucumis sativus L.) CAT (CsCAT) genes and tissue expression profiling are limited. In the present study, four candidate CsCAT genes were identified in cucumber. Phylogenetic analysis indicated that CsCAT1-CsCAT3 are closely related to Arabidopsis AtCAT1-AtCAT3, but no obvious counterpart was observed for CsCAT4. Intron/exon structure analysis revealed that only one of the 15 positions was completely conserved. Motif analysis showed that, unlike the CAT genes of other species, none of CsCAT genes contained all 10 motifs. Expression data showed that transcripts of all of the CsCAT genes, except CsCAT4, were detected in five tissues. Moreover, their transcription levels displayed differences under different stress treatments. PMID:27459261

  5. Catalase and superoxide dismutase activities after heat injury of listeria monocytogenes

    SciTech Connect

    Dallmier, A.W.; Martin, S.E.

    1988-02-01

    Four strains of Listeria monocytogenes were examined for catalase (CA) and superoxide dismutase (SOD) activities. The two strains having the highest CA activities (LCDC and Scott A) also possessed the highest SOD activities. The CA activity of heated cell extracts of all four strains examined decreased sharply between 55 and 60/sup 0/C. SOD was more heat labile than CA. Two L. monocytogenes strains demonstrated a decline in SOD activity after heat treatment at 45/sup 0/C, whereas the other two strains demonstrated a decline at 50/sup 0/C. Sublethal heating of the cells at 55/sup 0/C resulted in increased sensitivity to 5.5% NaCl. Exogenous hydrogen peroxide was added to suspensions of L. monocytogenes; strains producing the highest CA levels showed the greatest H/sub 2/O/sub 2/ resistance.

  6. Sixty years from discovery to solution: crystal structure of bovine liver catalase form III

    SciTech Connect

    Foroughi, Leila M.; Kang, You-Na; Matzger, Adam J.

    2012-03-27

    The crystallization and structural characterization of bovine liver catalase (BLC) has been intensively studied for decades. Forms I and II of BLC have previously been fully characterized using single-crystal X-ray diffraction. Form III has previously been analyzed by electron microscopy, but owing to the thinness of this crystal form an X-ray crystal structure had not been determined. Here, the crystal structure of form III of BLC is presented in space group P212121, with unit-cell parameters a = 68.7, b = 173.7, c = 186.3 {angstrom}. The asymmetric unit is composed of the biological tetramer, which is packed in a tetrahedron motif with three other BLC tetramers. This higher resolution structure has allowed an assessment of the previously published electron-microscopy studies.

  7. Potentiometric measurement of glucose concentration with an immobilized glucose oxidase/catalase electrode.

    PubMed

    Wingard, L B; Liu, C C; Wolfson, S K; Yao, S J; Drash, A L

    1982-01-01

    A series of enzyme electrodes for measurement of glucose have been constructed. The electrodes contain glucose oxidase immobilized on platinum, either with or without co-immobilization of catalase. When placed in buffered glucose, the enzyme electrodes show a potentiometric response to glucose with respect to a Ag/AgCl reference electrode. This response is reproducible in the physiologic range of glucose concentrations. The immobilization technique, some of the environmental variables such as oxygen concentration and pH, and several compounds that might interfere with the selectivity of the enzyme electrodes for glucose have received preliminary study. This direct potentiometric approach is undergoing further evaluation to determine the basic electrochemical mechanism responsible for the potentiometric signal and whether it can be adapted for continuous in vivo monitoring of the glucose concentration in body fluids. PMID:7172983

  8. Simultaneous co-immobilization of glucose oxidase and catalase in their substrates.

    PubMed

    Ozyilmaz, G; Tukel, S S

    2007-01-01

    Glucose oxidase (GOD) and catalase (CAT) were simultaneously co-immobilized onto magnesium silicate (florisil) by covalent coupling. Glucose was added in immobilization mixture and hydrogen peroxide which is the substrate of CAT was produced in coupling mixture during immobilization time. Therefore, co-immobilization of GOD and CAT was carried out in presence of both their substrate: glucose and hydrogen peroxide, respectively. The effect of glucose concentration in immobilization mixture on activities of GOD and CAT of co-immobilized samples were investigated. Maximum GOD and CAT activities were determined for samples co-immobilized in presence of 15 and 20 mM glucose, respectively. Co-immobilization of GOD and CAT in presence of their substrates highly improved the activity and reusability of both enzymes. PMID:17345856

  9. The catalase gene family in cucumber: genome-wide identification and organization.

    PubMed

    Hu, Lifang; Yang, Yingui; Jiang, Lunwei; Liu, Shiqiang

    2016-01-01

    Catalase (CAT) is a common antioxidant enzyme in almost all living organisms. Currently, detailed reports on cucumber (Cucumis sativus L.) CAT (CsCAT) genes and tissue expression profiling are limited. In the present study, four candidate CsCAT genes were identified in cucumber. Phylogenetic analysis indicated that CsCAT1-CsCAT3 are closely related to Arabidopsis AtCAT1-AtCAT3, but no obvious counterpart was observed for CsCAT4. Intron/exon structure analysis revealed that only one of the 15 positions was completely conserved. Motif analysis showed that, unlike the CAT genes of other species, none of CsCAT genes contained all 10 motifs. Expression data showed that transcripts of all of the CsCAT genes, except CsCAT4, were detected in five tissues. Moreover, their transcription levels displayed differences under different stress treatments. PMID:27560990

  10. Analysis of the dual regulatory mechanisms controlling expression of the vegetative catalase gene of Bacillus subtilis.

    PubMed Central

    Bol, D K; Yasbin, R E

    1994-01-01

    The expression of a vegetative catalase gene, katA (formerly the kat-19 gene), is necessary to protect Bacillus subtilis from H2O2, presumably by removing the oxidant from the environment. Genetic analysis of katA revealed that this gene is under two distinct forms of regulation, temporal and H2O2 inducible. The results reported here demonstrate that (i) the H2O2-inducible regulation of katA gene is not a component of the SOS regulon, (ii) the regulatory genes spo0A and abrB are involved in the temporal regulation but not the H2O2-specific induction of katA gene expression, and (iii) transcription initiation for the katA gene occurs at the same site under both forms of regulation. Images PMID:7961428

  11. Protection of normal human reconstructed epidermis from UV by catalase overexpression.

    PubMed

    Rezvani, H R; Cario-André, M; Pain, C; Ged, C; deVerneuil, H; Taïeb, A

    2007-02-01

    Reactive oxygen species (ROS) generated by ultraviolet (UV) irradiation are counterbalanced by endogenous antioxidant systems. To test the hypothesis of a novel photoprotective approach, we irradiated epidermis reconstructed with normal human keratinocytes overexpressing sustainably lentivirus-mediated catalase (CAT), copper/zinc superoxide dismutase (CuZnSOD) or manganese superoxide dismutase (MnSOD) enzymes. We found that following UVB irradiation there was a marked decrease in sunburn cell formation, caspase-3 activation and p53 accumulation in human reconstructed epidermis overexpressing CAT. Moreover, UVA-induced hypertrophy and DNA oxidation (8-oxodeoxyguanosine) were decreased by CAT overexpression. These effects were not achieved by overexpression of CuZnSOD or MnSOD. In conclusion, vector-mediated CAT overexpression could be a promising photoprotective tool against deleterious effects of UV irradiation such skin cancer especially in monogenic/polygenic photosensitive disorders characterized by ROS accumulation. PMID:17053817

  12. Improved membrane filtration method incorporating catalase and sodium pyruvate for detection of chlorine-stressed coliform bacteria.

    PubMed Central

    Calabrese, J P; Bissonnette, G K

    1990-01-01

    In vitro pure culture studies were conducted on three different strains of Escherichia coli (K-12, EPA 00244, and SWEI) to determine the effect of chlorination on catalase activity. In each case, stationary-phase cells exhibited significant (P less than 0.001) reductions in enzyme activity following exposure to chlorine. Mean differences in activity between control and chlorine-stressed cells ranged from 8.8 to 20.3 U/mg of protein for E. coli SWEI and EPA 00244, respectively. Following initial enzyme studies, resuscitation experiments utilizing the membrane filtration technique were conducted on chlorinated sewage effluent. Five different amendments, including catalase (1,000 U per plate), heat-inactivated catalase (1,000-U per plate), sodium pyruvate (0.05%), a catalase-sodium pyruvate combination (1,500 U/0.01%), and acetic acid (0.05%), were tested for the ability to enhance detection of chlorine-stressed cells on M-fecal coliform (M-FC), mT7, M-Endo, and tryptone-glucose-yeast extract (TGY) media. Significant (P less than 0.001) increases in recovery of fecal coliforms on M-FC, total coliforms on mT7 and M-Endo, and total heterotrophs on TGY were obtained on plates containing catalase, pyruvate, or the combination of these compounds. Supplementation with heat-inactivated catalase and acetic acid did not improve recovery of chlorine-stressed cells compared with recovery on nonamended media. Subsequent analysis of colonies from plates containing compounds which enhanced recovery indicated coliform verification percentages of greater than 80% on M-FC, greater than 90% on mT7, and greater than 94% on M-Endo media. These data suggest that the addition of peroxide-degrading compounds to various standard recovery media may improve detection of both coliform and heterotrophic bacteria in chlorinated waters. PMID:2268162

  13. [Use of cadmium hydroxide gel for isolation of extracellular catalases from Penicillium piceum and characterization of purified enzymes].

    PubMed

    Eremin, A N; Moroz, I V; Mikhaĭlova, R V

    2008-01-01

    We optimized the conditions for isolation of extracellular catalases from Penicillium piceum F-648 and P. piceum A3 by means of volume chromatography with cadmium hydroxide gel. Our study showed that 55-57 mg wet gel are sufficient for the maximum sorption of catalase from 1 ml of culture fluid. This gel was formed in 1 ml 70 mM Cd(NO3)2 after addition of NaOH (Cd(NO3)2/NaOH molar ratio 1:2.2). The eluting solution contained 50 mM NaH2PO4 (pH 7.0), 5.0 mM dithiothreitol, and 0.3% sodium cholate and was potent in desorbing catalase from the gel. Subsequent ultrafiltration of the eluate on the membrane with a retention limit of 50 kDa allowed us to concentrate and purify the sample from low-molecular-weight protein impurities. NH4Cl (1.0 M) containing 0.3% sodium cholate was used to wash the sample from low-molecular-weight aromatic metabolites. Purified catalases included 33-34% antiparallel beta-structures and 9% alpha-spirals. Under optimal conditions in the medium of 10 mM phosphate buffered saline (pH 7.0) at 30 degrees C, catalases from P. piceum F-648 were characterized by the following parameters: K(M), 158.8 mM; catalytic constant, 2.83 x 10(6) s(-1); enzyme inactivation rate constant in H2O2 decomposition, 3.5 x 10(-2) s(-1); and constant of the interaction between catalase complex I and second molecule of H2O2, 1.8 x 10(7) M(-1) s(-1). PMID:19145972

  14. Roles of catalase and glutathione peroxidase in the tolerance of a pulmonate gastropod to anoxia and reoxygenation.

    PubMed

    Welker, Alexis F; Moreira, Daniel C; Hermes-Lima, Marcelo

    2016-07-01

    Humans and most mammals suffer severe damage when exposed to ischemia and reperfusion episodes due to an overproduction of reactive oxygen species (ROS). In contrast, several hypoxia/anoxia-tolerant animals survive very similar situations. We evaluated herein the redox metabolism in the anoxia-tolerant land snail Helix aspersa after catalase inhibition by 3-amino-1,2,4-triazole (ATZ) injection during a cycle of wide and abrupt change in oxygen availability. The exposure to anoxia for 5 h caused a change of only one of several parameters related to free radical metabolism: a rise in selenium-dependent glutathione peroxidase (Se-GPX) activity in muscle of both saline- and ATZ-injected animals (by 1.9- and 1.8-fold, respectively). Catalase suppression had no effect in animals under normoxia or anoxia. However, during reoxygenation catalase suppression kept high levels of muscle Se-GPX activity (twofold higher than in saline-injected snails up to 30 min reoxygenation) and induced the increase in hepatopancreas SOD activity (by 22 %), indicating higher levels of ROS in both organs than in saline-injected animals. Additionally, catalase-suppressed snails showed 12 % higher levels of carbonyl protein-a sign of mild oxidative stress-in muscle during reoxygenation than those animals with intact catalase. No changes were observed in glutathione parameters (GSH, GSSG and GSSG:GSH ratio), TBARS, and GST activity in any of the experimental groups, in both organs. These results indicate that catalase inhibition inflicts changes in the free radical metabolism during reoxygenation, prompting a stress-response that is a reorganization in other enzymatic antioxidant defenses to minimize alterations in the redox homeostasis in land snails. PMID:27062029

  15. Francisella tularensis Catalase Restricts Immune Function by Impairing TRPM2 Channel Activity.

    PubMed

    Shakerley, Nicole L; Chandrasekaran, Akshaya; Trebak, Mohamed; Miller, Barbara A; Melendez, J Andrés

    2016-02-19

    As an innate defense mechanism, macrophages produce reactive oxygen species that weaken pathogens and serve as secondary messengers involved in immune function. The Gram-negative bacterium Francisella tularensis utilizes its antioxidant armature to limit the host immune response, but the mechanism behind this suppression is not defined. Here we establish that F. tularensis limits Ca(2+) entry in macrophages, thereby limiting actin reorganization and IL-6 production in a redox-dependent fashion. Wild type (live vaccine strain) or catalase-deficient F. tularensis (ΔkatG) show distinct profiles in their H2O2 scavenging rates, 1 and 0.015 pm/s, respectively. Murine alveolar macrophages infected with ΔkatG display abnormally high basal intracellular Ca(2+) concentration that did not increase further in response to H2O2. Additionally, ΔkatG-infected macrophages displayed limited Ca(2+) influx in response to ionomycin, as a result of ionophore H2O2 sensitivity. Exogenously added H2O2 or H2O2 generated by ΔkatG likely oxidizes ionomycin and alters its ability to transport Ca(2+). Basal increases in cytosolic Ca(2+) and insensitivity to H2O2-mediated Ca(2+) entry in ΔkatG-infected cells are reversed by the Ca(2+) channel inhibitors 2-aminoethyl diphenylborinate and SKF-96365. 2-Aminoethyl diphenylborinate but not SKF-96365 abrogated ΔkatG-dependent increases in macrophage actin remodeling and IL-6 secretion, suggesting a role for H2O2-mediated Ca(2+) entry through the transient receptor potential melastatin 2 (TRPM2) channel in macrophages. Indeed, increases in basal Ca(2+), actin polymerization, and IL-6 production are reversed in TRPM2-null macrophages infected with ΔkatG. Together, our findings provide compelling evidence that F. tularensis catalase restricts reactive oxygen species to temper macrophage TRPM2-mediated Ca(2+) signaling and limit host immune function. PMID:26679996

  16. Differential effects of superoxide dismutase and superoxide dismutase/catalase mimetics on human breast cancer cells.

    PubMed

    Shah, Manisha H; Liu, Guei-Sheung; Thompson, Erik W; Dusting, Gregory J; Peshavariya, Hitesh M

    2015-04-01

    Reactive oxygen species (ROS) such as superoxide and hydrogen peroxide (H2O2) have been implicated in development and progression of breast cancer. In the present study, we have evaluated the effects of the superoxide dismutase (SOD) mimetic MnTmPyP and the SOD/catalase mimetic EUK 134 on superoxide and H2O2 formation as well as proliferation, adhesion, and migration of MCF-7 and MDA-MB-231 cells. Superoxide and H2O2 production was examined using dihydroethidium and Amplex red assays, respectively. Cell viability and adhesion were measured using a tetrazolium-based MTT assay. Cell proliferation was determined using trypan blue assay. Cell cycle progression was analyzed using flow cytometry. Clonal expansion of a single cell was performed using a colony formation assay. Cell migration was measured using transwell migration assay. Dual luciferase assay was used to determine NF-κB reporter activity. EUK 134 effectively reduced both superoxide and H2O2, whereas MnTmPyP removed superoxide but enhanced H2O2 formation. EUK 134 effectively attenuated viability, proliferation, clonal expansion, adhesion, and migration of MCF-7 and MDA-MB-231 cells. In contrast, MnTmPyP only reduced clonal expansion of MCF-7 and MDA-MB-231 cells but had no effect on adhesion and cell cycle progression. Tumor necrosis factor-alpha-induced NF-κB activity was reduced by EUK 134, whereas MnTmPyP enhanced this activity. These data indicate that the SOD mimetic MnTmPyP and the SOD/catalase mimetic EUK 134 exert differential effects on breast cancer cell growth. Inhibition of H2O2 signaling using EUK 134-like compound might be a promising approach to breast cancer therapy. PMID:25794772

  17. Catalase-peroxidase (Mycobacterium tuberculosis KatG) catalysis and isoniazid activation.

    PubMed

    Chouchane, S; Lippai, I; Magliozzo, R S

    2000-08-15

    Resonance Raman spectra of native, overexpressed M. tuberculosis catalase-peroxidase (KatG), the enzyme responsible for activation of the antituberculosis antibiotic isoniazid (isonicotinic acid hydrazide), have confirmed that the heme iron in the resting (ferric) enzyme is high-spin five-coordinate. Difference Raman spectra did not reveal a change in coordination number upon binding of isoniazid to KatG. Stopped-flow spectrophotometric studies of the reaction of KatG with stoichiometric equivalents or small excesses of hydrogen peroxide revealed only the optical spectrum of the ferric enzyme with no hypervalent iron intermediates detected. Large excesses of hydrogen peroxide generated oxyferrous KatG, which was unstable and rapidly decayed to the ferric enzyme. Formation of a pseudo-stable intermediate sharing optical characteristics with the porphyrin pi-cation radical-ferryl iron species (Compound I) of horseradish peroxidase was observed upon reaction of KatG with excess 3-chloroperoxybenzoic acid, peroxyacetic acid, or tert-butylhydroperoxide (apparent second-order rate constants of 3.1 x 10(4), 1.2 x 10(4), and 25 M(-1) s(-1), respectively). Identification of the intermediate as KatG Compound I was confirmed using low-temperature electron paramagnetic resonance spectroscopy. Isoniazid, as well as ascorbate and potassium ferrocyanide, reduced KatG Compound I to the ferric enzyme without detectable formation of Compound II in stopped-flow measurements. This result differed from the reaction of horseradish peroxidase Compound I with isoniazid, during which Compound II was stably generated. These results demonstrate important mechanistic differences between a bacterial catalase-peroxidase and the homologous plant peroxidases and yeast cytochrome c peroxidase, in its reactions with peroxides as well as substrates. PMID:10933818

  18. A gas-phase amplified quartz crystal microbalance immunosensor based on catalase modified immunoparticles.

    PubMed

    Liu, Wei; Huang, Renliang; Qi, Wei; Wang, Mengfan; Su, Rongxin; He, Zhimin

    2015-02-21

    A novel signal amplification strategy for quartz crystal microbalance (QCM) based on catalytic gas generation was developed to construct an ultrasensitive immunosensor for the detection of proteins (immunoglobulin G, IgG, used as a model). A catalase modified immunoparticle was prepared to form a sandwich-type immunocomplex with the IgG and anti-IgG antibodies that were immobilized on the QCM sensor. The amount of immunoparticles on the sensor surface was thus controlled by the IgG concentration. Then H2O2 was added and catalyzed by catalase for oxygen generation. The generated oxygen replaced some of the liquid on the sensor surface, leading to the change in the shear modulus of the immunocomplex layer and the apparent viscosity and density of the liquid layer. Due to the ultrasensitive response of QCM to these changes, a significant frequency shift related to the IgG concentration was achieved. Different parameters, including the flow cell structure, operation temperature, immunoparticle concentration, and H2O2 concentration were optimized to achieve steady and efficient frequency shifts. Under the optimal conditions, the proposed gas-phase amplified QCM sensor could achieve up to 72 times improvement of detection sensitivity compared to the label-free sensor as a control, in the concentration range of 0.1-3.0 μg mL(-1). The detection limit was also reduced from 236 ng mL(-1) to 51.0 ng mL(-1) at the 3Sblank level. PMID:25519742

  19. Catalase ameliorates polychlorinated biphenyl-induced cytotoxicity in non-malignant human breast epithelial cells

    PubMed Central

    Venkatesha, Venkatasubbaiah A.; Venkataraman, Sujatha; Sarsour, Ehab H.; Kalen, Amanda L.; Buettner, Garry R.; Robertson, Larry W.; Lehmler, Hans-Joachim; Goswami, Prabhat C.

    2008-01-01

    Polychlorinated biphenyls (PCBs) are environmental chemical contaminants believed to adversely affect cellular processes. We investigated the hypothesis that PCB-induced changes in the levels of cellular reactive oxygen species (ROS) induce DNA damage resulting in cytotoxicity. Exponentially growing cultures of human non-malignant breast epithelial cells (MCF10A) were incubated with PCBs for 3 days and assayed for cell number, ROS levels, DNA damage, and cytotoxicity. Exposure to 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153) or 2-(4-chlorophenyl)benzo-1,4-quinone (4-Cl-BQ), a metabolite of 4-chlorobiphenyl (PCB3) significantly decreased cell number, MTS reduction, and increased the percentage of cells with sub G1 DNA content. Results from electron paramagnetic resonance (EPR) spectroscopy showed a 4-fold increase in the steady-state levels of ROS, which was suppressed in cells pre-treated with catalase. EPR measurements in cells treated with 4-Cl-BQ detected the presence of a semiquinone radical, suggesting that the increased levels of ROS could be due to the redox-cycling of 4-Cl-BQ. A dose-dependent increase in micronuclei frequency was observed in PCB-treated cells, consistent with an increase in histone 2AX-phosphorylation. Treatment of cells with catalase blunted the PCB-induced increase in micronuclei frequency and H2AX phosphorylation that was consistent with an increase in cell survival. Our results demonstrate a PCB-induced increase in cellular levels of ROS causing DNA damage, resulting in cell killing. PMID:18691649

  20. Characterization of the W321F mutant of Mycobacterium tuberculosis catalase-peroxidase KatG.

    PubMed

    Yu, Shengwei; Chouchane, Salem; Magliozzo, Richard S

    2002-01-01

    A single amino acid mutation (W321F) in Mycobacterium tuberculosis catalase-peroxidase (KatG) was constructed by site-directed mutagenesis. The purified mutant enzyme was characterized using optical and electron paramagnetic resonance spectroscopy, and optical stopped-flow spectrophotometry. Reaction of KatG(W321F) with 3-chloroperoxybenzoic acid, peroxyacetic acid, or t-butylhydroperoxide showed formation of an unstable intermediate assigned as Compound I (oxyferryl iron:porphyrin pi-cation radical) by similarity to wild-type KatG, although second-order rate constants were significantly lower in the mutant for each peroxide tested. No evidence for Compound II was detected during the spontaneous or substrate-accelerated decay of Compound I. The binding of isoniazid, a first-line anti-tuberculosis pro-drug activated by catalase-peroxidase, was noncooperative and threefold weaker in KatG(W321F) compared with wild-type enzyme. An EPR signal assigned to a protein-based radical tentatively assigned as tyrosyl radical in wild-type KatG, was also observed in the mutant upon reaction of the resting enzyme with alkyl peroxide. These results show that mutation of residue W321 in KatG does not lead to a major alteration in the identity of intermediates formed in the catalytic cycle of the enzyme in the time regimes examined here, and show that this residue is not the site of stabilization of a radical as might be expected based on homology to yeast cytochrome c peroxidase. Furthermore, W321 is indicated to be important in KatG for substrate binding and subunit interactions within the dimer, providing insights into the origin of isoniazid resistance in clinically isolated KatG mutants. PMID:11742122

  1. Fluoxetin Upregulates Connexin 43 Expression in Astrocyte

    PubMed Central

    Mostafavi, Hossein; Khaksarian, Mojtaba; Joghataei, Mohammad Taghi; Hassanzadeh, Gholamreza; Soleimani, Masoud; Eftekhari, Sanaz; Soleimani, Mansooreh; Mousavizadeh, Kazem; Hadjighassem, Mahmoud Reza

    2014-01-01

    Introduction Recent studies have shown that astrocytes play major roles in normal and disease condition of the central nervous system including multiple sclerosis (MS). Molecular target therapy studies in MS have revealed that connexin-43 (Cx43) and Aquaporin-4 (AQP4) contents of astrocytes undergo expression alteration. Fluoxetine had some effects in MS patients unrelated to its known antidepressant effects. Some of fluoxetine effects were attributed to its capability of cAMP signaling pathway stimulation. This study aimed to investigate possible acute effects of fluoxetine on Cx43 and AQP4 expression in astrocyte. Methods Astrocytoma cells were treated for 24 hours with fluoxetine (10 and 20 µg/ml) with or without adenyl cyclase (AC) and protein kinase A (PKA) inhibition. Cx43 expression at both mRNA and protein levels and AQP4 expression at mRNA level were evaluated. Results Acquired results showed that fluoxetine with and without AC and PKA inhibition resulted in Cx43 up-regulation both in mRNA and protein levels, whereas AQP4 expression have not changed. Discussion In conclusion, data showed that fluoxetine alone and in the absence of serotonin acutely up-regulated Cx43 expression in astrocytes that can be assumed in molecular target therapy of MS patients. It seems that cAMP involvement in fluoxetine effects need more researches. PMID:25436087

  2. Upregulation of endogenous antioxidants and phase 2 enzymes by the red wine polyphenol, resveratrol in cultured aortic smooth muscle cells leads to cytoprotection against oxidative and electrophilic stress.

    PubMed

    Li, Yunbo; Cao, Zhuoxiao; Zhu, Hong

    2006-01-01

    Resveratrol (3,4',5-trihydroxystilbene), a polyphenolic compound found in mulberries, grapes and red wine has been demonstrated to be capable of protecting against oxidative cardiovascular pathophysiology. However, the underlying cellular and biochemical mechanisms remain to be elucidated. This study was undertaken to determine if resveratrol could upregulate endogenous antioxidants and phase 2 enzymes in cultured aortic smooth muscle cells (ASMCs), and if such increased cellular defenses could provide protection against oxidative and electrophilic vascular cell injury. Incubation of rat ASMCs with resveratrol at low micromolar concentrations resulted in a significant induction of a scope of cellular antioxidants and phase 2 enzymes in a concentration- and/or time-dependent fashion. These cytoprotective factors include superoxide dismutase, catalase, glutathione, glutathione reductase, glutathione peroxidase, glutathione S-transferase (GST), and NAD(P)H:quinone oxidoreductase-1 (NOQ1). Notably, induction of catalase, GST, and NOQ1 was most remarkable among the above resveratrol-inducible antioxidants and phase 2 enzymes. Moreover, resveratrol treatment also significantly increased the mRNA expression of catalase, GSTA1, and NQO1 in a time-dependent manner. Pretreatment of ASMCs with resveratrol afforded a remarkable protection against xanthine oxidase (XO)/xanthine- or 4-hydroxy-2-nonenal-induced cytotoxicity, as assessed by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) reduction assay. Resveratrol pretreatment also led to a marked reduction in intracellular accumulation of reactive oxygen species in ASMCs after incubation with XO/xanthine. Taken together, this study demonstrates that a scope of key endogenous antioxidants and phase 2 enzymes in cultured ASMCs can be upregulated by resveratrol at low micromolar concentrations, and that such chemically-elevated cellular defenses rendered cells increased resistance to oxidative and electrophilic

  3. Toward "stable-on-the-table" enzymes: improving key properties of catalase by covalent conjugation with poly(acrylic acid).

    PubMed

    Riccardi, Caterina M; Cole, Kyle S; Benson, Kyle R; Ward, Jessamyn R; Bassett, Kayla M; Zhang, Yiren; Zore, Omkar V; Stromer, Bobbi; Kasi, Rajeswari M; Kumar, Challa V

    2014-08-20

    Several key properties of catalase such as thermal stability, resistance to protease degradation, and resistance to ascorbate inhibition were improved, while retaining its structure and activity, by conjugation to poly(acrylic acid) (PAA, Mw 8000) via carbodiimide chemistry where the amine groups on the protein are appended to the carboxyl groups of the polymer. Catalase conjugation was examined at three different pH values (pH 5.0, 6.0, and 7.0) and at three distinct mole ratios (1:100, 1:500, and 1:1000) of catalase to PAA at each reaction pH. The corresponding products are labeled as Cat-PAA(x)-y, where x is the protein to polymer mole ratio and y is the pH used for the synthesis. The coupling reaction consumed about 60-70% of the primary amines on the catalase; all samples were completely water-soluble and formed nanogels, as evidenced by gel electrophoresis and electron microscopy. The UV circular dichroism (CD) spectra indicated substantial retention of protein secondary structure for all samples, which increased to 100% with increasing pH of the synthesis and polymer mole fraction. Soret CD bands of all samples indicated loss of ∼50% of band intensities, independent of the reaction pH. Catalytic activities of the conjugates increased with increasing synthesis pH, where 55-80% and 90-100% activity was retained for all samples synthesized at pH 5.0 and pH 7.0, respectively, and the Km or Vmax values of Cat-PAA(100)-7 did not differ significantly from those of the free enzyme. All conjugates synthesized at pH 7.0 were thermally stable even when heated to ∼85-90 °C, while native catalase denatured between 55 and 65 °C. All conjugates retained 40-90% of their original activities even after storing for 10 weeks at 8 °C, while unmodified catalase lost all of its activity within 2 weeks, under similar storage conditions. Interestingly, PAA surrounding catalase limited access to the enzyme from large molecules like proteases and significantly increased

  4. Identification of genes up-regulated in response to Cd exposure in Brassica juncea L.

    PubMed

    Minglin, Lang; Yuxiu, Zhang; Tuanyao, Chai

    2005-12-19

    In this paper, the fluorescent mRNA differential display (DD) technique was applied to analyze transcriptional regulation in response to Cd treatment in a heavy-metal accumulator, Brassica juncea. 154 DD bands were identified, of which fragments corresponding to 15 and 13 cDNAs were successfully cloned from leaves and roots, respectively. Many of the genes were confirmed to have a 2-5 fold increase in expression in both roots and leaves after 48 h Cd exposure (approximately 22.4 ppm). However, several isolated genes, e.g., DD2, DD21, DD22, showed a reversed mRNA expression pattern. Sequencing revealed those Cd-induced up-regulated genes displayed mRNAs corresponding to 19 different genes, 18 of which had a clear identity to Arabidopsis thaliana sequences and a putative function was assigned to 15 of them, including the auxin-responsive GH3, ARF-like small GTPases/ARFs, ARD/ARD', APS reductase, Nop, catalase, zinc finger (C3HC4-type RING finger), diacylglycerol kinase, and haloacid dehalogenase-like hydrolase families. Three cDNAs corresponded to predicted membrane proteins (KOG3491) or a ribosome-associated membrane protein RAMP4. One other clone, DD26, did not show significant identities to any translated sequence in the GenBank database, suggesting it may either encode unidentified proteins, or correspond to un-translated, non-conserved regions of mRNA molecules. These Cd-responsive up-regulated genes are mostly also regulated by abiotic or biotic stresses, e.g., dehydration, chilling, high salt, auxin, heat and infection, in other plants. The present study leads to an increased understanding of genes and/or the biochemical pathways involved in heavy-metal resistance and accumulation in plants. PMID:16226851

  5. Fluid shear stress upregulates placental growth factor in the vessel wall via NADPH oxidase 4.

    PubMed

    Rashdan, Nabil A; Lloyd, Pamela G

    2015-11-15

    Placental growth factor (PLGF), a potent stimulator of arteriogenesis, is upregulated during outward arterial remodeling. Increased fluid shear stress (FSS) is a key physiological stimulus for arteriogenesis. However, the role of FSS in regulating PLGF expression is unknown. To test the hypothesis that FSS regulates PLGF expression in vascular cells and to identify the signaling pathways involved, human coronary artery endothelial cells (HCAEC) and human coronary artery smooth muscle cells were cultured on either side of porous Transwell inserts. HCAEC were then exposed to pulsatile FSS of 0.07 Pa ("normal," mimicking flow through quiescent collaterals), 1.24 Pa ("high," mimicking increased flow in remodeling collaterals), or 0.00 Pa ("static") for 2 h. High FSS increased secreted PLGF protein ∼1.4-fold compared with static control (n = 5, P < 0.01), while normal FSS had no significant effect on PLGF. Similarly, high flow stimulated PLGF mRNA expression nearly twofold in isolated mouse mesenteric arterioles. PLGF knockdown using siRNA revealed that HCAEC were the primary source of PLGF in cocultures (n = 5, P < 0.01). Both H2O2 and nitric oxide production were increased by FSS compared with static control (n = 5, P < 0.05). N(G)-nitro-l-arginine methyl ester (100 μM) had no significant effect on the FSS-induced increase in PLGF. In contrast, both catalase (500 U/ml) and diphenyleneiodonium (5 μM) attenuated the effects of FSS on PLGF protein in cocultures. Diphenyleneiodonium also blocked the effect of high flow to upregulate PLGF mRNA in isolated arterioles. Further studies identified NADPH oxidase 4 as a source of reactive oxygen species for this pathway. We conclude that FSS regulates PLGF expression via NADPH oxidase 4 and reactive oxygen species signaling. PMID:26408539

  6. Intracellular antioxidant enzymes are not globally upregulated during hibernation in the major oxidative tissues of the 13-lined ground squirrel Spermophilus tridecemlineatus.

    PubMed

    Page, Melissa M; Peters, Craig W; Staples, James F; Stuart, Jeffrey A

    2009-01-01

    Hibernating mammals exhibit oxidative stress resistance in brain, liver and other tissues. In many animals, cellular oxidative stress resistance is associated with enhanced expression of intracellular antioxidant enzymes. Intracellular antioxidant capacity may be upregulated during hibernation to protect against oxidative damage associated with the ischemia-reperfusion that occurs during transitions between torpor and arousal. We tested the hypothesis that the 13-lined ground squirrel (Spermophilus tridecemlineatus), upregulates intracellular antioxidant enzymes in major oxidative tissues during hibernation. The two major intracellular isoforms of superoxide dismutase (MnSOD and CuZnSOD), which catalyze the first step in superoxide detoxification, were quantified in heart, brain and liver tissue using immunodetection and an in-gel activity assay. However, no differences in SOD protein expression or activity were found between active and hibernating squirrels. Measurements of glutathione peroxidase and glutathione reductase, which catalyze hydrogen peroxide removal, were not broadly upregulated during hibernation. The activity of catalase, which catalyzes an alternative hydrogen peroxide detoxification pathway, was higher in heart and brain of torpid squirrels, but lower in liver. Taken together, these data do not support the hypothesis that hibernation is associated with enhanced oxidative stress resistance due to an upregulation of intracellular antioxidant enzymes in the major oxidative tissues. PMID:18948223

  7. Periodical bubble formation and the oscillatory change in dissolved oxygen concentration in a catalase-hydrogen peroxide system.

    PubMed

    Sasaki, Satoshi

    2006-06-01

    The relationship between the periodical bubble forming and the oscillatory change in the dissolved oxygen (DO) concentration in a catalase-hydrogen peroxide system was studied. Photographs of the bubbles and the responses from the DO electrode indicated that large bubbles were generated periodically, and that the DO profile depended on the geometrical relationship between the electrode and the bubbles. PMID:16772694

  8. Erythrocyte Catalase Activity in More Frequent Microcytic Hypochromic Anemia: Beta-Thalassemia Trait and Iron Deficiency Anemia

    PubMed Central

    Lazarte, Sandra Stella; Mónaco, María Eugenia; Jimenez, Cecilia Laura; Ledesma Achem, Miryam Emilse; Terán, Magdalena María; Issé, Blanca Alicia

    2015-01-01

    Most common microcytic hypochromic anemias are iron deficiency anemia (IDA) and β-thalassemia trait (BTT), in which oxidative stress (OxS) has an essential role. Catalase causes detoxification of H2O2 in cells, and it is an indispensable antioxidant enzyme. The study was designed to measure erythrocyte catalase activity (ECAT) in patients with IDA (10) or BTT (21), to relate it with thalassemia mutation type (β0 or β+) and to compare it with normal subjects (67). Ninety-eight individuals were analyzed since September 2013 to June 2014 in Tucumán, Argentina. Total blood count, hemoglobin electrophoresis at alkaline pH, HbA2, catalase, and iron status were performed. β-thalassemic mutations were determined by real-time PCR. Normal range for ECAT was 70,0–130,0 MU/L. ECAT was increased in 14% (3/21) of BTT subjects and decreased in 40% (4/10) of those with IDA. No significant difference (p = 0,245) was shown between normal and BTT groups, while between IDA and normal groups the difference was proved to be significant (p = 0,000). In β0 and β+ groups, no significant difference (p = 0,359) was observed. An altered ECAT was detected in IDA and BTT. These results will help to clarify how the catalase activity works in these anemia types. PMID:26527217

  9. Cationization of catalase, peroxidase, and superoxide dismutase. Effect of improved intraarticular retention on experimental arthritis in mice.

    PubMed Central

    Schalkwijk, J; van den Berg, W B; van de Putte, L B; Joosten, L A; van den Bersselaar, L

    1985-01-01

    Several enzymes and other proteins were made cationic either by coupling to polylysine or by shielding of anionic sites. These cationic proteins, all having an isoelectric point greater than 8.5 exhibited excellent retention in articular structures when injected in mouse knee joints. Autoradiography and histochemistry showed that cationic forms of catalase, superoxide dismutase, and horseradish peroxidase were firmly retained by synovial and cartilaginous tissues. The half-life of these enzymes in the joint is thus significantly extended compared with native enzymes. The native enzymes and their cationic derivatives were tested for antiinflammatory properties in mice, using antigen-induced arthritis and zymosan-induced arthritis. It was found that injection of cationic catalase or peroxidase induced a marked suppression of some parameters of the inflammatory response in both types of arthritis, as measured by 99m technetium pertechnetate uptake and leakage of 125I-labeled albumin. Native catalase and peroxidase were less, or not at all effective. Cationic superoxide dismutase or cationic nonenzyme proteins did not suppress inflammation. The observed suppression of two different types of inflammation (an immune and a nonimmune arthritis) by catalase and peroxidase suggests that elimination of peroxides contributes to the suppression of an inflammatory response. We would hypothesize that cationic enzymes offer the possibility for investigating the mechanisms of inflammation and, in addition, might be interesting from a therapeutical point of view. Images PMID:4019779

  10. Novel immobilization process of a thermophilic catalase: efficient purification by heat treatment and subsequent immobilization at high temperature.

    PubMed

    Xu, Juan; Luo, Hui; López, Claudia; Xiao, Jing; Chang, Yanhong

    2015-10-01

    The main goal of the present work is to investigate a novel process of purification and immobilization of a thermophilic catalase at high temperatures. The catalase, originated from Bacillus sp., was overexpressed in a recombinant Escherichia coli BL21(DE3)/pET28-CATHis and efficiently purified by heat treatment, achieving a threefold purification. The purified catalase was then immobilized onto an epoxy support at different temperatures (25, 40, and 55 °C). The immobilizate obtained at higher temperatures reached its maximum activity in a shorter time than that obtained at lower temperatures. Furthermore, immobilization at higher temperatures required a lower ionic strength than immobilization at lower temperatures. The characteristics of immobilized enzymes prepared at different temperatures were investigated. The high-temperature immobilizate (55 °C) showed the highest thermal stability, followed by the 40 °C immobilizate. And the high-temperature immobilizate (55 °C) had slightly higher operational stability than the 25 °C immobilizate. All of the immobilized catalase preparations showed higher stability than the free enzyme at alkaline pH 10.0, while the alkali resistance of the 25 °C immobilizate was slightly better than that of the 40 and 55 °C immobilizates. PMID:26205324

  11. Horizontal gene transfer confers adaptive advantages to phytopathogenic fungi: a case study of catalase-peroxidase in Fusarium verticillioides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Horizontal gene transfer (HGT), the exchange and stable integration of genetic material between different evolutionary lineages, is widely observed in fungi. We hypothesize that successful stabilization of HGT elements provides adaptive advantages (e.g., virulence). Catalase/peroxidases (KatGs) are ...

  12. Multiple abiotic stress tolerance of the transformants yeast cells and the transgenic Arabidopsis plants expressing a novel durum wheat catalase.

    PubMed

    Feki, Kaouthar; Kamoun, Yosra; Ben Mahmoud, Rihem; Farhat-Khemakhem, Ameny; Gargouri, Ali; Brini, Faiçal

    2015-12-01

    Catalases are reactive oxygen species scavenging enzymes involved in response to abiotic and biotic stresses. In this study, we described the isolation and functional characterization of a novel catalase from durum wheat, designed TdCAT1. Molecular Phylogeny analyses showed that wheat TdCAT1 exhibited high amino acids sequence identity to other plant catalases. Sequence homology analysis showed that TdCAT1 protein contained the putative calmodulin binding domain and a putative conserved internal peroxisomal targeting signal PTS1 motif around its C-terminus. Predicted three-dimensional structural model revealed the presence of four putative distinct structural regions which are the N-terminal arm, the β-barrel, the wrapping and the α-helical domains. TdCAT1 protein had the heme pocket that was composed by five essential residues. TdCAT1 gene expression analysis showed that this gene was induced by various abiotic stresses in durum wheat. The expression of TdCAT1 in yeast cells and Arabidopsis plants conferred tolerance to several abiotic stresses. Compared with the non-transformed plants, the transgenic lines maintained their growth and accumulated more proline under stress treatments. Furthermore, the amount of H2O2 was lower in transgenic lines, which was due to the high CAT and POD activities. Taken together, these data provide the evidence for the involvement of durum wheat catalase TdCAT1 in tolerance to multiple abiotic stresses in crop plants. PMID:26555900

  13. Hyperbaric oxygen preconditioning induces tolerance against spinal cord ischemia by upregulation of antioxidant enzymes in rabbits.

    PubMed

    Nie, Huang; Xiong, Lize; Lao, Ning; Chen, Shaoyang; Xu, Ning; Zhu, Zhenghua

    2006-05-01

    The present study examined the hypothesis that spinal cord ischemic tolerance induced by hyperbaric oxygen (HBO) preconditioning is triggered by an initial oxidative stress and is associated with an increase of antioxidant enzyme activities as one effector of the neuroprotection. New Zealand White rabbits were subjected to HBO preconditioning, hyperbaric air (HBA) preconditioning, or sham pretreatment once daily for five consecutive days before spinal cord ischemia. Activities of catalase (CAT) and superoxide dismutase were increased in spinal cord tissue in the HBO group 24 h after the last pretreatment and reached a higher level after spinal cord ischemia for 20 mins followed by reperfusion for 24 or 48 h, in comparison with those in control and HBA groups. The spinal cord ischemic tolerance induced by HBO preconditioning was attenuated when a CAT inhibitor, 3-amino-1,2,4-triazole,1 g/kg, was administered intraperitoneally 1 h before ischemia. In addition, administration of a free radical scavenger, dimethylthiourea, 500 mg/kg, intravenous, 1 h before each day's preconditioning, reversed the increase of the activities of both enzymes in spinal cord tissue. The results indicate that an initial oxidative stress, as a trigger to upregulate the antioxidant enzyme activities, plays an important role in the formation of the tolerance against spinal cord ischemia by HBO preconditioning. PMID:16136055

  14. Hypoxia Up-Regulates Galectin-3 in Mammary Tumor Progression and Metastasis

    PubMed Central

    Barros, Rita; Gomes, Catarina; de Matos, Augusto J.; Reis, Celso A.; Rutteman, Gerard R.; Gärtner, Fátima

    2015-01-01

    The tumor microenvironment encompasses several stressful conditions for cancer cells such as hypoxia, oxidative stress and pH alterations. Galectin-3, a well-studied member of the beta-galactoside-binding animal family of lectins has been implicated in multiple steps of metastasis as cell-cell and cell-ECM adhesion, promotion of angiogenesis, cell proliferation and resistance to apoptosis. However, both its aberrantly up- and down-regulated expression was observed in several types of cancer. Thus, the mechanisms that regulate galectin-3 expression in neoplastic settings are not clear. In order to demonstrate the putative role of hypoxia in regulating galectin-3 expression in canine mammary tumors (CMT), in vitro and in vivo studies were performed. In malignant CMT cells, hypoxia was observed to induce expression of galectin-3, a phenomenon that was almost completely prevented by catalase treatment of CMT-U27 cells. Increased galectin-3 expression was confirmed at the mRNA level. Under hypoxic conditions the expression of galectin-3 shifts from a predominant nuclear location to cytoplasmic and membrane expressions. In in vivo studies, galectin-3 was overexpressed in hypoxic areas of primary tumors and well-established metastases. Tumor hypoxia thus up-regulates the expression of galectin-3, which may in turn increase tumor aggressiveness. PMID:26222311

  15. Hypoxia Up-Regulates Galectin-3 in Mammary Tumor Progression and Metastasis.

    PubMed

    de Oliveira, Joana T; Ribeiro, Cláudia; Barros, Rita; Gomes, Catarina; de Matos, Augusto J; Reis, Celso A; Rutteman, Gerard R; Gärtner, Fátima

    2015-01-01

    The tumor microenvironment encompasses several stressful conditions for cancer cells such as hypoxia, oxidative stress and pH alterations. Galectin-3, a well-studied member of the beta-galactoside-binding animal family of lectins has been implicated in multiple steps of metastasis as cell-cell and cell-ECM adhesion, promotion of angiogenesis, cell proliferation and resistance to apoptosis. However, both its aberrantly up- and down-regulated expression was observed in several types of cancer. Thus, the mechanisms that regulate galectin-3 expression in neoplastic settings are not clear. In order to demonstrate the putative role of hypoxia in regulating galectin-3 expression in canine mammary tumors (CMT), in vitro and in vivo studies were performed. In malignant CMT cells, hypoxia was observed to induce expression of galectin-3, a phenomenon that was almost completely prevented by catalase treatment of CMT-U27 cells. Increased galectin-3 expression was confirmed at the mRNA level. Under hypoxic conditions the expression of galectin-3 shifts from a predominant nuclear location to cytoplasmic and membrane expressions. In in vivo studies, galectin-3 was overexpressed in hypoxic areas of primary tumors and well-established metastases. Tumor hypoxia thus up-regulates the expression of galectin-3, which may in turn increase tumor aggressiveness. PMID:26222311

  16. Further studies on O sub 2 -resistant photosynthesis and photorespiration in a tobacco mutant with enhanced catalase activity

    SciTech Connect

    Zelitch, I. )

    1990-02-01

    The increase in net photosynthesis in M{sub 4} progeny of an O{sub 2}-resistant tobacco (Nicotiana tabacum) mutant relative to wild-type plants at 21 and 42% O{sub 2} has been confirmed and further investigated. Self-pollination of an M{sub 3} mutant produced M{sub 4} progeny segregating high catalase phenotypes (average 40% greater than wild type) at a frequency of about 60%. The high catalase phenotype cosegregated precisely with O{sub 2}-resistant photosynthesis. About 25% of the F{sub 1} progeny of reciprocal crosses between the same M{sub 3} mutant and wild type had high catalase activity, whether the mutant was used as the maternal or paternal parent, indicating nuclear inheritance. In high-catalase mutants the activity of NADH-hydroxypyruvate reductase, another peroxisomal enzyme, was the same as wild type. The mutants released 15% less photorespiratory CO{sub 2} as a percent of net photosynthesis in CO{sub 2}-free 21% O{sub 2} and 36% less in CO{sub 2}-free 42% O{sub 2} compared with wild type. The mutant leaf tissue also released less {sup 14}CO{sub 2} per (1-{sup 14}C)glycolate metabolized than wild type in normal air, consistent with less photorespiration in the mutant. The O{sub 2}-resistant photosynthesis appears to be caused by a decrease in photorespiration especially under conditions of high O{sub 2} where the stoichiometry of CO{sub 2} release per glycolate metabolized is expected to be enhanced. The higher catalase activity in the mutant may decrease the nonenzymatic peroxidation of keto-acids such as hydroxypyruvate and glyoxylate by photorespiratory H{sub 2}O{sub 2}.

  17. Effect of periplasmic expression of recombinant mouse interleukin-4 on hydrogen peroxide concentration and catalase activity in Escherichia coli.

    PubMed

    Mehdizadeh Aghdam, Elnaz; Mahmoudi Azar, Lena; Barzegari, Abolfazl; Karimi, Farrokh; Mesbahfar, Majid; Samadi, Naser; Hejazi, Mohammad Saeid

    2012-12-15

    Oxidative stress occurs as a result of imbalance between generation and detoxification of reactive oxygen species (ROS). This kind of stress was rarely discussed in connection with foreign protein production in Escherichia coli. Relation between cytoplasmic recombinant protein expression with H(2)O(2) concentration and catalase activity variation was already reported. The periplasmic space of E. coli has different oxidative environment in relative to cytoplasm and there are some benefits in periplasmic expression of recombinant proteins. In this study, hydrogen peroxide concentration and catalase activity following periplasmic expression of mouse IL-4 were measured in E. coli. After construction of pET2mIL4 plasmid, the expression of recombinant mouse interleukin-4 (mIL-4) was confirmed. Then, the H(2)O(2) concentration and catalase activity variation in the cells were studied in exponential and stationary phases at various ODs and were compared to those of wild type cells and empty vector transformed cells. It was revealed that empty vector introduction and periplasmic recombinant protein expression increased significantly the H(2)O(2) concentration of the cells. However, the H(2)O(2) concentration in mIL-4 expressing cells was significantly higher than its concentration in empty vector transformed cells, demonstrating more effects of recombinant mIL-4 expression on H(2)O(2) elevation. Likewise, although catalase activity was reduced in foreign DNA introduced cells, it was more lowered following expression of recombinant proteins. Correlation between H(2)O(2) concentration elevation and catalase activity reduction with cell growth depletion is also demonstrated. It was also found that recombinant protein expression results in cell size increase. PMID:23000065

  18. Isolation of a Novel Peroxisomal Catalase Gene from Sugarcane, Which Is Responsive to Biotic and Abiotic Stresses

    PubMed Central

    Ling, Hui; Chen, Shanshan; Wang, Shanshan; Xu, Liping; Allan, Andrew C.; Que, Youxiong

    2014-01-01

    Catalase is an iron porphyrin enzyme, which serves as an efficient scavenger of reactive oxygen species (ROS) to avoid oxidative damage. In sugarcane, the enzymatic activity of catalase in a variety (Yacheng05–179) resistant to the smut pathogen Sporisorium scitamineum was always higher than that of the susceptible variety (Liucheng03–182), suggesting that catalase activity may have a positive correlation with smut resistance in sugarcane. To understand the function of catalase at the molecular level, a cDNA sequence of ScCAT1 (GenBank Accession No. KF664183), was isolated from sugarcane infected by S. scitamineum. ScCAT1 was predicted to encode 492 amino acid residues, and its deduced amino acid sequence shared a high degree of homology with other plant catalases. Enhanced growth of ScCAT1 in recombinant Escherichia coli Rosetta cells under the stresses of CuCl2, CdCl2 and NaCl indicated its high tolerance. Q-PCR results showed that ScCAT1 was expressed at relatively high levels in the bud, whereas expression was moderate in stem epidermis and stem pith. Different kinds of stresses, including S. scitamineum challenge, plant hormones (SA, MeJA and ABA) treatments, oxidative (H2O2) stress, heavy metal (CuCl2) and hyper-osmotic (PEG and NaCl) stresses, triggered a significant induction of ScCAT1. The ScCAT1 protein appeared to localize in plasma membrane and cytoplasm. Furthermore, histochemical assays using DAB and trypan blue staining, as well as conductivity measurement, indicated that ScCAT1 may confer the sugarcane immunity. In conclusion, the positive response of ScCAT1 to biotic and abiotic stresses suggests that ScCAT1 is involved in protection of sugarcane against reactive oxidant-related environmental stimuli. PMID:24392135

  19. Failure of catalase to protect against aflatoxin B{sub 1}-induced mouse lung tumorigenicity

    SciTech Connect

    Guindon, Katherine A.; Foley, Julie F.; Maronpot, Robert R.; Massey, Thomas E.

    2008-03-01

    The carcinogenic mycotoxin aflatoxin B{sub 1} (AFB{sub 1}) induces 8-hydroxy-2'-deoxyguanosine (8-OHdG) formation in mouse lung, an effect that can be prevented by treatment with polyethylene glycol-conjugated catalase (PEG-CAT). G {yields} T transversion mutation in K-ras, an early event in AFB{sub 1}-induced mouse lung carcinogenesis, is thought to result from AFB{sub 1}-8,9-exo-epoxide binding to DNA to form AFB{sub 1}-N{sup 7}-guanine, but may also result from formation of 8-OHdG. Therefore, oxidative DNA damage may be important in AFB{sub 1} carcinogenicity. The objective of this study was to determine whether PEG-CAT would prevent AFB{sub 1} tumorigenicity. Mouse lung tumorigenesis was assessed following treatment of female A/J mice with 300 kU/kg PEG-CAT ip and/or 50 mg/kg AFB{sub 1}. Mice were killed 7 months post-treatment and tumors greater than 1 mm in diameter were excised. Unexpectedly, the mean number of tumors per mouse in the PEG-CAT + AFB{sub 1} group (8.81 {+-} 3.64, n = 47) was greater than that of the group treated with AFB{sub 1} alone (7.05 {+-} 3.45, n = 42) (P < 0.05). The tumors obtained from mice treated with PEG-CAT + AFB{sub 1} were larger than those from mice treated with AFB{sub 1} alone (P < 0.05). There was no difference in K-ras exon 1 mutation spectrum or in the histological diagnosis of tumors between AFB{sub 1} and PEG-CAT + AFB{sub 1} groups (P > 0.05). In vitro incubation with mouse liver catalase (CAT) resulted in conversion of [{sup 3}H]AFB{sub 1} into a DNA-binding species, a possible explanation for the results observed in vivo. These results demonstrate that PEG-CAT is not protective against AFB{sub 1} carcinogenicity in mouse lung despite preventing DNA oxidation.

  20. Molecular Characterization of a Catalase-Negative Methicillin-Susceptible Staphylococcus aureus subsp. aureus Strain Collected from a Patient with Cutaneous Abscess

    PubMed Central

    Johnson, Ryan C.; Crawford, Katrina; Lanier, Jeffrey B.; Merrell, D. Scott

    2014-01-01

    We describe a cutaneous abscess caused by catalase-negative methicillin-susceptible Staphylococcus aureus subsp. aureus in a patient who was concomitantly colonized with virulent USA300 methicillin-resistant S. aureus (MRSA). Sequencing of the katA gene demonstrated a thymine insertion leading to a frameshift mutation and premature truncation of catalase to 21 amino acids. PMID:24131694

  1. Hesperidin protects against cyclophosphamide-induced hepatotoxicity by upregulation of PPARγ and abrogation of oxidative stress and inflammation.

    PubMed

    Mahmoud, Ayman M

    2014-09-01

    The most important reason for the non-approval and withdrawal of drugs by the Food and Drug Administration is hepatotoxicity. Therefore, this study was undertaken to evaluate the protective effects of hesperidin against cyclophosphamide (CYP)-induced hepatotoxicity in Wistar rats. The rats received a single intraperitoneal dose of CYP of 200 mg/kg body mass, followed by treatment with hesperidin, orally, at doses of 25 and 50 mg/kg for 11 consecutive days. CYP induced hepatic damage, as evidenced by the significantly elevated levels of serum pro-inflammatory cytokines, serum transaminases, liver lipid peroxidation, and nitric oxide. As a consequence, there was reduced glutathione content, and the activities of the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase, were markedly reduced. In addition, CYP administration induced a considerable downregulation of peroxisome proliferator activated receptor gamma (PPARγ) and upregulation of nuclear factor-kappa B (NF-κB) and inducible nitric oxide synthase (iNOS) mRNA expression. Hesperidin, in a dose-dependent manner, rejuvenated the altered markers to an almost normal state. In conclusion, hesperidin showed a potent protective effect against CYP-induced oxidative stress and inflammation leading to hepatotoxicity. The study suggests that hesperidin exerts its protective effect against CYP-induced hepatotoxicity through upregulation of hepatic PPARγ expression and abrogation of inflammation and oxidative stress. PMID:25079140

  2. AGEs-Induced IL-6 Synthesis Precedes RAGE Up-Regulation in HEK 293 Cells: An Alternative Inflammatory Mechanism?

    PubMed

    Serban, Andreea Iren; Stanca, Loredana; Geicu, Ovidiu Ionut; Dinischiotu, Anca

    2015-01-01

    Advanced glycation end products (AGEs) can activate the inflammatory pathways involved in diabetic nephropathy. Understanding these molecular pathways could contribute to therapeutic strategies for diabetes complications. We evaluated the modulation of inflammatory and oxidative markers, as well as the protective mechanisms employed by human embryonic kidney cells (HEK 293) upon exposure to 200 μg/mL bovine serum albumine (BSA) or AGEs-BSA for 12, 24 and 48 h. The mRNA and protein expression levels of AGEs receptor (RAGE) and heat shock proteins (HSPs) 27, 60 and 70, the activity of antioxidant enzymes and the expression levels of eight cytokines were analysed. Cell damage via oxidative mechanisms was evaluated by glutathione and malondialdehyde levels. The data revealed two different time scale responses. First, the up-regulation of interleukin-6 (IL-6), HSP 27 and high catalase activity were detected as early as 12 h after exposure to AGEs-BSA, while the second response, after 24 h, consisted of NF-κB p65, RAGE, HSP 70 and inflammatory cytokine up-regulation, glutathione depletion, malondialdehyde increase and the activation of antioxidant enzymes. IL-6 might be important in the early ignition of inflammatory responses, while the cellular redox imbalance, RAGE activation and NF-κB p65 increased expression further enhance inflammatory signals in HEK 293 cells. PMID:26307981

  3. AGEs-Induced IL-6 Synthesis Precedes RAGE Up-Regulation in HEK 293 Cells: An Alternative Inflammatory Mechanism?

    PubMed Central

    Serban, Andreea Iren; Stanca, Loredana; Geicu, Ovidiu Ionut; Dinischiotu, Anca

    2015-01-01

    Advanced glycation end products (AGEs) can activate the inflammatory pathways involved in diabetic nephropathy. Understanding these molecular pathways could contribute to therapeutic strategies for diabetes complications. We evaluated the modulation of inflammatory and oxidative markers, as well as the protective mechanisms employed by human embryonic kidney cells (HEK 293) upon exposure to 200 μg/mL bovine serum albumine (BSA) or AGEs–BSA for 12, 24 and 48 h. The mRNA and protein expression levels of AGEs receptor (RAGE) and heat shock proteins (HSPs) 27, 60 and 70, the activity of antioxidant enzymes and the expression levels of eight cytokines were analysed. Cell damage via oxidative mechanisms was evaluated by glutathione and malondialdehyde levels. The data revealed two different time scale responses. First, the up-regulation of interleukin-6 (IL-6), HSP 27 and high catalase activity were detected as early as 12 h after exposure to AGEs–BSA, while the second response, after 24 h, consisted of NF-κB p65, RAGE, HSP 70 and inflammatory cytokine up-regulation, glutathione depletion, malondialdehyde increase and the activation of antioxidant enzymes. IL-6 might be important in the early ignition of inflammatory responses, while the cellular redox imbalance, RAGE activation and NF-κB p65 increased expression further enhance inflammatory signals in HEK 293 cells. PMID:26307981

  4. A simple method to measure effective catalase activities: optimization, validation, and application in green coffee.

    PubMed

    Montavon, Philippe; Kukic, Koraljka Rade; Bortlik, Karlheinz

    2007-01-15

    Oxidative metabolism in coffee cherries during maturation appears to be regulated by the timely expression of redox enzymes such as catalase (CAT), peroxidase (POD), and polyphenoloxidase (PPO). Among these enzymes, CAT is suspected to contribute significantly in setting the redox status of the healthy cherry and the processed bean. The initial redox status of the green bean might further control the nature and dynamics of reactions induced by roasting and eventually quality aspects of the end product. In this respect, Arabica (Coffea arabica) and Robusta (Coffea canephora) typically differ by their cup coffee flavor profiles. We developed an assay that allowed us to screen numerous green coffee samples for effective CAT activities. The proposed assay, which monitors CAT activities by online oxygen sensing in green coffee crude suspensions incubated with H2O2, seeks to integrate potential effects of endogenous inhibitors and activators. After optimization and validation of the assay, 23 Arabicas, 23 Robustas, and 8 Arabustas were analyzed. Nearly all Arabicas (22 of 23) harbored high CAT activity levels, whereas all Robustas harbored low ones. Arabustas performed like Arabicas of the lower CAT activity range. The traditional spectrophotometric assay did not reveal these specificities. Because of its simplicity, our assay might be valuable for assessing effective CAT activities in various plant tissues. PMID:17141173

  5. Bisphenol S Interacts with Catalase and Induces Oxidative Stress in Mouse Liver and Renal Cells.

    PubMed

    Zhang, Rui; Liu, Rutao; Zong, Wansong

    2016-08-31

    Bisphenol S (BPS) is present in multitudinous consumer products and detected in both food and water. It also has been a main substitute for bisphenol A (BPA) in the food-packaging industry. Yet, the toxicity of BPS is not fully understood. The present study of the toxicity of BPS was divided into two parts. First, oxidative stress, cell viability, apoptosis level, and catalase (CAT) activity in mouse hepatocytes and renal cells were investigated after BPS exposure. After 12 h of incubation with BPS, all of these parameters of hepatocytes and renal cells changed by >15% as the concentration of BPS ranged from 0.1 to 1 mM. Second, the direct interaction between BPS and CAT on the molecule level was investigated by multiple spectral methods and molecular docking investigations. BPS changed the structure and the activity of CAT through binding to the Gly 117 residue on the substrate channel of the enzyme. The main binding forces were hydrogen bond and hydrophobic force. PMID:27508457

  6. Effects of humic acid-metal complexes on hepatic carnitine palmitoyltransferase, carnitine acetyltransferase and catalase activities

    SciTech Connect

    Fungjou Lu; Youngshin Chen . Dept. of Biochemistry); Tienshang Huang . Dept. of Medicine)

    1994-03-01

    A significant increase in activities of hepatic carnitine palmitoyltransferase and carnitine acetyltransferase was observed in male Balb/c mice intraperitoneally injected for 40 d with 0.125 mg/0.1 ml/d humic acid-metal complexes. Among these complexes, the humic acid-As complex was relatively effective, whereas humic acid-25 metal complex was more effective, and humic acid-26 metal complex was most effective. However, humic acid or metal mixtures, or metal such as As alone, was not effective. Humic acid-metal complexes also significantly decreased hepatic catalase activity. A marked decrease of 60-kDa polypeptide in liver cytoplasm was also observed on SDS-polyacrylamide gel electrophoresis after the mice had been injected with the complexes. Morphological analysis of a histopathological biopsy of such treated mice revealed several changes in hepatocytes, including focal necrosis and cell infiltration, mild fatty changes, reactive nuclei, and hypertrophy. Humic acid-metal complexes affect activities of metabolic enzymes of fatty acids, and this results in accumulation of hydrogen peroxide and increase of the lipid peroxidation. The products of lipid peroxidation may be responsible for liver damage and possible carcinogenesis. Previous studies in this laboratory had shown that humic acid-metal complex altered the coagulation system and that humic acid, per se, caused vasculopathy. Therefore, humic acid-metal complexes may be main causal factors of not only so-called blackfoot disease, but also the liver cancer prevailing on the southwestern coast of Taiwan.

  7. Flavonoid-induced conversion of catalase to its inactive form--Compound II.

    PubMed

    Krych, J; Gebicki, J L; Gebicka, L

    2014-11-01

    Flavonoids (FlaOHs), plant polyphenols, are ubiquitous components of human diet and are known as antioxidants. However, their prooxidant activity has also been reported. We have recently found that FlaOHs inhibit catalase, the heme enzyme which catalyzes the decomposition of hydrogen peroxide (H2O2) into water and molecular oxygen. The catalytic cycle proceeds with the formation of the intermediate, Compound I (Cpd I), an oxoferryl porphyrin π-cation radical, the two-electron oxidation product of a heme group. Under conditions of low H2O2 fluxes and in the presence of an appropriate substrate, Cpd I can undergo one-electron reduction to inactive Compound II (Cpd II), oxoferryl derivative without radical site. Here we show that in vitro, under low fluxes of H2O2, FlaOHs reduce Cpd I to inactive Cpd II. Measurable amounts of Cpd II can be formed even in the presence of reduced nicotinamide adenine dinucleotide phosphate (NADPH) at concentration comparable with the investigated FlaOHs. Possible mechanisms of electron transfer from FlaOH molecule to the heme are discussed. PMID:25111015

  8. Kinetic properties and storage stability of catalase immobilized on to florisil.

    PubMed

    Ozyilmaz, Gul; Tukel, S Seyhan; Alptekin, Ozlem

    2007-02-01

    The covalent immobilization of bovine liver catalase (CAT) on to florisil via glutaraldehyde was investigated. Optimum immobilization pH and temperature were determined as pH 6.0, 10 degrees C respectively, while the amount of initial CAT per g of carrier and immobilization time was determined as 5 mg g(-1) and 120 min, respectively. The Vmax values for free and immobilized CAT were found to be 1.7 x 10(5) and 2.0 x 10(4) micromol H2O2 min(-1) mg protein(-1), respectively, whereas KM values were 33.3 mM and 1722.0 mM respectively. Operational stability was determined by using a stirred batch-type column reactor. Immobilized CAT retained about 40% of its initial activity after 50 uses. It showed higher storage stability than free CAT at 4 degrees C and 25 degrees C. Its storage stability increased with increasing relative humidity (RH) from 0 to 20% of the medium. The highest storage stability was obtained in 20% RH, however, further increase in RH from 40 to 100% significantly decreased the storage stability. PMID:17385339

  9. A rapid and sensitive alcohol oxidase/catalase conductometric biosensor for alcohol determination.

    PubMed

    Hnaien, M; Lagarde, F; Jaffrezic-Renault, N

    2010-04-15

    A new conductometric biosensor has been developed for the determination of short chain primary aliphatic alcohols. The biosensor assembly was prepared through immobilization of alcohol oxidase from Hansenula sp. and bovine liver catalase in a photoreticulated poly(vinyl alcohol) membrane at the surface of interdigitated microelectrodes. The local conductivity increased rapidly after alcohol addition, reaching steady-state within 10 min. The sensitivity was maximal for methanol (0.394+/-0.004 microS microM(-1), n=5) and decreased by increasing the alcohol chain length. The response was linear up to 75 microM for methanol, 70 microM for ethanol and 65 microM for 1-propanol and limits of detection were 0.5 microM, 1 microM and 3 microM, respectively (S/N=3). No significant loss of the enzyme activities was observed after 3 months of storage at 4 degrees C in a 20mM phosphate buffer solution pH 7.2 (two or three measurements per week). After 4 months, 95% of the initial signal still remained. The biosensor response to ethanol was not significantly affected by acetic, lactic, ascorbic, malic, oxalic, citric, tartaric acids or glucose. The bi-enzymatic sensor was successfully applied to the determination of ethanol in different alcoholic beverages. PMID:20188912

  10. Molecular Insights into the Potential Toxicological Interaction of 2-Mercaptothiazoline with the Antioxidant Enzyme—Catalase

    PubMed Central

    Huang, Zhenxing; Huang, Ming; Mi, Chenyu; Wang, Tao; Chen, Dong; Teng, Yue

    2016-01-01

    2-mercaptothiazoline (2-MT) is widely used in many industrial fields, but its residue is potentially harmful to the environment. In this study, to evaluate the biological toxicity of 2-MT at protein level, the interaction between 2-MT and the pivotal antioxidant enzyme—catalase (CAT) was investigated using multiple spectroscopic techniques and molecular modeling. The results indicated that the CAT fluorescence quenching caused by 2-MT should be dominated by a static quenching mechanism through formation of a 2-MT/CAT complex. Furthermore, the identifications of the binding constant, binding forces, and the number of binding sites demonstrated that 2-MT could spontaneously interact with CAT at one binding site mainly via Van der Waals’ forces and hydrogen bonding. Based on the molecular docking simulation and conformation dynamic characterization, it was found that 2-MT could bind into the junctional region of CAT subdomains and that the binding site was close to enzyme active sites, which induced secondary structural and micro-environmental changes in CAT. The experiments on 2-MT toxicity verified that 2-MT significantly inhibited CAT activity via its molecular interaction, where 2-MT concentration and exposure time both affected the inhibitory action. Therefore, the present investigation provides useful information for understanding the toxicological mechanism of 2-MT at the molecular level. PMID:27537873

  11. Interference of target cell catalase with an early step of the neutrophil cytolytic pathway.

    PubMed Central

    Dallegri, F; Ballestrero, A; Frumento, G; Patrone, F

    1986-01-01

    The hypochlorous acid (HOCL)-dependent lysis of human red blood cells (HRBC) targets by neutrophils, activated with opsonized zymosan particles (OPZ), was increased by inhibiting HRBC catalatic activity with aminotriazole (AT; HRBCAT). The inhibition of HRBC glutathione cycle activity with carmustine (BCNU; HRBCBCNU) had no effect. In addition, the recovery of hydrogen peroxide (H2O2) and HOCL from neutrophils, activated under conditions similar to those used for cytotoxicity assay, was reduced by the presence of HRBC and restored by replacing HRBC with HRBCAT, but not with HRBCBCNU. Linear relationships were found between the increments in the neutrophil-mediated lysis, observed by using HRBCAT instead of HRBC, and the increments in the H2O2 or HOCL recovery, detected by replacing HRBC with HRBCAT. Together these data, coupled with the results obtained by probing neutrophil cytolysis with chemical agents, suggest that the increased cytolytic efficiency displayed by neutrophils against HRBCAT, inhibited in their catalatic activity, is due to an enhanced availability of neutrophil-derived H2O2, with a consequent enhancement in the HOCL production (according to the following reaction: (formula; see text). Thus it appears that HRBC catalase restrains the neutrophil cytolytic activity, by interfering with an early step of the pathway through which neutrophils generate cytotoxins. PMID:3022971

  12. Eccentric localization of catalase to protect chromosomes from oxidative damages during meiotic maturation in mouse oocytes.

    PubMed

    Park, Yong Seok; You, Seung Yeop; Cho, Sungrae; Jeon, Hyuk-Joon; Lee, Sukchan; Cho, Dong-Hyung; Kim, Jae-Sung; Oh, Jeong Su

    2016-09-01

    The maintenance of genomic integrity and stability is essential for the survival of every organism. Unfortunately, DNA is vulnerable to attack by a variety of damaging agents. Oxidative stress is a major cause of DNA damage because reactive oxygen species (ROS) are produced as by-products of normal cellular metabolism. Cells have developed eloquent antioxidant defense systems to protect themselves from oxidative damage along with aerobic metabolism. Here, we show that catalase (CAT) is present in mouse oocytes to protect the genome from oxidative damage during meiotic maturation. CAT was expressed in the nucleus to form unique vesicular structures. However, after nuclear envelope breakdown, CAT was redistributed in the cytoplasm with particular focus at the chromosomes. Inhibition of CAT activity increased endogenous ROS levels, but did not perturb meiotic maturation. In addition, CAT inhibition produced chromosomal defects, including chromosome misalignment and DNA damage. Therefore, our data suggest that CAT is required not only to scavenge ROS, but also to protect DNA from oxidative damage during meiotic maturation in mouse oocytes. PMID:27160095

  13. A superoxide dismutase/catalase mimetic nanomedicine for targeted therapy of inflammatory bowel disease.

    PubMed

    Zhang, Qixiong; Tao, Hui; Lin, Yongyao; Hu, Ying; An, Huijie; Zhang, Dinglin; Feng, Shibin; Hu, Houyuan; Wang, Ruibing; Li, Xiaohui; Zhang, Jianxiang

    2016-10-01

    Oxidative stress, resulting from excessive generation of reactive oxygen species (ROS), plays a pivotal role in the initiation and progression of inflammatory bowel disease (IBD). To develop an efficacious and safe nanotherapy against IBD, we designed and developed a superoxide dismutase/catalase mimetic nanomedicine comprising a hydrogen peroxide-eliminating nanomatrix and a free radical scavenger Tempol (Tpl). To this end, an oxidation-responsive β-cyclodextrin material (OxbCD) was synthesized, and a Tpl-loaded OxbCD nanoparticle (Tpl/OxbCD NP) was produced. Hydrolysis of OxbCD NP could be triggered by hydrogen peroxide, leading to on-demand release of loaded Tpl molecules from Tpl/OxbCD NP. OxbCD NP was able to efficiently accumulate in the inflamed colon in mice, thereby dramatically reducing nonspecific distribution after oral delivery. In three mouse colitis models, oral administration of Tpl/OxbCD NP notably mitigated manifestations relevant to colitis, and significantly suppressed expression of proinflammatory mediators, with the efficacy superior over free Tpl or a control nanomedicine based on poly(lactide-co-glycolide) (PLGA). Accordingly, by scavenging multiple components of ROS, Tpl/OxbCD NP may effectively reduce ulcerative colitis in mice, and it can be intensively developed as a translational nanomedicine for the management of IBD and other inflammatory diseases. PMID:27525680

  14. Potential toxicity of sarafloxacin to catalase: Spectroscopic, ITC and molecular docking descriptions

    NASA Astrophysics Data System (ADS)

    Cao, Zhaozhen; Liu, Rutao; Yang, Bingjun

    2013-11-01

    The interaction between sarafloxacin and catalase (CAT) was studied by fluorescence spectroscopy, UV-visible absorption spectroscopy, circular dichroism (CD) spectroscopy, isothermal titration microcalorimetry (ITC) and molecular docking method. After deducting the inner filter effect, the fluorescence of CAT was quenched regularly by different concentrations of sarafloxacin. The quenching mechanism was studied by lifetime measurement, and it was proved to be mostly due to static quenching. The formation of sarafloxacin-CAT complex alters the micro-environment of amide moieties and tryptophan (Trp) residues, reduces the α-helix content of the enzyme, changes the peripheral substituents on the porphyrin ring of heme and leads to the inhibition of the enzyme activity. Molecular docking study reveals that sarafloxacin is located between two α-helix of CAT near to Trp 182 and Trp 185 residues, which supports the experimental results and helps to have a more clear understanding about the interaction mechanism. The change in the relative position of His 74 to heme induced by the variation of secondary structure is considered to be the major reason for the reduction of CAT activity. Moreover, sarafloxacin binds into a hydrophobic area of CAT mainly through hydrophobic interactions, which is consistent with the ITC analysis.

  15. Melanocortin 1 receptor agonist protects podocytes through catalase and RhoA activation.

    PubMed

    Elvin, Johannes; Buvall, Lisa; Lindskog Jonsson, Annika; Granqvist, Anna; Lassén, Emelie; Bergwall, Lovisa; Nyström, Jenny; Haraldsson, Börje

    2016-05-01

    Drugs containing adrenocorticotropic hormone have been used as therapy for patients with nephrotic syndrome. We have previously shown that adrenocorticotropic hormone and a selective agonist for the melanocortin 1 receptor (MC1R) exert beneficial actions in experimental membranous nephropathy with reduced proteinuria, reduced oxidative stress, and improved glomerular morphology and function. Our hypothesis is that MC1R activation in podocytes elicits beneficial effects by promoting stress fibers and maintaining podocyte viability. To test the hypothesis, we cultured podocytes and used highly specific agonists for MC1R. Podocytes were subjected to the nephrotic-inducing agent puromycin aminonucleoside, and downstream effects of MC1R activation on podocyte survival, antioxidant defense, and cytoskeleton dynamics were studied. To increase the response and enhance intracellular signals, podocytes were transduced to overexpress MC1R. We showed that puromycin promotes MC1R expression in podocytes and that activation of MC1R promotes an increase of catalase activity and reduces oxidative stress, which results in the dephosphorylation of p190RhoGAP and formation of stress fibers through RhoA. In addition, MC1R agonists protect against apoptosis. Together, these mechanisms protect the podocyte against puromycin. Our findings strongly support the hypothesis that selective MC1R-activating agonists protect podocytes and may therefore be useful to treat patients with nephrotic syndromes commonly considered as podocytopathies. PMID:26887829

  16. Multifrequency EPR Studies of Manganese Catalases Provide a Complete Description of Proteinaceous Nitrogen Coordination

    PubMed Central

    Stich, Troy A.; Whittaker, James W.; Britt, R. David

    2012-01-01

    Pulse electron paramagnetic resonance (EPR) spectroscopy is employed at two very different excitation frequencies, 9.77 and 30.67 GHz, in the study of the nitrogen coordination environment of the Mn(III)Mn(IV) state of the dimanganese-containing catalases from Lactobacillus plantarum and Thermus thermophilus. Consistent with previous studies, the lower-frequency results reveal one unique histidine nitrogen-Mn cluster interaction. For the first time, a second, more strongly hyperfine-coupled 14N atom is unambiguously observed through the use of higher frequency/higher field EPR spectroscopy. The low excitation frequency spectral features are rationalized as arising from the interaction of a histidine nitrogen that is bound to the Mn(IV) ion, while the higher excitation frequency features are attributed to the histidine nitrogen bound to the Mn(III) ion. These results allow for the computation of intrinsic hyperfine coupling constants, which range from 2.2 to 2.9 MHz, for sp2-hybridized nitrogens coordinating equatorially to high-valent Mn ions. The relevance of these findings is discussed in the context of recent results from analogous higher frequency EPR studies of the Mn cluster in photosystem II and other exchange-coupled transition metal-containing systems. PMID:20055466

  17. Nanospherical Brush as Catalase Container for Enhancing the Detection Sensitivity of Competitive Plasmonic ELISA.

    PubMed

    Huang, Xiaolin; Chen, Rui; Xu, Hengyi; Lai, Weihua; Xiong, Yonghua

    2016-02-01

    Plasmonic enzyme-linked immunosorbent assay (pELISA) based on catalase (CAT)-mediated gold nanoparticle growth shows great potential for the determination of disease-related biomarkers at ultralow concentrations by using sandwich formats. However, the relatively low sensitivity of this strategy using competitive formats limits its adoption for hapten detection. Herein, we present an improved competitive pELISA for ultrasensitive detection of ochratoxin A (OTA), where silica nanoparticles carrying poly(acrylic acid) brushes (SiO2@PAA) were used to decrease the affinity of competing antigens to anti-OTA monoclonal antibodies and amplify the signal as a "CAT container" (SiO2@PAA@CAT). The developed competitive pELISA exhibits extremely high sensitivity for OTA with detection limits of 10(-18) and 5 × 10(-20) g/mL by the naked eye and microplate reader, respectively. These values are at least 7 orders of magnitude lower than that of competitive CAT-based pELISA (10(-11) g/mL by the naked eye) and 8 orders of magnitude lower than that of horseradish peroxidase-based conventional ELISA (10(-11) g/mL by the microplate reader), respectively. Reliability and robustness of the proposed method were evaluated using actual agricultural products and human serum samples. This study demonstrated the potential of this modified method in practical applications involving the ultrasensitive detection of mycotoxins or other haptens. PMID:26719076

  18. Comparison of catalase immunoreactivity in the hippocampus between young, adult and aged mice and rats

    PubMed Central

    AHN, JI HYEON; CHEN, BAI HUI; SHIN, BICH-NA; LEE, TAE-KYEONG; CHO, JEONG HWI; KIM, IN HYE; PARK, JOON HA; LEE, JAE-CHUL; TAE, HYUN-JIN; LEE, CHOONG-HYUN; WON, MOO-HO; LEE, YUN LYUL; CHOI, SOO YOUNG; HONG, SEONGKWEON

    2016-01-01

    Catalase (CAT) is an important antioxidant enzyme and is crucial in modulating synaptic plasticity in the brain. In this study, CAT expression as well as neuronal distribution was compared in the hippocampus among young, adult and aged mice and rats. Male ICR mice and Sprague Dawley rats were used at postnatal month (PM) 1, PM 6 and PM 24 as the young, adult and aged groups, respectively (n=14/group). CAT expression was examined by immunohistochemistry and western blot analysis. In addition, neuronal distribution was examined by NeuN immunohistochemistry. In the present study, the mean number of NeuN-immunoreactive neurons was marginally decreased in mouse and rat hippocampi during aging, although this change was not identified to be significantly different. However, CAT immunoreactivity was significantly increased in pyramidal and granule neurons in the adult mouse and rat hippocampi and was significantly decreased in the aged mouse and rat hippocampi compared with that in the young animals. CAT protein levels in the hippocampus were also lowest in the aged mouse and rat hippocampus. These results indicate that CAT expression is significantly decreased in the hippocampi of aged animals and decreased CAT expression may be closely associated with aging. PMID:27221506

  19. Relation between functional polymorphism of catalase gene (-262C>T) and recurrent depressive disorder.

    PubMed

    Galecki, Piotr; Szemraj, Janusz; Zboralski, Krzysztof; Florkowski, Antoni; Lewinski, Andrzej

    2009-01-01

    Numerous studies have provided information indicating the involvement of oxidative stress in the pathophysiology of depressive disorder (DD). The antioxidative system protects against the effects caused by reactive oxygen species (ROS). Catalase (CAT) is one of antioxidative enzymes observed to change their levels in the course of depression. The enzyme decomposes hydrogen peroxide (H(2)O(2)), whose overproduction is a result of many processes taking place in depression. Therefore, functional polymorphism of the CAT gene can be a candidate marker of the risk of depression. The presented study assessed the correlation between -262C>T polymorphism of the CAT gene, which influences the increase of CAT expression and activity, and the risk of depression development. The study, carried out on a homogeneous group recruited from the Polish population, enrolled 149 healthy subjects and 149 depressive patients. The groups were age-matched. The obtained results indicate no correlation between -262C>T polymorphism of the CAT gene (both with respect to genotype distribution and allele frequency) and the risk of depression. Nevertheless, further studies assessing the correlations between depression and polymorphism of the genes encoding antioxidative enzymes on larger groups of subjects should be undertaken. PMID:19855359

  20. A catalase-peroxidase for oxidation of β-lactams to their (R)-sulfoxides.

    PubMed

    Sangar, Shefali; Pal, Mohan; Moon, Lomary S; Jolly, Ravinder S

    2012-07-01

    In this communication we report for the first time a biocatalytic method for stereoselective oxidation of β-lactams, represented by penicillin-G, penicillin-V and cephalosporin-G to their (R)-sulfoxides. The method involves use of a bacterium, identified as Bacillus pumilis as biocatalyst. The enzyme responsible for oxidase activity has been purified and characterized as catalase-peroxidase (KatG). KatG of B. pumilis is a heme containing protein showing characteristic heme spectra with soret peak at 406 nm and visible peaks at 503 and 635 nm. The major properties that distinguish B. pumilis KatG from other bacterial KatGs are (i) it is a monomer and contains one heme per monomer, whereas KatGs of other bacteria are dimers or tetramers and have low heme content of about one per dimer or two per tetramer and (ii) its 12-residue, N-terminal sequence obtained by Edman degradation did not show significant similarity with any of known KatGs. PMID:21996477

  1. Targeted overexpression of mitochondrial catalase protects against cancer chemotherapy-induced skeletal muscle dysfunction.

    PubMed

    Gilliam, Laura A A; Lark, Daniel S; Reese, Lauren R; Torres, Maria J; Ryan, Terence E; Lin, Chien-Te; Cathey, Brook L; Neufer, P Darrell

    2016-08-01

    The loss of strength in combination with constant fatigue is a burden on cancer patients undergoing chemotherapy. Doxorubicin, a standard chemotherapy drug used in the clinic, causes skeletal muscle dysfunction and increases mitochondrial H2O2 We hypothesized that the combined effect of cancer and chemotherapy in an immunocompetent breast cancer mouse model (E0771) would compromise skeletal muscle mitochondrial respiratory function, leading to an increase in H2O2-emitting potential and impaired muscle function. Here, we demonstrate that cancer chemotherapy decreases mitochondrial respiratory capacity supported with complex I (pyruvate/glutamate/malate) and complex II (succinate) substrates. Mitochondrial H2O2-emitting potential was altered in skeletal muscle, and global protein oxidation was elevated with cancer chemotherapy. Muscle contractile function was impaired following exposure to cancer chemotherapy. Genetically engineering the overexpression of catalase in mitochondria of muscle attenuated mitochondrial H2O2 emission and protein oxidation, preserving mitochondrial and whole muscle function despite cancer chemotherapy. These findings suggest mitochondrial oxidants as a mediator of cancer chemotherapy-induced skeletal muscle dysfunction. PMID:27329802

  2. Molecular Insights into the Potential Toxicological Interaction of 2-Mercaptothiazoline with the Antioxidant Enzyme-Catalase.

    PubMed

    Huang, Zhenxing; Huang, Ming; Mi, Chenyu; Wang, Tao; Chen, Dong; Teng, Yue

    2016-01-01

    2-mercaptothiazoline (2-MT) is widely used in many industrial fields, but its residue is potentially harmful to the environment. In this study, to evaluate the biological toxicity of 2-MT at protein level, the interaction between 2-MT and the pivotal antioxidant enzyme-catalase (CAT) was investigated using multiple spectroscopic techniques and molecular modeling. The results indicated that the CAT fluorescence quenching caused by 2-MT should be dominated by a static quenching mechanism through formation of a 2-MT/CAT complex. Furthermore, the identifications of the binding constant, binding forces, and the number of binding sites demonstrated that 2-MT could spontaneously interact with CAT at one binding site mainly via Van der Waals' forces and hydrogen bonding. Based on the molecular docking simulation and conformation dynamic characterization, it was found that 2-MT could bind into the junctional region of CAT subdomains and that the binding site was close to enzyme active sites, which induced secondary structural and micro-environmental changes in CAT. The experiments on 2-MT toxicity verified that 2-MT significantly inhibited CAT activity via its molecular interaction, where 2-MT concentration and exposure time both affected the inhibitory action. Therefore, the present investigation provides useful information for understanding the toxicological mechanism of 2-MT at the molecular level. PMID:27537873

  3. Comparison of catalase immunoreactivity in the hippocampus between young, adult and aged mice and rats.

    PubMed

    Ahn, Ji Hyeon; Chen, Bai Hui; Shin, Bich-Na; Lee, Tae-Kyeong; Cho, Jeong Hwi; Kim, In Hye; Park, Joon Ha; Lee, Jae-Chul; Tae, Hyun-Jin; Lee, Choong-Hyun; Won, Moo-Ho; Lee, Yun Lyul; Choi, Soo Young; Hong, Seongkweon

    2016-07-01

    Catalase (CAT) is an important antioxidant enzyme and is crucial in modulating synaptic plasticity in the brain. In this study, CAT expression as well as neuronal distribution was compared in the hippocampus among young, adult and aged mice and rats. Male ICR mice and Sprague Dawley rats were used at postnatal month (PM) 1, PM 6 and PM 24 as the young, adult and aged groups, respectively (n=14/group). CAT expression was examined by immunohistochemistry and western blot analysis. In addition, neuronal distribution was examined by NeuN immunohistochemistry. In the present study, the mean number of NeuN‑immunoreactive neurons was marginally decreased in mouse and rat hippocampi during aging, although this change was not identified to be significantly different. However, CAT immunoreactivity was significantly increased in pyramidal and granule neurons in the adult mouse and rat hippocampi and was significantly decreased in the aged mouse and rat hippocampi compared with that in the young animals. CAT protein levels in the hippocampus were also lowest in the aged mouse and rat hippocampus. These results indicate that CAT expression is significantly decreased in the hippocampi of aged animals and decreased CAT expression may be closely associated with aging. PMID:27221506

  4. Potential toxicity of sarafloxacin to catalase: spectroscopic, ITC and molecular docking descriptions.

    PubMed

    Cao, Zhaozhen; Liu, Rutao; Yang, Bingjun

    2013-11-01

    The interaction between sarafloxacin and catalase (CAT) was studied by fluorescence spectroscopy, UV-visible absorption spectroscopy, circular dichroism (CD) spectroscopy, isothermal titration microcalorimetry (ITC) and molecular docking method. After deducting the inner filter effect, the fluorescence of CAT was quenched regularly by different concentrations of sarafloxacin. The quenching mechanism was studied by lifetime measurement, and it was proved to be mostly due to static quenching. The formation of sarafloxacin-CAT complex alters the micro-environment of amide moieties and tryptophan (Trp) residues, reduces the α-helix content of the enzyme, changes the peripheral substituents on the porphyrin ring of heme and leads to the inhibition of the enzyme activity. Molecular docking study reveals that sarafloxacin is located between two α-helix of CAT near to Trp 182 and Trp 185 residues, which supports the experimental results and helps to have a more clear understanding about the interaction mechanism. The change in the relative position of His 74 to heme induced by the variation of secondary structure is considered to be the major reason for the reduction of CAT activity. Moreover, sarafloxacin binds into a hydrophobic area of CAT mainly through hydrophobic interactions, which is consistent with the ITC analysis. PMID:23871971

  5. Ultracentrifugal crystallization of proteins: transport-kinetic modelling, and experimental behavior of catalase

    NASA Astrophysics Data System (ADS)

    Lenhoff, A. M.; Pjura, P. E.; Dilmore, J. G.; Godlewski, T. S.

    1997-09-01

    Although ultracentrifugal crystallization (UC) of proteins has been demonstrated previously and its main advantages established, a clear quantitative understanding of the phenomena involved has not been presented. This issue is addressed here by development of a model accounting for the key transport (sedimentation, diffusion) and kinetic (nucleation, growth) effects in UC. Numerical solution of the governing equations shows how the protein concentration profile changes with time, and how it interacts with the crystallization kinetic phenomena near the bottom of the tube to give rise to protein crystals. It is shown that the centrifugal speed and the initial protein concentration represent the most convenient parameters to use in manipulating crystallization behavior. Some of the predicted features of UC behavior were explored experimentally using bovine liver catalase. Crystal size increased and optical activity improved as the initial protein concentration was reduced. Crystallization was very robust to the presence of appreciable quantities of impurities. UC appears to be an underused route to protein crystallization, and the availability of a quantitative model may aid in its application to novel protein systems.

  6. Endothelial targeting of liposomes encapsulating SOD/catalase mimetic EUK-134 alleviates acute pulmonary inflammation.

    PubMed

    Howard, Melissa D; Greineder, Colin F; Hood, Elizabeth D; Muzykantov, Vladimir R

    2014-03-10

    Production of excessive levels of reactive oxygen species (ROS) in the vascular endothelium is a common pathogenic pathway in many dangerous conditions, including acute lung injury, ischemia-reperfusion, and inflammation. Ineffective delivery of antioxidants to the endothelium limits their utility for management of these conditions. In this study, we devised a novel translational antioxidant intervention targeted to the vascular endothelium using PEG-liposomes loaded with EUK-134 (EUK), a potent superoxide dismutase/catalase mimetic. EUK loaded into antibody-coated liposomes (size 197.8±4.5 nm diameter, PDI 0.179±0.066) exerted partial activity in the intact carrier, while full activity was recovered upon liposome disruption. For targeting we used antibodies (Abs) to platelet-endothelial cell adhesion molecule (PECAM-1). Both streptavidin-biotin and SATA/SMCC conjugation chemistries provided binding of 125-150 Ab molecules per liposome. Ab/EUK/liposomes, but not IgG/EUK/liposomes: i) bound to endothelial cells and inhibited cytokine-induced inflammatory activation in vitro; and, ii) accumulated in lungs after intravascular injection, providing >60% protection against pulmonary edema in endotoxin-challenged mice (vs <6% protection afforded by IgG/liposome/EUK counterpart). Since the design elements of this drug delivery system are already in clinical use (PEG-liposomes, antibodies, SATA/SMCC conjugation), it is an attractive candidate for translational interventions using antioxidant molecules such as EUK and other clinically acceptable drugs. PMID:24412573

  7. Erythropoietin upregulation in pulmonary arterial hypertension.

    PubMed

    Karamanian, Vanesa A; Harhay, Michael; Grant, Gregory R; Palevsky, Harold I; Grizzle, William E; Zamanian, Roham T; Ihida-Stansbury, Kaori; Taichman, Darren B; Kawut, Steven M; Jones, Peter L

    2014-06-01

    The pathophysiologic alterations of patients with pulmonary arterial hypertension (PAH) are diverse. We aimed to determine novel pathogenic pathways from circulating proteins in patients with PAH. Multianalyte profiling (MAP) was used to measure 90 specifically selected antigens in the plasma of 113 PAH patients and 51 control patients. Erythropoietin (EPO) functional activity was assessed via in vitro pulmonary artery endothelial cell networking and smooth muscle cell proliferation assays. Fifty-eight patients had idiopathic PAH, whereas 55 had other forms of PAH; 5 had heritable PAH, 18 had connective tissue disease (15 with scleroderma and 3 with lupus erythematosis), 13 had portopulmonary hypertension, 6 had PAH associated with drugs or toxins, and 5 had congenital heart disease. The plasma-antigen profile of PAH revealed increased levels of several novel biomarkers, including EPO. Immune quantitative and histochemical studies revealed that EPO not only was significantly elevated in the plasma of PAH patients but also promoted pulmonary artery endothelial cell network formation and smooth muscle cell proliferation. MAP is a hypothesis-generating approach to identifying novel pathophysiologic pathways in PAH. EPO is upregulated in the circulation and lungs of patients with PAH and may affect endothelial and smooth muscle cell proliferation. PMID:25006446

  8. Magnetization studies of the active and fluoride-inhibited derivatives of the reduced catalase of Lactobacillus plantarum: toward a general picture of the anion-inhibited and active forms of the reduced dimanganese catalases.

    PubMed

    Le Pape, Laurent; Perret, Emmanuel; Michaud-Soret, Isabelle; Latour, Jean-Marc

    2002-04-01

    The magnetic properties of the reduced catalase from Lactobacillus plantarum have been studied for the active enzyme and its fluoride complex through variable field/variable temperature magnetization measurements. The magnetic exchange interaction deduced from these experiments [fluoride complex: - J=1.3(1) cm(-1); active enzyme: - J=5.6(5) cm(-1); H=-2 J S(1) S(2)] are similar to those presently obtained in a re-analysis of the data for the corresponding forms of the Thermus thermophilus enzyme (previously published in 1997, Angew Chem Int Ed Engl 36:1626-1628): phosphate complex: - J=2.1(2) cm(-1); active enzyme - J=5.0(3) cm(-1). These results concur to a unified picture for the two enzymes, consistent with the presence of a hydroxide bridge in the reduced active catalases and its replacement by an aqua bridge in the anion-inhibited enzymes as the main mediators of the magnetic exchange. PMID:11941502

  9. Upregulation of heme oxygenase-1 by Epigallocatechin-3-gallate via the phosphatidylinositol 3-kinase/Akt and ERK pathways.

    PubMed

    Wu, C C; Hsu, M C; Hsieh, C W; Lin, J B; Lai, P H; Wung, B S

    2006-05-15

    Heme oxygenase-1 (HO-1) is a cytoprotective enzyme activated by various phytochemicals and we examined the ability of Epigallocatechin-3-gallate (EGCG), the major constituent of green tea, to upregulate HO-1 expression in endothelial cells (ECs). We demonstrate that EGCG induces HO-1 expression in a concentration- and time-dependent manner. Furthermore, EGCG-mediated HO-1 induction was abrogated in the presence of actinomycin D and cycloheximide, indicating that this upregulation of HO-1 occurred at the transcriptional level. EGCG also upregulates Nrf2 levels in nuclear extracts and increases ARE-luciferase activity. Furthermore, EGCG is the most potent inducer of HO-1 expression of the different green tea constituents that we analyzed, but had no detectable cytotoxic effects over the 25-100 microM dosage range. The inhibition of intracellular ROS production by N-acetylcysteine (NAC), glutathione (GSH), superoxide dismutase (SOD), catalase and the mitochondrial complex I inhibitor, rotenone, results in a decrease in EGCG-dependent HO-1 expression. In addition, we determined that tyrosine kinase is involved in EGCG induction of HO-1 as this is abrogated by genistein. ECs treated with EGCG exhibit activation of Akt and ERK1/2. In addition, pharmacological inhibitors of phosphatidylinositol 3-kinase and MEK1/2, which are upstream of Akt and ERK1/2, respectively, attenuate EGCG-induced HO-1 expression. On the other hand, pretreatment of these cells with EGCG exerts significant cytoprotective effects against H2O2, suggesting that the induction of HO-1 is an important component in the protection against oxidative stress. Hence, EGCG is a novel phytochemical inducer of HO-1 expression and we further identify the principal underlying mechanisms involved in this process. PMID:16378625

  10. Biophysical perspective of the binding of ester-functionalized gemini surfactants with catalase.

    PubMed

    Akram, Mohd; Bhat, Imtiyaz Ahmad; Anwar, Sana; Ahmad, Ajaz; Kabir-Ud-Din

    2016-07-01

    Interaction of surfactants with biomacromolecules is an essential subject of biophysical chemistry to address their diverse applications in industry, biomedical, and cosmetic domains. In this context, we have examined the binding interactions of three ester-functionalized surfactants (m-E2-m) with bovine liver catalase (BLC, 10μM) by employing a multi-technique approach. The m-E2-m geminis quench fluorescence intensity of BLC through static procedure. The binding ability of concerned gemini surfactants was found to be in the order 12-E2-12 (Kb=2.3×10(2))>16-E2-16 (Kb=1.1×10(2))>14-E2-14 (Kb=1.0×10(2)). Quenching efficacy, as determined by Ksv values, were observed as 12-E2-12 (3.0×10(2))>16-E2-16 (1.4×10(2))>14-E2-14 (1.0×10(2)). The negative ΔG°b values (12-E2-12 (-13.48kJ/mol)>16-E2-16 (-11.65kJ/mol)>14-E2-14 (-11.41kJ/mol)) indicate spontaneous nature of m-E2-m-BLC interactions. UV-vis spectroscopy, circular dichroism (CD) and micropolarity (F1/F3) assessments indicate conformational changes in BLC upon m-E2-m combination. ITC confirms the stability of BLC upon gemini combination. Docking provides support to fluorescence results by presenting the localization site of m-E2-m surfactants near to aromatic residues (mainly Tyr, Trp and Phe). Moreover, since surfactant-protein interactions have essential miscellaneous implications, therefore, this study can be significant for industrial and biomedical realms. PMID:27060016

  11. Evidence for radical formation at Tyr-353 in Mycobacterium tuberculosis catalase-peroxidase (KatG).

    PubMed

    Zhao, Xiangbo; Girotto, Stefania; Yu, Shengwei; Magliozzo, Richard S

    2004-02-27

    Mycobacterium tuberculosis KatG is a heme-containing catalase-peroxidase responsible for activation, through its peroxidase cycle, of the front line antituberculosis antibiotic isoniazid (isonicotinic acid hydrazide). Formation of Compound I (oxyferryl heme-porphyrin pi-cation radical), the classical peroxidase intermediate generated when the resting enzyme turns over with alkyl peroxides, is rapidly followed by production of a protein-centered tyrosyl radical in this enzyme. In our efforts to identify the residue at which this radical is formed, nitric oxide was used as a radical scavenging reagent. Quenching of the tyrosyl radical generated in the presence of NO was shown using electron paramagnetic resonance spectroscopy, and formation of nitrotyrosine was confirmed by proteolytic digestion followed by high performance liquid chromatography analysis of the NO-treated enzyme. These results are consistent with formation of nitrosyltyrosine by addition of NO to tyrosyl radical and oxidation of this intermediate to nitrotyrosine. Two predominant nitrotyrosine-containing peptides were identified that were purified and sequenced by Edman degradation. Both peptides were derived from the same M. tuberculosis KatG sequence spanning residues 346-356 with the amino acid sequence SPAGAWQYTAK, and both peptides contained nitrotyrosine at residue 353. Some modification of Trp-351 most probably into nitrosotryptophan was also found in one of the two peptides. Control experiments using denatured KatG or carried out in the absence of peroxide did not produce nitrotyrosine. In the mutant enzyme KatG(Y353F), which was constructed using site-directed mutagenesis, a tyrosyl radical was also formed upon turnover with peroxide but in poor yield compared with wild-type KatG. Residue Tyr-353 is unique to M. tuberculosis KatG and may play a special role in the function of this enzyme. PMID:14665627

  12. Mycobacterial FurA is a negative regulator of catalase-peroxidase gene katG.

    PubMed

    Zahrt, T C; Song, J; Siple, J; Deretic, V

    2001-03-01

    In several bacteria, the catalase-peroxidase gene katG is under positive control by oxyR, a transcriptional regulator of the peroxide stress response. The Mycobacterium tuberculosis genome also contains sequences corresponding to oxyR, but this gene has been inactivated in the tubercle bacillus because of the presence of multiple mutations and deletions. Thus, M. tuberculosis katG and possibly other parts of the oxidative stress response in this organism are either not regulated or are controlled by a factor different from OxyR. The mycobacterial FurA is a homologue of the ferric uptake regulator Fur and is encoded by a gene located immediately upstream of katG. Here, we examine the possibility that FurA regulates katG expression. Inactivation of furA on the Mycobacterium smegmatis chromosome, a mycobacterial species that also lacks an oxyR homologue, resulted in derepression of katG, concomitant with increased resistance of the furA mutant to H2O2. In addition, M. smegmatis furA::Km(r) was more sensitive to the front-line antituberculosis agent isonicotinic acid hydrazide (INH) compared with the parental furA+ strain. The phenotypic manifestations were specific, as the mutant strain did not show altered sensitivity to organic peroxides, and both H2O2 and INH susceptibility profiles were complemented by the wild-type furA+ gene. We conclude that FurA is a second regulator of oxidative stress response in mycobacteria and that it negatively controls katG. In species lacking a functional oxyR, such as M. tuberculosis and M. smegmatis, FurA appears to be a dominant regulator affecting mycobacterial physiology and intracellular survival. PMID:11251835

  13. Characterization of the binding of isoniazid and analogues to Mycobacterium tuberculosis catalase-peroxidase.

    PubMed

    Zhao, Xiangbo; Yu, Shengwei; Magliozzo, Richard S

    2007-03-20

    The first-line antituberculosis drug isonicotinic hydrazide (INH) is a prodrug whose bactericidal function requires activation by Mycobacterium tuberculosis catalase-peroxidase (KatG) to produce an acyl-NAD adduct. Peroxidation of INH is considered a required catalytic process for drug action. The binding of INH and a series of hydrazide analogues to resting KatG was examined using optical and calorimetric techniques to provide thermodynamic parameters, binding stoichiometries, and kinetic constants (on and off rates). This work revealed high-affinity binding of these substrates to a small fraction of ferric enzyme in a six-coordinate heme iron form, a species most likely containing a weakly bound water molecule, which accumulates during storage of the enzyme. The binding of hydrazides is associated with a large enthalpy loss (>100 kcal/mol); dissociation constants are in the range of 0.05-1.6 microM, and optical stopped-flow measurements demonstrated kon values in the range of 0.5-27 x 10(3) M-1 s-1 with very small koff rates. Binding parameters did not depend on pH in the range 5-8. High-affinity binding of INH is disrupted in two mutant enzymes bearing replacements of key distal side residues, KatG[W107F] and KatG[Y229F]. The rates of reduction of KatG Compound I by hydrazides parallel the on rates for association with the resting enzyme. In a KatG-mediated biomimetic activation assay, only isoniazid generated in good yield the acyl-NAD adduct which is considered a key molecule in INH action, providing a better understanding of the action mechanism of INH. PMID:17309235

  14. Lack of significant effects of superoxide dismutase and catalase on development of reperfusion arrhythmias.

    PubMed

    Hagar, J M; Hale, S L; Ilvento, J P; Kloner, R A

    1991-01-01

    It has been reported that agents having the ability to scavenge oxygen-derived free radicals reduce the severity of ventricular arrhythmias that occur after brief coronary occlusion and reperfusion. Superoxide dismutase plus catalase (SOD + CAT) or placebo was administered in a blinded randomized fashion prior to coronary occlusion in rats (n = 25 each group) undergoing a 5-min left coronary occlusion followed by 15 min of reperfusion. During reperfusion, ventricular tachycardia (VT) developed in 96% of animals in both groups. Reperfusion ventricular fibrillation (VF) developed in 60% of the placebo group vs 56% in the SOD + CAT group (p = 1.0). Irreversible VF occurred in 40% of the placebo group vs 20% in the SOD + CAT group (p = 0.22). Atrioventricular block occurred in 12% of placebo and 4% of SOD + CAT animals (p = 0.61). There were no significant difference between groups in duration of VT (85 +/- 15 s (mean +/- SEM) placebo vs 81 +/- 14 s SOD + CAT, p = 0.81), total duration of VT plus VF (391 +/- 76 s placebo vs 256 +/- 64 SOD + CAT, p = 0.45) or numbers of single ventricular ectopic beats (65 +/- 15 placebo vs 97 +/- 18 SOD + CAT, p = 0.18). Heart rate at reperfusion was slightly higher in control than SOD + CAT animals (340 +/- 33 vs 319 +/- 32, p = 0.02). Risk zone size, determined by Monastral blue injection, was equal in both groups (34 +/- 2% of ventricular mass). The occurrence of reperfusion VF in this model could not be predicted by heart rate at reperfusion (331 +/- 33 VF animlas vs 328 +/- 36 no VF, p = 0.77), or by risk zone size (34 +/- 2%, VF and no VF groups).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1877967

  15. Effects of sodium nitroprusside on mouse erythrocyte catalase activity and malondialdehyde status.

    PubMed

    Sani, Mamane; Sebai, Hichem; Refinetti, Roberto; Mondal, Mohan; Ghanem-Boughanmi, Néziha; Boughattas, Naceur A; Ben-Attia, Mossadok

    2016-07-01

    There is controversy about the anti- or pro-oxidative effects of the nitric oxide (NO)-donor sodium nitroprusside (SNP). Hence, the activity of the antioxidant enzyme catalase (CAT) and the status of malondialdehyde (MDA) were investigated after a 2.5 mg/kg dose of SNP had been i.p. administered to different and comparable groups of mice (n =  48). The drug was administered at two different circadian times (1 and 13 h after light onset [HALO]). There were, irrespectively of sampling time, no significant differences in the means of CAT activity and MDA status between control and SNP-treated groups, no matter the treatment time. However, CAT activity was significantly (Student's t-test, p < 0.001) increased 1 h following SNP administration at 1 HALO, whereas the significant (p < 0.001) increase in the enzyme activity was found only 3 h after injection at 13 HALO. The drug dosing either at 1 or 13 HALO resulted in no significant differences of MDA status between control and treated groups regardless to the sampling time. Two-way analysis of variance (ANOVA) detected a significant (F0.05(7,88)= 5.3; p < 0.0006) interaction between sampling time and treatment in mice injected at 1 HALO, suggesting the influence of treatment on sampling-time-related changes in CAT activity. However, ANOVA validated no interaction between the two factors in mice treated at 13 HALO, illustrating that the sampling-time differences in enzyme activity were greater. Furthermore, two-way ANOVA revealed no interaction in the variation of MDA status in animals treated either at 1 or 13 HALO. This study indicates that SNP significantly affected the anti-oxidant system. PMID:26738972

  16. Combined effects of water temperature and copper ion concentration on catalase activity in Crassostrea ariakensis

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Yang, Hongshuai; Liu, Jiahui; Li, Yanhong; Liu, Zhigang

    2015-07-01

    A central composite experimental design and response surface method were used to investigate the combined effects of water temperature (18-34°C) and copper ion concentration (0.1-1.5 mg/L) on the catalase (CAT) activity in the digestive gland of Crassostrea ariakensis. The results showed that the linear effects of temperature were significant ( P<0.01), the quadratic effects of temperature were significant ( P<0.05), the linear effects of copper ion concentration were not significant ( P>0.05), and the quadratic effects of copper ion concentration were significant ( P<0.05). Additionally, the synergistic effects of temperature and copper ion concentration were not significant ( P>0.05), and the effect of temperature was greater than that of copper ion concentration. A model equation of CAT enzyme activity in the digestive gland of C. ariakensis toward the two factors of interest was established, with R 2, Adj. R 2 and Pred. R 2 values as high as 0.943 7, 0.887 3 and 0.838 5, respectively. These findings suggested that the goodness of fit to experimental data and predictive capability of the model were satisfactory, and could be practically applied for prediction under the conditions of the study. Overall, the results suggest that the simultaneous variation of temperature and copper ion concentration alters the activity of the antioxidant enzyme CAT by modulating active oxygen species metabolism, which may be utilized as a biomarker to detect the effects of copper pollution.

  17. Simultaneous and sequential co-immobilization of glucose oxidase and catalase onto florisil.

    PubMed

    Ozyilmaz, Gul; Tukel, S Seyhan

    2007-06-01

    The co-immobilization of Aspergillus niger glucose oxidase (GOD) with bovine liver catalase (CAT) onto florisil (magnesium silicate-based porous carrier) was investigated to improve the catalytic efficiency of GOD against H2O2 inactivation. The effect of the amount of bound CAT on the GOD activity was also studied for 12 different initial combinations of GOD and CAT, using simultaneous and sequential coupling. The sequentially co-immobilized GOD-CAT showed a higher efficiency than the simultaneously co-immobilized GOD-CAT in terms of the GOD activity and economic costs. The highest activity was shown by the sequentially co-immobilized GOD-CAT when the initial amounts of GOD and CAT were 10 mg and 5 mg per gram of carrier. The optimum pH, buffer concentration, and temperature for GOD activity for the same co-immobilized GOD-CAT sample were then determined as pH 6.5, 50 mM, and 30 degrees C, respectively. When compared with the individually immobilized GOD, the catalytic activity of the co-immobilized GOD-CAT was 70% higher, plus the reusability was more than two-fold. The storage stability of the co-immobilized GOD-CAT was also found to be higher than that of the free form at both 5 degrees C and 25 degrees C. The increased GOD activity and reusability resulting from the co-immobilization process may have been due to CAT protecting GOD from inactivation by H2O2 and supplying additional O2 to the reaction system. PMID:18050914

  18. Transcriptional inhibition of the Catalase gene in phosphine-induced oxidative stress in Drosophila melanogaster.

    PubMed

    Liu, Tao; Li, Li; Zhang, Fanhua; Wang, Yuejin

    2015-10-01

    Phosphine (PH3) is a toxic substance to pest insects and is therefore commonly used in pest control. The oxidative damage induced by PH3 is considered to be one of the primary mechanisms of its toxicity in pest insects; however, the precise mode of PH3 action in this process is still unclear. In this study, we evaluated the responses of several oxidative biomarkers and two of the main antioxidant enzymes, catalase (CAT) and superoxide dismutase (SOD), after fumigation treatment with PH3 in Drosophila melanogaster as a model system. The results showed that larvae exposed to sub-lethal levels of PH3 (0.028 mg/L) exhibited lower aerobic respiration rates and higher levels of hydrogen peroxide (H2O2) and lipid peroxidation (LPO). Furthermore, unlike SOD, the activity and expression of CAT and its encoding gene were downregulated by PH3 in a time- and dose-dependent manner. Finally, the responses of six potential transcription factors of PH3 were determined by real-time polymerase chain reaction to explore the regulation mechanism of DmCAT by PH3. There were no significant effects of PH3 on three nuclear factor-kappa B homologs (DORSAL, DIF, and RELISH) or two activator protein-1 genes (JUN and FOS), while dramatic inhibition of DNA replication-related element factor (DREF) expression was observed after fumigation with PH3, suggesting that PH3 could inhibit the expression of DmCAT via the DRE/DREF system. These results confirmed that PH3 induces oxidative stress and targets CAT by downregulating its encoding gene in Drosophila. Our results provide new insight into the signal transduction mechanism between PH3 and its target genes. PMID:26453223

  19. The Role of Catalase C262T Gene Polymorphism in the Susceptibility and Survival of Cancers

    PubMed Central

    Wang, Cheng-Di; Sun, Yan; Chen, Nan; Huang, Lin; Huang, Jing-Wen; Zhu, Min; Wang, Ting; Ji, Yu-Lin

    2016-01-01

    Catalase (CAT), one antioxidant enzyme, may provide resistance against many diseases. Many previous studies reported predictive and prognostic values of CAT C262T polymorphism in cancers, with divergent results. This study aimed to summarize the overall relationships between CAT C262T polymorphism and cancer risk or survival. A total of 27 eligible publications were included in susceptibility analysis, while 8 publications contained survival outcomes. The results revealed significant relationship between CAT C262T polymorphism and cancer risk(TT + CT vs CC: OR = 1.05, 95%CI = 1.00–1.10, P = 0.036), subgroup analyses indicated the CAT C262T polymorphism was significantly correlated with an increased risk for prostate cancer (TT vs CC + CT: OR = 1.43, 95%CI = 1.20–1.70, P < 0.001) and increased risk among Caucasians (TT vs CC + CT: OR = 1.19, 95%CI = 1.09–1.31, P < 0.001), while no associations between the polymorphism and Asian or mixed population were established. In the survival analysis, no interactions were identified between this polymorphism and cancer survival (TT + CT vs CC: HR = 1.37, 95%CI = 0.70–2.70, P = 0.36). In conclusion, the CAT C262T polymorphismmay be a candidate markerfor cancer risk with type-specific and population-specific effects but not a fine prognostic factor for cancer survival. PMID:27225983

  20. Pregnancy rates in cattle with cryopreserved sexed spermatozoa: effects of laser intensity, staining conditions and catalase.

    PubMed

    Schenk, J L; Seidel, G E

    2007-01-01

    The overall aim of this research was to improve fertility of cattle inseminated with sexed spermatozoa by improving sperm sorting procedures. Six field trials were conducted in which 4,264 heifers were inseminated into the uterine body with cryopreserved sexed or unsexed control spermatozoa. Pregnancy or calving rates with doses of 2 x 10(6) sexed spermatozoa ranged from 32 to 51%; these averaged 69% of the pregnancy rates with 20 x 10(6) unsexed, control spermatozoa (range 53 to 79% of controls). Fertility of sexed spermatozoa was especially low on farms where control fertility was low. Accuracy of sexing ranged from 86 to 91%. Laser power of 150 mW for interrogating spermatozoa did not result in lower pregnancy rates (43%) than when power was decreased as much as possible for a particular sorting batch (50 to 130 mW) to still achieve sexing accuracy (38% pregnant). Addition of catalase to fluids containing spermatozoa was beneficial when thawed spermatozoa were incubated in vitro for 2 h but had no effect on pregnancy rates. There also was no effect on pregnancy rates between two concentrations of Hoechst 33342 for staining spermatozoa. Freezing 2 x 10(6) sexed spermatozoa at 20 x 10(6)/ml resulted in a slightly higher rate of pregnancy (P < 0.05) than at 10 x 10(6)/ml. The information obtained in these trials, along with other improvements, notably lowering pressure in the sorting system from 50 to 40 psi, has been used to improve procedures for sexing spermatozoa commercially. PMID:17491146

  1. Application of different molecular techniques for characterization of catalase-positive cocci isolated from sucuk.

    PubMed

    Kesmen, Zülal; Yarimcam, Burcu; Aslan, Hakiye; Ozbekar, Esra; Yetim, Hasan

    2014-02-01

    This study was carried out for the characterization and discrimination of the indigenous Gram positive, catalase-positive cocci (GCC) population in sucuk, a traditional Turkish dry-fermented sausage. Sucuk samples, produced by the traditional method without starter culture were collected from 8 local producers in Kayseri/Turkey and a total of 116 GCC isolates were identified by using different molecular techniques. Two different molecular fingerprinting methods; namely, randomly amplified polymorphic DNA-PCR (RAPD-PCR) and repetitive extragenic palindrome-PCR (rep-PCR), were used for the clustering of isolates and identification at species level was carried out by full length sequencing of 16S rDNA. Combining the results obtained from molecular fingerprinting and 16S rDNA sequencing showed that the dominant GCC species isolated from the sucuk samples was Staphylococcus saprophyticus followed by Staphylococcus succinus and Staphylococcus equorum belonging to the Staphylococcus genus. Real-time PCR DNA melting curve analysis and high-resolution melting (HRM) analysis targeting the V1 + V3 regions of 16S rDNA were also applied for the discrimination of isolates belonging to different species. It was observed statistically different Tm values and species-specific HRM profiles for all except 2 species (S. saprophyticus and Staphylococcus xylosus) that have high 16S rDNA sequence similarity. The combination of rep-PCR and/or PCR-RAPD with 16S rRNA gene sequencing was an efficient approach for the characterization and identification of the GCC population in spontaneously fermented sucuk. On the other hand, intercalating dye assays were found to be a simple and very promising technique for the differentiation of the GCC population at species level. PMID:24410408

  2. The use of glucose oxidase and catalase for the enzymatic reduction of the potential ethanol content in wine.

    PubMed

    Röcker, Jessica; Schmitt, Matthias; Pasch, Ludwig; Ebert, Kristin; Grossmann, Manfred

    2016-11-01

    Due to the increase of sugar levels in wine grapes as one of the impacts of climate change, alcohol reduction in wines becomes a major focus of interest. This study combines the use of glucose oxidase and catalase activities with the aim of rapid conversion of glucose into non-fermentable gluconic acid. The H2O2 hydrolysing activity of purified catalase is necessary in order to stabilize glucose oxidase activity. After establishing the adequate enzyme ratio, the procedure was applied in large-scale trials (16L- and 220L-scale) of which one was conducted in a winery under industrial wine making conditions. Both enzyme activity and wine flavour were clearly influenced by the obligatory aeration in the different trials. With the enzyme treatment an alcohol reduction of 2%vol. was achieved after 30h of aeration. However the enzyme treated wines were significantly more acidic and less typical. PMID:27211694

  3. Identification of lactic acid bacteria and Gram-positive catalase-positive cocci isolated from naturally fermented sausage (sucuk).

    PubMed

    Kaban, G; Kaya, M

    2008-10-01

    The aim of the study was to identify lactic acid bacteria and Gram-positive catalase-positive cocci isolated from Turkish dry fermented sausage (sucuk) produced by 7 different manufacturers without using starter culture. A total of 129 isolates of lactic acid bacteria were identified phenotypically. Lactobacillus plantarum was the dominant species (45.7%) followed by L. curvatus (10.9%) and L. fermentum (9.3%). Pediococcus isolates were identified as P. pentosaceus and P. acidilactici. All the isolates of gram-positive and catalase-positive cocci (123 isolates) were classified as Staphylococcus except for 1 isolate assigned to Kocuria rosea. The species isolated most often were S. xylosus (41.5%) and S. saprophyticus (28.5%). Four isolates were identified as S. equorum (3.3%), 1 isolate was assigned to S. carnosus (0.8%). PMID:19019118

  4. Dynamics of erythrocyte count, hemoglobin, and catalase activity in rat blood in hypokinesia, muscular activity and restoration

    NASA Technical Reports Server (NTRS)

    Taneyeva, G. V.; Potapovich, G. M.; Voloshko, N. A.; Uteshev, A. B.

    1980-01-01

    Tests were conducted to prove that muscular exertion (in this instance swimming) of different duration and intensity, as well as hypodynamia, result in an increase of hemoglobin and number of red blood cells in peripheral blood rats. Catalase activity increased with an increase in the duration of swimming, but only up to 6 hr; with 7-9 hr of swimming as well as in hypodynamia, catalase activity decreased. It was also observed that under hypodynamia as well as in 3, 5 and 6 hr exertion (swimming) the color index of blood decreased. Pressure chamber treatment (for 8 min each day for one week), alternating a 2 min negative pressure up to 35 mm Hg with 1 min positive pressure, increased the erythrocyte count and hemoglobin content.

  5. Predominant Catalase-negative Soil Bacteria. III. Agromyces, gen. n., Microorganisms Intermediary to Actinomyces and Nocardia1

    PubMed Central

    Gledhill, William E.; Casida, L. E.

    1969-01-01

    The occurrence of filamentous, branching, catalase-negative bacteria as a numerically predominant microflora of various soils was demonstrated by using a dilution frequency isolation procedure. The major characteristics of these organisms were those of the order Actinomycetales. However, they could not be placed in any of the present genera of this order and, therefore, a new genus, Agromyces, was proposed for these organisms. This genus includes catalase-negative, nutritionally-fastidious microorganisms whose cells produce a true branching mycelium that fragments into coccoid and diphtheroid forms. Also, they have an oxidative metabolism, are microaerophilic to aerobic, and contain neither diaminopimelic acid nor lysine as major constituents of the cell wall glycopeptide. The type species would be Agromyces ramosus, gen. n., sp. n. The possible importance of these organisms in clarifying certain phylogenetic relationships of the Actinomycetales is discussed. Images PMID:16349860

  6. The alteration of intracellular enzymes. III. The effect of temperature on the kinetics of altered and unaltered yeast catalase.

    PubMed

    FRASER, M J; KAPLAN, J G

    1955-03-20

    1. The very large increase in catalase activity (Euler effect) which follows treatment of yeast cells with CHCl(3), UV and n-propanol is accompanied by highly significant changes in kinetic properties. With respect to the enzymatic decomposition of H(2)O(2), the thermodynamic constants of the activation process micro, DeltaHdouble dagger, DeltaSdouble dagger, DeltaFdouble dagger, decrease, following treatment of the intracellular enzyme, by 4.5 kcal., 4.5 kcal., 10.1 e.u. and 1.7 kcal., respectively, all these differences being significant at the 1 per cent level. 2. Similar differences exist between the untreated, intracellular enzyme on the one hand, and the extracted yeast and crystalline beef liver catalases on the other. Significant differences in these thermodynamic constants do not exist among the treated intracellular, extracted yeast, and crystalline liver catalases. 3. These data provide unequivocal confirmation of the phenomenon of enzyme alteration reported previously, and confirm previous evidence that the extracted and crystalline enzymes have also undergone enzyme alteration and have properties which are identical with, or very similar to, those of the catalase altered in situ. 4. With respect to the process of heat destruction of catalase, the greatly diminished stability to heat of the altered enzymes, previously reported, has been confirmed. The thermodynamic constants of activation of this process have likewise changed following alteration, in the case of micro, DeltaHdouble dagger, and DeltaSdouble dagger an increase of 20.6 kcal., 20.6 kcal., and 70 e.u., respectively, and of DeltaFdouble dagger a decrease of 2.8 kcal. 5. All these data have been shown to be consistent with, and in some cases predictable from, the interfacial hypothesis, which states that the unaltered catalase exists within the cell adsorbed to some interface, in a partially, but reversibly, unfolded configuration of relatively low specificity; enzyme alteration consists, in

  7. Interaction with the Redox Cofactor MYW and Functional Role of a Mobile Arginine in Eukaryotic Catalase-Peroxidase.

    PubMed

    Gasselhuber, Bernhard; Graf, Michael M H; Jakopitsch, Christa; Zamocky, Marcel; Nicolussi, Andrea; Furtmüller, Paul G; Oostenbrink, Chris; Carpena, Xavi; Obinger, Christian

    2016-06-28

    Catalase-peroxidases (KatGs) are unique bifunctional heme peroxidases with an additional posttranslationally formed redox-active Met-Tyr-Trp cofactor that is essential for catalase activity. On the basis of studies of bacterial KatGs, controversial mechanisms of hydrogen peroxide oxidation were proposed. The recent discovery of eukaryotic KatGs with differing pH optima of catalase activity now allows us to scrutinize those postulated reaction mechanisms. In our study, secreted KatG from the fungus Magnaporthe grisea (MagKatG2) was used to analyze the role of a remote KatG-typical mobile arginine that was shown to interact with the Met-Tyr-Trp adduct in a pH-dependent manner in bacterial KatGs. Here we present crystal structures of MagKatG2 at pH 3.0, 5.5, and 7.0 and investigate the mobility of Arg461 by molecular dynamics simulation. Data suggest that at pH ≥4.5 Arg461 mostly interacts with the deprotonated adduct Tyr. Elimination of Arg461 by mutation to Ala slightly increases the thermal stability but does not alter the active site architecture or the kinetics of cyanide binding. However, the variant Arg461Ala lost the wild-type-typical optimum of catalase activity at pH 5.25 (kcat = 6450 s(-1)) but exhibits a broad plateau between pH 4.5 and 7.5 (kcat = 270 s(-1) at pH 5.5). Moreover, significant differences in the kinetics of interconversion of redox intermediates of wild-type and mutant protein mixed with either peroxyacetic acid or hydrogen peroxide are observed. These findings together with published data from bacterial KatGs allow us to propose a role of Arg461 in the H2O2 oxidation reaction of KatG. PMID:27293030

  8. Two-dimensional HYSCORE spectroscopy of superoxidized manganese catalase: a model for the oxygen-evolving complex of photosystem II.

    PubMed

    Coates, Christopher S; Milikisiyants, Sergey; Chatterjee, Ruchira; Whittaker, Mei M; Whittaker, James W; Lakshmi, K V

    2015-04-16

    The solar water-splitting protein complex, photosystem II (PSII), catalyzes one of the most energetically demanding reactions in Nature by using light energy to drive a catalyst capable of oxidizing water. The water oxidation reaction takes place at the tetra-nuclear manganese calcium-oxo (Mn4Ca-oxo) cluster at the heart of the oxygen-evolving complex (OEC) of PSII. Previous studies have determined the magnetic interactions between the paramagnetic Mn4Ca-oxo cluster and its environment in the S2 state of the OEC. The assignments for the electron-nuclear magnetic interactions that were observed in these studies were facilitated by the use of synthetic dimanganese di-μ-oxo complexes. However, there is an immense need to understand the effects of the protein environment on the coordination geometry of the Mn4Ca-oxo cluster in the OEC of PSII. In the present study, we use a proteinaceous model system to examine the protein ligands that are coordinated to the dimanganese catalytic center of manganese catalase from Lactobacillus plantarum. We utilize two-dimensional hyperfine sublevel correlation (2D HYSCORE) spectroscopy to detect the weak magnetic interactions of the paramagnetic dinuclear manganese catalytic center of superoxidized manganese catalase with the nitrogen and proton atoms of the surrounding protein environment. We obtain a complete set of hyperfine interaction parameters for the protons of a water molecule that is directly coordinated to the dinuclear manganese center. We also obtain a complete set of hyperfine and quadrupolar interaction parameters for two histidine ligands as well as a coordinated azide ligand, in azide-treated superoxidized manganese catalase. On the basis of the values of the hyperfine interaction parameters of the dimanganese model, manganese catalase, and those of the S2 state of the OEC of PSII, for the first time, we discuss the impact of a proteinaceous environment on the coordination geometry of multinuclear manganese clusters

  9. Ascorbic acid reduction of compound I of mammalian catalases proceeds via specific binding to the NADPH binding pocket.

    PubMed

    Korth, Hans-Gert; Meier, Ann-Cathérine; Auferkamp, Oliver; Sicking, Willi; de Groot, Herbert; Sustmann, Reiner; Kirsch, Michael

    2012-06-12

    Mammalian (Clade 3) catalases utilize NADPH as a protective cofactor to prevent one-electron reduction of the central reactive intermediate Compound I (Cpd I) to the catalytically inactive Compound II (Cpd II) species by re-reduction of Cpd I to the enzyme's resting state (ferricatalase). It has long been known that ascorbate/ascorbic acid is capable of reducing Cpd I of NADPH-binding catalases to Cpd II, but the mode of this one-electron reduction had hitherto not been explored. We here demonstrate that ascorbate-mediated reduction of Cpd I, generated by addition of peroxoacetic acid to NADPH-free bovine liver catalase (BLC), requires specific binding of the ascorbate anion to the NADPH binding pocket. Ascorbate-mediated Cpd II formation was found to be suppressed by added NADPH in a concentration-dependent manner, for the achievement of complete suppression at a stoichiometric 1:1 NADPH:heme concentration ratio. Cpd I → Cpd II reduction by ascorbate was similarly inhibited by addition of NADH, NADP(+), thio-NADP(+), or NAD(+), though with 0.5-, 0.1-, 0.1-, and 0.01-fold reduced efficiencies, respectively, in agreement with the relative binding affinities of these dinucleotides. Unexpected was the observation that although Cpd II formation is not observed in the presence of NADP(+), the decay of Cpd I is slightly accelerated by ascorbate rather than retarded, leading to direct regeneration of ferricatalase. The experimental findings are supported by molecular mechanics docking computations, which show a similar binding of NADPH, NADP(+), and NADH, but not NAD(+), as found in the X-ray structure of NADPH-loaded human erythrocyte catalase. The computations suggest that two ascorbate molecules may occupy the empty NADPH pocket, preferably binding to the adenine binding site. The biological relevance of these findings is discussed. PMID:22616883

  10. Non-oxygen-forming pathways of hydrogen peroxide degradation by bovine liver catalase at low hydrogen peroxide fluxes.

    PubMed

    de Groot, Herbert; Auferkamp, Oliver; Bramey, Thorsten; de Groot, Klaus; Kirsch, Michael; Korth, Hans-Gert; Petrat, Frank; Sustmann, Reiner

    2006-01-01

    Heme catalases are considered to degrade two molecules of H(2)O(2) to two molecules of H(2)O and one molecule of O(2) employing the catalatic cycle. We here studied the catalytic behaviour of bovine liver catalase at low fluxes of H(2)O(2) (relative to catalase concentration), adjusted by H(2)O(2)-generating systems. At a ratio of a H(2)O(2) flux (given in microM/min(- 1)) to catalase concentration (given in microM) of 10 min(- 1) and above, H(2)O(2) degradation occurred via the catalatic cycle. At lower ratios, however, H(2)O(2) degradation proceeded with increasingly diminished production of O(2). At a ratio of 1 min(- 1), O(2) formation could no longer be observed, although the enzyme still degraded H(2)O(2). These results strongly suggest that at low physiological H(2)O(2) fluxes H(2)O(2) is preferentially metabolised reductively to H(2)O, without release of O(2). The pathways involved in the reductive metabolism of H(2)O(2) are presumably those previously reported as inactivation and reactivation pathways. They start from compound I and are operative at low and high H(2)O(2) fluxes but kinetically outcompete the reaction of compound I with H(2)O(2) at low H(2)O(2) production rates. In the absence of NADPH, the reducing equivalents for the reductive metabolism of H(2)O(2) are most likely provided by the protein moiety of the enzyme. In the presence of NADPH, they are at least in part provided by the coenzyme. PMID:16298761

  11. Catalase Expression Is Modulated by Vancomycin and Ciprofloxacin and Influences the Formation of Free Radicals in Staphylococcus aureus Cultures

    PubMed Central

    Wang, Ying; Hougaard, Anni B.; Paulander, Wilhelm; Skibsted, Leif H.

    2015-01-01

    Detection of free radicals in biological systems is challenging due to their short half-lives. We have applied electron spin resonance (ESR) spectroscopy combined with spin traps using the probes PBN (N-tert-butyl-α-phenylnitrone) and DMPO (5,5-dimethyl-1-pyrroline N-oxide) to assess free radical formation in the human pathogen Staphylococcus aureus treated with a bactericidal antibiotic, vancomycin or ciprofloxacin. While we were unable to detect ESR signals in bacterial cells, hydroxyl radicals were observed in the supernatant of bacterial cell cultures. Surprisingly, the strongest signal was detected in broth medium without bacterial cells present and it was mitigated by iron chelation or by addition of catalase, which catalyzes the decomposition of hydrogen peroxide to water and oxygen. This suggests that the signal originates from hydroxyl radicals formed by the Fenton reaction, in which iron is oxidized by hydrogen peroxide. Previously, hydroxyl radicals have been proposed to be generated within bacterial cells in response to bactericidal antibiotics. We found that when S. aureus was exposed to vancomycin or ciprofloxacin, hydroxyl radical formation in the broth was indeed increased compared to the level seen with untreated bacterial cells. However, S. aureus cells express catalase, and the antibiotic-mediated increase in hydroxyl radical formation was correlated with reduced katA expression and catalase activity in the presence of either antibiotic. Therefore, our results show that in S. aureus, bactericidal antibiotics modulate catalase expression, which in turn influences the formation of free radicals in the surrounding broth medium. If similar regulation is found in other bacterial species, it might explain why bactericidal antibiotics are perceived as inducing formation of free radicals. PMID:26150471

  12. Catalase Expression Is Modulated by Vancomycin and Ciprofloxacin and Influences the Formation of Free Radicals in Staphylococcus aureus Cultures.

    PubMed

    Wang, Ying; Hougaard, Anni B; Paulander, Wilhelm; Skibsted, Leif H; Ingmer, Hanne; Andersen, Mogens L

    2015-09-01

    Detection of free radicals in biological systems is challenging due to their short half-lives. We have applied electron spin resonance (ESR) spectroscopy combined with spin traps using the probes PBN (N-tert-butyl-α-phenylnitrone) and DMPO (5,5-dimethyl-1-pyrroline N-oxide) to assess free radical formation in the human pathogen Staphylococcus aureus treated with a bactericidal antibiotic, vancomycin or ciprofloxacin. While we were unable to detect ESR signals in bacterial cells, hydroxyl radicals were observed in the supernatant of bacterial cell cultures. Surprisingly, the strongest signal was detected in broth medium without bacterial cells present and it was mitigated by iron chelation or by addition of catalase, which catalyzes the decomposition of hydrogen peroxide to water and oxygen. This suggests that the signal originates from hydroxyl radicals formed by the Fenton reaction, in which iron is oxidized by hydrogen peroxide. Previously, hydroxyl radicals have been proposed to be generated within bacterial cells in response to bactericidal antibiotics. We found that when S. aureus was exposed to vancomycin or ciprofloxacin, hydroxyl radical formation in the broth was indeed increased compared to the level seen with untreated bacterial cells. However, S. aureus cells express catalase, and the antibiotic-mediated increase in hydroxyl radical formation was correlated with reduced katA expression and catalase activity in the presence of either antibiotic. Therefore, our results show that in S. aureus, bactericidal antibiotics modulate catalase expression, which in turn influences the formation of free radicals in the surrounding broth medium. If similar regulation is found in other bacterial species, it might explain why bactericidal antibiotics are perceived as inducing formation of free radicals. PMID:26150471

  13. Interaction with the Redox Cofactor MYW and Functional Role of a Mobile Arginine in Eukaryotic Catalase-Peroxidase

    PubMed Central

    2016-01-01

    Catalase-peroxidases (KatGs) are unique bifunctional heme peroxidases with an additional posttranslationally formed redox-active Met-Tyr-Trp cofactor that is essential for catalase activity. On the basis of studies of bacterial KatGs, controversial mechanisms of hydrogen peroxide oxidation were proposed. The recent discovery of eukaryotic KatGs with differing pH optima of catalase activity now allows us to scrutinize those postulated reaction mechanisms. In our study, secreted KatG from the fungus Magnaporthe grisea (MagKatG2) was used to analyze the role of a remote KatG-typical mobile arginine that was shown to interact with the Met-Tyr-Trp adduct in a pH-dependent manner in bacterial KatGs. Here we present crystal structures of MagKatG2 at pH 3.0, 5.5, and 7.0 and investigate the mobility of Arg461 by molecular dynamics simulation. Data suggest that at pH ≥4.5 Arg461 mostly interacts with the deprotonated adduct Tyr. Elimination of Arg461 by mutation to Ala slightly increases the thermal stability but does not alter the active site architecture or the kinetics of cyanide binding. However, the variant Arg461Ala lost the wild-type-typical optimum of catalase activity at pH 5.25 (kcat = 6450 s–1) but exhibits a broad plateau between pH 4.5 and 7.5 (kcat = 270 s–1 at pH 5.5). Moreover, significant differences in the kinetics of interconversion of redox intermediates of wild-type and mutant protein mixed with either peroxyacetic acid or hydrogen peroxide are observed. These findings together with published data from bacterial KatGs allow us to propose a role of Arg461 in the H2O2 oxidation reaction of KatG. PMID:27293030

  14. A volumetric meter chip for point-of-care quantitative detection of bovine catalase for food safety control.

    PubMed

    Cui, Xingye; Hu, Jie; Choi, Jane Ru; Huang, Yalin; Wang, Xuemin; Lu, Tian Jian; Xu, Feng

    2016-09-01

    A volumetric meter chip was developed for quantitative point-of-care (POC) analysis of bovine catalase, a bioindicator of bovine mastitis, in milk samples. The meter chip displays multiplexed quantitative results by presenting the distance of ink bar advancement that is detectable by the naked eye. The meter chip comprises a poly(methyl methacrylate) (PMMA) layer, a double-sided adhesive (DSA) layer and a glass slide layer fabricated by the laser-etching method, which is typically simple, rapid (∼3 min per chip), and cost effective (∼$0.2 per chip). Specially designed "U shape" reaction cells are covered by an adhesive tape that serves as an on-off switch, enabling the simple operation of the assay. As a proof of concept, we employed the developed meter chip for the quantification of bovine catalase in raw milk samples to detect catalase concentrations as low as 20 μg/mL. The meter chip has great potential to detect various target analytes for a wide range of POC applications. PMID:27543029

  15. Impact of Microscale and Pilot-Scale Freeze-Drying on Protein Secondary Structures: Sucrose Formulations of Lysozyme and Catalase.

    PubMed

    Peters, Björn-Hendrik; Leskinen, Jari T T; Molnár, Ferdinand; Ketolainen, Jarkko

    2015-11-01

    Microscale (MS) freeze-drying offers rapid process cycles for early-stage formulation development. The effects of the MS approach on the secondary structures of two model proteins, lysozyme and catalase, were compared with pilot-scale (PS) vial freeze-drying. The secondary structures were assessed by attenuated total reflection Fourier transformed infrared spectroscopy. Formulations were made with increasing sucrose-protein ratios. Freeze-drying protocols involved regular cooling without thermal treatment and annealing with MS and PS equipment, and cooling rate variations with the MS. Principal component analysis of smoothed second-derivative amide I spectra revealed sucrose-protein ratio-dependent shifts toward α-helical structures. Transferability of sucrose-protein formulations from MS to PS vial freeze-drying was evidenced at regular cooling rates. Local differences in protein secondary structures between the bottom and top of sucrose-catalase samples could be detected at the sucrose-catalase ratios of 1 and 2, this being related to the initial filling height and ice crystal morphology. Annealing revealed temperature, protein, formulation, and sample location-dependent effects influencing surface morphology at the top, or causing protein secondary structure perturbation at the bottom. With the MS approach, protein secondary structure differences at different cooling rates could be detected for sucrose-lysozyme samples at the sucrose-lysozyme ratio of 1. PMID:26305147

  16. The Catalase –262C/T Promoter Polymorphism and Diabetic Complications in Caucasians with Type 2 Diabetes

    PubMed Central

    dos Santos, Kátia Gonçalves; Canani, Luís Henrique; Gross, Jorge Luiz; Tschiedel, Balduíno; Souto, Kátia Elisabete Pires; Roisenberg, Israel

    2006-01-01

    Catalase is a central antioxidant enzyme constituting the primary defense against oxidative stress. In this study, we investigated whether the functional –262C/T polymorphism in the promoter of catalase gene is associated with the presence of diabetic retinopathy (DR), diabetic nephropathy (DN) and ischemic heart disease (IHD) in 520 Caucasian-Brazilians with type 2 diabetes. The –262C/T polymorphism was also examined in 100 Caucasian blood donors. Patients underwent a clinical and laboratory evaluation consisting of a questionnaire, physical examination, assessment of diabetic complications and laboratory tests. Genotype analysis was performed using the polymerase chain reaction followed by digestion with restriction enzyme. The genotype and allele frequencies of the –262C/T polymorphism in patients with type 2 diabetes were very similar to those of blood donors (T allele frequency = 0.20 and 0.18, respectively). Likewise, there were no differences in either genotype or allele frequencies between type 2 diabetic patients with or without DR, DN or IHD. Thus, our results do not support the hypothesis that the –262C/T polymorphism is related to the development of DR, DN or IHD in patients with type 2 diabetes. Further studies are necessary to elucidate the role of catalase gene polymorphisms in the pathogenesis of diabetic complications. PMID:17264407

  17. Reactive oxygen species detoxification by catalase is a major determinant of fecundity in the mosquito Anopheles gambiae

    PubMed Central

    DeJong, Randall J.; Miller, Lisa M.; Molina-Cruz, Alvaro; Gupta, Lalita; Kumar, Sanjeev; Barillas-Mury, Carolina

    2007-01-01

    The mosquito Anopheles gambiae is a primary vector of Plasmodium parasites in Africa. The effect of aging on reproductive output in A. gambiae females from three strains that differ in their ability to melanize Plasmodium and in their systemic levels of hydrogen peroxide (H2O2), a reactive oxygen species (ROS), was analyzed. The number of eggs oviposited after the first blood meal decreases with age in all strains; however, this decline was much more pronounced in the G3 (unselected) and R (refractory to Plasmodium infection) strains than in the S (highly susceptible to Plasmodium) strain. Reduction of ROS levels in G3 and R females by administration of antioxidants reversed this age-related decline in fecundity. The S and G3 strains were fixed for two functionally different catalase alleles that differ at the second amino acid position (Ser2Trp). Biochemical analysis of recombinant proteins revealed that the Trp isoform has lower specific activity and higher Km than the Ser isoform, indicating that the former is a less efficient enzyme. The Trp-for-Ser substitution appears to destabilize the functional tetrameric form of the enzyme. Both alleles are present in the R strain, and Ser/Ser females had significantly higher fecundity than Trp/Trp females. Finally, a systemic reduction in catalase activity by dsRNA-mediated knockdown significantly reduced the reproductive output of mosquito females, indicating that catalase plays a central role in protecting the oocyte and early embryo from ROS damage. PMID:17284604

  18. Reactive oxygen species detoxification by catalase is a major determinant of fecundity in the mosquito Anopheles gambiae.

    PubMed

    DeJong, Randall J; Miller, Lisa M; Molina-Cruz, Alvaro; Gupta, Lalita; Kumar, Sanjeev; Barillas-Mury, Carolina

    2007-02-13

    The mosquito Anopheles gambiae is a primary vector of Plasmodium parasites in Africa. The effect of aging on reproductive output in A. gambiae females from three strains that differ in their ability to melanize Plasmodium and in their systemic levels of hydrogen peroxide (H2O2), a reactive oxygen species (ROS), was analyzed. The number of eggs oviposited after the first blood meal decreases with age in all strains; however, this decline was much more pronounced in the G3 (unselected) and R (refractory to Plasmodium infection) strains than in the S (highly susceptible to Plasmodium) strain. Reduction of ROS levels in G3 and R females by administration of antioxidants reversed this age-related decline in fecundity. The S and G3 strains were fixed for two functionally different catalase alleles that differ at the second amino acid position (Ser2Trp). Biochemical analysis of recombinant proteins revealed that the Trp isoform has lower specific activity and higher Km than the Ser isoform, indicating that the former is a less efficient enzyme. The Trp-for-Ser substitution appears to destabilize the functional tetrameric form of the enzyme. Both alleles are present in the R strain, and Ser/Ser females had significantly higher fecundity than Trp/Trp females. Finally, a systemic reduction in catalase activity by dsRNA-mediated knockdown significantly reduced the reproductive output of mosquito females, indicating that catalase plays a central role in protecting the oocyte and early embryo from ROS damage. PMID:17284604

  19. The structure and peroxidase activity of a 33-kDa catalase-related protein from Mycobacterium avium ssp. paratuberculosis

    PubMed Central

    Pakhomova, Svetlana; Gao, Benlian; Boeglin, William E; Brash, Alan R; Newcomer, Marcia E

    2009-01-01

    True catalases are tyrosine-liganded, usually tetrameric, hemoproteins with subunit sizes of ∼55–84 kDa. Recently characterized hemoproteins with a catalase-related structure, yet lacking in catalatic activity, include the 40–43 kDa allene oxide synthases of marine invertebrates and cyanobacteria. Herein, we describe the 1.8 Å X-ray crystal structure of a 33 kDa subunit hemoprotein from Mycobacterium avium ssp. paratuberculosis (annotated as MAP-2744c), that retains the core elements of the catalase fold and exhibits an organic peroxide-dependent peroxidase activity. MAP-2744c exhibits negligible catalatic activity, weak peroxidatic activity using hydrogen peroxide (20/s) and strong peroxidase activity (∼300/s) using organic hydroperoxides as co-substrate. Key amino acid differences significantly impact prosthetic group conformation and placement and confer a distinct activity to this prototypical member of a group of conserved bacterial “minicatalases”. Its structural features and the result of the enzyme assays support a role for MAP-2744c and its close homologues in mitigating challenge by a variety of reactive oxygen species. PMID:19827095

  20. Effect of catalase inactivation on levels of inorganic peroxides, superoxide dismutase, glutathione, oxygen consumption and life span in adult houseflies (Musca domestica).

    PubMed Central

    Allen, R G; Farmer, K J; Sohal, R S

    1983-01-01

    The effects of total inhibition of catalase, induced by 3-amino-1,2,4-triazole, on the adult housefly (Musca domestica) were examined. The lack of catalase activity had no effect on the longevity of the houseflies. Inorganic-peroxide concentration was elevated at younger ages, but declined in older flies. The rate of oxygen consumption by the flies was greatly decreased and the levels of oxidized as well as reduced glutathione were augmented. Superoxide dismutase activity showed a slight increase. This study suggests that loss of catalase activity does not affect survival of houseflies due to adaptive responses. PMID:6661212

  1. The catalase–hydrogen peroxide system. Role of sub-units in the thermal deactivation of bacterial catalase in the absence of substrate

    PubMed Central

    Jones, Peter; Suggett, A.

    1968-01-01

    1. Kinetic studies of the thermal deactivation of bacterial catalase in the absence of substrate suggest that the reaction involves a protonation-induced reversible dissociation of catalase into catalatically inactive sub-units, followed by an irreversible transformation of the sub-units into deactivated products. It is possible that the sub-units are mono-haem species. The rate of deactivation decreases with increasing pressure in accordance with the predictions of the proposed model. 2. The results also imply that the addition of hydrogen peroxide substrate induces the re-formation of active catalase. Under appropriate conditions the activity of catalase is found to increase with time in a manner that is quantitatively consistent with the results of deactivation studies. PMID:5673527

  2. Protective role of endogenous catalase in baseline and phenytoin-enhanced neurodevelopmental and behavioral deficits initiated in utero and in aged mice.

    PubMed

    Abramov, Julia P; Tran, Audrey; Shapiro, Aaron M; Wells, Peter G

    2012-06-01

    We used mutant catalase-deficient mice (acatalasemic, aCat) and transgenic mice expressing human catalase (hCat) to determine the neuroprotective role of catalase in utero and in aged animals treated with vehicle or the reactive oxygen species (ROS)-initiating drug phenytoin. Phenytoin-initiated postnatal death was enhanced in aCat mice and reduced in hCat mice. Catalase deficiency reduced postnatal surface righting, negative geotaxis and rotarod performances independent of drug treatment, and enhanced phenytoin-initiated negative geotaxis and rotarod deficits in aCat females. Untreated aged female but not male aCat mice exhibited reduced motor coordination. Conversely, hCat offspring showed treatment-independent increased surface righting, negative geotaxis, air righting and, in females, improved phenytoin-impaired rotarod performance. Gender dependencies were consistent with higher brain catalase activities in male than female neonatal and aged animals. Endogenous catalase plays an important gender-dependent neuroprotective role in utero and in aged mice, and reduces neurodevelopmental effects of phenytoin. PMID:22342499

  3. Important role of catalase in the production of β-carotene by recombinant Saccharomyces cerevisiae under H2O2 stress.

    PubMed

    Yan, Guo-liang; Liang, Heng-yu; Wang, Zhi-qun; Yang, Xiao-fan; Liu, Dan; Liu, Jin-fu; Duan, Chang-qing

    2011-03-01

    The effect of H(2)O(2) supplement on cell growth and β-carotene productions in recombinant Saccharomyces cerevisiae CFW-01 and CFW-01 ctt1 deficiency in cytosolic catalase were investigated in shaking flasks. The results showed that supplement of H(2)O(2) (0.5 and 1.0 mM) can significantly stimulate the β-carotene production. However, β-carotene levels of CFW-01 ctt1Δ under 0.5 and 1 mM H(2)O(2) were 16.7 and 36.7% lower than those of CFW-01, respectively. Although lacking cytosolic catalase, no significant differences in cell growth were observed between CFW-01 ctt1Δ and CFW-01 under the same level of H(2)O(2) stress. These results suggest that β-carotene can act as an antioxidant to protect the recombinant yeast from H(2)O(2) oxidative damage in the absence of cytosolic catalase. However, catalase still plays an important role in the production of β-carotene under H(2)O(2) stress. If catalase can not timely decompose H(2)O(2), the free radicals such as OH· derived from H(2)O(2) can result in decrease of β-carotene concentration. Therefore, in the production of β-carotene by H(2)O(2) stress, not only the level of oxidative stress, but also the activities of catalase in cells should be considered. PMID:21120656

  4. Mitochondrial mutations contribute to HIF1α accumulation via increased reactive oxygen species and upregulated PDK2 in head and neck squamous cell carcinoma

    PubMed Central

    Sun, Wenyue; Zhou, Shaoyu; Chang, Steven S.; McFate, Thomas; Verma, Ajay; Califano, Joseph A.

    2008-01-01

    Purpose Mitochondrial mutations have been identified in head and neck squamous cell carcinoma (HNSCC), but the pathways by which phenotypic effects of these mutations are exerted remain unclear. Previously, we found that mitochondrial ND2 mutations in primary HNSCC increased reactive oxygen species (ROS) and conferred an aerobic, glycolytic phenotype with HIF1α accumulation and increased cell growth. The purpose of present study was to examine the pathways relating these alterations. Experimental Design Mitochondrial mutant and wild-type ND2 constructs were transfected into oral keratinocyte immortal cell line OKF6 and head and neck cancer cell line JHU-O19 and established transfectants. The protein levels of HIF1α, pyruvate dehydrogenease (PDH), phospho-PDH, and pyruvate dehydrogenease kinase (PDK) 2, together with ROS generation, were compared between the mutant and wild type. Meanwhile, the effects of small molecule inhibitors targeting PDK2, and mitochondrial targeted catalase, were evaluated on the ND2 mutant transfectants. Results We determined that ND2 mutant downregulated PDH expression via upregulated PDK2, with an increase in phospho-PDH. Inhibition of PDK2 with dichloroacetate decreased HIF1α accumulation and reduced cell growth. Extracellular treatment with hydrogen peroxide, a ROS mimic, increased PDK2 expression and HIF1α expression, and introduction of mitochondrial targeted catalase decreased mitochondrial mutation mediated PDK2 and HIF1α expression and suppressed cell growth. Conclusions Our findings suggest that mitochondrial ND2 mutation contributes to HIF1α accumulation via increased ROS production, upregulation of PDK2, attenuating PDH activity, thereby increasing pyruvate, resulting in HIF1α stabilization. This may provide insight into a potential mechanism by which mitochondrial mutations contribute to HNSCC development. PMID:19147752

  5. Isoniazid-resistance conferring mutations in Mycobacterium tuberculosis KatG: Catalase, peroxidase, and INH-NADH adduct formation activities

    PubMed Central

    Cade, Christine E; Dlouhy, Adrienne C; Medzihradszky, Katalin F; Salas-Castillo, Saida Patricia; Ghiladi, Reza A

    2010-01-01

    Mycobacterium tuberculosis catalase-peroxidase (KatG) is a bifunctional hemoprotein that has been shown to activate isoniazid (INH), a pro-drug that is integral to frontline antituberculosis treatments. The activated species, presumed to be an isonicotinoyl radical, couples to NAD+/NADH forming an isoniazid-NADH adduct that ultimately confers anti-tubercular activity. To better understand the mechanisms of isoniazid activation as well as the origins of KatG-derived INH-resistance, we have compared the catalytic properties (including the ability to form the INH-NADH adduct) of the wild-type enzyme to 23 KatG mutants which have been associated with isoniazid resistance in clinical M. tuberculosis isolates. Neither catalase nor peroxidase activities, the two inherent enzymatic functions of KatG, were found to correlate with isoniazid resistance. Furthermore, catalase function was lost in mutants which lacked the Met-Tyr-Trp crosslink, the biogenic cofactor in KatG which has been previously shown to be integral to this activity. The presence or absence of the crosslink itself, however, was also found to not correlate with INH resistance. The KatG resistance-conferring mutants were then assayed for their ability to generate the INH-NADH adduct in the presence of peroxide (t-BuOOH and H2O2), superoxide, and no exogenous oxidant (air-only background control). The results demonstrate that residue location plays a critical role in determining INH-resistance mechanisms associated with INH activation; however, different mutations at the same location can produce vastly different reactivities that are oxidant-specific. Furthermore, the data can be interpreted to suggest the presence of a second mechanism of INH-resistance that is not correlated with the formation of the INH-NADH adduct. PMID:20054829

  6. Elemental sulfur: toxicity in vivo and in vitro to bacterial luciferase, in vitro yeast alcohol dehydrogenase, and bovine liver catalase.

    PubMed

    Cetkauskaite, Anolda; Pessala, Piia; Södergren, Anders

    2004-08-01

    The aim of this research was to analyze the effects and the modes of action of elemental sulfur (S(0)) in bioluminescence and respiration of Vibrio fischeri cells and the enzymes crude luciferase, pure catalase, and alcohol dehydrogenase (ADH). Metallic copper removed sulfur and reduced the toxicity of acetone extracts of sediment samples analyzed in the bioluminescence test. The sulfur inhibition of cell bioluminescence was noncompetitive with decanal, the luciferase substrate; reversible, with maximum toxicity after 15 min (EC(50) = 11.8 microg/L); and almost totally recovered after 2 h. In vitro preincubation of crude luciferase extract with sulfur (0.28 ppm) weakly inhibited bioluminescence at 5 min, but at 30 min the inhibition reached 60%. Increasing the concentration of sulfur in the parts per million concentration range in vitro decreased bioluminescence, which was not constant, but depended on exposure time, and no dead-end/total inhibition was observed. The redox state of enzymes in the in vitro system significantly affected inhibition. Hydrogen peroxide restored fully and the reducing agent dithiothreitol, itself toxic, restored only partially luciferase activity in the presence of sulfur. Sulfur (5.5 ppm) slightly inhibited ADH and catalase, and dithiothreitol enhanced sulfur inhibition. High sulfur concentrations (2.2 ppm) inhibited the bioluminescence and enhanced the respiration rate of V. fischeri cells. Elemental sulfur data were interpreted to show that sulfur acted on at least a few V. fischeri cell sites: reversibly modifying luciferase at sites sensitive to/protected by oxidative and reducing agents and by affecting electron transport processes, resulting in enhanced oxygen consumption. Sulfur together with an enzyme reducing agent inhibited the oxidoreductive enzymes ADH and catalase, which have --SH groups, metal ion cofactors, or heme, respectively, in their active centers. PMID:15269910

  7. Cytochrome P450-type hydroxylation and epoxidation in a tyrosine-liganded hemoprotein, catalase-related allene oxide synthase.

    PubMed

    Boeglin, William E; Brash, Alan R

    2012-07-13

    The ability of hemoproteins to catalyze epoxidation or hydroxylation reactions is usually associated with a cysteine as the proximal ligand to the heme, as in cytochrome P450 or nitric oxide synthase. Catalase-related allene oxide synthase (cAOS) from the coral Plexaura homomalla, like catalase itself, has tyrosine as the proximal heme ligand. Its natural reaction is to convert 8R-hydroperoxy-eicosatetraenoic acid (8R-HPETE) to an allene epoxide, a reaction activated by the ferric heme, forming product via the Fe(IV)-OH intermediate, Compound II. Here we oxidized cAOS to Compound I (Fe(V)=O) using the oxygen donor iodosylbenzene and investigated the catalytic competence of the enzyme. 8R-hydroxyeicosatetraenoic acid (8R-HETE), the hydroxy analog of the natural substrate, normally unreactive with cAOS, was thereby epoxidized stereospecifically on the 9,10 double bond to form 8R-hydroxy-9R,10R-trans-epoxy-eicosa-5Z,11Z,14Z-trienoic acid as the predominant product; the turnover was 1/s using 100 μm iodosylbenzene. The enantiomer, 8S-HETE, was epoxidized stereospecifically, although with less regiospecificity, and was hydroxylated on the 13- and 16-carbons. Arachidonic acid was converted to two major products, 8R-HETE and 8R,9S-eicosatrienoic acid (8R,9S-EET), plus other chiral monoepoxides and bis-allylic 10S-HETE. Linoleic acid was epoxidized, whereas stearic acid was not metabolized. We conclude that when cAOS is charged with an oxygen donor, it can act as a stereospecific monooxygenase. Our results indicate that in the tyrosine-liganded cAOS, a catalase-related hemoprotein in which a polyunsaturated fatty acid can enter the active site, the enzyme has the potential to mimic the activities of typical P450 epoxygenases and some capabilities of P450 hydroxylases. PMID:22628547

  8. Identification, classification, and clinical relevance of catalase-negative, gram-positive cocci, excluding the streptococci and enterococci.

    PubMed Central

    Facklam, R; Elliott, J A

    1995-01-01

    Several new genera and species of gram-positive, catalase-negative cocci that can cause infections in humans have been described. Although these bacteria were isolated in the clinical laboratory, they were considered nonpathogenic culture contaminants and were not thought to be the cause of any diseases. Isolation of pure cultures of these bacteria from normally sterile sites has led to the conclusion that these bacteria can be an infrequent cause of infection. This review describes the new bacteria and the procedures useful for clinical laboratories to aid in their identification. The clinical relevance and our experience with the various genera and species are reviewed and discussed. PMID:8665466

  9. Characterization of OxyR as a negative transcriptional regulator that represses catalase production in Corynebacterium diphtheriae.

    PubMed

    Kim, Ju-Sim; Holmes, Randall K

    2012-01-01

    Corynebacterium diphtheriae and Corynebacterium glutamicum each have one gene (cat) encoding catalase. In-frame Δcat mutants of C. diphtheriae and C. glutamicum were hyper-sensitive to growth inhibition and killing by H(2)O(2). In C. diphtheriae C7(β), both catalase activity and cat transcription decreased ~2-fold during transition from exponential growth to early stationary phase. Prototypic OxyR in Escherichia coli senses oxidative stress and it activates katG transcription and catalase production in response to H(2)O(2). In contrast, exposure of C. diphtheriae C7(β) to H(2)O(2) did not stimulate transcription of cat. OxyR from C. diphtheriae and C. glutamicum have 52% similarity with E. coli OxyR and contain homologs of the two cysteine residues involved in H(2)O(2) sensing by E. coli OxyR. In-frame ΔoxyR deletion mutants of C. diphtheriae C7(β), C. diphtheriae NCTC13129, and C. glutamicum were much more resistant than their parental wild type strains to growth inhibition by H(2)O(2). In the C. diphtheriae C7(β) ΔoxyR mutant, cat transcripts were about 8-fold more abundant and catalase activity was about 20-fold greater than in the C7(β) wild type strain. The oxyR gene from C. diphtheriae or C. glutamicum, but not from E. coli, complemented the defect in ΔoxyR mutants of C. diphtheriae and C. glutamicum and decreased their H(2)O(2) resistance to the level of their parental strains. Gel-mobility shift, DNaseI footprint, and primer extension assays showed that purified OxyR from C. diphtheriae C7(β) bound, in the presence or absence of DTT, to a sequence in the cat promoter region that extends from nucleotide position -55 to -10 with respect to the +1 nucleotide in the cat ORF. These results demonstrate that OxyR from C. diphtheriae or C. glutamicum functions as a transcriptional repressor of the cat gene by a mechanism that is independent of oxidative stress induced by H(2)O(2). PMID:22438866

  10. Oxidative DNA damage levels and catalase activity in the clam Ruditapes decussatus as pollution biomarkers of Tunisian marine environment.

    PubMed

    Jebali, Jamel; Banni, Mohamed; de Almeida, Eduardo Alves; Boussetta, Hamadi

    2007-01-01

    Levels of the oxidative DNA damage 7, 8-dihydro-8-oxo-2'-deoxyguanosine (8-oxodG) and catalase (CAT) activity were measured in the digestive gland and gills of clams Ruditapes decussatus, related to the presence of pollutants along Tunisian marine environment. Increased levels of CAT were observed in tissues of clams from all the sites studied, compared to control values, and elevated 8-oxodG levels were observed at specific sites. Results obtained in this work indicate that the measurement of 8-oxodG levels and CAT activity in tissues of R. decussatus is promising in pollution monitoring studies of the Tunisian marine environment. PMID:16897518

  11. Rapid activation of catalase followed by citrate efflux effectively improves aluminum tolerance in the roots of chick pea (Cicer arietinum).

    PubMed

    Sharma, Manorma; Sharma, Vinay; Tripathi, Bhumi Nath

    2016-05-01

    The present study demonstrates the comparative response of two contrasting genotypes (aluminum (Al) tolerant and Al sensitive) of chick pea (Cicer arietinum) against Al stress. The Al-tolerant genotype (RSG 974) showed lesser inhibition of root growth as well as lower oxidative damages, measured in terms of the accumulation of H2O2 and lipid peroxidation compared to the Al-sensitive genotype (RSG 945). The accumulation of Al by roots of both genotypes was almost equal at 96 and 144 h after Al treatment; however, it was higher in Al-tolerant than Al-sensitive genotype at 48 h after Al treatment. Further, the Al-mediated induction of superoxide dismutase (SOD) activity was significantly higher in Al-tolerant than Al-sensitive genotype. Ascorbate peroxidase (APX) activity was almost similar in both genotypes. Al treatment promptly activated catalase activity in Al-tolerant genotype, and it was remarkably higher than that of Al-sensitive genotype. As another important Al detoxification mechanism, citrate efflux was almost equal in both genotypes except at 1000 μM Al treatment for 96 and 144 h. Further, citrate carrier and anion channel inhibitor experiment confirmed the contribution of citrate efflux in conferring Al tolerance in Al-tolerant genotype. Based on the available data, the present study concludes that rapid activation of catalase (also SOD) activity followed by citrate efflux effectively improves Al tolerance in chick pea. PMID:26615604

  12. Specific binding and inhibition of 6-benzylaminopurine to catalase: multiple spectroscopic methods combined with molecular docking study.

    PubMed

    Xu, Qin; Lu, Yanni; Jing, Longyun; Cai, Lijuan; Zhu, Xinfeng; Xie, Ju; Hu, Xiaoya

    2014-04-01

    6-Benzylaminopurine (6-BA) is a kind of cytokinin which could regulate the activities of the antioxidant defense system of plants. In this work, its interaction with and inhibition of beef liver catalase have been systematically investigated using spectroscopic, isothermal titration calorimetric and molecular docking methods under physiological conditions. The fluorescence quenching of beef liver catalase (BLC) by 6-BA is due to the formation of 6-BA-BLC complex. Hydrogen bonds and van der Waals interactions play major roles in stabilizing the complex. The Stern-Volmer quenching constant, binding constant, the corresponding thermodynamic parameters and binding numbers were measured. The results of UV-vis absorption, three-dimensional fluorescence, synchronous fluorescence and circular dichroism spectroscopic results demonstrate that the binding of 6-BA results in the micro-environment change around tyrosine (Tyr) and tryptophan (Trp) residues of BLC. The BLC-mediated conversion of H2O2 to H2O and O2, in the presence and absence of 6-BA, was also studied. Lineweaver-Burk plot indicates a noncompetitive type of inhibition. Molecular docking study was used to find the binding sites. PMID:24412785

  13. [Ultrasonic and thermal inactivation of catalases from the bovine liver, the methylotrophic yeast Pichia pastoris, and the fungus Penicillium piceum].

    PubMed

    Potapovich, M V; Eremin, A N; Metelitsa, D I

    2005-01-01

    The kinetics of inactivation of catalases from bovine liver (CAT), the fungus Penicillium piceum (CAT1), and the methylotrophic yeast Pichia pastoris (CAT2) was studied in phosphate buffer (pH 5.5 or 7.4) at 45 and 50 degrees C or under the conditions of exposure to low-frequency ultrasound (LFUS; 27 kHz, 60 W/cm2). The processes were characterized by effective first-order rate constants (s(-1)): kin (total inactivation), k*in in (thermal inactivation), and k*in (us) (ultrasonic inactivation). The values of kin and k*in increased in the following order: CAT1 < CAT < CAT2. CD spectra of the enzyme solutions were recorded in the course of inactivation by high temperatures (45 and 50 degrees C) and LFUS, and the ratios of secondary structures were calculated. Processes of thermal and ultrasonic inactivation of catalases were associated with a decrease in the content of alpha helices and an increase in that of antiparallel beta structures and irregular regions (CAT1 < CAT < CAT2). We conclude that the enzymes exhibit the following rank order of resistance: CAT1 > CAT >CAT2. Judging from the characteristics of CAT1, it appears to be an optimum component for antioxidant enzyme complexes. PMID:16358747

  14. Structural characterization of the Ser324Thr variant of the catalase-peroxidase (KatG) from Burkholderia pseudomallei.

    PubMed

    Deemagarn, Taweewat; Carpena, Xavier; Singh, Rahul; Wiseman, Ben; Fita, Ignacio; Loewen, Peter C

    2005-01-01

    The Ser315Thr variant of the catalase-peroxidase KatG from Mycobacterium tuberculosis imparts resistance to the pro-drug isonicotinic acid hydrazide (isoniazid) through a failure to convert it to the active drug, isonicotinoyl-NAD. The equivalent variant in KatG from Burkholderia pseudomallei, Ser324Thr, has been constructed, revealing catalase and peroxidase activities that are similar to those of the native enzyme. The other activities of the variant protein, including the NADH oxidase, the isoniazid hydrazinolysis and isonicotinoyl-NAD synthase activities are reduced by 60-70%. The crystal structure of the variant differs from that of the native enzyme in having the methyl group of Thr324 situated in the entrance channel to the heme cavity, in a modified water matrix in the entrance channel and heme cavity, in lacking the putative perhydroxy modification on the heme, in the multiple locations of a few side-chains, and in the presence of an apparent perhydroxy modification on the indole nitrogen atom of the active-site Trp111. The position of the methyl group of Thr324 creates a constriction or narrowing of the channel leading to the heme cavity, providing an explanation for the lower reactivity towards isoniazid and the slower rate of isonicotinoyl-NAD synthesis. PMID:15567407

  15. Selective peracetic acid determination in the presence of hydrogen peroxide using a label free enzymatic method based on catalase.

    PubMed

    Galbán, Javier; Sanz, Vanesa; de Marcos, Susana

    2010-11-01

    Peracetic acid (PAA) is selectively determined in the presence of hydrogen peroxide (H(2)O(2)) by using the self-indicating UV-Vis molecular absorption properties of catalase. The PAA reacts with the protein giving an intermediate (Cat-I) which is reduced back by the amino acid core surrounding the heme group. Since the original form of the enzyme and the Cat-I have different UV-Vis absorption properties, the absorbance changes can be used for PAA determination. The H(2)O(2)/catalase reaction is extremely fast so that neither Cat-I compound nor kinetic interferences are observed. The method permits PAA determination in the 5 × 10(-7) to 1.5 × 10(-5) M range, the reproducibility being between 1% and 10%. Using this method, PAA has been successfully determined in water samples treated with commercial PAA/H(2)O(2) biocides. A theoretical study has also been carried out for obtaining a mathematical model able to analytically describe the process. PMID:20824427

  16. Effect of compatible and noncompatible osmolytes on the enzymatic activity and thermal stability of bovine liver catalase.

    PubMed

    Sepasi Tehrani, H; Moosavi-Movahedi, A A; Ghourchian, H; Ahmad, F; Kiany, A; Atri, M S; Ariaeenejad, Sh; Kavousi, K; Saboury, A A

    2013-12-01

    Catalase is an important antioxidant enzyme that catalyzes the disproportionation of H2O2 into harmless water and molecular oxygen. Due to various applications of the enzyme in different sectors of industry as well as medicine, the enhancement of stability of the enzyme is important. Effect of various classes of compatible as well as noncompatible osmolytes on the enzymatic activity, disaggregation, and thermal stability of bovine liver catalase have been investigated. Compatible osmolytes, proline, xylitol, and valine destabilize the denatured form of the enzyme and, therefore, increase its disaggregation and thermal stability. The increase in the thermal stability is accompanied with a slight increase of activity in comparison to the native enzyme at 25 °C. On the other hand, histidine, a noncompatible osmolyte stabilizes the denatured form of the protein and hence causes an overall decrease in the thermal stability and enzymatic activity of the enzyme. Chemometric results have confirmed the experimental results and have provided insight into the distribution and number of mole fraction components for the intermediates. The increase in melting temperature (Tm) and enzymatic rate could be further amplified by the intrinsic effect of temperature enhancement on the enzymatic activity for the industrial purposes. PMID:23249140

  17. Engineering of chimeric catalase-Angiopep-2 for intracellular protection of brain endothelial cells against oxidative stress.

    PubMed

    Yainoy, Sakda; Houbloyfa, Patcharaporn; Eiamphungporn, Warawan; Isarankura-Na-Ayudhya, Chartchalerm; Prachayasittikul, Virapong

    2014-07-01

    Blood-brain barrier (BBB) disruption and brain microvascular endothelial cells (BMVECs) death caused by excessive production of hydrogen peroxide (H2O2) have been implicated in several neurological conditions. To overcome this problem, H2O2-degrading enzyme with ability to enter the BMVECs is required. In the present study, genetic fusion of gene encoding human catalase and gene encoding Angiopep-2 (AP2), a brain targeting peptide, was performed. The fusion protein was successfully expressed in Escherichia coli and purified to homogeneity. The protein retained heme content and specific enzymatic activity in the same order of magnitude as that of native enzyme. Study of the BMVECs internalization showed that 0.1μM of the fusion protein can enter the cell within 15min, while internalization of the native protein was not observed at this condition. In addition, treatment of the BMVECs with 20 units of the fusion protein for 30min showed protection against H2O2 up to 5.0mM, whereas this protective effect was not observed from treatment with the native protein. Therefore, construction of chimeric human catalase and AP2 provides an insight into the development of potential therapeutic antioxidant with ability to penetrate the BBB for protection against neurodegenerative disorders. PMID:24769213

  18. Docosahexaenoic acid inhibits the invasion of MDA-MB-231 breast cancer cells through upregulation of cytokeratin-1.

    PubMed

    Blanckaert, Vincent; Kerviel, Vincent; Lépinay, Alexandra; Joubert-Durigneux, Vanessa; Hondermarck, Hubert; Chénais, Benoît

    2015-01-01

    Docosahexaenoic acid (DHA), the main member of the omega-3 essential fatty acid family, has been shown to reduce the invasion of the triple-negative breast cancer cell line MDA-MB-231, but the mechanism involved remains unclear. In the present study, a proteomic approach was used to define changes in protein expression induced by DHA. Proteins from crude membrane preparations of MDA-MB-231 cells treated with 100 µM DHA were separated by two-dimensional electrophoresis (2-DE) and differentially expressed proteins were identified using MALDI-TOF mass spectrometry. The main changes observed were the upregulation of Keratin, type Ⅱ cytoskeletal 1 (KRT1), catalase and lamin-A/C. Immunocytochemistry analyses confirmed the increase in KRT1 induced by DHA. Furthermore, in vitro invasion assays showed that siRNA against KRT1 was able to reverse the DHA-induced inhibition of breast cancer cell invasion. In conclusion, KRT1 is involved in the anti-invasive activity of DHA in breast cancer cells. PMID:25825023

  19. Aspergillus nidulans catalase-peroxidase gene (cpeA) is transcriptionally induced during sexual development through the transcription factor StuA.

    PubMed

    Scherer, Mario; Wei, Huijun; Liese, Ralf; Fischer, Reinhard

    2002-10-01

    Catalases, peroxidases, and catalase-peroxidases are important enzymes to cope with reactive oxygen species in pro- and eukaryotic cells. In the filamentous fungus Aspergillus nidulans three monofunctional catalases have been described, and a fourth catalase activity was observed in native polyacrylamide gels. The latter activity is probably due to the bifunctional enzyme catalase-peroxidase, which we characterized here. The gene, named cpeA, encodes an 81-kDa polypeptide with a conserved motif for heme coordination. The enzyme comprises of two similar domains, suggesting gene duplication and fusion during evolution. The first 439 amino acids share 22% identical residues with the C terminus. Homologous proteins are found in several prokaryotes, such as Escherichia coli and Mycobacterium tuberculosis (both with 61% identity). In fungi the enzyme has been noted in Penicillium simplicissimum, Septoria tritici, and Neurospora crassa (69% identical amino acids) but is absent from Saccharomyces cerevisiae. Expression analysis in A. nidulans revealed that the gene is transcriptionally induced upon carbon starvation and during sexual development, but starvation is not sufficient to reach high levels of the transcript during development. Besides transcriptional activation, we present evidence for posttranscriptional regulation. A green fluorescent protein fusion protein localized to the cytoplasm of Hülle cells. The Hülle cell-specific expression was dependent on the developmental regulator StuA, suggesting an activating function of this helix-loop-helix transcription factor. PMID:12455692

  20. Extraction of superoxide dismutase, catalase, and carbonic anhydrase from stroma-free red blood cell hemolysate for the preparation of the nanobiotechnological complex of polyhemoglobin-superoxide dismutase-catalase-carbonic anhydrase.

    PubMed

    Guo, C; Gynn, M; Chang, T M S

    2015-06-01

    We report a novel method to simultaneously extract superoxide dismutase (SOD), catalase (CAT), and carbonic anhydrase (CA) from the same sample of red blood cells (RBCs). This avoids the need to use expensive commercial enzymes, thus enabling a cost-effective process for large-scale production of a nanobiotechnological polyHb-SOD-CAT-CA complex, with enhancement of all three red blood cell functions. An optimal concentration of phosphate buffer for ethanol-chloroform treatment results in good recovery of CAT, SOD, and CA after extraction. Different concentrations of the enzymes can be used to enhance the activity of polyHb-SOD-CAT-CA to 2, 4, or 6 times that of RBC. PMID:25961364

  1. Coordination modes of tyrosinate-ligated catalase-type heme enzymes: magnetic circular dichroism studies of Plexaura homomalla allene oxide synthase, Mycobacterium avium ssp. paratuberculosis protein-2744c, and bovine liver catalase in their ferric and ferrous states.

    PubMed

    Bandara, D M Indika; Sono, Masanori; Bruce, Grant S; Brash, Alan R; Dawson, John H

    2011-12-01

    Bovine liver catalase (BLC), catalase-related allene oxide synthase (cAOS) from Plexaura homomalla, and a recently isolated protein from the cattle pathogen Mycobacterium avium ssp. paratuberculosis (MAP-2744c (MAP)) are all tyrosinate-ligated heme enzymes whose crystal structures have been reported. cAOS and MAP have low (<20%) sequence similarity to, and significantly different catalytic functions from, BLC. cAOS transforms 8R-hydroperoxy-eicosatetraenoic acid to an allene epoxide, whereas the MAP protein is a putative organic peroxide-dependent peroxidase. To elucidate factors influencing the functions of these and related heme proteins, we have investigated the heme iron coordination properties of these tyrosinate-ligated heme enzymes in their ferric and ferrous states using magnetic circular dichroism and UV-visible absorption spectroscopy. The MAP protein shows remarkable spectral similarities to cAOS and BLC in its native Fe(III) state, but clear differences from ferric proximal heme ligand His93Tyr Mb (myoglobin) mutant, which may be attributed to the presence of an Arg(+)-N(ω)-H···¯O-Tyr (proximal heme axial ligand) hydrogen bond in the first three heme proteins. Furthermore, the spectra of Fe(III)-CN¯, Fe(III)-NO, Fe(II)-NO (except for five-coordinate MAP), Fe(II)-CO, and Fe(II)-O(2) states of cAOS and MAP, but not H93Y Mb, are also similar to the corresponding six-coordinate complexes of BLC, suggesting that a tyrosinate (Tyr-O¯) is the heme axial ligand trans to the bound ligands in these complexes. The Arg(+)-N(ω)-H to ¯O-Tyr hydrogen bond would be expected to modulate the donor properties of the proximal tyrosinate oxyanion and, combined with the subtle differences in the catalytic site structures, affect the activities of cAOS, MAP and BLC. PMID:22104301

  2. Spectroscopic and kinetic investigation of the reactions of peroxyacetic acid with Burkholderia pseudomallei catalase-peroxidase, KatG.

    PubMed

    Ivancich, Anabella; Donald, Lynda J; Villanueva, Jacylyn; Wiseman, Ben; Fita, Ignacio; Loewen, Peter C

    2013-10-15

    Catalase-peroxidases or KatGs can utilize organic peroxyacids and peroxides instead of hydrogen peroxide to generate the high-valent ferryl-oxo intermediates involved in the catalase and peroxidase reactions. In the absence of peroxidatic one-electron donors, the ferryl intermediates generated with a low excess (10-fold) of peroxyacetic acid (PAA) slowly decay to the ferric resting state after several minutes, a reaction that is demonstrated in this work by both stopped-flow UV-vis absorption measurements and EPR spectroscopic characterization of Burkholderia pseudomallei KatG (BpKatG). EPR spectroscopy showed that the [Fe(IV)═O Trp330(•+)], [Fe(IV)═O Trp139(•)], and [Fe(IV)═O Trp153(•)] intermediates of the peroxidase-like cycle of BpKatG ( Colin, J. Wiseman, B. Switala, J. Loewen, P. C. Ivancich, A. ( 2009 ) J. Am. Chem. Soc. 131 , 8557 - 8563 ), formed with a low excess of PAA at low temperature, are also generated with a high excess (1000-fold) of PAA at room temperature. However, under high excess conditions, there is a rapid conversion to a persistent [Fe(IV)═O] intermediate. Analysis of tryptic peptides of BpKatG by mass spectrometry before and after treatment with PAA showed that specific tryptophan (including W330, W139, and W153), methionine (including Met264 of the M-Y-W adduct), and cysteine residues are either modified with one, two, or three oxygen atoms or could not be identified in the spectrum because of other undetermined modifications. It was concluded that these oxidized residues were the source of electrons used to reduce the excess of PAA to acetic acid and return the enzyme to the ferric state. Treatment of BpKatG with PAA also caused a loss of catalase activity towards certain substrates, consistent with oxidative disruption of the M-Y-W adduct, and a loss of peroxidase activity, consistent with accumulation of the [Fe(IV)═O] intermediate and the oxidative modification of the W330, W139, and W153. PAA, but not H2O2 or tert

  3. Piper betle shows antioxidant activities, inhibits MCF-7 cell proliferation and increases activities of catalase and superoxide dismutase

    PubMed Central

    2012-01-01

    Background Breast cancer is the most common form of cancer and the focus on finding chemotherapeutic agents have recently shifted to natural products. Piper betle is a medicinal plant with various biological activities. However, not much data is available on the anti-cancer effects of P. betle on breast cancer. Due to the current interest in the potential effects of antioxidants from natural products in breast cancer treatment, we investigated the antioxidant activities of the leaves of P. betle and its inhibitory effect on the proliferation of the breast cancer cell line, MCF-7. Methods The leaves of P. betle were extracted with solvents of varying polarities (water, methanol, ethyl acetate and hexane) and their phenolic and flavonoid content were determined using colorimetric assays. Phenolic composition was characterized using HPLC. Antioxidant activities were measured using FRAP, DPPH, superoxide anion, nitric oxide and hyroxyl radical scavenging assays. Biological activities of the extracts were analysed using MTT assay and antioxidant enzyme (catalase, superoxide dismutase, glutathione peroxidase) assays in MCF-7 cells. Results Overall, the ethyl acetate extract showed the highest ferric reducing activity and radical scavenging activities against DPPH, superoxide anion and nitric oxide radicals. This extract also contained the highest phenolic content implying the potential contribution of phenolics towards the antioxidant activities. HPLC analyses revealed the presence of catechin, morin and quercetin in the leaves. The ethyl acetate extract also showed the highest inhibitory effect against the proliferation of MCF-7 cells (IC50=65 μg/ml). Treatment of MCF-7 cells with the plant extract increased activities of catalase and superoxide dismutase. Conclusions Ethyl acetate is the optimal solvent for the extraction of compounds with antioxidant and anti-proliferative activities. The increased activities of catalase and superoxide dismutase in the treated cells

  4. Three-phase partitioning as a rapid and easy method for the purification and recovery of catalase from sweet potato tubers (Solanum tuberosum).

    PubMed

    Duman, Yonca Avcı; Kaya, Erdem

    2013-07-01

    Three-phase partitioning (TPP) was used to purify and recover catalase from potato crude extract. The method consists of ammonium sulfate saturation, t-butanol addition, and adjustment of pH, respectively. The best catalase recovery (262 %) and 14.1-fold purification were seen in the interfacial phase in the presence of 40 % (w/v) ammonium sulfate saturation with 1.0:1.0 crude extract/t-butanol ratio (v/v) at pH 7 in a single step. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of the enzyme showed comparatively purification and protein molecular weight was nearly found to be 56 kDa. This study shows that TPP is a simple, economical, and quick method for the recovering of catalase and can be used for the purification process. PMID:23640263

  5. Effects of the kinematic viscosity and surface tension on the bubble take-off period in a catalase-hydrogen peroxide system.

    PubMed

    Sasaki, Satoshi; Iida, Yoshinori

    2009-06-01

    The effect of kinematic viscosity and surface tension of the solution was investigated by adding catalase, glucose oxidase, or glucose on the bubble movement in a catalase-hydrogen peroxide system. The kinematic viscosity was measured using a Cannon-Fenske kinematic viscometer. The surface tension of the solution was measured by the Wilhelmy method using a self-made apparatus. The effects of the hole diameter/cell wall thickness, catalase concentration, glucose concentration, and glucose oxidase concentration on the kinematic viscosity, surface tension, and bubble take-off period were investigated. With our system, the effects of the changes in the solution materiality on the bubble take-off period were proven to be very small in comparison to the change in the oxygen-producing rate. PMID:19250805

  6. Lactate Up-Regulates the Expression of Lactate Oxidation Complex-Related Genes in Left Ventricular Cardiac Tissue of Rats

    PubMed Central

    Gabriel-Costa, Daniele; da Cunha, Telma Fatima; Bechara, Luiz Roberto Grassmann; Fortunato, Rodrigo Soares; Bozi, Luiz Henrique Marchesi; Coelho, Marcele de Almeida; Barreto-Chaves, Maria Luiza; Brum, Patricia Chakur

    2015-01-01

    Background Besides its role as a fuel source in intermediary metabolism, lactate has been considered a signaling molecule modulating lactate-sensitive genes involved in the regulation of skeletal muscle metabolism. Even though the flux of lactate is significantly high in the heart, its role on regulation of cardiac genes regulating lactate oxidation has not been clarified yet. We tested the hypothesis that lactate would increase cardiac levels of reactive oxygen species and up-regulate the expression of genes related to lactate oxidation complex. Methods/Principal Findings Isolated hearts from male adult Wistar rats were perfused with control, lactate or acetate (20mM) added Krebs-Henseleit solution during 120 min in modified Langendorff apparatus. Reactive oxygen species (O2●-/H2O2) levels, and NADH and NADPH oxidase activities (in enriched microsomal or plasmatic membranes, respectively) were evaluated by fluorimetry while SOD and catalase activities were evaluated by spectrophotometry. mRNA levels of lactate oxidation complex and energetic enzymes MCT1, MCT4, HK, LDH, PDH, CS, PGC1α and COXIV were quantified by real time RT-PCR. Mitochondrial DNA levels were also evaluated. Hemodynamic parameters were acquired during the experiment. The key findings of this work were that lactate elevated cardiac NADH oxidase activity but not NADPH activity. This response was associated with increased cardiac O2●-/H2O2 levels and up-regulation of MCT1, MCT4, LDH and PGC1α with no changes in HK, PDH, CS, COXIV mRNA levels and mitochondrial DNA levels. Lactate increased NRF-2 nuclear expression and SOD activity probably as counter-regulatory responses to increased O2●-/H2O2. Conclusions Our results provide evidence for lactate-induced up-regulation of lactate oxidation complex associated with increased NADH oxidase activity and cardiac O2●-/H2O2 driving to an anti-oxidant response. These results unveil lactate as an important signaling molecule regulating components of

  7. Polymer-Induced Heteronucleation for Protein Single Crystal Growth: Structural Elucidation of Bovine Liver Catalase and Concanavalin A Forms

    SciTech Connect

    Foroughi, Leila M.; Kang, You-Na; Matzger, Adam J.

    2012-05-09

    Obtaining single crystals for X-ray diffraction remains a major bottleneck in structural biology; when existing crystal growth methods fail to yield suitable crystals, often the target rather than the crystallization approach is reconsidered. Here we demonstrate that polymer-induced heteronucleation, a powerful technique that has been used for small molecule crystallization form discovery, can be applied to protein crystallization by optimizing the heteronucleant composition and crystallization formats for crystallizing a wide range of protein targets. Applying these advances to two benchmark proteins resulted in dramatically increased crystal size, enabling structure determination, for a half century old form of bovine liver catalase (BLC) that had previously only been characterized by electron microscopy, and the discovery of two new forms of concanavalin A (conA) from the Jack bean and accompanying structural elucidation of one of these forms.

  8. Oversynthesis of riboflavin in the yeast Pichia guilliermondii is accompanied by reduced catalase and superoxide dismutases activities.

    PubMed

    Prokopiv, Tetyana M; Fedorovych, Dariya V; Boretsky, Yuriy R; Sibirny, Andriy A

    2013-01-01

    Iron deficiency causes oversynthesis of riboflavin in several yeast species, known as flavinogenic yeasts. Under iron deprivation conditions, Pichia guilliermondii cells increase production of riboflavin and malondialdehyde and the formation of protein carbonyl groups, which reflect increased intracellular content of reactive oxygen species. In this study, we found that P. guilliermondii iron deprived cells showed dramatically decreased catalase and superoxide dismutase activities. Previously reported mutations rib80, rib81, and hit1, which affect repression of riboflavin synthesis and iron accumulation by iron ions, caused similar drops in activities of the mentioned enzymes. These findings could explain the previously described development of oxidative stress in iron deprived or mutated P. guilliermondii cells that overproduce riboflavin. Similar decrease in superoxide dismutase activities was observed in iron deprived cells in the non-flavinogenic yeast Saccharomyces cerevisiae. PMID:23053489

  9. Investigation of the simultaneous production of superoxide dismutase and catalase enzymes from Rhodotorula glutinis under different culture conditions.

    PubMed

    Unlü, Ayşe Ezgi; Takaç, Serpil

    2012-10-01

    The simultaneous production production of superoxide (SOD) and catalase (CAT) from Rhodotorula glutinis was studied. The effects of temperature, initial medium pH, and carbon source on the enzyme activities were investigated. Temperature and carbon sources were found to have significant effects on the enzyme activities. 10°C provided the highest specific CAT and SOD activities as 22.6 U/mg protein and 170 U/mg protein, respectively. Glycerol was found to be the best carbon source for enzyme activities, providing 113 U/mg protein for CAT and 125 U/mg protein for SOD, which were also the highest activities obtained in the present study. PMID:22471596

  10. Purification, biochemical characterization, and implications of an alkali-tolerant catalase from the spacecraft-associated and oxidation-resistant Acinetobacter gyllenbergii 2P01AA.

    PubMed

    Muster, N; Derecho, I; Dallal, F; Alvarez, R; McCoy, K B; Mogul, R

    2015-04-01

    Herein, we report on the purification, characterization, and sequencing of catalase from Acinetobacter gyllenbergii 2P01AA, an extremely oxidation-resistant bacterium that was isolated from the Mars Phoenix spacecraft assembly facility. The Acinetobacter are dominant members of the microbial communities that inhabit spacecraft assembly facilities and consequently may serve as forward contaminants that could impact the integrity of future life-detection missions. Catalase was purified by using a 3-step chromatographic procedure, where mass spectrometry provided respective subunit and intact masses of 57.8 and 234.6 kDa, which were consistent with a small-subunit tetrameric catalase. Kinetics revealed an extreme pH stability with no loss in activity between pH 5 and 11.5 and provided respective kcat/Km and kcat values of ∼10(7) s(-1) M(-1) and 10(6) s(-1), which are among the highest reported for bacterial catalases. The amino acid sequence was deduced by in-depth peptide mapping, and structural homology suggested that the catalases from differing strains of A. gyllenbergii differ only at residues near the subunit interfaces, which may impact catalytic stability. Together, the kinetic, alkali-tolerant, and halotolerant properties of the catalase from A. gyllenbergii 2P01AA are significant, as they are consistent with molecular adaptations toward the alkaline, low-humidity, and potentially oxidizing conditions of spacecraft assembly facilities. Therefore, these results support the hypothesis that the selective pressures of the assembly facilities impact the microbial communities at the molecular level, which may have broad implications for future life-detection missions. PMID:25826195

  11. Direct and indirect inactivation of tumor cell protective catalase by salicylic acid and anthocyanidins reactivates intercellular ROS signaling and allows for synergistic effects.

    PubMed

    Scheit, Katrin; Bauer, Georg

    2015-03-01

    Salicylic acid and anthocyanidins are known as plant-derived antioxidants, but also can provoke paradoxically seeming prooxidant effects in vitro. These prooxidant effects are connected to the potential of salicylic acid and anthocyanidins to induce apoptosis selectively in tumor cells in vitro and to inhibit tumor growth in animal models. Several epidemiological studies have shown that salicylic acid and its prodrug acetylsalicylic acid are tumor-preventive for humans. The mechanism of salicylic acid- and anthocyanidin-dependent antitumor effects has remained enigmatic so far. Extracellular apoptosis-inducing reactive oxygen species signaling through the NO/peroxynitrite and the HOCl signaling pathway specifically induces apoptosis in transformed cells. Tumor cells have acquired resistance against intercellular reactive oxygen species signaling through expression of membrane-associated catalase. Here, we show that salicylic acid and anthocyanidins inactivate tumor cell protective catalase and thus reactive apoptosis-inducing intercellular reactive oxygen species signaling of tumor cells and the mitochondrial pathway of apoptosis Salicylic acid inhibits catalase directly through its potential to transform compound I of catalase into the inactive compound II. In contrast, anthocyanidins provoke a complex mechanism for catalase inactivation that is initiated by anthocyanidin-mediated inhibition of NO dioxygenase. This allows the formation of extracellular singlet oxygen through the reaction between H(2)O(2) and peroxynitrite, amplification through a caspase8-dependent step and subsequent singlet oxygen-mediated inactivation of catalase. The combination of salicylic acid and anthocyanidins allows for a remarkable synergistic effect in apoptosis induction. This effect may be potentially useful to elaborate novel therapeutic approaches and crucial for the interpretation of epidemiological results related to the antitumor effects of secondary plant compounds. PMID

  12. New insights into the heme cavity structure of catalase-peroxidase: a spectroscopic approach to the recombinant synechocystis enzyme and selected distal cavity mutants.

    PubMed

    Heering, Hendrik A; Indiani, Chiara; Regelsberger, Günther; Jakopitsch, Christa; Obinger, Christian; Smulevich, Giulietta

    2002-07-23

    Catalase-peroxidases (KatGs) are heme peroxidases with homology to yeast cytochrome cperoxidase (CCP) and plant ascorbate peroxidases (APXs). KatGs exhibit a peroxidase activity of broad specificity and a high catalase activity, which strongly depends on the presence of a distal Trp as part of the conserved amino acid triad Arg-Trp-His. By contrast, both CCP and APX do not have a substantial catalase activity despite the presence of the same triad. Thus, to elucidate structure-function relationships of catalase-peroxidases (for which no crystal structure is available at the moment), we performed UV-Vis and resonance Raman studies of recombinant wild-type KatG from the cyanobacterium SynechocystisPCC 6803 and the distal side variants (His123-->Gln, Glu; Arg119-->Ala, Asn; Trp122-->Phe, Ala). The distal cavity of KatG is very similar to that of the other class I peroxidases. A H-bond network involving water molecules and the distal Trp, Arg, and His is present, which connects the distal and proximal sides of the heme pocket. However, distal mutation not only affects the heme Fe coordination state and perturbs the proximal Fe-Im bond, as previously observed for other peroxidases, but also alters the stability of the heme architecture. The charge of the distal residues appears particularly important for maintaining the heme architecture. Moreover, the Trp plays a significant role in the distal H-bonding, much more pronounced than in CCP. The relevance of these findings for the catalase activity of KatG is discussed in light of the complete loss of catalase activity in the distal Trp mutants. PMID:12119039

  13. Nutraceutical up-regulation of serotonin paradoxically induces compulsive behavior

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The role of diet in either the etiology or treatment of complex mental disorder is highly controversial in psychiatry. However, physiological mechanisms by which diet can influence brain chemistry – particularly that of serotonin – are well established. Here we show that dietary up-regulation of br...

  14. Cyclooxygenase-2 is Upregulated in Copper-Deficient Rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Copper deficiency inactivates Cu/Zn-SOD and promotes accumulation of reactive oxygen species. This process likely impairs nitric oxide (NO)-mediated relaxation as well as triggers vascular inflammation. The current study was designed to determine whether COX-2 expression and activity are upregulated...

  15. Covalent conjugation of tetrameric bovine liver catalase to liposome membranes for stabilization of the enzyme tertiary and quaternary structures.

    PubMed

    Yoshimoto, Makoto; Sakamoto, Hideyuki; Shirakami, Hiroshi

    2009-03-01

    Tetrameric bovine liver catalase (BLC) is unstable because of its dissociation into subunits at low enzyme concentrations and the conformational change of the subunits at high temperatures. In this work, for stabilization of BLC, the enzyme was covalently conjugated with liposome membranes composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), cholesterol and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-glutaryl (NGPE). The NGPE, which was responsible for the BLC/membrane coupling, was altered from 0.05 to 0.2 in its liposomal mole fraction f(G). The catalase-conjugated liposome (CCL) with f(G) of 0.15 showed the maximum number of the conjugated BLC molecules of 28 per liposome. The reactivity of CCLs to H(2)O(2) was as high as that of free BLC at 25 degrees C in Tris-HCl buffer of pH 7.4. Among the CCLs, the catalyst with f(G) of 0.15 was the most stable at 55 degrees C in its enzyme activity in the buffer because the appropriate number of BLC/liposome covalent bonding prevented the dissociation-induced enzyme deactivation. Furthermore, the CCL showed much higher stability at 55 degrees C than the free BLC/enzyme-free liposome mixture and free BLC at the low BLC concentration of 340ng/mL. This was because BLC in the CCL was located in the vicinity of the host membrane regardless of the catalyst concentration, which could induce the effective stabilization effect of the membrane on the enzyme tertiary structure as indicated by the intrinsic tryptophan fluorescence analysis. The results obtained demonstrate the high structural stability of BLC in the CCL system, which was derived from the covalent bonding and interaction between BLC and liposomes. PMID:19131221

  16. Methylmercury-mediated inhibition of 3H-D-aspartate transport in cultured astrocytes is reversed by the antioxidant catalase.

    PubMed

    Allen, J W; Mutkus, L A; Aschner, M

    2001-05-25

    Astrocytes are essential for removal of glutamate from the extracellular space in the central nervous system. The neurotoxic heavy metal methylmercury potently and specifically inhibits the transport of glutamate in cultured astrocytes by an unknown mechanism. Glutamate transport in astrocytes is also inhibited by reactive oxygen species. A glutamate-induced transporter current is inhibited both by reactive oxygen species and thiol oxidizing agents. These observations suggest that oxidation of the transporter might mediate methylmercury-induced inhibition of glutamate transport. In the present study, we examined the ability of thiol reducing or oxidizing agents to inhibit transport of 3H-D-aspartate, a glutamate analog, in primary cultures of neonatal rat astrocytes. To assess if methylmercury-mediated inhibition of 3H-aspartate transport was due to overproduction of reactive oxygen species, we tested the ability of Trolox, alpha-phenyl-tert-butyl nitrone (PBN), or catalase to attenuate the methylmercury-induced inhibition of aspartate uptake. Neither the thiol reducing agent dithiothreitol (DTT), nor the thiol oxidizing agent 5,5'-dithio-bis(2-nitrobenzoic) acid (DTNB) had any effect on 3H-aspartate transport suggesting that the thiol redox state does not alter transporter function. In contrast, the antioxidant catalase (1000 U/ml) significantly attenuated methylmercury-induced inhibition of 3H-aspartate uptake, suggesting that excess reactive oxygen species, specifically H2O2, inhibit the function of an astrocytic excitatory amino acid transporter (EAAT1). Prolonged exposure (6 h) to inhibitors of glutamate transport significantly decreased EAAT1 mRNA levels suggesting that transporter expression is related to function. This study suggests that methylmercury-induced overproduction of H2O2 is a mechanism for inhibition of glutamate transport and transporter expression in cultured astrocytes. PMID:11376598

  17. Oxygen-Dependent Regulation of the Expression of the Catalase Gene katA of Lactobacillus sakei LTH677

    PubMed Central

    Hertel, Christian; Schmidt, Gudrun; Fischer, Marc; Oellers, Katja; Hammes, Walter P.

    1998-01-01

    The catalase gene katA of Lactobacillus sakei LTH677 was cloned and expressed in Escherichia coli UM2, Lactobacillus casei LK1, and Lactobacillus curvatus LTH1432. The last host is a catalase-deficient plasmid-cured derivative of a starter organism used in meat fermentation. The regulation of katA expression was found to be the same in L. sakei LTH677 and the recombinant strains. The addition of H2O2 to anaerobic cultures, as well as a switch to aerobic conditions, resulted in a strong increase in KatA activity. The expression was investigated in more detail with L. sakei LTH677 and L. curvatus LTH4002. The recombinant strain LTH4002 did not accumulate H2O2 under glucose-limited aerobic conditions and remained viable in the stationary phase. Under inductive conditions, the katA-specific mRNA and the apoenzyme were synthesized de novo. Deletion derivatives of the katA promoter were produced, and the regulatory response was investigated by fusion to the β-glucuronidase reporter gene gusA and expression in L. sakei LTH677. The fact that gene expression was subject to induction was confirmed at the level of transcription and protein synthesis. A small putative regulatory sequence of at least 25 bp was identified located upstream of the −35 site. Competition experiments performed with L. sakei LTH677 harboring the fusion constructs consisting of the katA promoter and gusA revealed that an activator protein is involved in the transcriptional induction of katA. PMID:9546173

  18. Molecular, technological and safety characterization of Gram-positive catalase-positive cocci from slightly fermented sausages.

    PubMed

    Martín, B; Garriga, M; Hugas, M; Bover-Cid, S; Veciana-Nogués, M T; Aymerich, T

    2006-03-15

    The population of Gram-positive catalase-positive cocci from slightly fermented sausages was characterized at species and strain level by molecular techniques and some technological and hygienic aspects were also considered. Staphylococcus xylosus was the predominant species (80.8%) followed by Staphylococcus warneri (8.3%), Staphylococcus epidermidis (5.8%) Staphylococcus carnosus (4.6%), and Kocuria varians (0.4%). Proteolytic activity was observed in 23% of the isolates. The species with the highest percentage of proteolytic strains was S. warneri. Lipolytic activity was found in 45.8% of the isolates and S. xylosus was the species with the highest percentage of lipolytic isolates. Biogenic amine production was not widely distributed (only 14.6% of the isolates). Tyramine was the most intense amine produced, although by only 4.6% of the isolates. Phenylethylamine was more frequently detected (10.8% of isolates) but at lower levels. Some strains also produced putrescine (3.3%), cadaverine (2.9%), histamine (1.3%) and tryptamine (0.4%). All isolates were susceptible to linezolid and vancomicin and over 70% were resistant to penicillin G, ampicillin and sulphonamides. Most of the mecA+ strains (only 4.6% of isolates) also displayed resistance to multiple antibiotics. A reduced enterotoxigenic potential was found. Only 3.3% of isolates showed staphylococcal enterotoxins genes, all identified as entC gene. The combination of RAPD-PCR and plasmid profiling allowed the discrimination of 208 different profiles among the 240 Gram-positive catalase-positive cocci characterized, indicating a great genetic variability. PMID:16297478

  19. SHORT-ROOT Deficiency Alleviates the Cell Death Phenotype of the Arabidopsis catalase2 Mutant under Photorespiration-Promoting Conditions.

    PubMed

    Waszczak, Cezary; Kerchev, Pavel I; Mühlenbock, Per; Hoeberichts, Frank A; Van Der Kelen, Katrien; Mhamdi, Amna; Willems, Patrick; Denecker, Jordi; Kumpf, Robert P; Noctor, Graham; Messens, Joris; Van Breusegem, Frank

    2016-08-01

    Hydrogen peroxide (H2O2) can act as a signaling molecule that influences various aspects of plant growth and development, including stress signaling and cell death. To analyze molecular mechanisms that regulate the response to increased H2O2 levels in plant cells, we focused on the photorespiration-dependent peroxisomal H2O2 production in Arabidopsis thaliana mutants lacking CATALASE2 (CAT2) activity (cat2-2). By screening for second-site mutations that attenuate the PSII maximum efficiency (Fv'/Fm') decrease and lesion formation linked to the cat2-2 phenotype, we discovered that a mutation in SHORT-ROOT (SHR) rescued the cell death phenotype of cat2-2 plants under photorespiration-promoting conditions. SHR deficiency attenuated H2O2-dependent gene expression, oxidation of the glutathione pool, and ascorbate depletion in a cat2-2 genetic background upon exposure to photorespiratory stress. Decreased glycolate oxidase and catalase activities together with accumulation of glycolate further implied that SHR deficiency impacts the cellular redox homeostasis by limiting peroxisomal H2O2 production. The photorespiratory phenotype of cat2-2 mutants did not depend on the SHR functional interactor SCARECROW and the sugar signaling component ABSCISIC ACID INSENSITIVE4, despite the requirement for exogenous sucrose for cell death attenuation in cat2-2 shr-6 double mutants. Our findings reveal a link between SHR and photorespiratory H2O2 production that has implications for the integration of developmental and stress responses. PMID:27432873

  20. Electrospun regenerated cellulose nanofibrous membranes surface-grafted with polymer chains/brushes via the atom transfer radical polymerization method for catalase immobilization.

    PubMed

    Feng, Quan; Hou, Dayin; Zhao, Yong; Xu, Tao; Menkhaus, Todd J; Fong, Hao

    2014-12-10

    In this study, an electrospun regenerated cellulose (RC) nanofibrous membrane with fiber diameters of ∼200-400 nm was prepared first; subsequently, 2-hydroxyethyl methacrylate (HEMA), 2-dimethylaminoethyl methacrylate (DMAEMA), and acrylic acid (AA) were selected as the monomers for surface grafting of polymer chains/brushes via the atom transfer radical polymerization (ATRP) method. Thereafter, four nanofibrous membranes (i.e., RC, RC-poly(HEMA), RC-poly(DMAEMA), and RC-poly(AA)) were explored as innovative supports for immobilization of an enzyme of bovine liver catalase (CAT). The amount/capacity, activity, stability, and reusability of immobilized catalase were evaluated, and the kinetic parameters (Vmax and Km) for immobilized and free catalase were determined. The results indicated that the respective amounts/capacities of immobilized catalase on RC-poly(HEMA) and RC-poly(DMAEMA) nanofibrous membranes reached 78 ± 3.5 and 67 ± 2.7 mg g(-1), which were considerably higher than the previously reported values. Meanwhile, compared to that of free CAT (i.e., 18 days), the half-life periods of RC-CAT, RC-poly(HEMA)-CAT, RC-poly(DMAEMA)-CAT, and RC-poly(AA)-CAT were 49, 58, 56, and 60 days, respectively, indicating that the storage stability of immobilized catalase was also significantly improved. Furthermore, the immobilized catalase exhibited substantially higher resistance to temperature variation (tested from 5 to 70 °C) and lower degree of sensitivity to pH value (tested from 4.0 and 10.0) than the free catalase. In particular, according to the kinetic parameters of Vmax and Km, the nanofibrous membranes of RC-poly(HEMA) (i.e., 5102 μmol mg(-1) min(-1) and 44.89 mM) and RC-poly(DMAEMA) (i.e., 4651 μmol mg(-1) min(-1) and 46.98 mM) had the most satisfactory biocompatibility with immobilized catalase. It was therefore concluded that the electrospun RC nanofibrous membranes surface-grafted with 3-dimensional nanolayers of polymer chains/brushes would be

  1. A note concerning acetate activation of peroxidative activity of catalases using 2,2'-azino-bis(3-ethylbenzthiazoline)-6-sulfonic acid as a substrate.

    PubMed

    Baker, Warren L; Key, Christopher; Lonergan, Greg T

    2005-01-01

    Beef liver catalases showed peroxidative activity using 2,2'-azino-bis-(3-ethylbenzthiazoline)-6-sulfonic acid as the electron donor and hydrogen peroxide as the acceptor at a pH of 5. This activity was not observed at pH 7. The reaction depended on acetate concentration, although succinate and propionate could partly replace the acetate as a catalyst. Other haem proteins also catalyzed a peroxidative effect. The reaction using syringaldazine or the coupling between dimethylaminobenzoic acid and 3-methyl-2-benzothiazolinone hydrazone was less effective and less sensitive. Evidence is presented that the reaction is associated with a conformational change of the catalase. PMID:15932252

  2. Upregulation of Interleukin-33 in obstructive renal injury.

    PubMed

    Chen, Wei-Yu; Chang, Ya-Jen; Su, Chia-Hao; Tsai, Tzu-Hsien; Chen, Shang-Der; Hsing, Chung-Hsi; Yang, Jenq-Lin

    2016-05-13

    Interstitial fibrosis and loss of parenchymal tubular cells are the common outcomes of progressive renal diseases. Pro-inflammatory cytokines have been known contributing to the damage of tubular cells and fibrosis responses after renal injury. Interleukin (IL)-33 is a tissue-derived nucleus alarmin that drives inflammatory responses. The regulation and function of IL-33 in renal injury, however, is not well understood. To investigate the involvement of cytokines in the pathogenesis of renal injury and fibrosis, we performed the mouse renal injury model induced by unilateral urinary obstruction (UUO) and analyze the differentially upregulated genes between the obstructed and the contralateral unobstructed kidneys using RNA sequencing (RNAseq). Our RNAseq data identified IL33 and its receptor ST2 were upregulated in the UUO kidney. Quantitative analysis confirmed that transcripts of IL33 and ST2 were upregulated in the obstructed kidneys. Immunofluorescent staining revealed that IL-33 was upregulated in Vimentin- and alpha-SMA-positive interstitial cells. By using genetically knockout mice, deletion of IL33 reduced UUO-induced renal fibrosis. Moreover, in combination with BrdU labeling technique, we observed that the numbers of proliferating tubular epithelial cells were increased in the UUO kidneys from IL33-or ST2-deficient mice compared to wild type mice. Collectively, our study demonstrated the upregulation of IL-33/ST2 signaling in the obstructed kidney may promote tubular cell injury and interstitial fibrosis. IL-33 may serve as a biomarker to detect renal injury and that IL-33/ST2 signaling may represent a novel target for treating renal diseases. PMID:27067050

  3. Detection of Catalase as a major protein target of the lipid peroxidation product 4-HNE and the lack of its genetic association as a risk factor in SLE

    PubMed Central

    D'souza, Anil; Kurien, Biji T; Rodgers, Rosalie; Shenoi, Jaideep; Kurono, Sadamu; Matsumoto, Hiroyuki; Hensley, Kenneth; Nath, Swapan K; Scofield, R Hal

    2008-01-01

    Background Systemic lupus erythematosus (SLE) is a multifactorial disorder characterized by the presence of autoantibodies. We and others have implicated free radical mediated peroxidative damage in the pathogenesis of SLE. Since harmful free radical products are formed during this oxidative process, including 4-hydroxy 2-nonenol (4-HNE) and malondialdehyde (MDA), we hypothesized that specific HNE-protein adducts would be present in SLE red blood cell (RBC) membranes. Catalase is located on chromosome 11p13 where linkage analysis has revealed a marker in the same region of the genome among families with thrombocytopenia, a clinical manifestation associated with severe lupus in SLE affected pedigrees. Moreover, SLE afflicts African-Americans three times more frequently than their European-American counterparts. Hence we investigated the effects of a genetic polymorphism of catalase on risk and severity of SLE in 48 pedigrees with African American ancestry. Methods Tryptic digestion followed by matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) analysis was used to identify the protein modified by HNE, following Coomassie staining to visualize the bands on the acrylamide gels. Genotyping analysis for the C → T, -262 bp polymorphism in the promoter region of catalase was performed by PCR-RFLP and direct PCR-sequencing. We used a "pedigree disequilibrium test" for the family based association analysis, implemented in the PDT program to analyze the genotyping results. Results We found two proteins to be HNE-modified, migrating around 80 and 50 kD respectively. Tryptic digestion followed by matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) analysis of the Coomassie stained 80 kD band revealed that the target of HNE modification was catalase, a protein shown to associate with RBC membrane proteins. All the test statistics carried out on the genotyping analysis for the C → T, -262 bp

  4. Redox-sensitive up-regulation of eNOS by purple grape juice in endothelial cells: role of PI3-kinase/Akt, p38 MAPK, JNK, FoxO1 and FoxO3a.

    PubMed

    Alhosin, Mahmoud; Anselm, Eric; Rashid, Sherzad; Kim, Jong Hun; Madeira, Socorro Vanesca Frota; Bronner, Christian; Schini-Kerth, Valérie B

    2013-01-01

    The vascular protective effect of grape-derived polyphenols has been attributable, in part, to their direct action on blood vessels by stimulating the endothelial formation of nitric oxide (NO). The aim of the present study was to determine whether Concord grape juice (CGJ), which contains high levels of polyphenols, stimulates the expression of endothelial NO synthase (eNOS) in porcine coronary artery endothelial cells and, if so, to determine the signaling pathway involved. CGJ dose- and time-dependently increased eNOS mRNA and protein levels and this effect is associated with an increased formation of NO in endothelial cells. The stimulatory effect of CGJ on eNOS mRNA is not associated with an increased eNOS mRNA stability and inhibited by antioxidants such as MnTMPyP, PEG-catalase, and catalase, and by wortmannin (an inhibitor of PI3-kinase), SB 203580 (an inhibitor of p38 MAPK), and SP 600125 (an inhibitor of JNK). Moreover, CGJ induced the formation of reactive oxygen species (ROS) in endothelial cells and this effect is inhibited by MnTMPyP, PEG-catalase, and catalase. The CGJ-induced the phosphorylation of p38 MAPK and JNK kinases is abolished by MnTMPyP. CGJ induced phosphorylation of transcription factors FoxO1 and FoxO3a, which regulate negatively eNOS expression, and this effect is prevented by MnTMPyP, PEG-catalase, wortmannin, SB203580 and SP600125. Moreover, chromatin immunoprecipitation assay indicated that the FoxO3a protein is associated with the eNOS promoter in control cells and that CGJ induced its dissociation. Thus, the present study indicates that CGJ up-regulates the expression of eNOS mRNA and protein leading to an increased formation of NO in endothelial cells. The stimulatory effect of CGJ is a redox-sensitive event involving PI3-kinase/Akt, p38 MAPK and JNK pathways, and the inactivation of the FoxO transcription factors, FoxO1 and FoxO3a, thereby preventing their repression of the eNOS gene. PMID:23533577

  5. Redox-Sensitive Up-Regulation of eNOS by Purple Grape Juice in Endothelial Cells: Role of PI3-Kinase/Akt, p38 MAPK, JNK, FoxO1 and FoxO3a

    PubMed Central

    Rashid, Sherzad; Kim, Jong Hun; Frota Madeira, Socorro Vanesca; Bronner, Christian; Schini-Kerth, Valérie B.

    2013-01-01

    The vascular protective effect of grape-derived polyphenols has been attributable, in part, to their direct action on blood vessels by stimulating the endothelial formation of nitric oxide (NO). The aim of the present study was to determine whether Concord grape juice (CGJ), which contains high levels of polyphenols, stimulates the expression of endothelial NO synthase (eNOS) in porcine coronary artery endothelial cells and, if so, to determine the signaling pathway involved. CGJ dose- and time-dependently increased eNOS mRNA and protein levels and this effect is associated with an increased formation of NO in endothelial cells. The stimulatory effect of CGJ on eNOS mRNA is not associated with an increased eNOS mRNA stability and inhibited by antioxidants such as MnTMPyP, PEG-catalase, and catalase, and by wortmannin (an inhibitor of PI3-kinase), SB 203580 (an inhibitor of p38 MAPK), and SP 600125 (an inhibitor of JNK). Moreover, CGJ induced the formation of reactive oxygen species (ROS) in endothelial cells and this effect is inhibited by MnTMPyP, PEG-catalase, and catalase. The CGJ-induced the phosphorylation of p38 MAPK and JNK kinases is abolished by MnTMPyP. CGJ induced phosphorylation of transcription factors FoxO1 and FoxO3a, which regulate negatively eNOS expression, and this effect is prevented by MnTMPyP, PEG-catalase, wortmannin, SB203580 and SP600125. Moreover, chromatin immunoprecipitation assay indicated that the FoxO3a protein is associated with the eNOS promoter in control cells and that CGJ induced its dissociation. Thus, the present study indicates that CGJ up-regulates the expression of eNOS mRNA and protein leading to an increased formation of NO in endothelial cells. The stimulatory effect of CGJ is a redox-sensitive event involving PI3-kinase/Akt, p38 MAPK and JNK pathways, and the inactivation of the FoxO transcription factors, FoxO1 and FoxO3a, thereby preventing their repression of the eNOS gene. PMID:23533577

  6. Singlet oxygen treatment of tumor cells triggers extracellular singlet oxygen generation, catalase inactivation and reactivation of intercellular apoptosis-inducing signaling.

    PubMed

    Riethmüller, Michaela; Burger, Nils; Bauer, Georg

    2015-12-01

    Intracellular singlet oxygen generation in photofrin-loaded cells caused cell death without discrimination between nonmalignant and malignant cells. In contrast, extracellular singlet oxygen generation caused apoptosis induction selectively in tumor cells through singlet oxygen-mediated inactivation of tumor cell protective catalase and subsequent reactivation of intercellular ROS-mediated apoptosis signaling through the HOCl and the NO/peroxynitrite signaling pathway. Singlet oxygen generation by extracellular photofrin alone was, however, not sufficient for optimal direct inactivation of catalase, but needed to trigger the generation of cell-derived extracellular singlet oxygen through the interaction between H2O2 and peroxynitrite. Thereby, formation of peroxynitrous acid, generation of hydroxyl radicals and formation of perhydroxyl radicals (HO2(.)) through hydroxyl radical/H2O2 interaction seemed to be required as intermediate steps. This amplificatory mechanism led to the formation of singlet oxygen at a sufficiently high concentration for optimal inactivation of membrane-associated catalase. At low initial concentrations of singlet oxygen, an additional amplification step needed to be activated. It depended on singlet oxygen-dependent activation of the FAS receptor and caspase-8, followed by caspase-8-mediated enhancement of NOX activity. The biochemical mechanisms described here might be considered as promising principle for the development of novel approaches in tumor therapy that specifically direct membrane-associated catalase of tumor cells and thus utilize tumor cell-specific apoptosis-inducing ROS signaling. PMID:26225731

  7. A natural xanthone increases catalase activity but decreases NF-kappa B and lipid peroxidation in U-937 and HepG2 cell lines.

    PubMed

    Sahoo, Binay K; Zaidi, Adeel H; Gupta, Pankaj; Mokhamatam, Raveendra B; Raviprakash, Nune; Mahali, Sidhartha K; Manna, Sunil K

    2015-10-01

    Mangiferin, a C-glycosyl xanthone, has shown anti-inflammatory, antioxidant, and anti-tumorigenic activities. In the present study, we investigated the molecular mechanism for the antioxidant property of mangiferin. Considering the role of nuclear transcription factor kappa B (NF-κB) in inflammation and tumorigenesis, we hypothesized that modulating its activity will be a viable therapeutic target in regulating the redox-sensitive ailments. Our results show that mangiferin blocks several inducers, such as tumor necrosis factor (TNF), lypopolysaccharide (LPS), phorbol-12-myristate-13-acetate (PMA) or hydrogen peroxide (H2O2) mediated NF-κB activation via inhibition of reactive oxygen species generation. In silico docking studies predicted strong binding energy of mangiferin to the active site of catalase (-9.13 kcal/mol), but not with other oxidases such as myeloperoxidase, glutathione peroxidase, or inducible nitric oxide synthase. Mangiferin increased activity of catalase by 44%, but had no effect on myeloperoxidase activity in vitro. Fluorescence spectroscopy further revealed the binding of mangiferin to catalase at the single site with binding constant and binding affinity of 3.1×10(-7) M(-1) and 1.046 respectively. Mangiferin also inhibits TNF-induced lipid peroxidation and thereby protects apoptosis. Hence, mangiferin with its ability to inhibit NF-κB and increase the catalase activity may prove to be a potent therapeutic. PMID:26209362

  8. Association of the Superoxide Dismutase (V16A) and Catalase (C262T) Genetic Polymorphisms with the Clinical Outcome of Patients with Acute Paraquat Intoxication

    PubMed Central

    Hong, Joong-Rock; Seok, Su-Jin; Jeong, Du-Shin; Lee, Sang-Gon; Gil, Hyo-Wook; Yang, Jong-Oh; Lee, Eun-Young

    2010-01-01

    Background/Aims Many patients with acute paraquat (PQ) intoxication die even at low PQ concentrations, whereas others with similar concentrations recover. Therefore, it is possible that individual differences in antioxidant capacity are responsible for the variable clinical outcome in patients with acute PQ intoxication. Methods We investigated whether there was a relationship between the genetic polymorphisms of SOD (V16A), catalase (C262T), and GPX1 (C593T) in 62 patients with acute PQ intoxication and the clinical outcomes of these patients. Results The frequency of the Mn-SOD V/V, V/A, and A/A genotypes were 56.3, 43.5, and 0% in survivors and 86.9, 13.1, and 0% in non-survivors (p > 0.05). The GPX1 C/C, C/T, and T/T genotypes were present in 100, 0, and 0% of all subjects. The catalase C/C, C/T, and T/T genotypes were present in 100, 0, and 0% of survivors, and in 82.6, 17.4, and 0% of non-survivors. Neither erythrocyte SOD activity nor catalase activity were significantly different between survivors and non-survivors. Conclusions No association was found between clinical outcome of acute PQ intoxication and the genetic polymorphism of GPX1 (C593T) or the genetic polymorphisms or enzyme activity of superoxide dismutase (V16A) or catalase (C262T). PMID:21179281

  9. Singlet oxygen treatment of tumor cells triggers extracellular singlet oxygen generation, catalase inactivation and reactivation of intercellular apoptosis-inducing signaling☆

    PubMed Central

    Riethmüller, Michaela; Burger, Nils; Bauer, Georg

    2015-01-01

    Intracellular singlet oxygen generation in photofrin-loaded cells caused cell death without discrimination between nonmalignant and malignant cells. In contrast, extracellular singlet oxygen generation caused apoptosis induction selectively in tumor cells through singlet oxygen-mediated inactivation of tumor cell protective catalase and subsequent reactivation of intercellular ROS-mediated apoptosis signaling through the HOCl and the NO/peroxynitrite signaling pathway. Singlet oxygen generation by extracellular photofrin alone was, however, not sufficient for optimal direct inactivation of catalase, but needed to trigger the generation of cell-derived extracellular singlet oxygen through the interaction between H2O2 and peroxynitrite. Thereby, formation of peroxynitrous acid, generation of hydroxyl radicals and formation of perhydroxyl radicals (HO2.) through hydroxyl radical/H2O2 interaction seemed to be required as intermediate steps. This amplificatory mechanism led to the formation of singlet oxygen at a sufficiently high concentration for optimal inactivation of membrane-associated catalase. At low initial concentrations of singlet oxygen, an additional amplification step needed to be activated. It depended on singlet oxygen-dependent activation of the FAS receptor and caspase-8, followed by caspase-8-mediated enhancement of NOX activity. The biochemical mechanisms described here might be considered as promising principle for the development of novel approaches in tumor therapy that specifically direct membrane-associated catalase of tumor cells and thus utilize tumor cell-specific apoptosis-inducing ROS signaling. PMID:26225731

  10. Access channel residues Ser315 and Asp137 in Mycobacterium tuberculosis catalase-peroxidase (KatG) control peroxidatic activation of the pro-drug isoniazid

    PubMed Central

    Zhao, Xiangbo; Hersleth, Hans-Petter; Zhu, Janan; Andersson, K. Kristoffer; Magliozzo, Richard S.

    2013-01-01

    Peroxidatic activation of the anti-tuberculosis pro-drug isoniazid by Mycobacterium tuberculosis catalase-peroxidase (KatG) is regulated by gating residues of a heme access channel. The steric restriction at the bottleneck of this channel is alleviated by replacement of residue Asp137 with Ser, according to crystallographic and kinetic studies. PMID:24185282

  11. Coexpressed Catalase Protects Chimeric Antigen Receptor–Redirected T Cells as well as Bystander Cells from Oxidative Stress–Induced Loss of Antitumor Activity

    PubMed Central

    Ligtenberg, Maarten A.; Mougiakakos, Dimitrios; Mukhopadhyay, Madhura; Witt, Kristina; Lladser, Alvaro; Chmielewski, Markus; Riet, Tobias; Abken, Hinrich

    2016-01-01

    Treatment of cancer patients by adoptive T cell therapy has yielded promising results. In solid tumors, however, T cells encounter a hostile environment, in particular with increased inflammatory activity as a hallmark of the tumor milieu that goes along with abundant reactive oxygen species (ROS) that substantially impair antitumor activity. We present a strategy to render antitumor T cells more resilient toward ROS by coexpressing catalase along with a tumor specific chimeric Ag receptor (CAR) to increase their antioxidative capacity by metabolizing H2O2. In fact, T cells engineered with a bicistronic vector that concurrently expresses catalase, along with the CAR coexpressing catalase (CAR-CAT), performed superior over CAR T cells as they showed increased levels of intracellular catalase and had a reduced oxidative state with less ROS accumulation in both the basal state and upon activation while maintaining their antitumor activity despite high H2O2 levels. Moreover, CAR-CAT T cells exerted a substantial bystander protection of nontransfected immune effector cells as measured by CD3ζ chain expression in bystander T cells even in the presence of high H2O2 concentrations. Bystander NK cells, otherwise ROS sensitive, efficiently eliminate their K562 target cells under H2O2-induced oxidative stress when admixed with CAR-CAT T cells. This approach represents a novel means for protecting tumor-infiltrating cells from tumor-associated oxidative stress–mediated repression. PMID:26673145

  12. Upregulating endogenous genes by an RNA-programmable artificial transactivator

    PubMed Central

    Fimiani, Cristina; Goina, Elisa; Mallamaci, Antonello

    2015-01-01

    To promote expression of endogenous genes ad libitum, we developed a novel, programmable transcription factor prototype. Kept together via an MS2 coat protein/RNA interface, it includes a fixed, polypeptidic transactivating domain and a variable RNA domain that recognizes the desired gene. Thanks to this device, we specifically upregulated five genes, in cell lines and primary cultures of murine pallial precursors. Gene upregulation was small, however sufficient to robustly inhibit neuronal differentiation. The transactivator interacted with target gene chromatin via its RNA cofactor. Its activity was restricted to cells in which the target gene is normally transcribed. Our device might be useful for specific applications. However for this purpose, it will require an improvement of its transactivation power as well as a better characterization of its target specificity and mechanism of action. PMID:26152305

  13. Bigh3 is upregulated in regenerating zebrafish fin.

    PubMed

    Page, Lionel; Polok, Bozena; Bustamante, Mauro; Schorderet, Daniel F

    2013-03-01

    Zebrafish is a good model for studying regeneration because of the rapidity with which it occurs. Better understanding of this process may lead in the future to improvement of the regenerating capacity of humans. Signaling factors are the second largest category of genes, regulated during regeneration after the regulators of wound healing. Major developmental signaling pathways play a role in this multistep process, such as Bmp, Fgf, Notch, retinoic acid, Shh, and Wnt. In the present study, we focus on TGF-β-induced genes, bigh3 and bambia. Bigh3 encodes keratoepithelin, a protein first identified as an extracellular matrix protein reported to play a role in cell adhesion, as well as in cornea formation and osteogenesis. The expression of bigh3 in zebrafish fins has previously been reported. Here we demonstrate that tgf-b1 and tgf-b3 mRNA reacted with delay, first showing no regulation at 3 dpa, followed by upregulation at 4 and 5 dpa. Tgf-b1, tgf-2, and tgf-brII mRNA were back to normal levels at 10 dpa. Only tgf-b3 mRNA was still upregulated at that time. Bigh3 mRNA followed the upregulation of tgf-b1, while bambia mRNA behaved similarly to tgf-b2 mRNA. We show that upregulation of bigh3 and bambia mRNA correlated with the process of fin regeneration and regulation of TGF-b signaling, suggesting a new role for these proteins. PMID:23536989

  14. Differentiation of human adipose-derived stem cells into fat involves reactive oxygen species and Forkhead box O1 mediated upregulation of antioxidant enzymes.

    PubMed

    Higuchi, Masayoshi; Dusting, Gregory J; Peshavariya, Hitesh; Jiang, Fan; Hsiao, Sarah Tzu-Feng; Chan, Elsa C; Liu, Guei-Sheung

    2013-03-15

    Both reactive oxygen species (ROS) and Forkhead box O (FOXO) family transcription factors are involved in the regulation of adipogenic differentiation of preadipocytes and stem cells. While FOXO has a pivotal role in maintaining cellular redox homeostasis, the interactions between ROS and FOXO during adipogenesis are not clear. Here we examined how ROS and FOXO regulate adipogenesis in human adipose-derived stem cells (hASC). The identity of isolated cells was confirmed by their surface marker expression pattern typical for human mesenchymal stem cells (positive for CD29, CD44, CD73, CD90, and CD105, negative for CD45 and CD31). Using a standard adipogenic cocktail consisting of insulin, dexamethasone, indomethacin, and 3-Isobutyl-1-methylanxthine (IDII), adipogenesis was induced in hASC, which was accompanied by ROS generation. Scavenging ROS production with N-acetyl-L-cysteine or EUK-8, a catalytic mimetic of superoxide dismutase (SOD) and catalase, inhibited IDII-induced adipogenesis. We then mimicked IDII-induced oxidative stress through a lentiviral overexpression of Nox4 and an exogenous application of hydrogen peroxide in hASC and both manipulations significantly enhanced adipogenesis without changing the adipogenic differentiation rate. These data suggest that ROS promoted lipid accumulation in hASC undergoing adipogenesis. Antioxidant enzymes, including SOD2, catalase, and glutathione peroxidase were upregulated by IDII during adipogenesis, and these effects were blunted by FOXO1 silencing, which also suppressed significantly IDII-induced adipogenesis. Our findings demonstrated a balance of ROS generation and endogenous antioxidants in cells undergoing adipogenesis. Approaches targeting ROS and/or FOXO1 in adipocytes may bring new strategies to prevent and treat obesity and metabolic syndrome. PMID:23025577

  15. Fibroblast-specific upregulation of Flightless I impairs wound healing.

    PubMed

    Turner, Christopher T; Waters, James M; Jackson, Jessica E; Arkell, Ruth M; Cowin, Allison J

    2015-09-01

    The cytoskeletal protein Flightless (Flii) is a negative regulator of wound healing. Upregulation of Flii is associated with impaired migration, proliferation and adhesion of both fibroblasts and keratinocytes. Importantly, Flii translocates from the cytoplasm to the nucleus in response to wounding in fibroblasts but not keratinocytes. This cell-specific nuclear translocation of Flii suggests that Flii may directly regulate gene expression in fibroblasts, providing one potential mechanism of action for Flii in the wound healing response. To determine whether the tissue-specific upregulation of Flii in fibroblasts was important for the observed inhibitory effects of Flii on wound healing, an inducible fibroblast-specific Flii overexpressing mouse model was generated. The inducible ROSA26 system allowed the overexpression of Flii in a temporal and tissue-specific manner in response to tamoxifen treatment. Wound healing in the inducible mice was impaired, with wounds at day 7 postwounding significantly larger than those from non-inducible controls. There was also reduced collagen maturation, increased myofibroblast infiltration and elevated inflammation. The impaired healing response was similar in magnitude to that observed in mice with non-tissue-specific upregulation of Flii suggesting that fibroblast-derived Flii may have an important role in the wound healing response. PMID:25959103

  16. Inhibition of lung injury, inflammation, and interstitial pulmonary fibrosis by polyethylene glycol-conjugated catalase in a rapid inhalation model of asbestosis.

    PubMed

    Mossman, B T; Marsh, J P; Sesko, A; Hill, S; Shatos, M A; Doherty, J; Petruska, J; Adler, K B; Hemenway, D; Mickey, R

    1990-05-01

    Several in vitro studies suggest the involvement of active oxygen metabolites in cell damage caused by asbestos. To determine if lung injury, inflammation, and asbestosis could be inhibited in vivo in a rapid-onset, inhalation model of disease, a novel method of chronic administration of antioxidant enzymes was developed. In brief, Fischer 344 rats were treated with polyethylene glycol-conjugated (PEG-) superoxide dismutase or catalase in osmotic pumps over a 10-day (5 days/wk for 2 wk) or 20-day (5 days/wk for 2 wk) period of exposure to crocidolite asbestos. Control rats included sham-exposed animals and those exposed to asbestos but receiving chemically inactivated enzymes. After 10 days of exposure to asbestos, lactic dehydrogenase (LDH), alkaline phosphatase, and total protein in bronchoalveolar lavage (BAL) were measured in one group of rats. Total and differnetial cell counts in BAL also were assessed. After 20 days of exposure, lungs of an additional group of rats were evaluated by histopathology and by measurement of hydroxyproline. Asbestos-associated elevations in LDH, protein, and total cell numbers in BAL were reduced in rats receiving PEG-catalase. Decreases in numbers of alveolar macrophages, polymorphonuclear leukocytes, and lymphocytes occurred in these animals. Exposure to asbestos for 20 days caused significant increases in both the amount of hydroxyproline in lung and the severity and extent of fibrotic lesions as determined by histopathology. These indicators of asbestosis were inhibited in a dosage-dependent fashion in rats receiving PEG-catalase. Use of inactivated PEG-catalase failed to boost serum levels of catalase and did not inhibit asbestos-induced elevation of hydroxyproline in lung.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2160214

  17. Shear stress stimulates nitric oxide signaling in pulmonary arterial endothelial cells via a reduction in catalase activity: role of protein kinase Cδ

    PubMed Central

    Kumar, Sanjiv; Sud, Neetu; Fonseca, Fabio V.; Hou, Yali

    2010-01-01

    Previous studies have indicated that acute increases in shear stress can stimulate endothelial nitric oxide synthase (eNOS) activity through increased PI3 kinase/Akt signaling and phosphorylation of Ser1177. However, the mechanism by which shear stress activates this pathway has not been adequately resolved nor has the potential role of reactive oxygen species (ROS) been evaluated. Thus, the purpose of this study was to determine if shear-mediated increases in ROS play a role in stimulating Ser1177 phosphorylation and NO signaling in pulmonary arterial endothelial cells (PAEC) exposed to acute increases in shear stress. Our initial studies demonstrated that although shear stress did not increase superoxide levels in PAEC, there was an increase in H2O2 levels. The increases in H2O2 were associated with a decrease in catalase activity but not protein levels. In addition, we found that acute shear stress caused an increase in eNOS phosphorylation at Ser1177 phosphorylation and a decrease in phosphorylation at Thr495. We also found that the overexpression of catalase significantly attenuated the shear-mediated increases in H2O2, phospho-Ser1177 eNOS, and NO generation. Further investigation identified a decrease in PKCδ activity in response to shear stress, and the overexpression of PKCδ attenuated the shear-mediated decrease in Thr495 phosphorylation and the increase in NO generation, and this led to increased eNOS uncoupling. PKCδ overexpression also attenuated Ser1177 phosphorylation through a posttranslational increase in catalase activity, mediated via a serine phosphorylation event, reducing shear-mediated increases in H2O2. Together, our data indicate that shear stress decreases PKCδ activity, altering the phosphorylation pattern catalase, leading to decreased catalase activity and increased H2O2 signaling, and this in turn leads to increases in phosphorylation of eNOS at Ser1177 and NO generation. PMID:19897742

  18. Purification and characterization of a mycelial catalase from Scedosporium boydii, a useful tool for specific antibody detection in patients with cystic fibrosis.

    PubMed

    Mina, Sara; Marot-Leblond, Agnès; Cimon, Bernard; Fleury, Maxime J J; Larcher, Gérald; Bouchara, Jean-Philippe; Robert, Raymond

    2015-01-01

    Scedosporium boydii is an opportunistic filamentous fungus which may be responsible for a wide variety of infections in immunocompetent and immunocompromised individuals. This fungus belongs to the Scedosporium apiospermum species complex, which usually ranks second among the filamentous fungi colonizing the airways of patients with cystic fibrosis (CF) and may lead to allergic bronchopulmonary mycoses, sensitization, or respiratory infections. Upon microbial infection, host phagocytic cells release reactive oxygen species (ROS), such as hydrogen peroxide, as part of the antimicrobial response. Catalases are known to protect pathogens against ROS by detoxification of the hydrogen peroxide. Here, we investigated the catalase equipment of Scedosporium boydii, one of the major pathogenic species in the S. apiospermum species complex. Three catalases were identified, and the mycelial catalase A1 was purified to homogeneity by a three-step chromatographic process. This enzyme is a monofunctional tetrameric protein of 460 kDa, consisting of four 82-kDa glycosylated subunits. The potential usefulness of this enzyme in serodiagnosis of S. apiospermum infections was then investigated by an enzyme-linked immunosorbent assay (ELISA), using 64 serum samples from CF patients. Whatever the species involved in the S. apiospermum complex, sera from infected patients were clearly differentiated from sera from patients with an Aspergillus fumigatus infection or those from CF patients without clinical and biological signs of a fungal infection and without any fungus recovered from sputum samples. These results suggest that catalase A1 is a good candidate for the development of an immunoassay for serodiagnosis of infections caused by the S. apiospermum complex in patients with CF. PMID:25355796

  19. Purification and Characterization of a Mycelial Catalase from Scedosporium boydii, a Useful Tool for Specific Antibody Detection in Patients with Cystic Fibrosis

    PubMed Central

    Mina, Sara; Cimon, Bernard; Larcher, Gérald; Bouchara, Jean-Philippe; Robert, Raymond

    2014-01-01

    Scedosporium boydii is an opportunistic filamentous fungus which may be responsible for a wide variety of infections in immunocompetent and immunocompromised individuals. This fungus belongs to the Scedosporium apiospermum species complex, which usually ranks second among the filamentous fungi colonizing the airways of patients with cystic fibrosis (CF) and may lead to allergic bronchopulmonary mycoses, sensitization, or respiratory infections. Upon microbial infection, host phagocytic cells release reactive oxygen species (ROS), such as hydrogen peroxide, as part of the antimicrobial response. Catalases are known to protect pathogens against ROS by detoxification of the hydrogen peroxide. Here, we investigated the catalase equipment of Scedosporium boydii, one of the major pathogenic species in the S. apiospermum species complex. Three catalases were identified, and the mycelial catalase A1 was purified to homogeneity by a three-step chromatographic process. This enzyme is a monofunctional tetrameric protein of 460 kDa, consisting of four 82-kDa glycosylated subunits. The potential usefulness of this enzyme in serodiagnosis of S. apiospermum infections was then investigated by an enzyme-linked immunosorbent assay (ELISA), using 64 serum samples from CF patients. Whatever the species involved in the S. apiospermum complex, sera from infected patients were clearly differentiated from sera from patients with an Aspergillus fumigatus infection or those from CF patients without clinical and biological signs of a fungal infection and without any fungus recovered from sputum samples. These results suggest that catalase A1 is a good candidate for the development of an immunoassay for serodiagnosis of infections caused by the S. apiospermum complex in patients with CF. PMID:25355796

  20. Reactive Oxygen Species Differentially Regulate Bone Turnover in an Age-Specific Manner in Catalase Transgenic Female Mice.

    PubMed

    Alund, Alexander W; Mercer, Kelly E; Suva, Larry J; Pulliam, Casey F; Chen, Jin-Ran; Badger, Thomas M; Van Remmen, Holly; Ronis, Martin J J

    2016-07-01

    Chronic ethyl alcohol (EtOH) consumption results in reactive oxygen species (ROS) generation in bone and osteopenia due to increased bone resorption and reduced bone formation. In this study, transgenic C57Bl/6J mice overexpressing human catalase (TgCAT) were used to test whether limiting excess hydrogen peroxide would protect against EtOH-mediated bone loss. Micro-computed tomography analysis of the skeletons of 6-week-old female chow-fed TgCAT mice revealed a high bone mass phenotype with increased cortical bone area and thickness as well as significantly increased trabecular bone volume (P < 0.05). Six-week-old wild-type (WT) and TgCAT female mice were chow fed or pair fed (PF) liquid diets with or without EtOH, approximately 30% of calories, for 8 weeks. Pair feeding of WT had no demonstrable effect on the skeleton; however, EtOH feeding of WT mice significantly reduced cortical and trabecular bone parameters along with bone strength compared with PF controls (P < 0.05). In contrast, EtOH feeding of TgCAT mice had no effect on trabecular bone compared with PF controls. At 14 weeks of age, there was significantly less trabecular bone and cortical cross-sectional area in TgCAT mice than WT mice (P < 0.05), suggesting impaired normal bone accrual with age. TgCAT mice expressed less collagen1α and higher sclerostin mRNA (P < 0.05), suggesting decreased bone formation in TgCAT mice. In conclusion, catalase overexpression resulted in greater bone mass than in WT mice at 6 weeks and lower bone mass at 14 weeks. EtOH feeding induced significant reductions in bone architecture and strength in WT mice, but TgCAT mice were partially protected. These data implicate ROS signaling in the regulation of bone turnover in an age-dependent manner, and indicate that excess hydrogen peroxide generation contributes to alcohol-induced osteopenia. PMID:27189961

  1. Inhibitory effects of deferasirox on the structure and function of bovine liver catalase: a spectroscopic and theoretical study.

    PubMed

    Moradi, M; Divsalar, A; Saboury, A A; Ghalandari, B; Harifi, A R

    2015-01-01

    Deferasirox (DFX), as an oral chelator, is used for treatment of transfusional iron overload. In this study, we have investigated the effects of DFX as an iron chelator, on the function and structure of bovine liver catalase (BLC) by different spectroscopic methods of UV-visible, fluorescence, and circular dichroism (CD) at two temperatures of 25 and 37 °C. In vitro kinetic studies showed that DFX can inhibit the enzymatic activity in a competitive manner. KI value was calculated 39 nM according to the Lineweaver-Burk plot indicating a high rate of inhibition of the enzyme. Intrinsic fluorescence data showed that increasing the drug concentrations leads to a significant decrease in the intrinsic emission of the enzyme indicating a significant change in the three-dimensional environment around the chromophores of the enzyme structure. By analyzing the fluorescence quenching data, it was found that the BLC has two binding sites for DFX and the values of binding constant at 25 and 37 °C were calculated 1.7 × 10(7) and 3 × 10(7) M(-1), respectively. The static type of quenching mechanism is involved in the quenching of intrinsic emission of enzyme. The thermodynamic data suggest that hydrophobic interactions play a major role in the binding reaction. UV-vis spectroscopy results represented the changes in tryptophan (Trp) absorption and Soret band spectra, which indicated changes in Trp and heme group position caused by the drug binding. Also, CD data represented that high concentrations of DFX lead to a significant decreasing in the content of β-sheet and random coil accompanied an increasing in α-helical content of the protein. The molecular docking results indicate that docking may be an appropriate method for prediction and confirmation of experimental results and also useful for determining the binding mechanism of proteins and drugs. According to above results, it can be concluded that the DFX can chelate the Fe(III) on the enzyme active site leading

  2. OxyR-regulated catalase activity is critical for oxidative stress resistance, nodulation and nitrogen fixation in Azorhizobium caulinodans.

    PubMed

    Zhao, Yue; Nickels, Logan M; Wang, Hui; Ling, Jun; Zhong, Zengtao; Zhu, Jun

    2016-07-01

    The legume-rhizobial interaction results in the formation of symbiotic nodules in which rhizobia fix nitrogen. During the process of symbiosis, reactive oxygen species (ROS) are generated. Thus, the response of rhizobia to ROS is important for successful nodulation and nitrogen fixation. In this study, we investigated how Azorhizobium caulinodans, a rhizobium that forms both root and stem nodules on its host plant, regulates ROS resistance. We found that in-frame deletions of a gene encoding the putative catalase-peroxidase katG or a gene encoding a LysR-family regulatory protein, oxyR, exhibited increased sensitivity to H2O2 We then showed that OxyR positively regulated katG expression in an H2O2-independent fashion. Furthermore, we found that deletion of katG or oxyR led to significant reduction in the number of stem nodules and decrease of nitrogen fixation capacities in symbiosis. Our results revealed that KatG and OxyR are not only critical for antioxidant defense in vitro, but also important for nodule formation and nitrogen fixation during interaction with plant hosts. PMID:27190162

  3. Evaluation of the serum catalase and myeloperoxidase activities in chronic arsenic-exposed individuals and concomitant cytogenetic damage

    SciTech Connect

    Banerjee, Mayukh; Banerjee, Nilanjana; Ghosh, Pritha; Das, Jayanta K.; Basu, Santanu; Sarkar, Ajoy K.; States, J. Christopher; Giri, Ashok K.

    2010-11-15

    Chronic arsenic exposure through contaminated drinking water is a major environmental health issue. Chronic arsenic exposure is known to exert its toxic effects by a variety of mechanisms, of which generation of reactive oxygen species (ROS) is one of the most important. A high level of ROS, in turn, leads to DNA damage that might ultimately culminate in cancer. In order to keep the level of ROS in balance, an array of enzymes is present, of which catalase (CAT) and myeloperoxidase (MPO) are important members. Hence, in this study, we determined the activities of these two enzymes in the sera and chromosomal aberrations (CA) in peripheral blood lymphocytes in individuals exposed and unexposed to arsenic in drinking water. Arsenic in drinking water and in urine was used as a measure of exposure. Our results show that individuals chronically exposed to arsenic have significantly higher CAT and MPO activities and higher incidence of CA. We found moderate positive correlations between CAT and MPO activities, induction of CA and arsenic in urine and water. These results indicate that chronic arsenic exposure causes higher CAT and MPO activities in serum that correlates with induction of genetic damage. We conclude that the serum levels of these enzymes might be used as biomarkers of early arsenic exposure induced disease much before the classical dermatological symptoms of arsenicosis begin to appear.

  4. Moonlighting of Helicobacter pylori catalase protects against complement-mediated killing by utilising the host molecule vitronectin

    PubMed Central

    Richter, Corinna; Mukherjee, Oindrilla; Ermert, David; Singh, Birendra; Su, Yu-Ching; Agarwal, Vaibhav; Blom, Anna M.; Riesbeck, Kristian

    2016-01-01

    Helicobacter pylori is an important human pathogen and a common cause of peptic ulcers and gastric cancer. Despite H. pylori provoking strong innate and adaptive immune responses, the bacterium is able to successfully establish long-term infections. Vitronectin (Vn), a component of both the extracellular matrix and plasma, is involved in many physiological processes, including regulation of the complement system. The aim of this study was to define a receptor in H. pylori that binds Vn and determine the significance of the interaction for virulence. Surprisingly, by using proteomics, we found that the hydrogen peroxide-neutralizing enzyme catalase KatA is a major Vn-binding protein. Deletion of the katA gene in three different strains resulted in impaired binding of Vn. Recombinant KatA was generated and shown to bind with high affinity to a region between heparin-binding domain 2 and 3 of Vn that differs from previously characterised bacterial binding sites on the molecule. In terms of function, KatA protected H. pylori from complement-mediated killing in a Vn-dependent manner. Taken together, the virulence factor KatA is a Vn-binding protein that moonlights on the surface of H. pylori to promote bacterial evasion of host innate immunity. PMID:27087644

  5. Kinetin increases chromium absorption, modulates its distribution, and changes the activity of catalase and ascorbate peroxidase in Mexican Palo Verde

    PubMed Central

    Zhao, Yong; Peralta-Videa, Jose R.; Lopez-Moreno, Martha L.; Ren, Minghua; Saupe, Geoffrey; Gardea-Torresdey, Jorge L

    2015-01-01

    This report shows, for the first time, the effectiveness of the phytohormone kinetin (KN) in increasing Cr translocation from roots to stems in Mexican Palo Verde. Fifteen-day-old seedlings, germinated in soil spiked with Cr(III) and (VI) at 60 and 10 mg kg−1, respectively, were watered every other day for 30 days with a KN solution at 250 μM. Samples were analyzed for catalase (CAT) and ascorbate peroxidase (APOX) activities, Cr concentration, and Cr distribution in tissues. Results showed that KN reduced CAT but increased APOX in the roots of Cr(VI)-treated plants. In the leaves, KN reduced both CAT and APOX in Cr(III) but not in Cr(VI)-treated plants. However, KN increased total Cr concentration in roots, stems, and leaves by 45%, 103%, and 72%, respectively, compared to Cr(III) alone. For Cr(VI), KN increased Cr concentrations in roots, stems, and leaves, respectively, by 53%, 129%, and 168%, compared to Cr(VI) alone. The electron probe microanalyzer results showed that Cr was mainly located at the cortex section in the root, and Cr distribution was essentially homogenous in stems. However, proven through X-ray images, Cr(VI)-treated roots and stems had more Cr accumulation than Cr(III) counterparts. KN increased the Cr translocation from roots to stems. PMID:21174467

  6. Engineering of a novel tri-functional enzyme with MnSOD, catalase and cell-permeable activities.

    PubMed

    Luangwattananun, Piriya; Yainoy, Sakda; Eiamphungporn, Warawan; Songtawee, Napat; Bülow, Leif; Ayudhya, Chartchalerm Isarankura Na; Prachayasittikul, Virapong

    2016-04-01

    Cooperative function of superoxide dismutase (SOD) and catalase (CAT), in protection against oxidative stress, is known to be more effective than the action of either single enzyme. Chemical conjugation of the two enzymes resulted in molecules with higher antioxidant activity and therapeutic efficacy. However, chemical methods holds several drawbacks; e.g., loss of enzymatic activity, low homogeneity, time-consuming, and the need of chemical residues removal. Yet, the conjugated enzymes have never been proven to internalize into target cells. In this study, by employing genetic and protein engineering technologies, we reported designing and production of a bi-functional protein with SOD and CAT activities for the first time. To enable cellular internalization, cell penetrating peptide from HIV-1 Tat (TAT) was incorporated. Co-expression of CAT-MnSOD and MnSOD-TAT fusion genes allowed simultaneous self-assembly of the protein sequences into a large protein complex, which is expected to contained one tetrameric structure of CAT, four tetrameric structures of MnSOD and twelve units of TAT. The protein showed cellular internalization and superior protection against paraquat-induced cell death as compared to either complex bi-functional protein without TAT or to native enzymes fused with TAT. This study not only provided an alternative strategy to produce multifunctional protein complex, but also gained an insight into the development of therapeutic agent against oxidative stress-related conditions. PMID:26778154

  7. Investigation on the interaction between isorhamnetin and bovine liver catalase by spectroscopic techniques under different pH conditions.

    PubMed

    Yang, Yumin; Li, Daojin

    2016-08-01

    The binding of isorhamnetin to bovine liver catalase (BLC) was first investigated at 302, 310 and 318 K at pH 7.4 using spectroscopic methods including fluorescence spectra, circular dichroism (CD) and UV-vis absorption. Spectrophotometric observations are rationalized mainly in terms of a static quenching process. The binding constants and binding sites were evaluated by fluorescence quenching methods. Enzymatic activity of BLC in the absence and presence of isorhamnetin was measured using a UV/vis spectrophotometer. The result revealed that the binding of isorhamnetin to BLC led to a reduction in the activity of BLC. The positive entropy change and enthalpy change indicated that the interaction of isorhamnetin with BLC was mainly driven by hydrophobic forces. The distance r between the donor (BLC) and acceptor (isorhamnetin) was estimated to be 2.99 nm according to fluorescence resonance energy transfer. Fluorescence, synchronous fluorescence, and CD spectra showed no obvious change in the conformation of BLC upon the binding of isorhamnetin. In addition, the influence of pH on the binding of isorhamnetin to BLC was investigated and the binding ability of the drug to BLC deceased under other pH conditions (pH 9.0, 6.5, 5.0, 3.5, or 2.0) as compared with that at pH 7.4. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26748824

  8. Spectroscopic investigations on the effect of N-acetyl-L-cysteine-capped CdTe Quantum Dots on catalase.

    PubMed

    Sun, Haoyu; Yang, Bingjun; Cui, Erqian; Liu, Rutao

    2014-11-11

    Quantum dots (QDs) are recognized as some of the most promising semiconductor nanocrystals in biomedical applications. However, the potential toxicity of QDs has aroused wide public concern. Catalase (CAT) is a common enzyme in animal and plant tissues. For the potential application of QDs in vivo, it is important to investigate the interaction of QDs with CAT. In this work, the effect of N-Acetyl-L-cysteine-Capped CdTe Quantum Dots with fluorescence emission peak at 612 nm (QDs-612) on CAT was investigated by fluorescence, synchronous fluorescence, fluorescence lifetime, ultraviolet-visible (UV-vis) absorption and circular dichroism (CD) techniques. Binding of QDs-612 to CAT caused static quenching of the fluorescence, the change of the secondary structure of CAT and the alteration of the microenvironment of tryptophan residues. The association constants K were determined to be K288K=7.98×10(5)Lmol(-1) and K298K=7.21×10(5)Lmol(-1). The interaction between QDs-612 and CAT was spontaneous with 1:1 stoichiometry approximately. The CAT activity was also inhibited for the bound QDs-612. This work provides direct evidence about enzyme toxicity of QDs-612 to CAT in vitro and establishes a new strategy to investigate the interaction between enzyme and QDs at a molecular level, which is helpful for clarifying the bioactivities of QDs in vivo. PMID:24910977

  9. Catalase-positive cocci in fermented sausage: Variability due to different pork breeds, breeding systems and sausage production technology.

    PubMed

    Iacumin, Lucilla; Manzano, Marisa; Comi, Giuseppe

    2012-04-01

    The aim of this study was to compare the ecology of catalase-positive cocci (CPC) present in traditional fermented sausages produced using different breeds of pork, each of which was raised in two different environments and processed using two different technologies. Semi-quantitative molecular methods were used to determine bacterial identities. Almost all fermentations were characterised by a significant increase in CPC during the first few days of fermentation, reaching values of 10(5)-10(6) cfu g(-1) within 3 days. Staphylococcus xylosus and Staphylococcus equorum species, which were detected over the course of fermentation, were found to be the predominant population in all the monitored fermentation. Staphylococcus haemolyticus, Staphylococcus lentus, Micrococcus luteus, Macrococcus caseolyticus and Staphylococcus succinus were also present, but their concentrations were found to vary under the different experimental conditions. Using cluster analysis, we concluded that a plant-specific CPC ecology existed. In addition, the breed of pork used for production was found to influence the presence of some CPC species. However, from this study, it was not possible to reach the same conclusion regarding the breeding system used. PMID:22202871

  10. Sensitive electrochemical immunoassay of carcinoembryonic antigen with signal dual-amplification using glucose oxidase and an artificial catalase.

    PubMed

    Tang, Juan; Tang, Dianping; Li, Qunfang; Su, Biling; Qiu, Bin; Chen, Guonan

    2011-07-01

    A new dual-amplification strategy of electrochemical signal based on the catalytic recycling of the product was developed for the antigen-antibody interaction by glucose oxidase (GOD)- conjugated gold-silver hollow microspheres (AuAgHSs) coupled with an artificial catalase, Prussian blue nanoparticles (PB), on a graphene-based immunosensing platform. The first signal amplification introduced in this study was based on the labeled GOD on the AuAgHSs toward the catalytic oxidation of glucose. The generated H(2)O(2) was catalytically reduced by the immobilized PB on the graphene nanosheets with the second amplification. With a sandwich-type immunoassay format, carcinoembryonic antigen (CEA) was monitored as a model analyte by using the synthesized AuAgHSs as labels in pH 6.0 phosphate buffer containing 10mM glucose. Under optimal conditions, the electrochemical immunosensor exhibited a wide dynamic range of 0.005-50 ng mL(-1) with a low detection limit (LOD) of 1.0 pg mL(-1) CEA (at 3σ). Both the intra- and inter-assay coefficients of variation (CVs) were lower than 10%. The specificity and stability of the immunosensor were acceptable. In addition, the assay was evaluated for clinical serum specimens, and received a good correlation with those obtained by the referenced electrochemiluminescent (ECL). PMID:21641413

  11. Ascorbate Peroxidase and Catalase Activities and Their Genetic Regulation in Plants Subjected to Drought and Salinity Stresses

    PubMed Central

    Sofo, Adriano; Scopa, Antonio; Nuzzaci, Maria; Vitti, Antonella

    2015-01-01

    Hydrogen peroxide (H2O2), an important relatively stable non-radical reactive oxygen species (ROS) is produced by normal aerobic metabolism in plants. At low concentrations, H2O2 acts as a signal molecule involved in the regulation of specific biological/physiological processes (photosynthetic functions, cell cycle, growth and development, plant responses to biotic and abiotic stresses). Oxidative stress and eventual cell death in plants can be caused by excess H2O2 accumulation. Since stress factors provoke enhanced production of H2O2 in plants, severe damage to biomolecules can be possible due to elevated and non-metabolized cellular H2O2. Plants are endowed with H2O2-metabolizing enzymes such as catalases (CAT), ascorbate peroxidases (APX), some peroxiredoxins, glutathione/thioredoxin peroxidases, and glutathione sulfo-transferases. However, the most notably distinguished enzymes are CAT and APX since the former mainly occurs in peroxisomes and does not require a reductant for catalyzing a dismutation reaction. In particular, APX has a higher affinity for H2O2 and reduces it to H2O in chloroplasts, cytosol, mitochondria and peroxisomes, as well as in the apoplastic space, utilizing ascorbate as specific electron donor. Based on recent reports, this review highlights the role of H2O2 in plants experiencing water deficit and salinity and synthesizes major outcomes of studies on CAT and APX activity and genetic regulation in drought- and salt-stressed plants. PMID:26075872

  12. The impact of heterologous catalase expression and superoxide dismutase overexpression on enhancing the oxidative resistance in Lactobacillus casei.

    PubMed

    Lin, Jinzhong; Zou, Yexia; Cao, Kunlin; Ma, Chengjie; Chen, Zhengjun

    2016-05-01

    Two heme-dependent catalase genes were amplified from genomic DNA of Lactobacillus plantarum WCFS1 (KatE1) and Lactobacillus brevis ATCC 367 (KatE2), respectively, and a manganese-containing superoxide dismutase from Lactobacillus casei MCJΔ1 (MnSOD) were cloned into plasmid pELX1, yielding pELX1-KatE1, pELX1-KatE2 and pELX1-MnSOD, then the recombinant plasmids were transferred into L. casei MCJΔ1. The strains of L. casei MCJΔ1/pELX1-KatE1 and L. casei MCJΔ1/pELX1-KatE2 were tolerant at 2 mM H2O2. The survival rates of L. casei MCJΔ1/pELX1-KatE1 and L. casei MCJΔ1/pELX1-KatE2 were 270-fold and 300-fold higher than that of the control strain on a short-term H2O2 exposure, and in aerated condition, the survival cells counts were 146- and 190-fold higher than that of the control strain after 96 h of incubation. Furthermore, L. casei MCJΔ1/pELX1-MnSOD was the best in three recombinants which was superior in the living cell viability during storage when co-storage with Lactobacillus delbrueckii subsp. lactis LBCH-1. PMID:26922415

  13. Increases of Catalase and Glutathione Peroxidase Expressions by Lacosamide Pretreatment Contributes to Neuroprotection Against Experimentally Induced Transient Cerebral Ischemia.

    PubMed

    Choi, Hyun Young; Park, Joon Ha; Chen, Bai Hui; Shin, Bich Na; Lee, Yun Lyul; Kim, In Hye; Cho, Jeong-Hwi; Lee, Tae-Kyeong; Lee, Jae-Chul; Won, Moo-Ho; Ahn, Ji Hyeon; Tae, Hyun-Jin; Yan, Bing Chun; Hwang, In Koo; Cho, Jun Hwi; Kim, Young-Myeong; Kim, Sung Koo

    2016-09-01

    Lacosamide is a new antiepileptic drug which is widely used to treat partial-onset seizures. In this study, we examined the neuroprotective effect of lacosamide against transient ischemic damage and expressions of antioxidant enzymes such as Zn-superoxide dismutase (SOD1), Mn-superoxide dismutase (SOD2), catalase (CAT) and glutathione peroxidase (GPX) in the hippocampal cornu ammonis 1 (CA1) region following 5 min of transient global cerebral ischemia in gerbils. We found that pre-treatment with 25 mg/kg lacosamide protected CA1 pyramidal neurons from transient global cerebral ischemic insult using hematoxylin-eosin staining and neuronal nuclear antigen immunohistochemistry. Transient ischemia dramatically changed expressions of SOD1, SOD2 and GPX, not CAT, in the CA1 pyramidal neurons. Lacosamide pre-treatment increased expressions of CAT and GPX, not SOD1 and 2, in the CA1 pyramidal neurons compared with controls, and their expressions induced by lacosamide pre-treatment were maintained after transient cerebral ischemia. In brief, pre-treatment with lacosamide protected hippocampal CA1 pyramidal neurons from ischemic damage induced by transient global cerebral ischemia, and the lacosamide-mediated neuroprotection may be closely related to increases of CAT and GPX expressions by lacosamide pre-treatment. PMID:27209305

  14. Spectroscopic investigations on the effect of N-Acetyl-L-cysteine-Capped CdTe Quantum Dots on catalase

    NASA Astrophysics Data System (ADS)

    Sun, Haoyu; Yang, Bingjun; Cui, Erqian; Liu, Rutao

    2014-11-01

    Quantum dots (QDs) are recognized as some of the most promising semiconductor nanocrystals in biomedical applications. However, the potential toxicity of QDs has aroused wide public concern. Catalase (CAT) is a common enzyme in animal and plant tissues. For the potential application of QDs in vivo, it is important to investigate the interaction of QDs with CAT. In this work, the effect of N-Acetyl-L-cysteine-Capped CdTe Quantum Dots with fluorescence emission peak at 612 nm (QDs-612) on CAT was investigated by fluorescence, synchronous fluorescence, fluorescence lifetime, ultraviolet-visible (UV-vis) absorption and circular dichroism (CD) techniques. Binding of QDs-612 to CAT caused static quenching of the fluorescence, the change of the secondary structure of CAT and the alteration of the microenvironment of tryptophan residues. The association constants K were determined to be K288K = 7.98 × 105 L mol-1 and K298K = 7.21 × 105 L mol-1. The interaction between QDs-612 and CAT was spontaneous with 1:1 stoichiometry approximately. The CAT activity was also inhibited for the bound QDs-612. This work provides direct evidence about enzyme toxicity of QDs-612 to CAT in vitro and establishes a new strategy to investigate the interaction between enzyme and QDs at a molecular level, which is helpful for clarifying the bioactivities of QDs in vivo.

  15. Physiological analyses indicate superoxide dismutase, catalase, and phytochelatins play important roles in Pb tolerance in Eremochloa ophiuroides.

    PubMed

    Li, Xi; Cen, Huameng; Chen, Youxiang; Xu, Siying; Peng, Lingli; Zhu, Hanmingyue; Li, Yiqiao

    2016-01-01

    Phytoremediation is considered to be a promising approach to restore or stabilize soil contaminated by lead (Pb). Turfgrasses, due to their high biomass yields, are considered to be suitable for use in phytoextraction of soil contaminated with heavy metal. It has been demonstrated that centipedegrass (Eremochloa ophiuroides (Munro) Hack., Poaceae) is a good turfgrass for restore of soil contaminated by Pb. However, the enhanced tolerant mechanisms in metallicolous (M) centipedegrass accessions remain unknown. In this study, we made a comparative study of growth performance, Pb accumulation, antioxidant levels, and phytochelatin concentrations in roots and shoots from M and nonmetallicolous (NM) centipedegrass accessions. Results showed that turf quality and growth rate were less repressed in M accessions than in NM accession. Pb stress caused generation of reactive oxygen species in centipedegrass with relatively lower levels in M accessions. Antioxidant activity analysis indicated that superoxide dismutase and catalase played important roles in Pb tolerance in M accessions. M accessions accumulated more Pb in roots and shoots. Greatly increased phytochelatins and less repressed sulfur contents in roots and shoots of M accessions indicated that they correlated with Pb accumulation and tolerance in centipedegrass. PMID:26368658

  16. Mitochondrial electron transport chain complexes, catalase and markers of oxidative stress in platelets of patients with severe aluminum phosphide poisoning.

    PubMed

    Anand, R; Sharma, D R; Verma, D; Bhalla, A; Gill, K D; Singh, S

    2013-08-01

    Aluminum phosphide (ALP), a widely used fumigant and rodenticide, leads to high mortality if ingested. Its toxicity is due to phosphine that is liberated when it comes in contact with moisture. The exact site or mechanism of action of phosphine is not known, although it is widely believed that it affects mitochondrial oxidative phosphorylation. Basic serum biochemical parameters, activity of mitochondrial complexes, antioxidant enzymes and parameters of oxidative stress were estimated in the platelets of 21 patients who developed severe poisoning following ALP ingestion. These parameters were compared with 32 healthy controls and with 22 patients with shock due to other causes (cardiogenic shock (11), septic shock (9) and hemorrhagic shock (2)). The serum levels of creatine kinase-muscle brain and lactate dehydrogenase were higher in patients poisoned with ALP, whereas a significant decrease was observed in the activities of mitochondrial complexes I, II and IV. The activity of catalase was lower but the activities of superoxide dismutase and glutathione peroxidase were unaffected in them. A significant increase in lipid peroxidation and protein carbonylation was observed, whereas total blood thiol levels were lower. In patients severely poisoned with ALP, not only cytochrome c oxidase but also other complexes are involved in mitochondrial electron transport, and enzymes are also inhibited. PMID:23821638

  17. Use of superoxide dismutase and catalase producing lactic acid bacteria in TNBS induced Crohn's disease in mice.

    PubMed

    LeBlanc, Jean Guy; del Carmen, Silvina; Miyoshi, Anderson; Azevedo, Vasco; Sesma, Fernando; Langella, Philippe; Bermúdez-Humarán, Luis G; Watterlot, Laurie; Perdigon, Gabriela; de Moreno de LeBlanc, Alejandra

    2011-02-10

    Reactive oxygen species are involved in various aspects of intestinal inflammation and tumor development. Decreasing their levels using antioxidant enzymes, such as catalase (CAT) or superoxide dismutase (SOD) could therefore be useful in the prevention of certain diseases. Lactic acid bacteria (LAB) are ideal candidates to deliver these enzymes in the gut. In this study, the anti-inflammatory effects of CAT or SOD producing LAB were evaluated using a trinitrobenzenesulfonic acid (TNBS) induced Crohn's disease murine model. Engineered Lactobacillus casei BL23 strains producing either CAT or SOD, or the native strain were given to mice before and after intrarectal administration of TNBS. Animal survival, live weight, intestinal morphology and histology, enzymatic activities, microbial translocation to the liver and cytokines released in the intestinal fluid were evaluated. The mice that received CAT or SOD-producing LAB showed a faster recovery of initial weight loss, increased enzymatic activities in the gut and lesser extent of intestinal inflammation compared to animals that received the wild-type strain or those that did not receive bacterial supplementation. Our findings suggest that genetically engineered LAB that produce antioxidant enzymes could be used to prevent or decrease the severity of certain intestinal pathologies. PMID:21167883

  18. Manganese(II) induces cell division and increases in superoxide dismutase and catalase activities in an aging deinococcal culture

    SciTech Connect

    Chou, F.I.; Tan, S.T. )

    1990-04-01

    Addition of Mn(II) at 2.5 microM or higher to stationary-phase cultures of Deinococcus radiodurans IR was found to trigger at least three rounds of cell division. This Mn(II)-induced cell division (Mn-CD) did not occur when the culture was in the exponential or death phase. The Mn-CD effect produced daughter cells proportionally reduced in size, pigmentation, and radioresistance but proportionally increased in activity and amount of the oxygen toxicity defense enzymes superoxide dismutase and catalase. In addition, the concentration of an Mn-CD-induced protein was found to remain high throughout the entire Mn-CD phase. It was also found that an untreated culture exhibited a growth curve characterized by a very rapid exponential-stationary transition and that cells which had just reached the early stationary phase were synchronous. Our results suggest the presence of an Mn(II)-sensitive mechanism for controlling cell division. The Mn-CD effect appears to be specific to the cation Mn(II) and the radioresistant bacteria, deinococci.

  19. In Vitro Effect of Sodium Fluoride on Malondialdehyde Concentration and on Superoxide Dismutase, Catalase, and Glutathione Peroxidase in Human Erythrocytes

    PubMed Central

    Gutiérrez-Salinas, José; García-Ortíz, Liliana; Morales González, José A.; Hernández-Rodríguez, Sergio; Ramírez-García, Sotero; Núñez-Ramos, Norma R.; Madrigal-Santillán, Eduardo

    2013-01-01

    The aim of this paper was to describe the in vitro effect of sodium fluoride (NaF) on the specific activity of the major erythrocyte antioxidant enzymes, as well as on the membrane malondialdehyde concentration, as indicators of oxidative stress. For this purpose, human erythrocytes were incubated with NaF (0, 7, 28, 56, and 100 μg/mL) or NaF (100 μg/mL) + vitamin E (1, 2.5, 5 and 10 μg/mL). The malondialdehyde (MDA) concentration on the surface of the erythrocytes was determined, as were the enzymatic activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GlPx). Our results demonstrated that erythrocytes incubated with increasing NaF concentrations had an increased MDA concentration, along with decreased activity of antioxidant enzymes. The presence of vitamin E partially reversed the toxic effects of NaF on erythrocytes. These findings suggest that NaF induces oxidative stress in erythrocytes in vitro, and this stress is partially reversed by the presence of vitamin E. PMID:24223512

  20. Prospective study of catalase-positive coryneform organisms in clinical specimens: identification, clinical relevance, and antibiotic susceptibility.

    PubMed

    Lagrou, K; Verhaegen, J; Janssens, M; Wauters, G; Verbist, L

    1998-01-01

    During a 6-month period, all clinical isolates of catalase-positive coryneform organisms, which were isolated during the routine processing of clinical specimens, were characterized in the laboratory of the 1800-bed University Hospital of Leuven. The distribution of the species in the corynebacteria was: Corynebacterium amycolatum 70 (53%), Corynebacterium jeikeium 16 (12%), Corynebacterium striatum 11 (8%), Corynebacterium afermentans 10 (7%), Corynebacterium minutissimum 9 (6%), CDC coryneform group G 4 (3%), Corynebacterium urealyticum 4 (3%), Corynebacterium glucuronolyticum 1 (0.7%), and Corynebacterium xerosis 1 (0.7%). Of the 150 isolates, 37 (25%) were considered to be infection related and the remaining 113 (75%) were of questionable clinical significance. Susceptibility of the corynebacteria to 12 antibiotics active against Gram-positive organisms was evaluated. C. amycolatum, C. jeikeium, and C. urealyticum were multiresistant, but all isolates were susceptible to teicoplanin and vancomycin. Most of the C. amycolatum strains, and all strains of C. jeikeium and C. striatum, were susceptible to the vibrocidal compound O/129. PMID:9488824

  1. Ultrasensitive fluorescence immunoassay for detection of ochratoxin A using catalase-mediated fluorescence quenching of CdTe QDs.

    PubMed

    Huang, Xiaolin; Zhan, Shengnan; Xu, Hengyi; Meng, Xianwei; Xiong, Yonghua; Chen, Xiaoyuan

    2016-04-28

    Herein, for the first time we report an improved competitive fluorescent enzyme linked immunosorbent assay (ELISA) for the ultrasensitive detection of ochratoxin A (OTA) by using hydrogen peroxide (H2O2)-induced fluorescence quenching of mercaptopropionic acid-modified CdTe quantum dots (QDs). In this immunoassay, catalase (CAT) was labeled with OTA as a competitive antigen to connect the fluorescence signals of the QDs with the concentration of the target. Through the combinatorial use of H2O2-induced fluorescence quenching of CdTe QDs as a fluorescence signal output and the ultrahigh catalytic activity of CAT to H2O2, our proposed method could be used to perform a dynamic linear detection of OTA ranging from 0.05 pg mL(-1) to 10 pg mL(-1). The half maximal inhibitory concentration was 0.53 pg mL(-1) and the limit of detection was 0.05 pg mL(-1). These values were approximately 283- and 300-folds lower than those of horseradish peroxidase (HRP)-based conventional ELISA, respectively. The reported method is accurate, highly reproducible, and specific against other mycotoxins in agricultural products as well. In summary, the developed fluorescence immunoassay based on H2O2-induced fluorescence quenching of CdTe QDs can be used for the rapid and highly sensitive detection of mycotoxins or haptens in food safety monitoring. PMID:27093176

  2. The induction of two biosynthetic enzymes helps Escherichia coli sustain heme synthesis and activate catalase during hydrogen peroxide stress

    PubMed Central

    Mancini, Stefano; Imlay, James A.

    2015-01-01

    Summary Hydrogen peroxide pervades many natural environments, including the phagosomes that mediate cell-based immunity. Transcriptomic analysis showed that during protracted low-grade H2O2 stress, Escherichia coli responds by activating both the OxyR defensive regulon and the Fur iron-starvation response. OxyR induced synthesis of two members of the nine-step heme biosynthetic pathway: ferrochelatase (HemH) and an isozyme of coproporphyrinogen III oxidase (HemF). Mutations that blocked either adaptation caused the accumulation of porphyrin intermediates, inadequate activation of heme enzymes, low catalase activity, defective clearance of H2O2, and a failure to grow. Genetic analysis indicated that HemH induction is needed to compensate for iron sequestration by the mini-ferritin Dps. Dps activity protects DNA and proteins by limiting Fenton chemistry, but it interferes with the ability of HemH to acquire the iron that it needs to complete heme synthesis. HemF is a manganoprotein that displaces HemN, an iron-sulfur enzyme whose synthesis and/or stability is apparently problematic during H2O2 stress. Thus the primary responses to H2O2, including the sequestration of iron, require compensatory adjustments in the mechanisms of iron-cofactor synthesis. The results support the growing evidence that oxidative stress is primarily an iron pathology. PMID:25664592

  3. Targeted Expression of Catalase to Mitochondria Protects Against Ischemic Myopathy in High-Fat Diet-Fed Mice.

    PubMed

    Ryan, Terence E; Schmidt, Cameron A; Green, Thomas D; Spangenburg, Espen E; Neufer, P Darrell; McClung, Joseph M

    2016-09-01

    Patients with type 2 diabetes respond poorly to treatments for peripheral arterial disease (PAD) and are more likely to present with the most severe manifestation of the disease, critical limb ischemia. The underlying mechanisms linking type 2 diabetes and the severity of PAD manifestation are not well understood. We sought to test whether diet-induced mitochondrial dysfunction and oxidative stress would increase the susceptibility of the peripheral limb to hindlimb ischemia (HLI). Six weeks of high-fat diet (HFD) in C57BL/6 mice was insufficient to alter skeletal muscle mitochondrial content and respiratory function or the size of ischemic lesion after HLI, despite reducing blood flow. However, 16 weeks of HFD similarly decreased ischemic limb blood flow, but also exacerbated limb tissue necrosis, increased the myopathic lesion size, reduced muscle regeneration, attenuated muscle function, and exacerbated ischemic mitochondrial dysfunction. Mechanistically, mitochondrial-targeted overexpression of catalase prevented the HFD-induced ischemic limb necrosis, myopathy, and mitochondrial dysfunction, despite no improvement in limb blood flow. These findings demonstrate that skeletal muscle mitochondria are a critical pathological link between type 2 diabetes and PAD. Furthermore, therapeutically targeting mitochondria and oxidant burden is an effective strategy to alleviate tissue loss and ischemic myopathy during PAD. PMID:27284110

  4. Over-expression of DAAO and catalase in Kluyveromyces marxianus through media optimization, permeabilization and GA stabilization techniques.

    PubMed

    Kostova, Donka D; Petrova, Ventsislava Y; Kujumdzieva, Anna V

    2008-01-01

    The selected thermotolerant, lactose-utilizing yeast strain Kluyveromyces marxianus NBIMCC 8362 possesses high specific d-amino acid oxidase activity (60Ug(-1)), which was increased nine-fold (545Ug(-1)) by design of the growth medium and conditions for d-amino oxidase induction. Applying an optimized simple and rapid procedure for chemical permeabilization of K. marxianus cells with the cationic detergent cetyltrimethylammonium bromide, the enzyme activities (d-amino acid oxidase and catalase) of the cells have been further increased for up to 43- and 58-fold, respectively. However, the enzyme activities of the permeabilized cells decreased rapidly due to the leakage of the enzymes. Treating the permeabilized cells with 0.1% glutaraldehyde at 4°C for 10min stabilized the enzyme in the cells and prevented their outflow. The process is stable for 10 cycles and the productivity measured was 16.6mmmoll(-1)h(-1). The d-alanine transformation efficiency of K. marxianus permeabilized and GA entrapted cells was 98%. PMID:22578860

  5. Insulin-induced CARM1 upregulation facilitates hepatocyte proliferation

    SciTech Connect

    Yeom, Chul-gon; Kim, Dong-il; Park, Min-jung; Choi, Joo-hee; Jeong, Jieun; Wi, Anjin; Park, Whoashig; Han, Ho-jae; Park, Soo-hyun

    2015-06-05

    Previously, we reported that CARM1 undergoes ubiquitination-dependent degradation in renal podocytes. It was also reported that CARM1 is necessary for fasting-induced hepatic gluconeogenesis. Based on these reports, we hypothesized that treatment with insulin, a hormone typically present under the ‘fed’ condition, would inhibit gluconeogenesis via CARM1 degradation. HepG2 cells, AML-12 cells, and rat primary hepatocytes were treated with insulin to confirm CARM1 downregulation. Surprisingly, insulin treatment increased CARM1 expression in all cell types examined. Furthermore, treatment with insulin increased histone 3 methylation at arginine 17 and 26 in HepG2 cells. To elucidate the role of insulin-induced CARM1 upregulation, the HA-CARM1 plasmid was transfected into HepG2 cells. CARM1 overexpression did not increase the expression of lipogenic proteins generally increased by insulin signaling. Moreover, CARM1 knockdown did not influence insulin sensitivity. Insulin is known to facilitate hepatic proliferation. Like insulin, CARM1 overexpression increased CDK2 and CDK4 expression. In addition, CARM1 knockdown reduced the number of insulin-induced G2/M phase cells. Moreover, GFP-CARM1 overexpression increased the number of G2/M phase cells. Based on these results, we concluded that insulin-induced CARM1 upregulation facilitates hepatocyte proliferation. These observations indicate that CARM1 plays an important role in liver pathophysiology. - Highlights: • Insulin treatment increases CARM1 expression in hepatocytes. • CARM1 overexpression does not increase the expression of lipogenic proteins. • CARM1 knockdown does not influence insulin sensitivity. • Insulin-induced CARM1 upregulation facilitates hepatocyte proliferation.

  6. Upregulated Copper Transporters in Hypoxia-Induced Pulmonary Hypertension

    PubMed Central

    Zimnicka, Adriana M.; Tang, Haiyang; Guo, Qiang; Kuhr, Frank K.; Oh, Myung-Jin; Wan, Jun; Chen, Jiwang; Smith, Kimberly A.; Fraidenburg, Dustin R.; Choudhury, Moumita S. R.; Levitan, Irena; Machado, Roberto F.; Kaplan, Jack H.; Yuan, Jason X.-J.

    2014-01-01

    Pulmonary vascular remodeling and increased arterial wall stiffness are two major causes for the elevated pulmonary vascular resistance and pulmonary arterial pressure in patients and animals with pulmonary hypertension. Cellular copper (Cu) plays an important role in angiogenesis and extracellular matrix remodeling; increased Cu in vascular smooth muscle cells has been demonstrated to be associated with atherosclerosis and hypertension in animal experiments. In this study, we show that the Cu-uptake transporter 1, CTR1, and the Cu-efflux pump, ATP7A, were both upregulated in the lung tissues and pulmonary arteries of mice with hypoxia-induced pulmonary hypertension. Hypoxia also significantly increased expression and activity of lysyl oxidase (LOX), a Cu-dependent enzyme that causes crosslinks of collagen and elastin in the extracellular matrix. In vitro experiments show that exposure to hypoxia or treatment with cobalt (CoCl2) also increased protein expression of CTR1, ATP7A, and LOX in pulmonary arterial smooth muscle cells (PASMC). In PASMC exposed to hypoxia or treated with CoCl2, we also confirmed that the Cu transport is increased using 64Cu uptake assays. Furthermore, hypoxia increased both cell migration and proliferation in a Cu-dependent manner. Downregulation of hypoxia-inducible factor 1α (HIF-1α) with siRNA significantly attenuated hypoxia-mediated upregulation of CTR1 mRNA. In summary, the data from this study indicate that increased Cu transportation due to upregulated CTR1 and ATP7A in pulmonary arteries and PASMC contributes to the development of hypoxia-induced pulmonary hypertension. The increased Cu uptake and elevated ATP7A also facilitate the increase in LOX activity and thus the increase in crosslink of extracellular matrix, and eventually leading to the increase in pulmonary arterial stiffness. PMID:24614111

  7. Ultrasensitive fluorescence immunoassay for detection of ochratoxin A using catalase-mediated fluorescence quenching of CdTe QDs

    NASA Astrophysics Data System (ADS)

    Huang, Xiaolin; Zhan, Shengnan; Xu, Hengyi; Meng, Xianwei; Xiong, Yonghua; Chen, Xiaoyuan

    2016-04-01

    Herein, for the first time we report an improved competitive fluorescent enzyme linked immunosorbent assay (ELISA) for the ultrasensitive detection of ochratoxin A (OTA) by using hydrogen peroxide (H2O2)-induced fluorescence quenching of mercaptopropionic acid-modified CdTe quantum dots (QDs). In this immunoassay, catalase (CAT) was labeled with OTA as a competitive antigen to connect the fluorescence signals of the QDs with the concentration of the target. Through the combinatorial use of H2O2-induced fluorescence quenching of CdTe QDs as a fluorescence signal output and the ultrahigh catalytic activity of CAT to H2O2, our proposed method could be used to perform a dynamic linear detection of OTA ranging from 0.05 pg mL-1 to 10 pg mL-1. The half maximal inhibitory concentration was 0.53 pg mL-1 and the limit of detection was 0.05 pg mL-1. These values were approximately 283- and 300-folds lower than those of horseradish peroxidase (HRP)-based conventional ELISA, respectively. The reported method is accurate, highly reproducible, and specific against other mycotoxins in agricultural products as well. In summary, the developed fluorescence immunoassay based on H2O2-induced fluorescence quenching of CdTe QDs can be used for the rapid and highly sensitive detection of mycotoxins or haptens in food safety monitoring.Herein, for the first time we report an improved competitive fluorescent enzyme linked immunosorbent assay (ELISA) for the ultrasensitive detection of ochratoxin A (OTA) by using hydrogen peroxide (H2O2)-induced fluorescence quenching of mercaptopropionic acid-modified CdTe quantum dots (QDs). In this immunoassay, catalase (CAT) was labeled with OTA as a competitive antigen to connect the fluorescence signals of the QDs with the concentration of the target. Through the combinatorial use of H2O2-induced fluorescence quenching of CdTe QDs as a fluorescence signal output and the ultrahigh catalytic activity of CAT to H2O2, our proposed method could be used to

  8. Lack of GLYCOLATE OXIDASE1, but Not GLYCOLATE OXIDASE2, Attenuates the Photorespiratory Phenotype of CATALASE2-Deficient Arabidopsis.

    PubMed

    Kerchev, Pavel; Waszczak, Cezary; Lewandowska, Aleksandra; Willems, Patrick; Shapiguzov, Alexey; Li, Zhen; Alseekh, Saleh; Mühlenbock, Per; Hoeberichts, Frank A; Huang, Jingjing; Van Der Kelen, Katrien; Kangasjärvi, Jaakko; Fernie, Alisdair R; De Smet, Riet; Van de Peer, Yves; Messens, Joris; Van Breusegem, Frank

    2016-07-01

    The genes coding for the core metabolic enzymes of the photorespiratory pathway that allows plants with C3-type photosynthesis to survive in an oxygen-rich atmosphere, have been largely discovered in genetic screens aimed to isolate mutants that are unviable under ambient air. As an exception, glycolate oxidase (GOX) mutants with a photorespiratory phenotype have not been described yet in C3 species. Using Arabidopsis (Arabidopsis thaliana) mutants lacking the peroxisomal CATALASE2 (cat2-2) that display stunted growth and cell death lesions under ambient air, we isolated a second-site loss-of-function mutation in GLYCOLATE OXIDASE1 (GOX1) that attenuated the photorespiratory phenotype of cat2-2 Interestingly, knocking out the nearly identical GOX2 in the cat2-2 background did not affect the photorespiratory phenotype, indicating that GOX1 and GOX2 play distinct metabolic roles. We further investigated their individual functions in single gox1-1 and gox2-1 mutants and revealed that their phenotypes can be modulated by environmental conditions that increase the metabolic flux through the photorespiratory pathway. High light negatively affected the photosynthetic performance and growth of both gox1-1 and gox2-1 mutants, but the negative consequences of severe photorespiration were more pronounced in the absence of GOX1, which was accompanied with lesser ability to process glycolate. Taken together, our results point toward divergent functions of the two photorespiratory GOX isoforms in Arabidopsis and contribute to a better understanding of the photorespiratory pathway. PMID:27225899

  9. Enhanced reactive oxygen species scavenging by overproduction of superoxide dismutase and catalase delays postharvest physiological deterioration of cassava storage roots.

    PubMed

    Xu, Jia; Duan, Xiaoguang; Yang, Jun; Beeching, John R; Zhang, Peng

    2013-03-01

    Postharvest physiological deterioration (PPD) of cassava (Manihot esculenta) storage roots is the result of a rapid oxidative burst, which leads to discoloration of the vascular tissues due to the oxidation of phenolic compounds. In this study, coexpression of the reactive oxygen species (ROS)-scavenging enzymes copper/zinc superoxide dismutase (MeCu/ZnSOD) and catalase (MeCAT1) in transgenic cassava was used to explore the intrinsic relationship between ROS scavenging and PPD occurrence. Transgenic cassava plants integrated with the expression cassette p54::MeCu/ZnSOD-35S::MeCAT1 were confirmed by Southern-blot analysis. The expression of MeCu/ZnSOD and MeCAT1 was verified by quantitative reverse transcription-polymerase chain reaction and enzymatic activity analysis both in the leaves and storage roots. Under exposure to the ROS-generating reagent methyl viologen or to hydrogen peroxide (H2O2), the transgenic plants showed higher enzymatic activities of SOD and CAT than the wild-type plants. Levels of malondialdehyde, chlorophyll degradation, lipid peroxidation, and H2O2 accumulation were dramatically reduced in the transgenic lines compared with the wild type. After harvest, the storage roots of transgenic cassava lines show a delay in their PPD response of at least 10 d, accompanied by less mitochondrial oxidation and H2O2 accumulation, compared with those of the wild type. We hypothesize that this is due to the combined ectopic expression of Cu/ZnSOD and CAT leading to an improved synergistic ROS-scavenging capacity of the roots. Our study not only sheds light on the mechanism of the PPD process but also develops an effective approach for delaying the occurrence of PPD in cassava. PMID:23344905

  10. Attenuation of experimental colitis in glutathione peroxidase 1 and catalase double knockout mice through enhancing regulatory T cell function.

    PubMed

    Kim, Hyung-Ran; Lee, Anbok; Choi, Eun-Jeong; Kie, Jeong-Hae; Lim, Woosung; Lee, Hyeon Kook; Moon, Byung-In; Seoh, Ju-Young

    2014-01-01

    Reactive oxygen species (ROS) have been implicated in the progression of inflammatory diseases including inflammatory bowel diseases (IBD). Meanwhile, several studies suggested the protective role of ROS in immune-mediated inflammatory diseases, and it was recently reported that dextran sodium sulfate (DSS)-induced colitis was attenuated in mice with an elevated level of ROS due to deficiency of peroxiredoxin II. Regulatory T cells (Tregs) are critical in the prevention of IBD and Treg function was reported to be closely associated with ROS level, but it has been investigated only in lowered levels of ROS so far. In the present study, in order to clarify the relationship between ROS level and Treg function, and their role in the pathogenesis of IBD, we investigated mice with an elevated level of ROS due to deficiency of both glutathione peroxidase (GPx)-1 and catalase (Cat) for the susceptibility of DSS-induced colitis in association with Treg function. The results showed that DSS-induced colitis was attenuated and Tregs were hyperfunctional in GPx1-/- × Cat-/- mice. In vivo administration of N-acetylcysteine (NAC) aggravated DSS-induced colitis and decreased Treg function to the level comparable to WT mice. Attenuated Th17 cell differentiation from naïve CD4+ cells as well as impaired production of IL-6 and IL-17A by splenocytes upon stimulation suggested anti-inflammatory tendency of GPx1-/- × Cat-/- mice. Suppression of Stat3 activation in association with enhancement of indoleamine 2,3-dioxygenase and FoxP3 expression might be involved in the immunosuppressive mechanism of GPx1-/- × Cat-/- mice. Taken together, it is implied that ROS level is critical in the regulation of Treg function, and IBD may be attenuated in appropriately elevated levels of ROS. PMID:24743300

  11. Effects of total dissolved gas supersaturated water on lethality and catalase activity of Chinese sucker (Myxocyprinus asiaticus Bleeker)*

    PubMed Central

    Chen, Shi-chao; Liu, Xiao-qing; Jiang, Wen; Li, Ke-feng; Du, Jun; Shen, Dan-zhou; Gong, Quan

    2012-01-01

    Total dissolved gas (TDG) supersaturation caused by dam sluicing can result in gas bubble trauma (GBT) in fish and threaten their survival. In the present study, Chinese suckers (Myxocyprinus asiaticus Bleeker) were exposed to TDG supersaturated water at levels ranging from 120% to 145% for 48 h. The median lethal concentration (LC50) and the median lethal time (LT50) were determined to evaluate acute lethal effects on Chinese suckers. The results showed that the LC50 values of 4, 6, 8, and 10 h were 142%, 137%, 135%, and 130%, respectively. The LT50 values were 3.2, 4.7, 7.8, 9.2, and 43.4 h, respectively, when TDG supersaturated levels were 145%, 140%, 135%, 130%, and 125%. Furthermore, the biological responses in Chinese suckers were studied by assaying the catalase (CAT) activities in gills and muscles at the supersaturation level of 140% within LT50. The CAT activities in the gills and muscle tissues exhibited a regularity of a decrease after an increase. CAT activities in the muscles were increased significantly at 3/5LT50 (P<0.05) and then came back to the normal level. However, there were no significant differences between the treatment group (TDG level of 140%) and the control group (TDG level of 100%) on CAT activities in the gills before 3/5LT50 (P>0.05), but the activities were significantly lower than the normal level at 4/5LT50 and LT50 (P<0.05). PMID:23024046

  12. Effects of total dissolved gas supersaturated water on lethality and catalase activity of Chinese sucker (Myxocyprinus asiaticus Bleeker).

    PubMed

    Chen, Shi-chao; Liu, Xiao-qing; Jiang, Wen; Li, Ke-feng; Du, Jun; Shen, Dan-zhou; Gong, Quan

    2012-10-01

    Total dissolved gas (TDG) supersaturation caused by dam sluicing can result in gas bubble trauma (GBT) in fish and threaten their survival. In the present study, Chinese suckers (Myxocyprinus asiaticus Bleeker) were exposed to TDG supersaturated water at levels ranging from 120% to 145% for 48 h. The median lethal concentration (LC(50)) and the median lethal time (LT(50)) were determined to evaluate acute lethal effects on Chinese suckers. The results showed that the LC(50) values of 4, 6, 8, and 10 h were 142%, 137%, 135%, and 130%, respectively. The LT(50) values were 3.2, 4.7, 7.8, 9.2, and 43.4 h, respectively, when TDG supersaturated levels were 145%, 140%, 135%, 130%, and 125%. Furthermore, the biological responses in Chinese suckers were studied by assaying the catalase (CAT) activities in gills and muscles at the supersaturation level of 140% within LT(50). The CAT activities in the gills and muscle tissues exhibited a regularity of a decrease after an increase. CAT activities in the muscles were increased significantly at 3/5LT(50) (P<0.05) and then came back to the normal level. However, there were no significant differences between the treatment group (TDG level of 140%) and the control group (TDG level of 100%) on CAT activities in the gills before 3/5LT(50) (P>0.05), but the activities were significantly lower than the normal level at 4/5LT(50) and LT(50) (P<0.05). PMID:23024046

  13. Mitochondrial-targeted catalase is good for the old mouse proteome, but not for the young: 'reverse' antagonistic pleiotropy?

    PubMed

    Basisty, Nathan; Dai, Dao-Fu; Gagnidze, Arni; Gitari, Lemuel; Fredrickson, Jeanne; Maina, Yvonne; Beyer, Richard P; Emond, Mary J; Hsieh, Edward J; MacCoss, Michael J; Martin, George M; Rabinovitch, Peter S

    2016-08-01

    Reactive oxygen species (ROS) are highly reactive oxygen-containing molecules associated with aging and a broad spectrum of pathologies. We have previously shown that transgenic expression of the antioxidant enzyme catalase targeted to the mitochondria (mCAT) in mice reduces ROS, attenuates age-related disease, and increases lifespan. However, it has been increasingly recognized that ROS also has beneficial roles in signaling, hormesis, stress response, and immunity. We therefore hypothesized that mCAT might be beneficial only when ROS approaches pathological levels in older age and might not be advantageous at a younger age when basal ROS is low. We analyzed abundance and turnover of the global proteome in hearts and livers of young (4 month) and old (20 month) mCAT and wild-type (WT) mice. In old hearts and livers of WT mice, protein half-lives were reduced compared to young, while in mCAT mice the reverse was observed; the longest half-lives were seen in old mCAT mice and the shortest in young mCAT. Protein abundance of old mCAT hearts recapitulated a more youthful proteomic expression profile (P-value < 0.01). However, young mCAT mice partially phenocopied the older wild-type proteome (P-value < 0.01). Age strongly interacts with mCAT, consistent with antagonistic pleiotropy in the reverse of the typical direction. These findings underscore the contrasting roles of ROS in young vs. old mice and indicate the need for better understanding of the interaction between dose and age in assessing the efficacy of therapeutic interventions in aging, including mitochondrial antioxidants. PMID:27061426

  14. Human disease associated with "Campylobacter upsaliensis" (catalase-negative or weakly positive Campylobacter species) in the United States.

    PubMed Central

    Patton, C M; Shaffer, N; Edmonds, P; Barrett, T J; Lambert, M A; Baker, C; Perlman, D M; Brenner, D J

    1989-01-01

    Catalase-negative or weakly positive (CNW) thermotolerant campylobacteria, first isolated from dogs in 1983, were recently recognized as a new species, "Campylobacter upsaliensis," but their association with human illness has not been established. Twelve human isolates received at the Centers for Disease Control between 1980 and 1986 were identified as CNW campylobacteria by biochemical tests, cellular fatty acid composition, and antimicrobial susceptibility patterns. Eleven CNW Campylobacter strains tested by DNA-DNA hybridization (hydroxyapatite method) were all highly related and were related to two "C. upsaliensis" strains at the species level (86% under optimal conditions and 76% under stringent conditions). Clinical information was obtained for 11 human isolates from three stool and eight blood specimens. They were isolated from four female and seven male patients 6.5 months to 83 years of age residing in 10 different states. The patients had a wide spectrum of illnesses. The stool isolates were obtained from two previously healthy persons during episodes of acute gastroenteritis and from one immunocompromised patient with persistent diarrhea and fever. The blood isolates were obtained from two infants with fever and respiratory symptoms; a young woman with a ruptured ectopic pregnancy; three elderly men with underlying chronic diseases; and two immunocompromised adults. In a bactericidal assay to assess sensitivity to serum, seven of eight blood isolates showed some resistance to killing by pooled normal human serum. These observations suggest that "C. upsaliensis" is a potential human pathogen associated with both gastroenteritis and bacteremia in normal hosts and with opportunistic infection in immunocompromised individuals. PMID:2913038

  15. Gluconic acid production in bioreactor with immobilized glucose oxidase plus catalase on polymer membrane adjacent to anion-exchange membrane.

    PubMed

    Godjevargova, Tzonka; Dayal, Rajeshwar; Turmanova, Sevdalina

    2004-10-20

    Gluconic acid was obtained in the permeate side of the bioreactor with glucose oxidase (GOD) immobilized onto anion-exchange membrane (AEM) of low-density polyethylene grafted with 4-vinylpiridine. The electric resistance of the anion-exchange membranes was increased after the enzyme immobilization on the membrane. The gluconic acid productions were relatively low with the GOD immobilized by any method on the AEM. To increase the enzyme reaction efficiency, GOD was immobilized on membrane of AN copolymer (PAN) adjacent to an anion-exchange membrane in bioreactor. Uses of anion-exchange membrane led to selective removal of the gluconic acid from the glucose solution and reduce the gluconic acid inhibition. The amount of gluconic acid obtained in the permeate side of the bioreactor with the GOD immobilized on the PAN membrane adjacent to the AEM under electrodialysis was about 30 times higher than that obtained with enzyme directly bound to the AEM. The optimal substrate concentration in the feed side was found to be about 1 g/l. Further experiments were carried out with the co-immobilized GOD plus Catalase (CAT) on the PAN membrane adjacent to the AEM to improve the efficiency of the immobilize system. The yield of this process was at least 95%. The storage stability of the co-immobilized GOD and CAT was studied (lost 20% of initial activity for 90 d). The results obtained clearly showed the higher potential of the dual membrane bioreactor with GOD plus CAT bound to ultrafiltration polymer membrane adjacent to the AEM. Storage stability of GOD activity in GOD plus CAT immobilized on PAN//AEM membranes and on AEM. PMID:15497133

  16. Upregulation of Relaxin after Experimental Subarachnoid Hemorrhage in Rabbits

    PubMed Central

    Kikkawa, Yuichiro; Matsuo, Satoshi; Kurogi, Ryota; Nakamizo, Akira; Mizoguchi, Masahiro; Sasaki, Tomio

    2014-01-01

    Background. Although relaxin causes vasodilatation in systemic arteries, little is known about its role in cerebral arteries. We investigated the expression and role of relaxin in basilar arteries after subarachnoid hemorrhage (SAH) in rabbits. Methods. Microarray analysis with rabbit basilar artery RNA was performed. Messenger RNA expression of relaxin-1 and relaxin/insulin-like family peptide receptor 1 (RXFP1) was investigated with quantitative RT-PCR. RXFP1 expression in the basilar artery was investigated with immunohistochemistry. Relaxin concentrations in cerebrospinal fluid (CSF) and serum were investigated with an enzyme-linked immunosorbent assay. Using human brain vascular smooth muscle cells (HBVSMC) preincubated with relaxin, myosin light chain phosphorylation (MLC) was investigated with immunoblotting after endothelin-1 stimulation. Results. After SAH, RXFP1 mRNA and protein were significantly downregulated on day 3, whereas relaxin-1 mRNA was significantly upregulated on day 7. The relaxin concentration in CSF was significantly elevated on days 5 and 7. Pretreatment with relaxin reduced sustained MLC phosphorylation induced by endothelin-1 in HBVSMC. Conclusion. Upregulation of relaxin and downregulation of RXFP1 after SAH may participate in development of cerebral vasospasm. Downregulation of RXFP1 may induce a functional decrease in relaxin activity during vasospasm. Understanding the role of relaxin may provide further insight into the mechanisms of cerebral vasospasm. PMID:25133183

  17. Upregulation of decorin by FXR in vascular smooth muscle cells

    SciTech Connect

    He Fengtian; Zhang Qiuhong; Kuruba, Ramalinga; Gao Xiang; Li Jiang; Li Yong; Gong Wei; Jiang, Yu; Xie Wen; Li Song

    2008-08-08

    Decorin is a member of the family of small leucine-rich proteoglycans that are present in blood vessels and synthesized by vascular smooth muscle cells (VSMCs). Decorin plays complex roles in both normal vascular physiology and the pathogenesis of various types of vascular disorders. However, the mechanisms of regulation of decorin expression in vasculature are not clearly understood. Particularly little information is available about a role of nuclear receptors in the regulation of decorin expression. In the present study, we report that activation of vascular FXR by a specific ligand resulted in upregulation of decorin at the levels of both mRNA and protein. FXR appears to induce decorin expression at a transcriptional level because (1) upregulation of decorin mRNA expression was abolished by the treatment of a transcription inhibitor, actinomycin D; and (2) decorin promoter activity was significantly increased by activation of FXR. Functional analysis of human decorin promoter identified an imperfect inverted repeat DNA motif, IR8 (-2313TGGTCAtagtgtcaTGACCT-2294), as a likely FXR-responsive element that is involved in decorin regulation.

  18. FRZB up-regulated in hepatocellular carcinoma bone metastasis

    PubMed Central

    Huang, Jia; Hu, Wenhao; Lin, Xiangjin; Wang, Xuanwei; Jin, Ketao

    2015-01-01

    The clinical relevance of frizzled-related protein (FRZB) in hepatocellular carcinoma (HCC) bone metastasis remains uncertain. The aim of this study was to assess the clinical relationship of FRZB in patients with HCC bone metastasis after surgical resection. FRZB expression was evaluated by immunohistochemistry in formalin-fixed paraffin embedded (FFPE) HCC and paired bone metastasis tissues from 13 patients that underwent surgical resection. The clinical characteristics of 13 HCC patients with synchronous or metachronous bone metastasis received surgery were retrospectively reviewed. We found that FRZB was positive in 9 HCC tissues (69.2%) and in 11 paired bone metastatic tissues (84.6%) among these 13 paired samples. The expression of FRZB in the bone metastases was noticeably higher than that in the paired HCC tissues. The expression of FRZB was up-regulated in 10 (76.9%) paired bone metastases tissues. FRZB expression was up-regulated in HCC bone metastasis tissue, which suggested that FRZB might play a key role in the HCC bone metastasis. PMID:26722540

  19. HIV Infection Upregulates Caveolin 1 Expression To Restrict Virus Production▿

    PubMed Central

    Lin, Shanshan; Wang, Xiao Mei; Nadeau, Peter E.; Mergia, Ayalew

    2010-01-01

    Caveolin 1 (Cav-1) is a major protein of a specific membrane lipid raft known as caveolae. Cav-1 interacts with the gp41 of the human immunodeficiency virus (HIV) envelope, but the role of Cav-1 in HIV replication and pathogenesis is not known. In this report, we demonstrate that HIV infection in primary human monocyte-derived macrophages (MDMs), THP-1 macrophages, and U87-CD4 cells results in a dramatic upregulation of Cav-1 expression mediated by HIV Tat. The activity of p53 is essential for Tat-induced Cav-1 expression, as our findings show enhanced phosphorylation of serine residues at amino acid positions 15 and 46 in the presence of Tat with a resulting Cav-1 upregulation. Furthermore, inhibition of p38 mitogen-activated protein kinase (MAPK) blocked phosphorylation of p53 in the presence of Tat. Infection studies of Cav-1-overexpressing cells reveal a significant reduction of HIV production. Taken together, these results suggest that HIV infection enhances the expression of Cav-1, which subsequently causes virus reduction, suggesting that Cav-1 may contribute to persistent infection in macrophages. PMID:20610713

  20. The role played by acid and basic centers in the activity of biomimetic catalysts of the catalase, peroxidase, and monooxidase reactions

    NASA Astrophysics Data System (ADS)

    Magerramov, A. M.; Nagieva, I. T.

    2010-11-01

    The acid-basic centers of heterogeneous carriers of catalase, peroxidase, and monooxigenase biomimetics, in particular, iron protoporphyrin deposited on active or neutral aluminum magnesium silicate, were studied. The catalytic activity of biomimetics was stabilized, which allowed us not only to synthesize fairly effective biomimetics but also to clarify certain details of the mechanism of their action and perform a comparative analysis of the functioning of biomimetics and the corresponding enzymes.

  1. Role of reactive oxygen species (ROS) in Mycobacterium bovis bacillus Calmette Guérin-mediated up-regulation of the human cathelicidin LL-37 in A549 cells.

    PubMed

    Méndez-Samperio, Patricia; Pérez, Aline; Torres, Laura

    2009-11-01

    The human cathelicidin LL-37 is one of the major antimicrobial peptides of the non-specific innate immune system in Mycobacterium tuberculosis infection. Its expression has been reported in epithelial cells infected with mycobacteria. However, the underlying molecular mechanisms by which Mycobacterium bovis bacillus Calmette-Guérin (BCG) triggers gene transcription of cathelicidin have not been elucidated. The objective of this study was to investigate the role of reactive oxygen species (ROS) in the M. bovis BCG-mediated up-regulation of the antimicrobial peptide cathelicidin LL-37 in human epithelial cells. Infection of A549 cells with M. bovis BCG led to a rapid ROS production. Importantly, blockade of ROS by preincubation of cells with the general ROS scavenger N-acetyl-l-cysteine (NAC) or the NADPH oxidase inhibitor DPI significantly reduced M. bovis BCG-induced up-regulation of cathelicidin LL-37 mRNA expression as determined by semi-quantitative RT-PCR or real-time PCR. In contrast, the xanthine oxidase inhibitor allopurinol did not affect M. bovis BCG-mediated up-regulation of cathelicidin LL-37 mRNA. Moreover, M. bovis BCG-mediated cathelicidin LL-37 mRNA expression was significantly blocked by the effect of the mitochondrial electron transfer chain subunit I inhibitor rotenone and H(2)O(2) scavenging enzyme catalase. In addition, M. bovis BCG-induced cathelicidin LL-37 protein secretion was inhibited by the addition of NAC, DPI, and the selective inhibitor of NADPH oxidase apocynin. Our results collectively indicate that M. bovis BCG-mediated up-regulation of cathelicidin is influenced by NADPH/ROS signaling pathways. In conclusion, these findings demonstrate a novel regulatory mechanism for the expression of cathelicidin LL-37 in human epithelial cells stimulated with M. bovis BCG. PMID:19729059

  2. Fenton reaction-mediated fluorescence quenching of N-acetyl-L-cysteine-protected gold nanoclusters: analytical applications of hydrogen peroxide, glucose, and catalase detection.

    PubMed

    Deng, Hao-Hua; Wu, Gang-Wei; He, Dong; Peng, Hua-Ping; Liu, Ai-Lin; Xia, Xing-Hua; Chen, Wei

    2015-11-21

    Given the importance of hydrogen peroxide (H2O2) in many biological processes and its wide application in various industries, the demand for sensitive, accurate, and economical H2O2 sensors is high. In this study, we used Fenton reaction-stimulated fluorescence quenching of N-acetyl-L-cysteine-protected gold nanoclusters (NAC-AuNCs) as a reporter system for the determination of H2O2. After the experimental conditions were optimized, the sensing platform enabled the analysis of H2O2 with a limit of detection (LOD) as low as 0.027 μM. As the glucose oxidase cascade leads to the generation of H2O2 and catalase catalyzes the decomposition of H2O2, these two biocatalytic procedures can be probed by the Fenton reaction-mediated quenching of NAC-AuNCs. The LOD for glucose was found to be 0.18 μM, and the linear range was 0.39-27.22 μM. The LOD for catalase was 0.002 U mL(-1), and the linear range was 0.01-0.3 U mL(-1). Moreover, the proposed sensing methods were successfully applied for human serum glucose detection and the non-invasive determination of catalase activity in human saliva, demonstrating their great potential for practical applications. PMID:26436146

  3. Environmental Lead Exposure, Catalase Gene, and Markers of Antioxidant and Oxidative Stress Relation to Hypertension: An Analysis Based on the EGAT Study

    PubMed Central

    Kaojarern, Sukhumpun; Chanprasertyothin, Suwannee; Panpunuan, Pachara; Petchpoung, Krittaya; Tatsaneeyapant, Aninthita; Yoovathaworn, Krongtong; Sura, Thunyachai; Kaojarern, Sming; Sritara, Piyamit

    2015-01-01

    Lead has been linked to the development of hypertension via oxidative stress. Catalase plays an important role in the disposal of hydrogen peroxide in erythrocyte and its activity was determined by CAT gene. The aims of this study were to investigate (1) the association between blood levels of antioxidant markers such as catalase, superoxide dismutase, glutathione, glutathione peroxidase, oxidative stress-marker (malondialdehyde), and blood lead level and (2) the influence of genetic polymorphism of CAT gene (rs769217) on change in blood pressure in general population of EGAT study project. This is a cross-sectional study of 332 normotensive, 432 prehypertensive, and 222 hypertensive male subjects. Hypertensive subjects had significantly higher blood lead level (5.28 μg/dL) compared to normotensive (4.41 μg/dL) and prehypertensive (4.55 μg/dL) subjects (P < 0.05). These significant findings are also found in MDA levels. Moreover, individuals with TT genotype in hypertensive group had significantly higher blood lead and MDA levels (6.06 μg/dL and 9.67 μmol/L) than those with CC genotype (5.32 μg/dL and 8.31 μmol/L, P < 0.05). Our findings suggested that decreased blood catalase activity in this polymorphism together with low level lead exposure induced lipid peroxidation may be responsible for hypertension. PMID:25793211

  4. Expression of multiple copies of mitochondrially targeted catalase or genomic Mn superoxide dismutase transgenes does not extend the life span of Drosophila melanogaster

    PubMed Central

    Mockett, Robin J.; Sohal, Barbara H.; Sohal, Rajindar S.

    2010-01-01

    The simultaneous overexpression of multiple copies of Mn superoxide dismutase (SOD) and ectopic catalase (mtCat) transgenes in the mitochondria of the fruit fly, Drosophila melanogaster, was shown previously to diminish the life span. The hypothesis tested in the present study was that this effect was due primarily to the presence of one or the other transgene. An alternative hypothesis was that both transgenes have additive, negative effects. Crosses were performed between five pairs of transgenic lines containing single-copy insertions of either mtCat, Mn SOD, or P element vector control transgenes at unique loci, and the life spans of progeny containing two mtCat, Mn SOD or vector insertions were determined. Increasing amounts of mitochondrial catalase activity tended to be associated with decreases in mean life span. Overexpression of two copies of the genomic Mn SOD transgene had no effect on life span. The results do not support the hypothesis that enhanced mitochondrial SOD or catalase activity promotes longevity in flies. PMID:20923705

  5. The peroxidase/catalase-like activities of MFe₂O₄ (M=Mg, Ni, Cu) MNPs and their application in colorimetric biosensing of glucose.

    PubMed

    Su, Li; Qin, Wenjie; Zhang, Huige; Rahman, Zia Ur; Ren, Cuiling; Ma, Sudai; Chen, Xingguo

    2015-01-15

    MFe2O4 (M=Mg, Ni, Cu) magnetic nanoparticles (MNPs) were found to have catalytic activities similar to those of biological enzymes such as catalase and peroxidase. These nanomaterials, as bifunctional catalase/peroxidases (KatGs), not only could catalyze H2O2 to produce hydroxyl radicals, which oxidized peroxidase substrate to produce color, but also could catalyze the decomposition reaction of H2O2 into water and oxygen directly in the same condition through the catalase-like activity. And it was also found that the amount of generated hydroxyl radicals and oxygen was related to the concentration of MFe2O4 (M=Mg, Ni, Cu) MNPs. The peroxidase-like catalytic behavior of MFe2O4 MNPs was analyzed in detail. Under the optimized conditions, NiFe2O4 MNPs were used as a colorimetric biosensor for the detection of 9.4×10(-7)-2.5×10(-5) mol L(-1) glucose with a limit of detection (LOD) of 4.5×10(-7) mol L(-1). The sensor was successfully applied to glucose detection in urine sample. PMID:25127473

  6. Catellicoccus marimammalium gen. nov., sp. nov., a novel Gram-positive, catalase-negative, coccus-shaped bacterium from porpoise and grey seal.

    PubMed

    Lawson, Paul A; Collins, Matthew D; Falsen, Enevold; Foster, Geoffrey

    2006-02-01

    Two strains of an unknown Gram-positive, catalase-negative, facultatively anaerobic, coccus-shaped bacterium, originating from a porpoise and a grey seal, were characterized using phenotypic, biochemical and molecular phylogenetic methods. Chemical studies revealed the presence of a cell-wall murein based on L-lysine (type L-lys-gly-D-Asp) and a DNA G+C content of 38 mol%. Comparative 16S rRNA gene sequencing showed that this unidentified coccus-shaped organism formed a hitherto unknown subline closely related to, albeit distinct from, a number of other catalase-negative genera which included Enterococcus, Melissococcus, Tetragenococcus and Vagococcus. Other known Gram-positive, catalase-negative taxa were more distantly related. Tree-branching considerations and sequence divergence values of >6% with recognized taxa were indicative of this novel bacterium representing a separate genus. Based on phenotypic and phylogenetic evidence, it is proposed that this unknown bacterium, recovered from a porpoise and a grey seal, be classified as a novel genus and species, Catellicoccus marimammalium gen. nov., sp. nov. The type strain is M35/04/3T (=CCUG 49459T=CIP 108575T). PMID:16449452

  7. Single-droplet evaporation kinetics and particle formation in an acoustic levitator. Part 2: drying kinetics and particle formation from microdroplets of aqueous mannitol, trehalose, or catalase.

    PubMed

    Schiffter, Heiko; Lee, Geoffrey

    2007-09-01

    A single droplet drying acoustic levitator has been used to examine the drying behavior of droplets of pharmaceutically relevant solutes used to produce protein-loaded particles via spray-drying. The drying behavior of solution droplets of mannitol, trehalose, or catalase was determined. Evidence of super-saturation of the solute in the droplet surface up to the critical point of drying was obtained. The trehalose achieves a lower degree of super-saturation than does the mannitol before precipitating at the droplet surface. This results in a shorter duration of the constant-rate period, but protracted further drying of this amorphous material. Mannitol achieved a higher degree of super-saturation, and a later critical point with shorter falling-rate period. Measurements of dried particle radius showed that both solutes form hollow particles. The catalase formed holed, hollow particles with characteristic drying rate profiles that correlated well with developing particle morphology. A strong similarity between the morphologies of dried particles of mannitol, trehalose, or catalase produced either in the levitator or in a spray-dryer was found. PMID:17523166

  8. Application of high-performance chromatographic and electrophoretic methods to the purification and characterization of glucose oxidase and catalase from Penicillium chrysogenum.

    PubMed

    Eriksson, K O; Kourteva, I; Yao, K Q; Liao, J L; Kilár, F; Hjertén, S; Chaga, G

    1987-06-26

    The high resolving power of the preparative and analytical high-performance chromatographic and electrophoretic methods recently developed in this laboratory for the separation of biopolymers has been demonstrated by the purification and characterization of glucose oxidase and catalase from Penicillium chrysogenum. Crude glucose oxidase was purified to homogeneity in one step by high-performance hydrophobic-interaction chromatography (HIC) on a pentylagarose column. Crude catalase was purified by a combination of HIC and high-performance anion-exchange chromatography on 3-diethylamino-2-hydroxypropylagarose. The homogeneity of the enzymes was monitored by high-performance electrophoresis and free zone electrophoresis. The pI values of these two enzymes determined by isoelectric focusing in the high-performance electrophoresis apparatus were 4.2 and 6.5, respectively. Their molecular weights were determined by high-performance molecular sieve chromatography on an agarose column. Glucose oxidase has a molecular weight of 175,000 and probably consists of two identical subunits, as sodium dodecyl sulphate polyacrylamide gel electrophoresis gave a molecular weight of around 72,000. The molecular weight of catalase, which is probably composed of non-identical subunits, as indicated by sodium dodecyl sulphate electrophoresis, is around 320,000. Some other characteristics of these two enzymes were also investigated, e.g., electrophoretic mobility, pH stability and optimum pH. PMID:3116021

  9. Geniposide protects against acute alcohol-induced liver injury in mice via up-regulating the expression of the main antioxidant enzymes.

    PubMed

    Wang, Junming; Zhang, Yueyue; Liu, Ruixin; Li, Xiaobing; Cui, Ying; Qu, Lingbo

    2015-04-01

    Geniposide (GP) is one of main compounds in Gardenia jasminoides Ellis, with both medicinal and nutritional value. This study was designed to determine, for the first time, how GP from G. jasminoides protects against acute alcohol-induced liver injury, and the underlying mechanisms. Mice were orally administered alcohol (6.0 g/kg body mass) 2 h after intragastric administration of GP and bifendate, every day for 7 continuous days. Six hours after the alcohol was administered, levels of serum alanine/aspartate transaminase (ALT/AST), hepatic lipid peroxidation (LPO), glutathione (GSH), glutathione-S-transferase (GST), glutathione peroxidase (GPx), copper- and zinc-containing superoxide dismutase (CuZn-SOD), and catalase (CAT), and mRNA expression of CuZn-SOD and CAT were assayed. The results demonstrated that GP (20.0, 40.0, or 80 mg/kg) significantly reversed the excessive, alcohol-induced elevation in both serum ALT/AST and hepatic LPO levels. Moreover, hepatic GSH, GST, GPx, CuZn-SOD, and CAT levels were all decreased in the alcohol-treated mice, whereas treatment with GP reversed these decreases. Further analysis indicated that hepatic mRNA expression of CuZn-SOD and CAT in the alcohol-treated mice was significantly down-regulated, whereas GP up-regulated such decreases. Taken together, this study shows that GP protects against acute alcohol-induced liver injury via up-regulating the expression of the main antioxidant enzymes, and thus ameliorates alcohol-induced oxidative stress injury in the liver. PMID:25730420

  10. Neurotactin, a membrane-anchored chemokine upregulated in brain inflammation.

    PubMed

    Pan, Y; Lloyd, C; Zhou, H; Dolich, S; Deeds, J; Gonzalo, J A; Vath, J; Gosselin, M; Ma, J; Dussault, B; Woolf, E; Alperin, G; Culpepper, J; Gutierrez-Ramos, J C; Gearing, D

    1997-06-01

    Chemokines are small secreted proteins that stimulate the directional migration of leukocytes and mediate inflammation. During screening of a murine choroid plexus complementary DNA library, we identified a new chemokine, designated neurotactin. Unlike other chemokines, neurotactin has a unique cysteine pattern, Cys-X-X-X-Cys, and is predicted to be a type 1 membrane protein. Full-length recombinant neurotactin is localized on the surface of transfected 293 cells. Recombinant neurotactin containing the chemokine domain is chemotactic for neutrophils both in vitro and in vivo. Neurotactin messenger RNA is predominantly expressed in normal murine brain and its protein expression in activated brain microglia is upregulated in mice with experimental autoimmune encephalomyelitis, as well as in mice treated with lipopolysaccharide. Distinct from all other chemokine genes, the neurotactin gene is localized to human chromosome 16q. Consequently we propose that neurotactin represents a new delta-chemokine family and that it may play a role in brain inflammation processes. PMID:9177350

  11. Human Cytomegalovirus Infection Upregulates the Mitochondrial Transcription and Translation Machineries

    PubMed Central

    Weekes, M. P.; Antrobus, R.; Rorbach, J.; van Haute, L.; Umrania, Y.; Smith, D. L.; Minczuk, M.; Lehner, P. J.; Sinclair, J. H.

    2016-01-01

    ABSTRACT Infection with human cytomegalovirus (HCMV) profoundly affects cellular metabolism. Like in tumor cells, HCMV infection increases glycolysis, and glucose carbon is shifted from the mitochondrial tricarboxylic acid cycle to the biosynthesis of fatty acids. However, unlike in many tumor cells, where aerobic glycolysis is accompanied by suppression of mitochondrial oxidative phosphorylation, HCMV induces mitochondrial biogenesis and respiration. Here, we affinity purified mitochondria and used quantitative mass spectrometry to determine how the mitochondrial proteome changes upon HCMV infection. We found that the mitochondrial transcription and translation systems are induced early during the viral replication cycle. Specifically, proteins involved in biogenesis of the mitochondrial ribosome were highly upregulated by HCMV infection. Inhibition of mitochondrial translation with chloramphenicol or knockdown of HCMV-induced ribosome biogenesis factor MRM3 abolished the HCMV-mediated increase in mitochondrially encoded proteins and significantly impaired viral growth under bioenergetically restricting conditions. Our findings demonstrate how HCMV manipulates mitochondrial biogenesis to support its replication. PMID:27025248

  12. Cyclic tensile strain upregulates collagen synthesis in isolated tendon fascicles

    SciTech Connect

    Screen, Hazel R.C. . E-mail: H.R.C.Screen@qmul.ac.uk; Shelton, Julia C.; Bader, Dan L.; Lee, David A.