Sample records for n-acetylneuraminic acid neuac

  1. Electrospray mass spectrometry of NeuAc oligomers associated with the C fragment of the tetanus toxin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prieto, M C; Whittal, R M; Baldwin, M A

    2005-04-03

    The Clostridial neurotoxins, botulinum and tetanus, gain entry into neuronal cells by protein recognition involving cell specific binding sites. The sialic or N-acetylneuraminic acid (NeuAc) residues of gangliosides attached to the surface of motor neurons are the suspected recognition and interaction points with Clostridial neurotoxins, although not necessarily the only ones. We have used electrospray ionization mass spectrometry (ESIMS) to examine formation of complexes between the tetanus toxin C fragment, or targeting domain, and carbohydrates containing NeuAc groups to determine how NeuAc residues contribute to ganglioside binding. ESI-MS was used to rapidly and efficiently measure dissociation constants for a numbermore » of related NeuAc-containing carbohydrates and NeuAc oligomers, information that has helped identify the structural features of gangliosides that determine their binding to tetanus toxin. The strength of the interactions between the C fragment and (NeuAc){sub n}, are consistent with the topography of the targeting domain of tetanus toxin and the nature of its carbohydrate binding sites. The results suggest that the targeting domain of tetanus toxin contains two binding sites that can accommodate NeuAc (or a dimer). This study also shows that NeuAc must play an important role in ganglioside binding and molecular recognition, a process critical for normal cell function and one frequently exploited by toxins, bacteria and viruses to facilitate their entrance into cells.« less

  2. Interaction of a lectin from Psathyrella velutina mushroom with N-acetylneuraminic acid.

    PubMed

    Ueda, H; Kojima, K; Saitoh, T; Ogawa, H

    1999-04-01

    A lectin from the fruiting body of Psathyrella velutina has been used as a specific probe for non-reducing terminal N-acetylglucosamine residues. We reveal in this report that P. velutina lectin recognizes a non-reducing terminal N-acetylneuraminic acid residue in glycoproteins and oligosaccharides. Binding of biotinyl P. velutina lectin to N-acetylneuraminic acid residues was prevented by desialylation of glycoconjugates and was distinguished from the binding to N-acetylglucosamine. Sialooligosaccharides were retarded or bound and eluted with N-acetylglucosamine on a P. velutina lectin column, being differentiated from each other and also from the oligosaccharides with non-reducing terminal N-acetylglucosamine which bound more strongly to the column.

  3. Binding to Gangliosides Containing N-Acetylneuraminic Acid Is Sufficient To Mediate the Immunomodulatory Properties of the Nontoxic Mucosal Adjuvant LT-IIb(T13I) ▿

    PubMed Central

    Nawar, Hesham F.; Berenson, Charles S.; Hajishengallis, George; Takematsu, Hiromu; Mandell, Lorrie; Clare, Ragina L.; Connell, Terry D.

    2010-01-01

    By use of a mouse mucosal immunization model, LT-IIb(T13I), a nontoxic mutant type II heat-labile enterotoxin, was shown to have potent mucosal and systemic adjuvant properties. In contrast to LT-IIb, which binds strongly to ganglioside receptors decorated with either N-acetylneuraminic acid (NeuAc) or N-glycolylneuraminic acid (NeuGc), LT-IIb(T13I) binds NeuAc gangliosides much less well. Rather, LT-IIb(T13I) binds preferentially to NeuGc gangliosides. To determine if the adjuvant properties of LT-IIb(T13I) are altered in the absence of NeuGc ganglioside receptors, experiments were conducted using a Cmah-null mouse line which is deficient in the synthesis of NeuGc gangliosides. Several immunomodulatory properties of LT-IIb(T13I) were shown to be dependent on NeuGc gangliosides. LT-IIb(T13I) had reduced binding activity for NeuGc-deficient B cells and macrophages; binding to NeuGc-deficient T cells and dendritic cells (DC) was essentially undetectable. Treatment of Cmah-null macrophages with LT-IIb(T13I), however, upregulated the transcription of interleukin-4 (IL-4), IL-6, IL-17, and gamma interferon (IFN-γ), four cytokines important for promoting immune responses. The production of mucosal IgA and serum IgG against an immunizing antigen was augmented in NeuGc-deficient mice administered LT-IIb(T13I) as a mucosal adjuvant. Notably, NeuGc gangliosides are not expressed in humans. Still, treatment of human monocytes with LT-IIb(T13I) induced the secretion of IL-6, an inflammatory cytokine that mediates differential control of leukocyte activation. These results suggested that NeuAc gangliosides are sufficient to mediate the immunomodulatory properties of LT-IIb(T13I) in mice and in human cells. The nontoxic mutant enterotoxin LT-IIb(T13I), therefore, is potentially a new and safe human mucosal adjuvant. PMID:20392887

  4. Reaction of N-acetylneuraminic acid derivatives with perfluorinated anhydrides: a short access to N-perfluoracylated glycals with antiviral properties.

    PubMed

    Rota, Paola; Allevi, Pietro; Mattina, Roberto; Anastasia, Mario

    2010-08-21

    An efficient short protocol for the preparation of N-perfluoroacylated glycals of neuraminic acid, by simple short treatment of differently protected N-acetylneuraminic acid with perfluorinated anhydrides in acetonitrile at 135 degrees C, is reported, together with a rationalitazion of the reaction that allows the alternative formation of N-perfluoroacylated 1,7-lactones to be previewed under the same reaction conditions.

  5. Genetic Variation in Sialidase and Linkage to N-acetylneuraminate Catabolism in Mycoplasma synoviae

    PubMed Central

    May, Meghan; Brown, Daniel R.

    2008-01-01

    We explored the genetic basis for intraspecific variation in mycoplasmal sialidase activity that correlates with virulence, and its potentially advantageous linkage to nutrient catabolism. Polymorphism in N-acetylneuraminate scavenging and degradation genes (sialidase, N-acetylneuraminate lyase, N-acetylmannosamine kinase, N-acetylmannosamine-6-phosphate epimerase, N-acetylglucosamine-6-phosphate deacetylase, and glucosamine-6-phosphate deaminase) was evident among eight strains of the avian pathogen Mycoplasma synoviae. Most differences were single nucleotide polymorphisms, ranging from 0.34 ± 0.04 substitutions per 100 bp for N-acetylmannosamine kinase to 0.65 ± 0.03 for the single-copy sialidase gene nanI. Missense mutations were twice as common as silent mutations in nanI; 26% resulted in amino acids dissimilar to consensus; and there was a 12-base deletion near the nanI promoter in strain WVU1853T, supporting a complex genetic basis for differences in sialidase activity. Two strains had identical frameshifts in the N-acetylneuraminate lyase gene nanA, resulting in nonsense mutations, and both had downstream deletions in nanA. Such genetic lesions uncouple extracellular liberation of sialic acid from generation of fructose-6-phosphate and pyruvate via intracellular N-acetylneuraminate degradation. Retention of nanI by such strains, but not others in the M. synoviae phylogenetic cluster, is evidence that sialidase has an important non-nutritional role in the ecology of M. synoviae and certain other mycoplasmas. PMID:18490131

  6. Uptake, metabolism and excretion of orally and intravenously administered, 14C- and 3H-labeled N-acetylneuraminic acid mixture in the mouse and rat.

    PubMed

    Nöhle, U; Schauer, R

    1981-11-01

    N-Acetyl-D-[2-14C,9-3H]neuraminic acid, enzymically prepared from sodium [2-14C]-pyruvate and N-acetyl-D-[6-3H]mannosamine by N-acetylneuraminate lyase in 75% yield, was orally administered to 20 day old fasted mice. 90% of the administered neuraminic acid was absorbed from the intestine in the course of 4 h, at a rate depending on the retention time of neuraminic acid in the intestine and the mental conditions of the animals. Between 60 and 90% of the neuraminic acid was excreted in the urine without chemical alteration within the first 6 h. Four hours after administration 10% of the 3H- and 1.3% of the 14C-radioactivity were recovered in the whole blood and in liver, spleen, kidney and brain. After 3 days 0.5% of 3H- and 0.01% of 14C-radioactivity still remained in these tissues. The discrepancy of the 14C-amount relative to the 3H-quantity was accounted for by exhaled 14CO2. After intravenous injection of N-acetylneuraminic acid into rats, 90% of the radioactivity corresponding to the original substance was excreted in the urine within 10 min. Four hours after administration only 5% of the applied 3H- and 1.2% of the 14C-radioactivity were left in the blood and in liver, spleen, kidney and brain. The experiments show that neither orally nor intravenously applied N-acetylneuraminic acid can penetrate cell membranes to a large extent, with the exception of the intestine. The isotopic ratio and N-acetylneuraminate lyase activity suggest that the small amount of the neuraminic acid retained in tissues was largely cleaved by the lyase, followed by metabolism of the reaction products. It may be concluded from these observations that neuraminic acid occurring in food cannot directly be used for the biosynthesis of glycoconjugates on a large scale.

  7. Multi-specificity of a Psathyrella velutina mushroom lectin: heparin/pectin binding occurs at a site different from the N-acetylglucosamine/N-acetylneuraminic acid-specific site.

    PubMed

    Ueda, H; Saitoh, T; Kojima, K; Ogawa, H

    1999-09-01

    An N-acetylglucosamine (GlcNAc)/N-acetylneuraminic acid-specific lectin from the fruiting body of Psathyrella velutina (PVL) is a useful probe for the detection and fractionation of specific carbohydrates. In this study, PVL was found to exhibit multispecificity to acidic polysaccharides and sulfatides. Purified PVL and a counterpart lectin to PVL in the mycelium interact with heparin neoproteoglycans, as detected by both membrane analysis and solid phase assay. The pH-dependencies of the binding to heparin and GlcNAc5-6 differ. The heparin binding of PVL is inhibited best by pectin, polygalacturonic acid, and highly sulfated polysaccharides, but not by GlcNAc, colominic acid, or other glycosaminoglycans. Sandwich affinity chromatography indicated that PVL can simultaneously interact with heparin- and GlcNAc-containing macromolecules. Extensive biotinylation was found to suppress the binding activity to heparin while the GlcNAc binding activity is retained. On the other hand, biotinyl PVL binds to sulfatide and the binding is not inhibited by GlcNAc, N-acetylneuraminic acid, or heparin. These results indicate that PVL is a multi-ligand adhesive lectin that can interact with various glycoconjugates. This multispecificity needs to be recognized when using PVL as a sugar-specific probe to avoid misleading information about the nature of glycoforms.

  8. On the minor gangliosides of erythrocyte membranes of Japanese cats.

    PubMed

    Ando, N; Yamakawa, T

    1982-03-01

    Seven ganglioside species were isolated and purified from erythrocyte membranes of Japanese cats by DEAE-Sephadex and Iatrobeads column chromatographies. The structures of these gangliosides were determined as Gmi(NeuGc), Gm3(NeuAc), GM3(NeuGc), GD3(NeuGc), GD3(NeuGc comes from NeuAc), GT3(NeuGc), and another GM3 containing a sialic acid of unidentified nature. The occurrence of GT3 suggested the probable presence of a biosynthetic pathway of GM3 leads to GD3 leads to GT3 in erythropoietic cells of Japanese cats. The presence of GD3 having one penultimate N-glycolylneuraminic acid and one terminal N-acetylneuraminic acid, GD3(NeuGc comes from NeuAc) would indicate that this GD3 acts as an intermediate in a possible pathway from GM3(NeuGc) to GD3(NeuGc). Thin layer chromatographic patterns of total erythrocyte membrane gangliosides were compared among Japanese cats (n = 3), lions (n = 3), a serval and a racoon dog. The three species of felid showed similar patterns to each other and contained N-glycolylneuraminic acid as the major sialic acid. On the other hand, erythrocytes of racoon dog, a member of canidae, contained neither GD3 nor GT3, but only GM3.

  9. Psathyrella velutina Mushroom Lectin Exhibits High Affinity toward Sialoglycoproteins Possessing Terminal N-Acetylneuraminic Acid alpha 2,3-Linked to Penultimate Galactose Residues of Trisialyl N-Glycans. Comparison with other sialic acid-specific lectins.

    PubMed

    Ueda, Haruko; Matsumoto, Hanako; Takahashi, Noriko; Ogawa, Haruko

    2002-07-12

    A lectin from the fruiting body of the Psathyrella velutina mushroom (PVL) was found to bind specifically to N-acetylneuraminic acid, as well as to GlcNAc (Ueda, H., Kojima, K., Saitoh, T., and Ogawa, H. (1999) FEBS Lett. 448, 75-80). In this study, the glycan sequences that PVL recognizes with high affinity on sialoglycoproteins were revealed. Among sialic acid-specific lectins only PVL could reveal the sialylated N-acetyllactosamine structure of glycoproteins in blotting studies, based on the dual specificity. The affinity of PVL to fetuin was measured by surface plasmon resonance to be 10(7) m(-1), which is an order of magnitude higher than those of Sambucus nigra agglutinin and Maackia amurensis mitogen, whereas affinity to asialofetuin was approximately 0 and to asialo-agalactofetuin was 10(8) m(-1), suggesting that PVL exhibits remarkably high affinities toward glycoproteins possessing trisialo- or GlcNAc-exposed glycans. Transferrin was separated into fractions that correspond to the sialylation states on an immobilized PVL column. Transferrin-possessing trisialoglycans containing alpha2,3-linked N-acetylneuraminic acid on the beta1,4-linked GlcNAc branch bound to the PVL column and eluted with GlcNAc; those containing only alpha2,6-linked sialic acids were retarded, whereas other transferrin fractions passed through the column. These results indicate that PVL is a lectin with potential for separation and detection of sialoglycoproteins because of its dual specificity toward sialoglycans and GlcNAc exposed glycans.

  10. Identification of N-acetylneuraminic acid and its 9-O-acetylated derivative on the cell surface of Cryptococcus neoformans: influence on fungal phagocytosis.

    PubMed Central

    Rodrigues, M L; Rozental, S; Couceiro, J N; Angluster, J; Alviano, C S; Travassos, L R

    1997-01-01

    Sialic acids from sialoglycoconjugates present at the cell surface of Cryptococcus neoformans yeast forms were analyzed by high-performance thin-layer chromatography, binding of influenza A and C virus strains, enzymatic treatment, and flow cytofluorimetry with fluorescein isothiocyanate-labeled lectins. C. neoformans yeast forms grown in a chemically defined medium contain N-acetylneuraminic acid and its 9-O-acetylated derivative. A density of 3 x 10(6) residues of sialic acid per cell was found in C. neoformans. Sialic acids in cryptococcal cells are glycosidically linked to galactopyranosyl units as inferred from the increased reactivity of neuraminidase-treated yeasts with peanut agglutinin. N-Acetylneuraminic acids are alpha-2,6 and alpha-2,3 linked, as indicated by using virus strains M1/5 and M1/5 HS8, respectively, as agglutination probes. The alpha-2,6 linkage markedly predominated. These findings were essentially confirmed by the interaction of cryptococcal cells with the lectins Sambucus nigra agglutinin and Maackia amurensis agglutinin. We also investigated whether the sialyl residues present in C. neoformans are involved in the fungal interaction with a cationic solid-phase substrate and with mouse resident macrophages. Adhesion of yeast cells to poly-L-lysine was mediated, in part, by sialic acid residues, since the number of adherent cells was markedly reduced after treatment with bacterial neuraminidase. The enzymatic removal of sialic acids also made C. neoformans yeast cells more susceptible to endocytosis by macrophages. The results show that sialic acids are components of the cryptococcal cell surface that contribute to its negative charge and protect yeast forms against phagocytosis. PMID:9393779

  11. NKG2D and CD94 bind to multimeric alpha2,3-linked N-acetylneuraminic acid.

    PubMed

    Imaizumi, Yuzo; Higai, Koji; Suzuki, Chiho; Azuma, Yutaro; Matsumoto, Kojiro

    2009-05-08

    Killer lectin-like receptors on natural killer cells mediate cytotoxicity through glycans on target cells including the sialyl Lewis X antigen (sLeX). We investigated whether NK group 2D (NKG2D) and CD94 can bind to sialylated N-linked glycans, using recombinant glutathione S-transferase-fused extracellular lectin-like domains of NKG2D (rNKG2Dlec) and CD94 (rCD94lec). Both rNKG2Dlec and rCD94lec bound to plates coated with high-sLeX-expressing transferrin secreted by HepG2 cells (HepTF). The binding of rNKG2Dlec and rCD94lec to HepTF was markedly suppressed by treatment of HepTF with neuraminidase and in the presence of N-acetylneuraminic acid. Moreover, rNKG2Dlec and rCD94lec bound to alpha2,3-sialylated human alpha(1)-acid glycoprotein (AGP) but not to alpha2,6-sialylated AGP. Mutagenesis revealed that (152)Y of NKG2D and (144)F and (160)N of CD94 were critical for HepTF binding. This is the first report that NKG2D and CD94 bind to alpha2,3-sialylated but not to alpha2,6-sialylated multi-antennary N-glycans.

  12. Ganglioside Composition in Beef, Chicken, Pork, and Fish Determined Using Liquid Chromatography-High-Resolution Mass Spectrometry.

    PubMed

    Fong, Bertram Y; Ma, Lin; Khor, Geok Lin; van der Does, Yvonne; Rowan, Angela; McJarrow, Paul; MacGibbon, Alastair K H

    2016-08-17

    Gangliosides (GA) are found in animal tissues and fluids, such as blood and milk. These sialo-glycosphingolipids have bioactivities in neural development, the gastrointestinal tract, and the immune system. In this study, a high-performance liquid chromatography-mass spectrometry (HPLC-MS) method was validated to characterize and quantitate the GA in beef, chicken, pork, and fish species (turbot, snapper, king salmon, and island mackerel). For the first time, we report the concentration of GM3, the dominant GA in these foods, as ranging from 0.35 to 1.1 mg/100 g and 0.70 to 5.86 mg/100 g of meat and fish, respectively. The minor GAs measured were GD3, GD1a, GD1b, and GT1b. Molecular species distribution revealed that the GA contained long- to very-long-chain acyl fatty acids attached to the ceramide moiety. Fish GA contained only N-acetylneuraminic acid (NeuAc) sialic acid, while beef, chicken, and pork contained GD1a/b species that incorporated both NeuAc and N-glycolylneuraminic acid (NeuGc) and hydroxylated fatty acids.

  13. Exogenous supplement of N-acetylneuraminic acid ameliorates atherosclerosis in apolipoprotein E-deficient mice.

    PubMed

    Guo, Shoudong; Tian, Hua; Dong, Rongrong; Yang, Nana; Zhang, Ying; Yao, Shutong; Li, Yongjun; Zhou, Yawei; Si, Yanhong; Qin, Shucun

    2016-08-01

    Previous studies investigating the correlation between plasma sialic acid and the severity of atherosclerosis present conflicting results. In atherosclerosis patients, plasma levels of N-acetylneuraminic acid (NANA) are increased; however, the underlying mechanisms have not yet been clarified. We assume the increased NANA level may be a compensatory mechanism due to oxidative stress and/or inflammation. The aim of this study is to investigate whether supplementation of NANA could attenuate the progression of atherosclerosis. Exogenous NANA was used to determine its effect on apolipoprotein E-deficient (apoE(-/-)) mice taking natural quercetin as a positive control. The effect of NANA on lipid lowering, antioxidant activity and anti-inflammation was investigated by methods of molecular biology. 1) NANA administration decreased 18.9% of the atherosclerotic plaque formation in the aorta and 26.7% of the lipid deposition in the liver of high-fat diet apoE(-/-) mice; 2) notably, NANA treatment reduced 62.6% of the triglyceride by improving lipoprotein lipase activity; 3) NANA lowered 17.5% of the plasma total cholesterol by up-regulating reverse cholesterol transport (RCT)-related protein expression such as ATP-binding cassette transporter (ABC) G1 and ABCG5 in liver or small intestine; 4) NANA administration notably decreased oxidative stress by increasing antioxidant enzymes activity and protein expression of paraoxonase 1 and 2; 5) NANA markedly reduced tumour necrosis factor-α and intercellular adhesion molecule-1 expression in aorta and liver. NANA exhibited triglyceride lowering, anti-oxidation, and RCT promoting activities, and therefore NANA supplementation may be a new strategy for prevention and treatment of atherosclerosis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. High fat diet-induced inflammation and oxidative stress are attenuated by N-acetylneuraminic acid in rats.

    PubMed

    Yida, Zhang; Imam, Mustapha Umar; Ismail, Maznah; Ismail, Norsharina; Ideris, Aini; Abdullah, Maizaton Atmadini

    2015-10-24

    Serum sialic acid levels are positively correlated with coronary artery disease and inflammation. Although sialic acid is a non-specific marker, it is considered sensitive likely due to its influence in sialylation of glycoprotein structures all over the body. We hypothesized that dietary supplementation with N-acetylneuraminic acid (Neu5Ac), a type of sialic acid, will have profound effects on high fat diet- (HFD-) induced inflammation and oxidative stress in view of the widespread incorporation of sialic acid into glycoprotein structures in the body. HFD-fed rats with or without simvastatin or Neu5Ac (50 and 400 mg/kg/day) were followed up for 12 weeks. Lipid profiles, and markers of inflammation (C-reactive protein, interleukin-6, and tumor necrosis factor alpha), insulin resistance (serum insulin and adiponectin, oral glucose tolerance test and homeostatic model of insulin resistance) and oxidative stress (total antioxidant status and thiobarbituric acid reactive species) in the serum and liver were determined, while mRNA levels of hepatic antioxidant and inflammation genes were also quantified. Serum levels of alanine transaminase, aspartate transaminase, alkaline phosphatase, urea, creatinine and uric acid were also assessed. HFD feeding caused hyperlipidemia and insulin resistance, and worsened liver and kidney functions. HFD feeding also potentiated inflammation and oxidative stress, partly through modulation of hepatic gene expression, while Neu5Ac especially at higher doses and simvastatin attenuated HFD-induced changes, although Neu5Ac showed better outcomes. Based on the present results, we surmised that Neu5Ac can prevent HFD-induced inflammation and oxidative stress, and may in fact be useful in the prevention of hyperlipidemia-associated inflammation and oxidative stress. However, the translational implications of these findings can only be determined after long-term effects are established. Hence, the use of Neu5Ac on obesity-related diseases

  15. Increased influenza A virus sialidase activity with N-acetyl-9-O-acetylneuraminic acid-containing substrates resulting from influenza C virus O-acetylesterase action.

    PubMed

    Muñoz-Barroso, I; García-Sastre, A; Villar, E; Manuguerra, J C; Hannoun, C; Cabezas, J A

    1992-09-01

    Influenza virus type C (Johannesburg/1/66) was used as a source for the enzyme O-acetylesterase (EC 3.1.1.53) with several natural sialoglycoconjugates as substrates. The resulting products were immediately employed as substrates using influenza virus type A [(Singapore/6/86) (H1N1) or Shanghai/11/87 (H3N2)] as a source for sialidase (neuraminidase, EC 3.2.1.18). A significant increase in the percentage of sialic acid released was found when the O-acetyl group was cleaved by O-acetylesterase activity from certain substrates (bovine submandibular gland mucin, rat serum glycoproteins, human saliva glycoproteins, mouse erythrocyte stroma, chick embryonic brain gangliosides and bovine brain gangliosides). A common feature of all these substrates is that they contain N-acetyl-9-O-acetylneuraminic acid residues. By contrast, no significant increase in the release of sialic acid was detected when certain other substrates could not be de-O-acetylated by the action of influenza C esterase, either because they lacked O-acetylsialic acid (human glycophorin A, alpha 1-acid glycoprotein from human serum, fetuin and porcine submandibular gland mucin) or because the 4-O-acetyl group was scarcely cleaved by the viral O-acetylesterase (equine submandibular gland mucin). The biological significance of these facts is discussed, relative to the infective capacity of influenza C virus.

  16. Single-channel measurements of an N-acetylneuraminic acid-inducible outer membrane channel in Escherichia coli

    PubMed Central

    Giri, Janhavi; Tang, John M.; Wirth, Christophe; Peneff, Caroline M.

    2012-01-01

    NanC is an Escherichia coli outer membrane protein involved in sialic acid (Neu5Ac, i.e., N-acetylneuraminic acid) uptake. Expression of the NanC gene is induced and controlled by Neu5Ac. The transport mechanism of Neu5Ac is not known. The structure of NanC was recently solved (PDB code: 2WJQ) and includes a unique arrangement of positively charged (basic) side chains consistent with a role in acidic sugar transport. However, initial functional measurements of NanC failed to find its role in the transport of sialic acids, perhaps because of the ionic conditions used in the experiments. We show here that the ionic conditions generally preferred for measuring the function of outer-membrane porins are not appropriate for NanC. Single channels of NanC at pH 7.0 have: (1) conductance 100 pS to 800 pS in 100 mM KCl to 3 M KCl), (2) anion over cation selectivity (Vreversal = +16 mV in 250 mM KCl || 1 M KCl), and (3) two forms of voltage-dependent gating (channel closures above ±200 mV). Single-channel conductance decreases by 50% when HEPES concentration is increased from 100 μM to 100 mM in 250 mM KCl at pH 7.4, consistent with the two HEPES binding sites observed in the crystal structure. Studying alternative buffers, we find that phosphate interferes with the channel conductance. Single-channel conductance decreases by 19% when phosphate concentration is increased from 0 mM to 5 mM in 250 mM KCl at pH 8.0. Surprisingly, TRIS in the baths reacts with Ag|AgCl electrodes, producing artifacts even when the electrodes are on the far side of agar–KCl bridges. A suitable baseline solution for NanC is 250 mM KCl adjusted to pH 7.0 without buffer. PMID:22246445

  17. Distribution of Neuraminidase and N-Acetylneuraminate Lyase Activities Among Corynebacteria, Mycobacteria, and Nocardias

    PubMed Central

    Arden, Sheldon B.; Chang, Woo-Hyun; Barksdale, Lane

    1972-01-01

    In Corynebacterium diphtheriae and closely related neuraminidase-producing corynebacteria, we have found an N-acetylneuraminate (NAN) lyase activity which cleaves NAN into N-acetyl-d-mannosamine and, presumably, pyruvate. In vitro, these lyases can be shown to synthesize NAN. A survey of representative corynebacteria, “plant pathogenic corynebacteria,” mycobacteria, and nocardias revealed that only those corynebacteria closely related to C. diphtheriae exhibited both neuraminidase and NAN lyase activities. PMID:4629654

  18. Generation of α1,3-galactosyltransferase and cytidine monophospho-N-acetylneuraminic acid hydroxylase gene double-knockout pigs

    PubMed Central

    MIYAGAWA, Shuji; MATSUNARI, Hitomi; WATANABE, Masahito; NAKANO, Kazuaki; UMEYAMA, Kazuhiro; SAKAI, Rieko; TAKAYANAGI, Shuko; TAKEISHI, Toki; FUKUDA, Tooru; YASHIMA, Sayaka; MAEDA, Akira; EGUCHI, Hiroshi; OKUYAMA, Hiroomi; NAGAYA, Masaki; NAGASHIMA, Hiroshi

    2015-01-01

    Zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) are new tools for producing gene knockout (KO) animals. The current study reports produced genetically modified pigs, in which two endogenous genes were knocked out. Porcine fibroblast cell lines were derived from homozygous α1,3-galactosyltransferase (GalT) KO pigs. These cells were subjected to an additional KO for the cytidine monophospho-N-acetylneuraminic acid hydroxylase (CMAH) gene. A pair of ZFN-encoding mRNAs targeting exon 8 of the CMAH gene was used to generate the heterozygous CMAH KO cells, from which cloned pigs were produced by somatic cell nuclear transfer (SCNT). One of the cloned pigs obtained was re-cloned after additional KO of the remaining CMAH allele using the same ZFN-encoding mRNAs to generate GalT/CMAH-double homozygous KO pigs. On the other hand, the use of TALEN-encoding mRNAs targeting exon 7 of the CMAH gene resulted in efficient generation of homozygous CMAH KO cells. These cells were used for SCNT to produce cloned pigs homozygous for a double GalT/CMAH KO. These results demonstrate that the combination of TALEN-encoding mRNA, in vitro selection of the nuclear donor cells and SCNT provides a robust method for generating KO pigs. PMID:26227017

  19. Generation of α1,3-galactosyltransferase and cytidine monophospho-N-acetylneuraminic acid hydroxylase gene double-knockout pigs.

    PubMed

    Miyagawa, Shuji; Matsunari, Hitomi; Watanabe, Masahito; Nakano, Kazuaki; Umeyama, Kazuhiro; Sakai, Rieko; Takayanagi, Shuko; Takeishi, Toki; Fukuda, Tooru; Yashima, Sayaka; Maeda, Akira; Eguchi, Hiroshi; Okuyama, Hiroomi; Nagaya, Masaki; Nagashima, Hiroshi

    2015-01-01

    Zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) are new tools for producing gene knockout (KO) animals. The current study reports produced genetically modified pigs, in which two endogenous genes were knocked out. Porcine fibroblast cell lines were derived from homozygous α1,3-galactosyltransferase (GalT) KO pigs. These cells were subjected to an additional KO for the cytidine monophospho-N-acetylneuraminic acid hydroxylase (CMAH) gene. A pair of ZFN-encoding mRNAs targeting exon 8 of the CMAH gene was used to generate the heterozygous CMAH KO cells, from which cloned pigs were produced by somatic cell nuclear transfer (SCNT). One of the cloned pigs obtained was re-cloned after additional KO of the remaining CMAH allele using the same ZFN-encoding mRNAs to generate GalT/CMAH-double homozygous KO pigs. On the other hand, the use of TALEN-encoding mRNAs targeting exon 7 of the CMAH gene resulted in efficient generation of homozygous CMAH KO cells. These cells were used for SCNT to produce cloned pigs homozygous for a double GalT/CMAH KO. These results demonstrate that the combination of TALEN-encoding mRNA, in vitro selection of the nuclear donor cells and SCNT provides a robust method for generating KO pigs.

  20. Progesterone Receptor-Mediated Regulation of N-Acetylneuraminate Pyruvate Lyase (NPL) in Mouse Uterine Luminal Epithelium and Nonessential Role of NPL in Uterine Function

    PubMed Central

    Xiao, Shuo; Li, Rong; Diao, Honglu; Zhao, Fei; Ye, Xiaoqin

    2013-01-01

    N-acetylneuraminate pyruvate lyase (NPL) catalyzes N-acetylneuraminic acid, the predominant sialic acid. Microarray analysis of the periimplantation mouse uterine luminal epithelium (LE) revealed Npl being the most downregulated (35×) gene in the LE upon embryo implantation. In natural pregnant mouse uterus, Npl expression increased 56× from gestation day 0.5 (D0.5) to D2.5. In ovariectomized mouse uterus, Npl was significantly upregulated by progesterone (P4) but downregulated by 17β-estradiol (E2). Progesterone receptor (PR) antagonist RU486 blocked the upregulation of Npl in both preimplantation uterus and P4-treated ovariectomized uterus. Npl was specifically localized in the preimplantation D2.5 and D3.5 uterine LE. Since LE is essential for establishing uterine receptivity, it was hypothesized that NPL might play a critical role in uterine function, especially during embryo implantation. This hypothesis was tested in the Npl (−/−) mice. No significant differences were observed in the numbers of implantation sites on D4.5, gestation periods, litter sizes, and postnatal offspring growth between wild type (WT) and Npl (−/−) females from mating with WT males. Npl (−/−)xNpl (−/−) crosses produced comparable little sizes as that from WTxWT crosses. Comparable mRNA expression levels of several genes involved in sialic acid metabolism were observed in D3.5 uterus and uterine LE between WT and Npl (−/−), indicating no compensatory upregulation in the D3.5 Npl (−/−) uterus and LE. This study demonstrates PR-mediated dynamic expression of Npl in the periimplantation uterus and dispensable role of Npl in uterine function and embryo development. PMID:23741500

  1. Knockout of Cytidine Monophospho-N-Acetylneuraminic Acid (CMP-NeuAc) Hydroxylase From Porcine Endothelial Cells by a CRISPR System.

    PubMed

    Sakai, R; Esaki, Y; Hasuwa, H; Ikawa, M; Lo, P; Matsuura, R; Nakahata, K; Zenitani, M; Asada, M; Maeda, A; Eguchi, H; Okuyama, H; Miyagawa, S

    2016-05-01

    We attempted to knock out the expression of Hanganutziu-Deicher (H-D) antigens through the use of a CRISPR (clustered regulatory interspaced short palindromic repeat)/Cas9 system for pig cytidine monophospho-N-acetylneuraminic acid hydroxylase (CMAH). Plasmids expressing hCas9 and sgRNA for pCMAH were prepared by ligating oligos into the BbsI site of pX330. The N-terminal and C-terminal EGFP coding regions overlapping 482 bp were PCR-amplified and placed under a ubiquitous CAG promoter. The approximately 400-bp genomic fragments containing the sgRNA target sequence of pCMAH were placed into the multi-cloning sites flanked by the EGFP fragments. The pCAG-EGxxFP-target was mixed with pX330 with/without the sgRNA sequences and then introduced into HEK293T cells. Four oligos and primers, gSO1, gSO3, gSO4, and gSO8, were nominated from 8 candidates. Among them, gSO1 showed the best efficiency. Pig endothelial cells (PECs) from an α-Gal knockout pig were then used to examine the changes in the expression of the H-D antigen by the knockout of the CMAH genome by the pX330-gS01. Changes in the expression of the H-D antigen in the PECs with the CRISPR (gS01) were clear in comparison with those in the parental cells, on the basis of FACS analysis data. The expression of the H-D antigen can be knocked out by use of the CRISPR system for pCMAH, thus confirming that this system is a very convenient system for producing knockout pigs. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Low incidence of N-glycolylneuraminic acid in birds and reptiles and its absence in the platypus.

    PubMed

    Schauer, Roland; Srinivasan, G Vinayaga; Coddeville, Bernadette; Zanetta, Jean-Pierre; Guérardel, Yann

    2009-08-17

    The sialic acids of the platypus, birds, and reptiles were investigated with regard to the occurrence of N-glycolylneuraminic (Neu5Gc) acid. They were released from tissues, eggs, or salivary mucin samples by acid hydrolysis, and purified and analyzed by thin-layer chromatography, high-performance liquid chromatography, and mass spectrometry. In muscle and liver of the platypus only N-acetylneuraminic (Neu5Ac) acid was found. The nine bird species studied also did not express N-glycolylneuraminic acid with the exception of an egg, but not tissues, from the budgerigar and traces in poultry. Among nine reptiles, including one turtle, N-glycolylneuraminic acid was only found in the egg and an adult basilisk, but not in a freshly hatched animal. BLAST analysis of the genomes of the platypus, the chicken, and zebra finch against the CMP-N-acetylneuraminic acid hydroxylase did not reveal the existence of a similar protein structure. Apparently monotremes (platypus) and sauropsids (birds and reptiles) cannot synthesize Neu5Gc. The few animals where Neu5Gc was found, especially in eggs, may have acquired this from the diet or by an alternative pathway. Since Neu5Gc is antigenic to man, the observation that this monosaccharide does not or at least only rarely occur in birds and reptiles, may be of nutritional and clinical significance.

  3. Production of α1,3-galactosyltransferase and cytidine monophosphate-N-acetylneuraminic acid hydroxylase gene double-deficient pigs by CRISPR/Cas9 and handmade cloning.

    PubMed

    Gao, Hanchao; Zhao, Chengjiang; Xiang, Xi; Li, Yong; Zhao, Yanli; Li, Zesong; Pan, Dengke; Dai, Yifan; Hara, Hidetaka; Cooper, David K C; Cai, Zhiming; Mou, Lisha

    2017-02-16

    Gene-knockout pigs hold great promise as a solution to the shortage of organs from donor animals for xenotransplantation. Several groups have generated gene-knockout pigs via clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) and somatic cell nuclear transfer (SCNT). Herein, we adopted a simple and micromanipulator-free method, handmade cloning (HMC) instead of SCNT, to generate double gene-knockout pigs. First, we applied the CRISPR/Cas9 system to target α1,3-galactosyltransferase (GGTA1) and cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH) genes simultaneously in porcine fetal fibroblast cells (PFFs), which were derived from wild-type Chinese domestic miniature Wuzhishan pigs. Cell colonies were obtained by screening and were identified by Surveyor assay and sequencing. Next, we chose the GGTA1/CMAH double-knockout (DKO) cells for HMC to produce piglets. As a result, we obtained 11 live bi-allelic GGTA1/CMAH DKO piglets with the identical phenotype. Compared to cells from GGTA1-knockout pigs, human antibody binding and antibody-mediated complement-dependent cytotoxicity were significantly reduced in cells from GGTA1/CMAH DKO pigs, which demonstrated that our pigs would exhibit reduced humoral rejection in xenotransplantation. These data suggested that the combination of CRISPR/Cas9 and HMC technology provided an efficient and new strategy for producing pigs with multiple genetic modifications.

  4. A simple synthesis of N-perfluoroacylated and N-acylated glycals of neuraminic acid with a cyclic aminic substituent at the 4α position as possible inhibitors of sialidases.

    PubMed

    Rota, Paola; Allevi, Pietro; Agnolin, Irene S; Mattina, Roberto; Papini, Nadia; Anastasia, Mario

    2012-04-14

    A simple protocol for the synthesis of N-perfluoroacylated and N-acylated glycals of neuraminic acid, with a secondary cyclic amine (morpholine or piperidine) at the 4α position, has been set-up, starting from peracetylated N-acetylneuraminic acid methyl ester that undergoes, sequentially to its direct N-transacylation followed by a C-4 amination, a β-elimination, and a selective hydrolysis of the ester functions, without affecting the sensitive perfluorinated amide. This journal is © The Royal Society of Chemistry 2012

  5. A sensitive and efficient method for determination of N-acetylhexosamines and N-acetylneuraminic acid in breast milk and milk-based products by high-performance liquid chromatography via UV detection and mass spectrometry identification.

    PubMed

    Chuanxiang, Wu; Lian, Xia; Lijie, Liu; Fengli, Qu; Zhiwei, Sun; Xianen, Zhao; Jinmao, You

    2016-02-01

    A sensitive and efficient method of high performance liquid chromatography using 1-(2-naphthyl)-3-methyl-5-pyrazolone (NMP) as pre-column derivatization reagent coupled with UV detection (HPLC-UV) and online mass spectrometry identification was established for determination of the most common N-Acetylhexosamines (N-acetyl-d-glucosamine (GlcNAc) and N-acetyl-d-galactosamine (GalNAc)) and N-acetylneuraminic acid (Neu5Ac). In order to obtain the highest liberation level of the three monosaccharides without destruction of Neu5Ac or conversion of GlcNAc/GalNAc to GlcN/GalN in the hydrolysis procedure, the pivotal parameters affecting the liberation of N-acetylhexosamines/Neu5Ac from sample were investigated with response surface methodology (RSM). Under the optimized condition, maximum yield was obtained. The effects of key parameters on derivatization, separation and detection were also investigated. At optimized conditions, three monosaccharides were labeled fast and entirely, and all derivatives exhibited a good baseline resolution and high detection sensitivity. The developed method was linear over the calibration range 0.25-12μM, with R(2)>0.9991. The detection limits of the method were between 0.48 and 2.01pmol. Intra- and inter-day precisions for the three monosaccharides (GlcNAc, GalNAc and Neu5Ac) were found to be in the range of 3.07-4.02% and 3.69-4.67%, respectively. Individual monosaccharide recovery from spiked milk was in the range of 81%-97%. The sensitivity of the method, the facility of the derivatization procedure and the reliability of the hydrolysis conditions suggest the proposed method has a high potential for utilization in routine trace N-acetylhexosamines and Neu5Ac analysis in biological samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Application of fluorescence resonance energy transfer techniques to the study of lectin-binding site distribution on Paramecium primaurelia (Protista, Ciliophora) cell surface.

    PubMed

    Locatelli, D; Delmonte Corrado, M U; Politi, H; Bottiroli, G

    1998-01-01

    Fluorescence resonance energy transfer (FRET) is a photophysical phenomenon occurring between the molecules of two fluorochromes with suitable spectral characteristics (donor-acceptor dye pair), and consisting in an excitation energy migration through a non-radiative process. Since the efficiency of the process is strictly dependent on the distance and reciprocal orientation of the donor and acceptor molecules, FRET-based techniques can be successfully applied to the study of biomolecules and cell component organisation and distribution. These techniques have been employed in studying Paramecium primaurelia surface membrane for the reciprocal distribution of N-acetylneuraminic acid (NeuAc) and N-acetylglucosamine (GlcNAc) glycosidic residues, which were found to be involved in mating cell pairing. NeuAc and GlcNAc were detected by their specific binding lectins, Limulus polyphemus agglutinin (LPA) and wheat germ agglutinin (WGA), respectively. Microspectrofluorometric analysis afforded the choice of fluorescein isothiocyanate and Texas red conjugated with LPA and WGA, respectively, as a suitable donor-acceptor couple efficiently activating FRET processes. Studies performed both in solution and in cells allowed to define the experimental conditions favourable for a FRET analysis. The comparative study carried out both on the conjugating-region and the non conjugating region of the surface membrane, indicates that FRET distribution appears quite homogeneous in mating-competent mating type (mt) I, whereas, in mating-competent mt II cells, FRET distribution seems to be preferentially localised on the conjugating-region functionally involved in mating cell pairing. This difference in the distribution of lectin-binding sites is suggested to be related to mating-competence acquisition.

  7. CMP‑N‑acetylneuraminic acid synthetase interacts with fragile X related protein 1.

    PubMed

    Ma, Yun; Tian, Shuai; Wang, Zongbao; Wang, Changbo; Chen, Xiaowei; Li, Wei; Yang, Yang; He, Shuya

    2016-08-01

    Fragile X mental retardation protein (FMRP), fragile X related 1 protein (FXR1P) and FXR2P are the members of the FMR protein family. These proteins contain two KH domains and a RGG box, which are characteristic of RNA binding proteins. The absence of FMRP, causes fragile X syndrome (FXS), the leading cause of hereditary mental retardation. FXR1P is expressed throughout the body and important for normal muscle development, and its absence causes cardiac abnormality. To investigate the functions of FXR1P, a screen was performed to identify FXR1P‑interacting proteins and determine the biological effect of the interaction. The current study identified CMP‑N‑acetylneuraminic acid synthetase (CMAS) as an interacting protein using the yeast two‑hybrid system, and the interaction between FXR1P and CMAS was validated in yeast using a β‑galactosidase assay and growth studies with selective media. Furthermore, co‑immunoprecipitation was used to analyze the FXR1P/CMAS association and immunofluorescence microscopy was performed to detect expression and intracellular localization of the proteins. The results of the current study indicated that FXR1P and CMAS interact, and colocalize in the cytoplasm and the nucleus of HEK293T and HeLa cells. Accordingly, a fragile X related 1 (FXR1) gene overexpression vector was constructed to investigate the effect of FXR1 overexpression on the level of monosialotetrahexosylganglioside 1 (GM1). The results of the current study suggested that FXR1P is a tissue‑specific regulator of GM1 levels in SH‑SY5Y cells, but not in HEK293T cells. Taken together, the results initially indicate that FXR1P interacts with CMAS, and that FXR1P may enhance the activation of sialic acid via interaction with CMAS, and increase GM1 levels to affect the development of the nervous system, thus providing evidence for further research into the pathogenesis of FXS.

  8. Synthesis of novel ganglioside GM4 analogues containing N-deacetylated and lactamized sialic acid: probes for searching new ligand structures for human L-selectin.

    PubMed

    Otsubo, N; Ishida, H; Kiso, M

    2001-01-15

    Novel ganglioside GM4 analogues, which contain N-deacetylated or lactamized sialic acid instead of usual N-acetylneuraminic acid, were synthesized in a highly efficient manner. (Methyl 4,7,8,9-tetra-O-acetyl-3,5-dideoxy-5-trifluoroacetamido-D-glycero-alpha-D-galacto-2-nonulopyranosylonate)-(2-->3)-4,6-di-O-acetyl-2-O-benzoyl-D-galactopyranosyl trichloroacetimidate was coupled with 2-(tetradecyl)hexadecanol to give the desired beta-glycoside in high yield. Successive O- and N-deacylation, and saponification of the methyl ester group afforded the N-deacetylated sialyl derivative that was converted by treatment with 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride in Me2SO into the lactamized sialic acid-containing ganglioside GM4 analogue.

  9. N-Glycans Modulate the Function of Human Corticosteroid-Binding Globulin*

    PubMed Central

    Sumer-Bayraktar, Zeynep; Kolarich, Daniel; Campbell, Matthew P.; Ali, Sinan; Packer, Nicolle H.; Thaysen-Andersen, Morten

    2011-01-01

    Human corticosteroid-binding globulin (CBG), a heavily glycosylated protein containing six N-linked glycosylation sites, transports cortisol and other corticosteroids in blood circulation. Here, we investigate the biological importance of the N-glycans of CBG derived from human serum by performing a structural and functional characterization of CBG N-glycosylation. Liquid chromatography-tandem MS-based glycoproteomics and glycomics combined with exoglycosidase treatment revealed 26 complex type N-glycoforms, all of which were terminated with α2,3-linked neuraminic acid (NeuAc) residues. The CBG N-glycans showed predominantly bi- and tri-antennary branching, but higher branching was also observed. N-glycans from all six N-glycosylation sites were identified with high site occupancies (70.5–99.5%) and glycoforms from all sites contained a relatively low degree of core-fucosylation (0–34.9%). CBG showed site-specific glycosylation and the site-to-site differences in core-fucosylation and branching could be in silico correlated with the accessibility to the individual glycosylation sites on the maturely folded protein. Deglycosylated and desialylated CBG analogs were generated to investigate the biological importance of CBG N-glycans. As a functional assay, MCF-7 cells were challenged with native and glycan-modified CBG and the amount of cAMP, which is produced as a quantitative response upon CBG binding to its cell surface receptor, was used to evaluate the CBG:receptor interaction. The removal of both CBG N-glycans and NeuAc residues increased the production of cAMP significantly. This confirms that N-glycans are involved in the CBG:receptor interaction and indicates that the modulation is performed by steric and/or electrostatic means through the terminal NeuAc residues. PMID:21558494

  10. Structural insights into the recovery of aldolase activity in N-acetylneuraminic acid lyase by replacement of the catalytically active lysine with γ-thialysine by using a chemical mutagenesis strategy.

    PubMed

    Timms, Nicole; Windle, Claire L; Polyakova, Anna; Ault, James R; Trinh, Chi H; Pearson, Arwen R; Nelson, Adam; Berry, Alan

    2013-03-04

    Chemical modification has been used to introduce the unnatural amino acid γ-thialysine in place of the catalytically important Lys165 in the enzyme N-acetylneuraminic acid lyase (NAL). The Staphylococcus aureus nanA gene, encoding NAL, was cloned and expressed in E. coli. The protein, purified in high yield, has all the properties expected of a class I NAL. The S. aureus NAL which contains no natural cysteine residues was subjected to site-directed mutagenesis to introduce a cysteine in place of Lys165 in the enzyme active site. Subsequently chemical mutagenesis completely converted the cysteine into γ-thialysine through dehydroalanine (Dha) as demonstrated by ESI-MS. Initial kinetic characterisation showed that the protein containing γ-thialysine regained 17 % of the wild-type activity. To understand the reason for this lower activity, we solved X-ray crystal structures of the wild-type S. aureus NAL, both in the absence of, and in complex with, pyruvate. We also report the structures of the K165C variant, and the K165-γ-thialysine enzyme in the presence, or absence, of pyruvate. These structures reveal that γ-thialysine in NAL is an excellent structural mimic of lysine. Measurement of the pH-activity profile of the thialysine modified enzyme revealed that its pH optimum is shifted from 7.4 to 6.8. At its optimum pH, the thialysine-containing enzyme showed almost 30 % of the activity of the wild-type enzyme at its pH optimum. The lowered activity and altered pH profile of the unnatural amino acid-containing enzyme can be rationalised by imbalances of the ionisation states of residues within the active site when the pK(a) of the residue at position 165 is perturbed by replacement with γ-thialysine. The results reveal the utility of chemical mutagenesis for the modification of enzyme active sites and the exquisite sensitivity of catalysis to the local structural and electrostatic environment in NAL. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Sialylation potentials of the silkworm, Bombyx mori; B. mori possesses an active α2,6-sialyltransferase.

    PubMed

    Kajiura, Hiroyuki; Hamaguchi, Yuichi; Mizushima, Hiroki; Misaki, Ryo; Fujiyama, Kazuhito

    2015-12-01

    N-Glycosylation is an important post-translational modification in most secreted and membrane-bound proteins in eukaryotic cells. However, the insect N-glycosylation pathway and the potentials contributing to the N-glycan synthesis are still unclear because most of the studies on these subjects have focused on mammals and plants. Here, we identified Bombyx mori sialyltransferase (BmST), which is a Golgi-localized glycosyltransferase and which can modify N-glycans. BmST was ubiquitously expressed in different organs and in various stages of development and localized at the Golgi. Biochemical analysis using Sf9-expressed BmST revealed that BmST encoded α2,6-sialyltransferase and transferred N-acetylneuraminic acid (NeuAc) to the nonreducing terminus of Galβ1-R, but exhibited the highest activity toward GalNAcβ1,4-GlcNAc-R. Unlike human α2,6-sialyltransferase, BmST required the post-translational modification, especially N-glycosylation, for its full activity. N-Glycoprotein analysis of B. mori fifth instar larvae revealed that high-mannose-type structure was predominant and GlcNAc-linked and fucosylated structures were observed but endogenous galactosyl-, N-acetylgalactosaminyl- and sialyl-N-glycoproteins were undetectable under the standard analytical approach. These results indicate that B. mori genome encodes an α2,6-sialyltransferase, but further investigations of the sialylation potentials are necessary. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Metabolism of vertebrate amino sugars with N-glycolyl groups: mechanisms underlying gastrointestinal incorporation of the non-human sialic acid xeno-autoantigen N-glycolylneuraminic acid.

    PubMed

    Banda, Kalyan; Gregg, Christopher J; Chow, Renee; Varki, Nissi M; Varki, Ajit

    2012-08-17

    Although N-acetyl groups are common in nature, N-glycolyl groups are rare. Mammals express two major sialic acids, N-acetylneuraminic acid and N-glycolylneuraminic acid (Neu5Gc). Although humans cannot produce Neu5Gc, it is detected in the epithelial lining of hollow organs, endothelial lining of the vasculature, fetal tissues, and carcinomas. This unexpected expression is hypothesized to result via metabolic incorporation of Neu5Gc from mammalian foods. This accumulation has relevance for diseases associated with such nutrients, via interaction with Neu5Gc-specific antibodies. Little is known about how ingested sialic acids in general and Neu5Gc in particular are metabolized in the gastrointestinal tract. We studied the gastrointestinal and systemic fate of Neu5Gc-containing glycoproteins (Neu5Gc-glycoproteins) or free Neu5Gc in the Neu5Gc-free Cmah(-/-) mouse model. Ingested free Neu5Gc showed rapid absorption into the circulation and urinary excretion. In contrast, ingestion of Neu5Gc-glycoproteins led to Neu5Gc incorporation into the small intestinal wall, appearance in circulation at a steady-state level for several hours, and metabolic incorporation into multiple peripheral tissue glycoproteins and glycolipids, thus conclusively proving that Neu5Gc can be metabolically incorporated from food. Feeding Neu5Gc-glycoproteins but not free Neu5Gc mimics the human condition, causing tissue incorporation into human-like sites in Cmah(-/-) fetal and adult tissues, as well as developing tumors. Thus, glycoproteins containing glycosidically linked Neu5Gc are the likely dietary source for human tissue accumulation, and not the free monosaccharide. This human-like model can be used to elucidate specific mechanisms of Neu5Gc delivery from the gut to tissues, as well as general mechanisms of metabolism of ingested sialic acids.

  13. Chemoselective synthesis of sialic acid 1,7-lactones.

    PubMed

    Allevi, Pietro; Rota, Paola; Scaringi, Raffaella; Colombo, Raffaele; Anastasia, Mario

    2010-08-20

    The chemoselective synthesis of the 1,7-lactones of N-acetylneuraminic acid, N-glycolylneuraminic acid, and 3-deoxy-d-glycero-d-galacto-nononic acid is accomplished in two steps: a simple treatment of the corresponding free sialic acid with benzyloxycarbonyl chloride and a successive hydrogenolysis of the formed 2-benzyloxycarbonyl 1,7-lactone. The instability of the 1,7-lactones to protic solvents has been also evidenced together with the rationalization of the mechanism of their formation under acylation conditions. The results permit to dispose of authentic 1,7-sialolactones to be used as reference standards and of a procedure useful for the preparation of their isotopologues to be used as inner standards in improved analytical procedures for the gas liquid chromatography-mass spectrometry (GLC-MS) analysis of 1,7-sialolactones in biological media.

  14. Metabolism of vertebrate amino sugars with N-glycolyl groups: resistance of α2-8-linked N-glycolylneuraminic acid to enzymatic cleavage.

    PubMed

    Davies, Leela R L; Pearce, Oliver M T; Tessier, Matthew B; Assar, Siavash; Smutova, Victoria; Pajunen, Maria; Sumida, Mizuki; Sato, Chihiro; Kitajima, Ken; Finne, Jukka; Gagneux, Pascal; Pshezhetsky, Alexey; Woods, Robert; Varki, Ajit

    2012-08-17

    The sialic acid (Sia) N-acetylneuraminic acid (Neu5Ac) and its hydroxylated derivative N-glycolylneuraminic acid (Neu5Gc) differ by one oxygen atom. CMP-Neu5Gc is synthesized from CMP-Neu5Ac, with Neu5Gc representing a highly variable fraction of total Sias in various tissues and among different species. The exception may be the brain, where Neu5Ac is abundant and Neu5Gc is reported to be rare. Here, we confirm this unusual pattern and its evolutionary conservation in additional samples from various species, concluding that brain Neu5Gc expression has been maintained at extremely low levels over hundreds of millions of years of vertebrate evolution. Most explanations for this pattern do not require maintaining neural Neu5Gc at such low levels. We hypothesized that resistance of α2-8-linked Neu5Gc to vertebrate sialidases is the detrimental effect requiring the relative absence of Neu5Gc from brain. This linkage is prominent in polysialic acid (polySia), a molecule with critical roles in vertebrate neural development. We show that Neu5Gc is incorporated into neural polySia and does not cause in vitro toxicity. Synthetic polymers of Neu5Ac and Neu5Gc showed that mammalian and bacterial sialidases are much less able to hydrolyze α2-8-linked Neu5Gc at the nonreducing terminus. Notably, this difference was not seen with acid-catalyzed hydrolysis of polySias. Molecular dynamics modeling indicates that differences in the three-dimensional conformation of terminal saccharides may partly explain reduced enzymatic activity. In keeping with this, polymers of N-propionylneuraminic acid are sensitive to sialidases. Resistance of Neu5Gc-containing polySia to sialidases provides a potential explanation for the rarity of Neu5Gc in the vertebrate brain.

  15. N-Glycolylneuraminic acid deficiency worsens cardiac and skeletal muscle pathophysiology in α-sarcoglycan-deficient mice

    PubMed Central

    Martin, Paul T; Camboni, Marybeth; Xu, Rui; Golden, Bethannie; Chandrasekharan, Kumaran; Wang, Chiou-Miin; Varki, Ajit; Janssen, Paul M L

    2013-01-01

    Roughly 3 million years ago, an inactivating deletion occurred in CMAH, the human gene encoding CMP-Neu5Ac (cytidine-5′-monophospho-N-acetylneuraminic acid) hydroxylase (Chou HH, Takematsu H, Diaz S, Iber J, Nickerson E, Wright KL, Muchmore EA, Nelson DL, Warren ST, Varki A. 1998. A mutation in human CMP-sialic acid hydroxylase occurred after the Homo-Pan divergence. Proc Natl Acad Sci USA. 95:11751–11756). This inactivating deletion is now homozygous in all humans, causing the loss of N-glycolylneuraminic acid (Neu5Gc) biosynthesis in all human cells and tissues. The CMAH enzyme is active in other mammals, including mice, where Neu5Gc is an abundant form of sialic acid on cellular membranes, including those in cardiac and skeletal muscle. We recently demonstrated that the deletion of mouse Cmah worsened the severity of pathophysiology measures related to muscular dystrophy in mdx mice, a model for Duchenne muscular dystrophy (Chandrasekharan K, Yoon JH, Xu Y, deVries S, Camboni M, Janssen PM, Varki A, Martin PT. 2010. A human-specific deletion in mouse Cmah increases disease severity in the mdx model of Duchenne muscular dystrophy. Sci Transl Med. 2:42–54). Here, we demonstrate similar changes in cardiac and skeletal muscle pathology and physiology resulting from Cmah deletion in α-sarcoglycan-deficient (Sgca−/−) mice, a model for limb girdle muscular dystrophy 2D. These experiments demonstrate that loss of mouse Cmah can worsen disease severity in more than one form of muscular dystrophy and suggest that Cmah may be a general genetic modifier of muscle disease. PMID:23514716

  16. Catabolism of N-Acetylneuraminic Acid, a Fitness Function of the Food-Borne Lactic Acid Bacterium Lactobacillus sakei, Involves Two Newly Characterized Proteins

    PubMed Central

    Chaillou, Stéphane; Zagorec, Monique; Champomier-Vergès, Marie-Christine

    2013-01-01

    In silico analysis of the genome sequence of the meat-borne lactic acid bacterium (LAB) Lactobacillus sakei 23K has revealed a repertoire of potential functions related to the adaptation of this bacterium to the meat environment. Among these functions, the ability to use N-acetyl-neuraminic acid (NANA) as a carbon source could provide a competitive advantage for growth on meat in which this amino sugar is present. In this work, we proposed to analyze the functionality of a gene cluster encompassing nanTEAR and nanK (nanTEAR-nanK). We established that this cluster encoded a pathway allowing transport and early steps of the catabolism of NANA in this genome. We also demonstrated that this cluster was absent from the genome of other L. sakei strains that were shown to be unable to grow on NANA. Moreover, L. sakei 23K nanA, nanT, nanK, and nanE genes were able to complement Escherichia coli mutants. Construction of different mutants in L. sakei 23K ΔnanR, ΔnanT, and ΔnanK and the double mutant L. sakei 23K Δ(nanA-nanE) made it possible to show that all were impaired for growth on NANA. In addition, two genes located downstream from nanK, lsa1644 and lsa1645, are involved in the catabolism of sialic acid in L. sakei 23K, as a L. sakei 23K Δlsa1645 mutant was no longer able to grow on NANA. All these results demonstrate that the gene cluster nanTEAR-nanK-lsa1644-lsa1645 is indeed involved in the use of NANA as an energy source by L. sakei. PMID:23335758

  17. A Chemical Biology Solution to Problems with Studying Biologically Important but Unstable 9-O-Acetyl Sialic Acids.

    PubMed

    Khedri, Zahra; Xiao, An; Yu, Hai; Landig, Corinna Susanne; Li, Wanqing; Diaz, Sandra; Wasik, Brian R; Parrish, Colin R; Wang, Lee-Ping; Varki, Ajit; Chen, Xi

    2017-01-20

    9-O-Acetylation is a common natural modification on sialic acids (Sias) that terminate many vertebrate glycan chains. This ester group has striking effects on many biological phenomena, including microbe-host interactions, complement action, regulation of immune responses, sialidase action, cellular apoptosis, and tumor immunology. Despite such findings, 9-O-acetyl sialoglycoconjugates have remained largely understudied, primarily because of marked lability of the 9-O-acetyl group to even small pH variations and/or the action of mammalian or microbial esterases. Our current studies involving 9-O-acetylated sialoglycans on glycan microarrays revealed that even the most careful precautions cannot ensure complete stability of the 9-O-acetyl group. We now demonstrate a simple chemical biology solution to many of these problems by substituting the oxygen atom in the ester with a nitrogen atom, resulting in sialic acids with a chemically and biologically stable 9-N-acetyl group. We present an efficient one-pot multienzyme method to synthesize a sialoglycan containing 9-acetamido-9-deoxy-N-acetylneuraminic acid (Neu5Ac9NAc) and compare it to the one with naturally occurring 9-O-acetyl-N-acetylneuraminic acid (Neu5,9Ac 2 ). Conformational resemblance of the two molecules was confirmed by computational molecular dynamics simulations. Microarray studies showed that the Neu5Ac9NAc-sialoglycan is a ligand for viruses naturally recognizing Neu5,9Ac 2 , with a similar affinity but with much improved stability in handling and study. Feeding of Neu5Ac9NAc or Neu5,9Ac 2 to mammalian cells resulted in comparable incorporation and surface expression as well as binding to 9-O-acetyl-Sia-specific viruses. However, cells fed with Neu5Ac9NAc remained resistant to viral esterases and showed a slower turnover. This simple approach opens numerous research opportunities that have heretofore proved intractable.

  18. Physiological Exploration of the Long Term Evolutionary Selection against Expression of N-Glycolylneuraminic Acid in the Brain*♦

    PubMed Central

    Naito-Matsui, Yuko; Davies, Leela R. L.; Takematsu, Hiromu; Chou, Hsun-Hua; Tangvoranuntakul, Pam; Carlin, Aaron F.; Verhagen, Andrea; Heyser, Charles J.; Yoo, Seung-Wan; Choudhury, Biswa; Paton, James C.; Paton, Adrienne W.; Varki, Nissi M.; Schnaar, Ronald L.; Varki, Ajit

    2017-01-01

    All vertebrate cell surfaces display a dense glycan layer often terminated with sialic acids, which have multiple functions due to their location and diverse modifications. The major sialic acids in most mammalian tissues are N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc), the latter being derived from Neu5Ac via addition of one oxygen atom at the sugar nucleotide level by CMP-Neu5Ac hydroxylase (Cmah). Contrasting with other organs that express various ratios of Neu5Ac and Neu5Gc depending on the variable expression of Cmah, Neu5Gc expression in the brain is extremely low in all vertebrates studied to date, suggesting that neural expression is detrimental to animals. However, physiological exploration of the reasons for this long term evolutionary selection has been lacking. To explore the consequences of forced expression of Neu5Gc in the brain, we have established brain-specific Cmah transgenic mice. Such Neu5Gc overexpression in the brain resulted in abnormal locomotor activity, impaired object recognition memory, and abnormal axon myelination. Brain-specific Cmah transgenic mice were also lethally sensitive to a Neu5Gc-preferring bacterial toxin, even though Neu5Gc was overexpressed only in the brain and other organs maintained endogenous Neu5Gc expression, as in wild-type mice. Therefore, the unusually strict evolutionary suppression of Neu5Gc expression in the vertebrate brain may be explained by evasion of negative effects on neural functions and by selection against pathogens. PMID:28049733

  19. Sugar-binding sites of the HA1 subcomponent of Clostridium botulinum type C progenitor toxin.

    PubMed

    Nakamura, Toshio; Tonozuka, Takashi; Ide, Azusa; Yuzawa, Takayuki; Oguma, Keiji; Nishikawa, Atsushi

    2008-02-22

    Clostridium botulinum type C 16S progenitor toxin contains a hemagglutinin (HA) subcomponent, designated HA1, which appears to play an important role in the effective internalization of the toxin in gastrointestinal epithelial cells and in creating a broad specificity for the oligosaccharide structure that corresponds to various targets. In this study, using the recombinant protein fused to glutathione S-transferase, we investigated the binding specificity of the HA1 subcomponent to sugars and estimated the binding sites of HA1 based on X-ray crystallography and soaking experiments using various sugars. N-Acetylneuraminic acid, N-acetylgalactosamine, and galactose effectively inhibited the binding that occurs between glutathione S-transferase-HA1 and mucins, whereas N-acetylglucosamine and glucose did not inhibit it. The crystal structures of HA1 complex with N-acetylneuraminic acid, N-acetylgalactosamine, and galactose were also determined. There are two sugar-binding sites, sites I and II. Site I corresponds to the electron densities noted for all sugars and is located at the C-terminal beta-trefoil domain, while site II corresponds to the electron densities noted only for galactose. An aromatic amino acid residue, Trp176, at site I has a stacking interaction with the hexose ring of the sugars. On the other hand, there is no aromatic residue at site II; thus, the interaction with galactose seems to be poor. The double mutant W176A at site I and D271F at site II has no avidity for N-acetylneuraminic acid but has avidity for galactose. In this report, the binding specificity of botulinum C16S toxin HA1 to various sugars is demonstrated based on its structural features.

  20. Extensive enrichment of N-glycolylneuraminic acid in extracellular sialoglycoproteins abundantly synthesized and secreted by human cancer cells.

    PubMed

    Inoue, Sadako; Sato, Chihiro; Kitajima, Ken

    2010-06-01

    N-Glycolylneuraminic acid (Neu5Gc) is the second most populous sialic acid (Sia). The only known biosynthetic pathway of Neu5Gc is the hydroxylation of cytidine-5'-monophosphate-N-acetylneuraminic acid (CMP-Neu5Ac), catalyzed by CMP-Neu5Ac hydroxylase (CMAH). Neu5Gc is abundantly found in mammals except for human, in which CMAH is inactivated due to mutation in the CMAH gene. Evidence has accumulated to show occurrence of Neu5Gc-containing glycoconjugates in sera of cancer patients, human cancerous tissues and cultured human cell lines. Recently, occurrence of natural antibodies against Neu5Gc was shown in healthy humans and is a serious problem for clinical xenotransplantation and stem cell therapies. Studying human occurrence of Neu5Gc is of importance and interest in a broad area of medical sciences. In this study, using a fluorometric high performance liquid chromatography method, we performed quantitative analyses of Sias both inside and in the external environment of the cell and found that (i) incorporation of Neu5Gc was most prominent in soluble glycoproteins found both in the extracellular space and inside the cell as the major Sia compounds. (ii) Of the total Neu5Gc in the Sia compounds that the cells synthesized, 90% was found in the secreted sialoglycoproteins, whereas for Neu5Ac, 70% was found in the secreted sialoglycoproteins. (iii) The Neu5Gc ratio was higher in the secreted sialoglycoproteins (as high as 40% of total Sias) than in intracellular sialoglycoproteins. (iv) The majority of the secreted sialoglycoproteins was anchored on the culture dishes and solubilized by brief trypsin treatment. Based on these findings, a new idea on the mechanism of accumulation of Neu5Gc in cancer cells was proposed.

  1. Beta-propeller crystal structure of Psathyrella velutina lectin: an integrin-like fungal protein interacting with monosaccharides and calcium.

    PubMed

    Cioci, Gianluca; Mitchell, Edward P; Chazalet, Valerie; Debray, Henri; Oscarson, Stefan; Lahmann, Martina; Gautier, Catherine; Breton, Christelle; Perez, Serge; Imberty, Anne

    2006-04-14

    The lectin from the mushroom Psathyrella velutina recognises specifically N-acetylglucosamine and N-acetylneuraminic acid containing glycans. The crystal structure of the 401 amino acid residue lectin shows that it adopts a very regular seven-bladed beta-propeller fold with the N-terminal region tucked into the central cavity around the pseudo 7-fold axis. In the complex with N-acetylglucosamine, six monosaccharides are bound in pockets located between two consecutive propeller blades. Due to the repeats shown by the sequence the binding sites are very similar. Five hydrogen bonds between the protein and the sugar hydroxyl and N-acetyl groups stabilize the complex, together with the hydrophobic interactions with a conserved tyrosine and histidine. The complex with N-acetylneuraminic acid shows molecular mimicry with the same hydrogen bond network, but with different orientations of the carbohydrate ring in the binding site. The beta-hairpin loops connecting the two inner beta-strands of each blade are metal binding sites and two to three calcium ions were located in the structure. The multispecificity and high multivalency of this mushroom lectin, combined with its similarity to the extracellular domain of an important class of cell adhesion molecules, integrins, are another example of the outstanding success of beta-propeller structures as molecular binding machines in nature.

  2. Kinetics of Neuraminidase Action on Glycoproteins by One- and Two-Dimensional NMR

    ERIC Educational Resources Information Center

    Barb, Adam W.; Glushka, John N.; Prestegard, James H.

    2011-01-01

    The surfaces of mammalian cells are coated with complex carbohydrates, many terminated with a negatively charged "N"-acetylneuraminic acid residue. This motif is specifically targeted by pathogens, including influenza viruses and many pathogenic bacteria, to gain entry into the cell. A necessary step in the influenza virus life cycle is the…

  3. Crystallization and preliminary X-ray diffraction analysis of the sialic acid-binding domain (VP8*) of porcine rotavirus strain CRW-8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, Stacy A.; Holloway, Gavan; Coulson, Barbara S.

    2005-06-01

    The sialic acid-binding domain (VP8*) component of the porcine CRW-8 rotavirus spike protein has been overexpressed in E. coli, purified and co-crystallized with an N-acetylneuraminic acid derivative. X-ray diffraction data have been collected to 2.3 Å, which has enabled determination of the structure by molecular replacement. Rotavirus recognition and attachment to host cells involves interaction with the spike protein VP4 that projects outwards from the surface of the virus particle. An integral component of these spikes is the VP8* domain, which is implicated in the direct recognition and binding of sialic acid-containing cell-surface carbohydrates and facilitates subsequent invasion by themore » virus. The expression, purification, crystallization and preliminary X-ray diffraction analysis of VP8* from porcine CRW-8 rotavirus is reported. Diffraction data have been collected to 2.3 Å resolution, enabling the determination of the VP8* structure by molecular replacement.« less

  4. Extending enzyme molecular recognition with an expanded amino acid alphabet

    PubMed Central

    Windle, Claire L.; Simmons, Katie J.; Ault, James R.; Trinh, Chi H.; Nelson, Adam

    2017-01-01

    Natural enzymes are constructed from the 20 proteogenic amino acids, which may then require posttranslational modification or the recruitment of coenzymes or metal ions to achieve catalytic function. Here, we demonstrate that expansion of the alphabet of amino acids can also enable the properties of enzymes to be extended. A chemical mutagenesis strategy allowed a wide range of noncanonical amino acids to be systematically incorporated throughout an active site to alter enzymic substrate specificity. Specifically, 13 different noncanonical side chains were incorporated at 12 different positions within the active site of N-acetylneuraminic acid lyase (NAL), and the resulting chemically modified enzymes were screened for activity with a range of aldehyde substrates. A modified enzyme containing a 2,3-dihydroxypropyl cysteine at position 190 was identified that had significantly increased activity for the aldol reaction of erythrose with pyruvate compared with the wild-type enzyme. Kinetic investigation of a saturation library of the canonical amino acids at the same position showed that this increased activity was not achievable with any of the 20 proteogenic amino acids. Structural and modeling studies revealed that the unique shape and functionality of the noncanonical side chain enabled the active site to be remodeled to enable more efficient stabilization of the transition state of the reaction. The ability to exploit an expanded amino acid alphabet can thus heighten the ambitions of protein engineers wishing to develop enzymes with new catalytic properties. PMID:28196894

  5. Discovery and characterization of de novo sialic acid biosynthesis in the phylum Fusobacterium

    PubMed Central

    Lewis, Amanda L; Robinson, Lloyd S; Agarwal, Kavita; Lewis, Warren G

    2016-01-01

    Sialic acids are nine-carbon backbone carbohydrates found in prominent outermost positions of glycosylated molecules in mammals. Mimicry of sialic acid (N-acetylneuraminic acid, Neu5Ac) enables some pathogenic bacteria to evade host defenses. Fusobacterium nucleatum is a ubiquitous oral bacterium also linked with invasive infections throughout the body. We employed multidisciplinary approaches to test predictions that F. nucleatum engages in de novo synthesis of sialic acids. Here we show that F. nucleatum sbsp. polymorphum ATCC10953 NeuB (putative Neu5Ac synthase) restores Neu5Ac synthesis to an Escherichia coli neuB mutant. Moreover, purified F. nucleatum NeuB participated in synthesis of Neu5Ac from N-acetylmannosamine and phosphoenolpyruvate in vitro. Further studies support the interpretation that F. nucleatum ATCC10953 NeuA encodes a functional CMP-sialic acid synthetase and suggest that it may also contain a C-terminal sialic acid O-acetylesterase. We also performed BLAST queries of F. nucleatum genomes, revealing that only 4/31 strains encode a complete pathway for de novo Neu5Ac synthesis. Biochemical studies including mass spectrometry were consistent with the bioinformatic predictions, showing that F. nucleatum ATCC10953 synthesizes high levels of Neu5Ac, whereas ATCC23726 and ATCC25586 do not express detectable levels above background. While there are a number of examples of sialic acid mimicry in other phyla, these experiments provide the first biochemical and genetic evidence that a member of the phylum Fusobacterium can engage in de novo Neu5Ac synthesis. PMID:27613803

  6. Structure-Function Studies of the SLC17 Transporter Sialin Identify Crucial Residues and Substrate-induced Conformational Changes*

    PubMed Central

    Courville, Pascal; Quick, Matthias; Reimer, Richard J.

    2010-01-01

    Salla disease and infantile sialic acid storage disorder are human diseases caused by loss of function of sialin, a lysosomal transporter that mediates H+-coupled symport of acidic sugars N-acetylneuraminic acid and glucuronic acid out of lysosomes. Along with the closely related vesicular glutamate transporters, sialin belongs to the SLC17 transporter family. Despite their critical role in health and disease, these proteins remain poorly understood both structurally and mechanistically. Here, we use substituted cysteine accessibility screening and radiotracer flux assays to evaluate experimentally a computationally generated three-dimensional structure model of sialin. According to this model, sialin consists of 12 transmembrane helices (TMs) with an overall architecture similar to that of the distantly related glycerol 3-phosphate transporter GlpT. We show that TM4 in sialin lines a large aqueous cavity that forms a part of the substrate permeation pathway and demonstrate substrate-induced alterations in accessibility of substituted cysteine residues in TM4. In addition, we demonstrate that one mutant, F179C, has a dramatically different effect on the apparent affinity and transport rate for N-acetylneuraminic acid and glucuronic acid, suggesting that it may be directly involved in substrate recognition and/or translocation. These findings offer a basis for further defining the transport mechanism of sialin and other SLC17 family members. PMID:20424173

  7. Contribution of vascular endothelial growth factor receptor-2 sialylation to the process of angiogenesis.

    PubMed

    Chiodelli, P; Rezzola, S; Urbinati, C; Federici Signori, F; Monti, E; Ronca, R; Presta, M; Rusnati, M

    2017-11-23

    Vascular endothelial growth factor receptor-2 (VEGFR2) is the main pro-angiogenic receptor expressed by endothelial cells (ECs). Using surface plasmon resonance, immunoprecipitation, enzymatic digestion, immunofluorescence and cross-linking experiments with specific sugar-binding lectins, we demonstrated that VEGFR2 bears both α,1-fucose and α(2,6)-linked sialic acid (NeuAc). However, only the latter is required for VEGF binding to VEGFR2 and consequent VEGF-dependent VEGFR2 activation and motogenic response in ECs. Notably, downregulation of β-galactoside α(2,6)-sialyltransferase expression by short hairpin RNA transduction inhibits VEGFR2 α(2,6) sialylation that is paralleled by an increase of β-galactoside α(2,3)-sialyltransferase expression. This results in an ex-novo α(2,3)-NeuAc sialylation of the receptor that functionally replaces the lacking α(2,6)-NeuAc, thus allowing VEGF/VEGFR2 interaction. In keeping with the role of VEGFR2 sialylation in angiogenesis, the α(2,6)-NeuAc-binding lectin Sambucus nigra (SNA) prevents VEGF-dependent VEGFR2 autophosphorylation and EC motility, proliferation and motogenesis. In addition, SNA exerts a VEGF-antagonist activity in tridimensional angiogenesis models in vitro and in the chick-embryo chorioallantoic membrane neovascularization assay and mouse matrigel plug assay in vivo. In conclusion, VEGFR2-associated NeuAc plays an important role in modulating VEGF/VEGFR2 interaction, EC pro-angiogenic activation and neovessel formation. VEGFR2 sialylation may represent a target for the treatment of angiogenesis-dependent diseases.

  8. Concise chemical synthesis of a tetrasaccharide repeating unit of the O-antigen of Hafnia alvei 10457.

    PubMed

    Kumar, Rishi; Maulik, Prakas R; Misra, Anup Kumar

    2008-08-01

    Concise chemical synthesis of a tetrasaccharide repeating unit of the O-antigen of Hafnia alvei 10457 is reported. Construction of the tetrasaccharide as its 4-methoxyphenyl glycoside was achieved by condensation of less abundant monosaccharide units such as, D-galactofuranose, N-acetyl-D-galactosamine and N-acetylneuraminic acid. The synthetic strategy consists of the preparation of suitably protected required monosaccharide intermediates from the commercially available reducing sugars and high yielding glycosylation reactions.

  9. Desialylation of Spermatozoa and Epithelial Cell Glycocalyx Is a Consequence of Bacterial Infection of the Epididymis*

    PubMed Central

    Khosravi, Farhad; Michel, Vera; Galuska, Christina E.; Bhushan, Sudhanshu; Christian, Philipp; Schuppe, Hans-Christian; Pilatz, Adrian; Galuska, Sebastian P.; Meinhardt, Andreas

    2016-01-01

    Urinary tract infections caused by uropathogenic Escherichia coli (UPEC) pathovars belong to the most frequent infections in humans. In men, pathogens can also spread to the genital tract via the continuous ductal system, eliciting bacterial prostatitis and/or epididymo-orchitis. Antibiotic treatment usually clears pathogens in acute epididymitis; however, the fertility of patients can be permanently impaired. Because a premature acrosome reaction was observed in an UPEC epididymitis mouse model, and sialidases on the sperm surface are considered to be activated via proteases of the acrosome, we aimed to investigate whether alterations of the sialome of epididymal spermatozoa and surrounding epithelial cells occur during UPEC infection. In UPEC-elicited acute epididymitis in mice, a substantial loss of N-acetylneuraminic acid residues was detected in epididymal spermatozoa and epithelial cells using combined laser microdissection/HPLC-ESI-MS analysis. In support, a substantial reduction of sialic acid residues bound to the surface of spermatozoa was documented in men with a recent history of E. coli-associated epididymitis. In vitro, such an UPEC induced N-acetylneuraminic acid release from human spermatozoa was effectively counteracted by a sialidase inhibitor. These findings strongly suggest a substantial remodeling of the glycocalyx of spermatozoa and epididymal epithelial cells by endogenous sialidases after a premature acrosome reaction during acute epididymitis. PMID:27339898

  10. Influence of sialic acids on the galactose-recognizing receptor of rat peritoneal macrophages.

    PubMed

    Lee, H Y; Kelm, S; Michalski, J C; Schauer, R

    1990-04-01

    The interaction of the galactose-recognizing receptor from rat peritoneal macrophages with ligands containing terminal galactose residues, such as asialoorosomucoid, desialylated erythrocytes or lymphocytes, can be inhibited by free N-acetylneuraminic acid (Neu5Ac) and oligosaccharides or glycoproteins containing this sugar in terminal position. This effect of Neu5Ac on the receptor is specific. The other naturally occurring or most of synthetic neuraminic acid derivatives tested do not exhibit an equivalent inhibitory potency as Neu5Ac. Although free Neu5Ac inhibits 5-fold stronger (K50 = 0.2mM) than free galactose, clustering of Neu5Ac in oligosaccharides and glycoproteins does not lead to stronger inhibition, which is in contrast to galactose-containing ligands. A more branched (triantennary) sialooligosaccharide inhibits less than biantennary and unbranched sialooligosaccharides. This may be the reason, why complex sialic acid-containing ligands like native orosomucoid or blood cells are not bound and internalized by the macrophages. The dissociation of asialoorosomucoid from the receptor is slow under the influence of Neu5Ac and requires relatively high concentrations of this sugar, whereas the dissociation mediated by galactose is rapid and requires lower concentrations. An allosteric influence of Neu5Ac on the binding of galactose by the receptor is discussed.

  11. [Reptile-associated salmonellosis as an important epidemiological problem].

    PubMed

    Pawlak, Aleksandra

    2014-11-17

    of food poisoning. One of the reservoirs of Salmonella are reptiles, which are increasingly kept as pets. Most reptiles are asymptomatic carriers of Salmonella. These strains, isolated from reptiles, can cause serious infections, especially in infants, young children and people with immunodeficiencies. The disease called reptile-associated salmonellosis (RAS) may manifest with bloody diarrhea, meningitis, and arthritis, and consequently can cause bacteremia and sepsis. Among the strains described in the literature, Salmonella strains possessing the O48 antigen are an important group. Lipopolysaccharide (LPS) of Salmonella O48 contains sialic acid (NeuAc) in an O-specific-chain. LPS containing NeuAc exhibits antigenic similarity to antigens found in the human body, including blood serum, and therefore is correlated with the occurrence of the dangerous phenomenon of molecular mimicry. Bacteria containing NeuAc in their outer structures can evade the immunological response of the host, which significantly increases their virulence. Most data about RAS come from the USA, but in recent years cases from European countries are more frequent in the literature. Unfortunately, the occurrence of RAS in Poland has not been monitored so far. There is also no campaign to inform the public about the health risks connected with contact of people with reptiles.

  12. Biophysical characterization and structural determination of the potent cytotoxic Psathyrella asperospora lectin.

    PubMed

    Ribeiro, João P; Ali Abol Hassan, Mohamed; Rouf, Razina; Tiralongo, Evelin; May, Tom W; Day, Christopher J; Imberty, Anne; Tiralongo, Joe; Varrot, Annabelle

    2017-05-01

    A lectin with strong cytotoxic effect on human colon cancer HT29 and monkey kidney VERO cells was recently identified from the Australian indigenous mushroom Psathyrella asperospora and named PAL. We herein present its biochemical and structural analysis using a multidisciplinary approach. Glycan arrays revealed binding preference towards N-acetylglucosamine (GlcNAc) and, to a lesser extent, towards sialic acid (Neu5Ac). Submicromolar and millimolar affinity was measured by surface plasmon resonance for GlcNAc and NeuAc, respectively. The structure of PAL was resolved by X-ray crystallography, elucidating both the protein's amino acid sequence as well as the molecular basis rationalizing its binding specificity. Proteins 2017; 85:969-975. © 2016 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Analysis of the N-glycans of recombinant human Factor IX purified from transgenic pig milk

    PubMed Central

    Gil, Geun-Cheol; Velander, William H; Van Cott, Kevin E

    2008-01-01

    Glycosylation of recombinant proteins is of particular importance because it can play significant roles in the clinical properties of the glycoprotein. In this work, the N-glycan structures of recombinant human Factor IX (tg-FIX) produced in the transgenic pig mammary gland were determined. The majority of the N-glycans of transgenic pig-derived Factor IX (tg-FIX) are complex, bi-antennary with one or two terminal N-acetylneuraminic acid (Neu5Ac) moieties. We also found that the N-glycan structures of tg-FIX produced in the porcine mammary epithelial cells differed with respect to N-glycans from glycoproteins produced in other porcine tissues. tg-FIX contains no detectable Neu5Gc, the sialic acid commonly found in porcine glycoproteins produced in other tissues. Additionally, we were unable to detect glycans in tg-FIX that have a terminal Galα(1,3)Gal disaccharide sequence, which is strongly antigenic in humans. The N-glycan structures of tg-FIX are also compared to the published N-glycan structures of recombinant human glycoproteins produced in other transgenic animal species. While tg-FIX contains only complex structures, antithrombin III (goat), C1 inhibitor (rabbit), and lactoferrin (cow) have both high mannose and complex structures. Collectively, these data represent a beginning point for the future investigation of species-specific and tissue/cell-specific differences in N-glycan structures among animals used for transgenic animal bioreactors. PMID:18456721

  14. Effect of Parainfluenza-3 Neuraminidase on Bovine Nasal Secretion

    PubMed Central

    Morein, Bror; Bergman, Rune

    1972-01-01

    Three samples of bovine nasal secretion were each separated into a sol phase and a surface gel phase. In all samples, the gel phase contained an approximately four times greater amount of bound N-acetylneuraminic acid (NANA) than the sol phase. From the gel phase, bound NANA could be released by exposure to parainfluenza-3 virus neuraminidase. The surface gel appears to be a natural substrate for this enzyme. PMID:4347547

  15. Prototype amperometric biosensor for sialic acid determination.

    PubMed

    Marzouk, Sayed A M; Ashraf, S S; Tayyari, Khawla A Al

    2007-02-15

    This paper describes the first report on the development, characterization, and applications of a prototype amperometric biosensor for free sialic acid (SA). The sensor was constructed by the coimmobilization of two enzymes, i.e., N-acetylneuraminic acid aldolase and pyruvate oxidase, on a polyester microporous membrane, which was then mounted on top of a platinum disk electrode. The SA biosensor operation was based on the sequential action of the two enzymes to ultimately produce hydrogen peroxide, which was then detected by anodic amperometry at the platinum electrode. The surface of the platinum electrode was coated with an electropolymeric layer to enhance the biosensor selectivity in the presence of interfering oxidizable species. Optimization of the enzyme layer composition resulted in a fast and steady current response in phosphate buffer pH 7.2 at 37 degrees C. The limit of detection was 10 microM, and the response was linear to 3.5 mM (r = 0.9987). The prepared SA biosensors retained approximately 85% of their initial sensitivity after 8 days and showed excellent response reproducibility (CV = 2.3%). Utilization of a third enzyme, sialidase, expanded the scope of the present SA biosensor to determine bound sialic acid as well. The merits of the described biosensor allowed its successful application in determining SA in biological and pharmaceutical samples. The obtained results indicated that the presented SA biosensor should be a useful bioanalytical tool in several biological and clinical applications such as screening of SA as a nonspecific tumor marker as well as monitoring of tumor therapy.

  16. Involvement of a Non-Human Sialic Acid in Human Cancer

    PubMed Central

    Samraj, Annie N.; Läubli, Heinz; Varki, Nissi; Varki, Ajit

    2014-01-01

    Sialic acids are common monosaccharides that are widely expressed as outer terminal units on all vertebrate cell surfaces, and play fundamental roles in cell–cell and cell–microenvironment interactions. The predominant sialic acids on most mammalian cells are N-glycolylneuraminic acid (Neu5Gc) and N-acetylneuraminic acid (Neu5Ac). Neu5Gc is notable for its deficiency in humans due to a species-specific and species-universal inactivating deletion in the CMAH gene encoding the hydroxylase that converts CMP-Neu5Ac to CMP-Neu5Gc. However, Neu5Gc is metabolically incorporated into human tissues from dietary sources (particularly red meat), and detected at even higher levels in some human cancers. Early life exposure to Neu5Gc-containing foods in the presence of certain commensal bacteria that incorporate dietary Neu5Gc into lipooligosaccharides can lead to generation of antibodies that are also cross-reactive against Neu5Gc-containing glycans in human tissues (“xeno-autoantigens”). Such anti-Neu5Gc “xeno-autoantibodies” are found in all humans, although ranging widely in levels among individuals, and displaying diverse and variable specificities for the underlying glycan. Experimental evidence in a human-like Neu5Gc-deficient Cmah−/−mouse model shows that inflammation due to “xenosialitis” caused by this antigen–antibody interaction can promote tumor progression, suggesting a likely mechanism for the well-known epidemiological link between red meat consumption and carcinoma risk. In this review, we discuss the history of this field, mechanisms of Neu5Gc incorporation into tissues, the origin and specificities of human anti-Neu5Gc antibodies, their use as possible cancer biomarkers, implications of xenosialitis in cancer initiation and progression, and current and future approaches toward immunotherapy that could take advantage of this unusual human-specific phenomenon. PMID:24600589

  17. Activity of influenza C virus O-acetylesterase with O-acetyl-containing compounds.

    PubMed Central

    Garcia-Sastre, A; Villar, E; Manuguerra, J C; Hannoun, C; Cabezas, J A

    1991-01-01

    Influenza C virus (strain C/Johannesburg/1/66) was grown, harvested, purified and used as source for the enzyme O-acetylesterase (N-acyl-O-acetylneuraminate O-acetylhydrolase; EC 3.1.1.53). This activity was studied and characterized with regard to some new substrates. The pH optimum of the enzyme is around 7.6, its stability at different pH values shows a result similar to that of the pH optimum, and its activity is well maintained in the pH range from 7.0 to 8.5 (all these tests were performed with 4-nitrophenyl acetate as substrate). Remarkable differences were found in the values of both Km and Vmax, with the synthetic substrates 4-nitrophenyl acetate, 2-nitrophenyl acetate, 4-methylumbelliferyl acetate, 1-naphthyl acetate and fluorescein diacetate. The use of 4-nitrophenyl acetate, 4-methylumbelliferyl acetate or 1-naphthyl acetate as substrate seems to be convenient for routine work, but it is better to carry out the measurements in parallel with those on bovine submandibular gland mucin (the latter is a natural and commercially available substrate). It was found that 4-acetoxybenzoic acid, as well as the methyl ester of 2-acetoxybenzoic acid, but not 2-acetoxybenzoic acid itself, are cleaved by this enzyme. Triacetin, di-O-acetyladenosine, tri-O-acetyladenosine, and di-O-acetyl-N-acetyladenosine phosphate, hitherto unreported as substrates for this viral esterase, are hydrolysed at different rates by this enzyme. We conclude that the O-acetylesterase from influenza C virus has a broad specificity towards both synthetic and natural non-sialic acid-containing substrates. Zn2+, Mn2+ and Pb2+ (as their chloride salts), N-acetylneuraminic acid, 4-methyl-umbelliferone and 2-acetoxybenzoic acid (acetylsalicylic acid) did not act as inhibitors. Images Fig. 1. PMID:1991039

  18. Colloquium paper: uniquely human evolution of sialic acid genetics and biology.

    PubMed

    Varki, Ajit

    2010-05-11

    Darwinian evolution of humans from our common ancestors with nonhuman primates involved many gene-environment interactions at the population level, and the resulting human-specific genetic changes must contribute to the "Human Condition." Recent data indicate that the biology of sialic acids (which directly involves less than 60 genes) shows more than 10 uniquely human genetic changes in comparison with our closest evolutionary relatives. Known outcomes are tissue-specific changes in abundant cell-surface glycans, changes in specificity and/or expression of multiple proteins that recognize these glycans, and novel pathogen regimes. Specific events include Alu-mediated inactivation of the CMAH gene, resulting in loss of synthesis of the Sia N-glycolylneuraminic acid (Neu5Gc) and increase in expression of the precursor N-acetylneuraminic acid (Neu5Ac); increased expression of alpha2-6-linked Sias (likely because of changed expression of ST6GALI); and multiple changes in SIGLEC genes encoding Sia-recognizing Ig-like lectins (Siglecs). The last includes binding specificity changes (in Siglecs -5, -7, -9, -11, and -12); expression pattern changes (in Siglecs -1, -5, -6, and -11); gene conversion (SIGLEC11); and deletion or pseudogenization (SIGLEC13, SIGLEC14, and SIGLEC16). A nongenetic outcome of the CMAH mutation is human metabolic incorporation of foreign dietary Neu5Gc, in the face of circulating anti-Neu5Gc antibodies, generating a novel "xeno-auto-antigen" situation. Taken together, these data suggest that both the genes associated with Sia biology and the related impacts of the environment comprise a relative "hot spot" of genetic and physiological changes in human evolution, with implications for uniquely human features both in health and disease.

  19. Health benefits of n-3 polyunsaturated fatty acids: eicosapentaenoic acid and docosahexaenoic acid.

    PubMed

    Siriwardhana, Nalin; Kalupahana, Nishan S; Moustaid-Moussa, Naima

    2012-01-01

    Marine-based fish and fish oil are the most popular and well-known sources of n-3 polyunsaturated fatty acids (PUFAs), namely, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). These n-3 PUFAs are known to have variety of health benefits against cardiovascular diseases (CVDs) including well-established hypotriglyceridemic and anti-inflammatory effects. Also, various studies indicate promising antihypertensive, anticancer, antioxidant, antidepression, antiaging, and antiarthritis effects. Moreover, recent studies also indicate anti-inflammatory and insulin-sensitizing effects of these fatty acids in metabolic disorders. Classically, n-3 PUFAs mediate some of these effects by antagonizing n-6 PUFA (arachidonic acid)-induced proinflammatory prostaglandin E₂ (PGE₂) formation. Another well-known mechanism by which n-3 PUFAs impart their anti-inflammatory effects is via reduction of nuclear factor-κB activation. This transcription factor is a potent inducer of proinflammatory cytokine production, including interleukin 6 and tumor necrosis factor-α, both of which are decreased by EPA and DHA. Other evidence also demonstrates that n-3 PUFAs repress lipogenesis and increase resolvins and protectin generation, ultimately leading to reduced inflammation. Finally, beneficial effects of EPA and DHA in insulin resistance include their ability to increase secretion of adiponectin, an anti-inflammatory adipokine. In summary, n-3 PUFAs have multiple health benefits mediated at least in part by their anti-inflammatory actions; thus their consumption, especially from dietary sources, should be encouraged. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. The reactivities of human erythrocyte autoantibodies anti-Pr2, anti-Gd, Fl and Sa with gangliosides in a chromatogram binding assay.

    PubMed Central

    Uemura, K; Roelcke, D; Nagai, Y; Feizi, T

    1984-01-01

    The thin layer chromatogram binding assay was used to study the reaction of several natural-monoclonal autoantibodies which recognize sialic acid-dependent antigens of human erythrocytes. Immunostaining of gangliosides derived from human and bovine erythrocytes was achieved with four autoantibodies designated anti-Pr2, anti-Gd, Sa and Fl, each of which has a different haemagglutination pattern with untreated and proteinase-treated erythrocytes and with cells of I and i antigen types. From the chromatogram binding patterns of anti-Pr2 with gangliosides of the neolacto and the ganglio series, it is deduced that this antibody reacts best with N-acetylneuraminic acid when it is alpha 2-3- or alpha 2-6-linked to a terminal Gal(beta 1-4)Glc/GlcNAc GlcNAc sequence and to a lesser extent when it is alpha 2-3-linked to a terminal Gal(beta 1-3)GalNAc sequence or to an internal galactose and when it is alpha 2-8-linked to another, internal N-acetylneuraminic acid residue. The other three antibodies differ from anti-Pr2 in their lack of reaction with glycolipids of the ganglio series. They react with the NeuAc(alpha 2-3)Gal(beta 1-4)Glc/GlcNAc sequence as found in GM3 and in glycolipids of the neolacto series, but show a preference for the latter, longer sequences. Thus all four antibodies react with sialylated oligosaccharides containing i type (linear) and I type (branched) neolacto backbones. Fl antibody differs from the other three in its stronger reaction with branched neolacto sequences in accordance with its stronger agglutination of erythrocytes of I rather than i type. The four antibodies show a specificity for N-acetyl- rather than N-glycolyl-neuraminic acid. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:6204642

  1. Docosahexaenoic acid synthesis from n-3 fatty acid precursors in rat hippocampal neurons.

    PubMed

    Kaduce, Terry L; Chen, Yucui; Hell, Johannes W; Spector, Arthur A

    2008-05-01

    Docosahexaenoic acid (DHA), the most abundant n-3 polyunsaturated fatty acid in the brain, has important functions in the hippocampus. To better understand essential fatty acid homeostasis in this region of the brain, we investigated the contributions of n-3 fatty acid precursors in supplying hippocampal neurons with DHA. Primary cultures of rat hippocampal neurons incorporated radiolabeled 18-, 20-, 22-, and 24-carbon n-3 fatty acid and converted some of the uptake to DHA, but the amounts produced from either [1-14C]alpha-linolenic or [1-14C]eicosapentaenoic acid were considerably less than the amounts incorporated when the cultures were incubated with [1-14C]22:6n-3. Most of the [1-14C]22:6n-3 uptake was incorporated into phospholipids, primarily ethanolamine phosphoglycerides. Additional studies demonstrated that the neurons converted [1-14C]linoleic acid to arachidonic acid, the main n-6 fatty acid in the brain. These findings differ from previous results indicating that cerebral and cerebellar neurons cannot convert polyunsaturated fatty acid precursors to DHA or arachidonic acid. Fatty acid compositional analysis demonstrated that the hippocampal neurons contained only 1.1-2.5 mol% DHA under the usual low-DHA culture conditions. The relatively low-DHA content suggests that some responses obtained with these cultures may not be representative of neuronal function in the brain.

  2. First Functional and Mutational Analysis of Group 3 N-Acetylneuraminate Lyases from Lactobacillus antri and Lactobacillus sakei 23K

    PubMed Central

    García-García, María Inmaculada; Gil-Ortiz, Fernando; García-Carmona, Francisco; Sánchez-Ferrer, Álvaro

    2014-01-01

    N-acetyl neuraminate lyases (NALs) catalyze the reversible aldol cleavage of N-acetyl neuraminic acid (Neu5Ac) to pyruvate and N-acetyl-D-mannosamine (ManNAc). Previous phylogenetic studies divided NALs into four different groups. Groups 1 and 2 have been well characterized at both kinetic and molecular levels, but no NAL from group 3 has been studied to date. In this work, a functional characterization of two group 3 members was performed using the recombinant NALs from Lactobacillus antri and Lactobacillus sakei 23K, revealing an optimal pH of between 6.0 and 7.0, low stability at basic pHs (>8.0), low optimal temperatures and, especially, low catalytic efficiency compared with their counterparts in group 1 and 2. The mutational analysis carried out showed that a plausible molecular reason for the low activity shown by Lactobacillus antri and Lactobacillus sakei 23k NALs compared with group 1 and 2 NALs could be the relatively small sugar-binding pocket they contain. A functional divergence analysis concluding that group 3 is more closely related to group 2 than to group 1. PMID:24817128

  3. Analysis of the K1 capsule biosynthesis genes of Escherichia coli: definition of three functional regions for capsule production.

    PubMed

    Boulnois, G J; Roberts, I S; Hodge, R; Hardy, K R; Jann, K B; Timmis, K N

    1987-06-01

    Transposon and deletion analysis of the cloned K1 capsule biosynthesis genes of Escherichia coli revealed that approximately 17 kb of DNA, split into three functional regions, is required for capsule production. One block (region 1) is required for translocation of polysaccharide to the cell surface and mutations in this region result in the intracellular appearance of polymer indistinguishable on immunoelectrophoresis to that found on the surface of K1 encapsulated bacteria. This material was released from the cell by osmotic shock indicating that the polysaccharide was probably present in the periplasmic space. Insertions in a second block (region 2) completely abolished polymer production and this second region is believed to encode the enzymes for the biosynthesis and polymerisation of the K1 antigen. Addition of exogenous N-acetylneuraminic acid to one insertion mutant in this region restored its ability to express surface polymer as judged by K1 phage sensitivity. This insertion probably defines genes involved in biosynthesis of N-acetylneuraminic acid. Insertions in a third block (region 3) result in the intracellular appearance of polysaccharide with a very low electrophoretic mobility. The presence of the cloned K1 capsule biosynthesis genes on a multicopy plasmid in an E. coli K-12 strain did not increase the yields of capsular polysaccharide produced compared to the K1+ isolate from which the genes were cloned.

  4. Discovery and characterization of sialic acid O-acetylation in group B Streptococcus.

    PubMed

    Lewis, Amanda L; Nizet, Victor; Varki, Ajit

    2004-07-27

    Group B Streptococcus (GBS) is the leading cause of human neonatal sepsis and meningitis. The GBS capsular polysaccharide is a major virulence factor and the active principle of vaccines in phase II trials. All GBS capsules have a terminal alpha 2-3-linked sialic acid [N-acetylneuraminic acid (Neu5Ac)], which interferes with complement-mediated killing. We show here that some of the Neu5Ac residues of the GBS type III capsule are O-acetylated at carbon position 7, 8, or 9, a major modification evidently missed in previous studies. Data are consistent with initial O-acetylation at position 7, and subsequent migration of the O-acetyl ester at positions 8 and 9. O-acetylation was also present on several other GBS serotypes (Ia, Ib, II, V, and VI). Deletion of the CMP-Neu5Ac synthase gene neuA by precise, in-frame allelic replacement gave intracellular accumulation of O-acetylated Neu5Ac, whereas overexpression markedly decreased O-acetylation. Given the known GBS Neu5Ac biosynthesis pathway, these data indicate that O-acetylation occurs on free Neu5Ac, competing with the CMP-Neu5Ac synthase. O-acetylation often generates immunogenic epitopes on bacterial capsular polysaccharides and can modulate human alternate pathway complement activation. Thus, our discovery has important implications for GBS pathogenicity, immunogenicity, and vaccine design.

  5. Formation of pyroglutamic acid from N-terminal glutamic acid in immunoglobulin gamma antibodies.

    PubMed

    Chelius, Dirk; Jing, Kay; Lueras, Alexis; Rehder, Douglas S; Dillon, Thomas M; Vizel, Alona; Rajan, Rahul S; Li, Tiansheng; Treuheit, Michael J; Bondarenko, Pavel V

    2006-04-01

    The status of the N-terminus of proteins is important for amino acid sequencing by Edman degradation, protein identification by shotgun and top-down techniques, and to uncover biological functions, which may be associated with modifications. In this study, we investigated the pyroglutamic acid formation from N-terminal glutamic acid residues in recombinant monoclonal antibodies. Almost half the antibodies reported in the literature contain a glutamic acid residue at the N-terminus of the light or the heavy chain. Our reversed-phase high-performance liquid chromatography-mass spectrometry method could separate the pyroglutamic acid-containing light chains from the native light chains of reduced and alkylated recombinant monoclonal antibodies. Tryptic peptide mapping and tandem mass spectrometry of the reduced and alkylated proteins was used for the identification of the pyroglutamic acid. We identified the formation of pyroglutamic acid from N-terminal glutamic acid in the heavy chains and light chains of several antibodies, indicating that this nonenzymatic reaction does occur very commonly and can be detected after a few weeks of incubation at 37 and 45 degrees C. The rate of this reaction was measured in several aqueous buffers with different pH values, showing minimal formation of pyroglutamic acid at pH 6.2 and increased formation of pyroglutamic acid at pH 4 and pH 8. The half-life of the N-terminal glutamic acid was approximately 9 months in a pH 4.1 buffer at 45 degrees C. To our knowledge, we showed for the first time that glutamic acid residues located at the N-terminus of proteins undergo pyroglutamic acid formation in vitro.

  6. Dietary (n-6 : n-3) Fatty Acids Alter Plasma and Tissue Fatty Acid Composition in Pregnant Sprague Dawley Rats

    PubMed Central

    Kassem, Amira Abdulbari; Abu Bakar, Md Zuki; Yong Meng, Goh; Mustapha, Noordin Mohamed

    2012-01-01

    The objective of this paper is to study the effects of varying dietary levels of n-6 : n-3 fatty acid ratio on plasma and tissue fatty acid composition in rat. The treatment groups included control rats fed chow diet only, rats fed 50% soybean oil (SBO): 50% cod liver oil (CLO) (1 : 1), 84% SBO: 16% CLO (6 : 1), 96% SBO: 4% CLO (30 : 1). Blood samples were taken at day 15 of pregnancy, and the plasma and tissue were analyzed for fatty acid profile. The n-3 PUFA in plasma of Diet 1 : 1 group was significantly higher than the other diet groups, while the total n-6 PUFA in plasma was significantly higher in Diet 30 : 1 group as compared to the control and Diet 1 : 1 groups. The Diet 1 : 1 group showed significantly greater percentages of total n-3 PUFA and docosahexaenoic acid in adipose and liver tissue, and this clearly reflected the contribution of n-3 fatty acids from CLO. The total n-6 PUFA, linoleic acid, and arachidonic acid were significantly difference in Diet 30 : 1 as compared to Diet 1 : 1 and control group. These results demonstrated that the dietary ratio of n-6 : n-3 fatty acid ratio significantly affected plasma and tissue fatty acids profile in pregnant rat. PMID:22489205

  7. Structural studies of sialylated oligosaccharides of human midcycle cervical mucin.

    PubMed

    Yurewicz, E C; Matsuura, F; Moghissi, K S

    1987-04-05

    It was previously shown that reductive alkali treatment of purified human cervical mucin releases a heterogeneous population of reduced neutral, sialylated, and sulfated oligosaccharides (Yurewicz, E. C., and Moghissi, K. S. (1981) J. Biol. Chem. 256, 11895-11904). Four major sialylated oligosaccharide fractions were isolated with approximate compositions of Fuc:GlcNac:Gal:NeuAc:N-acetylgalactosaminitol (GalNAcol) = 0:0:0:1:1 (B1a), 0:0:1:1:1 (B2b), 0:1:2:1:1 (B3a), and 1:1:2:1:1 (B4a), where Fuc is fucose. They comprised roughly 3, 11, 7, and 6% of recovered oligosaccharide chains, respectively. On the basis of periodate oxidations, methylation analyses, and sequential degradations with glycosidases, the following structures were determined. (Formula: see text) Oligosaccharides 1 and 2 are characterized by the presence of N-acetylneuraminic acid in alpha 2,6-linkage to N-acetylgalactosaminitol. The remaining oligosaccharides contain N-acetylneuraminic acid in alpha 2,3-linkage to galactose residues. Oligosaccharides 3 and 4 and oligosaccharides 5 and 6 were isolated as unresolved isomeric mixtures in fractions B3a and B4a, respectively. Oligosaccharides 3 and 4 were distinguished on the basis of susceptibility to digestion with Aspergillus niger beta-galactosidase whereas oligosaccharides 5 and 6 were distinguished on the basis of differential rates of digestion with beef kidney alpha-fucosidase. The structural data indicate the presence of at least two sialyltransferases in human cervical epithelium and further suggest a potential physiologically significant competition between sialyltransferase and beta-N-acetylglucosaminyltransferase for C-6 of the N-acetylgalactosamine residue O-glycosidically linked to serine/threonine of the polypeptide core.

  8. Purification and thermal analysis of perfluoro-n-alkanoic acids.

    PubMed

    Tsuji, Minami; Inoue, Tohru; Shibata, Osamu

    2008-01-15

    Purification of perfluoro-n-alkanoic acids (C(n)F(2n+1)COOH, n=7, 9, 11, 13, 15 and 17) was made by repeated recrystallizations from n-hexane/acetone mixed solvent, and their purity was found to be more than 99.5% by GC-MS, NMR, and elemental analysis. The thermal behaviors such as melting point and enthalpy change of fusion were investigated using differential scanning calorimetry (DSC). The melting point monotonously increased with increasing carbon number (n) of the acids, while the enthalpy change showed irregularity at n=14. The crystal structure of these acids was found to be dependent upon solvent used for recrystallization; that is, the acids recrystallized from the above solvent becomes more stable energetically, indicating their higher enthalpy change of fusion than that of the solidified acids from fused ones. The solid state was also found to vary depending upon the thermal history, indicating that a few crystal structures of the solid state are quite similar energetically. The melting points (T(m)) of perfluoro-n-alkanoic acids are higher than those of corresponding n-alkanoic acids, and the difference in T(m) increases with increasing carbon number in the acids.

  9. Structural and enzymatic characterization of NanS (YjhS), a 9-O-Acetyl N-acetylneuraminic acid esterase from Escherichia coli O157:H7

    PubMed Central

    Rangarajan, Erumbi S; Ruane, Karen M; Proteau, Ariane; Schrag, Joseph D; Valladares, Ricardo; Gonzalez, Claudio F; Gilbert, Michel; Yakunin, Alexander F; Cygler, Miroslaw

    2011-01-01

    There is a high prevalence of sialic acid in a number of different organisms, resulting in there being a myriad of different enzymes that can exploit it as a fermentable carbon source. One such enzyme is NanS, a carbohydrate esterase that we show here deacetylates the 9 position of 9-O-sialic acid so that it can be readily transported into the cell for catabolism. Through structural studies, we show that NanS adopts a SGNH hydrolase fold. Although the backbone of the structure is similar to previously characterized family members, sequence comparisons indicate that this family can be further subdivided into two subfamilies with somewhat different fingerprints. NanS is the founding member of group II. Its catalytic center contains Ser19 and His301 but no Asp/Glu is present to form the classical catalytic triad. The contribution of Ser19 and His301 to catalysis was confirmed by mutagenesis. In addition to structural characterization, we have mapped the specificity of NanS using a battery of substrates. PMID:21557376

  10. Structural and Enzymatic Characterization of NanS (YjhS) a 9-O-Acetyl N-acetylneuraminic Acid Esterase from Escherichia coli O157:H7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E Rangarajan; K Ruane; A Proteau

    2011-12-31

    There is a high prevalence of sialic acid in a number of different organisms, resulting in there being a myriad of different enzymes that can exploit it as a fermentable carbon source. One such enzyme is NanS, a carbohydrate esterase that we show here deacetylates the 9 position of 9-O-sialic acid so that it can be readily transported into the cell for catabolism. Through structural studies, we show that NanS adopts a SGNH hydrolase fold. Although the backbone of the structure is similar to previously characterized family members, sequence comparisons indicate that this family can be further subdivided into twomore » subfamilies with somewhat different fingerprints. NanS is the founding member of group II. Its catalytic center contains Ser19 and His301 but no Asp/Glu is present to form the classical catalytic triad. The contribution of Ser19 and His301 to catalysis was confirmed by mutagenesis. In addition to structural characterization, we have mapped the specificity of NanS using a battery of substrates.« less

  11. Glutamic Acid as a Precursor to N-Terminal Pyroglutamic Acid in Mouse Plasmacytoma Protein

    PubMed Central

    Twardzik, Daniel R.; Peterkofsky, Alan

    1972-01-01

    Cell suspensions derived from a mouse plasmacytoma (RPC-20) that secretes an immunoglobulin light chain containing N-terminal pyroglutamic acid can synthesize protein in vitro. Chromatographic examination of an enzymatic digest of protein labeled with glutamic acid shows only labeled glutamic acid and pyroglutamic acid; hydrolysis of protein from cells labeled with glutamine, however, yields substantial amounts of glutamic acid in addition to glutamine and pyroglutamic acid. The absence of glutamine synthetase and presence of glutaminase in plasmacytoma homogenates is consistent with these findings. These data indicate that N-terminal pyroglutamic acid can be derived from glutamic acid without prior conversion of glutamic acid to glutamine. Since free or bound forms of glutamine cyclize nonezymatically to pyroglutamate with ease, while glutamic acid does not, the data suggest that N-terminal pyroglutamic acid formation from glutamic acid is enzymatic rather than spontaneous. Images PMID:4400295

  12. New high-performance liquid chromatography assay for glycosyltransferases based on derivatization with anthranilic acid and fluorescence detection.

    PubMed

    Anumula, Kalyan Rao

    2012-07-01

    Assays were developed using the unique labeling chemistry of 2-aminobenzoic acid (2AA; anthranilic acid, AA) for measuring activities of both β1-4 galactosyltransferase (GalT-1) and α2-6 sialyltransferase (ST-6) by high-performance liquid chromatography (HPLC) with fluorescence detection (Anumula KR. 2006. Advances in fluorescence derivatization methods for high-performance liquid chromatographic analysis of glycoprotein carbohydrates. Anal Biochem. 350:1-23). N-Acetylglucosamine (GlcNAc) and N-acetyllactosamine were used as acceptors and uridine diphosphate (UDP)-galactose and cytidine monophosphate (CMP)-N-acetylneuraminic acid (NANA) as donors for GalT-1 and ST-6, respectively. Enzymatic products were labeled in situ with AA and were separated from the substrates on TSKgel Amide 80 column using normal-phase conditions. Enzyme units were determined from the peak areas by comparison with the concomitantly derivatized standards Gal-β1-4GlcNAc and NANA-α2-6 Gal-β1-4GlcNAc. Linearity (time and enzyme concentration), precision (intra- and interassay) and reproducibility for the assays were established. The assays were found to be useful in monitoring the enzyme activities during isolation and purification. The assays were highly sensitive and performed equal to or better than the traditional radioactive sugar-based measurements. The assay format can also be used for measuring the activity of other transferases, provided that the carbohydrate acceptors contain a reducing end for labeling. An assay for glycoprotein acceptors was developed using IgG. A short HPLC profiling method was developed for the separation of IgG glycans (biantennary G0, G1, G2, mono- and disialylated), which facilitated the determination of GalT-1 and ST-6 activities in a rapid manner. Furthermore, this profiling method should prove useful for monitoring the changes in IgG glycans in clinical settings.

  13. Dietary n-6 and n-3 fatty acids in immunity and autoimmune disease.

    PubMed

    Harbige, L S

    1998-11-01

    Clearly there is much evidence to show that under well-controlled laboratory and dietary conditions fatty acid intake can have profound effects on animal models of autoimmune disease. Studies in human autoimmune disease have been less dramatic; however, human trials have been subject to uncontrolled dietary and genetic backgrounds, infection and other environmental influences, and basic trial designs have been inadequate. The impact of dietary fatty acids on animal autoimmune disease models appears to depend on the animal model and the type and amount of fatty acids fed. Diets low in fat, essential fatty acid-deficient, or high in n-3 fatty acids from fish oils increase the survival and reduce disease severity in spontaneous autoantibody-mediated disease, whilst linoleic acid-rich diets appear to increase disease severity. In experimentally-induced T-cell-mediated autoimmune disease, essential fatty acid-deficient diets or diets supplemented with n-3 fatty acids appear to augment disease, whereas n-6 fatty acids prevent or reduce the severity. In contrast, in both T-cell and antibody-mediated auto-immune disease the desaturated and elongated metabolites of linoleic acid are protective. Suppression of autoantibody and T lymphocyte proliferation, apoptosis of autoreactive lymphocytes, and reduced pro-inflammatory cytokine production by high-dose fish oils are all likely mechanisms by which n-3 fatty acids ameliorate autoimmune disease. However, these could be undesirable long-term effects of high-dose fish oil which may compromise host immunity. The protective mechanism(s) of n-6 fatty acids in T-cell- mediated autoimmune disease are less clear, but may include dihomo-gamma-linolenic acid- and arachidonic acid-sensitive immunoregulatory circuits such as Th1 responses, TGF beta 1-mediated effects and Th3-like responses. It is often claimed that n-6 fatty acids promote autoimmune and inflammatory disease based on results obtained with linoleic acid only. It should be

  14. N-3 fatty acids reduced trans fatty acids retention and increased docosahexaenoic acid levels in the brain.

    PubMed

    Lavandera, Jimena Verónica; Saín, Juliana; Fariña, Ana Clara; Bernal, Claudio Adrián; González, Marcela Aída

    2017-09-01

    The levels of docosahexaenoic acid (DHA, 22:6n-3) and arachidonic acid (AA, 20:4n-6) are critical for the normal structure and function of the brain. Trans fatty acids (TFA) and the source of the dietary fatty acids (FA) interfere with long-chain polyunsaturated fatty acids (LC-PUFA) biosynthesis. The aim of this study was to investigate the effect of TFA supplementation in diets containing different proportions of n-9, n-6, and n-3 FA on the brain FA profile, including the retention of TFA, LC-PUFA levels, and n-6/n-3 PUFA ratios. These parameters were also investigated in the liver, considering that LC-PUFA are mainly bioconverted from their dietary precursors in this tissue and transported by serum to the brain. Also, stearoyl-CoA desaturase-1 (SCD1) and sterol regulatory element-binding protein-1c (SREBP-1c) gene expressions were evaluated. Male CF1 mice were fed (16 weeks) diets containing different oils (olive, corn, and rapeseed) with distinct proportions of n-9, n-6, and n-3 FA (55.2/17.2/0.7, 32.0/51.3/0.9, and 61.1/18.4/8.6), respectively, substituted or not with 0.75% of TFA. FA composition of the brain, liver, and serum was assessed by gas chromatography. TFA were incorporated into, and therefore retained in the brain, liver, and serum. However, the magnitude of retention was dependent on the tissue and type of isomer. In the brain, total TFA retention was lower than 1% in all diets. Dietary n-3 PUFA decreased TFA retention and increased DHA accretion in the brain. The results underscore the importance of the type of dietary FA on the retention of TFA in the brain and also on the changes of the FA profile.

  15. The suppression of the N-nitrosating reaction by chlorogenic acid.

    PubMed Central

    Kono, Y; Shibata, H; Kodama, Y; Sawa, Y

    1995-01-01

    N-Nitrosation of a model aromatic amine (2,3-diamino-naphthalene) by the N-nitrosating agent produced by nitrite in acidic solution was inhibited by a polyphenol, chlorogenic acid, which is an ester of caffeic acid quinic acid. Caffeic acid also inhibited the N-nitrosation, but quinic acid did not. 1,2-Benzenediols and 3,4-dihydroxybenzoic acid had inhibitory activities. Chlorogenic acid, caffeic acid, 1,2-benzenediols and 3,4-dihydroxybenzoic acid were able to scavenge the stable free radical, 1,1-diphenyl-2-picrylhydrazyl. Chlorogenic acid was found to be nitrated by acidic nitrite. The kinetic studies and the nitration observed only by bubbling of nitric oxide plus nitrogen dioxide gases indicated that the nitrating agent was nitrogen sesquioxide. The observations showed that the mechanism by which chlorogenic acid inhibited N-nitrosation of 2,3-diamino-naphthalene is due to its ability to scavenge the nitrosating agent, nitrogen sesquioxide. Chlorogenic acid may be effective not only in protecting against oxidative damage but also in inhibiting potentially mutagenic and carcinogenic reactions in vivo. PMID:8554543

  16. A Lectin from Platypodium elegans with Unusual Specificity and Affinity for Asymmetric Complex N-Glycans*

    PubMed Central

    Benevides, Raquel Guimarães; Ganne, Géraldine; Simões, Rafael da Conceição; Schubert, Volker; Niemietz, Mathäus; Unverzagt, Carlo; Chazalet, Valérie; Breton, Christelle; Varrot, Annabelle; Cavada, Benildo Sousa; Imberty, Anne

    2012-01-01

    Lectin activity with specificity for mannose and glucose has been detected in the seed of Platypodium elegans, a legume plant from the Dalbergieae tribe. The gene of Platypodium elegans lectin A has been cloned, and the resulting 261-amino acid protein belongs to the legume lectin family with similarity with Pterocarpus angolensis agglutinin from the same tribe. The recombinant lectin has been expressed in Escherichia coli and refolded from inclusion bodies. Analysis of specificity by glycan array evidenced a very unusual preference for complex type N-glycans with asymmetrical branches. A short branch consisting of one mannose residue is preferred on the 6-arm of the N-glycan, whereas extensions by GlcNAc, Gal, and NeuAc are favorable on the 3-arm. Affinities have been obtained by microcalorimetry using symmetrical and asymmetrical Asn-linked heptasaccharides prepared by the semi-synthetic method. Strong affinity with Kd of 4.5 μm was obtained for both ligands. Crystal structures of Platypodium elegans lectin A complexed with branched trimannose and symmetrical complex-type Asn-linked heptasaccharide have been solved at 2.1 and 1.65 Å resolution, respectively. The lectin adopts the canonical dimeric organization of legume lectins. The trimannose bridges the binding sites of two neighboring dimers, resulting in the formation of infinite chains in the crystal. The Asn-linked heptasaccharide binds with the 6-arm in the primary binding site with extensive additional contacts on both arms. The GlcNAc on the 6-arm is bound in a constrained conformation that may rationalize the higher affinity observed on the glycan array for N-glycans with only a mannose on the 6-arm. PMID:22692206

  17. Pork as a Source of Omega-3 (n-3) Fatty Acids

    PubMed Central

    Dugan, Michael E.R.; Vahmani, Payam; Turner, Tyler D.; Mapiye, Cletos; Juárez, Manuel; Prieto, Nuria; Beaulieu, Angela D.; Zijlstra, Ruurd T.; Patience, John F.; Aalhus, Jennifer L.

    2015-01-01

    Pork is the most widely eaten meat in the world, but typical feeding practices give it a high omega-6 (n-6) to omega-3 (n-3) fatty acid ratio and make it a poor source of n-3 fatty acids. Feeding pigs n-3 fatty acids can increase their contents in pork, and in countries where label claims are permitted, claims can be met with limited feeding of n-3 fatty acid enrich feedstuffs, provided contributions of both fat and muscle are included in pork servings. Pork enriched with n-3 fatty acids is, however, not widely available. Producing and marketing n-3 fatty acid enriched pork requires regulatory approval, development costs, quality control costs, may increase production costs, and enriched pork has to be tracked to retail and sold for a premium. Mandatory labelling of the n-6/n-3 ratio and the n-3 fatty acid content of pork may help drive production of n-3 fatty acid enriched pork, and open the door to population-based disease prevention polices (i.e., food tax to provide incentives to improve production practices). A shift from the status-quo, however, will require stronger signals along the value chain indicating production of n-3 fatty acid enriched pork is an industry priority. PMID:26694475

  18. Pork as a Source of Omega-3 (n-3) Fatty Acids.

    PubMed

    Dugan, Michael E R; Vahmani, Payam; Turner, Tyler D; Mapiye, Cletos; Juárez, Manuel; Prieto, Nuria; Beaulieu, Angela D; Zijlstra, Ruurd T; Patience, John F; Aalhus, Jennifer L

    2015-12-16

    Pork is the most widely eaten meat in the world, but typical feeding practices give it a high omega-6 (n-6) to omega-3 (n-3) fatty acid ratio and make it a poor source of n-3 fatty acids. Feeding pigs n-3 fatty acids can increase their contents in pork, and in countries where label claims are permitted, claims can be met with limited feeding of n-3 fatty acid enrich feedstuffs, provided contributions of both fat and muscle are included in pork servings. Pork enriched with n-3 fatty acids is, however, not widely available. Producing and marketing n-3 fatty acid enriched pork requires regulatory approval, development costs, quality control costs, may increase production costs, and enriched pork has to be tracked to retail and sold for a premium. Mandatory labelling of the n-6/n-3 ratio and the n-3 fatty acid content of pork may help drive production of n-3 fatty acid enriched pork, and open the door to population-based disease prevention polices (i.e., food tax to provide incentives to improve production practices). A shift from the status-quo, however, will require stronger signals along the value chain indicating production of n-3 fatty acid enriched pork is an industry priority.

  19. Erythrocyte stearidonic acid and other n-3 fatty acids and CHD in the Physicians’ Health Study

    USDA-ARS?s Scientific Manuscript database

    Intake of marine-based n-3 fatty acids (EPA, docosapentaenoic acid and DHA) is recommended to prevent CHD. Stearidonic acid (SDA), a plant-based n-3 fatty acid, is a precursor of EPA and may be more readily converted to EPA than a-linolenic acid (ALA). While transgenic soyabeans might supply SDA at ...

  20. Thermodynamic, Spectroscopic, and Computational Studies of f -Element Complexation by N -Hydroxyethyl-diethylenetriamine- N,N ', N ", N"-tetraacetic Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grimes, Travis S.; Heathman, Colt R.; Jansone-Popova, Santa

    Potentiometric and spectroscopic techniques were combined with DFT calculations to probe the coordination environment and determine thermodynamic features of trivalent f-element complexation by N-hydroxyethyl-diethylenetriamine-N,N',N",N"-tetraacetic acid, HEDTTA. Ligand protonation constants and lanthanide stability constants were determined using potentiometry. Five protonation constants were accessible in I = 2.0 M (H +/Na +)ClO 4. UV–vis spectroscopy was used to determine stability constants for Nd 3+ and Am 3+ complexation with HEDTTA. Luminescence spectroscopy indicates two water molecules in the inner coordination sphere of the Eu/HEDTTA complex, suggesting HEDTTA is heptadentate. Luminescence data was supported by DFT calculations, which demonstrate that substitution of themore » acetate pendant arm by a N-hydroxyethyl group weakens the metal–nitrogen bond. This bond elongation is reflected in HEDTTA’s ability to differentiate trivalent actinides from trivalent lanthanides. The trans-lanthanide Ln/HEDTTA complex stability trend is analogous to Ln/DTPA complexation; however, the loss of one chelate ring resulting from structural substitution weakens the complexation by ~3 orders of magnitude. Successful separation of trivalent americium from trivalent lanthanides was demonstrated when HEDTTA was utilized as aqueous holdback complexant in a liquid–liquid system. Time-dependent extraction studies for HEDTTA were compared to diethylenetriamine-N,N,N',N",N"-pentaacetic acid (DTPA) and N-hydroxyethyl-ethylenediamine-N,N',N'-triacetic acid (HEDTA). The results presented here indicate substantially enhanced phase-transfer kinetic rates for mixtures containing HEDTTA.« less

  1. Thermodynamic, Spectroscopic, and Computational Studies of f -Element Complexation by N -Hydroxyethyl-diethylenetriamine- N,N ', N ", N"-tetraacetic Acid

    DOE PAGES

    Grimes, Travis S.; Heathman, Colt R.; Jansone-Popova, Santa; ...

    2017-01-24

    Potentiometric and spectroscopic techniques were combined with DFT calculations to probe the coordination environment and determine thermodynamic features of trivalent f-element complexation by N-hydroxyethyl-diethylenetriamine-N,N',N",N"-tetraacetic acid, HEDTTA. Ligand protonation constants and lanthanide stability constants were determined using potentiometry. Five protonation constants were accessible in I = 2.0 M (H +/Na +)ClO 4. UV–vis spectroscopy was used to determine stability constants for Nd 3+ and Am 3+ complexation with HEDTTA. Luminescence spectroscopy indicates two water molecules in the inner coordination sphere of the Eu/HEDTTA complex, suggesting HEDTTA is heptadentate. Luminescence data was supported by DFT calculations, which demonstrate that substitution of themore » acetate pendant arm by a N-hydroxyethyl group weakens the metal–nitrogen bond. This bond elongation is reflected in HEDTTA’s ability to differentiate trivalent actinides from trivalent lanthanides. The trans-lanthanide Ln/HEDTTA complex stability trend is analogous to Ln/DTPA complexation; however, the loss of one chelate ring resulting from structural substitution weakens the complexation by ~3 orders of magnitude. Successful separation of trivalent americium from trivalent lanthanides was demonstrated when HEDTTA was utilized as aqueous holdback complexant in a liquid–liquid system. Time-dependent extraction studies for HEDTTA were compared to diethylenetriamine-N,N,N',N",N"-pentaacetic acid (DTPA) and N-hydroxyethyl-ethylenediamine-N,N',N'-triacetic acid (HEDTA). The results presented here indicate substantially enhanced phase-transfer kinetic rates for mixtures containing HEDTTA.« less

  2. The specificity of Centruroides sculpturatus Ewing (Arizona lethal scorpion) hemolymph agglutinins.

    PubMed

    Vasta, G R; Cohen, E

    1982-01-01

    C. sculpturatus sera agglutinate human erythrocytes independently of the ABO blood group, enzyme treatment, incubation temperature or sex of the scorpions. Tested with human lymphocytes and reptile and bird erythrocytes, C. sculpturatus serum reacts like an anti-sialic acid agglutinin. With leukemic lymphocytes, titers are higher than with normal lymphocytes. Mammalian erythrocytes show characteristic agglutination patterns for C. sculpturatus for Limulus polyphemus (horseshoe crab) that suggest different receptors for agglutinins of both species. Cross absorption and elution experiments indicate the presence of at least two specific agglutinins in C. sculpturatus serum. Agglutination is inhibited by N-acetylneuraminic acid and N-glycolyneuraminic acid, for all erythrocytes tested. Calcium is required for optimal activity of C. sculpturatus agglutinins. C. sculpturatus agglutinating activity is destroyed at 65% degrees C for 20 minutes. Titers are decreased by 2-mercaptoethanol, and more so after alkylation with iodoacetic acid suggesting that disulfide bonds are present in C. sculpturatus agglutinin molecules.

  3. Thermodynamic and Spectroscopic Studies of Trivalent f -element Complexation with Ethylenediamine- N,N '-di(acetylglycine)- N,N '-diacetic Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heathman, Colt R.; Grimes, Travis S.; Zalupski, Peter R.

    In this study, the coordination behavior and thermodynamic features of complexation of trivalent lanthanides and americium by ethylenediamine- N,N'-di(acetylglycine)- N,N'-diacetic acid (EDDAG-DA) (bisamide-substituted-EDTA) were investigated by potentiometric and spectroscopic techniques. Acid dissociation constants (K a) and complexation constants (β) of lanthanides (except Pm) were determined by potentiometric analysis. Absorption spectroscopy was used to determine stability constants for the binding of trivalent americium and neodymium by EDDAG-DA under similar conditions. The potentiometry revealed 5 discernible protonation constants and 3 distinct metal–ligand complexes (identified as ML –, MHL, and MH 2L +). Time-resolved fluorescence studies of Eu-(EDDAG-DA) solutions (at varying pH) identifiedmore » a constant inner-sphere hydration number of 3, suggesting that glycine functionalities contained in the amide pendant arms are not involved in metal complexation and are protonated under more acidic conditions. The thermodynamic studies identified that f-element coordination by EDDAG-DA is similar to that observed for ethylenediamine- N,N,N',N'-tetraacetic acid (EDTA). However, coordination via two amidic oxygens of EDDAG-DA lowers its trivalent f-element complex stability by roughly 3 orders of magnitude relative to EDTA.« less

  4. Thermodynamic and Spectroscopic Studies of Trivalent f -element Complexation with Ethylenediamine- N,N '-di(acetylglycine)- N,N '-diacetic Acid

    DOE PAGES

    Heathman, Colt R.; Grimes, Travis S.; Zalupski, Peter R.

    2016-03-21

    In this study, the coordination behavior and thermodynamic features of complexation of trivalent lanthanides and americium by ethylenediamine- N,N'-di(acetylglycine)- N,N'-diacetic acid (EDDAG-DA) (bisamide-substituted-EDTA) were investigated by potentiometric and spectroscopic techniques. Acid dissociation constants (K a) and complexation constants (β) of lanthanides (except Pm) were determined by potentiometric analysis. Absorption spectroscopy was used to determine stability constants for the binding of trivalent americium and neodymium by EDDAG-DA under similar conditions. The potentiometry revealed 5 discernible protonation constants and 3 distinct metal–ligand complexes (identified as ML –, MHL, and MH 2L +). Time-resolved fluorescence studies of Eu-(EDDAG-DA) solutions (at varying pH) identifiedmore » a constant inner-sphere hydration number of 3, suggesting that glycine functionalities contained in the amide pendant arms are not involved in metal complexation and are protonated under more acidic conditions. The thermodynamic studies identified that f-element coordination by EDDAG-DA is similar to that observed for ethylenediamine- N,N,N',N'-tetraacetic acid (EDTA). However, coordination via two amidic oxygens of EDDAG-DA lowers its trivalent f-element complex stability by roughly 3 orders of magnitude relative to EDTA.« less

  5. 'Designer oils' low in n-6:n-3 fatty acid ratio beneficially modifies cardiovascular risks in mice.

    PubMed

    Riediger, Natalie D; Azordegan, Nazila; Harris-Janz, Sydney; Ma, David W L; Suh, Miyoung; Moghadasian, Mohammed H

    2009-08-01

    Cardiovascular benefits of dietary n-3 fatty acids have been shown. However, benefits of n-3 fatty acids as part of a high fat, low n-6:n-3 fatty acid ratio diet has not been fully characterized. Aim of this study is to investigate cardiovascular and metabolic benefits of 'designer oils' containing a low ratio of n-6:n-3 fatty acids in C57BL/6 mice. Three groups of C57BL/6 mice were fed an atherogenic diet supplemented with either a fish oil- or flaxseed oil-based 'designer oil' with an approximate n-6:n-3 fatty acid ratio of 2:1 (treated groups, n = 6 each) or with a safflower oil-based formulation with a high ratio (25:1) of n-6:n-3 fatty acids (control group, n = 6) for 6 weeks. Food intake, body weight, and blood lipid levels were monitored regularly. Fatty acid profile of the heart tissues was assessed. Histological assessment of liver samples was conducted. At the end of the study body weight and food intake was significantly higher in the flax group compared to control. The levels of 20:5n-3 and 22:6n-3 was significantly increased in the heart phospholipids in both flax and fish groups compared to control; tissue 20:4n-6 was significantly reduced in the fish group compared to control. Significant liver pathology was observed in the control group only. Lowering dietary ratio of n-6:n-3 fatty acids may significantly reduce cardiovascular and metabolic risks in mice regardless of the source of n-3 fatty acids.

  6. Divergent shifts in lipid mediator profile following supplementation with n-3 docosapentaenoic acid and eicosapentaenoic acid.

    PubMed

    Markworth, James F; Kaur, Gunveen; Miller, Eliza G; Larsen, Amy E; Sinclair, Andrew J; Maddipati, Krishna Rao; Cameron-Smith, David

    2016-11-01

    In contrast to the well-characterized effects of specialized proresolving lipid mediators (SPMs) derived from eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), little is known about the metabolic fate of the intermediary long-chain (LC) n-3 polyunsaturated fatty acid (PUFA) docosapentaenoic acid (DPA). In this double blind crossover study, shifts in circulating levels of n-3 and n-6 PUFA-derived bioactive lipid mediators were quantified by an unbiased liquid chromatography-tandem mass spectrometry lipidomic approach. Plasma was obtained from human subjects before and after 7 d of supplementation with pure n-3 DPA, n-3 EPA or placebo (olive oil). DPA supplementation increased the SPM resolvin D5 n -3DPA (RvD5 n -3DPA ) and maresin (MaR)-1, the DHA vicinal diol 19,20-dihydroxy-DPA and n-6 PUFA derived 15-keto-PG E 2 (15-keto-PGE 2 ). EPA supplementation had no effect on any plasma DPA or DHA derived mediators, but markedly elevated monohydroxy-eicosapentaenoic acids (HEPEs), including the e-series resolvin (RvE) precursor 18-HEPE; effects not observed with DPA supplementation. These data show that dietary n-3 DPA and EPA have highly divergent effects on human lipid mediator profile, with no overlap in PUFA metabolites formed. The recently uncovered biologic activity of n-3 DPA docosanoids and their marked modulation by dietary DPA intake reveals a unique and specific role of n-3 DPA in human physiology.-Markworth, J. F., Kaur, G., Miller, E. G., Larsen, A. E., Sinclair, A. J., Maddipati, K. R., Cameron-Smith, D. Divergent shifts in lipid mediator profile following supplementation with n-3 docosapentaenoic acid and eicosapentaenoic acid. © FASEB.

  7. Incorporation of N-amidino-pyroglutamic acid into peptides using intramolecular cyclization of alpha-guanidinoglutaric acid.

    PubMed

    Burov, Sergey; Moskalenko, Yulia; Dorosh, Marina; Shkarubskaya, Zoya; Panarin, Evgeny

    2009-11-01

    N-terminal modification of peptides by unnatural amino acids significantly affects their enzymatic stability, conformational properties and biological activity. Application of N-amidino-amino acids, positively charged under physiological conditions, can change peptide conformation and its affinity to the corresponding receptor. In this article, we describe synthesis of short peptides, containing a new building block-N-amidino-pyroglutamic acid. Although direct guanidinylation of pyroglutamic acid and oxidation of N-amidino-proline using RuO(4) did not produce positive results, N-amidino-Glp-Phe-OH was synthesized on Wang polymer by cyclization of alpha-guanidinoglutaric acid residue. In the course of synthesis, it was found that literature procedure of selective Boc deprotection using TMSOTf/TEA reagent is accompanied by concomitant side reaction of triethylamine alkylation by polymer linker fragment. It should be mentioned that independently from cyclization time and coupling agent (DIC or HCTU), the lactam formation was incomplete. Separation of the cyclic product from the linear precursor was achieved by HPLC in ammonium formate buffer at pH 6. HPLC analysis showed N-amidino-Glp-Phe-OH stability at acidic and physiological pH and fast ring opening in water solution at pH 9. The suggested method of N-amidino-Glp residue formation can be applied in the case of short peptide chains, whereas synthesis of longer ones will require fragment condensation approach.

  8. Fluorescent molecularly imprinted polymers as plastic antibodies for selective labeling and imaging of hyaluronan and sialic acid on fixed and living cells.

    PubMed

    Panagiotopoulou, Maria; Kunath, Stephanie; Medina-Rangel, Paulina Ximena; Haupt, Karsten; Tse Sum Bui, Bernadette

    2017-02-15

    Altered glycosylation levels or distribution of sialic acids (SA) or hyaluronan in animal cells are indicators of pathological conditions like infection or malignancy. We applied fluorescently-labeled molecularly imprinted polymer (MIP) particles for bioimaging of fixed and living human keratinocytes, to localize hyaluronan and sialylation sites. MIPs were prepared with the templates D-glucuronic acid (GlcA), a substructure of hyaluronan, and N-acetylneuraminic acid (NANA), the most common member of SA. Both MIPs were found to be highly selective towards their target monosaccharides, as no cross-reactivity was observed with other sugars like N-acetyl-D-glucosamine, N-acetyl-D-galactosamine, D-glucose and D-galactose, present on the cell surface. The dye rhodamine and two InP/ZnS quantum dots (QDs) emitting in the green and in the red regions were used as fluorescent probes. Rhodamine-MIPGlcA and rhodamine-MIPNANA were synthesized as monodispersed 400nm sized particles and were found to bind selectively their targets located in the extracellular region, as imaged by epifluorescence and confocal microscopy. In contrast, when MIP-GlcA and MIP-NANA particles with a smaller size (125nm) were used, the MIPs being synthesized as thin shells around green and red emitting QDs respectively, it was possible to stain the intracellular and pericellular regions as well. In addition, simultaneous dual-color imaging with the two different colored QDs-MIPs was demonstrated. Importantly, the MIPs were not cytotoxic and did not affect cell viability; neither was the cells morphology affected as demonstrated by live cell imaging. These synthetic receptors could offer a new and promising imaging tool to monitor disease progression. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. α-Amidoalkylating agents from N-acyl-α-amino acids: 1-(N-acylamino)alkyltriphenylphosphonium salts.

    PubMed

    Mazurkiewicz, Roman; Adamek, Jakub; Październiok-Holewa, Agnieszka; Zielińska, Katarzyna; Simka, Wojciech; Gajos, Anna; Szymura, Karol

    2012-02-17

    N-Acyl-α-amino acids were efficiently transformed in a two-step procedure into 1-N-(acylamino)alkyltriphenylphosphonium salts, new powerful α-amidoalkylating agents. The effect of the α-amino acid structure, the base used [MeONa or a silica gel-supported piperidine (SiO(2)-Pip)], and the main electrolysis parameters (current density, charge consumption) on the yield and selectivity of the electrochemical decarboxylative α-methoxylation of N-acyl-α-amino acids (Hofer-Moest reaction) was investigated. For most proteinogenic and all studied unproteinogenic α-amino acids, very good results were obtained using a substoichiometric amount of SiO(2)-Pip as the base. Only in the cases of N-acylated cysteine, methionine, and tryptophan, attempts to carry out the Hofer-Moest reaction in the applied conditions failed, probably because of the susceptibility of these α-amino acids to an electrochemical oxidation on the side chain. The methoxy group of N-(1-methoxyalkyl)amides was effectively displaced with the triphenylphosphonium group by dissolving an equimolar amount of N-(1-methoxyalkyl)amide and triphenylphosphonium tetrafluoroborate in CH(2)Cl(2) at room temperature for 30 min, followed by the precipitation of 1-N-(acylamino)alkyltriphenylphosphonium salt with Et(2)O.

  10. 40 CFR 721.3821 - L-Glutamic acid, N-(1-oxododecyl)-.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false L-Glutamic acid, N-(1-oxododecyl... Substances § 721.3821 L-Glutamic acid, N-(1-oxododecyl)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as L-Glutamic acid, N-(1-oxododecyl)- (PMN P...

  11. 40 CFR 721.3152 - Ethanaminium, N-ethyl-2-hydroxy-N,N-bis(2-hydroxyethyl)-, diester with C12-18 fatty acids, ethyl...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-bis(2-hydroxyethyl)-, diester with C12-18 fatty acids, ethyl sulfates (salts). 721.3152 Section 721... Ethanaminium, N-ethyl-2-hydroxy-N,N-bis(2-hydroxyethyl)-, diester with C12-18 fatty acids, ethyl sulfates... ethanaminium, N-ethyl-2-hydroxy-N,N-bis(2-hydroxyethyl)-, diester with C12-18 fatty acids, ethyl sulfates...

  12. 40 CFR 721.3152 - Ethanaminium, N-ethyl-2-hydroxy-N,N-bis(2-hydroxyethyl)-, diester with C12-18 fatty acids, ethyl...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-bis(2-hydroxyethyl)-, diester with C12-18 fatty acids, ethyl sulfates (salts). 721.3152 Section 721... Ethanaminium, N-ethyl-2-hydroxy-N,N-bis(2-hydroxyethyl)-, diester with C12-18 fatty acids, ethyl sulfates... ethanaminium, N-ethyl-2-hydroxy-N,N-bis(2-hydroxyethyl)-, diester with C12-18 fatty acids, ethyl sulfates...

  13. 40 CFR 721.3152 - Ethanaminium, N-ethyl-2-hydroxy-N,N-bis(2-hydroxyethyl)-, diester with C12-18 fatty acids, ethyl...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-bis(2-hydroxyethyl)-, diester with C12-18 fatty acids, ethyl sulfates (salts). 721.3152 Section 721... Ethanaminium, N-ethyl-2-hydroxy-N,N-bis(2-hydroxyethyl)-, diester with C12-18 fatty acids, ethyl sulfates... ethanaminium, N-ethyl-2-hydroxy-N,N-bis(2-hydroxyethyl)-, diester with C12-18 fatty acids, ethyl sulfates...

  14. 40 CFR 721.3152 - Ethanaminium, N-ethyl-2-hydroxy-N,N-bis(2-hydroxyethyl)-, diester with C12-18 fatty acids, ethyl...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-bis(2-hydroxyethyl)-, diester with C12-18 fatty acids, ethyl sulfates (salts). 721.3152 Section 721... Ethanaminium, N-ethyl-2-hydroxy-N,N-bis(2-hydroxyethyl)-, diester with C12-18 fatty acids, ethyl sulfates... ethanaminium, N-ethyl-2-hydroxy-N,N-bis(2-hydroxyethyl)-, diester with C12-18 fatty acids, ethyl sulfates...

  15. N-3 polyunsaturated fatty acid regulation of hepatic gene transcription

    PubMed Central

    Jump, Donald B.

    2009-01-01

    Purpose of review The liver plays a central role in whole body lipid metabolism and adapts rapidly to changes in dietary fat composition. This adaption involves changes in the expression of genes involved in glycolysis, de-novo lipogenesis, fatty acid elongation, desaturation and oxidation. This review brings together metabolic and molecular studies that help explain n-3 (omega-3) polyunsaturated fatty acid regulation of hepatic gene transcription. Recent findings Dietary n-3 polyunsaturated fatty acid regulates hepatic gene expression by targeting three major transcriptional regulatory networks: peroxisome proliferator-activated receptor α, sterol regulatory element binding protein-1 and the carbohydrate regulatory element binding protein/Max-like factor X heterodimer. 22 : 6,n-3, the most prominent n-3 polyunsaturated fatty acid in tissues, is a weak activator of peroxisome proliferator-activated receptor α. Hepatic metabolism of 22 : 6,n-3, however, generates 20 : 5,n-3, a strong peroxisome proliferator-activated receptor α activator. In contrast to peroxisome proliferator-activated receptor α, 22 : 6,n-3 is the most potent fatty acid regulator of hepatic sterol regulatory element binding protein-1. 22 : 6,n-3 suppresses sterol regulatory element binding protein-1 gene expression while enhancing degradation of nuclear sterol regulatory element binding protein-1 through 26S proteasome and Erk1/2-dependent mechanisms. Both n-3 and n-6 polyunsaturated fatty acid suppress carbohydrate regulatory element binding protein and Max-like factor X nuclear abundance and interfere with glucose-regulated hepatic metabolism. Summary These studies have revealed unique mechanisms by which specific polyunsaturated fatty acids control peroxisome proliferator activated receptor α, sterol regulatory element binding protein-1 and carbohydrate regulatory element binding protein/Max-like factor X function. As such, specific metabolic and signal transduction pathways contribute

  16. n-3 fatty acids reduce plasma 20-hydroxyeicosatetraenoic acid and blood pressure in patients with chronic kidney disease.

    PubMed

    Barden, Anne E; Burke, Valerie; Mas, Emilie; Beilin, Lawrence J; Puddey, Ian B; Watts, Gerald F; Irish, Ashley B; Mori, Trevor A

    2015-09-01

    Metabolism of arachidonic acid by cytochrome P450 ω-hydroxylase leads to the formation of 20-hydroxyeicosatetraenoic acid (20-HETE) that regulates vascular function, sodium homeostasis and blood pressure (BP). Supplementation with n-3 fatty acids is known to alter arachidonic acid metabolism and reduce the formation of the lipid peroxidation products F2-isoprostanes, but the effect of n-3 fatty acids on 20-HETE has not been studied. We previously reported a significant effect of n-3 fatty acids but not coenzyme Q10 (CoQ) to reduce BP in a double-blind, placebo-controlled intervention, wherein patients with chronic kidney disease (CKD) were randomized to n-3 fatty acids (4 g), CoQ (200 mg), both supplements or control (4 g olive oil), daily for 8 weeks. This study examined the effect of n-3 fatty acids on plasma and urinary 20-HETE in the same study, as well as plasma and urinary F2-isoprostanes, and relate these to changes in BP. Seventy-four patients completed the 8-week intervention. n-3 fatty acids but not CoQ significantly reduced plasma 20-HETE (P = 0.001) and F2-isoprostanes (P < 0.001). In regression models adjusted for BP at baseline, postintervention plasma 20-HETE was a significant predictor of the fall in SBP (P < 0.0001) and DBP (P < 0.0001) after n-3 fatty acids. This is the first report that n-3 fatty acid supplementation reduces plasma 20-HETE in humans and that this associates with reduced BP. These results provide a plausible mechanism for the reduction in BP observed in patients with CKD following n-3 fatty acid supplementation.

  17. NeuA sialic acid O-acetylesterase activity modulates O-acetylation of capsular polysaccharide in group B Streptococcus.

    PubMed

    Lewis, Amanda L; Cao, Hongzhi; Patel, Silpa K; Diaz, Sandra; Ryan, Wesley; Carlin, Aaron F; Thon, Vireak; Lewis, Warren G; Varki, Ajit; Chen, Xi; Nizet, Victor

    2007-09-21

    Group B Streptococcus (GBS) is a common cause of neonatal sepsis and meningitis. A major GBS virulence determinant is its sialic acid (Sia)-capped capsular polysaccharide. Recently, we discovered the presence and genetic basis of capsular Sia O-acetylation in GBS. We now characterize a GBS Sia O-acetylesterase that modulates the degree of GBS surface O-acetylation. The GBS Sia O-acetylesterase operates cooperatively with the GBS CMP-Sia synthetase, both part of a single polypeptide encoded by the neuA gene. NeuA de-O-acetylation of free 9-O-acetyl-N-acetylneuraminic acid (Neu5,9Ac(2)) was enhanced by CTP and Mg(2+), the substrate and co-factor, respectively, of the N-terminal GBS CMP-Sia synthetase domain. In contrast, the homologous bifunctional NeuA esterase from Escherichia coli K1 did not display cofactor dependence. Further analyses showed that in vitro, GBS NeuA can operate via two alternate enzymatic pathways: de-O-acetylation of Neu5,9Ac(2) followed by CMP activation of Neu5Ac or activation of Neu5,9Ac(2) followed by de-O-acetylation of CMP-Neu5,9Ac(2). Consistent with in vitro esterase assays, genetic deletion of GBS neuA led to accumulation of intracellular O-acetylated Sias, and overexpression of GBS NeuA reduced O-acetylation of Sias on the bacterial surface. Site-directed mutagenesis of conserved asparagine residue 301 abolished esterase activity but preserved CMP-Sia synthetase activity, as evidenced by hyper-O-acetylation of capsular polysaccharide Sias on GBS expressing only the N301A NeuA allele. These studies demonstrate a novel mechanism regulating the extent of capsular Sia O-acetylation in intact bacteria and provide a genetic strategy for manipulating GBS O-acetylation in order to explore the role of this modification in GBS pathogenesis and immunogenicity.

  18. Direct N-alkylation of unprotected amino acids with alcohols

    PubMed Central

    Yan, Tao; Feringa, Ben L.; Barta, Katalin

    2017-01-01

    N-alkyl amino acids find widespread application as highly valuable, renewable building blocks. However, traditional synthesis methodologies to obtain these suffer from serious limitations, providing a major challenge to develop sustainable alternatives. We report the first powerful catalytic strategy for the direct N-alkylation of unprotected α-amino acids with alcohols. This method is highly selective, produces water as the only side product leading to a simple purification procedure, and a variety of α-amino acids are mono- or di-N-alkylated, in most cases with excellent retention of optical purity. The hydrophobicity of the products is tunable, and even simple peptides are selectively alkylated. An iron-catalyzed route to mono-N-alkyl amino acids using renewable fatty alcohols is also described that represents an ideal green transformation for obtaining fully bio-based surfactants. PMID:29226249

  19. Dietary n-3 fatty acid restriction during gestation in rats: neuronal cell body and growth-cone fatty acids.

    PubMed

    Auestad, N; Innis, S M

    2000-01-01

    Growth cones are membrane-rich structures found at the distal end of growing axons and are the predecessors of the synaptic membranes of nerve endings. This study examined whether n-3 fatty acid restriction during gestation in rats alters the composition of growth cone and neuronal cell body membrane fatty acids in newborns. Female rats were fed a standard control diet containing soy oil (8% of fatty acids as 18:3n-3 by wt) or a semisynthetic n-3 fatty acid-deficient diet with safflower oil (0.3% of fatty acids as 18:3n-3 by wt) throughout normal pregnancy. Experiments were conducted on postnatal day 2 to minimize the potential for contamination from synaptic membranes and glial cells. Dietary n-3 fatty acid restriction resulted in lower docosahexaenoic acid (DHA) concentrations and a corresponding higher docosapentaenoic acid concentration in neuronal growth cones, but had no effects on neuronal cell body fatty acid concentrations. These studies suggest that accretion of DHA in growth cones, but not neuronal cell bodies, is affected by n-3 fatty acid restriction during gestation. Differences in other fatty acids or components between the semisynthetic and the standard diet, however, could have been involved in the effects on growth-cone DHA content. The results also provide evidence to suggest that the addition of new membrane fatty acids to neurons during development occurs along the shaft of the axon or at the growth cone, rather than originating at the cell body.

  20. Potential of ethylenediaminedi(o-hydroxyphenylacetic acid) and N,N'-bis(hydroxybenzyl)ethylenediamine-N,N'-diacetic acid for the determination of metal ions by capillary electrophoresis.

    PubMed

    Krokhin, O V; Kuzina, O V; Hoshino, H; Shpigun, O A; Yotsuyanagi, T

    2000-08-25

    Two aromatic polyaminocarboxylate ligands, ethylenediaminedi(o-hydroxyphenylacetic acid) (EDDHA) and N,N'-bis(hydroxybenzyl)ethylenediamine-N,N'-diacetic acid (HBED), were applied for the separation of transition and heavy metal ions by the ion-exchange variant of electrokinetic chromatography. EDDHA structure contains two chiral carbon centers. It makes it impossible to use the commercially available ligand. All the studied metal ions showed two peaks, which correspond to meso and rac forms of the ligand. The separation of metal-HBED chelates was performed using poly(diallyldimethylammonium) polycations in mixed acetate-hydroxide form. Simultaneous separation of nine single- and nine double-charged HBED chelates, including In(III), Ga(III), Co(II)-(III) and Mn(II)-(III) pairs demonstrated the efficiency of 40,000-400,000 theoretical plates. The separation of Co(III), Fe(III) complexes with different arrangements of donor groups and oxidation of Co(II), Mn(H), Fe(II) ions in reaction with HBED have been discussed.

  1. Effects of dietary saturated and n-6 polyunsaturated fatty acids on the incorporation of long-chain n-3 polyunsaturated fatty acids into blood lipids.

    PubMed

    Dias, C B; Wood, L G; Garg, M L

    2016-07-01

    Omega-3 polyunsaturated fatty acids (n-3PUFA) are better absorbed when they are combined with high-fat meals. However, the role of different dietary fats in modulating the incorporation of n-3PUFA in blood lipids in humans has not been previously explored. Omega-6 polyunsaturated fatty acids (n-6PUFA) are known to compete with n-3PUFA in the metabolic pathways and for the incorporation into phospholipids, whereas saturated fats (SFA) may enhance n-3PUFA incorporation into tissues. In a randomized parallel-design trial, we aimed to investigate the long-term effects of n-3PUFA supplementation in subjects consuming a diet enriched with either SFA or n-6PUFA on fatty acid incorporation into plasma and erythrocytes and on blood lipid profiles (total cholesterol, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C) and triglycerides). Dietary supplementation with n-3PUFA co-administered with SFA for 6 weeks resulted in a significant rise in total cholesterol (0.46±0.60 mmol/L; P=0.020) and LDL-C (0.48±0.48 mmol/L; P=0.011) in comparison with combination with n-6PUFA. The diet enriched with SFA also induced a greater increase in eicosapentaenoic acid (2.07±0.79 vs 1.15±0.53; P=0.004), a smaller decrease in docosapentaenoic acid (-0.12±0.23 vs -0.30±0.20; P=0.034) and a similar increase in docosahexaenoic acid (3.85±1.14 vs 3.10±1.07; P=0.128) percentage in plasma compared with the diet enriched with n-6PUFA. A similar effect was seen in erythrocytes. N-3PUFA supplementation resulted in similar changes in HDL-C and triglyceride levels. The results suggest that dietary substitution of SFA with n-6PUFA, despite maintaining low levels of circulating cholesterol, hinders n-3PUFA incorporation into plasma and tissue lipids.

  2. Blood fatty acid changes in healthy young Americans in response to a 10-week diet that increased n-3 and reduced n-6 fatty acid consumption: a randomised controlled trial.

    PubMed

    Young, Andrew J; Marriott, Bernadette P; Champagne, Catherine M; Hawes, Michael R; Montain, Scott J; Johannsen, Neil M; Berry, Kevin; Hibbeln, Joseph R

    2017-05-01

    Military personnel generally under-consume n-3 fatty acids and overconsume n-6 fatty acids. In a placebo-controlled, double-blinded study, we investigated whether a diet suitable for implementation in military dining facilities and civilian cafeterias could benefit n-3/n-6 fatty acid status of consumers. Three volunteer groups were provided different diets for 10 weeks. Control (CON) participants consumed meals from the US Military's Standard Garrison Dining Facility Menu. Experimental, moderate (EXP-Mod) and experimental-high (EXP-High) participants consumed the same meals, but high n-6 fatty acid and low n-3 fatty acid containing chicken, egg, oils and food ingredients were replaced with products having less n-6 fatty acids and more n-3 fatty acids. The EXP-High participants also consumed smoothies containing 1000 mg n-3 fatty acids per serving, whereas other participants received placebo smoothies. Plasma and erythrocyte EPA and DHA in CON group remained unchanged throughout, whereas EPA, DHA and Omega-3 Index increased in EXP-Mod and EXP-High groups, and were higher than in CON group after 5 weeks. After 10 weeks, Omega-3 Index in EXP-High group had increased further. No participants exhibited changes in fasting plasma TAG, total cholesterol, LDL, HDL, mood or emotional reactivity. Replacing high linoleic acid (LA) containing foods in dining facility menus with similar high oleic acid/low LA and high n-3 fatty acid foods can improve n-6/n-3 blood fatty acid status after 5 weeks. The diets were well accepted and suitable for implementation in group feeding settings like military dining facilities and civilian cafeterias.

  3. Can long chain n-3 fatty acids from feed be converted into very long chain n-3 fatty acids in fillets from farmed rainbow trout (Oncorhynchus mykiss)?

    NASA Astrophysics Data System (ADS)

    Lušnic Polak, M.; Demšar, L.; Luzar, U.; Polak, T.

    2017-09-01

    The link between the basic chemical and fatty acid composition of trout feed on one hand and trout (Oncorhynchus mykiss) meat (fillet) was investigated.. The content of 52 fatty acids from feed and trout meat lipids was determined by in-situ transesterification and capillary column gas-liquid chromatography. On average, 100 g of trout feed contained 7.4 g of moisture, 47.7 g of proteins, 6.09 g of ash, 21.4 g of fat, and as for fatty acid composition, 47.8 wt. % were monounsaturated, 34.0 wt. % were polyunsaturated and 18.1 wt. % were saturated fatty acids, with the PS ratio 1.88, n-6/n-3 ratio 1.74, 0.80 wt. % of trans and 3.28 wt. % of very long chain n-3 fatty acids. On average, 100 g of trout meat contained 76.1 g of moisture, 21.4 g of proteins, 1.34 g of ash, 2.52 g of fat, and in the fatty acid composition 42.1 wt. % were monounsaturated, 38.2 wt. % were polyunsaturated and 18.9 wt. % were saturated fatty acids, with the PS ratio 2.02, n-6/n-3 ratio 0.98, 0.95 wt. % of trans and 13.25 wt. % of very long chain n-3 fatty acids.

  4. Comparison of PFDA (Perfluoro-n-Decanoic Acid) and TCDD on Heart Membranes.

    DTIC Science & Technology

    1986-06-18

    AD-A171 960 COMPARISON OF PFDA ( PERFLUORO -N-DECANOIC ACID) AND TCDD 1/1 ON HEART NEMBRANES(U) WRIGHT STATE UNIY DAYTON OH SCHOOL OF MEDICINE A E...1986) Toxicol. Appl. Pharmacol. Perfluoro -n-decanoic acid ( PFDA ) is a synthetic chemical resembling a 10 carbon fatty acid. Several studies have...3 INTRODUCTION Perfluoro -n-decanoic acid ( PFDA ; nonadecafluorodecanoic acid, C10 F19 0 2H) is a straight-chain 10 carbon carboxylic acid with fluorine

  5. Thermodynamic characteristics of the protolytic equilibria of tetramethylenediamine- N,N,N', N'-tetraacetic acid

    NASA Astrophysics Data System (ADS)

    Gridchin, S. N.; Nikol'skii, V. M.

    2014-04-01

    The stepwise dissociation constants of tetramethylenediamine- N,N,N', N'-tetraacetic acid (H4L) are determined by means of potentiometry at 298.15 K and ionic strength values of 0.1, 0.5, and 1.0 (KNO3). The heat effects of the dissociation of the betaine groups of the complexone are measured by direct calorimetry. The standard thermodynamic characteristics of the protolytic equilibria of H4L are calculated via combined use of the results from thermochemical and potentiometric studies performed under identical experimental conditions. Our results are compared with the corresponding data on relative compounds.

  6. Crystal structure of the HA3 subcomponent of Clostridium botulinum type C progenitor toxin.

    PubMed

    Nakamura, Toshio; Kotani, Mao; Tonozuka, Takashi; Ide, Azusa; Oguma, Keiji; Nishikawa, Atsushi

    2009-01-30

    The Clostridium botulinum type C 16S progenitor toxin contains a neurotoxin and several nontoxic components, designated nontoxic nonhemagglutinin (HA), HA1 (HA-33), HA2 (HA-17), HA3a (HA-22-23), and HA3b (HA-53). The HA3b subcomponent seems to play an important role cooperatively with HA1 in the internalization of the toxin by gastrointestinal epithelial cells via binding of these subcomponents to specific oligosaccharides. In this study, we investigated the sugar-binding specificity of the HA3b subcomponent using recombinant protein fused to glutathione S-transferase and determined the three-dimensional structure of the HA3a-HA3b complex based on X-ray crystallography. The crystal structure was determined at a resolution of 2.6 A. HA3b contains three domains, domains I to III, and the structure of domain I resembles HA3a. In crystal packing, three HA3a-HA3b molecules are assembled to form a three-leaved propeller-like structure. The three HA3b domain I and three HA3a alternate, forming a trimer of dimers. In a database search, no proteins with high structural homology to any of the domains (Z score >10) were found. Especially, HA3a and HA3b domain I, mainly composed of beta-sheets, reveal a unique fold. In binding assays, HA3b bound sialic acid with high affinity, but did not bind galactose, N-acetylgalactosamine, or N-acetylglucosamine. The electron density of liganded N-acetylneuraminic acid was determined by crystal soaking. In the sugar-complex structure, the N-acetylneuraminic acid-binding site was located in the cleft formed between domains II and III of HA3b. This report provides the first determination of the three-dimensional structure of the HA3a-HA3b complex and its sialic acid binding site. Our results will provide useful information for elucidating the mechanism of assembly of the C16S toxin and for understanding the interactions with oligosaccharides on epithelial cells and internalization of the botulinum toxin complex.

  7. Microbial CH4 and N2O Consumption in Acidic Wetlands

    PubMed Central

    Kolb, Steffen; Horn, Marcus A.

    2012-01-01

    Acidic wetlands are global sources of the atmospheric greenhouse gases methane (CH4), and nitrous oxide (N2O). Consumption of both atmospheric gases has been observed in various acidic wetlands, but information on the microbial mechanisms underlying these phenomena is scarce. A substantial amount of CH4 is consumed in sub soil by aerobic methanotrophs at anoxic–oxic interfaces (e.g., tissues of Sphagnum mosses, rhizosphere of vascular plant roots). Methylocystis-related species are likely candidates that are involved in the consumption of atmospheric CH4 in acidic wetlands. Oxygen availability regulates the activity of methanotrophs of acidic wetlands. Other parameters impacting on the methanotroph-mediated CH4 consumption have not been systematically evaluated. N2O is produced and consumed by microbial denitrification, thus rendering acidic wetlands as temporary sources or sinks for N2O. Denitrifier communities in such ecosystems are diverse, and largely uncultured and/or new, and environmental factors that control their consumption activity are unresolved. Analyses of the composition of N2O reductase genes in acidic wetlands suggest that acid-tolerant Proteobacteria have the potential to mediate N2O consumption in such soils. Thus, the fragmented current state of knowledge raises open questions concerning methanotrophs and denitrifiers that consume atmospheric CH4 and N2O in acidic wetlands. PMID:22403579

  8. Plasma n-3 and n-6 fatty acids and inflammatory markers in Chinese vegetarians.

    PubMed

    Yu, Xiaomei; Huang, Tao; Weng, Xiumei; Shou, Tianxing; Wang, Qiang; Zhou, Xiaoqiong; Hu, Qinxin; Li, Duo

    2014-09-29

    Polyunsaturated fatty acid (PUFA) intake favorably affects chronic inflammatory-related diseases such as cardiovascular disease; however, the relationship between the PUFA and inflammatory factors in the healthy vegetarians were not clear. We aimed to investigate the plasma fatty acids status, and its association with plasma inflammatory factors in Chinese vegetarians and omnivores. A total of 89 male vegetarians and 106 male omnivores were participated the study. Plasma concentrations of inflammatory factors were detected by ELISA, and as standard methods fatty acids were extracted and determined by chromatography. Compared with omnivores, vegetarians have significant higher interleukin-6 (IL-6), plasma n-6 PUFA, n-6/n-3, and 18:3n-3; while they have significant lower leukotriene B4 (LTB4), cyclo-oxygenase-2 (COX2) and prostaglandin E2 (PGE2), 20:5n-3, 22:5n-3, 22:6n-3, and n-3 PUFA. In vegetarians, plasma 20:4n-6 was significant positively related to TNF-α. LTB4 was significantly positively related to plasma 22:6n-3, and negatively associated with n-6 PUFA. Vegetarians have higher plasma n-6 PUFA and IL-6, but lower LTB4, n-3 PUFA, 22:6n-3, COX2 and PGE2 levels. It would seem appropriate for vegetarians to increase their dietary n-3 PUFA, while reduce dietary n-6 PUFA and thus reduce the risk of chronic inflammatory-related diseases.

  9. Improved sensitivity by post-column chemical environment modification of CE-ESI-MS using a flow-through microvial interface.

    PubMed

    Risley, Jessica May; Chen, David Da Yong

    2017-06-01

    Post-column chemical environment modification can affect detection sensitivity and signal appearance when capillary electrophoresis is coupled through electrospray ionization to mass spectrometry (CE-ESI-MS). In this study, changes in the signal intensity and peak shape of N-Acetylneuraminic acid (Neu5Ac) were examined when the modifier solution used in a flow-through microvial interface for CE-ESI-MS was prepared using an acidic or basic background electrolyte (BGE) composition. The use of a basic modifier resulted in improved detection compared to the results obtained when an acidic modifier was used in negative ion mode. Increased sensitivity and more symmetrical peak shape were obtained. Using an acidic modifier, the LOD of Neu5Ac was 47.7 nM, whereas for a basic modifier, the LOD of Neu5Ac was 5.20 nM. The calculated asymmetry factor at 100 nM of Neu5Ac ranged from 0.71 to 1.5 when an acidic modifier was used, while the factor ranged from 1.0 to 1.1 when a basic modifier was used. Properly chosen post-column chemical modification can have a significant effect on the performance of the CE-MS system. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Physiological role of D-amino acid-N-acetyltransferase of Saccharomyces cerevisiae: detoxification of D-amino acids.

    PubMed

    Yow, Geok-Yong; Uo, Takuma; Yoshimura, Tohru; Esaki, Nobuyoshi

    2006-03-01

    Saccharomyces cerevisiae is sensitive to D-amino acids: those corresponding to almost all proteinous L-amino acids inhibit the growth of yeast even at low concentrations (e.g. 0.1 mM). We have determined that D-amino acid-N-acetyltransferase (DNT) of the yeast is involved in the detoxification of D-amino acids on the basis of the following findings. When the DNT gene was disrupted, the resulting mutant was far less tolerant to D-amino acids than the wild type. However, when the gene was overexpressed with a vector plasmid p426Gal1 in the wild type or the mutant S. cerevisiae as a host, the recombinant yeast, which was found to show more than 100 times higher DNT activity than the wild type, was much more tolerant to D-amino acids than the wild type. We further confirmed that, upon cultivation with D-phenylalanine, N-acetyl-D-phenylalanine was accumulated in the culture but not in the wild type and hpa3Delta cells overproducing DNT cells. Thus, D-amino acids are toxic to S. cerevisiae but are detoxified with DNT by N-acetylation preceding removal from yeast cells.

  11. Installing amino acids and peptides on N-heterocycles under visible-light assistance

    PubMed Central

    Jin, Yunhe; Jiang, Min; Wang, Hui; Fu, Hua

    2016-01-01

    Readily available natural α-amino acids are one of nature’s most attractive and versatile building blocks in synthesis of natural products and biomolecules. Peptides and N-heterocycles exhibit various biological and pharmaceutical functions. Conjugation of amino acids or peptides with N-heterocycles provides boundless potentiality for screening and discovery of diverse biologically active molecules. However, it is a great challenge to install amino acids or peptides on N-heterocycles through formation of carbon-carbon bonds under mild conditions. In this article, eighteen N-protected α-amino acids and three peptides were well assembled on phenanthridine derivatives via couplings of N-protected α-amino acid and peptide active esters with substituted 2-isocyanobiphenyls at room temperature under visible-light assistance. Furthermore, N-Boc-proline residue was successfully conjugated with oxindole derivatives using similar procedures. The simple protocol, mild reaction conditions, fast reaction, and high efficiency of this method make it an important strategy for synthesis of diverse molecules containing amino acid and peptide fragments. PMID:26830014

  12. Reevaluation of the effect of ellagic acid on N-methyl-N-nitrosourea DNA alkylation and mutagenicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lord, H.L.; Josephy, P.D.; Snieckus, V.A.

    N-Methyl-N-nitrosourea (MNU) is a reactive, mutagenic methylating agent. MNU methylates DNA at various sites, including guanine N{sup 7}, guanine O{sup 6}, and adenine N{sup 3}. Dixit and Gold ((1986) Proc. Natl, Acad. Sci. U.S.A. 83, 8039-8043) reported that ellagic acid, a phenolic natural product, inhibited the mutagenicity of MNU in Salmonella typhimurium strain TA 100, inhibited salmon sperm DNA alkylation by ({sup 3}H)MNU, and also greatly reduced the ratio of guanine O{sup 6} to guanine N{sup 7} alkylation. We have examined the MNU-induced alkylation of calf thymus DNA and evaluated the effect of ellagic acid on this binding. Ellagic acidmore » had only a slight effect on total alkylation and did not alter the ratio of methylation at guanine-O{sup 6} and -N{sup 7} positions. In further experiments, ellagic acid did not significantly inhibit MNU mutagenicity. These findings do not support the potential use of ellagic acid as an inhibitor of biological damage induced by nitrosoureas.« less

  13. Association between very long chain fatty acids in the meibomian gland and dry eye resulting from n-3 fatty acid deficiency.

    PubMed

    Tanaka, Hideko; Harauma, Akiko; Takimoto, Mao; Moriguchi, Toru

    2015-06-01

    In our previously study, we reported lower tear volume in with an n-3 fatty acid deficient mice and that the docosahexaenoic acid and total n-3 fatty acid levels in these mice are significantly reduced in the meibomian gland, which secretes an oily tear product. Furthermore, we noted very long chain fatty acids (≥25 carbons) in the meibomian gland. To verify the detailed mechanism of the low tear volume in the n-3 fatty acid-deficient mice, we identified the very long chain fatty acids in the meibomian gland, measured the fatty acid composition in the tear product. Very long chain fatty acids were found to exist as monoesters. In particular, very long chain fatty acids with 25-29 carbons existed for the most part as iso or anteiso branched-chain fatty acids. n-3 fatty acid deficiency was decreased the amount of meibum secretion from meibomian gland without change of fatty acid composition. These results suggest that the n-3 fatty acid deficiency causes the enhancement of evaporation of tear film by reducing oily tear secretion along with the decrease of meibomian gland function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Synthesis and Anti-microbial Activity of Novel Phosphatidylethanolamine-N-amino Acid Derivatives.

    PubMed

    Vijeetha, Tadla; Balakrishna, Marrapu; Karuna, Mallampalli Sri Lakshmi; Surya Koppeswara Rao, Bhamidipati Venkata; Prasad, Rachapudi Badari Narayana; Kumar, Koochana Pranay; Surya Narayana Murthy, Upadyaula

    2015-01-01

    The study involved synthesis of five novel amino acid derivatives of phosphatidylethanolamine isolated from egg yolk lecithin employing a three step procedure i) N-protection of L-amino acids with BOC anhydride in alkaline medium ii) condensation of - CO2H group of N-protected amino acid with free -NH2 of PE by a peptide linkage and iii) deprotection of N-protected group of amino acids to obtain phosphatidylethanolamine-N-amino acid derivatives in 60-75% yield. The five L-amino acids used were L glycine, L-valine, L-leucine, L-isoleucine and L-phenylalanine. The amino acid derivatives were screened for anti-baterial activity against B. subtilis, S. aureus, P. aeroginosa and E. coli taking Streptomycin as reference compound and anti-fungal activity against C. albicans, S. cervisiae, A. niger taking AmphotericinB as reference compound. All the amino acid derivatives exhibited extraordinary anti-bacterial activities about 3 folds or comparable to Streptomycin and moderate or no anti-fungal activity against Amphotericin-B.

  15. Mead acid (20:3n-9) and n-3 polyunsaturated fatty acids are not associated with risk of posterior longitudinal ligament ossification: results of a case-control study.

    PubMed

    Hamazaki, Kei; Kawaguchi, Yoshiharu; Nakano, Masato; Yasuda, Taketoshi; Seki, Shoji; Hori, Takeshi; Hamazaki, Tomohito; Kimura, Tomoatsu

    2015-05-01

    Ossification of the posterior longitudinal ligament (OPLL) involves the replacement of ligamentous tissue with ectopic bone. Although genetics and heritability appear to be involved in the development of OPLL, its pathogenesis remains to be elucidated. Given previous findings that 5,8,11-eicosatrienoic acid [20:3n-9, Mead acid (MA)] has depressive effects on osteoblastic activity and anti-angiogenic effects, and that n-3 polyunsaturated fatty acids (PUFAs) have a preventive effect on heterotopic ossification, we hypothesized that both fatty acids would be involved in OPLL development. To examine the biological significance of these and other fatty acids in OPLL, we conducted this case-control study involving 106 patients with cervical OPLL and 109 age matched controls. Fatty acid composition was determined from plasma samples by gas chromatography. Associations between fatty acid levels and incident OPLL were evaluated by logistic regression. Contrary to our expectations, we found no significant differences between patients and controls in the levels of MA or n-3 PUFAs (e.g., eicosapentaenoic acid and docosahexaenoic acid). Logistic regression analysis did not reveal any associations with OPLL risk for MA or n-3 PUFAs. In conclusion, no potential role was found for MA or n-3 PUFAs in ectopic bone formation in the spinal canal. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. n-3 fatty acids: role in neurogenesis and neuroplasticity.

    PubMed

    Crupi, R; Marino, A; Cuzzocrea, S

    2013-01-01

    Omega-3 polyunsaturated fatty acids (PUFA) are essential unsaturated fatty acids with a double bond (C=C) starting after the third carbon atom from the end of the carbon chain. They are important nutrients but, unfortunately, mammals cannot synthesize them, whereby they must be obtained from food sources or from supplements. Amongst nutritionally important polyunsaturated n-3 fatty acids, α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are highly concentrated in the brain and have anti-oxidative stress, anti-inflammatory and antiapoptotic effects. They are involved in many bodily processes and may reportedly lead to neuron protection in neurological diseases. aged or damaged neurons and in Alzheimer's disease. Their effect in cognitive and behavioral functions and in several neurological and psychiatric disorders has been also proven. The dentate gyrus (DG), a sub-region of hippocampus, is implicated in cognition and mood regulation. The hippocampus represents one of the two areas in the mammalian brain in which adult neurogenesis occurs. This process is associated with beneficial effects on cognition, mood and chronic pharmacological treatment. The exposure to n-3 fatty acids enhances adult hippocampal neurogenesis associated with cognitive and behavioral processes, promotes synaptic plasticity by increasing long-term potentiation and modulates synaptic protein expression to stimulate the dendritic arborization and new spines formation. On this basis we review the effect of n-3 fatty acids on adult hippocampal neurogenesis and neuroplasticity. Moreover their possible use as a new therapeutic approach for neurodegenerative diseases is pointed out.

  17. N-Substituted carbazolyloxyacetic acids modulate Alzheimer associated gamma-secretase.

    PubMed

    Narlawar, Rajeshwar; Pérez Revuelta, Blanca I; Baumann, Karlheinz; Schubenel, Robert; Haass, Christian; Steiner, Harald; Schmidt, Boris

    2007-01-01

    N-Sulfonylated and N-alkylated carbazolyloxyacetic acids were investigated for the inhibition and modulation of the Alzheimer's disease associated gamma-secretase. The introduction of a lipophilic substituent, which may vary from arylsulfone to alkyl, turned 2-carbazolyloxyacetic acids into potent gamma-secretase modulators. This resulted in the selective reduction of Abeta(42) and an increase of the less aggregatory Abeta(38) fragment by several compounds (e.g., 7d and 8c). Introduction of an electron donating group at position 6 and 8 of N-substituted carbazolyloxyacetic acids either decreased the activity or inversed modulation. The most active compounds displayed activity on amyloid precursor protein (APP) overexpressing cell lines in the low micromolar range and little or no effect on the gamma-secretase cleavage at the epsilon-site.

  18. Oleic acid derived metabolites in mouse neuroblastoma N18TG2 cells.

    PubMed

    Merkler, David J; Chew, Geoffrey H; Gee, Andrew J; Merkler, Kathleen A; Sorondo, Jean-Paul O; Johnson, Mitchell E

    2004-10-05

    Oleamide is an endogenous sleep-inducing lipid that has been isolated from the cerebrospinal fluid of sleep-deprived mammals. Oleamide is the best-understood member of the primary fatty acid amide family. One key unanswered question regarding oleamide and all other primary acid amides is the pathway by which these molecules are produced. One proposed pathway involves oleoyl-CoA and N-oleoylglycine as intermediates: oleic acid --> oleoyl-CoA --> N-oleoylglycine --> oleamide. The first and third reactions are known reactions, catalyzed by acyl-CoA synthetase and peptidylglycine alpha-amidating monooxygenase (PAM). Oleoyl-CoA formation from oleic acid has been demonstrated in vitro and in vivo while, to date, N-oleoylglycine cleavage to oleamide has been established only in vitro. PAM catalyzes the final step in alpha-amidated peptide biosynthesis, and its proposed role in primary fatty acid amide biosynthesis has been controversial. Mouse neuroblastoma N(18)TG(2) cells are an excellent model system for the study of oleamide biosynthesis because these cells convert [(14)C]-oleic acid to [(14)C]-oleamide and express PAM in a regulated fashion. We report herein that growth of the N(18)TG(2) cells in the presence of [(14)C]-oleic acid under conditions known to stimulate PAM expression generates an increase in [(14)C]-oleamide or in the presence of a PAM inhibitor generates [(14)C]-N-oleoylglycine. This represents the first identification of N-oleoylglycine from a biological source. In addition, N(18)TG(2) cell growth in the presence of N-oleoylglycine yields oleamide. These results strongly indicate that N-oleoylglycine is an intermediate in oleamide biosynthesis and provide further evidence that PAM does have a role in primary fatty acid amide production in vivo.

  19. Echium oil is better than rapeseed oil in enriching poultry meat with n-3 polyunsaturated fatty acids, including eicosapentaenoic acid and docosapentaenoic acid.

    PubMed

    Kitessa, Soressa M; Young, Paul

    2009-03-01

    alpha-Linolenic acid (ALA; 18 : 3n-3) and stearidonic acid (SDA; 18 : 4n-3) are on the biosynthetic pathway of EPA (20 : 5n-3) and DHA (22 : 6n-3). The n-3 fatty acid in rapeseed oil is ALA while Echium oil contains both ALA and SDA. To determine the comparative efficacy of ALA- and SDA-rich oils in enriching broiler meat with n-3 PUFA, we offered diets supplemented with rapeseed oil (rapeseed group) or Echium oil (Echium group) for 35 d to two groups of chicks (age 21 d). There were no differences in carcass weight (2.20 (sem 0.06) v. 2.23 (sem 0.05) kg), boned, skinless thigh muscle (494 (sem 20.5) v. 507 (sem 16.7) g), boned, skinless breast muscle (553 (sem 13.4) v. 546 (sem 11.6) g) or organ weights (heart, liver and gizzard) between the two groups. The total intramuscular fat (IMF) percentage of thigh (8.0 (sem 0.64) v. 8.1 (sem 0.62) %) and breast muscles (2.3 (sem 0.24) v. 2.0 (sem 0.19) %) were also similar between the groups. In contrast, the concentrations of most of the individual n-3 fatty acids (ALA, SDA, EPA and docosapentaenoic acid) were all higher in the Echium than the rapeseed group (P < 0.05). However, differences in DHA concentrations were significant in breast but not thigh muscle IMF. The total n-3 yields/100 g serve thigh muscle were 265 and 676 mg for the rapeseed and Echium groups, respectively (P < 0.0001). The corresponding values for equivalent breast muscles were 70 and 137 mg, respectively (P < 0.01). We conclude that Echium oil is a better lipid supplement than rapeseed oil in changing the concentration and yield of n-3 fatty acids, except DHA, in broiler meat.

  20. The effects of n-3 fatty acid deficiency and repletion upon the fatty acid composition and function of the brain and retina.

    PubMed

    Connor, W E; Neuringer, M

    1988-01-01

    It is now apparent that both n-6 and n-3 fatty acids are essential for normal development in mammals, and that each has specific functions in the body. N-6 fatty acids are necessary primarily for growth, reproduction, and the maintenance of skin integrity, whereas n-3 fatty acids are involved in the development and function of the retina and cerebral cortex and perhaps other organs such as the testes. Fetal life and infancy are particularly critical for the nervous tissue development. Therefore, with respect to human nutrition, adequate amounts of omega-3 fatty acids should be provided during pregnancy, lactation and infancy, but probably throughout life. We estimate that adequate levels are provided by diets containing 6-8% kcals from linoleic acid and 1% from n-3 fatty acids (alpha-linolenic acid, EPA and DHA), resulting in a ratio of n-6 to n-3 fatty acids of 4:1 to 10:1. The essentiality of n-3 fatty acids resides in their presence as DHA in vital membranes of the photoreceptors of the retina and the synaptosomes and other subcellular membranes of the brain. The replacement of DHA in deficient animals by the n-6 fatty acid, 22:5, results in abnormal functioning of the membranes for reasons as yet to be ascertained. Most significant is the lability of fatty acid composition in the retinal and brain of deficient animals. Dietary fish oil, which contains EPA and DHA, will readily lead to a change in the composition of the membrane of retina and brain, fatty acids, with DHA replacing the n-6 fatty acid, 22:5. The interrelationships between the chemistry of neural and retinal membranes as affected by diet and their biological functioning provides an exciting prospect for future investigations.

  1. Polypeptide having an amino acid replaced with N-benzylglycine

    DOEpatents

    Mitchell, Alexander R.; Young, Janis D.

    1996-01-01

    The present invention relates to one or more polypeptides having useful biological activity in a mammal, which comprise: a polypeptide related to bradykinin of four to ten amino acid residues wherein one or more specific amino acids in the polypeptide chain are replaced with achiral N-benzylglycine. These polypeptide analogues have useful potent agonist or antagonist pharmacological properties depending upon the structure. A preferred polypeptide is (N-benzylglycine.sup.7)-bradykinin.

  2. Long-chain n-3 and n-6 polyunsaturated fatty acids and risk of atrial fibrillation: Results from a Danish cohort study.

    PubMed

    Mortensen, Lotte Maxild; Lundbye-Christensen, Søren; Schmidt, Erik Berg; Calder, Philip C; Schierup, Mikkel Heide; Tjønneland, Anne; Parner, Erik T; Overvad, Kim

    2017-01-01

    Studies of the relation between polyunsaturated fatty acids and risk of atrial fibrillation have been inconclusive. The risk of atrial fibrillation may depend on the interaction between n-3 and n-6 polyunsaturated fatty acids as both types of fatty acids are involved in the regulation of systemic inflammation. We investigated the association between dietary intake of long chain polyunsaturated fatty acids (individually and in combination) and the risk of atrial fibrillation with focus on potential interaction between the two types of polyunsaturated fatty acids. The risk of atrial fibrillation in the Diet, Cancer and Health Cohort was analyzed using the pseudo-observation method to explore cumulative risks on an additive scale providing risk differences. Dietary intake of long chain polyunsaturated fatty acids was assessed by food frequency questionnaires. The main analyses were adjusted for the dietary intake of n-3 α-linolenic acid and n-6 linoleic acid to account for endogenous synthesis of long chain polyunsaturated fatty acids. Interaction was assessed as deviation from additivity of absolute association measures (risk differences). Cumulative risks in 15-year age periods were estimated in three strata of the cohort (N = 54,737). No associations between intake of n-3 or n-6 long chain polyunsaturated fatty acids and atrial fibrillation were found, neither when analyzed separately as primary exposures nor when interaction between n-3 and n-6 long chain polyunsaturated fatty acids was explored. This study suggests no association between intake of long chain polyunsaturated fatty acids and risk of atrial fibrillation.

  3. Supplementation with n-3, n-6, n-9 fatty acids in an insulin-resistance animal model: does it improve VLDL quality?

    PubMed

    Lucero, D; Olano, C; Bursztyn, M; Morales, C; Stranges, A; Friedman, S; Macri, E V; Schreier, L; Zago, V

    2017-05-24

    Insulin-resistance (IR), of increased cardiovascular risk, is characterized by the production of altered VLDL with greater atherogenicity. Dietary fatty acids influence the type of circulating VLDL. But, it is not clear how dietary fatty acids impact VLDL characteristics in IR. to evaluate the effects of n-3, n-6 and n-9 fatty acid supplementation on preventing atherogenic alterations in VLDL, in a diet-induced IR rat model. Male Wistar rats (180-200 g) were fed: standard diet (control, n = 8) and a sucrose rich diet (30% sucrose in water/12 weeks, SRD; n = 24). Simultaneously, SRD was subdivided into SRD-C (standard diet), and three other groups supplemented (15% w/w) with: fish oil (SRD-n3), sunflower oil (SRD-n6) and high oleic sunflower oil (SRD-n9). Lipid profile, free fatty acids, glucose, and insulin were measured. Isolated VLDL (d < 1.006 g ml -1 ) was characterized by chemical composition and size (size exclusion-HPLC). In comparison with SRD-C: SRD-n3 showed an improved lipoprotein profile (p < 0.01), with lower levels of insulin and HOMA-IR (p < 0.05). SRD-n6 showed increased levels of HDL-cholesterol and lower insulin levels. SRD-n9 did not exhibit differences in lipid and IR profile, and even favored weight gain and visceral fat. Only SRD-n3 prevented the alterations in VLDL-TG% (54.2 ± 4.4% vs. 68.6 ± 8.2, p < 0.05) and showed lower large VLDL-% (22.5[19.7-35.6] vs. 49.1[15.5-82.0], p < 0.05), while SRD-n6 and SRD-n9 did not show effects. In IR, while n-3 PUFA showed expected favorable effects, supplementation with n-6 PUFA and n-9 MUFA did not prevent atherogenic alterations of VLDL. Thus, the recommendations of supplementation with these fatty acids in general diet should be revised.

  4. N-Acyl derivatives of Asn, new bacterial N-acyl D-amino acids with surfactant activity.

    PubMed

    Peypoux, F; Laprévote, O; Pagadoy, M; Wallach, J

    2004-03-01

    New N-acyl D-amino acids were isolated from Bacillus pumilus IM 1801. Their structures were determined by chemical analysis and mass spectrometry. The lipid part was identified as a mixture of fatty acids with 11, 12, 13, 15, and 16 carbon atoms in the iso, anteiso or n configuration linked by an amide bond with a D-asparagine. They exhibited surfactant properties.

  5. n-hydrocarbons conversions over metal-modified solid acid catalysts

    NASA Astrophysics Data System (ADS)

    Zarubica, A.; Ranđelović, M.; Momčilović, M.; Radulović, N.; Putanov, P.

    2013-12-01

    The quality of a straight-run fuel oil can be improved if saturated n-hydrocarbons of low octane number are converted to their branched counterparts. Poor reactivity of traditional catalysts in isomerization reactions imposed the need for the development of new catalysts among which noble metal promoted acid catalysts, liquid and/or solid acid catalysts take a prominent place. Sulfated zirconia and metal promoted sulfated zirconia exhibit high activity for the isomerization of light alkanes at low temperatures. The present paper highlights the original results which indicate that the modification of sulfated zirconia by incorporation of metals (platinum and rhenium) significantly affects catalytic performances in n-hydrocarbon conversion reactions. Favourable activity/selectivity of the promoted sulfated zirconia depends on the crystal phase composition, critical crystallites sizes, platinum dispersion, total acidity and type of acidity. Attention is also paid to the recently developed solid acid catalysts used in other conversion reactions of hydrocarbons.

  6. The existence and gas phase acidity of the HAlnF3n+1 superacids (n = 1-4)

    NASA Astrophysics Data System (ADS)

    Czapla, Marcin; Skurski, Piotr

    2015-06-01

    Novel strong superacids are proposed and investigated on the basis of ab initio calculations. The gas phase acidity of the HAlF4, HAl2F7, and HAl3F10 systems evaluated by the estimation of the Gibbs free energies of their deprotonation reactions were found significant and comparable to the corresponding value characterizing the HTaF6, whereas the strength of the HAl4F13 acid was predicted to exceed that of the HSbF6 acid (the strongest liquid superacid recognized). The deprotonation energies of the HAlnF3n+1 acids (n = 1-4) turned out to be closely related to the electronic stabilities of their corresponding (AlnF3n+1)- anions.

  7. Host adaptation of a bacterial toxin from the human pathogen Salmonella Typhi

    PubMed Central

    Deng, Lingquan; Song, Jeongmin; Gao, Xiang; Wang, Jiawei; Yu, Hai; Chen, Xi; Varki, Nissi; Naito-Matsui, Yuko; Galán, Jorge E.; Varki, Ajit

    2014-01-01

    Salmonella Typhi is an exclusive human pathogen that causes typhoid fever. Typhoid toxin is a S. Typhi virulence factor that can reproduce most of the typhoid fever symptoms in experimental animals. Toxicity depends on toxin binding to terminally sialylated glycans on surface glycoproteins. Human glycans are unusual because of the lack of CMAH, which in other mammals converts N-acetylneuraminic acid (Neu5Ac) to N-glycolylneuraminic acid (Neu5Gc). Here we report that typhoid toxin binds to and is toxic towards cells expressing glycans terminated in Neu5Ac (expressed by humans) over glycans terminated in Neu5Gc (expressed by other mammals). Mice constitutively expressing CMAH thus displaying Neu5Gc in all tissues are resistant to typhoid toxin. The atomic structure of typhoid toxin bound to Neu5Ac reveals the structural bases for its binding specificity. These findings provide insight into the molecular bases for Salmonella Typhi’s host specificity and may help the development of therapies for typhoid fever. PMID:25480294

  8. Thermodynamic characteristics of the acid-base equilibria of ethylenediamine- N, N'-diglutaric acid in aqueous solutions using calorimetric data

    NASA Astrophysics Data System (ADS)

    Gridchin, S. N.; Nikol'skii, V. M.

    2017-10-01

    The enthalpies of reaction of betaine group neutralization of ethylenediamine- N, N'-diglutaric acid (H4L) at 298.15 K and at different values of ionic strength of 0.1, 0.5, 1.0 (KNO3) is measured by direct calorimetry. The standard thermodynamic characteristics of the protolytic equilibria of H4L are calculated.

  9. Inflammation in Response to n3 Fatty Acids in a Porcine Obesity Model

    PubMed Central

    Faris, Richard J; Boddicker, Rebecca L; Walker-Daniels, Jennifer; Li, Jenny; Jones, Douglas E; Spurlock, Michael E

    2012-01-01

    Fatty acids have distinct cellular effects related to inflammation and insulin sensitivity. Dietary saturated fat activates toll-like receptor 4, which in turn can lead to chronic inflammation, insulin resistance, and adipose tissue macrophage infiltration. Conversely, n3 fatty acids are generally antiinflammatory and promote insulin sensitivity, in part via peroxisome proliferator-activated receptor γ. Ossabaw swine are a useful biomedical model of obesity. We fed Ossabaw pigs either a low-fat control diet or a diet containing high-fat palm oil with or without additional n3 fatty acids for 30 wk to investigate the effect of saturated fats and n3 fatty acids on obesity-linked inflammatory markers. The diet did not influence the inflammatory markers C-reactive protein, TNFα, IL6, or IL12. In addition, n3 fatty acids attenuated the increase in inflammatory adipose tissue CD16–CD14+ macrophages induced by high palm oil. High-fat diets with and without n3 fatty acids both induced hyperglycemia without hyperinsulinemia. The high-fat only group but not the high-fat group with n3 fatty acids showed reduced insulin sensitivity in response to insulin challenge. This effect was not mediated by decreased phosphorylation of protein kinase B. Therefore, in obese Ossabaw swine, n3 fatty acids partially attenuate insulin resistance but only marginally change inflammatory status and macrophage phenotype in adipose tissue. PMID:23561883

  10. Structure-based Mechanism of CMP-2-keto-3-deoxymanno-octulonic Acid Synthetase

    PubMed Central

    Heyes, Derren J.; Levy, Colin; Lafite, Pierre; Roberts, Ian S.; Goldrick, Marie; Stachulski, Andrew V.; Rossington, Steven B.; Stanford, Deborah; Rigby, Stephen E. J.; Scrutton, Nigel S.; Leys, David

    2009-01-01

    The enzyme CMP-Kdo synthetase (KdsB) catalyzes the addition of 2-keto-3-deoxymanno-octulonic acid (Kdo) to CTP to form CMP-Kdo, a key reaction in the biosynthesis of lipopolysaccharide. The reaction catalyzed by KdsB and the related CMP-acylneuraminate synthase is unique among the sugar-activating enzymes in that the respective sugars are directly coupled to a cytosine monophosphate. Using inhibition studies, in combination with isothermal calorimetry, we show the substrate analogue 2β-deoxy-Kdo to be a potent competitive inhibitor. The ligand-free Escherichia coli KdsB and ternary complex KdsB-CTP-2β-deoxy-Kdo crystal structures reveal that Kdo binding leads to active site closure and repositioning of the CTP phosphates and associated Mg2+ ion (Mg-B). Both ligands occupy conformations compatible with an Sn2-type attack on the α-phosphate by the Kdo 2-hydroxyl group. Based on strong similarity with DNA/RNA polymerases, both in terms of overall chemistry catalyzed as well as active site configuration, we postulate a second Mg2+ ion (Mg-A) is bound by the catalytically competent KdsB-CTP-Kdo ternary complex. Modeling of this complex reveals the Mg-A coordinated to the conserved Asp100 and Asp235 in addition to the CTP α-phosphate and both the Kdo carboxylic and 2-hydroxyl groups. EPR measurements on the Mn2+-substituted ternary complex support this model. We propose the KdsB/CNS sugar-activating enzymes catalyze the formation of activated sugars, such as the abundant CMP-5-N-acetylneuraminic acid, by recruitment of two Mg2+ to the active site. Although each metal ion assists in correct positioning of the substrates and activation of the α-phosphate, Mg-A is responsible for activation of the sugar-hydroxyl group. PMID:19815542

  11. n3- polyunsaturated Fat Acid Content of Some Edible Fish from Bahrain Waters

    NASA Astrophysics Data System (ADS)

    Al-Arrayedu, F. H.; Al Maskati, H. A.; Abdullah, F. J.

    1999-08-01

    This study was performed to determine the content of n3- polyunsaturated fatty acids in 10 fish species that are commonly consumed in Bahrain in addition to the main commercial shrimp species. White sardinella, which is a plankton feeder, had the highest content of n3- polyunsaturated fatty acids. It had the highest value of eicosapentaenoic acid (146.5 ± 20 mg 100 g-1) and linolenic acid (98.9±f 100 g-1) and the second highest value of docosahexaenoic acid at (133.7 ± 22 mg 100 g-1). Spanish mackerel which feeds mainly on sardinella was second with eicosapentaenoc acid at 55 ± 5.4 mg 100 g-1, docosahexaenoic acid at 161 ± 19.8 mg 100 g-1, linolenic acid at 16.4 mg 100 g-1 and docosapentaenoic acid at 25 ± 1.9 mg 100 g-1. Rabbitfish, the most popular edible fish in Bahrain which feeds mainly on benthic algae had the third highest content of n3- polyunsaturated fatty acids with eicosapentaenoic acid at 37.5 ± 3.9 mg 100 g-1, docosahexaenoic acid at 76 ± 6.7 mg 100 g-1, and docosapentaenoic acid at 85.8 ± 10 mg 100 g-1. The other fish and crustacean species studied were Arabian carpet shark, doublebar bream, grouper, gray grunt, golden travally, keeled mullet, spangled emperor and shrimp. The study explores the transfer of n3- polyunsaturated fatty acids through the food webs of the examined fish. It is apparent, generally, that plankton feeders displayed the highest content of n3- polyunsaturated fatty acids followed by seaweed and algae grazers, with benthic carnivores feeding on invertebrates displaying the poorest content. The values reported here, however, are much lower than those reported for fish available in American markets and in Mediterranean fish. Warm water temperature and high salinity which lead to lowering of the density of phytoplankton and phytoplankton content of n3- polyunsaturated fatty acids are suggested as the reason for the observed low values of n3- polyunsaturated fatty acids in Bahrain fish.

  12. Helicobacter pylori and Complex Gangliosides

    PubMed Central

    Roche, Niamh; Ångström, Jonas; Hurtig, Marina; Larsson, Thomas; Borén, Thomas; Teneberg, Susann

    2004-01-01

    Recognition of sialic acid-containing glycoconjugates by the human gastric pathogen Helicobacter pylori has been repeatedly demonstrated. To investigate the structural requirements for H. pylori binding to complex gangliosides, a large number of gangliosides were isolated and characterized by mass spectrometry and proton nuclear magnetic resonance. Ganglioside binding of sialic acid-recognizing H. pylori strains (strains J99 and CCUG 17874) and knockout mutant strains with the sialic acid binding adhesin SabA or the NeuAcα3Galβ4GlcNAcβ3Galβ4GlcNAcβ-binding neutrophil-activating protein HPNAP deleted was investigated using the thin-layer chromatogram binding assay. The wild-type bacteria bound to N-acetyllactosamine-based gangliosides with terminal α3-linked NeuAc, while gangliosides with terminal NeuGcα3, NeuAcα6, or NeuAcα8NeuAcα3 were not recognized. The factors affecting binding affinity were identified as (i) the length of the N-acetyllactosamine carbohydrate chain, (ii) the branches of the carbohydrate chain, and (iii) fucose substitution of the N-acetyllactosamine core chain. While the J99/NAP− mutant strain displayed a ganglioside binding pattern identical to that of the parent J99 wild-type strain, no ganglioside binding was obtained with the J99/SabA− mutant strain, demonstrating that the SabA adhesin is the sole factor responsible for the binding of H. pylori bacterial cells to gangliosides. PMID:14977958

  13. Synthesis and characterization of a novel aminopolycarboxylate complexant for efficient trivalent f-element differentiation: N-butyl-2-acetamide-diethylenetriamine- N, N', N", N"-tetraacetic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heathman, Colt R.; Grimes, Travis S.; Jansone-Popova, Santa

    The novel metal ion complexant N-butyl-2-acetamide-diethylenetriamine-N,N',N",N"-tetraacetic acid (DTTA-BuA) uses an amide functionalization to increase the total ligand acidity and attain efficient 4f/5f differentiation in low pH conditions. The amide, when located on the diethylenetriamine platform containing four acetate pendant arms maintains the octadentate coordination sphere for all investigated trivalent f-elements. This compact coordination environment inhibits the protonation of LnL- complexes, as indicated by lower K 111 constants relative to the corresponding protonation site of the free ligand. For actinide ions, the enhanced stability of AnL- lowers the K 111 for americium and curium beyond the aptitude of potentiometric detection. Densitymore » functional theory computations indicate the difference in the back-donation ability of Am 3+ and Eu 3+ f-orbitals is mainly responsible for stronger proton affinity of EuL- compared to AmL-. The measured stability constants for the formation of AmL- and CmL- complexes are consistently higher, relative to ML- complexes with lanthanides of similar charge density. When compared with the conventional aminopolycarboxylate diethylenetriamine pentaacetic acid (DTPA), the modified DTTA-BuA complexant features higher ligand acidity and the important An 3+/Ln 3+ differentiation when deployed on a liquid–liquid distribution platform.« less

  14. Unexpected Hydrolytic Instability of N-Acylated Amino Acid Amides and Peptides

    PubMed Central

    2015-01-01

    Remote amide bonds in simple N-acyl amino acid amide or peptide derivatives 1 can be surprisingly unstable hydrolytically, affording, in solution, variable amounts of 3 under mild acidic conditions, such as trifluoroacetic acid/water mixtures at room temperature. This observation has important implications for the synthesis of this class of compounds, which includes N-terminal-acylated peptides. We describe the factors contributing to this instability and how to predict and control it. The instability is a function of the remote acyl group, R2CO, four bonds away from the site of hydrolysis. Electron-rich acyl R2 groups accelerate this reaction. In the case of acyl groups derived from substituted aromatic carboxylic acids, the acceleration is predictable from the substituent’s Hammett σ value. N-Acyl dipeptides are also hydrolyzed under typical cleavage conditions. This suggests that unwanted peptide truncation may occur during synthesis or prolonged standing in solution when dipeptides or longer peptides are acylated on the N-terminus with electron-rich aromatic groups. When amide hydrolysis is an undesired secondary reaction, as can be the case in the trifluoroacetic acid-catalyzed cleavage of amino acid amide or peptide derivatives 1 from solid-phase resins, conditions are provided to minimize that hydrolysis. PMID:24617596

  15. Metal chelates of phosphonate-containing ligands-III Analytical applications of N,N,N',N'-ethylenediaminetetra(methylenephosphonic) acid.

    PubMed

    Zaki, M T; Rizkalla, E N

    1980-05-01

    N,N*,N',N'-Ethylenediaminetetra(methylenephosphonic) acid is used as a titrant for the direct determination of Cu, Co and Ni, with murexide as indicator. Indirect titrimetric procedures are suggested for the determination of silver, mercury, zinc and cyanide and both direct and indirect methods are applied for the analysis of binary mixtures of silver (or mercury) and copper (cobalt or nickel). The stoichiometry of the reaction, interferences of some metal ions and the pH effects on the complexation reactions are discussed. The values of the equilibrium constants of the protonated CuH(n)L (n = 1, 2, 3 and 4) as well as the unprotonated CuL chelates have been measured.

  16. Regioselective Copper-Catalyzed Amination of Chlorobenzoic Acids: Synthesis and Solid-State Structures of N-Aryl Anthranilic Acid Derivatives

    PubMed Central

    Mei, Xuefeng; August, Adam T.; Wolf, Christian

    2008-01-01

    A chemo- and regioselective copper-catalyzed cross-coupling reaction for effective amination of 2-chlorobenzoic acids with aniline derivatives has been developed. The method eliminates the need for acid protection and produces a wide range of N-aryl anthranilic acid derivatives in up to 99%. The amination was found to proceed with both electron-rich and electron-deficient aryl chlorides and anilines and also utilizes sterically hindered anilines such as 2,6-dimethylaniline and 2-tert-butylaniline. The conformational isomerism of appropriately substituted N-aryl anthranilic acids has been investigated in the solid state. Crystallographic analysis of seven anthranilic acid derivatives showed formation of two distinct supramolecular architectures exhibiting trans-anti- and unprecedented trans-syn-dimeric structures. PMID:16388629

  17. Partial replacement of dietary linoleic acid with long chain n-3 polyunsaturated fatty acids protects against dextran sulfate sodium-induced colitis in rats.

    PubMed

    Tyagi, Anupama; Kumar, Uday; Santosh, Vadakattu Sai; Reddy, Suryam; Mohammed, Saazida Bhanu; Ibrahim, Ahamed

    2014-12-01

    Imbalances in the dietary n-6 and n-3 polyunsaturated fatty acids have been implicated in the increased prevalence of inflammatory bowel disease. This study investigated the effects of substitution of linoleic acid with long chain n-3 polyunsaturated fatty acids and hence decreasing n-6:n-3 fatty acid ratio on inflammatory response in dextran sulfate sodium induced colitis. Male weanling Sprague Dawley rats were fed diets with n-6:n-3 fatty acid in the ratios of 215,50,10 or 5 for 3 months and colitis was induced by administration of dextran sulfate sodium in drinking water during last 11 days. Decreasing the dietary n-6:n-3 fatty acid ratio to 10 and 5 significantly attenuated the severity of colitis as evidenced by improvements in clinical symptoms, reversal of shortening of colon length, reduced severity of anemia, preservation of colonic architecture as well as reduced colonic mucosal myeloperoxidase activity. This protection was associated with suppression of colonic mucosal proinflammatory mediators such as TNFα, IL-1β and nitric oxide. These findings suggest that long chain n-3 polyunsaturated fatty acids at a level of 3.0 g/kg diet (n-6:n-3 ratio of 10) prevents dextran sulfate sodium induced colitis by suppressing the proinflammatory mediators. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Recognition of fibronectin by Penicillium marneffei conidia via a sialic acid-dependent process and its relationship to the interaction between conidia and laminin.

    PubMed

    Hamilton, A J; Jeavons, L; Youngchim, S; Vanittanakom, N

    1999-10-01

    Adhesion of Penicillium marneffei conidia to the extracellular matrix protein laminin via a sialic acid-dependent process has previously been demonstrated. This study describes the interaction of P. marneffei conidia with fibronectin and examines the relationship of this process to the recognition of laminin via conidia. Immunofluorescence microscopy demonstrated that fibronectin bound to the surface of conidia and to phialides, but not to hyphae, in a pattern similar to that reported for laminin. Conidia were able to bind to fibronectin immobilized on microtiter plates in a concentration-dependent manner. However, binding to fibronectin (at any given concentration of protein and conidia) was less than that to laminin under equivalent conditions. Soluble fibronectin and antifibronectin antibody inhibited adherence of conidia to fibronectin in the plate adherence assay; soluble laminin also caused pronounced inhibition. Various monosaccharides and several peptides had no effect on adherence to fibronectin. However, N-acetylneuraminic acid abolished adherence to fibronectin, indicating that the interaction was mediated through a sialic acid-dependent process; the latter parallels observations of laminin binding by conidia. Fibronectin binding (and binding of laminin) was considerably reduced by prolonged preincubation of conidia with chymotrypsin, suggesting the protein nature of the binding site. Conidia from older cultures were more adherent to both immobilized fibronectin and laminin than conidia from younger cultures. Ligand affinity binding demonstrated the presence of a 20-kDa protein with the ability to bind both fibronectin and laminin. There would therefore appear to be a common receptor for the binding of fibronectin and laminin on the surface of P. marneffei, and the interaction described here maybe important in mediating attachment of the fungus to host tissue.

  19. Acid-Labile Acyclic Cucurbit[n]uril Molecular Containers for Controlled Release.

    PubMed

    Mao, Dake; Liang, Yajun; Liu, Yamin; Zhou, Xianhao; Ma, Jiaqi; Jiang, Biao; Liu, Jia; Ma, Da

    2017-10-02

    Stimuli-responsive molecular containers are of great importance for controlled drug delivery and other biomedical applications. A new type of acid labile acyclic cucurbit[n]uril (CB[n]) molecular containers is presented that can degrade and release the encapsulated cargo at accelerated rates under mildly acidic conditions (pH 5.5-6.5). These containers retain the excellent recognition properties of CB[n]-type hosts. A cell culture study demonstrated that the cellular uptake of cargos could be fine-tuned by complexation with different containers. The release and cell uptake of cargo dye was promoted by acidic pH. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Transcriptional Analysis of Lactobacillus brevis to N-Butanol and Ferulic Acid Stress Responses

    PubMed Central

    Winkler, James; Kao, Katy C.

    2011-01-01

    Background The presence of anti-microbial phenolic compounds, such as the model compound ferulic acid, in biomass hydrolysates pose significant challenges to the widespread use of biomass in conjunction with whole cell biocatalysis or fermentation. Currently, these inhibitory compounds must be removed through additional downstream processing or sufficiently diluted to create environments suitable for most industrially important microbial strains. Simultaneously, product toxicity must also be overcome to allow for efficient production of next generation biofuels such as n-butanol, isopropanol, and others from these low cost feedstocks. Methodology and Principal Findings This study explores the high ferulic acid and n-butanol tolerance in Lactobacillus brevis, a lactic acid bacterium often found in fermentation processes, by global transcriptional response analysis. The transcriptional profile of L. brevis reveals that the presence of ferulic acid triggers the expression of currently uncharacterized membrane proteins, possibly in an effort to counteract ferulic acid induced changes in membrane fluidity and ion leakage. In contrast to the ferulic acid stress response, n-butanol challenges to growing cultures primarily induce genes within the fatty acid synthesis pathway and reduced the proportion of 19∶1 cyclopropane fatty acid within the L. brevis membrane. Both inhibitors also triggered generalized stress responses. Separate attempts to alter flux through the Escherichia coli fatty acid synthesis by overexpressing acetyl-CoA carboxylase subunits and deleting cyclopropane fatty acid synthase (cfa) both failed to improve n-butanol tolerance in E. coli, indicating that additional components of the stress response are required to confer n-butanol resistance. Conclusions Several promising routes for understanding both ferulic acid and n-butanol tolerance have been identified from L. brevis gene expression data. These insights may be used to guide further engineering of

  1. Therapeutic potential of n-3 polyunsaturated fatty acids in disease.

    PubMed

    Fetterman, James W; Zdanowicz, Martin M

    2009-07-01

    The potential therapeutic benefits of supplementation with n-3 polyunsaturated fatty acids (PUFAs) in various diseases are reviewed, and the antiinflammatory actions, activity, and potential drug interactions and adverse effects of n-3 PUFAs are discussed. Fish oils are an excellent source of long-chain n-3 PUFAs, such as eicosapentaenoic acid and docosahexaenoic acid. After consumption, n-3 PUFAs can be incorporated into cell membranes and reduce the amount of arachidonic acid available for the synthesis of proinflammatory eicosanoids (e.g., prostaglandins, leukotrienes). Likewise, n-3 PUFAs can also reduce the production of inflammatory cytokines, such as tumor necrosis factor alpha, interleukin-1, and interleukin-6. Considerable research has been conducted to evaluate the potential therapeutic effects of fish oils in numerous conditions, including arthritis, coronary artery disease, inflammatory bowel disease, asthma, and sepsis, all of which have inflammation as a key component of their pathology. Additional investigations into the use of supplementation with fish oils in patients with neural injury, cancer, ocular diseases, and critical illness have recently been conducted. The most commonly reported adverse effects of fish oil supplements are a fishy aftertaste and gastrointestinal upset. When recommending an n-3 PUFA, clinicians should be aware of any possible adverse effect or drug interaction that, although not necessarily clinically significant, may occur, especially for patients who may be susceptible to increased bleeding (e.g., patients taking warfarin). The n-3 PUFAs have been shown to be efficacious in treating and preventing various diseases. The wide variation in dosages and formulations used in studies makes it difficult to recommend dosages for specific treatment goals.

  2. Basal omega-3 fatty acid status affects fatty acid and oxylipin responses to high-dose n3-HUFA in healthy volunteers

    USDA-ARS?s Scientific Manuscript database

    Objective: Baseline concentrations of highly unsaturated omega-3 fatty acid (n3-HUFA) may influence the ability of dietary n3-HUFA to affect changes in concentrations of esterified fatty acids and their metabolites. This study evaluates the influence of basal n3-HUFA and n3-HUFA metabolite status ...

  3. Potential for daily supplementation of n-3 fatty acids to reverse symptoms of dry eye in mice.

    PubMed

    Harauma, Akiko; Saito, Junpei; Watanabe, Yoshitake; Moriguchi, Toru

    2014-06-01

    The purpose of this study was to determine the change in tear volume, as a predominant symptom of dry eye syndrome, in dietary n-3 fatty acid deficient mice compared with n-3 fatty acid adequate mice. The tear volume in n-3 fatty acid deficient mice was significantly lower than that in n-3 fatty acid adequate mice. In addition, the concentration of n-3 fatty acid in the lacrimal and meibomian glands, which affects the production of tears, was markedly decreased compared with n-3 fatty acid adequate mice. However, the tear volume recovered almost completely after one week of continuous administration of fish oil containing EPA and DHA in n-3 fatty acid deficient mice. Also, the concentration of DHA in the meibomian gland of n-3 fatty acid deficient group recovered to approximately 80% more than that of n-3 fatty acid adequate group. These results suggested that dietary n-3 fatty acids deficiency showed reversible dry eye syndrome, and that n-3 fatty acids have an important role in the production of tears. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. n-3 fatty acids and cardiovascular outcomes in patients with dysglycemia.

    PubMed

    Bosch, Jackie; Gerstein, Hertzel C; Dagenais, Gilles R; Díaz, Rafael; Dyal, Leanne; Jung, Hyejung; Maggiono, Aldo P; Probstfield, Jeffrey; Ramachandran, Ambady; Riddle, Matthew C; Rydén, Lars E; Yusuf, Salim

    2012-07-26

    The use of n-3 fatty acids may prevent cardiovascular events in patients with recent myocardial infarction or heart failure. Their effects in patients with (or at risk for) type 2 diabetes mellitus are unknown. In this double-blind study with a 2-by-2 factorial design, we randomly assigned 12,536 patients who were at high risk for cardiovascular events and had impaired fasting glucose, impaired glucose tolerance, or diabetes to receive a 1-g capsule containing at least 900 mg (90% or more) of ethyl esters of n-3 fatty acids or placebo daily and to receive either insulin glargine or standard care. The primary outcome was death from cardiovascular causes. The results of the comparison between n-3 fatty acids and placebo are reported here. During a median follow up of 6.2 years, the incidence of the primary outcome was not significantly decreased among patients receiving n-3 fatty acids, as compared with those receiving placebo (574 patients [9.1%] vs. 581 patients [9.3%]; hazard ratio, 0.98; 95% confidence interval [CI], 0.87 to 1.10; P=0.72). The use of n-3 fatty acids also had no significant effect on the rates of major vascular events (1034 patients [16.5%] vs. 1017 patients [16.3%]; hazard ratio, 1.01; 95% CI, 0.93 to 1.10; P=0.81), death from any cause (951 [15.1%] vs. 964 [15.4%]; hazard ratio, 0.98; 95% CI, 0.89 to 1.07; P=0.63), or death from arrhythmia (288 [4.6%] vs. 259 [4.1%]; hazard ratio, 1.10; 95% CI, 0.93 to 1.30; P=0.26). Triglyceride levels were reduced by 14.5 mg per deciliter (0.16 mmol per liter) more among patients receiving n-3 fatty acids than among those receiving placebo (P<0.001), without a significant effect on other lipids. Adverse effects were similar in the two groups. Daily supplementation with 1 g of n-3 fatty acids did not reduce the rate of cardiovascular events in patients at high risk for cardiovascular events. (Funded by Sanofi; ORIGIN ClinicalTrials.gov number, NCT00069784.).

  5. A Propensity for n-omega-Amino Acids in Thermally-Altered Antarctic Meteorites

    NASA Technical Reports Server (NTRS)

    Burton, Aaron S.; Elsila, Jamie E.; Callahan, Michael P.; Martin, Mildred G.; Glavin, Daniel P.; Johnson, Natasha M.; Dworkin, Jason P.

    2012-01-01

    Carbonaceous meteorites are known to contain a wealth of indigenous organic molecules, including amino acids, which suggests that these meteorites could have been an important source of prebiotic organic material during the origins of life on Earth and possibly elsewhere. We report the detection of extraterrestrial amino acids in thermally-altered type 3 CV and CO carbonaceous chondrites and ureilites recovered from Antarctica. The amino acid concentrations of the thirteen Antarctic meteorites were generally less abundant than in more amino acid-rich CI, CM, and CR carbonaceous chondrites that experienced much lower temperature aqueous alteration on their parent bodies. In contrast to low-temperature aqueously-altered meteorites that show complete structural diversity in amino acids formed predominantly by Strecker-cyanohydrin synthesis, the thermally-altered meteorites studied here are dominated by small, straight-chain, amine terminal (n-omega-amino) amino acids that are not consistent with Strecker formation. The carbon isotopic ratios of two extraterrestrial n-omega-amino acids measured in one of the CV chondrites are consistent with C-13-depletions observed previously in hydrocarbons produced by Fischer-Tropsch type reactions. The predominance of n-omega-amino acid isomers in thermally-altered meteorites hints at cosmochemical mechanisms for the preferential formation and preservation of a small subset of the possible amino acids.

  6. Recovery of active N-acetyl-D-glucosamine 2-epimerase from inclusion bodies by solubilization with non-denaturing buffers.

    PubMed

    Lu, Shih-Chin; Lin, Sung-Chyr

    2012-01-05

    Overexpression of recombinant N-acetyl-D-glucosamine 2-epimerase, one of the key enzymes for the synthesis of N-acetylneuraminic acid, in E. coli led to the formation of protein inclusion bodies. In this study we report the recovery of active epimerase from inclusion bodies by direct solubilization with Tris buffer. At pH 7.0, 25% of the inclusion bodies were solubilized with Tris buffer. The specific activity of the solubilized proteins, 2.08±0.02 U/mg, was similar to that of the native protein, 2.13±0.01 U/mg. The result of circular dichroism spectroscopy analysis indicated that the structure of the solubilized epimerase obtained with pH 7.0 Tris buffer was similar to that of the native epimerase purified from the clarified cell lysate. As expected, the extent of deviation in CD spectra increased with buffer pH. The total enzyme activity recovered by solubilization from inclusion bodies, 170.41±10.06 U/l, was more than 2.5 times higher than that from the clarified cell lysate, 67.32±5.53 U/l. The results reported in this study confirm the hypothesis that the aggregation of proteins into inclusion bodies is reversible and suggest that direct solubilization with non-denaturing buffers is a promising approach for the recovery of active proteins from inclusion bodies, especially for aggregation-prone multisubunit proteins. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Reconstruction of diaminopimelic acid biosynthesis allows characterisation of Mycobacterium tuberculosis N-succinyl-L,L-diaminopimelic acid desuccinylase

    PubMed Central

    Usha, Veeraraghavan; Lloyd, Adrian J.; Roper, David I.; Dowson, Christopher G.; Kozlov, Guennadi; Gehring, Kalle; Chauhan, Smita; Imam, Hasan T.; Blindauer, Claudia A.; Besra, Gurdyal S.

    2016-01-01

    With the increased incidence of tuberculosis (TB) caused by Mycobacterium tuberculosis there is an urgent need for new and better anti-tubercular drugs. N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) is a key enzyme in the succinylase pathway for the biosynthesis of meso-diaminopimelic acid (meso-DAP) and L-lysine. DapE is a zinc containing metallohydrolase which hydrolyses N-succinyl L,L diaminopimelic acid (L,L-NSDAP) to L,L-diaminopimelic acid (L,L-DAP) and succinate. M. tuberculosis DapE (MtDapE) was cloned, over-expressed and purified as an N-terminal hexahistidine ((His)6) tagged fusion containing one zinc ion per DapE monomer. We redesigned the DAP synthetic pathway to generate L,L-NSDAP and other L,L-NSDAP derivatives and have characterised MtDapE with these substrates. In contrast to its other Gram negative homologues, the MtDapE was insensitive to inhibition by L-captopril which we show is consistent with novel mycobacterial alterations in the binding site of this drug. PMID:26976706

  8. Reconstruction of diaminopimelic acid biosynthesis allows characterisation of Mycobacterium tuberculosis N-succinyl-L,L-diaminopimelic acid desuccinylase.

    PubMed

    Usha, Veeraraghavan; Lloyd, Adrian J; Roper, David I; Dowson, Christopher G; Kozlov, Guennadi; Gehring, Kalle; Chauhan, Smita; Imam, Hasan T; Blindauer, Claudia A; Besra, Gurdyal S

    2016-03-15

    With the increased incidence of tuberculosis (TB) caused by Mycobacterium tuberculosis there is an urgent need for new and better anti-tubercular drugs. N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) is a key enzyme in the succinylase pathway for the biosynthesis of meso-diaminopimelic acid (meso-DAP) and L-lysine. DapE is a zinc containing metallohydrolase which hydrolyses N-succinyl L,L diaminopimelic acid (L,L-NSDAP) to L,L-diaminopimelic acid (L,L-DAP) and succinate. M. tuberculosis DapE (MtDapE) was cloned, over-expressed and purified as an N-terminal hexahistidine ((His)6) tagged fusion containing one zinc ion per DapE monomer. We redesigned the DAP synthetic pathway to generate L,L-NSDAP and other L,L-NSDAP derivatives and have characterised MtDapE with these substrates. In contrast to its other Gram negative homologues, the MtDapE was insensitive to inhibition by L-captopril which we show is consistent with novel mycobacterial alterations in the binding site of this drug.

  9. n-3 and n-6 Fatty Acid Changes in the Erythrocyte Membranes of Patients with 658240251 Clostridium difficile Infection.

    PubMed

    Czepiel, Jacek; Gdula-Argasińska, Joanna; Garlicki, Aleksander

    2016-01-01

    The implications of circulating essential fatty acids (FA) on the inflammatory risk profile and clinical outcome are still unclear. In order to gain a deeper understanding of the role of polyunsaturated fatty acids (PUFA) in the pathogenesis of acute infection, we analyzed the FA content in red blood cell (RBC) membranes of patients with Clostridium difficile infection (CDI) and controls. We prospectively studied 60 patients including 30 patients with CDI and 30 controls to assess lipid concentrations in erythrocyte membranes using gas chromatography. We observed a higher level of saturated fatty acids (SFA) in RBC membranes from patients with CDI. In patients with CDI, we also noticed a higher level of 20:4 n-6 FA and only a small amounts of C20:2n-6, C20:3n-6 FAs, arachidonic acid (AA) precursors, which suggest an intense inflammatory reaction in the organism during infection. We also noticed low levels of n-3 FA in the RBC membranes of patients infected with CDI. There is a deficit of n-3 FA in patients with CDI. n-3 FA are probably used during CDI as precursors of pro-resolving mediators that may indicate a therapeutic role of n-3 PUFAs in CDI. The changes in fatty acids in erythrocyte membranes during CDI alter their functions which may have an impact on the clinical outcome.

  10. Dietary Conjugated Linoleic Acid-Enriched Cheeses Influence the Levels of Circulating n-3 Highly Unsaturated Fatty Acids in Humans.

    PubMed

    Murru, Elisabetta; Carta, Gianfranca; Cordeddu, Lina; Melis, Maria Paola; Desogus, Erika; Ansar, Hastimansooreh; Chilliard, Yves; Ferlay, Anne; Stanton, Catherine; Coakley, Mairéad; Ross, R Paul; Piredda, Giovanni; Addis, Margherita; Mele, Maria Cristina; Cannelli, Giorgio; Banni, Sebastiano; Manca, Claudia

    2018-06-11

    n-3 highly unsaturated fatty acids (n-3 HUFA) directly and indirectly regulate lipid metabolism, energy balance and the inflammatory response. We investigated changes to the n-3 HUFA score of healthy adults, induced by different types and amounts of conjugated linoleic acid (CLA)-enriched (ENCH) cheeses consumed for different periods of time, compared to dietary fish oil (FO) pills (500 mg, each containing 100 mg of eicosapentaenoic and docosahexaenoic acids—EPA+DHA) or α-linolenic acid (ALA)-rich linseed oil (4 g, containing 2 g of ALA). A significant increase in the n-3 HUFA score was observed, in a dose-dependent manner, after administration of the FO supplement. In terms of the impact on the n-3 HUFA score, the intake of ENCH cheese (90 g/day) for two or four weeks was equivalent to the administration of one or two FO pills, respectively. Conversely, the linseed oil intake did not significantly impact the n-3 HUFA score. Feeding ENCH cheeses from different sources (bovine, ovine and caprine) for two months improved the n-3 HUFA score by increasing plasma DHA, and the effect was proportional to the CLA content in the cheese. We suggest that the improved n-3 HUFA score resulting from ENCH cheese intake may be attributed to increased peroxisome proliferator-activated receptor alpha (PPAR-α) activity. This study demonstrates that natural ENCH cheese is an alternative nutritional source of n-3 HUFA in humans.

  11. Potent Inhibitors against Newcastle Disease Virus Hemagglutinin-Neuraminidase.

    PubMed

    Rota, Paola; La Rocca, Paolo; Piccoli, Marco; Montefiori, Marco; Cirillo, Federica; Olsen, Lars; Orioli, Marica; Allevi, Pietro; Anastasia, Luigi

    2018-02-06

    Neuraminidase activity is essential for the infection and propagation of paramyxoviruses, including human parainfluenza viruses (hPIVs) and the Newcastle disease virus (NDV). Thus, many inhibitors have been developed based on the 2-deoxy-2,3-didehydro-d-N-acetylneuraminic acid inhibitor (DANA) backbone. Along this line, herein we report a series of neuraminidase inhibitors, having C4 (p-toluenesulfonamido and azido substituents) and C5 (N-perfluorinated chains) modifications to the DANA backbone, resulting in compounds with 5- to 15-fold greater potency than the currently most active compound, the N-trifluoroacetyl derivative of DANA (FANA), toward the NDV hemagglutinin-neuraminidase (NDV-HN). Remarkably, these inhibitors were found to be essentially inactive against the human sialidase NEU3, which is present on the outer layer of the cell membrane and is highly affected by the current NDV inhibitor FANA. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Development of rabbit meat products fortified with n-3 polyunsaturated fatty acids.

    PubMed

    Petracci, Massimiliano; Bianchi, Maurizio; Cavani, Claudio

    2009-02-01

    Rabbit meat is a highly digestible, tasty, low-calorie food, often recommended by nutritionists over other meats. Currently research in the rabbit sector is interested in developing feeding strategies aiming to further increase the nutritional value of rabbit meat as a "functional food" by including n-3 polyunsaturated fatty acids (n-3 PUFA), conjugated linoleic acid (CLA), vitamins and antioxidants in rabbit diets and assessing their effects on both raw and stored/processed meat quality properties. Our recent studies indicate that the dietary inclusion from 3 to 6% of linseed might be considered as a way to achieve the enrichment of the meat with α-linolenic acid and to guarantee satisfactory product stability during further processing and storage. Considering that 6% dietary linseed corresponds to a n-3 PUFA content of 8.5% of the total fatty acids and a lipid content of 4.7 g/100 g of leg meat, a content of 396 mg n-3 PUFA/100g meat can be estimated, which represents about 19% of the recommended daily allowance (RDA) for n-3 PUFA.

  13. Development of Rabbit Meat Products Fortified With n-3 Polyunsaturated Fatty Acids

    PubMed Central

    Petracci, Massimiliano; Bianchi, Maurizio; Cavani, Claudio

    2009-01-01

    Rabbit meat is a highly digestible, tasty, low-calorie food, often recommended by nutritionists over other meats. Currently research in the rabbit sector is interested in developing feeding strategies aiming to further increase the nutritional value of rabbit meat as a “functional food” by including n-3 polyunsaturated fatty acids (n-3 PUFA), conjugated linoleic acid (CLA), vitamins and antioxidants in rabbit diets and assessing their effects on both raw and stored/processed meat quality properties. Our recent studies indicate that the dietary inclusion from 3 to 6% of linseed might be considered as a way to achieve the enrichment of the meat with α-linolenic acid and to guarantee satisfactory product stability during further processing and storage. Considering that 6% dietary linseed corresponds to a n-3 PUFA content of 8.5% of the total fatty acids and a lipid content of 4.7 g/100 g of leg meat, a content of 396 mg n-3 PUFA/100g meat can be estimated, which represents about 19% of the recommended daily allowance (RDA) for n-3 PUFA. PMID:22253971

  14. Influence of ethylenediamine-n,n’-disuccinic acid (EDDS) concentration on the bactericidal activity of fatty acids in vitro

    USDA-ARS?s Scientific Manuscript database

    The antibacterial activity of mixtures of ethylenediamine-N,N’-disuccinic acid (EDDS) and antibacterial fatty acids (FA) was examined using the agar diffusion assay. Solutions of caproic, caprylic, capric, and lauric acids dissolved in potassium hydroxide (KOH) were supplemented with 0, 5, or 10 mM ...

  15. Atypical cleavage of protonated N-fatty acyl amino acids derived from aspartic acid evidenced by sequential MS3 experiments.

    PubMed

    Boukerche, Toufik Taalibi; Alves, Sandra; Le Faouder, Pauline; Warnet, Anna; Bertrand-Michel, Justine; Bouchekara, Mohamed; Belbachir, Mohammed; Tabet, Jean-Claude

    2016-12-01

    Lipidomics calls for information on detected lipids and conjugates whose structural elucidation by mass spectrometry requires to rationalization of their gas phase dissociations toward collision-induced dissociation (CID) processes. This study focused on activated dissociations of two lipoamino acid (LAA) systems composed of N-palmitoyl acyl coupled with aspartic and glutamic acid mono ethyl esters (as LAA (*D) and LAA (*E) ). Although in MS/MS, their CID spectra show similar trends, e.g., release of water and ethanol, the [(LAA (*D/*E) +H)-C 2 H 5 OH] + product ions dissociate via distinct pathways in sequential MS 3 experiments. The formation of all the product ions is rationalized by charge-promoted cleavages often involving stepwise processes with ion isomerization into ion-dipole prior to dissociation. The latter explains the maleic anhydride or ketene neutral losses from N-palmitoyl acyl aspartate and glutamate anhydride fragment ions, respectively. Consequently, protonated palmitoyl acid amide is generated from LAA (*D), whereas LAA (*E) leads to the [*E+H-H 2 O] + anhydride. The former releases ammonia to provide acylium, which gives the C n H (2n-1) and C n H (2n-3) carbenium series. This should offer structural information, e.g., to locate either unsaturation(s) or alkyl group branching present on the various fatty acyl moieties of lipo-aspartic acid in further studies based on MS n experiments.

  16. Effect of salivary gland adenocarcinoma cell-derived alpha-N-acetylgalactosaminidase on the bioactivity of macrophage activating factor.

    PubMed

    Matsuura, Takashi; Uematsu, Takashi; Yamaoka, Minoru; Furusawa, Kiyofumi

    2004-03-01

    The aim of this study was to clarify the effects of alpha-N-acetylgalactosaminidase (alpha-NaGalase) produced by human salivary gland adenocarcinoma (SGA) cells on the bioactivity of macrophage-activating factor (GcMAF). High exo-alpha-NaGalase activity was detected in the SGA cell line HSG. HSG alpha-NaGalase had both exo- and endo-enzyme activities, cleaving the Gal-GalNAc and GalNAc residues linked to Thr/Ser but not releasing the [NeuAc2-6]GalNac residue. Furthermore, GcMAF enzymatically prepared from the Gc protein enhanced the superoxide-generation capacity and phagocytic activity of monocytes/macrophages. However, GcMAF treated with purified alpha-NaGalase did not exhibit these effects. Thus, HSG possesses the capacity to produce larger quantities of alpha-NaGalase, which inactivates GcMAF produced from Gc protein, resulting in reduced phagocytic activity and superoxide-generation capacity of monocytes/macrophages. The present data strongly suggest that HSG alpha-NaGalase acts as an immunodeficiency factor in cancer patients.

  17. Palmitoleic acid (16:1n7) increases oxygen consumption, fatty acid oxidation and ATP content in white adipocytes.

    PubMed

    Cruz, Maysa M; Lopes, Andressa B; Crisma, Amanda R; de Sá, Roberta C C; Kuwabara, Wilson M T; Curi, Rui; de Andrade, Paula B M; Alonso-Vale, Maria I C

    2018-03-20

    We have recently demonstrated that palmitoleic acid (16:1n7) increases lipolysis, glucose uptake and glucose utilization for energy production in white adipose cells. In the present study, we tested the hypothesis that palmitoleic acid modulates bioenergetic activity in white adipocytes. For this, 3 T3-L1 pre-adipocytes were differentiated into mature adipocytes in the presence (or absence) of palmitic (16:0) or palmitoleic (16:1n7) acid at 100 or 200 μM. The following parameters were evaluated: lipolysis, lipogenesis, fatty acid (FA) oxidation, ATP content, oxygen consumption, mitochondrial mass, citrate synthase activity and protein content of mitochondrial oxidative phosphorylation (OXPHOS) complexes. Treatment with 16:1n7 during 9 days raised basal and isoproterenol-stimulated lipolysis, FA incorporation into triacylglycerol (TAG), FA oxidation, oxygen consumption, protein expression of subunits representing OXPHOS complex II, III, and V and intracellular ATP content. These effects were not observed in adipocytes treated with 16:0. Palmitoleic acid, by concerted action on lipolysis, FA esterification, mitochondrial FA oxidation, oxygen consumption and ATP content, does enhance white adipocyte energy expenditure and may act as local hormone.

  18. Nitric Acid and Water Extraction by T2EHDGA in n -Dodecane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Emily L.; Holfeltz, Vanessa E.; Hall, Gabriel B.

    Liquid-liquid distribution behavior of nitric acid (HNO3) and water by a diglycolamide ligand, N,N,N',N'-tetra-2-ethylhexyldiglycolamide (T2EHDGA) into n-dodecane diluent was investigated. Spectroscopic FTIR and NMR characterization of the organic extraction solutions indicate T2EHDGA carbonyl coordinates HNO3 and progressively aggregates at high acid conditions. Water extraction increases in the presence of HNO3. The experimentally observed distribution of HNO3 was modeled using the computer program, SXLSQI. The results indicated that the formation of two organic phase species—HNO3·T2EHDGA and (HNO3)2·T2EHDGA—satisfactory describes the acid transport behavior. Temperature dependent solvent extraction studies allowed for determination of thermodynamic extraction constants and ΔH and ΔS parameters for themore » corresponding extractive processes.« less

  19. Association of plasma n-6 and n-3 polyunsaturated fatty acids with synovitis in the knee: the MOST study

    USDA-ARS?s Scientific Manuscript database

    In osteoarthritis (OA) the synovium is often inflamed and inflammatory cytokines contribute to cartilage damage. Omega-3 polyunsaturated fatty acids (n-3 PUFAs) have anti-inflammatory effects whereas omega-6 polyunsaturated fatty acids (n-6 PUFAs) have, on balance, proinflammatory effects. The goal ...

  20. Development of a simple and efficient method for assaying cytidine monophosphate sialic acid synthetase activity using an enzymatic reduced nicotinamide adenine dinucleotide/oxidized nicotinamide adenine dinucleotide converting system.

    PubMed

    Fujita, Akiko; Sato, Chihiro; Münster-Kühnel, Anja-K; Gerardy-Schahn, Rita; Kitajima, Ken

    2005-02-01

    A new reliable method to assay the activity of cytidine monophosphate sialic acid (CMP-Sia) synthetase (CSS) has been developed. The activation of sialic acids (Sia) to CMP-Sia is a prerequisite for the de novo synthesis of sialoglycoconjugates. In vertebrates, CSS has been cloned from human, mouse, and rainbow trout, and the crystal structure has been resolved for the mouse enzyme. The mouse and rainbow trout enzyme have been compared with respect to substrate specificity, demonstrating that the mouse enzyme exhibits a pronounced specificity for N-acetylneuraminic acid (Neu5Ac), while the rainbow trout CSS is equally active with either of three Sia species, Neu5Ac, N-glycolylneuraminic acid (Neu5Gc), and deaminoneuraminic acid (KDN). However, molecular details that explain the pronounced substrate specificities are unknown. Understanding the catalytic mechanisms of these enzymes is of major importance, since CSSs play crucial roles in cellular sialylation patterns and thus are potential drug targets in a number of pathophysiological situations. The availability of the cDNAs and the obtained structural data enable rational approaches; however, these efforts are limited by the lack of a reliable high-throughput assay system. Here we describe a new assay system that allows product quantification in a reduced nicotinamide adenine dinucleotide (NADH)-dependent color reaction. The activation reaction catalyzed by CSS, CTP+Sia-->CMP-Sia+pyrophosphate, was evaluated by a consumption of Sia, which corresponds to that of NADH on the following two successive reactions: (i) Sia-->pyruvate+ManNAc (or Man), catalyzed by a sialic acid lyase (SAL), and (ii) pyruvate+NADH-->lactate+oxidized nicotinamide adenine dinucleotide (NAD+), catalyzed by a lactate dehydrogenase (LDH). Consumption of NADH can be photometrically monitored on a microtiter plate reader for a number of test samples at the same time. Furthermore, based on the quantification of CSS used in the SAL/LDH assay

  1. Accumulation of n-alkanes and carboxylic acids in peat mounds

    NASA Astrophysics Data System (ADS)

    Gabov, D. N.; Beznosikov, V. A.; Gruzdev, I. V.; Yakovleva, E. V.

    2017-10-01

    The quantitative and qualitative compositions of n-alkanes and carboxylic acids have been identified, and the features of their vertical stratification in peat mound profiles of the forest-tundra zone of Komi Republic have been revealed. The composition of n-alkanes (structures with C23, C25, C27, C29, and C31) and carboxylic acids (C24, C26, and C28) and their proportions make it possible to determine changes in plant communities of peat mounds with time and can be used as markers for the degree of decomposition of organic matter. In cryogenic horizons, the contents of n-alkanes (mainly C23, C25, and C27) and carboxylic acids (C24, C26, and C28) significantly decrease because of the different botanic composition of cryogenic horizons (grass-woody residues) and seasonally thawing horizons (moss-subshrub residues) and the almost complete stopping of the equilibrium accumulation and transformation of organic compounds in permafrost.

  2. Maternal n-6 and n-3 fatty acid status during pregnancy is related to infant heart rate and heart rate variability: An exploratory study.

    PubMed

    Drewery, M L; Gaitán, A V; Spedale, S B; Monlezun, C J; Miketínas, D C; Lammi-Keefe, C J

    2017-11-01

    Early life heart rate (HR) and heart rate variability (HRV) reflect autonomic system maturation. Intervention with n-3 long chain polyunsaturated fatty acids (LCPUFAs) during pregnancy favorably affects fetal HR and HRV, complementing previous observations for n-3 LCPUFA intervention during infancy. The relationship between maternal fatty acid status during pregnancy and infant HR/HRV has not previously been assessed. The aim of this study was to explore associations between maternal n-6 and n-3 fatty acid status during pregnancy and infant HR and HRV at 2 weeks, 4 months, and 6 months of age using linear regression models. Maternal n-3 fatty acids were inversely related to infant HR and positively related to HRV. Conversely, maternal n-6 fatty acids were positively related to infant HR and inversely related to HRV. These data build on existing literature evidencing a role for n-3 fatty acids in accelerating autonomic development and link n-6 fatty acids to HR/HRV. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Parallel evolution of a self-signal: humans and new world monkeys independently lost the cell surface sugar Neu5Gc.

    PubMed

    Springer, Stevan A; Diaz, Sandra L; Gagneux, Pascal

    2014-11-01

    Human sialic acid biology is unusual and thought to be unique among mammals. Humans lack a functional cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH) protein and cannot synthesize the sugar Neu5Gc, an innate mammalian signal of self. Losing this sugar changed how humans interact with some of our deadliest pathogens: malaria, influenza, and streptococcus among others. We show that the New World monkeys, comprising the third of all primate species, have human-like sialic acid biology. They have lost Neu5Gc because of an independent CMAH inactivation ~30 million years ago (mya) (compared to ~3 mya in hominids). This parallel loss of Neu5Gc opens sialic acid biology to comparative phylogenetic analysis and reveals an unexpected conservation priority. New World monkeys risk infection by human pathogens that can recognize cells in the absence of Neu5Gc. This striking molecular convergence provides a mechanism that could explain the long-standing observation that New World monkeys are susceptible to some human diseases that cannot be transmitted to other primates.

  4. 40 CFR 721.3820 - L-Glutamic acid, N-(1-oxododecyl)-, disodium salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false L-Glutamic acid, N-(1-oxododecyl... Specific Chemical Substances § 721.3820 L-Glutamic acid, N-(1-oxododecyl)-, disodium salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as L-Glutamic...

  5. [Effect of humic acids on migration and transformation of NH4(+) -N in saturated aquifer].

    PubMed

    Meng, Qing-Jun; Zhang, Yan; Feng, Qi-Yan; Zhang, Shuang-Sheng

    2011-11-01

    Isothermal adsorption experiment was used to study the adsorbing process of NH4(+) -N in quartz sands under the conditions with and without humic acid; the Langmuir and Freundlich equations were used to fit the absorption result and the maximum adsorption capacity of NH4(+) -N by quarts sands was calculated. Through the soil column experiments, the concentration of NH4(+) -N, NO3(-) -N and NO2(-) -N in effluent water in the tested soil column was investigated, and the effect of humic acid on migration and transformation of NH4(+) -N in saturated aquifer was analyzed, and Pseudo-second-order Kinetics Equation and Two-step Adsorption Kinetics Rate Equation were applied to fit the kinetic processes. The results showed that both Langmuir and Freundlich models can well describe the isothermal adsorption process of NH4(+) -N on the surface of quartz sands, which means that NH4(+) -N adsorbed by the quartz sand was mainly in the form of monolayer adsorption. The humic acid could increase the adsorption capacity of NH4(+) -N on quartz sand, and the saturated adsorption capacity was 0.354 mg x g(-1) under the condition with humic acid and 0.205 mg x g(-1) with the absence of humic acid. The experiment indicated that humic acid increased the adsorption capacity of NH4(+) -N on the surface of quartz sand by increasing adsorption space in the initial stage. After saturation, humic acid influenced the migration and transformation of NH4(+) -N to NO3(-) -N and NO2(-) -N probably through providing carbon source and energy for microorganisms such as nitrifying bacteria and then resulting in lower NH4(+) -N concentration in effluent water. Both Pseudo-second-order Kinetics Equation and Two-step Adsorption Kinetics Rate Equations can well describe the process of NH4(+) -N adsorption kinetics on quartz sand (R2 = 0.997 7 and R2 = 0.998 1 with humic acid; R2 = 0.992 3 and R2 = 0.994 4 without humic acid), indicating that this process was chemical adsorption. By comparing the

  6. Human baby hair amino acid natural abundance 15N-isotope values are not related to the 15N-isotope values of amino acids in mother's breast milk protein.

    PubMed

    Romek, Katarzyna M; Julien, Maxime; Frasquet-Darrieux, Marine; Tea, Illa; Antheaume, Ingrid; Hankard, Régis; Robins, Richard J

    2013-12-01

    Since exclusively breast-suckled infants obtain their nutrient only from their mother's milk, it might be anticipated that a correlation will exist between the (15)N/(14)N isotope ratios of amino acids of protein of young infants and those supplied by their mother. The work presented here aimed to determine whether amino nitrogen transfer from human milk to infant hair protein synthesized within the first month of life conserves the maternal isotopic signature or whether post-ingestion fractionation dominates the nitrogen isotope spectrum. The study was conducted at 1 month post-birth on 100 mother-infant pairs. Isotope ratios (15)N/(14)N and (13)C/(12)C were measured using isotope ratio measurement by Mass Spectrometry (irm-MS) for whole maternal milk, and infant hair and (15)N/(14)N ratios were also measured by GC-irm-MS for the N-pivaloyl-O-isopropyl esters of amino acids obtained from the hydrolysis of milk and hair proteins. The δ(15)N and δ(13)C (‰) were found to be significantly higher in infant hair than in breast milk (δ(15)N, P < 0.001; δ(13)C, P < 0.001). Furthermore, the δ(15)N (‰) of individual amino acids in infant hair was also significantly higher than that in maternal milk (P < 0.001). By calculation, the observed shift in isotope ratio was shown not to be accounted for by the amino acid composition of hair and milk proteins, indicating that it is not simply due to differences in the composition in the proteins present. Rather, it would appear that each pool-mother and infant-turns over independently, and that fractionation in infant N-metabolism even in the first month of life dominates over the nutrient N-content.

  7. Age-related changes of n-3 and n-6 polyunsaturated fatty acids in the anterior cingulate cortex of individuals with major depressive disorder.

    PubMed

    Conklin, Sarah M; Runyan, Caroline A; Leonard, Sherry; Reddy, Ravinder D; Muldoon, Matthew F; Yao, Jeffrey K

    2010-01-01

    Accumulating evidence finds a relative deficiency of peripheral membrane fatty acids in persons with affective disorders such as unipolar and bipolar depression. Here we sought to investigate whether postmortem brain fatty acids within the anterior cingulate cortex (BA-24) varied according to the presence of major depression at the time of death. Using capillary gas chromatography we measured fatty acids in a depressed group (n=12), and in a control group without lifetime history of psychiatric diagnosis (n=14). Compared to the control group, the depressed group showed significantly lower concentrations of numerous saturated and polyunsaturated fatty acids including both the n-3 and n-6 fatty acids. Additionally, significant correlations between age at death and precursor (or metabolites) in the n-3 fatty acid pathway were demonstrated in the depressed group but not in control subjects. In the n-6 fatty acid family, the ratio of 20:3(n-6)/18:2(n-6) was higher in patients than in control groups, whereas the ratio of 20:4(n-6)/20:3(n-6) was relatively decreased in patients. Lastly, a significant negative correlation between age and the ratio of 20:4(n-6) to 22:6(n-3) was found in patients, but not in controls. Taken together, decreases in 22:6(n-3) may be caused, at least in part, by the diminished formation of 20:5(n-3), which is derived from 20:4(n-3) through a Delta5 desaturase reaction. The present findings from postmortem brain tissue raise the possibility that an increased ratio of 20:4(n-6) to 22:6(n-3) may provide us with a biomarker for depression. Future research should further investigate these relationships. Published by Elsevier Ltd.

  8. From N-triisopropylsilylpyrrole to an optically active C-4 substituted pyroglutamic acid: total synthesis of penmacric acid.

    PubMed

    Berini, Christophe; Pelloux-Léon, Nadia; Minassian, Frédéric; Denis, Jean-Noël

    2009-11-07

    The stereoselective synthesis of penmacric acid, an optically active C-4 substituted pyroglutamic acid, has been efficiently achieved through an unusual 11-step sequence starting from simple N-triisopropylsilylpyrrole. The key-steps are the initial addition of the pyrrole nucleus onto a chiral nitrone and the obtention of the pyroglutamic acid moiety by reductive hydrogenation of the pyrrole followed by oxidation of the corresponding pyrrolidine into pyrrolidinone.

  9. Evaluation of long-chain n3 fatty acid content in diploid and triploid rainbow trout

    USDA-ARS?s Scientific Manuscript database

    Intake of long chain n3 fatty acids (LCn3), eicosapentaenoic acid (EPA; 20:5 n3) and docosahexaenoic acid (DHA; 22:6 n3), is associated with reduced cardiovascular disease. There is growing interest in farmed fish like rainbow trout, Oncorhynchus mykiss, as sources of LCn3. The trout industry raises...

  10. Red Blood Cell Docosapentaenoic Acid (DPA n-3) is Inversely Associated with Triglycerides and C-reactive Protein (CRP) in Healthy Adults and Dose-Dependently Increases Following n-3 Fatty Acid Supplementation

    PubMed Central

    Skulas-Ray, Ann C.; Flock, Michael R.; Richter, Chesney K.; Harris, William S.; West, Sheila G.; Kris-Etherton, Penny M.

    2015-01-01

    The role of the long-chain omega-3 (n-3) fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in lipid metabolism and inflammation has been extensively studied; however, little is known about the relationship between docosapentaenoic acid (DPA, 22:5 n-3) and inflammation and triglycerides (TG). We evaluated whether n-3 DPA content of red blood cells (RBC) was associated with markers of inflammation (interleukin-6 (IL-6), tumor necrosis factor α (TNF-α), and C-reactive protein (CRP) and fasting TG prior to n-3 supplementation in two studies (Study 1: n = 115, aged 20–44 years, body mass index (BMI) 20–30 kg/m2, TG = 34–176 mg/dL; Study 2: n = 28, aged 22–65 years, BMI 24–37 kg/m2, TG = 141–339 mg/dL). We also characterized the dose-response effects of n-3 fatty acid supplementation on RBC n-3 DPA after five months of supplementation with fish oil (Study 1: 0, 300, 600, 900, and 1800 mg/day EPA + DHA) and eight weeks of prescription n-3 ethyl esters (Study 2: 0, 850, and 3400 mg/day EPA + DHA). In Study 1, RBC n-3 DPA was inversely correlated with CRP (R2 = 36%, p < 0.001) and with fasting TG (r = −0.30, p = 0.001). The latter finding was replicated in Study 2 (r = −0.33, p = 0.04). In both studies, n-3 supplementation significantly increased RBC n-3 DPA dose-dependently. Relative increases were greater for Study 1, with increases of 29%–61% vs. 14%–26% for Study 2. The associations between RBC n-3 DPA, CRP, and fasting TG may have important implications for the prevention of atherosclerosis and chronic inflammatory diseases and warrant further study. PMID:26247967

  11. Kinetics study on the degradation of a model naphthenic acid by ethylenediamine-N,N'-disuccinic acid-modified Fenton process.

    PubMed

    Zhang, Ying; Klamerth, Nikolaus; Messele, Selamawit Ashagre; Chelme-Ayala, Pamela; Gamal El-Din, Mohamed

    2016-11-15

    Naphthenic acids (NAs) are reported to be the main species responsible for the oil sands process-affected water (OSPW) toxicity. In this study, the degradation of cyclohexanoic acid (CHA) as a model compound for NAs by an ethylenediamine-N,N'-disuccinic acid (EDDS)-modified Fenton process was investigated at pH 8. Optimum dose for Fe-EDDS (EDDS:Fe=2:1) was 0.45mM, and 2.94mM for hydrogen peroxide (H2O2). The time profiles of the main species in the process were studied, including CHA, H2O2, Fe(II), total Fe, and Fe-EDDS (in the main form of Fe(III)EDDS). The second-order rate constant between EDDS and hydroxyl radical (OH) at pH 8 was obtained as 2.48±0.43×10(9)M(-1)s(-1). OH was proved to be the main species responsible for the CHA degradation, while superoxide radical (O2(-)) played a minor role. The consecutive addition of H2O2 and Fe-EDDS led to a higher removal of CHA compared to that achieved by adding the reagents at a time. The half-wave potential of Fe(III/II)EDDS was measured at pH 7-9. The EDDS-modified Fenton process is a promising alternative to degrade NAs. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Binding properties of Clostridium botulinum type C progenitor toxin to mucins.

    PubMed

    Nakamura, Toshio; Takada, Noriko; Tonozuka, Takashi; Sakano, Yoshiyuki; Oguma, Keiji; Nishikawa, Atsushi

    2007-04-01

    It has been reported that Clostridium botulinum type C 16S progenitor toxin (C16S toxin) first binds to the sialic acid on the cell surface of mucin before invading cells [A. Nishikawa, N. Uotsu, H. Arimitsu, J.C. Lee, Y. Miura, Y. Fujinaga, H. Nakada, T. Watanabe, T. Ohyama, Y. Sakano, K. Oguma, The receptor and transporter for internalization of Clostridium botulinum type C progenitor toxin into HT-29 cells, Biochem. Biophys. Res. Commun. 319 (2004) 327-333]. In this study we investigated the binding properties of the C16S toxin to glycoproteins. Although the toxin bound to membrane blotted mucin derived from the bovine submaxillary gland (BSM), which contains a lot of sialyl oligosaccharides, it did not bind to neuraminidase-treated BSM. The binding of the toxin to BSM was inhibited by N-acetylneuraminic acid, N-glycolylneuraminic acid, and sialyl oligosaccharides strongly, but was not inhibited by neutral oligosaccharides. Both sialyl alpha2-3 lactose and sialyl alpha2-6 lactose prevented binding similarly. On the other hand, the toxin also bound well to porcine gastric mucin. In this case, neutral oligosaccharides might play an important role as ligand, since galactose and lactose inhibited binding. These results suggest that the toxin is capable of recognizing a wide variety of oligosaccharide structures.

  13. Sulfuric acid and hydrogen peroxide surface passivation effects on AlGaN/GaN high electron mobility transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaidi, Z. H., E-mail: zaffar.zaidi@sheffield.ac.uk; Lee, K. B.; Qian, H.

    2014-12-28

    In this work, we have compared SiN{sub x} passivation, hydrogen peroxide, and sulfuric acid treatment on AlGaN/GaN HEMTs surface after full device fabrication on Si substrate. Both the chemical treatments resulted in the suppression of device pinch-off gate leakage current below 1 μA/mm, which is much lower than that for SiN{sub x} passivation. The greatest suppression over the range of devices is observed with the sulfuric acid treatment. The device on/off current ratio is improved (from 10{sup 4}–10{sup 5} to 10{sup 7}) and a reduction in the device sub-threshold (S.S.) slope (from ∼215 to 90 mV/decade) is achieved. The sulfuric acid ismore » believed to work by oxidizing the surface which has a strong passivating effect on the gate leakage current. The interface trap charge density (D{sub it}) is reduced (from 4.86 to 0.90 × 10{sup 12 }cm{sup −2} eV{sup −1}), calculated from the change in the device S.S. The gate surface leakage current mechanism is explained by combined Mott hopping conduction and Poole Frenkel models for both untreated and sulfuric acid treated devices. Combining the sulfuric acid treatment underneath the gate with the SiN{sub x} passivation after full device fabrication results in the reduction of D{sub it} and improves the surface related current collapse.« less

  14. Cyclic mu-opioid receptor ligands containing multiple N-methylated amino acid residues.

    PubMed

    Adamska-Bartłomiejczyk, Anna; Janecka, Anna; Szabó, Márton Richárd; Cerlesi, Maria Camilla; Calo, Girolamo; Kluczyk, Alicja; Tömböly, Csaba; Borics, Attila

    2017-04-15

    In this study we report the in vitro activities of four cyclic opioid peptides with various sequence length/macrocycle size and N-methylamino acid residue content. N-Methylated amino acids were incorporated and cyclization was employed to enhance conformational rigidity to various extent. The effect of such modifications on ligand structure and binding properties were studied. The pentapeptide containing one endocyclic and one exocyclic N-methylated amino acid displayed the highest affinity to the mu-opioid receptor. This peptide was also shown to be a full agonist, while the other analogs failed to activate the mu opioid receptor. Results of molecular docking studies provided rationale for the explanation of binding properties on a structural basis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Mechanisms of n-3 fatty acid-mediated development and maintenance of learning memory performance.

    PubMed

    Su, Hui-Min

    2010-05-01

    Docosahexaenoic acid (DHA, 22:6n-3) is specifically enriched in the brain and mainly anchored in the neuronal membrane, where it is involved in the maintenance of normal neurological function. Most DHA accumulation in the brain takes place during brain development in the perinatal period. However, hippocampal DHA levels decrease with age and in the brain disorder Alzheimer's disease (AD), and this decrease is associated with reduced hippocampal-dependent spatial learning memory ability. A potential mechanism is proposed by which the n-3 fatty acids DHA and eicosapentaenoic acid (20:5n-3) aid the development and maintenance of spatial learning memory performance. The developing brain or hippocampal neurons can synthesize and take up DHA and incorporate it into membrane phospholipids, especially phosphatidylethanolamine, resulting in enhanced neurite outgrowth, synaptogenesis and neurogenesis. Exposure to n-3 fatty acids enhances synaptic plasticity by increasing long-term potentiation and synaptic protein expression to increase the dendritic spine density, number of c-Fos-positive neurons and neurogenesis in the hippocampus for learning memory processing. In aged rats, n-3 fatty acid supplementation reverses age-related changes and maintains learning memory performance. n-3 fatty acids have anti-oxidative stress, anti-inflammation, and anti-apoptosis effects, leading to neuron protection in the aged, damaged, and AD brain. Retinoid signaling may be involved in the effects of DHA on learning memory performance. Estrogen has similar effects to n-3 fatty acids on hippocampal function. It would be interesting to know if there is any interaction between DHA and estrogen so as to provide a better strategy for the development and maintenance of learning memory. Copyright 2010 Elsevier Inc. All rights reserved.

  16. Influence of lectins, hexoses, and neuraminidase on the association of purified elementary bodies of Chlamydia trachomatis UW-31 with HeLa cells.

    PubMed Central

    Bose, S K; Smith, G B; Paul, R G

    1983-01-01

    Using highly purified elementary bodies of Chlamydia trachomatis UW-31 (serotype K), we found that HeLa 229 monolayer cultures bound more 32P-labeled chlamydiae after pretreatment with the lectin wheat germ agglutinin. The lectin, on the other hand, inhibited competitively when chlamydial association was assayed in the presence of polycations. The two effects of wheat germ agglutinin were abolished when N-acetylneuraminic acid (NeuNAc)- or N-acetylglucosamine (GlcNAc)-preincubated wheat germ agglutinin was used. Brief exposure of HeLa cells to neuraminidase abolished the ability to bind the elementary bodies, whether or not polycations were present. Furthermore, at 5 degrees C but not at 37 degrees C, NeuNAc, GlcNAc and N-acetylgalactosamine inhibited chlamydial association only in the absence of the polycation DEAE-dextran. The results suggest that NeuNAc residues on the plasma membrane are the principal, but not the only, receptors for this strain of C. trachomatis. PMID:6687878

  17. Microbial Incorporation of Fatty Acids Derived From n-Alkanes Into Glycerides and Waxes

    PubMed Central

    Davis, J. B.

    1964-01-01

    When n-alkanes with 13 to 20 carbon atoms were fed to a Nocardia closely related to N. salmonicolor, the produced cellular triglycerides and aliphatic waxes invariably contained fatty acids with an even or an odd number of carbon atoms subject to this feature of the n-alkane substrate. Beta-oxidation and C2 addition are both operative, as evidenced by the spectra of fatty acids incorporated into the cellular lipid components. There is no distinction in the rate of microbial incorporation of the odd-or even-numbered carbon chains. The fatty acids are apparently directly derived from the long chain n-alkanes, rather than synthesized via the classic C2-condensation route. The alcohol component of waxes produced by the Nocardia is invariably of the same chain length as the n-alkane substrate. PMID:14170957

  18. Chronic sucrose intake decreases concentrations of n6 fatty acids, but not docosahexaenoic acid in the rat brain phospholipids.

    PubMed

    Mašek, Tomislav; Starčević, Kristina

    2017-07-13

    We investigated the influence of high sucrose intake, administered in drinking water, on the lipid profile of the brain and on the expression of SREBP1c and Δ-desaturase genes. Adult male rats received 30% sucrose solution for 20 weeks (Sucrose group), or plain water (Control group). After the 20th week of sucrose treatment, the Sucrose group showed permanent hyperglycemia. Sucrose treatment also increased the amount of total lipids and fatty acids in the brain. The brain fatty acid profile of total lipids as well as phosphatidylethanolamine, phosphatidylcholine and cardiolipin of the Sucrose group was extensively changed. The most interesting change was a significant decrease in n6 fatty acids, including the important arachidonic acid, whereas the content of oleic and docosahexaenoic acid remained unchanged. RT-qPCR revealed an increase in Δ-5-desaturase and SREBP1c gene expression. In conclusion, high sucrose intake via drinking water extensively changes rat brain fatty acid profile by decreasing n6 fatty acids, including arachidonic acid. In contrast, the content of docosahexaenoic acid remains constant in the brain total lipids as well as in phospholipids. Changes in the brain fatty acid profile reflect changes in the lipid metabolism of the rat lipogenic tissues and concentrations in the circulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Effects of dicyandiamide and dolomite application on N2O emission from an acidic soil.

    PubMed

    Shaaban, Muhammad; Wu, Yupeng; Peng, Qi-an; Lin, Shan; Mo, Yongliang; Wu, Lei; Hu, Ronggui; Zhou, Wei

    2016-04-01

    Soil acidification is a major problem for sustainable agriculture since it limits productivity of several crops. Liming is usually adopted to ameliorate soil acidity that can trigger soil processes such as nitrification, denitrification, and loss of nitrogen (N) as nitrous oxide (N2O) emissions. The loss of N following liming of acidic soils can be controlled by nitrification inhibitors (such as dicyandiamide). However, effects of nitrification inhibitors following liming of acidic soils are not well understood so far. Here, we conducted a laboratory study using an acidic soil to examine the effects of dolomite and dicyandiamide (DCD) application on N2O emissions. Three levels of DCD (0, 10, and 20 mg kg(-1); DCD0, DCD10, and DCD20, respectively) were applied to the acidic soil under two levels of dolomite (0 and 1 g kg(-1)) which were further treated with two levels of N fertilizer (0 and 200 mg N kg(-1)). Results showed that N2O emissions were highest at low soil pH levels in fertilizer-treated soil without application of DCD and dolomite. Application of DCD and dolomite significantly (P ≤ 0.001) reduced N2O emissions through decreasing rates of NH4 (+)-N oxidation and increasing soil pH, respectively. Total N2O emissions were reduced by 44 and 13% in DCD20 and dolomite alone treatments, respectively, while DCD20 + dolomite reduced N2O emissions by 54% when compared with DCD0 treatment. The present study suggests that application of DCD and dolomite to acidic soils can mitigate N2O emissions.

  20. Derivatization of amino acids with N,N-dimethyl-2,4-dinitro-5-fluorobenzylamine for liquid chromatography/electrospray ionization mass spectrometry.

    PubMed

    Liu, Zhongfa; Minkler, Paul E; Lin, De; Sayre, Lawrence M

    2004-01-01

    Derivatization, separation and identification of amino acids with a novel compound, N,N-dimethyl-2,4-dinitro-5-fluorobenzylamine (DMDNFB), using high-performance liquid chromatography/electrospray ionization mass spectrometry (HPLC/ESI-MS) was demonstrated. Compared to derivatization with 2,4-dinitrofluorobenzene (DNFB), DMDNFB-derivatized amino acids and dipeptides exhibit much larger ion current signals in the commonly used ESI positive mode, which was attributed to the introduction of the N,N-dimethylaminomethyl protonatable site. Copyright 2004 John Wiley & Sons, Ltd.

  1. Highly efficient peptide formation from N-acetylaminoacyl-AMP anhydride and free amino acid

    NASA Technical Reports Server (NTRS)

    Mullins, D. W., Jr.; Lacey, J. C., Jr.

    1983-01-01

    The kinetics of formation of the N-blocked dipeptide, N-acetylglycylglycine, from N-acetylglycyl adenylate anhydride and glycine in aqueous solution at 25 C, and at various PH's are reported. The reaction is of interest in that over a physiologically relevant pH range (6-8), peptide synthesis proceeds more rapidly than hydrolysis, even at those pH's at which this compound becomes increasingly susceptible to base-catalyzed hydrolysis. Under similar conditions, the corresponding unblocked aminoacyl adenylate anhydrides are considerably more unstable, and undergo appreciable hydrlysis in the presence of free amino acid. Because N-blocked aminoacyl adenylate anhydrides serve as model compounds of peptidyl adenylate anhydrides, these results suggest that primitive amino acid polymerization systems may have operated by cyclic reactivation of the peptidyl carboxyl group, rather than that of the incoming amino acid.

  2. Some structural features of the teichuronic acid of Bacillus licheniformis N.C.T.C. 6346 cell walls

    PubMed Central

    Hughes, R. C.; Thurman, P. F.

    1970-01-01

    A teichuronic acid, containing glucuronic acid and N-acetylgalactosamine, was purified from acid extracts of Bacillus licheniformis 6346 cell walls as described by Janczura, Perkins & Rogers (1961). After reduction of the carboxyl function of glucuronic acid residues in the polysaccharide the reduced polymer contains equimolar amounts of N-acetylgalactosamine and glucose. Methylation of the reduced polysaccharide by the Hakamori (1964) technique showed the glucose residues to be substituted on C-4. A disaccharide, 3-O-glucuronosylgalactosamine, was isolated from partial acid hydrolysates of teichuronic acid. After N-acetylation the disaccharide produces chromogen readily on heating at pH7, in agreement with C-3 substitution of the reducing N-acetylamino sugar. Teichuronic acid also produces chromogen under the same conditions, with concurrent elimination of a modified polysaccharide from C-3 of reducing terminal N-acetylgalactosamine residues of the teichuronic acid chains. The number-average chain lengths of several preparations of teichuronic acid were estimated from the amounts of chromogen produced in comparison with the N-acetylated disaccharide. The values obtained are in good agreement with the weight-average molecular weight determined by ultracentrifugal analysis. The reducing terminals of teichuronic acid are shown to be exclusively N-acetylgalactosamine by reduction with sodium boro[3H]hydride. The number-average chain lengths of the teichuronic acid preparations were estimated by the extent of in corporation of tritium and are in agreement with values obtained by the other methods. PMID:5419741

  3. Gas-phase Conformational Analysis of (R,R)-Tartaric Acid, its Diamide, N,N,N',N'- Tetramethyldiamide and Model Compounds

    NASA Astrophysics Data System (ADS)

    Hoffmann, Marcin; Szarecka, Agnieszka; Rychlewski, Jacek

    A review over most recent ab initio studies carried out at both RHF and MP2 levels on (R,R)-tartaric acid (TA), its diamide (DA), tetramethyldiamide (TMDA) and on three prototypic model systems (each of them constitutes a half of the respective parental molecule), i.e. 2-hydroxyacetic acid (HA), 2-hydroxyacetamide (HD) and 2-hydroxy-N,N-dimethylacetamide (HMD) is presented. (R,R)-tartaric acid and the derivatives have been completely optimized at RHF/6-31G* level and subsequently single-point energies of all conformers have been calculated with the use of second order perturbation theory according to the scheme: MP2/6-31G*//RHF/6-31G*. In the complete optimization of the model molecules at RHF level we have employed relatively large basis sets, augmented with polarisation and diffuse functions, namely 3-21G, 6-31G*, 6-31++G** and 6-311++G**. Electronic correlation has been included with the largest basis set used in this study, i.e. MP2/6-311++G**//RHF/6-311++G** single-point energy calculations have been performed. General confomational preferences of tartaric acid derivatives have been analysed as well as an attempt has been made to define main factors affecting the conformational behaviour of these molecules in the isolated state, in particular, the role and stability of intramolecular hydrogen bonding. In the case of the model compounds, our study principally concerned the conformational preferences and hydrogen bonding structure within the [alpha]-hydroxy-X moiety, where X=COOH, CONH2, CON(CH3)2.

  4. Synthesis of structured triacylglycerols enriched in n-3 fatty acids by immobilized microbial lipase.

    PubMed

    Araújo, Maria Elisa Melo Branco de; Campos, Paula Renata Bueno; Alberto, Thiago Grando; Contesini, Fabiano Jares; Carvalho, Patrícia de Oliveira

    The search for new biocatalysts has aroused great interest due to the variety of micro-organisms and their role as enzyme producers. Native lipases from Aspergillus niger and Rhizopus javanicus were used to enrich the n-3 long-chain polyunsaturated fatty acids content in the triacylglycerols of soybean oil by acidolysis with free fatty acids from sardine oil in solvent-free media. For the immobilization process, the best lipase/support ratios were 1:3 (w/w) for Aspergillus niger lipase and 1:5 (w/w) for Rhizopus javanicus lipase using Amberlite MB-1. Both lipases maintained constant activity for 6 months at 4°C. Reaction time, sardine-free fatty acids:soybean oil mole ratio and initial water content of the lipase were investigated to determine their effects on n-3 long-chain polyunsaturated fatty acids incorporation into soybean oil. Structured triacylglycerols with 11.7 and 7.2% of eicosapentaenoic acid+docosahexaenoic acid were obtained using Aspergillus niger lipase and Rhizopus javanicus lipase, decreasing the n-6/n-3 fatty acids ratio of soybean oil (11:1 to 3.5:1 and 4.7:1, respectively). The best reaction conditions were: initial water content of lipase of 0.86% (w/w), sardine-free faty acids:soybean oil mole ratio of 3:1 and reaction time of 36h, at 40°C. The significant factors for the acidolysis reaction were the sardine-free fatty acids:soybean oil mole ratio and reaction time. The characterization of structured triacylglycerols was obtained using easy ambient sonic-spray ionization mass spectrometry. The enzymatic reaction led to the formation of many structured triacylglycerols containing eicosapentaenoic acid, docosahexaenoic acid or both polyunsaturated fatty acids. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  5. Biotransformation of nitroso aromatic compounds and 2-oxo acids to N-hydroxy-N-arylacylamides by thiamine-dependent enzymes in rat liver.

    PubMed

    Yoshioka, T; Uematsu, T

    1998-07-01

    The formation of N-hydroxy-N-arylacylamides from nitroso aromatic compounds and 2-oxo acids was investigated using rat liver subcellular fractions. Activities were found in both mitochondria and cytosol, except for activities for phenylpyruvate and glyoxylate; the former did not produce N-hydroxy-N-phenylphenylacetamide and the latter nonenzymatically produced N-hydroxy-N-phenylformamide with nitrosobenzene (NOB). The cytosolic activity of N-hydroxy-N-phenylglycolamide formation was indicated to be due to transketolase, which utilized hydroxypyruvate as a glycolic aldehyde donor to NOB. With mitochondria, 2-oxo acids (including hydroxypyruvate) served as substrates for the biotransformation of NOB to the corresponding N-hydroxy-N-phenylacylamides. The substrate preference was 2-oxobutyrate > pyruvate > 2-oxoisovalerate > 2-oxoisocaproate > 2-oxovalerate > 2-oxo-3-methylvalerate, judging from Vmax/half-saturating concentration for mitochondria values. The half-saturating concentrations for NOB were nearly constant. The mitochondrial activity was due to pyruvate dehydrogenase complex and branched-chain 2-oxo acid dehydrogenase complex (BCDHC). By using partially purified BCDHC, pyruvate and 2-oxobutyrate were found to be common substrates for both of the enzymes, and 2-oxoisovalerate was shown to be the most effective substrate for BCDHC. Analysis by the Taft equation indicated that the polar effects, rather than the steric effects, of the alkyl groups of 2-oxo acids are important for BCDHC-catalyzed formation of N-hydroxy-N-phenylacylamides. A positive Hammett constant obtained for the formation of N-hydroxy-N-arylisobutyramides indicates that an electron-withdrawing substituent makes the nitroso compounds susceptible to BCDHC-catalyzed biotransformation.

  6. Amino acid N-malonyltransferases from mung beans. Action on 1-aminocyclopropane-1-carboxylic acid and D-phenylalanine.

    PubMed

    Guo, L; Phillips, A T; Arteca, R N

    1993-12-05

    1-Aminocyclopropane-1-carboxylate (ACC) N-malonyltransferase from etiolated mung bean hypocotyls was examined for its relationship to D-phenylalanine N-malonyltransferase and other enzymes which transfer malonyl groups from malonyl-CoA to D-amino acids. Throughout a 3600-fold purification the ratio of D-phenylalanine N-malonyltransferase activity to ACC N-malonyltransferase activity was unchanged. Antibodies raised against purified ACC N-malonyltransferase 55-kDa protein were also able to precipitate all D-phenylalanine-directed activity from partially purified mung bean extracts. The irreversible inhibitors phenylglyoxal and tetranitromethane reduced malonyltransferase activity towards D-phenylalanine to the same extent as that for ACC. In addition, several other D-amino acids, particularly D-tryptophan and D-tyrosine, were able to inhibit action towards both ACC and D-phenylalanine. These lines of evidence suggest that a single enzyme is capable of promoting malonylation of both ACC and D-phenylalanine. Km values for D-phenylalanine and malonyl-CoA were found to be 48 and 43 microM, respectively; these values are 10-fold lower than the corresponding values when ACC was substrate. Coenzyme A was a noncompetitive (mixed type) product inhibitor towards malonyl-CoA at both unsaturated and saturated ACC concentrations. The enzyme was also inhibited uncompetitively at high concentrations of malonyl-CoA. We propose that the enzyme follows an Ordered Bi-Bi reaction pathway, with the amino acid substrate being bound initially.

  7. N-Docosahexaenoyl Dopamine, an Endocannabinoid-like Conjugate of Dopamine and the n-3 Fatty Acid Docosahexaenoic Acid, Attenuates Lipopolysaccharide-Induced Activation of Microglia and Macrophages via COX-2.

    PubMed

    Wang, Ya; Plastina, Pierluigi; Vincken, Jean-Paul; Jansen, Renate; Balvers, Michiel; Ten Klooster, Jean Paul; Gruppen, Harry; Witkamp, Renger; Meijerink, Jocelijn

    2017-03-15

    Several studies indicate that the n-3 long-chain polyunsaturated fatty acid docosahexaenoic acid (DHA) contributes to an attenuated inflammatory status in the development of neurodegenerative disorders, such as Alzheimer's and Parkinson's disease. To explain these effects, different mechanisms are being proposed, including those involving endocannabinoids and related signaling molecules. Many of these compounds belong to the fatty acid amides, conjugates of fatty acids with biogenic amines. Conjugates of DHA with ethanolamine or serotonin have previously been shown to possess anti-inflammatory and potentially neuroprotective properties. Here, we synthesized another amine conjugate of DHA, N-docosahexaenoyl dopamine (DHDA), and tested its immune-modulatory properties in both RAW 264.7 macrophages and BV-2 microglial cells. N-Docosahexaenoyl dopamine significantly suppressed the production of nitric oxide (NO), the cytokine interleukin-6 (IL-6), and the chemokines macrophage-inflammatory protein-3α (CCL20) and monocyte chemoattractant protein-1 (MCP-1), whereas its parent compounds, dopamine and DHA, were ineffective. Further exploration of potential effects of DHDA on key inflammatory mediators revealed that cyclooxygenase-2 (COX-2) mRNA level and production of prostaglandin E 2 (PGE 2 ) were concentration-dependently inhibited in macrophages. In activated BV-2 cells, PGE 2 production was also reduced, without changes in COX-2 mRNA levels. In addition, DHDA did not affect NF-kB activity in a reporter cell line. Finally, the immune-modulatory activities of DHDA were compared with those of N-arachidonoyl dopamine (NADA) and similar potencies were found in both cell types. Taken together, our data suggest that DHDA, a potentially endogenous endocannabinoid, may be an additional member of the group of immune-modulating n-3 fatty acid-derived lipid mediators.

  8. The dietary n6:n3 fatty acid ratio during pregnancy is inversely associated with child neurodevelopment in the EDEN mother-child cohort.

    PubMed

    Bernard, Jonathan Y; De Agostini, Maria; Forhan, Anne; de Lauzon-Guillain, Blandine; Charles, Marie-Aline; Heude, Barbara

    2013-09-01

    Long-chain polyunsaturated fatty acids (LC-PUFAs) of the n6 (ω6) and n3 series are essential for the development of a child's brain. Fetal LC-PUFA exposure as well as infant exposure via breast milk depend on the maternal intake of these LC-PUFAs and of their respective dietary precursors (PUFAs). We aimed to investigate the associations between maternal LC-PUFA and PUFA [(LC)PUFA] dietary intake during pregnancy and child neurodevelopment at ages 2 and 3 y. In 1335 mother-child pairs from the EDEN cohort, we evaluated associations between daily maternal (LC)PUFA intake during the last 3 months of pregnancy with the child's language at age 2 y and with different assessments of development at age 3 y. Associations were investigated separately in breastfed and never-breastfed children. We examined interactions between the ratios of n6 and n3 (LC)PUFA intakes (n6:n3 fatty acid ratio) and duration of breastfeeding. Breastfeeding mothers had a lower n6:n3 fatty acid ratio (8.4 vs. 8.8; P = 0.02). Among never-breastfed children (n = 338), we found negative associations between maternal dietary n6:n3 fatty acid ratios and neurodevelopment, as reflected by the child's language at age 2 y (β ± SE = -2.1 ± 0.7; P = 0.001) and development assessed with the Ages and Stages Questionnaire at age 3 y (-1.5 ± 0.8; P = 0.05). Among mothers with a high n6:n3 fatty acid ratio only, breastfeeding duration was positively associated with language at age 2 y (P-interaction < 0.05). This suggests that the ratio between maternal dietary n6 and n3 (LC)PUFA intake possibly influences the child's brain development during fetal life but not during or by breastfeeding. However, breastfeeding might compensate for prenatal imbalance in maternal dietary n6:n3 fatty acid ratio.

  9. The effect of pomegranate seed oil and grapeseed oil on cis-9, trans-11 CLA (rumenic acid), n-3 and n-6 fatty acids deposition in selected tissues of chickens.

    PubMed

    Białek, A; Białek, M; Lepionka, T; Kaszperuk, K; Banaszkiewicz, T; Tokarz, A

    2018-04-23

    The aim of this study was to determine whether diet modification with different doses of grapeseed oil or pomegranate seed oil will improve the nutritive value of poultry meat in terms of n-3 and n-6 fatty acids, as well as rumenic acid (cis-9, trans-11 conjugated linoleic acid) content in tissues diversified in lipid composition and roles in lipid metabolism. To evaluate the influence of applied diet modification comprehensively, two chemometric methods were used. Results of cluster analysis demonstrated that pomegranate seed oil modifies fatty acids profile in the most potent way, mainly by an increase in rumenic acid content. Principal component analysis showed that regardless of type of tissue first principal component is strongly associated with type of deposited fatty acid, while second principal component enables identification of place of deposition-type of tissue. Pomegranate seed oil seems to be a valuable feed additive in chickens' feeding. © 2018 Blackwell Verlag GmbH.

  10. UV and fluorescence spectral changes induced by neodymium binding of N,N'-ethylenebis[2-(o-hydroxyphenolic)glycine] and N,N'-di(2-hydroxybenzyl)ethylenediamine-N,N' diacetic acid.

    PubMed

    Wang, Zhijun; Yang, Binsheng

    2006-11-01

    In 0.01 M 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (Hepes), pH 7.4 and room temperature, the binding of neodymium to N,N'-ethylenebis[2-(o-hydroxyphenolic)glycine] (EHPG), or N,N'-di(2-hydroxybenzyl)ethylenediamine-N,N' diacetic acid (HBED) had been studied from 210 to 330 nm by means of difference UV spectra. Two peaks at 240 and 292 nm appear in difference UV spectra after neodymium binding to EHPG or HBED. The 1:1 stable complex can be confirmed from spectral titration curves. The molar extinction coefficient of Nd-EHPG and Nd-HBED complexes are Deltaepsilon(Nd-EHPG)=(12.93+/-0.21) x 10(3)cm(-1)M(-1), Deltaepsilon(Nd-HBED)=(14.45+/-0.51) x 10(5)cm(-1)M(-1) at 240 nm, respectively. Using EDTA as a competitor, the conditional equilibrium constants of the complexes are logK(Nd-EHPG)=11.89+/-0.09 and logK(Nd-HBED)=12.19+/-0.15, respectively. At the same conditions, fluorescence measurements show that neodymium binding to EHPG leads to a quenching of the fluorescence of EHPG at near 310 nm. However, there is no obvious fluorescence change of HBED at 318 nm with the binding of neodymium to HBED.

  11. Short-term n-3 fatty acid supplementation but not aspirin increases plasma proresolving mediators of inflammation.

    PubMed

    Barden, Anne; Mas, Emilie; Croft, Kevin D; Phillips, Michael; Mori, Trevor A

    2014-11-01

    Resolution of inflammation is an active process involving specialized proresolving mediators (SPM) formed from the n-3 fatty acids. This study examined the effect of n-3 fatty acid supplementation and aspirin on plasma SPMs in healthy humans. Healthy volunteers (n = 21) were supplemented with n-3 fatty acids (2.4g/day) for 7 days with random assignment to take aspirin (300 mg/day) or placebo from day 5 to day 7. Blood was collected at baseline (day 0), day 5, and day 7. Plasma 18R/S-HEPE, E-series resolvins, 17R/S-HDHA, D-series resolvins, 14R/S-HDHA, and MaR-1 were measured by LC/MS/MS. At baseline concentrations of E- and D- series resolvins and the upstream precursors 18R/S-HEPE, 17R/S-HDHA ranged from 0.1nM to 0.2nM. 14R/S-HDHA was 3-fold higher than the other SPMs at baseline but MaR-1 was below the limit of detection. Supplementation with n-3 fatty acids significantly increased RvE1, 18R/S-HEPE, 17R/S-HDHA, and 14R/S-HDHA but not other SPMs. The addition of aspirin after 5 days of n-3 fatty acids did not affect concentrations of any SPM. N-3 fatty acid supplementation for 5 days results in concentrations of SPMs that are biologically active in healthy humans. Aspirin administered after n-3 fatty acids did not offer any additional benefit in elevating the levels of SPMs. Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc.

  12. -HPLC determination of acidic d-amino acids and their N-methyl derivatives in biological tissues

    PubMed Central

    Tsesarskaia, Mara; Galindo, Erika; Szókán, Gyula; Fisher, George

    2015-01-01

    d-aspartate (d-Asp) and N-methyl-d-aspartate (NMDA) occur in the neuroendocrine systems of vertebrates and invertebrates where they play a role in hormone release and synthesis, neurotransmission, and memory and learning. N-methyl-d-glutamate (NMDG) has also been detected in marine bivalves. Several methods have been used to detect these amino acids, but they require pretreatment of tissue samples with o-phthaldialdehyde (OPA) to remove primary amino acids which interfere with the detection of NMDA and NMDG. We report here a one step derivatization procedure with the chiral reagent N-α-(5-fluoro-2,4-dinitrophenyl)-(d or l)-valine amide, FDNP-Val-NH2, a close analog of Marfey’s reagent but with better resolution and higher molar absorptivity. The diastereomers formed are separated by HPLC on an ODS-Hypersil column eluted with TFA/water – TFA/MeCN. UV absorption at 340 nm permits detection levels as low as 5–10 picomoles. D-Asp, NMDA and NMDG peaks are not obscured by other primary or secondary amino acids; hence pretreatment of tissues with OPA is not required. This method is highly reliable and fast (less than 40 minutes HPLC run). Using this method, we have detected D-Asp, NMDA and NMDG in several biological tissues (octopus brain, optical lobe, and bucchal mass; foot and mantle of the mollusk Scapharca broughtonii), confirming the results of other researchers. PMID:19277955

  13. N-nitrosations of basic amino acid residues in polypeptide.

    PubMed

    Kuo, Wu-Nan; Ivy, Dynisha; Guruvadoo, Luvina; White, Atavia; Graham, Latia

    2004-09-01

    Changes in the electrophoretic pattern were noted in the products of polypeptides of identical basic amino acids preincubated with reactive or degraded PN, suggesting the occurrence of N-nitrosation of the epsilon-amino group of lysine, the guanido group of arginine and the imidazole group of histidine. Additionally, increase in the N-nitroso immunoreactivity of preincubated histones H2A and H2B was detected by Western blot analysis.

  14. Composition and structure of spontaneously adsorbed monolayers of n-perfluorocarboxylic acids on silver

    NASA Astrophysics Data System (ADS)

    Chau, Lai-Kwan; Porter, Marc D.

    1990-03-01

    Monolayer films of n-perfluorocarboxylic acids (CF 3(CF 2) nCOOH, where n = 0-2, 5-8) have been formed by spontaneous adsorption at silver. Infrared reflection spectroscopy, optical ellipsometry, and contact angle measurements indicate that these films exhibit low surface free energies, that the carboxylic acid group is symmetrically bound at the silver substrate as a carboxylate bridging ligand, and that the structure is composed of tilted (≈ 40° from the surface normal) perfluorocarbon chains and small structural defects.

  15. Low n-6:n-3 fatty acid ratio, with fish- or flaxseed oil, in a high fat diet improves plasma lipids and beneficially alters tissue fatty acid composition in mice.

    PubMed

    Riediger, Natalie D; Othman, Rgia; Fitz, Evelyn; Pierce, Grant N; Suh, Miyoung; Moghadasian, Mohammed H

    2008-04-01

    Health benefits from low n-6:n-3 fatty acid (FA) ratio on cardiovascular risk have been shown. However, the impact of the source of n-3 FAs has not been fully investigated. Our purpose was to investigate cardiovascular benefits of oils with a low ratio of n-6:n-3 FAs, but different sources of n-3 FAs in C57BL/6 mice. Twenty-one mice were divided into 3 groups (n=7) and fed a diet supplemented with either a fish or flaxseed oil-based 'designer oils' with an approximate n-6:n-3 FA ratio of 2/1 or with a safflower-oil-based diet with a ratio of 25/1, for 16 weeks. Plasma lipids and fatty acid profile of the liver tissue were characterized. Compared to baseline, plasma triacylglycerol levels declined (>50%) in all groups by week 4. Plasma cholesterol levels were reduced in both fish and flax groups by 27% and 36%, respectively, as compared to controls at endpoint. The levels of EPA and DHA in liver phospholipids were significantly increased in both fish and flax groups as compared to the control group, with more profound increases in the fish group. Arachidonic acid levels were similarly decreased in the liver tissues from both fish and flax groups as compared to controls. Our data suggest that health benefits may be achieved by lowering dietary n-6:n-3 FA even in a high fat diet medium.

  16. Sialidases from gut bacteria: a mini-review.

    PubMed

    Juge, Nathalie; Tailford, Louise; Owen, C David

    2016-02-01

    Sialidases are a large group of enzymes, the majority of which catalyses the cleavage of terminal sialic acids from complex carbohydrates on glycoproteins or glycolipids. In the gastrointestinal (GI) tract, sialic acid residues are mostly found in terminal location of mucins via α2-3/6 glycosidic linkages. Many enteric commensal and pathogenic bacteria can utilize sialic acids as a nutrient source, but not all express the sialidases that are required to release free sialic acid. Sialidases encoded by gut bacteria vary in terms of their substrate specificity and their enzymatic reaction. Most are hydrolytic sialidases, which release free sialic acid from sialylated substrates. However, there are also examples with transglycosylation activities. Recently, a third class of sialidases, intramolecular trans-sialidase (IT-sialidase), has been discovered in gut microbiota, releasing (2,7-anhydro-Neu5Ac) 2,7-anydro-N-acetylneuraminic acid instead of sialic acid. Reaction specificity varies, with hydrolytic sialidases demonstrating broad activity against α2,3-, α2,6- and α2,8-linked substrates, whereas IT-sialidases tend to be specific for α2,3-linked substrates. In this mini-review, we summarize the current knowledge on the structural and biochemical properties of sialidases involved in the interaction between gut bacteria and epithelial surfaces. © 2016 Authors.

  17. Healthy n-6/n-3 fatty acid composition from five European game meat species remains after cooking.

    PubMed

    Valencak, Teresa G; Gamsjäger, Lisa; Ohrnberger, Sarah; Culbert, Nicole J; Ruf, Thomas

    2015-06-27

    Intensive farming of livestock along with recent food scandals and consumer deception have increased awareness about risks for human nutrition. In parallel, the demand for meat obtained under more natural conditions from animals that can freely forage has largely increased. Interestingly, the consumption of game meat has not become more common despite its excellent quality and content of polyunsaturated fatty acids (PUFAs). We addressed the question if game meat fatty acid composition is modified through kitchen preparation. By analysing muscle fatty acid (FA) composition (polar and total lipids) of five European game species in a raw and a processed state, we aimed to quantify the proportion of PUFA that are oxidised and hydrogenated during processing. All game meat species originated from local hunters and free-living individuals. To mimic a realistic situation a professional chef prepared the meat samples with gentle use of heat in a standardised way. Expectedly, the overall content of polyunsaturated fatty acids declined during the cooking process but the decrease size was <5% and the nutritiously most important n-3/n-6 ratio was not affected by processing (F1,54 = 0.46; p = 0.5). Generally, our samples contained species-specific high PUFA and n-3 FA contents but we point out that differentiating between species is necessary. Game meat thus provides a healthy meat source, as cooking does not substantially alter its favourable fatty acid composition. Further research is needed to elucidate species-specific differences and the role of habitat quality and locomotion for tissue composition.

  18. Hydrogen isotopes of n-alkanes and n-alkanoic acids as tracers of precipitation in a temperate forest and implications for paleorecords

    NASA Astrophysics Data System (ADS)

    Freimuth, Erika J.; Diefendorf, Aaron F.; Lowell, Thomas V.

    2017-06-01

    The hydrogen isotopic composition of leaf waxes (δDwax) primarily reflects that of plant source water. Therefore, sedimentary δDwax records are increasingly used to reconstruct the δD of past precipitation (δDp) and to investigate paleohydrologic changes. Such reconstructions rely on estimates of apparent fractionation (εapp) between δDp and the resulting δDwax. However, εapp values are modified by numerous environmental and biological factors during leaf wax production. As a result, εapp can vary widely among plant species and growth forms. This complicates estimation of accurate εapp values and presents a central challenge to quantitative leaf wax paleohydrology. During the 2014 growing season, we examined εapp in the five deciduous angiosperm tree species (Prunus serotina, Acer saccharinum, Quercus rubra, Quercus alba, and Ulmus americana) that dominate the temperate forest at Brown's Lake Bog, Ohio, USA. We sampled individuals of each species at weekly to monthly intervals from March to October and report δD values of n-C29 alkanes (δDn-C29 alkane) and n-C28 alkanoic acids (δDn-C28 acid), as well as xylem (δDxw) and leaf water (δDlw). n-Alkane synthesis was most intense 2-3 weeks after leaf emergence and ceased thereafter, whereas n-alkanoic acid synthesis continued throughout the entire growing season. During bud swell and leaf emergence, δDlw was a primary control on δDn-C29 alkane and δDn-C28 acid values, which stabilized once leaves became fully expanded. Metabolic shifts between young and mature leaves may be an important secondary driver of δDwax changes during leaf development. In mature autumn leaves of all species, the mean εapp for n-C29 alkane (-107‰) was offset by approximately -19‰ from the mean εapp for n-C28 alkanoic acid (-88‰). These results indicate that in temperate settings n-alkanes and n-alkanoic acids from deciduous trees are distinct with respect to their abundance, timing of synthesis, and εapp values.

  19. The Role of n-3 Polyunsaturated Fatty Acids in the Prevention and Treatment of Breast Cancer

    PubMed Central

    Liu, Jiajie; Ma, David W. L.

    2014-01-01

    Breast cancer (BC) is the most common cancer among women worldwide. Dietary fatty acids, especially n-3 polyunsaturated fatty acids (PUFA), are believed to play a role in reducing BC risk. Evidence has shown that fish consumption or intake of long-chain n-3 PUFA, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are beneficial for inhibiting mammary carcinogenesis. The evidence regarding α-linolenic acid (ALA), however, remains equivocal. It is essential to clarify the relation between ALA and cancer since ALA is the principal source of n-3 PUFA in the Western diet and the conversion of ALA to EPA and DHA is not efficient in humans. In addition, the specific anticancer roles of individual n-3 PUFA, alone, have not yet been identified. Therefore, the present review evaluates ALA, EPA and DHA consumed individually as well as in n-3 PUFA mixtures. Also, their role in the prevention of BC and potential anticancer mechanisms of action are examined. Overall, this review suggests that each n-3 PUFA has promising anticancer effects and warrants further research. PMID:25412153

  20. Primary fatty acid amide metabolism: conversion of fatty acids and an ethanolamine in N18TG2 and SCP cells.

    PubMed

    Farrell, Emma K; Chen, Yuden; Barazanji, Muna; Jeffries, Kristen A; Cameroamortegui, Felipe; Merkler, David J

    2012-02-01

    Primary fatty acid amides (PFAM) are important signaling molecules in the mammalian nervous system, binding to many drug receptors and demonstrating control over sleep, locomotion, angiogenesis, and many other processes. Oleamide is the best-studied of the primary fatty acid amides, whereas the other known PFAMs are significantly less studied. Herein, quantitative assays were used to examine the endogenous amounts of a panel of PFAMs, as well as the amounts produced after incubation of mouse neuroblastoma N(18)TG(2) and sheep choroid plexus (SCP) cells with the corresponding fatty acids or N-tridecanoylethanolamine. Although five endogenous primary amides were discovered in the N(18)TG(2) and SCP cells, a different pattern of relative amounts were found between the two cell lines. Higher amounts of primary amides were found in SCP cells, and the conversion of N-tridecanoylethanolamine to tridecanamide was observed in the two cell lines. The data reported here show that the N(18)TG(2) and SCP cells are excellent model systems for the study of PFAM metabolism. Furthermore, the data support a role for the N-acylethanolamines as precursors for the PFAMs and provide valuable new kinetic results useful in modeling the metabolic flux through the pathways for PFAM biosynthesis and degradation.

  1. Forms of n-3 (ALA, C18:3n-3 or DHA, C22:6n-3) Fatty Acids Affect Carcass Yield, Blood Lipids, Muscle n-3 Fatty Acids and Liver Gene Expression in Lambs.

    PubMed

    Ponnampalam, Eric N; Lewandowski, Paul A; Fahri, Fahri T; Burnett, Viv F; Dunshea, Frank R; Plozza, Tim; Jacobs, Joe L

    2015-11-01

    The effects of supplementing diets with n-3 alpha-linolenic acid (ALA) and docosahexaenoic acid (DHA) on plasma metabolites, carcass yield, muscle n-3 fatty acids and liver messenger RNA (mRNA) in lambs were investigated. Lambs (n = 120) were stratified to 12 groups based on body weight (35 ± 3.1 kg), and within groups randomly allocated to four dietary treatments: basal diet (BAS), BAS with 10.7 % flaxseed supplement (Flax), BAS with 1.8 % algae supplement (DHA), BAS with Flax and DHA (FlaxDHA). Lambs were fed for 56 days. Blood samples were collected on day 0 and day 56, and plasma analysed for insulin and lipids. Lambs were slaughtered, and carcass traits measured. At 30 min and 24 h, liver and muscle samples, respectively, were collected for determination of mRNA (FADS1, FADS2, CPT1A, ACOX1) and fatty acid composition. Lambs fed Flax had higher plasma triacylglycerol, body weight, body fat and carcass yield compared with the BAS group (P < 0.001). DHA supplementation increased carcass yield and muscle DHA while lowering plasma insulin compared with the BAS diet (P < 0.01). Flax treatment increased (P < 0.001) muscle ALA concentration, while DHA treatment increased (P < 0.001) muscle DHA concentration. Liver mRNA FADS2 was higher and CPT1A lower in the DHA group (P < 0.05). The FlaxDHA diet had additive effects, including higher FADS1 and ACOX1 mRNA than for the Flax or DHA diet. In summary, supplementation with ALA or DHA modulated plasma metabolites, muscle DHA, body fat and liver gene expression differently.

  2. Fatty Acid Metabolism is Associated With Disease Severity After H7N9 Infection.

    PubMed

    Sun, Xin; Song, Lijia; Feng, Shuang; Li, Li; Yu, Hongzhi; Wang, Qiaoxing; Wang, Xing; Hou, Zhili; Li, Xue; Li, Yu; Zhang, Qiuyang; Li, Kuan; Cui, Chao; Wu, Junping; Qin, Zhonghua; Wu, Qi; Chen, Huaiyong

    2018-06-22

    Human infections with the H7N9 virus could lead to lung damage and even multiple organ failure, which is closely associated with a high mortality rate. However, the metabolic basis of such systemic alterations remains unknown. This study included hospitalized patients (n = 4) with laboratory-confirmed H7N9 infection, healthy controls (n = 9), and two disease control groups comprising patients with pneumonia (n = 9) and patients with pneumonia who received steroid treatment (n = 10). One H7N9-infected patient underwent lung biopsy for histopathological analysis and expression analysis of genes associated with lung homeostasis. H7N9-induced systemic alterations were investigated using metabolomic analysis of sera collected from the four patients by using ultra-performance liquid chromatography-mass spectrometry. Chest digital radiography and laboratory tests were also conducted. Two of the four patients did not survive the clinical treatments with antiviral medication, steroids, and oxygen therapy. Biopsy revealed disrupted expression of genes associated with lung epithelial integrity. Histopathological analysis demonstrated severe lung inflammation after H7N9 infection. Metabolomic analysis indicated that fatty acid metabolism may be inhibited during H7N9 infection. Serum levels of palmitic acid, erucic acid, and phytal may negatively correlate with the extent of lung inflammation after H7N9 infection. The changes in fatty acid levels may not be due to steroid treatment or pneumonia. Altered structural and secretory properties of the lung epithelium may be associated with the severity of H7N9-infection-induced lung disease. Moreover, fatty acid metabolism level may predict a fatal outcome after H7N9 virus infection. Copyright © 2018. Published by Elsevier B.V.

  3. Specialized proresolving lipid mediators in humans with the metabolic syndrome after n-3 fatty acids and aspirin.

    PubMed

    Barden, Anne E; Mas, Emilie; Croft, Kevin D; Phillips, Michael; Mori, Trevor A

    2015-12-01

    The metabolic syndrome (MetS) is associated with a chronic low-grade inflammatory state and may be affected by the ability to resolve inflammation, which is an active process that involves specialized proresolving lipid mediators (SPMs) derived from n-3 (ω-3) fatty acids. We compared plasma concentrations of SPMs in men and women with features of the MetS and in healthy matched control subjects in response to intakes of n-3 fatty acids and aspirin. MetS volunteers (n = 22) and healthy, matched controls (n = 21) were studied in parallel for 4 wk. Both groups took n-3 fatty acids (2.4 g/d) for 4 wk with the addition of aspirin (300 mg/d) during the last 7 d. Blood was collected at baseline and at 3 and 4 wk. Plasma SPMs were measured with the use of liquid chromatography-tandem mass spectrometry and included 18-hydroxyeicosapentaenoic acid (18-HEPE), E-series resolvins, 17-hydroxydocosahexaenoic acid (17-HDHA), D-series resolvins, 14-hydroxydocosahexaenoic acid (14-HDHA), and maresin-1. Baseline SPMs did not differ between groups. There was an increase in the SPM precursors 18-HEPE, 17-HDHA, and 14-HDHA after n-3 fatty acid supplementation that was significantly attenuated in the MetS (P < 0.05). However, the E-series resolvins increased to a similar extent in the groups after n-3 fatty acid supplementation, and the D-series resolvins were not different from those at baseline. The addition of aspirin to n-3 fatty acids did not alter any SPMs in either group. Volunteers with MetS had reduced plasma concentrations of the precursors of the E- and D- series resolvins as well as of 14-HDHA in response to n-3 fatty acid supplementation. However, plasma E-series resolvins were increased to a similar extent after n-3 fatty acid supplementation in both groups, and the addition of aspirin to n-3 fatty acid supplementation did not alter any of the plasma SPMs in MetS and control subjects. Additional studies in the MetS are required to determine whether SPMs affect the ability

  4. Long-chain n-3 polyunsaturated fatty acids in plasma in British meat-eating, vegetarian, and vegan men.

    PubMed

    Rosell, Magdalena S; Lloyd-Wright, Zouë; Appleby, Paul N; Sanders, Thomas A B; Allen, Naomi E; Key, Timothy J

    2005-08-01

    Plasma concentrations of long-chain n-3 polyunsaturated fatty acids are lower in vegetarians and in vegans than in omnivores. No data are available on whether these concentrations differ between long- and short-term vegetarians and vegans. We compared plasma fatty acid composition in meat-eaters, vegetarians, and vegans and examined whether the proportions of eicosapentaenoic acid (20:5n-3; EPA), docosapentaenoic acid (22:5n-3; DPA), and docosahexaenoic acid (22:6n-3; DHA) were related to the subjects' duration of adherence to their diets or to the proportions of plasma linoleic acid (18:2n-6; LA) and alpha-linolenic acid (18:3n-3; ALA). The present cross-sectional study included 196 meat-eating, 231 vegetarian, and 232 vegan men in the United Kingdom. Information on anthropometry, diet, and smoking habits was obtained through a questionnaire. Total fatty acid composition in plasma was measured. The proportions of plasma EPA and DHA were lower in the vegetarians and in the vegans than in the meat-eaters, whereas only small differences were seen for DPA. Plasma EPA, DPA, and DHA proportions were not significantly associated with the duration of time since the subjects became vegetarian or vegan, which ranged from <1 y to >20 y. In the vegetarians and the vegans, plasma DHA was inversely correlated with plasma LA. The proportions of plasma long-chain n-3 fatty acids were not significantly affected by the duration of adherence to a vegetarian or vegan diet. This finding suggests that when animal foods are wholly excluded from the diet, the endogenous production of EPA and DHA results in low but stable plasma concentrations of these fatty acids.

  5. Recognition of microbial glycans by human intelectin-1

    DOE PAGES

    Wesener, Darryl A.; Wangkanont, Kittikhun; McBride, Ryan; ...

    2015-07-06

    The glycans displayed on mammalian cells can differ markedly from those on microbes. Such differences could, in principle, be 'read' by carbohydrate-binding proteins, or lectins. In this paper, we used glycan microarrays to show that human intelectin-1 (hIntL-1) does not bind known human glycan epitopes but does interact with multiple glycan epitopes found exclusively on microbes: β-linked D-galactofuranose (β-Galf), D-phosphoglycerol–modified glycans, heptoses, D-glycero-D-talo-oct-2-ulosonic acid (KO) and 3-deoxy-D-manno-oct-2-ulosonic acid (KDO). The 1.6-Å-resolution crystal structure of hIntL-1 complexed with β-Galf revealed that hIntL-1 uses a bound calcium ion to coordinate terminal exocyclic 1,2-diols. N-acetylneuraminic acid (Neu5Ac), a sialic acid widespread in humanmore » glycans, has an exocyclic 1,2-diol but does not bind hIntL-1, probably owing to unfavorable steric and electronic effects. hIntL-1 marks only Streptococcus pneumoniae serotypes that display surface glycans with terminal 1,2-diol groups. Finally, this ligand selectivity suggests that hIntL-1 functions in microbial surveillance.« less

  6. High Throughput ELISAs to Measure a Unique Glycan on Transferrin in Cerebrospinal Fluid: A Possible Extension toward Alzheimer's Disease Biomarker Development.

    PubMed

    Shirotani, Keiro; Futakawa, Satoshi; Nara, Kiyomitsu; Hoshi, Kyoka; Saito, Toshie; Tohyama, Yuriko; Kitazume, Shinobu; Yuasa, Tatsuhiko; Miyajima, Masakazu; Arai, Hajime; Kuno, Atsushi; Narimatsu, Hisashi; Hashimoto, Yasuhiro

    2011-01-01

    We have established high-throughput lectin-antibody ELISAs to measure different glycans on transferrin (Tf) in cerebrospinal fluid (CSF) using lectins and an anti-transferrin antibody (TfAb). Lectin blot and precipitation analysis of CSF revealed that PVL (Psathyrella velutina lectin) bound an unique N-acetylglucosamine-terminated N-glycans on "CSF-type" Tf whereas SSA (Sambucus sieboldiana agglutinin) bound α2,6-N-acetylneuraminic acid-terminated N-glycans on "serum-type" Tf. PVL-TfAb ELISA of 0.5 μL CSF samples detected "CSF-type" Tf but not "serum-type" Tf whereas SSA-TfAb ELISA detected "serum-type" Tf but not "CSF-type" Tf, demonstrating the specificity of the lectin-TfAb ELISAs. In idiopathic normal pressure hydrocephalus (iNPH), a senile dementia associated with ventriculomegaly, amounts of the SSA-reactive Tf were significantly higher than in non-iNPH patients, indicating that Tf glycan analysis by the high-throughput lectin-TfAb ELISAs could become practical diagnostic tools for iNPH. The lectin-antibody ELISAs of CSF proteins might be useful for diagnosis of the other neurological diseases.

  7. Twice-weekly consumption of farmed Atlantic salmon increases plasma content of phospholipid n-3 fatty acids

    USDA-ARS?s Scientific Manuscript database

    Elevated intake of the n-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), is related to risk reduction of cardiovascular and other diseases. Increased consumption of seafood such as farmed Atlantic salmon is an effective way to consume n-3 but there is a paucity of data as ...

  8. Effects of dietary n-3 fatty acids on the phospholipid molecular species of monkey brain.

    PubMed

    Lin, D S; Connor, W E; Anderson, G J; Neuringer, M

    1990-10-01

    We examined the changes in the molecular species of brain ethanolamine glycerophospholipids of monkeys fed diets containing widely ranging amounts of n-3 fatty acids. Two groups of rhesus monkeys were fed pre- and postnatally either a control diet (soy oil; containing 8% of fatty acids as 18:3n-3) or a deficient diet (safflower oil; containing less than 0.3% 18:3n-3). The brains of these animals were analyzed at 22 months of age. A third group of monkeys was fed the safflower oil diet to 22 months of age and then switched to a fish oil diet (28% long-chain n-3 fatty acids) for 1-2 years before autopsy. The molecular species of the diacyl, alkylacyl, and alkenylacyl ethanolamine glycerophospholipids from frontal cortex were separated by HPLC. A total of 24 molecular species were identified. Fatty acids in the sn-2 position differed markedly among the diet groups, but the sn-1 position always contained only 16:0, 18:0, or 18:1. In the diacyl subclass of the control brain, the n-3 molecular species represented 41% of total and the n-6 species 45%, whereas in the deficient brain the n-3 molecular species decreased to 9% and n-6 molecular species increased to 77%. The fatty acid 22:5n-6 did not replace 22:6n-3 in a symmetrical fashion in the molecular species of the deficient brain. In the brains of the fish oil-fed monkeys, the n-3 molecular species amounted to 61% and n-6 molecular species were reduced to 25%. The species 18:1-22:6, 16:0-22:6, and 18:0-22:6 generally changed proportionally in response to diet.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Hydrogen bonded binary molecular adducts derived from exobidentate N-donor ligand with dicarboxylic acids: Acid⋯imidazole hydrogen-bonding interactions in neutral and ionic heterosynthons

    NASA Astrophysics Data System (ADS)

    Kathalikkattil, Amal Cherian; Damodaran, Subin; Bisht, Kamal Kumar; Suresh, Eringathodi

    2011-01-01

    Four new binary molecular compounds between a flexible exobidentate N-heterocycle and a series of dicarboxylic acids have been synthesized. The N-donor 1,4-bis(imidazol-1-ylmethyl)benzene (bix) was reacted with flexible and rigid dicarboxylic acids viz., cyclohexane-1,4-dicarboxylic acid (H 2chdc), naphthalene-1,4-dicarboxylic acid (H 2npdc) and 1H-pyrazole-3,5-dicarboxylic acid (H 2pzdc), generating four binary molecular complexes. X-ray crystallographic investigation of the molecular adducts revealed the primary intermolecular interactions carboxylic acid⋯amine (via O-H⋯N) as well as carboxylate⋯protonated amine (via N-H +⋯O -) within the binary compounds, generating layered and two-dimensional sheet type H-bonded networks involving secondary weak interactions (C-H⋯O) including the solvent of crystallization. Depending on the differences in p Ka values of the selected base/acid (Δp Ka), diverse H-bonded supramolecular assemblies could be premeditated. This study demonstrates the H-bonding interactions between imidazole/imidazolium cation and carboxylic acid/carboxylate anion in providing sufficient driving force for the directed assembly of binary molecular complexes. In the two-component solid form of hetero synthons involving bix and dicarboxylic acid, only H 2chdc exist as cocrystal with bix, while all the other three compounds crystallized exclusively as salt, in agreement with the Δp Ka values predicted for the formation of salts/cocrystals from the base and acid used in the synthesis of supramolecular solids.

  10. Chemopreventive effects of rofecoxib and folic acid on gastric carcinogenesis induced by N-methyl-N'-nitro-N-nitrosoguanidine in rats.

    PubMed

    Fei, Su Juan; Xiao, Shu Dong; Peng, Yan Shen; Chen, Xiao Yu; Shi, Yao

    2006-01-01

    Epidemiological and experimental studies indicate that non-steroidal anti-inflammatory drugs (NSAIDs) are chemopreventive agents of gastrointestinal cancers, but few studies on gastric cancer have been carried out. A decrease in folic acid supplement and subsequent DNA hypomethylation are related to gastrointestinal cancers, and it has been shown that high-dose folic acid may interfere with gastric carcinogenesis in dogs. The objective of this study was to investigate the effects of rofecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, and folic acid on the chemoprevention of gastric cancer induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) in Wistar rats, and to evaluate the cell proliferation of gastric mucosa in different experimental groups. Eighty male Wistar rats were randomly divided into five groups (16 rats in each group). In the control group, the rats were given pure water and basal diet. In the MNNG group, the rats received MNNG in drinking water (100 mg/L) and basal diet. In the MNNG + low-dose rofecoxib group, the rats were given MNNG and rofecoxib 5 mg/kg per day with basal diet. In the MNNG + high-dose rofecoxib group, the rats were given MNNG and rofecoxib 15 mg/kg per day with basal diet. In the MNNG + folic acid group, the rats were given MNNG and folic acid 5 mg/kg per day with basal diet. The experiment was terminated at 50 weeks, and all rats were killed. Blood samples of 3 mL were obtained for measurement of serum folic acid concentrations in the control group, the MNNG group and the MNNG + folic acid group by using chemiluminescent method. The stomach was removed from all rats for histopathological examination and immunohistochemical study. Proliferating cell nuclear antigen (PCNA) expression in gastric epithelial cells was also determined. In the MNNG group, five of 11 rats (45.5%) developed gastric cancer, while in all other four groups no gastric cancer was found (P < 0.05). The positivity rate of PCNA expression in the cancerous

  11. Plasma fatty acid changes following consumption of dietary oils containing n-3, n-6, and n-9 fatty acids at different proportions: preliminary findings of the Canola Oil Multicenter Intervention Trial (COMIT).

    PubMed

    Senanayake, Vijitha K; Pu, Shuaihua; Jenkins, David A; Lamarche, Benoît; Kris-Etherton, Penny M; West, Sheila G; Fleming, Jennifer A; Liu, Xiaoran; McCrea, Cindy E; Jones, Peter J

    2014-04-23

    The Canola Oil Multicenter Intervention Trial (COMIT) was a randomized controlled crossover study designed to evaluate the effects of five diets that provided different oils and/or oil blends on cardiovascular disease (CVD) risk factors in individuals with abdominal obesity. The present objective is to report preliminary findings on plasma fatty acid profiles in volunteers with abdominal obesity, following the consumption of diets enriched with n-3, n-6 and n-9 fatty acids. COMIT was conducted at three clinical sites, Winnipeg, Manitoba, Canada, Québec City, Québec, Canada and University Park, Pennsylvania, United States. Inclusion criteria were at least one of the followings: waist circumference (≥90 cm for males and ≥84 cm for females), and at least one other criterion: triglycerides ≥1.7 mmol/L, high density lipoprotein cholesterol <1 mmol/L (males) or <1.3 mmol/L (females), blood pressure ≥130 mmHg (systolic) and/or ≥85 mmHg (diastolic), and glucose ≥5.5 mmol/L. Weight-maintaining diets that included shakes with one of the dietary oil blends were provided during each of the five 30-day dietary phases. Dietary phases were separated by four-week washout periods. Treatment oils were canola oil, high oleic canola oil, high oleic canola oil enriched with docosahexaenoic acid (DHA), flax oil and safflower oil blend, and corn oil and safflower oil blend. A per protocol approach with a mixed model analysis was decided to be appropriate for data analysis. One hundred and seventy volunteers were randomized and 130 completed the study with a dropout rate of 23.5%. The mean plasma total DHA concentrations, which were analyzed among all participants as a measure of adherence, increased by more than 100% in the DHA-enriched phase, compared to other phases, demonstrating excellent dietary adherence. Recruitment and retention strategies were effective in achieving a sufficient number of participants who completed the study protocol to enable sufficient

  12. Masking of Lewis acidity trends in the solid-state structures of trichlorido- and tribromido(2,2':6',2''-terpyridine-κ(3)N,N',N'')gallium(III).

    PubMed

    Kazakov, Igor V; Bodensteiner, Michael; Timoshkin, Alexey Y

    2014-03-01

    The molecular structures of trichlorido(2,2':6',2''-terpyridine-κ(3)N,N',N'')gallium(III), [GaCl3(C15H11N3)], and tribromido(2,2':6',2''-terpyridine-κ(3)N,N',N'')gallium(III), [GaBr3(C15H11N3)], are isostructural, with the Ga(III) atom displaying an octahedral geometry. It is shown that the Ga-N distances in the two complexes are the same within experimental error, in contrast to expected bond lengthening in the bromide complex due to the lower Lewis acidity of GaBr3. Thus, masking of the Lewis acidity trends in the solid state is observed not only for complexes of group 13 metal halides with monodentate ligands but for complexes with the polydentate 2,2':6',2''-terpyridine donor as well.

  13. Degradation of bromamine acid by nanoscale zero-valent iron (nZVI) supported on sepiolite.

    PubMed

    Fei, Xuening; Cao, Lingyun; Zhou, Lifeng; Gu, Yingchun; Wang, Xiaoyang

    2012-01-01

    Sepiolite, a natural nano-material, was chosen as a carrier to prepare supported nanoscale zero-valent iron (nZVI). The effects of preparation conditions, including mass ratio of nZVI and activated sepiolite and preparation pH value, on properties of the supported nZVI were investigated. The results showed that the optimal mass ratio of nZVI and sepiolite was 1.12:1 and the optimal pH value was 7. The supported nZVI was characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and energy dispersive spectrometer (EDS), and furthermore an analogy model of the supported nZVI was set up. Compared with the nZVI itself, the supported nZVI was more stable in air and possessed better water dispersibility, which were beneficial for the degradation of bromamine acid aqueous solution. The degradation characteristics, such as effects of supported nZVI dosage, initial concentration and initial pH value of the solution on the decolorization efficiency were also investigated. The results showed that in an acidic environment the supported nZVI with a dosage of 2 g/L showed high activity in the degradation of bromamine acid with an initial concentration of 1,000 mg/L, and the degree of decolorization could reach up to 98%.

  14. Combination of tauroursodeoxycholic acid and N-acetylcysteine exceeds standard treatment for acetaminophen intoxication.

    PubMed

    Paridaens, Annelies; Raevens, Sarah; Colle, Isabelle; Bogaerts, Eliene; Vandewynckel, Yves-Paul; Verhelst, Xavier; Hoorens, Anne; van Grunsven, Leo A; Van Vlierberghe, Hans; Geerts, Anja; Devisscher, Lindsey

    2017-05-01

    Acetaminophen overdose in mice is characterized by hepatocyte endoplasmic reticulum stress, which activates the unfolded protein response, and centrilobular hepatocyte death. We aimed at investigating the therapeutic potential of tauroursodeoxycholic acid, a hydrophilic bile acid known to have anti-apoptotic and endoplasmic reticulum stress-reducing capacities, in experimental acute liver injury induced by acetaminophen overdose. Mice were injected with 300 mg/kg acetaminophen, 2 hours prior to receiving tauroursodeoxycholic acid, N-acetylcysteine or a combination therapy, and were euthanized 24 hours later. Liver damage was assessed by serum transaminases, liver histology, terminal deoxynucleotidyl transferase dUTP nick end labelling staining, expression profiling of inflammatory, oxidative stress, unfolded protein response, apoptotic and pyroptotic markers. Acetaminophen overdose resulted in a significant increase in serum transaminases, hepatocyte cell death, unfolded protein response activation, oxidative stress, NLRP3 inflammasome activation, caspase 1 and pro-inflammatory cytokine expressions. Standard of care, N-acetylcysteine and, to a lesser extent, tauroursodeoxycholic treatment were associated with significantly lower transaminase levels, hepatocyte death, unfolded protein response activation, oxidative stress markers, caspase 1 expression and NLRP3 levels. Importantly, the combination of N-acetylcysteine and tauroursodeoxycholic acid improved serum transaminase levels, reduced histopathological liver damage, UPR-activated CHOP, oxidative stress, caspase 1 expression, NLRP3 levels, IL-1β levels and the expression of pro-inflammatory cytokines and this to a greater extend than N-acetylcysteine alone. These findings indicate that a combination strategy of N-acetylcysteine and tauroursodeoxycholic acid surpasses the standard of care in acetaminophen-induced liver injury in mice and might represent an attractive therapeutic opportunity for acetaminophen

  15. An improved procedure, involving mass spectrometry, for N-terminal amino acid sequence determination of proteins which are N alpha-blocked.

    PubMed Central

    Rose, K; Kocher, H P; Blumberg, B M; Kolakofsky, D

    1984-01-01

    A modification to a previously described procedure [Gray & del Valle (1970) Biochemistry 9, 2134-2137; Rose, Simona & Offord (1983) Biochem. J. 215, 261-272] for mass-spectral identification of the N-terminal regions of proteins is shown to be useful in cases where the N-terminus is blocked. Three proteins were studied: vesicular-stomatitis-virus N protein, Sendai-virus NP protein, and a rabbit immunoglobulin lambda-light chain. These proteins, found to be blocked at the N-terminus with either the acetyl group or a pyroglutamic acid residue, had all failed to yield to attempted Edman degradation, in one case even after attempted enzymic removal of the pyroglutamic acid residue. The N-terminal regions of all three proteins were sequenced by using the new procedure. PMID:6421284

  16. Interplay Between n-3 and n-6 Long-Chain Polyunsaturated Fatty Acids and the Endocannabinoid System in Brain Protection and Repair.

    PubMed

    Dyall, Simon C

    2017-11-01

    The brain is enriched in arachidonic acid (ARA) and docosahexaenoic acid (DHA), long-chain polyunsaturated fatty acids (LCPUFAs) of the n-6 and n-3 series, respectively. Both are essential for optimal brain development and function. Dietary enrichment with DHA and other long-chain n-3 PUFA, such as eicosapentaenoic acid (EPA), has shown beneficial effects on learning and memory, neuroinflammatory processes, and synaptic plasticity and neurogenesis. ARA, DHA and EPA are precursors to a diverse repertoire of bioactive lipid mediators, including endocannabinoids. The endocannabinoid system comprises cannabinoid receptors, their endogenous ligands, the endocannabinoids, and their biosynthetic and degradation enzymes. Anandamide (AEA) and 2-arachidonoylglycerol (2-AG) are the most widely studied endocannabinoids and are both derived from phospholipid-bound ARA. The endocannabinoid system also has well-established roles in neuroinflammation, synaptic plasticity and neurogenesis, suggesting an overlap in the neuroprotective effects observed with these different classes of lipids. Indeed, growing evidence suggests a complex interplay between n-3 and n-6 LCPUFA and the endocannabinoid system. For example, long-term DHA and EPA supplementation reduces AEA and 2-AG levels, with reciprocal increases in levels of the analogous endocannabinoid-like DHA and EPA-derived molecules. This review summarises current evidence of this interplay and discusses the therapeutic potential for brain protection and repair.

  17. [Dynamics of amino acid and protein metabolism of laying hens after administration of 15N-labeled wheat protein. 5. Incorporation of 15N into the blood fraction and its amino acids].

    PubMed

    Gruhn, K; Zander, R; Kirchner, E

    1987-09-01

    12 colostomized laying hens which received 15N labelled wheat over 4 days were butchered 12 h, 36 h, 60 h and 108 h (3 animals each) after the last 15N application. The intake of 15N excess (15N') from the wheat amounted to 540 mg 15N' during the application period. The 15N' in the blood plasma decreased after the last 15N' application from 0.76 atom-% to 0.55 atom-% after 108 h, the labelling of the corpuscular components at the same measuring points increased from 0.28 to 0.50 atom-% 15N'. 96.6% of the plasma 15N' and 93.8% of that in the corpuscles is precipitable in trichloric acetic acid. The atom-% 15N' of histidine in the total blood remained unchanged in dependence on the butchering time. The 15N amount in lysine and arginine and that in the non-basic amino acids decreased inconsiderably in the period between 12 h and 108 h after the last 15N' wheat feeding.

  18. Inactivation of H1N1 viruses exposed to acidic ozone water

    NASA Astrophysics Data System (ADS)

    Uhm, Han S.; Lee, Kwang H.; Seong, Baik L.

    2009-10-01

    The inactivation of H1N1 viruses upon exposure to acidic ozone water was investigated using chicken allantoic fluids of different dilutions, pH values, and initial ozone concentrations. The inactivation effect of the acidic ozone water was found to be stronger than the inactivation effect of the ozone water combined with the degree of acidity, indicating a synergic effect of acidity on ozone decay in water. It is also shown that acidic ozone water with a pH value of 4 or less is very effective means of virus inactivation if provided in conjunction with an ozone concentration of 20 mg/l or higher.

  19. Control of C/N ratio for butyric acid production from textile wastewater sludge by anaerobic digestion.

    PubMed

    Fu, Bo; Zhang, Jingjing; Fan, Jinfeng; Wang, Jin; Liu, He

    2012-01-01

    Increasing textile wastewaters and their biotreatment byproduct-waste activated sludge are serious pollution problems. Butyric acid production from textile wastewater sludge by anaerobic digestion at different C/N ratios was investigated. Adding starch to textile wastewater sludge with a C/N ratio of 30 increased the butyric acid concentration and percentage accounting for total volatile fatty acids (TVFAs) to 21.42 g/L and 81.5%, respectively, as compared with 21.42 g/L and 10.6% of textile wastewater sludge alone. The maximum butyric acid yield (0.45 g/g VS), conversion rate (0.74 g/g VS(digest)) and production rate (2.25 g/L d) was achieved at a C/N ratio of 30. The biological toxicity of textile wastewater sludge also significantly decreased after the anaerobic digestion. The study indicated that the anaerobic co-digestion of textile wastewater sludge and carbohydrate-rich waste with appropriate C/N ratio is possible for butyric acid production.

  20. Alternative Sources of n-3 Long-Chain Polyunsaturated Fatty Acids in Marine Microalgae

    PubMed Central

    Martins, Dulce Alves; Custódio, Luísa; Barreira, Luísa; Pereira, Hugo; Ben-Hamadou, Radhouan; Varela, João; Abu-Salah, Khalid M.

    2013-01-01

    The main source of n-3 long-chain polyunsaturated fatty acids (LC-PUFA) in human nutrition is currently seafood, especially oily fish. Nonetheless, due to cultural or individual preferences, convenience, geographic location, or awareness of risks associated to fatty fish consumption, the intake of fatty fish is far from supplying the recommended dietary levels. The end result observed in most western countries is not only a low supply of n-3 LC-PUFA, but also an unbalance towards the intake of n-6 fatty acids, resulting mostly from the consumption of vegetable oils. Awareness of the benefits of LC-PUFA in human health has led to the use of fish oils as food supplements. However, there is a need to explore alternatives sources of LC-PUFA, especially those of microbial origin. Microalgae species with potential to accumulate lipids in high amounts and to present elevated levels of n-3 LC-PUFA are known in marine phytoplankton. This review focuses on sources of n-3 LC-PUFA, namely eicosapentaenoic and docosahexaenoic acids, in marine microalgae, as alternatives to fish oils. Based on current literature, examples of marketed products and potentially new species for commercial exploitation are presented. PMID:23807546

  1. Low breast milk levels of long-chain n-3 fatty acids in allergic women, despite frequent fish intake.

    PubMed

    Johansson, S; Wold, A E; Sandberg, A-S

    2011-04-01

    Long-chain n-3 polyunsaturated fatty acids (PUFAs) have immune regulating and anti-inflammatory effects. However, their role in allergic disease is unclear. Allergic diseases are immunologically heterogeneous, and we hypothesized that n-3 fatty acid composition in serum and breast milk may vary according to clinical manifestations. Further, animal studies have shown reduction of serum-PUFA levels during allergic inflammation. To investigate fatty acid composition in breast milk and serum from women with different atopic disease manifestations. Secondly, to determine whether low PUFA levels reflected insufficient intakes. Fatty acids were analysed in breast milk and serum of women with atopic eczema and respiratory allergy (n=16), only respiratory allergy (n=7), as well as healthy women (n=22). Dietary intake of foods expected to affect long-chain n-3 PUFA levels were estimated by food-frequency questionnaire. The fatty acid pattern was related to diagnostic group and intake of relevant food items using a multivariate pattern recognition method (partial least squares projections to latent structures and discriminant analysis). Results Women with a combination of eczema and respiratory allergy had lower breast milk levels of several PUFAs (arachidonic acid, eicosapentaenoic acid, EPA, docosahexaenoic acid, DHA, and docosapentaenoic acid, DPA), and a lower ratio of long-chain n-3 PUFAs/n-6 PUFAs. Their PUFA levels differed not only from that of healthy women, but also from that of women with only respiratory allergy. The latter had a fatty acid pattern similar to that of healthy women. Despite low EPA, DHA and DPA levels women with eczema and respiratory allergy consumed no less fish than did healthy women. Our data suggest that reduced levels of long-chain n-3 fatty acids in serum and breast milk characterize women with extensive allergic disease including eczema, and are not related to low fish intake. Consumption of PUFAs during the allergic process may explain

  2. A novel sodium N-fatty acyl amino acid surfactant using silkworm pupae as stock material

    PubMed Central

    Wu, Min-Hui; Wan, Liang-Ze; Zhang, Yu-Qing

    2014-01-01

    A novel sodium N-fatty acyl amino acid (SFAAA) surfactant was synthesized using pupa oil and pupa protein hydrolysates (PPH) from a waste product of the silk industry. The aliphatic acids from pupa oil were modified into N-fatty acyl chlorides by thionyl chloride (SOCl2). SFAAA was synthesized using acyl chlorides and PPH. GC-MS analysis showed fatty acids from pupa oil consist mainly of unsaturated linolenic and linoleic acids and saturated palmitic and stearic acids. SFAAA had a low critical micelle concentration, great efficiency in lowering surface tension and strong adsorption at an air/water interface. SFAAA had a high emulsifying power, as well as a high foaming power. The emulsifying power of PPH and SFAAA in an oil/water emulsion was better with ethyl acetate as the oil phase compared to n-hexane. The environment-friendly surfactant made entirely from silkworm pupae could promote sustainable development of the silk industry. PMID:24651079

  3. [Dynamics of amino acid and protein metabolism in laying hens after the administration of 15N-labeled wheat protein. 11. Incorporation of 15N in the tissues and the amino acids of the muscles].

    PubMed

    Gruhn, K; Zander, R

    1989-03-01

    Over a period of 4 days 12 colostomized laying hens daily received 36 g 15N labelled wheat with 15N excess (15N') of 14.37 atom-% together with a conventional feed mixture for laying hens. The labelling of the lysine N in the wheat was 13.58 atom-%, that of histidine N 14.38 and that of arginine 15N' 13.63 atom-% 15N'. Three hens each were butchered 12, 36, 60 and 108 h after the last 15N' feeding. The first three hens did not receive any feed before being butchered. The following three hens each received the unlabelled feed ration for another 1, 2 or 4 days resp. after the main period until they were butchered. The total of skeleton muscles, the heart and the stomach muscle (without inner skin) of each hen were combined into one sample, cut thinly, drenched with fluid nitrogen and pulverized. N, 15N' and the basic and non-basic amino acids as well as their 15N' were determined in the individual samples. In contrast to the organs, the proteins in the muscle tissue have a long half life so that a slight decrease of atom-% 15N' in the muscles could only be detected after 108 h. The 14N and 15N' quota of the non-basic amino acids in the total nitrogen of the muscles is 50%. The 14N quota of the basic amino acids is 30% and the 15N' quota only 22.5% in the total muscle N. The heavy nitrogen of the free lysine in the TCA soluble N fraction is hardly detectable 36 h and 60 h after the last 15N' supply and not at all after 108 h. In contrast to this, the other two free basic amino acids remain significantly higher labelled in dependence on the last butchering time.

  4. Effect of natural antioxidants in Spanish salchichón elaborated with encapsulated n-3 long chain fatty acids in konjac glucomannan matrix.

    PubMed

    Munekata, P E S; Domínguez, R; Franco, D; Bermúdez, R; Trindade, M A; Lorenzo, Jose M

    2017-02-01

    The effect of natural antioxidants on physicochemical properties, lipid and protein oxidation, volatile compounds and free fatty acids (FFA) were determined in Spanish salchichón enriched with n-3 fatty acids encapsulated and stabilized in konjac matrix. Phenolic compounds of beer residue extract (BRE), chestnut leaves extract (CLE) and peanut skin extract (PSE) were also identified and quantified. Five batches of salchichón were prepared: control (CON, without antioxidants), butylated hydroxytoluene (BHT), BRE, CLE and PSE. The main phenolic compounds were catechin and benzoic acid for BRE, gallic acid and catechin for CLE and catechin and protocatechuic acid for PSE. Statistical analysis did not show significant differences on chemical composition among treatments. Reductions in luminosity (P<0.05) and pH (P<0.001) were observed with the CLE batch, whereas the other colour parameters were not affected by the addition of natural antioxidants. Finally, the inclusion of antioxidants (P<0.001) decreased the hexanal content, whereas the FFA content increased by the addition of natural extracts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Acid-Group-Content-Dependent Proton Conductivity Mechanisms at the Interlayer of Poly(N-dodecylacrylamide-co-acrylic acid) Copolymer Multilayer Nanosheet Films.

    PubMed

    Sato, Takuma; Tsukamoto, Mayu; Yamamoto, Shunsuke; Mitsuishi, Masaya; Miyashita, Tokuji; Nagano, Shusaku; Matsui, Jun

    2017-11-14

    The effect of the content of acid groups on the proton conductivity at the interlayer of polymer-nanosheet assemblies was investigated. For that purpose, amphiphilic poly(N-dodecylacrylamide-co-acrylic acid) copolymers [p(DDA/AA)] with varying contents of AA were synthesized by free radical polymerization. Surface pressure (π)-area (A) isotherms of these copolymers indicated that stable polymer monolayers are formed at the air/water interface for AA mole fraction (n) ≤ 0.49. In all cases, a uniform dispersion of the AA groups in the polymer monolayer was observed. Subsequently, polymer monolayers were transferred onto solid substrates using the Langmuir-Blodgett (LB) technique. X-ray diffraction (XRD) analyses of the multilayer films showed strong Bragg diffraction peaks, suggesting a highly uniform lamellar structure for the multilayer films. The proton conductivity of the multilayer films parallel to the direction of the layer planes were measured by impedance spectroscopy, which revealed that the conductivity increased with increasing values of n. Activation energies for proton conduction of ∼0.3 and 0.42 eV were observed for n ≥ 0.32 and n = 0.07, respectively. Interestingly, the proton conductivity of a multilayer film with n = 0.19 did not follow the Arrhenius equation. These results were interpreted in terms of the average distance between the AA groups (l AA ), and it was concluded that, for n ≥ 0.32, an advanced 2D hydrogen bonding network was formed, while for n = 0.07, l AA is too long to form such hydrogen bonding networks. The l AA for n = 0.19 is intermediate to these extremes, resulting in the formation of hydrogen bonding networks at low temperatures, and disruption of these networks at high temperatures due to thermally induced motion. These results indicate that a high proton conductivity with low activation energy can be achieved, even under weakly acidic conditions, by arranging the acid groups at an optimal distance.

  6. Plasma fatty acid changes following consumption of dietary oils containing n-3, n-6, and n-9 fatty acids at different proportions: preliminary findings of the Canola Oil Multicenter Intervention Trial (COMIT)

    PubMed Central

    2014-01-01

    Background The Canola Oil Multicenter Intervention Trial (COMIT) was a randomized controlled crossover study designed to evaluate the effects of five diets that provided different oils and/or oil blends on cardiovascular disease (CVD) risk factors in individuals with abdominal obesity. The present objective is to report preliminary findings on plasma fatty acid profiles in volunteers with abdominal obesity, following the consumption of diets enriched with n-3, n-6 and n-9 fatty acids. Methods COMIT was conducted at three clinical sites, Winnipeg, Manitoba, Canada, Québec City, Québec, Canada and University Park, Pennsylvania, United States. Inclusion criteria were at least one of the followings: waist circumference (≥90 cm for males and ≥84 cm for females), and at least one other criterion: triglycerides ≥1.7 mmol/L, high density lipoprotein cholesterol <1 mmol/L (males) or <1.3 mmol/L (females), blood pressure ≥130 mmHg (systolic) and/or ≥85 mmHg (diastolic), and glucose ≥5.5 mmol/L. Weight-maintaining diets that included shakes with one of the dietary oil blends were provided during each of the five 30-day dietary phases. Dietary phases were separated by four-week washout periods. Treatment oils were canola oil, high oleic canola oil, high oleic canola oil enriched with docosahexaenoic acid (DHA), flax oil and safflower oil blend, and corn oil and safflower oil blend. A per protocol approach with a mixed model analysis was decided to be appropriate for data analysis. Results One hundred and seventy volunteers were randomized and 130 completed the study with a dropout rate of 23.5%. The mean plasma total DHA concentrations, which were analyzed among all participants as a measure of adherence, increased by more than 100% in the DHA-enriched phase, compared to other phases, demonstrating excellent dietary adherence. Conclusions Recruitment and retention strategies were effective in achieving a sufficient number of participants who completed the study

  7. A new class of synthetic anti-lipopolysaccharide peptides inhibits influenza A virus replication by blocking cellular attachment.

    PubMed

    Hoffmann, Julia; Schneider, Carola; Heinbockel, Lena; Brandenburg, Klaus; Reimer, Rudolph; Gabriel, Gülsah

    2014-04-01

    Influenza A viruses are a continuous threat to human health as illustrated by the 2009 H1N1 pandemic. Since circulating influenza virus strains become increasingly resistant against currently available drugs, the development of novel antivirals is urgently needed. Here, we have evaluated a recently described new class of broad-spectrum antiviral peptides (synthetic anti-lipopolysaccharide peptides; SALPs) for their potential to inhibit influenza virus replication in vitro and in vivo. We found that particularly SALP PEP 19-2.5 shows high binding affinities for the influenza virus receptor molecule, N-Acetylneuraminic acid, leading to impaired viral attachment and cellular entry. As a result, replication of several influenza virus subtypes (H7N7, H3N2 and 2009 pandemic H1N1) was strongly reduced. Furthermore, mice co-treated with PEP 19-2.5 were protected against an otherwise 100% lethal H7N7 influenza virus infection. These findings show that SALPs exhibit antiviral activity against influenza viruses by blocking virus attachment and entry into host cells. Thus, SALPs present a new class of broad-spectrum antiviral peptides for further development for influenza virus therapy. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Fatty acids of pulmonary surfactant phosphatidylcholine from fetal rabbit lung tissue in culture. Biosynthesis of n-10 monoenoic fatty acids.

    PubMed

    Longmuir, K J; Resele-Tiden, C; Rossi, M E

    1988-08-01

    of the unusual n-10 fatty acids was observed from the start of culture throughout the entire 7-day culture period, and was observed in incubations of tissue slices of day 23 fetal rabbit lung. This is the first report of the biosynthesis of n-10 fatty acids (16:1 cis-6 and 18:1 cis-8) in a mammalian tissue other than skin, where these fatty acids are found in the secretory product (sebum) of sebaceous glands.

  9. Radiosynthesis of N-¹¹C-Methyl-Taurine-Conjugated Bile Acids and Biodistribution Studies in Pigs by PET/CT.

    PubMed

    Schacht, Anna Christina; Sørensen, Michael; Munk, Ole Lajord; Frisch, Kim

    2016-04-01

    During cholestasis, accumulation of conjugated bile acids may occur in the liver and lead to hepatocellular damage. Inspired by our recent development of N-(11)C-methyl-glycocholic acid-that is, (11)C-cholylsarcosine-a tracer for PET of the endogenous glycine conjugate of cholic acid, we report here a radiosynthesis of N-(11)C-methyl-taurine-conjugated bile acids and biodistribution studies in pigs by PET/CT. A radiosynthesis of N-(11)C-methyl-taurine-conjugated bile acids was developed and used to prepare N-(11)C-methyl-taurine conjugates derived from cholic, chenodeoxycholic, deoxycholic, ursodeoxycholic, and lithocholic acid. The lipophilicity of these new tracers was determined by reversed-phase thin-layer chromatography. The effect of lipophilicity and structure on the biodistribution was investigated in pigs by PET/CT using the tracers derived from cholic acid (3α-OH, 7α-OH, 12α-OH), ursodeoxycholic acid (3α-OH, 7β-OH), and lithocholic acid (3α-OH). The radiosyntheses of the N-(11)C-methyl-taurine-conjugated bile acids proceeded with radiochemical yields of 61% (decay-corrected) or greater and radiochemical purities greater than 99%. PET/CT in pigs revealed that the tracers were rapidly taken up by the liver and secreted into bile. There was no detectable radioactivity in urine. Significant reflux of N-(11)C-methyl-taurolithocholic acid into the stomach was observed. We have successfully developed a radiosynthesis of N-(11)C-methyl-taurine-conjugated bile acids. These tracers behave in a manner similar to endogenous taurine-conjugated bile acids in vivo and are thus promising for functional PET of patients with cholestatic diseases. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  10. Effect of n-3 fatty acids on free tryptophan and exercise fatigue.

    PubMed

    Huffman, Derek M; Altena, Thomas S; Mawhinney, Thomas P; Thomas, Tom R

    2004-08-01

    Free tryptophan (Trp), which is augmented by liberated free fatty acids (FFA) from adipose tissue, can induce mental fatigue via serotonin during exercise. Since an attenuation in FFA has been observed with omega-3 fatty acid (n-3fa) use, our purpose was to examine the effect of n-3fa supplementation on free Trp availability and exercise fatigue. Ten recreationally trained men ( n=5) and women ( n=5), with maximal oxygen consumption (VO(2max))of 51.6 (3.0) and 44.3 (1.4) ml kg(-1) min(-1), respectively, were studied on two occasions following an overnight fast, before and after n-3fa supplementation (4 g day(-1) for 4 weeks). The exercise trials consisted of a 75-min treadmill run at 60% VO(2max) followed immediately by a high-intensity incremental bout to fatigue. Measurements included exercise monitors, plasma volume (PV), triglycerides (TG), FFA, glycerol, lactate, and glucose. Free Trp and branched-chain amino acids (BCAA) were measured and correlated with time to fatigue; all blood variables were corrected for PV. Free Trp, lactate, glucose, FFA, and glycerol were not significantly different between trials, but TG ( P<0.001) and the free Trp/BCAA ratio were significantly lower after n-3fa use [1.76 (0.18)x10(-2) microg ml(-1)] versus before supplementation [2.17 (0.22), P=0.033]. There was a non-significant increase in time to fatigue after supplementation [10.2 (0.3) min] versus before n-3fa use [9.7 (0.2), P=0.068], and a tendency for higher BCAA levels after supplementation, P=0.068. However, neither free Trp nor the free Trp/BCAA ratio significantly predicted time to fatigue. In conclusion, n-3fa supplementation did not diminish free Trp concentrations or significantly improve endurance performance during a maximal bout of exercise.

  11. Humic acid batteries derived from vermicomposts at different C/N ratios

    NASA Astrophysics Data System (ADS)

    Shamsuddin, R. M.; Borhan, A.; Lim, W. K.

    2017-06-01

    Humic acid is a known fertilizer derived from decomposed organic matters. Organic wastes are normally landfilled for disposal which had contributed negatively to the environment. From waste-to-wealth perspective, such wastes are potential precursors for compost fertilizers. When worms are added into a composting process, the process is termed as vermicomposting. In this work, humic acid from vermicompost derived from campus green wastes was developed into a battery. This adds value proposition to compost instead of being traditionally used solely as soil improver. This research work aimed to study the correlation between electrical potential generated by humic acid at different Carbon to Nitrogen (C/N) ratios of vermicompost at 20, 25, 30 and 35. The temperature and pH profiles of composting revealed that the compost was ready after 55 days. The humic acid was extracted from compost via alkaline extraction followed by precipitation in a strong acid. The extracted humic acid together with other additives were packed into a compartment and termed as vermibattery. Another set of battery running only on the additives was also prepared as a control. The net voltage produced by a single vermibattery cell with Zn and PbO electrodes was in the range of 0.31 to 0.44 V with compost at C/N ratio of 30 gave the highest voltage. The battery can be connected in series to increase the voltage generation. Quality assessment on the compost revealed that the final carbon content is between 16 to 23 wt%, nitrogen content of 0.4 to 0.5 wt%, humic acid yield of 0.7 to 1.5 wt% and final compost mass reduction of 10 to 35 wt%. Composting campus green wastes carries multi-fold benefits of reducing labour requirement, generating fertilizer for campus greenery and green battery construction.

  12. Lipoproteins of slow-growing Mycobacteria carry three fatty acids and are N-acylated by Apolipoprotein N-Acyltransferase BCG_2070c

    PubMed Central

    2013-01-01

    Background Lipoproteins are virulence factors of Mycobacterium tuberculosis. Bacterial lipoproteins are modified by the consecutive action of preprolipoprotein diacylglyceryl transferase (Lgt), prolipoprotein signal peptidase (LspA) and apolipoprotein N- acyltransferase (Lnt) leading to the formation of mature triacylated lipoproteins. Lnt homologues are found in Gram-negative and high GC-rich Gram-positive, but not in low GC-rich Gram-positive bacteria, although N-acylation is observed. In fast-growing Mycobacterium smegmatis, the molecular structure of the lipid modification of lipoproteins was resolved recently as a diacylglyceryl residue carrying ester-bound palmitic acid and ester-bound tuberculostearic acid and an additional amide-bound palmitic acid. Results We exploit the vaccine strain Mycobacterium bovis BCG as model organism to investigate lipoprotein modifications in slow-growing mycobacteria. Using Escherichia coli Lnt as a query in BLASTp search, we identified BCG_2070c and BCG_2279c as putative lnt genes in M. bovis BCG. Lipoproteins LprF, LpqH, LpqL and LppX were expressed in M. bovis BCG and BCG_2070c lnt knock-out mutant and lipid modifications were analyzed at molecular level by matrix-assisted laser desorption ionization time-of-flight/time-of-flight analysis. Lipoprotein N-acylation was observed in wildtype but not in BCG_2070c mutants. Lipoprotein N- acylation with palmitoyl and tuberculostearyl residues was observed. Conclusions Lipoproteins are triacylated in slow-growing mycobacteria. BCG_2070c encodes a functional Lnt in M. bovis BCG. We identified mycobacteria-specific tuberculostearic acid as further substrate for N-acylation in slow-growing mycobacteria. PMID:24093492

  13. Lipoproteins of slow-growing Mycobacteria carry three fatty acids and are N-acylated by apolipoprotein N-acyltransferase BCG_2070c.

    PubMed

    Brülle, Juliane K; Tschumi, Andreas; Sander, Peter

    2013-10-05

    Lipoproteins are virulence factors of Mycobacterium tuberculosis. Bacterial lipoproteins are modified by the consecutive action of preprolipoprotein diacylglyceryl transferase (Lgt), prolipoprotein signal peptidase (LspA) and apolipoprotein N- acyltransferase (Lnt) leading to the formation of mature triacylated lipoproteins. Lnt homologues are found in Gram-negative and high GC-rich Gram-positive, but not in low GC-rich Gram-positive bacteria, although N-acylation is observed. In fast-growing Mycobacterium smegmatis, the molecular structure of the lipid modification of lipoproteins was resolved recently as a diacylglyceryl residue carrying ester-bound palmitic acid and ester-bound tuberculostearic acid and an additional amide-bound palmitic acid. We exploit the vaccine strain Mycobacterium bovis BCG as model organism to investigate lipoprotein modifications in slow-growing mycobacteria. Using Escherichia coli Lnt as a query in BLASTp search, we identified BCG_2070c and BCG_2279c as putative lnt genes in M. bovis BCG. Lipoproteins LprF, LpqH, LpqL and LppX were expressed in M. bovis BCG and BCG_2070c lnt knock-out mutant and lipid modifications were analyzed at molecular level by matrix-assisted laser desorption ionization time-of-flight/time-of-flight analysis. Lipoprotein N-acylation was observed in wildtype but not in BCG_2070c mutants. Lipoprotein N- acylation with palmitoyl and tuberculostearyl residues was observed. Lipoproteins are triacylated in slow-growing mycobacteria. BCG_2070c encodes a functional Lnt in M. bovis BCG. We identified mycobacteria-specific tuberculostearic acid as further substrate for N-acylation in slow-growing mycobacteria.

  14. Effect of level of soluble fiber and n-6/n-3 fatty acid ratio on performance of rabbit does and their litters.

    PubMed

    Delgado, Rebeca; Abad-Guamán, Rodrigo; Nicodemus, Nuria; Villamide, María Jesús; Ruiz-López, Noemí; Carabaño, Rosa; Menoyo, David; García, Javier

    2018-04-03

    The aim of this work was to study whether the dietary supplementation with soluble fiber (SF) and the reduction of the n-6/n-3 fatty acid ratio or the combination of both influences the survival, body and milk composition, and reproductive performance of rabbit does during the first four parturitions. Four diets in a 2 × 2 factorial arrangement were used with two levels of SF (7.8 vs. 13.0, on dry matter [DM] basis; high soluble fiber [HSF] and low soluble fiber [LSF]) and two different n-6/n-3 fatty acid ratios (13.4/1 vs. 3.5/1). Nulliparous does (24/diet) were inseminated 11 d after parturition. Body chemical composition and energy content of rabbit does and their performance, litter growth, and milk production were measured between birth and weaning (25 d) along four parturitions, and milk composition and fecal digestibility were also recorded. The proportion of total removed does decreased in HSF respect to LSF groups (22.9 vs. 50.0%; P = 0.005), and it tended to decrease in LSF groups when the n-6/n-3 ratio increased and in HSF groups when the n-6/n-3 ratio decreased (P = 0.059). The increase of the level of SF reduced the digestible crude protein (CP)/digestible energy ratio (by 4%; P < 0.001) and improved the digestibility of all fibrous fractions (P < 0.001). The reduction of the n-6/n-3 ratio reduced the total dietary fiber digestibility in rabbit does fed LSF diets, but it had no effect in those fed HSF diets (P = 0.043). Treatments had no effect on average daily feed intake among parturitions (P = 0.16), but the digestible CP intake among parturitions was lower in HSF than in LSF groups (P = 0.003). Treatments had no effect on the total number of kits born, litter or average kit weight at birth, or litter size at weaning, fertility, feed efficiency, total milk production, and body chemical composition and energy content of rabbit does (P ≥ 0.29). The average weight of kits at weaning of LSF_Hn-6/n-3 and HSF_Ln-6/n-3 groups decreased by 6% compared

  15. Primary fatty acid amide metabolism: conversion of fatty acids and an ethanolamine in N18TG2 and SCP cells1[S

    PubMed Central

    Farrell, Emma K.; Chen, Yuden; Barazanji, Muna; Jeffries, Kristen A.; Cameroamortegui, Felipe; Merkler, David J.

    2012-01-01

    Primary fatty acid amides (PFAM) are important signaling molecules in the mammalian nervous system, binding to many drug receptors and demonstrating control over sleep, locomotion, angiogenesis, and many other processes. Oleamide is the best-studied of the primary fatty acid amides, whereas the other known PFAMs are significantly less studied. Herein, quantitative assays were used to examine the endogenous amounts of a panel of PFAMs, as well as the amounts produced after incubation of mouse neuroblastoma N18TG2 and sheep choroid plexus (SCP) cells with the corresponding fatty acids or N-tridecanoylethanolamine. Although five endogenous primary amides were discovered in the N18TG2 and SCP cells, a different pattern of relative amounts were found between the two cell lines. Higher amounts of primary amides were found in SCP cells, and the conversion of N-tridecanoylethanolamine to tridecanamide was observed in the two cell lines. The data reported here show that the N18TG2 and SCP cells are excellent model systems for the study of PFAM metabolism. Furthermore, the data support a role for the N-acylethanolamines as precursors for the PFAMs and provide valuable new kinetic results useful in modeling the metabolic flux through the pathways for PFAM biosynthesis and degradation. PMID:22095832

  16. Incorporation of dietary n-3 fatty acids into selective phosphatidylcholine lipids in human plasma after salmon intake

    USDA-ARS?s Scientific Manuscript database

    Elevated intake of n-3 long chain polyunsaturated fatty acids (n-3 LCPUFA) is associated with reduced risk for cardiovascular disease. Intake of n-3 LCPUFA is often quantified by analysis of plasma phospholipid fatty acids (PLFA); however, the typical analysis by gas chromatography does not allow fo...

  17. Dietary flavonoids increase plasma very long-chain (n-3) fatty acids in rats.

    PubMed

    Toufektsian, Marie-Claire; Salen, Patricia; Laporte, François; Tonelli, Chiara; de Lorgeril, Michel

    2011-01-01

    Flavonoids probably contribute to the health benefits associated with the consumption of fruit and vegetables. However, the mechanisms by which they exert their effects are not fully elucidated. PUFA of the (n-3) series also have health benefits. Epidemiological and clinical studies have suggested that wine flavonoids may interact with the metabolism of (n-3) PUFA and increase their blood and cell levels. The present studies in rats were designed to assess whether flavonoids actually increase plasma levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), the main very long-chain (n-3) PUFA. Rats were fed a corn-derived anthocyanin (ACN)-rich (ACN-rich) or ACN-free diet with constant intakes of plant and marine (n-3) PUFA for 8 wk (Expt. 1). Plasma fatty acids were measured by GC. The ACN-rich diet contained ~0.24 ± 0.01 mg of ACN/g pellets. There were no significant differences between groups in the main saturated, monounsaturated, and (n-6) fatty acids. In contrast, plasma EPA and DHA were greater in the ACN-rich diet group than in the ACN-free diet group (P < 0.05). We obtained similar results in 2 subsequent experiments in which rats were administered palm oil (80 μL/d) and consumed the ACN-rich or ACN-free diet (Expt. 2) or were supplemented with fish oil (60 mg/d, providing 35 mg DHA and 12 mg EPA) and consumed the ACN-rich or ACN-free diet (Expt. 3). In both experiments, plasma EPA and DHA were significantly greater in the ACN-rich diet group. These studies demonstrate that the consumption of flavonoids increases plasma very long-chain (n-3) PUFA levels. These data confirm previous clinical and epidemiological studies and provide new insights into the health benefits of flavonoids.

  18. Porcine dentin sialoprotein glycosylation and glycosaminoglycan attachments.

    PubMed

    Yamakoshi, Yasuo; Nagano, Takatoshi; Hu, Jan Cc; Yamakoshi, Fumiko; Simmer, James P

    2011-02-03

    Dentin sialophosphoprotein (Dspp) is a multidomain, secreted protein that is critical for the formation of tooth dentin. Mutations in DSPP cause inherited dentin defects categorized as dentin dysplasia type II and dentinogenesis imperfecta type II and type III. Dentin sialoprotein (Dsp), the N-terminal domain of dentin sialophosphoprotein (Dspp), is a highly glycosylated proteoglycan, but little is known about the number, character, and attachment sites of its carbohydrate moieties. To identify its carbohydrate attachment sites we isolated Dsp from developing porcine molars and digested it with endoproteinase Glu-C or pronase, fractionated the digestion products, identified fractions containing glycosylated peptides using a phenol sulfuric acid assay, and characterized the glycopeptides by N-terminal sequencing, amino acid analyses, or LC/MSMS. To determine the average number of sialic acid attachments per N-glycosylation, we digested Dsp with glycopeptidase A, labeled the released N-glycosylations with 2-aminobenzoic acid, and quantified the moles of released glycosylations by comparison to labeled standards of known concentration. Sialic acid was released by sialidase digestion and quantified by measuring β-NADH reduction of pyruvic acid, which was generated stoichiometrically from sialic acid by aldolase. To determine its forms, sialic acid released by sialidase digestion was labeled with 1,2-diamino-4,5-methyleneoxybenzene (DMB) and compared to a DMB-labeled sialic acid reference panel by RP-HPLC. To determine the composition of Dsp glycosaminoglycan (GAG) attachments, we digested Dsp with chondroitinase ABC and compared the chromotagraphic profiles of the released disaccharides to commercial standards. N-glycosylations were identified at Asn37, Asn77, Asn136, Asn155, Asn161, and Asn176. Dsp averages one sialic acid per N-glycosylation, which is always in the form of N-acetylneuraminic acid. O-glycosylations were tentatively assigned at Thr200, Thr216 and Thr

  19. Porcine dentin sialoprotein glycosylation and glycosaminoglycan attachments

    PubMed Central

    2011-01-01

    Background Dentin sialophosphoprotein (Dspp) is a multidomain, secreted protein that is critical for the formation of tooth dentin. Mutations in DSPP cause inherited dentin defects categorized as dentin dysplasia type II and dentinogenesis imperfecta type II and type III. Dentin sialoprotein (Dsp), the N-terminal domain of dentin sialophosphoprotein (Dspp), is a highly glycosylated proteoglycan, but little is known about the number, character, and attachment sites of its carbohydrate moieties. Results To identify its carbohydrate attachment sites we isolated Dsp from developing porcine molars and digested it with endoproteinase Glu-C or pronase, fractionated the digestion products, identified fractions containing glycosylated peptides using a phenol sulfuric acid assay, and characterized the glycopeptides by N-terminal sequencing, amino acid analyses, or LC/MSMS. To determine the average number of sialic acid attachments per N-glycosylation, we digested Dsp with glycopeptidase A, labeled the released N-glycosylations with 2-aminobenzoic acid, and quantified the moles of released glycosylations by comparison to labeled standards of known concentration. Sialic acid was released by sialidase digestion and quantified by measuring β-NADH reduction of pyruvic acid, which was generated stoichiometrically from sialic acid by aldolase. To determine its forms, sialic acid released by sialidase digestion was labeled with 1,2-diamino-4,5-methyleneoxybenzene (DMB) and compared to a DMB-labeled sialic acid reference panel by RP-HPLC. To determine the composition of Dsp glycosaminoglycan (GAG) attachments, we digested Dsp with chondroitinase ABC and compared the chromotagraphic profiles of the released disaccharides to commercial standards. N-glycosylations were identified at Asn37, Asn77, Asn136, Asn155, Asn161, and Asn176. Dsp averages one sialic acid per N-glycosylation, which is always in the form of N-acetylneuraminic acid. O-glycosylations were tentatively assigned at Thr

  20. Effects of dietary n-3 highly unsaturated fatty acids (HUFAs) on growth, fatty acid profiles, antioxidant capacity and immunity of sea cucumber Apostichopus japonicus (Selenka).

    PubMed

    Yu, Haibo; Gao, Qinfeng; Dong, Shuanglin; Zhou, Jishu; Ye, Zhi; Lan, Ying

    2016-07-01

    The present study was conducted to understand the effects of dietary n-3 highly unsaturated fatty acids (HUFAs) on growth, fatty acid profiles, antioxidant capacity and the immunity of sea cucumber Apostichopus japonicus (Selenka). Five experimental diets were prepared, containing graded levels of n-3 HUFAs (0.46%, 0.85%, 1.25%, 1.61% and 1.95%, respectively), and the 0.46% group was used as control group. The specific growth rates, fatty acid profiles, activities and gene expression of antioxidative enzymes and lysozyme of the sea cucumbers that were fed with the 5 experimental diets were determined. The results showed that the specific growth rate of sea cucumbers in all the treatment groups significantly increased compared to the control group (P < 0.05), indicating the positive effects of n-3 HUFAs on the growth of sea cucumbers. The contents of eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) in the body wall of the sea cucumbers gradually increased with the increasing levels of n-3 HUFAs in the diets. The suitable supplement of n-3 HUFAs in diets improved the activities of superoxide dismutase (SOD) and catalase (CAT) of sea cucumbers by up-regulating the expression of SOD and CAT mRNA in sea cucumbers. However, excess n-3 HUFAs in diets caused lipid peroxidation, inhibited the expression of lysozyme (LSZ) mRNA and decreased the activities of LSZ in sea cucumbers. In summary, the suitable supplement levels of n-3 HUFAs in diets of sea cucumbers A. japonicus were estimated between 0.85% and 1.25% considering the growth performance, cost and the indicators of antioxidant capacity and immunity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Clinical Benefits of n-3 PUFA and ɤ-Linolenic Acid in Patients with Rheumatoid Arthritis.

    PubMed

    Veselinovic, Mirjana; Vasiljevic, Dragan; Vucic, Vesna; Arsic, Aleksandra; Petrovic, Snjezana; Tomic-Lucic, Aleksandra; Savic, Maja; Zivanovic, Sandra; Stojic, Vladislava; Jakovljevic, Vladimir

    2017-03-25

    (1) Background: Marine n -3 polyunsaturated fatty acids (PUFA) and ɤ-linolenic acid (GLA) are well-known anti-inflammatory agents that may help in the treatment of inflammatory disorders. Their effects were examined in patients with rheumatoid arthritis; (2) Methods: Sixty patients with active rheumatoid arthritis were involved in a prospective, randomized trial of a 12 week supplementation with fish oil (group I), fish oil with primrose evening oil (group II), or with no supplementation (group III). Clinical and laboratory evaluations were done at the beginning and at the end of the study; (3) Results: The Disease Activity Score 28 (DAS 28 score), number of tender joints and visual analogue scale (VAS) score decreased notably after supplementation in groups I and II ( p < 0.001). In plasma phospholipids the n -6/ n -3 fatty acids ratio declined from 15.47 ± 5.51 to 10.62 ± 5.07 ( p = 0.005), and from 18.15 ± 5.04 to 13.50 ± 4.81 ( p = 0.005) in groups I and II respectively. The combination of n -3 PUFA and GLA (group II) increased ɤ-linolenic acid (0.00 ± 0.00 to 0.13 ± 0.11, p < 0.001), which was undetectable in all groups before the treatments; (4) Conclusion: Daily supplementation with n -3 fatty acids alone or in combination with GLA exerted significant clinical benefits and certain changes in disease activity.

  2. Protective effects of folic acid on DNA damage and DNA methylation levels induced by N-methyl- N'-nitro- N-nitrosoguanidine in Kazakh esophageal epithelial cells.

    PubMed

    Chen, Y; Feng, H; Chen, D; Abuduwaili, K; Li, X; Zhang, H

    2018-01-01

    The protective effects of folic acid on DNA damage and DNA methylation induced by N-methyl- N'-nitro- N-nitrosoguanidine (MNNG) in Kazakh esophageal epithelial cells were investigated using a 3 × 3 factorial design trial. The cells were cultured in vitro and exposed to media containing different concentrations of folic acid and MNNG, after which growth indices were detected. DNA damage levels were measured using comet assays, and genome-wide DNA methylation levels (MLs) were measured using high-performance liquid chromatography. The DNA methylation of methylenetetrahydrofolate reductase (MTHFR) and folate receptor- α (FR α) genes was detected by bisulfite sequencing polymerase chain reaction (PCR). The results showed significant increases in tail DNA concentration, tail length, and Olive tail moment ( p < 0.01); a significant reduction of genome-wide DNA MLs ( p < 0.01); and an increase in the methylation frequencies of MTHFR and FR α genes. In particular, significant differences were observed in the promoter regions of both genes ( p < 0.01). Our study indicated that a reduction in folic acid concentration promotes DNA damage and DNA methylation in Kazakh esophageal epithelial cells upon MNNG exposure. Thus, sufficient folic acid levels could play a protective role against the damage induced by this compound.

  3. N-3 fatty acids and membrane microdomains: from model membranes to lymphocyte function.

    PubMed

    Shaikh, Saame Raza; Teague, Heather

    2012-12-01

    This article summarizes the author's research on fish oil derived n-3 fatty acids, plasma membrane organization and B cell function. We first cover basic model membrane studies that investigated how docosahexaenoic acid (DHA) targeted the organization of sphingolipid-cholesterol enriched lipid microdomains. A key finding here was that DHA had a relatively poor affinity for cholesterol. This work led to a model that predicted DHA acyl chains in cells would manipulate lipid-protein microdomain organization and thereby function. We then review how the predictions of the model were tested with B cells in vitro followed by experiments using mice fed fish oil. These studies reveal a highly complex picture on how n-3 fatty acids target lipid-protein organization and B cell function. Key findings are as follows: (1) n-3 fatty acids target not just the plasma membrane but also endomembrane organization; (2) DHA, but not eicosapentaenoic acid (EPA), disrupts microdomain spatial distribution (i.e. clustering), (3) DHA alters protein lateral organization and (4) changes in membrane organization are accompanied by functional effects on both innate and adaptive B cell function. Altogether, the research over the past 10 years has led to an evolution of the original model on how DHA reorganizes membrane microdomains. The work raises the intriguing possibility of testing the model at the human level to target health and disease. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. n-3 Polyunsaturated Fatty Acids Reduce Neonatal Hypoxic/Ischemic Brain Injury by Promoting Phosphatidylserine Formation and Akt Signaling.

    PubMed

    Zhang, Wenting; Liu, Jia; Hu, Xiaoming; Li, Peiying; Leak, Rehana K; Gao, Yanqin; Chen, Jun

    2015-10-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFAs) attenuate neonatal hypoxic/ischemic (H/I) brain damage, but the underlying mechanisms are not fully understood. This study tested the hypothesis that n-3 PUFAs enhance Akt-dependent prosurvival signaling by promoting the biosynthesis of phosphatidylserine in neuronal cell membranes. Dietary n-3 PUFA supplementation was initiated on the second day of pregnancy in dams. H/I was induced in 7-day-old rat pups by ipsilateral common carotid artery occlusion followed by hypoxia (8% oxygen for 2.5 hours). Neurological outcomes, brain tissue loss, cell death, and the activation of signaling events were assessed after H/I. The effects of n-3 PUFAs (docosahexaenoic acid and eicosapentaenoic acid) on oxygen-glucose deprivation-induced cell death and the underlying mechanism of protection were also examined in primary cortical neuron cultures. n-3 PUFAs reduced brain tissue loss at 7 days after H/I and improved neurological outcomes, whereas inhibition of PI3K/Akt signaling by LY294002 partially abrogated this neuroprotective effect. Docosahexaenoic acid/eicosapentaenoic acid also prevented ischemic neuronal death through the Akt prosurvival pathway in vitro. Furthermore, docosahexaenoic acid/eicosapentaenoic acid increased the production of phosphatidylserine, the major membrane-bound phospholipids, after ischemia both in vitro and in vivo. A reduction in membrane phosphatidylserine by shRNA-mediated knockdown of phosphatidylserine synthetase-1 attenuated Akt activation and neuronal survival after docosahexaenoic acid/eicosapentaenoic acid treatment in the oxygen-glucose deprivation model. n-3 PUFAs robustly protect against H/I-induced brain damage in neonates by activating Akt prosurvival pathway in compromised neurons. In addition, n-3 PUFAs promote the formation of membrane phosphatidylserine, thereby promoting Akt activity and improving cellular survival. © 2015 American Heart Association, Inc.

  5. Straightforward synthesis of non-natural L-chalcogen and L-diselenide N-Boc-protected-γ-amino acid derivatives.

    PubMed

    Kawasoko, Cristiane Y; Foletto, Patricia; Rodrigues, Oscar E D; Dornelles, Luciano; Schwab, Ricardo S; Braga, Antonio L

    2013-08-21

    The synthesis of new chiral seleno-, telluro-, and thio-N-Boc-γ-amino acids is described herein. These new compounds were prepared through a simple and short synthetic route, from the inexpensive and commercially-available amino acid L-glutamic acid. The products, with a highly modular character, were obtained in good to excellent yields, via hydrolysis of chalcogen pyroglutamic derivatives with overall retention of the L-glutamic acid stereochemistry. Also, an L-diselenide-N-Boc-γ-amino acid was prepared in good yield. This new synthetic route represents an efficient method for preparing new L-chalcogen- and L-diselenide-γ-amino acids with biological potential.

  6. Intake of Fish and Omega-3 (n-3) Fatty Acids: Effect on Humans During Actual and Simulated Weightlessness

    NASA Technical Reports Server (NTRS)

    Smith, S. M.; Pierson, D. L.; Mehta, S. K.; Zwart, S. R.

    2011-01-01

    Space flight has many negative effects on human physiology, including bone and muscle loss. Bone and muscle are two systems that are positively affected by dietary intake of fish and n-3 fatty acids. The mechanism is likely to be related to inhibition by n-3 fatty acids of inflammatory cytokines (such as TNF) and thus inhibition of downstream NF-kB activation. We have documented this effect in a 3-dimensional cell culture model, where NF-kB activation in osteoclasts was inhibited by eicosapentaenoic acid, an n-3 fatty acid. We have also indentified that NF-kB activation in peripheral blood mononuclear cells of Space Shuttle crews. We found that after Shuttle flights of 2 wk, expression of the protein p65 (evidence of NF-kB activation) was increased at landing (P less than 0.001). When evaluating the effects of n-3 fatty acid intake on bone breakdown after 60 d of bed rest (a weightlessness analog). We found that after 60 d of bed rest, greater intake of n-3 fatty acids was associated with less N-telopeptide excretion (Pearson r = -0.62, P less than 0.05). We also evaluated the relationship of fish intake and bone loss in astronauts after 4 to 6 mo missions on the International Space Station. Higher consumption of fish during flight was associated with higher bone mineral density (Pearson r = 0.46, P less than 0.05). Together, these findings provide evidence of the cellular mechanism by which n-3 fatty acids can inhibit bone loss, and preliminary human evidence of the potential for n-3 fatty acids to counteract bone loss associated with space flight. This study was supported by the NASA Human Research Program.

  7. Chiral discrimination of α-hydroxy acids and N-Ts-α-amino acids induced by tetraaza macrocyclic chiral solvating agents by using 1H NMR spectroscopy.

    PubMed

    Lv, Caixia; Feng, Lei; Zhao, Hongmei; Wang, Guo; Stavropoulos, Pericles; Ai, Lin

    2017-02-21

    In the field of chiral recognition, reported chiral discrimination by 1 H NMR spectroscopy has mainly focused on various chiral analytes with a single chiral center, regarded as standard chiral substrates to evaluate the chiral discriminating abilities of a chiral auxiliary. Among them, chiral α-hydroxy acids, α-amino acids and their derivatives are chiral organic molecules involved in a wide variety of biological processes, and also play an important role in the area of preparation of pharmaceuticals, as they are part of the synthetic process in the production of chiral drug intermediates and protein-based drugs. In this paper, several α-hydroxy acids and N-Ts-α-amino acids were used to evaluate the chiral discriminating abilities of tetraaza macrocyclic chiral solvating agents (TAMCSAs) 1a-1d by 1 H NMR spectroscopy. The results indicate that α-hydroxy acids and N-Ts-α-amino acids were successfully discriminated in the presence of TAMCSAs 1a-1d by 1 H NMR spectroscopy in most cases. The enantiomers of the α-hydroxy acids and N-Ts-α-amino acids were assigned based on the change of integration of the 1 H NMR signals of the corresponding protons. The enantiomeric excesses (ee) of N-Ts-α-amino acids 11 with different optical compositions were calculated based on the integration of the 1 H NMR signals of the CH 3 protons (Ts group) of the enantiomers of (R)- and (S)-11 in the presence of TAMCSA 1b. At the same time, the possible chiral discriminating behaviors have been discussed by means of the Job plots of (±)-2 with TAMCSAs 1b and proposed theoretical models of the enantiomers of 2 and 6 with TAMCSA 1a, respectively.

  8. Natural monocrystalline pyrite as a sensor in non-aqueous solution Part I: Potentiometric titration of weak acids in, N,N-dimethylformamide, methylpyrrolidone and pyridine.

    PubMed

    Mihajlović, Lj V; Mihajlović, R P; Antonijević, M M; Vukanović, B V

    2004-11-15

    The possibility of applying natural monocrystaline pyrite as a sensor for the potentiometric titration of weak acids in N,N-dimethylformamide, methylpyrrolidone and pyridine was investigated. The potential of this electrode in N,N-dimethylformamide, methylpyrrolidone and pyridine exhibits a sub-Nernst dependence. In N,N-dimethylformamide the slope (mV/pH) is 39.0 and in methylpyrrolidone it is 45.0. The potential jumps at the titration end-point obtained in the titration of weak acids are higher than those obtained by the application of a glass electrode as the indicator electrode The potential in the course of the titration and at the titration end-point (TEP) are rapidly established. Sodium methylate, potassium hydroxide and tetrabutylammonium hydroxide (TBAH) proved to be very suitable titrating agents for these titrations. The results obtained in the determination of the investigated weak acids deviate by 0.1-0.35% with respect to those obtained by using a glass electrode as the indicator electrode.

  9. Sonocatalytic degradation of humic acid by N-doped TiO2 nano-particle in aqueous solution.

    PubMed

    Kamani, Hossein; Nasseri, Simin; Khoobi, Mehdi; Nabizadeh Nodehi, Ramin; Mahvi, Amir Hossein

    2016-01-01

    Un-doped and N-doped TiO2 nano-particles with different nitrogen contents were successfully synthesized by a simple sol-gel method, and were characterized by X-ray diffraction, field emission scanning electron microscopy, Energy dispersive X-ray analysis and UV-visible diffuse reflectance spectra techniques. Then enhancement of sonocatalytic degradation of humic acid by un-doped and N-doped TiO2 nano-particles in aqueous environment was investigated. The effects of various parameters such as initial concentration of humic acid, N-doping, and the degradation kinetics were investigated. The results of characterization techniques affirmed that the synthesis of un-doped and N-doped TiO2 nano-particles was successful. Degradation of humic acid by using different nano-particles obeyed the first-order kinetic. Among various nano-particles, N-doped TiO2 with molar doping ratio of 6 % and band gap of 2.92 eV, exhibited the highest sonocatalytic degradation with an apparent-first-order rate constant of 1.56 × 10(-2) min(-1). The high degradation rate was associated with the lower band gap energy and well-formed anatase phase. The addition of nano-catalysts could enhance the degradation efficiency of humic acid as well as N-doped TiO2 with a molar ratio of 6 %N/Ti was found the best nano-catalyst among the investigated catalysts. The sonocatalytic degradation with nitrogen doped semiconductors could be a suitable oxidation process for removal of refractory pollutants such as humic acid from aqueous solution.

  10. Inhibitory activity and mechanism of inhibition of the N-[[(4-benzoylamino)phenyl]sulfonyl]amino acid aldose reductase inhibitors.

    PubMed

    DeRuiter, J; Mayfield, C A

    1990-11-15

    A series of substituted N-[[(4-benzoylamino)phenyl]sulfonyl]amino acids (BAPS-amino acids) were synthesized by established methods, and the stereochemistry of the products was confirmed by HPLC analysis after chiral derivatization. When tested against aldose reductase (alditol:NADP+ oxidoreductase; EC 1.1.1.21; ALR2) isolated from rat lens, all of the BAPS-amino acids were determined to be significantly more inhibitory than the corresponding N-(phenylsulfonyl)amino acids. Structure-inhibition and enzyme kinetic analyses suggest that the BAPS-amino acids inhibit ALR2 by a mechanism similar to the N-(phenylsulfonyl)amino acids. However, multiple inhibition analyses indicate that the increased inhibitory activity of the BAPS-amino acids is a result of interaction with multiple sites present on ALR2. Enzyme specificity studies with several of the BAPS-amino acids demonstrated that these compounds do not produce significant inhibition of other nucleotide-requiring enzymes including aldehyde reductase (alcohol: NADP+ oxidoreductase; EC 1.1.1.2; ALR1).

  11. Mass spectrometry of analytical derivatives. 1. Cyanide cations in the spectra of N-alkyl-N-perfluoroacyl-α-amino acids and their methyl esters

    PubMed Central

    Todua, Nino G.; Tretyakov, Kirill V.; Mikaia, Anzor I.

    2016-01-01

    The central mission for the development of the National Institute of Standards and Technology/National Institutes of Health/Environmental Protection Agency Mass Spectral Library is the acquisition of reference gas chromatography–mass spectrometry data for important compounds and their chemical modification products. The addition of reliable reference data of various derivatives of amino acids to The Library, and the study of their behavior under electron ionization conditions may be useful for their identification, structure elucidation, and a better understanding of the data obtained when the same derivatives are subjected to other ionization methods. N-Alkyl-N-perfluoroacyl derivatives of amino acids readily produce previously unreported alkylnitrilium cations of composition [HC≡N-alkyl]+. Homologous [HC≡N-aryl]+ cations are typical for corresponding N-aryl analogs. The formation of other ions characteristic for these derivatives involves oxygen rearrangement giving rise to ions [CnF2n+1–C≡N+–CnH2n+1] and [CnF2n+1–C≡N+-aryl]. The introduction of an N-benzyl substituent in a molecule favors a process producing benzylidene iminium cations. l-Threonine and l-cysteine derivatives exhibit more fragmentation pathways not typical for other α-amino acids; additionally, the Nω-amino group in l-lysine directs the dissociation process and provides structural information on the substitution at the amino functions in the molecule. PMID:26307698

  12. Metabolic solutions to the biosynthesis of some diaminomonocarboxylic acids in nature: Formation in cyanobacteria of the neurotoxins 3-N-methyl-2,3-diaminopropanoic acid (BMAA) and 2,4-diaminobutanoic acid (2,4-DAB).

    PubMed

    Nunn, Peter B; Codd, Geoffrey A

    2017-12-01

    The non-encoded diaminomonocarboxylic acids, 3-N-methyl-2,3-diaminopropanoic acid (syn: α-amino-β-methylaminopropionic acid, MeDAP; β-N-methylaminoalanine, BMAA) and 2,4-diaminobutanoic acid (2,4-DAB), are distributed widely in cyanobacterial species in free and bound forms. Both amino acids are neurotoxic in whole animal and cell-based bioassays. The biosynthetic pathway to 2,4-DAB is well documented in bacteria and in one higher plant species, but has not been confirmed in cyanobacteria. The biosynthetic pathway to BMAA is unknown. This review considers possible metabolic routes, by analogy with reactions used in other species, by which these amino acids might be biosynthesised by cyanobacteria, which are a widespread potential environmental source of these neurotoxins. Where possible, the gene expression that might be implicated in these biosyntheses is discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Efficient Enzymatic Preparation of (13) N-Labelled Amino Acids: Towards Multipurpose Synthetic Systems.

    PubMed

    da Silva, Eunice S; Gómez-Vallejo, Vanessa; Baz, Zuriñe; Llop, Jordi; López-Gallego, Fernando

    2016-09-12

    Nitrogen-13 can be efficiently produced in biomedical cyclotrons in different chemical forms, and its stable isotopes are present in the majority of biologically active molecules. Hence, it may constitute a convenient alternative to Fluorine-18 and Carbon-11 for the preparation of positron-emitter-labelled radiotracers; however, its short half-life demands for the development of simple, fast, and efficient synthetic processes. Herein, we report the one-pot, enzymatic and non-carrier-added synthesis of the (13) N-labelled amino acids l-[(13) N]alanine, [(13) N]glycine, and l-[(13) N]serine by using l-alanine dehydrogenase from Bacillus subtilis, an enzyme that catalyses the reductive amination of α-keto acids by using nicotinamide adenine dinucleotide (NADH) as the redox cofactor and ammonia as the amine source. The integration of both l-alanine dehydrogenase and formate dehydrogenase from Candida boidinii in the same reaction vessel to facilitate the in situ regeneration of NADH during the radiochemical synthesis of the amino acids allowed a 50-fold decrease in the concentration of the cofactor without compromising reaction yields. After optimization of the experimental conditions, radiochemical yields were sufficient to carry out in vivo imaging studies in small rodents. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Systematic Review on N-3 and N-6 Polyunsaturated Fatty Acid Intake in European Countries in Light of the Current Recommendations - Focus on Specific Population Groups.

    PubMed

    Sioen, Isabelle; van Lieshout, Lilou; Eilander, Ans; Fleith, Mathilde; Lohner, Szimonetta; Szommer, Alíz; Petisca, Catarina; Eussen, Simone; Forsyth, Stewart; Calder, Philip C; Campoy, Cristina; Mensink, Ronald P

    2017-01-01

    Earlier reviews indicated that in many countries adults, children and adolescents consume on an average less polyunsaturated fatty acids (PUFAs) than recommended by the Food and Agriculture Organisation/World Health Organisation. The intake of total and individual n-3 and n-6 PUFAs in European infants, children, adolescents, elderly and pregnant/lactating women was evaluated systematically. The evaluations were done against recommendations of the European Food Safety Authority. Key Messages: Fifty-three studies from 17 different European countries reported an intake of total n-3 and n-6 PUFAs and/or individual n-3 or n-6 PUFAs in at least one of the specific population groups: 10 in pregnant women, 4 in lactating women, 3 in infants 6-12 months, 6 in children 1-3 years, 11 in children 4-9 years, 8 in adolescents 10-18 years and 11 in elderly >65 years. Mean linoleic acid intake was within the recommendation (4 energy percentage [E%]) in 52% of the countries, with inadequate intakes more likely in lactating women, adolescents and elderly. Mean α-linolenic acid intake was within the recommendation (0.5 E%) in 77% of the countries. In 26% of the countries, mean eicosapentaenoic acid and/or docosahexaenoic acid intake was as recommended. These results indicate that intake of n-3 and n-6 PUFAs may be suboptimal in specific population groups in Europe. © 2017 S. Karger AG, Basel.

  15. Time trend investigation of PCBs, PBDEs, and organochlorine pesticides in selected n-3 polyunsaturated fatty acid rich dietary fish oil and vegetable oil supplements; nutritional relevance for human essential n-3 fatty acid requirements.

    PubMed

    Jacobs, Miriam N; Covaci, Adrian; Gheorghe, Adriana; Schepens, Paul

    2004-03-24

    In addition to being used in the food and animal feed industry, fish oils have also been used traditionally as dietary supplements. Due to the presence of long-chain n-3 fatty acids, fish oils have therapeutic benefits in the prevention and treatment of cardiovascular, immunological, and arthritic diseases, as well as childhood deficiency diseases such as rickets, because of a high content of vitamin D. However, fish oils are also susceptible to contamination with lipophilic organic chemicals that are now ubiquitous contaminants of marine ecosystems. Many vegetable oils are sources of the shorter chain precursor forms of n-3 fatty acids, and in recent years the specialist dietary supplement market has expanded to include these oils in a variety of different formulations. This paper reports analytical results of selected contaminants, including polychlorinated biphenyls, organochlorine pesticides, and polybrominated diphenyl ethers, for a range of commercially available n-3 fatty acid rich fish and vegetable oil dietary supplements. Using principal component analysis, the values are compared with historic samples to elucidate time trends in contamination profiles. Levels of contaminants are discussed in relation to the nutritional benefits to the consumer of long- and short-chain forms of n-3 fatty acids.

  16. Chemopreventive effect of epigallocatechin-3-gallate (EGCG) and folic acid on the N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced gastrointestinal cancer in rat model.

    PubMed

    Xu, Qi; Yang, Chuan Hua; Liu, Qiang; Jin, Xi Feng; Xu, Xi Tao; Tong, Jin Lu; Xiao, Shu Dong; Ran, Zhi Hua

    2011-06-01

    To investigate the chemopreventive effect and mechanisms of epigallocatechin-3-gallate (EGCG) and folic acid on N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced gastrointestinal cancer in rats, and to investigate and compare the combinatorial effects of EGCG and folic acid on the chemoprevention of gastrointestinal carcinogenesis. A total of 159 healthy male Wistar rats were randomly divided into seven groups to have the MNNG in drink (group M), MNNG in drink and EGCG in the feed (group ME), MNNG in drink and folic acid in the feed (group MF), MNNG in drink and EGCG+folic acid in the feed (group MEF), EGCG in the feed (group E), folic acid in the feed (group F) or normal feed (group C), respectively. At 44 weeks, all the rats were killed and assessed for the presence of gastrointestinal tumor. The occurrence of cancer was evaluated by histology. Ki-67 in cancerous tissues and in situ apoptosis were determined by immunohistochemical staining or terminal deoxyribonucleotide transferase-mediated nick-end labeling (TUNEL) assay, respectively. The experiment was completed in 157 rats (98.74%). As compared with group M, the tumor incidence of group MEF decreased significantly (P=0.011). Ki-67 expression in cancerous tissues of group ME and MEF also decreased significantly (P=0.038, P=0.009), while apoptosis of group ME, MF and MEF increased significantly (P=0.000, P=0.003, P=0.000). EGCG combined with folic acid has an obvious chemopreventive effect on gastrointestinal carcinogenesis induced by MNNG in rats. © 2011 The Authors. Journal of Digestive Diseases © 2011 Chinese Medical Association Shanghai Branch, Chinese Society of Gastroenterology, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine and Blackwell Publishing Asia Pty Ltd.

  17. Dose-dependent consumption of farmed Atlantic salmon (Salmo salar) increases plasma phospholipid n-3 fatty acids differentially

    PubMed Central

    Raatz, Susan K.; Rosenberger, Thad A.; Johnson, LuAnn K.; Wolters, William W.; Burr, Gary S; Picklo, Matthew J.

    2013-01-01

    Enhanced omega-3 fatty acid (n-3) intake benefits cardiovascular disease (CVD) risk reduction. Increasing consumption at a population level may be better addressed by diet than through supplementation. However, limited data are available on the effect of the dose response to fish intake on plasma levels of n-3 fatty acids. To compare the effects of different doses of farmed Atlantic salmon on plasma phospholipid fatty acid (PLFA) proportions and CVD risk biomarkers (glucose, insulin, HOMAIR, hsCRP, and IL-6) in healthy subjects we performed a randomized 3-period cross-over designed trial (4 wk treatment, 4-8 wk washout) to compare the effects of twice/wk consumption of farmed Atlantic salmon at doses of 90, 180, and 270 g in 19 apparently healthy men and women with a mean age of aged 40-65 years and a BMI between 25-34.9 kg/m2. All study visits were conducted at the USDA, ARS Grand Forks Human Nutrition Research Center. EPA and total n-3 were increased (p<0.05) by all treatments in a dose response manner, with total n-3 of 8.03 ± 0.26 and 9.21 ± 0.26 % for 180 and 270 g doses, respectively. Linoleic acid did not change in response to treatment while arachidonic acid (P<0.05) and total omega-6 fatty acids (n-6) decreased dose dependently (<0.0001). The addition of farmed Atlantic salmon to the diet twice/wk for 4 wk at portions of 180g and 270g modifies PLFA proportions of n-3 and n-6 in a level associated with decreased risk for CVD. PMID:23351633

  18. Docosahexaenoic acid at the sn-2 position of structured triacylglycerols improved n-3 polyunsaturated fatty acid assimilation in tissues of hamsters.

    PubMed

    Bandarra, Narcisa M; Lopes, Paula A; Martins, Susana V; Ferreira, Júlia; Alfaia, Cristina M; Rolo, Eva A; Correia, Jorge J; Pinto, Rui M A; Ramos-Bueno, Rebeca P; Batista, Irineu; Prates, José A M; Guil-Guerrero, José L

    2016-05-01

    In this study, we hypothesized that the incorporation of docosahexaenoic acid (DHA) in tissues will be higher when it is ingested as triacylglycerols (TAG) structured at the sn-2 position, which enhances efficacy and health benefits of dietary DHA n-3 supplementation. Ten-week-old Golden Syrian male hamsters were randomly allocated into 4 dietary groups with 10 animals in each: linseed oil (LSO; control group), fish oil (FO), fish oil ethyl esters (FO-EE), and structured DHA at the sn-2 position of TAG (DHA-SL). After 12 weeks, there were no variations in the hamsters' body composition parameters across dietary groups. The DHA-SL diet had the lowest values of total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, total lipids, and aspartate aminotransferase activity, whereas the inverse was observed for the FO diet. Glucose was increased in the LSO diet without affecting insulin and insulin resistance markers. Whereas n-3 polyunsaturated fatty acid was increased in the brain of hamsters fed the DHA-SL diet, higher levels of n-6 polyunsaturated fatty acid were observed in the liver and erythrocytes of the LSO. The highest omega-3 index was obtained with the DHA-SL diet. The principal component analyses discriminated DHA from other metabolites and set apart 4 clusters matching the 4 diets. Similarly, liver, erythrocytes, and brain were separated from each other, pointing toward an individual signature on fatty acid deposition. The structured sn-2 position DHA-containing TAG ameliorated blood lipids and fatty acid incorporation, in particular eicosapentaenoic acid and DHA in liver, erythrocytes, and brain, relative to commercially FOs, thus improving the health benefits of DHA due to its higher bioavailability. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Effect of the ratio of dietary n-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid on broiler breeder performance, egg quality, and yolk fatty acid composition at different breeder ages.

    PubMed

    Koppenol, A; Delezie, E; Aerts, J; Willems, E; Wang, Y; Franssens, L; Everaert, N; Buyse, J

    2014-03-01

    When added to the feed of broiler breeder hens, dietary polyunsaturated fatty acids (FA) can be incorporated into the yolk and therefore become available to the progeny during their early development. The mechanism involved in lipid metabolism and deposition in the egg may be influenced by breeder age. Before the effect of an elevated concentration of certain polyunsaturated FA on the embryo can be investigated, the effect at breeder level and egg quality must be further assessed. The aim of the present experiment was to evaluate the effects of dietary n-6/n-3 ratios and dietary eicosapentaenoic acid (EPA, 20:5 n-3) and docosahexaenoic acid (DHA, 22:6 n-3) ratios, provided to broiler breeder hens, in terms of their zoo technical performance, egg quality, and yolk FA composition. Starting at 6 wk of age, 640 Ross-308 broiler breeder hens were fed 1 of 4 different diets. The control diet was a basal diet, rich in n-6 FA. The 3 other diets were enriched in n-3 FA, formulated to obtain a different EPA/DHA ratio of 1/1 (EPA = DHA), 1/2 (DHA), or 2/1 (EPA). In fact, after analysis the EPA/DHA ratio was 0.8, 0.4, or 2.1, respectively. Dietary EPA and DHA addition did not affect the performance of the breeder hens, except for egg weight. Egg weight was lower (P < 0.001) for all n-3 treatments. Dietary EPA improved number of eggs laid in the first 2 wk of the production cycle (P = 0.029). The absolute and relative yolk weight of eggs laid by EPA = DHA fed hens was lowest (P = 0.004 and P = 0.025, respectively). The EPA and DHA concentrations in the yolk were highly dependent on dietary EPA and DHA concentrations with a regression coefficient equal to 0.89. It can be concluded that dietary EPA and DHA can be incorporated in the breeder egg yolk to become available for the developing embryo, without compromising the performance and egg quality of the flock.

  20. Novel double prodrugs of the iron chelator N,N'-bis(2-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid (HBED): Synthesis, characterization, and investigation of activation by chemical hydrolysis and oxidation.

    PubMed

    Thiele, Nikki A; Abboud, Khalil A; Sloan, Kenneth B

    2016-08-08

    The development of iron chelators suitable for the chronic treatment of diseases where iron accumulation and subsequent oxidative stress are implicated in disease pathogenesis is an active area of research. The clinical use of the strong chelator N,N'-bis(2-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid (HBED) and its alkyl ester prodrugs has been hindered by poor oral bioavailability and lack of conversion to the parent chelator, respectively. Here, we present novel double prodrugs of HBED that have the carboxylate and phenolate donors of HBED masked with carboxylate esters and boronic acids/esters, respectively. These double prodrugs were successfully synthesized as free bases (7a-f) or as dimesylate salts (8a-c,e), and were characterized by (1)H, (13)C, and (11)B NMR; MP; MS; and elemental analysis. The crystal structure of 8a was solved. Three of the double prodrugs (8a-c) were selected for further investigation into their abilities to convert to HBED by stepwise hydrolysis and H2O2 oxidation. The serial hydrolysis of the pinacol and methyl esters of N,N'-bis(2-boronic acid pinacol ester benzyl)ethylenediamine-N,N'-diacetic acid methyl ester dimesylate (8a) was verified by LC-MS. The macro half-lives for the hydrolyses of 8a-c, measured by UV, ranged from 3.8 to 26.3 h at 37 °C in pH 7.5 phosphate buffer containing 50% MeOH. 9, the product of hydrolysis of 8a-c and the intermediate in the conversion pathway, showed little-to-no affinity for iron or copper in UV competition experiments. 9 underwent a serial oxidative deboronation by H2O2 in N-methylmorpholine buffer to generate HBED (k = 10.3 M(-1) min(-1)). The requirement of this second step, oxidation, before conversion to the active chelator is complete may confer site specificity when only localized iron chelation is needed. Overall, these results provide proof of principle for the activation of the double prodrugs by chemical hydrolysis and H2O2 oxidation, and merit further investigation into the

  1. Virulence-Affecting Amino Acid Changes in the PA Protein of H7N9 Influenza A Viruses

    PubMed Central

    Yamayoshi, Seiya; Yamada, Shinya; Fukuyama, Satoshi; Murakami, Shin; Zhao, Dongming; Uraki, Ryuta; Watanabe, Tokiko; Tomita, Yuriko; Macken, Catherine; Neumann, Gabriele

    2014-01-01

    ABSTRACT Novel avian-origin influenza A(H7N9) viruses were first reported to infect humans in March 2013. To date, 143 human cases, including 45 deaths, have been recorded. By using sequence comparisons and phylogenetic and ancestral inference analyses, we identified several distinct amino acids in the A(H7N9) polymerase PA protein, some of which may be mammalian adapting. Mutant viruses possessing some of these amino acid changes, singly or in combination, were assessed for their polymerase activities and growth kinetics in mammalian and avian cells and for their virulence in mice. We identified several mutants that were slightly more virulent in mice than the wild-type A(H7N9) virus, A/Anhui/1/2013. These mutants also exhibited increased polymerase activity in human cells but not in avian cells. Our findings indicate that the PA protein of A(H7N9) viruses has several amino acid substitutions that are attenuating in mammals. IMPORTANCE Novel avian-origin influenza A(H7N9) viruses emerged in the spring of 2013. By using computational analyses of A(H7N9) viral sequences, we identified several amino acid changes in the polymerase PA protein, which we then assessed for their effects on viral replication in cultured cells and mice. We found that the PA proteins of A(H7N9) viruses possess several amino acid substitutions that cause attenuation in mammals. PMID:24371069

  2. The Prion Protein N1 and N2 Cleavage Fragments Bind to Phosphatidylserine and Phosphatidic Acid; Relevance to Stress-Protection Responses.

    PubMed

    Haigh, Cathryn L; Tumpach, Carolin; Drew, Simon C; Collins, Steven J

    2015-01-01

    Internal cleavage of the cellular prion protein generates two well characterised N-terminal fragments, N1 and N2. These fragments have been shown to bind to anionic phospholipids at low pH. We sought to investigate binding with other lipid moieties and queried how such interactions could be relevant to the cellular functions of these fragments. Both N1 and N2 bound phosphatidylserine (PS), as previously reported, and a further interaction with phosphatidic acid (PA) was also identified. The specificity of this interaction required the N-terminus, especially the proline motif within the basic amino acids at the N-terminus, together with the copper-binding region (unrelated to copper saturation). Previously, the fragments have been shown to be protective against cellular stresses. In the current study, serum deprivation was used to induce changes in the cellular lipid environment, including externalisation of plasma membrane PS and increased cellular levels of PA. When copper-saturated, N2 could reverse these changes, but N1 could not, suggesting that direct binding of N2 to cellular lipids may be part of the mechanism by which this peptide signals its protective response.

  3. The Prion Protein N1 and N2 Cleavage Fragments Bind to Phosphatidylserine and Phosphatidic Acid; Relevance to Stress-Protection Responses

    PubMed Central

    Haigh, Cathryn L.; Tumpach, Carolin; Drew, Simon C.; Collins, Steven J.

    2015-01-01

    Internal cleavage of the cellular prion protein generates two well characterised N-terminal fragments, N1 and N2. These fragments have been shown to bind to anionic phospholipids at low pH. We sought to investigate binding with other lipid moieties and queried how such interactions could be relevant to the cellular functions of these fragments. Both N1 and N2 bound phosphatidylserine (PS), as previously reported, and a further interaction with phosphatidic acid (PA) was also identified. The specificity of this interaction required the N-terminus, especially the proline motif within the basic amino acids at the N-terminus, together with the copper-binding region (unrelated to copper saturation). Previously, the fragments have been shown to be protective against cellular stresses. In the current study, serum deprivation was used to induce changes in the cellular lipid environment, including externalisation of plasma membrane PS and increased cellular levels of PA. When copper-saturated, N2 could reverse these changes, but N1 could not, suggesting that direct binding of N2 to cellular lipids may be part of the mechanism by which this peptide signals its protective response. PMID:26252007

  4. Effect of temperature on the protonation of N-(2-hydroxyethyl)ethylenediamine-N,N',N'-triacetic acid in aqueous solutions: Potentiometric and calorimetric studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xingliang; Zhang, Zhicheng; Endrizzi, Francesco

    2015-06-01

    The TALSPEAK process (Trivalent Actinide Lanthanide Separations by Phosphorus-reagent Extraction from Aqueous Komplexes) has been demonstrated in several pilot-scale operations to be effective at separating trivalent actinides (An 3+) from trivalent lanthanides (Ln 3+). However, fundamental studies have revealed undesired aspects of TALSPEAK, such as the significant partitioning of Na +, lactic acid, and water into the organic phase, thermodynamically unpredictable pH dependence, and the slow extraction kinetics. In the modified TALSPEAK process, the combination of the aqueous holdback complexant HEDTA (N-(2-hydroxyethyl)ethylenediamine-N,N',N'-triacetic acid) with the extractant HEH[EHP] (2-ethyl(hexyl) phosphonic acid mono-2-ethylhexyl ester) in the organic phase has been found tomore » exhibit a nearly flat pH dependence between 2.5 and 4.5 and more rapid phase transfer kinetics for the heavier lanthanides. To help understand the speciation of Ln 3+ and An 3+ in the modified TALSPEAK, systematic studies are underway on the thermodynamics of major reactions in the HEDTA system under conditions relevant to the process (e.g., higher temperatures). Thermodynamics of the protonation and complexation of HEDTA with Ln 3+ were studied at variable temperatures. Equilibrium constants and enthalpies were determined by a combination of techniques including potentiometry and calorimetry. This paper presents the protonation constants of HEDTA at T = (25 to 70) °C. The potentiometric titrations have demonstrated that, stepwise, the first two protonation constants decrease and the third one slightly increases with the increase of temperature. This trend is in good agreement with the enthalpy of protonation directly determined by calorimetry. The results of NMR analysis further confirm that the first two protonation reactions occur on the diamine nitrogen atoms, while the third protonation reaction occurs on the oxygen of a carboxylate group. These data, in conjunction with

  5. N-3 poly-unsaturated fatty acids shift estrogen signaling to inhibit human breast cancer cell growth.

    PubMed

    Cao, Wenqing; Ma, ZhiFan; Rasenick, Mark M; Yeh, ShuYan; Yu, JiangZhou

    2012-01-01

    Although evidence has shown the regulating effect of n-3 poly-unsaturated fatty acid (n-3 PUFA) on cell signaling transduction, it remains unknown whether n-3 PUFA treatment modulates estrogen signaling. The current study showed that docosahexaenoic acid (DHA, C22:6), eicosapentaenoic acid (EPA, C20:5) shifted the pro-survival and proliferative effect of estrogen to a pro-apoptotic effect in human breast cancer (BCa) MCF-7 and T47D cells. 17 β-estradiol (E2) enhanced the inhibitory effect of n-3 PUFAs on BCa cell growth. The IC50 of DHA or EPA in MCF-7 cells decreased when combined with E2 (10 nM) treatment (from 173 µM for DHA only to 113 µM for DHA+E2, and from 187 µm for EPA only to 130 µm for EPA+E2). E2 also augmented apoptosis in n-3 PUFA-treated BCa cells. In contrast, in cells treated with stearic acid (SA, C18:0) as well as cells not treated with fatty acid, E2 promoted breast cancer cell growth. Classical (nuclear) estrogen receptors may not be involved in the pro-apoptotic effects of E2 on the n-3 PUFA-treated BCa cells because ERα agonist failed to elicit, and ERα knockdown failed to block E2 pro-apoptotic effects. Subsequent studies reveal that G protein coupled estrogen receptor 1 (GPER1) may mediate the pro-apoptotic effect of estrogen. N-3 PUFA treatment initiated the pro-apoptotic signaling of estrogen by increasing GPER1-cAMP-PKA signaling response, and blunting EGFR, Erk 1/2, and AKT activity. These findings may not only provide the evidence to link n-3 PUFAs biologic effects and the pro-apoptotic signaling of estrogen in breast cancer cells, but also shed new insight into the potential application of n-3 PUFAs in BCa treatment.

  6. Chromatographic determination of Fe chelated by ethylenediamine-N-(o-hydroxyphenylacetic)-N'-(p-hydroxyphenylacetic) acid in commercial EDDHA/Fe3+ fertilizers.

    PubMed

    García-Marco, Sonia; Torreblanca, Ana; Lucena, Juan J

    2006-02-22

    EDDHA/Fe3+ chelates are the most common fertilizers used to solve Fe chlorosis in established crops. Commercial products contain two regioisomers, ethylenediamine-N,N'-bis(o-hydroxyphenylacetic) acid (o,o-EDDHA)/Fe3+ and ethylenediamine-N-(o-hydroxyphenylacetic)-N'-(p-hydroxyphenylacetic) acid (o,p-EDDHA)/Fe3+. Although several chromatographic methods exist for the determination of Fe3+ chelated by the o,o-EDDHA isomer, no method has been described for the quantification of Fe3+ chelated by o,p-EDDHA. In this work, factors that affect the behavior of o,p-EDDHA/Fe3+ in ion pair chromatography are reviewed: pH, ion pair reagent, and organic modifier. The best chromatographic performance was obtained with an aqueous mobile phase at pH 6.0 containing 35% acetonitrile and 5 mM tetrabutylammonium hydroxide under isocratic elution conditions. This method was applied to the quantification of commercial samples.

  7. Plasma n-6 Fatty Acid Levels Are Associated With CD4 Cell Counts, Hospitalization, and Mortality in HIV-Infected Patients.

    PubMed

    Kabagambe, Edmond K; Ezeamama, Amara E; Guwatudde, David; Campos, Hannia; Fawzi, Wafaie

    2016-12-15

    Fatty acids, including n-6 series, modulate immune function, but their effect on CD4 cell counts, death, or hospitalization in HIV-infected patients on antiretroviral therapy is unknown. In a randomized trial for effects of multivitamins in HIV-infected patients in Uganda, we used gas chromatography to measure plasma n-6 fatty acids at baseline; determined CD4 counts at baseline, 3, 6, 12, and 18 months; and recorded hospitalization or death events. The associations of fatty acids with CD4 counts and events were analyzed using repeated-measures analysis of variance and Cox regression, respectively. Among 297 patients with fatty acids measurements, 16 patients died and 69 were hospitalized within 18 months. Except for linoleic acid, n-6 fatty acids levels were positively associated with CD4 counts at baseline but not during follow-up. In models that included all 5 major n-6 fatty acids, age; sex; body mass index; anemia status; use of antiretroviral therapy, multivitamin supplements, and alcohol; and the risk of death or hospitalization decreased significantly with an increase in linoleic acid and gamma-linolenic acid levels, whereas associations for dihomo-gamma-linolenic acid, arachidonic acid, and aolrenic acid were null. The hazard ratios (95% confidence intervals) per 1 SD increase in linoleic acid and gamma-linolenic acid were 0.73 (0.56-0.94) and 0.51 (0.36-0.72), respectively. Gamma-linolenic acid remained significant (hazard ratio = 0.51; 95% confidence interval: 0.35 to 0.68) after further adjustment for other plasma fatty acids. Lower levels of gamma-linolenic acid are associated with lower CD4 counts and an increased risk of death or hospitalization. These results suggest a potential for using n-6 fatty acids to improve outcomes from antiretroviral therapy.

  8. Heat capacities and thermal diffusivities of n-alkane acid ethyl esters—biodiesel fuel components

    NASA Astrophysics Data System (ADS)

    Bogatishcheva, N. S.; Faizullin, M. Z.; Nikitin, E. D.

    2017-09-01

    The heat capacities and thermal diffusivities of ethyl esters of liquid n-alkane acids C n H2 n-1O2C2H5 with the number of carbon atoms in the parent acid n = 10, 11, 12, 14, and 16 are measured. The heat capacities are measured using a DSC 204 F1 Phoenix heat flux differential scanning calorimeter (Netzsch, Germany) in the temperature range of 305-375 K. Thermal diffusivities are measured by means of laser flash method on an LFA-457 instrument (Netzsch, Germany) at temperatures of 305-400 K. An equation is derived for the dependence of the molar heat capacities of the investigated esters on temperature. It is shown that the dependence of molar heat capacity C p,m (298.15 K) on n ( n = 1-6) is close to linear. The dependence of thermal diffusivity on temperature in the investigated temperature range is described by a first-degree polynomial, but thermal diffusivity a (298.15 K) as a function of n has a minimum at n = 5.

  9. Quantification of N-acetyl- and N-glycolylneuraminic acids by a stable isotope dilution assay using high-performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Allevi, Pietro; Femia, Eti Alessandra; Costa, Maria Letizia; Cazzola, Roberta; Anastasia, Mario

    2008-11-28

    The present report describes a method for the quantification of N-acetyl- and N-glycolylneuraminic acids without any derivatization, using their (13)C(3)-isotopologues as internal standards and a C(18) reversed-phase column modified by decylboronic acid which allows for the first time a complete chromatographic separation between the two analytes. The method is based on high-performance liquid chromatographic coupled with electrospray ion-trap mass spectrometry. The limit of quantification of the method is 0.1mg/L (2.0ng on column) for both analytes. The calibration curves are linear for both sialic acids over the range of 0.1-80mg/L (2.0-1600ng on column) with a correlation coefficient greater than 0.997. The proposed method was applied to the quantitative determination of sialic acids released from fetuin as a model of glycoproteins.

  10. Camelina meal increases egg n-3 fatty acid content without altering egg quality or production in laying hens

    USDA-ARS?s Scientific Manuscript database

    Camelina sativa is an oilseed plant rich in n-3 and n-6-fatty acids and extruding defatted seed meal results in high protein meal (~40%) containing residual n-3 fatty acids. We examined the effects of feeding extruded defatted camelina seed meal to commercial laying hens on egg production, quality, ...

  11. Food frequency questionnaire as an indicator of the serum composition of essential n-3 and n-6 polyunsaturated fatty acids in early pregnancy, according to body mass index.

    PubMed

    Lepsch, J; Vaz, J S; Moreira, J D; Pinto, T J P; Soares-Mota, M; Kac, G

    2015-02-01

    We investigated whether food frequency questionnaire (FFQ) may be indicative of the serum composition of essential n-3 and n-6 polyunsaturated fatty acids (PUFAs) in early pregnancy and if correlations are affected by body mass index (BMI). The present study comprised a prospective cohort conducted in Rio de Janeiro, Brazil. The sample was composed of 248 women, aged 20-40 years, between 6 and the 13 weeks of gestation. Dietary intake was assessed using a validated FFQ. Fatty acid serum compositions were determined in fasting serum samples, employing a high-throughput robotic direct methylation coupled with fast gas-liquid chromatography. Spearman's correlation (r(s)) was used to assess the relationship between fatty acid intake and corresponding serum composition. Women were classified according to BMI (kg m(-2) ) as underweight/normal weight (BMI < 25 kg m(-2) ; n = 139) or excessive weight (BMI ≥ 25 kg m(-2) ; n = 109). In the total sample, dietary report was significantly correlated with the serum composition of total polyunsaturated fatty acid (PUFA; r(s) = 0.232, P < 0.001), linoleic acid (LA; 18:2n-6; r(s) = 0.271, P < 0.001), eicosapentaenoic acid (EPA; 20:5n-3; r(s) = 0.263, P < 0.001) and docosahexaenoic acid (DHA; 22:6n-3; r(s) = 0.209, P = 0.001). When analyses were stratified by BMI, significant correlations between FFQ and serum composition among underweight/normal weight women were observed for total PUFA (r(s) = 0.323, P < 0.001), LA (r(s) = 0.322, P < 0.001), EPA (r(s) = 0.352, P < 0.001) and DHA (r(s) = 0.176, P = 0.039). Among women of excessive weight, significant correlations were observed only for alpha linolenic acid (ALA; 18:3n-3; r(s) = 0.199, P = 0.040) and DHA (r(s) = 0.236, P = 0.014). FFQ in early pregnancy may be used as a possible indicator of serum concentrations of fatty acids. Higher correlations were observed among underweight/normal weight women. © 2014 The British Dietetic Association Ltd.

  12. Influence of dietary long-chain n-3 fatty acids from menhaden fish oil on plasma concentrations of alpha-tocopherol in geriatric beagles.

    PubMed

    Hall, Jean A; Tooley, Katie A; Gradin, Joseph L; Jewell, Dennis E; Wander, Rosemary C

    2002-01-01

    To determine effects of dietary n-3 fatty acids from Menhaden fish oil on plasma alpha-tocopherol concentrations in Beagles. 32 female Beagles. For 82 days, dogs were fed diets that contained 1 of 2 ratios of n-6:n-3 fatty acids (40:1 [low n-3] and 1.4:1 [high n-3]) and 1 of 3 concentrations of all-rac-alpha-tocopheryl acetate (low, 17 mg/kg of diet; medium, 101 mg/kg; and high, 447 mg/kg) in a 2 X 3 factorial study. Diets high in n-3 fatty acids significantly increased total content of n-3 fatty acids in plasma (17.0 g/100 g of fatty acids), compared with low n-3 diets (2.02 g/100 g of fatty acids). Mean +/- SEM plasma concentration of cholesterol was significantly lower in dogs consuming high n-3 diets (4.59 +/- 0.48 mmol/L), compared with dogs consuming low n-3 diets (5.71 +/- 0.48 mmol/L). A significant interaction existed between the ratio for n-6 and n-3 fatty acids and amount of alpha-tocopheryl acetate in the diet (plasma alpha-tocopherol concentration expressed on a molar basis), because the plasma concentration of alpha-toco-pherol was higher in dogs consuming low n-3 diets, compared with those consuming high n-3 diets, at the 2 higher amounts of dietary alpha-tocopheryl acetate. Plasma alpha-tocopherol concentration expressed relative to total lipid content did not reveal effects of dietary n-3 fatty acids on concentration of alpha-tocopherol. Plasma alpha-tocopherol concentration is not dependent on dietary ratio of n-6 and n-3 fatty acids when alpha-tocopherol concentration is expressed relative to the total lipid content of plasma.

  13. EPA, DHA, and Lipoic Acid Differentially Modulate the n-3 Fatty Acid Biosynthetic Pathway in Atlantic Salmon Hepatocytes.

    PubMed

    Bou, Marta; Østbye, Tone-Kari; Berge, Gerd M; Ruyter, Bente

    2017-03-01

    The aim of the present study was to investigate how EPA, DHA, and lipoic acid (LA) influence the different metabolic steps in the n-3 fatty acid (FA) biosynthetic pathway in hepatocytes from Atlantic salmon fed four dietary levels (0, 0.5, 1.0 and 2.0%) of EPA, DHA or a 1:1 mixture of these FA. The hepatocytes were incubated with [1- 14 C] 18:3n-3 in the presence or absence of LA (0.2 mM). Increased endogenous levels of EPA and/or DHA and LA exposure both led to similar responses in cells with reduced desaturation and elongation of [1- 14 C] 18:3n-3 to 18:4n-3, 20:4n-3, and EPA, in agreement with reduced expression of the Δ6 desaturase gene involved in the first step of conversion. DHA production, on the other hand, was maintained even in groups with high endogenous levels of DHA, possibly due to a more complex regulation of this last step in the n-3 metabolic pathway. Inhibition of the Δ6 desaturase pathway led to increased direct elongation to 20:3n-3 by both DHA and LA. Possibly the route by 20:3n-3 and then Δ8 desaturation to 20:4n-3, bypassing the first Δ6 desaturase step, can partly explain the maintained or even increased levels of DHA production. LA increased DHA production in the phospholipid fraction of hepatocytes isolated from fish fed 0 and 0.5% EPA and/or DHA, indicating that LA has the potential to further increase the production of this health-beneficial FA in fish fed diets with low levels of EPA and/or DHA.

  14. Cinnamic acid hydrogen bonds to isoniazid and N'-(propan-2-ylidene)isonicotinohydrazide, an in situ reaction product of isoniazid and acetone.

    PubMed

    Sarcevica, Inese; Orola, Liana; Veidis, Mikelis V; Belyakov, Sergey

    2014-04-01

    A new polymorph of the cinnamic acid-isoniazid cocrystal has been prepared by slow evaporation, namely cinnamic acid-pyridine-4-carbohydrazide (1/1), C9H8O2·C6H7N3O. The crystal structure is characterized by a hydrogen-bonded tetrameric arrangement of two molecules of isoniazid and two of cinnamic acid. Possible modification of the hydrogen bonding was investigated by changing the hydrazide group of isoniazid via an in situ reaction with acetone and cocrystallization with cinnamic acid. In the structure of cinnamic acid-N'-(propan-2-ylidene)isonicotinohydrazide (1/1), C9H8O2·C9H11N3O, carboxylic acid-pyridine O-H···N and hydrazide-hydrazide N-H···O hydrogen bonds are formed.

  15. Anaerobic biotransformation of roxarsone and related N-substituted phenylarsonic acids

    USGS Publications Warehouse

    Cortinas, I.; Field, J.A.; Kopplin, M.; Garbarino, J.R.; Gandolfi, A.J.; Sierra-Alvarez, R.

    2006-01-01

    Large quantities of arsenic are introduced into the environment through land application of poultry litter containing the organoarsenical feed additive roxarsone (3-nitro-4-hydroxyphenylarsonic acid). The objective of this study was to evaluate the bioconversion of roxarsone and related N-substituted phenylarsonic acid derivatives under anaerobic conditions. The results demonstrate that roxarsone is rapidly transformed in the absence of oxygen to the corresponding aromatic amine, 4-hydroxy-3-aminophenylarsonic acid (HAPA). The formation of HAPA is attributable to the facile reduction of the nitro group. Electron-donating substrates, such as hydrogen gas, glucose, and lactate, stimulated the rate of nitro group reduction, indicating a microbial role. During long-term incubations, HAPA and the closely related 4-aminophenylarsonic acid (4-APA) were slowly biologically eliminated by up to 99% under methanogenic and sulfate-reducing conditions, whereas little or no removal occurred in heat-killed inoculum controls. Arsenite and, to a lesser extent, arsenate were observed as products of the degradation. Freely soluble forms of the inorganic arsenical species accounted for 19-28% of the amino-substituted phenylarsonic acids removed. This constitutes the first report of a biologically catalyzed rupture of the phenylarsonic group under anaerobic conditions. ?? 2006 American Chemical Society.

  16. Anti-pandemic influenza A (H1N1) virus potential of catechin and gallic acid.

    PubMed

    You, Huey-Ling; Huang, Chao-Chun; Chen, Chung-Jen; Chang, Cheng-Chin; Liao, Pei-Lin; Huang, Sheng-Teng

    2018-05-01

    The pandemic influenza A (H1N1) virus has spread worldwide and infected a large proportion of the human population. Discovery of new and effective drugs for the treatment of influenza is a crucial issue for the global medical community. According to our previous study, TSL-1, a fraction of the aqueous extract from the tender leaf of Toonasinensis, has demonstrated antiviral activities against pandemic influenza A (H1N1) through the down-regulation of adhesion molecules and chemokine to prevent viral attachment. The aim of the present study was to identify the active compounds in TSL-1 which exert anti-influenza A (H1N1) virus effects. XTT assay was used to detect the cell viability. Meanwhile, the inhibitory effect on the pandemic influenza A (H1N1) virus was analyzed by observing plaque formation, qRT-PCR, neuraminidase activity, and immunofluorescence staining of influenza A-specific glycoprotein. Both catechin and gallic acid were found to be potent inhibitors in terms of influenza virus mRNA replication and MDCK plaque formation. Additionally, both compounds inhibited neuraminidase activities and viral glycoprotein. The 50% effective inhibition concentration (EC 50 ) of catechin and gallic acid for the influenza A (H1N1) virus were 18.4 μg/mL and 2.6 μg/mL, respectively; whereas the 50% cytotoxic concentrations (CC 50 ) of catechin and gallic acid were >100 μg/mL and 22.1 μg/mL, respectively. Thus, the selectivity indexes (SI) of catechin and gallic acid were >5.6 and 22.1, respectively. The present study demonstrates that catechin might be a safe reagent for long-term use to prevent influenza A (H1N1) virus infection; whereas gallic acid might be a sensitive reagent to inhibit influenza virus infection. We conclude that these two phyto-chemicals in TSL-1 are responsible for exerting anti-pandemic influenza A (H1N1) virus effects. Copyright © 2017. Published by Elsevier Taiwan LLC.

  17. A PHYSIOLOGICALLY-BASED PHARMACOKINETIC MODEL FOR INTRAVENOUS AND INHALATION-ROUTE PHARMACOKINETICS OF BUTYL ACETATE AND METABOLITES N-BUTANOL AND N-BUTYRIC ACID

    EPA Science Inventory

    Risk assessment for n-butyl acetate and metabolites n-butanol and n-butyric acid (the butyl series) can be accomplished with limited toxicity data and pharmacokinetic data for each compound through application of the "family approach" (Barton et al., 2000). The necessary quantita...

  18. High Throughput ELISAs to Measure a Unique Glycan on Transferrin in Cerebrospinal Fluid: A Possible Extension toward Alzheimer's Disease Biomarker Development

    PubMed Central

    Shirotani, Keiro; Futakawa, Satoshi; Nara, Kiyomitsu; Hoshi, Kyoka; Saito, Toshie; Tohyama, Yuriko; Kitazume, Shinobu; Yuasa, Tatsuhiko; Miyajima, Masakazu; Arai, Hajime; Kuno, Atsushi; Narimatsu, Hisashi; Hashimoto, Yasuhiro

    2011-01-01

    We have established high-throughput lectin-antibody ELISAs to measure different glycans on transferrin (Tf) in cerebrospinal fluid (CSF) using lectins and an anti-transferrin antibody (TfAb). Lectin blot and precipitation analysis of CSF revealed that PVL (Psathyrella velutina lectin) bound an unique N-acetylglucosamine-terminated N-glycans on “CSF-type” Tf whereas SSA (Sambucus sieboldiana agglutinin) bound α2,6-N-acetylneuraminic acid-terminated N-glycans on “serum-type” Tf. PVL-TfAb ELISA of 0.5 μL CSF samples detected “CSF-type” Tf but not “serum-type” Tf whereas SSA-TfAb ELISA detected “serum-type” Tf but not “CSF-type” Tf, demonstrating the specificity of the lectin-TfAb ELISAs. In idiopathic normal pressure hydrocephalus (iNPH), a senile dementia associated with ventriculomegaly, amounts of the SSA-reactive Tf were significantly higher than in non-iNPH patients, indicating that Tf glycan analysis by the high-throughput lectin-TfAb ELISAs could become practical diagnostic tools for iNPH. The lectin-antibody ELISAs of CSF proteins might be useful for diagnosis of the other neurological diseases. PMID:21876827

  19. Dietary n-3 polyunsaturated fatty acids affect the development of renovascular hypertension in rats

    NASA Technical Reports Server (NTRS)

    Rousseau, D.; Helies-Toussaint, C.; Raederstorff, D.; Moreau, D.; Grynberg, A.

    2001-01-01

    The consequences of a dietary n-3 PUFA supply was investigated on the blood pressure (BP) increase elicited by left renal artery stenosis in rats distributed in 3 groups (n = 8) fed for 8 weeks a semi-purified diet either as control diet or enriched diets (docosahexaenoic acid, DHA, or eicosapentaenoic acid, EPA). The PUFA intake induced large alterations in heart and kidney phospholipid fatty acid profile, but did not influence body weight, cardiac hypertrophy, renal left atrophy and right hypertrophy. Within 4 weeks, BP raised from 120-180 +/- 2 mm Hg in the control group, but only to 165 +/- 3 mm Hg in the n-3 PUFA groups. After stabilization of BP in the 3 groups, the rats received a short administration of increasing dose of perindopril. The lower dose (0.5 mg/kg) moderately decreased BP only in the control group. With higher doses (1, 5 and 10 mg/kg) BP was normalized in the 3 groups, with a higher amplitude of the BP lowering effect in the control group. A moderate n-3 PUFA intake can contribute to prevent the development of peripheral hypertension in rats by a mechanism that may involve angiotensin converting enzyme.

  20. Dietary n-3 polyunsaturated fatty acids affect the development of renovascular hypertension in rats.

    PubMed

    Rousseau, D; Héliès-Toussaint, C; Raederstorff, D; Moreau, D; Grynberg, A

    2001-09-01

    The consequences of a dietary n-3 PUFA supply was investigated on the blood pressure (BP) increase elicited by left renal artery stenosis in rats distributed in 3 groups (n = 8) fed for 8 weeks a semi-purified diet either as control diet or enriched diets (docosahexaenoic acid, DHA, or eicosapentaenoic acid, EPA). The PUFA intake induced large alterations in heart and kidney phospholipid fatty acid profile, but did not influence body weight, cardiac hypertrophy, renal left atrophy and right hypertrophy. Within 4 weeks, BP raised from 120-180 +/- 2 mm Hg in the control group, but only to 165 +/- 3 mm Hg in the n-3 PUFA groups. After stabilization of BP in the 3 groups, the rats received a short administration of increasing dose of perindopril. The lower dose (0.5 mg/kg) moderately decreased BP only in the control group. With higher doses (1, 5 and 10 mg/kg) BP was normalized in the 3 groups, with a higher amplitude of the BP lowering effect in the control group. A moderate n-3 PUFA intake can contribute to prevent the development of peripheral hypertension in rats by a mechanism that may involve angiotensin converting enzyme.

  1. Effect of n-3 polyunsaturated fatty acids on the lipidic profile of healthy Mexican volunteers.

    PubMed

    Carvajal, O; Angulo, O

    1997-01-01

    The effect of n-3 polyunsaturated fatty acids on the serum lipid profile in a Mexican population was evaluated. Three g of salmon oil was the daily intake during four weeks. Total cholesterol, triglycerides, low density lipoproteins, high density lipoproteins and erythrocyte fatty acid composition were analyzed. The hypertriglyceridemic group showed a statistically significant (p < 0.05) reduction of triglycerides and significant (p < 0.01) elevation of high density lipoproteins. The hypercholesterolemic group reduced significantly the levels of cholesterol and triglycerides; high density lipoproteins were augmented by 11.6%. The hypolipidemic effect of n-3 polyunsaturated fatty acids was manifest in the Mexican volunteers under the conditions here evaluated.

  2. Structure of β- N-dimethylamino-4-dodecyloxypropiophenone complexes with di- and polycarboxylic acids

    NASA Astrophysics Data System (ADS)

    Lebedeva, Tamara L.; Shandryuk, George A.; Sycheva, Tatyana I.; Bezborodov, Vladimir S.; Talroze, Raissa V.; Platé, Nicolai A.

    1995-07-01

    The type of bonds responsible for the complexation of di- and polyacids with the tertiary amine β- N-dimethylamino-4-dodecyloxypropiophenone is studied by means of FTIR spectroscopy. The complexes are shown to be stable due to strong H-bonding with partial charge transfer. The characteristic composition for complexes of polyacrylic, polymethacrylic and malonic acids is calculated as 2:1 (number of carboxylic groups per number of amine molecules) whereas glutaric acid forms complexes of different composition including 1:1. The characteristic composition results from the structure of the initial acid. The structures of both the characteristic complex and "excess" acid are also discussed.

  3. Characterization of goat colostrum oligosaccharides by nano-liquid chromatography on chip quadrupole time-of-flight mass spectrometry and hydrophilic interaction liquid chromatography-quadrupole mass spectrometry

    PubMed Central

    Martín-Ortiz, A.; Salcedo, J.; Barile, D.; Bunyatratchata, A.; Moreno, F.J.; Martin-García, I.; Clemente, A.; Sanz, M.L.; Ruiz-Matute, A.I.

    2016-01-01

    A detailed qualitative and quantitative characterization of goat colostrum oligosaccharides (GCO) has been carried out for the first time. Defatted and deproteinized colostrum samples, previously treated by size exclusion chromatography (SEC) to remove lactose, were analyzed by nanoflow liquid chromatography-quadrupole-time of flight mass spectrometry (Nano-LC-Chip-Q-TOF MS). Up to 78 oligosaccharides containing hexose, hexosamine, fucose, N-acetylneuraminic acid or N-glycolylneuraminic acid monomeric units were identified in the samples, some of them detected for the first time in goat colostra. As a second step, a hydrophilic interaction liquid chromatography coupled to mass spectrometry (HILIC-MS) methodology was developed for the separation and quantitation of the main GCO, both acidic and neutral carbohydrates. Among other experimental chromatographic conditions, mobile phase additives and column temperature were evaluated in terms of retention time, resolution, peak width and symmetry of target carbohydrates. Narrow peaks (wh: 0.2–0.6 min) and good symmetry (As: 0.8–1.4) were obtained for GCO using an acetonitrile:water gradient with 0.1% ammonium hydroxide at 40 °C. These conditions were selected to quantify the main oligosaccharides in goat colostrum samples. Values ranging from 140 to 315 mg L−1 for neutral oligosaccharides and from 83 to 251 mg L−1 for acidic oligosaccharides were found. The combination of both techniques resulted to be useful to achieve a comprehensive characterization of GCO. PMID:26427327

  4. Characterization of goat colostrum oligosaccharides by nano-liquid chromatography on chip quadrupole time-of-flight mass spectrometry and hydrophilic interaction liquid chromatography-quadrupole mass spectrometry.

    PubMed

    Martín-Ortiz, A; Salcedo, J; Barile, D; Bunyatratchata, A; Moreno, F J; Martin-García, I; Clemente, A; Sanz, M L; Ruiz-Matute, A I

    2016-01-08

    A detailed qualitative and quantitative characterization of goat colostrum oligosaccharides (GCO) has been carried out for the first time. Defatted and deproteinized colostrum samples, previously treated by size exclusion chromatography (SEC) to remove lactose, were analyzed by nanoflow liquid chromatography-quadrupole-time of flight mass spectrometry (Nano-LC-Chip-Q-TOF MS). Up to 78 oligosaccharides containing hexose, hexosamine, fucose, N-acetylneuraminic acid or N-glycolylneuraminic acid monomeric units were identified in the samples, some of them detected for the first time in goat colostra. As a second step, a hydrophilic interaction liquid chromatography coupled to mass spectrometry (HILIC-MS) methodology was developed for the separation and quantitation of the main GCO, both acidic and neutral carbohydrates. Among other experimental chromatographic conditions, mobile phase additives and column temperature were evaluated in terms of retention time, resolution, peak width and symmetry of target carbohydrates. Narrow peaks (wh: 0.2-0.6min) and good symmetry (As: 0.8-1.4) were obtained for GCO using an acetonitrile:water gradient with 0.1% ammonium hydroxide at 40°C. These conditions were selected to quantify the main oligosaccharides in goat colostrum samples. Values ranging from 140 to 315mgL(-1) for neutral oligosaccharides and from 83 to 251mgL(-1) for acidic oligosaccharides were found. The combination of both techniques resulted to be useful to achieve a comprehensive characterization of GCO. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. The effect of different cooking methods on fatty acid composition and antioxidant activity of n-3 fatty acids fortified tilapia meat with or without clove essential oil.

    PubMed

    Ramezani-Fard, Ehsan; Romano, Nicholas; Goh, Yong-Meng; Oskoueian, Ehsan; Ehteshami, Fariborz; Ebrahimi, Mahdi

    2016-07-01

    Tilapia farmers are increasingly relying on dietary fish oil alternatives which substantially reduces health beneficial n-3 polyunsaturated fatty acids (PUFA) in tilapia products.? This may be further exacerbated depending on the cooking method.? This study aimed to evaluate the effects of different cooking methods on the fatty acid composition and oxidative stability of tilapia minced meat after prior fish oil fortifications with or without clove essential oil. Results showed that frying tilapia in either sunflower or palm oil significantly increased the saturated fatty acid and linoleic acid content, respectively, of tilapia. However, fish oil fortifications significantly increased the n-3 PUFA content, but tended to decrease oxidative stability, particularly when microwaving. This was mitigated by clove essential oil, which significantly improved oxidative stability after cooking. Results indicate that n-3 PUFA and clove essential oil fortifications is an effective method to deliver and protect these beneficial fatty acids for human consumers. ?

  6. Role of n-3 Polyunsaturated Fatty Acids in Ameliorating the Obesity-Induced Metabolic Syndrome in Animal Models and Humans

    PubMed Central

    Huang, Chao-Wei; Chien, Yi-Shan; Chen, Yu-Jen; Ajuwon, Kolapo M.; Mersmann, Harry M.; Ding, Shih-Torng

    2016-01-01

    The incidence of obesity and its comorbidities, such as insulin resistance and type II diabetes, are increasing dramatically, perhaps caused by the change in the fatty acid composition of common human diets. Adipose tissue plays a role as the major energy reservoir in the body. An excess of adipose mass accumulation caused by chronic positive energy balance results in obesity. The n-3 polyunsaturated fatty acids (n-3 PUFA), DHA (docosahexaenoic acid) and EPA (eicosapentaenoic acid) exert numerous beneficial effects to maintain physiological homeostasis. In the current review, the physiology of n-3 PUFA effects in the body is delineated from studies conducted in both human and animal experiments. Although mechanistic studies in human are limited, numerous studies conducted in animals and models in vitro provide potential molecular mechanisms of the effects of these fatty acids. Three aspects of n-3 PUFA in adipocyte regulation are discussed: (1) lipid metabolism, including adipocyte differentiation, lipolysis and lipogenesis; (2) energy expenditure, such as mitochondrial and peroxisomal fatty acid β-oxidation; and (3) inflammation, including adipokines and specialized pro-resolving lipid mediators. Additionally, the mechanisms by which n-3 PUFA regulate gene expression are highlighted. The beneficial effects of n-3 PUFA may help to reduce the incidence of obesity and its comorbidities. PMID:27735847

  7. Synthesis of an acid addition salt of delta-aminolevulinic acid from 5-bromo levulinic acid esters

    DOEpatents

    Moens, Luc

    1999-01-01

    A process of preparing an acid addition salt of delta-aminolevulinic acid comprising: dissolving a lower alkyl 5-bromolevulinate and an alkali metal diformylamide in an organic solvent selected from the group consisting of acetonitrile, methanol, tetrahydrofuran, 2-methyltetrahydrofuran and methylformate or mixtures thereof to form a suspension of an alkyl 5-(N,N-diformylamino) levulinate ester; and hydrolyzing said alkyl 5-(N,N-diformylamino) levulinate with an inorganic acid to form an acid addition salt of delta-amino levulinic acid.

  8. Studies on the Role of N-Acetylaspartic Acid in Mammalian Brain

    PubMed Central

    Jacobson, K. Bruce

    1959-01-01

    N-Acetylaspartic acid (NAA) occurs at relatively high concentrations exclusively in the mammalian and avian brain and undergoes rapid rise in level soon after birth (Tallan, 1957). The amount of NAA in brains of mentally abnormal human beings and of young human beings was measured. The route by which NAA is synthesized was shown to involve a direct acetylation of aspartic acid. The degradative activity of the brain toward NAA is slight. Some experiments indicate that NAA in the brain is a physiologically and metabolically active compound. PMID:14406413

  9. Selective enrichment of n-3 fatty acids in human plasma lipid motifs following intake of marine fish

    USDA-ARS?s Scientific Manuscript database

    Plasma levels of n-3 long chain polyunsaturated fatty acids (LCPUFA) are associated with a reduction in risk of cardiovascular disease and other chronic, age-related diseases like Alzheimer’s disease. In this work, we tested the hypothesis that n-3 LCPUFA fatty acids in human plasma are incorporated...

  10. Plant Wax n-Alkane and n-Alkanoic Acid Signatures Overprinted by Microbial Contributions and Old Carbon in Meromictic Lake Sediments

    NASA Astrophysics Data System (ADS)

    Makou, Matthew; Eglinton, Timothy; McIntyre, Cameron; Montluçon, Daniel; Antheaume, Ingrid; Grossi, Vincent

    2018-01-01

    Specific n-alkanes and n-alkanoic acids are commonly used as biomarkers in paleoenvironmental reconstruction, yet any individual homologue may originate from multiple biological sources. Here we improve source and age controls for these compounds in meromictic systems by measuring the radiocarbon (14C) ages of specific homologues preserved in twentieth century Lake Pavin (France) sediments. In contrast to many studies, 14C ages generally decreased with increasing carbon chain length, from 7.3 to 2.6 ka for the C14-C30 n-alkanoic acids and from 9.2 to 0.3 ka for the C21-C33 n-alkanes. Given a known hard water effect, these values suggest that aquatic microbial sources predominate and contributed to most of the homologues measured. Only the longest chain n-alkanes exclusively represent inputs of higher plant waxes, which were previously sequestered in soils over centennial to millennial timescales prior to transport and deposition. These findings suggest that biomarker source and age should be carefully established for lacustrine settings.

  11. Systematic Review on N-3 and N-6 Polyunsaturated Fatty Acid Intake in European Countries in Light of the Current Recommendations – Focus on Specific Population Groups

    PubMed Central

    Sioen, Isabelle; van Lieshout, Lilou; Eilander, Ans; Fleith, Mathilde; Lohner, Szimonetta; Szommer, Alíz; Petisca, Catarina; Eussen, Simone; Forsyth, Stewart; Calder, Philip C.; Campoy, Cristina; Mensink, Ronald P.

    2017-01-01

    Background Earlier reviews indicated that in many countries adults, children and adolescents consume on an average less polyunsaturated fatty acids (PUFAs) than recommended by the Food and Agriculture Organisation/World Health Organisation. Summary The intake of total and individual n-3 and n-6 PUFAs in European infants, children, adolescents, elderly and pregnant/lactating women was evaluated systematically. Results The evaluations were done against recommendations of the European Food Safety Authority. Key Messages Fifty-three studies from 17 different European countries reported an intake of total n-3 and n-6 PUFAs and/or individual n-3 or n-6 PUFAs in at least one of the specific population groups: 10 in pregnant women, 4 in lactating women, 3 in infants 6–12 months, 6 in children 1–3 years, 11 in children 4–9 years, 8 in adolescents 10–18 years and 11 in elderly >65 years. Mean linoleic acid intake was within the recommendation (4 energy percentage [E%]) in 52% of the countries, with inadequate intakes more likely in lactating women, adolescents and elderly. Mean α-linolenic acid intake was within the recommendation (0.5 E%) in 77% of the countries. In 26% of the countries, mean eicosapentaenoic acid and/or docosahexaenoic acid intake was as recommended. These results indicate that intake of n-3 and n-6 PUFAs may be suboptimal in specific population groups in Europe. PMID:28190013

  12. Dietary (n-3) fatty acids reduce plasma F2-isoprostanes but not prostaglandin F2alpha in healthy humans.

    PubMed

    Nälsén, Cecilia; Vessby, Bengt; Berglund, Lars; Uusitupa, Matti; Hermansen, Kjeld; Riccardi, Gabrielle; Rivellese, Angela; Storlien, Len; Erkkilä, Arja; Ylä-Herttuala, Seppo; Tapsell, Linda; Basu, Samar

    2006-05-01

    (n-3) Fatty acids are unsaturated and are therefore easily subject to oxidization; however, they have several beneficial health effects, which include protection against cardiovascular diseases. The aim of this study was to investigate whether (n-3) fatty acids, with a controlled fat quality in the background diet, affect nonenzymatic and enzymatic lipid peroxidation and antioxidant status in humans. A total of 162 men and women in a multicenter study (The KANWU study) were randomly assigned to a diet containing a high proportion of saturated fatty acids or monounsaturated fatty acids (MUFA) for 3 mo. Within each diet group, there was a second random assignment to supplementation with fish-oil capsules [3.6 g (n-3) fatty acids/d] or placebo. Biomarkers of nonenzymatic and enzymatic lipid peroxidation in vivo were determined by measuring 8-iso-prostaglandin F(2alpha) (8-iso-PGF(2alpha)) and prostaglandin F(2alpha) (PGF(2alpha)) concentrations in plasma at baseline and after 3 mo. Antioxidant status was determined by measuring plasma antioxidant capacity with an enhanced chemiluminescence assay. The plasma 8-iso-PGF(2alpha) concentration was significantly decreased after 3 mo of supplementation with (n-3) fatty acids (P = 0.015), whereas the PGF(2alpha) concentration was not affected. The antioxidant status was not affected by supplementation of (n-3) fatty acids, but was improved by the background diet with a high proportion of MUFA. We conclude that supplementation with (n-3) fatty acids decreases nonenzymatic free radical-catalyzed isoprostane formation, but does not affect cyclooxygenase-mediated prostaglandin formation.

  13. Metabolism of nonessential N-15-labeled amino acids and the measurement of human whole-body protein synthesis rates

    NASA Technical Reports Server (NTRS)

    Stein, T. P.; Settle, R. G.; Albina, J. A.; Melnick, G.; Dempsey, D. T.

    1991-01-01

    Eight N-15-labeled nonessential amino acids plus (N-15)H4Cl were administered over a 10-h period to four healthy adult males using a primed-constant dosage regimen. The amount of N-15 excreted in the urine and the urinary ammonia, hippuric acid, and plasma alanine N-15 enrichments were measured. There was a high degree of consistency across subjects in the ordering of the nine compounds based on the fraction of N-15 excreted.

  14. Metabolism of Nonessential N15-Labeled Amino Acids and the Measurement of Human Whole-Body Protein Synthesis Rates

    NASA Technical Reports Server (NTRS)

    Stein, T. P.; Settle, R. G.; Albina, J. A.; Dempsey, D. T.; Melnick, G.

    1991-01-01

    Eight N-15 labeled nonessential amino acids plus (15)NH4Cl were administered over a 10 h period to four healthy adult males using a primed-constant dosage regimen. The amount of N-15 excreted in the urine and the urinary ammonia, hippuric acid, and plasma alanine N-15 enrichments were measured. There was a high degree of consistency across subjects in the ordering of the nine compounds based on the fraction of N-15 excreted (Kendall coefficient of concordance W = 0.83, P is less than 0.01). Protein synthesis rates were calculated from the urinary ammonia plateau enrichment and the cumulative excretion of N-15. Glycine was one of the few amino acids that gave similar values by both methods.

  15. Synthesis of an acid addition salt of delta-aminolevulinic acid from 5-bromo levulinic acid esters

    DOEpatents

    Moens, L.

    1999-05-25

    A process is disclosed for preparing an acid addition salt of delta-aminolevulinic acid comprising. The process involves dissolving a lower alkyl 5-bromolevulinate and an alkali metal diformylamide in an organic solvent selected from the group consisting of acetonitrile, methanol, tetrahydrofuran, 2-methyltetrahydrofuran and methylformate or mixtures to form a suspension of an alkyl 5-(N,N-diformylamino) levulinate ester; and hydrolyzing the alkyl 5-(N,N-diformylamino) levulinate with an inorganic acid to form an acid addition salt of delta-amino levulinic acid.

  16. Purification and characterization of a lectin from the white shrimp Litopenaeus setiferus (Crustacea decapoda) hemolymph.

    PubMed

    Alpuche, Juan; Pereyra, Ali; Agundis, Concepción; Rosas, Carlos; Pascual, Cristina; Slomianny, Marie-Christine; Vázquez, Lorena; Zenteno, Edgar

    2005-06-20

    A 291-kDa lectin (LsL) was purified from the hemolymph of the white shrimp Litopenaeus setiferus by affinity chromatography on glutaraldehyde-fixed stroma from rabbit erythrocytes. LsL is a heterotetramer of two 80-kDa and two 52-kDa subunits, with no covalently-liked carbohydrate, and mainly composed by aspartic and glutamic acids, glycine and alanine, with relatively lower methionine and cysteine contents. Edman degradation indicated that the NH2-terminal of the 80-kDa subunit is composed DASNAQKQHDVNFLL, whereas the NH2-terminal of the 52-kDa subunit is blocked. The peptide mass fingerprint of LsL was predicted from tryptic peptides from each subunit by MALDI-TOF, and revealed that each subunit showed 23 and 22%, respectively, homology with the hemocyanin precursor from Litopenaeus vannamei. Circular dichroism analysis revealed beta sheet and alpha helix contents of 52.7 and 6.1%, respectively. LsL agglutinate at higher titers guinea pig, murine, and rabbit erythrocytes its activity is divalent cation-dependent. N-acetylated sugars, such as GlcNAc, GalNAc, and NeuAc, were the most effective inhibitors of the LsL hemagglutinating activity. Sialylated O-glycosylated proteins, such as bovine submaxillary gland mucin, human IgA, and fetuin, showed stronger inhibitory activity than sialylated N-glycosylated proteins, such as human orosomucoid, IgG, transferrin, and lactoferrin. Desialylation of erythrocytes or inhibitory glycoproteins abolished their capacity to bind LsL, confirming the relevance of sialic acid in LsL-ligand interactions.

  17. Effects of Dietary n-6:n-3 PUFA Ratios on Lipid Levels and Fatty Acid Profile of Cherry Valley Ducks at 15-42 Days of Age.

    PubMed

    Li, Mengmeng; Zhai, Shuangshuang; Xie, Qiang; Tian, Lu; Li, Xiaocun; Zhang, Jiaming; Ye, Hui; Zhu, Yongwen; Yang, Lin; Wang, Wence

    2017-11-22

    The objective of this study was to investigate the effects of dietary n-6:n-3 PUFA ratio on growth performance, serum and tissue lipid levels, fatty acid profile, and hepatic expression of fatty acid synthesis genes in ducks. A total of 3168 15-day old ducks were fed different n-6:n-3 PUFA ratios: 13:1 (control), 10:1, 8:1, 6:1, 4:1, and 2:1. The feeding trial lasted 4 weeks. Our results revealed that dietary n-6:n-3 PUFA ratios had no effects on growth performance. The 2:1 group had the highest serum triglyceride levels. Serum total cholesterol and HDL levels were higher in the 13:1 and 8:1 groups than in the 6:1 and 2:1 groups. The concentration of C18:3n-3 in serum and tissues (liver and muscle) increased with decreasing dietary n-6:n-3 PUFA ratios. The hepatic expression of FADS2, ELOVL5, FADS1, and ELOVL2 increased on a quadratic function with decreasing dietary n-6:n-3 PUFA ratios. These results demonstrate that lower dietary n-6:n-3 PUFA ratios had strong effects on the fatty acid profile of edible parts and the deposition of n-3 PUFAs in adipose tissue of ducks.

  18. Plasma free amino acid kinetics in rainbow trout (Oncorhynchus mykiss) using a bolus injection of 15N-labeled amino acids.

    PubMed

    Robinson, Jacob William; Yanke, Dan; Mirza, Jeff; Ballantyne, James Stuart

    2011-02-01

    To gain insight into the metabolic design of the amino acid carrier systems in fish, we injected a bolus of (15)N amino acids into the dorsal aorta in mature rainbow trout (Oncorhynchus mykiss). The plasma kinetic parameters including concentration, pool size, rate of disappearance (R(d)), half-life and turnover rate were determined for 15 amino acids. When corrected for metabolic rate, the R(d) values obtained for trout for most amino acids were largely comparable to human values, with the exception of glutamine (which was lower) and threonine (which was higher). R(d) values ranged from 0.9 μmol 100 g(-1) h(-1) (lysine) to 22.1 μmol 100 g(-1) h(-1) (threonine) with most values falling between 2 and 6 μmol 100 g(-1) h(-1). There was a significant correlation between R(d) and the molar proportion of amino acids in rainbow trout whole body protein hydrolysate. Other kinetic parameters did not correlate significantly with whole body amino acid composition. This indicates that an important design feature of the plasma-free amino acids system involves proportional delivery of amino acids to tissues for protein synthesis.

  19. Alterations in neuronal morphology and synaptophysin expression in the rat brain as a result of changes in dietary n-6: n-3 fatty acid ratios.

    PubMed

    Hajjar, Toktam; Goh, Yong Meng; Rajion, Mohamed Ali; Vidyadaran, Sharmili; Li, Tan Ai; Ebrahimi, Mahdi

    2013-07-26

    Polyunsaturated fatty acids (PUFA) play important roles in brain fatty acid composition and behavior through their effects on neuronal properties and gene expression. The hippocampus plays an important role in the formation of memory, especially spatial memory and navigation. This study was conducted to examine the effects of PUFA and specifically different dietary n-6: n-3 fatty acid ratios (FAR) on the number and size of hippocampal neurons and the expression of synaptophysin protein in the hippocampus of rats. Forty 3-week old male Sprague-Dawley rats were allotted into 4 groups. The animals received experimental diets with different n-6: n-3 FAR of either 65:1, 26.5:1, 22:1 or 4.5:1 for 14 weeks. The results showed that a lowering dietary n-6: n-3 FAR supplementation can increase the number and size of neurons. Moreover, lowering the dietary n-6: n-3 FAR led to an increase in the expression of the pre-synaptic protein synaptophysin in the CA1 hippocampal subregion of the rat brain. These findings support the notion that decreasing the dietary n-6: n-3 FAR will lead to an intensified hippocampal synaptophysin expression and increased neuron size and proliferation in the rat brain.

  20. Preparation of 7-hydroxy-2-oxoindolin-3-ylacetic acid and its [13C2], [5-n-3H], and [5-n-3H]-7-O-glucosyl analogues for use in the study of indol-3-ylacetic acid catabolism

    NASA Technical Reports Server (NTRS)

    Lewer, P.; Bandurski, R. S. (Principal Investigator)

    1987-01-01

    An improved synthesis of 7-hydroxy-2-oxoindolin-3-ylacetic acid via the base-induced condensation reaction between oxalate esters and 7-benzyloxyindolin-2-one is described. 7-Benzyloxyindolin-2-one was prepared in four steps and 50% overall yield from 3-hydroxy-2-nitrotoluene. The yield of the title compound from 7-benzyloxyindolin-2-one was 56%. This route was used to prepare 7-hydroxy-2-oxoindolin-3-yl[13C2]acetic acid in 30% yield from [13C2]oxalic acid dihydrate. The method could not be extended to the preparation of the corresponding [14C2]-compound. However, an enzyme preparation from Zea mays roots catalysed the conversion of carrier-free [5-n-3H]indol-3-ylacetic acid with a specific activity of 16.7 Ci mmol-1 to a mixture of 7-hydroxy-2-oxo[5-n-3H]indolin-3-ylacetic acid and its [5-n-3H]-7-O-glucoside in ca. 3 and 40% radiochemical yield respectively. The glucoside was converted into the 7-hydroxy compound in 80% yield by means of beta-glucosidase.

  1. Bioavailability of long-chain n-3 fatty acids from enriched meals and from microencapsulated powder.

    PubMed

    Hinriksdottir, H H; Jonsdottir, V L; Sveinsdottir, K; Martinsdottir, E; Ramel, A

    2015-03-01

    Despite the potential benefits of long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFAs), intake is often low because of low consumption of oily seafood. Microencapsulated fish oil powder can improve tolerance and acceptance of LC n-3 PUFAs. Bioavailability is important to achieve efficacy. We investigated the bioavailability of LC n-3 PUFAs from microencapsulated powder in comparison with meals enriched with liquid fish oil. Participants (N=99, age⩾50 years) of this 4-week double-blinded dietary intervention were randomized into three groups. Group 1 (n=38) received 1.5 g/d eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) as ready-to-eat meals enriched with liquid fish oil; group 2 (n=30) received the same amount of these LC n-3 PUFAs as microencapsulated fish oil powder and regular meals; and group 3 (n=31) was the control group, which received placebo powder and regular meals. Blood samples were taken from fingertips at baseline and at the end point. Seventy-seven subjects (77.8%) completed the study. The amount of EPA in blood doubled in both groups that received LC n-3 PUFAs (P<0.05), but it did not change in the control group. The changes in DHA were less but still significant in both intervention groups. According to multivariate analysis, both intervention groups had higher end-point LC n-3 PUFA concentrations compared with placebo, but differences between intervention groups were not significant. Bioavailability of LC n-3 PUFAs in encapsulated powder is very similar to the bioavailability of LC n-3 PUFAs in ready-to-eat meals enriched with liquid fish oil. Thus, encapsulated powder can be considered useful to increase LC n-3 PUFA concentrations in blood.

  2. α-lipoic acid ameliorates n-3 highly-unsaturated fatty acids induced lipid peroxidation via regulating antioxidant defenses in grass carp (Ctenopharyngodon idellus).

    PubMed

    Shi, Xiao-Chen; Jin, Ai; Sun, Jian; Yang, Zhou; Tian, Jing-Jing; Ji, Hong; Yu, Hai-Bo; Li, Yang; Zhou, Ji-Shu; Du, Zhen-Yu; Chen, Li-Qiao

    2017-08-01

    This study evaluated the protective effect of α-lipoic acid (LA) on n-3 highly unsaturated fatty acids (HUFAs)-induced lipid peroxidation in grass carp. The result indicated that diets with n-3 HUFAs increased the production of malondialdehyde (MDA) (P < 0.05), thereby inducing lipid peroxidation in liver and muscle of grass carp. Meanwhile, compared with control group, the hepatosomatic index (HSI) and kidney index (KI) of grass carp were markedly increased in n-3 HUFAs-only group. However, diets with LA remarkably inhibited the n-3 HUFAs-induced increase of HSI, KI, and MDA level in serum, liver and muscle (P < 0.05). Interestingly, LA also significantly elevated the ratio of total n-3 HUFAs in fatty acid composition of muscle and liver (P < 0.05). Furthermore, LA significantly promoted the activity of antioxidant enzymes in serum, muscle and liver of grass carp (P < 0.05), including superoxide dismutase (SOD), catalase (CAT), and glutathione s-transferase (GST). The further results showed that LA significantly elevated mRNA expression of antioxidant enzymes with promoting the mRNA expression of NF-E2-related nuclear factor 2 (Nrf2) and decreasing Kelch-like-ECH-associated protein 1 (Keap1) mRNA level. From the above, these results suggested that LA could attenuate n-3 HUFAs-induced lipid peroxidation, remit the toxicity of the lipid peroxidant, and protect n-3 HUFAs against lipid peroxidation to promote its deposition in fish, likely strengthening the activity of antioxidant enzymes through regulating mRNA expressions of antioxidant enzyme genes via mediating Nrf2-Keap1 signaling pathways. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Combined n-benzoyl-d-phenylalanine and metformin treatment reverses changes in the fatty acid composition of streptozotocin diabetic rats.

    PubMed

    Kumar, Natarajan Ashok; Pari, Leelavinothan

    2006-01-01

    The present investigation was carried out to evaluate the effect of N-benzoyl-D-phenylalanine (NBDP) and metformin on blood glucose, plasma insulin, and on the fatty acid composition of total lipids in the livers and kidneys of control and experimental diabetic rats. When compared with nondiabetic control rats, neonatal streptozotocin (nSTZ) diabetic rats showed a significant increase in blood glucose and decreased plasma insulin. Analysis of fatty acids revealed a significant increase in the concentration of palmitic, stearic, and oleic acids in liver and kidney, whereas linolenic and arachidonic acids were significantly decreased. In diabetic rats, the oral administration of combined NBDP/metformin for 6 wk decreased the high concentrations of palmitic, stearic, and oleic acids and elevated the low levels of linolenic and arachidonic acids. The results suggest that the NBDP/metformin combination exhibits both antidiabetic and antihyperlipidemic effects in nSTZ diabetic rats and prevents the fatty acid changes produced during diabetes.

  4. Anthocyanins do not influence long-chain n-3 fatty acid status: studies in cells, rodents and humans.

    PubMed

    Vauzour, David; Tejera, Noemi; O'Neill, Colette; Booz, Valeria; Jude, Baptiste; Wolf, Insa M A; Rigby, Neil; Silvan, Jose Manuel; Curtis, Peter J; Cassidy, Aedin; de Pascual-Teresa, Sonia; Rimbach, Gerald; Minihane, Anne Marie

    2015-03-01

    Increased tissue status of the long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA), eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) is associated with cardiovascular and cognitive benefits. Limited epidemiological and animal data suggest that flavonoids, and specifically anthocyanins, may increase EPA and DHA levels, potentially by increasing their synthesis from the shorter-chain n-3 PUFA, α-linolenic acid. Using complimentary cell, rodent and human studies we investigated the impact of anthocyanins and anthocyanin-rich foods/extracts on plasma and tissue EPA and DHA levels and on the expression of fatty acid desaturase 2 (FADS2), which represents the rate limiting enzymes in EPA and DHA synthesis. In experiment 1, rats were fed a standard diet containing either palm oil or rapeseed oil supplemented with pure anthocyanins for 8 weeks. Retrospective fatty acid analysis was conducted on plasma samples collected from a human randomized controlled trial where participants consumed an elderberry extract for 12 weeks (experiment 2). HepG2 cells were cultured with α-linolenic acid with or without select anthocyanins and their in vivo metabolites for 24 h and 48 h (experiment 3). The fatty acid composition of the cell membranes, plasma and liver tissues were analyzed by gas chromatography. Anthocyanins and anthocyanin-rich food intake had no significant impact on EPA or DHA status or FADS2 gene expression in any model system. These data indicate little impact of dietary anthocyanins on n-3 PUFA distribution and suggest that the increasingly recognized benefits of anthocyanins are unlikely to be the result of a beneficial impact on tissue fatty acid status. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Anthocyanins do not influence long-chain n-3 fatty acid status: studies in cells, rodents and humans☆

    PubMed Central

    Vauzour, David; Tejera, Noemi; O'Neill, Colette; Booz, Valeria; Jude, Baptiste; Wolf, Insa M.A.; Rigby, Neil; Silvan, Jose Manuel; Curtis, Peter J.; Cassidy, Aedin; de Pascual-Teresa, Sonia; Rimbach, Gerald; Minihane, Anne Marie

    2015-01-01

    Increased tissue status of the long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA), eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) is associated with cardiovascular and cognitive benefits. Limited epidemiological and animal data suggest that flavonoids, and specifically anthocyanins, may increase EPA and DHA levels, potentially by increasing their synthesis from the shorter-chain n-3 PUFA, α-linolenic acid. Using complimentary cell, rodent and human studies we investigated the impact of anthocyanins and anthocyanin-rich foods/extracts on plasma and tissue EPA and DHA levels and on the expression of fatty acid desaturase 2 (FADS2), which represents the rate limiting enzymes in EPA and DHA synthesis. In experiment 1, rats were fed a standard diet containing either palm oil or rapeseed oil supplemented with pure anthocyanins for 8 weeks. Retrospective fatty acid analysis was conducted on plasma samples collected from a human randomized controlled trial where participants consumed an elderberry extract for 12 weeks (experiment 2). HepG2 cells were cultured with α-linolenic acid with or without select anthocyanins and their in vivo metabolites for 24 h and 48 h (experiment 3). The fatty acid composition of the cell membranes, plasma and liver tissues were analyzed by gas chromatography. Anthocyanins and anthocyanin-rich food intake had no significant impact on EPA or DHA status or FADS2 gene expression in any model system. These data indicate little impact of dietary anthocyanins on n-3 PUFA distribution and suggest that the increasingly recognized benefits of anthocyanins are unlikely to be the result of a beneficial impact on tissue fatty acid status. PMID:25573539

  6. A study on the effect of the concentration of N,N-methylenebisacrylamide and acrylic acid toward the properties of Dioscorea hispida-starch-based hydrogel

    NASA Astrophysics Data System (ADS)

    Ashri, Airul; Lazim, Azwan

    2014-09-01

    The research investigated the effects of acrylic acid (monomer) and N,N,-methylenebisacrylamide, MBA (crosslinker) toward the percentage of gel content, swelling ratio and ionic strength of a starch-based hydrogel. Starch grafted on poly (sodium acrylate), St-g-PAANa hydrogel was prepared by incorporating starch extracted from Dioscorea hispida in NaOH/aqueous solution using different composition of acrylic acid (AA) and N,N-methylenebisacrylamide (MBA) in the presence of potassium persulfate (KPS) as chemical initiator. The highest gel content was observed at 1:30 ratio of starch to AA and 0.10 M of MBA. Results showed the highest swelling ratio was observed at 1:15 ratio of starch to acrylic acid and 0.02 M of MBA solution. The same results also gave the highest swelling ratio for the ionic strength study. The FTIR analysis was also conducted in order to confirm the grafting of AA onto starch backbone.

  7. Reversed-phase high-performance liquid chromatography purification of methyl esters of C(16)-C(28) polyunsaturated fatty acids in microalgae, including octacosaoctaenoic acid [28:8(n-3)].

    PubMed

    Mansour, Maged P

    2005-12-02

    A preparative reversed-phase (RP; C(18)) high-performance liquid chromatography (HPLC) method with gradient elution using acetonitrile (MeCN)-chloroform (CHCl(3)) (or dichloromethane (DCM)) and evaporative light-scattering detection (ELSD) with automatic multiple injection and fraction collection was used to purify milligram quantities of microalgal polyunsaturated fatty acids (PUFA), separated as methyl esters (ME). PUFA-ME purified included methyl esters of docosahexaenoic acid (DHA; 22:6(n-3)), eicosapentaenoic acid (EPA; 20:5(n-3)) and the unusual very long-chain (C(28)) highly unsaturated fatty acid (VLC-HUFA), octacosaoctaenoic acid [28:8(n-3)(4, 7, 10, 13, 16, 19, 22, 25)] from the marine dinoflagellate Scrippsiella sp. CS-295/c. Other PUFA purified from various microalgae using this RP-HPLC method to greater than 95% purity included 16:3(n-4), 16:4(n-3), 16:4(n-1) and 18:5(n-3). The number of injections required was variable and depended on the abundance of the desired PUFA-ME, and resolution from closely eluting PUFA-ME, which determined the maximum loading. The purity of these fatty acids was determined by electron impact (EI) GC-MS and the chain length and location of double bonds was determined by EI GC-MS of 4,4-dimethyl oxazoline (DMOX) derivatives formed using a low temperature method. Advantages over silver-ion HPLC for purifying PUFA-ME is that separation occurs according to chain length as well as degree of unsaturation enabling separation of PUFA-ME with the same degree of unsaturation but different chain length (i.e. between 18:5(n-3) and 20:5(n-3)). In addition, PUFA-ME are not strongly adsorbed, but elute earlier than their more saturated corresponding FAME of the same chain length. This method is robust, simple, and requires only a short re-equilibration time. It is a useful tool for preparing milligram quantities of pure PUFA-ME for bioactive screening (as free fatty acids), although many multiple injections may be required for minor PUFA

  8. Dietary n-6:n-3 Fatty Acid Ratios Alter Rumen Fermentation Parameters and Microbial Populations in Goats.

    PubMed

    Ebrahimi, Mahdi; Rajion, Mohamed Ali; Adeyemi, Kazeem Dauda; Jafari, Saeid; Jahromi, Mohammad Faseleh; Oskoueian, Ehsan; Meng, Goh Yong; Ghaffari, Morteza Hosseini

    2017-02-01

    Revealing the ruminal fermentation patterns and microbial populations as affected by dietary n-6:n-3 PUFA ratio would be useful for further clarifying the role of the rumen in the lipid metabolism of ruminants. The objective of the present study was to investigate the effects of dietary n-6:n-3 PUFA ratios on fermentation characteristics, fatty acid (FA) profiles, and microbial populations in the rumen of goats. A total of twenty-one goats were randomly assigned to three dietary treatments with different n-6:n-3 PUFA ratios of 2.27:1 (low ratio, LR), 5.01:1 (medium ratio, MR), and 10.38:1 (high ratio, HR). After 100 days of feeding, all goats were slaughtered. Dietary n-6:n-3 PUFA ratios had no effect (P > 0.05) on rumen pH and NH 3 N concentration. Goats fed HR diet had lower (P < 0.05) propionate and total volatile fatty acids and higher (P < 0.05) butyrate compared with those fed the MR and LR diets. The proportion of C18:0 decreased (P < 0.05) as dietary n-6:n-3 PUFA ratios increased. The proportions of C18:1 trans-11, C18:2n-6, cis-9 trans-11 CLA, and C20:4n-6 were greater in the HR goats compared with the MR and LR goats. Lowering dietary n-6:n-3 PUFA ratios enhanced (P < 0.05) the proportion of C18:3n-3 and total n-3 PUFA in the rumen fluid of goats. The populations of R. albus and R. flavefaciens decreased (P < 0.05) as the n-6:n-3 PUFA ratios increased in diet. Diet had no effect (P > 0.05) on the ruminal populations of F. succinogenes, total bacteria, methanogens, total protozoa, Entiodinium, and Holotrich. The population of B. fibrisolvens was lower (P < 0.05) in the LR goats compared with the MR and HR goats. It was concluded that HR would increase the concentration of cis-9 trans-11 CLA and C18:1 trans-11 in the rumen. However, LR whould decrease the B. fibrisolvens population, which is involved in the BH process in the rumen. Further research is needed to evaluate the potential role and contribution of rumen microbiome in the metabolism of FA in the

  9. Metabonomic analysis of urine from rats after low-dose exposure to 3-chloro-1,2-propanediol using UPLC-MS.

    PubMed

    Liu, Liyan; He, Yujie; Lu, Huimin; Wang, Maoqing; Sun, Changhao; Na, Lixin; Li, Ying

    2013-05-15

    To study the toxic effect of chronic exposure to 3-chloro-1,2-propanediol (3-MCPD) at low doses, a metabonomics approach based on ultrahigh-performance liquid chromatography and quadruple time-of-flight mass spectrometry (UPLC-Q-TOF-MS) was performed. Two different doses of 3-MCPD (1.1 and 5.5mg/kg bw/d) were administered to Wistar rats for 120 days (1.1mg/kg bw/d: lowest observed adverse effect level [LOAEL]). The metabolite profiles and biochemical parameters were obtained at five time points after treatment. For the 3-MCPD-treated groups, a significant change in urinary N-acetyl-β-d-glucosaminidase and β-d-galactosidase was detected on day 90, while some biomarkers based on the metabonomics, such as N-acetylneuraminic acid, N-acetyl-l-tyrosine, and gulonic acid, were detected on day 30. These results suggest that these biomarkers changed more sensitively and earlier than conventional biochemical parameters and were thus considered early and sensitive biomarkers of exposure to 3-MCPD; these biomarkers provide more information on toxicity than conventional biochemical parameters. These results might be helpful to investigate the toxic mechanisms of 3-MCPD and provide a scientific basis for assessing the effect of chronic exposure to low-dose 3-MCPD on human health. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  10. Intake of Fish and Omega-3 (N-3) Fatty Acid: Effect on Humans during Actual and Simulated Weightlessness

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Mehta, Satish K.; Pierson, Duane L.; Zwart, Sara R.

    2009-01-01

    Space flight has many negative effects on human physiology, including bone and muscle loss. These are some of the systems on which intakes of fish and n-3 fatty acids have positive effects. These effects are likely to occur through inhibition of inflammatory cytokines (such as TNFalpha) and thus inhibition of downstream NF-KB activation. We documented this effect in a 3D cell culture model, where NF-KB activation in osteoclasts was inhibited by eicosapentaenoic acid, an n-3 fatty acid. We have extended these studies and report here (a) NF-KB expression in peripheral blood mononuclear cells of Space Shuttle crews on 2-wk missions, (b) the effects of n-3 fatty acid intake after 60 d of bed rest (a weightlessness analog), and (c) the effects of fish intake in astronauts after 4 to 6 mo on the International Space Station. After Shuttle flights of 2 wk, NFKB p65 expression at landing was increased (P less than 0.001). After 60 d of bed rest, higher intake of n-3 fatty acids was associated with less N-telopeptide excretion (Pearson r = -0.62, P less than 0.05). Higher consumption of fish during flight was associated with higher bone mineral density (Pearson r = -0.46, P less than 0.05). Together with our earlier findings, these data provide mechanistic cellular and preliminary human evidence of the potential for n-3 fatty acids to counteract bone loss associated with spaceflight. This study was supported by the NASA Human Research Program.

  11. The NAG Sensor NagC Regulates LEE Gene Expression and Contributes to Gut Colonization by Escherichia coli O157:H7.

    PubMed

    Le Bihan, Guillaume; Sicard, Jean-Félix; Garneau, Philippe; Bernalier-Donadille, Annick; Gobert, Alain P; Garrivier, Annie; Martin, Christine; Hay, Anthony G; Beaudry, Francis; Harel, Josée; Jubelin, Grégory

    2017-01-01

    Enterohemorrhagic Escherichia coli (EHEC) O157:H7 are human pathogens responsible for bloody diarrhea and renal failures. EHEC employ a type 3 secretion system to attach directly to the human colonic epithelium. This structure is encoded by the locus of enterocyte effacement (LEE) whose expression is regulated in response to specific nutrients. In this study, we show that the mucin-derived sugars N-acetylglucosamine (NAG) and N-acetylneuraminic acid (NANA) inhibit EHEC adhesion to epithelial cells through down-regulation of LEE expression. The effect of NAG and NANA is dependent on NagC, a transcriptional repressor of the NAG catabolism in E. coli . We show that NagC is an activator of the LEE1 operon and a critical regulator for the colonization of mice intestine by EHEC. Finally, we demonstrate that NAG and NANA as well as the metabolic activity of Bacteroides thetaiotaomicron affect the in vivo fitness of EHEC in a NagC-dependent manner. This study highlights the role of NagC in coordinating metabolism and LEE expression in EHEC and in promoting EHEC colonization in vivo .

  12. The NAG Sensor NagC Regulates LEE Gene Expression and Contributes to Gut Colonization by Escherichia coli O157:H7

    PubMed Central

    Le Bihan, Guillaume; Sicard, Jean-Félix; Garneau, Philippe; Bernalier-Donadille, Annick; Gobert, Alain P.; Garrivier, Annie; Martin, Christine; Hay, Anthony G.; Beaudry, Francis; Harel, Josée; Jubelin, Grégory

    2017-01-01

    Enterohemorrhagic Escherichia coli (EHEC) O157:H7 are human pathogens responsible for bloody diarrhea and renal failures. EHEC employ a type 3 secretion system to attach directly to the human colonic epithelium. This structure is encoded by the locus of enterocyte effacement (LEE) whose expression is regulated in response to specific nutrients. In this study, we show that the mucin-derived sugars N-acetylglucosamine (NAG) and N-acetylneuraminic acid (NANA) inhibit EHEC adhesion to epithelial cells through down-regulation of LEE expression. The effect of NAG and NANA is dependent on NagC, a transcriptional repressor of the NAG catabolism in E. coli. We show that NagC is an activator of the LEE1 operon and a critical regulator for the colonization of mice intestine by EHEC. Finally, we demonstrate that NAG and NANA as well as the metabolic activity of Bacteroides thetaiotaomicron affect the in vivo fitness of EHEC in a NagC-dependent manner. This study highlights the role of NagC in coordinating metabolism and LEE expression in EHEC and in promoting EHEC colonization in vivo. PMID:28484684

  13. Supra-molecular architecture in a co-crystal of the N(7)-H tautomeric form of N (6)-benzoyl-adenine with adipic acid (1/0.5).

    PubMed

    Swinton Darious, Robert; Thomas Muthiah, Packianathan; Perdih, Franc

    2016-06-01

    The asymmetric unit of the title co-crystal, C12H9N5O·0.5C6H10O4, consists of one mol-ecule of N (6)-benzoyl-adenine (BA) and one half-mol-ecule of adipic acid (AA), the other half being generated by inversion symmetry. The dihedral angle between the adenine and phenyl ring planes is 26.71 (7)°. The N (6)-benzoyl-adenine mol-ecule crystallizes in the N(7)-H tautomeric form with three non-protonated N atoms. This tautomeric form is stabilized by intra-molecular N-H⋯O hydrogen bonding between the carbonyl (C=O) group and the N(7)-H hydrogen atom on the Hoogsteen face of the purine ring, forming an S(7) ring motif. The two carboxyl groups of adipic acid inter-act with the Watson-Crick face of the BA mol-ecules through O-H⋯N and N-H⋯O hydrogen bonds, generating an R 2 (2)(8) ring motif. The latter units are linked by N-H⋯N hydrogen bonds, forming layers parallel to (10-5). A weak C-H⋯O hydrogen bond is also present, linking adipic acid mol-ecules in neighbouring layers, enclosing R (2) 2(10) ring motifs and forming a three-dimensional structure. C=O⋯π and C-H⋯π inter-actions are also present in the structure.

  14. Short communication: Eicosatrienoic acid and docosatrienoic acid do not promote vaccenic acid accumulation in mixed ruminal cultures.

    PubMed

    AbuGhazaleh, A A; Holmes, L D; Jacobson, B N; Kalscheur, K F

    2006-11-01

    Previous research found that docosahexaenoic acid (C22:6n-3) was a component of fish oil that promotes trans-C18:1 accumulation in ruminal cultures when incubated with linoleic acid. The objective of this study was to determine if eicosatrienoic acid (C20:3n-3) and docosatrienoic acid (C22:3n-3), n-3 fatty acids in fish oil, promote accumulation of trans-C18:1, vaccenic acid (VA) in particular, using cultures of mixed ruminal microorganisms. Treatments consisted of control, control plus 5 mg of C20:3n-3 (ETA), control plus 5 mg of C22:3n-3 (DTA), control plus 15 mg of linoleic acid (LA), control plus 5 mg of C20:3n-3 and 15 mg of linoleic acid (ETALA), and control plus 5 mg of C22:3n-3 and 15 mg of linoleic acid (DTALA). Treatments were incubated in triplicate in 125-mL flasks, and 5 mL of culture contents was taken at 0 and 24 h for fatty acid analysis by gas-liquid chromatography. After 24 h of incubation, the concentrations of trans-C18:1 (0.87, 0.88, and 0.99 mg/culture), and VA (0.52, 0.56, and 0.62 mg/culture) were similar for the control, ETA, and DTA cultures, respectively. The concentrations of trans-C18:1 (5.51, 5.41, and 5.36 mg/culture), and VA (4.78, 4.62, and 4.59 mg/culture) were also similar between LA, ETALA, and DTALA cultures, respectively. These data suggest that C20:3n-3 and C22:3n-3 are not the active components in fish oil that promote VA accumulation when incubated with linoleic acid.

  15. n-3 Polyunsaturated fatty acids in animal models with neuroinflammation.

    PubMed

    Orr, Sarah K; Trépanier, Marc-Olivier; Bazinet, Richard P

    2013-01-01

    Neuroinflammation is present in the majority of acute and chronic neurological disorders. Excess or prolonged inflammation in the brain is thought to exacerbate neuronal damage and loss. Identifying modulators of neuroinflammation is an active area of study since it may lead to novel therapies. Omega-3 polyunsaturated fatty acids (n-3 PUFA) are anti-inflammatory in many non-neural tissues; their role in neuroinflammation is less studied. This review summarizes the relationship between n-3 PUFA and brain inflammation in animal models of brain injury and aging. Evidence by and large shows protective effects of n-3 PUFA in models of sickness behavior, stroke, aging, depression, Parkinson's disease, diabetes, and cytokine- and irradiation-induced cognitive impairments. However, rigorous studies that test the direct effects of n-3 PUFA in neuroinflammation in vivo are lacking. Future research in this area is necessary to determine if, and if so which, n-3 PUFA directly target brain inflammatory pathways. n-3 PUFA bioactive metabolites may provide novel therapeutic targets for neurological disorders with a neuroinflammatory component. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Serum n-6 and n-9 Fatty Acids Correlate With Serum IGF-1 and Growth Up to 4 Months of Age in Healthy Infants.

    PubMed

    Kjellberg, Emma; Roswall, Josefine; Bergman, Stefan; Strandvik, Birgitta; Dahlgren, Jovanna

    2018-01-01

    The aim of this study was to study the relationship between insulin-like growth factor-1 (IGF-1), serum phospholipid fatty acids, and growth in healthy full-term newborns during infancy. Prospective observational study of a population-based Swedish cohort comprising 126 healthy, term infants investigating cord blood and serum at 2 days and 4 months of age for IGF-1 and phospholipid fatty acid profile and breast milk for fatty acids at 2 days and 4 months, compared with anthropometric measurements (standard deviation scores). At all time-points arachidonic acid (AA) was negatively associated with IGF-1. IGF-1 had positive associations with linoleic acid (LA) at 2 days and 4 months and mead acid (MA) showed positive associations in cord blood. Multiple regression analyses adjusted for maternal factors (body mass index, weight gain, smoking, education), sex, birth weight and feeding modality confirmed a negative association for the ratio AA/LA to IGF-1. MA in cord blood correlated to birth size. Changes in the ratios of n-6/n-3 and AA/docosahexaenoic acid from day 2 to 4 months together with infants' weight and feeding modality determined 55% of the variability of delta-IGF-1. Breast-fed infants at 4 months had lower IGF-1 correlating with lower LA and higher AA concentrations, which in girls correlated with lower weight gain from birth to 4 months of age. Our data showed interaction of n-6 fatty acids with IGF-1 during the first 4 months of life, and an association between MA and birth size when adjusted for confounding factors. Further follow-up may indicate whether these correlations are associated with later body composition.

  17. The effect of the complexation of p-N,N-dimethylaminobenzoic acid and p-N,N-dimethylaminobenzonitrile with LaCl3 on spectral-luminescent parameters of fluorophores.

    PubMed

    Volchkov, Valery V; Ivanov, Vladimir L; Uzhinov, Boris M

    2011-03-01

    The LE band fluorescence enhancement of p-N,N-dimethylaminobenzoic acid (DMABA) and p-N,N-dimethylaminobenzonitrile (DMABN) was found in aprotic acetonitrile and butyronitrile at the addition of LaCl(3). The corresponding ICT fluorescence band remains unchanged. This enhancement is explained by the decrease of the internal conversion rate constant in a coordination complex with LaCl(3). The formation of the coordination complex between DMABA and LaCl(3) in ethanol is accompanied by the efficient fluorescence quenching in LE and ICT bands, in parallel with the enhancement of ICT/LE emission ratio. The experimental data are well described by the proposed kinetic schemes. © Springer Science+Business Media, LLC 2010

  18. Triblock copolyampholytes from 5-(N,N-dimethyl amino)isoprene styrene, and methacrylic acid: Synthesis and solution properties

    NASA Astrophysics Data System (ADS)

    Bieringer, R.; Abetz, V.; Müller, A. H. E.

    ABC triblock copolymers of the type poly[5-(N,N-dimethyl amino)isoprene]-block-polystyrene-block-poly(tert-butyl methacrylate) (AiST) were synthesized and hydrolyzed to yield poly[5-(N,N-dimethyl amino)isoprene]-block-polystyrene-block-poly(methacrylic acid) (AiSA) triblock copolyampholytes. Due to a complex solubility behavior the solution properties of these materials had to be investigated in THF/water solvent mixtures. Potentiometric titrations of AiSA triblock copolyampholytes showed two inflection points with the A block being deprotonated prior to the Ai hydrochloride block thus forming a polyzwitterion at the isoelectric point (iep). The aggregation behavior was studied by dynamic light scattering (DLS) and freeze-fracture/transmission electron microscopy (TEM). Large vesicular structures with almost pH-independent radii were observed.

  19. N-Carbamoyl-β-alanine amidohydrolase from Agrobacterium tumefaciens C58: a promiscuous enzyme for the production of amino acids.

    PubMed

    Martínez-Gómez, A I; Andújar-Sánchez, M; Clemente-Jiménez, J M; Neira, J L; Rodríguez-Vico, F; Martínez-Rodríguez, S; Las Heras-Vázquez, F J

    2011-11-01

    The availability of enzymes with a high promiscuity/specificity relationship permits the hydrolysis of several substrates with a view to obtaining a certain product or using one enzyme for several productive lines. N-Carbamoyl-β-alanine amidohydrolase from Agrobacterium tumefaciens (Atβcar) has shown high versatility to hydrolyze different N-carbamoyl-, N-acetyl- and N-formyl-amino acids to produce different α, β, γ and δ amino acids. We have calculated the promiscuity index for the enzyme, obtaining a value of 0.54, which indicates that it is a modestly promiscuous enzyme. Atβcar presented the highest probability of hydrolysis for N-carbamoyl-amino acids, being the enzyme more efficient for the production of α-amino acids. We have also demonstrated by mutagenesis, modelling, kinetic and binding experiments that W218 and A359 indirectly influence the plasticity of the enzyme due to interaction with the environment of R291, the key residue for catalytic activity. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. The free fractions of circulating docosahexaenoic acid and eicosapentenoic acid as optimal end-point of measure in bioavailability studies on n-3 fatty acids.

    PubMed

    Scarsi, Claudia; Levesque, Ann; Lisi, Lucia; Navarra, Pierluigi

    2015-05-01

    The high complexity of n-3 fatty acids absorption process, along with the huge amount of endogenous fraction, makes bioavailability studies with these agents very challenging and deserving special consideration. In this paper we report the results of a bioequivalence study between a new formulation of EPA+DHA ethyl esters developed by IBSA Institut Biochimique and reference medicinal product present on the Italian market. Bioequivalence was demonstrated according to the criteria established by the EMA Guideline on the Investigation of Bioequivalence. We found that the free fractions represent a better and more sensitive end-point for bioequivalence investigations on n-3 fatty acids, since: (i) the overall and intra-subject variability of PK parameters was markedly lower compared to the same variability calculated on the total DHA and EPA fractions; (ii) the absorption process was completed within 4h, and the whole PK profile could be drawn within 12-15 h from drug administration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Supercritical SC-CO(2) and Soxhlet n-Hexane Extract of Tunisian Opuntia ficus indica Seeds and Fatty Acids Analysis.

    PubMed

    Yeddes, Nizar; Chérif, Jamila Kalthoum; Jrad, Amel; Barth, Danielle; Trabelsi-Ayadi, Malika

    2012-01-01

    The fatty acids profiles of Tunisian Opuntia ficus indica seeds (spiny and thornless form) were investigated. Results of supercritical carbon dioxide (SC-CO(2)) and soxhlet n-hexane extract were compared. Quantitatively, the better yield was obtained through soxhlet n-hexane: 10.32% (spiny) and 8.91% (thornless) against 3.4% (spiny) and 1.94% (thornless) by SC-CO(2) extract (T = 40°C, P = 180 bar, time = 135 mn, CO(2) flow rate = 15 mL·s(-1)). Qualitatively, the main fatty acids components were the same for the two types of extraction. Linoleic acid was the major compound, SC-CO(2): 57.60% (spiny), 59.98% (thornless), soxhlet n-hexane: 57.54% (spiny), 60.66% (thornless), followed by oleic acid, SC-CO(2): 22.31% (spiny), 22.40% (thornless), soxhlet n-hexane: 25.28% (spiny), 20.58% (thornless) and palmitic acid, SC-CO(2): 14.3% (spiny), 12.92% (thornless), soxhlet n-hexane: 11.33% (spiny), 13.08% (thornless). The SC-CO(2) profiles fatty acids showed a richness with other minority compounds such as C(20:1), C(20:2), and C(22).The seeds oil was highly unsaturated (US = 4.44-5.25), and the rising temperatures donot affect the selectivity of fatty acids extract by SC-CO2: US = 4.44 (T = 40°C) and 4.13 (T = 70°C).

  2. Supercritical SC-CO2 and Soxhlet n-Hexane Extract of Tunisian Opuntia ficus indica Seeds and Fatty Acids Analysis

    PubMed Central

    Yeddes, Nizar; Chérif, Jamila Kalthoum; Jrad, Amel; Barth, Danielle; Trabelsi-Ayadi, Malika

    2012-01-01

    The fatty acids profiles of Tunisian Opuntia ficus indica seeds (spiny and thornless form) were investigated. Results of supercritical carbon dioxide (SC-CO2) and soxhlet n-hexane extract were compared. Quantitatively, the better yield was obtained through soxhlet n-hexane: 10.32% (spiny) and 8.91% (thornless) against 3.4% (spiny) and 1.94% (thornless) by SC-CO2 extract (T = 40°C, P = 180 bar, time = 135 mn, CO2 flow rate = 15 mL·s−1). Qualitatively, the main fatty acids components were the same for the two types of extraction. Linoleic acid was the major compound, SC-CO2: 57.60% (spiny), 59.98% (thornless), soxhlet n-hexane: 57.54% (spiny), 60.66% (thornless), followed by oleic acid, SC-CO2: 22.31% (spiny), 22.40% (thornless), soxhlet n-hexane: 25.28% (spiny), 20.58% (thornless) and palmitic acid, SC-CO2: 14.3% (spiny), 12.92% (thornless), soxhlet n-hexane: 11.33% (spiny), 13.08% (thornless). The SC-CO2 profiles fatty acids showed a richness with other minority compounds such as C20:1, C20:2, and C22.The seeds oil was highly unsaturated (US = 4.44–5.25), and the rising temperatures donot affect the selectivity of fatty acids extract by SC-CO2: US = 4.44 (T = 40°C) and 4.13 (T = 70°C). PMID:22754699

  3. Structural and functional properties of the N transcriptional activation domain of thyroid transcription factor-1: similarities with the acidic activation domains.

    PubMed Central

    Tell, G; Perrone, L; Fabbro, D; Pellizzari, L; Pucillo, C; De Felice, M; Acquaviva, R; Formisano, S; Damante, G

    1998-01-01

    The thyroid transcription factor 1 (TTF-1) is a tissue-specific transcription factor involved in the development of thyroid and lung. TTF-1 contains two transcriptional activation domains (N and C domain). The primary amino acid sequence of the N domain does not show any typical characteristic of known transcriptional activation domains. In aqueous solution the N domain exists in a random-coil conformation. The increase of the milieu hydrophobicity, by the addition of trifluoroethanol, induces a considerable gain of alpha-helical structure. Acidic transcriptional activation domains are largely unstructured in solution, but, under hydrophobic conditions, folding into alpha-helices or beta-strands can be induced. Therefore our data indicate that the inducibility of alpha-helix by hydrophobic conditions is a property not restricted to acidic domains. Co-transfections experiments indicate that the acidic domain of herpes simplex virus protein VP16 (VP16) and the TTF-1 N domain are interchangeable and that a chimaeric protein, which combines VP16 linked to the DNA-binding domain of TTF-1, undergoes the same regulatory constraints that operate for the wild-type TTF-1. In addition, we demonstrate that the TTF-1 N domain possesses two typical properties of acidic activation domains: TBP (TATA-binding protein) binding and ability to activate transcription in yeast. Accordingly, the TTF-1 N domain is able to squelch the activity of the p65 acidic domain. Altogether, these structural and functional data suggest that a non-acidic transcriptional activation domain (TTF-1 N domain) activates transcription by using molecular mechanisms similar to those used by acidic domains. TTF-1 N domain and acidic domains define a family of proteins whose common property is to activate transcription through the use of mechanisms largely conserved during evolutionary development. PMID:9425125

  4. In vitro cytotoxicity and differential cellular sensitivity of derivatives of diamino acids. II. N1-methyl, N1-allyl, N1-(2-chloroethyl) and N1-propargyl nitrosoureas.

    PubMed

    Dulude, H; Salvador, R; Gallant, G

    1995-01-01

    The in vitro cytotoxicity and differential cellular sensitivity of a series of new N1-methyl, N1-allyl, N1-2-chloroethyl and N1-propargyl nitrosourea derivatives of diamino acids were determined in the National Cancer Institute's primary antitumor drug screen. The compounds tested showed an in vitro anticancer activity similar to commercialized nitrosoureas such as CCNU, BCNU, MeCCNU, chlorozotocin, streptozotocin and PCNU. The alkylating moiety of the nitrosoureas seems to play a role in the general selectivity of our compounds. The N1-methyl and N1-2-chloroethyl nitrosourea derivatives are more selective for central nervous system cell lines, the N1-allyl nitrosourea derivatives are more selective for lung cancer cell lines and the N1-propargyl nitrosoureas are more selective for leukemia cell lines.

  5. Synthesis, biological evaluation, and 3D QSAR study of 2-methyl-4-oxo-3-oxetanylcarbamic acid esters as N-acylethanolamine acid amidase (NAAA) inhibitors.

    PubMed

    Ponzano, Stefano; Berteotti, Anna; Petracca, Rita; Vitale, Romina; Mengatto, Luisa; Bandiera, Tiziano; Cavalli, Andrea; Piomelli, Daniele; Bertozzi, Fabio; Bottegoni, Giovanni

    2014-12-11

    N-(2-Oxo-3-oxetanyl)carbamic acid esters have recently been reported to be noncompetitive inhibitors of the N-acylethanolamine acid amidase (NAAA) potentially useful for the treatment of pain and inflammation. In the present study, we further explored the structure-activity relationships of the carbamic acid ester side chain of 2-methyl-4-oxo-3-oxetanylcarbamic acid ester derivatives. Additional favorable features in the design of potent NAAA inhibitors have been found together with the identification of a single digit nanomolar inhibitor. In addition, we devised a 3D QSAR using the atomic property field method. The model turned out to be able to account for the structural variability and was prospectively validated by designing, synthesizing, and testing novel inhibitors. The fairly good agreement between predictions and experimental potency values points to this 3D QSAR model as the first example of quantitative structure-activity relationships in the field of NAAA inhibitors.

  6. [Newly leaching method of copper from waste print circuit board using hydrochloric acid/n-butylamine/copper sulfate].

    PubMed

    Wang, Hong-Yan; Cui, Zhao-Jie; Yao, Ya-Wei

    2010-12-01

    A newly leaching method of copper from waste print circuit board was established by using hydrochloric acid-n-butylamine-copper sulfate mixed solution. The conditions of leaching were optimized by changing the hydrochloric acid, n-butylamine, copper sulfate,temperature and other conditions using copper as target mimics. The results indicated that copper could be leached completely after 8 h at 50 degrees C, hydrochloric acid concentration of 1.75 mol/L, n-butylamine concentration of 0.25 mol/L, and copper sulfate mass of 0.96 g. Under the conditions, copper leaching rates in waste print circuit board samples was up to 95.31% after 9 h. It has many advantages such as better effects, low cost, mild reaction conditions, leaching solution recycling.

  7. Visible-light-driven Photocatalytic N-arylation of Imidazole Derivatives and Arylboronic Acids on Cu/graphene catalyst

    NASA Astrophysics Data System (ADS)

    Cui, Yan-Li; Guo, Xiao-Ning; Wang, Ying-Yong; Guo, Xiang-Yun

    2015-07-01

    N-aryl imidazoles play an important role as structural and functional units in many natural products and biologically active compounds. Herein, we report a photocatalytic route for the C-N cross-coupling reactions over a Cu/graphene catalyst, which can effectively catalyze N-arylation of imidazole and phenylboronic acid, and achieve a turnover frequency of 25.4 h-1 at 25 oC and the irradiation of visible light. The enhanced catalytic activity of the Cu/graphene under the light irradiation results from the localized surface plasmon resonance of copper nanoparticles. The Cu/graphene photocatalyst has a general applicability for photocatalytic C-N, C-O and C-S cross-coupling of arylboronic acids with imidazoles, phenols and thiophenols. This study provides a green photocatalytic route for the production of N-aryl imidazoles.

  8. Effects of differentiation on the phospholipid and phospholipid fatty acid composition of N1E-115 neuroblastoma cells.

    PubMed

    Murphy, E J; Horrocks, L A

    1993-04-07

    The effects of differentiation on the phospholipid and phospholipid fatty acid composition of N1E-115 neuroblastoma cells were determined. The cellular lipids were extracted on days 0, 3 and 7, following the addition of 1.2% dimethylsulfoxide to induce cellular differentiation. Proportions of ethanolamine glycerophospholipids (EtnGpl), phosphatidylinositol (PtdIns) and sphingomyelin (CerPCho) were significantly elevated following differentiation. The mole percentage of choline glycerophospholipids (ChoGpl) decreased with differentiation. The plasmalogens, both choline and ethanolamine, increased by 1.3- and 2.3-fold, respectively, during differentiation. The fatty acid composition of the phospholipid classes was also altered. PtdIns and ChoGpl had decreased proportions of polyenoic fatty acids, while these proportions were increased in EtnGpl. Both ChoGpl and EtnGpl had increased n-3/n-6 series fatty acid ratios, but this ratio was decreased in PtdIns. The mole percentage of arachidonic acid was significantly decreased in both PtdIns and ChoGpl, but elevated in EtnGpl and may be a result of the increase in ethanolamine plasmalogen. Thus, differentiation did not increase the overall mole percentage of polyenoic FA in the cells nor increase the n-6 series fatty acid proportions. We speculate plasmalogens may have a role in the differentiation process or in maintaining the cell in the differentiated state.

  9. Spectroscopic and structural characterization of the charge-transfer interaction of N,N'-bis-alkyl derivatives of 1,4,6,8-naphthalenediimide with chloranilic and picric acids.

    PubMed

    Refat, Moamen S; Ahmed, Hamdy A; Grabchev, Ivo; El-Zayat, Lamia A

    2008-09-01

    Charge-transfer (CT) complexes formed from the reactions of two N,N'-bis-alkyl derivatives of 1,4,6,8-naphthalenediimide such as N,N'-bis[2-hydroxyethyl)]-1,4,6,8-naphthalenediimide (BHENDI) and N,N'-bis-[2-N,N-dimethylaminoethyl)]-1,4,6,8-naphthalenediimide (BDMAENDI) with chloranilic acid (CLA) and piciric acid (PA) as pi-acceptors, have been studied spectrophotometrically in methanol and chloroform, respectively at 25 degrees C. The photometric titration curves for the reactions indicated that the data obtained refer to 1:1 charge-transfer complexes of [(BHENDI)(CLA)], [(BDMAENDI)(CLA)], [(BHENDI)(PA)] and [(BDMAENDI)(PA)] were formed. Benesi-Hildebrand and its modification methods were applied to the determination of association constant (K), molar extinction coefficient (epsilon). The solid CT complexes have been synthesized and characterization by different spectral methods.

  10. Spectroscopic and structural characterization of the charge-transfer interaction of N,N'-bis-alkyl derivatives of 1,4,6,8-naphthalenediimide with chloranilic and picric acids

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Ahmed, Hamdy A.; Grabchev, Ivo; El-Zayat, Lamia A.

    2008-09-01

    Charge-transfer (CT) complexes formed from the reactions of two N,N'-bis-alkyl derivatives of 1,4,6,8-naphthalenediimide such as N, N'-bis[2-hydroxyethyl)]-1,4,6,8-naphthalenediimide (BHENDI) and N, N'-bis-[2- N, N-dimethylaminoethyl)]-1,4,6,8-naphthalenediimide (BDMAENDI) with chloranilic acid (CLA) and piciric acid (PA) as π-acceptors, have been studied spectrophotometrically in methanol and chloroform, respectively at 25 °C. The photometric titration curves for the reactions indicated that the data obtained refer to 1:1 charge-transfer complexes of [(BHENDI)(CLA)], [(BDMAENDI)(CLA)], [(BHENDI)(PA)] and [(BDMAENDI)(PA)] were formed. Benesi-Hildebrand and its modification methods were applied to the determination of association constant ( K), molar extinction coefficient ( ɛ). The solid CT complexes have been synthesized and characterization by different spectral methods.

  11. Involvement of arginine 878 together with Ca2+ in mouse aminopeptidase A substrate specificity for N-terminal acidic amino-acid residues

    PubMed Central

    Couvineau, Pierre; de Almeida, Hugo; Maigret, Bernard; Llorens-Cortes, Catherine

    2017-01-01

    Aminopeptidase A (APA) is a membrane-bound zinc metalloprotease cleaving, in the brain, the N-terminal aspartyl residue of angiotensin II to generate angiotensin III, which exerts a tonic stimulatory effect on the control of blood pressure in hypertensive animals. Using a refined APA structure derived from the human APA crystal structure, we docked the specific and selective APA inhibitor, EC33 in the presence of Ca2+. We report the presence in the S1 subsite of Arg-887 (Arg-878 in mouse APA), the guanidinium moiety of which established an interaction with the electronegative sulfonate group of EC33. Mutagenic replacement of Arg-878 with an alanine or a lysine residue decreased the affinity of the recombinant enzymes for the acidic substrate, α-L-glutamyl-β-naphthylamide, with a slight decrease in substrate hydrolysis velocity either with or without Ca2+. In the absence of Ca2+, the mutations modified the substrate specificity of APA for the acidic substrate, the mutated enzymes hydrolyzing more efficiently basic and neutral substrates, although the addition of Ca2+ partially restored the acidic substrate specificity. The analysis of the 3D models of the Arg-878 mutated APAs revealed a change in the volume of the S1 subsite, which may impair the binding and/or the optimal positioning of the substrate in the active site as well as its hydrolysis. These findings demonstrate the key role of Arg-878 together with Ca2 + in APA substrate specificity for N-terminal acidic amino acid residues by ensuring the optimal positioning of acidic substrates during catalysis. PMID:28877217

  12. Food sources and intake of n-6 and n-3 fatty acids in low-income countries with emphasis on infants, young children (6-24 months), and pregnant and lactating women.

    PubMed

    Michaelsen, Kim F; Dewey, Kathryn G; Perez-Exposito, Ana B; Nurhasan, Mulia; Lauritzen, Lotte; Roos, Nanna

    2011-04-01

    With increasing interest in the potential effects of n-6 and n-3 fatty acids in early life, there is a need for data on the dietary intake of polyunsaturated fatty acids (PUFA) in low-income countries. This review compiles information on the content in breast milk and in foods that are important in the diets of low-income countries from the few studies available. We also estimate the availability of fat and fatty acids in 13 low-income and middle-income countries based on national food balance sheets from the United Nations' Food and Agriculture Organization Statistical Database (FOASTAT). Breast milk docosahexaenoic acid content is very low in populations living mainly on a plant-based diet, but higher in fish-eating countries. Per capita supply of fat and n-3 fatty acids increases markedly with increasing gross domestic product (GDP). In most of the 13 countries, 70-80% of the supply of PUFA comes from cereals and vegetable oils, some of which have very low α-linolenic acid (ALA) content. The total n-3 fatty acid supply is below or close to the lower end of the recommended intake range [0.4%E (percentage of energy supply)] for infants and young children, and below the minimum recommended level (0.5%E) for pregnant and lactating women in the nine countries with the lowest GDP. Fish is important as a source of long-chain n-3 fatty acids, but intake is low in many countries. The supply of n-3 fatty acids can be increased by using vegetable oils with higher ALA content (e.g. soybean or rapeseed oil) and by increasing fish production (e.g. through fish farming). © 2011 Blackwell Publishing Ltd.

  13. Erythrocyte membrane n-3 fatty acid levels and carotid atherosclerosis in Chinese men and women.

    PubMed

    Dai, Xiao-wei; Zhang, Bo; Wang, Ping; Chen, Chao-gang; Chen, Yu-ming; Su, Yi-xiang

    2014-01-01

    Prospective studies have supported the beneficial effects of n-3 fatty acid consumption on cardiac deaths, but limited data focused on atherosclerosis. We investigated the associations between n-3 fatty acids in erythrocytes and atherosclerosis in middle-aged and older Chinese. 847 subjects (285 men and 562 women), aged 40-65 years, from Guangzhou, China were included in this community-based cross-sectional study between December 2005 and January 2008. The levels of α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in erythrocytes were measured by gas chromatography. Carotid ultrasound examination was conducted to obtain intima-media thickness of the common carotid artery and the carotid bifurcation. Dietary data and other covariates were collected using interviewer-administered questionnaires. After adjustment for age, sex, and other confounders, negative dose-response associations between the contents of individual n-3 polyunsaturated fatty acids in the erythrocyte membrane and the prevalence of carotid artery wall thickening and plaque were observed. A comparison in the highest and lowest tertiles gave odds ratios (95% confidence interval) for thickening in the walls of the common carotid artery of 0.58 (0. 34-0.97; P-trend = 0. 037) for DHA, and 0.39 (0.23-0.67; P-trend < 0.001) for ALA. However, EPA was not significantly associated with carotid atherosclerosis. Similar results were found for thickening at the carotid bifurcation and the occurrence of carotid artery plaque. Higher levels of DHA and ALA in the erythrocyte membrane were significantly associated with a lower burden of subclinical atherosclerosis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Absorption of N-phenylpropenoyl-L-amino acids in healthy humans by oral administration of cocoa (Theobroma cacao).

    PubMed

    Stark, Timo; Lang, Roman; Keller, Daniela; Hensel, Andreas; Hofmann, Thomas

    2008-10-01

    Besides flavan-3-ols, a family of N-phenylpropenoyl-L-amino acids (NPAs) has been recently identified as polyphenol/amino acid conjugates in the seeds of Theobroma cacao as well as in a variety of herbal drugs. Stimulated by reports on their biological activity, the purpose of this study was to investigate if these amides are absorbed by healthy volunteers after administration of a cocoa drink. For the first time, 12 NPAs were quantified in human urine by means of a stable isotope dilution analysis with LC-MS/MS (MRM) detection. A maximum amount was found in the urine taken 2 h after the cocoa consumption. The highest absolute amount of NPAs excreted with the urine was found for N-[4'-hydroxy-(E)-cinnamoyl]-L-aspartic acid (5), but the highest recovery rate (57.3 and 22.8%), that means the percentage amount of ingested amides excreted with the urine, were determined for N-[4'-hydroxy-(E)-cinnamoyl]-L-glutamic acid (6) and N-[4'-hydroxy-3'-methoxy-(E)-cinnamoyl]-L-tyrosine (13). In order to gain first insights into the NPA metabolism in vivo, urine samples were analyzed by LC-MS/MS before and after beta-glucuronidase/sulfatase treatment. As independent of the enzyme treatment the same NPA amounts were found in urine, there is strong evidence that these amides are metabolized neither via their O-glucuronides nor their O-sulfates. In order to screen for caffeic acid O-glucuronides as potential NPA metabolites, urine samples were screened by means of LC-MS/MS for caffeic acid 3-O-beta-D-glucuronide and 4-O-beta-D-glucuronide. But not even trace amounts of one of these glucuronides were detectable, thus excluding them as major NPA metabolites and underlining the importance of future investigations on a potential O-methylation or reduction of the N-phenylpropenoyl moiety in NPAs.

  15. Comparison of Nitrilotriacetic Acid and [S,S]-Ethylenediamine-N,N'-disuccinic Acid in UV-Fenton for the Treatment of Oil Sands Process-Affected Water at Natural pH.

    PubMed

    Zhang, Ying; Klamerth, Nikolaus; Chelme-Ayala, Pamela; Gamal El-Din, Mohamed

    2016-10-04

    The application of UV-Fenton processes with two chelating agents, nitrilotriacetic acid (NTA) and [S,S]-ethylenediamine-N,N'-disuccinic acid ([S,S]-EDDS), for the treatment of oil sands process-affected water (OSPW) at natural pH was investigated. The half-wave potentials of Fe(III/II)NTA and Fe(III/II)EDDS and the UV photolysis of the complexes in Milli-Q water and OSPW were compared. Under optimum conditions, UV-NTA-Fenton exhibited higher efficiency than UV-EDDS-Fenton in the removal of acid extractable organic fraction (66.8% for the former and 50.0% for the latter) and aromatics (93.5% for the former and 74.2% for the latter). Naphthenic acids (NAs) removals in the UV-NTA-Fenton process (98.4%, 86.0%, and 81.0% for classical NAs, NAs + O (oxidized NAs with one additional oxygen atom), and NAs + 2O (oxidized NAs with two additional oxygen atoms), respectively) under the experimental conditions were much higher than those in the UV-H 2 O 2 (88.9%, 48.7%, and 54.6%, correspondingly) and NTA-Fenton (69.6%, 35.3%, and 44.2%, correspondingly) processes. Both UV-NTA-Fenton and UV-EDDS-Fenton processes presented promoting effect on the acute toxicity of OSPW toward Vibrio fischeri. No significant change of the NTA toxicity occurred during the photolysis of Fe(III)NTA; however, the acute toxicity of EDDS increased as the photolysis of Fe(III)EDDS proceeded. NTA is a much better agent than EDDS for the application of UV-Fenton process in the treatment of OSPW.

  16. N-(6-Methylpyridin-2-yl)mesitylenesulfonamide and acetic acid--a salt, a cocrystal or both?

    PubMed

    Pan, Fangfang; Kalf, Irmgard; Englert, Ulli

    2015-08-01

    In the solid obtained from N-(6-methylpyridin-2-yl)mesitylenesulfonamide and acetic acid, the constituents interact via two N-H···O hydrogen bonds. The H atom situated in one of these short contacts is disordered over two positions: one of these positions is formally associated with an adduct of the neutral sulfonamide molecule and the neutral acetic acid molecule, and corresponds to a cocrystal, while the alternative site is associated with salt formation between a protonated sulfonamide molecule and deprotonated acetic acid molecule. Site-occupancy refinements and electron densities from difference Fourier maps suggest a trend with temperature, albeit of limited significance; the cocrystal is more relevant at 100 K, whereas the intensity data collected at room temperature match the description as cocrystal and salt equally well.

  17. Novel Hybrid Catalyst for the Oxidation of Organic Acids: Pd Nanoparticles Supported on Mn-N-3D-Graphene Nanosheets

    DOE PAGES

    Perry, Albert; Kabir, Sadia; Matanovic, Ivana; ...

    2017-06-16

    This paper reports the fabrication and electrochemical performance of a hybrid catalyst composed of Pd nanoparticles and atomically dispersed Mn active centers integrated into the nitrogen-doped three-dimensional graphene nanosheets (Pd/Mn-N-3D-GNS). Our results show that the synergistic integration of both Pd nanoparticles and atomically dispersed Mn can be used to enhance the activity toward the electrochemical oxidation of organic acids at biologically relevant pH values. The hybrid catalyst (Pd/Mn-N-3D-GNS) showed increased maximum currents toward the oxidation of oxalic acid when compared to its individual catalysts, namely, Pd/3D-GNS and Mn N-3D-GNS catalysts. The hybrid also showed a decreased onset potential for oxidationmore » of mesoxalic acid as compared to Mn-N-3D-GNS and decreased onset potentials for the oxidation of glyoxalic acid when compared to both of its constituent catalysts. Oxidation of formic acid was also tested and the hybrid was shown to catalyze both dehydration and dehydrogenation mechanisms of formic acid electro-oxidation. Using density functional theory calculations, it was elucidated that a two-site catalysis most likely promotes dehydrogenation reaction for formic acid oxidation, which can explain the selectivity of Pd nanoparticles and atomically dispersed Mn towards the dehydrogenation/ dehydration pathway.« less

  18. Novel Hybrid Catalyst for the Oxidation of Organic Acids: Pd Nanoparticles Supported on Mn-N-3D-Graphene Nanosheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perry, Albert; Kabir, Sadia; Matanovic, Ivana

    This paper reports the fabrication and electrochemical performance of a hybrid catalyst composed of Pd nanoparticles and atomically dispersed Mn active centers integrated into the nitrogen-doped three-dimensional graphene nanosheets (Pd/Mn-N-3D-GNS). Our results show that the synergistic integration of both Pd nanoparticles and atomically dispersed Mn can be used to enhance the activity toward the electrochemical oxidation of organic acids at biologically relevant pH values. The hybrid catalyst (Pd/Mn-N-3D-GNS) showed increased maximum currents toward the oxidation of oxalic acid when compared to its individual catalysts, namely, Pd/3D-GNS and Mn N-3D-GNS catalysts. The hybrid also showed a decreased onset potential for oxidationmore » of mesoxalic acid as compared to Mn-N-3D-GNS and decreased onset potentials for the oxidation of glyoxalic acid when compared to both of its constituent catalysts. Oxidation of formic acid was also tested and the hybrid was shown to catalyze both dehydration and dehydrogenation mechanisms of formic acid electro-oxidation. Using density functional theory calculations, it was elucidated that a two-site catalysis most likely promotes dehydrogenation reaction for formic acid oxidation, which can explain the selectivity of Pd nanoparticles and atomically dispersed Mn towards the dehydrogenation/ dehydration pathway.« less

  19. The toxicity of N-methyl-alpha-methyldopamine to freshly isolated rat hepatocytes is prevented by ascorbic acid and N-acetylcysteine.

    PubMed

    Carvalho, Márcia; Remião, Fernando; Milhazes, Nuno; Borges, Fernanda; Fernandes, Eduarda; Carvalho, Félix; Bastos, Maria Lourdes

    2004-08-05

    In the past decade, clinical evidence has increasingly shown that the liver is a target organ for 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") toxicity. The aims of the present in vitro study were: (1) to evaluate and compare the hepatotoxic effects of MDMA and one of its main metabolites, N-methyl-alpha-methyldopamine (N-Me-alpha-MeDA) and (2) to investigate the ability of antioxidants, namely ascorbic acid and N-acetyl-L-cysteine (NAC), to prevent N-Me-alpha-MeDA-induced toxic injury, using freshly isolated rat hepatocytes. Cell suspensions were incubated with MDMA or N-Me-alpha-MeDA in the final concentrations of 0.1, 0.2, 0.4, 0.8, and 1.6 mM for 3 h. To evaluate the potential protective effects of antioxidants, cells were preincubated with ascorbic acid in the final concentrations of 0.1 and 0.5 mM, or NAC in the final concentrations of 0.1 and 1 mM for 15 min before treatment with 1.6 mM N-Me-alpha-MeDA for 3 h (throughout this incubation period the cells were exposed to both compounds). The toxic effects were evaluated by measuring the cell viability, glutathione (GSH) and glutathione disulfide (GSSG), ATP, and the cellular activities of GSH peroxidase (GPX), GSSG reductase (GR), and GSH S-transferase (GST). MDMA induced a concentration- and time-dependent GSH depletion, but had a negligible effect on cell viability, ATP levels, or on the activities of GR, GPX, and GST. In contrast, N-Me-alpha-MeDA was shown to induce not only a concentration- and time-dependent depletion of GSH, but also a depletion of ATP levels accompanied by a loss in cell viability, and decreases in the antioxidant enzyme activities. For both compounds, GSH depletion was not accompanied by increases in GSSG levels, which seems to indicate GSH depletion by adduct formation. Importantly, the presence of ascorbic acid (0.5 mM) or NAC (1 mM) prevented cell death and GSH depletion induced by N-Me-alpha-MeDA. The results provide evidence that MDMA and its metabolite N

  20. Characterization of Escherichia coli K1 colominic acid-specific murine antibodies that are cross-protective against Neisseria meningitidis groups B, C, and Y.

    PubMed

    Park, In Ho; Lin, Jisheng; Choi, Ji Eun; Shin, Jeon-Soo

    2014-06-01

    The capsular polysaccharide (PS) of Neisseria meningitidis serogroup B (NMGB) is α(2-8)-linked N-acetylneuraminic acid (Neu5Ac), which is almost identical to the O-acetylated colominic acid (CA) of Escherichia coli K1 Although E. coli K1 has long been known to elicit cross-protective antibodies against NMGB, limited information on these highly cross-reactive antibodies is available. In the present study, six new monoclonal antibodies (mAbs) specific to both E. coli K1 CA and NMGB PS were produced by immunizing Balb/c mice with E. coli K1, and their serological and molecular properties were characterized, together with 12 previously reported hybridoma mAbs. Among the bactericidal mAbs against NMGB, both HmenB5 and HmenB18, which are genetically identical though of different mouse origins, were able to kill serogroup C and Y meningococci. Based on SPR sensograms, the binding affinity of HmenB18 for PS was suggested to be associated with at least two different binding forces: the polyanionicity of Neu5Ac and an interaction with the O-acetyl groups of Neu5Ac. Molecular analysis showed that similar to most mAbs presenting a few restricted V region germline genes, the V region genes of HmenB18 were 979% and 986% identical to the closest IGHV1-1401 and IGLV15-10301 germline gene alleles, respectively, and V-D-J editing in this mAb generated an unusually long VH-CDR3 sequence (17 amino acid residues), containing one basic arginine, two hydrophobic isoleucine residues and a 'YAMDY' motif. Models of the mAb combining sites demonstrate that most of the mAbs exhibited a wide, shallow groove with a high overall positive charge, as seen in mAb735, which is specific for a polyanionic helical epitope. In contrast, the combining site of HmenB18 was shown to be wide but to present a relatively weak positive charge, consistent with the extensive recognition by HmenB18 of the various structural epitopes formed with the Neu5Ac residue and its O-acetylation. Copyright © 2014 Elsevier

  1. Syntheses, structural, computational, and thermal analysis of acid-base complexes of picric acid with N-heterocyclic bases.

    PubMed

    Goel, Nidhi; Singh, Udai P

    2013-10-10

    Four new acid-base complexes using picric acid [(OH)(NO2)3C6H2] (PA) and N-heterocyclic bases (1,10-phenanthroline (phen)/2,2';6',2"-terpyridine (terpy)/hexamethylenetetramine (hmta)/2,4,6-tri(2-pyridyl)-1,3,5-triazine (tptz)) were prepared and characterized by elemental analysis, IR, NMR and X-ray crystallography. Crystal structures provide detailed information of the noncovalent interactions present in different complexes. The optimized structures of the complexes were calculated in terms of the density functional theory. The thermolysis of these complexes was investigated by TG-DSC and ignition delay measurements. The model-free isoconversional and model-fitting kinetic approaches have been applied to isothermal TG data for kinetics investigation of thermal decomposition of these complexes.

  2. Syntheses and structure characterization of ten acid-base hybrid crystals based on N-containing aromatic brønsted bases and mineral acids

    NASA Astrophysics Data System (ADS)

    Lin, Zhihao; Jin, Shouwen; Li, Xiaoliang; Xiao, Xiao; Hu, Kaikai; Guo, Ming; Chi, Xinchen; Liu, Hui; Wang, Daqi

    2017-10-01

    Cocrystallization of the aromatic brønsted bases with a series of mineral acids gave a total of ten hybrid salts with the compositions: (2-methylquinoline)2: (hydrochloride acid): 3H2O [(HL1)+. (L1)·· (Cl-) · (H2O)3] (1), (6-bromobenzo[d]thiazol-2-amine): (hydrochloride acid) [(HL2)+. (Cl-)] (2), (6-bromobenzo[d]thiazol-2-amine): (nitric acid) [(HL2)+. (NO3-)] (3), (6-bromobenzo[d]thiazol-2-amine): (sulfuric acid) [(HL2)+ · (HSO4)-] (4), (6-bromobenzo[d]thiazol-2-amine): (phosphoric acid) [(HL2)+ · (H2PO4)-] (5), (5,7-dimethyl-1,8-naphthyridine-2-amine): (hydrochloride acid): 3H2O [(HL3)+ · (Cl-) (H2O)3] (6), (5,7-dimethyl-1,8-naphthyridine-2-amine): (hydrobromic acid): CH3OH [(HL3)+ · (Br)- · CH3OH] (7), (5,7-dimethyl-1,8-naphthyridine-2-amine): (sulfuric acid): H2O [(HL3)+ · (HSO4)- · H2O] (8), (2-aminophenol): (phosphoric acid) [(HL4)+ · (H2PO4)-] (9), and (2-amino-4-chlorophenol): (phosphoric acid) [(HL5)+ · (H2PO4)-] (10). The ten salts have been characterized by X-ray diffraction analysis, IR, and elemental analysis, and the melting points of all the salts were also reported. And their structural and supramolecular aspects are fully analyzed. The result reveals that among the ten investigated crystals the ring N of the heterocycle or the NH2 in the aminophenol are protonated when the acids are deprotonated, and the crystal packing is interpreted in terms of the strong charge-assisted classical hydrogen bonds between the NH+/NH3+ and deprotonated acidic groups. Further analysis of the crystal packing of the salts indicated that a different family of additional CHsbnd O, CHsbnd Cl, CH3sbnd N, CH3sbnd O, CHsbnd Br, CH3sbnd Br, Brsbnd Cl, Clsbnd S, Osbnd S, Osbnd O, Brsbnd S, Hsbnd H, and π-π associations contribute to the stabilization and expansion of the total high-dimensional frameworks. For the coexistence of the various weak nonbonding interactions these structures adopted homo or hetero supramolecular synthons or both. Some classical

  3. Conformational studies of bacterial peptidoglycan: structure and stereochemistry of N-acetyl-β- D-glucosamine and N-acetyl-β- D-muramic acid

    NASA Astrophysics Data System (ADS)

    Yadav, P. N. S.; Rai, D. K.; Yadav, J. S.

    1989-03-01

    The energies of various conformations of N-acetyl-β- D-glucosamine (NAG) and its 3-O- D-lactic acid derivative N-acetyl-β- D-muramic acid (NAM) have been calculated by geometry optimization using the molecular mechanics program MM2. The geometries of these systems have been analyzed in the light of ring torsion, bond lengths, bond angles and conformational states of side groups of the pyranosyl ring and compared with available experimental data of similar pyranose derivatives. The present study indicates the presence of hydrogen bonds to stabilize the side group conformations. Discrepancies with experimental data that are seen in a few cases are ascribed to the nature of the side groups and their geometry.

  4. Ratio of Dietary n-6/n-3 Polyunsaturated Fatty Acids Independently Related to Muscle Mass Decline in Hemodialysis Patients.

    PubMed

    Wong, Te-Chih; Chen, Yu-Tong; Wu, Pei-Yu; Chen, Tzen-Wen; Chen, Hsi-Hsien; Chen, Tso-Hsiao; Yang, Shwu-Huey

    2015-01-01

    n-3 polyunsaturated fatty acids (PUFAs) might be useful nutritional strategy for treating patients with sarcopenia. We evaluated the effect of the intake of dietary n-3 PUFAs on the skeletal muscle mass (SMM), appendicular skeletal muscle mass (ASM), and its determinants in patients receiving standard hemodialysis (HD) treatment for the management of end stage renal disease. In this cross-sectional study, data of 111 HD patients were analyzed. Anthropometric and bioelectrical impedance measurements used to estimate the muscle mass were performed the day of dialysis immediately after the dialysis session. Routine laboratory and 3-day dietary data were also collected. The cutoff value of adequate intake (AI) for both n-3 PUFAs and alpha-linolenic acid (ALA) was 1.6 g/day and 1.1 g/day for men and women, respectively. The mean age, mean dietary n-3 PUFAs intake, ALA intake, ratio of n-6/n-3 PUFAs intake, SMM, and ASM of patients were 61.4 ± 10.4 years, 2.0 ± 1.3 g/day, 1.5 ± 1.0 g/day, 9.5 ± 6.7 g/day, 23.9 ± 5.5 kg, and 17.5 ± 4.5 kg, respectively. A higher SMM and ASM significantly observed in patients who achieved an AI of n-3 PUFAs. Similar trends appeared to be observed among those patients who achieved the AI of ALA, but the difference was not significantly, except for ASM (P = 0.047). No relevant differences in demographics, laboratory and nutritional parameters were observed, regardless of whether the patients achieved an AI of n-3 PUFAs. Multivariate analysis showed that the BMI and equilibrated Kt/V were independent determinants of the muscle mass. Moreover, the ratio of n-6/n-3 PUFAs was an independent risk determinant of reduced ASM in HD patients. Patients with an AI of n-3 PUFAs had better total-body SMM and ASM. A higher dietary ratio of n-6/n-3 PUFAs seemed to be associated with a reduced muscle mass in HD patients.

  5. Visible-light-driven Photocatalytic N-arylation of Imidazole Derivatives and Arylboronic Acids on Cu/graphene catalyst

    PubMed Central

    Cui, Yan-Li; Guo, Xiao-Ning; Wang, Ying-Yong; Guo, Xiang-Yun

    2015-01-01

    N-aryl imidazoles play an important role as structural and functional units in many natural products and biologically active compounds. Herein, we report a photocatalytic route for the C-N cross-coupling reactions over a Cu/graphene catalyst, which can effectively catalyze N-arylation of imidazole and phenylboronic acid, and achieve a turnover frequency of 25.4 h−1 at 25 oC and the irradiation of visible light. The enhanced catalytic activity of the Cu/graphene under the light irradiation results from the localized surface plasmon resonance of copper nanoparticles. The Cu/graphene photocatalyst has a general applicability for photocatalytic C-N, C-O and C-S cross-coupling of arylboronic acids with imidazoles, phenols and thiophenols. This study provides a green photocatalytic route for the production of N-aryl imidazoles. PMID:26189944

  6. Dietary long chain n-3 polyunsaturated fatty acids prevent impaired social behaviour and normalize brain dopamine levels in food allergic mice.

    PubMed

    de Theije, Caroline G M; van den Elsen, Lieke W J; Willemsen, Linette E M; Milosevic, Vanja; Korte-Bouws, Gerdien A H; Lopes da Silva, Sofia; Broersen, Laus M; Korte, S Mechiel; Olivier, Berend; Garssen, Johan; Kraneveld, Aletta D

    2015-03-01

    Allergy is suggested to exacerbate impaired behaviour in children with neurodevelopmental disorders. We have previously shown that food allergy impaired social behaviour in mice. Dietary fatty acid composition may affect both the immune and nervous system. The aim of this study was to assess the effect of n-3 long chain polyunsaturated fatty acids (n-3 LCPUFA) on food allergy-induced impaired social behaviour and associated deficits in prefrontal dopamine (DA) in mice. Mice were fed either control or n-3 LCPUFA-enriched diet before and during sensitization with whey. Social behaviour, acute allergic skin response and serum immunoglobulins were assessed. Monoamine levels were measured in brain and intestine and fatty acid content in brain. N-3 LCPUFA prevented impaired social behaviour of allergic mice. Moreover, n-3 LCPUFA supplementation increased docosahexaenoic acid (DHA) incorporation into the brain and restored reduced levels of prefrontal DA and its metabolites 3,4-dihydroxyphenylacetic acid, 3-methoxytyramine and homovanillic acid in allergic mice. In addition to these brain effects, n-3 LCPUFA supplementation reduced the allergic skin response and restored decreased intestinal levels of serotonin metabolite 5-hydroxyindoleacetic acid in allergic mice. N-3 LCPUFA may have beneficial effects on food allergy-induced deficits in social behaviour, either indirectly by reducing the allergic response and restoring intestinal 5-HT signalling, or directly by DHA incorporation into neuronal membranes, affecting the DA system. Therefore, it is of interest to further investigate the relevance of food allergy-enhanced impairments in social behaviour in humans and the potential benefits of dietary n-3 LCPUFA supplementation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. 40 CFR 721.4575 - L-aspartic acid, N,N′- [(1E) - 1,2 - ethenediylbis[(3-sulfo-4, 1-phenylene)imino [6-(phenylamino...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false L-aspartic acid, N,Nâ²- [(1E) - 1,2... Substances § 721.4575 L-aspartic acid, N,N′- [(1E) - 1,2 - ethenediylbis[(3-sulfo-4, 1-phenylene)imino [6... uses subject to reporting. (1) The chemical substance identified as l-aspartic acid, N,N′- [(1E) - 1,2...

  8. N-3 Polyunsaturated Fatty Acids through the Lifespan: Implication for Psychopathology

    PubMed Central

    Pusceddu, Matteo M.; Kelly, Philip; Stanton, Catherine; Cryan, John F.

    2016-01-01

    Objective: The impact of lifetime dietary habits and their role in physical, mental, and social well-being has been the focus of considerable recent research. Omega-3 polyunsaturated fatty acids as a dietary constituent have been under the spotlight for decades. Omega-3 polyunsaturated fatty acids constitute key regulating factors of neurotransmission, neurogenesis, and neuroinflammation and are thereby fundamental for development, functioning, and aging of the CNS. Of note is the fact that these processes are altered in various psychiatric disorders, including attention deficit hyperactivity disorder, depression, and Alzheimer’s disease. Design: Relevant literature was identified through a search of MEDLINE via PubMed using the following words, “n-3 PUFAs,” “EPA,” and “DHA” in combination with “stress,” “cognition,” “ADHD,” “anxiety,” “depression,” “bipolar disorder,” “schizophrenia,” and “Alzheimer.” The principal focus was on the role of omega-3 polyunsaturated fatty acids throughout the lifespan and their implication for psychopathologies. Recommendations for future investigation on the potential clinical value of omega-3 polyunsaturated fatty acids were examined. Results: The inconsistent and inconclusive results from randomized clinical trials limits the usage of omega-3 polyunsaturated fatty acids in clinical practice. However, a body of literature demonstrates an inverse correlation between omega-3 polyunsaturated fatty acid levels and quality of life/ psychiatric diseases. Specifically, older healthy adults showing low habitual intake of omega-3 polyunsaturated fatty acids benefit most from consuming them, showing improved age-related cognitive decline. Conclusions: Although further studies are required, there is an exciting and growing body of research suggesting that omega-3 polyunsaturated fatty acids may have a potential clinical value in the prevention and treatment of psychopathologies. PMID:27608809

  9. Isolation and structures of glycoprotein-derived free oligosaccharides from the unfertilized eggs of Scyliorhinus caniculus. Characterization of the sequences galactose(alpha 1-4)galactose(beta 1-3)-N-acetylglucosamine and N-acetylneuraminic acid(alpha 2-6)galactose(beta 1-3)-N-acetylglucosamine.

    PubMed

    Plancke, Y; Delplace, F; Wieruszeski, J M; Maes, E; Strecker, G

    1996-01-15

    As previously reported [Ishii, K., Iwasaki, M., Inoue, S., Kenny, P. T. M., Komura, H. & Inoue, Y. (1989) J. Biol. Chem. 264, 1623-1630; Inoue, S., Iwasaki, M., Ishii, K., Kitajima, K. & Inoue, Y. (1989) J. Biol. Chem. 264, 18520-185261, the unfertilized eggs of two different species of fresh-water fish, Plecoglossus altivelis and Tribodolon hakonensis, contain relatively large amounts of free sialooligosaccharides. These oligosaccharides were found to derive from glycophosphoproteins, owing to the activity of a peptide - N4-(N-acetyl-beta-D-glucosaminyl)asparagine amidase [Iwasaki, M., Seko, A., Kitajima, K., Inoue, Y. & Inoue, S. (1992) J. Biol. Chem. 267, 24287-24296; Seko, A., Kitajima, K., Inoue, Y. & Inoue, S. (1991) J. Biol. Chem. 266, 22110-22114]. Here we describe a new type of free oligosaccharides, isolated from unfertilized eggs of Scyliorhinus caniculus. From the structural analysis, based upon 1H-NMR spectroscopy, the following glycan units are proposed.[Formula: see text

  10. N-Glycosylation Improves the Pepsin Resistance of Histidine Acid Phosphatase Phytases by Enhancing Their Stability at Acidic pHs and Reducing Pepsin's Accessibility to Its Cleavage Sites

    PubMed Central

    Niu, Canfang; Luo, Huiying; Shi, Pengjun; Huang, Huoqing; Wang, Yaru; Yang, Peilong

    2015-01-01

    N-Glycosylation can modulate enzyme structure and function. In this study, we identified two pepsin-resistant histidine acid phosphatase (HAP) phytases from Yersinia kristensenii (YkAPPA) and Yersinia rohdei (YrAPPA), each having an N-glycosylation motif, and one pepsin-sensitive HAP phytase from Yersinia enterocolitica (YeAPPA) that lacked an N-glycosylation site. Site-directed mutagenesis was employed to construct mutants by altering the N-glycosylation status of each enzyme, and the mutant and wild-type enzymes were expressed in Pichia pastoris for biochemical characterization. Compared with those of the N-glycosylation site deletion mutants and N-deglycosylated enzymes, all N-glycosylated counterparts exhibited enhanced pepsin resistance. Introduction of the N-glycosylation site into YeAPPA as YkAPPA and YrAPPA conferred pepsin resistance, shifted the pH optimum (0.5 and 1.5 pH units downward, respectively) and improved stability at acidic pH (83.2 and 98.8% residual activities at pH 2.0 for 1 h). Replacing the pepsin cleavage sites L197 and L396 in the immediate vicinity of the N-glycosylation motifs of YkAPPA and YrAPPA with V promoted their resistance to pepsin digestion when produced in Escherichia coli but had no effect on the pepsin resistance of N-glycosylated enzymes produced in P. pastoris. Thus, N-glycosylation may improve pepsin resistance by enhancing the stability at acidic pH and reducing pepsin's accessibility to peptic cleavage sites. This study provides a strategy, namely, the manipulation of N-glycosylation, for improvement of phytase properties for use in animal feed. PMID:26637601

  11. Thirteen-year prospective study between fish consumption, long-chain n-3 fatty acids intakes and cognitive function.

    PubMed

    Kesse-Guyot, E; Péneau, S; Ferry, M; Jeandel, C; Hercberg, S; Galan, P

    2011-02-01

    Because of their structural, anti-inflammatory and antithrombic properties, long-chain n-3 fatty acids may be key factors in the aging process. We sought to elucidate the association between intake of long-chain n-3 fatty acids and/or fish and cognitive function evaluated 13 years after dietary assessment. Prospective population-based study. 3,294 adults from the SU.VI.MAX study (Supplementation with Antioxidant Vitamins and Minerals study). MEASUREMENTS/STATISTICAL ANALYSIS: Subjects underwent a standardized clinical examination which included cognitive tests and self-reported cognitive difficulties scale (2007-2009). Poor scores were defined using percentiles as cut-off. Dietary data were assessed through repeated 24-h dietary records. Odd ratio (OR), comparing the fourth (Q4) to the first quartile (Q1), of having a poor score were calculated using adjusted logistic regression. Self-reported cognitive difficulties were less frequent among subjects with higher intakes of total n-3 long chain fatty acids (OR = 0.72, CI 95%=0.56-0.92) and eicosapentaenoic acid (OR Q4 versus Q1 = 0.74, CI 95%=0.58-0.95), even after adjustment for depressive symptoms. A borderline significant association was also found with high fish consumption (OR Q4 versus Q1 = 0.80, CI 95%=0.63-1.01). Cognitive complaints, which may be an early indicator of cognitive decline, are less frequent among the elderly who have a high long-chain n-3 acids intake, as assessed 13 years earlier.

  12. Selective heterogeneous acid catalyzed esterification of N-terminal sulfyhdryl fatty acids

    USDA-ARS?s Scientific Manuscript database

    Our interest in thiol fatty acids lies in their antioxidative, free radical scavenging, and metal ion scavenging capabilities as applied to cosmeceutical and skin care formulations. The retail market is filled with products containing the disulfide-containing free fatty acid, lipoic acid. These pr...

  13. Synthesis and evaluation of fatty acid amides on the N-oleoylethanolamide-like activation of peroxisome proliferator activated receptor α.

    PubMed

    Takao, Koichi; Noguchi, Kaori; Hashimoto, Yosuke; Shirahata, Akira; Sugita, Yoshiaki

    2015-01-01

    A series of fatty acid amides were synthesized and their peroxisome proliferator-activated receptor α (PPAR-α) agonistic activities were evaluated in a normal rat liver cell line, clone 9. The mRNAs of the PPAR-α downstream genes, carnitine-palmitoyltransferase-1 and mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase, were determined by real-time reverse transcription-polymerase chain reaction (RT-PCR) as PPAR-α agonistic activities. We prepared nine oleic acid amides. Their PPAR-α agonistic activities were, in decreasing order, N-oleoylhistamine (OLHA), N-oleoylglycine, Oleamide, N-oleoyltyramine, N-oleoylsertonin, and Olvanil. The highest activity was found with OLHA. We prepared and evaluated nine N-acylhistamines (N-acyl-HAs). Of these, OLHA, C16:0-HA, and C18:1Δ(9)-trans-HA showed similar activity. Activity due to the different chain length of the saturated fatty acid peaked at C16:0-HA. The PPAR-α antagonist, GW6471, inhibited the induction of the PPAR-α downstream genes by OLHA and N-oleoylethanolamide (OEA). These data suggest that N-acyl-HAs could be considered new PPAR-α agonists.

  14. Biosynthetic elongation of isolated teichuronic acid polymers via glucosyl- and N-acetylmannosaminuronosyltransferases from solubilized cytoplasmic membrane fragments of Micrococcus luteus.

    PubMed Central

    Hildebrandt, K M; Anderson, J S

    1990-01-01

    Cytoplasmic membrane fragments of Micrococcus luteus catalyze in vitro biosynthesis of teichuronic acid from uridine diphosphate D-glucose (UDP-glucose), uridine diphosphate N-acetyl-D-mannosaminuronic acid (UDP-ManNAcA), and uridine diphosphate N-acetyl-D-glucosamine. Membrane fragments solubilized with Thesit (dodecyl alcohol polyoxyethylene ether) can utilize UDP-glucose and UDP-ManNAcA to effect elongation of teichuronic acid isolated from native cell walls. When UDP-glucose is the only substrate supplied, the detergent-solubilized glucosyltransferase incorporates a single glucosyl residue onto each teichuronic acid acceptor. When both UDP-glucose and UDP-ManNAcA are supplied, the glucosyltransferase and the N-acetylmannosaminuronosyltransferase act cooperatively to elongate the teichuronic acid acceptor by multiple additions of the disaccharide repeat unit. As shown by polyacrylamide gel electrophoresis, low-molecular-weight fractions of teichuronic acid are converted to higher-molecular-weight polymers by the addition of as many as 17 disaccharide repeat units. Images PMID:2118507

  15. Effects of Different Ratio of n-6/n-3 Polyunsaturated Fatty Acids on the PI3K/Akt Pathway in Rats with Reflux Esophagitis.

    PubMed

    Zhuang, Jia-Yuan; Chen, Zhi-Yao; Zhang, Tao; Tang, Du-Peng; Jiang, Xiao-Yin; Zhuang, Ze-Hao

    2017-01-30

    BACKGROUND We designed this study to investigate the influence of different ratios of n-6/n-3 polyunsaturated fatty acid in the diet of reflux esophagitis (RE) rats' and the effect on the PI3K/Akt pathway. MATERIAL AND METHODS RE rats were randomly divided into a sham group and modeling groups of different concentrations of n-6/n-3 polyunsaturated fatty acid (PUFA): 12:1 group, 10:1 group, 5:1 group, and 1:1 group. RT-PCR and Western-blot were used to detect the expression of PI3K, Akt, p-Akt, NF-κBp50, and NF-κBp65 proteins in esophageal tissue. RESULTS In the n-6/n-3 PUFAs groups the expression of PI3K, Akt, p-Akt, nf-κbp50, and NF-κBp65 mRNA decreased with the decrease in n-6/n-3 ratios in the diet. The lowest expression of each indicator occurred in the 1:1 n-6/n-3 group compared with other n-6/n-3 groups, the difference was statistically significant (p<0.05). CONCLUSIONS The inhibition of n-3 PUFAs in the development of esophageal inflammation in rats with RE was attributed to the function of PI3K/Akt-NF-κB signaling pathway.

  16. Healthy yogurt fortified with n-3 fatty acids from vegetable sources.

    PubMed

    Dal Bello, B; Torri, L; Piochi, M; Zeppa, G

    2015-12-01

    The concentration of n-3 polyunsaturated fatty acids (PUFA) in yogurt was increased using 5 different vegetable oils obtained from flaxseed, Camelina sativa, raspberry, blackcurrant, and Echium plantagineum. The vegetable oils were added to partially skim milk before lactic fermentation at a concentration adequate enough to cover at least 10% of the recommended daily intake of 2 g/d of α-linolenic acid according to EC regulation no. 432/2012. Microbiological (lactobacilli and streptococci, yeast, and molds), chemical (pH, syneresis, proximate composition, fatty acids, oxidation stability), and sensory evaluations were assessed for all of the fortified yogurts after 0, 7, 14, and 21 d of storage at 4°C. Sensory evaluations were conducted at 21 d of storage at 4°C. Among the yogurts produced, those that were supplemented with flaxseed and blackcurrant oils exhibited the highest α-linolenic acid content (more than 200mg/100 g of yogurt) at the end of storage. The addition of oil did not influence the growth of lactic acid bacteria that were higher than 10(7) cfu/g at 21 d of storage. All of the yogurts were accepted by consumers, except for those supplemented with raspberry and E. plantagineum oils due to the presence of off flavors. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Chemical basis for the phytotoxicity of N-aryl hydroxamic acids and acetanilide analogues.

    PubMed

    Bravo, Héctor R; Villarroel, Elisa; Copaja, Sylvia V; Argandoña, Victor H

    2008-01-01

    Germination inhibition activity of N-aryl hydroxamic acids and acetanilide analogues was measured on lettuce seeds (Lactuca sativa). Lipophilicity of the compounds was determined by HPLC. A correlation between lipophilicity values and percentage of germination inhibition was established. A model mechanism of action for auxin was used for analyzing the effect of the substituent at the alpha carbon atom (Ca) on the polarization of hydroxamic and amide functions in relation to the germination inhibition activity observed. Results suggest that the lipophilic and acidic properties play an important role in the phytotoxicity of the compounds. A test with the microalga Chlorella vulgaris was used to evaluate the potential herbicide activity of the hydroxamic acids and acetanilides.

  18. Unmasking of CD22 Co-receptor on Germinal Center B-cells Occurs by Alternative Mechanisms in Mouse and Man*

    PubMed Central

    Macauley, Matthew S.; Kawasaki, Norihito; Peng, Wenjie; Wang, Shui-Hua; He, Yuan; Arlian, Britni M.; McBride, Ryan; Kannagi, Reiji; Khoo, Kay-Hooi; Paulson, James C.

    2015-01-01

    CD22 is an inhibitory B-cell co-receptor whose function is modulated by sialic acid (Sia)-bearing glycan ligands. Glycan remodeling in the germinal center (GC) alters CD22 ligands, with as yet no ascribed biological consequence. Here, we show in both mice and humans that loss of high affinity ligands on GC B-cells unmasks the binding site of CD22 relative to naive and memory B-cells, promoting recognition of trans ligands. The conserved modulation of CD22 ligands on GC B-cells is striking because high affinity glycan ligands of CD22 are species-specific. In both species, the high affinity ligand is based on the sequence Siaα2–6Galβ1–4GlcNAc, which terminates N-glycans. The human ligand has N-acetylneuraminic acid (Neu5Ac) as the sialic acid, and the high affinity ligand on naive B-cells contains 6-O-sulfate on the GlcNAc. On human GC B-cells, this sulfate modification is lost, giving rise to lower affinity CD22 ligands. Ligands of CD22 on naive murine B-cells do not contain the 6-O-sulfate modification. Instead, the high affinity ligand for mouse CD22 has N-glycolylneuraminic acid (Neu5Gc) as the sialic acid, which is replaced on GC B-cells with Neu5Ac. Human naive and memory B-cells express sulfated glycans as high affinity CD22 ligands, which are lost on GC B-cells. In mice, Neu5Gc-containing glycans serve as high affinity CD22 ligands that are replaced by Neu5Ac-containing glycans on GC B-cells. Our results demonstrate that loss of high affinity CD22 ligands on GC B-cells occurs in both mice and humans through alternative mechanisms, unmasking CD22 relative to naive and memory B-cells. PMID:26507663

  19. Effect of Soil pH Increase by Biochar on NO, N2O and N2 Production during Denitrification in Acid Soils

    PubMed Central

    Obia, Alfred; Cornelissen, Gerard; Mulder, Jan; Dörsch, Peter

    2015-01-01

    Biochar (BC) application to soil suppresses emission of nitrous- (N2O) and nitric oxide (NO), but the mechanisms are unclear. One of the most prominent features of BC is its alkalizing effect in soils, which may affect denitrification and its product stoichiometry directly or indirectly. We conducted laboratory experiments with anoxic slurries of acid Acrisols from Indonesia and Zambia and two contrasting BCs produced locally from rice husk and cacao shell. Dose-dependent responses of denitrification and gaseous products (NO, N2O and N2) were assessed by high-resolution gas kinetics and related to the alkalizing effect of the BCs. To delineate the pH effect from other BC effects, we removed part of the alkalinity by leaching the BCs with water and acid prior to incubation. Uncharred cacao shell and sodium hydroxide (NaOH) were also included in the study. The untreated BCs suppressed N2O and NO and increased N2 production during denitrification, irrespective of the effect on denitrification rate. The extent of N2O and NO suppression was dose-dependent and increased with the alkalizing effect of the two BC types, which was strongest for cacao shell BC. Acid leaching of BC, which decreased its alkalizing effect, reduced or eliminated the ability of BC to suppress N2O and NO net production. Just like untreated BCs, NaOH reduced net production of N2O and NO while increasing that of N2. This confirms the importance of altered soil pH for denitrification product stoichiometry. Addition of uncharred cacao shell stimulated denitrification strongly due to availability of labile carbon but only minor effects on the product stoichiometry of denitrification were found, in accordance with its modest effect on soil pH. Our study indicates that stimulation of denitrification was mainly due to increases in labile carbon whereas change in product stoichiometry was mainly due to a change in soil pH. PMID:26397367

  20. Effect of Soil pH Increase by Biochar on NO, N2O and N2 Production during Denitrification in Acid Soils.

    PubMed

    Obia, Alfred; Cornelissen, Gerard; Mulder, Jan; Dörsch, Peter

    2015-01-01

    Biochar (BC) application to soil suppresses emission of nitrous- (N2O) and nitric oxide (NO), but the mechanisms are unclear. One of the most prominent features of BC is its alkalizing effect in soils, which may affect denitrification and its product stoichiometry directly or indirectly. We conducted laboratory experiments with anoxic slurries of acid Acrisols from Indonesia and Zambia and two contrasting BCs produced locally from rice husk and cacao shell. Dose-dependent responses of denitrification and gaseous products (NO, N2O and N2) were assessed by high-resolution gas kinetics and related to the alkalizing effect of the BCs. To delineate the pH effect from other BC effects, we removed part of the alkalinity by leaching the BCs with water and acid prior to incubation. Uncharred cacao shell and sodium hydroxide (NaOH) were also included in the study. The untreated BCs suppressed N2O and NO and increased N2 production during denitrification, irrespective of the effect on denitrification rate. The extent of N2O and NO suppression was dose-dependent and increased with the alkalizing effect of the two BC types, which was strongest for cacao shell BC. Acid leaching of BC, which decreased its alkalizing effect, reduced or eliminated the ability of BC to suppress N2O and NO net production. Just like untreated BCs, NaOH reduced net production of N2O and NO while increasing that of N2. This confirms the importance of altered soil pH for denitrification product stoichiometry. Addition of uncharred cacao shell stimulated denitrification strongly due to availability of labile carbon but only minor effects on the product stoichiometry of denitrification were found, in accordance with its modest effect on soil pH. Our study indicates that stimulation of denitrification was mainly due to increases in labile carbon whereas change in product stoichiometry was mainly due to a change in soil pH.

  1. n-3 Fatty Acids, Ventricular Arrhythmia–Related Events, and Fatal Myocardial Infarction in Postmyocardial Infarction Patients With Diabetes

    PubMed Central

    Kromhout, Daan; Geleijnse, Johanna M.; de Goede, Janette; Oude Griep, Linda M.; Mulder, Barbara J.M.; de Boer, Menko-Jan; Deckers, Jaap W.; Boersma, Eric; Zock, Peter L.; Giltay, Erik J.

    2011-01-01

    OBJECTIVE We carried out a secondary analysis in high-risk patients with a previous myocardial infarction (MI) and diabetes in the Alpha Omega Trial. We tested the hypothesis that in these patients an increased intake of the n-3 fatty acids eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and α-linolenic acid (ALA) will reduce the incidence of ventricular arrhythmias and fatal MI. RESEARCH DESIGN AND METHODS A subgroup of 1,014 post-MI patients with diabetes aged 60–80 years was randomly allocated to receive one of four trial margarines, three with an additional amount of n-3 fatty acids and one placebo for 40 months. The end points were ventricular arrhythmia–related events and fatal MI. The data were analyzed according to the intention-to-treat principle, using multivariable Cox proportional hazards models. RESULTS The patients consumed on average 18.6 g of margarine per day, which resulted in an additional intake of 223 mg EPA plus 149 mg DHA and/or 1.9 g ALA in the active treatment groups. During follow-up, 29 patients developed a ventricular arrhythmia–related events and 27 had a fatal MI. Compared with placebo patients, the EPA-DHA plus ALA group experienced less ventricular arrhythmia–related events (hazard ratio 0.16; 95% CI 0.04–0.69). These n-3 fatty acids also reduced the combined end-point ventricular arrhythmia–related events and fatal MI (0.28; 0.11–0.71). CONCLUSIONS Our results suggest that low-dose supplementation of n-3 fatty acids exerts a protective effect against ventricular arrhythmia–related events in post-MI patients with diabetes. PMID:22110169

  2. Impacts of delayed addition of N-rich and acidic substrates on nitrogen loss and compost quality during pig manure composting.

    PubMed

    Jiang, Jishao; Kang, Kang; Chen, Dan; Liu, Ningning

    2018-02-01

    Delayed addition of Nitrogen (N)-rich and acidic substrates was investigated to evaluate its effects on N loss and compost quality during the composting process. Three different delayed adding methods of N-rich (pig manure) and acidic substrates (phosphate fertilizer and rotten apples) were tested during the pig manure and wheat straw is composting. The results showed that delayed addition of pig manure and acidic materials led two temperature peaks, and the durations of two separate thermophilic phase were closely related to the amount of pig manure. Delayed addition reduced total N loss by up to 14% when using superphosphate as acidic substrates, and by up to 12% when using rotten apples as acidic substrates, which is mainly due to the decreased NH 3 emissions. At the end of composting, delayed the addition of pig manure caused a significant increase in the HS (humus substance) content, and the highest HS content was observed when 70% of the pig manure was applied at day 0 and the remaining 30% was applied on day 27. In the final compost, the GI in all treatments almost reached the maturity requirement by exceeding 80%. The results suggest that delayed addition of animal manure and acidic substrates could prevent the N loss during composting and improve the compost quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Metal-free g-C{sub 3}N{sub 4} photocatalyst by sulfuric acid activation for selective aerobic oxidation of benzyl alcohol under visible light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ligang; University of Chinese Academy of Sciences, Beijing 100049; Liu, Di

    2014-11-15

    Highlights: • A novel visible-light-driven acid-modified g-C{sub 3}N{sub 4} was prepared. • The texture, electronic and surface property were tuned by acid modification. • Acid-modified g-C{sub 3}N{sub 4} shows much higher activity for photocatalytic activity. • Acid sites on the surface of g-C{sub 3}N{sub 4} favor efficient charge separation. - Abstract: In this work, modification of graphitic carbon nitride photocatalyst with acid was accomplished with a facile method through reflux in different acidic substances. The g-C{sub 3}N{sub 4}-based material was found to be a metal-free photocatalyst useful for the selective oxidation of benzyl alcohol with dioxygen as the oxidant undermore » visible light irradiation. Acid modification had a significant influence on the photocatalytic performance of g-C{sub 3}N{sub 4}. Among all acid tested, sulfuric acid-modified g-C{sub 3}N{sub 4} showed the highest catalytic activity and gave benzaldehyde in 23% yield for 4 h under visible light irradiation, which was about 2.5 times higher than that of g-C{sub 3}N{sub 4}. The acid modification effectively improved surface area, reduced structural size, enlarged band gap, enhanced surface chemical state, and facilitated photoinduced charge separation, contributing to the enhanced photocatalytic activity. It is hoped that our work can open promising prospects for the utilization of metal free g-C{sub 3}N{sub 4}-based semiconductor as visible-light photocatalyst for selective organic transformation.« less

  4. Influence of oilseed supplement ranging in n-6/n-3 ratio on fatty acid composition and Δ5-, Δ6-desaturase protein expression in steer muscles.

    PubMed

    Turner, T D; Mitchell, A; Duynisveld, J; Pickova, J; Doran, O; McNiven, M A

    2012-12-01

    This study investigated effects of roasted or extruded oilseed supplementation ranging in n-6/n-3 ratios from 0.3 to 5.0 on the fatty acid composition and expression of delta-5 desaturase (Δ5d) and Δ6-desaturase (Δ6d) protein in commercial steer cheek (m. masseter) and diaphragm (pars costalis diaphragmatis) muscles. In general, the n-6/n-3 ratio of the diet had a subsequent effect on the muscle n-6/n-3 ratio (P < 0.05), with muscle 18:2n-6 and 18:3n-3 content relating to proportion of dietary soya bean and linseed (P < 0.01). Compared with canola, pure linseed and soya bean diets reduced 14:1c-9 and 16:1c-9 (P < 0.05) but increased 18:1t-11 and c-9,t-11 conjugated linoleic acid (CLA) content (P < 0.01). Oilseed processing had a minor influence but extruded oilseeds increase 18:1t-11 and c-9,t-11 CLA compared with roasted (P < 0.05). Polar lipid 18:3n-3 and n-3 long-chain polyunsaturated fatty acid (LC, ⩾20 carbons PUFA) derivative content increased in relation to dietary linseed supplementation in the diaphragm (P < 0.01), whereas only 18:3n-3 was increased in the cheek (P < 0.01). Protein expression did not differ between diets; however, in each muscle the Δ5d protein expression had a stronger association with the desaturase products rather than the precursors. The relationship between Δ5d protein expression and the muscle LC n-6/n-3 ratio was negative in both muscles (P < 0.05). The relationship between Δ6d protein expression and the LC n-6/n-3 ratio was positive in the cheek (P < 0.001) and negative in the diaphragm (P < 0.05). In conclusion, diet n-6/n-3 ratio affected muscle 18:2n-6 and 18:3n-3 deposition, whereas the Δ5d and Δ6d protein expression had some influence on the polar lipid LC-PUFA profile. Results reaffirm that processed oilseeds can be used to increase the proportion of fatty acids potentially beneficial for human health, by influencing the formation of LC-PUFA and reducing the n-6/n-3 ratio.

  5. n-3 fatty acid dietary recommendations and food sources to achieve essentiality and cardiovascular benefits.

    PubMed

    Gebauer, Sarah K; Psota, Tricia L; Harris, William S; Kris-Etherton, Penny M

    2006-06-01

    Dietary recommendations have been made for n-3 fatty acids, including alpha-linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) to achieve nutrient adequacy and to prevent and treat cardiovascular disease. These recommendations are based on a large body of evidence from epidemiologic and controlled clinical studies. The n-3 fatty acid recommendation to achieve nutritional adequacy, defined as the amount necessary to prevent deficiency symptoms, is 0.6-1.2% of energy for ALA; up to 10% of this can be provided by EPA or DHA. To achieve recommended ALA intakes, food sources including flaxseed and flaxseed oil, walnuts and walnut oil, and canola oil are recommended. The evidence base supports a dietary recommendation of approximately 500 mg/d of EPA and DHA for cardiovascular disease risk reduction. For treatment of existing cardiovascular disease, 1 g/d is recommended. These recommendations have been embraced by many health agencies worldwide. A dietary strategy for achieving the 500-mg/d recommendation is to consume 2 fish meals per week (preferably fatty fish). Foods enriched with EPA and DHA or fish oil supplements are a suitable alternate to achieve recommended intakes and may be necessary to achieve intakes of 1 g/d.

  6. Docosahexaenoic acid synthesis from alpha-linolenic acid is inhibited by diets high in polyunsaturated fatty acids.

    PubMed

    Gibson, R A; Neumann, M A; Lien, E L; Boyd, K A; Tu, W C

    2013-01-01

    The conversion of the plant-derived omega-3 (n-3) α-linolenic acid (ALA, 18:3n-3) to the long-chain eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) can be increased by ALA sufficient diets compared to ALA deficient diets. Diets containing ALA above an optimal level result in no further increase in DHA levels in animals and humans. The present study evaluates means of maximizing plasma DHA accumulation by systematically varying both linoleic acid (LA, 18:2n-6) and ALA dietary level. Weanling rats were fed one of 54 diets for three weeks. The diets varied in the percentage of energy (en%) of LA (0.07-17.1 en%) and ALA (0.02-12.1 en%) by manipulating both the fat content and the balance of vegetable oils. The peak of plasma phospholipid DHA (>8% total fatty acids) was attained as a result of feeding a narrow dietary range of 1-3 en% ALA and 1-2 en% LA but was suppressed to basal levels (∼2% total fatty acids) at dietary intakes of total polyunsaturated fatty acids (PUFA) above 3 en%. We conclude it is possible to enhance the DHA status of rats fed diets containing ALA as the only source of n-3 fatty acids but only when the level of dietary PUFA is low (<3 en%). Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. The Salmon in Pregnancy Study: study design, subject characteristics, maternal fish and marine n-3 fatty acid intake, and marine n-3 fatty acid status in maternal and umbilical cord blood.

    PubMed

    Miles, Elizabeth A; Noakes, Paul S; Kremmyda, Lefkothea-Stella; Vlachava, Maria; Diaper, Norma D; Rosenlund, Grethe; Urwin, Heidi; Yaqoob, Parveen; Rossary, Adrien; Farges, Marie-Chantal; Vasson, Marie-Paule; Liaset, Bjørn; Frøyland, Livar; Helmersson, Johanna; Basu, Samar; Garcia, Erika; Olza, Josune; Mesa, Maria D; Aguilera, Concepcion M; Gil, Angel; Robinson, Sian M; Inskip, Hazel M; Godfrey, Keith M; Calder, Philip C

    2011-12-01

    Oily fish provides marine n-3 (omega-3) fatty acids that are considered to be important in the growth, development, and health of the fetus and newborn infant. The objectives were to increase salmon consumption among pregnant women and to determine the effect on maternal and umbilical cord plasma marine n-3 fatty acid content. Women (n = 123) with low habitual consumption of oily fish were randomly assigned to continue their habitual diet or were provided with 2 portions of farmed salmon/wk to include in their diet from week 20 of pregnancy until delivery. Median weekly consumption frequency of study salmon in the salmon group was 1.94 portions, and total fish consumption frequency was 2.11 portions/wk in the salmon group and 0.47 portions/wk in the control group (P < 0.001). Intakes of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from the diet, from seafood, and from oily fish were higher in the salmon group (all P < 0.001). Percentages of EPA and DHA in plasma phosphatidylcholine decreased during pregnancy in the control group (P for trend = 0.029 and 0.008, respectively), whereas they increased in the salmon group (P for trend for both < 0.001). EPA and DHA percentages were higher in maternal plasma phosphatidylcholine at weeks 34 and 38 of pregnancy and in umbilical cord plasma phosphatidylcholine in the salmon group (P < 0.001 for all). If pregnant women, who do not regularly eat oily fish, eat 2 portions of salmon/wk, they will increase their intake of EPA and DHA, achieving the recommended minimum intake; and they will increase their and their fetus' status of EPA and DHA. This trial was registered at clinicaltrials.gov as NCT00801502.

  8. Enteral diets enriched with medium-chain triglycerides and N-3 fatty acids prevent chemically induced experimental colitis in rats.

    PubMed

    Kono, Hiroshi; Fujii, Hideki; Ogiku, Masahito; Tsuchiya, Masato; Ishii, Kenichi; Hara, Michio

    2010-11-01

    The specific purpose of this study was to evaluate the significant effects of medium-chain triglycerides (MCTs) and N-3 fatty acids on chemically induced experimental colitis induced by 2,4,6-trinitrobenzene sulphonic acid (TNBS) in rats. Male Wistar rats were fed liquid diets enriched with N-6 fatty acid (control diets), N-3 fatty acid (MCT- diets), and N-3 fatty acid and MCT (MCT+ diets) for 2 weeks and then were given an intracolonic injection of TNBS. Serum and tissue samples were collected 5 days after ethanol or TNBS enema. The severity of colitis was evaluated pathologically, and tissue myeloperoxidase activity was measured in colonic tissues. Furthermore, protein levels for inflammatory cytokines and a chemokine were assessed by an enzyme-linked immunosorbent assay in colonic tissues. Induction of proinflammatory cytokines tumor necrosis factor-α and interleukin-1β in the colon by TNBS enema was markedly attenuated by the MCT+ diet among the 3 diets studied. Furthermore, the induction of chemokines macrophage inflammatory protein-2 and monocyte chemotactic protein-1 also was blunted significantly in animals fed the MCT+ diets. As a result, MPO activities in the colonic tissue also were blunted significantly in animals fed the MCT+ diets compared with those fed the control diets or the MCT- diets. Furthermore, the MCT+ diet improved chemically induced colitis significantly among the 3 diets studied. Diets enriched with both MCTs and N-3 fatty acids may be effective for the therapy of inflammatory bowel disease as antiinflammatory immunomodulating nutrients. Copyright © 2010 Mosby, Inc. All rights reserved.

  9. Effects of dietary conjugated linoleic acid and linoleic:linolenic acid ratio on polyunsaturated fatty acid status in laying hens.

    PubMed

    Du, M; Ahn, D U; Sell, J L

    2000-12-01

    A study was conducted to determine the effects of dietary conjugated linoleic acid (CLA) and the ratio of linoleic:linolenic acid on long-chain polyunsaturated fatty acid status. Thirty-two 31-wk-old White Leghorn hens were randomly assigned to four diets containing 8.2% soy oil, 4.1% soy oil + 2.5% CLA (4.1% CLA source), 4.1% flax oil + 2.5% CLA, or 4.1% soy oil + 4.1% flax oil. Hens were fed the diets for 3 wk before eggs and tissues were collected for the study. Lipids were extracted from egg yolk and tissues, classes of egg yolk lipids were separated, and fatty acid concentrations of total lipids, triglyceride, phosphatidylethanolamine, and phosphatidylcholine were analyzed by gas chromatography. The concentrations of monounsaturated fatty acids and non-CLA polyunsaturated fatty acids were reduced after CLA feeding. The amount of arachidonic acid was decreased after CLA feeding in linoleic acid- and linolenic acid-rich diets, but amounts of eicosapentaenoic acid and docosahexaenoic acid were increased in the linolenic-rich diet, indicating that the synthesis or deposition of long-chain n-3 fatty acids was accelerated after CLA feeding. The increased docosahexaenoic acid and eicosapentaenoic acid contents in lipid may be compensation for the decreased arachidonic acid content. Dietary supplementation of linoleic acid increased n-6 fatty acid levels in lipids, whereas linolenic acid increased n-3 fatty acid levels. Results also suggest that CLA might not be elongated to synthesize long-chain fatty acids in significant amounts. The effect of CLA in reducing the level of n-6 fatty acids and promoting the level of n-3 fatty acids could be related to the biological effects of CLA.

  10. Crystal structures of three co-crystals of 1,2-bis-(pyridin-4-yl)ethane with 4-alk-oxy-benzoic acids: 4-eth-oxy-benzoic acid-1,2-bis-(pyridin-4-yl)ethane (2/1), 4-n-propoxybenzoic acid-1,2-bis(pyridin-4-yl)ethane (2/1) and 4-n-but-oxy-benzoic acid-1,2-bis-(pyridin-4-yl)ethane (2/1).

    PubMed

    Tabuchi, Yohei; Gotoh, Kazuma; Ishida, Hiroyuki

    2015-11-01

    The crystal structures of three hydrogen-bonded co-crystals of 4-alk-oxy-benzoic acid-1,2-bis-(pyridin-4-yl)ethane (2/1), namely, 2C9H10O3·C12H12N2, (I), 2C10H12O3·C12H12N2, (II), and 2C11H14O3·C12H12N2, (III), have been determined at 93, 290 and 93 K, respectively. In (I), the asymmetric unit consists of one 4-eth-oxy-benzoic acid mol-ecule and one half-mol-ecule of 1,2-bis-(pyridin-4-yl)ethane, which lies on an inversion centre. In (II) and (III), the asymmetric units each comprise two crystallographically independent 4-alk-oxy-benzoic acid mol-ecules and one 1,2-bis-(pyridin-4-yl)ethane mol-ecule. In each crystal, the two components are linked by O-H⋯N hydrogen bonds, forming a linear hydrogen-bonded 2:1unit of the acid and the base. Similar to the structure of 2:1 unit of (I), the units of (II) and (III) adopt nearly pseudo-inversion symmetry. The 2:1 units of (I), (II) and (III) are linked via C-H⋯O hydrogen bonds, forming tape structures.

  11. Low n-6/n-3 PUFA Ratio Improves Lipid Metabolism, Inflammation, Oxidative Stress and Endothelial Function in Rats Using Plant Oils as n-3 Fatty Acid Source.

    PubMed

    Yang, Li Gang; Song, Zhi Xiu; Yin, Hong; Wang, Yan Yan; Shu, Guo Fang; Lu, Hui Xia; Wang, Shao Kang; Sun, Gui Ju

    2016-01-01

    Lipid metabolism, inflammation, oxidative stress and endothelial function play important roles in the pathogenesis of cardiovascular disease (CVD), which may be affected by an imbalance in the n-6/n-3 polyunsaturated fatty acid (PUFA) ratio. This study aimed to investigate the effects of the n-6/n-3 PUFA ratio on these cardiovascular risk factors in rats fed a high-fat diet using plant oils as the main n-3 PUFA source. The 1:1 and 5:1 ratio groups had significantly decreased serum levels of total cholesterol, low-density lipoprotein cholesterol, and proinflammatory cytokines compared with the 20:1 group (p < 0.05). Additionally, the 20:1 group had significantly increased serum levels of E-Selectin, von Willebrand factor (vWF), and numerous markers of oxidative stress compared with the other groups (p < 0.05). The 1:1 group had a significantly decreased lipid peroxide level compared with the other groups (p < 0.05). Serum levels of malondialdehyde, reactive oxygen species and vWF tended to increase with n-6/n-3 PUFA ratios increasing from 5:1 to 20:1. We demonstrated that low n-6/n-3 PUFA ratio (1:1 and 5:1) had a beneficial effect on cardiovascular risk factors by enhancing favorable lipid profiles, having anti-inflammatory and anti-oxidative stress effects, and improving endothelial function. A high n-6/n-3 PUFA ratio (20:1) had adverse effects. Our results indicated that low n-6/n-3 PUFA ratios exerted beneficial cardiovascular effects, suggesting that plant oils could be used as a source of n-3 fatty acids to prevent CVD. They also suggested that we should be aware of possible adverse effects from excessive n-3 PUFA.

  12. The Effect of Marine Derived n-3 Fatty Acids on Adipose Tissue Metabolism and Function

    PubMed Central

    Todorčević, Marijana; Hodson, Leanne

    2015-01-01

    Adipose tissue function is key determinant of metabolic health, with specific nutrients being suggested to play a role in tissue metabolism. One such group of nutrients are the n-3 fatty acids, specifically eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3). Results from studies where human, animal and cellular models have been utilised to investigate the effects of EPA and/or DHA on white adipose tissue/adipocytes suggest anti-obesity and anti-inflammatory effects. We review here evidence for these effects, specifically focusing on studies that provide some insight into metabolic pathways or processes. Of note, limited work has been undertaken investigating the effects of EPA and DHA on white adipose tissue in humans whilst more work has been undertaken using animal and cellular models. Taken together it would appear that EPA and DHA have a positive effect on lowering lipogenesis, increasing lipolysis and decreasing inflammation, all of which would be beneficial for adipose tissue biology. What remains to be elucidated is the duration and dose required to see a favourable effect of EPA and DHA in vivo in humans, across a range of adiposity. PMID:26729182

  13. n-3 Fatty Acids Attenuate the Risk of Diabetes Associated With Elevated Serum Nonesterified Fatty Acids: The Multi-Ethnic Study of Atherosclerosis

    PubMed Central

    Steffen, Brian T.; Steffen, Lyn M.; Zhou, Xia; Ouyang, Pamela; Weir, Natalie L.

    2015-01-01

    OBJECTIVE Chronically high nonesterified fatty acids (NEFAs) are a marker of metabolic dysfunction and likely increase risk of type 2 diabetes. By comparison, n-3 fatty acids (FAs) have been shown to have various health benefits and may protect against disease development. In 5,697 participants of the Multi-Ethnic Study of Atherosclerosis (MESA), we examined whether serum levels of NEFAs relate to risk of incident type 2 diabetes and further tested whether plasma n-3 FA levels may interact with this relation. RESEARCH DESIGN AND METHODS NEFAs were measured in fasting serum using an enzymatic colorimetric assay and phospholipid n-3 FAs eicosapentaenoic and docosahexaenoic acids were determined in plasma through gas chromatography-flame ionization detection in 5,697 MESA participants. Cox proportional hazards regression evaluated the association between NEFA levels and incident type 2 diabetes and whether plasma n-3 FAs modified this association adjusting for age, sex, race, education, field center, smoking, and alcohol use. RESULTS Over a mean 11.4 years of the study period, higher diabetes incidence was found across successive NEFA quartiles (Q) (hazard ratio [95% CI]): Q1, 1.0; Q2, 1.35 (1.07, 1.71); Q3, 1.58 (1.24, 2.00); and Q4, 1.86 (1.45, 2.38) (Ptrend < 0.001). A significant interaction of n-3 FAs on the relation between NEFAs and type 2 diabetes was also observed (Pinteraction = 0.03). For individuals with lower n-3 levels (<75th percentile), a higher risk of type 2 diabetes was observed across quartiles of NEFAs: Q1, 1.0; Q2, 1.41 (1.07, 1.84); Q3, 1.77 (1.35, 2.31); and Q4, 2.18 (1.65, 2.88) (Ptrend < 0.001). No significant associations were observed in those with n-3 FAs ≥75th percentile (Ptrend = 0.54). CONCLUSIONS NEFAs are a marker of type 2 diabetes and may have clinical utility for detecting risk of its development. The modifying influence of n-3 FAs suggests a protective effect against disease and/or metabolic dysfunction related to NEFAs and

  14. Dietary α-Linolenic Acid, Marine ω-3 Fatty Acids, and Mortality in a Population With High Fish Consumption: Findings From the PREvención con DIeta MEDiterránea (PREDIMED) Study.

    PubMed

    Sala-Vila, Aleix; Guasch-Ferré, Marta; Hu, Frank B; Sánchez-Tainta, Ana; Bulló, Mònica; Serra-Mir, Mercè; López-Sabater, Carmen; Sorlí, Jose V; Arós, Fernando; Fiol, Miquel; Muñoz, Miguel A; Serra-Majem, Luis; Martínez, J Alfredo; Corella, Dolores; Fitó, Montserrat; Salas-Salvadó, Jordi; Martínez-González, Miguel A; Estruch, Ramón; Ros, Emilio; B

    2016-01-26

    Epidemiological evidence suggests a cardioprotective role of α-linolenic acid (ALA), a plant-derived ω-3 fatty acid. It is unclear whether ALA is beneficial in a background of high marine ω-3 fatty acids (long-chain n-3 polyunsaturated fatty acids) intake. In persons at high cardiovascular risk from Spain, a country in which fish consumption is customarily high, we investigated whether meeting the International Society for the Study of Fatty Acids and Lipids recommendation for dietary ALA (0.7% of total energy) at baseline was related to all-cause and cardiovascular disease mortality. We also examined the effect of meeting the society's recommendation for long-chain n-3 polyunsaturated fatty acids (≥500 mg/day). We longitudinally evaluated 7202 participants in the PREvención con DIeta MEDiterránea (PREDIMED) trial. Multivariable-adjusted Cox regression models were fitted to estimate hazard ratios. ALA intake correlated to walnut consumption (r=0.94). During a 5.9-y follow-up, 431 deaths occurred (104 cardiovascular disease, 55 coronary heart disease, 32 sudden cardiac death, 25 stroke). The hazard ratios for meeting ALA recommendation (n=1615, 22.4%) were 0.72 (95% CI 0.56-0.92) for all-cause mortality and 0.95 (95% CI 0.58-1.57) for fatal cardiovascular disease. The hazard ratios for meeting the recommendation for long-chain n-3 polyunsaturated fatty acids (n=5452, 75.7%) were 0.84 (95% CI 0.67-1.05) for all-cause mortality, 0.61 (95% CI 0.39-0.96) for fatal cardiovascular disease, 0.54 (95% CI 0.29-0.99) for fatal coronary heart disease, and 0.49 (95% CI 0.22-1.01) for sudden cardiac death. The highest reduction in all-cause mortality occurred in participants meeting both recommendations (hazard ratio 0.63 [95% CI 0.45-0.87]). In participants without prior cardiovascular disease and high fish consumption, dietary ALA, supplied mainly by walnuts and olive oil, relates inversely to all-cause mortality, whereas protection from cardiac mortality is limited to

  15. The synthesis and structure of a potential immunosuppressant: N-mycophenoyl malonic acid dimethyl ester

    NASA Astrophysics Data System (ADS)

    Siebert, Agnieszka; Cholewiński, Grzegorz; Garwolińska, Dorota; Olejnik, Adrian; Rachoń, Janusz; Chojnacki, Jarosław

    2018-01-01

    The synthesis of a potential immunosuppressant, i.e. dimethyl ester of N-mycophenoyl malonic acid was optimized in the reaction of mycophenolic acid (MPA) with amino malonic dimethyl ester in the presence of propanephosphonic anhydride (T3P) as a coupling reagent. The structural properties of the obtained MPA derivative were investigated by NMR, MS and single crystal X-ray diffraction methods. Theoretical considerations of conformational flexibility based on DFT calculations are presented.

  16. Cell-free identification of novel N-myristoylated proteins from complementary DNA resources using bioorthogonal myristic acid analogues.

    PubMed

    Takamitsu, Emi; Fukunaga, Kazuki; Iio, Yusuke; Moriya, Koko; Utsumi, Toshihiko

    2014-11-01

    To establish a non-radioactive, cell-free detection system for protein N-myristoylation, metabolic labeling in a cell-free protein synthesis system using bioorthogonal myristic acid analogues was performed. After Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) with a biotin tag, the tagged proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and blotted on a polyvinylidene fluoride (PVDF) membrane, and then protein N-myristoylation was detected by enhanced chemiluminescence (ECL) using horseradish peroxidase (HRP)-conjugated streptavidin. The results showed that metabolic labeling in an insect cell-free protein synthesis system using an azide analogue of myristic acid followed by CuAAC with alkynyl biotin was the most effective strategy for cell-free detection of protein N-myristoylation. To determine whether the newly developed detection method can be applied for the detection of novel N-myristoylated proteins from complementary DNA (cDNA) resources, four candidate cDNA clones were selected from a human cDNA resource and their susceptibility to protein N-myristoylation was evaluated using the newly developed strategy. As a result, the products of three cDNA clones were found to be novel N-myristoylated protein, and myristoylation-dependent specific intracellular localization was observed for two novel N-myristoylated proteins. Thus, the metabolic labeling in an insect cell-free protein synthesis system using bioorthogonal azide analogue of myristic acid was an effective strategy to identify novel N-myristoylated proteins from cDNA resources. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Photo-catalytic decolourisation of toxic dye with N-doped titania: a case study with Acid Blue 25.

    PubMed

    Chakrabortty, Dhruba; Gupta, Susmita Sen

    2013-05-01

    Dyes are one of the hazardous water pollutants. Toxic Acid Blue 25, an anthraquinonic dye, has been decolourised by photo-catalysing it with nitrogen doped titania in aqueous medium. The photo catalyst was prepared from 15% TiCl3 and 25% aqueous NH3 solution as precursor. XRD and TEM revealed the formation of well crystalline anatase phase having particle size in the nano-range. BET surface area of the sample was higher than that of pure anatase TiO2. DRS showed higher absorption of radiation in visible range compared to pure anatase TiO2. XPS revealed the presence of nitrogen in N-Ti-O environment. The experimental parameters, namely, photocatalyst dose, initial dye concentration as well as solution pH influence the decolourisation process. At pH 3.0, the N-TiO2 could decolourise almost 100% Acid Blue 25 within one hour. The influence of N-TiO2 dose, initial concentration of Acid Blue 25 and solution pH on adsorption-desorption equilibrium is also studied. The adsorption process follows Lagergren first order kinetics while the modified Langmuir-Hinselwood model is suitably fitted for photocatalytic decolourisation of Acid Blue 25.

  18. Correlation between oxalic acid production and tolerance of Tyromyces palustris strain TYP-6137 to N',N-naphthaloylhydroxamine

    Treesearch

    Rachel A. Arango; Patricia K. Lebow; Frederick III Green

    2009-01-01

    Eleven strains of T. palustris were evaluated for mass loss and production of phosphate buffer soluble oxalic acid on pine wood blocks treated with 0.5% N’,N-naphthaloylhydroxamine (NHA) in a soil-block test. After 12 weeks higher percentage mass loss was observed in control groups for 10 strains, while TYP-6137 was shown to be tolerant with no difference between the...

  19. Radiolysis of N-acetyl amino acids as model compounds for radiation degradation of polypeptides

    NASA Astrophysics Data System (ADS)

    Wayne Garrett, R.; Hill, David J. T.; Ho, Sook-Ying; O'Donnell, James H.; O'Sullivan, Paul W.; Pomery, Peter J.

    Radiation chemical yields of (i) the volatile radiolysis products and (ii) the trapped free radicals from the y-radiolysis of the N-acetyl derivatives of glycine, L-valine, L-phenylalanine and L-tyrosine in the polycrystalline state have been determined at room temperature (303 K). Carbon dioxide was found to be the major molecular product for all these compounds with G(CO 2) varying from 0.36 for N-acetyl-L-tyrosine to 8 for N-acetyl-L-valine. There was evidence for some scission of the N-C α bond, indicated by the production of acetamide and the corresponding aliphatic acid, but the determination reaction was found to be of much lesser importance than the decarboxylation reaction. A protective effect of the aromatic ring in N-acetyl-L-phenylalanine and in N-acetyl-L-tyrosine was indicated by the lower yields of volatile products for these compounds. The yields of trapped free radicals were found to vary with the nature of the amino acid side chain, increasing with chain length and chain branching. The radical yields were decreased by incorporation of an aromatic moiety in the side chain, this effect being greater for the tyrosyl side chain than for the phenyl side chain. The G(R·) values showed a good correlation with G(CO 2) indicating that a common reaction may be involved in radical production and carbon dioxide formation.

  20. Identification of Amino Acid Changes That May Have Been Critical for the Genesis of A(H7N9) Influenza Viruses

    PubMed Central

    Neumann, Gabriele; Macken, Catherine A.

    2014-01-01

    ABSTRACT Novel influenza A viruses of the H7N9 subtype [A(H7N9)] emerged in the spring of 2013 in China and had infected 163 people as of 10 January 2014; 50 of them died of the severe respiratory infection caused by these viruses. Phylogenetic studies have indicated that the novel A(H7N9) viruses emerged from reassortment of H7, N9, and H9N2 viruses. Inspections of protein sequences from A(H7N9) viruses and their immediate predecessors revealed several amino acid changes in A(H7N9) viruses that may have facilitated transmission and replication in the novel host. Since mutations that occurred more ancestrally may also have contributed to the genesis of A(H7N9) viruses, we inferred historical evolutionary events leading to the novel viruses. We identified a number of amino acid changes on the evolutionary path to A(H7N9) viruses, including substitutions that may be associated with host range, replicative ability, and/or host responses to infection. The biological significance of these amino acid changes can be tested in future studies. IMPORTANCE The novel influenza A viruses of the H7N9 subtype [A(H7N9)], which first emerged in the spring of 2013, cause severe respiratory infections in humans. Here, we performed a comprehensive evolutionary analysis of the progenitors of A(H7N9) viruses to identify amino acid changes that may have been critical for the emergence of A(H7N9) viruses and their ability to infect humans. We provide a list of potentially important amino acid changes that can be tested for their significance for the influenza virus host range, replicative ability, and/or host responses to infection. PMID:24522919

  1. Third phase formation in the extraction of phosphotungstic acid by TBP in n-octane.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antonio, M. R.; Chiarizia, R.; Jaffrennou, F.

    2010-08-30

    The solvent extraction of 12-phosphotungstic acid, also known as 12-tungstophosphoric acid-H{sub 3}PW{sub 12}O{sub 40}, the so-called Keggin heteropolyacid - by 0.73 M (20%v/v) tri-n-butyl phosphate (TBP) in n-octane under conditions comparable to those used previously for the extraction of conventional inorganic mineral acids is described. A simplified phase diagram for the pentanary system comprised of H{sub 3}PW{sub 12}O{sub 40}, HNO{sub 3}, H{sub 2}O, TBP, and n-octane reveals an extremely low initial concentration of H{sub 3}PW{sub 12}O{sub 40} (1.1 mM) at the LOC (limiting organic concentration) condition, far lower than the most effective third-phase-forming inorganic acid, namely HClO{sub 4}. The resultsmore » from small-angle neutron scattering (SANS) indicate that the interparticle attraction energy - U(r) calculated through application of the Baxter sticky sphere model to the SANS data at the LOC condition - does not approach the -2 k{sub B} T value associated with phase splitting in previous studies of TBP third-phase formation. The third-phase formation model based on attractive interactions between polar cores of reverse micelles, successfully developed for TBP and other extraction systems does not apply to the extraction of H{sub 3}PW{sub 12}O{sub 40}. Rather, the separation of a third-phase from the TBP organic phase stems from the limited solubility of the heavy and highly polar H{sub 3}PW{sub 12}O{sub 40}-TBP species in the alkane diluent.« less

  2. Affinity chromatography matrices for depletion and purification of casein glycomacropeptide from bovine whey.

    PubMed

    Baieli, María F; Urtasun, Nicolás; Martinez, María J; Hirsch, Daniela B; Pilosof, Ana M R; Miranda, María V; Cascone, Osvaldo; Wolman, Federico J

    2017-01-01

    Casein glycomacropeptide (CMP) is a 64- amino acid peptide found in cheese whey, which is released after κ-casein specific cleavage by chymosin. CMP lacks aromatic amino acids, a characteristic that makes it usable as a nutritional supplement for people with phenylketonuria. CMP consists of two nonglycosylated isoforms (aCMP A and aCMP B) and its different glycosylated forms (gCMP A and gCMP B). The most predominant carbohydrate of gCMP is N-acetylneuraminic acid (sialic acid). Here, we developed a CMP purification process based on the affinity of sialic acid for wheat germ agglutinin (WGA). After formation of chitosan beads and adsorption of WGA, the agglutinin was covalently attached with glutaraldehyde. Two matrices with different WGA density were assayed for CMP adsorption. Maximum adsorption capacities were calculated according to the Langmuir model from adsorption isotherms developed at pH 7.0, being 137.0 mg/g for the matrix with the best performance. In CMP reduction from whey, maximum removal percentage was 79% (specifically 33.7% of gCMP A and B, 75.8% of aCMP A, and 93.9% of aCMP B). The CMP was recovered as an aggregate with an overall yield of 64%. Therefore, the matrices developed are promising for CMP purification from cheese whey. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:171-180, 2017. © 2016 American Institute of Chemical Engineers.

  3. Bimetallic-organic framework derived porous Co3O4/Fe3O4/C-loaded g-C3N4 nanocomposites as non-enzymic electrocatalysis oxidization toward ascorbic acid, dopamine acid, and uric acid

    NASA Astrophysics Data System (ADS)

    Hu, Bin; Liu, Yongkang; Wang, Zhuo-Wei; Song, Yingpan; Wang, Minghua; Zhang, Zhihong; Liu, Chun-Sen

    2018-05-01

    We report on the synthesis of Co- and Fe-based bimetallic nanocatalysts embedded in mesoporous carbon and g-C3N4 nanosheets (denoted as Co3O4/Fe3O4/mC@g-C3N4) for selectively simultaneous determination of ascorbic acid (AA), dopamine acid (DA), and uric acid (UA). These electrocatalysts consisting of bimetallic Co-Fe alloy nanoparticles encapsulated in N-doped carbon matrix were prepared via pyrolysis of Co/Fe-MOFs after grinding with high amounts of melamine. Chemical/crystal structures suggest high contents of mesoporous carbon in calcinated Co3O4/Fe3O4/mC nanocomposites, which exhibited enhanced electrocatalytic activity toward small biomolecules. The intrinsic performances of Co/Fe-MOFs with large specific surface area and regular nodes in the two-dimensional nanostructured g-C3N4 nanosheets endowed the as-prepared series of Co3O4/Fe3O4/mC@g-C3N4 nanocomposites with remarkable electrocatalytic activities and high adsorption ability toward oxidation of AA, DA, and UA. The developed biosensors also showed long-term stability and high selectivity for targeted analytes, with satisfactory results on actual samples in human urine. The results indicate that the as-synthesized Co3O4/Fe3O4/mC@g-C3N4 nanostructure exhibits good electrocatalytic activity and potential applications in clinical diagnosis and biosensing.

  4. Direct hydrogenation of biomass-derived butyric acid to n-butanol over a ruthenium-tin bimetallic catalyst.

    PubMed

    Lee, Jong-Min; Upare, Pravin P; Chang, Jong-San; Hwang, Young Kyu; Lee, Jeong Ho; Hwang, Dong Won; Hong, Do-Young; Lee, Seung Hwan; Jeong, Myung-Geun; Kim, Young Dok; Kwon, Young-Uk

    2014-11-01

    Catalytic hydrogenation of organic carboxylic acids and their esters, for example, cellulosic ethanol from fermentation of acetic acid and hydrogenation of ethyl acetate is a promising possibility for future biorefinery concepts. A hybrid conversion process based on selective hydrogenation of butyric acid combined with fermentation of glucose has been developed for producing biobutanol. ZnO-supported Ru-Sn bimetallic catalysts exhibits unprecedentedly superior performance in the vapor-phase hydrogenation of biomass-derived butyric acid to n-butanol (>98% yield) for 3500 h without deactivation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Sample preparation techniques for the determination of natural 15N/14N variations in amino acids by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS).

    PubMed

    Hofmann, D; Gehre, M; Jung, K

    2003-09-01

    In order to identify natural nitrogen isotope variations of biologically important amino acids four derivatization reactions (t-butylmethylsilylation, esterification with subsequent trifluoroacetylation, acetylation and pivaloylation) were tested with standard mixtures of 17 proteinogenic amino acids and plant (moss) samples using GC-C-IRMS. The possible fractionation of the nitrogen isotopes, caused for instance by the formation of multiple reaction products, was investigated. For biological samples, the esterification of the amino acids with subsequent trifluoroacetylation is recommended for nitrogen isotope ratio analysis. A sample preparation technique is described for the isotope ratio mass spectrometric analysis of amino acids from the non-protein (NPN) fraction of terrestrial moss. 14N/15N ratios from moss (Scleropodium spec.) samples from different anthropogenically polluted areas were studied with respect to ecotoxicologal bioindication.

  6. Nitroreductase-dependent mutagenicity of p-nitrophenylhydroxylamine and its N-acetyl and N-formyl hydroxamic acids.

    PubMed

    Corbett, M D; Wei, C; Corbett, B R

    1985-05-01

    p-Nitrophenylhydroxylamine (NPH) and two hydroxamic acids derived from it were synthesized and subjected to mutagenicity testing in Salmonella typhimurium strains TA98, TA98NR, TA1538 and TA1538NR. In addition, p-dinitrobenzene (DNB), p-nitroaniline (NA) and p-nitroacetanilide (AcNA) were simultaneously examined for mutagenic action against these four tester strains. NPH, its N-acetyl (AcNPH) and N-formyl (FoNPH) derivatives, and also DNB displayed strong mutagenic action to the nitroreductase-containing strains, TA98 and TA1538. NPH was the most potent chemical in this series against both of these strains, while the two hydroxamic acids AcNPH and FoNPH, and also DNB displayed approximately the same degree of mutagenicity. In the nitroreductase-deficient strains, TA98NR and TA1538NR, the mutagenicity of these four compounds was markedly reduced. The necessity for nitroreduction in order to activate these promutagens is fairly certain; however, the lack of mutagenicity of NA and AcNA towards all four tester strains made the interpretation of these data somewhat more complicated. Several possible bioactivation pathways were presented, with one mechanism in particular being proposed. This mechanism requires only that the strong electron-withdrawing nitro group be converted to an electron-donating group by bacterial nitroreductase. Such a mechanism is unique for the bioactivation of nitro aromatics by nitroreductase, since the enzymatic reduction need not produce the intermediary hydroxylamine metabolite.

  7. N-Acyl amino acids and their impact on biological processes.

    PubMed

    Hanuš, Lumír; Shohami, Esther; Bab, Itai; Mechoulam, Raphael

    2014-01-01

    Over the last two decades a large number of N-long-chain acyl amino acids have been identified in the mammalian body. The pharmacological activities of only a few of them have been investigated and some have been found to be of considerable interest. Thus arachidonoyl serine is vasodilatory and neuroprotective, arachidonoyl glycine is antinociceptive, and oleoyl serine rescues bone loss. However, the pathophysiological/biochemical roles of these amides are mostly unknown. © 2014 International Union of Biochemistry and Molecular Biology.

  8. Food products as vehicles for n-3 fatty acid supplementation.

    PubMed

    Martin, Lisa; Zarn, Dayna; Hansen, Anne Marie; Wismer, Wendy; Mazurak, Vera

    2008-01-01

    An n-3 polyunsaturated fatty acid (PUFA) supplement was incorporated into three food products previously determined to be preferred by cancer patients, and overall acceptability of these foods was evaluated. Preliminary testing was performed; an internal panel determined initial acceptability of foods with the supplement added. Taste panel evaluations were held at the Cross Cancer Institute in Edmonton, Alberta. Each participant completed a questionnaire rating aroma, flavour, and overall acceptance on a seven-point hedonic scale (1 = dislike extremely, 7 = like extremely), as well as ability to consume each food daily. Foods were well-liked by patients and non-patients. Mean +/- standard deviation acceptance scores for the three foods were pasta sauce 5.9 +/- 0.94 (n=90), oatmeal 6.1 +/- 0.88 (n=79), and smoothie 5.9 +/- 1.12 (n=126). Overall, 94% of patients and non-patients gave tomato pasta sauce, oatmeal, and the smoothie an acceptance score of at least 5. The supplement was incorporated successfully into three foods, which were highly accepted by patients with cancer. Further research should focus on incorporating the supplement into flavoured or sweet foods, as these appear most effective. Microencapsulated fish oil in food products may be used as an alternative to fish oil capsules for delivering n-3 PUFA in clinical trials.

  9. Interaction between Marine-Derived n-3 Long Chain Polyunsaturated Fatty Acids and Uric Acid on Glucose Metabolism and Risk of Type 2 Diabetes Mellitus: A Case-Control Study.

    PubMed

    Li, Kelei; Wu, Kejian; Zhao, Yimin; Huang, Tao; Lou, Dajun; Yu, Xiaomei; Li, Duo

    2015-08-26

    The present case-control study explored the interaction between marine-derived n-3 long chain polyunsaturated fatty acids (n-3 LC PUFAs) and uric acid (UA) on glucose metabolism and risk of type 2 diabetes mellitus (T2DM). Two hundred and eleven healthy subjects in control group and 268 T2DM subjects in case group were included. Plasma phospholipid (PL) fatty acids and biochemical parameters were detected by standard methods. Plasma PL C22:6n-3 was significantly lower in case group than in control group, and was negatively correlated with fasting glucose (r = -0.177, p < 0.001). Higher plasma PL C22:6n-3 was associated with lower risk of T2DM, and the OR was 0.32 (95% confidence interval (CI), 0.12 to 0.80; p = 0.016) for per unit increase of C22:6n-3. UA was significantly lower in case group than in control group. UA was positively correlated with fasting glucose in healthy subjects, but this correlation became negative in T2DM subjects. A significant interaction was observed between C22:6n-3 and UA on fasting glucose (p for interaction = 0.005): the lowering effect of C22:6n-3 was only significant in subjects with a lower level of UA. In conclusion, C22:6n-3 interacts with UA to modulate glucose metabolism.

  10. Methylation of ribonucleic acid by the carcinogens dimethyl sulphate, N-methyl-N-nitrosourea and N-methyl-N′-nitro-N-nitrosoguanidine. Comparisons of chemical analyses at the nucleoside and base levels

    PubMed Central

    Lawley, P. D.; Shah, S. A.

    1972-01-01

    1. The following methods for hydrolysis of methyl-14C-labelled RNA, and for chromatographic isolation and determination of the products, were investigated: enzymic digestion to nucleosides at pH6 or 8; alkaline hydrolysis and conversion into nucleosides; hydrolysis by acid to pyrimidine nucleotides and purine bases, or completely to bases; chromatography on Dowex 50 (NH4+ form) at pH6 or 8.9, or on Dowex 50 (H+ form), or on Sephadex G-10. 2. The suitability of the various methods for determination of methylation products was assessed. The principal product, 7-methylguanosine, was unstable under the conditions used for determinations of nucleosides. 3- and 7-Methyladenine and 3- and 7-methylguanine are best determined as bases; 1-methyladenine and 3-methylcytosine can be isolated as either nucleosides or bases; O6-methylguanine is unstable under the acid hydrolysis conditions used and can be determined as the nucleoside; 3-methyluracil was detected, but may be derived from methylation of the ionized form of uracil. 3. Differences between the patterns of methylation of RNA and homopolyribonucleotides by the N-methyl-N-nitroso compounds and dimethyl sulphate were found: the nitroso compounds were able to methylate O-6 of guanine, were relatively more reactive at N-7 of adenine and probably at N-3 of guanine, but less reactive at N-1 of adenine, N-3 of cytosine and probably at N-3 of uridine. They probably reacted more with the ribose–phosphate chain, but no products from this were identified. 4. The possible influences of these differences on biological action of the methylating agents is discussed. Nitroso compounds may differ principally in their ability to induce miscoding in the Watson–Crick sense by reaction at O-6 of guanine. Both types of agent may induce miscoding to a lesser extent through methylation at N-3 of guanine; both can methylate N atoms, presumably preventing Watson–Crick hydrogen-bonding. N-Methyl-N-nitrosourea can degrade RNA, possibly

  11. Extraterrestrial material analysis: loss of amino acids during liquid-phase acid hydrolysis

    NASA Astrophysics Data System (ADS)

    Buch, Arnaud; Brault, Amaury; Szopa, Cyril; Freissinet, Caroline

    2015-04-01

    Searching for building blocks of life in extraterrestrial material is a way to learn more about how life could have appeared on Earth. With this aim, liquid-phase acid hydrolysis has been used, since at least 1970 , in order to extract amino acids and other organic molecules from extraterrestrial materials (e.g. meteorites, lunar fines) or Earth analogues (e.g. Atacama desert soil). This procedure involves drastic conditions such as heating samples in 6N HCl for 24 h, either under inert atmosphere/vacuum, or air. Analysis of the hydrolyzed part of the sample should give its total (free plus bound) amino acid content. The present work deals with the influence of the 6N HCl hydrolysis on amino acid degradation. Our experiments have been performed on a standard solution of 17 amino acids. After liquid-phase acid hydrolysis (6N HCl) under argon atmosphere (24 h at 100°C), the liquid phase was evaporated and the dry residue was derivatized with N-Methyl-N-(t-butyldimethylsilyl)trifluoroacetamide (MTBSTFA) and dimethylformamide (DMF), followed by gas chromatography-mass spectrometry analysis. After comparison with derivatized amino acids from the standard solution, a significant reduction of the chromatographic peak areas was observed for most of the amino acids after liquid-phase acid hydrolysis. Furthermore, the same loss pattern was observed when the amino acids were exposed to cold 6N HCl for a short amount of time. The least affected amino acid, i.e. glycine, was found to be 73,93% percent less abundant compared to the non-hydrolyzed standard, while the most affected, i.e. histidine, was not found in the chromatograms after hydrolysis. Our experiments thereby indicate that liquid-phase acid hydrolysis, even under inert atmosphere, leads to a partial or total loss of all of the 17 amino acids present in the standard solution, and that a quick cold contact with 6N HCl is sufficient to lead to a loss of amino acids. Therefore, in the literature, the reported increase

  12. Determination of Torsional Barriers of Itaconic Acid and N-Acetylethanolamine Using Chirped-Pulsed Ftmw Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bailey, Josiah R.; McMahon, Timothy J.; Bird, Ryan G.; Pratt, David

    2015-06-01

    The ground state rotational spectrum of itaconic acid (methylenesuccinic acid) and N-acetylethanolamine (AEA) have been collected and analyzed over the frequency range of 7-17.5 GHz. Both molecules displayed an unexpected tunneling splitting pattern caused by a V2 and V3 barriers, respectively. AEA's methyl rotor is directly connected to a carbonyl and is expected to have too high of a barrier to internal motion. Itaconic acid contains no methyl groups or any symmetry, yet a torsional splitting was observed. The origin of this motion as well their barrier heights and lowest energy conformations will be discussed.

  13. Nitrosamine-induced carcinogenesis. The alkylation of N-7 of guanine of nucleic acids of the rat by diethylnitrosamine, N-ethyl-N-nitrosourea and ethyl methanesulphonate

    PubMed Central

    Swann, P. F.; Magee, P. N.

    1971-01-01

    1. The extent of ethylation of N-7 of guanine in the nucleic acids of rat tissue in vivo by diethylnitrosamine, N-ethyl-N-nitrosourea and ethyl methanesulphonate was measured. 2. All compounds produced measurable amounts of 7-ethyl-guanine. 3. A single dose of diethylnitrosamine or N-ethyl-N-nitrosourea produced tumours of the kidney in the rat. Three doses of ethyl methanesulphonate produced kidney tumours, but a single dose did not. 4. A single dose of diethylnitrosamine produced twice as much ethylation of N-7 of guanine in DNA of kidney as did N-ethyl-N-nitrosourea. A single dose of both compounds induced kidney tumours, although of a different histological type. 5. A single dose of ethyl methanesulphonate produced ten times as much ethylation of N-7 of guanine in kidney DNA as did N-ethyl-N-nitrosourea without producing tumours. 6. The relevance of these findings to the hypothesis that alkylation of a cellular component is the mechanism of induction of tumours by nitroso compounds is discussed. PMID:5145908

  14. Isolation of Nicotinic Acid (Vitamin B3) and N-Propylamine after Myosmine Peroxidation.

    PubMed

    Zwickenpflug, Wolfgang; Högg, Christof; Feierfeil, Johannes; Dachs, Manuel; Gudermann, Thomas

    2016-01-13

    The alkaloid myosmine (3-(1-pyrroline-2-yl)pyridine) is widespread in biological matrixes including foodstuffs and tobacco products. Some in vitro tests in cellular systems showed mutagenic activity for myosmine. Myosmine activation including peroxidation mechanism employs unstable oxazirane intermediates. The formation of minor metabolite 3-hydroxymethyl-pyridine in rat metabolism experiments as well as in in vitro peroxidation assays suggests its further oxidation to nicotinic acid and possible concomitant formation of n-propylamine. A sensitive high-performance liquid chromatography-ultraviolet (HPLC-UV) method was developed for the direct analysis of n-propylamine in the peroxidation assay solution of myosmine employing derivatization with 3,5-dinitrobenzoyl chloride. Additionally, during peroxidation procedures, formation of 3-pyridylmethanol to nicotinic acid, the essential vitamin B3, was observed and characterized using HPLC-UV and gas chromatography/mass spectrometry. This new reaction pathway may present further contribution to our knowledge of myosmine's significance in human food including its activation in human organism, foodstuffs, and biological systems.

  15. Evolution of free amino acids, biogenic amines and n-nitrosoamines throughout ageing in organic fermented beef.

    PubMed

    Wójciak, Karolina M; Solska, Elżbieta

    2016-01-01

    In recent years, interest in uncured meat products has grown and studies were carried out on the use of substances which could replace nitrites, such as acid whey. In spite of this problem in fermented meat products, there is no information regarding the effects of prolonged ageing on the formation of chemical (nitrosoamines, biogenic amines, secondary lipid oxidation products) and microbiological (L. monocytogenes, S. aureus, OLD) toxicants in fermented beef marinated with acid whey. The aim of this study was to determine the selected pathogenic bacteria, biogenic amines, N-nitrosamines contents in fermented beef subjected to extended ageing. In this study, selected pathogenic bacteria, N-nitrosamines, biogenic amines, amino acids, TBARS values changes during the ageing of fermented beef marinated with acid whey were analyzed in 0-, 2- and 36-month-old samples. The pH values of fermented beef aged for 2 months (5.68, 5.49 and 5.68 respectively) were significantly lower (p < 0.05) than those obtained after the end of the manufacturing ripening period (5.96, 5.97 and 5.74 respectively), which confirmed the effectiveness of the fermentation process of acidification on beef. The high Lactic Acid Bacteria content (5.64-6.30 log cfu/g) confirmed this finding. Histamine was not detected in either of the products. The highest concentration of total biogenic amine (i.e. 1159.0 mg/kg) was found in fermented beef marinated with acid whey, whereas a total of only 209.8 mg/kg, was observed in control beef with nitrate and nitrite. N-nitrosamines were not detected in any of the ageing beef samples. In this study, marinating beef in acid whey did not inhibit the production of biogenic amines in the samples analyzed. The high concentration of FAAs, the potential precursor of BA, could lead to intense peptidase activity. The results obtained indicate that biogenic amines are not direct precursors for nitrosamines formation in fermented beef. The LAB strain from acid whey reduced

  16. n-3 Fatty Acid Supplementation for the Treatment of Dry Eye Disease.

    PubMed

    Asbell, Penny A; Maguire, Maureen G; Pistilli, Maxwell; Ying, Gui-shuang; Szczotka-Flynn, Loretta B; Hardten, David R; Lin, Meng C; Shtein, Roni M

    2018-05-03

    Dry eye disease is a common chronic condition that is characterized by ocular discomfort and visual disturbances that decrease quality of life. Many clinicians recommend the use of supplements of n-3 fatty acids (often called omega-3 fatty acids) to relieve symptoms. In a multicenter, double-blind clinical trial, we randomly assigned patients with moderate-to-severe dry eye disease to receive a daily oral dose of 3000 mg of fish-derived n-3 eicosapentaenoic and docosahexaenoic acids (active supplement group) or an olive oil placebo (placebo group). The primary outcome was the mean change from baseline in the score on the Ocular Surface Disease Index (OSDI; scores range from 0 to 100, with higher scores indicating greater symptom severity), which was based on the mean of scores obtained at 6 and 12 months. Secondary outcomes included mean changes per eye in the conjunctival staining score (ranging from 0 to 6) and the corneal staining score (ranging from 0 to 15), with higher scores indicating more severe damage to the ocular surface, as well as mean changes in the tear break-up time (seconds between a blink and gaps in the tear film) and the result on Schirmer's test (length of wetting of paper strips placed on the lower eyelid), with lower values indicating more severe signs. A total of 349 patients were assigned to the active supplement group and 186 to the placebo group; the primary analysis included 329 and 170 patients, respectively. The mean change in the OSDI score was not significantly different between the active supplement group and the placebo group (-13.9 points and -12.5 points, respectively; mean difference in change after imputation of missing data, -1.9 points; 95% confidence interval [CI], -5.0 to 1.1; P=0.21). This result was consistent across prespecified subgroups. There were no significant differences between the active supplement group and the placebo group in mean changes from baseline in the conjunctival staining score (mean difference in

  17. A low omega-6 polyunsaturated fatty acid (n-6 PUFA) diet increases omega-3 (n-3) long chain PUFA status in plasma phospholipids in humans.

    PubMed

    Wood, K E; Lau, A; Mantzioris, E; Gibson, R A; Ramsden, C E; Muhlhausler, B S

    2014-04-01

    This study aimed to determine the effect of reducing the dietary linoleic acid (LA) intake from ~5% to <2.5% energy (%E) on n-3 long chain PUFA (LCPUFA) status in humans. Thirty-six participants followed a <2.5%E LA diet for 4 weeks. Nutrient intakes were estimated from diet diaries and blood samples were collected for assessment of fatty acid composition in plasma and erythrocyte phospholipids. LA intakes were reduced from 4.6%E to 2%E during the low LA intervention (P<0.001) while n-3 LCPUFA intakes were unchanged. LA and total n-6 PUFA content of plasma and erythrocyte phospholipids were significantly reduced after the low LA diet phase (P<0.001). The n-3 LCPUFA content of plasma phospholipids was significantly increased after the low LA diet compared to baseline (6.22% vs. 5.53%, P<0.001). These data demonstrate that reducing LA intake for 4 weeks increases n-3 LCPUFA status in humans in the absence of increased n-3 LCPUFA intake. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. n-3 Fatty acids attenuate the risk of diabetes associated with elevated serum nonesterified fatty acids: the multi-ethnic study of atherosclerosis.

    PubMed

    Steffen, Brian T; Steffen, Lyn M; Zhou, Xia; Ouyang, Pamela; Weir, Natalie L; Tsai, Michael Y

    2015-04-01

    Chronically high nonesterified fatty acids (NEFAs) are a marker of metabolic dysfunction and likely increase risk of type 2 diabetes. By comparison, n-3 fatty acids (FAs) have been shown to have various health benefits and may protect against disease development. In 5,697 participants of the Multi-Ethnic Study of Atherosclerosis (MESA), we examined whether serum levels of NEFAs relate to risk of incident type 2 diabetes and further tested whether plasma n-3 FA levels may interact with this relation. NEFAs were measured in fasting serum using an enzymatic colorimetric assay and phospholipid n-3 FAs eicosapentaenoic and docosahexaenoic acids were determined in plasma through gas chromatography-flame ionization detection in 5,697 MESA participants. Cox proportional hazards regression evaluated the association between NEFA levels and incident type 2 diabetes and whether plasma n-3 FAs modified this association adjusting for age, sex, race, education, field center, smoking, and alcohol use. Over a mean 11.4 years of the study period, higher diabetes incidence was found across successive NEFA quartiles (Q) (hazard ratio [95% CI]): Q1, 1.0; Q2, 1.35 (1.07, 1.71); Q3, 1.58 (1.24, 2.00); and Q4, 1.86 (1.45, 2.38) (P(trend) < 0.001). A significant interaction of n-3 FAs on the relation between NEFAs and type 2 diabetes was also observed (P(interaction) = 0.03). For individuals with lower n-3 levels (<75th percentile), a higher risk of type 2 diabetes was observed across quartiles of NEFAs: Q1, 1.0; Q2, 1.41 (1.07, 1.84); Q3, 1.77 (1.35, 2.31); and Q4, 2.18 (1.65, 2.88) (P(trend) < 0.001). No significant associations were observed in those with n-3 FAs ≥ 75th percentile (P(trend) = 0.54). NEFAs are a marker of type 2 diabetes and may have clinical utility for detecting risk of its development. The modifying influence of n-3 FAs suggests a protective effect against disease and/or metabolic dysfunction related to NEFAs and requires further study. © 2015 by the American

  19. Conclusions and recommendations from the symposium, Beyond Cholesterol: Prevention and Treatment of Coronary Heart Disease with n-3 Fatty Acids.

    PubMed

    Deckelbaum, Richard J; Leaf, Alexander; Mozaffarian, Dariush; Jacobson, Terry A; Harris, William S; Akabas, Sharon R

    2008-06-01

    After the symposium "Beyond Cholesterol: Prevention and Treatment of Coronary Heart Disease with n-3 Fatty Acids," faculty who presented at the conference submitted manuscripts relating to their conference topics, and these are presented in this supplement. The content of these manuscripts was reviewed, and 2 conference calls were convened. The objective was to summarize existing evidence, gaps in evidence, and future research needed to strengthen recommendations for specific intakes of n-3 fatty acids for different conditions relating to cardiovascular disease. The following 2 questions were the main items discussed. What are the roles of n-3 fatty acids in primary versus secondary prevention of coronary heart disease? What are the roles of n-3 fatty acids in hypertriglyceridemia, in the metabolic syndrome and type 2 diabetes, and in sudden cardiac death, cardiac arrhythmias, and vulnerable plaque? Each area was summarized by using 2 general categories: 1) current knowledge for which general consensus exists, and 2) recommendations for research and policy. Additional references for these conclusions can be found in the articles included in the supplement.

  20. Comparison of inferred fractions of n-3 and n-6 polyunsaturated fatty acids in feral domestic cat diets with those in commercial feline extruded diets.

    PubMed

    Backus, Robert C; Thomas, David G; Fritsche, Kevin L

    2013-04-01

    To compare presumed fatty acid content in natural diets of feral domestic cats (inferred from body fat polyunsatrated fatty acids content) with polyunsaturated fatty acid content of commercial feline extruded diets. Subcutaneous and intra-abdominal adipose tissue samples (approx 1 g) from previously frozen cadavers of 7 adult feral domestic cats trapped in habitats remote from human activity and triplicate samples (200 g each) of 7 commercial extruded diets representing 68% of market share obtained from retail stores. Lipid, triacylglycerol, and phospholipid fractions in adipose tissue samples and ether extracts of diet samples were determined by gas chromatography of methyl esters. Triacylglycerol and phospholipid fractions in the adipose tissue were isolated by thin-layer chromatography. Diet samples were also analyzed for proximate contents. For the adipose tissue samples, with few exceptions, fatty acids fractions varied only moderately with lipid fraction and site from which tissue samples were obtained. Linoleic, α-linolenic, arachidonic, eicosapentaenoic, and docosahexaenoic acid fractions were 15.0% to 28.2%, 4.5% to 18.7%, 0.9% to 5.0%, < 0.1% to 0.2%, and 0.6% to 1.7%, respectively. As inferred from the adipose findings, dietary fractions of docosahexaenoic and α-linolenic acid were significantly greater than those in the commercial feline diets, but those for linoleic and eicosapentaenoic acids were not significantly different. The fatty acid content of commercial extruded feline diets differed from the inferred content of natural feral cat diets, in which dietary n-3 and possibly n-6 polyunsaturated fatty acids were more abundant. The impact of this difference on the health of pet cats is not known.

  1. Effect of dietary n-3 fatty acids supplementation on fatty acid metabolism in atorvastatin-administered SHR.Cg-Leprcp/NDmcr rats, a metabolic syndrome model.

    PubMed

    Al Mamun, Abdullah; Hashimoto, Michio; Katakura, Masanori; Tanabe, Yoko; Tsuchikura, Satoru; Hossain, Shahdat; Shido, Osamu

    2017-01-01

    The effects of cholesterol-lowering statins, which substantially benefit future cardiovascular events, on fatty acid metabolism have remained largely obscured. In this study, we investigated the effects of atorvastatin on fatty acid metabolism together with the effects of TAK-085 containing highly purified eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) ethyl ester on atorvastatin-induced n-3 polyunsaturated fatty acid lowering in SHR.Cg-Lepr cp /NDmcr (SHRcp) rats, as a metabolic syndrome model. Supplementation with 10mg/kg body weight/day of atorvastatin for 17 weeks significantly decreased plasma total cholesterol and very low density lipoprotein cholesterol. Atorvastatin alone caused a subtle change in fatty acid composition particularly of EPA and DHA in the plasma, liver or erythrocyte membranes. However, the TAK-085 consistently increased both the levels of EPA and DHA in the plasma, liver and erythrocyte membranes. After confirming the reduction of plasma total cholesterol, 300mg/kg body weight/day of TAK-085 was continuously administered for another 6 weeks. Supplementation with TAK-085 did not decrease plasma total cholesterol but significantly increased the EPA and DHA levels in both the plasma and liver compared with rats administered atorvastatin only. Supplementation with atorvastatin alone significantly decreased sterol regulatory element-binding protein-1c, Δ5- and Δ6-desaturases, elongase-5, and stearoyl-coenzyme A (CoA) desaturase-2 levels and increased 3-hydroxy-3-methylglutaryl-CoA reductase mRNA expression in the liver compared with control rats. TAK-085 supplementation significantly increased stearoyl-CoA desaturase-2 mRNA expression. These results suggest that long-term supplementation with atorvastatin decreases the EPA and DHA levels by inhibiting the desaturation and elongation of n-3 fatty acid metabolism, while TAK-085 supplementation effectively replenishes this effect in SHRcp rat liver. Copyright © 2016 Elsevier Masson

  2. Use of an Enzyme-Linked Lectinsorbent Assay To Monitor the Shift in Polysaccharide Composition in Bacterial Biofilms

    PubMed Central

    Leriche, V.; Sibille, P.; Carpentier, B.

    2000-01-01

    An enzyme-linked lectinsorbent assay (ELLA) was developed for quantification and characterization of extracellular polysaccharides produced by 1- and 4-day biofilms of 10 bacterial strains isolated from food industry premises. Peroxidase-labeled concanavalin A (ConA) and wheat germ agglutinin (WGA) were used, as they specifically bind to saccharide residues most frequently encountered in biofilms matrices: d-glucose or d-mannose for ConA and N-acetyl-d-glucosamine or N-acetylneuraminic acid for WGA. The ELLA applied to 1- and 4-day biofilms colonizing wells of microtiter plates was able to detect that for Stenotrophomonas maltophilia and to a lesser extent Staphylococcus sciuri, the increase in production of exopolysaccharides over time was not the same for sugars binding with ConA and those binding with WGA. Differences in extracellular polysaccharides produced were observed among strains belonging to the same species. These results demonstrate that ELLA is a useful tool not only for rapid characterization of biofilm extracellular polysaccharides but also, in studies of individual strains, for detection of changes over time in the proportion of the exopolysaccharidic component within the polymeric matrix. PMID:10788349

  3. Bulk vs. amino acid stable N isotope estimations of metabolic status and contributions of nitrogen fixation to size-fractionated zooplankton biomass in the subtropical N Atlantic

    NASA Astrophysics Data System (ADS)

    Mompeán, Carmen; Bode, Antonio; Gier, Elizabeth; McCarthy, Matthew D.

    2016-08-01

    A comparative analysis of natural abundance of stable N isotopes (δ15N) in individual amino acids and bulk organic matter of size-fractionated plankton revealed the differential impact of nitrogen fixation through the food web in a transect across the subtropical North Atlantic. All δ15N measurements showed low values in the central region, followed by the western zone, while maximum δ15N values were found in the eastern zone. These results were consistent with the prevalence of nitrogen fixation in the central and western zones, and the influence of the west Africa upwelling in the eastern zone. Use of compound-specific amino acid isotope data (CSI-AA) revealed relatively low variability in the impact of diazotrophic nitrogen within the different plankton size fractions, while δ15N of bulk organic matter showed high variability with size. Explicit CSI-AA trophic position estimates showed a small increase with mean plankton size class and varied in a relatively narrow range 1.8-2.5), with the lowest values in the central zone. High correlations between bulk plankton δ15N and individual amino acids (in particular Phe and Thr), as well as reconstructed total protein δ15N values, suggest a set of new relationships that may be important to tracing direct plankton contributions to nitrogen recycling in the ocean, including detrital organic nitrogen pools. Overall, these new results represent the most detailed investigation of CSI-AA data in plankton size classes to date, and indicated a greater importance of diazotrophic N than suggested by concurrent measurements of bulk δ15N, abundance of large nitrogen fixing organisms or nitrogen fixation rates.

  4. Docosahexaenoic Acid and Eicosapentaenoic Acid Did not Alter trans-10,cis-12 Conjugated Linoleic Acid Incorporation into Mice Brain and Eye Lipids.

    PubMed

    Vemuri, Madhuri; Adkins, Yuriko; Mackey, Bruce E; Kelley, Darshan S

    2017-09-01

    trans 10,cis 12-CLA has been reported to alter fatty acid composition in several non-neurological tissues, but its effects are less known in neurological tissues. Therefore, the purpose of this study was to determine if CLA supplementation would alter brain and eye fatty acid composition and if those changes could be prevented by concomitant supplementation with docosahexaenoic acid (DHA; 22:6n3) or eicosapentaenoic acid (EPA; 20:5n3). Eight-week-old, pathogen-free C57BL/6N female mice (n = 6/group) were fed either the control diet or diets containing 0.5% (w/w) t10,c12-CLA in the presence or absence of either 1.5% DHA or 1.5% EPA for 8 weeks. CLA concentration was significantly (P < 0.05) greater in the eye but not in the brain lipids of the CLA group when compared with the control group. The sums of saturated, monounsaturated, polyunsaturated fatty acids, and n3:n6 ratio did not differ between these two groups for both tissues. The n3:n6 ratio and concentrations of 20:5n3 and 22:5n3 were significantly greater, and those of 20:4n6, 22:4n6, and 22:5n6 were lesser in the CLA + DHA and CLA + EPA groups than in the control and CLA groups for either tissue. DHA concentration was higher in the CLA + DHA group only but not in the CLA + EPA group when compared with the CLA group for both tissues. The dietary fatty acids generally induced similar changes in brain and eye fatty acid concentration and at the concentrations used both DHA and EPA fed individually with CLA were more potent than CLA alone in altering the tissue fatty acid concentration.

  5. Cerebral asymmetry and behavioral lateralization in rats chronically lacking n-3 polyunsaturated fatty acids.

    PubMed

    Vancassel, Sylvie; Aïd, Sabah; Pifferi, Fabien; Morice, Elise; Nosten-Bertrand, Marika; Chalon, Sylvie; Lavialle, Monique

    2005-11-15

    Anatomic and functional brain lateralization underlies hemisphere specialization for cognitive and motor control, and deviations from the normal patterns of asymmetry appear to be related to behavioral deficits. Studies on n-3 polyunsaturated fatty acid (PUFA) deficiency and behavioral impairments led us to postulate that a chronic lack of n-3 PUFA can lead to changes in lateralized behavior by affecting structural or neurochemical patterns of asymmetry in motor-related brain structures. We compared the effects of a chronic n-3 PUFA deficient diet with a balanced diet on membrane phospholipid fatty acids composition and immunolabeling of choline acetyltransferase (ChAt), as a marker of cholinergic neurons, in left and right striatum of rats. Lateral motor behavior was assessed by rotation and paw preference. Control rats had an asymmetric PUFA distribution with a right behavioral preference, whereas ChAt density was symmetrical. In deficient rats, the cholinergic neuron density was 30% lower on the right side, associated with a loss of PUFA asymmetry and behavior laterality. They present higher rotation behavior, and significantly more of them failed the handedness test. These results indicate that a lack of n-3 PUFA is linked with a lateral behavior deficit, possibly leading to cognitive disturbances.

  6. Restoration of fillet n-3 long-chain polyunsaturated fatty acid is improved by a modified fish oil finishing diet strategy for atlantic salmon (Salmo salar L.) smolts fed palm fatty acid distillate.

    PubMed

    Codabaccus, Mohamed B; Bridle, Andrew R; Nichols, Peter D; Carter, Chris G

    2012-01-11

    Reducing the lipid content in fish prior to feeding a fish oil finishing diet (FOFD) has the potential to improve n-3 long-chain (≥ C(20)) polyunsaturated fatty acid (LC-PUFA) restoration. This study had two main objectives: (1) determine whether feeding Atlantic salmon smolt a 75% palm fatty acid distillate diet (75PFAD) improves the apparent digestibility (AD) of saturated fatty acids (SFA) and (2) examine whether a food deprivation period after growth on 75PFAD leads to higher n-3 LC-PUFA restoration in the fillet when applying a FOFD. The AD of SFA was higher for 75PFAD compared to that of a fish oil (FO) diet. The relative level (as % total fatty acids (FA)) of n-3 LC-PUFA was higher in unfed fish compared to that in continuously fed fish after 21 and 28 day FOFD periods, respectively. Our results suggest that a food deprivation period prior to feeding a FOFD improves the efficiency of n-3 LC-PUFA restoration in the fillet of Atlantic salmon smolt.

  7. The formation of pyrrolid-2-one-5-carboxylic acid at the N-terminus of immunoglobulin G heavy chain

    PubMed Central

    Stott, D. I.; Munro, A. J.

    1972-01-01

    We propose that pyrrolid-2-one-5-carboxyl-tRNA is not involved in the initiation of protein synthesis in eukaryotic cells and that the N-terminal pyrrolid-2-one-5-carboxylic acid group of an IgG (immunoglobulin G) (that secreted by the mouse plasmacytoma Adj PC5) is formed by the enzymic cyclization of the N-terminal glutamine of the heavy chain of the completed IgG molecule and that the cyclization takes place inside the cell. We base these conclusions on the following evidence. (1) Pyrrolidonecarboxyl-tRNA was not found in incorporation experiments with rat liver preparations and [U-14C]-pyrrolidonecarboxylic acid, glutamic acid and glutamine, even though an incorporation extent of less than 2% of the total products could have been detected. (2) Double-labelling experiments showed that less than 8% of the nascent peptides of heavy chains (those obtained by precipitation by the antibody to Fc fragment) began with pyrrolidonecarboxylic acid. (3) Further double-labelling experiments showed that 60–66% of the heavy chains of the completed intracellular IgG molecule began with pyrrolidonecarboxylic acid after both 1 and 5h of labelling. (4) The IgG, after secretion by plasmacytoma Adj PC5, was found to have the sequence [unk]Glu- Val-Gln-Leu- at the N-termini of the heavy chains. PMID:4674626

  8. N-nitrosamine formation by monochloramine, free chlorine, and peracetic acid disinfection with presence of amine precursors in drinking water system.

    PubMed

    West, Danielle M; Wu, Qihua; Donovan, Ariel; Shi, Honglan; Ma, Yinfa; Jiang, Hua; Wang, Jianmin

    2016-06-01

    In this study, the formation of eight N-nitrosamines, N-nitrosodimethylamine (NDMA), N-nitrosodiethylamine, N-nitrosomethylamine, N-nitrosodi-n-propylamine, N-nitrosodi-n-butylamine, N-Nitrosopiperidine, N-Nitrosopyrrolidine, N-Nitrosomorpholine, were systematically evaluated with respect to seven N-nitrosamine precursors (dimethylamine, trimethylamine, 3-(dimethylaminomethyl)indole, 4-dimethylaminoantipyrine, ethylmethylamine, diethylamine, dipropylamine) and three disinfectants (monochloramine, free chlorine, peracetic acid) under variable dosages, exposure times, and pH in a drinking water system. Without the presence of the seven selected N-nitrosamine precursors N-nitrosamine formation was not observed under any tested condition except very low levels of N-Nitrosopyrrolidine under some conditions. With selected N-nitrosamine precursors present N-nitrosamines formed at different levels under different conditions. The highest N-nitrosamine formation was NDMA with a maximum concentration of 1180 ng/L by monochloramine disinfection with precursors present; much lower levels of N-nitrosamines were formed by free chlorine disinfection; and no detectable level of N-nitrosamines were observed by peracetic acid disinfection except low level of N-Nitrosodi-n-propylamine under some conditions. NDMA formation was not affected by pH while four other N-nitrosamine formations were slightly affected by sample pH tested between 7 and 9, with formation decreasing with increasing pH. Monochloramine exposure time study displayed fast formation of N-nitrosamines, largely formed in four hours of exposure and maximized after seven days. This was a systematic study on the N-nitrosamine formation with the seven major N-nitrosamine precursors presence and absence under different conditions, including peracetic acid disinfection which has not been studied elsewhere. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Identification of Amino Acid Substitutions Supporting Antigenic Change of Influenza A(H1N1)pdm09 Viruses

    PubMed Central

    Koel, Björn F.; Mögling, Ramona; Chutinimitkul, Salin; Fraaij, Pieter L.; Burke, David F.; van der Vliet, Stefan; de Wit, Emmie; Bestebroer, Theo M.; Rimmelzwaan, Guus F.; Osterhaus, Albert D. M. E.; Smith, Derek J.; Fouchier, Ron A. M.

    2015-01-01

    ABSTRACT The majority of currently circulating influenza A(H1N1) viruses are antigenically similar to the virus that caused the 2009 influenza pandemic. However, antigenic variants are expected to emerge as population immunity increases. Amino acid substitutions in the hemagglutinin protein can result in escape from neutralizing antibodies, affect viral fitness, and change receptor preference. In this study, we constructed mutants with substitutions in the hemagglutinin of A/Netherlands/602/09 in an attenuated backbone to explore amino acid changes that may contribute to emergence of antigenic variants in the human population. Our analysis revealed that single substitutions affecting the loop that consists of amino acid positions 151 to 159 located adjacent to the receptor binding site caused escape from ferret and human antibodies elicited after primary A(H1N1)pdm09 virus infection. The majority of these substitutions resulted in similar or increased replication efficiency in vitro compared to that of the virus carrying the wild-type hemagglutinin and did not result in a change of receptor preference. However, none of the substitutions was sufficient for escape from the antibodies in sera from individuals that experienced both seasonal and pandemic A(H1N1) virus infections. These results suggest that antibodies directed against epitopes on seasonal A(H1N1) viruses contribute to neutralization of A(H1N1)pdm09 antigenic variants, thereby limiting the number of possible substitutions that could lead to escape from population immunity. IMPORTANCE Influenza A viruses can cause significant morbidity and mortality in humans. Amino acid substitutions in the hemagglutinin protein can result in escape from antibody-mediated neutralization. This allows the virus to reinfect individuals that have acquired immunity to previously circulating strains through infection or vaccination. To date, the vast majority of A(H1N1)pdm09 strains remain antigenically similar to the virus

  10. Excitatory amino acid transporters tonically restrain nTS synaptic and neuronal activity to modulate cardiorespiratory function

    PubMed Central

    2015-01-01

    The nucleus tractus solitarii (nTS) is the initial central termination site for visceral afferents and is important for modulation and integration of multiple reflexes including cardiorespiratory reflexes. Glutamate is the primary excitatory neurotransmitter in the nTS and is removed from the extracellular milieu by excitatory amino acid transporters (EAATs). The goal of this study was to elucidate the role of EAATs in the nTS on basal synaptic and neuronal function and cardiorespiratory regulation. The majority of glutamate clearance in the central nervous system is believed to be mediated by astrocytic EAAT 1 and 2. We confirmed the presence of EAAT 1 and 2 within the nTS and their colocalization with astrocytic markers. EAAT blockade with dl-threo-β-benzyloxyaspartic acid (TBOA) produced a concentration-related depolarization, increased spontaneous excitatory postsynaptic current (EPSC) frequency, and enhanced action potential discharge in nTS neurons. Solitary tract-evoked EPSCs were significantly reduced by EAAT blockade. Microinjection of TBOA into the nTS of anesthetized rats induced apneic, sympathoinhibitory, depressor, and bradycardic responses. These effects mimicked the response to microinjection of exogenous glutamate, and glutamate responses were enhanced by EAAT blockade. Together these data indicate that EAATs tonically restrain nTS excitability to modulate cardiorespiratory function. PMID:26719090

  11. Loss of n-6 fatty acid induced pediatric obesity protects against acute murine colitis

    USDA-ARS?s Scientific Manuscript database

    Dietary influences may affect microbiome composition and host immune responses, thereby modulating propensity toward inflammatory bowel diseases: Crohn disease and ulcerative colitis. Dietary n-6 fatty acids have been associated with ulcetative colitis in prospective studies. However, the critical d...

  12. Fluorescence properties of Schiff base - N,N‧-bis(salicylidene) - 1,2-Phenylenediamine in presence of bile acid host

    NASA Astrophysics Data System (ADS)

    Roy, Nayan; Paul, Pradip C.; Singh, T. Sanjoy

    2015-05-01

    Fluorescence properties of Schiff base - N,N‧-bis(salicylidene) - 1,2-phenylenediamine (LH2) is used to study the micelles formed by aggregation of different important bile acids like cholic acid, deoxycholic acid, chenodeoxycholic acid and glycocholic acid by steady state and picosecond time-resolved fluorescence spectroscopy. The fluorescence band intensity was found out to increase with concomitant red shift with gradual addition of different bile acids. Binding constant of the probe with different bile acids as well as critical micelle concentration was obtained from the variation of fluorescence intensity on increasing concentration of bile acids in the medium. The increase in fluorescence quantum yields, fluorescence decay times and substantial decrease in nonradiative decay rate constants in bile acids micellar environment points to the restricted motion of the fluorophore inside the micellar subdomains.

  13. Nonprotein Amino Acids in the Murchison Meteorite

    PubMed Central

    Kvenvolden, Keith A.; Lawless, James G.; Ponnamperuma, Cyril

    1971-01-01

    Twelve nonprotein amino acids appear to be present in the Murchison meteorite. The identity of eight of them has been conclusively established as N-methylglycine, β-alanine, 2-methylalanine, α-amino-n-butyric acid, β-amino-n-butyric acid, γ-amino-n-butyric acid, isovaline, and pipecolic acid. Tentative evidence is presented for the presence of N-methylalanine, N-ethylglycine, β-aminoisobutyric acid, and norvaline. These amino acids appear to be extraterrestrial in origin and may provide new evidence for the hypothesis of chemical evolution. PMID:16591908

  14. Long-Term n-Caproic Acid Production from Yeast-Fermentation Beer in an Anaerobic Bioreactor with Continuous Product Extraction.

    PubMed

    Ge, Shijian; Usack, Joseph G; Spirito, Catherine M; Angenent, Largus T

    2015-07-07

    Multifunctional reactor microbiomes can elongate short-chain carboxylic acids (SCCAs) to medium-chain carboxylic acids (MCCAs), such as n-caproic acid. However, it is unclear whether this microbiome biotechnology platform is stable enough during long operating periods to consistently produce MCCAs. During a period of 550 days, we improved the operating conditions of an anaerobic bioreactor for the conversion of complex yeast-fermentation beer from the corn kernel-to-ethanol industry into primarily n-caproic acid. We incorporated and improved in-line, membrane liquid-liquid extraction to prevent inhibition due to undissociated MCCAs at a pH of 5.5 and circumvented the addition of methanogenic inhibitors. The microbiome accomplished several functions, including hydrolysis and acidogenesis of complex organic compounds and sugars into SCCAs, subsequent chain elongation with undistilled ethanol in beer, and hydrogenotrophic methanogenesis. The methane yield was 2.40 ± 0.52% based on COD and was limited by the availability of carbon dioxide. We achieved an average n-caproate production rate of 3.38 ± 0.42 g L(-1) d(-1) (7.52 ± 0.94 g COD L(-1) d(-1)) with an n-caproate yield of 70.3 ± 8.81% and an n-caproate/ethanol ratio of 1.19 ± 0.15 based on COD for a period of ∼55 days. The maximum production rate was achieved by increasing the organic loading rates in tandem with elevating the capacity of the extraction system and a change in the complex feedstock batch.

  15. The effect of n-3/n-6 polyunsaturated fatty acids on acute reflux esophagitis in rats.

    PubMed

    Zhuang, Ze-Hao; Xie, Jing-Jing; Wei, Jing-Jing; Tang, Du-Peng; Yang, Li-Yong

    2016-10-04

    Polyunsaturated fatty acids (PUFAs) play various roles in inflammation. However, the effect of PUFAs in the development of reflux esophagitis (RE) is unclear. This study is to investigate the potential effect of n-3/n-6 PUFAs on acute RE in rats along with the underlying protective mechanisms. Forty Sprague Dawley rats were randomly divided into four groups (n = 10 in each group). RE model was established by pyloric clip and section ligation. Fish oil- and soybean oil-based fatty emulsion (n-3 and n-6 groups), or normal saline (control and sham operation groups) was injected intraperitoneally 2 h prior to surgery and 24 h postoperatively (2 mL/kg, respectively). The expressions of interleukin (IL)-1β, IL-8, IL-6 and myeloid differentiation primary response gene 88 (MyD88) in esophageal tissues were evaluated by Western blot and immunohistochemistry after 72 h. The malondialdehyde (MDA) and superoxide dismutase (SOD) expression in the esophageal tissues were determined to assess the oxidative stress. The mildest macroscopic/microscopic esophagitis was found in the n-3 group (P < 0.05). The expression of IL-1β, IL-8, IL-6 and MyD88 were increased in all RE groups, while the lowest and highest expression were found in n-3 and n-6 group, respectively (P < 0.05). The MDA levels were increased in all groups (P < 0.05), in an ascending trend from n-3, n-6 groups to control group. The lowest and highest SOD levels were found in the control and n-3 group, respectively (P < 0.05). n-3 PUFAs may reduce acute RE in rats, which may be due to inhibition of the MyD88-NF-kB pathway and limit oxidative damage.

  16. Identification of linoleic acid, a main component of the n-hexane fraction from Dryopteris crassirhizoma, as an anti-Streptococcus mutans biofilm agent.

    PubMed

    Jung, Ji-Eun; Pandit, Santosh; Jeon, Jae-Gyu

    2014-01-01

    Dryopteris crassirhizoma is a semi-evergreen plant. Previous studies have shown the potential of this plant as an agent for the control of cariogenic biofilms. In this study, the main antibacterial components of the plant were identified by correlating gas chromatography-mass spectrometry data with the antibacterial activity of chloroform and n-hexane fractions and then evaluating the activity of the most potent antibacterial component against Streptococcus mutans UA159 biofilms. The most potent antibacterial component was linoleic acid, a main component of the n-hexane fraction. Linoleic acid reduced viability in a dose dependent manner and reduced biofilm accumulation during initial and mature biofilm formation. Furthermore, when the biofilms were briefly treated with linoleic acid (10 min/treatment, a total of six times), the dry weight of the biofilms was significantly diminished. In addition, the anti-biofilm activity of the n-hexane fraction was similar to that of linoleic acid. These results suggest that the n-hexane fraction of D. crassirhizoma and linoleic acid may be useful for controlling cariogenic biofilms.

  17. Crystal Structure of a Novel N-Substituted L-Amino Acid Dioxygenase from Burkholderia ambifaria AMMD

    PubMed Central

    Qin, Hui-Min; Miyakawa, Takuya; Jia, Min Ze; Nakamura, Akira; Ohtsuka, Jun; Xue, You-Lin; Kawashima, Takashi; Kasahara, Takuya; Hibi, Makoto; Ogawa, Jun; Tanokura, Masaru

    2013-01-01

    A novel dioxygenase from Burkholderia ambifaria AMMD (SadA) stereoselectively catalyzes the C3-hydroxylation of N-substituted branched-chain or aromatic L-amino acids, especially N-succinyl-L-leucine, coupled with the conversion of α-ketoglutarate to succinate and CO2. To elucidate the structural basis of the substrate specificity and stereoselective hydroxylation, we determined the crystal structures of the SadA.Zn(II) and SadA.Zn(II).α-KG complexes at 1.77 Å and 1.98 Å resolutions, respectively. SadA adopted a double-stranded β-helix fold at the core of the structure. In addition, an HXD/EXnH motif in the active site coordinated a Zn(II) as a substitute for Fe(II). The α-KG molecule also coordinated Zn(II) in a bidentate manner via its 1-carboxylate and 2-oxo groups. Based on the SadA.Zn(II).α-KG structure and mutation analyses, we constructed substrate-binding models with N-succinyl-L-leucine and N-succinyl-L-phenylalanine, which provided new insight into the substrate specificity. The results will be useful for the rational design of SadA variants aimed at the recognition of various N-succinyl L-amino acids. PMID:23724013

  18. Characterization of a hybrid-smectite nanomaterial formed by immobilizing of N-pyridin-2-ylmethylsuccinamic acid onto (3-aminopropyl)triethoxysilane modified smectite and its potentiometric sensor application

    NASA Astrophysics Data System (ADS)

    Topcu, Cihan; Caglar, Sema; Caglar, Bulent; Coldur, Fatih; Cubuk, Osman; Sarp, Gokhan; Gedik, Kubra; Bozkurt Cirak, Burcu; Tabak, Ahmet

    2016-09-01

    A novel N-pyridin-2-ylmethylsuccinamic acid-functionalized smectite nanomaterial was synthesized by immobilizing of N-pyridin-2-ylmethylsuccinamic acid through chemical bonding onto (3-aminopropyl)triethoxysilane modified smectite. The structural, thermal, morphological and surface properties of raw, silane-grafted and the N-pyridin-2-ylmethylsuccinamic acid-functionalized smectites were investigated by various characterization techniques. The thermal analysis data showed the presence of peaks in the temperature range from 200 °C to 600 °C due to the presence of physically adsorbed silanes, intercalated silanes, surface grafted silanes and chemically grafted silane molecules between the smectite layers. The powder x-ray diffraction patterns clearly indicated that the aminopropyl molecules also intercalated into the smectite interlayers as bilayer arrangement whereas N-pyridin-2-ylmethylsuccinamic acid molecules were only attached to 3-aminopropyltriethoxysilane molecules on the external surface and edges of clay and they did not intercalate. Fourier transform infrared spectroscopy confirms N-pyridin-2-ylmethylsuccinamic acid molecules bonding through the amide bond between the amine group of aminopropyltriethoxysilane molecules and a carboxylic acid functional group of N-pyridin-2-ylmethylsuccinamic acid molecules. The guest molecules functionalized onto the smectite caused significant alterations in the textural and morphological parameters of the raw smectite. The anchoring of N-pyridin-2-ylmethylsuccinamic acid molecules led to positive electrophoretic mobility values when compared to starting materials. N-pyridin-2-ylmethylsuccinamic acid-functionalized smectite was employed as an electroactive ingredient in the structure of potentiometric PVC-membrane sensor. The sensor exhibited more selective potentiometric response towards chlorate ions compared to the other common anionic species.

  19. The Fatty Acid Profile and Oxidative Stability of Meat from Turkeys Fed Diets Enriched with n-3 Polyunsaturated Fatty Acids and Dried Fruit Pomaces as a Source of Polyphenols.

    PubMed

    Juskiewicz, Jerzy; Jankowski, Jan; Zielinski, Henryk; Zdunczyk, Zenon; Mikulski, Dariusz; Antoszkiewicz, Zofia; Kosmala, Monika; Zdunczyk, Przemyslaw

    2017-01-01

    The aim of this study was to determine the efficacy of different dietary fruit pomaces in reducing lipid oxidation in the meat of turkeys fed diets with a high content of n-3 polyunsaturated fatty acids (PUFAs). Over a period of 4 weeks before slaughter, turkeys were fed diets with the addition of 5% dried apple, blackcurrant, strawberry and seedless strawberry pomaces (groups AP, BP, SP and SSP, respectively) and 2.5% linseed oil. Pomaces differed in the content (from 5.5 in AP to 43.1 mg/g in SSP) and composition of polyphenols Proanthocyanidins were the main polyphenolic fraction in all pomaces, AP contained flavone glycosides and dihydrochalcones, BP contained anthocyanins, and SP and SSP-ellagitannins. The n-6/n-3 PUFA ratio in all diets was comparable and lower than 2:1. In comparison with groups C and AP, the percentage of n-3 PUFAs in the total fatty acid pool of white meat from the breast muscles of turkeys in groups BP, SP and SSP was significantly higher, proportionally to the higher content of α-linolenic acid in berry pomaces. The fatty acid profile of dark meat from thigh muscles, including the n-6/n-3 PUFA ratio, was similar and lower than 3:1 in all groups. Vitamin A levels in raw breast muscles were higher in group AP than in groups C and BP (P<0.05). The addition of fruit pomaces to turkey diets lowered vitamin E concentrations (P = 0.001) in raw breast muscles relative to group C. Diets supplemented with fruit pomaces significantly lowered the concentration of thiobarbituric acid reactive substances (TBARS) in raw, frozen and cooked meat. Our results indicate that the dietary application of dried fruit pomaces increases the oxidative stability of meat from turkeys fed linseed oil, and strawberry pomace exerted the most desirable effects due to its highest polyphenol content and antioxidant potential.

  20. The Fatty Acid Profile and Oxidative Stability of Meat from Turkeys Fed Diets Enriched with n-3 Polyunsaturated Fatty Acids and Dried Fruit Pomaces as a Source of Polyphenols

    PubMed Central

    Juskiewicz, Jerzy; Jankowski, Jan; Zielinski, Henryk; Zdunczyk, Zenon; Mikulski, Dariusz; Antoszkiewicz, Zofia; Kosmala, Monika; Zdunczyk, Przemyslaw

    2017-01-01

    The aim of this study was to determine the efficacy of different dietary fruit pomaces in reducing lipid oxidation in the meat of turkeys fed diets with a high content of n-3 polyunsaturated fatty acids (PUFAs). Over a period of 4 weeks before slaughter, turkeys were fed diets with the addition of 5% dried apple, blackcurrant, strawberry and seedless strawberry pomaces (groups AP, BP, SP and SSP, respectively) and 2.5% linseed oil. Pomaces differed in the content (from 5.5 in AP to 43.1 mg/g in SSP) and composition of polyphenols Proanthocyanidins were the main polyphenolic fraction in all pomaces, AP contained flavone glycosides and dihydrochalcones, BP contained anthocyanins, and SP and SSP—ellagitannins. The n-6/n-3 PUFA ratio in all diets was comparable and lower than 2:1. In comparison with groups C and AP, the percentage of n-3 PUFAs in the total fatty acid pool of white meat from the breast muscles of turkeys in groups BP, SP and SSP was significantly higher, proportionally to the higher content of α-linolenic acid in berry pomaces. The fatty acid profile of dark meat from thigh muscles, including the n-6/n-3 PUFA ratio, was similar and lower than 3:1 in all groups. Vitamin A levels in raw breast muscles were higher in group AP than in groups C and BP (P<0.05). The addition of fruit pomaces to turkey diets lowered vitamin E concentrations (P = 0.001) in raw breast muscles relative to group C. Diets supplemented with fruit pomaces significantly lowered the concentration of thiobarbituric acid reactive substances (TBARS) in raw, frozen and cooked meat. Our results indicate that the dietary application of dried fruit pomaces increases the oxidative stability of meat from turkeys fed linseed oil, and strawberry pomace exerted the most desirable effects due to its highest polyphenol content and antioxidant potential. PMID:28076425

  1. Importance of knowledge on lipid composition of foods to support development towards consumption of higher levels of n-3 fatty acids via freshwater fish.

    PubMed

    Pickova, J

    2009-01-01

    The need of better labelling of fats in processed animal origin products is urgent. The lack of information makes it possible to exclude n-3 fatty acids in preparations of foods. The higher fat content, the higher n-6/n-3 ratio seems to be a rule. It is desirable to broaden the labelling into which oils have been used when foods are processed. The dietary balance of n-6 and n-3 fatty acids is important for homeostasis and normal development in humans. The ratio between n-6/n-3 fatty acids suggested to be evolutionary developed is between 1 and 4. The main conclusion is that the fat sources used during processing and preparation of convenient foods have the largest impact on the food FA content and composition. A proposal is therefore that this should be declared on the product label especially the n-3 FA content. It is also of large importance to increase consumption of freshwater fish fed suitable feeds containing n-3 fatty acids in central Europe to enable a generally lower n-6/n-3 ratio in the human diet. Therefore optimizing feeds to freshwater fish in culture is urgent and important.

  2. Early infant adipose deposition is positively associated with the n-6 to n-3 fatty acid ratio in human milk independent of maternal BMI.

    PubMed

    Rudolph, M C; Young, B E; Lemas, D J; Palmer, C E; Hernandez, T L; Barbour, L A; Friedman, J E; Krebs, N F; MacLean, P S

    2017-04-01

    Excessive infant weight gain in the first 6-month of life is a powerful predictor of childhood obesity and related health risks. In mice, omega-6 fatty acids (FAs) serve as potent ligands driving adipogenesis during early development. The ratio of omega-6 relative to omega-3 (n-6/n-3) FA in human milk (HM) has increased threefold over the last 30 years, but the impact of this shift on infant adipose development remains undetermined. This study investigated how maternal obesity and maternal dietary FA (as reflected in maternal red blood cells (RBCs) composition) influenced HM n-6 and n-3 FAs, and whether the HM n-6/n-3 ratio was associated with changes in infant adipose deposition between 2 weeks and 4 months postpartum. Forty-eight infants from normal weight (NW), overweight (OW) and obese (OB) mothers were exclusively or predominantly breastfed over the first 4 months of lactation. Mid-feed HM and maternal RBC were collected at either transitional (2 weeks) or established (4 months) lactation, along with infant body composition assessed using air-displacement plethysmography. The FA composition of HM and maternal RBC was measured quantitatively by lipid mass spectrometry. In transitional and established HM, docosahexaenoic acid (DHA) was lower (P=0.008; 0.005) and the arachidonic acid (AA)/DHA+eicosapentaenoic acid (EPA) ratio was higher (P=0.05; 0.02) in the OB relative to the NW group. Maternal prepregnancy body mass index (BMI) and AA/DHA+EPA ratios in transitional and established HM were moderately correlated (P=0.018; 0.001). Total infant fat mass was increased in the upper AA/DHA+EPA tertile of established HM relative to the lower tertile (P=0.019). The amount of changes in infant fat mass and percentage of body fat were predicted by AA/EPA+DHA ratios in established HM (P=0.038; 0.010). Perinatal infant exposures to a high AA/EPA+DHA ratio during the first 4 months of life, which is primarily reflective of maternal dietary FA, may significantly contribute to

  3. Alterations of Na,K-ATPase isoenzymes in the rat diabetic neuropathy: protective effect of dietary supplementation with n-3 fatty acids.

    PubMed

    Gerbi, A; Maixent, J M; Barbey, O; Jamme, I; Pierlovisi, M; Coste, T; Pieroni, G; Nouvelot, A; Vague, P; Raccah, D

    1998-08-01

    Diabetic neuropathy is a degenerative complication of diabetes accompanied by an alteration of nerve conduction velocity (NCV) and Na,K-ATPase activity. The present study in rats was designed first to measure diabetes-induced abnormalities in Na,K-ATPase activity, isoenzyme expression, fatty acid content in sciatic nerve membranes, and NCV and second to assess the preventive ability of a fish oil-rich diet (rich in n-3 fatty acids) on these abnormalities. Diabetes was induced by intravenous streptozotocin injection. Diabetic animals (D) and nondiabetic control animals (C) were fed the standard rat chow either without supplementation or supplemented with either fish oil (DM, CM) or olive oil (DO, CO) at a daily dose of 0.5 g/kg by gavage during 8 weeks. Analysis of the fatty acid composition of purified sciatic nerve membranes from diabetic animals showed a decreased incorporation of C16:1(n-7) fatty acids and arachidonic acids. Fish oil supplementation changed the fatty acid content of sciatic nerve membranes, decreasing C18:2(n-6) fatty acids and preventing the decreases of arachidonic acids and C18:1(n-9) fatty acids. Protein expression of Na,K-ATPase alpha subunits, Na,K-ATPase activity, and ouabain affinity were assayed in purified sciatic nerve membranes from CO, DO, and DM. Na,K-ATPase activity was significantly lower in sciatic nerve membranes of diabetic rats and significantly restored in diabetic animals that received fish oil supplementation. Diabetes induced a specific decrease of alpha1- and alpha3-isoform activity and protein expression in sciatic nerve membranes. Fish oil supplementation restored partial activity and expression to varying degrees depending on the isoenzyme. These effects were associated with a significant beneficial effect on NCV. This study indicates that fish oil has beneficial effects on diabetes-induced alterations in sciatic nerve Na,K-ATPase activity and function.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Löfling, Jonas; Michael Lyi, Sangbom; Parrish, Colin R.

    Feline panleukopenia virus (FPV) is a pathogen whose canine-adapted form (canine parvovirus (CPV)) emerged in 1978. These viruses infect by binding host transferrin receptor type-1 (TfR), but also hemagglutinate erythrocytes. We show that hemagglutination involves selective recognition of the non-human sialic acid N-glycolylneuraminic acid (Neu5Gc) but not N-acetylneuraminic acid (Neu5Ac), which differs by only one oxygen atom from Neu5Gc. Overexpression of α2-6 sialyltransferase did not change binding, indicating that both α2-3 and α2-6 linkages are recognized. However, Neu5Gc expression on target cells did not enhance CPV or FPV infection in vitro. Thus, the conserved Neu5Gc-binding preference of these viruses likelymore » plays a role in the natural history of the virus in vivo. Further studies must clarify relationships between virus infection and host Neu5Gc expression. As a first step, we show that transcripts of CMAH (which generates Neu5Gc from Neu5Ac) are at very low levels in Western dog breed cells. - Highlights: ► Feline and canine parvoviruses recognize Neu5Gc but not Neu5Ac, which differ by one oxygen atom. ► The underlying linkage of these sialic acids does not affect recognition. ► Induced Neu5Gc expression on target cells that normally express Neu5Ac did not enhance infection. ► Thus, the conserved binding preference plays an important yet unknown role in in vivo infections. ► Population and breed variations in Neu5Gc expression occur, likely by regulating the gene CMAH.« less

  5. Identification and analysis of o-acetylated sialoglycoproteins.

    PubMed

    Mandal, Chandan; Mandal, Chitra

    2013-01-01

    5-N-acetylneuraminic acid, commonly known as sialic acid (Sia), constitutes a family of N- and O-substituted 9-carbon monosaccharides. Frequent modification of O-acetylations at positions C-7, C-8, or C-9 of Sias generates a family of O-acetylated sialic acid (O-AcSia) and plays crucial roles in many cellular events like cell-cell adhesion, proliferation, migration, etc. Therefore, identification and analysis of O-acetylated sialoglycoproteins (O-AcSGPs) are important. In this chapter, we describe several approaches for successful identification of O-AcSGPs. We broadly divide them into two categories, i.e., invasive and noninvasive methods. Several O-AcSias-binding probes are used for this purpose. Detailed methodologies for step-by-step identification using these probes have been discussed. We have also included a few invasive analytical methods for identification and quantitation of O-AcSias. Several indirect methods are also elaborated for such purpose, in which O-acetyl group from sialic acids is initially removed followed by detection of Sias by several approaches. For molecular identification, we have described methods for affinity purification of O-AcSGPs using an O-AcSias-binding lectin as an affinity matrix followed by sequencing using matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF-TOF) mass spectroscopy (MS). In spite of special attention, loss of O-acetyl groups due to its sensitivity towards alkaline pH and high temperature along with migration of labile O-acetyl groups from C7-C8-C9 during sample preparation is difficult to avoid. Therefore there is always a risk for underestimation of O-AcSias.

  6. Functional analysis of glyco-molecules that bind with influenza virus.

    PubMed

    Takahashi, Tadanobu

    2016-01-01

    Influenza A virus (IAV) recognizes terminal sialic acid of sialoglyco-conjugates on host cells through the viral envelope glycoprotein hemagglutinin (HA), followed by initiation of entry into the cells. Molecular species of sialic acid are largely divided into two moieties: N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc). A receptor for IAV infection generally means Neu5Ac. Almost all equine IAVs and some human, swine, and duck IAVs bind not only to Neu5Ac but also to Neu5Gc. In nonhuman animals, Neu5Gc has been detected in swine and equine tracheas and the duck colon, which are the main replication sites of mammalian and avian IAVs. Therefore, Neu5Gc in these sites has been suggested to be a functional receptor for IAV infection. Humans cannot synthesize Neu5Gc due to a genetic defect of the Neu5Gc-synthesizing enzyme. We evaluated the receptor function of Neu5Gc in IAV infection in human cells. Our results indicated that Neu5Gc expression on the surface of human cells is not a functional receptor for IAV infection and that it has a negative effect on infectivity of IAV possessing Neu5Gc binding ability. IAV also binds to non-sialo 3-O-sulfated galactosylceramide (sulfatide). Sulfatide has been suggested to be a functional receptor for IAV infection. However, we have shown that sulfatide is not a functional receptor for IAV infection and that the binding of HA with sulfatide enhances progeny virus production. It is expected that functions of these glyco-molecules can be used in prevention and development of new drugs against IAV.

  7. N-3 Polyunsaturated Fatty Acids of Marine Origin and Multifocality in Human Breast Cancer.

    PubMed

    Ouldamer, Lobna; Goupille, Caroline; Vildé, Anne; Arbion, Flavie; Body, Gilles; Chevalier, Stephan; Cottier, Jean Philippe; Bougnoux, Philippe

    2016-01-01

    The microenvironment of breast epithelial tissue may contribute to the clinical expression of breast cancer. Breast epithelial tissue, whether healthy or tumoral, is directly in contact with fat cells, which in turn could influence tumor multifocality. In this pilot study we investigated whether the fatty acid composition of breast adipose tissue differed according to breast cancer focality. Twenty-three consecutive women presenting with non-metastatic breast cancer underwent breast-imaging procedures including Magnetic Resonance Imaging prior to treatment. Breast adipose tissue specimens were collected during breast surgery. We established a biochemical profile of adipose tissue fatty acids by gas chromatography. We assessed whether there were differences according to breast cancer focality. We found that decreased levels in breast adipose tissue of docosahexaenoic and eicosapentaenoic acids, the two main polyunsaturated n-3 fatty acids of marine origin, were associated with multifocality. These differences in lipid content may contribute to mechanisms through which peritumoral adipose tissue fuels breast cancer multifocality.

  8. A cost-effective approach to produce 15N-labelled amino acids employing Chlamydomonas reinhardtii CC503.

    PubMed

    Nicolás Carcelén, Jesús; Marchante-Gayón, Juan Manuel; González, Pablo Rodríguez; Valledor, Luis; Cañal, María Jesús; Alonso, José Ignacio García

    2017-08-18

    The use of enriched stable isotopes is of outstanding importance in chemical metrology as it allows the application of isotope dilution mass spectrometry (IDMS). Primary methods based on IDMS ensure the quality of the analytical measurements and traceability of the results to the international system of units. However, the synthesis of isotopically labelled molecules from enriched stable isotopes is an expensive and a difficult task. Either chemical and biochemical methods to produce labelled molecules have been proposed, but so far, few cost-effective methods have been described. The aim of this study was to use the microalgae Chlamydomonas reinhardtii to produce, at laboratory scale, 15 N-labelled amino acids with a high isotopic enrichment. To do that, a culture media containing 15 NH 4 Cl was used. No kinetic isotope effect (KIE) was observed. The labelled proteins biosynthesized by the microorganism were extracted from the biomass and the 15 N-labelled amino acids were obtained after a protein hydrolysis with HCl. The use of the wall deficient strain CC503 cw92 mt+ is fit for purpose, as it only assimilates ammonia as nitrogen source, avoiding isotope contamination with nitrogen from the atmosphere or the reagents used in the culture medium, and enhancing the protein extraction efficiency compared to cell-walled wild type Chlamydomonas. The isotopic enrichment of the labelled amino acids was calculated from their isotopic composition measured by gas chromatography mass spectrometry (GC-MS). The average isotopic enrichment for the 16 amino acids characterized was 99.56 ± 0.05% and the concentration of the amino acids in the hydrolysate ranged from 18 to 90 µg/mL. Previously reported biochemical methods to produce isotopically labelled proteins have been applied in the fields of proteomics and fluxomics. For these approaches, low amounts of products are required and the isotopic enrichment of the molecules has never been properly determined. So far, only 13

  9. Synthesis of P,N-Heterocycles from ω-Amino-H-Phosphinates: Conformationally Restricted α-Amino Acid Analogs

    PubMed Central

    Queffelec, Clémence; Ribière, Patrice; Montchamp, Jean-Luc

    2009-01-01

    P,N-Heterocycles (3-hydroxy-1,3-azaphospholane and 3-hydroxy-1,3-azaphosphorinane-3-oxide) are synthesized in moderate yield from readily available ω-amino-H-phosphinates and aldehydes or ketones via an intramolecular Kabachnik-Fields reaction. The products are conformationally restricted phosphinic analogs of α-amino acids. The multi-gram scale syntheses of the H2N(CH2)nPO2H2 phosphinic precursors (n = 1, 2, 3) and some derivatives are also described. PMID:18855477

  10. Fatty acid-amino acid conjugates diversification in Lepidopteran caterpillars

    USDA-ARS?s Scientific Manuscript database

    Fatty acid amino acid conjugates (FACs) have been found in Noctuid as well as Sphingid caterpillar oral secretions and especially volicitin [N-(17-hydroxylinolenoyl)-L-Glutamine] and its biochemical precursor, N-linolenoyl-L-glutamine, are known elicitors of induced volatile emissions in corn plants...

  11. Hepatic Toxicity of Perfluorocarboxylic Acids.

    DTIC Science & Technology

    1996-07-01

    1995). 3. N. V. Reo, C. M. Goecke, L. Narayanan, and B. M. Jarnot. "Effects of Perfluoro-n-octanoic Acid , Perfluoro-n-decanoic Acid , and Clofibrate ...Artz, and B. M. Jarnot: "ILiver Phosphorous Metabolic Response to Perfluorocarboxylic Acids and Clofibrate in Rats and Guinea Pigs: A 31 P NMR Study...Peroxisome Induction by Perfluoro-n-decanoic Acid and Clofibrate in the Rat: Proliferation Versus Activity." International Society for the Study of

  12. Development and validation of a ultra performance LC-ESI/MS method for analysis of metabolic phenotypes of healthy men in day and night urine samples.

    PubMed

    Wang, Xijun; Lv, Haitao; Zhang, Guangmei; Sun, Wenjun; Zhou, Dixin; Jiao, Guozheng; Yu, Yang

    2008-09-01

    Ultra-performance LC coupled to quadrupole TOF/MS (UPLC-QTOF/MS) in positive and negative ESI was developed and validated to analyze metabolite profiles for urine from healthy men during the day and at night. Data analysis using principal components analysis (PCA) revealed differences between metabolic phenotypes of urine in healthy men during the day and at night. Positive ions with mass-to-charge ratio (m/z) 310.24 (5.35 min), 286.24 (4.74 min) and 310.24 (5.63 min) were elevated in the urine from healthy men at night compared to that during the day. Negative ions elevated in day urine samples of healthy men included m/z 167.02 (0.66 min), 263.12 (2.55 min) and 191.03 (0.73 min), whilst ions m/z 212.01 (4.77 min) were at a lower concentration in urine of healthy men during the day compared to that at night. The ions m/z 212.01 (4.77 min), 191.03 (0.73 min) and 310.24 (5.35 min) preliminarily correspond to indoxyl sulfate, citric acid and N-acetylneuraminic acid, providing further support for an involvement of phenotypic difference in urine of healthy men in day and night samples, which may be associated with notably different activities of gut microbiota, velocity of tricarboxylic acid cycle and activity of sialic acid biosynthesis in healthy men as regulated by circadian rhythm of the mammalian bioclock.

  13. Providing male rats deficient in iron and n-3 fatty acids with iron and alpha-linolenic acid alone affects brain serotonin and cognition differently from combined provision.

    PubMed

    Baumgartner, Jeannine; Smuts, Cornelius M; Zimmermann, Michael B

    2014-06-13

    We recently showed that a combined deficiency of iron (ID) and n-3 fatty acids (n-3 FAD) in rats disrupts brain monoamine metabolism and produces greater memory deficits than ID or n-3 FAD alone. Providing these double-deficient rats with either iron (Fe) or preformed docosahexaenoic acid (DHA)/eicosapentaenoic acid (EPA) alone affected brain monoamine pathways differently from combined repletion and even exacerbated cognitive deficits associated with double-deficiency. Iron is a co-factor of the enzymes responsible for the conversion of alpha-linolenic acid (ALA) to EPA and DHA, thus, the provision of ALA with Fe might be more effective in restoring brain EPA and DHA and improving cognition in double-deficient rats than ALA alone. In this study we examined whether providing double-deficient rats with ALA and Fe, alone or in combination, can correct deficits in monoamine metabolism and cognition associated with double-deficiency. Using a 2 × 2 design, male rats with concurrent ID and n-3 FAD were fed an Fe + ALA, Fe + n-3 FAD, ID + ALA, or ID + n-3 FAD diet for 5 weeks (postnatal day 56-91). Biochemical measures, and spatial working and reference memory (using the Morris water maze) were compared to age-matched controls. In the hippocampus, we found a significant Fe × ALA interaction on DHA: Compared to the group receiving ALA alone, DHA was significantly higher in the Fe + ALA group. In the brain, we found significant antagonistic Fe × ALA interactions on serotonin concentrations. Provision of ALA alone impaired working memory compared with age-matched controls, while in the reference memory task ALA provided with Fe significantly improved performance. These results indicate that providing either iron or ALA alone to double-deficient rats affects serotonin pathways and cognitive performance differently from combined provision. This may be partly explained by the enhancing effect of Fe on the conversion of ALA to EPA and DHA.

  14. Providing male rats deficient in iron and n-3 fatty acids with iron and alpha-linolenic acid alone affects brain serotonin and cognition differently from combined provision

    PubMed Central

    2014-01-01

    Background We recently showed that a combined deficiency of iron (ID) and n-3 fatty acids (n-3 FAD) in rats disrupts brain monoamine metabolism and produces greater memory deficits than ID or n-3 FAD alone. Providing these double-deficient rats with either iron (Fe) or preformed docosahexaenoic acid (DHA)/eicosapentaenoic acid (EPA) alone affected brain monoamine pathways differently from combined repletion and even exacerbated cognitive deficits associated with double-deficiency. Iron is a co-factor of the enzymes responsible for the conversion of alpha-linolenic acid (ALA) to EPA and DHA, thus, the provision of ALA with Fe might be more effective in restoring brain EPA and DHA and improving cognition in double-deficient rats than ALA alone. Methods In this study we examined whether providing double-deficient rats with ALA and Fe, alone or in combination, can correct deficits in monoamine metabolism and cognition associated with double-deficiency. Using a 2 × 2 design, male rats with concurrent ID and n-3 FAD were fed an Fe + ALA, Fe + n-3 FAD, ID + ALA, or ID + n-3 FAD diet for 5 weeks (postnatal day 56–91). Biochemical measures, and spatial working and reference memory (using the Morris water maze) were compared to age-matched controls. Results In the hippocampus, we found a significant Fe × ALA interaction on DHA: Compared to the group receiving ALA alone, DHA was significantly higher in the Fe + ALA group. In the brain, we found significant antagonistic Fe × ALA interactions on serotonin concentrations. Provision of ALA alone impaired working memory compared with age-matched controls, while in the reference memory task ALA provided with Fe significantly improved performance. Conclusion These results indicate that providing either iron or ALA alone to double-deficient rats affects serotonin pathways and cognitive performance differently from combined provision. This may be partly explained by the enhancing effect of Fe on

  15. Okadaic acid-induced, naringin-sensitive phosphorylation of glycine N-methyltransferase in isolated rat hepatocytes.

    PubMed Central

    Møller, Michael T N; Samari, Hamid R; Fengsrud, Monica; Strømhaug, Per E; øStvold, Anne C; Seglen, Per O

    2003-01-01

    Glycine N-methyltransferase (GNMT) is an abundant cytosolic enzyme that catalyses the methylation of glycine into sarcosine, coupled with conversion of the methyl donor, S -adenosylmethionine (AdoMet), into S -adenosylhomocysteine (AdoHcy). GNMT is believed to play a role in monitoring the AdoMet/AdoHcy ratio, and hence the cellular methylation capacity, but regulation of the enzyme itself is not well understood. In the present study, treatment of isolated rat hepatocytes with the protein phosphatase inhibitor okadaic acid, was found to induce an overphosphorylation of GNMT, as shown by proteomic analysis. The analysis comprised two-dimensional gel electrophoretic separation of (32)P-labelled phosphoproteins and identification of individual protein spots by matrix-assisted laser-desorption ionization-time-of-flight mass spectrometry. The identity of GNMT was verified by N-terminal Edman sequencing of tryptic peptides. Chromatographic separation of proteolytic peptides and (32)P-labelled amino acids suggested that GNMT was phosphorylated within a limited region, and only at serine residues. GNMT phosphorylation could be suppressed by naringin, an okadaic acid-antagonistic flavonoid. To assess the possible functional role of GNMT phosphorylation, the effect of okadaic acid on hepatocytic AdoMet and AdoHcy levels was examined, using HPLC separation for metabolite analysis. Surprisingly, okadaic acid was found to have no effect on the basal levels of AdoMet or AdoHcy. An accelerated AdoMet-AdoHcy flux, induced by the addition of methionine (1 mM), was likewise unaffected by okadaic acid. 5-Aminoimidazole-4-carboxamide riboside, an activator of the hepatocytic AMP-activated protein kinase, similarly induced GNMT phosphorylation without affecting AdoMet and AdoHcy levels. Activation of cAMP-dependent protein kinase by dibutyryl-cAMP, reported to cause GNMT phosphorylation under cell-free conditions, also had little effect on hepatocytic AdoMet and AdoHcy levels

  16. Synthesis of novel lipoamino acid conjugates of sapienic acid and evaluation of their cytotoxicity activities.

    PubMed

    Gopal, Sanganamoni Chinna; Kaki, Shiva Shanker; Rao, Bhamidipati V S K; Poornachandra, Yedla; Kumar, Chityal Ganesh; Narayana Prasad, Rachapudi Badari

    2014-01-01

    Novel lipoamino acids were prepared with the coupling of sapienic acid [(Z)-6-hexadecenoic acid] with α - amino group of amino acids and the resulting N-sapienoyl amino acids were tested for their cytotoxicity activities against four cancer based cell lines. Initially, sapienic acid was synthesized by the Wittig coupling of triphenylphosphonium bromide salt of 6-bromohexanoic acid and decanal with a Z specific reagent. The prepared sapienic acid was subsequently converted to its acid chloride which was further coupled with amino acids by the Schotten-Baumann reaction to form N-sapienoyl amino acid conjugates. Structural characterization of the prepared N-sapienoyl amino acid derivatives was done by spectral data (IR, mass spectra and NMR). These lipoamino acid derivatives were screened for in vitro cytotoxicity evaluation. Cytotoxicity evaluation against four cancer cell lines showed that N-sapienoyl isoleucine was active against three cell lines whereas other derivatives either showed activity against only one or two cell lines with very moderate activity and two derivatives were observed to be inactive against the tested cell lines.

  17. Resolving the bulk δ 15N values of ancient human and animal bone collagen via compound-specific nitrogen isotope analysis of constituent amino acids

    NASA Astrophysics Data System (ADS)

    Styring, Amy K.; Sealy, Judith C.; Evershed, Richard P.

    2010-01-01

    Stable nitrogen isotope analysis is a fundamental tool in assessing dietary preferences and trophic positions within contemporary and ancient ecosystems. In order to assess more fully the dietary contributions to human tissue isotope values, a greater understanding of the complex biochemical and physiological factors which underpin bulk collagen δ 15N values is necessary. Determinations of δ 15N values of the individual amino acids which constitute bone collagen are necessary to unravel these relationships, since different amino acids display different δ 15N values according to their biosynthetic origins. A range of collagen isolates from archaeological faunal and human bone ( n = 12 and 11, respectively), representing a spectrum of terrestrial and marine protein origins and diets, were selected from coastal and near-coastal sites at the south-western tip of Africa. The collagens were hydrolysed and δ 15N values of their constituent amino acids determined as N-acetylmethyl esters (NACME) via gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). The analytical approach employed accounts for 56% of bone collagen nitrogen. Reconstruction of bulk bone collagen δ 15N values reveals a 2‰ offset from bulk collagen δ 15N values which is attributable to the δ 15N value of the amino acids which cannot currently be determined by GC-C-IRMS, notably arginine which comprises 53% of the nitrogen unaccounted for (23% of the total nitrogen). The δ 15N values of individual amino acids provide insights into both the contributions of various amino acids to the bulk δ 15N value of collagen and the factors influencing trophic position and the nitrogen source at the base of the food web. The similarity in the δ 15N values of alanine, glutamate, proline and hydroxyproline reflects the common origin of their amino groups from glutamate. The depletion in the δ 15N value of threonine with increasing trophic level indicates a fundamental difference between

  18. Improving cell penetration of helical peptides stabilized by N-terminal crosslinked aspartic acids.

    PubMed

    Zhao, Hui; Jiang, Yanhong; Tian, Yuan; Yang, Dan; Qin, Xuan; Li, Zigang

    2017-01-04

    Cell penetration and nucleus translocation efficiency are important for the cellular activities of peptide therapeutics. For helical peptides stabilized by N-terminal crosslinked aspartic acid, correlations between their penetration efficiency/nucleus translocation and physicochemical properties were studied. An increase in hydrophobicity and isoelectric point will promote cellular uptake and nucleus translocation of stabilized helices.

  19. Experimental investigation of thermodynamic properties of binary mixture of acetic acid + n-butanol and acetic acid + water at temperature from 293.15 K to 343.15 K

    NASA Astrophysics Data System (ADS)

    Paul, M. Danish John; Shruthi, N.; Anantharaj, R.

    2018-04-01

    The derived thermodynamic properties like excess molar volume, partial molar volume, excess partial molar volume and apparent volume of binary mixture of acetic acid + n-butanolandacetic acid + water has been investigated using measured density of mixtures at temperatures from 293.15 K to 343.15.

  20. The Toxicity of Perfluoro-N-Decanoic Acid and 2,3,7,8- Tetrachlorodibenzo-P-Dioxin in L5178Y Mouse Lymphoma Cells

    DTIC Science & Technology

    1983-03-01

    ABSTRACT (Continue on reverse side If necessary and identify by block number) Perfluoro -n-decanoic acid ( PFDA ) causes toxic sequelae in vivo very similar to...acid analogs. All polyfluorinated acids tested (either perfluorinated or w-hydro-analogs) with chain length 9 or greater caused impairment of clone...of 5 to 7. The acute and subchronic toxicity of ammonium perfluoro -n-octanoate ( PFOA ) has been described in detail in both rats and rhesus monkeys

  1. Dual fluorescence of N-phenylanthranilic acid: Effect of solvents, pH and beta-cyclodextrin.

    PubMed

    Rajendiran, N; Balasubramanian, T

    2007-11-01

    Spectral characteristics of N-phenylanthranilic acid (NPAA) have been studied in different solvents, pH and beta-cyclodextrin (beta-CD) and compared with anthranilic acid (2-aminobenzoic acid, 2ABA). In all solvents a dual fluorescence is observed in NPAA, whereas 2ABA gives single emission. Combining the results observed in the absorption, fluorescence emission and fluorescence excitation spectra, it is found that strong intramolecular hydrogen bonding (IHB) interactions present in NPAA molecule. The inclusion complex of NPAA with beta-CD is analysed by UV-vis, fluorimetry, FT-IR, (1)H NMR, scanning electron microscope and AM 1 method. The above spectral studies show that NPAA forms a 1:1 inclusion complex with beta-CD and COOH group present in the beta-CD cavity. A mechanism is proposed to explain the inclusion process.

  2. Dual fluorescence of N-phenylanthranilic acid: Effect of solvents, pH and β-cyclodextrin

    NASA Astrophysics Data System (ADS)

    Rajendiran, N.; Balasubramanian, T.

    2007-11-01

    Spectral characteristics of N-phenylanthranilic acid (NPAA) have been studied in different solvents, pH and β-cyclodextrin (β-CD) and compared with anthranilic acid (2-aminobenzoic acid, 2ABA). In all solvents a dual fluorescence is observed in NPAA, whereas 2ABA gives single emission. Combining the results observed in the absorption, fluorescence emission and fluorescence excitation spectra, it is found that strong intramolecular hydrogen bonding (IHB) interactions present in NPAA molecule. The inclusion complex of NPAA with β-CD is analysed by UV-vis, fluorimetry, FT-IR, 1H NMR, scanning electron microscope and AM 1 method. The above spectral studies show that NPAA forms a 1:1 inclusion complex with β-CD and COOH group present in the β-CD cavity. A mechanism is proposed to explain the inclusion process.

  3. Docosahexaenoic Acid-Derived Fatty Acid Esters of Hydroxy Fatty Acids (FAHFAs) With Anti-inflammatory Properties.

    PubMed

    Kuda, Ondrej; Brezinova, Marie; Rombaldova, Martina; Slavikova, Barbora; Posta, Martin; Beier, Petr; Janovska, Petra; Veleba, Jiri; Kopecky, Jan; Kudova, Eva; Pelikanova, Terezie; Kopecky, Jan

    2016-09-01

    White adipose tissue (WAT) is a complex organ with both metabolic and endocrine functions. Dysregulation of all of these functions of WAT, together with low-grade inflammation of the tissue in obese individuals, contributes to the development of insulin resistance and type 2 diabetes. n-3 polyunsaturated fatty acids (PUFAs) of marine origin play an important role in the resolution of inflammation and exert beneficial metabolic effects. Using experiments in mice and overweight/obese patients with type 2 diabetes, we elucidated the structures of novel members of fatty acid esters of hydroxy fatty acids-lipokines derived from docosahexaenoic acid (DHA) and linoleic acid, which were present in serum and WAT after n-3 PUFA supplementation. These compounds contained DHA esterified to 9- and 13-hydroxyoctadecadienoic acid (HLA) or 14-hydroxydocosahexaenoic acid (HDHA), termed 9-DHAHLA, 13-DHAHLA, and 14-DHAHDHA, and were synthesized by adipocytes at concentrations comparable to those of protectins and resolvins derived from DHA in WAT. 13-DHAHLA exerted anti-inflammatory and proresolving properties while reducing macrophage activation by lipopolysaccharides and enhancing the phagocytosis of zymosan particles. Our results document the existence of novel lipid mediators, which are involved in the beneficial anti-inflammatory effects attributed to n-3 PUFAs, in both mice and humans. © 2016 by the American Diabetes Association.

  4. Dairy fat blends high in α-linolenic acid are superior to n-3 fatty-acid-enriched palm oil blends for increasing DHA levels in the brains of young rats.

    PubMed

    Du, Qin; Martin, Jean-Charles; Agnani, Genevieve; Pages, Nicole; Leruyet, Pascale; Carayon, Pierre; Delplanque, Bernadette

    2012-12-01

    Achieving an appropriate docosahexaenoic acid (DHA) status in the neonatal brain is an important goal of neonatal nutrition. We evaluated how different dietary fat matrices improved DHA content in the brains of both male and female rats. Forty rats of each gender were born from dams fed over gestation and lactation with a low α-linolenic acid (ALA) diet (0.4% of fatty acids) and subjected for 6 weeks after weaning to a palm oil blend-based diet (10% by weight) that provided either 1.5% ALA or 1.5% ALA and 0.12% DHA with 0.4% arachidonic acid or to an anhydrous dairy fat blend that provided 1.5% or 2.3% ALA. Fatty acids in the plasma, red blood cells (RBCs) and whole brain were determined by gas chromatography. The 1.5% ALA dairy fat was superior to both the 1.5% ALA palm oil blends for increasing brain DHA (14.4% increase, P<.05), and the 2.3% ALA dairy blend exhibited a further increase that could be ascribed to both an ALA increase and n-6/n-3 ratio decrease. Females had significantly higher brain DHA due to a gender-to-diet interaction, with dairy fats attenuating the gender effect. Brain DHA was predicted with a better accuracy by some plasma and RBC fatty acids when used in combination (R(2) of 0.6) than when used individually (R(2)=0.47 for RBC n-3 docosapentaenoic acid at best). In conclusion, dairy fat blends enriched with ALA appear to be an interesting strategy for achieving optimal DHA levels in the brain of postweaning rats. Human applications are worth considering. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Lower omega-3 polyunsaturated fatty acids and lower docosahexaenoic acid in men with pedophilia.

    PubMed

    Mincke, Elda; Cosyns, Paul; Christophe, Armand B; De Vriese, Stephanie; Maes, Michael

    2006-12-01

    Previous studies have suggested that abnormalities in plasma phospholipid fatty acids may play a role in aggressive behavior. Recently, it was suggested that a dysfunctional serotonergic turnover in the brain may be involved in the etiopathology of pedophilia. Depletion of n-3 polyunsaturated fatty acids (PUFA) may cause alterations in the serotonergic system that may be related to pedophilia and aggression. This study examines the serum phospholipid n-3 and n-6 PUFA fractions in pedophilia. Twenty-seven pedophilic men and eighteen healthy volunteers participated in this study. In pedophilia there was a significant depletion of the C22:6n-3 (docosahexaenoic acid, DHA), total n-3 fractions and an increase in the total n-6/n-3 and C20:4n-6/C20:5n-3 (arachidonic acid/eicosapentaenoic acid) ratios. Using the NEO Personality Inventory, lower DHA in pedophiles is related to more impulsiveness and lower agreeableness (trust, altruism, straightforwardness, compliance) and conscientiousness (self-discipline). The results of this study suggest that a depletion of the serum phospholipid n-3 higher unsaturated fatty acids (HUFAs) and, in particular, of DHA may take part in the pathophysiology of pedophilia. One hypothesis is that a depletion of n-3 HUFAs and DHA may cause alterations in the serotonergic turnover, which are related to impulse discontrol and aggression-hostility, behaviors which are associated with pedophilia.

  6. Solid-state acid-base interactions in complexes of heterocyclic bases with dicarboxylic acids: crystallography, hydrogen bond analysis, and 15N NMR spectroscopy.

    PubMed

    Li, Z Jane; Abramov, Yuriy; Bordner, Jon; Leonard, Jason; Medek, Ales; Trask, Andrew V

    2006-06-28

    A cancer candidate, compound 1, is a weak base with two heterocyclic basic nitrogens and five hydrogen-bonding functional groups, and is sparingly soluble in water rendering it unsuitable for pharmaceutical development. The crystalline acid-base pairs of 1, collectively termed solid acid-base complexes, provide significant increases in the solubility and bioavailability compared to the free base, 1. Three dicarboxylic acid-base complexes, sesquisuccinate 2, dimalonate 3, and dimaleate 4, show the most favorable physicochemical profiles and are studied in greater detail. The structural analyses of the three complexes using crystal structure and solid-state NMR reveal that the proton-transfer behavior in these organic acid-base complexes vary successively correlating with Delta pKa. As a result, 2 is a neutral complex, 3 is a mixed ionic and zwitterionic complex and 4 is an ionic salt. The addition of the acidic components leads to maximized hydrogen bond interactions forming extended three-dimensional networks. Although structurally similar, the packing arrangements of the three complexes are considerably different due to the presence of multiple functional groups and the flexible backbone of 1. The findings in this study provide insight into the structural characteristics of complexes involving heterocyclic bases and carboxylic acids, and demonstrate that X-ray crystallography and 15N solid-state NMR are truly complementary in elucidating hydrogen bonding interactions and the degree of proton transfer of these complexes.

  7. Lewis acid tuned facial stereodivergent HDA reactions using beta-substituted N-vinyloxazolidinones.

    PubMed

    Gohier, Frédéric; Bouhadjera, Keltoum; Faye, Djibril; Gaulon, Catherine; Maisonneuve, Vincent; Dujardin, Gilles; Dhal, Robert

    2007-01-18

    The [4 + 2] acido-catalyzed heterocycloaddition between new beta-substituted N-vinyl-1,3-oxazolidin-2-ones (with R' = Me, Ar, CH2 Ar) and beta,gamma-unsaturated alpha-ketoesters (R = Ar) afforded heteroadducts with high levels of endo and facial selectivities. A complete reversal of facial differentiation was achieved by varying the Lewis acid, leading to the stereoselective formation of either endo-alpha or endo-beta adducts. [reaction: see text].

  8. Dietary n-3 LCPUFA from fish oil but not α-linolenic acid-derived LCPUFA confers atheroprotection in mice[S

    PubMed Central

    Degirolamo, Chiara; Kelley, Kathryn L.; Wilson, Martha D.; Rudel, Lawrence L.

    2010-01-01

    The atheroprotective potential of n-3 α-linolenic acid (ALA) has not yet been fully determined, even in murine models of atherosclerosis. We tested whether ALA-derived, n-3 long chain polyunsaturated fatty acids (LCPUFA) could offer atheroprotection in a dose-dependent manner. Apolipoprotein B (ApoB)100/100LDLr−/− mice were fed with diets containing two levels of ALA from flaxseed oil for 16 weeks. Fish oil- and cis-monounsaturated-fat-enriched diets were used as positive and negative controls, respectively. The mice fed cis-monounsaturated fat and ALA-enriched diets exhibited equivalent plasma total cholesterol (TPC) and LDL-cholesterol (LDL-c) levels; only mice fed the fish-oil diet had lower TPC and LDL-c concentrations. Plasma LDL-CE fatty acid composition analysis showed that ALA-enriched diets lowered the percentage of atherogenic cholesteryl oleate compared with cis-monounsaturated-fat diet (44% versus 55.6%) but not as efficiently as the fish-oil diet (32.4%). Although both ALA and fish-oil diets equally enriched hepatic phospholipids with eicosapentaenoic acid (EPA) and ALA-enriched diets lowered hepatic cholesteryl ester (CE) levels compared with cis-monounsaturated-fat diet, only fish oil strongly protected from atherosclerosis. These outcomes indicate that dietary n-3 LCPUFA from fish oil and n-3 LCPUFA (mostly EPA) synthesized endogenously from ALA were not equally atheroprotective in these mice. PMID:20154006

  9. Sugar-induced conformational change found in the HA-33/HA-17 trimer of the botulinum toxin complex.

    PubMed

    Sagane, Yoshimasa; Hayashi, Shintaro; Matsumoto, Takashi; Miyashita, Shin-Ichiro; Inui, Ken; Miyata, Keita; Yajima, Shunsuke; Suzuki, Tomonori; Hasegawa, Kimiko; Yamano, Akihito; Nishikawa, Atsushi; Ohyama, Tohru; Watanabe, Toshihiro; Niwa, Koichi

    2013-08-30

    Large-sized botulinum toxin complex (L-TC) is formed by conjugation of neurotoxin, nontoxic nonhemagglutinin and hemagglutinin (HA) complex. The HA complex is formed by association of three HA-70 molecules and three HA-33/HA-17 trimers, comprised of a single HA-17 and two HA-33 proteins. The HA-33/HA-17 trimer isolated from serotype D L-TC has the ability to bind to and penetrate through the intestinal epithelial cell monolayer in a sialic acid-dependent manner, and thus it plays an important role in toxin delivery through the intestinal cell wall. In this study, we determined the solution structure of the HA-33/HA-17 trimer by using small-angle X-ray scattering (SAXS). The SAXS image of HA-33/HA-17 exhibited broadly similar appearance to the crystal image of the complex. On the other hand, in the presence of N-acetylneuraminic acid, glucose and galactose, the solution structure of the HA-33/HA-17 trimer was drastically altered compared to the structure in the absence of the sugars. Sugar-induced structural change of the HA-33/HA-17 trimer may contribute to cell binding and subsequent transport across the intestinal cell layer. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Cell and Tissue Imaging with Molecularly Imprinted Polymers.

    PubMed

    Panagiotopoulou, Maria; Kunath, Stephanie; Haupt, Karsten; Tse Sum Bui, Bernadette

    2017-01-01

    Advanced tools for cell imaging are of particular interest as they can detect, localize and quantify molecular targets like abnormal glycosylation sites that are biomarkers of cancer and infection. Targeting these biomarkers is often challenging due to a lack of receptor materials. Molecularly imprinted polymers (MIPs) are promising artificial receptors; they can be tailored to bind targets specifically, be labeled easily, and are physically and chemically stable. Herein, we demonstrate the application of MIPs as artificial antibodies for selective labeling and imaging of cellular targets, on the example of hyaluronan and sialylation moieties on fixated human skin cells and tissues. Thus, fluorescently labeled MIP nanoparticles templated with glucuronic acid (MIPGlcA) and N-acetylneuraminic acid (MIPNANA) are respectively applied. Two different fluorescent probes are used: (1) MIPGlcA particles, ~400 nm in size are labeled with the dye rhodamine that target the extracellular hyaluronan on cells and tissue specimens and (2) MIP-coated InP/ZnS quantum dots (QDs) of two different colors, ~125 nm in size that target the extracellular and intracellular hyaluronan and sialylation sites. Green and red emitting QDs are functionalized with MIPGlcA and MIPNANA respectively, enabling multiplexed cell imaging. This is a general approach that can also be adapted to other target molecules on and in cells.

  11. REDUCTION OF ACIDITY OF NITRIC ACID SOLUTIONS BY USE OF FORMALDEHYDE

    DOEpatents

    Healy, T.V.

    1958-05-20

    A continuous method is described of concentrating by evaporation and reducing the nitrate ion content of an aqueous solution of metallic salts containing nitric acid not in excess of 8N. It consists of heating the solution and then passing formaldehyde into the heated solution to bring about decomposition of the nitric acid. The evolved gases containing NO are contacted countercurrently with an aqueous metal salt solution containing nitric acid in excess of 8N so as to bring about decomposition of the nitric acid and lower the normality to at least 8N, whereupon it is passed into the body of heated solution.

  12. Increased blood pressure later in life may be associated with perinatal n-3 fatty acid deficiency.

    PubMed

    Armitage, James A; Pearce, Adrian D; Sinclair, Andrew J; Vingrys, Algis J; Weisinger, Richard S; Weisinger, Harrison S

    2003-04-01

    Hypertension is a major risk factor for cardiovascular and cerebrovascular disease. Previous work in both animals and humans with high blood pressure has demonstrated the antihypertensive effects of n-3 polyunsaturated fatty acids (PUFA), although it is not known whether these nutrients are effective in preventing hypertension. The predominant n-3 PUFA in the mammalian nervous system, docosahexaenoic acid (DHA), is deposited into synaptic membranes at a high rate during the perinatal period, and recent observations indicate that the perinatal environment is important for the normal development of blood pressure control. This study investigated the importance of perinatal n-3 PUFA supply in the control of blood pressure in adult Sprague-Dawley rats. Pregnant rat dams were fed semisynthetic diets that were either deficient in (DEF) or supplemented with (CON) n-3 PUFA. Offspring were fed the same diets as their mothers until 9 wk; then, half of the rats from each group were crossed over to the opposite diet creating four groups, i.e., CON-CON; CON-DEF; DEF-DEF, DEF-CON. Mean arterial blood pressures (MAP) were measured directly, at 33 wk of age, by cannulation of the femoral artery. The phospholipid fatty acid profile of the hypothalamic region was determined by capillary gas-liquid chromatography. The tissue phospholipid fatty acid profile reflected the diet that the rats were consuming at the time of testing. Both groups receiving DEF after 9 wk of age (i.e., DEF-DEF and CON-DEF) had similar profiles with a reduction in DHA levels of 30%, compared with rats receiving CON (i.e., CON-CON and DEF-CON). DEF-DEF rats had significantly raised MAP compared with all other groups, with differences as great as 17 mm Hg. DEF-CON rats had raised MAP compared with CON-CON rats, and DEF-DEF rats had higher MAP than CON-DEF rats, despite the fact that their respective fatty acid profiles were not different. These findings indicate that inadequate levels of DHA in the perinatal

  13. Hypothalamic fatty acid sensing in Senegalese sole (Solea senegalensis): response to long-chain saturated, monounsaturated, and polyunsaturated (n-3) fatty acids.

    PubMed

    Conde-Sieira, Marta; Bonacic, Kruno; Velasco, Cristina; Valente, Luisa M P; Morais, Sofia; Soengas, José L

    2015-12-15

    We assessed the presence of fatty acid (FA)-sensing mechanisms in hypothalamus of Senegalese sole (Solea senegalensis) and investigated their sensitivity to FA chain length and/or level of unsaturation. Stearate (SA, saturated FA), oleate (OA, monounsaturated FA of the same chain length), α-linolenate [ALA, a n-3 polyunsaturated fatty acid (PUFA) of the same chain length], and eicosapentanoate (EPA, a n-3 PUFA of a larger chain length) were injected intraperitoneally. Parameters related to FA sensing and neuropeptide expression in the hypothalamus were assessed after 3 h and changes in accumulated food intake after 4, 24, and 48 h. Three FA sensing systems characterized in rainbow trout were also found in Senegalese sole and were activated by OA in a way similar to that previously characterized in rainbow trout and mammals. These hypothalamic FA sensing systems were also activated by ALA, differing from mammals, where n-3 PUFAs do not seem to activate FA sensors. This might suggest additional roles and highlights the importance of n-3 PUFA in fish diets, especially in marine species. The activation of FA sensing seems to be partially dependent on acyl chain length and degree of saturation, as no major changes were observed after treating fish with SA or EPA. The activation of FA sensing systems by OA and ALA, but not SA or EPA, is further reflected in the expression of hypothalamic neuropeptides involved in the control of food intake. Both OA and ALA enhanced anorexigenic capacity compatible with the activation of FA sensing systems. Copyright © 2015 the American Physiological Society.

  14. Synthesis, characterization, and relative stabilities of self-assembled monolayers on gold generated from bidentate n-alkyl xanthic acids.

    PubMed

    Moore, H Justin; Colorado, Ramon; Lee, Han Ju; Jamison, Andrew C; Lee, T Randall

    2013-08-27

    A series of self-assembled monolayers (SAMs) on gold were generated by the adsorption of n-alkyl xanthic acids (NAXAs) having the general formula CH3(CH2)nOCS2H (n = 12-15). The structural features of these SAMs were characterized by optical ellipsometry, contact angle goniometry, polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS), and X-ray photoelectron spectroscopy (XPS). This series of xanthate SAMs were compared to SAMs generated from the corresponding n-alkanethiols and aliphatic dithiocarboxylic acids (ADTCAs). The collected data indicate that the NAXAs generate densely packed and well-ordered monolayers. The contact angles of hexadecane on the xanthate monolayers exhibited a large "odd-even" effect similar to that produced by the ADTCA SAMs. The relative stability of these bidentate xanthate SAMs was evaluated by monitoring the changes in ellipsometric thicknesses and wettability as a function of time under various conditions. The results demonstrate that SAMs formed from NAXAs are much less stable than analogous n-alkanethiolate and ADTCA SAMs.

  15. Synthesis of aminocarbonyl N-acylhydrazones by a three-component reaction of isocyanides, hydrazonoyl chlorides, and carboxylic acids.

    PubMed

    Giustiniano, Mariateresa; Meneghetti, Fiorella; Mercalli, Valentina; Varese, Monica; Giustiniano, Francesco; Novellino, Ettore; Tron, Gian Cesare

    2014-10-17

    A novel one-pot multicomponent synthesis of α-aminocarbonyl N-acylhydrazones starting from readily available hydrazonoyl chlorides, isocyanides, and carboxylic acids is reported. The strategy exploits the ability of the carboxylic acid as a third component to suppress all competing reactions between nitrile imines and isocyanides, channeling the course of the reaction toward the formation of this novel class of compounds.

  16. Brønsted acid-catalyzed decarboxylative redox amination: formation of N-alkylindoles from azomethine ylides by isomerization.

    PubMed

    Mao, Hui; Wang, Sichang; Yu, Peng; Lv, Huiqing; Xu, Runsheng; Pan, Yuanjiang

    2011-02-18

    A Brønsted acid-catalyzed decarboxylative redox amination involving aldehydes with 2-carboxyindoline for the synthesis of N-alkylindoles is described. The decarboxylative condensations of aldehydes with 2-carboxyindoline produce azomethine ylides in situ, which then transform into N-alkylindoles by isomerization. © 2011 American Chemical Society

  17. Cardiometabolic risk factors are influenced by Stearoyl-CoA Desaturase (SCD) -1 gene polymorphisms and n-3 polyunsaturated fatty acid supplementation.

    PubMed

    Rudkowska, Iwona; Julien, Pierre; Couture, Patrick; Lemieux, Simone; Tchernof, André; Barbier, Olivier; Vohl, Marie-Claude

    2014-05-01

    To determine if single nucleotide polymorphisms (SNPs) in stearoyl-CoA desaturase (SCD)-1 gene that encodes a key enzyme for fatty acid metabolism are associated with the response of cardiometabolic risk factors to n-3 PUFA supplementation. Two hundred and ten subjects completed a 2-week run-in period followed by 6-week supplementation with 5 g of fish oil (1.9-2.2 g eicosapentaenoic acid and 1.1 g docosahexaenoic acid). Risk factors were measured pre and post n-3 supplementation. Fatty acid composition of plasma phospholipids was analyzed by GC and the desaturase indices SCD16 (16:1n-7/16:0) and SCD18 (18:1n-9/18:0) were calculated. Genotyping of eight SNPs of the SCD1 gene was performed. N-3 PUFA supplementation decreased plasma triglycerides, as well as SCD16 and SCD18 indices, but increased fasting plasma glucose concentrations. SNPs in SCD1-modified cardiometabolic risk factors pre and post n-3 PUFA supplementation: triglyceride (rs508384, p = 0.0086), IL6 (rs3071, p = 0.0485), C-reactive protein (rs3829160, p = 0.0489), and SCD18 indices (rs2234970, p = 0.0337). A significant interaction effect between the SNP and n-3 PUFA supplementation was also observed for fasting plasma glucose levels (rs508384, p = 0.0262). These results suggest that cardiometabolic risk factors are modulated by genetic variations in the SCD1 gene alone or in combination with n-3 PUFA supplementation. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Dietary supplementation with n-3 polyunsaturated fatty acids in early childhood: effects on blood pressure and arterial structure and function at age 8 y.

    PubMed

    Ayer, Julian G; Harmer, Jason A; Xuan, Wei; Toelle, Brett; Webb, Karen; Almqvist, Catarina; Marks, Guy B; Celermajer, David S

    2009-08-01

    n-3 Fatty acid supplementation in adults results in cardiovascular benefits. However, the cardiovascular effects of n-3 supplementation in early childhood are unknown. The objective was to evaluate blood pressure (BP) and arterial structure and function in 8-y-old children who had participated in a randomized controlled trial of dietary n-3 and n-6 modification over the first 5 y of life. The children (n = 616; 49% girls) were randomly assigned antenatally to active (n = 312; increase in n-3 intake and decrease in n-6 intake) or control (n = 304) diet interventions implemented from the time of weaning or introduction of solids until 5 y of age. At age 8.0 +/- 0.1 y, BP, carotid intima-media thickness, carotid artery distensibility, augmentation index, and brachial pulse wave velocity were measured in 405 of these children. Venous blood was collected for measurement of plasma fatty acids, lipoproteins, high-sensitivity C-reactive protein, and asymmetric dimethylarginine. Plasma fatty acid concentrations were also assessed during the intervention. Plasma concentrations of n-3 fatty acids were higher and of n-6 were lower in the active than in the control diet group at 18 mo and 3 and 5 y (P < 0.0001). Concentrations of n-3 and n-6 fatty acids were similar at 8 y. At 8 y of age, no significant differences were found in BP, carotid intima-media thickness, carotid artery distensibility, augmentation index, asymmetric dimethylarginine, high-sensitivity C-reactive protein, or lipoproteins between diet groups. A dietary supplement intervention to increase n-3 and decrease n-6 intakes from infancy until 5 y does not result in significant improvements in arterial structure and function at age 8 y. This trial was registered at the Australian Clinical Trials Registry as ACTRN012605000042640.

  19. Mutual Exclusion of Urea and Trimethylamine N-oxide from Amino Acids in Mixed Solvent Environment

    NASA Astrophysics Data System (ADS)

    Ganguly, Pritam; Hajari, Timir; Shea, Joan-Emma; van der Vegt, Nico F. A.

    2015-03-01

    We study the solvation thermodynamics of individual amino acids in mixed urea and trimethylamine N-oxide (TMAO) solutions using molecular dynamics simulations and the Kirkwood-Buff theory. Our results on the preferential interactions between the amino acids and the cosolvents (urea and TMAO) show a mutual exclusion of both the cosolvents from the amino acid surface in the mixed cosolvent condition which is followed by an increase in the cosolvent-cosolvent aggregation away from the amino acid surface. The effects of the mixed cosolvents on the association of the amino acids and the preferential solvation of the amino acids by water are found to be highly non-linear in terms of the effects of the individual cosolvents. A similar result has been found for the association of the protein backbone, mimicked by triglycine. Our results have been confirmed by different TMAO force-fields and the mutual exclusions of the cosolvents from the amino acids are found to be independent of the choice of the strength of the TMAO-water interactions. Based on our data, a general mechanism can potentially be proposed for the effects of the mixed cosolvents on the preferential solvations of the solutes including the case of cononsolvency.

  20. Plasma fatty acid profile and alternative nutrition.

    PubMed

    Krajcovicová-Kudlácková, M; Simoncic, R; Béderová, A; Klvanová, J

    1997-01-01

    Plasma profile of fatty acids was examined in a group of children consisting of 7 vegans, 15 lactoovovegetarians and 10 semivegetarians. The children were 11-15 years old and the average period of alternative nutrition was 3.4 years. The results were compared with a group of 19 omnivores that constituted an average sample with respect to biochemical and hematological parameters from a larger study of health and nutritional status of children in Slovakia. Alternative nutrition groups had significantly lower values of saturated fatty acids. The content of oleic acid was identical to omnivores. A significant increase was observed for linoleic and alpha-linolenic (n-3) acids. The dihomo-gamma-linolenic (n-6) acid and arachidonic (n-6) acid values were comparable to omnivores for all alternative nutrition groups. Values of n-3 polyunsaturated fatty acids in lactoovovegetarians were identical to those of omnivores whereas they were significantly increased in semivegetarians consuming fish twice a week. Due to the total exclusion of animal fats from the diet, vegans had significantly reduced values of palmitoleic acid as well as eicosapentaenoic (n-3) acid and docosahexaenoic (n-3) acid resulting in an increased n-6/n-3 ratio. Values of plasma fatty acids found in alternative nutrition groups can be explained by the higher intake of common vegetable oils (high content of linoleic acid), oils rich in alpha-linolenic acid (cereal germs, soybean oil, walnuts), as well as in n-3 polyunsaturated fatty acids (fish). The results of fatty acids (except n-3 in vegans) and other lipid parameters confirm the beneficial effect of vegetarian nutrition in the prevention of cardiovascular diseases.

  1. H9N2-specific IgG and CD4+CD25+ T cells in broilers fed a diet supplemented with organic acids.

    PubMed

    Lee, In Kyu; Bae, Suhan; Gu, Min Jeong; You, Sun Jong; Kim, Girak; Park, Sung-Moo; Jeung, Woon-Hee; Ko, Kwang Hyun; Cho, Kyung Jin; Kang, Jung Sun; Yun, Cheol-Heui

    2017-05-01

    Organic acids have long been known for their beneficial effects on growth performance in domestic animals. However, their impact on immune responses against viral antigens in chickens is unclear. The present study aimed to investigate immunological parameters in broilers immunized with a H9N2 vaccine and/or fed a diet containing organic acids (citric, formic, and lactic acids). We allotted 1-day-old broilers into 4 groups: control (C), fed a diet supplemented with organic acids (O), administered a H9N2 vaccine (V), and fed a diet supplemented with organic acids and administered a H9N2 vaccine (OV). Blood and spleen samples were taken at 2, 7 and 14 d post vaccination (DPV). At 14 DPV, total and H9N2-specific IgG levels were significantly lower in the OV group than in the V group. However, it was intriguing to observe that at 2 DPV, the percentage of CD4+CD25+ T cells was significantly higher in the OV group than in the other groups, indicating the potential induction of regulatory T cells by organic acids. In contrast, at 2 DPV, the percentage of CD4+CD28+ T cells were significantly lower in the OV group than in the other groups, suggesting that CD28 molecules are down-regulated by the treatment. The expression of CD28 on CD4+ T cells, up-regulated by the stimulation with phorbol 12-myristate 13-acetate (PMA) and ionomycin (Iono), was inhibited upon organic acid treatment in OV group. In addition, the proliferation of lymphocytes, stimulated with formalin-inactivated H9N2, was significantly higher in the V group than in the OV group. Alpha 1-acid glycoprotein (AGP) production was significantly lower in the OV group than in the V group, suggesting that the organic acids inhibited the inflammation caused by the vaccination. Overall, induction of regulatory CD4+CD25+ T cells, coinciding with the decrease of H9N2-specific antibodies, was observed in broilers fed organic acids. © 2016 Poultry Science Association Inc.

  2. Efficient dehydrogenation of formic acid using Al12N12 nanocage: A DFT study

    NASA Astrophysics Data System (ADS)

    Esrafili, Mehdi D.; Nurazar, Roghaye

    2014-11-01

    We have studied the adsorption and decomposition of formic acid (HCOOH) on the surface of Al12N12 fullerene-like nanocage using density functional theory. Different adsorption modes were found for HCOOH on the Al12N12, i.e. molecular and dissociative monodentate or bidentate adsorption. Three reaction pathways were proposed to understand gas-phase HCOOH decomposition on the Al12N12 nanocage. Our results reveal that for the decomposition of HCOOH into CO2 and H2, the most favorable pathway should be the Csbnd H bond activation reaction. The reaction energies and the activation barriers obtained here suggest that for the dissociative adsorption configuration on the Al12N12 surface, the rate-determining step is the Csbnd H bond breaking.

  3. Crystal Structure and Antitumor Activity of the Novel Zwitterionic Complex of tri-n-Butyltin(IV) with 2-Thiobarbituric Acid

    PubMed Central

    Balas, Vasilios I.; Hadjikakou, Sotiris K.; Hadjiliadis, Nick; Kourkoumelis, Nikolaos; Light, Mark E.; Hursthouse, Mike; Metsios, Apostolos K.; Karkabounas, Spyros

    2008-01-01

    A novel tri-n-butyl(IV) derivative of 2-thiobarbituric acid (HTBA) of formula [(n-Bu)3Sn(TBA) H2O] (1) has been synthesized and characterized by elemental analysis and 119Sn-NMR and FT-IR spectroscopic techniques. The crystal structure of complex 1 has been determined by single crystal X-ray diffraction analysis at 120(2) K. The geometry around Sn(IV) is trigonal bipyramidal. Three n-butyl groups and one oxygen atom from a deprotonated 2-thiobarbituric ligand are bonded to the metal center. The geometry is completed with one oxygen from a water molecule. Compound 1 exhibits potent, in vitro, cytotoxicity against sarcoma cancer cells (mesenchymal tissue) from the Wistar rat, polycyclic aromatic hydrocarbons (PAH, benzo[a]pyrene) carcinogenesis. In addition, the inhibition caused by 1, in the rate of lipoxygenase (LOX) catalyzed oxidation reaction of linoleic acid to hyperoxolinoleic acid, has been also kinetically and theoretically studied. The results are compared to that of cisplatin. PMID:18401456

  4. Quantitative Comparison of Human Parainfluenza Virus Hemagglutinin-Neuraminidase Receptor Binding and Receptor Cleavage

    PubMed Central

    Tappert, Mary M.; Porterfield, J. Zachary; Mehta-D'Souza, Padmaja; Gulati, Shelly

    2013-01-01

    The human parainfluenza virus (hPIV) hemagglutinin-neuraminidase (HN) protein binds (H) oligosaccharide receptors that contain N-acetylneuraminic acid (Neu5Ac) and cleaves (N) Neu5Ac from these oligosaccharides. In order to determine if one of HN′s two functions is predominant, we measured the affinity of H for its ligands by a solid-phase binding assay with two glycoprotein substrates and by surface plasmon resonance with three monovalent glycans. We compared the dissociation constant (Kd) values from these experiments with previously determined Michaelis-Menten constants (Kms) for the enzyme activity. We found that glycoprotein substrates and monovalent glycans containing Neu5Acα2-3Galβ1-4GlcNAc bind HN with Kd values in the 10 to 100 μM range. Km values for HN were previously determined to be on the order of 1 mM (M. M. Tappert, D. F. Smith, and G. M. Air, J. Virol. 85:12146–12159, 2011). A Km value greater than the Kd value indicates that cleavage occurs faster than the dissociation of binding and will dominate under N-permissive conditions. We propose, therefore, that HN is a neuraminidase that can hold its substrate long enough to act as a binding protein. The N activity can therefore regulate binding by reducing virus-receptor interactions when the concentration of receptor is high. PMID:23740997

  5. Fatty Acids of Myxococcus xanthus

    PubMed Central

    Ware, Judith C.; Dworkin, Martin

    1973-01-01

    Fatty acids were extracted from saponified vegetative cells and myxospores of Myxococcus xanthus and examined as the methyl esters by gas-liquid chromatography. The acids consisted mainly of C14 to C17 species. Branched acids predominated, and iso-pentadecanoic acid constituted half or more of the mixture. The other leading component (11–28%) was found to be 11-n-hexadecenoic acid. Among the unsaturated acids were two diunsaturated ones, an n-hexadecadienoic acid and an iso-heptadecadienoic acid. No significant differences between the fatty acid compositions of the vegetative cells and myxospores could be detected. The fatty acid composition of M. xanthus was found to be markedly similar to that of Stigmatella aurantiaca. It is suggested that a fatty acid pattern consisting of a large proportion of iso-branched C15 and C17 acids and a substantial amount of an n-16:1 acid is characteristic of myxobacteria. PMID:4197903

  6. Neuroprotective Effect of Tauroursodeoxycholic Acid on N-Methyl-D-Aspartate-Induced Retinal Ganglion Cell Degeneration

    PubMed Central

    Fernández-Sánchez, Laura; Rondón, Netxibeth; Esquiva, Gema; Germain, Francisco; de la Villa, Pedro; Cuenca, Nicolás

    2015-01-01

    Retinal ganglion cell degeneration underlies the pathophysiology of diseases affecting the retina and optic nerve. Several studies have previously evidenced the anti-apoptotic properties of the bile constituent, tauroursodeoxycholic acid, in diverse models of photoreceptor degeneration. The aim of this study was to investigate the effects of systemic administration of tauroursodeoxycholic acid on N-methyl-D-aspartate (NMDA)-induced damage in the rat retina using a functional and morphological approach. Tauroursodeoxycholic acid was administered intraperitoneally before and after intravitreal injection of NMDA. Three days after insult, full-field electroretinograms showed reductions in the amplitudes of the positive and negative-scotopic threshold responses, scotopic a- and b-waves and oscillatory potentials. Quantitative morphological evaluation of whole-mount retinas demonstrated a reduction in the density of retinal ganglion cells. Systemic administration of tauroursodeoxycholic acid attenuated the functional impairment induced by NMDA, which correlated with a higher retinal ganglion cell density. Our findings sustain the efficacy of tauroursodeoxycholic acid administration in vivo, suggesting it would be a good candidate for the pharmacological treatment of degenerative diseases coursing with retinal ganglion cell loss. PMID:26379056

  7. Nitrosation and nitration of fulvic acid, peat and coal with nitric acid

    USGS Publications Warehouse

    Thorn, Kevin A.; Cox, Larry G.

    2016-01-01

    Nitrohumic acids, produced from base extraction of coals and peats oxidized with nitric acid, have received considerable attention as soil ammendments in agriculture. The nitration chemistry however is incompletely understood. Moreover, there is a need to understand the reaction of nitric acid with natural organic matter (NOM) in general, in the context of a variety of environmental and biogeochemical processes. Suwannee River NOM, Suwannee River fulvic acid, and Pahokee Peat fulvic acid were treated with 15N-labeled nitric acid at concentrations ranging from 15% to 22% and analyzed by liquid and solid state 15N NMR spectroscopy. Bulk Pahokee peat and Illinois #6 coal were also treated with nitric acid, at 29% and 40% respectively, and analyzed by solid state 15N NMR spectroscopy. In addition to nitro groups from nitration of aromatic carbon, the 15N NMR spectra of all five samples exhibited peaks attributable to nitrosation reactions. These include nitrosophenol peaks in the peat fulvic acid and Suwannee River samples, from nitrosation of phenolic rings, and N-nitroso groups in the peat samples, from nitrosation of secondary amides or amines, the latter consistent with the peat samples having the highest naturally abundant nitrogen contents. Peaks attributable to Beckmann and secondary reactions of the initially formed oximes were present in all spectra, including primary amide, secondary amide, lactam, and nitrile nitrogens. The degree of secondary reaction product formation resulting from nitrosation reactions appeared to correlate inversely with the 13C aromaticities of the samples. The nitrosation reactions are most plausibly effected by nitrous acid formed from the reduction of nitric acid by oxidizable substrates in the NOM and coal samples.

  8. Nitrosation and Nitration of Fulvic Acid, Peat and Coal with Nitric Acid

    PubMed Central

    Thorn, Kevin A.; Cox, Larry G.

    2016-01-01

    Nitrohumic acids, produced from base extraction of coals and peats oxidized with nitric acid, have received considerable attention as soil ammendments in agriculture. The nitration chemistry however is incompletely understood. Moreover, there is a need to understand the reaction of nitric acid with natural organic matter (NOM) in general, in the context of a variety of environmental and biogeochemical processes. Suwannee River NOM, Suwannee River fulvic acid, and Pahokee Peat fulvic acid were treated with 15N-labeled nitric acid at concentrations ranging from 15% to 22% and analyzed by liquid and solid state 15N NMR spectroscopy. Bulk Pahokee peat and Illinois #6 coal were also treated with nitric acid, at 29% and 40% respectively, and analyzed by solid state 15N NMR spectroscopy. In addition to nitro groups from nitration of aromatic carbon, the 15N NMR spectra of all five samples exhibited peaks attributable to nitrosation reactions. These include nitrosophenol peaks in the peat fulvic acid and Suwannee River samples, from nitrosation of phenolic rings, and N-nitroso groups in the peat samples, from nitrosation of secondary amides or amines, the latter consistent with the peat samples having the highest naturally abundant nitrogen contents. Peaks attributable to Beckmann and secondary reactions of the initially formed oximes were present in all spectra, including primary amide, secondary amide, lactam, and nitrile nitrogens. The degree of secondary reaction product formation resulting from nitrosation reactions appeared to correlate inversely with the 13C aromaticities of the samples. The nitrosation reactions are most plausibly effected by nitrous acid formed from the reduction of nitric acid by oxidizable substrates in the NOM and coal samples. PMID:27175784

  9. Calcium-loaded 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid blocks cell-to-cell diffusion of carboxyfluorescein in staminal hairs of Setcreasea purpurea.

    PubMed

    Tucker, E B

    1990-08-01

    The effect of microinjected calcium-loaded 1,2-bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid (CaBAPTA) on cell-to-cell diffusion of carboxyfluorescein (CF) was examined in staminal hairs of S. purpurea Boom. The CaBAPTA was microinjected into the cytoplasm of the staminal hairs either with CF or prior to a subsequent microinjection of CF. The cell-to-cell diffusion of CF along the hair was monitored using enhanced-fluorescence video microscopy. Cytoplasmic streaming stopped in cells treated with CaBAPTA, indicating that intracellular Ca(2+) had increased. Cell-to-cell diffusion of CF was blocked in cells treated with Ca-BAPTA. An inhibition of cytoplasmic streaming and cell-to-cell diffusion was observed in the cells adjoining the CaBAPTA-microinjected cell, indicating that the Ca-BAPTA appeared to pass through plasmodesmata. While cytoplasmic streaming resumed 5-10 min after CaBAPTA treatment, cell-to-cell diffusion did not resume until 30-120 min later. These data support an involvement of calcium in the regulation of cell-to-cell communication in plants.

  10. Comparative effects of kainic, quisqualic, and ibotenic acids on phenylethanolamine-N-methyltransferase-containing cells of rat retina.

    PubMed

    Cohen, J

    1989-02-01

    Phenylethanolamine-N-methyltransferase (PNMT) activity is located in a subpopulation of amacrine cells in the inner nuclear layer of the rat retina. Kainic, quisqualic, and ibotenic acids, all of which are analogues of glutamic acid, were injected intravitreally to the right and saline to the contralateral left eyes of adult male rats in order to determine the effect of these agents upon retinal PNMT activity. Animals were sacrificed 1 week later for tissue removal. The effect of these agents was measured by radiometric assay for PNMT. The fall in PNMT activity was used to measure the sensitivity of the PNMT-containing cells to these agents. Kainic acid was the most potent, producing the greatest reduction in PNMT activity in the smallest doses. Quisqualic acid was intermediate in potency to that of kainic and ibotenic acids. Ibotenic acid reduced PNMT activity only in extremely high doses. The PNMT-containing cells are sensitive to the toxic actions of kainic and quisqualic acids, but relatively insensitive to the actions of ibotenic acid.

  11. Novel assay system for acidic Peptide:N-glycanase (aPNGase) activity in crude plant extract.

    PubMed

    Uemura, Ryota; Ogura, Mikako; Matsumaru, Chihiro; Akiyama, Tsuyoshi; Maeda, Megumi; Kimura, Yoshinobu

    2018-04-15

    Acidic peptide:N-glycanase (aPNGase) plays a pivotal role in plant glycoprotein turnover. For the construction of aPNGase-knockout or -overexpressing plants, a new method to detect the activity in crude plant extracts is required because endogenous peptidases present in the extract hamper enzyme assays using fluorescence-labeled N-glycopeptides as a substrate. In this study, we developed a new method for measuring aPNGase activity in crude extracts from plant materials.

  12. Spectrophotometric Determination of Nitrogen Oxides in the Air with 2-N-Ethyl-5-Naphthol-7-Sulfonic Acid

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Shi, W.; Zhang, C.; Wen, H.

    2017-09-01

    For the determination of nitrogen oxides in the air, the structure of diazo and coupling compounds was studied and tested by experiments. The conditions and methods of diazo and coupling reactions were investigated. Furthermore, a spectrophotometric method using sulfanilamide as a diazo compound and 2-N-ethyl-5-naphthol-7-sulfonic acid (N-ethyl J acid) as a coupling compound was proposed. The maximum absorption wavelength of sulfanilamide-Nethyl J acid azo compound was at 478 nm. The molar absorptivity was 4.31 × 104 L/(mol × cm) with a recovery of 98.7-100.9% and RSD of 1.85%. For nitrogen oxides, the determinate limit of this measurement was 0.015 mg/m3 and the determinate range 0.024-2.0 mg/m3. Moreover, a high degree of correlation was observed between the results obtained by the proposed method and the standard methods. The proposed method can be easily applied to determine nitrogen oxides in the air.

  13. Association of fish and n-3 fatty acid intake with the risk of type 2 diabetes: a meta-analysis of prospective studies.

    PubMed

    Zhou, Yunping; Tian, Changwei; Jia, Chongqi

    2012-08-01

    Results from observational studies on the association of fish and n-3 fatty acid consumption with type 2 diabetes mellitus (T2DM) risk are conflicting. Hence, a meta-analysis was performed to investigate this association from cohort studies. A comprehensive search was then conducted to identify cohort studies on the association of fish and/or n-3 fatty acid intake with T2DM risk. In the highest v. lowest categorical analyses, the fixed or random-effect model was selected based on the homogeneity test among studies. Linear and non-linear dose-response relationships were also assessed by univariate and bivariate random-effect meta-regression with restricted maximum likelihood estimation. In the highest v. lowest categorical analyses, the pooled relative risk (RR) of T2DM for intake of fish and n-3 fatty acid was 1·146 (95 % CI 0·975, 1·346) and 1·076 (95 % CI 0·955, 1·213), respectively. In the linear dose-response relationship, the pooled RR for an increment of one time (about 105 g)/week of fish intake (four times/month) and of 0·1 g/d of n-3 fatty acid intake was 1·042 (95 % CI 1·026, 1·058) and 1·057 (95 % CI 1·042, 1·073), respectively. The significant non-linear dose-response associations of fish and n-3 fatty acid intake with T2DM risk were not observed. The present evidence from observational studies suggests that the intake of both fish and n-3 fatty acids might be weakly positively associated with the T2DM risk. Further studies are needed to confirm these results.

  14. Balancing the benefits of n-3 polyunsaturated fatty acids and the risks of methylmercury exposure from fish consumption

    PubMed Central

    Mahaffey, Kathryn R; Sunderland, Elsie M; Chan, Hing Man; Choi, Anna L; Grandjean, Philippe; Mariën, Koenraad; Oken, Emily; Sakamoto, Mineshi; Schoeny, Rita; Weihe, Pál; Yan, Chong-Huai; Yasutake, Akira

    2011-01-01

    Fish and shellfish are widely available foods that provide important nutrients, particularly n-3 polyunsaturated fatty acids (n-3 PUFAs), to many populations globally. These nutrients, especially docosahexaenoic acid, confer benefits to brain and visual system development in infants and reduce risks of certain forms of heart disease in adults. However, fish and shellfish can also be a major source of methylmercury (MeHg), a known neurotoxicant that is particularly harmful to fetal brain development. This review documents the latest knowledge on the risks and benefits of seafood consumption for perinatal development of infants. It is possible to choose fish species that are both high in n-3 PUFAs and low in MeHg. A framework for providing dietary advice for women of childbearing age on how to maximize the dietary intake of n-3 PUFAs while minimizing MeHg exposures is suggested. PMID:21884130

  15. Peroxisome proliferator-activated receptor mRNA levels are modified by dietary n-3 fatty acid restriction and energy restriction in the brain and liver of growing rats

    USDA-ARS?s Scientific Manuscript database

    Without dietary sources of long chain (LC) n-3 fatty acids, alpha-linolenic acid (ALA;18:3n-3) is the precursor for docosahexaenoic acid (DHA; 22:6n-3). It is not known how energy restriction (ER) impacts ALA conversion to DHA. We tested the hypothesis that ER reduces LCn-3 content in growing rats ...

  16. Identification of Bacteriophage N4 Virion RNA Polymerase-Nucleic Acid Interactions in Transcription Complexes*

    PubMed Central

    Davydova, Elena K.; Kaganman, Irene; Kazmierczak, Krystyna M.; Rothman-Denes, Lucia B.

    2009-01-01

    Bacteriophage N4 mini-virion RNA polymerase (mini-vRNAP), the 1106-amino acid transcriptionally active domain of vRNAP, recognizes single-stranded DNA template-containing promoters composed of conserved sequences and a 3-base loop–5-base pair stem hairpin structure. The major promoter recognition determinants are a purine located at the center of the hairpin loop (–11G) and a base at the hairpin stem (–8G). Mini-vRNAP is an evolutionarily highly diverged member of the T7 family of RNAPs. A two-plasmid system was developed to measure the in vivo activity of mutant mini-vRNAP enzymes. Five mini-vRNAP derivatives, each containing a pair of cysteine residues separated by ∼100 amino acids and single cysteine-containing enzymes, were generated. These reagents were used to determine the smallest catalytically active polypeptide and to map promoter, substrate, and RNA-DNA hybrid contact sites to single amino acid residues in the enzyme by using end-labeled 5-iododeoxyuridine- and azidophenacyl-substituted oligonucleotides, cross-linkable derivatives of the initiating nucleotide, and RNA products with 5-iodouridine incorporated at specific positions. Localization of functionally important amino acid residues in the recently determined crystal structures of apomini-vRNAP and the mini-vRNAP-promoter complex and comparison with the crystal structures of the T7 RNAP initiation and elongation complexes allowed us to predict major rearrangements in mini-vRNAP in the transition from transcription initiation to elongation similar to those observed in T7 RNAP, a task otherwise precluded by the lack of sequence homology between N4 mini-vRNAP and T7 RNAP. PMID:19015264

  17. Dietary Supplementation with n-3 Polyunsaturated Fatty Acids Reduces Torpor Use in a Tropical Daily Heterotherm.

    PubMed

    Vuarin, Pauline; Henry, Pierre-Yves; Perret, Martine; Pifferi, Fabien

    Polyunsaturated fatty acids (PUFAs) are involved in a variety of physiological mechanisms, including heterothermy preparation and expression. However, the effects of the two major classes of PUFAs, n-6 and n-3, can differ substantially. While n-6 PUFAs enhance torpor expression, n-3 PUFAs reduce the ability to decrease body temperature. This negative impact of n-3 PUFAs has been revealed in temperate hibernators only. Yet because tropical heterotherms generally experience higher ambient temperature and exhibit higher minimum body temperature during heterothermy, they may not be affected as much by PUFAs as their temperate counterparts. We tested whether n-3 PUFAs constrain torpor use in a tropical daily heterotherm (Microcebus murinus). We expected dietary n-3 PUFA supplementation to induce a reduction in torpor use and for this effect to appear rapidly given the time required for dietary fatty acids to be assimilated into phospholipids. n-3 PUFA supplementation reduced torpor use, and its effect appeared in the first days of the experiment. Within 2 wk, control animals progressively deepened their torpor bouts, whereas supplemented ones never entered torpor but rather expressed only constant, shallow reductions in body temperature. For the rest of the experiment, the effect of n-3 PUFA supplementation on torpor use remained constant through time. Even though supplemented animals also started to express torpor, they exhibited higher minimum body temperature by 2°-3°C and spent two fewer hours in a torpid state per day than control individuals, on average. Our study supports the view that a higher dietary content in n-3 PUFAs negatively affects torpor use in general, not only in cold-acclimated hibernators.

  18. Rapid acquisition adaptive amino acid substitutions involved in the virulence enhancement of an H1N2 avian influenza virus in mice.

    PubMed

    Yu, Zhijun; Sun, Weiyang; Zhang, Xinghai; Cheng, Kaihui; Zhao, Chuqi; Xia, Xianzhu; Gao, Yuwei

    2017-08-01

    Although H1N2 avian influenza virus (AIV) only infect birds, documented cases of swine infection with H1N2 influenza viruses suggest this subtype AIV may pose a potential threat to mammals. Here, we generated mouse-adapted variants of a H1N2 AIV to identify adaptive changes that increased virulence in mammals. MLD 50 of the variants were reduced >1000-fold compared to the parental virus. Variants displayed enhanced replication in vitro and in vivo, and replicate in extrapulmonary organs. These data show that enhanced replication capacity and expanded tissue tropism may increase the virulence of H1N2 AIV in mice. Sequence analysis revealed multiple amino acid substitutions in the PB2 (L134H, I647L, and D701N), HA (G228S), and M1 (D231N) proteins. These results indicate that H1N2 AIV can rapidly acquire adaptive amino acid substitutions in mammalian hosts, and these amino acid substitutions collaboratively enhance the ability of H1N2 AIV to replicate and cause severe disease in mammals. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Association of Serum n-3/n-6 Polyunsaturated Fatty Acid Ratio With T-Wave Alternans in Patients With Ischemic Heart Disease.

    PubMed

    Nodera, Minoru; Suzuki, Hitoshi; Yamada, Shinya; Kamioka, Masashi; Kaneshiro, Takashi; Kamiyama, Yoshiyuki; Takeishi, Yasuchika

    2015-01-01

    Several studies have demonstrated that oral intake of n-3 polyunsaturated fatty acids, specifically eicosapentaenoic acid (EPA), prevents ventricular tachyarrhythmias (VT) with ischemic heart disease, but the underlying mechanisms still remain unclear. Thus, we examined the relation between the serum EPA/arachidonic acid (AA) ratio and electrophysiological properties in patients with ischemic heart disease. The study subjects consisted of 57 patients (46 males, mean age, 66 ± 13 years) with ischemic heart disease. T-wave alternans (TWA) and heart rate variability were assessed by 24hour Holter ECG, and left ventricular ejection fraction (LVEF) was determined by echocardiography. Fasting blood samples were collected, and the serum EPA/AA ratio was determined. Based on a median value of the serum EPA/AA ratio, all subjects were divided into two groups: serum EPA/AA ratio below 0.33 (Group-L, n = 28) or not (Group-H, n = 29). We compared these parameters between the two groups. LVEF was not different between the two groups. The maximum value of TWA was significantly higher in Group-L than in Group-H (69.5 ± 22.8 μV versus 48.7 ± 12.0 μV, P = 0.007). In addition, VT defined as above 3 beats was observed in 7 cases (25%) in Group-L, but there were no cases of VT in Group-H (P = 0.004). However, low-frequency (LF) component, high-frequency (HF) component, LF to HF ratio, and standard deviation of all R-R intervals were not different between the two groups. These results suggest that a low EPA/AA ratio may induce cardiac electrical instability, but not autonomic nervous imbalance, associated with VT in patients with ischemic heart disease.

  20. Nucleated Poly(L-lactic acid) with N, N‧-oxalyl bis(benzoic acid) dihydrazide

    NASA Astrophysics Data System (ADS)

    Tian, Liang-Liang; Cai, Yan-Hua

    2018-04-01

    One of the major challenges in the field of Poly(L-lactic acid) (PLLA) is the enhancement of crystallization. In the present work, the evaluation of the influence of N, N‧-oxalyl bis(benzoic acid) dihydrazide (TBOD), as a novel organic nucleating agent, on the non-isothermal crystallization, melting behavior, and thermal stability of PLLA was performed using differential scanning calorimeter and thermogravimetric analysis. Non-isothermal crystallization measurement revealed that TBOD had an excellent accelerating effect for the crystallization of PLLA in cooling, and upon the addition of 3 wt% TBOD, PLLA exhibited the highest onset crystallization temperature and the crystallization peak temperature, as well as the largest non-isothermal crystallization enthalpy. In particular, when the TBOD concentration was 1 wt% ∼ 3 wt%, the onset crystallization temperatures were higher than the theoretical ceiling temperature of crystallization, thoroughly demonstrating the powerful crystallization promoting ability of TBOD. Additionally, the non-isothermal crystallization behavior of PLLA/TBOD depended on the TBOD concentration, cooling rate as well as the final melting temperature. The melting behavior of PLLA/TBOD after non-isothermal crystallization further confirmed the effect of TBOD on the crystallization process and crystal structure of PLLA, and the appearance of the double melting peaks during melting stages was attribute to the melting-recrystallization. For melting behavior after isothermal crystallization, the crystallization temperature and crystallization time significantly affected the melting behavior of PLLA/TBOD. The addition of TBOD could not change the thermal decomposition profile of the PLLA, but the thermal stability did not regularly decrease with increasing of TBOD concentration, indicating that there might exist intermolecular interaction between PLLA and TBOD.

  1. Improved solar light stimulated charge separation of g-C3N4 through self-altering acidic treatment

    NASA Astrophysics Data System (ADS)

    Leong, Kah Hon; Lim, Ping Feng; Sim, Lan Ching; Punia, Varun; Pichiah, Saravanan

    2018-02-01

    Herein, we report the use of acid treatment to treat g-C3N4 nanostructured by a direct and facile synthesis route. The adopted treatment enhanced photoactivity of g-C3N4 and reflected in the removal of recalcitrant organic pollutant, Bisphenol A under direct sunlight. A complete removal of Bisphenol A was attained in a short duration (225 min) as compared to pure g-C3N4. The analysis clearly substantiated the robustness of acid exfoliation that promoted a blue shift, extended the conjugated length of its respective conduction and valance band. It also drastically prolonged the recombination rate of charge carriers, by producing excess of unpaired electrons in the conduction band for active radicals' generation. Thus, this new findings could offer a new sight of self-alteration in improving the photoactivity of complex organic pollutants for sustainable environmental remediation.

  2. Genome-wide meta-analyses identify novel loci associated with n-3 and n-6 polyunsaturated fatty acid levels in Chinese and European-ancestry populations.

    PubMed

    Hu, Yao; Li, Huaixing; Lu, Ling; Manichaikul, Ani; Zhu, Jingwen; Chen, Yii-Der I; Sun, Liang; Liang, Shuang; Siscovick, David S; Steffen, Lyn M; Tsai, Michael Y; Rich, Stephen S; Lemaitre, Rozenn N; Lin, Xu

    2016-03-15

    Epidemiological studies suggest that levels of n-3 and n-6 long-chain polyunsaturated fatty acids are associated with risk of cardio-metabolic outcomes across different ethnic groups. Recent genome-wide association studies in populations of European ancestry have identified several loci associated with plasma and/or erythrocyte polyunsaturated fatty acids. To identify additional novel loci, we carried out a genome-wide association study in two population-based cohorts consisting of 3521 Chinese participants, followed by a trans-ethnic meta-analysis with meta-analysis results from 8962 participants of European ancestry. Four novel loci (MYB, AGPAT4, DGAT2 and PPT2) reached genome-wide significance in the trans-ethnic meta-analysis (log10(Bayes Factor) ≥ 6). Of them, associations of MYB and AGPAT4 with docosatetraenoic acid (log10(Bayes Factor) = 11.5 and 8.69, respectively) also reached genome-wide significance in the Chinese-specific genome-wide association analyses (P = 4.15 × 10(-14) and 4.30 × 10(-12), respectively), while associations of DGAT2 with gamma-linolenic acid (log10(Bayes Factor) = 6.16) and of PPT2 with docosapentaenoic acid (log10(Bayes Factor) = 6.24) were nominally significant in both Chinese- and European-specific genome-wide association analyses (P ≤ 0.003). We also confirmed previously reported loci including FADS1, NTAN1, NRBF2, ELOVL2 and GCKR. Different effect sizes in FADS1 and independent association signals in ELOVL2 were observed. These results provide novel insight into the genetic background of polyunsaturated fatty acids and their differences between Chinese and European populations. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Simultaneous determination of ascorbic acid, dopamine and uric acid by a novel electrochemical sensor based on N2/Ar RF plasma assisted graphene nanosheets/graphene nanoribbons.

    PubMed

    Jothi, Lavanya; Neogi, Sudarsan; Jaganathan, Saravana Kumar; Nageswaran, Gomathi

    2018-05-15

    A novel nitrogen/argon (N 2 /Ar) radio frequency (RF) plasma functionalized graphene nanosheet/graphene nanoribbon (GS/GNR) hybrid material (N 2 /Ar/GS/GNR) was developed for simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA). Various nitrogen mites introduced into GS/GNR hybrid structure was evidenced by a detailed microscopic, spectroscopic and surface area analysis. Owing to the unique structure and properties originating from the enhanced surface area, nitrogen functional groups and defects introduced on both the basal and edges, N 2 /Ar/GS/GNR/GCE showed high electrocatalytic activity for the electrochemical oxidations of AA, DA, and UA with the respective lowest detection limits of 5.3, 2.5 and 5.7 nM and peak-to-peak separation potential (ΔE P ) (vs Ag/AgCl) in DPV of 220, 152 and 372 mV for AA/DA, DA/UA and AA/UA respectively. Moreover, the selectivity, stability, repeatability and excellent performance in real time application of the fabricated N 2 /Ar/GS/GNR/GCE electrode suggests that it can be considered as a potential electrode material for simultaneous detection of AA, DA, and UA. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Seafood Long-Chain n-3 Polyunsaturated Fatty Acids and Cardiovascular Disease: A Science Advisory From the American Heart Association.

    PubMed

    Rimm, Eric B; Appel, Lawrence J; Chiuve, Stephanie E; Djoussé, Luc; Engler, Mary B; Kris-Etherton, Penny M; Mozaffarian, Dariush; Siscovick, David S; Lichtenstein, Alice H

    2018-05-17

    Since the 2002 American Heart Association scientific statement "Fish Consumption, Fish Oil, Omega-3 Fatty Acids, and Cardiovascular Disease," evidence from observational and experimental studies and from randomized controlled trials continues to emerge to further substantiate the beneficial effects of seafood long-chain n-3 polyunsaturated fatty acids and cardiovascular disease. A recent American Heart Association science advisory addressed the specific effect of n-3 polyunsaturated fatty acid supplementation on clinical cardiovascular events. This American Heart Association science advisory extends that review and offers further support to include n-3 polyunsaturated fatty acids from seafood consumption. Several potential mechanisms have been investigated, including antiarrhythmic, anti-inflammatory, hematologic, and endothelial, although for most, longer-term dietary trials of seafood are warranted to substantiate the benefit of seafood as a replacement for other important sources of macronutrients. The present science advisory reviews this evidence and makes a suggestion in the context of the 2015-2020 Dietary Guidelines for Americans and in consideration of other constituents of seafood and the impact on sustainability. We conclude that 1 to 2 seafood meals per week be included to reduce the risk of congestive heart failure, coronary heart disease, ischemic stroke, and sudden cardiac death, especially when seafood replaces the intake of less healthy foods. © 2018 American Heart Association, Inc.

  5. The effects of n-3 long-chain polyunsaturated fatty acid supplementation on AGEs and sRAGE in type 2 diabetes mellitus.

    PubMed

    Kurt, Asuman; Andican, Gülnur; Siva, Zeynep Oşar; Andican, Ahat; Burcak, Gülden

    2016-12-01

    In diabetes mellitus, chronic hyperglycemia leads to formation of advanced glycation end products (AGEs). Binding of AGEs to receptors of AGE (RAGE) causes deleterious effects. In populations with a high consumption of n-3 long-chain polyunsaturated fatty acids, a lower prevalence of diabetes mellitus has been reported. We aimed to investigate the effects of n-3 fatty acid (EPA and DHA) supplementation on the levels of AGEs (carboxymethyl lysine (CML) and pentosidine), sRAGE, and nuclear factor kappa B (NF-kB) in type 2 diabetes mellitus (T2DM). T2DM patients (n = 38) treated with oral hypoglycemic agents, without insulin were supplemented with n-3 fatty acids (1.2 g/day) for 2 months. Plasma CML, pentosidine, sRAGE, and NF-kB levels were measured by ELISA both before and after the supplementation. n-3 fatty acid supplementation significantly reduced fasting glucose (p < 0.01), glycated hemoglobin (HbA 1c ) (p < 0.05), and pentosidine (p < 0.05) levels. The supplementation induced percentage changes in pentosidine and HbA 1c and in pentosidine and creatinine were observed to be correlated (r = 0.349, p < 0.05) and (r = 0.377, p < 0.05), respectively. Waist circumference and systolic and diastolic pressures were significantly decreased due to n-3 supplementation (p < 0.001, p < 0.01, p < 0.01), respectively. Our results show that supplementation with n-3 fatty acid has beneficial effects on waist circumference; systolic and diastolic blood pressures; and the levels of glucose, HbA 1c , and pentosidine in T2DM patients. However, the supplementation failed to decrease these parameters to the reference ranges for healthy subjects. In addition, the supplementation did not appear to induce any significant differences in CML, sRAGE, or NF-kB.

  6. Synthesis and biological evaluation of N-difluoromethyl-1,2-dihydropyrid-2-one acetic acid regioisomers: dual inhibitors of cyclooxygenases and 5-lipoxygenase.

    PubMed

    Yu, Gang; Praveen Rao, P N; Chowdhury, Morshed A; Abdellatif, Khaled R A; Dong, Ying; Das, Dipankar; Velázquez, Carlos A; Suresh, Mavanur R; Knaus, Edward E

    2010-04-01

    A new group of acetic acid (7a-c, R(1) = H), and propionic acid (7d-f, R(1) = Me), regioisomers wherein a N-difluoromethyl-1,2-dihydropyrid-2-one moiety is attached via its C-3, C-4, and C-5 position was synthesized. This group of compounds exhibited a more potent inhibition, and hence selectivity, for the cyclooxygenase-2 (COX-2) relative to the COX-1 isozyme. Attachment of the N-difluoromethyl-1,2-dihydropyrid-2-one ring system to an acetic acid, or propionic acid, moiety confers potent 5-LOX inhibitory activity, that is, absent in traditional arylacetic acid NSAIDs. 2-(1-Difluoromethyl-2-oxo-1,2-dihydropyridin-5-yl)acetic acid (7c) exhibited the best combination of dual COX-2 and 5-LOX inhibitory activities. Molecular modeling (docking) studies showed that the highly electronegative CHF(2) substituent present in 7c, that showed a modest selectivity for the COX-2 isozyme, is oriented within the secondary pocket (Val523) present in COX-2 similar to the sulfonamide (SO(2)NH(2)) COX-2 pharmacophore present in celecoxib, and that the N-difluoromethyl-1,2-dihydropyrid-2-one pharmacophore is oriented close to the region containing the LOX enzyme catalytic iron (His361, His366, and His545). Accordingly, the N-difluoromethyl-1,2-dihyrdopyrid-2-one moiety possesses properties suitable for the design of dual COX-2/5-LOX inhibitory drugs. 2010 Elsevier Ltd. All rights reserved.

  7. Amino Acids in Hemagglutinin Antigenic Site B Determine Antigenic and Receptor Binding Differences between A(H3N2)v and Ancestral Seasonal H3N2 Influenza Viruses

    PubMed Central

    Wang, Xiaoquan; Ilyushina, Natalia A.; Lugovtsev, Vladimir Y.; Bovin, Nicolai V.; Couzens, Laura K.; Gao, Jin

    2016-01-01

    ABSTRACT Influenza A H3N2 variant [A(H3N2)v] viruses, which have caused human infections in the United States in recent years, originated from human seasonal H3N2 viruses that were introduced into North American swine in the mid-1990s, but they are antigenically distinct from both the ancestral and current circulating H3N2 strains. A reference A(H3N2)v virus, A/Minnesota/11/2010 (MN/10), and a seasonal H3N2 strain, A/Beijing/32/1992 (BJ/92), were chosen to determine the molecular basis for the antigenic difference between A(H3N2)v and the ancestral viruses. Viruses containing wild-type and mutant MN/10 or BJ/92 hemagglutinins (HAs) were constructed and probed for reactivity with ferret antisera against MN/10 and BJ/92 in hemagglutination inhibition assays. Among the amino acids that differ between the MN/10 and BJ/92 HAs, those in antigenic site A had little impact on the antigenic phenotype. Within antigenic site B, mutations at residues 156, 158, 189, and 193 of MN/10 HA to those in BJ/92 switched the MN/10 antigenic phenotype to that of BJ/92. Mutations at residues 156, 157, 158, 189, and 193 of BJ/92 HA to amino acids present in MN/10 were necessary for BJ/92 to become antigenically similar to MN/10. The HA amino acid substitutions responsible for switching the antigenic phenotype also impacted HA binding to sialyl receptors that are usually present in the human respiratory tract. Our study demonstrates that antigenic site B residues play a critical role in determining both the unique antigenic phenotype and receptor specificity of A(H3N2)v viruses, a finding that may facilitate future surveillance and risk assessment of novel influenza viruses. IMPORTANCE Influenza A H3N2 variant [A(H3N2)v] viruses have caused hundreds of human infections in multiple states in the United States since 2009. Most cases have been children who had contact with swine in agricultural fairs. These viruses originated from human seasonal H3N2 viruses that were introduced into the U

  8. Synthesis of new β-amidodehydroaminobutyric acid derivatives and of new tyrosine derivatives using copper catalyzed C-N and C-O coupling reactions.

    PubMed

    Pereira, G; Vilaça, H; Ferreira, P M T

    2013-02-01

    Several β-amidodehydroaminobutyric acid derivatives were prepared from N,C-diprotected β-bromodehydroaminobutyric acids and amides by a copper catalyzed C-N coupling reaction. The best reaction conditions include the use of a catalytic amount of CuI, N,N'-dimethylethylenediamine as ligand and K(2)CO(3) as base in toluene at 110 °C. The stereochemistry of the products was determined using NOE difference experiments and the results obtained are in agreement with an E-stereochemistry. Thus, the stereochemistry is maintained in the case of the E-isomers of β-bromodehydroaminobutyric acid derivatives, but when the Z-isomers were used as substrates the reaction proceeds with inversion of configuration. The use of β-bromodehydrodipeptides as substrates was also tested. It was found that the reaction outcome depend on the stereochemistry of the β-bromodehydrodipeptide and on the nature of the first amino acid residue. The products isolated were the β-amidodehydrodipeptide derivatives and/or the corresponding dihydropyrazines. The same catalytic system (CuI/N,N'-dimethylethylene diamine) was used in the C-O coupling reactions between a tyrosine derivative and aryl bromides. The new O-aryltyrosine derivatives were isolated in moderate to good yields. The photophysical properties of two of these compounds were studied in four solvents of different polarity. The results show that these compounds after deprotection can be used as fluorescence markers.

  9. In male rats with concurrent iron and (n-3) fatty acid deficiency, provision of either iron or (n-3) fatty acids alone alters monoamine metabolism and exacerbates the cognitive deficits associated with combined deficiency.

    PubMed

    Baumgartner, Jeannine; Smuts, Cornelius M; Malan, Linda; Arnold, Myrtha; Yee, Benjamin K; Bianco, Laura E; Boekschoten, Mark V; Müller, Michael; Langhans, Wolfgang; Hurrell, Richard F; Zimmermann, Michael B

    2012-08-01

    Concurrent deficiencies of iron (Fe) (ID) and (n-3) fatty acids [(n-3)FAD)] in rats can alter brain monoamine pathways and impair learning and memory. We examined whether repletion with Fe and DHA/EPA, alone and in combination, corrects the deficits in brain monoamine activity (by measuring monoamines and related gene expression) and spatial working and reference memory [by Morris water maze (MWM) testing] associated with deficiency. Using a 2 × 2 design, male rats with concurrent ID and (n-3)FAD [ID+(n-3)FAD] were fed an Fe+DHA/EPA, Fe+(n-3)FAD, ID+DHA/EPA, or ID+(n-3)FAD diet for 5 wk [postnatal d 56-91]. Biochemical measures and MWM performance after repletion were compared to age-matched control rats. The provision of Fe in combination with DHA/EPA synergistically increased Fe concentrations in the olfactory bulb (OB) (Fe x DHA/EPA interaction). Similarly, provision of DHA/EPA in combination with Fe resulted in higher brain DHA concentrations than provision of DHA alone in the frontal cortex (FC) and OB (P < 0.05). Dopamine (DA) receptor D1 was upregulated in the hippocampus of Fe+DHA/EPA rats (fold-change = 1.25; P < 0.05) and there were significant Fe x DHA/EPA interactions on serotonin (5-HT) in the OB and on the DA metabolite dihydroxyphenylacetic acid in the FC and striatum. Working memory performance was impaired in ID+DHA/EPA rats compared with controls (P < 0.05). In the reference memory task, Fe+DHA/EPA improved learning behavior, but Fe or DHA/EPA alone did not. These findings suggest that feeding either Fe or DHA/EPA alone to adult rats with both ID and (n-3)FAD affects the DA and 5-HT pathways differently than combined repletion and exacerbates the cognitive deficits associated with combined deficiency.

  10. Composite polymeric beads containing N,N,N',N'-tetraoctyldiglycolamide for actinide ion uptake from nitric acid feeds: Batch uptake, kinetic modelling and column studies.

    PubMed

    Gujar, R B; Mohapatra, P K; Lakshmi, D Shanthana; Figoli, A

    2015-11-27

    Polyethersulphone (PES) based composite polymeric beads (CPB) containing TODGA (N,N,N',N'-tetraoctyldiglycolamide) as the extractant were prepared by conventional phase inversion technique and were tested for the uptake of actinide ions such as Am(3+), UO2(2+), Pu(4+), Np(4+) and fission product ions such as Eu(3+) and Sr(2+). The CPBs containing 2.5-10wt.% TODGA were characterized by various physical methods and their porosity, size, surface morphology, surface area and the degradation profile by thermogravimetry were analyzed. The batch uptake studies involved kinetics of metal ion sorption, uptake as a function of nitric acid concentration, kinetic modelling and adsorption isotherms and most of the studies involved the Am(3+) ions. The batch saturation sorption capacities for Eu(3+) loading at 3M HNO3 were determined to be 6.6±0.02, 9.1±0.02 and 22.3±0.04mgg(-1) of CRBs with 2.5wt.%, 5wt.% and 10wt.% TODGA, respectively. The sorption isotherm analysis with Langmuir, D-R and Freundlisch isotherms indicated chemisorption monolayer mechanism. Chromatographic studies indicated breakthrough of Eu(3+) (using a solution containing Eu carrier) after about 0.75 bed volume (3.5-4mL). Elution of the loaded Eu was carried out using 0.01M EDTA as the eluent. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Differential effects of n-3 polyunsaturated fatty acids on metabolic control and vascular reactivity in the type 2 diabetic ob/ob mouse.

    PubMed

    Mustad, Vikkie A; Demichele, Stephen; Huang, Yung-Sheng; Mika, Amanda; Lubbers, Nathan; Berthiaume, Nathalie; Polakowski, Jim; Zinker, Brad

    2006-10-01

    Diets rich in monounsaturated fatty acids (MUFA) are recommended for individuals with type 2 diabetes mellitus (T2DM). The American Heart Association recommends increasing intakes of n-3 polyunsaturated fatty acids (PUFA) to reduce the risk of vascular disease in high-risk individuals; however, the long-term effects of these bioactive fatty acids on glucose metabolism in insulin resistance are controversial. The present studies were conducted to evaluate the effects of diets rich in both MUFA and alpha linolenic acid (C18:3n-3, ALA), eicosapentaenoic acid (C20:5n-3, EPA), or docosahexaenoic acid (C22:6n-3, DHA), on glycemic control and other parameters related to vascular health in a mouse model of T2DM and insulin resistance. Male ob/ob mice (n = 15 per treatment) were fed 1 of 4 lipid-modified formula diets (LFDs) for 4 weeks: (1) MUFA control, (2) ALA blend, (3) EPA blend, and (4) DHA blend. A portion of a MUFA-rich lipid blend in the control LFD was replaced with 11% to 14% energy as n-3 PUFA. After 4 weeks, plasma glucose response to a standard meal (1.5 g carbohydrate/kg body weight) and insulin challenge (2 U/kg body weight, IP) was assessed, and samples were collected for analysis of glucose, insulin, and lipids. Vascular reactivity of isolated aortic rings was assessed in an identical follow-up study. The results showed that insulin-resistant mice fed an LFD with EPA and/or DHA blends had significantly (P < .05) lower triglycerides and free fatty acids, but insulin sensitivity and fasting plasma glucose were not improved. However, mice fed with the ALA blend had significantly improved insulin sensitivity when compared to those fed with other LFD (P < .05). Animals fed an LFD with n-3 PUFA from marine or plant sources showed significantly improved vascular responses as compared with the MUFA-rich LFD (E(max), P < .05) and ob/ob reference mice consuming chow (E(max) and pEC(50), P < .05). In summary, long-term consumption of LFD with n-3 PUFAs improved blood

  12. Heterologous expression of C. elegans fat-1 decreases the n-6/n-3 fatty acid ratio and inhibits adipogenesis in 3T3-L1 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, Lei, E-mail: anleim@yahoo.com.cn; Pang, Yun-Wei, E-mail: yunweipang@126.com; Gao, Hong-Mei, E-mail: Gaohongmei_123@yahoo.cn

    Highlights: Black-Right-Pointing-Pointer Expression of C. elegans fat-1 reduces the n-6/n-3 PUFA ratio in 3T3-L1 cells. Black-Right-Pointing-Pointer fat-1 inhibits the proliferation and differentiation of 3T3-L1 preadipocytes. Black-Right-Pointing-Pointer fat-1 reduces lipid deposition in 3T3-L1 adipocytes. Black-Right-Pointing-Pointer The lower n-6/n-3 ratio induces apoptosis in 3T3-L1 adipocytes. -- Abstract: In general, a diet enriched in polyunsaturated fatty acids (PUFAs) inhibits the development of obesity and decreases adipose tissue. The specific impacts of n-3 and n-6 PUFAs on adipogenesis, however, have not been definitively determined. Traditional in vivo and in vitro supplementation studies have yielded inconsistent or even contradictory results, which likely reflect insufficiently controlledmore » experimental systems. Caenorhabditiselegans fat-1 gene encodes an n-3 fatty acid desaturase, and its heterologous expression represents an effective method both for altering the n-6/n-3 PUFA ratio and for evaluating the biological effects of n-3 and n-6 PUFAs. We sought to determine whether a reduced n-6/n-3 ratio could influence adipogenesis in 3T3-L1 cells. Lentivirus-mediated introduction of the fat-1 gene into 3T3-L1 preadipocytes significantly reduced the n-6/n-3 ratio and inhibited preadipocyte proliferation and differentiation. In mature adipocytes, fat-1 expression reduced lipid deposition, as measured by Oil Red O staining, and induced apoptosis. Our results indicate that a reduced n-6/n-3 ratio inhibits adipogenesis through several mechanisms and that n-3 PUFAs more effectively inhibit adipogenesis (but not lipogenesis) than do n-6 PUFAs.« less

  13. Studies on Aculeines: Synthetic Strategy to the Fully Protected Protoaculeine B, the N-Terminal Amino Acid of Aculeine B.

    PubMed

    Shiozaki, Hiroki; Miyahara, Masayoshi; Otsuka, Kazunori; Miyako, Kei; Honda, Akito; Takasaki, Yuichi; Takamizawa, Satoshi; Tukada, Hideyuki; Ishikawa, Yuichi; Sakai, Ryuichi; Oikawa, Masato

    2018-05-23

    A synthetic strategy for accessing protoaculeine B (1), the N-terminal amino acid of the highly modified peptide toxin aculeine, was developed via the synthesis of the fully protected natural homologue of 1 with a 12-mer poly(propanediamine). The synthesis of mono(propanediamine) analog 2, as well as core amino acid 3, was demonstrated by this strategy. New amino acid 3 induced convulsions in mice; however, compound 2 showed no such activity.

  14. Antibody glycosylation and its impact on the pharmacokinetics and pharmacodynamics of monoclonal antibodies and Fc-fusion proteins.

    PubMed

    Liu, Liming

    2015-06-01

    Understanding the impact of glycosylation and keeping a close control on glycosylation of product candidates are required for both novel and biosimilar monoclonal antibodies (mAbs) and Fc-fusion protein development to ensure proper safety and efficacy profiles. Most therapeutic mAbs are of IgG class and contain a glycosylation site in the Fc region at amino acid position 297 and, in some cases, in the Fab region. For Fc-fusion proteins, glycosylation also frequently occurs in the fusion partners. Depending on the expression host, glycosylation patterns in mAb or Fc-fusions can be significantly different, thus significantly impacting the pharmacokinetics (PK) and pharmacodynamics (PD) of mAbs. Glycans that have a major impact on PK and PD of mAb or Fc-fusion proteins include mannose, sialic acids, fucose (Fuc), and galactose (Gal). Mannosylated glycans can impact the PK of the molecule, leading to reduced exposure and potentially lower efficacy. The level of sialic acid, N-acetylneuraminic acid (NANA), can also have a significant impact on the PK of Fc-fusion molecules. Core Fuc in the glycan structure reduces IgG antibody binding to IgG Fc receptor IIIa relative to IgG lacking Fuc, resulting in decreased antibody-dependent cell-mediated cytotoxicity (ADCC) activities. Glycoengineered Chinese hamster ovary (CHO) expression systems can produce afucosylated mAbs that have increased ADCC activities. Terminal Gal in a mAb is important in the complement-dependent cytotoxicity (CDC) in that lower levels of Gal reduce CDC activity. Glycans can also have impacts on the safety of mAb. mAbs produced in murine myeloma cells such as NS0 and SP2/0 contain glycans such as Galα1-3Galβ1-4N-acetylglucosamine-R and N-glycolylneuraminic acid (NGNA) that are not naturally present in humans and can be immunogenic when used as therapeutics. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  15. Unmasking of CD22 Co-receptor on Germinal Center B-cells Occurs by Alternative Mechanisms in Mouse and Man.

    PubMed

    Macauley, Matthew S; Kawasaki, Norihito; Peng, Wenjie; Wang, Shui-Hua; He, Yuan; Arlian, Britni M; McBride, Ryan; Kannagi, Reiji; Khoo, Kay-Hooi; Paulson, James C

    2015-12-11

    CD22 is an inhibitory B-cell co-receptor whose function is modulated by sialic acid (Sia)-bearing glycan ligands. Glycan remodeling in the germinal center (GC) alters CD22 ligands, with as yet no ascribed biological consequence. Here, we show in both mice and humans that loss of high affinity ligands on GC B-cells unmasks the binding site of CD22 relative to naive and memory B-cells, promoting recognition of trans ligands. The conserved modulation of CD22 ligands on GC B-cells is striking because high affinity glycan ligands of CD22 are species-specific. In both species, the high affinity ligand is based on the sequence Siaα2-6Galβ1-4GlcNAc, which terminates N-glycans. The human ligand has N-acetylneuraminic acid (Neu5Ac) as the sialic acid, and the high affinity ligand on naive B-cells contains 6-O-sulfate on the GlcNAc. On human GC B-cells, this sulfate modification is lost, giving rise to lower affinity CD22 ligands. Ligands of CD22 on naive murine B-cells do not contain the 6-O-sulfate modification. Instead, the high affinity ligand for mouse CD22 has N-glycolylneuraminic acid (Neu5Gc) as the sialic acid, which is replaced on GC B-cells with Neu5Ac. Human naive and memory B-cells express sulfated glycans as high affinity CD22 ligands, which are lost on GC B-cells. In mice, Neu5Gc-containing glycans serve as high affinity CD22 ligands that are replaced by Neu5Ac-containing glycans on GC B-cells. Our results demonstrate that loss of high affinity CD22 ligands on GC B-cells occurs in both mice and humans through alternative mechanisms, unmasking CD22 relative to naive and memory B-cells. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Are phloem-derived amino acids the origin of the elevated malate concentration in the xylem sap following mineral N starvation in soybean?

    PubMed

    Vitor, Simone C; do Amarante, Luciano; Sodek, Ladaslav

    2018-05-16

    A substantial increase in malate in the xylem sap of soybean subjected to mineral N starvation originates mainly from aspartate, a prominent amino acid of the phloem. A substantial increase in xylem malate was found when non-nodulated soybean plants were transferred to a N-free medium. Nodulated plants growing in the absence of mineral N and, therefore, dependent on symbiotic N 2 fixation also contained elevated concentrations of malate in the xylem sap. When either nitrate or ammonium was supplied, malate concentrations in the xylem sap were low, both for nodulated and non-nodulated plants. Evidence was obtained that the elevated malate concentration of the xylem was derived from amino acids supplied by the phloem. Aspartate was a prominent component of the phloem sap amino acids and, therefore, a potential source of malate. Supplying the roots of intact plants with 13 C-aspartate revealed that malate of the xylem sap was readily labelled under N starvation. A hypothetical scheme is proposed whereby aspartate supplied by the phloem is metabolised in the roots and the products of this metabolism cycled back to the shoot. Under N starvation, aspartate metabolism is diverted from asparagine synthesis to supply N for the synthesis of other amino acids via transaminase activity. The by-product of aspartate transaminase activity, oxaloacetate, is transformed to malate and its export accounts for much of the elevated concentration of malate found in the xylem sap. This mechanism represents a new additional role for malate during mineral N starvation of soybean, beyond that of charge balance.

  17. Fatty acid and sn-2 fatty acid composition in human milk from Granada (Spain) and in infant formulas.

    PubMed

    López-López, A; López-Sabater, M C; Campoy-Folgoso, C; Rivero-Urgell, M; Castellote-Bargalló, A I

    2002-12-01

    To investigate differences in fatty acid and sn-2 fatty acid composition in colostrum, transitional and mature human milk, and in term infant formulas. Departament de Nutrició i Bromatologia, University of Barcelona, Spain and University Hospital of Granada, Spain. One-hundred and twenty mothers and 11 available types of infant formulas for term infants. We analysed the fatty acid composition of colostrum (n=40), transitional milk (n=40), mature milk (n=40) and 11 infant formulas. We also analysed the fatty acid composition at sn-2 position in colostrum (n=12), transitional milk (n=12), mature milk (n=12), and the 11 infant formulas. Human milk in Spain had low saturated fatty acids, high monounsaturated fatty acids and high linolenic acid. Infant formulas and mature human milk had similar fatty acid composition. In mature milk, palmitic acid was preferentially esterified at the sn-2 position (86.25%), and oleic and linoleic acids were predominantly esterified at the sn-1,3 positions (12.22 and 22.27%, respectively, in the sn-2 position). In infant formulas, palmitic acid was preferentially esterified at the sn-1,3 positions and oleic and linoleic acids had higher percentages at the sn-2 position than they do in human milk. Fatty acid composition of human milk in Spain seems to reflect the Mediterranean dietary habits of mothers. Infant formulas resemble the fatty acid profile of human milk, but the distribution of fatty acids at the sn-2 position is markedly different.

  18. A novel omega3-fatty acid desaturase involved in the biosynthesis of eicosapentaenoic acid.

    PubMed Central

    Pereira, Suzette L; Huang, Yung-Sheng; Bobik, Emil G; Kinney, Anthony J; Stecca, Kevin L; Packer, Jeremy C L; Mukerji, Pradip

    2004-01-01

    Long-chain n-3 PUFAs (polyunsaturated fatty acids) such as EPA (eicosapentaenoic acid; 20:5 n-3) have important therapeutic and nutritional benefits in humans. In plants, cyanobacteria and nematodes, omega3-desaturases catalyse the formation of these n-3 fatty acids from n-6 fatty acid precursors. Here we describe the isolation and characterization of a gene ( sdd17 ) derived from an EPA-rich fungus, Saprolegnia diclina, that encodes a novel omega3-desaturase. This gene was isolated by PCR amplification of an S. diclina cDNA library using oligonucleotide primers corresponding to conserved regions of known omega3-desaturases. Expression of this gene in Saccharomyces cerevisiae, in the presence of various fatty acid substrates, revealed that the recombinant protein could exclusively desaturate 20-carbon n-6 fatty acid substrates with a distinct preference for ARA (arachidonic acid; 20:4 n-6), converting it into EPA. This activity differs from that of the known omega3-desaturases from any organism. Plant and cyanobacterial omega3-desaturases exclusively desaturate 18-carbon n-6 PUFAs, and a Caenorhabditis elegans omega3-desaturase preferentially desaturated 18-carbon PUFAs over 20-carbon substrates, and could not convert ARA into EPA when expressed in yeast. The sdd17 -encoded desaturase was also functional in transgenic somatic soya bean embryos, resulting in the production of EPA from exogenously supplied ARA, thus demonstrating its potential for use in the production of EPA in transgenic oilseed crops. PMID:14651475

  19. Brain histological changes in young mice submitted to diets with different ratios of n-6/n-3 polyunsaturated fatty acids during maternal pregnancy and lactation.

    PubMed

    Tian, Chunyu; Fan, Chaonan; Liu, Xinli; Xu, Feng; Qi, Kemin

    2011-10-01

    N-3 polyunsaturated fatty acids (n-3 PUFAs) are essential for brain development and function, but the appropriate quantity of dietary n-3 PUFAs and ratio of n-6/n-3 PUFAs have not been clearly determined. In this study, we investigated the effects of different dietary ratios of n-6/n-3 PUFAs on the brain structural development in mice and the expression of associated transcription factors. C57 BL/6J mice were fed with one of two categories of n-3 PUFA-containing diets (a flaxseed oil diet and a flaxseed/fish oil mixed diet) or an n-3 PUFA-deficient diet. For each of the n-3 PUFA diets, flaxseed oil or flaxseed/fish oil was combined with other oils to yield three different n-6/n-3 ratios, which ranged from 15.7:1 to 1.6:1. The feeding regimens began two months before mouse conception and continued throughout lactation for new pups. As compared with the n-3 PUFA-deficient diet, both the flaxseed oil n-3 PUFA diets and the flaxseed/fish oil n-3 PUFA diets significantly increased the expression levels of brain neuron-specific enolase, glial fibrillary acidic protein and myelin basic protein, somewhat dose-dependently, in new pup mice at 21 d and 42 d of age. The expression of PPAR-γ in the brains of pup mice was increased only at 7 d of age with the n-3 PUFA diet, and no changes in the expression of PPAR-α and PPAR-β were found among all the diet groups. These results suggest that the higher intake amount of n-3 PUFAs with a low ratio of n-6/n-3 PUFAs at about 1-2:1, supplied during both maternal pregnancy and lactation, may be more beneficial for early brain development, and PPAR-γ may act in one of the pathways by which n-3 PUFAs promote early brain development. Copyright © 2011 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  20. Rye polyphenols and the metabolism of n-3 fatty acids in rats: a dose dependent fatty fish-like effect.

    PubMed

    Ounnas, Fayçal; de Lorgeril, Michel; Salen, Patricia; Laporte, François; Calani, Luca; Mena, Pedro; Brighenti, Furio; Del Rio, Daniele; Demeilliers, Christine

    2017-01-10

    As long-chain fatty acids (LCFA) of the n-3 series are critically important for human health, fish consumption has considerably increased in recent decades, resulting in overfishing to respond to the worldwide demand, to an extent that is not sustainable for consumers' health, fisheries economy, and marine ecology. In a recent study, it has been shown that whole rye (WR) consumption improves blood and liver n-3 LCFA levels and gut microbiota composition in rats compared to refined rye. The present work demonstrates that specific colonic polyphenol metabolites may dose dependently stimulate the synthesis of n-3 LCFA, possibly through their microbial and hepatic metabolites in rats. The intake of plant n-3 alpha-linolenic acid and WR results in a sort of fatty fish-like effect, demonstrating that the n-3 LCFA levels in blood and tissues could be increased without eating marine foods, and therefore without promoting unsustainable overfishing, and without damaging marine ecology.