Sample records for n-containing organic compounds

  1. Polyoxometalate-based organic-inorganic hybrid compounds containing transition metal mixed-organic-ligand complexes of N-containing and pyridinecarboxylate ligands.

    PubMed

    Zhao, De-Chuan; Hu, Yang-Yang; Ding, Hong; Guo, Hai-Yang; Cui, Xiao-Bing; Zhang, Xiao; Huo, Qi-Sheng; Xu, Ji-Qing

    2015-05-01

    Five new organic-inorganic hybrid compounds based on the Keggin-type polyoxoanion [SiW12O40](4-), namely [Cu3(2,2'-bpy)3(inic)(?2-OH)(H2O)][SiW12O40]·2H2O (), [Cu6(phen)6(?3-Cl)2(?2-Cl)2Cl2(inic)2][SiW12O40]·6H2O (), [Cu2(hnic)(2,2'-bpy)2Cl]2[H2SiW12O40] (), [Cu2(nic)(phen)2Cl2]2[SiW12O40] () and [Cu2(pic)(2,2'-bpy)2Cl]2[SiW12O40] () (inic = isonicotinic acid, hnic = 2-hydroxy-nicotinic acid, nic = nicotinic acid, pic = picolinic acid, 2,2'-bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline) have been synthesized and characterized by IR, UV-Vis, XPS, XRD, cyclic voltammetric measurements, photoluminescence analysis and single crystal X-ray diffraction analysis. Crystal analysis reveals that compound exhibits a 2-D double layered framework structure constructed from [SiW12O40](4-) and copper-aqua-2,2'-bipy-hydroxyl-isonicotinate complexes. Compound is a 0-D discrete structure formed by [SiW12O40](4-) and copper-chloro-isonicotinate-phenanthroline complexes. Compound shows a 1-D single chain structure based on the linkage of copper-2,2-bpy-chloro-2-hydroxy-nicotinate complexes and [SiW12O40](4-). Compounds and both contain polyoxometalate supported transition metal complexes, one is a polyoxometalate supported copper-chloro-nicotinate-phenanthroline complex in , and the other is a polyoxometalate supported copper-2,2-bpy-chloro-nicotinate complex in . It should be noted that nicotinic, isonicotinic and picolinic acids are structural isomers and 2-hydroxy-nicotinic acid is an in situ hydroxylated product of nicotinic acid. In addition, photocatalytic degradation of Rhodamine B (RhB) by compounds has been investigated in aqueous solutions. PMID:25882351

  2. Tribological characteristics of magnesium alloy using N-containing compounds as lubricating additives during sliding

    Microsoft Academic Search

    Weijiu Huang; Changhua Du; Zhaofeng Li; Ming Liu; Weiming Liu

    2006-01-01

    The tribological characteristics of a magnesium alloy, AZ91D, were investigated in a sliding lubricating system using various N-containing compounds as lubricating additives on a Timken type tester against a bearing steel (AISI52100) ring. Results indicated that a significant improvement in the tribological performance exists using N-containing compounds as additives. The characteristics of anti-wear, anti friction and load-carrying capacity increased with

  3. Organic Compounds Database

    NSDL National Science Digital Library

    Bell, Harold M.

    2000-01-01

    The Colby College Department of Chemistry offers the Organic Compounds Database, which was compiled by Harold Bell of the Virginia Polytechnic Institute. Visitors can search by the compounds melting point, boiling point, index of refraction, molecular weight, formula, absorption wavelength, mass spectral peak, chemical type, and by partial name. Once entered, results are returned with basically the same type of information that can be searched, plus any other critical information. References are provided for the close to 2500 organic compounds included in the database; yet, because the site was last modified in 1995, varying the data may be required to fully authenticate its accuracy.

  4. Extraterrestrial Organic Compounds in Meteorites

    NASA Technical Reports Server (NTRS)

    Botta, Oliver; Bada, Jeffrey L.; Meyer, Michael (Technical Monitor)

    2003-01-01

    Many organic compounds or their precursors found in meteorites originated in the interstellar or circumstellar medium and were later incorporated into planetesimals during the formation of the solar system. There they either survived intact or underwent further processing to synthesize secondary products on the meteorite parent body. The most distinct feature of CI and CM carbonaceous chondrites, two types of stony meteorites, is their high carbon content (up to 3% of weight), either in the form of carbonates or of organic compounds. The bulk of the organic carbon consists of an insoluble macromolecular material with a complex structure. Also present is a soluble organic fraction, which has been analyzed by several separation and analytical procedures. Low detection limits can be achieved by derivatization of the organic molecules with reagents that allow for analysis by gas chromatography/mass spectroscopy and high performance liquid chromatography. The CM meteorite Murchison has been found to contain more than 70 extraterrestrial amino acids and several other classes of compounds including carboxylic acids, hydroxy carboxylic acids, sulphonic and phosphonic acids, aliphatic, aromatic and polar hydrocarbons, fullerenes, heterocycles as well as carbonyl compounds, alcohols, amines and amides. The organic matter was found to be enriched in deuterium, and distinct organic compounds show isotopic enrichments of carbon and nitrogen relative to terrestrial matter.

  5. Quinaldine 4-oxidase from Arthrobacter sp. Rü61a, a versatile procaryotic molybdenum-containing hydroxylase active towards N-containing heterocyclic compounds and aromatic aldehydes.

    PubMed

    Stephan, I; Tshisuaka, B; Fetzner, S; Lingens, F

    1996-02-15

    Quinaldine 4-oxidase from Arthrobacter sp. Rü61a, an inducible molybdenum-containing hydroxylase, was purified to homogeneity by an optimized five-step procedure. Molecular oxygen is proposed as physiological electron acceptor. Electrons are also transferred to artificial electron acceptors with E'o > -8 mV. The molybdo-iron/sulfur flavoprotein regiospecifically attacks its N-heterocyclic substrates: isoquinoline and phthalazine are hydroxylated adjacent to the N-heteroatom at Cl, whereas quinaldine, quinoline, cinnoline and quinazoline are hydroxylated at C4. Additionally, the aromatic aldehydes benzaldehyde, salicylaldehyde, vanillin and cinnamaldehyde are oxidized to the corresponding carboxylic acids, whereas short-chain aliphatic aldehydes are not. Quinaldine 4-oxidase is compared to the two molybdenum-containing hydroxylases quinoline 2-oxidoreductase from Pseudomonas putida 86 [Tshisuaka, B., Kappl, R., Hüttermann, J. & Lingens, F. (1993) Biochemistry 32, 12928-12934] and isoquinoline 1-oxidoreductase from Pseudomonas diminuta 7 [Lehmann, M., Tshisuaka, B., Fetzner, S., Röger, P. & Lingens, F. (1994) J. Biol. Chem. 269, 11254-11260] with respect to the substrates converted and the electron-acceptor specificities. These dehydrogenases hydroxylate their N-heterocyclic substrates exclusively adjacent to the heteroatom. Whereas the aldehydes tested are scarcely oxidized by quinoline 2-oxidoreductase, isoquinoline 1-oxidoreductase catalyzes the oxidation of the aromatic aldehydes, although being progressively inhibited. Neither quinoline 2-oxidoreductase nor isoquinoline 1-oxidoreductase transfer electrons to oxygen. Otherwise, the spectrum of electron acceptors used by quinoline 2-oxidoreductase and quinaldine 4-oxidase is identical. However, isoquinoline 1-oxidoreductase differs in its electron-acceptor specificity. Quinaldine 4-oxidase is unusual in its substrate and electron-acceptor specificity. This enzyme is able to function as oxidase or dehydrogenase, it oxidizes aldehydes, and it catalyzes the nucleophilic attack of N-containing heterocyclic compounds at two varying positions depending on the substrate. PMID:8617260

  6. Extraterrestrial Organic Compounds in Meteorites

    Microsoft Academic Search

    OLIVER BOTTAand; Jeffrey L. Bada

    2002-01-01

    Many organic compounds or their precursorsfound in meteorites originated in the interstellar or circumstellarmedium and were later incorporated intoplanetesimals during the formation of thesolar system. There they either survivedintact or underwent further processing tosynthesize secondary products on themeteorite parent body.The most distinct feature of CI and CM carbonaceouschondrites, two typesof stony meteorites, is their high carbon content(up to 3% of

  7. Adsorptive Partitioning of an Organic Compound onto

    E-print Network

    Dubin, Paul D.

    Adsorptive Partitioning of an Organic Compound onto Polyelectrolyte-Immobilized Micelles on Porous of the environment by organic compounds is a ubiquitous and costly environmental concern requiring nearly $109 /yr manufacturingorbyleakagefromundergroundstoragetanks. Release in the subsurface can result in a "plume" of dissolved and pure phase organic compounds

  8. Volatile organic compound sensor system

    DOEpatents

    Schabron, John F.; Rovani, Jr., Joseph F.; Bomstad, Theresa M.; Sorini-Wong, Susan S.; Wong, Gregory K.

    2011-03-01

    Generally, this invention relates to the development of field monitoring methodology for new substances and sensing chemical warfare agents (CWAs) and terrorist substances. It also relates to a portable test kit which may be utilized to measure concentrations of halogenated volatile organic compounds (VOCs) in the field. Specifically it relates to systems for reliably field sensing the potential presence of such items while also distinguishing them from other elements potentially present. It also relates to overall systems and processes for sensing, reacting, and responding to an indicated presence of such substance, including modifications of existing halogenated sensors and arrayed sensing systems and methods.

  9. Volatile organic compound sensor system

    DOEpatents

    Schabron, John F. (Laramie, WY); Rovani, Jr., Joseph F. (Laramie, WY); Bomstad, Theresa M. (Laramie, WY); Sorini-Wong, Susan S. (Laramie, WY)

    2009-02-10

    Generally, this invention relates to the development of field monitoring methodology for new substances and sensing chemical warfare agents (CWAs) and terrorist substances. It also relates to a portable test kit which may be utilized to measure concentrations of halogenated volatile organic compounds (VOCs) in the field. Specifically it relates to systems for reliably field sensing the potential presence of such items while also distinguishing them from other elements potentially present. It also relates to overall systems and processes for sensing, reacting, and responding to an indicated presence of such substance, including modifications of existing halogenated sensors and arrayed sensing systems and methods.

  10. Organic compounds in municipal landfill leachates

    Microsoft Academic Search

    N. Paxéus

    2000-01-01

    Leachates from three municipal landfills in the Göteborg area of western Sweden were characterised in terms of their content of individual organic compounds. Two of the investigated landfills were still in use during the time of this study. The third landfill was closed down in the mid-seventies. More than 200 individual organic compounds and classes of compounds were identified in

  11. Determination of organic compounds in bottled waters

    Microsoft Academic Search

    Stavroula V. Leivadara; Anastasia D. Nikolaou; Themistokles D. Lekkas

    2008-01-01

    The presence of organic compounds in bottled waters available in the Greek market and their fate when the representative samples exposed at different conditions were the main purposes of this study. The determination of the organic compounds was performed by gas chromatography–mass spectrometry techniques. Disinfection by-products compounds, such as trihalomethanes (THMs) and haloacetic acids (HAAs), were detected at low concentrations

  12. ORGANIC COMPOUNDS IN ORGANOPHOSPHORUS PESTICIDE MANUFACTURING WASTEWATERS

    EPA Science Inventory

    Preliminary survey information on the organophosphorus pesticide industry wastewater streams and analytical methods to monitor levels of organic compounds present in these streams are presented. The identification and quantification of organophosphorus compounds was emphasized, b...

  13. SORPTION OF HYDROPHOBIC ORGANIC COMPOUNDS BY SEDIMENTS

    EPA Science Inventory

    Thermodynamic and kinetic principles which govern the uptake of nonionic, hydrophobic organic chemicals by sediments in aqueous systems are summarized. Sorption onto organic-rich sediments can be modeled as a process where the hydrophobic compound partitions into the organic matt...

  14. Thermodynamic properties of organic iodine compounds

    NASA Astrophysics Data System (ADS)

    Richard, Laurent; Gaona, Xavier

    2011-11-01

    A critical evaluation has been made of the thermodynamic properties reported in the literature for 43 organic iodine compounds in the solid, liquid, or ideal gas state. These compounds include aliphatic, cyclic and aromatic iodides, iodophenols, iodocarboxylic acids, and acetyl and benzoyl iodides. The evaluation has been made on the basis of carbon number systematics and group additivity relations, which also allowed to provide estimates of the thermodynamic properties of those compounds for which no experimental data were available. Standard molal thermodynamic properties at 25 °C and 1 bar and heat capacity coefficients are reported for 13 crystalline, 29 liquid, and 39 ideal gas organic iodine compounds, which can be used to calculate the corresponding properties as a function of temperature and pressure. Values derived for the standard molal Gibbs energy of formation at 25 °C and 1 bar of these crystalline, liquid, and ideal gas organic iodine compounds have subsequently been combined with either solubility measurements or gas/water partition coefficients to obtain values for the standard partial molal Gibbs energies of formation at 25 °C and 1 bar of 32 aqueous organic iodine compounds. The thermodynamic properties of organic iodine compounds calculated in the present study can be used together with those for aqueous inorganic iodine species to predict the organic/inorganic speciation of iodine in marine sediments and petroleum systems, or in the near- and far-field of nuclear waste repositories.

  15. Organic electronic devices using phthalimide compounds

    DOEpatents

    Hassan, Azad M.; Thompson, Mark E.

    2012-10-23

    Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.

  16. Organic electronic devices using phthalimide compounds

    DOEpatents

    Hassan, Azad M.; Thompson, Mark E.

    2013-03-19

    Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.

  17. Organic electronic devices using phthalimide compounds

    DOEpatents

    Hassan, Azad M.; Thompson, Mark E.

    2010-09-07

    Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.

  18. VOLATILE ORGANIC COMPOUNDS AS EXPOSURE BIOMARKERS

    EPA Science Inventory

    Alveolar breath sampling and analysis can be extremely useful in exposure assessment studies involving volatile organic compounds (VOCs). Over recent years scientists from the US Environmental Protection Agency's National Exposure Research Laboratory have developed and refined...

  19. VOLATILE ORGANIC COMPOUNDS (VOCS) CHAPTER 31.

    EPA Science Inventory

    The term "volatile organic compounds' (VOCs) was originally coined to refer, as a class, to carbon-containing chemicals that participate in photochemical reactions in the ambient (outdoor) are. The regulatory definition of VOCs used by the U.S. EPA is: Any compound of carbon, ex...

  20. FREQUENCY OF ORGANIC COMPOUNDS IDENTIFIED IN WATER

    EPA Science Inventory

    This study was initiated for the purpose of compiling a list of all organic compounds that have been found in water. This report contains the names of compounds found, their location or a reference to a published study, the type of water in which they are found, and the date of s...

  1. (CHINA) PERFLUORINATED ORGANIC COMPOUND EXPOSURE ASSESSMENT RESEARCH

    EPA Science Inventory

    A wide range of perfluorinated organic compounds (PFCs) has been used in a variety of industrial processes and consumer products. The most commonly studied PFCs include perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), but there are many more compounds in this c...

  2. Boiling points of halogenated organic compounds

    Microsoft Academic Search

    Ari L. Horvath

    2001-01-01

    The normal boiling points of a number of halogenated organic compounds have been compiled from experimental measurements over three decades. Some of these chemicals have not been reported in the literature. The substances listed are halogenated aliphatic hydrocarbons, halogenated aliphatic ethers, halogenated ring (cyclic) hydrocarbons and other related compounds.

  3. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

    1994-06-14

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a molecular sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 fig.

  4. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, L.A. Jr.

    1989-07-18

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 fig.

  5. Semivolatile organic compounds in indoor environments

    Microsoft Academic Search

    Charles J. Weschler; William W. Nazaroff

    2008-01-01

    Semivolatile organic compounds (SVOCs) are ubiquitous in indoor environments, redistributing from their original sources to all indoor surfaces. Exposures resulting from their indoor presence contribute to detectable body burdens of diverse SVOCs, including pesticides, plasticizers, and flame retardants. This paper critically examines equilibrium partitioning of SVOCs among indoor compartments. It proceeds to evaluate kinetic constraints on sorptive partitioning to organic

  6. Reflectance spectroscopy of organic compounds: 1. Alkanes

    USGS Publications Warehouse

    Clark, R.N.; Curchin, J.M.; Hoefen, T.M.; Swayze, G.A.

    2009-01-01

    Reflectance spectra of the organic compounds comprising the alkane series are presented from the ultraviolet to midinfrared, 0.35 to 15.5 /??m. Alkanes are hydrocarbon molecules containing only single carbon-carbon bonds, and are found naturally on the Earth and in the atmospheres of the giant planets and Saturn's moon, Titan. This paper presents the spectral properties of the alkanes as the first in a series of papers to build a spectral database of organic compounds for use in remote sensing studies. Applications range from mapping the environment on the Earth, to the search for organic molecules and life in the solar system and throughout the. universe. We show that the spectral reflectance properties of organic compounds are rich, with major diagnostic spectral features throughout the spectral range studied. Little to no spectral change was observed as a function of temperature and only small shifts and changes in the width of absorption bands were observed between liquids and solids, making remote detection of spectral properties throughout the solar system simpler. Some high molecular weight organic compounds contain single-bonded carbon chains and have spectra similar to alkanes even ' when they fall into other families. Small spectral differences are often present allowing discrimination among some compounds, further illustrating the need to catalog spectral properties for accurate remote sensing identification with spectroscopy.

  7. Analyzing method on biogenic volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Bai, J. H.; Wang, M. X.; Hu, F.; Greenberg, J. P.; Guenther, A. B.

    2002-02-01

    In order to analyze biogenic volatile organic compounds in the atmosphere, an automated gas chromatography is developed and employed at the laboratory of National Center for Atmospheric Research (NCAR) during January to July, 2000. A small refrigerator was used so as to remove water in the air sample from gas line, and get accurate concentrations of volatile organic compounds. At 5degreesC, good water removing efficiency can be obtained at controlled flow rate. Air samples were collected around the building of Mesa Lab. of NCAR and analyzed by this gas chromatography system. This paper reports this gas chromatography system and results of air samples. The experimental results show that this gas chromatography system has a good reproducibility and stability, and main interesting volatile organic compounds such as isoprene, monoterpenes have an evident diurnal variation.

  8. Catalyst for Oxidation of Volatile Organic Compounds

    NASA Technical Reports Server (NTRS)

    Wood, George M. (Inventor); Upchurch, Billy T. (Inventor); Schryer, David R. (Inventor); Davis, Patricia P. (Inventor); Kielin, Erik J. (Inventor); Brown, Kenneth G. (Inventor); Schyryer, Jacqueline L. (Inventor); DAmbrosia, Christine M. (Inventor)

    2000-01-01

    Disclosed is a process for oxidizing volatile organic compounds to carbon dioxide and water with the minimal addition of energy. A mixture of the volatile organic compound and an oxidizing agent (e.g. ambient air containing the volatile organic compound) is exposed to a catalyst which includes a noble metal dispersed on a metal oxide which possesses more than one oxidation state. Especially good results are obtained when the noble metal is platinum, and the metal oxide which possesses more than one oxidation state is tin oxide. A promoter (i.e., a small amount of an oxide of a transition series metal) may be used in association with the tin oxide to provide very beneficial results.

  9. Chlorinated organic compounds in urban river sediments

    SciTech Connect

    Soma, Y.; Shiraishi, H.; Inaba, K. [National Inst. of Environmental Studies, Tsukuba, Ibaraki (Japan)

    1995-12-31

    Among anthropogenic chemicals, many chlorinated organic compounds have been used as insecticides and detected frequently as contaminants in urban river sediments so far. However, the number and total amount of chemicals produced commercially and used are increasing year by year, though each amount of chemicals is not so high. New types of contaminants in the environment may be detected by the use of newly developed chemicals. Chlorinated organic compounds in the urban river sediments around Tokyo and Kyoto, large cities in Japan, were surveyed and recent trends of contaminants were studied. Contaminants of the river sediments in industrial areas had a variety, but PCB (polychlorinated biphenyls) was detected in common in industrial areas. Concentration of PCB related well to the number of factories on both sides of rivers, although the use of PCB was stopped 20 years ago. In domestic areas, Triclosan (5-chloro-2-(2,4-dichlorophenoxy)-phenol) and Triclocarban (3,4,4{prime}-trichlorocarbanilide)(both are contained in soap or shampoo for fungicides), p-dichlorobenzene (insecticides for wears) and TCEP(tris-chloroethyl phosphate) were detected. EOX(extracted organic halogen) in the sediments was 5 to 10 times of chlorinated organic compounds detected by GC/MS. Major part of organic halogen was suggested to be included in chlorinated organics formed by bleaching or sterilization.

  10. Azodicarboxylates: synthesis and functionalization of organic compounds

    NASA Astrophysics Data System (ADS)

    Zhirov, A. M.; Aksenov, A. V.

    2014-06-01

    The data on transformations of dialkyl azodicarboxylates and their analogues involving various substrates are generalized. Nucleophilic addition and oxidation, pericyclic reactions and reactions occurring under the Mitsunobu reaction conditions are considered. Ample opportunities for application of these compounds in fine organic synthesis are shown. The bibliography includes 245 references. Dedicated to Academician B A Trofimov on the occasion of his 75th birthday.

  11. Catalytic Destruction Of Toxic Organic Compounds

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E.

    1990-01-01

    Proposed process disposes of toxic organic compounds in contaminated soil or carbon beds safely and efficiently. Oxidizes toxic materials without producing such other contaminants as nitrogen oxides. Using air, fuel, catalysts, and steam, system consumes less fuel and energy than decontamination processes currently in use. Similar process regenerates carbon beds used in water-treatment plants.

  12. Emerging Control Technologies for Volatile Organic Compounds

    Microsoft Academic Search

    Geeta Rani Parmar; N. N. Rao

    2008-01-01

    Environmental problems associated with volatile organic compounds (VOCs) in the atmosphere have provided the driving force for sustained fundamental and applied research in the area of environmental remediation. Conventional methods currently used to treat VOCs include incineration, condensation, adsorption, and absorption. Incineration and condensation are cost-effective only for moderate to high VOC concentrations. Adsorption and absorption do not destroy VOCs

  13. Ozone Production Potential of Volatile Organic Compounds

    Microsoft Academic Search

    T. Butler; M. G. Lawrence; J. Lelieveld

    2010-01-01

    Calculation of the ozone production potential of Volatile Organic Compounds (VOC) has traditionally been performed using so-called incremental reactivity techniques. Here were present a new approach to this problem using a photochemical box model with a tagged chemical mechanism. The results of our approach are consistent with previous work, but deliver much more detailed information about the VOC intermediate oxidation

  14. Nonvolatile organic compounds in treated waters.

    PubMed Central

    Watts, C D; Crathorne, B; Fielding, M; Killops, S D

    1982-01-01

    Over the past decade much information has been published on the analysis of organics extracted from treated water. Certain of these organics have been shown to be by-products of the chlorination disinfection process and to possess harmful effects at high concentrations. This has resulted in increased interest in alternative disinfection processes, particularly ozonation. The data on organics had been largely obtained by using gas chromatography-mass spectrometry, which is only capable of analyzing, at best, 20% of the organics present in treated water. Research in key areas such as mutagenicity testing of water and characterization of chlorination and ozonation by-products has emphasized the need for techniques suitable for analysis of the remaining nonvolatile organics. Several methods for the isolation of nonvolatile organics have been evaluated and, of these, freeze-drying followed by methanol extraction appears the most suitable. Reverse-phase HPLC was used for separation of the methanol extract, but increased resolution for separation of the complex mixtures present is desirable. In this context, high resolution size exclusion chromatography shows promise. Characterization of separated nonvolatiles is possible by the application of state-of-the-art mass spectrometric techniques. Results obtained by these techniques have shown that the nonvolatile organic fraction of chlorinated drinking water consists of many discrete compounds. Among these, some of the chlorinated compounds are almost certainly by-products of disinfection. Studies of the by-products of ozonation of fulvic and humic acids isolated from river waters have indicated a similar proportion of nonvolatile organics. Further, ozonation can result in the release of compounds that are trapped in the macromolecules. PMID:6759110

  15. Progress in the Halogenation of Organic Silicon Compounds

    Microsoft Academic Search

    G. V. Motsarev; K. A. Andrianov; V. I. Zetkin

    1971-01-01

    The Review deals mainly with the direct halogenation of organic silicon compounds by halogens and halogenated compounds as among the most important methods for the preparation of organosilicon compounds containing halogen in the organic radicals. With respect to preparative possibilities, experimental simplicity, and in individual cases the yields obtained, the direct chlorination and bromination of organic silicon compounds has no

  16. Methods for determination of toxic organic compounds in air

    SciTech Connect

    Winberry, W.T. Jr.

    1990-01-01

    This paper provides environmental regulatory agencies, industry, and other interested parties with specific, standardized sampling and analysis procedures for toxic organic compounds in air. Compounds include Volatile Organic Compounds, Organochlorine Pesticides and PCBs, Aldehydes and Ketones, Phosgene, N-Nitrosodimethylamine, Phenol and Methylphenols (Cresols), Polychlorinated Dibenzo-p-Dioxins (PCDDs), Formaldehyde, Non-Methane Organic Compounds (NMOCs) and Polynuclear Aromatic Hydrocarbons (PAHs).

  17. Toxic organic compounds from energy production

    SciTech Connect

    Hites, R.A.

    1991-09-20

    The US Department of Energy's Office of Health and Environmental Research (OHER) has supported work in our laboratory since 1977. The general theme of this program has been the identification of potentially toxic organic compounds associated with various combustion effluents, following the fates of these compounds in the environment, and improving the analytical methodology for making these measurements. The projects currently investigation include: an improved sampler for semi-volatile compounds in the atmosphere; the wet and dry deposition of dioxins and furans from the atmosphere; the photodegradation and mobile sources of dioxins and furans; and the bioaccumulation of PAH by tree bark. These projects are all responsive to OHER's interest in the pathways and mechanisms by which energy-related agents move through and are modified by the atmosphere''. The projects on gas chromatographic and liquid chromatographic tandem mass spectrometry are both responsive to OHER's interest in new and more sensitive technologies for chemical measurements''. 35 refs., 9 figs.

  18. Photochemical reactions of organic compounds in seawater

    Microsoft Academic Search

    1988-01-01

    Eleven organic compounds (2-nitrotoluene, 4-nitrotoluene, 2-nitrobenzoic acid, anthranilic acid, styrene, 4,5-dichloroguaiacol, 4,5,6-trichloroguaiacol, tetrachloroguaiacol, dehydroabietic acid, isopimaric acid, and abietic acid) were selected as probes to identify the types of photochemical reactions occurring in seawater. Solutions of each probe in buffered (pH 8) distilled water, synthetic seawater, and natural seawater (NSW), were irradiated in a temperature-controlled photoreactor which simulated sunlight. Photolysis

  19. 40 CFR 60.392 - Standards for volatile organic compounds

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...2012-07-01 false Standards for volatile organic compounds 60.392 Section 60...Standards of Performance for Automobile and Light Duty Truck Surface Coating Operations § 60.392 Standards for volatile organic compounds On and after...

  20. 40 CFR 60.392 - Standards for volatile organic compounds

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...2011-07-01 false Standards for volatile organic compounds 60.392 Section 60...Standards of Performance for Automobile and Light Duty Truck Surface Coating Operations § 60.392 Standards for volatile organic compounds On and after...

  1. 40 CFR 60.392 - Standards for volatile organic compounds

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 false Standards for volatile organic compounds 60.392 Section 60...Standards of Performance for Automobile and Light Duty Truck Surface Coating Operations § 60.392 Standards for volatile organic compounds On and after...

  2. Production of volatile organic compounds by mycobacteria.

    PubMed

    McNerney, Ruth; Mallard, Kim; Okolo, Phyllis Ifeoma; Turner, Claire

    2012-03-01

    The need for improved rapid diagnostic tests for tuberculosis disease has prompted interest in the volatile organic compounds (VOCs) emitted by Mycobacterium tuberculosis complex bacteria. We have investigated VOCs emitted by Mycobacterium bovis BCG grown on Lowenstein-Jensen media using selected ion flow tube mass spectrometry and thermal desorption-gas chromatography-mass spectrometry. Compounds observed included dimethyl sulphide, 3-methyl-1-butanol, 2-methyl-1-propanol, butanone, 2-methyl-1-butanol, methyl 2-methylbutanoate, 2-phenylethanol and hydrogen sulphide. Changes in levels of acetaldehyde, methanol and ammonia were also observed. The compounds identified are not unique to M. bovis BCG, and further studies are needed to validate their diagnostic value. Investigations using an ultra-rapid gas chromatograph with a surface acoustic wave sensor (zNose) demonstrated the presence of 2-phenylethanol (PEA) in the headspace of cultures of M. bovis BCG and Mycobacterium smegmatis, when grown on Lowenstein-Jensen supplemented with glycerol. PEA is a reversible inhibitor of DNA synthesis. It is used during selective isolation of gram-positive bacteria and may also be used to inhibit mycobacterial growth. PEA production was observed to be dependent on growth of mycobacteria. Further study is required to elucidate the metabolic pathways involved and assess whether this compound is produced during in vivo growth of mycobacteria. PMID:22224870

  3. Molecular Characterization of S- and N-containing Organic Constituents in Ambient Aerosols by negative ion mode High-Resolution Nanospray Desorption Electrospray Ionization Mass Spectrometry: CalNex 2010 field study

    SciTech Connect

    O'Brien, Rachel E.; Laskin, Alexander; Laskin, Julia; Rubitschun, Caitlin L.; Surratt, Jason D.; Goldstein, Allen H.

    2014-11-27

    Samples of ambient aerosols from the 2010 California Research at the Nexus of Air Quality and Climate Change (CalNex) field study were analyzed using Nanospray Desorption Electrospray Ionization High Resolution Mass Spectrometry (nano-DESI/MS). Four samples per day were collected in Bakersfield, CA on June 20-24 with a collection time of 6 hours per sample. Four characteristic groups of organic constituents were identified in the samples: compounds containing carbon, hydrogen, and oxygen only (CHO), sulfur- (CHOS), nitrogen-(CHON), and both nitrogen- and sulfur-containing organics (CHONS). Within the groups, organonitrates, organosulfates, and nitroxy organosulfates were assigned based on accurate mass measurements and elemental ratio comparisons. Changes in the chemical composition of the aerosol samples were observed throughout the day. The number of observed CHO compounds increased in the afternoon samples, suggesting regional photochemical processing as a source. The average number of CHOS compounds had the smallest changes throughout the day, consistent with a more broadly distributed source. Both of the nitrogen-containing groups (CHON and CHONS) had greater numbers of compounds in the night and morning samples, indicating that nitrate radical chemistry was likely a source for those compounds. Most of the compounds were found in submicron particles. The size distribution of CHON compounds was bimodal. We conclude that the majority of the compounds observed were secondary in nature with both biogenic and anthropogenic sources.

  4. Volatile Organic Compound Analysis in Istanbul

    NASA Astrophysics Data System (ADS)

    ?apraz, Ö.; Deniz, A.; Öztürk, A.; Incecik, S.; Toros, H.; Co?kun, M.

    2012-04-01

    Volatile Organic Compound Analysis in Istanbul Ö. Çapraz1, A. Deniz1,3, A. Ozturk2, S. Incecik1, H. Toros1 and, M. Coskun1 (1) Istanbul Technical University, Faculty of Aeronautics and Astronautics, Department of Meteorology, 34469, Maslak, Istanbul, Turkey. (2) Istanbul Technical University, Faculty of Chemical and Metallurgical, Chemical Engineering, 34469, Maslak, Istanbul, Turkey. (3) Marmara Clean Air Center, Ministry of Environment and Urbanization, Ni?anta??, 34365, ?stanbul, Turkey. One of the major problems of megacities is air pollution. Therefore, investigations of air quality are increasing and supported by many institutions in recent years. Air pollution in Istanbul contains many components that originate from a wide range of industrial, heating, motor vehicle, and natural emissions sources. VOC, originating mainly from automobile exhaust, secondhand smoke and building materials, are one of these compounds containing some thousands of chemicals. In spite of the risks to human health, relatively little is known about the levels of VOC in Istanbul. In this study, ambient air quality measurements of 32 VOCs including hydrocarbons, halogenated hydrocarbons and carbonyls were conducted in Ka??thane (Golden Horn) region in Istanbul during the winter season of 2011 in order to develop the necessary scientific framework for the subsequent developments. Ka??thane creek valley is the source part of the Golden Horn and one of the most polluted locations in Istanbul due to its topographical form and pollutant sources in the region. In this valley, horizontal and vertical atmospheric motions are very weak. The target compounds most commonly found were benzene, toluene, xylene and ethyl benzene. Concentrations of total hydrocarbons ranged between 1.0 and 10.0 parts per billion, by volume (ppbv). Ambient air levels of halogenated hydrocarbons appeared to exhibit unique spatial variations and no single factor seemed to explain trends for this group of compounds. N-octane, 3-methylheptane, n-nonane, 2,3,4-trimethylpentane and n-hexane parameters ranged between 3 ppbv and maximum value of 10 ppbv. The other VOC parameters are measured below 3 ppbv value. At participating urban locations for the year of data considered, levels of carbonyls were higher than the level of the other organic compound groups, suggesting that emissions from motor vehicles and photochemical reactions strongly in?uence ambient air concentrations of carbonyls. Of the most prevalent carbonyls, formaldehyde and acetaldehyde were the dominant compounds, ranging from 1.5-7.4 ppbv for formaldehyde, to 0.8-2.7 ppbv for acetaldehyde. Keywords: Air quality, Volatile Organic Compounds (VOC), industry, meteorology, urban, Ka??thane, ?stanbul. Acknowledgment: This work was part of the TUJJB-TUMEHAP-01-10 and Turkish Scientific and Technical Research Council Project No: 109Y132.

  5. Catalytic destruction of organic volatile nitrogen compounds

    SciTech Connect

    Lester, G.R.; Homeyer, S.T. [Allied Signal Inc., Des Plaines, IL (United States)

    1993-12-31

    A family of catalysts has been identified for purification of industrial gas streams which are contaminated with odorous and/or toxic volatile nitrogen compounds (VNC). Temperature-conversion curves were measured for destruction of a series of organic VNC`s in moist air at 15,000 hr {sup {minus}1} gas hourly space velocity (STP), and the yields of N{sub 2}, N{sub 2}O, and total NO{sub x} (NO + NO{sub 2}) were measured. The VNCs of interest included primary, secondary and tertiary amines, ethylenediamine, ethanolamine, acetonitrile, dimethylfomamide, pyridine, piperidine and aniline. The ease of destruction of these compounds over a monolithic platinum VNC catalyst as reflected in the temperature required or 95% conversion, ranged from n-propylamine (234{degrees}C) to acetonitrile (343{degrees}C). Selectivity to N{sub 2} plus N{sub 2}O at the temperatures of 95% conversion decreased with increasing T-95 from 93% to 46%. Additional studies were done with triethylamine at several space velocities with the VNC catalyst and with some related PT catalysts. The results of these tests suggest that N{sub 2}, N{sub 2}O, and NO{sub x} (NO + NO{sub 2}) are formed by at least three competitive reaction pathways.

  6. BIODEGRADATION AND CARBON ADSORPTION CARCINOGENIC AND HAZARDOUS ORGANIC COMPOUNDS

    EPA Science Inventory

    This research program was conducted to determine the capability of biological treatment and activated carbon adsorption to remove chemical carcinogens and other hazardous organic compounds from water and wastewater. Compounds studied were benzidine, 4-nitrobiphenyl, 3,3'-dichloro...

  7. ACUTE TOXICITY OF SELECTED ORGANIC COMPOUNDS TO FATHEAD MINNOWS

    EPA Science Inventory

    Static nonrenewal laboratory bioassays were conducted with 26 organic compounds commonly used by industry. The selected compounds represented the five following chemical classes: acids, alcohols, hydrocarbons, ketones and aldehydes, and phenols. Juvenile fathead minnows (Pimephal...

  8. Rhenium-containing catalysts in reactions of organic compounds

    NASA Astrophysics Data System (ADS)

    Ryashentseva, Margarita A.

    1998-02-01

    The problems in the use of rhenium compounds and supported mono-, bi-, and poly-metallic rhenium-containing catalysts for carrying out reactions involving the metathesis of alkenes and unsaturated functional compounds, the hydrogenation and dehydrogenation of hydrocarbons, the conversion of hydrocarbons and their industrial mixtures, and the hydrogenation of fractions comprising carboxylic acids and the products of the hydroformylation of synthetic aliphatic acid esters are examined. The characteristic features of the behaviour of platinum-rhenium/alumina catalysts under reforming conditions are described. The specificity of the action of rhenium heptasulfide in the hydrogenation reactions of condensed N-containing aromatic compounds and in the reductive C-alkylation of indoloisoquinoline by alcohols is noted. The bibliography includes 251 references.

  9. Sorption of hydrophobic organic compounds onto organoclays.

    PubMed

    Lee, S Y; Kim, S J; Chung, S Y; Jeong, C H

    2004-05-01

    The behavior and fate of nonionic hydrophobic organic compounds (HOCs) in the environment are mainly controlled by their interactions with various components of soils and sediments. Due to their large surface area and abundance in many soils, smectites may greatly influence the fate and transport of the contaminants in the environment. In our experiments, HOC sorption by hexadecyltrimethylammonium (HDTMA)-modified smectite linearly increased with the amount of HDTMA added to the clay. However, tetramethylammonium (TMA)- and dodecyltrimethylammonium (DTMA)-modified smectites showed not only inferiority in their sorption of HOC compared with the HDTMA-smectite, but also a partially decreased HOC sorption at specific surfactant loading levels. This means that the sorption of organoclays for organic contaminants was significantly influenced by the amount and size of the surfactants added on the clay. In addition, it seems that the interlayer structure (e.g., pore size) formed at each surfactant loading level plays an important role to adsorb HOC in different amount. PMID:15013684

  10. Separation of Organic Compounds from Surfactant Solutions: A Review

    Microsoft Academic Search

    Hefa Cheng; David A. Sabatini

    2007-01-01

    This review summarizes the recent development in separation of emulsified organic compounds from surfactant solutions for surfactant reuse and\\/or surfactant?contaminant disposal. Three major principles have been employed for separating organic compounds and\\/or surfactants from aqueous solutions, namely, organic compound inter?phase mass transfer, surfactant micelle removal, and manipulation of surfactant solution phase behavior. Details of these principles and their applications are

  11. [Quantification assessment of the relationship between chemical and olfactory concentrations for malodorous volatile organic compounds].

    PubMed

    Liu, Shu-Le; Wang, Bo-Guang; He, Jie; Tang, Xiao-Dong; Zhao, De-Jun; Guo, Wei

    2011-12-01

    Using self-made cold-traps and gas bags, the odor samples were collected from 6 sewage treatment workshops of a typical municipal sewage treatment plant in Guangzhou City. The chemical composition and olfactory concentrations of these samples were respectively analyzed by thermal-desorption/GC-MS and triangle odor bag method. Finally, a mathematical equation was built for assessing the relationship between principal organic odorants and the olfactory concentrations. The result showing that: (1) More than 70 volatile organic compounds were detected in municipal sewage treatment plant, among which were 30 malodorous volatile organic compounds (MVOCs), ranging from 0.37 to 1 872.24 microg x m(-3) and appearing in sludge dewatering, thickening and aeration tank with the highest concentrations. (2) Principle component analysis was used to group the target MVOCs into 5 categories: benzenes, halohydrocarbons, aldehydes, hydrocarbons and S, N-containing organic compounds. (3) Multiple lineal regression analysis was used to build a quantified relationship between chemical and olfactory concentrations of MVOCs. The result indicated that 25% of the odor problem of sewage treatment unit was due to MVOCs. The predicted values were fitting well with measured values. The sensitivity of mathematical equation for measuring odor concentration was higher than that of human olfactory system. PMID:22468522

  12. Oceanic protection of prebiotic organic compounds from UV radiation

    NASA Technical Reports Server (NTRS)

    Cleaves, H. J.; Miller, S. L.; Bada, J. L. (Principal Investigator)

    1998-01-01

    It is frequently stated that UV light would cause massive destruction of prebiotic organic compounds because of the absence of an ozone layer. The elevated UV flux of the early sun compounds this problem. This applies to organic compounds of both terrestrial and extraterrestrial origin. Attempts to deal with this problem generally involve atmospheric absorbers. We show here that prebiotic organic polymers as well as several inorganic compounds are sufficient to protect oceanic organic molecules from UV degradation. This aqueous protection is in addition to any atmospheric UV absorbers and should be a ubiquitous planetary phenomenon serving to increase the size of planetary habitable zones.

  13. Prioritizing testing of organic compounds detected as gas phase air pollutants: structure-activity study for human contact allergens.

    PubMed Central

    Johnson, R; Macina, O T; Graham, C; Rosenkranz, H S; Cass, G R; Karol, M H

    1997-01-01

    Organic compounds that are used or generated anthropogenically in large quantities in cities can be identified through their presence in the urban atmosphere and in air pollutant source emissions. Compounds identified by this method were screened to evaluate their potential to act as contact allergens. The CASE and MULTICASE computer programs, which are based on the detection of structure-activity relationships (SAR), were used to evaluate this potential. These relationships first are determined by comparing chemical structures to biological activity within a learning set comprised of 458 compounds, each of which had been tested experimentally in human trials for its sensitization potential. Using the information contained in this learning set, CASE and MULTICASE predicted the activity of 238 compounds found in the atmosphere for their ability to act as contact allergens. The analysis finds that 21 of 238 compounds are predicted to be active contact allergens (probability >0.5), with potencies ranging from mild to very strong. The compounds come from chemical classes that include chlorinated aromatics and chlorinated hydrocarbons, N-containing compounds, phenols, alkenes, and an S-containing compound. Using the measured airborne concentrations or emission rates of these compounds as an indication of the extent of their use, together with their predicted potencies, provides an efficient method to prioritize the experimental assessment of contact sensitization of untested organic compounds that can be detected as air pollutants. Images Figure 1. PMID:9300925

  14. Breath measurements as volatile organic compound biomarkers

    SciTech Connect

    Wallace, L.; Buckley, T. [Environmental Protection Agency, Reston, VA (United States); Pellizzari, E. [Research Triangle Institute, Research Triangle Park, NC (United States); Gordon, S. [Battelle Memorial Institute, Columbus, OH (United States)

    1996-10-01

    A brief review of the uses of breath analysis in studies of environmental exposure to volatile organic compounds (VOCs) is provided. The U.S. Environmental Protection Agency`s large-scale Total Exposure Assessment Methodology Studies have measured concentrations of 32 target VOCs in the exhaled breath of about 800 residents of various U.S. cities. Since the previous 12-hr integrated personal air exposures to the same chemicals were also measured, the relation between exposure and body burden is illuminated. Another major use of the breath measurements has been to detect unmeasured pathways of exposure; the major impact of active smoking on exposure to benzene and styrene was detected in this way. Following the earlier field studies, a series of chamber studies have provided estimates of several important physiological parameters. Among these are the fraction, f, of the inhaled chemical that is exhaled under steady-state conditions and the residence times, {tau}{sub i} in several body compartments, which may be associated with the blood (or liver), organs, muscle, and fat. Most of the targeted VOCs appear to have similar residence times of a few minutes, 30 min, several hours, and several days in the respective tissue groups. Knowledge of these parameters can be helpful in estimating body burden from exposure or vice versa and in planning environmental studies, particularly in setting times to monitor breath in studies of the variation with time of body burden. Improvements in breath methods have made it possible to study short-term peak exposure situations such as filling a gas tank or taking a shower in contaminated water. 81 refs., 3 figs., 4 tabs.

  15. Volatile organic compound stripping at clarifier weirs

    SciTech Connect

    Zytner, R.G.; Rahme, Z.G.; Corsi, R.L.; Labocha, M.; Parker, W.

    1999-10-01

    Volatile organic compound (VOC) stripping at clarifier weirs was investigated for both clean water and primary wastewater using a pilot-scale model with a cross-sectional geometry similar to clarifier weirs. Drop height, type of flow regime over the weir, and weir shape were identified as important parameters influencing mass transfer. It was also observed that VOC stripping from free-fall flow could be correlated with Henry's law constant. A model that accounts for liquid- and gas-phase mass transfer was developed to predict VOC stripping from clean water. The relatively low and consistent gas- and liquid-phase mass-transfer coefficients used in the model suggest that a representative value may apply for all weir conditions. Incorporating a transition coefficient between clean water and wastewater made it possible to predict VOC transfer in primary wastewater based on clean water data. Experimental results and modeling efforts described in this paper could serve as a first step in estimating VOC emissions for flows over clarifiers at wastewater treatment plants.

  16. FIELD SCREENING FOR HALOGENATED VOLATILE ORGANIC COMPOUNDS

    SciTech Connect

    John F. Schabron; Joseph F. Rovani Jr.; Theresa M. Bomstad

    2002-06-01

    Western Research Institute (WRI) initiated exploratory work towards the development of new field screening methodology and a test kit to measure halogenated volatile organic compounds (VOCs) in the field. Heated diode and corona discharge sensors are commonly used to detect leaks of refrigerants from air conditioners, freezers, and refrigerators. They are both selective to the presence of carbon-halogen bonds. Commercially available heated diode and corona discharge leak detectors were procured and evaluated for halogenated VOC response. The units were modified to provide a digital readout of signal related to VOC concentration. Sensor response was evaluated with carbon tetrachloride and tetrachloroethylene (perchloroethylene, PCE), which represent halogenated VOCs with and without double bonds. The response characteristics were determined for the VOCs directly in headspace in Tedlar bag containers. Quantitation limits in air were estimated. Potential interferences from volatile hydrocarbons, such as toluene and heptane, were evaluated. The effect of humidity was studied also. The performance of the new devices was evaluated in the laboratory by spiking soil samples and monitoring headspace for halogenated VOCs. A draft concept of the steps for a new analytical method was outlined. The results of the first year effort show that both devices show potential utility for future analytical method development work towards the goal of developing a portable test kit for screening halogenated VOCs in the field.

  17. POTENTIAL EMISSIONS OF HAZARDOUS ORGANIC COMPOUNDS FROM SEWAGE SLUDGE INCINERATION

    EPA Science Inventory

    Laboratory thermal decomposition studies were undertaken to evaluate potential organic emissions from sewage sludge incinerators. Precisely controlled thermal decomposition experiments were conducted on sludge spiked with mixtures of hazardous organic compounds, on the mixtures o...

  18. SORPTION OF ORGANIC ACID COMPOUNDS TO SEDIMENTS: INITIAL MODEL DEVELOPMENT

    EPA Science Inventory

    The adsorption to sediments and soils of selected organic acid compounds was examined as a function of compound and sediment properties. ntrinsic compound properties examined included the dissociation constant (pKa) and hydrophobic character. roperties of the sediment examined in...

  19. Correlation of heat of formation data for organic sulfur compounds

    Microsoft Academic Search

    J. P. McCullough; W. D. Good

    1961-01-01

    The method of Allen was used to correlate unpublished and recently published Bureau of Mines results for the heats of formation of organic sulfur compounds. Six parameters were evaluated from data for 25 acyclic alkane thiols, sulfides and disulfides. With the inclusion of appropriate strain energies, the results for seven cyclic sulfur compounds also were correlated. For all 32 compounds,

  20. REACTIVITY OF NITROGENOUS AND OTHER ORGANIC COMPOUNDS WITH AQUEOUS CHLORINE

    EPA Science Inventory

    A protocol for determining the chlorine demand of organic compounds was developed and tested. Organics were reacted with chlorine at mole ratios of 1:05, 1:1, and 1:3 at pH values of 6, 7, and 8 over a one week period. Compounds tested were drawn mainly from the EPA Register of O...

  1. Presence and Distribution of Organic Wastewater Compounds in Wastewater,

    E-print Network

    Presence and Distribution of Organic Wastewater Compounds in Wastewater, Surface, Ground.W., Meyer, M.T., and Zaugg, S.D., 2004, Presence and distri- bution of organic wastewater compounds in wastewater, surface, ground, and drinking waters, Minnesota, 2000-02: U.S. Geological Survey Scientific

  2. FIELD SCREENING FOR HALOGENATED VOLATILE ORGANIC COMPOUNDS

    SciTech Connect

    John F. Schabron; Joseph F. Rovani, Jr.; Theresa M. Bomstad

    2003-07-01

    Western Research Institute (WRI) is continuing work toward the development of new screening methodology and a test kit to measure halogenated volatile organic compounds (VOCs) in the field. Heated diode and corona discharge sensors are commonly used to detect leaks of refrigerants from air conditioners, freezers, and refrigerators. They are both selective to the presence of halogens. In prior work, the devices were tested for response to carbon tetrachloride, heptane, toluene, and water vapors. In the current work, sensor response was evaluated with sixteen halogenated VOCs relative to carbon tetrachloride. The results show that the response of the various chlorinated VOCs is within an order of magnitude of the response to carbon tetrachloride for each of the sensors. Thus, for field screening a single response factor can be used. Both types of leak detectors are being further modified to provide an on-board LCD signal readout, which is related to VOC concentration. The units will be fully portable and will operate with 115-V line or battery power. Signal background, noise level, and response data on the Bacharach heated diode detector and the TIF corona discharge detector show that when the response curves are plotted against the log of concentration, the plot is linear to the upper limit for the particular unit, with some curvature at lower levels. When response is plotted directly against concentration, the response is linear at the low end and is curved at the high end. The dynamic ranges for carbon tetrachloride of the two devices from the lower detection limit (S/N=2) to signal saturation are 4-850 vapor parts per million (vppm) for the corona discharge unit and 0.01-70 vppm for the heated diode unit. Additional circuit modifications are being made to lower the detection limit and increase the dynamic response range of the corona discharge unit. The results indicate that both devices show potential utility for future analytical method development work toward the goal of developing a portable test kit for screening halogenated VOCs in the field.

  3. Extended structures and physicochemical properties of uranyl-organic compounds.

    PubMed

    Wang, Kai-Xue; Chen, Jie-Sheng

    2011-07-19

    The ability of uranium to undergo nuclear fission has been exploited primarily to manufacture nuclear weapons and to generate nuclear power. Outside of its nuclear physics, uranium also exhibits rich chemistry, and it forms various compounds with other elements. Among the uranium-bearing compounds, those with a uranium oxidation state of +6 are most common and a particular structural unit, uranyl UO(2)(2+) is usually involved in these hexavalent uranium compounds. Apart from forming solids with inorganic ions, the uranyl unit also bonds to organic molecules to generate uranyl-organic coordination materials. If appropriate reaction conditions are employed, uranyl-organic extended structures (1-D chains, 2-D layers, and 3-D frameworks) can be obtained. Research on uranyl-organic compounds with extended structures allows for the exploration of their rich structural chemistry, and such studies also point to potential applications such as in materials that could facilitate nuclear waste disposal. In this Account, we describe the structural features of uranyl-organic compounds and efforts to synthesize uranyl-organic compounds with desired structures. We address strategies to construct 3-D uranyl-organic frameworks through rational selection of organic ligands and the incorporation of heteroatoms. The UO(2)(2+) species with inactive U?O double bonds usually form bipyramidal polyhedral structures with ligands coordinated at the equatorial positions, and these polyhedra act as primary building units (PBUs) for the construction of uranyl-organic compounds. The geometry of the uranyl ions and the steric arrangements and functionalities of organic ligands can be exploited in the the design of uranyl--organic extended structures, We also focus on the investigation of the promising physicochemical properties of uranyl-organic compounds. Uranyl-organic materials with an extended structure may exhibit attractive properties, such as photoluminescence, photocatalysis, photocurrent, and photovoltaic responses. In particular, the intriguing, visible-light photocatalytic activities of uranyl-organic compounds are potentially applicable in decomposition of organic pollutants and in water-splitting with the irradiation of solar light. We ascribe the photochemical properties of uranyl-organic compounds to the electronic transitions within the U?O bonds, which may be affected by the presence of organic ligands. PMID:21612214

  4. Quantifying commuter exposures to volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Kayne, Ashleigh

    Motor-vehicles can be a predominant source of air pollution in cities. Traffic-related air pollution is often unavoidable for people who live in populous areas. Commuters may have high exposures to traffic-related air pollution as they are close to vehicle tailpipes. Volatile organic compounds (VOCs) are one class of air pollutants of concern because exposure to VOCs carries risk for adverse health effects. Specific VOCs of interest for this work include benzene, toluene, ethylbenzene, and xylenes (BTEX), which are often found in gasoline and combustion products. Although methods exist to measure time-integrated personal exposures to BTEX, there are few practical methods to measure a commuter's time-resolved BTEX exposure which could identify peak exposures that could be concealed with a time-integrated measurement. This study evaluated the ability of a photoionization detector (PID) to measure commuters' exposure to BTEX using Tenax TA samples as a reference and quantified the difference in BTEX exposure between cyclists and drivers with windows open and closed. To determine the suitability of two measurement methods (PID and Tenax TA) for use in this study, the precision, linearity, and limits of detection (LODs) for both the PID and Tenax TA measurement methods were determined in the laboratory with standard BTEX calibration gases. Volunteers commuted from their homes to their work places by cycling or driving while wearing a personal exposure backpack containing a collocated PID and Tenax TA sampler. Volunteers completed a survey and indicated if the windows in their vehicle were open or closed. Comparing pairs of exposure data from the Tenax TA and PID sampling methods determined the suitability of the PID to measure the BTEX exposures of commuters. The difference between BTEX exposures of cyclists and drivers with windows open and closed in Fort Collins was determined. Both the PID and Tenax TA measurement methods were precise and linear when evaluated in the laboratory using standard BTEX gases. The LODs for the Tenax TA sampling tubes (determined with a sample volume of 1,000 standard cubic centimeters which is close to the approximate commuter sample volumes collected) were orders of magnitude lower (0.04 to 0.7 parts per billion (ppb) for individual compounds of BTEX) compared to the PIDs' LODs (9.3 to 15 ppb of a BTEX mixture), which makes the Tenax TA sampling method more suitable to measure BTEX concentrations in the sub-parts per billion (ppb) range. PID and Tenax TA data for commuter exposures were inversely related. The concentrations of VOCs measured by the PID were substantially higher than BTEX concentrations measured by collocated Tenax TA samplers. The inverse trend and the large difference in magnitude between PID responses and Tenax TA BTEX measurements indicates the two methods may have been measuring different air pollutants that are negatively correlated. Drivers in Fort Collins, Colorado with closed windows experienced greater time-weighted average BTEX exposures than cyclists (p: 0.04). Commuter BTEX exposures measured in Fort Collins were lower than commuter exposures measured in prior studies that occurred in larger cities (Boston and Copenhagen). Although route and intake may affect a commuter's BTEX dose, these variables are outside of the scope of this study. Within the limitations of this study (including: small sample size, small representative area of Fort Collins, and respiration rates not taken into account), it appears health risks associated with traffic-induced BTEX exposures may be reduced by commuting via cycling instead of driving with windows closed and living in a less populous area that has less vehicle traffic. Although the PID did not reliably measure low-level commuter BTEX exposures, the Tenax TA sampling method did. The PID measured BTEX concentrations reliably in a controlled environment, at high concentrations (300-800 ppb), and in the absence of other air pollutants. In environments where there could be multiple chemicals present that may produce a PID signal (such a

  5. Volatile Organic Compound Detection Using Nanostructured Copolymers

    E-print Network

    Weiss, Lee E.

    ,3-6 conductive poly- mers (CPs),7-12 and carbon black-polymer composites.13,14 Metal oxide materials compound (VOC) chemresistor sensors. While the regioregular polythiophene polymer chain provides a charge conductivity of these copolymers increased or decreased depending upon the polymer composition and the specific

  6. Organic Compounds in Circumstellar and Interstellar Environments

    NASA Astrophysics Data System (ADS)

    Kwok, Sun

    2015-06-01

    Recent research has discovered that complex organic matter is prevalent throughout the Universe. In the Solar System, it is found in meteorites, comets, interplanetary dust particles, and planetary satellites. Spectroscopic signatures of organics with aromatic/aliphatic structures are also found in stellar ejecta, diffuse interstellar medium, and external galaxies. From space infrared spectroscopic observations, we have found that complex organics can be synthesized in the late stages of stellar evolution. Shortly after the nuclear synthesis of the element carbon, organic gas-phase molecules are formed in the stellar winds, which later condense into solid organic particles. This organic synthesis occurs over very short time scales of about a thousand years. In order to determine the chemical structures of these stellar organics, comparisons are made with particles produced in the laboratory. Using the technique of chemical vapor deposition, artificial organic particles have been created by injecting energy into gas-phase hydrocarbon molecules. These comparisons led us to believe that the stellar organics are best described as amorphous carbonaceous nanoparticles with mixed aromatic and aliphatic components. The chemical structures of the stellar organics show strong similarity to the insoluble organic matter found in meteorites. Isotopic analysis of meteorites and interplanetary dust collected in the upper atmospheres have revealed the presence of pre-solar grains similar to those formed in old stars. This provides a direct link between star dust and the Solar System and raises the possibility that the early Solar System was chemically enriched by stellar ejecta with the potential of influencing the origin of life on Earth.

  7. Organic compounds in circumstellar and interstellar environments.

    PubMed

    Kwok, Sun

    2015-06-01

    Recent research has discovered that complex organic matter is prevalent throughout the Universe. In the Solar System, it is found in meteorites, comets, interplanetary dust particles, and planetary satellites. Spectroscopic signatures of organics with aromatic/aliphatic structures are also found in stellar ejecta, diffuse interstellar medium, and external galaxies. From space infrared spectroscopic observations, we have found that complex organics can be synthesized in the late stages of stellar evolution. Shortly after the nuclear synthesis of the element carbon, organic gas-phase molecules are formed in the stellar winds, which later condense into solid organic particles. This organic synthesis occurs over very short time scales of about a thousand years. In order to determine the chemical structures of these stellar organics, comparisons are made with particles produced in the laboratory. Using the technique of chemical vapor deposition, artificial organic particles have been created by injecting energy into gas-phase hydrocarbon molecules. These comparisons led us to believe that the stellar organics are best described as amorphous carbonaceous nanoparticles with mixed aromatic and aliphatic components. The chemical structures of the stellar organics show strong similarity to the insoluble organic matter found in meteorites. Isotopic analysis of meteorites and interplanetary dust collected in the upper atmospheres have revealed the presence of pre-solar grains similar to those formed in old stars. This provides a direct link between star dust and the Solar System and raises the possibility that the early Solar System was chemically enriched by stellar ejecta with the potential of influencing the origin of life on Earth. PMID:25720971

  8. 40 CFR 60.432 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for the Graphic Arts Industry: Publication Rotogravure Printing § 60.432 Standard for volatile organic compounds. During the period of the performance test required to be...

  9. 40 CFR 60.432 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for the Graphic Arts Industry: Publication Rotogravure Printing § 60.432 Standard for volatile organic compounds. During the period of the performance test required to be...

  10. ODOR AND IRRITATION EFFECTS OF A VOLATILE ORGANIC COMPOUND MIXTURE

    EPA Science Inventory

    Human exposure to volatile organic compounds elicits a variety ofsymptoms, many of which are thought to be mediated by the olfactoryand trigeminal systems. his report describes evidence indicatingthat perceived odor intensity diminishes during prolonged exposure,whearas irritatin...

  11. ESTIMATION OF PHYSIOCHEMICAL PROPERTIES OF ORGANIC COMPOUNDS BY SPARC

    EPA Science Inventory

    The computer program SPARC (SPARC Performs Automated Reasoning in Chemistry) has been under development for several years to estimate physical properties and chemical reactivity parameters of organic compounds strictly from molecular structure. SPARC uses computational algorithms...

  12. COMPACT, CONTINUOUS MONITORING FOR VOLATILE ORGANIC COMPOUNDS - PHASE I

    EPA Science Inventory

    Improved methods for onsite measurement of multiple volatile organic compounds are needed for process control, monitoring, and remediation. This Phase I SBIR project sets forth an optical measurement method that meets these needs. The proposed approach provides an instantaneous m...

  13. LOSS OF ORGANIC CHEMICALS IN SOIL: PURE COMPOUND TREATABILITY STUDIES

    EPA Science Inventory

    Comprehensive screening data on the treatability of 32 organic chemicals in soil were developed. Of the evaluated chemicals, 22 were phenolic compounds. Aerobic batch laboratory microcosm experiments were conducted using two soils: an acidic clay soil with ...

  14. 40 CFR 60.392 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Automobile and Light Duty Truck Surface Coating Operations § 60.392 Standards for volatile organic compounds. On and...

  15. 40 CFR 60.432 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for the Graphic Arts Industry: Publication Rotogravure Printing § 60.432 Standard for volatile organic compounds. During the...

  16. Speciation of volatile organic compounds from poultry production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The air consent agreement between EPA and large animal feeding operations (AFO) is designed to determine at what level compounds are being emitted from these facilities. However, the methodology used for quantifying total non-methane hydrocarbons and speciation of volatile organic compounds (VOC) n...

  17. CHARACTERIZATION OF VOLATILE ORGANIC COMPOUNDS IN AIRBORNE DUST

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three methods of extracting volatile organic compounds (VOC's) adsorbed on the airborne dust in a swine finishing building were investigated. Airborne dust was collected in pre-baked glass fiber filters (GFF's) and the compounds were extracted by solvent extraction using dichloromethane, solid phas...

  18. VOLATILE ORGANIC COMPOUNDS MEASURED IN DEARS PASSIVE SAMPLERS

    EPA Science Inventory

    A suite of 27 volatile organic compounds (VOCs) were monitored in personal exposures, indoors and outdoors of participant's residences, and at a central community site during the DEARS summer 2004 monitoring season. The list of VOCs focused on compounds typically associated with ...

  19. Emission, oxidation, and secondary organic aerosol formation of volatile organic compounds as observed at Chebogue Point,

    E-print Network

    Silver, Whendee

    organic compounds (VOC) are oxidized in the troposphere. There are three possible final stages or out] Oxidation products of primary VOC emissions tend to become less volatile and more soluble becauseEmission, oxidation, and secondary organic aerosol formation of volatile organic compounds

  20. Composition and major sources of organic compounds in urban aerosols

    Microsoft Academic Search

    Xinhui Bi; Bernd R. T. Simoneit; Guoying Sheng; Shexia Ma; Jiamo Fu

    2008-01-01

    Total suspended particles (TSP), collected during June 2002 to July 2003 in Guangzhou, a typical economically developed city in South China, were analyzed for the organic compound compositions using gas chromatography–mass spectrometry (GC\\/MS). Over 140 organic compounds were detected in the aerosols and grouped into different classes including n-alkanes, hopanoids, polycyclic aromatic hydrocarbons, alkanols, fatty acids, dicarboxylic acids excluding oxalic

  1. Sorption of Selected Organic Compounds in Two Black Carbon Particles

    Microsoft Academic Search

    Yang-hsin Shih; Po-Hsin Su

    \\u000a Black carbons (BCs) have been reported to exhibit an extremely strong sorption of organic compounds in the environment. The\\u000a basic physicochemical properties of two selected black carbons characterized and showed mainly non-polar. The polarity of\\u000a BC1 was slightly higher than BC2. Sorption coefficients of selected organic compounds on two BCs were investigated by a reversed-phase\\u000a liquid chromatography (RP-LC) method. Sorption

  2. Process for reducing organic compounds with calcium, amine, and alcohol

    DOEpatents

    Benkeser, R.A.; Laugal, J.A.; Rappa, A.

    1985-08-06

    Olefins are produced by contacting an organic compound having at least one benzene ring with calcium metal, ethylenediamine, a low molecular weight aliphatic alcohol, and optionally a low molecular weight aliphatic primary amine, and/or an inert, abrasive particulate substance. The reduction is conducted at temperatures ranging from about [minus]10 C to about 30 C or somewhat higher. Substantially all of the organic compounds are converted to corresponding cyclic olefins, primarily diolefins.

  3. Bioavailability of organic compounds solubilized in nonionic surfactant micelles

    Microsoft Academic Search

    Zhilong Wang

    2011-01-01

    Whether direct availability of organic compound solubilized in nonionic surfactant micelles (bioavailability) in a bioremediation\\u000a or biotransformation process is uncertain to some extent, which is partially attributed to the difficulty by direct experimental\\u000a determination. In another point of view, it should be ascribed to the fuzzy concept about the solubilization of organic compound\\u000a in a nonionic surfactant micelle aqueous solution.

  4. Structure of Organic Oxygen Compounds of Sulphur

    Microsoft Academic Search

    Yu A. Kolesnik; V. V. Kozlov

    1968-01-01

    The nature of the sulphur-oxygen bond, the geometry of molecules of the types XYSO, XYSO2, XSOOH, and XSO2OH, and the character of the intramolecular interactions in these compounds are discussed. Apart from the sigma-bond between sulphur and oxygen, interaction obviously occurs by means of the 3d-orbital of sulphur and the 2p-orbital of oxygen (2p-3d hybridisation). The interaction of a sulphinyl

  5. In situ measurements of gas/particle-phase transitions for atmospheric semivolatile organic compounds

    E-print Network

    Cohen, Ronald C.

    . Labora- tory studies typically measure the phase partitioning of semivolatile organic compounds by using atmosphere by using in situ observations of several hundred semivolatile organic compounds. Here we compare TAG measurementsto modeledpartitioningof select semivolatile organ- ic compounds. Although TAG

  6. Analysis of volatile organic compounds from illicit cocaine samples

    SciTech Connect

    Robins, W.H.; Wright, B.W.

    1994-07-01

    Detection of illicit cocaine hydrochloride shipments can be improved if there is a greater understanding of the identity and quantity of volatile compounds present. This study provides preliminary data concerning the volatile organic compounds detected in a limited Set of cocaine hydrochloride samples. In all cases, cocaine was one of the major volatile compounds detected. Other tropeines were detected in almost all samples. Low concentrations of compounds that may be residues of processing solvents were observed in some samples. The equilibrium emissivity of. cocaine from cocaine hydrochloride was investigated and a value of 83 parts-per-trillion was determined.

  7. Highly stable meteoritic organic compounds as markers of asteroidal delivery

    NASA Astrophysics Data System (ADS)

    Cooper, George; Horz, Friedrich; Spees, Alanna; Chang, Sherwood

    2014-01-01

    Multiple missions to search for water-soluble organic compounds on the surfaces of Solar System bodies are either current or planned and, if such compounds were found, it would be desirable to determine their origin(s). Asteroid or comet material is likely to have been components of all surface environments throughout Solar System history. To simulate the survival of meteoritic compounds both during impacts with planetary surfaces and under subsequent (possibly) harsh ambient conditions, we subjected known meteoritic compounds to comparatively high impact-shock pressures (>30 GPa) and/or to extremely oxidizing/corrosive acid solution. Consistent with past impact experiments, ?-amino acids survived only at trace levels above ?18 GPa. Polyaromatic hydrocarbons (PAHs) survived at levels of 4-8% at a shock pressure of 36 GPa. Lower molecular weight sulfonic and phosphonic acids (S&P) had the highest degree of impact survival of all tested compounds at higher pressures. Oxidation of compounds was done with a 3:1 mixture of HCl:HNO3, a solution that generates additional strong oxidants such as Cl2 and NOCl. Upon oxidation, keto acids and ?-amino acids were the most labile compounds with proline as a significant exception. Some fraction of the other compounds, including non-? amino acids and dicarboxylic acids, were stable during 16-18 hours of oxidation. However, S&P quantitatively survived several months (at least) under the same conditions. Such results begin to build a profile of the more robust meteoritic compounds: those that may have survived, i.e., may be found in, the more hostile Solar System environments. In the search for organic compounds, one current mission, NASA's Mars Science Laboratory (MSL), will use analytical procedures similar to those of this study and those employed previously on Earth to identify many of the compounds described in this work. The current results may thus prove to be directly relevant to potential findings of MSL and other missions designed for extraterrestrial organic analysis.

  8. Biological aspects of constructing volatile organic compound emission inventories

    Microsoft Academic Search

    Ray Fall; Mt Lerdau; Td Sharkey

    1995-01-01

    The: emission of volatile organic compounds (VOCs) from vegetation is subject to numerous biological controls. Past inventories have relied heavily on empirical models which are limited in their ability to simulate the response of organisms to short- and long-term changes in their growth environment. In this review we consider the principal biochemical, physiological and ecological controls over VOC emission with

  9. Emission of volatile organic compounds from coal combustion

    Microsoft Academic Search

    H. K Chagger; J. M Jones; M Pourkashanian; A Williams; A Owen; G Fynes

    1999-01-01

    The combustion of coal leads to the formation of small but significant amounts of volatile organic compounds (VOCs), toxic organic micropollutants as polynuclear aromatic hydrocarbons (PAHs), as well as CH4. The measurements of such trace emissions is difficult and expensive, consequently it is useful to examine these from a kinetic modelling and thermodynamic point of view in order to make

  10. Leveraging the beneficial compounds of organic and pasture milk

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Much discussion has arisen over the possible benefits of organic food, including milk. Organic milk comes from cows that are on pasture during the growing season, and would be expected to contain some compounds that are not found in animals receiving conventional feed, or at higher concentrations. ...

  11. Students' Understanding of Molecular Structure and Properties of Organic Compounds.

    ERIC Educational Resources Information Center

    Schmidt, Hans-Jurgen

    The purpose of this study was to investigate senior high school students' difficulties predicting the existence of hydrogen bridge bonds between organic molecules, investigate students' difficulties predicting the relative boiling points of simple organic compounds, and develop test questions that enable teachers to quickly get information about…

  12. Oxidation of Volatile Organic Compounds in Aqueous Solution and

    E-print Network

    Winfree, Erik

    i Oxidation of Volatile Organic Compounds in Aqueous Solution and at the Air-water Interface ABSTRACT Isoprene (ISO), the most abundant non-methane VOC, is the major contributor to secondary organic. Current mechanisms, which are based on the oxidation of ISO in the gas-phase, underestimate SOA yields

  13. Can volatile organic compounds be markers of sea salt?

    PubMed

    Silva, Isabel; Coimbra, Manuel A; Barros, António S; Marriott, Philip J; Rocha, Sílvia M

    2015-02-15

    Sea salt is a handmade food product that is obtained by evaporation of seawater in saltpans. During the crystallisation process, organic compounds from surroundings can be incorporated into sea salt crystals. The aim of this study is to search for potential volatile markers of sea salt. Thus, sea salts from seven north-east Atlantic Ocean locations (France, Portugal, Continental Spain, Canary Islands, and Cape Verde) were analysed by headspace solid-phase microextraction combined with comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. A total of 165 compounds were detected, ranging from 32 to 71 compounds per salt. The volatile composition revealed the variability and individuality of each salt, and a set of ten compounds were detected in all samples. From these, seven are carotenoid-derived compounds that can be associated with the typical natural surroundings of ocean hypersaline environment. These ten compounds are proposed as potential volatile markers of sea salt. PMID:25236204

  14. Improving rubber concrete by waste organic sulfur compounds.

    PubMed

    Chou, Liang-Hisng; Lin, Chun-Nan; Lu, Chun-Ku; Lee, Cheng-Haw; Lee, Maw-Tien

    2010-01-01

    In this study, the use of crumb tyres as additives to concrete was investigated. For some time, researchers have been studying the physical properties of concrete to determine why the inclusion of rubber particles causes the concrete to degrade. Several methods have been developed to improve the bonding between rubber particles and cement hydration products (C-S-H) with the hope of creating a product with an improvement in mechanical strength. In this study, the crumb tyres were treated with waste organic sulfur compounds from a petroleum refining factory in order to modify their surface properties. Organic sulfur compounds with amphiphilic properties can enhance the hydrophilic properties of the rubber and increase the intermolecular interaction forces between rubber and C-S-H. In the present study, a colloid probe of C-S-H was prepared to measure these intermolecular interaction forces by utilizing an atomic force microscope. Experimental results showed that rubber particles treated with waste organic sulfur compounds became more hydrophilic. In addition, the intermolecular interaction forces increased with the adsorption of waste organic sulfur compounds on the surface of the rubber particles. The compressive, tensile and flexural strengths of concrete samples that included rubber particles treated with organic sulfur compound also increased significantly. PMID:19710121

  15. GROUND WATER TRANSPORT OF HYDROPHOBIC ORGANIC COMPOUNDS IN THE PRESENCE OF DISSOLVED ORGANIC MATTER

    EPA Science Inventory

    The effects of dissolved organic matter (DOM) on the transport of hydrophobic organic compounds in soil columns were investigated. hree compounds (naphthalene, phenathrene, and DDT) that spanned three orders of magnitude in water solubility were used. nstead of humic matter, mole...

  16. Partitioning of nonionic organic compounds between multicomponent organic phase and water

    Microsoft Academic Search

    Xiaojiang Wang; Shunnian Wu; Liansheng Wang

    1997-01-01

    The partitioning of nonionic organic compounds between multicomponent organic phase and water was investigated. It was found that the partition coefficients of chemicals between multi?component organic phase and water are approximately the linear combination of those between single?component organic phase and water based on the volume fraction of each component. The contribution of each component to the extracting capacity of

  17. Volatile organic compounds in selected micro-environments

    Microsoft Academic Search

    Andrea Hinwood; Henry Berko; Drew Farrar; Ian Galbally

    2006-01-01

    A program of sampling for volatile organic compounds (VOCs) in ambient air was undertaken in selected locations and micro-environments in Perth, Western Australia to characterise concentrations of target VOCs and to determine the relative strength of the contributing sources to ambient air in different micro-environments in a major Australian city. Twenty-seven locations were sampled and, of the forty-one target compounds,

  18. Dosimeter for monitoring vapors and aerosols of organic compounds

    DOEpatents

    Vo-Dinh, Tuan (625 Gulfwood Rd., Knoxville, TN 37923)

    1987-01-01

    A dosimeter is provided for collecting and detecting vapors and aerosols of organic compounds. The dosimeter comprises a lightweight, passive device that can be conveniently worn by a person as a badge or placed at a stationary location. The dosimeter includes a sample collector comprising a porous web treated with a chemical for inducing molecular displacement and enhancing phosphorescence. Compounds are collected onto the web by molecular diffusion. The web also serves as the sample medium for detecting the compounds by a room temperature phosphorescence technique.

  19. Thermal decomposition studies of halogenated organic compounds

    SciTech Connect

    Michael, J.V.; Kumaran, S.S.

    1997-06-01

    Thermal decomposition results for CCl{sub 4}, CHCl{sub 3}, CH{sub 2}Cl{sub 2}, CH{sub 3}Cl, C{sub 3}H{sub 3}Cl, CFCl{sub 3}, CF{sub 2}Cl{sub 2}, CF{sub 3}Cl, CF{sub 2}HCl, CF{sub 3}I, CH{sub 3}I, C{sub 2}H{sub 5}I, C{sub 6}H{sub 5}I, and CCl{sub 2}O are presented. The results were obtained by shock tube techniques coupled with optical spectroscopic detection of transient species formed from dissociation. The method is illustrated with the CH{sub 3}I (+ Kr) {yields} CH{sub 3} + I (+ Kr) reaction where decomposition was monitored using I-atomic resonance absorption spectrometry (ARAS). Modern unimolecular rate theoretical analysis has been carried out on the present cases, and the conclusions from these calculations are discussed. Lastly, the possible destruction of halo-organics by incineration is considered and some implications are discussed.

  20. Simplified Production of Organic Compounds Containing High Enantiomer Excesses

    NASA Technical Reports Server (NTRS)

    Cooper, George W. (Inventor)

    2015-01-01

    The present invention is directed to a method for making an enantiomeric organic compound having a high amount of enantiomer excesses including the steps of a) providing an aqueous solution including an initial reactant and a catalyst; and b) subjecting said aqueous solution simultaneously to a magnetic field and photolysis radiation such that said photolysis radiation produces light rays that run substantially parallel or anti-parallel to the magnetic field passing through said aqueous solution, wherein said catalyst reacts with said initial reactant to form the enantiomeric organic compound having a high amount of enantiomer excesses.

  1. Manmade organic compounds in the surface waters of the United States: A review of current understanding

    Microsoft Academic Search

    J. A. Smith; P. J. Witkowski; T. V. Fusillo

    1990-01-01

    On the basis of their aqueous solubilities, nonionic organic compounds partition themselves between water, dissolved organic matter, particulate organic matter, and the lipid reservoirs of aquatic organisms. Ionized organic compounds can be adsorbed to sediments, thereby reducing their aqueous concentrations. Transformation processes of photolysis, hydrolysis, biodegradation, and volatilization can attenuate organic compounds, and attenuation rates commonly follow a first-order kinetic

  2. Sorption of emerging trace organic compounds onto wastewater sludge solids.

    PubMed

    Stevens-Garmon, John; Drewes, Jörg E; Khan, Stuart J; McDonald, James A; Dickenson, Eric R V

    2011-05-01

    This work examined the sorption potential to wastewater primary- and activated-sludge solids for 34 emerging trace organic chemicals at environmentally relevant concentrations. These compounds represent a diverse range of physical and chemical properties, such as hydrophobicity and charge state, and a diverse range of classes, including steroidal hormones, pharmaceutically-active compounds, personal care products, and household chemicals. Solid-water partitioning coefficients (K(d)) were measured where 19 chemicals did not have previously reported values. Sludge solids were inactivated by a nonchemical lyophilization and dry-heat technique, which provided similar sorption behavior for recalcitrant compounds as compared to fresh activated-sludge. Sorption behavior was similar between primary- and activated-sludge solids from the same plant and between activated-sludge solids from two nitrified processes from different wastewater treatment systems. Positively-charged pharmaceutically-active compounds, amitriptyline, clozapine, verapamil, risperidone, and hydroxyzine, had the highest sorption potential, log K(d)=2.8-3.8 as compared to the neutral and negatively-charged chemicals. Sorption potentials correlated with a compound's hydrophobicity, however the higher sorption potentials observed for positively-charged compounds for a given log D(ow) indicate additional sorption mechanisms, such as electrostatic interactions, are important for these compounds. Previously published soil-based one-parameter models for predicting sorption from hydrophobicity (log K(ow)>2) can be used to predict sorption for emerging nonionic compounds to wastewater sludge solids. PMID:21536314

  3. Removal of organic pollutants by surfactant modified zeolite: comparison between ionizable phenolic compounds and non-ionizable organic compounds.

    PubMed

    Xie, Jie; Meng, Wenna; Wu, Deyi; Zhang, Zhenjia; Kong, Hainan

    2012-09-15

    The aim of this study was to examine the adsorption capability and mechanism of hexadecyltrimethylammonium modified zeolite, which was synthesized from coal fly ash, for the removal of ionizable phenolic compounds (phenol, p-chlorophenol and bisphenol A, with different pK(a)) and non-ionizable organic compounds (aniline, nitrobenzene, and naphthalene, with different hydrophobicity). The obtained zeolite was identified as type Na-P1 (Na(6)Al(6)Si(10)O(32)·12H(2)O, JCPDS code 39-0219), which is classified into the gismondine group with a pore size of 3.1 Å × 4.5 Å [100] and 2.8 Å × 4.8 Å [101]. The adsorption of the two kinds of organic compounds was due to loaded surfactant bilayer because modified zeolite showed great ability for the removal of organic chemicals while little adsorption by zeolite was observed. The isotherm data of ionizable compounds fitted well to the Langmuir model but those of non-ionizable chemicals followed a linear equation. Uptake of ionizable compounds depended greatly on pH, increasing at alkaline pH conditions. In contrary, adsorption of non-ionizable chemicals was essentially the same at all pH levels studied. The adsorption of both kinds of organic compounds correlated well to k(ow) value, suggesting that more hydrophobic organic contaminants are more easily retained by modified zeolite. Based on the different adsorption behavior, the uptake of non-ionizable pollutants was thought to be a single partitioning process into the surfactant bilayer. For ionizable compounds, however, interaction of the phenol group(s) with the positively charged "head" of surfactant additionally functions. PMID:22771348

  4. Chemical reactions of organic compounds on clay surfaces.

    PubMed Central

    Soma, Y; Soma, M

    1989-01-01

    Chemical reactions of organic compounds including pesticides at the interlayer and exterior surfaces of clay minerals and with soil organic matter are reviewed. Representative reactions under moderate conditions possibly occurring in natural soils are described. Attempts have been made to clarify the importance of the chemical nature of molecules, their structures and their functional groups, and the Brönsted or Lewis acidity of clay minerals. PMID:2533556

  5. Partition of Volatile Organic Compounds in Activated Sludge and Wastewater

    Microsoft Academic Search

    Jun-Hong Lin; Ming-Shean Chou

    2006-01-01

    The Henry’s law constant is important in the gas-liquid mass transfer process. Apparent dimensionless Henry’s law constant, or the gas-liquid partition coefficient (K’H), for both hydrophilic (methanol, isopropyl alcohol, and acetone) and hydrophobic (toluene and p-xylene) organic compounds in deionized (DI) water, a wastewater with a maximum total dissolved organic carbon (DOC) content of 700 mg\\/L, and DI water mixed

  6. Non-targeted analyses of organic compounds in urban wastewater.

    PubMed

    Alves Filho, Elenilson G; Sartori, Luci; Silva, Lorena M A; Silva, Bianca F; Fadini, Pedro S; Soong, Ronald; Simpson, Andre; Ferreira, Antonio G

    2014-10-29

    A large number of organic pollutants that cause damage to the ecosystem and threaten human health are transported to wastewater treatment plants (WWTPs). The problems regarding water pollution in Latin America have been well documented, and there is no evidence of substantive efforts to change the situation. In the present work, two methods to study wastewater samples are employed: non-targeted 1D ((13) C and (1) H) and 2D NMR spectroscopic analysis to characterize the largest possible number of compounds from urban wastewater and analysis by HPLC-(UV/MS)-SPE-ASS-NMR to detect non-specific recalcitrant organic compounds in treated wastewater without the use of common standards. The set of data is composed of several compounds with the concentration ranging considerably with treatment and seasonality. An anomalous discharge, the influence of stormwater on the wastewater composition and the presence of recalcitrant compounds (linear alkylbenzene sulfonate surfactant homologs) in the effluent were further identified. The seasonal variations and abnormality in the composition of organic compounds in sewage indicated that the procedure that was employed can be useful in the identification of the pollution source and to enhance the effectiveness of WWTPs in designing preventive action to protect the equipment and preserve the environment. Copyright © 2014 John Wiley & Sons, Ltd. PMID:25354334

  7. Analysis of Organic Compounds in Mars Analog Samples

    NASA Technical Reports Server (NTRS)

    Mahaffy, P. R.; Brinckerhoff, W. B.; Buch, A.; Cabane, M.; Coll, P.; Demick, J.; Glavin, D. P.

    2004-01-01

    The detailed characterization of organic compounds that might be preserved in rocks, ices, or sedimentary layers on Mars would be a significant step toward resolving the question of the habitability and potential for life on that planet. The fact that the Viking gas chromatograph mass spectrometer (GCMS) did not detect organic compounds should not discourage further investigations since (a) an oxidizing environment in the near surface fines analyzed by Viking is likely to have destroyed many reduced carbon species; (b) there are classes of refractory or partially oxidized species such as carboxylic acids that would not have been detected by the Viking GCMS; and (c) the Viking landing sites are not representative of Mars overall. These factors motivate the development of advanced in situ analytical protocols to carry out a comprehensive survey of organic compounds in martian regolith, ices, and rocks. We combine pyrolysis GCMS for analysis of volatile species, chemical derivatization for transformation of less volatile organics, and laser desorption mass spectrometry (LDMS) for analysis of elements and more refractory, higher-mass organics. To evaluate this approach and enable a comparison with other measurement techniques we analyze organics in Mars simulant samples.

  8. AERATION TO REMOVE VOLATILE ORGANIC COMPOUNDS FROM GROUND WATER

    EPA Science Inventory

    The interim report presents general information on the use of aeration to remove volatile organic compounds from drinking water for public health reasons. The report illustrates the types of aerators, shows where they are being used, presents a means of estimating aeration perfor...

  9. Volatile organic compound emissions from dairy facilities in central California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emissions of volatile organic compounds (VOCs) from dairy facilities are thought to be an important contributor to high ozone levels in central California, but emissions inventories from these sources contain significant uncertainties. In this work, VOC emissions were measured at two central Califor...

  10. In situ bioremediation of petroleum hydrocarbon and other organic compounds

    Microsoft Academic Search

    B. C. Alleman; A. Leeson

    1999-01-01

    From supertanker oil spills to the leaking underground storage tank at the corner gas station, contamination from petroleum hydrocarbon fuels and other organic compounds is an environmental concern that affects nearly every small hamlet and major metropolis throughout the world. Most petroleum hydrocarbons are amenable to biodegradation, and a considerable body of experience has been built up over the past

  11. In situ bioremediation of petroleum hydrocarbon and other organic compounds

    Microsoft Academic Search

    B. C. Alleman; A. Leeson

    1999-01-01

    From supertanker oil spills to the leaking underground storage tank at the corner gas station, contamination from petroleum hydrocarbon fuels and other organic compounds is an environmental concern that affects nearly every small hamlet and major metropolis throughout the world. Moreover, the world`s rivers, estuaries, and oceans are threatened by contamination from petroleum leaks and spills. Fortunately, most petroleum hydrocarbons

  12. SORPTION OF IONIZABLE ORGANIC COMPOUNDS TO SEDIMENTS AND SOILS

    EPA Science Inventory

    The sorption of ionizable organic compounds to sediments and saturated soils is examined. he sorption of pentachlorophenol to two sediment silt-clay fractions as a function of pH is described. Sorption of both the neutral and the ionic species was shown to occur; results were qua...

  13. MICROBIAL VOLATILE ORGANIC COMPOUND EMISSION RATES AND EXPOSURE MODEL

    EPA Science Inventory

    This paper presents the results from a study that examined microbial volatile organic compound (MVOC) emissions from six fungi and one bacterial species (Streptomyces spp.) commonly found in indoor environments. Data are presented on peak emission rates from inoculated agar plate...

  14. Blue organic light emitting materials from ?-conjugated compounds

    Microsoft Academic Search

    Wei Li; Zixing Wang; Ping Lu

    2004-01-01

    A series of ?-conjugated compounds with bright blue photoluminescence property were designed and synthesized. The main structure comprises of fluorene as electron acceptor and thiophene as electron donor in order to increase the electron mobility. All the products were confirmed by proton, and carbon NMR, MS and elemental analysis as well. They might be widely applied as luminescent in organic

  15. Photocatalytic Oxidation of Volatile Organic Compounds Using Fluorescent Visible Light

    Microsoft Academic Search

    Yannick Chapuis; Danilo Klvana; Christophe Guy; Jitka Kirchnerova

    2002-01-01

    Photocatalytic oxidation (PCO) of volatile organic compounds (VOCs) is a highly attractive alternative technology for purification and deodorization of indoor air. The main objectives of this study were to demonstrate that a common fluorescent visible light (FVL) lamp can be used to effectively remove by PCO low concentrations of VOCs from slightly contaminated air and to provide some fundamental and

  16. Qualitative analysis of volatile organic compounds on biochar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Qualitative identification of sorbed volatile organic compounds (VOCs) on biochar was conducted by headspace thermal desorption coupled to capillary gas chromatographic-mass spectrometry. VOCs may have a mechanistic role influencing plant and microbial responses to biochar amendments, since VOCs ca...

  17. ABSORPTION OF SOME ORGANIC COMPOUNDS THROUGH THE SKIN IN MAN

    Microsoft Academic Search

    Robert J. Feldmann; Howard I. Maibach

    1970-01-01

    We studied the percutaneous penetration of 21 organic chemicals. The experimental method consisted of the application of the chemical to the human forearm and quantitating its penetration through the skin by its appearance in urine.There was a great diversity in the ability of the chemicals to penetrate human skin. Compounds such as hippuric acid, nicotinic acid, and nitrobenzene support the

  18. A global model of natural volatile organic compound emissions

    Microsoft Academic Search

    Alex Guenther; C. Nicholas Hewitt; David Erickson; Ray Fall; Chris Geron; Tom Graedel; Peter Harley; Lee Klinger; Manuel Lerdau; W. A. McKay; Tom Pierce; Bob Scholes; Rainer Steinbrecher; Raja Tallamraju; John Taylor; Pat Zimmerman

    1995-01-01

    Numerical assessments of global air quality and potential changes in atmospheric chemical constituents require estimates of the surface fluxes of a variety of trace gas species. We have developed a global model to estimate emissions of volatile organic compounds from natural sources (NVOC). Methane is not considered here and has been reviewed in detail elsewhere. The model has a highly

  19. Who Took Jerell's iPod? -- An Organic Compound Mystery

    NSDL National Science Digital Library

    Jennifer Doherty

    In this activity, students learn how to test for triglycerides, glucose, starch, and protein and then use these tests to solve a mystery. The activity reinforces students understanding of the biological functions and food sources of these different types of organic compounds.

  20. Volatile organic compound (VOC) emissions from soil and litter samples

    Microsoft Academic Search

    Jonathan W. Leff; Noah Fierer

    2008-01-01

    The production of nonmethane volatile organic compounds (VOCs) by soil microbes is likely to have an important influence on soil ecology and terrestrial biogeochemistry. However, soil VOC production has received relatively little attention, and we do not know how the emissions of microbially-produced VOCs vary across soil and litter types. We collected 40 root-free soil and litter samples from a

  1. Influence of volatile organic compounds on Fusarium graminearum mycotoxin production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Volatile organic compounds (VOCs) are involved in a diverse range of ecological interactions. Due to their low molecular weight, lipophilic nature, and high vapor pressure at ambient temperatures, they can serve as airborne signaling molecules that are capable of mediating inter and intraspecies com...

  2. LEAVES AS INDICATORS OF EXPOSURE TO AIRBORNE VOLATILE ORGANIC COMPOUNDS

    EPA Science Inventory

    The concentration of volatile organic compounds (VOCs) in leaves is primarily a product of airborne exposures and dependent upon bioconcentration factors and release rates. The bioconcentration factors for VOCs in grass are found to be related to their partitioning between octan...

  3. Characterization of polar organic compounds and source analysis of fine organic aerosols in Hong Kong

    Microsoft Academic Search

    Yunchun Li

    2008-01-01

    Organic aerosols, as an important fraction of airborne particulate mass, significantly affect the environment, climate, and human health. Compared with inorganic species, characterization of individual organic compounds is much less complete and comprehensive because they number in thousands or more and are diverse in chemical structures. The source contributions of organic aerosols are far from being well understood because they

  4. Biodiversity of volatile organic compounds from five French ferns.

    PubMed

    Fons, Françoise; Froissard, Didier; Bessière, Jean-Marie; Buatois, Bruno; Rapior, Sylvie

    2010-10-01

    Five French ferns belonging to different families were investigated for volatile organic compounds (VOC) by GC-MS using organic solvent extraction. Fifty-five VOC biosynthesized from the shikimic, lipidic and terpenic pathways including monoterpenes, sesquiterpenes and carotenoid-type compounds were identified. The main volatile compound of Adiantum capillus-veneris L. (Pteridaceae) was (E)-2-decenal with a plastic or "stink bug" odor. The volatile profiles of Athyrium filix-femina (L.) Roth (Woodsiaceae) and Blechnum spicant (L.) Roth (Blechnaceae) showed similarities, with small amounts of isoprenoids and the same main volatile compounds, i.e., 2-phenylethanal (odor of lilac and hyacinth) and 1-octen-3-ol (mushroom-like odor). The main volatile compound of Dryopteris filix-mas (L.) Schott (Dryopteridaceae) was (E)-nerolidol with a woody or fresh bark note. Polyketides, as acylfilicinic acids, were mainly identified in this fern. Oreopteris limbosperma (Bellardi ex. All.) J. Holub (Thelypteridaceae), well-known for its lemon smell, contained the highest biodiversity of VOC. Eighty percent of the volatiles was issued from the terpenic pathway. The main volatiles were (E)-nerolidol, alpha-terpineol, beta-caryophyllene and other minor monoterpenes (for example, linalool, pinenes, limonene, and gamma-terpinen-7-al). It was also the fern with the highest number of carotenoid-type derivatives, which were identified in large amounts. Our results were of great interest underlying new industrial valorisation for ferns based on their broad spectrum of volatiles. PMID:21121267

  5. A Review of the Tissue Residue Approach for Organic and Organometallic Compounds in Aquatic Organisms

    EPA Science Inventory

    This paper reviews the tissue residue approach (TRA) for toxicity assessment as it applies to organic chemicals and some organometallic compounds (tin, mercury, and lead). Specific emphasis was placed on evaluating key factors that influence interpretation of critical body resid...

  6. New graphene fiber coating for volatile organic compounds analysis.

    PubMed

    Zhang, GuoJuan; Guo, XiaoXi; Wang, ShuLing; Wang, XueLan; Zhou, YanPing; Xu, Hui

    2014-10-15

    In the work, a novel graphene-based solid phase microextraction-gas chromatography/mass spectrometry method was developed for the analysis of trace amount of volatile organic compounds in human exhaled breath vapor. The graphene fiber coating was prepared by a one-step hydrothermal reduction reaction. The fiber with porous and wrinkled structure exhibited excellent extraction efficiency toward eight studied volatile organic compounds (two n-alkanes, five n-aldehydes and one aromatic compound). Meanwhile, remarkable thermal and mechanical stability, long lifespan and low cost were also obtained for the fiber. Under the optimal conditions, the developed method provided low limits of detection (1.0-4.5ngL(-1)), satisfactory reproducibility (3.8-13.8%) and acceptable recoveries (93-122%). The method was applied successfully to the analysis of breath samples of lung cancer patients and healthy individuals. The unique advantage of this approach includes simple setup, non-invasive analysis, cost-efficient and sufficient sensitivity. The proposed method supply us a new possibility to monitor volatile organic compounds in human exhaled breath samples. PMID:25171504

  7. Detection of volatile organic compounds using porphyrin derivatives.

    PubMed

    Dunbar, A D F; Brittle, S; Richardson, T H; Hutchinson, J; Hunter, C A

    2010-09-16

    Seven different porphyrin compounds have been investigated as colorimetric gas sensors for a wide range of volatile organic compounds. The porphyrins examined were the free base and Mg, Sn, Zn, Au, Co, and Mn derivatives of 5,10,15,20-tetrakis[3,4-bis(2-ethylhexyloxy)phenyl]-21H,23H-porphine. Chloroform solutions of these materials were prepared and changes in their absorption spectra induced by exposure to various organic compounds measured. The porphyrins that showed strong responses in solution were selected, and Langmuir-Blodgett films were prepared and exposed to the corresponding analytes. This was done to determine whether they are useful materials for solid state thin film colorimetric vapor sensors. Porphyrins that readily coordinate extra ligands are shown to be suitable materials for colorimetric volatile organic compound detectors. However, porphyrins that already have bound axial ligands when synthesized only show a sensor response to those analytes that can substitute these axial ligands. The Co porphyrin displays a considerably larger response than the other porphyrins investigated which is attributed to a switch between Co(II) and Co(III) resulting in a large spectral change. PMID:20735119

  8. DISTRIBUTION OF HYDROPHOBIC IONOGENIC ORGANIC COMPOUNDS BETWEEN OCTANOL AND WATER: ORGANIC ACIDS

    EPA Science Inventory

    The octanol-water distributions of 10 environmentally significant organic acid compounds were determined as a function of aqueous-phase salt concentration (0.05-0.2 M LiCl, NaCl, KCl, CaCl2, or MgCl2) and pH. he compounds were pentachlorophenol 2,3,4,5-tetrachlorophenol, (2,4,5-t...

  9. Catalytic hydrodesulfurization of an organic sulfur compound contained in gasoline

    SciTech Connect

    Johnson, M.M.; Nowack, G.P.

    1982-02-09

    The catalytic hydrodesulfurization of an organic sulfur compound contained in gasoline is carried out in the presence of a catalyst composition comprising catalytic grade alumina and a catalytic component at least one member of which is selected from the group consisting of molybdenum and tungsten. A catalytic promoter may also be present in the catalyst composition with at least one member of the catalytic promoter being selected from the group consisting of iron, cobalt and nickel. A suitable nitrogen compound is also contacted with the catalyst composition to at least partially suppress the saturation of olefins in the gasoline during the hydrodesulfurization process.

  10. Concentration stability of four volatile organic compounds in soil subsamples

    SciTech Connect

    Hewitt, A.D.

    1994-04-01

    This study assesses the short-term (14- to 20-day) concentration stability of benzene, toluene, trans-1,2-dichloroethylene and trichloroethylene in soil matrices, in the absence of volatilization losses. Previously, holding time studies failed to eliminate volatilization as a variable, making them difficult to interpret. Here, vapor-fortified soil subsamples, sealed in glass ampoules for 16 days, experienced appreciable reductions in benzene, presumably attributable only to biodegradation. Treated soil subsamples, on the other hand, prepared without vapor losses for either aqueous extraction headspace or purge-and-trap analyses, showed appreciable reductions in toluene and lost all the benzene over a 14-day holding period at 4 deg C. These findings suggest that chemical preservatives are necessary to maintain volatile organic compound concentrations in soil when more than a couple of days pass between collection and analysis. Biodegradation, Soil samples, Holding time, Volatile-organic compounds.

  11. Structure and function of vanadium compounds in living organisms

    Microsoft Academic Search

    Dieter Rehder

    1992-01-01

    Vanadium has been recognized as a metal of biological importance only recently. In this mini-review, its main functions uncovered during the past few years are addressed. These encompass (i) the regulation of phosphate metabolizing enzymes (which is exemplified for the inhibition of ribonucleases by vanadate), (ii) the halogenation of organic compounds by vanadate-dependent non-heme peroxidases from seaweeds, (iii) the reductive

  12. Microbial Volatile Organic Compound Emission Rates and Exposure Model

    Microsoft Academic Search

    M. Y. Menetrez; K. K. Foarde

    2002-01-01

    This paper presents the results from a study that examined microbial volatile organic compound (MVOC) emissions from six fungi and one bacterial species (Streptomyces spp.) commonly found in indoor environments. Data are presented on peak emission rates from inoculated agar plates loaded with surface growth, ranging from 33.5 ?g·m–2 per 24 h (Cladosporium sphaerospermum) to 515 ?g·m–2 per 24 h

  13. Degradation of volatile organic compounds with thermally activated persulfate oxidation

    Microsoft Academic Search

    Kun-Chang Huang; Zhiqiang Zhao; George E. Hoag; Amine Dahmani; Philip A. Block

    2005-01-01

    This study investigated the extent and treatability of the degradation of 59 volatile organic compounds (VOCs) listed in the EPA SW-846 Method 8260B with thermally activated persulfate oxidation. Data on the degradation of the 59 VOCs (in mixture) reacted with sodium persulfate in concentrations of 1gl?1 and 5gl?1 and at temperatures of 20°C, 30°C, and 40°C were obtained. The results

  14. Trees and VOCs: Measuring volatile organic compounds from urban forests

    NSDL National Science Digital Library

    Institute of Arctic and Alpine Research (INSTAAR) at the University of Colorado-Boulder

    This web site describes a research project to measure volatile organic compounds emitted from species of trees and shrubs found in urban areas. Topics include a description of the project and a section on trees and air quality. A page updated each month or so reports field and lab work on the project. There is also a glossary, profiles of community partners, and profiles of the scientists and students involved in the project.

  15. Gas–particle partitioning of organic compounds in the atmosphere

    Microsoft Academic Search

    Mihalis Lazaridis

    1999-01-01

    Gas–particle partitioning of condensable organic compounds in the atmosphere is described using two methods. The first method is based on the use of a comprehensive mechanistic model of adsorption\\/absorption processes. The second method is based on aerosol yields estimates. The model parameters in the adsorption\\/absorption model are evaluated from experimental data. The concepts of concentration of adsorbed molecules on the

  16. Soil-water partition coefficients for organic compounds

    Microsoft Academic Search

    Bockting GJM; Plassche EJ van de; Struijs J; Canton JH

    2007-01-01

    In the frame of the project 'Setting environmental quality objectives',\\u000aorganic carbon normalized partition coefficients (KocS) describing the\\u000apartitioning of organic chemicals in soils and sediments were derived\\u000afor, among others, halogenated biphenyls and benzyltoluenes, chlorinated\\u000aanilines and nitrobenzenes, various pesticides, phthalate esters and\\u000aorganotin compounds. For that purpose a literature review with respect\\u000ato adsorption experiments with soils and

  17. Identification and quantification of volatile organic compounds from a dairy

    NASA Astrophysics Data System (ADS)

    Filipy, Jenny; Rumburg, Brian; Mount, George; Westberg, Hal; Lamb, Brian

    Volatile organic compounds (VOCs) that contribute to odor and air quality problems have been identified from the Washington State University Knott Dairy Farm using gas chromatography-mass spectroscopy (GC-MS). Eighty-two VOCs were identified at a lactating cow open stall and 73 were detected from a slurry wastewater lagoon. These compounds included alcohols, aldehydes, ketones, esters, ethers, aromatic hydrocarbons, halogenated hydrocarbons, terpenes, other hydrocarbons, amines, other nitrogen containing compounds, and sulfur-containing compounds. The concentration of VOCs directly associated with cattle waste increased with ambient air temperature, with the highest concentrations present during the summer months. Concentrations of most detected compounds were below published odor detection thresholds. Emission rates of ethanol (1026±513 ?g cow -1 s -1) and dimethyl sulfide (DMS) (13.8±10.3 ?g cow -1 s -1) were measured from the lactating stall area using an atmospheric tracer method and concentrations were plotted using data over a 2-year period. Emission rates of acetone (3.03±0.85 ng cow -1 s -1), 2-butanone (145±35 ng cow -1 s -1), methyl isobutyl ketone (3.46±1.11 ng cow -1 s -1), 2-methyl-3-pentanone (25.1±8.0 ng cow -1 s -1), DMS (2.19±0.92 ng cow -1 s -1), and dimethyl disulfide (DMDS) (16.1±3.9 ng cow -1 s -1) were measured from the slurry waste lagoon using a laboratory emission chamber.

  18. Simultaneous sorption of organic compounds and phosphate to inorganic–organic bentonites from water

    Microsoft Academic Search

    Lizhong Zhu; Runliang Zhu

    2007-01-01

    Simultaneous sorption of organic compounds and phosphate from water by inorganic–organic bentonites (IOBs) was investigated, which would contribute to the treatment of contaminated water containing both of these contaminants. A series of IOBs were synthesized by intercalating bentonite with both cetyltrimethyl ammonium bromide (CTMAB) and hydroxy-aluminum at their various ratios, and the obtained materials had large basal spacing, low surface

  19. Natural and contaminant organic compounds 103 Chapter 5 Natural and Contaminant Organic Compounds in the

    E-print Network

    increased from the upper to the lower watershed with the greatest increase in chemical loading occurring downstream of the Boulder 75th Street Wastewater Treatment Plant. INTRODUCTION The presence of organic, and microorganisms) and anthropogenic (wastewater and industrial discharges, agricultural and urban runoff) factors

  20. Biodegradation of volatile organic compounds by five fungal species.

    PubMed

    Qi, B; Moe, W M; Kinney, K A

    2002-04-01

    Five fungal species, Cladosporium resinae (ATCC 34066), Cladosporium sphaerospermum (ATCC 200384), Exophiala lecanii-corni (CBS 102400), Mucor rouxii (ATCC 44260), and Phanerochaete chrysosporium (ATCC 24725), were tested for their ability to degrade nine compounds commonly found in industrial off-gas emissions. Fungal cultures inoculated on ceramic support media were provided with volatile organic compounds (VOCs) via the vapor phase as their sole carbon and energy sources. Compounds tested included aromatic hydrocarbons (benzene, ethylbenzene, toluene, and styrene), ketones (methyl ethyl ketone, methyl isobutyl ketone, and methyl propyl ketone), and organic acids ( n-butyl acetate, ethyl 3-ethoxypropionate). Experiments were conducted using three pH values ranging from 3.5 to 6.5. Fungal ability to degrade each VOC was determined by observing the presence or absence of visible growth on the ceramic support medium during a 30-day test period. Results indicate that E. lecanii-corni and C. sphaerospermum can readily utilize each of the nine VOCs as a sole carbon and energy source. P. chrysosporium was able to degrade all VOCs tested except for styrene under the conditions imposed. C. resinae was able to degrade both organic acids, all of the ketones, and some of the aromatic compounds (ethylbenzene and toluene); however, it was not able to grow utilizing benzene or styrene under the conditions tested. With the VOCs tested, M. rouxiiproduced visible growth only when supplied with n-butyl acetate or ethyl 3-ethoxypropionate. Maximum growth for most fungi was observed at a pH of approximately 5.0. The experimental protocol utilized in these studies is a useful tool for assessing the ability of different fungal species to degrade gas-phase VOCs under conditions expected in a biofilter application. PMID:11956756

  1. Simulation of Comet Impact and Survivability of Organic Compounds

    SciTech Connect

    Liu, B T; Lomov, I N; Blank, J G; Antoun, T H

    2007-07-18

    Comets have long been proposed as a potential means for the transport of complex organic compounds to early Earth. For this to be a viable mechanism, a significant fraction of organic compounds must survive the high temperatures due to impact. We have undertaken three-dimensional numerical simulations to track the thermodynamic state of a comet during oblique impacts. The comet was modeled as a 1-km water-ice sphere impacting a basalt plane at 11.2 km/s; impact angles of 15{sup o} (from horizontal), 30{sup o}, 45{sup o}, 65{sup o}, and 90{sup o} (normal impact) were examined. The survival of organic cometary material, modeled as water ice for simplicity, was calculated using three criteria: (1) peak temperatures, (2) the thermodynamic phase of H{sub 2}O, and (3) final temperature upon isentropic unloading. For impact angles greater than or equal to 30{sup o}, no organic material is expected to survive the impact. For the 15{sup o} impact, most of the material survives the initial impact and significant fractions (55%, 25%, and 44%, respectively) satisfy each survival criterion at 1 second. Heating due to deceleration, in addition to shock heating, plays a role in the heating of the cometary material for nonnormal impacts. This effect is more noticeable for more oblique impacts, resulting in significant deviations from estimates using scaling of normal impacts. The deceleration heating of the material at late times requires further modeling of breakup and mixing.

  2. Global simulation of aromatic volatile organic compounds in the atmosphere

    NASA Astrophysics Data System (ADS)

    Cabrera Perez, David; Taraborrelli, Domenico; Pozzer, Andrea

    2015-04-01

    Among the large number of chemical compounds in the atmosphere, the organic group plays a key role in the tropospheric chemistry. Specifically the subgroup called aromatics is of great interest. Aromatics are the predominant trace gases in urban areas due to high emissions, primarily by vehicle exhausts and fuel evaporation. They are also present in areas where biofuel is used (i.e residential wood burning). Emissions of aromatic compounds are a substantial fraction of the total emissions of the volatile organic compounds (VOC). Impact of aromatics on human health is very important, as they do not only contribute to the ozone formation in the urban environment, but they are also highly toxic themselves, especially in the case of benzene which is able to trigger a range of illness under long exposure, and of nitro-phenols which cause detrimental for humans and vegetation even at very low concentrations. The aim of this work is to assess the atmospheric impacts of aromatic compounds on the global scale. The main goals are: lifetime and budget estimation, mixing ratios distribution, net effect on ozone production and OH loss for the most emitted aromatic compounds (benzene, toluene, xylenes, ethylbenzene, styrene and trimethylbenzenes). For this purpose, we use the numerical chemistry and climate simulation ECHAM/MESSy Atmospheric Chemistry (EMAC) model to build the global atmospheric budget for the most emitted and predominant aromatic compounds in the atmosphere. A set of emissions was prepared in order to include biomass burning, vegetation and anthropogenic sources of aromatics into the model. A chemical mechanism based on the Master Chemical Mechanism (MCM) was developed to describe the chemical oxidation in the gas phase of these aromatic compounds. MCM have been reduced in terms of number of chemical equation and species in order to make it affordable in a 3D model. Additionally other features have been added, for instance the production of HONO via ortho-nitrophenols photolysis. The model results are compared with observations from different surface and aircraft campaigns in order to estimate the accuracy of the model.

  3. Analyses of volatile organic compounds from human skin

    PubMed Central

    Gallagher, M.; Wysocki, C.J.; Leyden, J.J.; Spielman, A.I.; Sun, X.; Preti, G.

    2008-01-01

    Summary Background Human skin emits a variety of volatile metabolites, many of them odorous. Much previous work has focused upon chemical structure and biogenesis of metabolites produced in the axillae (underarms), which are a primary source of human body odour. Nonaxillary skin also harbours volatile metabolites, possibly with different biological origins than axillary odorants. Objectives To take inventory of the volatile organic compounds (VOCs) from the upper back and forearm skin, and assess their relative quantitative variation across 25 healthy subjects. Methods Two complementary sampling techniques were used to obtain comprehensive VOC profiles, viz., solid-phase micro extraction and solvent extraction. Analyses were performed using both gas chromatography/mass spectrometry and gas chromatography with flame photometric detection. Results Nearly 100 compounds were identified, some of which varied with age. The VOC profiles of the upper back and forearm within a subject were, for the most part, similar, although there were notable differences. Conclusions The natural variation in nonaxillary skin odorants described in this study provides a baseline of compounds we have identified from both endogenous and exogenous sources. Although complex, the profiles of volatile constituents suggest that the two body locations share a considerable number of compounds, but both quantitative and qualitative differences are present. In addition, quantitative changes due to ageing are also present. These data may provide future investigators of skin VOCs with a baseline against which any abnormalities can be viewed in searching for biomarkers of skin diseases. PMID:18637798

  4. Microbial degradation of water-insoluble organic compounds

    SciTech Connect

    Thomas, J.M.

    1985-01-01

    The effect of solubilization on biodegradation of water-insoluble organic compounds was investigated. The effect of particle size on solubilization and degradation of 4-chlorobiphenyl (4-CB) and naphthalene by a microbial mixture was determined. The concentration of soluble compound was determined using gas-liquid chromatography. The rates of solubilization were inversely related to particle size for both compounds. The rates of mineralization of /sup 14/C-labeled palmitic acid, octadecane, di(2-ethylhexyl)phthalate (DEHP), and Sevin (1-naphthyl N-methylcarbamate) by microbial mixtures were determined by trapping the /sup 14/CO/sub 2/ formed, and those rates were compared to solubilization rates determined by periodically filtering sterile MS amended with one of the compounds. Mineralization and colonization of the surface of 10 ..mu..g palmitic acid per 10 ml MS by Pseudomonas pseudoflava was determined by trapping /sup 14/CO/sub 2/ and epifluorescence microscopy. Mineralization began before colonization and was initially exponential, but the rate then declined. The rate of mineralization at the end of the exponential phase approximated the rate of solubilization. The surface was completely covered about the time mineralization stopped. Unbound cells grew exponentially before colonization was detected; however, colonization of the surface was complete after the number of free cells stopped increasing. The data suggest that soluble palmitic acid is utilized before the insoluble phase but colonization is important in the mineralization of palmitic acid when solubilization becomes rate limiting.

  5. Measurement of volatile organic compounds in human blood.

    PubMed Central

    Ashley, D L; Bonin, M A; Cardinali, F L; McCraw, J M; Wooten, J V

    1996-01-01

    Volatile organic compounds (VOCs) are an important public health problem throughout the developed world. Many important questions remain to be addressed in assessing exposure to these compounds. Because they are ubiquitous and highly volatile, special techniques must be applied in the analytical determination of VOCs. The analytical methodology chosen to measure toxicants in biological materials must be well validated and carefully carried out; poor quality assurance can lead to invalid results that can have a direct bearing on treating exposed persons. The pharmacokinetics of VOCs show that most of the internal dose of these compounds is quickly eliminated, but there is a fraction that is only slowly removed, and these compounds may bioaccumulate. VOCs are found in the general population at the high parts-per-trillion range, but some people with much higher levels have apparently been exposed to VOC sources away from the workplace. Smoking is the most significant confounder to internal dose levels of VOCs and must be considered when evaluating suspected cases of exposure. PMID:8933028

  6. Volatile organic compounds from a Tuber melanosporum fermentation system.

    PubMed

    Li, Yuan-Yuan; Wang, Guan; Li, Hong-Mei; Zhong, Jian-Jiang; Tang, Ya-Jie

    2012-12-15

    A total of 59 volatile organic compounds (VOCs) were identified from Tuber melanosporum fermentation: 53 from its fermented mycelia and 32 from the fermentation broth. Alcohol-derived compounds were predominant in both the fermentation mycelia and the broth, although long chain fatty acids and isoprenoids were, for the first time, also found in the mycelia. The intense wine bouquet properties of the broth arose from several specific flavor substances, including sulfur compounds, pyrazines, furans and jasmones. Comparing the VOCs identified in this work with those previously reported, our results are more similar to the composition of the Tuber fruiting-body than previous Tuber fermentations. The composition and accumulation of flavor volatiles (e.g., pyrazines, sulfur compounds, and esters) and major constituents (e.g., 3-methyl-1-butanol and 2-phenylethanol) in this fermentation were significantly influenced by the sucrose concentration in the medium. The obtained information could therefore be useful in applications to convert the flavors of truffle mycelia similar to those of the fruiting-body by optimising the fermentation process. PMID:22980851

  7. Spatial Arrangment of Organic Compounds on a Model Mineral Surface: Implications for Soil Organic Matter Stabilization

    SciTech Connect

    Petridis, Loukas [ORNL; Ambaye, Haile Arena [ORNL; Jagadamma, Sindhu [ORNL; Kilbey, S. Michael [University of Tennessee, Knoxville (UTK); Lokitz, Bradley S [ORNL; Lauter, Valeria [ORNL; Mayes, Melanie [ORNL

    2014-01-01

    The complexity of the mineral organic carbon interface may influence the extent of stabilization of organic carbon compounds in soils, which is important for global climate futures. The nanoscale structure of a model interface was examined here by depositing films of organic carbon compounds of contrasting chemical character, hydrophilic glucose and amphiphilic stearic acid, onto a soil mineral analogue (Al2O3). Neutron reflectometry, a technique which provides depth-sensitive insight into the organization of the thin films, indicates that glucose molecules reside in a layer between Al2O3 and stearic acid, a result that was verified by water contact angle measurements. Molecular dynamics simulations reveal the thermodynamic driving force behind glucose partitioning on the mineral interface: The entropic penalty of confining the less mobile glucose on the mineral surface is lower than for stearic acid. The fundamental information obtained here helps rationalize how complex arrangements of organic carbon on soil mineral surfaces may arise

  8. Antioxidant properties of organic sulfur compounds and criteria for evaluating these properties

    Microsoft Academic Search

    I. A. Rubinshtein; E. P. Sobolev

    1965-01-01

    1.The antioxidant properties of organic sulfur compounds are well characterized by the proposed criteria for inhibitor evaluation. These criteria reflect the features of chemical structure of the organic sulfur compounds.2.All of the organic sulfur compounds that were investigated do possess antioxidant properties.3.The antioxidant properties of organic sulfur compounds depend mainly on the nature of the bonds of the sulfur atoms;

  9. Racemization and the origin of optically active organic compounds in living organisms

    NASA Technical Reports Server (NTRS)

    Bada, J. L.; Miller, S. L.

    1987-01-01

    The organic compounds synthesized in prebiotic experiments are racemic mixtures. A number of proposals have been offered to explain how asymmetric organic compounds formed on the Earth before life arose, with the influence of chiral weak nuclear interactions being the most frequent proposal. This and other proposed asymmetric syntheses give only sight enantiomeric excess and any slight excess will be degraded by racemization. This applies particularly to amino acids where half-lives of 10(5)-10(6) years are to be expected at temperatures characteristic of the Earth's surface. Since the generation of chiral molecules could not have been a significant process under geological conditions, the origins of this asymmetry must have occurred at the time of the origin of life or shortly thereafter. It is possible that the compounds in the first living organisms were prochiral rather than chiral; this is unlikely for amino acids, but it is possible for the monomers of RNA-like molecules.

  10. Fate of Volatile Organic Compounds in Constructed Wastewater Treatment Wetlands

    USGS Publications Warehouse

    Keefe, S.H.; Barber, L.B.; Runkel, R.L.; Ryan, J.N.

    2004-01-01

    The fate of volatile organic compounds was evaluated in a wastewater-dependent constructed wetland near Phoenix, AZ, using field measurements and solute transport modeling. Numerically based volatilization rates were determined using inverse modeling techniques and hydraulic parameters established by sodium bromide tracer experiments. Theoretical volatilization rates were calculated from the two-film method incorporating physicochemical properties and environmental conditions. Additional analyses were conducted using graphically determined volatilization rates based on field measurements. Transport (with first-order removal) simulations were performed using a range of volatilization rates and were evaluated with respect to field concentrations. The inverse and two-film reactive transport simulations demonstrated excellent agreement with measured concentrations for 1,4-dichlorobenzene, tetrachloroethene, dichloromethane, and trichloromethane and fair agreement for dibromochloromethane, bromo-dichloromethane, and toluene. Wetland removal efficiencies from inlet to outlet ranged from 63% to 87% for target compounds.

  11. Volatile organic compound (VOC) control in ethylene plants

    SciTech Connect

    Grover, R.; Gomaa, H.M. [M.W. Kellogg Co., Houston, TX (United States)

    1994-12-31

    Volatile Organic Compounds (VOC) are compounds of carbon that combine with nitrogen oxides and other airborne chemicals, in the presence of sunlight (photochemically), to form ozone, which is a primary component of smog. Some common VOC include: benzene, toluene, xylene, naphtha, ethylene oxide, methyl ethyl ketone, acetone, and 1,3-Butadiene. Pollution of the atmosphere by VOC has been a subject of major concern. Therefore, VOC emissions are attracting increasing concern from public and government agencies. Ethylene plants have many multiple sources of VOC emissions. These sources can be divided into point emission sources, both continuous and intermittent, and fugitive emission sources. This paper discusses VOC emissions and controls for ethylene plants. The impact of environmental regulations are discussed with respect to new and existing ethylene plants. Typical VOC emission rates are quantified. Commercially available and emerging control technologies are reviewed.

  12. Methods for characterization of organic compounds in atmospheric aerosol particles.

    PubMed

    Parshintsev, Jevgeni; Hyötyläinen, Tuulia

    2015-08-01

    Atmospheric aerosol particles of primary or secondary, biogenic or anthropogenic origin are highly complex samples of changing composition in time and space. To assess their effects on climate or human health, the size-dependent chemical composition of these ubiquitous atmospheric constituents must be known. The development of novel analytical methods has enabled more detailed characterization of the organic composition of aerosols. This review gives an overview of the methods used in the chemical characterization of atmospheric aerosol particles, with a focus on mass-spectrometry techniques for organic compounds, either alone or in combination with chromatographic separation. Off-line, on-site, and on-line methods are covered, and the advantages and limitations of the different methods are discussed. The main emphasis is on methods used for detailed characterization of the composition of the organic compounds in aerosol particles. We address and summarize the current state of analytical methods used in aerosol research and discuss the importance of developing novel sampling strategies and analytical instrumentation. Graphical Abstract Challenges in the atmospheric aerosol analytics. PMID:25542579

  13. Heterogeneous reactions of volatile organic compounds in the atmosphere

    NASA Astrophysics Data System (ADS)

    Shen, Xiaoli; Zhao, Yue; Chen, Zhongming; Huang, Dao

    2013-04-01

    Volatile organic compounds (VOCs) are of central importance in the atmosphere because of their close relation to air quality and climate change. As a significant sink for VOCs, the fate of VOCs via heterogeneous reactions may explain the big gap between field and model studies. These reactions play as yet unclear but potentially crucial role in atmospheric processes. In order to better evaluate this reaction pathway, we present the first specific review for the progress of heterogeneous reaction studies on VOCs, including carbonyl compounds, organic acids, alcohols, and so on. Our review focuses on the processes for heterogeneous reactions of VOCs under varying experimental conditions, as well as their implications for trace gas and HOx budget, secondary organic aerosol (SOA) formation, physicochemical properties of aerosols, and human health. Finally, we propose the future direction for laboratory studies of heterogeneous chemistry of VOCs that should be carried out under more atmospherically relevant conditions, with a special emphasis on the effects of relative humidity and illumination, the multicomponent reaction systems, and reactivity of aged and authentic particles. In particular, more reliable uptake coefficients, based on the abundant elaborate laboratory studies, appropriate calibration, and logical choice criterion, are urgently required in atmospheric models.

  14. Source apportionment of airborne particulate matter using organic compounds as tracers

    Microsoft Academic Search

    Bernd R. T. Simoneit; WOLFGANG F. ROGGE; LYNN M. HILDEMANN; MONICA A. MAZUREK; GLEN R. CASS

    1996-01-01

    A chemical mass balance receptor model based on organic compounds has been developed that relates sours; contributions to airborne fine particle mass concentrations. Source contributions to the concentrations of specific organic compounds are revealed as well. The model is applied to four air quality monitoring sites in southern California using atmospheric organic compound concentration data and source test data collected

  15. Source apportionment of airborne particulate matter using organic compounds as tracers

    Microsoft Academic Search

    James J. Schauer; Wolfgang F. Rogge; Lynn M. Hildemann; Monica A. Mazurek; Glen R. Cass; Bernd R. T. Simoneit

    2007-01-01

    A chemical mass balance receptor model based on organic compounds has been developed that relates source contributions to airborne fine particle mass concentrations. Source contributions to the concentrations of specific organic compounds are revealed as well. The model is applied to four air quality monitoring sites in southern California using atmospheric organic compound concentration data and source test data collected

  16. Volatile organic compounds in the unsaturated zone from radioactive wastes

    USGS Publications Warehouse

    Baker, Ronald J.; Andraski, Brian J.; Stonestrom, David A.; Luo, Wentai

    2012-01-01

    Volatile organic compounds (VOCs) are often comingled with low-level radioactive wastes (LLRW), but little is known about subsurface VOC emanations from LLRW landfills. The current study systematically quantified VOCs associated with LLRW over an 11-yr period at the USGS Amargosa Desert Research Site (ADRS) in southwestern Nevada. Unsaturated-zone gas samples of VOCs were collected by adsorption on resin cartridges and analyzed by thermal desorption and GC/MS. Sixty of 87 VOC method analytes were detected in the 110-m-thick unsaturated zone surrounding a LLRW disposal facility. Chlorofluorocarbons (CFCs) were detected in 100% of samples collected. Chlorofluorocarbons are powerful greenhouse gases, deplete stratospheric ozone, and are likely released from LLRW facilities worldwide. Soil-gas samples collected from a depth of 24 m and a horizontal distance 100 m south of the nearest waste-disposal trench contained >60,000 ppbv total VOCs, including >37,000 ppbv CFCs. Extensive sampling in the shallow unsaturated zone (0–2 m deep) identified areas where total VOC concentrations exceeded 5000 ppbv at the 1.5-m depth. Volatile organic compound concentrations exceeded background levels up to 300 m from the facility. Maximum vertical diffusive fluxes of total VOCs were estimated to be 1 g m-2 yr-1. Volatile organic compound distributions were similar but not identical to those previously determined for tritium and elemental mercury. To our knowledge, this study is the first to characterize the unsaturated zone distribution of VOCs emanating from a LLRW landfill. Our results may help explain anomalous transport of radionuclides at the ADRS and elsewhere.

  17. Volatile organic compounds in storm water from a parking lot

    USGS Publications Warehouse

    Lopes, T.J.; Fallon, J.D.; Rutherford, D.W.; Hiatt, M.H.

    2000-01-01

    A mass balance approach was used to determine the most important nonpoint source of volatile organic compounds (VOCs) in storm water from an asphalt parking lot without obvious point sources (e.g., gasoline stations). The parking lot surface and atmosphere are important nonpoint sources of VOCs, with each being important for different VOCs. The atmosphere is an important source of soluble, oxygenated VOCs (e.g., acetone), and the parking lot surface is an important source for the more hydrophobic VOCs (e.g., benzene). VOCs on the parking lot surface appear to be concentrated in oil and grease and organic material in urban particles (e.g., vehicle soot). Except in the case of spills, asphalt does not appear to be an important source of VOCs. The uptake isotherm of gaseous methyl tert-butyl ether on urban particles indicates a mechanism for dry deposition of VOCs from the atmosphere. This study demonstrated that a mass balance approach is a useful means of understanding non-point-source pollution, even for compounds such as VOCs, which are difficult to sample.A mass balance approach was used to determine the most important nonpoint source of volatile organic compounds (VOCs) in storm water from an asphalt parking lot without obvious point sources (e.g., gasoline stations). The parking lot surface and atmosphere are important nonpoint sources of VOCs, with each being important for different VOCs. The atmosphere is an important source of soluble, oxygenated VOCs (e.g., acetone), and the parking lot surface is an important source for the more hydrophobic VOCs (e.g., benzene). VOCs on the parking lot surface appear to be concentrated in oil and grease and organic material in urban particles (e.g., vehicle soot). Except in the case of spills, asphalt does not appear to be an important source of VOCs. The uptake isotherm of gaseous methyl tert-butyl ether on urban particles indicates a mechanism for dry deposition of VOCs from the atmosphere. This study demonstrated that a mass balance approach is a useful means of understanding non-point-source pollution, even for compounds such as VOCs, which are difficult to sample.

  18. Evanescent wave sensor for detecting volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Goswami, Kisholoy; Prohaska, John D.; Menon, Anil; Mendoza, Edgar A.; Lieberman, Robert A.

    1999-02-01

    This work evaluates the usefulness of an intracore long period grating (LPG) structure on optical fiber for constructing a fiber-optic chemical sensor. The sensor response relies on the evanescent field interaction of core- guided light with volatile organic compounds (VOCs) surrounding the long period gratings. The LPGs were coated with proprietary chemical indicators having strong affinities for VOCs. The feasibility of this approach was tested by using representative hydrocarbons and halohydrocarbons in parts per thousand to parts per million concentrations. Test results demonstrate that LPGs offer the promise for sensitively detecting VOCs in air, water, and soil matrices.

  19. The synthesis of organic and inorganic compounds in evolved stars.

    PubMed

    Kwok, Sun

    2004-08-26

    Recent isotopic analysis of meteorites and interplanetary dust has identified solid-state materials of pre-solar origin. We can now trace the origin of these inorganic grains to the circumstellar envelopes of evolved stars. Moreover, organic (aromatic and aliphatic) compounds have been detected in proto-planetary nebulae and planetary nebulae, which are the descendants of carbon stars. This implies that molecular synthesis is actively happening in the circumstellar environment on timescales as short as several hundred years. The detection of stellar grains in the Solar System suggests that they can survive their journey through the interstellar medium and that they are a major contributor of interstellar grains. PMID:15329712

  20. Process for removing an organic compound from water

    DOEpatents

    Baker, Richard W. (Palo Alto, CA); Kaschemekat, Jurgen (Palo Alto, CA); Wijmans, Johannes G. (Menlo Park, CA); Kamaruddin, Henky D. (San Francisco, CA)

    1993-12-28

    A process for removing organic compounds from water is disclosed. The process involves gas stripping followed by membrane separation treatment of the stripping gas. The stripping step can be carried out using one or multiple gas strippers and using air or any other gas as stripping gas. The membrane separation step can be carried out using a single-stage membrane unit or a multistage unit. Apparatus for carrying out the process is also disclosed. The process is particularly suited for treatment of contaminated groundwater or industrial wastewater.

  1. Cyclodextrin-based microsensors for volatile organic compounds

    SciTech Connect

    Swanson, B.; Johnson, S.; Shi, J.; Yang, Xiaoguang

    1997-10-01

    Host-guest chemistry and self-assembly techniques are being explored to develop species selective thin-films for real-time sensing of volatile organic compounds (VOCs). Cyclodextrin (CD) and calixarene (CA) molecules are known to form guest-host inclusion complexes with a variety of organic molecules. Through the control of the cavity size and chemical functionality on the rims of these bucket-like molecules, the binding affinities for formation of inclusion complexes can be controlled and optimized for specific agents. Self-assembly techniques are used to covalently bond these reagent molecules to the surface of acoustic transducers to create dense, highly oriented, and stable thin films. Self-assembly techniques have also been used to fabricate multilayer thin film containing molecular recognition reagents through alternating adsorption of charged species in aqueous solutions. Self-assembly of polymeric molecules of the SAW device was also explored for fabricating species selective interfaces.

  2. Volatile organic compounds in selected micro-environments.

    PubMed

    Hinwood, A L; Berko, H N; Farrar, D; Galbally, I E; Weeks, I A

    2006-04-01

    A program of sampling for volatile organic compounds (VOCs) in ambient air was undertaken in selected locations and micro-environments in Perth, Western Australia to characterise concentrations of target VOCs and to determine the relative strength of the contributing sources to ambient air in different micro-environments in a major Australian city. Twenty-seven locations were sampled and, of the forty-one target compounds, 26 VOCs were detected in the samples collected. The highest concentrations were recorded for benzene, toluene, ethylbenzene, xylenes (BTEX), chloroform and styrene. The maximum 12-h toluene and benzene concentrations observed were from a basement carpark and were 24.7 parts per billion (ppb) and 5.6 ppb, respectively. The maximum xylenes concentration was 29.4 ppb and occurred in a nightclub where styrene was also detected. A factor analysis of the data was undertaken. Two key factors emerge that appear to be associated with petroleum and motor vehicles and environmental tobacco smoke. A third significant occurrence was a high concentration of chloroform that was observed at a sports centre complex with a swimming pool text and was uncorrelated with other compounds in the data set. This study indicates that locations associated with motor vehicles and petrol fuel, tobacco and wood smoke and chlorinated water represent the major risks for personal exposure to VOCs in Perth. PMID:16289288

  3. Modeling Emissions of Volatile Organic Compounds from New Carpets

    SciTech Connect

    Little, J.C.; Hodgson, A.T.; Gadgil, A.J.

    1993-02-01

    A simple model is proposed to account for observed emissions of volatile organic compounds (VOCs) from new carpets. The model assumes that the VOCs originate predominantly in a uniform slab of polymer backing material. Parameters for the model (the initial concentration of a VOC in the polymer, a diffusion coefficient and an equilibrium polymer/air partition coefficient) are obtained from experimental data produced by a previous chamber study. The diffusion coefficients generally decrease as the molecular weight of the VOCs increase, while the polymer/air partition coefficients generally increase as the vapor pressure of the compounds decrease. In addition, for two of the study carpets that have a styrene-butadiene rubber (SBR) backing, the diffusion and partition coefficients are similar to independently reported values for SBR. The results suggest that predictions of VOCs emissions from new carpets may be possible based solely on a knowledge of the physical properties of the relevant compounds and the carpet backing material. However, a more rigorous validation of the model is desirable.

  4. Volatile organic compounds adsorption onto neat and hybrid bacterial cellulose

    NASA Astrophysics Data System (ADS)

    Ion, Violeta Alexandra; Pârvulescu, Oana Cristina; Dobre, T?nase

    2015-04-01

    Adsorption dynamics of VOCs (volatile organic compounds) vapour from air streams onto fixed bed adsorbent were measured and simulated under various operation conditions. Isopropanol (IPA) and n-hexane (HEX) were selected as representatives of polar and nonpolar VOCs, whereas bacterial cellulose (BC) and BC incorporated with magnetite nanoparticles (M/BC), were tested as adsorbents. An experimental study emphasizing the influence of air superficial velocity (0.7 cm/s and 1.7 cm/s), operation temperature (30 °C and 40 °C), adsorbate and adsorbent type, on fixed bed saturation curves was conducted. Optimal adsorption performances evaluated in terms of saturation adsorption capacity were obtained for the adsorption of polar compound (IPA) onto M/BC composite (0.805 g/g) and of nonpolar compound (HEX) onto neat BC (0.795 g/g), respectively, at high values of air velocity and operation temperature. A mathematical model including mass balance of VOC species, whose parameters were fitted based on experimental data, was developed in order to predict the fixed bed saturation curves. A 23 statistical model indicating a significant increase in adsorption performances with process temperature was validated under the experimental conditions.

  5. Partitioning of neutral organic compounds to structural proteins.

    PubMed

    Endo, Satoshi; Bauerfeind, Jasmin; Goss, Kai-Uwe

    2012-11-20

    Protein-water partition coefficients (K(pw)) of neutral organic chemicals were measured using muscle proteins (from chicken, fish, and pig), collagen and gelatin. K(pw) values for these structural proteins were consistently lower than those of bovine serum albumin (BSA), indicating that the use of BSA as a model protein leads to an overestimation of K(pw) for structural proteins. Differences in K(pw) between chicken, fish, and pig muscle proteins were small. Across the structural proteins, K(pw) values were often in the order: muscle proteins > collagen ? gelatin. Differences in K(pw) between the structural proteins were relatively large (<2 log units) for nonpolar compounds, and much smaller or insignificant for polar compounds. There were correlations between log K(pw) of muscle proteins and log K(ow) (R(2) = 0.83-0.86, SD: 0.35-0.40, n = 45-46). The polyparameter linear free energy relationship (PP-LFER) models fit even better to the data (R(2) = 0.95, SD: 0.22). The good model fitting suggests that the reversible binding to muscle proteins can be considered to be nonspecific binding. There was an indication that some chemicals may sorb irreversibly to muscle proteins, which needs further research. We found that the partitioning to muscle protein is typically weaker than that to lipids, but that the protein partitioning of an H-bond donor compound can be as strong as the storage lipid partitioning. PMID:23102204

  6. Biogeochemical processes governing exposure and uptake of organic pollutant compounds in aquatic organisms.

    PubMed Central

    Farrington, J W

    1991-01-01

    This paper reviews current knowledge of biogeochemical cycles of pollutant organic chemicals in aquatic ecosystems with a focus on coastal ecosystems. There is a bias toward discussing chemical and geochemical aspects of biogeochemical cycles and an emphasis on hydrophobic organic compounds such as polynuclear aromatic hydrocarbons, polychlorinated biphenyls, and chlorinated organic compounds used as pesticides. The complexity of mixtures of pollutant organic compounds, their various modes of entering ecosystems, and their physical chemical forms are discussed. Important factors that influence bioavailability and disposition (e.g., organism-water partitioning, uptake via food, food web transfer) are reviewed. These factors include solubilities of chemicals; partitioning of chemicals between solid surfaces, colloids, and soluble phases; variables rates of sorption, desorption; and physiological status of organism. It appears that more emphasis on considering food as a source of uptake and bioaccumulation is important in benthic and epibenthic ecosystems when sediment-associated pollutants are a significant source of input to an aquatic ecosystem. Progress with mathematical models for exposure and uptake of contaminant chemicals is discussed briefly. PMID:1904812

  7. [Discharge ion mobility spectrometry of ketonic organic compounds].

    PubMed

    Huang, Guo-dong; Han, Hai-yan; Jia, Xian-de; Jin, Shun-ping; Li, Jian-quan; Wang, Hong-mei; Tang, Xiao-shuan; Jiang, Hai-he; Chu, Yan-nan; Zhou, Shi-kang

    2007-05-01

    Ion mobility spectrometry (IMS) is a sensitive technique for fast on-line monitoring trace volatile organic compounds based upon the mobilities of gas phase ions at ambient pressure in weak electric field. In the present work, protonated water reactant ions were successfully prepared, and eight ketones were studied on a homemade high-resolution IMS apparatus using a discharge ionization source. The reduced mobility values of all ions were derived from the observed ion mobility spectra. The experimentally determined reduced mobilities for acetone, 2-butone, 1-methyl-2-pyrrolidinone acetophenone, cyclohexanone and product ions were compared with the previously reported values in the Ni-IMS, indicating that they are in good agreement. The reduced mobilities of methyl isopropyl ketone, 4-methyl-2-pentanone and cyclopentanone ions were given for the first time. The ionization process for organic compounds in the authors' discharge ion mobility spectrometer is suggested to be similar to Ni-IMS system, i.e., the proton transfer reactions produce protonated ketone ions. In addition, a linear correlation was found between the reduced mobilities of the ketone ions and their molecular masses. Qualitative measurements show that the limit of detection is in the ng x L(-1) order of magnitude in the authors' discharge ion mobility spectrometer. PMID:17655083

  8. Anti-photoaging and Photoprotective Compounds Derived from Marine Organisms

    PubMed Central

    Pallela, Ramjee; Na-Young, Yoon; Kim, Se-Kwon

    2010-01-01

    Marine organisms form a prominent component of the oceanic population, which significantly contribute in the production of cosmeceutical and pharmaceutical molecules with biologically efficient moieties. In addition to the molecules of various biological activities like anti-bacterial, anti-cancerous, anti-inflammatory and anti-oxidative etc., these organisms also produce potential photoprotective or anti-photoaging agents, which are attracting present day researchers. Continuous exposure to UV irradiation (both UV-A and UV-B) leads to the skin cancer and other photoaging complications, which are typically mediated by the reactive oxygen species (ROS), generated in the oxidative pathways. Many of the anti-oxidative and anti-photoaging compounds have been identified previously, which work efficiently against photodamage of the skin. Recently, marine originated photoprotective or anti-photoaging behavior was observed in the methanol extracts of Corallina pilulifera (CPM). These extracts were found to exert potent antioxidant activity and protective effect on UV-A-induced oxidative stress in human dermal fibroblast (HDF) cells by protecting DNA and also by inhibiting matrix metalloproteinases (MMPs), a key component in photoaging of the skin due to exposure to UV-A. The present review depicts various other photoprotective compounds from algae and other marine sources for further elaborative research and their probable use in cosmeceutical and pharmaceutical industries. PMID:20479974

  9. Biogenic volatile organic compound emissions from vegetation fires

    PubMed Central

    CICCIOLI, PAOLO; CENTRITTO, MAURO; LORETO, FRANCESCO

    2014-01-01

    The aim of this paper was to provide an overview of the current state of the art on research into the emission of biogenic volatile organic compounds (BVOCs) from vegetation fires. Significant amounts of VOCs are emitted from vegetation fires, including several reactive compounds, the majority belonging to the isoprenoid family, which rapidly disappear in the plume to yield pollutants such as secondary organic aerosol and ozone. This makes determination of fire-induced BVOC emission difficult, particularly in areas where the ratio between VOCs and anthropogenic NOx is favourable to the production of ozone, such as Mediterranean areas and highly anthropic temperate (and fire-prone) regions of the Earth. Fire emissions affecting relatively pristine areas, such as the Amazon and the African savannah, are representative of emissions of undisturbed plant communities. We also examined expected BVOC emissions at different stages of fire development and combustion, from drying to flaming, and from heatwaves coming into contact with unburned vegetation at the edge of fires. We conclude that forest fires may dramatically change emission factors and the profile of emitted BVOCs, thereby influencing the chemistry and physics of the atmosphere, the physiology of plants and the evolution of plant communities within the ecosystem. PMID:24689733

  10. Fungal volatile organic compounds and their role in ecosystems.

    PubMed

    Hung, Richard; Lee, Samantha; Bennett, Joan W

    2015-04-01

    All odorants are volatile organic compounds (VOCs), i.e., low molecular weight compounds that easily evaporate at normal temperatures and pressure. Fungal VOCs are relatively understudied compared to VOCs of bacterial, plant, or synthetic origin. Much of the research to date on fungal VOCs has focused on their food and flavor properties, their use as indirect indicators of fungal growth in agriculture, or their role as semiochemicals for insects. In addition, research into fungal volatiles has also taken place to monitor spoilage, for purposes of chemotaxonomy, for use in biofilters and for biodiesel, to detect plant and animal disease, for "mycofumigation," and with respect to plant health. As methods for the analysis of gas phase molecules have improved, it has become apparent that fungal VOC are more chemically varied and more biologically active than has generally been realized. In particular, there is increasing data that show that fungal VOCs frequently mediate interactions between organisms within and across different ecological niches. The goal of this mini review is to orchestrate data on fungal VOCs obtained from disparate disciplines as well as to draw attention to the ecological importance of fungal VOCs in signaling between different species. Technologies and approaches that are common in one area of research are often unknown in others, and the study of fungal VOCs would benefit from more cross talk between subdisciplines. PMID:25773975

  11. Investigation of membrane fouling in ultrafiltration using model organic compounds.

    PubMed

    Kweon, J H; Lawler, D F

    2005-01-01

    Natural organic matter (NOM) is known to be the worst foulant in the membrane processes, but the complexities of NOM make it difficult to determine its effects on membrane fouling. Therefore, simple organic compounds (surrogates for NOM) were used in this research to investigate the fouling mechanisms in ultrafiltration. Previous research on NOM components in membrane processes indicated that polysaccharides formed an important part of the fouling cake. Three polysaccharides (dextran, alginic acid, and polygalacturonic acid) and a smaller carbohydrate (tannic acid) were evaluated for their removal in softening (the treatment process in the City of Austin). Two polysaccharides (dextran and alginic acid) were selected and further investigated for their effects on membrane fouling. The two raw organic waters (4 mg/L C) showed quite different patterns of flux decline indicating different fouling mechanisms. Softening pretreatment was effective to reduce flux decline of both waters. The SEM images of the fouled membrane clearly showed the shapes of deposited foulants. The high resolution results of the XPS spectra showed substantially different spectra of carbon, C(1s), in the membrane fouled by two raw organic waters. The XPS was beneficial in determining the relative composition of each fouling material on the membrane surface. PMID:16003967

  12. Chiral Analyses of Organic Compounds in Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Pizzarello, Sandra

    2004-01-01

    Contents include the following: 1. Characterization of Tagish Lake organic content. The first two grant years were largely devoted to the molecular and isotopic analyses of Tagish Lake organic composition. This carbonaceous meteorite fell in Canada in the winter of the year 2000, and its exceptional atmospheric entry and subsequent recovery (e. g., the sample was recovered and stored by avoiding hand contact and above freezing temperatures) contributed in providing a rare and pristine extraterrestrial material. 2. Chiral analyses of Murchison and Murray soluble organics. One of the most intriguing finding in regard to soluble meteorite organics is the presence within the amino acid suite of some compounds displaying L-enantiomeric excesses. This configuration is exclusive in the amino acids of terrestrial proteins and the finding has raised speculations of a possible role of amino acids from meteorites in the origin of homochirality on the early Earth. The main objective for this NASA funding was the characterization of enantiomeric excesses in meteorites and we have conducted several studies toward establishing their distribution and indignity.

  13. Semivolatile organic compounds in urban and over-water atmospheres

    NASA Astrophysics Data System (ADS)

    Offenberg, John H., Jr.

    Concentrations of semi-volatile organic contaminants were measured both in air and precipitation in and downwind of Chicago, IL and Baltimore, MD as part of the A_tmospheric E_xchange O_ver L_akes and O_ceans_ (AEOLOS) project. Precipitation events were collected simultaneously in the city and over the water to measure increased wet depositional fluxes of polychlorinated biphenyls to Lake Michigan during May and July 1994 and January 1995. Elevated atmospheric concentrations in Chicago, IL increase atmospheric loadings of PCBs to Lake Michigan by at least a factor of two over regional background levels. Precipitation loadings, bidirectional gas exchange and dry deposition combine to increase measured surface water concentrations of PCBs in Lake Michigan during periods of southwesterly winds which transport the urban air mass across the lake. PCB concentrations in surface waters were higher during winter than in spring or summer, but PAH concentrations did not vary significantly with season. However, when placed in historical context, Lake Michigan PCB concentrations have declined ten fold over fourteen years from 1980 to 1994. Size segregated airborne particulate samples collected around and over southern Lake Michigan show geometric mean diameters of polycyclic aromatic hydrocarbons that are correlated with the compound's sub-cooled liquid vapor pressures. More volatile compounds were found on larger particles. The slope of the relationship between GMD and vapor pressure depends on the transit time from the shoreline, suggesting that higher wind speeds induce faster dry deposition of large particles. Measured gas/particle partitioning of these compounds is modeled according to a three dimensional multiple linear regression that includes the influences of vapor pressure, particle size and measured aerosol fractional organic carbon content. Each of these terms is significant in the full model but, addition of the latter two terms appears to be practically unimportant in describing partitioning of these compounds between the gas and particle bound phases. Finally, spatial trends in PAH and PCB concentrations in the Baltimore/northern Chesapeake Bay atmosphere during June 1996 are similar to those observed in Chicago. These observations further support the hypothesis that urban centers increase loadings to adjacent surface waters.

  14. Purgeable organic compounds in ground water at the Idaho National Engineering Laboratory, Idaho

    Microsoft Academic Search

    L. J. Mann; L. L. Knobel

    1987-01-01

    Reconnaissance-level sampling for purgeable organic compounds in ground water was conducted at the Idaho National Engineering Laboratory during June to November 1987. Water samples from 81 wells that tap the Snake River Plain aquifer and that are equipped with dedicated pumps were collected and analyzed for 36 purgeable organic compounds. Twelve compounds were detected in the samples, including carbon tetrachloride;

  15. A SURVEY ON RESEARCH NEEDS ON PERSONAL SAMPLERS FOR TOXIC ORGANIC COMPOUNDS

    EPA Science Inventory

    A survey is presented on the research and development needs for personal monitoring devices for toxic organic compounds in the ambient atmosphere. This survey includes a description of organic compounds and their ambient concentrations, individual compounds of high priority, a su...

  16. Speciation of volatile organic compound emissions for regional air quality modeling of particulate matter and ozone

    Microsoft Academic Search

    P. A. Makar; M. D. Moran; M. T. Scholtz; A. Taylor

    2003-01-01

    A new classification scheme for the speciation of organic compound emissions for use in air quality models is described. The scheme uses 81 organic compound classes to preserve both net gas-phase reactivity and particulate matter (PM) formation potential. Chemical structure, vapor pressure, hydroxyl radical (OH) reactivity, freezing point\\/boiling point, and solubility data were used to create the 81 compound classes.

  17. Rules of Thumb for Assessing Equilibrium Partitioning of Organic Compounds: Successes and Pitfalls

    Microsoft Academic Search

    Kai-Uwe Goss; René P. Schwarzenbach

    2003-01-01

    Organic compounds are often categorized according to their volatility, polarity, and hydrophobicity. These terms are then used to estimate the equilibrium partitioning of compounds between different phases (e.g., air, water, organic solvents). However, these terms are rather ill-defined, and their application can easily lead to erroneous ideas about the partition behavior of compounds as is demonstrated with several examples. A

  18. Time Dependence of Blood Concentrations during and after Exposure to a Mixture of Volatile Organic Compounds

    Microsoft Academic Search

    David L. Ashley; James D. Prah

    1997-01-01

    Volatile organic compounds constitute a group of important environmental pollutants that have been associated with the constellation of symptoms known as sick building syndrome. An understanding of the kinetics of uptake and elimination of volatile organic compounds is important for the proper interpretation of the internal dose concentrations of people exposed to these compounds. Blood concentrations measured before, during, and

  19. Subjective reactions to volatile organic compounds as air pollutants

    NASA Astrophysics Data System (ADS)

    Mølhave, Lars; Grønkjær, John; Larsen, Søren

    Human subjective reactions to indoor air pollution in the form of volatile organic compounds in five concentrations ? mg m -3 were examined in a climate chamber under controlled conditions in a balanced experimental design. The reactions of 25 subjects were registered in two questionnaires containing 25 and six questions and on a linear analogue rating scale. Each subject was tested for one day including four runs in each of the five treatments of 50 min duration. Dose effects were found for perceived odour intensity at 3 mgm -3. Air quality, need for ventilation, irritation of eye and nose showed significant effect at 8 mg m -3. Significant reduced well being was reported at 25 mgm -3. The analyses indicated that lower threshold for some of these effects would have been found if more subjects or longer exposure-times had been used. Gender, age, occupational education and smoking habits were co-factors for many of the symptoms reported.

  20. Laboratory methods for volatile organic compounds evolved in mineralization studies

    SciTech Connect

    Hickey, W.J.; Arnold, S.M.; Moran, B.N. [Univ. of Wisconsin, Madison, WI (United States)

    1995-11-01

    A system to study mineralization of volatile organic compounds (VOCs) was developed using commercially available solid-phase VOC traps and impingers to collect CO{sub 2} as well as VOCs breaking out from the solid-phase trap. The efficiencies of VOC traps containing activated charcoal (AC) or graphitized carbon black (GCB) for absorbing [{sup 14}C]trichloroethylene ([{sup 14}C]TCE) and {sup 14}CO{sub 2} were evaluated, and approaches for minimizing VOC losses from reaction vessels were established. Mass balances showed AC and GCB absorbed similar amounts of [{sup 14}C]TCE. However, GCB had no detectable {sup 14}CO{sub 2} retention, whereas AC absorbed about 7% of the {sup 14}CO{sub 2}. Because {sup 14}CO{sub 2} absorption could influence the interpretation of mineralization experiments, GCB was concluded to be the better VOC-trapping matrix.

  1. Detection of volatile organic compounds using surface enhanced Raman scattering

    SciTech Connect

    Chang, A S; Maiti, A; Ileri, N; Bora, M; Larson, C C; Britten, J A; Bond, T C

    2012-03-22

    The authors present the detection of volatile organic compounds directly in their vapor phase by surface-enhanced Raman scattering (SERS) substrates based on lithographically-defined two-dimensional rectangular array of nanopillars. The type of nanopillars is known as the tapered pillars. For the tapered pillars, SERS enhancement arises from the nanofocusing effect due to the sharp tip on top. SERS experiments were carried out on these substrates using various concentrations of toluene vapor. The results show that SERS signal from a toluene vapor concentration of ppm level can be achieved, and the toluene vapor can be detected within minutes of exposing the SERS substrate to the vapor. A simple adsorption model is developed which gives results matching the experimental data. The results also show promising potential for the use of these substrates in environmental monitoring of gases and vapors.

  2. Neutral-ionic transitions in organic mixed-stack compounds

    NASA Astrophysics Data System (ADS)

    Bruinsma, R.; Bak, Per; Torrance, J. B.

    1983-01-01

    Torrance et al. have made the interesting observation that several mixed-stack organic compounds undergo transitions from neutral states to ionic states as the temperature or pressure is varied. We examine a simple model of such transitions including Coulomb interaction and hybridization of neutral and ionic states. In the limit of weak hybridization and long-range repulsive interaction between ionic planes, it is proven that there is a complete devil's staircase where the degree of ionicity assumes an infinity of rational values. For attractive interactions between ionic planes, the neutral-ionic transition is shown to be first order for weak hybridization. Comparison with experiment indicates that this situation applies to tetrathiafulvalene chloranil. For strong hybridization the transition is continuous but goes through a metallic phase. It is shown, for the first time, that the spectrum of the charge-transfer Hamiltonian contains both a bound spectrum, the observed charge-transfer excitations, and a continuum.

  3. Indoor Volatile Organic Compounds and Chemical Sensitivity Reactions

    PubMed Central

    Win-Shwe, Tin-Tin; Arashidani, Keiichi; Kunugita, Naoki

    2013-01-01

    Studies of unexplained symptoms observed in chemically sensitive subjects have increased the awareness of the relationship between neurological and immunological diseases due to exposure to volatile organic compounds (VOCs). However, there is no direct evidence that links exposure to low doses of VOCs and neurological and immunological dysfunction. We review animal model data to clarify the role of VOCs in neuroimmune interactions and discuss our recent studies that show a relationship between chronic exposure of C3H mice to low levels of formaldehyde and the induction of neural and immune dysfunction. We also consider the possible mechanisms by which VOC exposure can induce the symptoms presenting in patients with a multiple chemical sensitivity. PMID:24228055

  4. Volatile organic compounds in the environment: A multimedia perspective

    SciTech Connect

    Cohen, Y. [Univ. of California, Los Angeles, CA (United States). Dept. of Chemical Engineering

    1996-12-31

    The environment is a complex system of interacting environmental media. Pollutants do not stay in the medium where they originate but move across environmental phase boundaries. The distribution of pollutants throughout the various environmental compartments (for example, air, water, soil, and biota) is the result of complex physical, chemical, and biological processes. The resulting environmental and human health risks depend upon the degree of exposure of human and ecological receptors, via multiple pathways, to these chemicals. Thus, environmental pollution is a multimedia problem. Volatile organic compounds (VOCs), in particular, are very mobile in the environment. For example, VOCs which are initially present in the soil or water media can readily volatilize to the atmosphere where they can be transported over significant distances from the source location. In this paper an overview is presented of VOC sources, VOC ambient levels, the multimedia distribution of VOCs in the environment, and multipathway exposure to VOCs.

  5. Field-usable portable analyzer for chlorinated organic compounds

    SciTech Connect

    Buttner, W.J.; Penrose, W.R.; Stetter, J.R.; Williams, R.D.

    1996-12-31

    In 1992, a chemical sensor was developed which showed almost perfect selectivity to vapors of chlorinated solvents. When interfaced to an instrument, a chemical analyzer will be produced that has near- absolute selectivity to vapors of volatile chlorinated organic compounds. TRI has just completed the second of a 2-phase program to develop this new instrument system, which is called the RCL MONITOR. In Phase II, this instrument was deployed in 5 EM40 operations. Phase II applications covered clean-up process monitoring, environmental modeling, routine monitoring, health and safety, and technology validation. Vapor levels between 0 and 100 ppM can be determined in 90 s with a lower detection limit of 0.5 ppM using the hand-portable instrument. Based on the favorable performance of the RCL MONITOR, the commercial instrument was released for commercial sales on Sept. 20, 1996.

  6. Emissions of biogenic volatile organic compounds & their photochemical transformation

    NASA Astrophysics Data System (ADS)

    Yu, Zhujun; Hohaus, Thorsten; Tillmann, Ralf; Andres, Stefanie; Kuhn, Uwe; Rohrer, Franz; Wahner, Andreas; Kiendler-Scharr, Astrid

    2015-04-01

    Natural and anthropogenic activities emit volatile organic compounds (VOC) into the atmosphere. While it is known that land vegetation accounts for 90% of the global VOC emissions, only a few molecules' emission factors are understood. Through VOCs atmospheric oxidation intermediate products are formed. The detailed chemical mechanisms involved are insufficiently known to date and need to be understood for air quality management and climate change predictions. In an experiment using a PTR-ToF-MS with the new-built plant chamber SAPHIR-PLUS in Forschungszentrum Juelich, biogenic emissions of volatile organic compounds (BVOC) from Quercus ilex trees were measured. The BVOC emissions were dominated by monoterpenes, minor emissions of isoprene and methanol were also observed with the overall emission pattern typical for Quercus ilex trees in the growing season. Monoterpenes and isoprene emissions showed to be triggered by light. Additionally, their emissions showed clear exponential temperature dependence under constant light condition as reported in literature. As a tracer for leaf growth, methanol emission showed an abrupt increase at the beginning of light exposure. This is explained as instantaneous release of methanol produced during the night once stomata of leaves open upon light exposure. Emission of methanol showed a near linear increase with temperature in the range of 10 to 35 °C. BVOC were transferred from the plant chamber PLUS to the atmospheric simulation chamber SAPHIR, where their oxidation products from O3 oxidation were measured with PTR-ToF-MS. Gas phase oxidation products such as acetone and acetaldehyde were detected. A quantitative analysis of the data will be presented, including comparison of observations to the Master Chemical Mechanism model.

  7. Biodegradation of organic compounds sequestered in organic solids or in nanopores within silica particles

    SciTech Connect

    Hatzinger, P.B.; Alexander, M. [Cornell Univ., Ithaca, NY (United States)

    1997-11-01

    A study was conducted using model solids to determine whether the time-dependent decline in availability for biodegradation of organic pollutants in soil might result from the entrapment of these compounds in porous or nonporous solids. A strain of Pseudomonas mineralized phenanthrene in solid alkanes containing 18 to 32 carbons, three waxes, and low-molecular-weight polycaprolactone, polyethylene, and polypropylene. The rates were appreciably slower than when the substrate was not initially present within these nonporous solids. From 1.4 to 63.4% of the polycyclic aromatic hydrocarbon added to the solids was mineralized in 90 d. The rates and extents of partitioning of phenanthrene varied markedly among the solids. The rates of partitioning and biodegradation of phenanthrene initially present in the alkanes were positively correlated. The bacterium rapidly and extensively mineralized phenanthrene provided in calcium alginate beads containing varying amounts of soluble soil organic matter. The rates and extents of phenanthrene mineralization declined as the percentage of the substrate in the nanopores within silica particles increased, but the reductions in rate, extent, or both were less pronounced than with nonporous solids. The rate of 4-nitrophenol biodegradation also declined with increasing percentages of the compound in these nanopores. The data are consistent with hypotheses that the sequestration and consequent decrease in bioavailability of organic compounds that persist in soil result from their partitioning into organic matter or their presence within nanopores in soil.

  8. Tetratopic phenyl compounds, related metal-organic framework materials and post-assembly elaboration

    DOEpatents

    Farha, Omar K.; Hupp, Joseph T.

    2012-09-11

    Disclosed are tetratopic carboxylic acid phenyl for use in metal-organic framework compounds. These compounds are useful in catalysis, gas storage, sensing, biological imaging, drug delivery and gas adsorption separation.

  9. Tetratopic phenyl compounds, related metal-organic framework materials and post-assembly elaboration

    DOEpatents

    Farha, Omar K; Hupp, Joseph T

    2013-06-25

    Disclosed are tetratopic carboxylic acid phenyl for use in metal-organic framework compounds. These compounds are useful in catalysis, gas storage, sensing, biological imaging, drug delivery and gas adsorption separation.

  10. Identification of volatile organic compounds in human cerumen

    PubMed Central

    Prokop-Prigge, Katharine A.; Thaler, Erica; Wysocki, Charles J.; Preti, George

    2014-01-01

    We report here the initial examination of volatile organic compounds (VOCs) emanating from human earwax (cerumen). Recent studies link a single nucleotide polymorphism (SNP) in the adenosine triphosphate (ATP) binding cassette, sub-family C, member 11 gene (ABCC11) to the production of different types of axillary odorants and cerumen. ABCC11 encodes an ATP-driven efflux pump protein that plays an important function in ceruminous apocrine glands of the auditory canal and the secretion of axillary odor precursors. The type of cerumen and underarm odor produced by East Asians differ markedly from that produced by non-Asians. In this initial report we find that both groups emit many of the same VOCs but differ significantly in the amounts produced. The principal odorants are volatile organic C2-to-C6 acids. The physical appearance of cerumen from the two groups also matches previously reported ethnic differences, viz., cerumen from East Asians appears dry and white while that from non-Asians is typically wet and yellowish-brown. PMID:24572763

  11. Normal Boiling Points for Organic Compounds: Correlation and Prediction by a Quantitative Structure-Property Relationship

    Microsoft Academic Search

    Alan R. Katritzky; Victor S. Lobanov; Mati Karelson

    1998-01-01

    We recently reported a successful correlation of the normal boiling points of 298 organic compounds containing O, N, Cl, and Br with two molecular descriptors.1 In the present study the applicability of these two descriptors for the prediction of boiling points for various other classes of organic compounds was investigated further by employing a diverse data set of 612 organic

  12. Characterization and treatment of organic compounds and trace elements in oil shale waste waters

    Microsoft Academic Search

    Conditt

    1984-01-01

    The effectiveness of treatment techniques to remove organic compounds and trace elements from oil shale wastewater was investigated. Emphasis was placed on the removal of nitrogen-containing organic compounds and arsenic. Reductions in contaminants following treatment by steam stripping, sorption on spent shale, ozonation, ultraviolet irradiation, wet air oxidation, and biological degradation were studied. The organic content of the wastewaters was

  13. The seasonal variation in bioactive compounds content in juice from organic and non-organic tomatoes.

    PubMed

    Hallmann, Ewelina; Lipowski, Janusz; Marsza?ek, Krystian; Rembia?kowska, Ewa

    2013-06-01

    A specific objective of this paper was to evaluate seasonal changes in bioactive compounds level (carotenoids and polyphenols) in juice prepared from organic and non-organic tomatoes in Poland. In the examined tomato juice, the content of dry matter, vitamin C, carotenoids as well as polyphenols (by HPLC method) has been measured. The presented results indicate the impact of the growing system and the year of production on the composition of tomato juice. The organic tomato juice contained significantly more beta-carotene, chlorogenic acid, rutin as well as more total phenolic acids, gallic acid, p-coumaric acid, total flavonoids, quercetin-3-O-glucoside and quercetin in comparison with the non-organic. The tomato juice from 2008 contained significantly more carotenoids and some flavonoids compared to the one produced in 2009, which contained significantly more dry matter, vitamin C, as well as quercetin and it derivatives. PMID:23609833

  14. Biodegradation of organic compounds sequestered in organic solids or in nanopores within silica particles

    Microsoft Academic Search

    Paul B. Hatzinger; Martin Alexander

    1997-01-01

    A study was conducted using model solids to determine whether the time-dependent decline in availability for biodegradation of organic pollutants in soil might result from the entrapment of these compounds in porous or nonporous solids. A strain of Pseudomonas mineralized phenanthrene in solid alkanes containing 18 to 32 carbons, three waxes, and low-molecular-weight polycaprolactone, polyethylene, and polypropylene. The rates were

  15. Emission and Chemical Transformation of Biogenic Volatile Organic Compounds (echo)

    NASA Astrophysics Data System (ADS)

    Koppmann, R.; Hoffmann, T.; Kesselmeier, J.; Schatzmann, M.

    Forests are complex sources of biogenic volatile organic compounds (VOC) in the planetary boundary layer. The impact of biogenic VOC on tropospheric photochem- istry, air quality, and the formation of secondary products affects our climate on a regional and global scale but is far from being understood. A considerable lack of knowledge exists concerning a forest stand as a net source of reactive trace com- pounds, which are transported directly into the planetary boundary layer (PBL). In particular, little is known about the amounts of VOC which are processed within the canopy. The goal of ECHO, which is presented in this poster, is to investigate these questions and to improve our understanding of biosphere-atmosphere interactions and their effects on the PBL. The investigation of emissions, chemical processing and vertical transport of biogenic VOC will be carried out in and above a mixed forest stand in Jülich, Germany. A large set of trace gases, free radicals and meteorologi- cal parameters will be measured at different heights in and above the canopy, covering concentrations of VOC, CO, O3, organic nitrates und NOx as well as organic aerosols. For the first time concentration profiles of OH, HO2, RO2 und NO3 radicals will be measured as well together with the actinic UV radiation field and photolysis frequen- cies of all relevant radical precursors (O3, NO2, peroxides, oxygenated VOC). The different tasks of the field experiments will be supported by simulation experiments investigating the primary emission and the uptake of VOC by the plants in stirred tank reactors, soil parameters and soil emissions in lysimeter experiments, and the chem- ical processing of the trace gases as observed in and above the forest stand in the atmosphere simulation chamber SAPHIR. The planning and interpretation of the field experiments is supported by simulations of the field site in a wind tunnel.

  16. Screening of ground water samples for volatile organic compounds using a portable gas chromatograph

    USGS Publications Warehouse

    Buchmiller, R.C.

    1989-01-01

    A portable gas chromatograph was used to screen 32 ground water samples for volatile organic compounds. Seven screened samples were positive; four of the seven samples had volatile organic substances identified by second-column confirmation. Four of the seven positive, screened samples also tested positive in laboratory analyses of duplicate samples. No volatile organic compounds were detected in laboratory analyses of samples that headspace screening indicated to be negative. Samples that contained volatile organic compounds, as identified by laboratory analysis, and that contained a volatile organic compound present in a standard of selected compounds were correctly identified by using the portable gas chromatography. Comparisons of screened-sample data with laboratory data indicate the ability to detect selected volatile organic compounds at concentrations of about 1 microgram per liter in the headspace of water samples by use of a portable gas chromatography. -Author

  17. Secondary organic aerosol formation from a large number of reactive man-made organic compounds.

    PubMed

    Derwent, Richard G; Jenkin, Michael E; Utembe, Steven R; Shallcross, Dudley E; Murrells, Tim P; Passant, Neil R

    2010-07-15

    A photochemical trajectory model has been used to examine the relative propensities of a wide variety of volatile organic compounds (VOCs) emitted by human activities to form secondary organic aerosol (SOA) under one set of highly idealised conditions representing northwest Europe. This study applied a detailed speciated VOC emission inventory and the Master Chemical Mechanism version 3.1 (MCM v3.1) gas phase chemistry, coupled with an optimised representation of gas-aerosol absorptive partitioning of 365 oxygenated chemical reaction product species. In all, SOA formation was estimated from the atmospheric oxidation of 113 emitted VOCs. A number of aromatic compounds, together with some alkanes and terpenes, showed significant propensities to form SOA. When these propensities were folded into a detailed speciated emission inventory, 15 organic compounds together accounted for 97% of the SOA formation potential of UK man made VOC emissions and 30 emission source categories accounted for 87% of this potential. After road transport and the chemical industry, SOA formation was dominated by the solvents sector which accounted for 28% of the SOA formation potential. PMID:20452649

  18. Identification, characterization and quantitation of pyrogenic polycylic aromatic hydrocarbons and other organic compounds in tire fire products.

    PubMed

    Wang, Zhendi; Li, K; Lambert, P; Yang, Chun

    2007-01-12

    On 15 August 2001, a tire fire took place at the Pneu Lavoie Facility in Gatineau, Quebec, in which 4000 to 6000 new and recycled tires were stored along with other potentially hazardous materials. Comprehensive gas chromatography-mass spectrometry (GC-MS) analyses were performed on the tire fire samples to facilitate detailed chemical composition characterization of toxic polycyclic aromatic hydrocarbons (PAHs) and other organic compounds in samples. It is found that significant amounts of PAHs, particularly the high-ring-number PAHs, were generated during the fire. In total, 165 PAH compounds including 13 isomers of molecular weight (MW) 302, 10 isomers of MW 278, 10 isomers of MW 276, 7 isomers of MW 252, 7 isomers of MW 228, and 8 isomers of MW 216 PAHs were positively identified in the tire fire wipe samples for the first time. Numerous S-, O-, and N-containing PAH compounds were also detected. The identification and characterization of the PAH isomers was mainly based on: (1) a positive match of mass spectral data of the PAH isomers with the NIST authentic mass spectra database; (2) a positive match of the GC retention indices (I) of PAHs with authentic standards and with those reported in the literature; (3) agreement of the PAH elution order with the NIST (US National Institute of Standards and Technology) Standard Reference Material 1597 for complex mixture of PAHs from coal tar; (4) a positive match of the distribution patterns of PAH isomers in the SIM mode between the tire fire samples and the NIST Standard Reference Materials and well-characterized reference oils. Quantitation of target PAHs was done on the GC-MS in the selected ion monitoring (SIM) mode using the internal standard method. The relative response factors (RRF) for target PAHs were obtained from analyses of authentic PAH standard compounds. Alkylated PAH homologues were quantitated using straight baseline integration of each level of alkylation. PMID:17112533

  19. Identification of atmospheric volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs) and carbonyl compounds in Hong Kong.

    PubMed

    Ho, K F; Lee, S C

    2002-04-22

    Volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs) and carbonyl compounds are the major organic pollutants in the atmosphere. Emissions from motor vehicles have been one of the primary pollution sources in the metropolitan area of Hong Kong. A 12-month monitoring program for VOCs, PAHs and carbonyl compounds was performed at a roadside urban station at Hong Kong Polytechnic University (HKPU) in order to determine the correlations of each selected pollutant. The monitoring program ran from 16 April 1999 to 10 April 2000 for a period of 1 year, and a 2-week winter intensive sampling was carried out during January 2000. Traditionally, emission sources are identified from organic compounds in air particulates. Since many of the gaseous and particulate phases of organic compounds are from the same sources, correlations between the major exhausts are to be expected. Therefore, it would be more effective to apportion the sources using the combined gaseous and particulate phases of organic compounds. Correlations of selected pollutants within two other toxic air pollutants (TAPs) monitoring stations in Tsuen Wan (TW) and Central/Western (CW) were analyzed. Good correlations were found between pollutants that came from vehicle exhaust, especially in intensive sampling periods at HKPU roadside station. This was because the washing out effect for particulates during rainy days and photochemical degradation during high solar radiation were minimized in wintertime. PMID:12049391

  20. Delivery of complex organic compounds from evolved stars to the solar system.

    PubMed

    Kwok, Sun

    2011-12-01

    Stars in the late stages of evolution are able to synthesize complex organic compounds with aromatic and aliphatic structures over very short time scales. These compounds are ejected into the interstellar medium and distributed throughout the Galaxy. The structures of these compounds are similar to the insoluble organic matter found in meteorites. In this paper, we discuss to what extent stellar organics has enriched the primordial Solar System and possibly the early Earth. PMID:22139515

  1. Approach to predict partitioning of organic compounds from air into airborne particulate

    Microsoft Academic Search

    Cong Sun; Liu Feng

    2005-01-01

    Based on the theoretical linear solvation energy relationship and quantum chemical descriptors computed by AM1 Hamiltonian,\\u000a a new approach was developed to predict the partitioning of some organic compounds between the airborne particulate and air.\\u000a It could be successfully used to study the partitioning of organic compounds from air into airborne particulate, and evaluate\\u000a the potential risk of organic compounds.

  2. Screening of volatile organic compounds in river sediment

    SciTech Connect

    Kawata, K.; Tanabe, A.; Saito, S. [Niigata Prefectural Research Lab. for Health and Environment (Japan)] [and others] [Niigata Prefectural Research Lab. for Health and Environment (Japan); and others

    1997-06-01

    Volatile organic compounds (VOCs), such as trichloroethene, toluene and xylenes have been reported to be detected from river water and sediment, because a part of VOCs charged into river can be distributed to river sediment. Fifty-three common VOCs in water have been simultaneously determined with good accuracy and precision by gas chromatography - mass spectrometry (GC/MS) with headspace method as well as purge-and-trap method. However, simultaneous determination methods for the VOCs in sediment have not been established. Several GC or GOMS methods have been reported to determine some VOCs in sediment, purge-and-trap, distillation, headspace and solvent extraction. Among them headspace GC/MS method appears to be the most appropriate method for screening the VOCs in sediments, because of its simplicity in analytical procedure. Hewitt et al. have reported that headspace method gave no statistically different results from purge-and-trap method for GC/MS determination of four VOCs in soil. Voice and Kolb have reported that headspace GC method gave better results to determine nine VOCs in soil than purge-and-trap method or solvent extraction method followed by headspace. However, headspace analysis of some VOCs in sediments could give insufficient recoveries. This is because VOCs adsorb to sediment. To improve their low recoveries from sediment, we have previously used a stable isotope-labeled compound as an internal standard to determine eight chlorinated VOCs. However, this method is not proper for determining simultaneously as many as 53 VOCs with various physical properties. Therefore, we investigate headspace GC/MS method with standard addition method for simultaneous screening of them in sediment. In this paper, we describe effects of a few headspace conditions on the VOC recoveries from sediment, and present screening results of the VOCs in sediments from mouths of rivers and a port in Niigata, Japan. 17 refs., 3 figs., 3 tabs.

  3. Quantum Magnetism and possible BEC in an organic Nickel compound

    NASA Astrophysics Data System (ADS)

    Zapf, Vivien

    2007-03-01

    I will review recent experimental and theoretical work on the S=1 quantum magnet, NiCl2-4SC(NH2)2. [1] This compound exhibits field-induced XY antiferromagnetism for magnetic fields along the tetragonal c-axis between Hc1 = 2.1 and Hc2 = 12.6 T. The axial symmetry of the spin environment allows us to understand the quantum phase transitions at Hc1 and Hc2 in terms of Bose-Einstein condensation (BEC) of spin levels. Here the tuning parameter for BEC transition is the magnetic field and not the temperature. Specific heat, magnetocaloric effect, and magnetization data at low temperatures confirm the predicted behavior for a BEC: Hc-Hc1˜ T^? and M(Hc1) ˜ T^? where ? = 3/2. I will also present magnetostriction data [2] taken at dilution refrigerator temperatures that show significant magnetoelastic coupling and magnetic-order-induced modifications of the lattice parameters in this soft organic compound. The data are well-described by Quantum Monte Carlo calculations, allowing us to make a quantitative determination of the magnetoelastic coupling, and also extract the spin-spin correlation function from the magnetostriction data. [1] V. S. Zapf, D. Zocco, B. R. Hansen, M. Jaime, N. Harrison, C. D. Batista, M. Kenzelmann, C. Niedermayer, A. Lacerda, and A. Paduan-Filho, Phys. Rev. Lett. 96, 077204 (2006).[2] V. S. Zapf, V. Correa, C. D. Batista, T. Murphy, E. D. Palm, M. Jaime, S. Tozer, A. Lacerda, A. Paduan-Filho, ``Magnetostriction in the Bose-Einstein Condensate quantum magnet NiCl2-4SC(NH2)2,'' cond-mat/0611229.

  4. Aqueous processing of organic compounds in carbonaceous asteroids

    NASA Astrophysics Data System (ADS)

    Trigo-Rodríguez, Josep Maria; Rimola, Albert; Martins, Zita

    2015-04-01

    There is growing evidence pointing towards a prebiotic synthesis of complex organic species in water-rich undifferentiated bodies. For instance, clays have been found to be associated with complex organic compounds (Pearson et al. 2002; Garvie & Buseck 2007; Arteaga et al. 2010), whereas theoretical calculations have studied the interaction between the organic species and surface minerals (Rimola et al., 2013) as well as surface-induced reactions (Rimola at al. 2007). Now, we are using more detailed analytical techniques to study the possible processing of organic molecules associated with the mild aqueous alteration in CR, CM and CI chondrites. To learn more about these processes we are studying carbonaceous chondrites at Ultra High-Resolution Transmission Electron Microscopy (UHR-TEM). We are particularly interested in the relationship between organics and clay minerals in carbonaceous chondrites (CCs) matrixes (Trigo-Rodríguez et al. 2014, 2015).We want to address two goals: i) identifying the chemical steps in which the organic molecules could have increased their complexity (i.e., surface interaction and catalysis); and ii) studying if the organic matter present in CCs experienced significant processing concomitant to the formation of clays and other minerals at the time in which these planetary bodies experienced aqueous alteration. Here, these two points are preliminarily explored combing experimental results with theoretical calculations based on accurate quantum mechanical methods. References Arteaga O, Canillas A, Crusats J, El-Hachemi Z, Jellison GE, Llorca J, Ribó JM (2010) Chiral biases in solids by effect of shear gradients: a speculation on the deterministic origin of biological homochirality. Orig Life Evol Biosph 40:27-40. Garvie LAJ, Buseck PR (2007) Prebiotic carbon in clays from Orgueil and Ivuna (CI) and Tagish lake (C2 ungrouped) meteorites. Meteorit Planet Sci 42:2111-2117. Pearson VK, Sephton MA, Kearsley AT, Bland AP, Franchi IA, Gilmour A (2002) Clay mineral-organic matter relationships in the early solar system. Meteorit Planet Sci 37:1829-1833. Rimola A, Costa D, Sodupe M, Lambert JF, Ugliengo P (2013) Silica surface features and their role in the adsorption of biomolecules: computational modeling and experiments. Chem Rev 113:4216-4313. Rimola A, Sodupe M, Ugliengo P (2007) Aluminosilicate as promoters for peptide bond formation: an assessment of Bernal's hypothesis by ab initio methods. J Am Chem soc 129:8333-8344 Trigo-Rodríguez JM, Moyano-Cambero CE, Llorca J, Formasier S, Barucci MA, Belskaya I, Martins Z, Rivkin AS, Dotto E, Madiedo JM, Alonso-Azcárate J (2014) UV to far-IR reflectance spectra of carbonaceous chondrites - I. Implications for remote characterization of dark primitive asteroids targeted by sample-return missions. Mon Not R Astron Soc 437:227-240. Trigo-Rodríguez JM, Alonso-Azcárate J, Abad MM, Lee MR (2015) Ultra high resolution Transmission Electron Microscopy of matrix mineral grains in CM chondrites: preaccretionary or parent body aqueous processing? LPI constribution, 46th LPSC, abstract #1198.

  5. Precipitate hydrolysis process for the removal of organic compounds from nuclear waste slurries

    DOEpatents

    Doherty, J.P.; Marek, J.C.

    1987-02-25

    A process for removing organic compounds from a nuclear waste slurry comprising reacting a mixture of radioactive waste precipitate slurry and an acid in the presence of a catalytically effective amount of a copper(II) catalyst whereby the organic compounds in the precipitate slurry are hydrolyzed to form volatile organic compounds which are separated from the reacting mixture. The resulting waste slurry, containing less than 10 percent of the original organic compounds, is subsequently blended with high level radioactive sludge land transferred to a vitrification facility for processing into borosilicate glass for long-term storage. 2 figs., 3 tabs.

  6. Precipitate hydrolysis process for the removal of organic compounds from nuclear waste slurries

    DOEpatents

    Doherty, Joseph P. (Elkton, MD); Marek, James C. (Augusta, GA)

    1989-01-01

    A process for removing organic compounds from a nuclear waste slurry comprising reacting a mixture of radioactive waste precipitate slurry and an acid in the presence of a catalytically effective amount of a copper (II) catalyst whereby the organic compounds in the precipitate slurry are hydrolyzed to form volatile organic compounds which are separated from the reacting mixture. The resulting waste slurry, containing less than 10 percent of the orginal organic compounds, is subsequently blended with high level radioactive sludge and transferred to a virtrification facility for processing into borosilicate glass for long-term storage.

  7. Compositing water samples for analysis of volatile organic compounds

    USGS Publications Warehouse

    Lopes, T.J.; Fallon, J.D.; Maluk, T.L.

    2000-01-01

    Accurate mean concentrations of volatile organic compounds (VOCs) can easily and economically be obtained from a single VOC analysis by using proven methods of collecting representative, discrete water samples and compositing them with a gas-tight syringe. The technique can be used in conjunction with chemical analysis by a conventional laboratory, field-portable equipment, or a mobile laboratory. The type of mean concentration desired depends on the objectives of monitoring. For example, flow-weighted mean VOC concentrations can be used to estimate mass loadings in wastewater and urban storm water, and spatially integrated mean VOC concentrations can be used to assess sources of drinking water (e.g., reservoirs and rivers). The mean error in a discrete sample due to compositing is about 2% for most VOC concentrations greater than 0.1 ??g/L. The total error depends on the number of discrete samples comprising the composite sample and precision of the chemical analysis.Accurate mean concentrations of volatile organic compounds (VOCs) can easily and economically be obtained from a single VOC analysis by using proven methods of collecting representative, discrete water samples and compositing them with a gas-tight syringe. The technique can be used in conjunction with chemical analysis by a conventional laboratory, field-portable equipment, or a mobile laboratory. The type of mean concentration desired depends on the objectives of monitoring. For example, flow-weighted mean VOC concentrations can be used to estimate mass loadings in wastewater and urban storm water, and spatially integrated mean VOC concentrations can be used to assess sources of drinking water (e.g., reservoirs and rivers). The mean error in a discrete sample due to compositing is about 2% for most VOC concentrations greater than 0.1 ??g/L. The total error depends on the number of discrete samples comprising the composite sample and precision of the chemical analysis.Researchers are able to derive accurate values for the mean concentration of VOCs from a single VOC analysis using established techniques for the collection of representative, discrete water samples. Such samples are then composited with a gas-tight syringe. This methodology can be employed in conjunction with chemical assessment using a conventional laboratory, field-portable equipment, or a mobile laboratory. Estimates of mass loadings in wastewater and urban storm runoff can be generated using values for the flow-weighted mean VOC concentrations. Spatially integrated mean VOC concentrations are useful for the evaluation of drinking waters. Factors that influence the value for the total error are identified.

  8. Adsorption of volatile organic compounds in porous metal-organic frameworks functionalized by polyoxometalates

    SciTech Connect

    Ma Fengji [Key Laboratory of Polyoxometalates Science of the Ministry of Education, College of Chemistry, Northeast Normal University, Changchun 130024 (China); Liu Shuxia, E-mail: liusx@nenu.edu.cn [Key Laboratory of Polyoxometalates Science of the Ministry of Education, College of Chemistry, Northeast Normal University, Changchun 130024 (China); Liang Dadong; Ren Guojian; Wei Feng; Chen Yaguang; Su Zhongmin [Key Laboratory of Polyoxometalates Science of the Ministry of Education, College of Chemistry, Northeast Normal University, Changchun 130024 (China)

    2011-11-15

    The functionalization of porous metal-organic frameworks (Cu{sub 3}(BTC){sub 2}) was achieved by incorporating Keggin-type polyoxometalates (POMs), and further optimized via alkali metal ion-exchange. In addition to thermal gravimetric analysis, IR, single-crystal X-ray diffraction, and powder X-ray diffraction, the adsorption properties were characterized by N{sub 2} and volatile organic compounds (VOCs) adsorption measurements, including short-chain alcohols (C<4), cyclohexane, benzene, and toluene. The adsorption enthalpies estimated by the modified Clausius-Clapeyron equation provided insight into the impact of POMs and alkali metal cations on the adsorption of VOCs. The introduction of POMs not only improved the stability, but also brought the increase of adsorption capacity by strengthening the interaction with gas molecules. Furthermore, the exchanged alkali metal cations acted as active sites to interact with adsorbates and enhanced the adsorption of VOCs. - Graphical Abstract: The adsorption behavior of volatile organic compounds in porous metal-organic frameworks functionalized by polyoxometalates has been systematically evaluated. Highlights: > Functionalization of MOFs was achieved by incorporating Keggin-type POMs. > Introduction of POMs improved the thermal stability and adsorption capacity. > Alkali metal ion-exchange modified the inclusion state and also enhanced the adsorption. > Adsorption enthalpies were estimated to study the impact of POMs and alkali metal cations.

  9. Intermediate-volatility organic compounds: a large source of secondary organic aerosol.

    PubMed

    Zhao, Yunliang; Hennigan, Christopher J; May, Andrew A; Tkacik, Daniel S; de Gouw, Joost A; Gilman, Jessica B; Kuster, William C; Borbon, Agnes; Robinson, Allen L

    2014-12-01

    Secondary organic aerosol (SOA) is a major component of atmospheric fine particle mass. Intermediate-volatility organic compounds (IVOCs) have been proposed to be an important source of SOA. We present a comprehensive analysis of atmospheric IVOC concentrations and their SOA production using measurements made in Pasadena, California during the California at the Nexus of Air Quality and Climate Change (CalNex) study. The campaign-average concentration of primary IVOCs was 6.3 ± 1.9 ?g m(-3) (average ± standard deviation), which is comparable to the concentration of organic aerosol but only 7.4 ± 1.2% of the concentration of speciated volatile organic compounds. Only 8.6 ± 2.2% of the mass of the primary IVOCs was speciated. Almost no weekend/weekday variation in the ambient concentration of both speciated and total primary IVOCs was observed, suggesting that petroleum-related sources other than on-road diesel vehicles contribute substantially to the IVOC emissions. Primary IVOCs are estimated to produce about 30% of newly formed SOA in the afternoon during CalNex, about 5 times that from single-ring aromatics. The importance of IVOCs in SOA formation is expected to be similar in many urban environments. PMID:25375804

  10. Enantiomer distribution of major chiral volatile organic compounds in selected types of herbal honeys.

    PubMed

    Pažitná, Alexandra; Džúrová, Jana; Spánik, Ivan

    2014-10-01

    In this article, volatile organic compounds in 14 honey samples (rosemary, eucalyptus, orange, thyme, sage, and lavender) were identified. Volatile organic compounds were extracted using a solid phase microextraction method followed by gas chromatography connected with mass spectrometry analysis. The studied honey samples were compared based on their volatile organic compounds composition. In total, more than 180 compounds were detected in the studied samples. The detected compounds belong to various chemical classes such as terpenes, alcohols, acids, aldehydes, ketones, esters, norisoprenoids, benzene and furane derivatives, and organic compounds containing sulfur and nitrogen heteroatom. Ten chiral compounds (linalool, trans-linalool oxide, cis-linalool oxide, 4-terpineol, ?-terpineol, hotrienol, and four stereoisomers of lilac aldehydes) were selected for further chiral separation. PMID:25099214

  11. Examining compound-specific nitrogen isotopic composition of amino acids (?15NAA) as a new proxy for sedimentary organic N

    NASA Astrophysics Data System (ADS)

    Batista, F.; Ravelo, A. C.; Mccarthy, M. D.

    2014-12-01

    The stable nitrogen (N) isotopic (?15N) signature of marine sedimentary N (?15Nbulk) is commonly applied as a proxy for the ?15N of sinking particulate organic matter (?15NPOMsink), and by extension the ?15N of marine primary production. Although a general correspondence between the ?15Nbulk and ?15NPOMsink exists in shallow water, diagenesis or mixtures of N sources can affect this relationship. For instance, diagenesis ?15Nbulk enrichment as a function of water depth (Robinson et al., 2012), and terrestrial N sources can constitute a large portion of total sedimentary N near continental margins (Schubert & Calvert, 2001). Compound-specific amino acid analysis (?15NAA) represents a new approach to address these issues. Proteins and peptides comprise the majority of N-containing molecules in living organisms; hence ?15NAA may be a direct proxy for organic N-?15N (?15NON). However, the relationship between ?15NAA data and major sedimentary N fractions has not been evaluated. We analyzed ?15NAA and the ?15N composition of major operationally defined N fractions and their relative contribution to total N from marine POM and shallow sediments collected in Santa Barbara Basin (SBB). Fractions analyzed include bulk, acid-soluble (AS), acid-insoluble (AI), and total hydrolysable amino acid (THAA). Average sedimentary ?15NTHAA and ?15NAS are enriched relative to ?15Nbulk by 2.9‰ and 1.0‰, respectively and ?15NAI is depleted relative to ?15Nbulk by ~1.5‰. The ?15NAS and ?15NTHAA are closest to subsurface nitrate ?15N (~8‰) in SBB, consistent with a primary N source, while depleted ?15NAI values are consistent with a dominant terrestrial N source. Together, these findings help to characterize the mixture of ON compounds, including hydrolysable AA, found in fresh biomass and suggest that ?15NTHAA represents a valuable new molecular level proxy for sedimentary proteinaceous material, but requires calibration to reconstruct ?15N of source N.

  12. Aerobic biodegradation of organic compounds in hydraulic fracturing fluids.

    PubMed

    Kekacs, Daniel; Drollette, Brian D; Brooker, Michael; Plata, Desiree L; Mouser, Paula J

    2015-07-01

    Little is known of the attenuation of chemical mixtures created for hydraulic fracturing within the natural environment. A synthetic hydraulic fracturing fluid was developed from disclosed industry formulas and produced for laboratory experiments using commercial additives in use by Marcellus shale field crews. The experiments employed an internationally accepted standard method (OECD 301A) to evaluate aerobic biodegradation potential of the fluid mixture by monitoring the removal of dissolved organic carbon (DOC) from an aqueous solution by activated sludge and lake water microbial consortia for two substrate concentrations and four salinities. Microbial degradation removed from 57 % to more than 90 % of added DOC within 6.5 days, with higher removal efficiency at more dilute concentrations and little difference in overall removal extent between sludge and lake microbe treatments. The alcohols isopropanol and octanol were degraded to levels below detection limits while the solvent acetone accumulated in biological treatments through time. Salinity concentrations of 40 g/L or more completely inhibited degradation during the first 6.5 days of incubation with the synthetic hydraulic fracturing fluid even though communities were pre-acclimated to salt. Initially diverse microbial communities became dominated by 16S rRNA sequences affiliated with Pseudomonas and other Pseudomonadaceae after incubation with the synthetic fracturing fluid, taxa which may be involved in acetone production. These data expand our understanding of constraints on the biodegradation potential of organic compounds in hydraulic fracturing fluids under aerobic conditions in the event that they are accidentally released to surface waters and shallow soils. PMID:26037076

  13. Volatile organic compound monitoring by photo acoustic radiometry

    SciTech Connect

    Sollid, J.E.; Trujillo, V.L.; Limback, S.P.; Woloshun, K.A.

    1995-12-01

    Two methods for sampling and analyzing volatile organics in subsurface pore gas were developed for use at the Hazardous Waste Disposal Site at Los Alamos National Laboratory. One is Thermal Desorption Gas Chromatography Mass Spectrometry (TDGCMS), the other is Photoacoustic Radiometry (PAR). Presented here are two years worth of experience and lessons learned as both techniques matured. The sampling technique is equally as important as the analysis method. PAR is a nondispersive infrared technique utilizing band pass filters in the region from 1 to 15 {mu}m. A commercial instrument, the Model 1302 Multigas Analyzer, made by Bruel and Kjaer, was adapted for field use. To use the PAR there must be some a priori knowledge of the constellation of analytes to be measured. The TDGCMS method is sensitive to 50 analytes. Hence TDGCMS is used in an initial survey of the site to determine what compounds are present and at what concentration. Once the major constituents of the soil-gas vapor plume are known the PAR can be configured to monitor for the five analytes of most interest. The PAR can analyse a sample in minutes, while in the field. The PAR is also quite precise in controlled situations.

  14. Advanced heat pump for the recovery of volatile organic compounds

    SciTech Connect

    Not Available

    1992-03-01

    Emissions of Volatile Organic Compounds (VOC) from stationary industrial and commercial sources represent a substantial portion of the total US VOC emissions. The Toxic-Release Inventory'' of The US Environmental Protection Agency estimates this to be at about 3 billion pounds per year (1987 estimates). The majority of these VOC emissions are from coating processes, cleaning processes, polymer production, fuel production and distribution, foam blowing,refrigerant production, and wood products production. The US Department of Energy's (DOE) interest in the recovery of VOC stems from the energy embodied in the recovered solvents and the energy required to dispose of them in an environmentally acceptable manner. This Phase I report documents 3M's work in close working relationship with its subcontractor Nuclear Consulting Services (Nucon) for the preliminary conceptual design of an advanced Brayton cycle heat pump for the recovery of VOC. Nucon designed Brayton cycle heat pump for the recovery of methyl ethyl ketone and toluene from coating operations at 3M Weatherford, OK, was used as a base line for the work under cooperative agreement between 3M and ODE. See appendix A and reference (4) by Kovach of Nucon. This cooperative agreement report evaluates and compares an advanced Brayton cycle heat pump for solvent recovery with other competing technologies for solvent recovery and reuse. This advanced Brayton cycle heat pump is simple (very few components), highly reliable (off the shelf components), energy efficient and economically priced.

  15. A novel nanostructure for ultrasensitive volatile organic compound sensing

    NASA Astrophysics Data System (ADS)

    Zhao, Huaizhou; Rizal, Binod; Ren, Zhifeng; Naughton, Michael J.; Chiles, Thomas C.; Cai, Dong

    2011-03-01

    We have developed an arrayed nanocoaxial structure for the ultrasensitive sensing detection and identification of volatile organic compounds (VOC) by dielectric impedance spectroscopy. VOC molecules are absorbed into porous dielectric material in the annulus between nanoscale coax electrodes. A theoretical expression for the basic adsorption mechanism agrees with the experimental results. Detection sensitivities at parts-per-billion levels were demonstrated for a variety of VOCs. A limit-of-detection of ethanol reached ~ 100 parts-per-trillion, following a Freundlich power-law isotherm across four decades of ethanol concentration. A linear dependence on VOC dielectric constant was observed. Dielectric impedance nanospectroscopy was also performed by scanning frequency from 10 mHz to 1 MHz, with distinctive spectra of different VOCs discovered. These were utilized to conduct colorimetric identification of VOCs. The results suggest our novel nanocoaxial sensor can be used as a sensitive, broadband, and multimodal sensing platform for chemical detection. The National Cancer Institute CA137681, the Department of Navy, the National Science Foundation PHY-0804718, and the Seaver Institute. Emails: caid@bc.edu; naughton@bc.edu.

  16. Predicting the emission rate of volatile organic compounds fromvinyl flooring

    SciTech Connect

    Cox, Steven S.; Little, John C.; Hodgson, Alfred T.

    2001-03-01

    A model for predicting the rate at which a volatile organic compound (VOC) is emitted from a diffusion-controlled material is validated for three contaminants (n-pentadecane, n-tetradecane, and phenol) found in vinyl flooring (VF). Model parameters are the initial VOC concentration in the material-phase (C{sub 0}), the material/air partition coefficient (K), and the material-phase diffusion coefficient (D). The model was verified by comparing predicted gas-phase concentrations to data obtained during small-scale chamber tests, and by comparing predicted material-phase concentrations to those measured at the conclusion of the chamber tests. Chamber tests were conducted with the VF placed top side up and bottom side up. With the exception of phenol, and within the limits of experimental precision, the mass of VOCs recovered in the gas phase balances the mass emitted from the material phase. The model parameters (C{sub 0}, K, and D) were measured using procedures that were completely independent of the chamber test. Gas- and material-phase predictions compare well to the bottom-side-up chamber data. The lower emission rates for the top-side-up orientation may be explained by the presence of a low-permeability surface layer. The sink effect of the stainless steel chamber surface was shown to be negligible.

  17. Identification of nonmethane organic compound emissions from grassland vegetation.

    SciTech Connect

    Fukui, Y.; Doskey, P. V.; Environmental Research; NASA Ames Research Center

    2000-01-01

    Emissions of nonmethane organic compounds (NMOCs) from grassland vegetation were collected in Summa(reg.sign) passivated stainless-steel canisters with a static enclosure technique and were analyzed by high-resolution gas chromatography with flame ionization and ion trap mass spectrometric detectors. Approximately 40 NMOCs with 6-10 carbon atoms were observed in samples analyzed by high-resolution gas chromatography with the flame ionization detector. Nineteen NMOCs in this molecular weight range (6 aliphatic oxygenates; 1 aromatic hydrocarbon; and 4 acyclic, 5 monocyclic, and 3 bicyclic monoterpenoids) were identified by ion trap mass spectrometry. Mass spectrometry was particularly useful for identifying myrcene and cis-3-hexenylacetate, which coeluted on a fused-silica capillary column coated with a 1-{mu}m-thick film of polydimethylsiloxane. An evaluation of the reactivity of the grassland emissions revealed that the aliphatic oxygenates have lifetimes of a few hours with respect to oxidation by OH and O{sub 3} in the atmosphere. This value is similar to the lifetimes of the bicyclic monoterpenoids. The expected lifetimes of the monoterpenoids with respect to oxidation by NO{sub 3} are only several minutes.

  18. Volatile organic silicon compounds: the most undesirable contaminants in biogases.

    PubMed

    Ohannessian, Aurélie; Desjardin, Valérie; Chatain, Vincent; Germain, Patrick

    2008-01-01

    Recently a lot of attention has been focused on volatile organic silicon compounds (VOSiC) present in biogases. They induce costly problems due to silicate formation during biogas combustion in valorisation engine. The cost of converting landfill gas and digester gas into electricity is adversely affected by this undesirable presence. VOSiC in biogases spark off formation of silicate deposits in combustion chambers. They engender abrasion of the inner surfaces leading to serious damage, which causes frequent service interruptions, thus reducing the economic benefit of biogases. It is already known that these VOSiC originate from polydimethylsiloxanes (PDMS) hydrolysis. PDMS (silicones) are used in a wide range of consumer and industrial applications. PDMS are released into the environment through landfills and wastewater treatment plants. There is a lack of knowledge concerning PDMS biodegradation during waste storage. Consequently, understanding PDMS behaviour in landfill cells and in sludge digester is particularly important. In this article, we focused on microbial degradation of PDMS through laboratory experiments. Preliminary test concerning anaerobic biodegradation of various PDMS have been investigated. Results demonstrate that the biotic step has an obvious influence on PDMS biodegradation. PMID:19029718

  19. Volatile organic compounds at swine facilities: a critical review.

    PubMed

    Ni, Ji-Qin; Robarge, Wayne P; Xiao, Changhe; Heber, Albert J

    2012-10-01

    Volatile organic compounds (VOCs) are regulated aerial pollutants that have environmental and health concerns. Swine operations produce and emit a complex mixture of VOCs with a wide range of molecular weights and a variety of physicochemical properties. Significant progress has been made in this area since the first experiment on VOCs at a swine facility in the early 1960s. A total of 47 research institutions in 15 North American, European, and Asian countries contributed to an increasing number of scientific publications. Nearly half of the research papers were published by U.S. institutions. Investigated major VOC sources included air inside swine barns, in headspaces of manure storages and composts, in open atmosphere above swine wastewater, and surrounding swine farms. They also included liquid swine manure and wastewater, and dusts inside and outside swine barns. Most of the sample analyses have been focusing on identification of VOC compounds and their relationship with odors. More than 500 VOCs have been identified. About 60% and 10% of the studies contributed to the quantification of VOC concentrations and emissions, respectively. The largest numbers of VOC compounds with reported concentrations in a single experimental study were 82 in air, 36 in manure, and 34 in dust samples. The relatively abundant VOC compounds that were quantified in at least two independent studies included acetic acid, butanoic acid (butyric acid), dimethyl disulfide, dimethyl sulfide, iso-valeric, p-cresol, propionic acid, skatole, trimethyl amine, and valeric acid in air. They included acetic acid, p-cresol, iso-butyric acid, butyric acid, indole, phenol, propionic acid, iso-valeric acid, and skatole in manure. In dust samples, they were acetic acid, propionic acid, butyric acid, valeric acid, p-cresol, hexanal, and decanal. Swine facility VOCs were preferentially bound to smaller-size dusts. Identification and quantification of VOCs were restricted by using instruments based on gas Chromatography (GC) and liquid chromatography (LC) with different detectors most of which require time-consuming procedures to obtain results. Various methodologies and technologies in sampling, sample preparation, and sample analysis have been used. Only four publications reported using GC based analyzers and PTR-MS (proton-transfer-reaction mass spectrometry) that allowed continuous VOC measurement. Because of this, the majority of experimental studies were only performed on limited numbers of air, manure, or dust samples. Many aerial VOCs had concentrations that were too low to be identified by the GC peaks. Although VOCs emitted from swine facilities have environmental concerns, only a few studies investigated VOC emission rates, which ranged from 3.0 to 176.5mgd(-1)kg(-1) pig at swine finishing barns and from 2.3 to 45.2gd(-1)m(-2) at manure storages. Similar to the other pollutants, spatial and temporal variations of aerial VOC concentrations and emissions existed and were significantly affected by manure management systems, barn structural designs, and ventilation rates. Scientific research in this area has been mainly driven by odor nuisance, instead of environment or health concerns. Compared with other aerial pollutants in animal agriculture, the current scientific knowledge about VOCs at swine facilities is still very limited and far from sufficient to develop reliable emission factors. PMID:22682363

  20. Collapsing Aged Culture of the Cyanobacterium Synechococcus elongatus Produces Compound(s) Toxic to Photosynthetic Organisms

    PubMed Central

    Cohen, Assaf; Sendersky, Eleonora; Carmeli, Shmuel; Schwarz, Rakefet

    2014-01-01

    Phytoplankton mortality allows effective nutrient cycling, and thus plays a pivotal role in driving biogeochemical cycles. A growing body of literature demonstrates the involvement of regulated death programs in the abrupt collapse of phytoplankton populations, and particularly implicates processes that exhibit characteristics of metazoan programmed cell death. Here, we report that the cell-free, extracellular fluid (conditioned medium) of a collapsing aged culture of the cyanobacterium Synechococcus elongatus is toxic to exponentially growing cells of this cyanobacterium, as well as to a large variety of photosynthetic organisms, but not to eubacteria. The toxic effect, which is light-dependent, involves oxidative stress, as suggested by damage alleviation by antioxidants, and the very high sensitivity of a catalase-mutant to the conditioned medium. At relatively high cell densities, S. elongatus cells survived the deleterious effect of conditioned medium in a process that required de novo protein synthesis. Application of conditioned medium from a collapsing culture caused severe pigment bleaching not only in S. elongatus cells, but also resulted in bleaching of pigments in a cell free extract. The latter observation indicates that the elicited damage is a direct effect that does not require an intact cell, and therefore, is mechanistically different from the metazoan-like programmed cell death described for phytoplankton. We suggest that S. elongatus in aged cultures are triggered to produce a toxic compound, and thus, this process may be envisaged as a novel regulated death program. PMID:24959874

  1. Volatile organic compounds of polyethylene vinyl acetate plastic are toxic to living organisms.

    PubMed

    Meng, Tingzhu Teresa

    2014-01-01

    Volatile organic compounds (VOCs) in polyvinyl chloride (PVC) plastic products readily evaporate; as a result, hazardous gases enter the ecosystem, and cause cancer in humans and other animals. Polyethylene vinyl acetate (PEVA) plastic has recently become a popular alternative to PVC since it is chlorine-free. In order to determine whether PEVA is harmful to humans, this research employed the freshwater oligochaete Lumbriculus variegatus as a model to compare their oxygen intakes while they were exposed to the original stock solutions of PEVA, PVC or distilled water at a different length of time for one day, four days or eight days. During the exposure periods, the oxygen intakes in both PEVA and PVC groups were much higher than in the distilled water group, indicating that VOCs in both PEVA and PVC were toxins that stressed L. variegatus. Furthermore, none of the worms fully recovered during the24-hr recovery period. Additionally, the L. variegatus did not clump together tightly after four or eight days' exposure to either of the two types of plastic solutions, which meant that both PEVA and PVC negatively affected the social behaviors of these blackworms. The LD50 tests also supported the observations above. For the first time, our results have shown that PEVA plastic has adverse effects on living organisms, and therefore it is not a safe alternative to PVC. Further studies should identify specific compounds causing the adverse effects, and determine whether toxic effect occurs in more complex organisms, especially humans. PMID:25242410

  2. Effects of polar and nonpolar groups on the solubility of organic compounds in soil organic matter

    USGS Publications Warehouse

    Chiou, C.T.; Kile, D.E.

    1994-01-01

    Vapor sorption capacities on a high-organic-content peat, a model for soil organic matter (SOM), were determined at room temperature for the following liquids: n-hexane, 1,4-dioxane, nitroethane, acetone, acetonitrile, 1-propanol, ethanol, and methanol. The linear organic vapor sorption is in keeping with the dominance of vapor partition in peat SOM. These data and similar results of carbon tetrachloride (CT), trichloroethylene (TCE), benzene, ethylene glycol monoethyl ether (EGME), and water on the same peat from earlier studies are used to evaluate the effect of polarity on the vapor partition in SOM. The extrapolated liquid solubility from the vapor isotherm increases sharply from 3-6 wt % for low-polarity liquids (hexane, CT, and benzene) to 62 wt % for polar methanol and correlates positively with the liquid's component solubility parameters for polar interaction (??P) and hydrogen bonding (??h). The same polarity effect may be expected to influence the relative solubilities of a variety of contaminants in SOM and, therefore, the relative deviations between the SOM-water partition coefficients (Kom) and corresponding octanol-water partition coefficients (Kow) for different classes of compounds. The large solubility disparity in SOM between polar and nonpolar solutes suggests that the accurate prediction of Kom from Kow or Sw (solute water solubility) would be limited to compounds of similar polarity.

  3. Quantitative determination of volatile organic compounds in indoor dust using gas chromatography-UV spectrometry

    Microsoft Academic Search

    Anders Nilsson; Verner Lagesson; Carl-Gustaf Bornehag; Jan Sundell; Christer Tagesson

    2005-01-01

    A novel technique, gas chromatography-UV spectrometry (GC-UV), was used to quantify volatile organic compounds (VOCs) in settled dust from 389 residences in Sweden. The dust samples were thermally desorbed in an inert atmosphere and evaporated compounds were concentrated by solid phase micro extraction and separated by capillary GC. Eluting compounds were then detected, identified, and quantified using a diode array

  4. Odor-causing volatile organic compounds in wastewater treatment plant units and sludge management areas

    Microsoft Academic Search

    Faruk Dincer; Aysen Muezzinoglu

    2008-01-01

    Odors due to malodorous gas and vapor emissions from units of Izmir Wastewater Treatment Plant (WWTP) were studied and evaluated with respect to chemical composition. Altogether 29 target compounds consisting of 4 different groups of chemicals were identified and quantified in the odorous gas samples from wastewater and sludges. Total volatile malodorous organic compounds (VMOC) consisted of reduced sulfur compounds

  5. Rejection of organic micropollutants (disinfection by-products, endocrine disrupting compounds, and pharmaceutically active compounds) by NF\\/RO membranes

    Microsoft Academic Search

    Katsuki Kimura; Gary Amy; Jörg E. Drewes; Thomas Heberer; Tae-Uk Kim; Yoshimasa Watanabe

    2003-01-01

    The growing demand on water resources has increased interest in wastewater reclamation for potable reuse, in which rejection of organic micropollutants such as disinfection by-products (DBPs), endocrine disrupting compounds (EDCs), and pharmaceutically active compounds (PhACs) is of great concern. The objective of this study was to investigate the rejection of DBPs, EDCs, and PhACs by nanofiltration (NF) and reverse osmosis

  6. Characterization of microbial species in a regenerative bio-filter system for volatile organic compound removal

    Microsoft Academic Search

    Wen-Hsuan Huang; Zhiqiang Wang; Geetika Choudhary; Beverly Guo; Jianshun Zhang; Dacheng Ren

    2012-01-01

    Effective removal of volatile organic compounds is critical for indoor air quality control. The performance of traditional technologies of volatile organic compound removal is limited by inadequate selection of filter media, poor airflow management inside the cleaning devices, insufficient catalytic reaction surface area, and poor distribution of UV light irradiation. In comparison, the relatively new regenerative air filtration systems use

  7. Neuro-Fuzzy Knowledge Representation for Toxicity Prediction of Organic Compounds

    E-print Network

    Gini, Giuseppina

    1 Neuro-Fuzzy Knowledge Representation for Toxicity Prediction of Organic Compounds Dan Neagu1 on neural and neuro-fuzzy structures are developed to represent knowledge about a large data set containing chemical descriptors of organic compounds, commonly used in industrial processes. The neuro-fuzzy models

  8. Ion-trap detection of volatile organic compounds in alveolar breath

    Microsoft Academic Search

    M. Phillips; J. Greenberg

    1992-01-01

    We describe a method for the collection and microanalysis of the volatile organic compounds in human breath. A transportable apparatus supplies subjects with purified air and samples their alveolar breath; the volatile organic compounds are captured in an adsorptive trap containing activated carbon and molecular sieve. The sample is thermally desorbed from the trap in an automated microprocessor-controlled device, concentrated

  9. Organic compounds at different depths in a sandy soil and their role in water repellency

    Microsoft Academic Search

    C. P. MorleyA; K. A. MainwaringA; S. H. Doerr; P. Douglas; C. T. Llewellyn; L. W. Dekker

    2005-01-01

    The causes of soil water repellency are still only poorly understood. It is generally assumed that hydrophobic organic compounds are responsible, but those concerned have not previously been identified by comparison between samples taken from a water repellent topsoil and the wettable subsoil. In this study we separated, characterised, and compared the organic compounds present at 4 different depths in

  10. Origin of organic compounds on the primitive earth and in meteorites

    Microsoft Academic Search

    Stanley L. Miller; Harold C. Urey; J. Oró

    1976-01-01

    Summary The role and relative contributions of different forms of energy to the synthesis of amino acids and other organic compounds on the primitive earth, in the parent bodies or carbonaceous chondrites, and in the solar nebula are examined. A single source of energy or a single process would not account for all the organic compounds synthesized in the solar

  11. 40 CFR 60.112 - Standard for volatile organic compounds (VOC).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 false Standard for volatile organic compounds (VOC). 60.112 Section 60.112 Protection of Environment...1978 § 60.112 Standard for volatile organic compounds (VOC). (a) The owner or operator of any storage vessel to...

  12. 40 CFR 60.112a - Standard for volatile organic compounds (VOC).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...Standard for volatile organic compounds (VOC). 60.112a Section 60.112a Protection...Standard for volatile organic compounds (VOC). (a) The owner or operator of...vapor recovery system which collects all VOC vapors and gases discharged from the...

  13. 40 CFR 60.312 - Standard for volatile organic compounds (VOC).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...Standard for volatile organic compounds (VOC). 60.312 Section 60.312 Protection...Standard for volatile organic compounds (VOC). (a) On and after the date on...cause the discharge into the atmosphere of VOC emissions from any metal furniture...

  14. TECHNICAL ASSISTANCE DOCUMENT: THE USE OF PORTABLE VOLATILE ORGANIC COMPOUND ANALYZERS FOR LEAK DETECTION

    EPA Science Inventory

    This document has been prepared for the purpose of providing guidance on the selection and use of portable volatile organic compound analyzers for monitoring process leaks. Specifically the types of volatile organic compound analyzers capable of performing U.S. EPA Method 21 dete...

  15. NaCl Aerosol Particle Hygroscopicity Dependence on Mixing with Organic Compounds

    Microsoft Academic Search

    H.-C. Hansson; M. J. Rood; S. Koloutsou-Vakakis; K. Hämeri; D. Orsini; A. Wiedensohler

    1998-01-01

    Organic compounds in the atmosphere can influence the activation, growth and lifetimes of haze, fog and cloud droplets by changing the condensation and evaporation rates of liquid water by these aqueous aerosol particles. Depending on the nature and properties of the organic compounds, the change can be to enhance or reduce these rates. In this paper we used a tandem

  16. 40 CFR Appendix Viii to Part 266 - Organic Compounds for Which Residues Must Be Analyzed

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 2010-07-01 false Organic Compounds for Which Residues Must Be Analyzed...App. VIII Appendix VIII to Part 266—Organic Compounds for Which Residues Must Be Analyzed...Chloroform Diethyl phthalate Methylene chloride Butyl benzyl phthalate...

  17. Sorption of organic compounds in the aqueous phase onto tire rubber

    Microsoft Academic Search

    Jae Y. Kim; Jae K. Park; Tuncer B. Edil

    1997-01-01

    Batch sorption tests were conducted to investigate the sorption capacity of organic compounds by ground tire and to assess the effects of the presence of other organic compounds, ionic strength, pH, ground tire particle size, and temperature on sorption. None of the factors were significant under the conditions tested, m-Xylene had the highest partition coefficient, followed by ethylbenzene, toluene, trichloroethylene,

  18. Emissions of Biogenic Volatile Organic Compounds and Observations of VOC Oxidation at Harvard Forest

    Microsoft Academic Search

    K. A. McKinney; T. Pho; A. Vasta; B. H. Lee

    2009-01-01

    The contribution of biogenic volatile organic compounds (BVOCs) to oxidant concentrations and secondary organic aerosol (SOA) production in forested environments depends on the emission rates of these compounds. Recent findings have suggested that the emission rates of BVOCs and the range of species emitted could be larger than previously thought. In this study, Proton Transfer Reaction Mass Spectrometry (PTR-MS) was

  19. Organic Compounds in Produced Waters From Coalbed Methane Wells in the Powder River Basin, WY

    NASA Astrophysics Data System (ADS)

    Orem, W.; Lerch, H.; Rice, C.; Tatu, C.

    2003-12-01

    Coalbed methane (CBM) is a significant energy resource, accounting for about 7.5% of natural gas production in the USA. The Powder River Basin (PRB), WY is currently one of the most active CBM drilling sites in the USA. One aspect of concern in the exploitation of CBM resources is the large volumes of water recovered from wells along with the natural gas (so-called produced waters). CBM produced waters may contain coal-derived dissolved substances (inorganic and organic) of environmental concern, and a potential disposal problem for CBM producers. Studies of CBM produced water have mostly focused on inorganics. Dissolved organic compounds in CBM produced water may also present an environmental issue, but little information is available. As part of a larger study of the health and environmental effects of organic compounds derived from coal, we analyzed a number of produced water samples from CBM wells in the PRB, WY for dissolved organic substances. Our goals were results on coal-derived organic compounds in the environment to evaluate potential health and environmental impacts. In 2001, we sampled produced water from 13 CBM wells covering a broad area of the PRB in order to identify and quantify the organic compounds present. In 2002, produced water from 4 of the 2001 CBM wells and 8 new CBM wells were sampled for dissolved organic components. Produced water was collected directly from each well and filtered on site. Organic compounds were isolated from produced water samples by liquid/liquid extraction with methylene chloride and identified and quantified by gas chromatography/mass spectrometry (GC/MS). Organic compounds identified by GC/MS in extracts of the produced water samples, included: phenols, biphenyls, N-, O-, and S-containing heterocyclic compounds, polycyclic aromatic hydrocarbons, phthalates, aliphatic hydrocarbons, and fatty acids. However, most compounds had structures unidentified by GC/MS databases. Many of the identified organic compounds (phenols, heterocyclic compounds, polycyclic aromatic hydrocarbons) are likely coal-derived. Concentrations of individual compounds ranged from about 10 to 0.01 ? g/l. Some CBM wells with high concentrations of dissolved organic compounds present in 2001 had much lower concentrations in 2002, indicating temporal variability. Some of the organic compounds identified in the produced water samples are toxic (mutagenic and cancer promoters), but are unlikely to have acute health effects at the low levels present. Chronic health and environmental effects from long periods of low-level exposure, however, are possible. Continuing studies will expand the existing dataset on dissolved organic compounds in produced water, and evaluate the toxic effects of these compounds.

  20. A Thermal Desorption Chemical Ionization Mass Spectrometer for the In Situ Measurement of Aerosol Organic Compounds

    Microsoft Academic Search

    T. Thornberry; D. M. Murphy; E. R. Lovejoy

    2005-01-01

    Organic material has been observed to comprise a significant fraction of organic aerosol mass in many regions of the troposphere. The organic compounds that comprise the organic fraction of atmospheric aerosol have the potential to affect the radiative and microphysical properties of the aerosol, with concomitant impacts on the role of the aerosol in climate forcing through direct and indirect

  1. [Ru/AC catalyzed ozonation of recalcitrant organic compounds].

    PubMed

    Wang, Jian-Bing; Hou, Shao-Pei; Zhou, Yun-Rui; Zhu, Wan-Peng; He, Xu-Wen

    2009-09-15

    Ozonation and Ru/AC catalyzed ozonation of dimethyl phthalate (DMP), phenols and disinfection by-products precursors were studied. It shows that Ru/AC catalyst can obviously enhance the mineralization of organic compounds. In the degradation of DMP, TOC removal was 28.84% by ozonation alone while it was 66.13% by catalytic ozonation. In the oxidation of 23 kinds of phenols, TOC removals were 9.57%-56.08% by ozonation alone while they were 41.81%-82.32% by catalytic ozonation. Compared to ozonation alone, Ru/AC catalyzed ozonation was more effective for the reduction of disinfection by-products formation potentials in source water. The reduction of haloacetic acids formation potentials was more obvious than thichlomethane formation potentials. After the treatment by catalytic ozonation, the haloacetic acids formation potentials decreased from 144.02 microg/L to 58.50 microg/L, which was below the standard value of EPA. However ozonation alone could not make it reach the standard. The treatments of source water by BAC, O3 + BAC, O3/AC + BAC and Ru/AC + O3 + BAC were also studied. In the four processes, TOC removal was 3.80%, 20.14%, 27.45% and 48.30% respectively, COD removal was 4.37%, 27.22%, 39.91% and 50.00% respectively, UV254 removal was 8.16%, 62.24%, 67.03% and 84.95% respectively. Ru/AC + O3 + BAC process is more effective than the other processes for the removal of TOC, COD and UV254 and no ruthenium leaching observed in the solution. It is a promising process for the treatment of micro polluted source water. PMID:19927805

  2. Enhanced transport of low-polarity organic compounds through soil by cyclodextrin

    Microsoft Academic Search

    Mark L. Brusseau; Xiaojiang Wang; Qinhong Hu

    1994-01-01

    The removal of low-polarity organic compounds from soils and aquifers by water flushing is often constrained by sorption interactions. There is great interest in developing systems that can enhance the transport of organic compounds through porous media, thus facilitating remediation. We investigated the potential of hydroxypropyl-[beta]-cyclodextrin (HPCD), a microbially produced compound, to reduce the sorption and to enhance the transport

  3. Detection of Volatile Organic Compounds by Weight-Detectable Sensors coated with Metal-Organic Frameworks

    NASA Astrophysics Data System (ADS)

    Yamagiwa, Hiroki; Sato, Seiko; Fukawa, Tadashi; Ikehara, Tsuyoshi; Maeda, Ryutaro; Mihara, Takashi; Kimura, Mutsumi

    2014-09-01

    Detection of volatile organic compounds (VOCs) using weight-detectable quartz microbalance and silicon-based microcantilever sensors coated with crystalline metal-organic framework (MOF) thin films is described in this paper. The thin films of two MOFs were grown from COOH-terminated self-assembled monolayers onto the gold electrodes of sensor platforms. The MOF layers worked as the effective concentrators of VOC gases, and the adsorption/desorption processes of the VOCs could be monitored by the frequency changes of weight-detectable sensors. Moreover, the MOF layers provided VOC sensing selectivity to the weight-detectable sensors through the size-selective adsorption of the VOCs within the regulated nanospace of the MOFs.

  4. Detection of Volatile Organic Compounds by Weight-Detectable Sensors coated with Metal-Organic Frameworks

    PubMed Central

    Yamagiwa, Hiroki; Sato, Seiko; Fukawa, Tadashi; Ikehara, Tsuyoshi; Maeda, Ryutaro; Mihara, Takashi; Kimura, Mutsumi

    2014-01-01

    Detection of volatile organic compounds (VOCs) using weight-detectable quartz microbalance and silicon-based microcantilever sensors coated with crystalline metal-organic framework (MOF) thin films is described in this paper. The thin films of two MOFs were grown from COOH-terminated self-assembled monolayers onto the gold electrodes of sensor platforms. The MOF layers worked as the effective concentrators of VOC gases, and the adsorption/desorption processes of the VOCs could be monitored by the frequency changes of weight-detectable sensors. Moreover, the MOF layers provided VOC sensing selectivity to the weight-detectable sensors through the size-selective adsorption of the VOCs within the regulated nanospace of the MOFs. PMID:25175808

  5. Changes in organic sulfur compounds in coal macerals during liquefaction

    SciTech Connect

    Winans, R.E. [Argonne National Lab., IL (United States); Joseph, J.T.; Fisher, R.B. [Amoco Oil Co., Naperville, IL (United States). Research and Development Dept.

    1994-02-01

    Several general trends were observed in reactivity patterns of sulfur compounds in macerals. Sulfur is reduced in the asphaltene fraction compared to initial maceral. Aliphatics are removed and polycyclic aromatic compounds are both stable and probably formed under these conditions. Molecules containing two sulfur atoms are formed. The preasphaltenes are now being analyzed by DEIHRMS.

  6. The composition of the primitive atmosphere and the synthesis of organic compounds on the early Earth

    NASA Technical Reports Server (NTRS)

    Bada, J. L.; Miller, S. L.

    1985-01-01

    The generally accepted theory for the origin of life on the Earth requires that a large variety of organic compounds be present to form the first living organisms and to provide the energy sources for primitive life either directly or through various fermentation reactions. This can provide a strong constraint on discussions of the formation of the Earth and on the composition of the primitive atmosphere. In order for substantial amounts of organic compounds to have been present on the prebiological Earth, certain conditions must have existed. There is a large body of literature on the prebiotic synthesis of organic compounds in various postulated atmospheres. In this mixture of abiotically synthesized organic compounds, the amino acids are of special interest since they are utilized by modern organisms to synthesize structural materials and a large array of catalytic peptides.

  7. Cloud processing of organic compounds: Secondary organic aerosol and nitrosamine formation

    NASA Astrophysics Data System (ADS)

    Hutchings, James W., III

    Cloud processing of atmospheric organic compounds has been investigated through field studies, laboratory experiments, and numerical modeling. Observational cloud chemistry studies were performed in northern Arizona and fog studies in central Pennsylvania. At both locations, the cloud and fogs showed low acidity due to neutralization by soil dust components (Arizona) and ammonia (Pennsylvania). The field observations showed substantial concentrations (20-5500 ng•L -1) of volatile organic compounds (VOC) in the cloud droplets. The potential generation of secondary organic aerosol mass through the processing of these anthropogenic VOCs was investigated through laboratory and modeling studies. Under simulated atmospheric conditions, in idealized solutions, benzene, toluene, ethylbenzene, and xylene (BTEX) degraded quickly in the aqueous phase with half lives of approximately three hours. The degradation process yielded less volatile products which would contribute to new aerosol mass upon cloud evaporation. However, when realistic cloud solutions containing natural organic matter were used in the experiments, the reaction kinetics decreased with increasing organic carbon content, resulting in half lives of approximately 7 hours. The secondary organic aerosol (SUA) mass formation potential of cloud processing of BTEX was evaluated. SOA mass formation by cloud processing of BTEX, while strongly dependent on the atmospheric conditions, could contribute up to 9% of the ambient atmospheric aerosol mass, although typically ˜1% appears realistic. Field observations also showed the occurrence of N-nitrosodimethylamine (NDMA), a potent carcinogen, in fogs and clouds (100-340 ng•L -1). Laboratory studies were conducted to investigate the formation of NDMA from nitrous acid and dimethylamine in the homogeneous aqueous phase within cloud droplets. While NDMA was produced in the cloud droplets, the low yields (<1%) observed could not explain observational concentrations. Therefore heterogeneous or gaseous formation of NDMA with partitioning to droplet must be the source of aqueous NDMA. Box-model calculations tended to demonstrate a predominance of a gas phase formation mechanism followed by partitioning into the cloud droplets. The calculations were consistent with field measurements of gaseous and aqueous NDMA concentrations. Measurements and model calculations showed that while NDMA is eventually photolyzed, it might persist in the atmosphere for hours.

  8. Compendium of methods for the determination of toxic organic compounds in ambient air, June 1988

    SciTech Connect

    Winberry, W.T.; Murphy, N.T.; Riggan, R.M.

    1988-06-01

    This Compendium was prepared to provide regional, state, and local environmental regulatory agencies, as well as other interested parties, with specific guidance on the determination of selected toxic organic compounds in ambient air. The decision was made to begin preparation of a Compendium that would provide specific sampling and analysis procedures, in a standardized format, for selected toxic organic compounds. The current Compendium consists of fourteen procedures considered to be of primary importance in current toxic organic monitoring efforts.

  9. The relation between conductivity, optical absorption, and lonicity in oxides and organic compounds

    NASA Astrophysics Data System (ADS)

    Torrance, Jerry B.

    1992-01-01

    With a simple ionic model to quantify the ionicity in oxides and organic compounds, a common pattern of behavior is found for their conductivity and optical absorption. As the ionicity of these compounds decreases, the energy of optical absorption decreases, but they remain insulating, ionic compounds—until a critical ionicity, below which the optical gap vanishes, the oinic state becomes unstable, and interesting properties appear. In both classes of materials, just below this critical ionicity they are mixed valence and have metallic conductivity. Organic compounds with lower ionicity form neutral solids, while the corresponding oxides do not form stable compounds. In addition, there are some compounds of both types near the critical ionicity in which a phase transformation can be induced: neutral-ionic transitions in organics, and metal-insulator transitions in oxides.

  10. Volatile Organic Compound Investigation Results, 300 Area, Hanford Site, Washington

    SciTech Connect

    Peterson, Robert E.; Williams, Bruce A.; Smith, Ronald M.

    2008-07-07

    Unexpectedly high concentrations of volatile organic compounds (VOC) were discovered while drilling in the unconfined aquifer beneath the Hanford Site’s 300 Area during 2006. The discovery involved an interval of relatively finer-grained sediment within the unconfined aquifer, an interval that is not sampled by routine groundwater monitoring. Although VOC contamination in the unconfined aquifer has been identified and monitored, the concentrations of newly discovered contamination are much higher than encountered previously, with some new results significantly higher than the drinking water standards. The primary contaminant is trichloroethene, with lesser amounts of tetrachloroethene. Both chemicals were used extensively as degreasing agents during the fuels fabrication process. A biological degradation product of these chemicals, 1,2-dichloroethene, was also detected. To further define the nature and extent of this contamination, additional characterization drilling was undertaken during 2007. Four locations were drilled to supplement the information obtained at four locations drilled during the earlier investigation in 2006. The results of the combined drilling indicate that the newly discovered contamination is limited to a relatively finer-grained interval of Ringold Formation sediment within the unconfined aquifer. The extent of this contamination appears to be the area immediately east and south of the former South Process Pond. Samples collected from the finer-grained sediment at locations along the shoreline confirm the presence of the contamination near the groundwater/river interface. Contamination was not detected in river water that flows over the area where the river channel potentially incises the finer-grained interval of aquifer sediment. The source for this contamination is not readily apparent. A search of historical documents and the Hanford Waste Information Data System did not provide definitive clues as to waste disposal operations and/or spills that might have resulted in groundwater contamination in this sediment, although several relatively small accidental releases of VOCs have occurred in the past in the northern portion of the 300 Area. It is likely that large quantities of degreasing solutions were disposed to the North and South Process Ponds during the 1950s and 1960s, and that evidence for them in the upper portion of the unconfined aquifer has been removed because of groundwater movement through the much more transmissive sediment. Also, investigations to date have revealed no evidence to suggest that a dense, non-aqueous phase liquid remains undetected in the subsurface. Potential pathways for contamination to migrate from this finer-grained sediment include groundwater movement through the interval to offshore locations in the Columbia River channel, dispersion out of the finer-grained interval into the overlying transmissive sediment (again, with transport to the riverbed), and potential future withdrawal via water supply wells.

  11. INVESTIGATIONS OF BIODEGRADABILITY AND TOXICITY OF ORGANIC COMPOUNDS

    EPA Science Inventory

    The development of elaborate industrial societies has led to proliferation of a vast number of complex chemicals for industrial, agricultural and domestic use. Some portion of these compounds eventually find their way into municipal and industrial wastewater. Unless specifically ...

  12. 40 CFR 60.622 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...SOURCES Standards of Performance for Petroleum Dry Cleaners § 60.622 Standards for volatile...compounds. (a) Each affected petroleum solvent dry cleaning dryer that is installed at a petroleum dry cleaning plant after December 14,...

  13. 40 CFR 60.622 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...SOURCES Standards of Performance for Petroleum Dry Cleaners § 60.622 Standards for volatile...compounds. (a) Each affected petroleum solvent dry cleaning dryer that is installed at a petroleum dry cleaning plant after December 14,...

  14. Volatile organic compounds produced during irradiation of mail.

    PubMed

    Smith, Philip A; Sheely, Michael V; Hakspiel, Shelly J; Miller, Stephen

    2003-01-01

    In 2001, Bacillus anthracis spores were delivered through the United States postal system in a series of bioterrorist acts. Controls proposed for this threat included sanitization with high-energy electrons. Solid phase microextraction was used with gas chromatography/mass spectrometry for field sampling and analysis of volatile compounds apparently produced from polymeric materials such as cellulose and plastics, immediately following processing of mail at a commercial irradiation facility. Solid phase microextraction and direct sampling of air into a cryogenically cooled temperature programmable inlet were used in the laboratory for gas chromatography/mass spectrometry analysis of air in contact with irradiated mail, envelopes only (packaged identically to mail), and air inside irradiated plastic mail packaging bags (with neither mail nor envelopes). Irradiated mail or envelope systems produced hydrocarbons such as propane, butane, pentane, hexane, heptane, methylpentanes, and benzene; and oxygen-containing compounds such as acetaldehyde, acrolein, propionaldehyde, furan, 2-methylfuran, methanol, acetone, 2-butanone, and ethanol. In addition to hydrocarbons, methyl and ethyl nitrate were detected in irradiated bags that contained only air, suggesting reactive nitrogen species formed from air irradiation reacted with hydroxy-containing compounds to give nitro esters. The similarities of volatile compounds in irradiated systems containing paper to those observed by researchers studying cellulose pyrolysis suggests common depolymerization and degradation mechanisms in each case. These similarities should guide additional work to examine irradiated mail for chemical compounds not detectable by methods used here. PMID:12688843

  15. Emission of volatile organic compounds during composting of municipal solid wastes

    Microsoft Academic Search

    Dimitris P Komilis; Robert K Ham; Jae K Park

    2004-01-01

    The objective of this study was to identify and quantify volatile and semi-volatile organic compounds (VOCs) produced during composting of the organic fraction of municipal solid wastes (MSW). A laboratory experiment was conducted using organic components of MSW that were decomposed under controlled aerobic conditions. Mixed paper primarily produced alkylated benzenes, alcohols and alkanes. Yard wastes primarily produced terpenes, alkylated

  16. Composites for removing metals and volatile organic compounds and method thereof

    Microsoft Academic Search

    Paul R. Coronado; Sabre J. Coleman; John G. Reynolds

    2006-01-01

    Functionalized hydrophobic aerogel\\/solid support structure composites have been developed to remove metals and organic compounds from aqueous and vapor media. The targeted metals and organics are removed by passing the aqueous or vapor phase through the composite which can be in molded, granular, or powder form. The composites adsorb the metals and the organics leaving a purified aqueous or vapor

  17. 40 CFR Appendix III to Part 268 - List of Halogenated Organic Compounds Regulated Under § 268.32

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...false List of Halogenated Organic Compounds Regulated Under Â...268—List of Halogenated Organic Compounds Regulated Under...Iodomethane 25. Methylene chloride 26. 1,1,1,2-Tetrachloroethane...3-Thrichloropropane 35. Vinyl Chloride II. Semivolatiles...

  18. In situ measurements of gas/particle-phase transitions for atmospheric semivolatile organic compounds.

    PubMed

    Williams, Brent J; Goldstein, Allen H; Kreisberg, Nathan M; Hering, Susanne V

    2010-04-13

    An understanding of the gas/particle-phase partitioning of semivolatile compounds is critical in determining atmospheric aerosol formation processes and growth rates, which in turn affect global climate and human health. The Study of Organic Aerosol at Riverside 2005 campaign was performed to gain a better understanding of the factors responsible for aerosol formation and growth in Riverside, CA, a region with high concentrations of secondary organic aerosol formed through the phase transfer of low-volatility reaction products from the oxidation of precursor gases. We explore the ability of the thermal desorption aerosol gas chromatograph (TAG) to measure gas-to-particle-phase transitioning for several organic compound classes (polar and nonpolar) found in the ambient Riverside atmosphere by using in situ observations of several hundred semivolatile organic compounds. Here we compare TAG measurements to modeled partitioning of select semivolatile organic compounds. Although TAG was not designed to quantify the vapor phase of semivolatile organics, TAG measurements do distinguish when specific compounds are dominantly in the vapor phase, are dominantly in the particle phase, or have both phases present. Because the TAG data are both speciated and time-resolved, this distinction is sufficient to see the transition from vapor to particle phase as a function of carbon number and compound class. Laboratory studies typically measure the phase partitioning of semivolatile organic compounds by using pure compounds or simple mixtures, whereas hourly TAG phase partitioning measurements can be made in the complex mixture of thousands of polar/nonpolar and organic/inorganic compounds found in the atmosphere. PMID:20142511

  19. Influence of soil organic matter composition on the partition of organic compounds

    USGS Publications Warehouse

    Rutherford, D.W.; Chiou, C.T.; Klle, D.E.

    1992-01-01

    The sorption at room temperature of benzene and carbon tetrachloride from water on three high-organic-content soils (muck, peat, and extracted peat) and on cellulose was determined in order to evaluate the effect of sorbent polarity on the solute partition coefficients. The isotherms are highly linear for both solutes on all the organic matter samples, which is consistent with a partition model. For both solutes, the extracted peat shows the greatest sorption capacity while the cellulose shows the lowest capacity; the difference correlates with the polar-to-nonpolar group ratio [(O + N)/C] of the sorbent samples. The relative increase of solute partition coefficient (Kom) with a decrease of sample polar content is similar for both solutes, and the limiting sorption capacity on a given organic matter sample is comparable between the solutes. This observation suggests that one can estimate the polarity effect of a sample of soil organic matter (SOM) on Kom of various nonpolar solutes by determining the partition coefficient of single nonpolar solute when compositional analysis of the SOM is not available. The observed dependence of Kom on sample polarity is used to account for the variation of Kom values of individual compounds on different soils that results from change in the polar group content of SOM. On the assumption that the carbon content of SOM in "ordinary soils" is 53-63%, the calculated variation of Kom is a factor of ???3. This value is in agreement with the limit of variation of most Kom data with soils of relatively high SOM contents.

  20. Solubilities of hydrophobic compounds in aqueous-organic solvent mixtures.

    PubMed

    Nyssen, G A; Miller, E T; Glass, T F; Quinn, C R; Underwood, J; Wilson, D J

    1987-07-01

    Solubilities of several hydrophobic organic substances (paradichlorobenzene, endrin, naphthalene, and dibutyl phthalate) in aqueous solutions containing up to 0.10 mole fraction of common alcohols and ketones, were measured by gas chromatography. The solubilities are significantly increased by the alcohols and ketones. The results are interpreted in terms of the association of n molecules of alcohol or ketone with each hydrophobic organic molecule. Values of n and the equilibrium constant for this association are reported for each hydrophobic organic-alcohol and organic-ketone combination. The implications of these results for the disposal of toxic wastes by landfilling is discussed. PMID:24254096

  1. Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry

    SciTech Connect

    Fehsenfeld, F.; Trainer, M. (National Oceanic and Atmospheric Administration, Boulder, CO (United States) Univ. of Colorado, Boulder (United States)); Calvert, J.; Guenther, A.B.; Zimmerman, P. (National Center for Atmospheric Research, Boulder, CO (United States)); Fall, R. (Univ. of Colorado, Boulder (United States)); Goldan, P.; Liu, S. (National Oceanic and Atmospheric Administration, Boulder, CO (United States)); Hewitt, C.N. (Lancaster Univ. (United Kingdom)); Lamb, B.; Westberg, H. (Washington State Univ., Pullman (United States))

    1992-12-01

    Vegetation provides a major source of reactive carbon entering the atmosphere. These compounds play an important role in (1) shaping global tropospheric chemistry, (2) regional photochemical oxidant formation, (3) balancing the global carbon cycle, and (4) production of organic acids which contribute to acidic deposition in rural areas. Present estimates place the total annual global emission of these compounds between approximately 500 and 825 Tg yr[sup -1]. The volatile olefinic compounds, such as isoprene and the monoterpenes, are thought to constitute the bulk of these emissions. However, it is becoming increasingly clear that a variety of partially oxidized hydrocarbons, principally alcohols, are also emitted. The available information concerning the terrestrial vegetation as sources of volatile organic compounds is reviewed. The biochemical processes associated with these emissions of the compounds and the atmospheric chemistry of the emitted compounds are discussed. 197 refs., 25 figs., 7 tabs.

  2. Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    Fehsenfeld, Fred; Calvert, Jack; Fall, Ray; Goldan, Paul; Guenther, Alex B.; Hewitt, C. Nicholas; Lamb, Brian; Liu, Shaw; Trainer, Michael; Westberg, Hal; Zimmerman, Pat

    1992-12-01

    Vegetation provides a major source of reactive carbon entering the atmosphere. These compounds play an important role in (1) shaping global tropospheric chemistry, (2) regional photochemical oxidant formation, (3) balancing the global carbon cycle, and (4) production of organic acids which contribute to acidic deposition in rural areas. Present estimates place the total annual global emission of these compounds between approximately 500 and 825 Tg yr-1. The volatile olefinic compounds, such as isoprene and the monoterpenes, are thought to constitute the bulk of these emissions. However, it is becoming increasingly clear that a variety of partially oxidized hydrocarbons, principally alcohols, are also emitted. The available information concerning the terrestrial vegetation as sources of volatile organic compounds is reviewed. The biochemical processes associated with these emissions of the compounds and the atmospheric chemistry of the emitted compounds are discussed.

  3. Green Synthetic Alternatives to Organic Compounds and Nanomaterials

    EPA Science Inventory

    A brief account of reactions involving microwave (MW) exposure of neat reactants or catalyzed by mineral support surfaces, such as alumina, silica, clay, or their ?doped? versions, for the rapid one-pot assembly of heterocyclic compounds from in situ generated reactive intermedia...

  4. Identification of organic compounds on diesel engine soot

    Microsoft Academic Search

    Ming-Li. Yu; Ronald A. Hites

    1981-01-01

    Several studies have shown that extracts of soot collected from light-duty diesel engines cause mutations in bacteria and mammalian cells both with and without metabolic activation. To help identify the specific compounds responsible for these biological effects, the detailed chemical composition of one such extract by gas chromatographic mass spectrometry was investigated. The two most mutagenic fractions contain alkylated phenanthrenes,

  5. Nanoparticle Formation of Organic Compounds With Retained Biological Activity

    E-print Network

    Zare, Richard N.

    : Many pharmaceuticals are formulated as powders to aid drug delivery. A major problem is how to produce powders having high purity, controlled morphology, and retained bioactivity. We demonstrate the use active compounds many of these processing steps can cause loss of bioactivity caused by shock and heat

  6. Multisorbent tubes for collecting volatile organic compounds in spacecraft air

    NASA Technical Reports Server (NTRS)

    Matney, M. L.; Beck, S. W.; Limero, T. F.; James, J. T.

    2000-01-01

    The sampling capability of Tenax-TA tubes, used in the National Aeronautics and Space Administration's solid sorbent air sampler to trap and concentrate contaminants from air aboard spacecraft, was improved by incorporating two sorbents within the tubes. Existing tubes containing only Tenax-TA allowed highly volatile compounds to "break through" during collection of a 1.5 L air sample. First the carbon molecular sieve-type sorbents Carboxen 569 and Carbosieve S-III were tested for their ability to quantitatively trap the highly volatile compounds. Breakthrough volumes were determined with the direct method, whereby low ppm levels of methanol or Freon 12 in nitrogen were flowed through the sorbent tubes at 30 mL/min, and breakthrough was detected by gas chromatography. Breakthrough volumes for methanol were about 9 L/g on Carboxen 569 and 11 L/g on Carbosieve S-III; breakthrough volumes for Freon 12 were about 7 L/g on Carboxen 569 and > 26 L/g on Carbosieve S-III. Next, dual-bed tubes containing either Tenax-TA/Carbosieve S-III, Tenax-TA/Carboxen 569, or Carbotrap/Carboxen 569 to a 10-component gas mixture were exposed, in dry and in humidified air (50% relative humidity), and percentage recoveries of each compound were determined. The Tenax-TA/Carboxen 569 combination gave the best overall recoveries (75-114% for the 10 compounds). Acetaldehyde had the lowest recovery (75%) of the 10 compounds, but this value was still an improvement over either the other two sorbent combinations or the original single-sorbent tubes.

  7. Stainless steel electrospray probe: A dead end for phosphorylated organic compounds?

    Microsoft Academic Search

    R. Tuytten; F. Lemière; E. Witters; W. Van Dongen; H. Slegers; R. P. Newton; H. Van Onckelen; E. L. Esmans

    2006-01-01

    A study of the interaction of phosphorylated organic compounds with the stainless components of a liquid chromatography–electrospray ionisation–mass spectrometry system (LC–ESI–MS) was carried out to disclose a (forgotten?) likely pitfall in the LC–ESI–MS analysis of phosphorylated compounds. The retention behaviour of some representative compounds of different important classes of phosphorylated biomolecules such as nucleotides, oligonucleotides, phosphopeptides, phospholipids and phosphorylated sugars

  8. 75 FR 24404 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Volatile Organic Compound...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-05

    ...of Air Quality Implementation Plans; Indiana; Volatile Organic Compound Automobile Refinishing Rules for Indiana AGENCY: Environmental Protection Agency...SUMMARY: EPA is approving into the Indiana State Implementation Plan (SIP)...

  9. Weathered Diesel oil as a sorptive phase for hydrophobic organic compounds in aquifer materials 

    E-print Network

    Hudson, Rondall James

    1994-01-01

    The sorptive properties of weathered diesel oil were investigated by conducting miscible displacement experiments with three hydrophobic organic compounds (HOCs), acenapthene, fluorene, and dibenzothiophene, as tracers in columns containing aquifer...

  10. PATTERN RECOGNITION STUDIES OF HALOGENATED ORGANIC COMPOUNDS USING CONDUCTING POLYMER SENSOR ARRAYS. (R825323)

    EPA Science Inventory

    Direct measurement of volatile and semivolatile halogenated organic compounds of environmental interest was carried out using arrays of conducting polymer sensors. Mathematical expressions of the sensor arrays using microscopic polymer network model is described. A classical, non...

  11. RELATIONSHIPS BETWEEN LEVELS OF VOLATILE ORGANIC COMPOUNDS IN AIR AND BLOOD FROM THE GENERAL POPULATION

    EPA Science Inventory

    Background: The relationships between levels of volatile organic compounds (VOCs) in blood and air have not been well characterized in the general population where exposure concentrations are generally at ppb levels. Objectives: This study investigates relationships between ...

  12. NEUROTOXIC EFFECTS OF CONTROLLED EXPOSURE TO A COMPLEX MIXTURE OF VOLATILE ORGANIC COMPOUNDS

    EPA Science Inventory

    Subjective reactions of discomfort, impaired air quality, irritation of mucosal membranes, and impaired memory have been reported in chemically sensitive subjects during exposure to volatile organic compounds (VOC's) found in new buildings. 6 normal healthy male subjects aged 18-...

  13. Analysis of breath volatile organic compounds as a screening tool for detection of Tuberculosis in cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    • Keywords: bovine tuberculosis; Mycobacterium bovis; breath analysis; volatile organic compound; gas chromatography; mass spectrometry; NaNose • Introduction: This presentation describes two studies exploring the use of breath VOCs to identify Mycobacterium bovis infection in cattle. • Methods: ...

  14. 76 FR 18893 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Volatile Organic Compound...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-06

    ...Measures for Lithographic and Letterpress Printing in Cleveland AGENCY: Environmental Protection...approved offset lithographic and letterpress printing volatile organic compound (VOC) rule...revised offset lithographic and letterpress printing rule (OAC 3745-21-22),...

  15. Effects of acid-washing filter treatment on quantification of aerosol organic compounds

    NASA Astrophysics Data System (ADS)

    Yang, Liming; Lim, Jaehyun; Yu, Liya E.

    The tests of standard mixtures and four sets of atmospheric particulate samples showed that an acid-wash (AW) pretreatment of fluorocarbon-coated glass fiber filters prior to aerosol sampling enhanced the quantifiable organic compounds for more than 29% (or 66 ng m -3); in particular, 47-273 ng m -3 (21-366%) more water-soluble organic compounds (WSOCs) were measured. When the acid-pretreated filters were employed, up to nine more organic species were measured in the individual daily samples. Because the acid pretreatment reduced the metal contaminants in the glass fiber filters, using the AW filters for aerosol sampling allows higher extraction recoveries of organic compounds. Since the fingerprinting compounds were more accurately determined when the aerosol samples were collected on the AW filters, better assessment of emission sources and toxicity of air pollutants can be obtained.

  16. SUPERCRITICAL FLUID EXTRACTION-GAS CHROMATOGRAPHY OF VOLATILE ORGANIC COMPOUNDS (VOC) FROM TENAX DEVICES

    EPA Science Inventory

    The report describes the development and evaluation of on-line supercritical fluid extraction-gas chromatography instrumentation and methodology for the analysis of volatile organic compounds (VOC) from adsorbent sampling devices. Supercritical fluid extraction offers potential a...

  17. PREDICTION OF THE VAPOR PRESSURE, BOILING POINT, HEAT OF VAPORIZATION AND DIFFUSION COEFFICIENT OF ORGANIC COMPOUNDS

    EPA Science Inventory

    The prototype computer program SPARC has been under development for several years to estimate physical properties and chemical reactivity parameters of organic compounds strictly from molecular structure. SPARC solute-solute physical process models have been developed and tested...

  18. ESTIMATION OF PHYSICAL PROPERTIES AND CHEMICAL REACTIVITY PARAMETERS OF ORGANIC COMPOUNDS

    EPA Science Inventory

    The computer program SPARC (Sparc Performs Automated Reasoning in Chemistry)has been under development for several years to estimate physical properties and chemical reactivity parameters of organic compounds strictly from molecular structure. SPARC uses computational algorithms ...

  19. TREATMENT OF CHLORINATED VOLATILE ORGANIC COMPOUNDS IN UPFLOW WETLAND MESOCOSMS. (R828773C003)

    EPA Science Inventory

    Sorption, biodegradation and hydraulic parameters were determined in the laboratory for two candidate soil substrate mixtures for construction of an upflow treatment wetland for volatile organic compounds (VOCs) at a Superfund site. The major parent contaminants in the groundw...

  20. Measurements of Volatile Organic Compounds Using Proton Transfer Reaction - Mass Spectrometry during the MILAGRO 2006 Campaign

    E-print Network

    Fortner, E. C.

    Volatile organic compounds (VOCs) were measured by proton transfer reaction – mass spectrometry (PTR-MS) on a rooftop in the urban mixed residential and industrial area North Northeast of downtown Mexico City as part of ...

  1. AUTOMATED CRYOGENIC PRECONCENTRATION AND GAS CHROMATOGRAPHIC DETERMINATION OF VOLATILE ORGANIC COMPOUNDS IN AIR

    EPA Science Inventory

    The performances of two nominally identical automated monitors for quantifying volatile organic compounds were compared on identical ambient laboratory air samples. The monitors incorporate cryogenic preconcentration subunits specially designed for controlled release of liquid ni...

  2. Flux Measurements of Volatile Organic Compounds from an Urban Tower Platform 

    E-print Network

    Park, Chang Hyoun

    2011-08-08

    combined with a dual-channel gas chromatography - flame ionization detection used for volatile organic compound (VOC) flux measurements in the urban area, focusing on the results of selected anthropogenic VOCs, including benzene, toluene, ethylbenzene...

  3. METHODOLOGY FOR DETERMINATION OF POLYCYCLIC AROMATIC HYDROCARBONS AND OTHER SEMIVOLATILE ORGANIC COMPOUNDS IN HOUSE DUST

    EPA Science Inventory

    Analytical methods were validated to determine polycyclic aromatic hydrocarbons (PAH) and other semivolatile organic compounds in house dust. e also examined the storage stability of three potential markers (solanesol, nicotine, and continine) for particulate-phase environmental ...

  4. Compendium of methods for the determination of toxic organic compounds in ambient air

    SciTech Connect

    Riggin, R.M.; Winberry, W.T.; Murphy, N.T.

    1988-06-01

    Determination of toxic organic compounds in ambient air is a complex task, primarily because of the wide variety of compounds of interest and the lack of standardized sampling and analysis procedures. This compendium of methods was prepared to provide current, peer-reviewed procedures in a standardized, written format for measuring toxic organic pollutants of primary importance in ambient air. The various methods provide both sampling and analytical procedures for a variety of pollutants, including pesticides, PCBs, formaldehyde and other aldehydes, phosgene, n-nitrosodimethylamine, cresol/phenol, dioxin, non-speciated non-methane organic compounds, polynuclear aromatic hydrocarbons, and various other volatile nonpolar organic compounds. The compendium is a consolidation and republishing of Methods T01-105 from the original Compendium (EPA 600/4-84-041), Methods T06-T09 from the First Supplement (EPA-600/4-87-006), and T010-T014 from the Second Supplement (EPA-600/4-89/018).

  5. COMPARISON OF THE METHODS FOR COLLECTING INTERSTITIAL WATER FOR TRACE ORGANIC COMPOUNDS AND METAL ANALYSES

    EPA Science Inventory

    Several common materials and methods used to collect interstitial water were evaluated to determine their effect on the accuracy and precision of measured concentrations of selected organic compounds and metals. e compared the concentration of pollutants in doses seawater before ...

  6. ANALYTICAL REFERENCE STANDARDS AND SUPPLEMENTAL DATA FOR PESTICIDES AND OTHER ORGANIC COMPOUNDS

    EPA Science Inventory

    ;Contents: List of available pesticide standards and ordering information; Compounds deleted from 1978 stock and name changes; List of non-pesticide organic chemical standards; Safe handling of primary reference standards; Preparation and storage of reference standards; Decoding ...

  7. Plant-Associated Bacterial Degradation of Toxic Organic Compounds in Soil

    PubMed Central

    McGuinness, Martina; Dowling, David

    2009-01-01

    A number of toxic synthetic organic compounds can contaminate environmental soil through either local (e.g., industrial) or diffuse (e.g., agricultural) contamination. Increased levels of these toxic organic compounds in the environment have been associated with human health risks including cancer. Plant-associated bacteria, such as endophytic bacteria (non-pathogenic bacteria that occur naturally in plants) and rhizospheric bacteria (bacteria that live on and near the roots of plants), have been shown to contribute to biodegradation of toxic organic compounds in contaminated soil and could have potential for improving phytoremediation. Endophytic and rhizospheric bacterial degradation of toxic organic compounds (either naturally occurring or genetically enhanced) in contaminated soil in the environment could have positive implications for human health worldwide and is the subject of this review. PMID:19742157

  8. VOLATILE ORGANIC COMPOUNDS IN INDOOR AIR: A SURVEY OF VARIOUS STRUCTURES

    EPA Science Inventory

    Co-workers collected indoor air samples in their homes in SUMMA polished canisters. Upon receipt in the laboratory, the whole air samples were analyzed for volatile organic compounds (VOCs) using cryogenic sample preconcentration and subsequent capillary column chromatography. Ea...

  9. POLAR ORGANIC COMPOUNDS IN FINE PARTICLES FROM THE NEW YORK, NEW JERSEY, AND CONNECTICUT REGIONAL AIRSHED

    EPA Science Inventory

    Five key scientific questions guiding this research were explored. They are given here with results generated from the project.   B.1.        How can polar organic compounds be measured in atmospheric fine particulate matter? Is there potential a...

  10. EVALUATION USING AN ORGANOPHILIC CLAY TO CHEMICALLY STABILIZE WASTE CONTAINING ORGANIC COMPOUNDS

    EPA Science Inventory

    A modified clay (organophilic) was utilized to evaluate the potential for chemically stabilizing a waste containing organic compounds. hemical bonding between the binder and the contaminants was indicated. eachate testing also indicated strong binding. Copy available at NTIS as ...

  11. Volatile Organic Compounds in Ground Water From Rural Private Wells, 1986 to 1999

    Microsoft Academic Search

    Michael J. Moran; Wayne W. Lapham; Barbara L. Rowe; John S. Zogorski

    2004-01-01

    The U.S. Geological Survey (USGS) collected or compiled data on volatile organic compounds (VOCs) in samples of untreated ground water from 1,926 rural private wells during 1986 to 1999. At least one VOC was detected in 12 percent of samples from rural private wells. Individual VOCs were not commonly detected with the seven most frequently detected compounds found in only

  12. TEMPERATURE-DEPENDENT COLLECTION EFFICIENCY OF A CRYOGENIC TRAP FOR TRACE-LEVEL VOLATILE ORGANIC COMPOUNDS

    EPA Science Inventory

    Reduced temperature preconcentration of volatile organic compounds in a packed trap is examined experimentally as a function of trapping temperatures ranging from -180C to +100C. Trapped compounds are thermally desorbed into a capillary column-equipped gas chromatograph and quant...

  13. Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry

    Microsoft Academic Search

    Fred Fehsenfeld; Jack Calvert; Ray Fall; Paul Goldan; A. B. Guenther; C. N. Hewitt; Brian Lamb; Shaw Liu; Michael Trainer; Hal Westberg; Pat Zimmerman

    1992-01-01

    Vegetation provides a major source of reactive carbon entering the atmosphere. These compounds play an important role in (1) shaping global tropospheric chemistry, (2) regional photochemical oxidant formation, (3) balancing the global carbon cycle, and (4) production of organic acids which contribute to acidic deposition in rural areas. Present estimates place the total annual global emission of these compounds between

  14. Efficiency of conventional drinking-water-treatment processes in removal of pharmaceuticals and other organic compounds

    Microsoft Academic Search

    Paul E. Stackelberg; Jacob Gibs; Edward T. Furlong; Michael T. Meyer; Steven D. Zaugg; R. Lee Lippincott

    2007-01-01

    Samples of water and sediment from a conventional drinking-water-treatment (DWT) plant were analyzed for 113 organic compounds (OCs) that included pharmaceuticals, detergent degradates, flame retardants and plasticizers, polycyclic aromatic hydrocarbons (PAHs), fragrances and flavorants, pesticides and an insect repellent, and plant and animal steroids. 45 of these compounds were detected in samples of source water and 34 were detected in

  15. Phenolic compounds and fatty acid composition of organic and conventional grown pecan kernels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, differences in contents of phenolic compounds and fatty acids in pecan kernels of organically versus conventionally grown pecan cultivars (‘Desirable’, ‘Cheyenne’, and ‘Wichita’) were evaluated. Although we were able to identify nine phenolic compounds (gallic acid, catechol, catechin...

  16. Volatile organic compounds in snow in the Quebec-Windsor Corridor

    Microsoft Academic Search

    G. Kos; P. A. Ariya

    2010-01-01

    Volatile organic compounds (VOC) were determined in snow to investigate the role of the snowpack as an exchange medium for atmospherically active compounds of anthropogenic and biogenic origin. The major question was which VOC species occur in snow and how the species identity and selected concentrations are related to the sampling area and environmental conditions. Samples were collected using a

  17. COMPENDIUM OF METHODS FOR THE DETERMINATION OF TOXIC ORGANIC COMPOUNDS IN AMBIENT AIR. SUPPLEMENT

    EPA Science Inventory

    Determination of toxic organic compounds in ambient air is a complex task, primarily because of the wide variety of compounds of interest and the lack of standardized sampling and analysis procedures. This methods compendium has been prepared to provide a standardized format for ...

  18. SECOND SUPPLEMENT TO COMPENDIUM OF METHODS FOR THE DETERMINATION OF TOXIC ORGANIC COMPOUNDS IN AMBIENT AIR

    EPA Science Inventory

    Determination of toxic organic compounds in ambient air is a complex task, primarily because of the wide variety of compounds of interest and the lack of standardized sampling and analysis procedures. This methods compendium has been prepared to provide current, written, peer-rev...

  19. Chemical class separation and characterization of organic compounds in synthetic fuels

    Microsoft Academic Search

    Douglas W. Later; Milton L. Lee; Keith D. Bartle; Robert C. Kong; Daniel L. Vassilaros

    1981-01-01

    A separation method is described for the identification of organic compounds in synthetic fuel products. Prefractionation of crude synfuel materials into discrete chemical classes was prformed by adsorption column chromatography using small quantities of neutral aluminum oxide and silicic acid. Subsequent high-resolution separation of individual components was achieved by using capillary column gas chromatography, and specific compound types were determined

  20. Case study: Comparison of biological active compounds in milk from organic and conventional dairy herds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conflicting reports of the quantities of biologically active compounds present in milk from organic grass-fed and conventional herds show that more research is required, especially as these compounds are linked to human health benefits and can improve the health value consumers place on dairy produc...

  1. Hydrophobic Organic Compounds in Hydraulic Fracturing Flowback Waters: Identification and Source Apportionment

    NASA Astrophysics Data System (ADS)

    Plata, D.; Shregglman, K.; Elsner, M.; Getzinger, G.; Ferguson, L.; Drollette, B.; Karatum, O.; Nelson, R. K.; Reddy, C. M.

    2014-12-01

    Current hydraulic fracturing technologies rely on organic chemicals to serve multiple critical functions, including corrosion inhibition, in situ gel formation, and friction reduction. While industrial users have disclosed several hundreds of compound and mixture identities, it is unclear which of these are used and where, in what proportion, and with what frequency. Furthermore, while flowback and production waters contain both fracturing additive and geogenic compounds, they may contain potential reaction byproducts as well. Here, we identified several hundred organic compounds present in six hydraulic fracturing flowback waters over the Fayetteville shale. Identifications were made via non-target analysis using two-dimensional gas chromatography with time of flight mass spectrometry for hydrophobic organic compounds and liquid chromatography- orbitrap mass spectrometry. Compound identities were confirmed using purchased standards when available. Using the SkyTruth database and the Waxman list of disclosed compounds, we assigned compounds as either fracturing-fluid-derived or geogenic (or both), or a putative transformation products thereof. Several unreported halogenated compounds were detected, including chlorinated, brominated, and iodated species that have no known natural sources. Control studies indicated that these could not be formed under typical laboratory or field storage conditions, suggesting that halogenation reactions may give rise to novel compounds in the subsurface, presumably via reaction between fracturing fluid additives and shale-derived brines. Further, the six samples were strikingly heterogeneous, reflecting the diversity in fracturing fluid composition and flowback handling procedures at the time of the study.

  2. Isotopic and molecular indicators of origins of organic compounds in sediments

    SciTech Connect

    Takigiku, R.

    1987-01-01

    Organic matter preserved in ancient sediments is composed of material of mixed origins. Reconstruction of the specific biological origin of some compounds isolated from ancient sediments is aided by measurement of stable carbon-isotope abundances. It has been shown that the stable isotopic compositions of organic materials can remain unchanged long after sedimentary processes have reworked them, and caused subsequent loss of subtle, structural details that initially distinguish very similar compounds (e.g., chlorophyll a form chlorophyll c). Results of this research indicate that the stable carbon-isotopic composition of chlorophyll-derived geoporphyrins appears to faithfully, and selectively, record the isotopic composition of both recent and ancient primary photosynthetic organic matter. This finding has improved the breadth of information regarding processes associated with organic carbon burial and preservation. Further, the isotopic composition of photosynthetic carbon encodes information about the environment in which it was biosynthesized, and therefore yields information regarding ancient atmospheres and oceans. In this study, specific compounds from several ancient organic carbon-rich sediments were examined and compared to analogous compounds isolated from pure cultures or organisms. These analyses permitted (i) reconstruction of isotopic compositions of organisms at different trophic levels; (ii) identification of specific sources for compounds of previously unknown origin; (iii) recognition that diagenetic processes can significantly alter the isotopic composition of total organic material preserved in ancient sediments; and (iv) inferences about the operation of the global carbon cycles.

  3. Catalytic combustion of volatile organic compounds on gold\\/cerium oxide catalysts

    Microsoft Academic Search

    Salvatore Scirè; Simona Minicò; Carmelo Crisafulli; Cristina Satriano; Alessandro Pistone

    2003-01-01

    Catalytic combustion of some representative volatile organic compounds (VOCs) (2-propanol, methanol and toluene) was investigated on gold\\/cerium oxide catalysts prepared by coprecipitation (CP) and deposition–precipitation (DP). The presence of gold has been found to enhance the activity of cerium oxide towards the oxidation of the selected volatile organic compounds, the extent of this effect depending on the preparation method of

  4. Determination of Volatile Organic Compounds in Indoor Air of Buildings in Nuclear Power Plants, Taiwan

    Microsoft Academic Search

    Ling-Ling Hsieh; Chih-Chung Chang; Usha Sree; Jiunn-Guang Lo

    2006-01-01

    This study investigates the composition and concentrations of volatile organic compounds (VOCs) in air-conditioned office\\u000a space and low-level waste (LLW) repository sites of nuclear power plants located in Taiwan. Air samples were collected in\\u000a the office space and technical rooms of administration buildings of the three nuclear power plants and in LLW repository site\\u000a using canisters. Thirty-six toxic organic compounds

  5. Raman and fluorescence spectra of fluoro-organic compounds

    NASA Astrophysics Data System (ADS)

    Gorelik, Vladimir S.; Chervyakov, Anatolii V.; Zlobina, Ludmila I.; Sharts, Olga N.

    1999-11-01

    The results of Raman and fluorescence spectra investigations of fluoroorganic aromatic compounds are presented. We present technique for realizing of qualitative and quantitative analysis of fluoroorganic aromatic compounds on the base of Raman and fluorescence spectroscopy. We propose to applicate the pulsed copper vapor laser for exciting of Raman and fluorescence spectra of fluoroorganic samples. The Raman spectra have been received for a number of compounds as: 1- bromoperfluoroocotane, perfluorodecanoic acid, 1,3,5- trifluoromethylbenzene, hexafluorobenzene, pentafluoropyridine, p-fluoro-DL-phenyl-alanine, m-fluoro-DL- phenyl-alanine, o-fluoro-DL-phenyl-alanine, m-fluoro-DL- tyrosine, 6-fluoro-DL-tryptophan, 5-fluorouracil, 5- Fluorouridine, 5-fluoroindole. On the base of our measurements we have worked out the manner of linear molecule CnF2n+1Br length recognizing. Thus, presented technique, based on using of the modern laser sources and registration system of Raman and fluorescence spectra, permitted to identify the different fluoroorganic molecules in mixtures and pure samples.

  6. Fate of organic compounds in groundwater: natural and enhanced attenuation

    Microsoft Academic Search

    JAMES F. BARKER

    1998-01-01

    Natural attenuation by dispersion, sorption and biodégradation can provide adequate remediation of some organic contaminants in some groundwater environments. A significant problem with this approach for gasoline-impacted groundwater is the chemical methyl-tert-butyl-ether (MTBE). Uncertainty about the biodégradation of MTBE makes natural attenuation difficult to apply. A field experiment with coal tar creosote organics was able to clearly document the extent

  7. Fluorinated organic compounds in an eastern Arctic marine food web.

    PubMed

    Tomy, Gregg T; Budakowski, Wes; Halldorson, Thor; Helm, Paul A; Stern, Gary A; Friesen, Ken; Pepper, Karen; Tittlemier, Sheryl A; Fisk, Aaron T

    2004-12-15

    An eastern Arctic marine food web was analyzed for perfluorooctanesulfonate (PFOS, C8F17SO3-), perfluorooctanoate (PFOA, C7F15COO-), perfluorooctane sulfonamide (PFOSA, C8F17SO2NH2), and N-ethylperfluorooctane sulfonamide (N-EtPFOSA, C8F17SO2NHCH2CH3) to examine the extent of bioaccumulation. PFOS was detected in all species analyzed, and mean concentrations ranged from 0.28 +/- 0.09 ng/g (arithmetic mean +/- 1 standard error, wet wt, whole body) in clams (Mya truncata) to 20.2 +/- 3.9 ng/g (wet wt, liver) in glaucous gulls (Larus hyperboreus). PFOA was detected in approximately 40% of the samples analyzed at concentrations generally smaller than those found for PFOS; the greatest concentrations were observed in zooplankton (2.6 +/- 0.3 ng/g, wet wt). N-EtPFOSA was detected in all species except redfish with mean concentrations ranging from 0.39 +/- 0.07 ng/g (wet wt) in mixed zooplankton to 92.8 +/- 41.9 ng/g (wet wt) in Arctic cod (Boreogadus saida). This is the first report of N-EtPFOSA in Arctic biota. PFOSA was only detected in livers of beluga (Delphinapterus leucas) (20.9 +/- 7.9 ng/g, wet wt) and narwhal (Monodon monoceros) (6.2 +/- 2.3 ng/g, wet wt), suggesting that N-EtPFOSA and other PFOSA-type precursors are likely present but are being biotransformed to PFOSA. A positive linear relationship was found between PFOS concentrations (wet wt) and trophic level (TL), based on delta15N values, (r2 = 0.51, p < 0.0001) resulting in a trophic magnification factor of 3.1. TL-corrected biomagnification factor estimates for PFOS ranged from 0.4 to 9. Both results indicate that PFOS biomagnifies in the Arctic marine food web when liver concentrations of PFOS are used for seabirds and marine mammals. However, transformation of N-EtPFOSA and PFOSA and potential other perfluorinated compounds to PFOS may contribute to PFOS levels in marine mammals and may inflate estimated biomagnification values. None of the other fluorinated compounds (N-EtPFOSA, PFOSA, and PFOA) were found to have a significant relationship with TL, but BMF(TL) values of these compounds were often >1, suggesting potential for these compounds to biomagnify. The presence of perfluorinated compounds in seabirds and mammals provides evidence that trophic transfer is an important exposure route of these chemicals to Arctic biota. PMID:15669302

  8. Deuterium enrichment by selective photo-induced dissociation of an organic carbonyl compound

    DOEpatents

    Marling, John B. (Livermore, CA)

    1981-01-01

    A method for producing a deuterium enriched material by photoinduced dissociation which uses as the working material a gas phase photolytically dissociable organic carbonyl compound containing at least one hydrogen atom bonded to an atom which is adjacent to a carbonyl group and consisting of molecules wherein said hydrogen atom is present as deuterium and molecules wherein said hydrogen atom is present as another isotope of hydrogen. The organic carbonyl compound is subjected to intense infrared radiation at a preselected wavelength to selectively excite and thereby induce dissociation of the deuterium containing species to yield a deuterium enriched stable molecular product. Undissociated carbonyl compound, depleted in deuterium, is preferably redeuterated for reuse.

  9. Detection of volatile organic compounds indicative of human presence in the air.

    PubMed

    Kwak, Jae; Geier, Brian A; Fan, Maomian; Gogate, Sanjay A; Rinehardt, Sage A; Watts, Brandy S; Grigsby, Claude C; Ott, Darrin K

    2015-07-01

    Volatile organic compounds were collected and analyzed from a variety of indoor and outdoor air samples to test whether human-derived compounds can be readily detected in the air and if they can be associated with human occupancy or presence. Compounds were captured with thermal desorption tubes and then analyzed by gas chromatography with mass spectrometry. Isoprene, a major volatile organic compound in exhaled breath, was shown to be the best indicator of human presence. Acetone, another major breath-borne compound, was higher in unoccupied or minimally occupied areas than in human-occupied areas, indicating that its majority may be derived from exogenous sources. The association of endogenous skin-derived compounds with human occupancy was not significant. In contrast, numerous compounds that are found in foods and consumer products were detected at elevated levels in the occupied areas. Our results revealed that isoprene and many exogenous volatile organic compounds consumed by humans are emitted at levels sufficient for detection in the air, which may be indicative of human presence. PMID:25944350

  10. Identifying Bioaccumulative Halogenated Organic Compounds Using a Nontargeted Analytical Approach: Seabirds as Sentinels

    PubMed Central

    Millow, Christopher J.; Mackintosh, Susan A.; Lewison, Rebecca L.; Dodder, Nathan G.; Hoh, Eunha

    2015-01-01

    Persistent organic pollutants (POPs) are typically monitored via targeted mass spectrometry, which potentially identifies only a fraction of the contaminants actually present in environmental samples. With new anthropogenic compounds continuously introduced to the environment, novel and proactive approaches that provide a comprehensive alternative to targeted methods are needed in order to more completely characterize the diversity of known and unknown compounds likely to cause adverse effects. Nontargeted mass spectrometry attempts to extensively screen for compounds, providing a feasible approach for identifying contaminants that warrant future monitoring. We employed a nontargeted analytical method using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC/TOF-MS) to characterize halogenated organic compounds (HOCs) in California Black skimmer (Rynchops niger) eggs. Our study identified 111 HOCs; 84 of these compounds were regularly detected via targeted approaches, while 27 were classified as typically unmonitored or unknown. Typically unmonitored compounds of note in bird eggs included tris(4-chlorophenyl)methane (TCPM), tris(4-chlorophenyl)methanol (TCPMOH), triclosan, permethrin, heptachloro-1'-methyl-1,2'-bipyrrole (MBP), as well as four halogenated unknown compounds that could not be identified through database searching or the literature. The presence of these compounds in Black skimmer eggs suggests they are persistent, bioaccumulative, potentially biomagnifying, and maternally transferring. Our results highlight the utility and importance of employing nontargeted analytical tools to assess true contaminant burdens in organisms, as well as to demonstrate the value in using environmental sentinels to proactively identify novel contaminants. PMID:26020245

  11. Volatile organic compounds from used building materials in a simulated chamber study

    SciTech Connect

    Berglund, B. (Univ. of Stockholm (Sweden)); Johansson, I.; Lindvall, T. (Karolinska Institute, Stockholm (Sweden))

    1989-01-01

    Building materials emit volatile organic compounds (VOCs) indoors. They may also adsorb compounds so that an equilibrium with indoor air is reached. Samples were taken from the floor, walls, and ceiling of one room in a seven-year-old preschool building. They were placed in a small climate chamber for a period of 41 days. Samples from the air in the room and the chamber were analysed by gas chromatography and mass spectrometry, and about 60 compounds were identified. The composition of organics in the room air was reestablished in the chamber the first day. Since most of the compounds disappeared within 2 to 23 days, they are believed to have been adsorbed from the room air onto the material surfaces. During the last 10 days, 17 compounds remained at constant concentrations, implying that they are representative of the building material samples.

  12. Microcantilever sensors coated with a sensitive polyaniline layer for detecting volatile organic compounds.

    PubMed

    Steffens, C; Leite, F L; Manzoli, A; Sandovall, R D; Fatibello, O; Herrmann, P S P

    2014-09-01

    This paper describes a silicon cantilever sensor coated with a conducting polymer layer. The mechanical response (deflection) of the bimaterial (the coated microcantilever) was investigated under the influence of several volatile compounds-methanol, ethanol, acetone, propanol, dichloroethane, toluene and benzene. The variations in the deflection of the coated and uncoated microcantilevers when exposed to volatile organic compounds were evaluated, and the results indicated that the highest sensitivity was obtained with the coated microcantilever and methanol. The uncoated microcantilever was not sensitive to the volatile organic compounds. An increase in the concentration of the volatile organic compound resulted in higher deflections of the microcantilever sensor. The sensor responses were reversible, sensible, rapid and proportional to the volatile concentration. PMID:25924322

  13. Ion-trap detection of volatile organic compounds in alveolar breath

    SciTech Connect

    Phillips, M.; Greenberg, J. (Department of Medicine, St. Vincent's Medical Center of Richmond, Staten Island, NY (United States))

    1992-01-01

    We describe a method for the collection and microanalysis of the volatile organic compounds in human breath. A transportable apparatus supplies subjects with purified air and samples their alveolar breath; the volatile organic compounds are captured in an adsorptive trap containing activated carbon and molecular sieve. The sample is thermally desorbed from the trap in an automated microprocessor-controlled device, concentrated by two-stage cryofocusing, and assayed by gas chromatography with ion-trap detection. Compounds are identified by reference to a computer-based library of mass spectra with subtraction of the background components present in the inspired air. We used this device to study 10 normal subjects and determined the relative abundance of the volatile organic compounds in their alveolar breath. The breath-collecting apparatus was convenient to operate and was well tolerated by human volunteers.

  14. Compound prioritization methods increase rates of chemical probe discovery in model organisms

    PubMed Central

    Wallace, Iain M; Urbanus, Malene L; Luciani, Genna M; Burns, Andrew R; Han, Mitchell KL; Wang, Hao; Arora, Kriti; Heisler, Lawrence E; Proctor, Michael; St. Onge, Robert P; Roemer, Terry; Roy, Peter J; Cummins, Carolyn L; Bader, Gary D; Nislow, Corey; Giaever, Guri

    2011-01-01

    SUMMARY Pre-selection of compounds that are more likely to induce a phenotype can increase the efficiency and reduce the costs for model organism screening. To identify such molecules, we screened ~81,000 compounds in S. cerevisiae and identified ~7,500 that inhibit cell growth. Screening these growth-inhibitory molecules across a diverse panel of model organisms resulted in an increased phenotypic hit-rate. This data was used to build a model to predict compounds that inhibit yeast growth. Empirical and in silico application of the model enriched the discovery of bioactive compounds in diverse model organisms. To demonstrate the potential of these molecules as lead chemical probes we used chemogenomic profiling in yeast and identified specific inhibitors of lanosterol synthase and of stearoyl-CoA 9-desaturase. As community resources, the ~7,500 growth-inhibitory molecules has been made commercially available and the computational model and filter used are provided. PMID:22035796

  15. Exposure to Volatile Organic Compounds and Possibility of Exposure to By-product Volatile Organic Compounds in Photolithography Processes in Semiconductor Manufacturing Factories

    PubMed Central

    Shin, Jung-Ah; Park, Hyun-Hee; Yi, Gwang Yong; Chung, Kwang-Jae; Park, Hae-Dong; Kim, Kab-Bae; Lee, In-Seop

    2011-01-01

    Objectives The purpose of this study was to measure the concentration of volatile organic compound (VOC)s originated from the chemicals used and/or derived from the original parental chemicals in the photolithography processes of semiconductor manufacturing factories. Methods A total of four photolithography processes in 4 Fabs at three different semiconductor manufacturing factories in Korea were selected for this study. This study investigated the types of chemicals used and generated during the photolithography process of each Fab, and the concentration levels of VOCs for each Fab. Results A variety of organic compounds such as ketone, alcohol, and acetate compounds as well as aromatic compounds were used as solvents and developing agents in the processes. Also, the generation of by-products, such as toluene and phenol, was identified through a thermal decomposition experiment performed on a photoresist. The VOC concentration levels in the processes were lower than 5% of the threshold limit value (TLV)s. However, the air contaminated with chemical substances generated during the processes was re-circulated through the ventilation system, thereby affecting the airborne VOC concentrations in the photolithography processes. Conclusion Tens of organic compounds were being used in the photolithography processes, though the types of chemical used varied with the factory. Also, by-products, such as aromatic compounds, could be generated during photoresist patterning by exposure to light. Although the airborne VOC concentrations resulting from the processes were lower than 5% of the TLVs, employees still could be exposed directly or indirectly to various types of VOCs. PMID:22953204

  16. Organic solid state switches incorporating porphyrin compounds and method for producing organic solid state optical switches

    DOEpatents

    Wasielewski, Michael R. (Naperville, IL); Gaines, George L. (River Forest, IL); Niemczyk, Mark P. (Wheaton, IL); Johnson, Douglas G. (Grayslake, IL); Gosztola, David J. (Bolingbrook, IL); O'Neil, Michael P. (San Leandro, CA)

    1996-01-01

    A light-intensity dependent molecular switch comprised of a compound which shuttles an electron or a plurality of electrons from a plurality of electron donors to an electron acceptor upon being stimulated with light of predetermined wavelengths, said donors selected from porphyrins and other compounds, and a method for making said compound.

  17. Organic solid state switches incorporating porphyrin compounds and method for producing organic solid state optical switches

    DOEpatents

    Wasielewski, M.R.; Gaines, G.L.; Niemczyk, M.P.; Johnson, D.G.; Gosztola, D.J.; O`Neil, M.P.

    1996-07-23

    A light-intensity dependent molecular switch comprised of a compound which shuttles an electron or a plurality of electrons from a plurality of electron donors to an electron acceptor upon being stimulated with light of predetermined wavelengths, said donors selected from porphyrins and other compounds, and a method for making said compound are disclosed. 4 figs.

  18. A review of surface-water sediment fractions and their interactions with persistent manmade organic compounds

    USGS Publications Warehouse

    Witkowski, P.J.; Smith, J.A.; Fusillo, T.V.; Chiou, C.T.

    1987-01-01

    This paper reviews the suspended and surficial sediment fractions and their interactions with manmade organic compounds. The objective of this review is to isolate and describe those contaminant and sediment properties that contribute to the persistence of organic compounds in surface-water systems. Most persistent, nonionic organic contaminants, such as the chlorinated insecticides and polychlorinated biphenyls (PCBs), are characterized by low water solubilities and high octanol-water partition coefficients. Consequently, sorptive interactions are the primary transformation processes that control their environmental behavior. For nonionic organic compounds, sorption is primarily attributed to the partitioning of an organic contaminant between a water phase and an organic phase. Partitioning processes play a central role in the uptake and release of contaminants by sediment organic matter and in the bioconcentration of contaminants by aquatic organisms. Chemically isolated sediment fractions show that organic matter is the primary determinant of the sorptive capacity exhibited by sediment. Humic substances, as dissolved organic matter, contribute a number of functions to the processes cycling organic contaminants. They alter the rate of transformation of contaminants, enhance apparent water solubility, and increase the carrying capacity of the water column beyond the solubility limits of the contaminant. As a component of sediment particles, humic substances, through sorptive interactions, serve as vectors for the hydrodynamic transport of organic contaminants. The capabilities of the humic substances stem in part from their polyfunctional chemical composition and also from their ability to exist in solution as dissolved species, flocculated aggregates, surface coatings, and colloidal organomineral and organometal complexes. The transport properties of manmade organic compounds have been investigated by field studies and laboratory experiments that examine the sorption of contaminants by different sediment size fractions. Field studies indicate that organic contaminants tend to sorb more to fine-grained sediment, and this correlates significantly with sediment organic matter content. Laboratory experiments have extended the field studies to a wider spectrum of natural particulates and anthropogenic compounds. Quantitation of isotherm results allows the comparison of different sediment sorbents as well as the estimation of field partition coefficients from laboratory-measured sediment and contaminant properties. Detailed analyses made on the basis of particle-size classes show that all sediment fractions need to be considered in evaluating the fate and distribution of manmade organic compounds. This conclusion is based on observations from field studies and on the variety of natural organic sorbents that demonstrate sorptive capabilities in laboratory isotherm experiments.

  19. Hygroscopicity of organic compounds from biomass burning and their influence on the water uptake of mixed organic ammonium sulfate aerosols

    NASA Astrophysics Data System (ADS)

    Lei, T.; Zuend, A.; Wang, W. G.; Zhang, Y. H.; Ge, M. F.

    2014-10-01

    Hygroscopic behavior of organic compounds, including levoglucosan, 4-hydroxybenzoic acid, and humic acid, as well as their effects on the hygroscopic properties of ammonium sulfate (AS) in internally mixed particles are studied by a hygroscopicity tandem differential mobility analyzer (HTDMA). The organic compounds used represent pyrolysis products of wood that are emitted from biomass burning sources. It is found that humic acid aerosol particles only slightly take up water, starting at RH (relative humidity) above ~70%. This is contrasted by the continuous water absorption of levoglucosan aerosol particles in the range 5-90% RH. However, no hygroscopic growth is observed for 4-hydroxybenzoic acid aerosol particles. Predicted water uptake using the ideal solution theory, the AIOMFAC model and the E-AIM (with UNIFAC) model are consistent with measured hygroscopic growth factors of levoglucosan. However, the use of these models without consideration of crystalline organic phases is not appropriate to describe the hygroscopicity of organics that do not exhibit continuous water uptake, such as 4-hydroxybenzoic acid and humic acid. Mixed aerosol particles consisting of ammonium sulfate and levoglucosan, 4-hydroxybenzoic acid, or humic acid with different organic mass fractions, take up a reduced amount of water above 80% RH (above AS deliquescence) relative to pure ammonium sulfate aerosol particles of the same mass. Hygroscopic growth of mixtures of ammonium sulfate and levoglucosan with different organic mass fractions agree well with the predictions of the thermodynamic models. Use of the Zdanovskii-Stokes-Robinson (ZSR) relation and AIOMFAC model lead to good agreement with measured growth factors of mixtures of ammonium sulfate with 4-hydroxybenzoic acid assuming an insoluble organic phase. Deviations of model predictions from the HTDMA measurement are mainly due to the occurrence of a microscopical solid phase restructuring at increased humidity (morphology effects), which are not considered in the models. Hygroscopic growth factors of mixed particles containing humic acid are well reproduced by the ZSR relation. Lastly, the organic surrogate compounds represent a selection of some of the most abundant pyrolysis products of biomass burning. The hygroscopic growths of mixtures of the organic surrogate compounds with ammonium sulfate with increasing organics mass fraction representing ambient conditions from the wet to the dry seasonal period in the Amazon basin, exhibit significant water uptake prior to the deliquescence of ammonium sulfate. The measured water absorptions of mixtures of several organic surrogate compounds (including levoglucosan) with ammonium sulfate are close to those of binary mixtures of levoglucosan with ammonium sulfate, indicating that levoglucosan constitutes a major contribution to the aerosol water uptake prior to (and beyond) the deliquescence of ammonium sulfate. Hence, certain hygroscopic organic surrogate compounds can substantially affect the deliquescence point of ammonium sulfate and overall particle water uptake.

  20. Modeling of the Oxidation of Organic Compounds in Supercritical Water

    Microsoft Academic Search

    A. Ermakova; V. I. Anikeev

    2004-01-01

    A system for oxidation of organic impurities in supercritical water is proposed. Models are formulated and calculations are performed to determine the characteristics of the main apparatuses of the system, namely, heat exchangers, a chemical reactor, and a separator. The models take into account specific features of processes under supercritical conditions, specifically, the changes in the thermodynamic properties (enthalpy, specific

  1. 40 CFR 60.582 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...Flexible Vinyl and Urethane Coating and Printing § 60.582 Standard for volatile organic...this subpart shall either: (1) Use inks with a weighted average VOC content less than 1.0 kilogram VOC per kilogram ink solids at each affected facility,...

  2. ENZYMATIC PROCESSES USED BY PLANTS TO DEGRADE ORGANIC COMPOUNDS

    EPA Science Inventory

    This is a review of recent plant enzyme systems that have been studied in uptake and transformation of organic contaminants. General procedures of plant preparation and enzyme isolation are covered. Six plant enzyme systems have been investigated for activity with selected pollut...

  3. Method for Spiking Soil Samples with Organic Compounds

    Microsoft Academic Search

    Ulla C. Brinch; Flemming Ekelund; Carsten S. Jacobsen

    2002-01-01

    We examined the harmful side effects on indigenous soil microorganisms of two organic solvents, acetone and dichloromethane, that are normally used for spiking of soil with polycyclic aromatic hydrocarbons for experimental purposes. The solvents were applied in two contamination protocols to either the whole soil sample or 25% of the soil volume, which was subsequently mixed with 75% untreated soil.

  4. Microtransport and partitioning of semivolatile organic compounds in combustion aerosols

    Microsoft Academic Search

    Michael R. Strommen

    1999-01-01

    Recent epidemiological studies show that exposure to elevated levels of atmospheric particulate matter is associated with a significant increase in mortality and morbidity risk in humans. Although the causes of these responses are not well understood, many researchers believe that the toxicological effects of organic constituents sorbed to inhaled particulate matter may be partially responsible. Many of the most harmful

  5. Mixing and water-soluble characteristics of particulate organic compounds in individual urban aerosol particles

    Microsoft Academic Search

    Weijun Li; Longyi Shao

    2010-01-01

    Particulate organic compounds (POCs) in the atmosphere can alter the morphology and hygroscopicity of inorganic particles by coagulation and mixing. Direct observations can illustrate the mixing of organic and inorganic particles. Compositions, mixing states, and morphologies of 360 aerosol particles from urban Beijing collected on transmission electron microscopy (TEM) grids with Si-O substrate were obtained using TEM coupled with energy-dispersive

  6. GC\\/MS analysis of chlorinated organic compounds in municipal wastewater after chlorination

    Microsoft Academic Search

    1982-01-01

    A study has been conducted for the qualitative and quantitative analysis of chlorinated organic compounds in water. The study included the adaptation of Amberlite XAD macroreticular resin techniques for the concentration of municipal wastewater samples, followed by GC\\/MS analysis. A new analytical method was developed for the determination of volatile halogenated organics using liquid-liquid extraction and electron capture gas chromatography.

  7. Analysis of organic compounds in water by direct adsorption and thermal desorption. [Dissertation

    Microsoft Academic Search

    Ryan; J. P. Jr

    1980-01-01

    An instrument was designed and constructed that makes it possible to thermally desorb organic compounds from wet adsorption traps to a gas chromatograph in an efficient and reproducible manner. Based on this device, a method of analyzing organics in water was developed that is rapid, sensitive, and of broader scope than previously published methods. The system was applied to the

  8. The dynamic adsorption behaviour of volatile organic compounds on activated carbon honeycomb monoliths

    Microsoft Academic Search

    M. Yates; J. Blanco; M. A. Martín-Luengo

    2002-01-01

    Adsorption offers an efficient technology for removing volatile organic compounds (VOCs) from air pollution sources. Often activated carbons (ACs) are employed owing to their large specific surface areas, high micropore volumes, rapid adsorption capabilities and selectivity towards organic molecules compared to water vapour or air. However, when large volumes of gas have to be treated pressure drop limitations may arise

  9. EXPERIMENTAL DEVELOPMENT OF THE MASTER ANALYTICAL SCHEME FOR ORGANIC COMPOUNDS IN WATER: PART 2. APPENDICES

    EPA Science Inventory

    The Master Analytical Scheme (MAS) for Organic Compounds in Water provides for analysis of purgeable and extractable, as well as neutral and ionic-water-soluble, organics in surface and drinking water and in leachates and various effluents. This report describes experiments in th...

  10. EXPERIMENTAL DEVELOPMENT OF THE MASTER ANALYTICAL SCHEME FOR ORGANIC COMPOUNDS IN WATER: PART 1. TEXT

    EPA Science Inventory

    The Master Analytical Scheme (MAS) for Organic Compounds in Water provides for analysis of purgeable and extractable, as well as neutral and ionic-water-soluble, organics in surface and drinking water and in leachates and various effluents. This report describes experiments in th...

  11. TECHNICAL ASSISTANCE DOCUMENT FOR SAMPLING AND ANALYSIS OF TOXIC ORGANIC COMPOUNDS IN AMBIENT AIR

    EPA Science Inventory

    The guidance document was originally issued in June 1983. ince then significant changes have occurred in the regulations that cover volatile and semivolatile organic air pollutants. There have also been significant advances in the collection and analysis of organic compounds and ...

  12. Organic chemistry of basal ice - presence of labile, low molecular weight compounds available for microbial metabolism

    NASA Astrophysics Data System (ADS)

    Lis, Grzegorz P.; Wadham, Jemma L.; Lawson, Emily; Stibal, Marek; Telling, Jon

    2010-05-01

    Recent studies show that subglacial environments previously thought to be devoid of life contain a host of active microbial organisms. Presence of liquid water due to overburden pressure, the release of nutrients from chemical erosion of bedrock, and the potential carbon sources in overridden sediments facilitate life in this extreme environment. However, little is still known of concentrations and diversity of labile organic compounds essential for sustaining microbial metabolism in subglacial environments. Three subglacial ecosystems that considerably differ in range and amount of available organic compounds were selected for this study 1-Engabreen, northern Norway, overlying high-grade metamorphic rocks with low organic carbon content; 2-Finsterwalderbreen, Svalbard, overriding ancient black shales with a relatively high carbon content yet recalcitrant to microbiological consumption; and 3-Russell Glacier in western Greenland with recently overridden quaternary organic rich paleosols. Basal and pressure ridge ice samples were collected and subsequently analysed for low molecular weight organic compounds, with the emphasis on volatile fatty acids, carbohydrates and amino acids. The highest concentration of labile organic compounds in Greenland basal ice suggest that recently overridden paleosols have the greatest potential for sustaining microbial populations present within and underneath basal ice. The high concentration of "ancient" organic carbon in basal ice from Finsterwalderbreen, Svalbard, doesn't correlate with the presence of labile organic compounds. This indicates the inability of microbes to digest recalcitrant kerogen carbon in cold temperatures. In all three investigated environments, concentrations of labile organic compounds are elevated in basal ice with a high debris content. Until recently, most models of the global carbon cycle tend to neglect the pool of subglacial organic carbon as little is known about the range and concentrations of organic compounds as well as the composition of microbial communities and their ability to degrade and metabolize organic carbon at low temperatures. Recently overridden paleosols in western Greenland may serve as a biogeochemical model for vast pool of organic carbon from areas of boreal forest and tundra overridden during the Quaternary glacial cycles.

  13. GC/MS analysis of chlorinated organic compounds in municipal wastewater after chlorination

    SciTech Connect

    Henderson, J.E.

    1982-01-01

    A study has been conducted for the qualitative and quantitative analysis of chlorinated organic compounds in water. The study included the adaptation of Amberlite XAD macroreticular resin techniques for the concentration of municipal wastewater samples, followed by GC/MS analysis. A new analytical method was developed for the determination of volatile halogenated organics using liquid-liquid extraction and electron capture gas chromatography. And, a computer program was written which searches raw GC/MS computer files for halogen-containing organic compounds.

  14. Preparation of Microcrystals of Organic Compounds with Polar Groups and Inorganic Salts by Reprecipitation

    NASA Astrophysics Data System (ADS)

    Zhang, Yongxu; Lv, Chunxu; Liu, Dabin; Guo, Liwei; Fu, Tingming

    2005-07-01

    Reprecipitation is a useful method of preparing organic microcrystals. However, microcrystals of compounds with polar groups are difficult to prepare by this method. A method of preparing microcrystals of organic compounds with polar groups and inorganic salts using isooctane as an organic nonsolvent has been developed. Microcrystals of HMX, NH4NO3 and NH4ClO4 have been successfully prepared. Drop weight impact testing shows that HMX microcrystals of nanoscale size are much less sensitive to impact than HMX bulk crystals.

  15. Cyclodextrin-based chemical microsensors for Volatile Organic Compounds (VOCs)

    SciTech Connect

    Li, DeQuan

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). This project addressed the development of surface-acoustic-wave (SAW)-based chemical sensors for remote, real-time sensing in air, groundwater, and possibly soil, of chlorinated and aromatic hydrocarbons using innovative molecular self-assembly techniques. Our goal is parts per billion (ppb) sensitivity to specific aromatic and chlorinated hydrocarbons using cyclodextrin as the selective layer of a SAW-based mass sensor. We have demonstrated that SAW sensors can differentiate between compounds with similar composition, structure, and polarity. These efforts, however, can be enhanced by using sensor arrays and smart data processing systems. Secondly, ionic interactions provide a convenient way to fabricate thin films for sensor applications. The potential of these thin films for sensor applications is currently being evaluated. 3 figs.

  16. The sorptive behavior of organic compounds on retorted oil shale

    SciTech Connect

    Godrej, A.N.

    1989-01-01

    Single- and multisolute batch sorption isotherm experiments performed on Antrim spent shale from Michigan indicated a consistent behavior by the shale with respect to the four sorbates used-Phenol, 2-Hydroxynaphthalen (HN), 2,3,5-Trimethylphenol (TP) and 1,2,3,4-Tetrahydroquinoline (THQ). The sorptive capacity of the shale was least for Phenol and greatest for THQ, with order being Phenol < TP < HN < THQ. Single-solute continuous-flow column experiments on shale could not be better analyzed because of a lack of kinetic data. The order in which the compounds would reach a 50% breakthrough, and the sorptive amount order in batch multicomponent experiments, could be predicted from the single-solute batch data. The order at 10% breakthrough in the column experiments could not be predicted clearly. Averages of the ratios of the amount sorbed of any one component to the total sorbed amount of all components in multisolute systems were calculated and indicated the partitioning of the components as 11% Phenol, 32% HN, 37% THQ, and 20% TP in a tetrasolute system. Average ratios for bi- and trisolute systems computed from the tetrasolute system agreed to <11% for those compounds that srobed to larger extents (HN, THQ) and to <19% for those that sorbed to a smaller degree (Phenol, TP). A comparison with single-component batch isotherm experiments performed on Filtrasorb 300 granular activated carbon (GAC) showed that the shale had a sorptive capacity of about two orders of magnitude less than that of the GAC. The multicomponent shale data could not be adequately modelled with any one of three models - multicomponent Freundlich type and Langmuir models, and the simplified ideal adsorbed solution theory model.

  17. Laboratory Studies of Organic Compounds With Reflectance Spectroscopy

    Microsoft Academic Search

    J. M. Curchin; R. N. Clark; T. M. Hoefen

    2007-01-01

    In order to properly interpret reflectance spectra of any solar system surface from the earth to the Oort cloud, laboratory spectra of candidate materials for comparative analysis are needed. Although the common cosmochemical species (H2O, CO2, CO, NH3, and CH4) are well represented in the spectroscopic literature, comparatively little reflectance work has been done on organics from room to cryogenic

  18. Post-refining removal of organic nitrogen compounds from diesel fuels to improve environmental quality.

    PubMed

    Mushrush, George W; Quintana, Marian A; Bauserman, Joy W; Willauer, Heather D

    2011-01-01

    The purpose of this investigation was to remove the organic nitrogen compounds from petroleum-derived diesel fuels. These nitrogen compounds can cause environmental problems, as well as fuel instability problems that can degrade fuels and affect engine performance. Fuels were treated with two different filtering media, activated clay and silica tel. The methylene chloride extracts from both the activated clay and silica gel were subjected to GC/MS analysis. Close to 99% of the total organic nitrogen compounds were removed. About 60% of the nitrogen compounds identified consisted of pyridines, quinolines and tetra-hydroquinolines made up 26%, while indoles and carbazoles about 10% of the total nitrogen compounds. Of the nitrogen heterocyclics identified, indoles and carbazoles were linked to fuel instability reactions. The proposed method was tested on diesels fuels from a variety of countries and found to remove between 97.8 and 99.9% of the N-compounds. The results of this study showed that both of these filtering materials were effective in removing the organic nitrogen compounds and resulted in fuels that exhibited excellent storage stability. These simple filtering methods can be independent of the refining process and do result in an environmentally cleaner burning fuel. PMID:21240705

  19. Emission of volatile organic compounds from composting of different solid wastes: Abatement by biofiltration

    Microsoft Academic Search

    Estela Pagans; Antoni Sánchez

    2006-01-01

    Emission of volatile organic compounds (VOCs) produced during composting of different organic wastes (source-selected organic fraction of municipal solid wastes (OFMSW), raw sludge (RS) and anaerobically digested wastewater sludge (ADS) and animal by-products (AP)) and its subsequent biofiltration have been studied. Composting was performed in a laboratory scale composting plant (30l) and the exhaust gases generated were treated by means

  20. Source apportionment of airborne particulate matter using organic compounds as tracers

    NASA Astrophysics Data System (ADS)

    Schauer, James J.; Rogge, Wolfgang F.; Hildemann, Lynn M.; Mazurek, Monica A.; Cass, Glen R.; Simoneit, Bernd R. T.

    A chemical mass balance receptor model based on organic compounds has been developed that relates sours; contributions to airborne fine particle mass concentrations. Source contributions to the concentrations of specific organic compounds are revealed as well. The model is applied to four air quality monitoring sites in southern California using atmospheric organic compound concentration data and source test data collected specifically for the purpose of testing this model. The contributions of up to nine primary particle source types can be separately identified in ambient samples based on this method, and approximately 85% of the organic fine aerosol is assigned to primary sources on an annual average basis. The model provides information on source contributions to fine mass concentrations, fine organic aerosol concentrations and individual organic compound concentrations. The largest primary source contributors to fine particle mass concentrations in Los Angeles are found to include diesel engine exhaust, paved road dust, gasoline-powered vehicle exhaust, plus emissions from food cooking and wood smoke, with smaller contribution:; from tire dust, plant fragments, natural gas combustion aerosol, and cigarette smoke. Once these primary aerosol source contributions are added to the secondary sulfates, nitrates and organics present, virtually all of the annual average fine particle mass at Los Angeles area monitoring sites can be assigned to its source.

  1. Source apportionment of airborne particulate matter using organic compounds as tracers

    NASA Astrophysics Data System (ADS)

    Schauer, James J.; Rogge, Wolfgang F.; Hildemann, Lynn M.; Mazurek, Monica A.; Cass, Glen R.; Simoneit, Bernd R. T.

    A chemical mass balance receptor model based on organic compounds has been developed that relates source contributions to airborne fine particle mass concentrations. Source contributions to the concentrations of specific organic compounds are revealed as well. The model is applied to four air quality monitoring sites in southern California using atmospheric organic compound concentration data and source test data collected specifically for the purpose of testing this model. The contributions of up to nine primary particle source types can be separately identified in ambient samples based on this method, and approximately 85% of the organic fine aerosol is assigned to primary sources on an annual average basis. The model provides information on source contributions to fine mass concentrations, fine organic aerosol concentrations and individual organic compound concentrations. The largest primary source contributors to fine particle mass concentrations in Los Angeles are found to include diesel engine exhaust, paved road dust, gasoline-powered vehicle exhaust, plus emissions from food cooking and wood smoke, with smaller contribution from tire dust, plant fragments, natural gas combustion aerosol, and cigarette smoke. Once these primary aerosol source contributions are added to the secondary sulfates, nitrates and organics present, virtually all of the annual average fine particle mass at Los Angeles area monitoring sites can be assigned to its source.

  2. Composites for removing metals and volatile organic compounds and method thereof

    DOEpatents

    Coronado, Paul R. (Livermore, CA); Coleman, Sabre J. (Oakland, CA); Reynolds, John G. (San Ramon, CA)

    2006-12-12

    Functionalized hydrophobic aerogel/solid support structure composites have been developed to remove metals and organic compounds from aqueous and vapor media. The targeted metals and organics are removed by passing the aqueous or vapor phase through the composite which can be in molded, granular, or powder form. The composites adsorb the metals and the organics leaving a purified aqueous or vapor stream. The species-specific adsorption occurs through specific functionalization of the aerogels tailored towards specific metals and/or organics. After adsorption, the composites can be disposed of or the targeted metals and/or organics can be reclaimed or removed and the composites recycled.

  3. Organic Compounds in the Environment Aging Effects on the Sorption-Desorption Characteristics of Anthropogenic Organic Compounds in Soil

    Microsoft Academic Search

    Michael Sharer; Jeong-Hun Park; Thomas C. Voice; Stephen A. Boyd

    effect on sorption-desorption behavior and biological availability of organic contaminants and pesticides in Field studies have demonstrated that prolonged pesticide-soil con- soils. Despite the pronounced effects attributed to aging tact times (aging) may lead to unexpected persistence of these com- pounds in the environment. Although this phenomenon is well docu- on contaminant binding, persistence, and bioavailability mented in the field,

  4. Comparing removal of trace organic compounds and assimilable organic carbon (AOC) at advanced and traditional water treatment plants

    Microsoft Academic Search

    Jie-Chung Lou; Chung-Yi Lin; Jia-Yun Han; Wei-Biu Tseng; Kai-Lin Hsu; Ting-Wei Chang

    Stability of drinking water can be indicated by the assimilable organic carbon (AOC). This AOC value represents the regrowth\\u000a capacity of microorganisms and has large impacts on the quality of drinking water in a distribution system. With respect to\\u000a the effectiveness of traditional and advanced processing methods in removing trace organic compounds (including TOC, DOC,\\u000a UV254, and AOC) from water,

  5. Partitioning of Semivolatile Organic Compounds in the Presence of a Secondary Organic Aerosol in a Controlled Atmosphere

    Microsoft Academic Search

    Keri B. Leach; Richard M. Kamens; Michael R. Strommen; Myoseon Jang

    1999-01-01

    The gas-particle partitioning of select semivolatile organic compounds (SOCs) was studied by injecting the SOCs into a 190 m3 Teflon film chamber containing a secondary organic aerosol (SOA) generated by volatilizing liquid a-pinene into an ozone-concentrated atmosphere. The concentration of total suspended particulates (TSP) and gas and particle-phase SOCs was measured over the course of three experiments spanning a temperature

  6. Adsorption of volatile organic compounds by metal–organic frameworks MIL101: Influence of molecular size and shape

    Microsoft Academic Search

    Kun Yang; Qian Sun; Feng Xue; Daohui Lin

    2011-01-01

    Adsorption of gaseous volatile organic compounds (VOCs) on metal–organic frameworks MIL-101, a novel porous adsorbent with extremely large Langmuir surface area of 5870m2\\/g and pore volume of 1.85cm3\\/g, and the influence of VOC molecular size and shape on adsorption were investigated in this study. We observed that MIL-101 is a potential superior adsorbent for the sorptive removal of VOCs including

  7. An experimental investigation of incremental reactivities of volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Kelly, Nelson A.; Chang, Tai Y.

    California has adopted a set of VOC reactivity factors for regulatory purposes that is based on a model of the ozone formation process. These incremental reactivity factors (derived by Carter) describe the amount of ozone each exhaust VOC will form under a certain set of conditions in an urban atmosphere. The main objective of this study is to measure reactivity factors using smog chamber experiments, and to compare the measurements to the Carter factors. A new facility was constructed explicitly for this study. The facility has four identical smog chambers and a temperature-controlled enclosure for the chambers. The chambers are irradiated using a set of filtered xenon arc lamps to approximate "sunlight". The reactivities of 14 individual VOCs representative of those found in automobile exhaust and several mixtures of VOCs have been measured. The measured and Carter-reactivity factors were highly correlated, suggesting that the chemical model used by Carter accounts for the reactivities of a wide range of compounds with dramatically different uncertainties in their mechanisms. The measured results, in general, are consistent with the Carter-reactivity factors for comparing the relative reactivities of VOCs in the atmosphere. However, additional kinetic and mechanistic studies of many VOC species including aromatic isomers are needed to improve reactivity scales.

  8. Volatile organic compounds in the air of Izmir, Turkey

    NASA Astrophysics Data System (ADS)

    Muezzinoglu, Aysen; Odabasi, Mustafa; Onat, Levent

    A sampling program was conducted to determine the ambient VOC levels in the city of Izmir, Turkey during daytime and overnight periods between mid-August and mid-September 1998. Sampling sites were selected at high-density traffic roads and junctions far from stationary VOC sources. Samples were analyzed for benzene, toluene, m, p-xylene and o-xylene (BTX), alkylbenzenes (ethylbenzene, 1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene), n-hexane and, n-heptane. Results were compared with similar data from other cities around the world and for probable health dangers and sources of the compounds. Results of this study indicated that Izmir has rather high ambient BTX concentrations compared to many polluted cities in the world. Toluene was the most abundant VOC in Izmir air and was followed by xylenes, benzene and alkylbenzenes, respectively. All were strongly dependent on the expected daily variations of traffic flow in the city. The concentrations of other VOCs correlated well with benzene concentration at most sampling sites, excluding Gumuldur station indicating that ambient VOC levels were mainly affected by motor vehicle emissions. The toluene-to-benzene ratios for urban and non-urban sites were in good agreement with previously reported values, indicating a good relationship between the motor vehicle emissions and ambient VOC levels.

  9. Compound specific 13C- and 18O-isotope analysis of organic aerosols

    NASA Astrophysics Data System (ADS)

    Blees, Jan; Saurer, Matthias; Siegwolf, Rolf T. W.; Dommen, Josef; Baltensperger, Urs

    2014-05-01

    The wide ranging environmental and health effects of aerosols are increasingly coming to light. Various studies have further highlighted the complex nature of organic aerosols, particularly oxidised organics with multiple functional groups. Source apportionment studies on aerosols are crucial to successful implementation of mitigation strategies, but this is complicated by their complex nature. Ideally, individual components of aerosols can be tracked from their source to their atmospheric sink. However, chemical alteration and the formation of secondary aerosols in the atmosphere often preclude this direct tracking on a compound specific basis. Compound specific isotope analysis could overcome these problems, as certain processes and sources impose characteristic isotope ratios on products, which may be retained even after chemical alteration in the atmosphere. Progress has been made over the past decades in the separation and identification of individual compounds that contribute to aerosol formation. Compound separation by gas chromatography (GC), coupled to mass spectrometry (MS), has enabled identification of organic compounds of various sources. On the other hand, only few studies have addressed the isotopic composition of these compounds. For successful isotopic analysis of specific compounds, using GC coupled to isotope ratio MS (GC-irMS), several challenges must be faced that go beyond the requirements for GC-MS-based compound identification. Sample extraction and handling techniques must avoid isotope fractionation. This is especially important in the light of sample extraction by e.g. thermal desorption, which may impose a temperature-induced fractionation on complex organics. Furthermore, derivatisation techniques, necessary for adequate GC compound separation, must not lead to exchange reactions of the element of interest, which would alter the measured isotope ratio. So far most studies have dealt with carbon, and other elements have been neglected. Elements other than carbon may provide valuable additional information. Here we report on the development of methods for the analysis of stable carbon and oxygen isotope ratios of organic compounds in aerosols, through GC-combustion-irMS and GC-pyrolysis-irMS. We apply these analyses to environmental aerosol samples and samples of smog-chamber experiments, with the aim of identifying isotopic signatures of sources and pathways. We will pay special attention to derivatisation techniques - notably alternatives to the often-used trimethylsilyl derivatives in GC-pyrolysis-irMS for ?18O analysis - and to compound separation and identification. We present initial data of combined ?13C and ?18O studies on (secondary) organic aerosol samples, and their added value for source apportionment studies.

  10. Recovery of several volatile organic compounds from simulated water samples: Effect of transport and storage

    USGS Publications Warehouse

    Friedman, L.C.; Schroder, L.J.; Brooks, M.G.

    1986-01-01

    Solutions containing volatile organic compounds were prepared in organic-free water and 2% methanol and submitted to two U.S. Geological Survey laboratories. Data from the determination of volatile compounds in these samples were compared to analytical data for the same volatile compounds that had been kept in solutions 100 times more concentrated until immediately before analysis; there was no statistically significant difference in the analytical recoveries. Addition of 2% methanol to the storage containers hindered the recovery of bromomethane and vinyl chloride. Methanol addition did not enhance sample stability. Further, there was no statistically significant difference in results from the two laboratories, and the recovery efficiency was more than 80% in more than half of the determinations made. In a subsequent study, six of eight volatile compounds showed no significant loss of recovery after 34 days.

  11. Use of coimmobilized biological systems to degrade toxic organic compounds.

    PubMed

    Lin, J E; Wang, H Y; Hickey, R F

    1991-07-01

    The concept of coimmobilizing cell mass (and/or enzyme) and adsorbent in a hydrogel matrix for biodegradation of toxic organic chemicals was introduced. Under defined experimental conditions, the coimmobilized system using activated carbon and Phanerochaete chrysosporium was compared with nonimmobilized systems for the degradation of pentachlorophenol (PCP). It was demonstrated that the coimmobilized system degraded PCP more effectively than the nonimmobilized system. A solid substrate included in the coimmobilized system could support the biodegradation. Isolation of the degrading agents from a model interrupting microorganism by the coimmobilized capsule membrane reduced the interference on the biodegradation. In simulated contaminated soil extract and sand, the coimmobilized system also exhibited higher degradative ability and stability than the nonimmobilized systems. PMID:18600761

  12. Organic compounds in the Forest Vale, H4 ordinary chondrite

    NASA Astrophysics Data System (ADS)

    Zenobi, Renato; Philippoz, Jean-Michel; Zare, Richard N.; Wing, Michael R.; Bada, Jeffrey L.; Marti, Kurt

    1992-07-01

    We have analyzed the H4 ordinary chondrite Forest Vale for polycyclic aromatic hydrocarbons (PAHs) using two-step laser mass spectrometry (L 2MS) and for amino acids using a standard Chromatographic method. Indigenous PAHs were identified in the matrices of freshly cleaved interior faces but could not be detected in pulverized silicates and chondrules. No depth dependence of the PAHs was found in a chipped interior piece. Amino acids, taken from the entire sample, consisted of protein amino acids that were nonracemic, indicating that they are terrestrial contaminants. The presence of indigenous PAHs and absence of indigenous amino acids provides support for the contention that different processes and environments contributed to the synthesis of the organic matter in the solar system.

  13. Efficiency of conventional drinking-water-treatment processes in removal of pharmaceuticals and other organic compounds.

    PubMed

    Stackelberg, Paul E; Gibs, Jacob; Furlong, Edward T; Meyer, Michael T; Zaugg, Steven D; Lippincott, R Lee

    2007-05-15

    Samples of water and sediment from a conventional drinking-water-treatment (DWT) plant were analyzed for 113 organic compounds (OCs) that included pharmaceuticals, detergent degradates, flame retardants and plasticizers, polycyclic aromatic hydrocarbons (PAHs), fragrances and flavorants, pesticides and an insect repellent, and plant and animal steroids. 45 of these compounds were detected in samples of source water and 34 were detected in samples of settled sludge and (or) filter-backwash sediments. The average percent removal of these compounds was calculated from their average concentration in time-composited water samples collected after clarification, disinfection (chlorination), and granular-activated-carbon (GAC) filtration. In general, GAC filtration accounted for 53% of the removal of these compounds from the aqueous phase; disinfection accounted for 32%, and clarification accounted for 15%. The effectiveness of these treatments varied widely within and among classes of compounds; some hydrophobic compounds were strongly oxidized by free chlorine, and some hydrophilic compounds were partly removed through adsorption processes. The detection of 21 of the compounds in 1 or more samples of finished water, and of 3 to 13 compounds in every finished-water sample, indicates substantial but incomplete degradation or removal of OCs through the conventional DWT process used at this plant. PMID:17363035

  14. On the nature of boron-carbon-nitrogen compounds synthesised from organic precursors

    Microsoft Academic Search

    Yuri G. Andreev; Torsten Lundström; Robin K. Harris; Se-Woung Oh; David C. Apperley; Derek P. Thompson

    1995-01-01

    Three compounds were prepared through pyrolysis of organic precursors, namely pyridine-borane, piperazine-borane, poly(acrylonitrile)-BCl3, following the routes proposed in the literature for the synthesis of single-phase boron carbonitrides of various compositions. X-ray diffraction and MAS NMR studies performed on the powders obtained suggest that the resulting compounds are mixtures of amorphous boron and turbostratically distorted hexagonal boron nitride and graphite rather

  15. Supercritical CO2 extraction of organic compounds from soil-water slurries 

    E-print Network

    Carter, Brian Dean

    1993-01-01

    independent of pressure at 298 K and was highly dependent on pressure at 318 K. Extraction varied with experimental conditions and the compound used but the maximum removal for each organic was at least 86%. For 2, 4-dichlorophenol, pentachlorophenol... phase data were also taken. Water-soil isotherms were measured for phenol and 4-chlorophenol. The resultant isotherms were linear and yielded partition coefficients of approximately 0. 3 ml/g for both compounds. Two phase data were also acquired as a...

  16. Simple method to calculate octanol–water partition coefficient of organic compounds

    Microsoft Academic Search

    Elmira Arab Tehrany; Frantz Fournier; Stéphane Desobry

    2004-01-01

    Risk of molecular migration in food\\/packaging system is important consideration from safety, hygienic and economic points of view. Octanol\\/water system is a good reference for explanation of hydrophobic\\/hydrophilic character of food\\/packaging system.In this paper, quantitative structure-property relationships (QSPR) for estimating logP values (octanol\\/water partition coefficient) were developed based on molecular descriptors using a set of 42 organic compounds (aromas compounds

  17. Distribution of volatile organic compounds in a New Jersey coastal plain aquifer system

    USGS Publications Warehouse

    Fusillo, T.V.; Hochreiter, J.J., Jr.; Lord, D.G.

    1985-01-01

    Samples for analysis of volatile organic compounds were collected from 315 wells in the Potomac-Raritan-Magothy aquifer system in southwestern New Jersey and a small adjacent area in Pennsylvania during 1980-82. Volatile organic compounds were detected in all three aquifer units of the Potomac-Raritan-Magoth aquifer system in the study area. Most of the contamination appears to be confined to the outcrop area at present. Low levels of contamination, however, were found downdip of the outcrop area in the upper and middle aquifers. Trichloroethylene, tetrachloroethylene, and benzene were the most frequently detected compounds. Differences in the areal distributions of light chlorinated hydrocarbons, such as trichloroethylene, and aromatic hydrocarbons, such as benzene, were noted and are probably due to differences in the uses of the compounds and the distribution patterns of potential contamination sources. The distribution patterns of volatile organic compounds differed greatly among the three aquifer units. The upper aquifer, which crops out mostly in less-developed areas, had the lowest percentage of wells with volatile organic compounds detected (10 percent of wells sampled). The concentrations in most wells in the upper aquifer which had detectable levels were less than 10 ??g/l. In the middle aquifer, which crops out beneath much of the urban and industrial area adjacent to the Delaware River, detectable levels of volatile organic compounds were found in 22 percent of wells sampled, and several wells contained concentrations above 100 ??g/l. The lower aquifer, which is confined beneath much of the outcrop area of the aquifer system, had the highest percentage of wells (28 percent) with detectable levels. This is probably due to (1) vertical leakage of contamination from the middle aquifer, and (2) the high percentage of wells tapping the lower aquifer in the most heavily developed areas of the outcrop.

  18. Volatile organic compounds detected in the atmosphere of NASA's Biomass Production Chamber

    NASA Technical Reports Server (NTRS)

    Batten, J. H.; Stutte, G. W.; Wheeler, R. M.

    1996-01-01

    Atmospheres of enclosed environments in which 20 m2 stands of wheat, potato, and lettuce were grown were characterized and quantified by gas chromatography-mass spectrometry. A large number (in excess of 90) of volatile organic compounds (VOCs) were identified in the chambers. Twenty eight VOC's were assumed to be of biogenic origin for these were not found in the chamber atmosphere when air samples were analyzed in the absence of plants. Some of the compounds found were unique to a single crop. For example, only 35% of the biogenic compounds detected in the wheat atmosphere were unique to wheat, while 36% were unique to potato and 26% were unique to lettuce. The number of compounds detected in the wheat (20 compounds) atmosphere was greater than that of potato (11) and lettuce (15) and concentration levels of biogenic and non-biogenic VOC's were similar.

  19. Novel synthetic organic compounds inspired from antifeedant marine alkaloids as potent bacterial biofilm inhibitors.

    PubMed

    Rane, Rajesh A; Karpoormath, Rajshekhar; Naphade, Shital S; Bangalore, Pavankumar; Shaikh, Mahamadhanif; Hampannavar, Girish

    2015-08-01

    In this paper, we have reported seventeen novel synthetic organic compounds derived from marine bromopyrrole alkaloids, exhibiting potential inhibition of biofilm produced by Gram-positive bacteria. Compound 5f with minimumbiofilm inhibitory concentration(MBIC) of 0.39, 0.78 and 3.125?g/mL against MSSA, MRSA and SE respectively, emerged as promising anti-biofilm lead compounds. In addition, compounds 5b, 5c, 5d, 5e, 5f, 5h, 5i and 5j revealed equal potency as that of the standard drug Vancomycin (MBIC=3.125?g/mL) against Streptococcus epidermidis. Notably, most of the synthesized compounds displayed better potency than Vancomycin indicating their potential as inhibitors of bacterial biofilm. The cell viability assay for the most active hybrid confirms its anti-virulence properties which need to be further researched. PMID:26125599

  20. Simultaneous complexation of organic compounds and heavy metals by a modified cyclodextrin

    SciTech Connect

    Wang, X.; Brusseau, M.L. [Univ. of Arizona, Tucson, AZ (United States)

    1995-10-01

    The cleanup of contaminated soil and groundwater at hazardous waste sites has become a major focus of research and policy debate. A major factor complicating the cleanup of many sites is the cooccurrence of organic compounds and heavy metals, the so-called mixed wastes. We investigated the ability of a modified cyclodextrin to simultaneously complex low-polarity organic compounds and heavy metals. The results of the experiments showed that carboxymethyl-{beta}-cyclodextrin could simultaneously increase the apparent aqueous solubilities of the selected organic compounds (anthracene, trichlorobenzene; biphenyl, and ODT) and complex with Cd{sup 2+}. This complexation was not significantly affected by changes in pH or by the presence of relatively high concentrations of Ca{sup 2+}. It is possible that this reagent can be used successfully to remediate hazardous waste sites contaminated by mixed wastes. 11 refs., 7 figs.

  1. Sorption of toxic organic compounds on wastewater solids: Mechanism and modeling

    SciTech Connect

    Wang, L.; Govind, R.; Dobbs, R.A.

    1992-01-01

    Sorption of toxic organic compounds on wastewater solids is an important process in conventional biological wastewater treatment systems. The extent of accumulation of toxic organic compounds by sorption onto wastewater solids not only affects the efficiency of the treatment system, but also impacts the management of wastewater solids. The study is an attempt to propose a mechanism for understanding the sorption phenomenon and to develop a model for sorption on wastewater solids based on the proposed mechanism. It was postulated that sorption was a combination of two processes: adsorption and partitioning. A sorption model was developed for both single component and multicomponent systems. The model was tested using single component experimental isotherm data of eight toxic organic compounds.

  2. Development and validation of an automated monitoring system for oxygenated volatile organic compounds and nitrile compounds in ambient air.

    PubMed

    Roukos, J; Plaisance, H; Leonardis, T; Bates, M; Locoge, N

    2009-12-01

    Few studies were conducted on oxygenated volatile organic compounds (OVOC) because of problems encountered during the sampling/analyzing steps induced by water in sampled air. Consequently, there is a lack of knowledge of their spatial and temporal trends and their origins in ambient air. In this study, an analyzer consisted of a thermal desorber (TD) interfaced with a gas chromatograph (GC) and a flame ionization detector (FID) was developed for online measurements of 18 OVOC in ambient air including 4 alcohols, 6 aldehydes, 3 ketones, 3 ethers, 2 esters and 4 nitriles. The main difficulty was to overcome the humidity effect without loss of compounds. Water amount in the sampled air was reduced by the trap composition (two hydrophobic graphitized carbons-Carbopack B:Carbopack X), the trap temperature (held at 12.5 degrees C), by diluting (50:50) the sample with dry air before the preconcentration step and a trap purge with helium. Humidity management allowed the use of a polar CP-Lowox column in order to separate the polar compounds from the hydrocarbon/aromatic matrix. The safe sampling volume for the dual-sorbent trap 75 mg Carbopack X:5mg Carbopack B was found to 405 mL for ethanol by analyzing a standard mixture at a relative humidity of 80%. Detection limits ranging from 10 ppt for ETBE to 90 ppt for ethanol were obtained for 18 compounds for a sampling volume of 405 mL. Good repeatabilities were obtained at two levels of concentration (relative standard deviation <5%). The calibration (ranging from 0.5 to 10 ppb) was set up at three different levels of relative humidity to test the humidity effect on the response coefficients. Results showed that the response coefficients of all compounds were less affected by humidity except for those of ethanol and acetonitrile (decrease respectively of 30% and 20%). The target compounds analysis shows good reproducibility with response coefficient variability of less then 10% of the mean initial value of calibration for all the compounds. Hourly ambient air measurements were conducted in an urban site in order to test this method. On the basis of these measurements, ethanol, acetone and acetaldehyde have shown the highest concentration levels with an average of 2.10, 1.75 and 1.37 ppb respectively. The daily evolution of some OVOC, namely ethanol and acetaldehyde, was attributed to emissions from motor vehicles while acetone has a different temporal evolution that can be probably associated with remote sources. PMID:19863965

  3. Hammerhead ribozyme activity and oligonucleotide duplex stability in mixed solutions of water and organic compounds

    PubMed Central

    Nakano, Shu-ichi; Kitagawa, Yuichi; Miyoshi, Daisuke; Sugimoto, Naoki

    2014-01-01

    Nucleic acids are useful for biomedical targeting and sensing applications in which the molecular environment is different from that of a dilute aqueous solution. In this study, the influence of various types of mixed solutions of water and water-soluble organic compounds on RNA was investigated by measuring the catalytic activity of the hammerhead ribozyme and the thermodynamic stability of an oligonucleotide duplex. The compounds with a net neutral charge, such as poly(ethylene glycol), small primary alcohols, amide compounds, and aprotic solvent molecules, added at high concentrations changed the ribozyme-catalyzed RNA cleavage rate, with the magnitude of the effect dependent on the NaCl concentration. These compounds also changed the thermodynamic stability of RNA base pairs of an oligonucleotide duplex and its dependence on the NaCl concentration. Specific interactions with RNA molecules and reduced water activity could account for the inhibiting effects on the ribozyme catalysis and destabilizing effects on the duplex stability. The salt concentration dependence data correlated with the dielectric constant, but not with water activity, viscosity, and the size of organic compounds. This observation suggests the significance of the dielectric constant effects on the RNA reactions under molecular crowding conditions created by organic compounds. PMID:25161873

  4. Nonpoint sources of volatile organic compounds in urban areas - Relative importance of land surfaces and air

    USGS Publications Warehouse

    Lopes, T.J.; Bender, D.A.

    1998-01-01

    Volatile organic compounds (VOCs) commonly detected in urban waters across the United States include gasoline-related compounds (e.g. toluene, xylene) and chlorinated compounds (e.g. chloroform, tetrachloroethane [PCE], trichloroethene [TCE]). Statistical analysis of observational data and results of modeling the partitioning of VOCs between air and water suggest that urban land surfaces are the primary nonpoint source of most VOCs. Urban air is a secondary nonpoint source, but could be an important source of the gasoline oxygenate methyl-tert butyl ether (MTBE). Surface waters in urban areas would most effectively be protected by controlling land-surface sources.

  5. APPLICATION OF AN ANALYSIS PROTOCOL TO IDENTIFY ORGANIC COMPOUNDS NOT IDENTIFIED BY SPECTRUM MATCHING. PART 2: APPENDICES

    EPA Science Inventory

    Industrial wastewater survey samples were analyzed for organic compounds not identified by spectrum matching. Analysis of the samples proceeded from an initial packed column GC/MS analysis for Priority Pollutants, through computerized spectrum matching for other compounds, to the...

  6. APPLICATION OF AN ANALYSIS PROTOCOL TO IDENTIFY ORGANIC COMPOUNDS NOT IDENTIFIED BY SPECTRUM MATCHING. PART 1: TEXT

    EPA Science Inventory

    Industrial wastewater survey samples were analyzed for organic compounds not identified by spectrum matching. Analysis of the samples proceeded from an initial packed column GC/MS analysis for Priority Pollutants, through computerized spectrum matching for other compounds, to the...

  7. RECOVERY OF SEMI-VOLATILE ORGANIC COMPOUNDS DURING SAMPLE PREPARATION: IMPLICATIONS FOR CHARACTERIZATION OF AIRBORNE PARTICULATE MATTER

    EPA Science Inventory

    Semi-volatile compounds present special analytical challenges not met by conventional methods for analysis of ambient particulate matter (PM). Accurate quantification of PM-associated organic compounds requires validation of the laboratory procedures for recovery over a wide v...

  8. Influence of Oxidants on the Pyrolysis of Organic Compounds in Martian Soil Analogs

    NASA Astrophysics Data System (ADS)

    Steininger, Harald; Goesmann, Fred

    The search for organic molecules and traces of past and present life is one of the main goals of the 2018 ExoMars mission of ESA. The Mars Organic Molecule Analyzer (MOMA) is for one part a pyrolysis gas chromatograph mass spectrometer (pyr-GC-MS), while the other is a laser desorption mass spectrometer. In the pyr-GC-MS a soil sample of app. 200 mg is heated to a temperature of 900C. The volatile compounds can enter the GC, are separated on the column of the GC and identified in the MS. The Phoenix mission discovered considerable amounts of magnesium perchlorate in the soil at the landing site. Perchlorates are oxidizing components and therefore might interact with the expected organics within the soil, especially if the soil is heated within the pyrolysis ovens. The end-product of this oxidation would be carbon dioxide which is in-designable from the atmospheric carbon dioxide. For the test several organic compounds have been used, for example phenylalanine and benzoic acid. Carboxylic acids are stable intermediates in the oxidation of aromatic compounds and therefore the simplest aromatic carboxylic acid, benzoic acid has been considered to be present on Mars. Along with oxidation of the used compounds also chlorination of the aromatic rings was observed after pyrolysis. Up to now not all observed experimental data from the Viking missions can be explained by the perchlorates and therefore other oxidizing compounds might be present. It is likely that they also influence the pyrolysis of organic samples. Further research on the pyrolysis of organic molecules in the presence of oxidizing compounds has to be done.

  9. Mechanistic roles of soil humus and minerals in the sorption of nonionic organic compounds from aqueous and organic solutions

    USGS Publications Warehouse

    Chiou, C.T.; Shoup, T.D.; Porter, P.E.

    1985-01-01

    Mechanistic roles of soil humus and soil minerals and their contributions to soil sorption of nonionic organic compounds from aqueous and organic solutions are illustrated. Parathion and lindane are used as model solutes on two soils that differ greatly in their humic and mineral contents. In aqueous systems, observed sorptive characteristics suggest that solute partitioning into the soil-humic phase is the primary mechanism of soil uptake. By contrast, data obtained from organic solutions on dehydrated soil partitioning into humic phase and adsorption by soil minerals is influenced by the soil-moisture content and by the solvent medium from which the solute is sorbed. ?? 1985.

  10. Biodegradation of organic compounds in vadose zone and aquifer sediments.

    PubMed Central

    Konopka, A; Turco, R

    1991-01-01

    The microbial processes that occur in the subsurface under a typical Midwest agricultural soil were studied. A 26-m bore was installed in November of 1988 at a site of the Purdue University Agronomy Research Center. Aseptic collections of soil materials were made at 17 different depths. Physical analysis indicated that the site contained up to 14 different strata. The site materials were primarily glacial tills with a high carbonate content. The N, P, and organic C contents of sediments tended to decrease with depth. Ambient water content was generally less than the water content, which corresponds to a -0.3-bar equivalent. No pesticides were detected in the samples, and degradation of added 14C-labeled pesticides (atrazine and metolachlor) was not detected in slurry incubations of up to 128 days. The sorption of atrazine and metolachlor was correlated with the clay content of the sediments. Microbial biomass (determined by direct microscopic count, viable count, and phospholipid assay) in the tills was lower than in either the surface materials or the aquifer located at 25 m. The biodegradation of glucose and phenol occurred rapidly and without a lag in samples from the aquifer capillary fringe, saturated zone, and surface soils. In contrast, lag periods and smaller biodegradation rates were found in the till samples. Subsurface sediments are rich in microbial numbers and activity. The most active strata appear to be transmissive layers in the saturated zone. This implies that the availability of water may limit activity in the profile. PMID:1768098

  11. Preparation of spiked soils by vapor fortification for volatile organic compounds analysis

    SciTech Connect

    Hewitt, A.D. [Army Cold Regions Research and Engineering Lab., Hanover, NH (United States)

    1994-05-01

    This paper describes a vapor fortification method for preparing quality assurance/quality control soils for volatile organic compound analysis. Treatment of soils with volatile organic compounds occurs in a closed container in a manner somewhat analogous to the way the vadose zone often becomes contaminated. One advantage of this method for preparing soils for quality assurance/quality control purposes is that the efficiency of various extraction methods can be reliably compared. Furthermore, by substantially reducing the error due to sample inhomogeneity, the error associated with the determinative step can also be properly evaluated. 15 refs., 3 tabs.

  12. Feasibility study of preparing performance evaluation soils for analyzing volatile organic compounds. Special report

    SciTech Connect

    Hewitt, A.D.

    1993-05-01

    Vapor fortification, an alternative method for spiking soils with volatile organic compounds for quality assurance/quality control, was improved by minimizing the effects of numerous variables. The procedure developed resulted in average analytes concentrations for triplicate test samples that were not significantly different among three separate fortification treatments, and had relative standard deviations within each treatment of less than 9%, for three of the four analytes tested. The advantages of using vapor fortification instead of the conventional liquid injection methods are discussed. Performance evaluation soils, Vapor fortification, Pollution control, Volatile organic compounds.

  13. Thermal engine driven heat pump for recovery of volatile organic compounds

    DOEpatents

    Drake, Richard L. (Schenectady, NY)

    1991-01-01

    The present invention relates to a method and apparatus for separating volatile organic compounds from a stream of process gas. An internal combustion engine drives a plurality of refrigeration systems, an electrical generator and an air compressor. The exhaust of the internal combustion engine drives an inert gas subsystem and a heater for the gas. A water jacket captures waste heat from the internal combustion engine and drives a second heater for the gas and possibly an additional refrigeration system for the supply of chilled water. The refrigeration systems mechanically driven by the internal combustion engine effect the precipitation of volatile organic compounds from the stream of gas.

  14. Origins of volatile organic compounds emerging from tank 241-C-106 during sluicing

    SciTech Connect

    STAUFFER, L.A.

    1999-06-02

    Unexpectedly high concentrations of inorganic gases and volatile organic compounds (VOC) were released from the ventilation stack of tank 241-C-106 during sluicing operations on November 18, 1998. Workers experienced serious discomfort. They reported an obnoxious acrid odor and the 450 ppm VOC in ventilation stack 296-C-006 exceeded the level approved in the air discharge permit. Consequently, the operation was terminated. Subsequent analyses of samples collected opportunistically from the stack indicated many organic compounds including heptenes, heptanones, and normal paraffin hydrocarbons (NPH) and their remnants were present. Subsequently, a process test designed to avoid unnecessary worker exposure and enable collection of analytical samples from the stack, the breathing area, and the receiver tank was conducted on December 16, 1998. The samples obtained during that operation, in which the maximum VOC content of the stack was approximately 35 ppm, have been analyzed by teams at Pacific Northwest National Laboratory and Special Analytic Services (SAS). This report examines the results of these investigations. Future revisions of the report will examine the analytical results obtained for samples collected during sluicing operations in March. This report contains the available evidence about the source term for these emissions. Chapter 2 covers characterization work, including historical information about the layers of waste in the tank, the location of organic compounds in these layers, the total organic carbon (TOC) content and the speciation of organic compounds. Chapter 3 covers the data for the samples from the ventilation stack, which has the highest concentrations of organic compounds. Chapter 4 contains an interpretation of the information connecting the composition of the organic emissions with the composition of the original source term. Chapter 5 summarizes the characterization work, the sample data, and the interpretation of the results.

  15. Validation of thermodesorption method for analysis of semi-volatile organic compounds adsorbed on wafer surface.

    PubMed

    Hayeck, Nathalie; Gligorovski, Sasho; Poulet, Irène; Wortham, Henri

    2014-05-01

    To prevent the degradation of the device characteristics it is important to detect the organic contaminants adsorbed on the wafers. In this respect, a reliable qualitative and quantitative analytical method for analysis of semi-volatile organic compounds which can adsorb on wafer surfaces is of paramount importance. Here, we present a new analytical method based on Wafer Outgassing System (WOS) coupled to Automated Thermal Desorber-Gas chromatography-Mass spectrometry (ATD-GC-MS) to identify and quantify volatile and semi-volatile organic compounds from 6", 8" and 12" wafers. WOS technique allows the desorption of organic compounds from one side of the wafers. This method was tested on three important airborne contaminants in cleanroom i.e. tris-(2-chloroethyl) phosphate (TCEP), tris-(2-chloroisopropyl) phosphate (TCPP) and diethyl phthalate (DEP). In addition, we validated this method for the analysis and quantification of DEP, TCEP and TCPP and we estimated the backside organic contamination which may contribute to the front side of the contaminated wafers. We are demonstrating that WOS/ATD-GC-MS is a suitable and highly efficient technique for desorption and quantitative analysis of organophosphorous compounds and phthalate ester which could be found on the wafer surface. PMID:24720963

  16. Organic compounds in indoor air—their relevance for perceived indoor air quality?

    NASA Astrophysics Data System (ADS)

    Wolkoff, Peder; Nielsen, Gunnar D.

    It is generally believed that indoor air pollution, one way or another may cause indoor air complaints. However, any association between volatile organic compounds (VOCs) concentrations and increase of indoor climate complaints, like the sick-building syndrome symptoms, is not straightforward. The reported symptom rates of, in particular, eye and upper airway irritation cannot generally be explained by our present knowledge of common chemically non-reactive VOCs measured indoors. Recently, experimental evidence has shown those chemical reactions between ozone (either with or without nitrogen dioxide) and unsaturated organic compounds (e.g. from citrus and pine oils) produce strong eye and airway irritating species. These have not yet been well characterised by conventional sampling and analytical techniques. The chemical reactions can occur indoors, and there is indirect evidence that they are associated with eye and airway irritation. However, many other volatile and non-volatile organic compounds have not generally been measured which could equally well have potent biological effects and cause an increase of complaint rates, and posses a health/comfort risk. As a consequence, it is recommended to use a broader analytical window of organic compounds than the classic VOC window as defined by the World Health Organisation. It may include hitherto not yet sampled or identified intermediary species (e.g., radicals, hydroperoxides and ionic compounds like detergents) as well as species deposited onto particles. Additionally, sampling strategies including emission testing of building products should carefully be linked to the measurement of organic compounds that are expected, based on the best available toxicological knowledge, to have biological effects at indoor concentrations.

  17. Stripping of organic compounds from wastewater as an auxiliary fuel of regenerative thermal oxidizer.

    PubMed

    Chang, Meng-Wen; Chern, Jia-Ming

    2009-08-15

    Organic solvents with different volatilities are widely used in various processes and generate air and water pollution problems. In the cleaning processes of electronics industries, most volatile organic compounds (VOCs) are vented to air pollution control devices while most non-volatile organic solvents dissolve in the cleaning water and become the major sources of COD in wastewater. Discharging a high-COD wastewater stream to wastewater treatment facility often disturbs the treatment performance. A pretreatment of the high-COD wastewater is therefore highly desirable. This study used a packed-bed stripping tower in combination with a regenerative thermal oxidizer to remove the COD in the wastewater from a printed circuit board manufacturing process and to utilize the stripped organic compounds as the auxiliary fuel of the RTO. The experimental results showed that up to 45% of the COD could be removed and 66% of the RTO fuel could be saved by the combined treatment system. PMID:19195779

  18. Catalytic ozonation of refractory organic model compounds in aqueous solution by aluminum oxide

    Microsoft Academic Search

    Mathias Ernst; Franck Lurot; Jean-Christophe Schrotter

    2004-01-01

    Batch experiments on catalytic ozonation in buffered and non-buffered solution of refractory organic compounds like oxalic, acetic, salicylic and succinic acids are presented. The concentration of dissolved organic carbon (DOC) in each test was 60mg\\/l and the applied batch procedure allowed a clear distinction between adsorptive and reaction processes. Results have confirmed that Al2O3 can be an effective catalyst for

  19. Volatile organic compound emissions from usaf wastewater treatment plants in ozone nonattainment areas. Master's thesis

    Microsoft Academic Search

    Ouellette

    1994-01-01

    In accordance with the 1990 Clean Air Act Amendments (CAAA), this research conducts an evaluation of the potential emission of volatile organic compounds (VOCs) from selected Air Force wastewater treatment plants. Using a conservative mass balance analysis and process specific simulation models, volatile organic emission estimates are calculated for four individual facilities--Edwards AFB, Luke AFB, McGuire AFB, and McClellan AFB--which

  20. An Endophytic Phomopsis sp. Possessing Bioactivity and Fuel Potential with its Volatile Organic Compounds

    Microsoft Academic Search

    Sanjay K. Singh; Gary A. Strobel; Berk Knighton; Brad Geary; Joe Sears; David Ezra

    2011-01-01

    An unusual Phomopsis sp. was isolated as endophyte of Odontoglossum sp. (Orchidaceae), associated with a cloud forest in Northern Ecuador. This fungus produces a unique mixture of volatile\\u000a organic compounds (VOCs) including sabinene (a monoterpene with a peppery odor) only previously known from higher plants.\\u000a In addition, some of the other more abundant VOCs recorded by GC\\/MS in this organism

  1. Stand-off Raman instrument for detection of bulk organic and inorganic compounds

    Microsoft Academic Search

    Shiv K. Sharma; Anupam K. Misra; Paul G. Lucey; Rachel C. F. Lentz; Chi Hong Chio

    2007-01-01

    We have designed and tested a portable stand-off gated-Raman system that is capable of detecting organic and inorganic bulk chemicals at stand-off distances to 100 m during day and night time. Utilizing a single 532 nm laser pulse (~25 mJ\\/pulse), Raman spectra of several organic and inorganic compounds have been measured with the portable Raman instrument at a distance of

  2. Ground-Water Issue: Soil sampling and analysis for volatile organic compounds

    Microsoft Academic Search

    T. E. Lewis; A. B. Crockett; R. L. Siegrist; K. Zarrabi

    1991-01-01

    The Regional Superfund Ground Water Forum is a group of ground-water scientists that represents EPA's Regional Superfund Offices. The forum was organized to exchange up-to-date information related to groundwater remediation at Superfund sites. Sampling of soils for volatile organic compounds (VOCs) is an issue identified by the Ground Water Forum as a concern of Superfund decision makers. Concerns over data

  3. A Genetically-Based Latitudinal Cline in the Emission of Herbivore-Induced Plant Volatile Organic Compounds

    E-print Network

    Agrawal, Anurag

    in a common garden near the range center. Feeding by specialist Danaus plexippus (monarch) larvae induced VOCs gradient . Monarch butterfly Danaus plexippus . Volatile organic compounds Introduction Geographic patterns

  4. Hazardous organic compounds in urban municipal solid waste from a developing country.

    PubMed

    Swati, M; Rema, T; Joseph, Kurian

    2008-12-15

    Fresh and partially decomposed municipal solid waste (MSW) collected from three places in Chennai city, viz., a residential collection point and two dumping grounds (Kodungaiyur and Perungudi) were screened for hazardous organic pollutants. Toxicity Characteristics Leaching Procedure (TCLP) using a Zero Headspace Extractor (ZHE) followed by further extraction by solvent separation using n-hexane containing 15% di-ethyl ether was performed and the organic extract obtained was qualitatively screened by GC-MS. 28 different types of higher alkanes and their derivatives, 7 types of C6-C8 fatty acids and their esters, 7 different phenolic compounds including alkylated phenols and degradation products and 5 phthalate compounds occurred in a majority of the analysed samples. 17 other organic compounds such as carboxylic acids, chloroform, phosphate, pharmaceutical chemicals etc. were also detected. Among these compounds, phenolics and phthalates are highly hazardous in nature and occurred in relatively higher concentrations. Hazardous compounds like p-cresol, di-butyl, mono butyl and di-ethyl pthalates were found in concentrations more than 200mg/kg in MSW. PMID:18434008

  5. Carbonaceous meteorites as a source of sugar-related organic compounds for the early Earth

    NASA Astrophysics Data System (ADS)

    Cooper, George; Kimmich, Novelle; Belisle, Warren; Sarinana, Josh; Brabham, Katrina; Garrel, Laurence

    2001-12-01

    The much-studied Murchison meteorite is generally used as the standard reference for organic compounds in extraterrestrial material. Amino acids and other organic compounds important in contemporary biochemistry are thought to have been delivered to the early Earth by asteroids and comets, where they may have played a role in the origin of life. Polyhydroxylated compounds (polyols) such as sugars, sugar alcohols and sugar acids are vital to all known lifeforms-they are components of nucleic acids (RNA, DNA), cell membranes and also act as energy sources. But there has hitherto been no conclusive evidence for the existence of polyols in meteorites, leaving a gap in our understanding of the origins of biologically important organic compounds on Earth. Here we report that a variety of polyols are present in, and indigenous to, the Murchison and Murray meteorites in amounts comparable to amino acids. Analyses of water extracts indicate that extraterrestrial processes including photolysis and formaldehyde chemistry could account for the observed compounds. We conclude from this that polyols were present on the early Earth and therefore at least available for incorporation into the first forms of life.

  6. Influence on plant growth of the breakdown of organic phosphorus compounds by micro-organisms

    Microsoft Academic Search

    A. Szember

    1960-01-01

    Summary Micro-organisms which break down lecithin or phytin have been isolated from soil by enrichment cultures. Only those organisms were investigated which on an agar medium containing lecithin or phytin as the sole source of P (in the case of lecithin, also as a source of N and energy), produced a clear area around their colonies. Certain of these organisms

  7. Bonded-phase extraction column isolation of organic compounds in groundwater at a hazardous waste site

    USGS Publications Warehouse

    Rostad, C.E.; Pereira, W.E.; Ratcliff, S.M.

    1984-01-01

    A procedure for isolation of hazardous organic compounds from water for gas chromatography/mass spectrometry analysis Is presented and applied to creosote- and pentachlorophenol-contaminated groundwater resulting from wood-treatment processes. This simple procedure involved passing a 50-100-mL sample through a bonded-phase extraction column, eluting the trapped organic compounds from the column with 2-4 mL of solvent, and evaporating the sample to 100 ??L with a stream of dry nitrogen, after which the sample was ready for gas chromatography/mass spectrometry analysis. Representative compounds indicative of creosote contamination were used for recovery and precision studies from the cyclohexyl-bonded phase. Recovery of these compounds from n-octyl-, n-octadecyl-, cyclohexyl-, and phenyl-bonded phases was compared. The bonded phase that exhibited the best recovery and least bias toward acidic or basic cmpounds was the n-octadecyl phase. Detailed compound Identification Is given for compounds Isolated from creosote- and pentachlorophenol-contaminated groundwater using the cyclohexyl-bonded phase.

  8. The Enantiomeric Ratios of Meteoritic Organic Compounds: Their Possible Roles in the Origin of Life

    NASA Technical Reports Server (NTRS)

    Cooper, George

    2012-01-01

    This talk will give an overview of the enantiomer (mirror-image) ratios of organic compounds in meteorites and also describe the results of the present work in my lab. The primary focus will be on sugar derivatives (sugar acids) of carbonaceous meteorites. Our work begins to address questions associated with chirality, i.e., the origins of homochirality. On Earth, biological monomers (amino acids, sugars, etc.) are usually found with one of the enantiomers more abundant than the other. However, biological polymers (proteins, nucleic acids, etc.) are only composed of one enantiomer i.e., they are homochiral. There are hints in meteorites that some organic molecules may also exist in homochiral forms. The talk will address questions such as: did extraterrestrial sources aid in the beginning of this homochirality? Do the increasing size and apparent enantiomer excesses of some meteoritic compounds also extend to larger meteoritic compounds and polymers?

  9. Enhancing the bioavailability of organic compounds sequestered in soil and aquifer solids

    SciTech Connect

    White, J.C.; Alexander, M. [Cornell Univ., Ithaca, New York, NY (United States); Pignatello, J.J. [Connecticut Agricultural Experiment Station, New Haven, CT (United States)

    1999-02-01

    A study was conducted to find ways to increase the biodegradability of compounds that have aged in soil or aquifer material and become less bioavailable. Slurrying enhanced the rate and extent of biodegradation by individual bacterial strains of aged and unaged phenanthrene and di(2-ethylhexyl) phthalate in soils and aquifer solids. After bacterial degradation of aged phenanthrene in unslurried soil had largely ceased, the residual compound was metabolized if the soil was slurried and reinoculated with a phenanthrene-degrading bacterium. The rate and extent of biodegradation of aged phenanthrene by Pseudomonas sp. were enhanced when anthracene or pyrene was added to the soil at the same time as the bacterium, although the organism could not metabolize anthracene or pyrene. Moreover, anthracene or pyrene increased the amount of aged phenanthrene removed from soil by a mild extractant. The data show that the bioavailability of organic compounds that become sequestered by aging can be altered by appropriate soil treatments.

  10. Investigations of the air/plant partitioning of semivolatile organic compounds using a fugacity meter

    SciTech Connect

    Tolls, J.; McLachlan, M.S. [Univ. of Bayreuth (Germany)

    1994-12-31

    A solid phase fugacity meter was used to investigate the transport kinetics and steady-state partitioning of semivolatile organic compounds between the gas phase and leaves of Lolium multiflorum (Welsh ray grass). The grass air partition coefficients determined for grass concentrations ranging over several orders of magnitude were in good agreement with each other for each compound. The average partition coefficients correlated well with the octanol/air partition coefficients. The kinetic behavior was described using a two-compartment model consisting of a small surface compartment and a large interior reservoir compartment. The results of this study support the hypothesis that vegetation plays an important role in the fate of lipophilic organic compounds in the terrestrial environment.

  11. HISTORIC EMISSIONS OF VOLATILE ORGANIC COMPOUNDS IN THE UNITED STATES FROM 1900 TO 1985

    EPA Science Inventory

    The report gives an estimate of historic emissions of volatile organic compounds (VOCs) for each state (and the District of Columbia) of the contiguous U.S. Annual emissions were estimated on the national level from 1960 to 1985. For 1940, 1950, and every fifth year from 1960 to ...

  12. Simplified sampling and analysis system for the determination of volatile organic compounds in combustion effluents

    Microsoft Academic Search

    R. H. James; R. E. Adams; L. D. Johnson

    1987-01-01

    The paper gives results of a study to provide a design for a simplified sampling system to support engineering projects for waste combustion requiring numerous semiroutine sampling tests. Sorbents and tandem-bed sorbent sampling tubes were evaluated to develop a rugged, compact collection system for medium-concentration levels of volatile organic compounds (VOCs). Development of the system and laboratory evaluation of the

  13. EMISSION OF VOLATILE ORGANIC COMPOUNDS FROM DRUM-MIX ASPHALT PLANTS

    EPA Science Inventory

    This research program was undertaken in order to develop a quantitative estimate of the emission of volatile organic compounds (VOCs) from drum-mix asphalt plants. The study was carried out by field sampling of five drum-mix plants under a variety of operating conditions. Include...

  14. NUMERICAL MODELING OF SORPTION KINETICS OF ORGANIC COMPOUNDS TO SOIL AND SEDIMENT PARTICLES (JOURNAL VERSION)

    EPA Science Inventory

    A numerical model is developed to simulate hydrophobic organic compound sorption kinetics, based on a retarded intraaggregate diffusion conceptualization of this solid-water exchange process. The model was used to ascertain the sensitivity of the sorption process for various sorb...

  15. BEHAVIOR AND DETERMINATION OF VOLATILE ORGANIC COMPOUNDS IN SOIL: A LITERATURE REVIEW

    EPA Science Inventory

    This report is a comprehensive literature review that presents and assesses research results that pertain to the problems and inconsistencies observed in the sampling and analysis of soil volatile organic compounds (VOC) by SW-846 method 5030 (purge and trap) for sample preparati...

  16. Characterization of volatile organic compounds and odorants associated with swine barn particulate matter

    Microsoft Academic Search

    Jacek A. Koziel; Lingshuang Cai; Yin-Cheung Lo; Steven J. Hoff

    Swine operations can affect air quality by emissions of odor, volatile organic compounds (VOCs) and other gases, and particulate matter (PM). Particulate matter has been proposed to be an important pathway for carrying odor. However, little is known about the odor-VOCs-PM interactions. In this research, continuous PM sampling was conducted simultaneously with three collocated TEOM analyzers inside a 1000-head swine

  17. RECENT ADVANCES IN THE MATRIX ISOLATION INFRARED SPECTROMETRY OF ORGANIC COMPOUNDS

    EPA Science Inventory

    The application of matrix isolation techniques to the infrared spectrometric analysis of organic compounds is reviewed. iterature covered was published during the period from mId-1981 to mid-1988. nalytical applications of gas chromatography/matrix isolation Fourier transform inf...

  18. Selecting inocula for the biodegradation of organic compounds at low concentrations

    Microsoft Academic Search

    Miriam A. Pahm; Martin Alexander

    1993-01-01

    The inability of many organisms to degrade pollutants at low concentrations is a problem when selecting inocula for bioremediation of sites with these low concentrations. Thus, a study was conducted to determine the effect of low concentrations of p-nitrophenol (PNP) on growth of four PNP-degrading bacteria and their abilities to metabolize low concentrations of the compound in culture and samples

  19. CAPILLARY COLUMN GC-MS DETERMINATION OF 77 PURGEABLE ORGANIC COMPOUNDS IN TWO SIMULATED LIQUID WASTES

    EPA Science Inventory

    The suitability of purge-trap-desorb (PTD) procedures for determination of 84 volatile organic compounds with capillary column gas chromatograph (GC) and mass spectrometry (MS) was evaluated. After collecting GC-MS data not previously available for some analytes, 7 of the 84 comp...

  20. Quantum Mechanical Calculations to Interpret Vibrational and NMR Spectra of Organic Compounds Adsorbed onto Mineral Surfaces

    NASA Astrophysics Data System (ADS)

    Kubicki, J. D.

    2008-12-01

    Vibrational (e.g., ATR FTIR and Raman) and nuclear magnetic resonance (NMR) spectroscopies provide excellent information on the bonding and atomic environment of adsorbed organic compounds. However, interpretation of observed spectra collected for organic compounds adsorbed onto mineral surfaces can be complicated by the lack of comparable analogs of known structure and uncertainties about the mineral surface structure. Quantum mechanical calculations provide a method for testing interpretations of observed spectra because models can be built to mimic predicted structures, and the results are independent of experimental parameters (i.e., no fitting to data is necessary). In this talk, methodologies for modeling vibrational frequencies and NMR chemical shifts of adsorbed organic compounds are discussed. Examples included salicylic acid (as an analog for important binding functional groups in humic acids) adsorbed onto aluminum oxides, organic phosphoryl compounds that represent herbicides and bacterial extracellular polymeric substances (EPS), and ofloxacin (a common agricultural antibiotic). The combination of the ability of quantum mechanical calculations to predict structures, spectroscopic parameters and energetics of adsorption with experimental data on these same properties allows for more definitive construction of surface complex models.

  1. COLLECTION OF A SINGLE ALVEOLAR EXHALED BREATH FOR VOLATILE ORGANIC COMPOUNDS ANALYSIS

    EPA Science Inventory

    Measurement of specific organic compounds in exhaled breath has been used as an indicator of recent exposure to pollutants or as an indicator of the health of an individual. Typical application involves the collection of multiple breaths onto a sorbent cartridge or into an evacua...

  2. SUPERCRITICAL FLUID EXTRACTION OF SEMI-VOLATILE ORGANIC COMPOUNDS FROM PARTICLES

    EPA Science Inventory

    A nitrogen oxide flux chamber was modified to measure the flux of semi-volatile organic compounds (SVOCs). Part of the modification involved the development of methods to extract SVOCs from polyurethane foam (PUF), sand, and soil. Breakthroughs and extraction efficiencies were ...

  3. Volatile organic compound emissions from switchgrass cultivars used as biofuel crops

    Microsoft Academic Search

    A. S. D. Eller; K. Sekimoto; J. B. Gilman; W. C. Kuster; J. A. de Gouw; R. K. Monson; M. Graus; E. Crespo; C. Warneke; R. Fall

    2011-01-01

    Volatile organic compound (VOC) emission rates during the growth and simulated harvest phases were determined for switchgrass (Panicum virgatum) using laboratory chamber measurements. Switchgrass is a candidate for use in second-generation (cellulosic) biofuel production and the acreage dedicated to its growth in the USA has already increased during the past decade. We estimate that the yearly emissions from switchgrass plantations,

  4. Electromembrane Extraction of Organic Acid Compounds in Biological Samples Followed by High-Performance Liquid Chromatography.

    PubMed

    Khajeh, Mostafa; Shakeri, Mohammad; Bameri Natavan, Zahra; Safaei Moghaddam, Zahra; Bohlooli, Mousa; Moosavi-Movahedi, A A

    2015-08-01

    Electromembrane extraction (EME) coupled with high-performance liquid chromatography was developed for determination of organic compounds including citric, tartaric and oxalic acid in biological samples. Organic compounds moved from aqueous samples, through a thin layer of 1-octanol immobilized in the pores of a porous hand-made polypropylene tube, and into a basic aqueous acceptor solution present inside the lumen of the tube. This new set-up for EME has a future potential such as simple, cheap and fast sample preparation technique for extraction of organic compounds in various complicated matrices. The pH of acceptor phase, extraction time, voltage, ionic strength, temperature and stirring speed were studied and optimized. Optimum conditions were: the pH of acceptor phase, 7; extraction time, 30 min; voltage, 30 V and stirring speed, 500 rpm. At the optimum conditions, the preconcentration factors of 175-200, the limits of detection of 1.9-3.1 µg L(-1) were obtained for the analytes. The developed procedure was then applied to the extraction and determination of organic acid compounds from biological samples. PMID:25713106

  5. Windstorm effect on forest sources of biogenic vola tile organic compound emissions in the High Tatras

    Microsoft Academic Search

    P. Fleischer

    The 19 November 2004 windstorm caused significant forest damage in the High Tatras. Windstorm effect on forest sources of biogenic vola tile organic compounds (BVOC) has been studied using BEIS2 series of GLOBEIS model for domain of square 16 km x 16 km with grid 1 km for periods from July to September in 2004 and 2005, re spectively. Differences

  6. An Analytical Approach for Relating Boiling Points of Monofunctional Organic Compounds to Intermolecular Forces

    ERIC Educational Resources Information Center

    Struyf, Jef

    2011-01-01

    The boiling point of a monofunctional organic compound is expressed as the sum of two parts: a contribution to the boiling point due to the R group and a contribution due to the functional group. The boiling point in absolute temperature of the corresponding RH hydrocarbon is chosen for the contribution to the boiling point of the R group and is a…

  7. SAMPLING FOR HIGH-MOLECULAR-WEIGHT ORGANIC COMPOUNDS IN POWER PLANT STACK GASES

    EPA Science Inventory

    The results of laboratory and field investigations of experimental sampling systems intended to collect high-molecular-weight organic compounds from flue gases in coal-fired power plants are presented. The most promising sampling device was a solid sorbent cartridge inserted dire...

  8. Chemical characterization of volatile organic compounds near the World Trade Center: Ambient concentrations and source apportionment

    Microsoft Academic Search

    David A. Olson; Gary A. Norris; Robert L. Seila; Matthew S. Landis; Alan F. Vette

    2007-01-01

    Concentrations of 53 volatile organic compounds (VOCs) are reported from four locations near the World Trade Center (WTC) (New York, USA) complex for canister samples collected from September 2001 through January 2002. Across the four sampling sites, mean concentrations ranged from 94.5 to 219?gm-3 for total VOCs. The highest mean concentrations for individual VOCs at any site were for ethane

  9. Controlling Strategies and Technologies of Volatile Organic Compounds Pollution in Interior Air of Cars

    Microsoft Academic Search

    Xiaokai Chen; Guoqiang Zhang; Hong Chen

    2010-01-01

    In interior air environment of cars, the mass concentrations of volatile organic compounds (VOC) are so high that human health is threatened. Their sources are analyzed and the controlling strategies and technologies are discussed. Reduce interior temperature, enhance vehicle ventilation, control interior materials, clean air-conditioning on time and use photo catalytic oxidation or adsorptive technology are the effective manners to

  10. FIELD EVALUATION OF VOLATILE ORGANIC COMPOUND REMOVAL EFFICIENCY FOR FULL-SCALE CARBON ADSORPTION SYSTEMS

    EPA Science Inventory

    Six full-scale, fixed-bed carbon adsorption systems were tested for vapor-phase volatile organic compound removal efficiency. Solvents used in the systems included methyl ethyl ketone, isopropyl acetate, tetrahydrofuran and toluene. One year after the first tests, repeat testing ...

  11. MODELING OF MULTICOMPONENT PERVAPORATION FOR REMOVAL OF VOLATILE ORGANIC COMPOUNDS FROM WATER

    EPA Science Inventory

    A resistance-in-series model was used to study the pervaporation of multiple volatile organic compounds (VOCs)-water mixtures. Permeation experiments were carried out for four membranes: poly(dimethylsiloxane) (PDMS), polyether-block-polyamides (PEBA), polyurethane (PUR) and sil...

  12. PREDICTION OF THE SOLUBILITY, ACTIVITY COEFFICIENT AND LIQUID/LIQUID PARTITION COEFFICIENT OF ORGANIC COMPOUNDS

    EPA Science Inventory

    Solvation models, based on fundamental chemical structure theory, were developed in the SPARC mechanistic tool box to predict a large array of physical properties of organic compounds in water and in non-aqueous solvents strictly from molecular structure. The SPARC self-interact...

  13. SEPARATION AND ISOLATION OF VOLATILE ORGANIC COMPOUNDS USING VACUUM DISTILLATION WITH GC/MS DETERMINATION

    EPA Science Inventory

    Vacuum distillation of water, soil, oil, and fish samples is presented as an alternative technique for determining volatile organic compounds (VOCs). Analyses of samples containing VOCs and non-VOCs at 50ppb concentrations were performed to evaluate method limitations. Analyte re...

  14. Coagulation and nanofiltration: A hybrid system for the removal of lower molecular weight organic compounds (LMWOC)

    Microsoft Academic Search

    Yuanfang Wang; Li Shu; Veeriah Jegatheesan; Baoyu Gao

    2009-01-01

    The removal of lower molecular weight organic compounds (LMWOC) from water is of increasing concern. While, nano-filtration (NF) is a good option, it removes only a fraction of the LMWOC. In this paper, NF experiments were conducted to remove oxalic acid and diuron in combination with coagulation using poly-aluminum chloride (PAC) as the coagulant. The results showed that this hybrid

  15. RECONCILING URBAN VOC/NOX (VOLATILE ORGANIC COMPOUNDS/NOX) EMISSION INVENTORIES WITH AMBIENT CONCENTRATION DATA

    EPA Science Inventory

    A review of the current state of emission inventories of volatile organic compounds (VOC) and NOx data compiled for urban areas in the U.S. is presented. The study reveals great differences in the gross emission magnitudes when compared with corresponding ambient air concentratio...

  16. Abatement of volatile organic sulfur compounds in odorous emissions from the bio-industry.

    PubMed

    Smet, E; Van Langenhove, H

    1998-01-01

    Compounds of interest in this work are methanethiol (MeSH), dimethyl sulfide (Me2S), dimethyl polysulfides (Me2Sx) and carbon disulfide (CS2) since these volatiles have been identified as predominant odorants in the emission of a wide range of activities in the bio-industry (e.g. aerobic waste water treatment plants, composting plants, rendering plants). In these processes, the occurrence of volatile organic sulfur compounds is mainly related to the presence of anaerobic microsites with consecutive fermentation of sulfur containing organic material and/or to the breakdown of the latter due to thermal heating. Due to the chemical complexity of these low-concentrated waste gas streams and the high flow rates to be handled, mainly biotechnological techniques and scrubbers can be used to control the odour emission. When using biofilters or trickling filters, inoculation with specific microorganisms and pH-control strategies should be implemented to optimise the removal of volatile organic sulfur compounds. In scrubbers, chemical oxidation of the volatile organic sulfur compounds can be obtained by dosing hypochlorite, ozone or hydrogen peroxide to the scrubbing liquid. However, optimal operational conditions for each of these abatement techniques requires a further research in order to guarantee a long-term and efficient overall odour abatement. PMID:10022070

  17. FINAL REPORT: MEMBRANE-MEDIATED EXTRACTION AND BIODEGRADATION OF VOLATILE ORGANIC COMPOUNDS FROM AIR

    EPA Science Inventory

    The report describes feasibility tests of a two-step strategy for air pollution control applicable to exhaust air contaminated with volatile organic compounds (VOCs) from painting aircraft. In the first step, the VOC-contaminated air passes over coated, polypropylene, hollow-fibe...

  18. INTERLABORATORY COMPARISON STUDIES FOR CHARACTERIZATION OF ORGANIC COMPOUNDS IN PARTICULATE MATTER

    EPA Science Inventory

    A working group of investigators, who are characterizing and quantifying the organic compounds in particulate matter (PM) as part of the US EPA's PM 2.5 research program and related studies, was established three years ago to advance the quality and comparability of data on the...

  19. Development of the colorimetric sensor array for detection of explosives and volatile organic compounds in air

    NASA Astrophysics Data System (ADS)

    Kostesha, N. V.; Alstrøm, T. S.; Johnsen, C.; Nilesen, K. A.; Jeppesen, J. O.; Larsen, J.; Jakobsen, M. H.; Boisen, A.

    2010-04-01

    In the framework of the research project 'Xsense' at the Technical University of Denmark (DTU) we are developing a simple colorimetric sensor array which can be useful in detection of explosives like DNT and TNT, and identification of volatile organic compounds in the presence of water vapor in air. The technology is based on an array of chemo-responsive dyes immobilized on a solid support. Upon exposure to the analyte in suspicion the dye array changes color. Each chosen dye reacts chemo selectively with analytes of interest. A change in a color signature indicates the presence of unknown explosives and volatile organic compounds (VOCs). We are working towards the selection of dyes that undergo color changes in the presence of explosives and VOCs, as well as the development of an immobilization method for the molecules. Digital imaging of the dye array before and after exposure to the analytes creates a color difference map which gives a unique fingerprint for each explosive and volatile organic compound. Such sensing technology can be used to screen for relevant explosives in a complex background as well as to distinguish mixtures of volatile organic compounds distributed in gas phase. This sensor array is inexpensive, and can potentially be produced as single use disposable.

  20. Reactions of volatile organic compounds in the atmosphere: Ozone-alkene reactions

    Microsoft Academic Search

    Jill Denise Fenske

    2000-01-01

    Photochemical smog cannot form without sunlight, nitrogen oxides, and volatile organic compounds (VOC). This dissertation addresses several different aspects of VOC chemistry in the atmosphere. Aside from ambient levels of VOC outdoors, VOC are also present at moderate concentrations indoors. Many studies have measured indoor air concentrations of VOC, but only one considered the effects of human breath. The major

  1. VOC (VOLATILE ORGANIC COMPOUNDS) FUGITIVE EMISSION DATA - HIGH DENSITY POLYETHYLENE PROCESS UNIT

    EPA Science Inventory

    The report gives data from a 10-month study of volatile organic compound (VOC) fugitive emissions from a high density polyethylene process unit. It gives statistics on leak frequency, leak occurrence, and leak recurrence, with a leak defined as having a screening value equal to o...

  2. Volatile organic compound concentrations and emission rates in new manufactured and site-built houses

    Microsoft Academic Search

    A. T. Hodgson; A. F. Rudd; D. Beal; S. Chandra

    1999-01-01

    Concentrations of 54 volatile organic compounds (VOCs) and ventilation rates were measured in four new manufactured houses over 2 - 9.5 months following installation and in seven new site- built houses 1 - 2 months after completion. The houses were in four projects located in hot- humid and mixed-humid climates. They were finished and operational, but unoccupied. Ventilation rates ranged

  3. TEST METHODS FOR THE DETERMINATION OF VOLATILE ORGANIC COMPOUNDS IN CONSUMER PRODUCTS

    EPA Science Inventory

    The paper discusses two test methods for determining volatile organic compounds (VOCs) in consumer products. he development of test methods for determining VOC emissions from consumer products has been identified by many states as the highest priority research activity in the con...

  4. A NEW MASS SPECTROMETRIC TECHNIQUE FOR IDENTIFYING TRACE-LEVEL ORGANIC COMPOUNDS IN COMPLEX MIXTURES

    EPA Science Inventory

    Most organic compounds are not found in mass spectral libraries and cannot be easily identified from low resolution mass spectra. Ion Composition Elucidation (ICE) utilizes selected ion recording with a double focusing mass spectrometer in a new way to determine exact mas...

  5. RAPID AND ACCURATE METHOD FOR ESTIMATING MOLECULAR WEIGHTS OF ORGANIC COMPOUNDS FROM LOW RESOLUTION MASS SPECTRA

    EPA Science Inventory

    An improved method of estimating molecular weights of volatile organic compounds from their mass spectra has been developed and evaluated for accuracy. his technique can be implemented with a user friendly expert system on a personal computer. he method is based on a pattern reco...

  6. LEAF, BRANCH, STAND & LANDSCAPE SCALE MEASUREMENTS OF VOLATILE ORGANIC COMPOUND FLUXES FROM U.S. WOODLANDS

    EPA Science Inventory

    Natural volatile organic compounds (VOC) fluxes were measured in three U.S. woodlands in summer 1993. Fluxes from individual leaves and branches were estimated with enclosure techniques and used to initialize and evaluate VOC emission model estimates. Ambient measurements were us...

  7. Contribution of amino compounds to dissolved organic nitrogen in forest soils

    E-print Network

    Zhang, Qi

    form leached from the forest floor of both deciduous and coniferous forests (Van Cleve and White 1980Contribution of amino compounds to dissolved organic nitrogen in forest soils Z. YU, Q. ZHANG, T and nitrogen fluxes in forest ecosystems. In spite of the apparent importance of DON, there is a paucity

  8. NATURAL VOLATILE ORGANIC COMPOUND EMISSION RATE ESTIMATES FOR U.S. WOODLAND LANDSCAPES

    EPA Science Inventory

    Volatile organic compound (VOC) emission rate factors are estimated for 49 tree genera based on a review of foliar emission rate measurements. oliar VOC emissions are grouped into three categories: isoprene, monoterpenes and other VOC'S. ypical emission rates at a leaf temperatur...

  9. Heterogeneous Adsorption Characteristics of Volatile Organic Compounds (VOCs) on MCM?48

    Microsoft Academic Search

    W. G. Shim; J. W. Lee; H. Moon

    2006-01-01

    This work focuses on the fundamental studies of heterogeneous adsorption characteristics of mesoporous adsorbent. MCM?48 was synthesized to investigate the adsorption properties of eight different volatile organic compounds (benzene, cyclohexane, n?hexane, toluene, methanol, acetone, methyl ethyl ketone (MEK), and trichloroethylene (TCE)). The gravimetric method was used to measure the adsorption equilibrium amount. Several simple and reliable methods such as isosteric

  10. NON-POLAR VOLATILE ORGANIC COMPOUNDS IN WHOLE AIR SAMPLES FROM THE AUTOEX STUDIES

    EPA Science Inventory

    Air samples were captured in SUMMA polished stainless steel canisters and returned to the laboratory for analysis of trace level volatile organic compounds by gas chromatography - mass spectrometry. ampling was performed over 2-hour periods at various distances from heavily trave...

  11. GASEOUS HC1 AND CHLORINATED ORGANIC COMPOUND EMISSIONS FROM REFUSE FIRED WASTE-TO-ENERGY SYSTEMS

    EPA Science Inventory

    The emissions from a water wall mass fired municipal waste incinerator and a refuse derived fuel (RDF) fired incinerator were sampled for chlorinated organic compounds and hydrochloric acid (HCl). The sampling was performed to evaluate the extractive sampling methods used to meas...

  12. Low temperature atmospheric pressure discharge plasma processing for volatile organic compounds

    Microsoft Academic Search

    T. Oda; A. Kumada; K. Tanaka; T. Takahashi; S. Masuda

    1995-01-01

    The 1,000 ppm VOCs (volatile organic compounds) decomposition performance of SPCP (Surfaced Discharge Induced Plasma Chemical Processing) was studied relating to various carrier gas effects, plasma exposing methods and others in order to understand the decomposition mechanisms. In any carrier gas, a direct SPCP can decompose every VOC tested. The efficient decomposing carrier gases are oxygen, air and nitrogen in

  13. MICROWAVE-ASSISTED EXTRACTION OF ORGANIC COMPOUNDS FROM STANDARD REFERENCE SOILS AND SEDIMENTS

    EPA Science Inventory

    As part of an ongoing evaluation of new sample preparation techniques by the U.S. Environmental Protection Agency (EPA), especially those that minimize waste solvents, microwave-assisted extraction (MAE) of organic compounds from solid materials (or "matrices") was evaluated. Six...

  14. Field Test to Demonstrate Real-Time In-Situ Detection of Volatile Organic Compounds

    E-print Network

    Ho, Cliff

    1 Field Test to Demonstrate Real-Time In-Situ Detection of Volatile Organic Compounds Hazmat Spill Center, Nevada Test Site September 19-25, 2001 Clifford K. Ho Sandia National Laboratories Albuquerque-filled 55- gallon drum at the Hazmat Spill Center at the Nevada Test Site. Background and Objectives Tens

  15. Patterns in volatile organic compound emissions along a savanna-rainforest gradient in central Africa

    Microsoft Academic Search

    L. F. Klinger; J. Greenberg; A. Guenther; G. Tyndall; P. Zimmerman; J.-M. Moutsamboté; D. Kenfack

    1998-01-01

    In temperate regions the chemistry of the lower troposphere is known to be significantly affected by biogenic volatile organic compounds (VOCs) emitted by plants. The chemistry of the lower troposphere over the tropics, however, is poorly understood, in part because of the considerable uncertainties in VOC emissions from tropical ecosystems. Present global VOC models predict that base emissions of isoprene

  16. The Indoor Volatile Organic Compounds (VOCs) Pollution Control Methods - A Case Study

    Microsoft Academic Search

    Lei Yuan; NanYang Yu

    2010-01-01

    An aim in study volatile organic compound (VOCs) emission is to improve indoor air quality. VOCs are the major indoor air pollutants, this paper introduced the types ,sources and characteristics of pollution caused by VOCs in indoor air, and effect of VOCs on human health were presented. The pollution from sources, adsorption technology and photocatalytic oxidation technology ect. In order

  17. ORGANIC COMPOUNDS IN SURFACE SEDIMENTS AND OYSTER TISSUES FROM THE CHESAPEAKE BAY. APPENDICES

    EPA Science Inventory

    Detailed in the first part of this report is a development and discussion of the methodology used to extract and analyze sediment and oyster tissue samples from Chesapeake Bay for organic compounds. The method includes extraction, fractionation, and subsequent analysis using glas...

  18. Removal of dioxins, PCB's and other halogenated organic compounds from wastewater

    Microsoft Academic Search

    W. C. Ying; S. A. Sojka

    1986-01-01

    This patent describes the combination of physicochemical and biological treatment processes for removing dioxins, PCB's, and other halogenated organic compounds from raw wastewater, in a pretreatment zone to produce pretreated wastewater still containing minor proportions, of dioxins and PCB's and then in a reaction zone wherein final effluent is produced. This comprises the physiocochemical process consisting of subjecting the raw

  19. Radiolytic generation of chloro-organic compounds in transuranic and low-level radioactive waste

    Microsoft Academic Search

    D. T. Reed; S. C. Armstrong; T. R. Krause

    1993-01-01

    The radiolytic degradation of chloro-plastics is being investigated to evaluate the formation of chlorinated volatile organic compounds in radioactive waste. These chlorinated VOCs, when their subsequent migration in the geosphere is considered, are potential sources of ground-water contamination. This contamination is an important consideration for transuranic waste repositories being proposed for the Waste Isolation Pilot Plant project and the several

  20. Characterizing and mitigating emissions of volatile organic compounds from animal feeding operations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Volatile organic compounds (VOC) emitted from animal feeding operations negatively impact local and potentially regional air quality though the release of both odorous and ozone precursor molecules. Characterizing emissions of VOCs from AFOs is strongly influenced by both the method and location of ...

  1. Polycyclic aromatic hydrocarbons in asteroid 2008 TC3: Dispersion of organic compounds inside asteroids

    E-print Network

    Zare, Richard N.

    Polycyclic aromatic hydrocarbons in asteroid 2008 TC3: Dispersion of organic compounds inside asteroids Hassan SABBAH1* , Amy L. MORROW1 , Peter JENNISKENS2 , Muawia H. SHADDAD3 , and Richard N. ZARE1. Among the predominantly polymict ureilite meteorites collected from the impact of asteroid 2008 TC3

  2. Development of a continuous monitor for detection of toxic organic compounds

    Microsoft Academic Search

    T. Hadeishi; R. McLaughlin; J. Millaud; M. Pollard

    1983-01-01

    The goal of the present program was the design, construction, and delivery to EMSL\\/RTP of a small continuous monitor for benzene and other organic compounds based upon Tunable Atomic Line Molecular Spectroscopy. The most limiting design factor was found to be the detection limit of the instrument. To improve this limiting factor, some new developments were investigated. These developments have

  3. USE OF SONICATION FOR IN-WELL SOFTENING OF SEMIVOLATILE ORGANIC COMPOUNDS

    EPA Science Inventory

    The specific objectives of the proposed work are to investigate the in-situ degradation of semivolatile organic compounds (SVOCs) and to: Determine the system performance of the combination of in-well sonication, vapor stripping, and biodegradation to destroy VOCs and change SVO...

  4. LONG-TERM STUDY OF VOLATILE ORGANIC COMPOUND RECOVERY FROM AMPULATED, DRY, FORTIFIED SOILS

    EPA Science Inventory

    Our objective was to evaluate the stability and extractability of volatile organic compound (VOCs) when fortified on dry soils and stored in sealed ampules. Two desiccator-dried soils were fortified with eight neat VOCs, benzene,toluene,ethylbenzene,o-xylene,1,1,1-trichloroethane...

  5. EXTRACTION METHODS FOR RECOVERY OF VOLATILE ORGANIC COMPOUNDS FROM FORTIFIED DRY SOILS

    EPA Science Inventory

    Recovery of 8 volatile organic compounds (VOCs) from dry soils, each fortified at 800 ng/g soil, was studied in relation to the extraction method and time of extraction. Extraction procedures studied on desiccator-dried soils were modifications of EPA low-and high-level purge-and...

  6. Temporal variation, regional sources, and removal processes of volatile organic compounds in New England

    Microsoft Academic Search

    Rachel S. Russo

    2009-01-01

    This dissertation describes three research projects with the common objective of characterizing the influence of volatile organic compounds (VOCs) on air quality in New England using measurements made over multiple years (2002-2008) and from different sampling locations. The specific objectives include identifying sources (direct emission or secondary production), quantifying mixing ratios, and characterizing the chemical (i.e., oxidation, photolysis) and physical

  7. Determining the chemical activity of hydrophobic organic compounds in soil using polymer coated vials

    Microsoft Academic Search

    Fredrik Reichenberg; Foppe Smedes; Jan-Åke Jönsson; Philipp Mayer

    2008-01-01

    BACKGROUND: In soils contaminated by hydrophobic organic compounds, the concentrations are less indicative of potential exposure and distribution than are the associated chemical activities, fugacities and freely dissolved concentrations. The latter can be measured by diffusive sampling into thin layers of polymer, as in, for example, solid phase micro-extraction. Such measurements require equilibrium partitioning of analytes into the polymer while

  8. A novel laboratory system for determining fate of volatile organic compounds in planted systems

    Microsoft Academic Search

    B. J. Orchard; W. J. Doucette; J. K Chard; B. Bugbee

    2000-01-01

    Contradictory observations regarding the uptake and translocation of volatile organic compounds (VOCs) by plants have been reported, most notably for trichloroethylene (TCE). Experimental artifacts resulting from the use of semistatic or low-flow laboratory systems may account for part of the discrepancy. Innovative plant growth chambers are required to rigorously quantify the movement of VOCs through higher plants while maintaining a

  9. MODELING OF MULTICOMPONENT PERVAPORATION FOR REMOVAL OF VOLATILE ORGANIC COMPOUNDS FROM WATER

    EPA Science Inventory

    A resistance in series model was used to study the pervaporation of multiple volatile organic compounds (VOCs) water mixtures. ermeation experiments were carried out for four membranes and three VOCs. he membrane permeability were calculated in terms of the resistance in series m...

  10. ANAEROBIC INHIBITION OF TRACE ORGANIC COMPOUND REMOVAL DURING RAPID INFILTRATION OF WASTEWATER

    EPA Science Inventory

    When soil columns were operated aerobically on a flooding-drying schedule in a previous study, good removals were observed for several organic compounds at concentrations ranging from 1 to 1,000 micrograms/l per liter in primary wastewater. In this study, fractional breakthrough ...

  11. Industrial waste-water volatile organic compound emissions. Background information for BACT\\/LAER determinations

    Microsoft Academic Search

    J. Elliott; S. Watkins

    1990-01-01

    The purpose of the Control Technology Center (CTC) is to provide technical information to States on estimating and controlling volatile organic compounds (VOC) emissions from the collection and treatment of industrial wastewaters for Best Available Control Technology (BACT) and Lowest Achievable Emission Rate (LAER) determinations. Technical guidance projects, focus on topics of national or regional interest that are identified through

  12. Ambient volatile organic compound (VOC) concentrations around a petrochemical complex and a petroleum refinery

    Microsoft Academic Search

    Eylem Cetin; Mustafa Odabasi; Remzi Seyfioglu

    2003-01-01

    Air samples were collected between September 2000 and September 2001 in Izmir, Turkey at three sampling sites located around a petrochemical complex and an oil refinery to measure ambient volatile organic compound (VOC) concentrations. VOC concentrations were 4–20-fold higher than those measured at a suburban site in Izmir, Turkey. Ethylene dichloride, a leaded gasoline additive used in petroleum refining and

  13. VOC (VOLATILE ORGANIC COMPOUND EMISSION FACTORS FOR THE NAPAP (NATIONAL ACID PRECIPITATION ASSESSMENT PROGRAM) EMISSION INVENTORY

    EPA Science Inventory

    The report gives results of the generation of emission factors for volatile organic compound (VOC) emissions for a number of source classification categories (SCCs), as part of the National Acid Precipitation Assessment Program (NAPAP). Each SCC represents a process or function t...

  14. INHIBITORY EFFECTS OF VOLATILE ORGANIC COMPOUNDS ON NEURONAL NICOTINIC ACETYLCHOLINE RECEPTORS.

    EPA Science Inventory

    INHIBITORY EFFECTS OF VOLATILE ORGANIC COMPOUNDS ON NEURONAL NICOTINIC ACETYLCHOLINE RECEPTORS. A.S. Bale*; P.J. Bushnell; C.A. Meacham; T.J. Shafer Neurotoxicology Division, NHEERL, ORD, US Environmental Protection Agency, Research Triangle Park, NC, USA Toluene (TOL...

  15. VOLATILE ORGANIC COMPOUNDS AS BREATH BIOMARKERS FOR ACTIVE AND PASSIVE SMOKING

    EPA Science Inventory

    Real-time breath measurement technology was used to investigate the suitability of some volatile organic compounds (VOCs) to serve as breath biomarkers for active and passive smoking and to measure actual exposures and resulting breath concentrations for persons exposed to toba...

  16. MASTER ANALYTICAL SCHEME FOR ORGANIC COMPOUNDS IN WATER. PART 2. APPENDICES TO PROTOCOLS

    EPA Science Inventory

    A Master Analytical Scheme (MAS) has been developed for the analysis of volatile (gas chromatographable) organic compounds in water. In developing the MAS, it was necessary to evaluate and modify existing analysis procedures and develop new techniques to produce protocols that pr...

  17. MASTER ANALYTICAL SCHEME FOR ORGANIC COMPOUNDS IN WATER: PART 1. PROTOCOLS

    EPA Science Inventory

    A Master Analytical Scheme (MAS) has been developed for the analysis of volatile (gas chromatographable) organic compounds in water. In developing the MAS, it was necessary to evaluate and modify existing analysis procedures and develop new techniques to produce protocols that pr...

  18. COMPARISON OF EMISSION PROFILES FOR VOLATILE ORGANIC COMPOUNDS FROM COTTON AND POLYPROPYLENE-BASED TARP

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A high electric field, radio-frequency ion mobility analyzer (RF-IMS) was used as a small detector in gas chromatographic separations of mixtures of volatile organic compounds including alcohols, aldehydes, esters, ethers, pheromes, and other chemical attractants for insects. The detector was equip...

  19. EVALUATION OF GAS CHROMATOGRAPHY DETECTION SYSTEMS FOR TOTAL GASEOUS NONMETHANE ORGANIC COMPOUNDS

    EPA Science Inventory

    Better characterization and control of emissions from stationary sources of compounds under the Clean Air Act Amendments of 1990, Title I could be met by a continuous or semi-continuous measurement of total gaseous nonmethane organic carbon (TGNMOC). earch was initiated to identi...

  20. VOLATILE ORGANIC COMPOUND EMISSION PROJECTION MODEL (VERSION 1.8). USER'S MANUAL

    EPA Science Inventory

    The report discusses a model that can be used to estimate future emissions of volatile organic compounds (VOCs) and costs of their control by applying growth factors, emission constraints, control cost functions, and capacity retirement rates to the base line estimates of VOC emi...

  1. Low-Level Detections of Halogenated Volatile Organic Compounds in Groundwater

    E-print Network

    Low-Level Detections of Halogenated Volatile Organic Compounds in Groundwater: Use in Vulnerability sources. Increasingly, there is a need to conduct assessments of the vulnerability of groundwater systems-capture detector GC-ECD and by gas chromatography with mass spectrometry GC-MS in 109 groundwater samples from five

  2. Housing Characteristics and Indoor Concentrations of Selected Volatile Organic Compounds (VOCs) in Quebec City, Canada

    Microsoft Academic Search

    Marie-Ève Héroux; Denis Gauvin; Nicolas L. Gilbert; Mireille Guay; Geneviève Dupuis; Michel Legris; Benoît Lévesque

    2008-01-01

    Concentrations of 26 volatile organic compounds (VOCs) were measured continuously for 7 days during winter in 96 homes in Quebec City, Canada. Characteristics of the houses and activities of the occupants were documented through detailed questionnaires filled out by one adult per household. VOCs were sampled using passive monitors and analyzed by gas chromatography-mass selective detector (GC-MSD). Results indicate contributions

  3. Cadaveric volatile organic compounds released by decaying pig carcasses ( Sus domesticus L.) in different biotopes

    Microsoft Academic Search

    J. Dekeirsschieter; F. J. Verheggen; M. Gohy; F. Hubrecht; L. Bourguignon; G. Lognay; E. Haubruge

    2009-01-01

    Forensic entomology uses pig carcasses to surrogate human decomposition and to investigate the entomofaunal colonization. Insects communicate with their environment through the use of chemical mediators, which in the case of necrophagous insects, may consist in the cadaveric volatile organic compounds (VOCs) released by the corpse under decomposition. Previous studies have focused on cadaveric VOCs released from human corpses. Nevertheless,

  4. SEPARATION AND ISOLATION OF VOLATILE ORGANIC COMPOUNDS USING VACUUM DISTILLATION WITH GS/MS DETERMINATION

    EPA Science Inventory

    The U.S. EPA's vacuum distillation of water, soil, oil, and fish samples is presented as an alternative technique for determining volatile organic compounds. nalysis of samples containing VOCs and non-VOCs at 50 ppb concentrations were performed to evaluate method limitations. na...

  5. IMPACT OF ORGANIC COMPOUNDS ON THE CONCENTRATIONS OF LIQUID WATER IN AMBIENT PM2.5

    EPA Science Inventory

    A field study was undertaken during the summer of 2000 to assess the impact of the presence of organic compounds on the liquid water concentrations of PM2.5 samples. The selected site, located in Research Triangle Park, North Carolina, was in a semi-rural environment with expe...

  6. PILOT-SCALE EVALUATION OF AN INCINERABILITY RANKING SYSTEM FOR HAZARDOUS ORGANIC COMPOUNDS

    EPA Science Inventory

    The subject study was conducted to evaluate an incinerability ranking system developed by teh University of Dayton Research Institute under contract to the EPA Risk Reduction Engineering Laboratory. Fixtures of organic compounds were prepared and combined with a clay-based sorben...

  7. PILOT-SCALE EVALUATION OF AN INCINERABILITY RANKING SYSTEM FOR HAZARDOUS ORGANIC COMPOUNDS

    EPA Science Inventory

    The subject study was conducted to evaluate an incinerability ranking system developed by the University of Dayton Research Institute under contract to the EPA Risk Reduction Engineering Laboratory. ixtures of organic compounds were prepared and combined with a clay-based sorbent...

  8. THE OXIDATION OF ORGANIC COMPOUNDS IN THE TROPOSPHERE AND THEIR GLOBAL WARMING POTENTIALS

    E-print Network

    pulses of 10 organic compounds were followed in a global 3-D Lagrangian chemistry-transport model. Printed in the Netherlands. #12;454 W. J. COLLINS ET AL. NO2 + h = NO + O (4) O + O2 + M = O3 + M . (5

  9. Compositions of Volatile Organic Compounds Emitted from Melted Virgin and Waste Plastic Pellets

    Microsoft Academic Search

    Kyoko Yamashita; Naomichi Yamamoto; Atsushi Mizukoshi; Miyuki Noguchi; Yueyong Ni; Yukio Yanagisawa; Richard Hoffbeck; Yongping Li; Guohe Huang; James Schwab; John Spicer; Kenneth Demerjian; Mark Gibson; Judith Guernsey; Stephen Beauchamp; David Waugh; Mathew Heal; Jeffrey Brook; Robert Maher; Graham Gagnon; Johnny McPherson; Barbara Bryden; Richard Gould; Liming Zhou; Philip Hopke; Weixiang Zhao; Elisabeth Hawley; Neven Kresic; Alexandra Wright; Michael Kavanaugh; Pat Saathoff; Amit Gupta; Ted Stathopoulos; Louis Lazure; ABM Khan; Nigel Clark; Mridul Gautam; W. Wayne; Gregory Thompson; Donald Lyons; Yu-Ming Kuo; Yasuhiro Fukushima

    2009-01-01

    To characterize potential air pollution issues related to recycling facilities of waste plastics, volatile organic compounds (VOCs) emitted from melted virgin and waste plastics pellets were analyzed. In this study, laboratory experiments were performed to melt virgin and waste plastic pellets under various temperatures (150, 200, and 250 °C) and atmospheres (air and nitrogen [N2]). In the study presented here,

  10. EVALUATION OF INNOVATIVE LOW-VOLATILE ORGANIC COMPOUND (VOC) INDUSTRIAL MAINTENANCE (IM) COATINGS

    EPA Science Inventory

    The paper discusses a field evaluation of the feasibility of using alternative low-volatile organic compound (VOC) coatings to replace higher-VOC coatings. he evaluation includes chemical, performance, and outdoor exposure testing. he feasibility of five alternative coatings for ...

  11. CHARACTERIZATION OF EMISSIONS OF VOLATILE ORGANIC COMPOUNDS FROM INTERIOR ALKYD PAINT

    EPA Science Inventory

    Alkyd paint continues to be used indoors for application to wood trim, cabinet surfaces, and some kitchen and bathroom walls. Paint may represent a significant source of volatile organic compounds (VOCs) indoors depending on the frequency of use and amount of surface paint. The U...

  12. Some Halogenated Organic Compounds in Sediments and Blue Mussel ( Mytilus edulis) in Nordic Seas

    Microsoft Academic Search

    Kim Gustavson; Per Jonsson

    1999-01-01

    Sediments and blue mussels were collected along a transect through the Baltic Sea to the Atlantic Ocean and analysed for a number of specific halogenated organic compounds and sum parameters. Multivariance analysis indicated geographical separation of the sediment data due to high concentrations of EOCl and EPOCl in the Bay of Bothnia and Bothnian Sea, high concentrations of sPCB in

  13. COMPARISON OF TWO FIELD SAMPLING PROCEDURES (EN CORE AND FIELD METHANOL EXTRACTION) FOR VOLATILE ORGANIC COMPOUNDS

    EPA Science Inventory

    In-situ Lasagna technology was recently evaluated at a contaminated site at Offutt Air Force Base. The site was contaminated with low levels (< 30 mg/kg) of volatile organic compounds (VOCs). Originally, researchers planned to use field methanol extraction for both pre- and pos...

  14. Exposure to Wood Dust, Resin Acids, and Volatile Organic Compounds During Production of Wood Pellets

    Microsoft Academic Search

    Katja Hagström; Sara Axelsson; Helena Arvidsson; Ing-Liss Bryngelsson; Cecilia Lundholm; Kåre Eriksson

    2008-01-01

    The main aim of this study was to investigate exposure to airborne substances that are potentially harmful to health during the production of wood pellets, including wood dust, monoterpenes, and resin acids, and as an indicator of diesel exhaust nitrogen dioxide. In addition, area measurements were taken to assess background exposure levels of these substances, volatile organic compounds (VOCs), and

  15. Partitioning of hydrophobic organic compounds within soil–water–surfactant systems

    Microsoft Academic Search

    Peng Wang; Arturo A. Keller

    2008-01-01

    Understanding the partitioning of hydrophobic organic compounds (HOCs) within soil–water–surfactant systems is key to improving the use of surfactants for remediation. The overall objective of this study was to investigate the soil properties that influence the effectiveness of surfactants used to remediate soil contaminated with hydrophobic pesticides, as an example of a more general application for removing strongly sorbing HOCs

  16. Indoor\\/outdoor connections exemplified by processes that depend on an organic compound's saturation vapor pressure

    Microsoft Academic Search

    Charles J. Weschler

    2003-01-01

    Outdoor and indoor environments are profitably viewed as parts of a whole connected through various physical and chemical interactions. This paper examines four phenomena that share a dependence on vapor pressure—the extent to which an organic compound in the gas phase sorbs on airborne particles, sorbs on surfaces, sorbs on particles collected on a filter or activates trigeminal nerve receptors.

  17. Predicting partitioning of volatile organic compounds from air into plant cuticular matrix by quantum chemical descriptors

    Microsoft Academic Search

    Chunlei Zhang; Liu Feng; Jie Wei

    2002-01-01

    Based on theoretical linear solvation energy relationship and quantum chemical descriptors computed by AM1 Hamiltonian, a\\u000a new model is developed to predict the partitioning of some volatile organic compounds between the plant cuticular matrix and\\u000a air.

  18. Partitioning of hydrophobic organic compounds to sorbed surfactants. 1: Experimental studies

    Microsoft Academic Search

    Seok-Oh Ko; Mark A. Schlautman; Elizabeth R. Carraway

    1998-01-01

    The widespread occurrence of hydrophobic organic compounds (HOCs) in soils and groundwaters has led to intensive studies of the mobility and fate of these contaminants in subsurface environments and of their remediation potential. Partitioning of two HOCs, phenanthrene and naphthalene, to surfactant micelles, kaolinite, and sorbed surfactants was studied to provide further insight on (1) the effectiveness of using sorbed

  19. Source apportionment of exposure to toxic volatile organic compounds using positive matrix factorization

    Microsoft Academic Search

    MELISSA J ANDERSON; SHELLY L MILLER; JANA B MILFORD

    2001-01-01

    Data from the Total Exposure Assessment Methodology studies, conducted from 1980 to 1987 in New Jersey (NJ) and California (CA), and the 1990 California Indoor Exposure study were analyzed using positive matrix factorization, a receptor-oriented source apportionment model. Personal exposure and outdoor concentrations of 14 and 17 toxic volatile organic compounds (VOCs) were studied from the NJ and CA data,

  20. Modelling the oxidation of seventeen volatile organic compounds to track yields of CO and CO 2

    Microsoft Academic Search

    Aoife Grant; Alexander T. Archibald; Mike C. Cooke; Dudley E. Shallcross

    2010-01-01

    A box model simulating tropospheric conditions was used to trace the oxidation pathways of 17 volatile organic compounds (VOCs) covering saturated, olefinic, oxygenated and aromatic species. Yields of carbon monoxide (CO), carbon dioxide (CO2) and other oxidation products were calculated over the duration of the model simulation. Conversion factors to CO and CO2 were determined for individual VOCs at various

  1. Aluminium foams as structured supports for volatile organic compounds (VOCs) oxidation

    Microsoft Academic Search

    Oihane Sanz; F. Javier Echave; Maialen Sánchez; Antonio Monzón; Mario Montes

    2008-01-01

    In this work aluminium foams were studied as structured supports for the elimination of volatile organic compounds (VOCs, toluene). Foams of different pore density, 10, 20 and 40pores per inch (ppi), were used in an anodisation process to produce a very thin layer of alumina. This alumina layer was impregnated with the active phase, platinum, by wet impregnation. Anodisation process

  2. Multi-day ozone production potential of volatile organic compounds calculated with a tagging approach

    Microsoft Academic Search

    T. M. Butler; M. G. Lawrence; D. Taraborrelli; J. Lelieveld

    2011-01-01

    Calculation of the ozone production potential of Volatile Organic Compounds (VOC) has traditionally been performed using so-called incremental reactivity techniques, requiring multiple photochemical model runs in which the combined direct and indirect effects on ozone from slight perturbations to each VOC are investigated in turn. A new approach to this problem is presented here using an extensively tagged chemical mechanism,

  3. Estimation of Henry's Law Constant for a Diverse Set of Organic Compounds from Molecular Structure

    EPA Science Inventory

    The SPARC (SPARC Performs Automated Reasoning in Chemistry) vapor pressure and activity coefficient models were coupled to estimate Henry?s Law Constant (HLC) in water and in hexadecane for a wide range of non-polar and polar organic compounds without modification or additional p...

  4. Contribution of sulfuric acid and oxidized organic compounds to particle formation and growth

    NASA Astrophysics Data System (ADS)

    Riccobono, F.; Rondo, L.; Sipilä, M.; Barmet, P.; Curtius, J.; Dommen, J.; Ehn, M.; Ehrhart, S.; Kulmala, M.; Kürten, A.; Mikkilä, J.; Petäjä, T.; Weingartner, E.; Baltensperger, U.

    2012-05-01

    Lack of knowledge about the mechanisms underlying new particle formation and their subsequent growth is one of the main causes for the large uncertainty in estimating the radiative forcing of atmospheric aerosols in global models. We performed chamber experiments designed to study the contributions of sulfuric acid and organic vapors to formation and to the early growth of nucleated particles, respectively. Distinct experiments in the presence of two different organic precursors (1,3,5-trimethylbenzene and ?-pinene) showed the ability of these compounds to reproduce the formation rates observed in the low troposphere. These results were obtained measuring the sulfuric acid concentrations with two Chemical Ionization Mass Spectrometers confirming the results of a previous study which modeled the sulfuric acid concentrations in presence of 1,3,5-trimethylbenzene. New analysis methods were applied to the data collected with a Condensation Particle Counter battery and a Scanning Mobility Particle Sizer, allowing the assessment of the size resolved growth rates of freshly nucleated particles. The effect of organic vapors on particle growth was investigated by means of the growth rate enhancement factor (?), defined as the ratio between the measured growth rate in the presence of ?-pinene and the kinetically limited growth rate of the sulfuric acid and water system. The observed ? values indicate that the growth is dominated by organic compounds already at particle diameters of 2 nm. Both the absolute growth rates and ? showed a strong dependence on particle size supporting the nano-Köhler theory. Moreover, the separation of the contributions from sulfuric acid and organic compounds to particles growth reveals that the organic contribution seems to be enhanced by the sulfuric acid concentration. The size resolved growth analysis finally indicates that both condensation of oxidized organic compounds and reactive uptake contribute to particle growth.

  5. Contribution of sulfuric acid and oxidized organic compounds to particle formation and growth

    NASA Astrophysics Data System (ADS)

    Riccobono, F.; Rondo, L.; Sipilä, M.; Barmet, P.; Curtius, J.; Dommen, J.; Ehn, M.; Ehrhart, S.; Kulmala, M.; Kürten, A.; Mikkilä, J.; Paasonen, P.; Petäjä, T.; Weingartner, E.; Baltensperger, U.

    2012-10-01

    Lack of knowledge about the mechanisms underlying new particle formation and their subsequent growth is one of the main causes for the large uncertainty in estimating the radiative forcing of atmospheric aerosols in global models. We performed chamber experiments designed to study the contributions of sulfuric acid and organic vapors to the formation and early growth of nucleated particles. Distinct experiments in the presence of two different organic precursors (1,3,5-trimethylbenzene and ?-pinene) showed the ability of these compounds to reproduce the formation rates observed in the low troposphere. These results were obtained measuring the sulfuric acid concentrations with two chemical ionization mass spectrometers confirming the results of a previous study which modeled the sulfuric acid concentrations in presence of 1,3,5-trimethylbenzene. New analysis methods were applied to the data collected with a condensation particle counter battery and a scanning mobility particle sizer, allowing the assessment of the size resolved growth rates of freshly nucleated particles. The effect of organic vapors on particle growth was investigated by means of the growth rate enhancement factor (?), defined as the ratio between the measured growth rate in the presence of ?-pinene and the kinetically limited growth rate of the sulfuric acid and water system. The observed ? values indicate that the growth is already dominated by organic compounds at particle diameters of 2 nm. Both the absolute growth rates and ? showed a strong dependence on particle size, supporting the nano-Köhler theory. Moreover, the separation of the contributions from sulfuric acid and organic compounds to particle growth reveals that the organic contribution seems to be enhanced by the sulfuric acid concentration. Finally, the size resolved growth analysis indicates that both condensation of oxidized organic compounds and reactive uptake contribute to particle growth.

  6. A new approach to determine method detection limits for compound-specific isotope analysis of volatile organic compounds.

    PubMed

    Jochmann, Maik A; Blessing, Michaela; Haderlein, Stefan B; Schmidt, Torsten C

    2006-01-01

    Compound-specific isotope analysis (CSIA) has been established as a useful tool in the field of environmental science, in particular in the assessment of contaminated sites. What limits the use of gas chromatography/isotope ratio mass spectrometry (GC/IRMS) is the low sensitivity of the method compared with GC/MS analysis; however, the development of suitable extraction and enrichment techniques for important groundwater contaminants will extend the fields of application for GC/IRMS. So far, purge and trap (P&T) is the most effective, known preconcentration technique for on-line CSIA with the lowest reported method detection limits (MDLs in the low microg/L range). With the goal of improving the sensitivity of a fully automated GC/IRMS analysis method, a commercially available P&T system was modified. The method was evaluated for ten monoaromatic compounds (benzene, toluene, para-xylene, ethylbenzene, propylbenzene, isopropylbenzene, 1,2,3-trimethylbenzene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, fluorobenzene) and ten halogenated volatile organic compounds (VOCs) (dichloromethane, cis-1,2-dichloroethene, trans-1,2-dichloroethene, carbon tetrachloride, chloroform, 1,2-dichloroethane, trichloroethene, tetrachlorethene, 1,2-dibromoethane, bromoform). The influence of method parameters, including purge gas flow rates and purge times, on delta13C values of target compounds was evaluated. The P&T method showed good reproducibility, high linearity and small isotopic fractionation. MDLs were determined by consecutive calculation of the delta13C mean values. The last concentration for which the delta13C value was within this iterative interval and for which the standard deviation was lower than +/-0.5 per thousand for triplicate measurements was defined as the MDL. MDLs for monoaromatic compounds between 0.07 and 0.35 microg/L are the lowest values reported so far for continuous-flow isotope ratio measurements using an automated system. MDLs for halogenated hydrocarbons were between 0.76 and 27 microg/L. The environmental applicability of the P&T-GC/IRMS method in the low-microg/L range was demonstrated in a case study on groundwater samples from a former military air field contaminated with VOCs. PMID:17103491

  7. Organic compounds of different extractability in total solvent extracts from soils of contrasting water repellency

    NASA Astrophysics Data System (ADS)

    Atanassova, Irena; Doerr, Stefan H.

    2010-05-01

    Previous studies examining organic compounds that may cause water-repellent behaviour of soils have typically focussed on analysing only the lipophilic fraction of extracted material. This study aimed to provide a more comprehensive examination by applying single- and sequential-accelerated solvent extraction (ASE), separation and analysis by GC/MS of the total solvent extracts of three soils taken from under eucalypt vegetation with different levels of water repellency. Water repellency increased in all the soils after extraction with DCM:MeOH (95:5), but was eliminated with iso-propanol/ammonia (95:5). Quantities of major lipid compound classes varied between solvents and soils. Iso-propanol/ammonia (95:5) solvent released saccharides, glycerol, aromatic acids and other polar organic compounds, which were more abundant in fractionated extracts from the single extraction and the third step sequential ASE extraction, than in the extracts from the DCM:MeOH ASE solvent. Dominant compounds extracted from all soils were long-chain alkanols (>C22), palmitic acid, C29 alkane, ?-sitosterol, terpenes, terpenoids and other polar compounds. The soil with smallest repellency lacked >C18 fatty acids and had smallest concentrations of alkanols (C26, C28 and C30) and alkanes (C29, C31), but a greater abundance of more complex polar compounds than the more repellent soils. We therefore speculate that the above compounds play an important role in determining the water repellency of the soils tested. The results suggest that one-stage and sequential ASE extractions with iso-propanol:ammonia and subsequent fractionation of extracts are a useful approach in providing a comprehensive assessment of the potential compounds involved in causing soil water repellency.

  8. Mineral and organic compounds in leachate from landfill with concentrate recirculation.

    PubMed

    Talalaj, Izabela Anna

    2015-02-01

    The effect of a reverse osmosis concentrate recirculation on the mineral and organic compounds in a landfill leachate was investigated. Investigated was the quality of a leachate from two landfills operated for different periods (a 20-year-old Cell A and a 1-year-old Cell B), where the concentrate was recirculated. Examined were general parameters (conductivity, pH), organic compounds (biochemical oxygen demand (BOD), chemical oxygen demand (COD), total organic nitrogen, BOD/COD), and inorganic compounds (nitrogen ammonia, sulfite, sulfate, cyanide, boron, chloride, ferrous, zinc, chrome, copper). The findings from the first year of investigation showed that over the initial period of recirculation, the concentration of organic compounds (BOD, COD) increased, but after 6 months their values stabilized. It indicates that the concentrate recirculation accelerated organic decomposition, especially in the new landfill Cell. The analysis of inorganic parameters showed that recirculation landfills produce a leachate with a higher concentration of N-NH4, and Cl(-). In case of the old landfill Cell, an increase in B and Fe was also noticeable. These compounds are cyclically washed out from a waste dump and require an additional pretreatment in order to exclude them from recirculation cycle. The increased concentration of Cu, Zn, and Fe was noticed during the initial months of recirculation and in the season of intense atmospheric precipitation in the leachate from both Cells. Higher values of electro conductivity, Cl(-), N-NH4 (+), B, and Fe in the leachate from the old field indicate that the attenuation capacity of this landfill is close to exhaustion. PMID:25194843

  9. Bright white-light emission from a single organic compound in the solid state.

    PubMed

    Yang, Qing-Yuan; Lehn, Jean-Marie

    2014-04-25

    White-light-emitting materials and devices have attracted enormous interest because of their great potential for various lighting applications. We herein describe the light-emitting properties of a series of new difunctional organic molecules of remarkably simple structure consisting of two terminal 4-pyridone push-pull subunits separated by a polymethylene chain. They were found to emit almost "pure" white light as a single organic compound in the solid state, as well as when incorporated in a polymer film. To the best of our knowledge, they are the simplest white-light-emitting organic molecules reported to date. PMID:24677585

  10. Carbon (1s) NEXAFS Spectroscopy of Biogeochemically Relevant Reference Organic Compounds

    SciTech Connect

    Solomon, D.; Lehmann, J; Kinyangi, J; Liang, B; Heymann, K; Dathe, L; Hanley, K; Wirick, S; Jacobsen, C

    2009-01-01

    Natural organic matter (NOM) is a highly active component of soils and sediments, and plays an important role in global C cycling. However, NOM has defied molecular-level structural characterization, owing to variations along the decomposition continuum and its existence as highly functionalized polyelectrolytes. We conducted a comprehensive systematic overview of spectral signatures and peak positions of major organic molecules that occur as part of NOM using near-edge x-ray absorption fine structure (NEXAFS) spectroscopy. This investigation provides a more comprehensive NEXAFS spectral library of biogeochemically relevant organic C compounds. The spectra of these reference organic compounds reveal distinct spectral features and peak positions at the C K-edge that are characteristic of the molecular orbitals bonding C atoms. Detailed structural information can be derived from these distinctive spectral features that could be used to build robust peak assignment criteria to exploit the chemical sensitivity of NEXAFS spectroscopy for in situ molecular-level spatial investigation and fingerprinting of complex organic C compounds in environmental samples.

  11. A screening assessment of emissions of volatile organic compounds and particles from heated indoor dust samples.

    PubMed

    Pedersen, E K; Bjørseth, O; Syversen, T; Mathiesen, M

    2003-06-01

    This paper characterizes and compares emissions during heating of different dust samples relevant to the indoor environment. Characterization includes emission of volatile organic compounds when dust samples were heated to 150 and 250 degrees C (gas chromatograph-mass spectrometer), weight loss during heating to 450 degrees C (thermogravimetric analysis), and the number of particles emitted during heating towards 200 degrees C (condensation nucleus counting). Element analyses were performed for non-heated dust (inductively coupled plasma discharge instrument). Emissions of volatile organic compounds from heated dust from different sources were surprisingly similar. However, the temperature at which the emission of volatiles started varied with the dust source. For most of the samples studied, the emissions were considerable already at 150 degrees C, and increased in number of peaks and peak area at 250 degrees C. Particle emissions started around 70 degrees C regardless of the dust source. Particle emissions seemed to be affected by the content of organic material. PMID:12756004

  12. Uptake of Small Organic Compounds by Sulfuric Acid Aerosols: Dissolution and Reaction

    NASA Technical Reports Server (NTRS)

    Iraci, L. T.; Michelsen, R. R.; Ashbourn, S. F. M.; Staton, S. J. R.

    2003-01-01

    To assess the role of oxygenated volatile organic compounds in the upper troposphere and lower stratosphere, the interactions of a series of small organic compounds with low-temperature aqueous sulfuric acid will be evaluated. The total amount of organic material which may be taken up from the gas phase by dissolution, surface layer formation, and reaction during the particle lifetime will be quantified. Our current results for acetaldehyde uptake on 40 - 80 wt% sulfuric acid solutions will be compared to those of methanol, formaldehyde, and acetone to investigate the relationships between chemical functionality and heterogeneous activity. Where possible, equilibrium uptake will be ascribed to component pathways (hydration, protonation, etc.) to facilitate evaluation of other species not yet studied in low temperature aqueous sulfuric acid.

  13. Seasonal Variations of Quantified Organic Compounds in PM10 over Seoul

    NASA Astrophysics Data System (ADS)

    Choi, N.; Lee, J.; Kim, Y. P.

    2014-12-01

    The concentrations of 87 individual organic matters in the PM10 samples, systematically collected on the roof of the School of Public Health building at Seoul National University (mixed commercial and residential area), Seoul, South Korea on a daily basis from April 2010 to April 2011, were quantified by mean of Gas Chromatography/Mass Spectrometry (GC/MS). The daily average concentrations of five organic groups, alkanes, PAHs, fatty acid, DCAs, and sugars were ranged from 498.40 ng m3 to 10.20 ?g m3. The seasonal concentrations of the total quantified organic species were 1.73 ?g m3 (Spring), 2.04 ?g m3 (Summer), 3.11 ?g m3 (Fall), and 3.60 ?g m3 (Winter), respectively. All the organic groups showed higher average concentration in winter than in summer. However, some organic compounds among fatty acids, DCAs, and sugars showed reverse pattern. The seasonal concentration patterns and episode variation of individual organic compounds were studied to clarify the emission characteristics of organic matters in PM10.

  14. Challenges in quantitative analyses for volatile organic compounds bound to lipocalins.

    PubMed

    Kwak, Jae

    2012-11-01

    In this communication, I describe the challenges in quantitative analyses for volatile organic compounds in mouse urine, which are primarily caused by the presence of the major urinary proteins, a lipocalin subfamily, that sequester volatile ligands. The analyses of volatile compounds in mouse urine have been performed since the late 1970s. However, none of them considered the binding interactions of the quantified compounds with the urinary proteins. Some volatile ligands are tightly bound to the proteins and may not be extracted completely by organic solvents. The amounts of volatile ligands measured by external standard calibration represent those of the unbound ligands in the headspace, not the total amounts in urine. Addition of internal standards displaces ligands bound to the proteins, resulting in a completely different volatile profile. Normalization of volatile compounds using relative peak area (or height) ratios may not be used in the conditions where displacement of ligands bound to the proteins occurs. Because of the unique chemical properties of mouse urine, I have not been able to find a good quantification method for the volatile compounds released from mouse urine. I hope that the identification of these issues will stimulate others to come up with novel approaches. PMID:22965638

  15. Removal of volatile organic compounds using amphiphilic cyclodextrin-coated polypropylene

    PubMed Central

    Lumholdt, Ludmilla; Fourmentin, Sophie; Nielsen, Thorbjørn T

    2014-01-01

    Summary Polypropylene nonwovens were functionalised using a self-assembled, amphiphilic cyclodextrin coating and the potential for water purification by removal of pollutants was studied. As benzene is one of the problematic compounds in the Water Framework Directive, six volatile organic compounds (benzene and five benzene-based substances) were chosen as model compounds. The compounds were tested as a mixture in order to provide a more realistic situation since the wastewater will be a complex mixture containing multiple pollutants. The volatile organic compounds are known to form stable inclusion complexes with cyclodextrins. Six different amphiphilic cyclodextrin derivatives were synthesised in order to elucidate whether or not the uptake abilities of the coating depend on the structure of the derivative. Headspace gas chromatography was used for quantification of the uptake exploiting the volatile nature of benzene and its derivatives. The capacity was shown to increase beyond the expected stoichiometries of guest–host complexes with ratios of up to 16:1. PMID:25550739

  16. Abatements of reduced sulphur compounds, colour, and organic matter from indigo dyeing effluents by electrocoagulation.

    PubMed

    Tünay, Olcay; Sim?eker, Merve; Kabda?li, Isik; Olmez-Hanci, Tugba

    2014-08-01

    In the present study, the treatability of indigo dyeing effluents by the electrocoagulation (EC) process using stainless steel electrodes was experimentally investigated. The samples used were concentrated with main pollutant parameters of chemical oxygen demand (COD) (1000-1100 mg/L), reduced sulphur species (over 2000 mg SO2-(3)/L), and colour (0.12-0.13 1/cm). The study focused on the effect of main operation parameters on the EC process performance in terms of abatement of reduced sulphur compounds as well as decolourization and organic matter reduction. Results indicated that the performance of EC proved to be high providing total oxidation of the reduced sulphur compounds, almost complete decolourization, and COD removal up to 90%. Increasing applied current density from 22.5 to 45 mA/cm2 appreciably improved abatement of the reduced sulphur compounds for Sample I, but a further increase in the applied current density to 67.5 mA/cm2 did not accelerate the conversion rate to sulphate. The process performance was adversely affected by increasing initial concentration of the reduced sulphur compounds. Decolourization and organic matter removal efficiency enhanced with increasing applied current density. The main removal mechanism of the reduced sulphur compounds by EC was explained as conversion to sulphate via oxidation. Conversion rate to sulphate fitted pseudo-first-order kinetics very well. PMID:24956747

  17. Lignin Peroxidase Oxidation of Aromatic Compounds in Systems Containing Organic Solvents

    PubMed Central

    Vazquez-Duhalt, Rafael; Westlake, Donald W. S.; Fedorak, Phillip M.

    1994-01-01

    Lignin peroxidase from Phanerochaete chrysosporium was used to study the oxidation of aromatic compounds, including polycyclic aromatic hydrocarbons and heterocyclic compounds, that are models of moieties of asphaltene molecules. The oxidations were done in systems containing water-miscible organic solvents, including methanol, isopropanol, N, N-dimethylformamide, acetonitrile, and tetrahydrofuran. Of the 20 aromatic compounds tested, 9 were oxidized by lignin peroxidase in the presence of hydrogen peroxide. These included anthracene, 1-, 2-, and 9-methylanthracenes, acenaphthene, fluoranthene, pyrene, carbazole, and dibenzothiophene. Of the compounds studied, lignin peroxidase was able to oxidize those with ionization potentials of <8 eV (measured by electron impact). The reaction products contain hydroxyl and keto groups. In one case, carbon-carbon bond cleavage, yielding anthraquinone from 9-methylanthracene, was detected. Kinetic constants and stability characteristics of lignin peroxidase were determined by using pyrene as the substrate in systems containing different amounts of organic solvent. Benzyl alkylation of lignin peroxidase improved its activity in a system containing water-miscible organic solvent but did not increase its resistance to inactivation at high solvent concentrations. PMID:16349176

  18. Laboratory Detection and Analysis of Organic Compounds in Rocks Using HPLC and XRD Methods

    NASA Technical Reports Server (NTRS)

    Dragoi, D.; Kanik, I.; Bar-Cohen, Y.; Sherrit, S.; Tsapin, A.; Kulleck, J.

    2004-01-01

    In this work we describe an analytical method for determining the presence of organic compounds in rocks, limestone, and other composite materials. Our preliminary laboratory experiments on different rocks/limestone show that the organic component in mineralogical matrices is a minor phase on order of hundreds of ppm and can be better detected using high precision liquid chromatography (HPLC). The matrix, which is the major phase, plays an important role in embedding and protecting the organic molecules from the harsh Martian environment. Some rocks bear significant amounts of amino acids therefore, it is possible to identify these phases using powder x-ray diffraction (XRD) by crystallizing the organic. The method of detection/analysis of organics, in particular amino acids, that have been associated with life will be shown in the next section.

  19. Alteration of five organic compounds by glow discharge plasma and UV light under simulated Mars conditions

    NASA Astrophysics Data System (ADS)

    Hintze, Paul E.; Buhler, Charles R.; Schuerger, Andrew C.; Calle, Luz M.; Calle, Carlos I.

    2010-08-01

    The Viking missions to Mars failed to detect any organic material in regolith samples. Since then, several removal mechanisms of organic material have been proposed. Two of these proposed methods are removal due to exposure to plasmas created in dust devils and exposure to UV irradiation. The experiments presented here were performed to identify similarities between the two potential removal mechanisms and to identify any compounds produced from these mechanisms that would have been difficult for the Viking instruments to detect. Five organic compounds, phenanthrene, octadecane, octadecanoic acid, decanophenone and benzoic acid, were exposed to a glow discharge plasma created in simulated martian atmospheres as might be present in dust devils, and to UV irradiation similar to that found at the surface of Mars. Glow discharge exposure was carried out in a chamber with 6.9 mbar pressure of a Mars like gas composed mostly of carbon dioxide. The plasma was characterized using emission spectroscopy and found to contain cations and excited neutral species including carbon dioxide, carbon monoxide, and nitrogen. UV irradiation experiments were performed in a Mars chamber which simulates the temperature, pressure, atmospheric composition, and UV fluence rates of equatorial Mars. The non-volatile residues left after each exposure were characterized by mass loss, infrared spectroscopy and high resolution mass spectrometry. Oxidized, higher molecular weight versions of the parent compounds containing carbonyl, hydroxyl and alkenyl functional groups were identified. The presence of these oxidized compounds suggests that searches for organic material in soils on Mars use instrumentation suitable for detection of compounds which contain the above functional groups. Discussions of possible reaction mechanisms are given.

  20. Kinetics and products of the reactions of hydroxyl radicals with selected volatile organic compounds, including oxygenated compounds

    NASA Astrophysics Data System (ADS)

    Bethel, Heidi Lynn

    Kinetics, products and reaction mechanisms of the OH radical-initiated reactions of selected volatile organic compounds (VOCs) and oxygenated compounds were examined. These compounds are important smog forming chemicals that are found in gasoline and many consumer products. Smog is created by the interaction of these VOCs with oxides of nitrogen in the presence of sunlight. The hydroxyl (OH) radical is a daytime species and a key initiator of the VOC reactions which lead to photochemical smog formation. Chapter II investigates the OH radical-initiated reactions of p-xylene, 1,2,3-, and 1,2,4-trimethylbenzene which are components of gasoline fuels, vehicle exhaust and ambient air in urban areas. Experiments were conducted at varying NO2 concentrations in indoor environmental chambers in order to determine the dependence of the product yields as a function of NO2 concentrations. From these experiments and previous literature yields, a majority of the products from these reactions under atmospheric conditions have now been elucidated. Chapter III examines the OH radical-initiated reaction of 3-hexene-2,5-dione which is formed from the reactions of p-xylene and 1,2,4-trimethylbenzene (Chapter II). Due to its polar nature, 3-hexene-2,5-dione and its reaction products are difficult to handle experimentally. Products identified from this reaction through the use of in situ atmospheric pressure ionization tandem mass spectrometry were CH3C(O)CH(OH)CHO and CH 3C(O)CH(OH)CH(ONO2)C(O)CH3. Chapters IV, V, and VI examine the OH radical-initiated reactions of 6 different alcohols, including diols. The products examined in Chapters IV and V are those from 2-methyl-2,4-pentanediol and 1,2-, 1,3-, and 2,3-butanediol, which are found in various solvents. Reaction rates were determined using a relative rate method. Hydroxyaldehyde and hydroxyketone products from these reactions were also quantified. Chapter VI examined the reaction rates and products formed from the OH radical-initiated reactions of 2-methyl-2-pentanol and 4-methyl-2-pentanol. These compounds were studied in order to investigate the formation of alkoxy radicals (RO•) and their subsequent reactions through isomerization, decomposition or reaction with O2 . Experiments of the type detailed here allow the determination of kinetics and products of the atmospheric reactions of VOCs and provide input for mechanistic models of photochemical smog formation.